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PREFACE

This book contains the invited and special 
lectures presented at the INTERNATIONAL SYMPOSIUM ON 
THE APPLICATIONS OF MATHEMATICAL CONCEPTS TO CHEMIS­
TRY held in Dubrovnik, Croatia, from September 2 to 
September 5, 1985. The Symposium was sponsored by the
International Union of Pure and Applied Chemistry in 
conjunction with the Union of Chemical Societies of 
Yugoslavia, the Croatian Chemical Society, and the 
Department of Physical Chemistry of the Rugjer Bos- 
kovic Institute in Zagreb.

Not long ago, several researchers from dif­
ferent countries working in various fields of theo­
retical chemistry, suggested that an international 
symposium on some aspects of Mathematical Chemistry 
be organized. These included Professor B.M. Gimarc 
(Columbia, SC), Professor M. Randic (Ames), Profes­
sor D.J. Klein (Galveston), Dr. R.B. Mallion (Canter­
bury), Dr. D. Bonchev (Burgas), Professor P.G. Mezey 
(Saskatoon), Professor J.V. Knop (Diisseldor f) , Dr. P. 
Krivka (Pardubice), Professor B.A. Hess, Jr. (Nash­
ville), Professor A.T. Balaban (Bucharest). The sug­
gestion specifically indicated the Theoretical Chem­
istry Group at the Rugjer Boskovic Institute in Za­
greb as organizer, primarily because of our past ac­
tive role in developing and promoting Mathematical
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Chemistry in general and Chemical Graph Theory in 
particular. We accepted the responsibility, both as 
an honour and a privilege. We are especially happy 
that the long standing tradition of Mathematical 
Chemistry in this country, and in Croatia in parti­
cular, has been recognized in this way. Hence, this, 
the first symposium dealing exclusively with topics 
that constitute Mathematical Chemistry has been or­
ganized by our Group with great fervour and enthusi­
asm.

We selected Dubrovnik as the site of the Sympo­
sium because it is one of the most interesting Croa­
tian cities with a distinguished historical, cultural, 
and scientific heritage. The famous Croatian scientist 
Rugjer Boskovic, fellow of the Royal Society (London), 
Professor of Mathematics at Collegium Romanum in Ro­
me, and founder of the Observatory at Brera, was born 
there (May 18, 1711). Besides Dubrovnik, known for 
its mild Mediterranean climate, is a frequent site 
for scientific meetings, and is easily accessible by 
land, sea and air.

The International Symposium on the Applications 
of Mathematical Concepts to Chemistry was attended 
by 121 participants from 21 countries. The Symposium 
brought together mathematical chemists, computer 
chemists, theoretical chemists, mathematically and 
theoretically minded experimental chemists, mathe­
matical physicists and mathematicians, for discus­
sions about the status of Mathematical Chemistry, 
its perspectives, and its influence on various as­
pects of Chemistry.

Last day of the Symposium has been dedicated 
to the memory of the late Professor Andrej Azman 
(Celje 1937 - Ljubljana 1980) who in his time was 
the leading chemical theoretician in Yugoslavia and 
inspiring supporter of Mathematical Chemistry. Last, 
but not least, during the Symposium important preli­
minary steps have been made to establish an Interna­
tional Society of Mathematical Chemistry. We expect 
that the combination of exciting science, beautiful 
scenery, warm weather and the hospitality of the 
local people made the Symposium a memorable experi­
ence for all participants.

The lectures and posters covered a significant 
part of the broad spectrum of problems in Mathemati­
cal Chemistry and its interactions with other areas 
of Chemistry. The Symposium also revealed the per­
manent need for Mathematics in all branches of Che­
mistry. In addition, it became evident that Mathe­
matical Chemistry will continue to grow as a part of
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Theoretical Chemistry; other overlapping but distin­
guishable parts include Quantum Chemistry, Statistical 
Mechanics and Computational Chemistry.

The contributed papers presented at the Sym­
posium will appear in a special issue of Croatica 
Chemica Acta, a chemistry journal published by the 
Croatian Chemical Society.

Zagreb, September 1985.

Nenad Trinajstic



Chapter 1

INTRODUCTORY REMARKS
V. Prelog

Organic Chemistry Laboratory of the Swiss Federal Institute of Technology,
CH-8092 Zurich, Switzerland

About 200 years ago Immanuel Kant wrote in his 
"Kleinere Schriften zur Naturphilosopie": "Ich be-
haupte, dass in jeder besonderen Naturlehre nur so 
viel Wissenschaft angetroffen werden konne, als darin 
Mathematik anzutreffen ist". He wrote then: "Solange
also noch fur die chemischen Wirkungen der Materien 
aufeinander kein Begriff aufgefunden wird, der sich
konstruieren lasst ___eine Forderung, die schwerlich
jemals erfiillt werden wird - so kann Chemie nichts 
mehr als Kunst oder Experimentallehre, niemals aber 
eigentliche Wissenschaft werden". Just about the same 
time Lavoisier was introducing mathematics into chem­
istry through his use of the balance. The law of de­
finite proportions became the basis of stoichiometry 
and every chemist-artist had to learn some arithme­
tic .

The next great step in development of chemistry 
was the structural theory, but the pioneers in this 
field, Butlerov, Couper and Kekule did not realize 
that the structural formulae are actually mathemati­
cal objects, graphs. It was the mathematician Arthur 
Cayley who first became aware of that and he devel­
oped the theory of tree-graphs by trying to calculate
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the number of possible constitutional isomers of par­
affin hydrocarbons cnK2n+2* Later' Geor<? Polya, in an 
encounter with problems of isomerism discovered his 
famous theorem which became one of the fundaments of 
combinatorics. These mathematical achievements, how­
ever, had very little impact on the daily praxis of 
chemists, because their everyday problems were usual­
ly so simple that they could mostly be solved by tri­
al and error.

Soon after the structural theory had been devel­
oped Jacobus Kendricus van11 Hoff and Achilles Le Bel 
founded organic stereochemistry and Alfred Werner the 
stereochemistry of inorganic complexes. Symmetry, di­
symmetry and asymmetry became recognized as important 
features of molecules, and although group theory was 
clearly the branch of mathematics most appropriate 
for treating problems in this area very few chemists 
made use of it.

The gate of entrance for more sophisticated 
mathematics into chemistry was and still is physical 
chemistry. Step by step, methods of mathematical 
physics penetrated into chemistry: first calculus, to 
deal with problems of chemical thermodynamics and 
kinetics, then linear algebra and group theory, as 
additional tools of quantum chemistry and molecular 
spectroscopy.

The more recent general impact of computers on 
chemistry and on chemists cannot be overestimated. 
Without computers theoretical chemistry, structural 
analysis by diffraction methods, molecular mechanics, 
etc. could not have developed far, and the collec­
tion, retrieval and classification of the terrifying 
multiplicity of chemical data would be almost impos­
sible . The design of syntheses and analyses of reac­
tion pathways are other promissing applications.

Last but not least topological aspects of chemi­
cal concepts such as e.g. aromaticity, should be men­
tioned. Thus the progress of chemistry depends more 
than ever on applications of mathematics.

The important aims of such conferences as this 
one are to bring together scientists who use the many 
different branches of mathematics in chemistry and to 
bridge existing gaps between them, to learn about the 
new work of pioneers and about the progress in estab-
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lished fields. The titles in the programme indicate 
that almost all mentioned topics will be covered.

In summary one can say that chemistry today in­
cludes quite enough mathematics to be considered a 
respectable science from the Kantian point of view, 
but let us also not forget what Lord Kelvin said 
about physics: "It is as dangerous to let mathematics
take charge of physics as to let an army run a 
government."



Chapter 2

THE MATHEMATICAL 
TRAINING OF CHEMISTS
J.N. Murrell
School of Molecular Sciences, The University of Sussex,
Brighton BN1 9QJ, England, UK

I was recently a member of an appointing committee for a 
university lectureship in mechanical engineering and was 
struck by the fact that none of those interviewed had dirty 
fingernails. I should put it less glibly; everyone that 
was seriously considered for the post was involved in the 
computer simulation of structures rather than the building 
and testing of rigs. Of course, one can understand why 
this is so; it is far cheaper to do a computer simulation 
of an oil rig than to build one and test it to 
destruction. I assume that somewhere in the background 
there must be engineers with oily hands who are still 
building and testing, because one can only confidently use 
mathematical models to extend empirical knowledge by small 
amounts. Nevertheless, the balance between the 
mathematical model builders, and the rig builders and 
testers, seems to have swung far towards the clean handed 
people in recent years.

I do not think this situation has occurred yet in chemistry 
which is still predominantly an empirical subject. In 
fact. I would go as far as to say that the mathematical 
models used in chemistry still have rather poor predictive 
performance. How often does an experimental chemist ask 
for the results of a calculation before deciding whether an 
experiment is likely to prove fruitful? In part this is
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because chemical experiments are still generally cheap and 
not too time consuming. It is quite often quicker to do a 
good experiment than a poor calculation.

However, the situation is bound to change in the future and 
one can see already that this is beginning in some of the 
more expensive fields such as the pharmaceutical industry.
It costs several million pounds to bring a new drug to the 
market so that any model which can narrow the field of 
likely candidates is very useful.

The point of this preamble is to stress that what has in the 
past been found adequate by the chemical community for their 
models may not be adequate for the future. I am not saying 
that our chemistry courses should ignore the Friedel-Craft's 
reaction in favour of more time for the Schrodinger 
equation. Rather that we should move our theoretical 
studies a little away from conceptual models towards more 
quantitative models.

I have for many years been struck by the fact that chemists 
and physicists seem to have different approaches to 
theoretical problems. Physicists like to solve approximate 
models exactly and chemists prefer to solve good models 
approximately. Think how far the physicist has gone with 
the particle-in-a-box. In fact, I believe that most 
physicists are by training or inclination even less inclined 
to seek the help of quantitative mathematical models than 
are chemists.

You might justly ask whether I practice what I preach.
Well, with my close colleagues Sydney Kettle and John Tedder 
I have written two undergraduate textbooks on the theory of 
the chemical bond. The first of these. Valence theory, was 
written in 1965 and is quite firmly based on mathematical 
skills. For example, the book shows how to derive the 
ligand field matrix for p2 in the intermediate (weak-strong) 
coupling regime, which I think is quite tough for an 
undergraduate text. We assumed that the reader had a prior 
knowledge of vector, operator and matrix algebra and 
possessed a spirit which was not overawed by mathematical 
manipulations. However, Valence theory is essentially a 
book that deals with concepts. In a later edition we 
derived the Hartree-Fock-Roothaan equations but there were 
few references to the results which could be obtained from 
them.

Our second book, The Chemical Bond, was published in 1978 
and is much less mathematically demanding: nothing more is
required than the ability to expand a secular determinant.
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However, the principles underlying the ab-initio SCF 
approach are explained and the results of such calculation 
are used to establish the validity of the qualitative MO 
approach. For example, the concept of a molecular orbital 
is developed not only by arguments based on the LCAO 
approximation but also by examining the actual ab-initio 
results for Hj . Our view in 1978 was that students could 
appreciate the basis of quantitative calculations without 
having the mathematical ability to follow the problems 
encountered in, say, integral evaluation. In a new edition 
of the book, soon to appear, we are more expansive on the 
mathematical basis of the ab-initio method and on the 
general structure of the commonly available black-box SCF 
programs. 1 stress my belief that one can get students to 
understand the basis of the ab-initio method and to 
appreciate the results of such calculations even though 
their mathematical background is poorer than is required to 
follow many of the conceptual models of valence theory.

We have been struggling for many years to produce students 
who are literate and numerate. We should now also require 
them to be computerate. I do not much like the word but I 
am sure it will not be long before it appears in the Oxford 
English Dictionary.

I had originally intended to start this essay with a list of 
the mathematical tools that all chemists should know. On 
further reflection I decided that was not very useful. I 
am sure that most of us would take the view that almost any 
mathematical skill can be valuable. Putting this the other 
way round; I would be most reluctant to pick out any 
mathematical topic as being unworthy of study or as being of 
no use to chemists. The reason that we are at this 
conference rather than the Burgenstock conference on Natural 
Products (I know a few of us go to both) is not that we know 
a great deal of mathematics but that we have an appreciation 
for the mathematical approach. I would even say that most 
of us would find some joy in the proof that the square root 
of two is not a rational number - and I cannot think that 
has much relevance to theoretical chemistry.

However. I will finish by telling you what mathematics is 
known by one of our most eminent organic chemists. I told 
Professor John Cornforth that I was to give this talk and in 
order to see what was the minimum requirement for a good 
organic chemist I asked for the things he knew. This was 
his list;

(i) Elementary arithmetic 
(ii) Two-dimensional geometry including analytical
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(iii ) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 
(ix) 
(x) 
(xi) 

(xii) 
(xiii) 
(xiv)

geometry
Plane trigonometry and trigonometric functions
Conic sections
Elementary algebra
Simultaneous equations
Permutations and combinations
Differential calculus
Integral calculus
Differential equations (including partial)
Theory of probability
Theory of errors
Exponential functions
Binomial theorem

He regretted not knowing

(i)
(ii)

(iii)
(iv)

Prime numbers 
Diophantine equations 
Topology 
Symmetry

Well, I suspect we do not have a typical case here. 1 am 
certain that if he had sought my opinion on what organic 
chemistry a theoretician needed to know my list would have 
been much less impressive.



Chapter 3

THE EFFECT OF ELECTRO­
NEGATIVITY ON BOND 
LENGTHS IN MOLECULAR 
MECHANICS CALCULATIONS
Norman L. Allinger, Mita R. Imam, Manton R. Frierson, and Young Yuh 
Department of Chemistry, University of Georgia, Athens, GA 30602 
Lothar Schafer
Department of Chemistry, University of Arkansas, Fayetteville, AR 72701

ABSTRACT
The attachment of an electronegative atom or group to a 
carbon-carbon bond causes that bond to have a reduced 
length. The magnitude of the reduction is roughly propor­
tional to the electronegativity of the attached atom. The 
substitution of multiple electronegative atoms on the same 
bond leads to a further reduction of the bond length, unless 
the size and number of the groups is sufficient so that steric 
effects outweigh the electronegativity effect. Carbon- 
hydrogen bonds and carbon-halogen bonds behave similarly, 
except that the degree of shrinkage differs, depending upon 
the particular bond. Attachment of an electropositive atom 
causes a bond lengthening. Within the context of molecular 
mechanics, these changes in bond length occur in the "natural 
bond length", or 1q value for the bond, and whatever other 
effects may be present in the bond due to its particular 
environment also occur as usual, giving a resulting bond 
length which may be smaller or larger than the usual value by 
as much as 0.030 X or so.
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INTRODUCTION
The energy of an electron in a 2s orbital on carbon is much 
lower than that of an electron in the corresponding 2p 
orbital. Hence, if a hydrogen atom in an alkane is replaced 
by an electronegative atom, the carbon bonded to that 
electronegative atom responds by donating electron density to 
the electronegative atom, which means the bond to that atom 
contains more p character than it did in the alkane. If one 
bond to a carbon has the amount of p character in it 
increased, the other bonds to that carbon must between them 
have an increased amount of s character. Considering carbon- 
carbon bonds in general, an increase in s character (from an 
sp hybridization) will give a shorter bond, while increased p 
character will give a longer bond. Thus the attachment of an 
electronegative atom in, say, ethane, to give fluoroethane, 
yields a molecule with a shorter carbon-carbon bond than in 
ethane itself. And attachment of an electropositve atom would 
yield a longer carbon-carbon bond, for analogous reasons. 
Experimentally these changes in bond length have long been 
known, as has the interpretation given.

The molecular mechanics treatment of hydrocarbons has been 
worked out in considerable detail. While it cannot be said
that all problems have been solved in this area, most of them 
have been, at least to a reasonably good approximation. Thus 
for ordinary saturated hydrocarbons, one can calculate good 
structures by what are now standard methods.

When one adds other atoms onto the hydrocarbon framework, then 
the situation is somewhat different. Depending on the type
and number of the substituents on the hydrocarbon, the 
geometries as now calculated by molecular mechanics may be 
appreciably in error. Since most organic molecules contain 
various kinds of functionalized substituents, it is also 
important to be able to deal with the effects of these 
substituents accurately.

We have been interested in refining the MM2 force field so as 
to obtain more accurate structures for functionalized 
molecules. As a prelude to this, we gathered a large amount 
of representative experimental data so as to quantitatively 
study this electronegativity effect. We have also carried out 
ab initio calculations on this effect, and in particular on 
the torsional dependence of the effect._ Some of these
calculations have been published previously 8

As far as molecular ground states, theory and experiment show 
substantially the same thing, namely that a given bond will be 
shortened if an electronegative atom or substituent is 
attached to it, and lengthened if an electropositive atom is 
attached to it.^~“*’® The amount of shortening or lengthening 
is roughly proportional to the electronegativity of the
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Qattached substituent , but also depends upon steric effects 
and other interactions of the substituent with the rest of the 
molecule. Theory indicates that these electronegativity 
effects should be general, that is, they should occur for all 
substituents and all bonds, the only requirement being a 
difference in electronegativity between the substituent and 
the atom to which it is attached. But quantitatively, the 
effects can be small or large, and important or otherwise, 
depending upon the case. The torsional dependence of these 
bond length effects upon the substituent is a somewhat more 
complicated matter, and that will not be discussed further 
here. There is also some dependence of the bond angles upon 
the electronegativity of the attached substituent, and in the 
direction predicted by the model outlined. Thus, if we 
substitute a fluorine atom into ethane, the C-C-F bond angle, 
because of the extra p character in the bond to the fluorine, 
will be somewhat smaller than tetrahedral, whereas the other 
bond angles at the central carbon will be somewhat larger. 
The effect has also been studied experimentally with respect 
to benzene rings having attached substituents, where a great 
deal of information is available.^

RESULTS
In the present work we have examined a few typical
substituents, and we have noted how carbon-carbon bonds are 
affected by their attachment. Many of the substituents 
examined were halogens, and if one attaches two or more 
halogens to the same carbon, then one may also note the effect 
of one halogen on the other carbon-halogen bond. To a lesser 
extent we have looked also at carbon-hydrogen bonds.

Our formulation is that the natural bond length, 1 , is
changed by an amount 61 , to give a new natural bond length
(1 ’) such that; 6,

1 = 1 + 6 1  o o e
where 61 is a negative quantity for an atom more
electronegative than the atom to which it is attached, and is 
a positive quantity for an atom more electropositive than the 
atom to which it is attached. The quantities 61 are given 
for various atoms and bonds in Table 1. If we econsider a 
given bond, for example C-C, which has multiple electro­
negative (or electropositive) substituents, A, B, C, D,... 
etc;

l' = 1 +51 ... + 0.6261 + 0.62261 + 0.62361 +o o e(A) e(B) e(C) e(D)
where the substituents are ordered A, B, C, D,... in order of 
their decreasing values of 61 (absolute values). The factor 
of 0.62 in the above equation6was arrived at by studying the 
data for a number of compounds belonging to six different 
classes, but it was mainly chosen to fit the available data on
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fluorides. Because there is a relatively large amount of gas 
phase data for alkyl fluorides, and because the fluorine, 
being most electronegative, has the largest effect, this was 
taken as the case to fit.

In Table 1 are given the electronegativity correction 
parameters to 1q. For a carbon-carbon bond the amount of
shrinkage is largest in the case of fluorine (.022 8), but 
other electronegative atoms such as halogens and oxygen show 
effects of the order of 5-10 thousandths of an 8. The only 
electropositive atoms studied were silicon , which in silanes 
yields a lengthening of .015 8, and hydrogen when attached to 
oxygen or nitrogen.

The effects tend to be smaller, usually unobservably small, 
for a C-H bond. (They can, however, be seen in jab initio
calculations). But for carbon-halogen bonds, the effects can 
be even larger than they are for carbon-carbon bonds. Thus, 
fluorine attached to the carbon of a C-F bond yields a 
shortening of .034 8.

It is also of interest that a hydrogen attached to an oxygen 
(alcohol) or to a nitrogen (amine) yields a substantial bond 
lengthening, relative to the analogous molecule in which there 
is a carbon attached instead of a hydrogen. (The hydrogen may 
be thought of as being more electropositive than the
carbon.) Thus, the C-0 bond in an alcohol is in general 
longer than that in an ether, and the C-N bond in methylamine 
is longer than that in dimethylamine, which in turn is longer 
than that in trimethylamine. These bond length relationships 
are the reverse of those which result from simple steric 
effects, as were applied in the earlier versions of the MM2 
program. With those versions of the program, the best that 
could be done was to average out the bond lengths, so that we 
calculated the C-N bond length in methylamine as being too 
short, and that in trimethylamine as being too long. But with 
this electronegativity correction, we can get this order 
correct.

We might mention the anomeric effect, which occurs when one 
has two atoms, each of which contain a lone pair of electrons, 
attached to a common atom. If these atoms are both halogens, 
no special treatment is needed, because the collective 
orientation of lone pairs can always be viewed as being 
optimal. If one or more of these atoms is an oxygen,
nitrogen, or sulfur, then a special treatment of the anomeric 
effect is required, depending on the orientations of the lone 
pairs. We presented a formulation of this treatment elsewhere 
for the case where the two atoms are both oxygen.^ One could 
similarly formulate an analogous treatment for other 
combinations of these electronegative atoms.
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Table 1. Electronegativity Correction Parameters to 1

BOND TYPE END OF BOND ATOM TYPE CORRECTION TO 1o
1-1 1 6 -.009
1-1 1 8 *—H

oor

1-1 1 11 -.022
1-1 1 12 -.008
1-1 1 13 -.012
1-1 1 14 -.005
1-1 1 15 i o o

1-1 1 19 .015
1-5 1 6 -.002
1-5 1 8 -.001
1-5 1 11 -.010
1-5 1 12 -.005
1-5 1 13 -.002
1-5 1 14 -.001
1-11 1 11 -.034
1-11 1 12 -.020
1-11 1 13 -.004
1-12 1 11 -.030
1-12 1 12 -.020
1-12 1 13 -.003
1-13 1 11 -.002
1-13 1 12 -.003
1-13 1 13 -.002
1-14 1 11 i o o

1-14 1 12 i o o

1-14 1 13 -.001
1-6 6 21 .019
1-8 8 23 .015

aThe atom type 
hydrogen, etc

numbers have the usual meaning: 1 is carbon, 5

In Table 2 are given parameters that should be used to replace 
those in earlier versions of MM2, which need to be changed 
because of the introduction of the electronegativity effect.
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In a few cases they are just updates, because better 
information is available now than was available when the 
original formulation was carried out.

In Table 3 are summarized some experimental bond length data 
for a group of fluorides, together with the corresponding 
values as given now by the MM2 program. Table 4 gives a 
similar summary for chlorides, and for a few compounds which 
contain both chlorine and fluorine.

Table 2. Revised MM2 Parameters

Torsional Parameters (kcal/mol)

Atom Type Nos. VI V2 V3
11 1 1 11 -.100 -2.000 .200
6 1 1 12 .000 -1.400 .180
6 1 1 13 .000 -1.400 .180
6 1 1 14 .000 -1.400 .180

Stretching Parameters

Bond Type Kg(mdyn/&) 1Q (8)
1 - 6 5.36 1.402
1 - 8 5.10 1.4380
1 - 11 5.10 1.3920
1 - 12 3.23 1.7950
1 - 13 2.30 1.9490
1 - 14 2.20 2.1490

Bending Parameters

Atom Types K0(mdyn X/rad^) 0 (deg) 0
5 1 11 .490 110.500
11 1 11 1.070 107.100
1 1 11 .650 109.500
1 1 11 .650 107.500
1 1 11 .650 109.500
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Table 3. C -C  and C-F  Bond Lengths in Some Fluorides12 

Compound C-C bond length C-F bond length
Exper. MM2 Exper. MM2

Ethyl Fluoride^ 1.504(5) 1.511 1.399(4) 1.394

1,2-Difluoro- 
ethanea’̂

1.505(3) 1.507 1.391(2) 1.395

1,1-Difluoroethane^ 1.500(4) 1.496 1.366(2) 1.360

1,1,1-Trifluoro- 
ethane^

1.496(3) 1.486 1.342(2) 1.338

1,1,2-Trifluoro- 
ethane3’

1.502(5) 1.505
1.355(4)CF„H
1.389(8)CHfF

1.361
1.396

1,1,1,2-Tetra- 
fluoroethane1^

1.503(4) 1.507
1.391(6)CH„F
1.336(2)CF3

1.397
1.339

1,1,2,2-Tetra- 
fluoroethanea,

1.520(5) 1.518 1.352(2) 1.361

Pentafluoroethane^ 1.527(4) 1.532
1.349CHF-
1.329CF-
1.337(2)av.

1.361
1.340
1.348

O 1Hexafluoroethane 1.545(6) 1.560 1.326(2) 1.340
2 22-Fluoropropane 1.514(4) 1.512 1.405(5) 1.396

1,3-Difluoro- 
propanea,b» 22

1.515(3) 1.516 1.393(2) 1.394

_t_-Butyl Fluoride2Zl 1.522(24) 1.517 1.427(24) 1.399

aThe MM2 values are for the conformation which is calculated 
to be of lower enthalpy,

^The experimental numbers are average values for the 
conformers.
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Table 4. C -C  and C - C l Bond Lengths in Some Chlorides12

Compound C-C bond length C-Cl bond length
Exper. MM2 Exper. MM2

Ethyl Chloride^ 1.528(4) 1.523 1.802(3) 1.799
1,2-Dichloro- 
ethanea’̂

1.530(4) 1.523 1.795(1) 1.800

1,1-Dichloro-
ethane(rQ)^

1.540(15) 1.521 1.766(15) 1.780

1,1,1-Trichloro-
ethane(rQ)^

1.541(15) 1.524 1.7712(100) 1.772

1,1,2-Trichloro- 
ethanea, >̂>̂ ^

1.530 1.778(5) 1.789

30Hexachloroethane 1.566(20) 1.623 1.771(6) 1.780
1-Chloro- 
propanea,b’̂

1.525(2) 1.531 1.796(2) 1.799

3 ?2-Chloropropane 1.529(1) 1.527 1.814(1) 1.805
1,1-Dichloro- 
propanea,b> ̂

1.522(6) 1.531 1.781(6) 1.781

2,2-Dichloro- 34propane
1.523(4) 1.526 1.799(3) 1.789

1,3-Dichloro- 
propanea *^>35

1.531(8) 1.529 1.798(6) 1.799

Octachloro-3bpropane30 1.657(60) 1.640
1.764(24)(CC1,)
1.812(80)(CCl2)

1.778
1.812

t-Butyl
Chloride^

1.532(6) 1.531 1.828(10) 1.814

1-Chloro-l,1-di-7 o o fluoroethane(r^)00
1.490(20) 1.496 1.736(15)(C-Cl) 

1.328(20)(C-F)
1.753
1.348

l-Chloro-2-fluoro- 
ethanea(r0

1.530(20) 1.511 1.787(20)(C-Cl) 
1.365(20)(C-F)

1.801
1.395

1,1,1-Trichloro- 
2-2-2-trifluoro- 
ethane(rQ) ^

1.539(15) 1.573 1.771(10)(C—C1) 
1.330(20)(C-F)

1.776
1.341

aThe MM2 values are for the conformation which is calculated 
to be of lower enthalpy. If there is more than one bond of a 
particular kind, the MM2 value is an average bond length.

^The experimental numbers are average values for the 
conformers.
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Alkyl bromides were studied in a manner similar to that 
described for the chlorides and fluorides. The number of

last three of these were studied by electron diffraction, the 
others by spectroscopic methods. Constants chosen to fit the 
data are included in Table 1.

The gas phase structural data available for ethers are
limited, and for alcohols extremely so. Many of the data
which are available are from microwave studies with large
uncertainties. In general, the effect of an oxygen attached
to a C-C bond is not very great, so corrections are not very
large. On the other hand, the change in the C-0 bond length
when a hydrogen is attached to an oxygen (rather than a carbon
as in an ether) is considerably larger. The numbers that were
arrived at were -0.009 8 for the shrinkage of a C-C bond due
to the attachment of an alcohol or an ether oxygen, and +0.019
for the lengthening of the C-0 bond from attachment of a
hydrogen. The electronegativity correction caused by oxygen
on the C-H bond was taken to be -0.002 8. The natural bond
length for a C-0 bond was reduced from 1.407 8 to 1.402 8 to
better fit ethers and alcohols simultaneously. (The earlier
bond length had been chosen to do as well as could be done
with a single value for both alcohols and ethers, but
weighting the fit towards the ethers). The data used w^re
taken from the following compounds: methanol ^, ethanol
dimethyl ether^ , ethyl methyl ether^, diethyl ether^,
methyl propyl ether^, tetrahydropyran  ̂ dimethoxy-
methane^’* , and 1,3-dioxane^ . The last two compounds also
involve the anomeric effect, which has been treated 1 1elsewhere.

Amines have also been examined (Table 5). Since the
electronegativity difference between nitrogen and carbon is 
auite small, the correction needed is also quite small (-0.001 
8). But the correction needed for a hydrogen attached to
nitrogen is sizeable (+0.015 8). Amine C-N bond lengths in 
fact get shorter along the series primary, secondary,
tertiary. When only steric interactions are considered, the 
calculated C-N bond is found to be too short in methylamine, 
and too long in trimethylamine, a necessary result from the 
steric effects. However, in the current procedure when the 
effects of electronegativity are taken into account, these 
bond lengths turn out to be in the correct order.
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Table 5. C-N  and C -C  Bond Lengths in Some Am ines12

C-N bond length C-C bond length
Compound Exper. MM2 Exper. MM2

Methyl amine^ 1.467(2) 1.466

Dimethylamine^ 1.457(2) 1.463

Trimethylamine^ 1.456(2)
1.458(r ) a

1.455

Ethylenediamine^^ 1.469 1.469 1.545(8) 1.534

Dimethyl- 
ethyl amine^

1.454(6) 1.458 1.541(24) 1.536

59Piperidine 1.474(11) 1.464 1.533(6) 1.534

CONCLUSIONS
In general we feel that the introduction of the "electro­
negativity effect" including both variable natural bond 
lengths and angles will bring considerable improvement to 
molecular mechanics results for functionalized molecules 
without a significant increase in computation time. 
Geometries in molecular mechanics should take into account the 
most significant effects of the environment on bond distances 
and angles. These effects include the electronegativity 
effect discussed here and the conformational effects discussedO 1 1previously. ’ Systematic studies of these effects are
underway in our laboratory. Results will be reported
elsewhere.
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Chapter 4

ON GRAPH-THEORETICAL 
POLYNOMIALS IN CHEMISTRY
K. Balasubramanian*
Department of Chemistry, Arizona State University, Tempe, AZ 85287 USA

Recent developments in the area of applications of graph- 
theoretical polynomials to several branches of Chemistry are 
outlined. In particular, the use of characteristic 
polynomials, matching polynomials, king and color polynomials 
is considered. The developments of important computational 
techniques such as Frame’s method (LeVerrier-Faddeev method), 
recursive Pascal programs for matching polynomials etc. are 
reviewed. Applications to several areas of chemistry such as 
statistical mechanics, quantum chemistry, random walks on 
graphs and lattices, electronic structure of organic polymers 
and periodic lattices, exact finite lattice statistics etc. 
are considered.

INTRODUCTION
Graph theory and combinatorics have made significant impact on 
several areas of chemistry such as quantum chemistry, 
spectroscopy, stereochemistry, chemical kinetics, statistical 
mechanics etc. The applications of graph theory and 
combinatorics to spectroscopy and quantum chemistry were 
recently reviewed by the present author [1]. Graphs are 
useful as representation of molecules, chemical reactions,

* Alfred P. Sloan fellow
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isomerizations, quantum mechanical and statistical-mechanical 
interactions, NMR spin hamiltonians etc.

Graphs are useful in characterizing carcinogenic benzenoid 
hydrocarbons and identification of potentially carcinogenic 
bay regions [2,3].

A number of polynomials can be associated with graphs. A few 
such polynomials are characteristic polynomials, matching 
polynomials, king polynomials, color polynomials, sextet 
polynomials, chromatic polynomials, cyclic polynomials etc.

The characteristic polynomial of a graph is defined as the 
secular determinant of the adjacency matrix of a graph. The 
ijth matrix element of the adjacency matrix is 1 if the 
vertices i and j are connected; otherwise, it is zero.
In recent years characteristic polynomials and related 
polynomials of graphs and other applications of graph theory 
to chemistry have been the subjects of a large number of 
investigations [4-53]. Characteristic polynomials play an 
important role in several branches of chemistry. These 
polynomials are structural invariants and are thus useful in 
coding chemical structures. They are generating functions for 
dimer statistics on trees (such as Bethe lattices) and thus 
they play an important role in statistical mechanics 
[35,44,46]. Characteristic polynomials of graphs have 
applications in quantum chemistry, chemical kinetics, dynamics 
of oscillatory reactions etc. They are also useful in 
estimating the stability of conjugated systems.

The present author [47,48] showed the use of Frame’s method 
for evaluating characteristic polynomials of graphs containing 
large numbers of vertices and further developed a computer 
program based on this method. Krivka, Jericevic and 
Trinajstic [49] have recently shown that the Frame’s method 
outlined in the present author’s paper is similar to Le 
Verrier-Faddeev’s method. Other versions of the Frame’s 
method could also be found in the literature [50].

Characteristic polynomials of organic polymers and periodic 
networks have been evaluated recently by extending the 
computer program developed by the author to complex hermetian 
matrices [51].
Matching polynomials of graphs generate the number of ways a 
given number of disjoint dimers can be placed on graphs and 
lattices. They are generators of Kekule structures and dimer 
coverings on Ising lattices. These polynomials are also 
useful in the calculation of the grand canonical partition 
function of a lattice gas. Ramaraj and present author [45] 
recently developed a computer program in Pascal to compute the
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matching polynomials of a number of graphs and lattices. The 
use of matching polynomials in the chemical literature can be 
found in the papers of Hosoya [26,54], Mohar and Trinajstic
[55] and Gutman and Hosoya [56].
The king polynomial was first defined by Motoyama and Hosoya
[57] who also showed the potential applications of these 
polynomials. These polynomials are useful in a number of 
applications such as enumeration of Kekule structures, 
adsorption of molecules on surfaces, aromaticity, exact finite 
lattices statistics etc. The present author and Ramaraj [44] 
developed a computer program to generate the king polynomials 
and color polynomial and demonstrated the usefulness of these 
polynomials.

In the next section we review the construction and 
applications of characteristic polynomials. In the third 
section the uses of matching polynomials and king or color 
polynomials are outlined.

CHARACTERISTIC POLYNOMIALS
Frame [41] developed a very elegant method discussed, for 
example, in the book by Dwyer [44]. Krivka, Jericevic and 
Trinajstic [49] have recently shown that this is the same as 
Le Verrier-Faddeev’s method. This method provides an 
excellent algorithm for the computer generation of the 
characteristic polynomials of graphs of interest in 
chemistry. We outline here first, the essential steps of the 
Frame method.
Let A be the adjacency matrix of a graph. Define the set of 
matrices B^'s recursively by the following recipe.

Ci = Trace A (1)

Bx = A(A - CXI)
C2 = 1/2 Trace (2)

B2 = A(Bi - C2I)
C3 - 1/3 Trace B2 (3)

Bn-1 = A(®n-2 " Cn-l1)
Cn = 1/n Trace Bn_j (4)
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The characteristic polynomial of the graph whose adjacency 
matrix is A., is given by

Xn - q x""1 - C2\n-2 ... - Cn-iX - cn (5)

Thus the coefficients are generated as traces of
matrices obtained in the above recursive matrix product.
Hence the Frame method provides a very efficient algorithm for 
the generation of coefficients Cj , C2, etc., and consequently, 
the characteristic polynomial. The above algorithm can be 
coded into FORTRAN. The present author [47] developed such a 
program which is applicable to a number of graphs.
We now give a few examples. Table I lists a few graphs 
containing 10 vertices and their characteristic polynomials. 
These polynomials were generated using our computer program
[47].

Table 1.

Graph Characteristic
polynomial

0 - 0 — 0

0 —0 — 0 — 0 — 0 — 0 — O
X10 -  9X8 +  28A6 -  35A4 +  15X2 -  1

X10 -  9 Xs  +  27 A8 -  30A4 +  9A2mn X10 -  13A8 +  48A6 -  52 X4 + 16A2CO X10 -  11A8 +  41A6 -  65X4 +  43A2 -  9

X10 -  17A8 -  16A7 +  78A6 +  132A5 
-2 9 A 4 -  168A3 -  100A2 -  16X

X10 -  14 X8 -  4 A7 +  59 X6 +  18A5 
-9 1 A 4 -  22X3 + 37X2 +  10X -  1 1

We next consider two lattice graphs that are of interest in 
lattice statistics. In Figure 1 we show a square lattice 
graph and in Figure 2 we show a honeycomb lattice containing 
54 vertices. The characteristic polynomials of both these 
graphs were obtained using our program. The characteristic 
polynomial of the square lattice graph in Figure 1 is given 
below.

(6)\16 - 24\11+ + 206\12 - 804\10 + 1481\8 - 1260\6 + 400X1*
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The characteristic polynomial of the hexagonal lattice graph 
in Fig. 2 is given below.
X54 _ 72X52 + 2430X80 - 51.152X1*8 + 753.867X46

- 8,227,552Xl*l, + 70,356,380X42 - 474,823 ,692X*U

+ 2,589,615,333X38 - 11,556,300,564x36

+ 42,569,538,372X34 - 130,222,965,528X32

+ 332,069,146,453X30 - 707,192,500,956X28

+ 1,257 ,989,920,284X26 - 1,866,287,443,412X24

+ 2,301,545,596,335X22 - 2,347,222,219,224X2t

+ 1,965,105,361,102X18 - 1,337,106,330,756X16

+ 729,597,602,706X14 - 313.604.239.964X12

+ 103,654,073.940X10 - 25,479,629,340X8

+ 4,438,832,481X6 - 508,728.SSSX1*

+ 33,696,516X2 - 960,400. (7)

The present author [51] recently extended the computer program 
for characteristic polynomials to complex herraetian 
matrices. As a result of this extension it has been possible 
to evaluate the characteristic polynomials of several organic 
polymers and periodic networks. Table 2 shows the 
characteristic polynomial of a one-dimensional square lattice 
containing 61 unit cells as a function of the crystal momentum 
n.
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Figure 1. A two tier square lattice graph containing 16 vertices. For the 
characteristic polynomial o f this graph, see expression (6).

Figure 2. A honeycomb lattice graph containing 54 vertices. For the characteristic 
polynomial of this graph, see expression (7).
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Table 2.
Characteristic polynomial o f a one-dimensional square lattice containing 61 unit 
cells; n is the crystal momentum. The polynomials for only n >  0 are shown since 

the polynomials for -k and k are the same.

61

n Characteristic Polynomial

0 X4 - 5X2 - Ax

1 X4 - 5X2 - 3.9788X

2 X4 - 5X2 - 3.9154X

3 x 4 - 5X2 - 3.8105X

4 x 4 - 5X2 - 3.6653X

5 x 4 - 5X2 - 3.4811X

6 x 4 - 5X2 - 3.2601X

7 X4 - 5X2 - 3.0045X

8 X4 - 5X2 - 2.717IX

9 X4 - 5X2 - 2.4009X

10 X4 - 5X2 - 2.0392X

11 X4 - 5X2 - 1.6957X

12 X4 - 5X2 - 1.3142X
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13 X** - 5X2 - 0.9188X

14 x 4 - 5X2 - 0.5136X

15 X4 - 5X2 - 0.1030X

16 X 1* - 5X2 + 0.3087X

17 x 4 - 5X2 + 0.717IX

18 X1* - 5X2 + 1.1179X

19 X*1 - 5X2 + 1.5069X

20 X4 - 5X2 + 1.8799X

21 X4 - 5X2 + 2.2330X

22 X*1 - 5X2 + 2.5624X

23 X1* - 5X2 + 2.8646X

24 X1* - 5X2 + 3.1365X

25 X4 - 5X2 + 3.3751X

26 X4 - 5X2 + 3.5779X

27 X4 - 5X2 + 3.7429X

28 X4 - 5X2 + 3.8681X

29 X4 - 5X2 + 3.9524X

30 X4 - 5X2 + 3.9947X
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MATCHING POLYNOMIALS AND KING POLYNOMIALS
The matching polynomial of a graph is defined as

where P(G,k) is the number of ways of choosing k disjoint 
edges from G containing N vertices. The computation of 
matching polynomial for any graph is an extremely tedious 
problem for graphs containing large number of vertices. 
Ramaraj and Balasubramanian [45] have developed a Pascal 
program which recursively reduces a given graph into trees. 
This is based on the following recursive relation for the 
matching polynomial of a graph G.

where G-e is the graph obtained by deleting an edge e from G 
and G0e is the graph obtained by deleting e and the vertices 
of e together with the edges connected to the vertices of e. 
The characteristic polynomial of a tree is the same as the 
matching polynomial. The recursive relation (6) is used until 
the graph we start with reduces to trees. Then computer 
program for characteristic polynomials [47] is used to 
generate the characteristic polynomials (matching polynomials) 
of the trees generated by pruning the graph we start with. 
Using the relation (9) the polynomials are assembled back to 
generate the matching polynomial of the graph one starts with.

The computer program for matching polynomials was written in 
Pascal since this language is most suited for recursive 
programming. We now illustrate with an example. Consider the 
bathroom-tile lattice in Fig. 3. The matching polynomial of 
this lattice is given by expression (10)

x 36 _ 48x31+ + 1044x32 - 13628x30 

+ 119223s28 - 739404x26 + 3354422x2i+

- 11327084x22 + 2870411lx20

- 54656592X*8 + 77829184x16

- 81989532x1^ + 62781122X12

m N-2kMg(x) = I (-l)k P(G,k) x 
k=0 (8)

(9)

- 34032680x10 + 12564268x8 - 2980608x6



Ch.4] Matching and King Polynomials 29

+ 413985X1* - 28408x2 + 648 (10)

Figure 3. A bathroom-tile lattice o f interest in the Ising problem.

A king pattern on a chessboard is simply a way of placing 
kings on the chessboard so that no two kings take each 
other. Suppose is the number of ways of placing k non­
taking kings on a chess board then the king polynomial K is 
defined as

K = 1 + C^x + C2x2 + C3X3 + ... + C^x11 (11)

This polynomial was first defined by Motoyama and Hosoya 
[57]. The present author and Ramaraj [44] showed that king 
polynomial is the same as the color polynomial of the 
associated dual graph which is obtained by joining the centres 
of the cells. Suppose p^ is the number of ways of coloring k 
vertices of a graph with one type of color such that no two 
adjacent vertices carry the color. Then one can define the 
color polynomial as

C = 1 + p^x + p2x2 + ... + Pnxn (12)

The color polynomial defined above is different from chromatic 
polynomials. The recurrence relation for the color polynomial 
of a graph G is given by

CG = CG-v + CG0V (13)
where G-v is the graph obtained by removing a vertex v and G0v 
is the graph obtained by removing v and all the vertices which 
are adjacent to v. The given graph is reduced to smaller
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graphs using the relation (13) until paths of various lengths 
are obtained. For a path of length n, 1^, the coefficients in 
the color polynomial are given by a special type of Fibonnaci 
numbers. An analytical form for the color polynomial is 
shown below. n

= 1 + f(n,l)x + f(n,2)x2 + ...
n
+ f(n,k)x^ + ... + f(n,m)xm , (14)

f(n,k) = (n " £ + *) (15)

Using the above relationships a recursive pascal program was 
developed to generate the color (king) polynomial.

Consider the graph in Fig. 3. The color polynomial of this 
graph obtained using our pascal program is shown below.

1 + 36x +582x2 + 35,630x3 + 159,132x** + 513,786x5 

+ l,219,984x6 + 2,148,728x7 + 2,813,856x8 + 2,732,684x9 

+ 1,953,584x1° + 1,014,796x1! + 375,212x12 + 95,634x l 3

+ 15,968x19 + l,604xl5 + 84xl6 + 2xl7 (16)

The color polynomials thus obtained are useful in exact 
lattice statistics [44].
Thus with the use of recursive programming techniques and 
other computational methods, several graph-theoretical 
polynomials which have several useful applications in 
chemistry can be obtained. With the advent of these 
computational techniques, it is expected that polynomials of 
graphs and lattices of interest in a variety of chemical 
problems can be obtained. It is then hoped that these 
polynomials will be exploited in a number of chemical 
applications.
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Chapter 5

ALGORITHMS FOR CODING 
CHEMICAL COMPOUNDS
D. Boncheva, O. Mekenyan3, and A.T. Balabanb
aHigher School of Chemical Technology, Burgas 8010, Bulgaria
bThe Polytechnic, Bucharest, Roumania

ABSTRACT
A classification of the coding algorithms is propo­
sed. Two effective coding systems, designed by the 
anthors are outlined. The HOC system is based on 
three principles: a hierarchical ordering of vertex- 
extended connectivities, a unique topological repre­
sentation of the molecule, and treatment of molecu­
les at three levels of complexity. The algorithm 
DISTANCE proceeds from three centric criteria and 
from an iterativecombined specification of the cen- 
trik ordering of graph vertices and edges.
INTRODUCTION
The fast computerization of chemistry generated the 
creation of a multitude of chemical information cen­
tres and data banks. The efficient processing of 
chemical information and, particularly, the informa­
tion on chemical structures is impossible without an 
effective coding system. The requirements as to the 
coding algorithms have recently been outlined (Read, 
1978) referring mainly to the code uniqueness and 
compactness, the fast coding and retrieval, etc. The 
number of the coding systems developed is rapidly 
growing raising thus the question of their classifi­
cation and comparison. An attempt for such a classi­
fication is presented here stressing on the classi-
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fication of the algorithms that are topological in 
nature. Two original algorithms are also presented 
and their effectiveness demonstrated.
CLASSIFICATION OF MOLECULAR CODES
The classification of algorithms for coding chemical 
compounds is a problem of debate. The chemical nomen­
clature is usually not regarded as a coding system 
since it does not meet some of the requirements as 
to coding algorithms, and, first of all, it is not 
a sufficiently computer-oriented system. We classi­
fy molecular codes into three groups: fragment, mi­
xed, and topological codes, two of which coincide 
with those from the recent classification of Moreau 
( 1 980) .
Fragment Codes (e. g. the Ring Analysis Index, 1979) 
contain a list of molecular fragments which are in­
cluded in the thesaurus of chemical compounds. The 
connectedness of the fragments is, however, not gi­
ven .
Mixed Codes list fragments together with some struc­
tural connections between them. The Dyson (1949) and 
Wiswesser (1954) codes are the most widely known rep­
resentatives of this group.
Topological Codes comprise the whole structural in­
formation on the chemical compound, i. e. atoms and 
their mutual connections are described in the langu­
age of graph theory. Codes of this group are consi­
dered below in more detail and subjected to an addi­
tional classification. Only universal codes applicab­
le to all chemical compounds will be considered.
(i) Algorithms based on topological indices of mole­
cular graphs (Bonchev et al., 1981; Randic, 1984) 
These algorithms are useful in a preliminary screen­
ing of chemical compounds but do not provide unique 
codes.

(ii) Algorithms based on the connectivity (i. e. the 
adjacency matrix) of molecular graphs. The FEVA algo­
rithm of Randic (1975) is based on the FirstValue 
coefficients from the adjacency matrix. Another algo­
rithm proposed by Randic (1974) generates the so-cal­
led Smallest Binary Code (SBL) after permutations of 
rows and columns in the adjacency matrix. A faster 
version of Largest Binary Code (LBC) has been recent­
ly presented by Hendrickson and Toczko (1983).
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A large group of algorithms is related to the Mor- 
ganTs Extended Connectivity Algorithm (1965) which 
will be discussed later. The improvements or/and mo­
difications of ECA made by Wipke and Dyott (1974), 
Corneil and Gotlieb (1970), Frieland et al. (1975), 
Shelly and Munk (1977), Schubert and Ugi (1978), 
Moreau (1980), Zu and Zang (1982), Herndon (1983), 
etc. should be mentioned here. The HOC algorithms 
developed by the authors also belong to this group.
(iii) Algorithms based on the centric properties of 
molecular graphs. This is another large group of co­
ding algorithms. All of them proceed from the order­
ing of graph vertices around a central vertex using 
also connectivity and chromatic properties of graphs. 
The DENDRAL system (Lederberg, 1966) utilizes the 
mass centre of the graph while the classical graph 
centre is used by Jochum and Gasteiger (1977). The 
central vertex in the DARC-ELCO system of Dubois 
(1973) is not always chosen on a topological basis, 
it is rather a characteristic functional focus of 
the molecule. An extended graph centre definition 
(Bonchev et al., 1980, 1981a) is applied for obtain­
ing the topological code (Bonchev et al., 1981b,
1983) which forms the major part of the compound’s 
name within the newly proposed universal nomenclatu­
re of chemical compounds. The same type of centre
is used in our algorithm DISTANCE which will be dis­
cussed later. The AVTOGRAF program of Trach and Ze- 
firov (1980) makes use of the so-called binary equi- 
distancy matrix, i. e. the metric properties of the 
graph are used rather than the centric ones.

(iv) Algorithms based on the clusterization of mole­
cule. Differing from all other topological algo­
rithms these algorithms do not deal with individual 
atoms only but rather with some groups of atoms, 
called clusters, uniquely selected on a structural 
basis. Such algorithm have so far been proposed by 
Read ( 1 9 78 , 1 980),as well as by Lozac’h,Goodson and 
Powell (1979).
(v) Other algorithms. The original work of Golender
et al. (1981) is based on the so-called vertex po­
tentials (first, second, etc.) introduced by analo­
gy between graphs and electrical networks.
THE HOC ALGORITHMS BASED ON THE HIERARCHICALLY 
ORDERED EXTENDED CONNECTIVITIES OF GRAPHS
As mentioned in the previous section, a large number 
of coding algorithms exploit the idea of extended
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connectivity, i. e. they account not only for the 
atoms directly connected with the atom under consi­
deration but also for its second, third, etc. neigh­
bouring atoms. The different approaches vary in the 
specific realization of this idea. The original algo­
rithm of Morgan (1965) counts first the connectivity 
of each atom as the total number of the neighbouring 
nonhydrogen atoms. Then, the sum of the connectivities 
of the first neighbours, called extended connectivi­
ty, EC, is calculated for each atom. The procedure
continues m  
different EC 
steps (Fig.

successive stages until the number of 
values is the same in two iterative 
1) .

Figure 1. An example illustrating the difference between the Morgan and 
HOC-1 algorithms

The pitfalls of the Morgan algorithm are mainly in 
the EC oscillation during the iterations (e. g. the 
pair of vertices having EC = 10 in the last itera­
tion has different values both in the preceding step 
(4,6) and in the following step (18,28). Topologi­
cally non-equivalent atoms also could acquire the 
same EC values. These disadvantages have been over­
come in some algorithms proposed later. Yet, the
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search for a better coding algorithm is one of the 
most attractive trends in contemporary chemical graph 
theory.
We present here the outline of a coding system based 
on two ideas:
(i) treatment of simple compounds by means of a sim­
ple-' algorithm while more complex compounds are treated by 
means of a more sophisticated algorithm
(ii) use of hierarchically ordered extended connecti­
vities
(iii) use of a Unigue Topological Representation of 
molecule (UTR). The first idea is an extension of so­me previous studies (Corneil and Gotlieb, 1979; Go- 
lender et al., 1981, etc.) in which a more powerful 
(and time-consuming) algorithm is used after the 
simpler one has failed in finding the topological 
equivalence of atoms in the compound unter examina­
tion. Our coding system (Balaban et al., 1985) makes 
an automatic preliminary selection of out of three 
algorithms - HOC 1, HOC - 2, and HOC - 2 A, proce­
eding from the mathematical proff (Mekenyan et al., 
1985) for sufficiency of each of them for rigorously 
specified classes of structures with increasing com­
plexity. Thus, the majority of chemical compounds is 
handled by the simple and fast HOC-1 procedure while 
the third level of complexity deals with some cases 
not relevant to chemistry but frequently used as 
counter-examples to different coding algorithms.
A hierarchical iterative procedure can be used as 
a convenient tool for avoiding ascillations of ex­
tended connectivity, as shown previously by Corneil 
and Gorlieb (1970), Shelly and Munc (1977) and Hern- 
dan (1983). We present here a different, simple hie­
rarchical approach, called HOC-1. In each iteration 
this procedure orders the non-hydrogen atoms into 
classes of topological equivalence which receive the 
ranks 1, 2, ..., k. The HOC - ranks of the atoms nei­
ghbouring a certain atom are ordered in the next ite­
ration in an increasing sequence and then summed up. 
The EC value thus obtained and its summands are used 
as discrimination criteria which may divide further 
the atoms from a certain equivalence class into two 
of more such classes. In a few iterations the proce­
dure terminates by finding the orbits of the automor- 
phismgroup of the molecular graph, as well as by 
ordering them according to their HOC - ranks. As seen 
from Fig. 1, in contrast to the Morgan algorithm,
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our HOC-1 algorithm detects the topological equiva­
lent atoms and makes it sufficiently fast.
For asymetrical molecules HOC-1 terminates with the 
canonical nlmbering of all atoms (Fig.2). In case 
of symmetrical molecules this is a job of a special 
algorithm HOC-3.

i - 3 = 3

Figure 2. An example illustrating the HOC-1 procedure

The simplest structure which requires the more sop­
histicated h o c  - 2 algorithm for finding the topologi­
cal equivalence of atoms is shown in Fig. 3. HOC-1 
fails in solving this job puttimg all four vertices 
of degree two in the same equivalence class. HOC-2 
makes use of supplementary input information on the 
cycles to which all graph vertices belong. This in­
formation is provided by the program ’’RING” which
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will be described elsewhere (Karabunar1iev et al.). 
This information is introduced in the initial itera­
tion as an additional discrimination criterion for 
the graph vertices with the same connectivity. Then 
the basic algorithm HOC-1 suffices to specify com­
pletely the topological equivalence of atoms in the 
molecule under examination. For the example conside­
red in Fig. 3 one thus arrives at two orbits of two 
vertices each, instead of the initial clas of four 
vertices .

t 2

3 2
Initial numbering

1 1

2

1 1

HOC-1- ranks H0C-2-ranks

1,3 CC4; 2 ^ £ C5; 5,6,7,8 £ C4,C5 and 9,10£C4C5C5

Figure 3. An example illustrating the HOC-2 algorithm

In the very rare cases of third-level complexity 
graphs of the H0C-2A algorithm makes use of some 
supplementary input data. These are the ordered sets
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of the degrees of all vertices that belong to a cer­
tain cycle, which are also provided by the program 
"RING".
A special subroutine called "Graph c l a s s i f i e r "  is 
introduced in the computer’s options. Thus, the 
HOC-1 algorithm is applied to molecules whose graphs 
have a cyclomatic number of lest than four (It was 
found that structures of level B of complexity have 
at least four peri-condensed cycles of different 
sizes). Graphs that are composed by weakly connected

Levels

Bottom

TC 8,7; 2,1 ; 4.5,3 ; 2 ,1; 1 , 
8,7,2,1,4.5,3,2,1,1 

CTC 87214.53211

Figure 4. An example illustrating the Unique Topologica l Representation (UTR) 
o f a molecule, as well as its Topologica l C ode (TC) and Compressed Toplogical 
C ode (CTC)

components, each one having less than four cycles are 
also classified into the lowest of structural com­
plexity. Many more chemical compounds belong to this
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level but their automatic recognition needs time com­
parable to that for the direct handling of the struc­
tures of B complexity level by the HOC-2 algorithm. 
Almost all regular graphs also belong to this level.
The third basic idea of our approach is the concept 
of a Unique Topological Representation (UTR) of a 
molecule. This is a pictorial representation of the 
molecule in which atoms are located at the levels of 
topological equivalence (the orbits of the graph’s 
automorphism group)arranged according to their in­
creasing HOC-ranks. At each level, topologically 
equivalent vertices are arranged from right to left 
according to their increasing numbering, as specifi­
ed by the HOC-3 procesure (Fig. 4).
Further to discerning symmetry (Bonchev et al.,
1985) the UTR of molecules may be regarded as a very 
convient basis of molecular codes (Balaban et al., 
1985a). As seen from the example in Fig. 4 the topo­
logical code (TC)y describes in increasing numerical 
order the neighbours of the vertices from each orbit 
(topological equivalence level) starting from the 
left- most vertex at the lowest level. The neighbours 
to vertices of different orbits are separated in the 
code by semicolumns while those to vertices of the 
same orbit are separated by commas. When the adjacent 
vertex is located on the same orbit this type of con­
nection is denoted by a full stop. Connections to 
neighbouring vertices at higher levels or at the same 
level are used only. The advantages of the topologi­
cal code proposed here are obvious. Its total number 
of symbols (including the punctiation marks) is clo­
se to that of the Morgan’s From and Ring Closure list 
(Morgan, 1965) but the topological code is more in­
formative containing the complete information on the 
orbits of the graph’s automorphism group. If this 
supplementary information is not given, as all other 
molecular topological codes do, then the compressed 
topological code (c t c ) can be obtained by omitting 
all puctuation marks except that for separating the 
vertices adjacent to the same vertex. CTC seems to be 
one of the shortest molecular codes.
The proposed topological code can be used as a basis 
for the complete coding of chemical compounds by sup­
plementing information on the kind of atoms and 
bonds, as well as on stereochemistry, isotopic com­
position, etc. (Balaban et al., 1985a).
The FlOC-system of algorithms incorparates also the 
HOCCANON algorithm oriented towards fast canonical
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numbering of atoms in molecules HOCCANON discrimina­
tes the atoms and bonds still in the initial stage 
(and before introducing extended connectivities) by 
means of the chemical and isotopic nature of atoms, 
their charges, the bond multiplicity, etc., as well 
as by means of the size of the rings to which the 
vertex belongs (for B complexity level only) and the 
vertex degree sequences of the rings (for C complexi­
ty level only). Having thus the maximal preliminary 
distinction of atoms HOCCANON continues with the ba­
sic HOC-1 treatment arriving very fast to classes of 
topochemical equivalence of atoms. This equivalence 
may be regarded as a result of the combination of the 
point group symmetry of the molecule with the local 
symmetries of molecular fragments (mainly terminal 
groups).

Figure 5. An example illustrating the HOCCANON  vertex numbering and the 
Topo-Chemical C ode (TCC)

An example of the HOCCANON canonical numbering of 
atoms is presented in Fig. 5, together with the res­
pective topo-chemical code (TCC). The latter resul­
ted from the Unigue Topo-Chemical Representation 
(UTCR) of the molecule which is constructed similar­
ly to UTR. The chemical symbols of heteroatoms are 
presented there after a slash while the multiplicity 
of bonds (higher than one)is specified as exponent 
after the vertex number denoting one endpoint of the 
bond.

THE ALGORITHM DISTANCE BASED ON THE CENTRIC 
PROPERTIES OF GRAPH VERTICES AND EDGES
This algorithm based on the gtaph distances and 
more spesifically it makes use of the cehtric pro­
perties of molecular graphs.

TCC 4/N.9,3/N;6^7,5~;2,1;2,1;1,

The procedure consists of two parts. The first one 
orders centrically the graph vertices and edges into
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equivalence classes on the basis of the recently de­
veloped (Bonchev et al.,1980, 1981a) generalized 
graph centre concept. Proceeding from the adjacency 
matrix of the graph the three centric characteris­
tics are calculated for each vertex: its radius (the 
maximal distance), r, its ditance number, d , which 
is the sum of distances to the remaining graph ver­
tices, and the distance code, dc , which includes the 
frequency numbers of the different for the vertex 
frequency numbers of the different distances for the vertex 
trie criteria coincides with the first discriminating 
criterion, the number of the occupied neighbouring 
spheres (NOON), in the Jochum and Gasteiger algorirtm
(1978). All graph vertices are thus divided into 
equivalence classes which are ranked according to 
their centric properties starting with rank 1 for the 
central vertices. The same procedure is applied then 
to all graph edges.
An iterative two-step procedure of centric re-orde- 
ring of the graph vertices and edges followes.(1) .
The ranks of the incident edges are taken into 
account by summing and forming an increasing sequence 
for each vertex. Some of the vertices classified as 
equivalent in the first part of the procedure may 
thus appear as nonequivalent. This increases the num­
ber of equivalence classes which receive new ranks.
(2). The new ranks of the incident vertices are ana­
logously taken into account for each graph edge. The 
equivalence classes of graph edges thus may on their 
turn be partitioned into smaller classes and be re­
ranked. Steps (1) and (2) are repeated until two suc­
cessive iterations result in the same centric order­
ing of the graph vertices and edges.
The procedure is illustrated in Figr 6 where the 
three centric criteria are presented for all graph 
vertices and edges. It is shown that two iterations 
suffice for finding the ultimate vertex and edge cen­
tric ordering into equivalence classes which coinci­
de with the orbits of the graph's automorphism group. 
The last assertion is not proven in the general case 
but it is supported by the lack of a counter-example 
among the inspected several thousand graphs, includ­
ing regular ones, as well as all the counter-examples 
to the known algorithmes (Bonchev et al., in prepara­
tion) .
Having obtained the levels of topological equivalence 
of atoms (UTR) one can proceed finding the topologi­
cal code of the compound which is analogous to (but 
not identical with) the topological code described in
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Figure 6. An example illustrating the iterative centric re-ordering o f the graph 
vertices and edges according to the D ISTANCE algorithm

the previous section.
CONCLUDING REMARKS
The HOC and DISTANCE algorithms outlined in this pa­
per have a number of advantages. They are free of 
nontopological conventions and they can be easily
implemented both manually and by computer program 
(Ralev et al., 1985). Being considerably faster than 
many of the existing algorithms also provide concise 
molecular codes. Perhaps the most important feature 
of the HOC and DISTANCE codes is in preserving the 
symmetry of molecular graphs, as well as in preser­
ving the ordering of vertices according to the con­
nectivity or centric properties of graphs, respecti­
vely. This ordeting reproduces surprisingly well so-
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me experimental data such as H-NMR chemical shifts 
in polycyclic benzenoid aromatic hydrocarbons (Bon- 
chev et al. , 1981a; Mekenyan et al., 1983, 1985a). 
Thus, HOC and DISTANCE appear so far as the single 
procedures, out of the known unique and universal 
coding algorithms, that have some physico-chemical 
significance. In addition, the conservation of the 
topological similarity of molecules of a different 
chemical composition could help in the search for 
structure-activity correlations (Mekenyan et al., 
1985b), in classification and nomenclature problems, 
etc .
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Chapter 6

APPLICATION OF THE MONTE 
CARLO METHOD FOR 
STUDYING THE HYDRATION 
OF MOLECULES:
BASE STACKING
V.I. Danilov
Institute of Molecular Biology and Genetics,
the Ukrainian SSR Academy of Sciences, Kiev, USSR

ABSTRACT

A Monte Carlo hydration simulation of uracil, thy­
mine and their associates has teen performed. The 
results obtained enable one to elucidate the nature 
of nucleotide base stacking.

INTRODUCTION

The factors providing the stability of nucleic acid 
secondary structure in water are already displayed 
in the interactions between separate nucleotide ba­
ses in different associates. Therefore, the inves­
tigation of the nature of base associate stability 
in water is very important to understand the stabi­
lity conditions of different conformational states 
and the mechanisms of intramolecular structural 
transitions in nucleic acids.

With the help of the thermodynamic and spectro-
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scoplc study of interactions of the bases, their 
derivatives, nucleosides and nucleotides it is sho­
wn that stacked associates exclusively are formed 
in aqueous solutions (see, for example, /I/). It is 
impossible as yet to detect in-plane hydrogen-bon­
ded (H-bonded) base pairs in water.

At the same time from theoretical investigati­
ons /2,3/ one may conclude that H-bonded base pairs 
in vacuum are energetically more preferable than 
stacked associates for the majority of dimers of 
the same composition. The analysis of the whole va­
riety of the experimental and theoretical data ava­
ilable has allowed us to make as assumption /3,4/ 
about an important role of water in the formation 
of stacked dimers. Sinanoglu and Abdulnur arrived 
at the similar conclusion /5»6,7/ on the basis of 
the rough estimates of different solvent contribu­
tions to the stability of nucleotide base associa­
tes performed by means of solvophobic force theory.

Despite numerous experiments, the energetic ad­
vantage of the base association reaction in water, 
in particular, the factors stabilizing base stacking 
and the role of water as the solvent for this have 
been studied insufficiently. In addition, it rema­
ins not realized enough why stacked dimers are more 
preferable than H-bonded base pairs; the role of 
hydrophobic groups in base stacking being not made 
clear enough either. Elucidation of the nature of 
stacking interactions may promote considerably the 
understanding of the nature of hydrophobic interac­
tions playing so important role in the organization 
of biological structures.

To elucidate the mechanism of nucleotide base 
stack formation in water, it is necessary to study 
water-water, water-base and base-base interactions



50 Base Stacking [Ch.6

on molecular level /8/. Similar investigations on 
this problem have been already begun. It is even 
obvious now, however, that using quantum mechanical 
methods one is hardly able to investigate directly 
the systems containing more than 150-200 atoms. In 
such a situation to refuse the obtaining of inter- 
molecular interactions for real system in numerical 
form is most likely the only way out. The analyti­
cal form of interaction potentials for the diffe­
rent pairs of atoms should be then found from the 
results of quantum mechanical or semiempirical stu­
dy of different configurations of the system simu­
lating molecular complex.

The analytical potentials available allow us to 
use statistical thermodynamics, for which the Monte 
Carlo method is the most effective when averaging 
temperatures in real system. For recent years this 
method is widely used in chemistry and biology for 
calculating the average values of different proper­
ties.

In this connection we have begun a Monte Carlo 
computer hydration simulation of nucleic acid bases 
and their dimer associates in the cluster of N*200 
water molecules /9-12/. The enthropy has not been 
considered for simulation. This is justified for 
our aim, since it has been shown experimentally 
that the association of the bases and their deriva­
tives in water is determined by enthalpy /I/.

In the process of the Monte Carlo computations 
one of the bases in each stacked dimer was moved 
randomly according to the Metropolis algorithm. As 
the starting configurations for stacked uracil 
(Ura) and thymine (Thy) dimers the most preferable 
for vacuum antiparallel configuration and the anti­
parallel one with the further rotation of a base on
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180° around the glycosidic bond were chosen. Let us 
call the stack obtained from the first configurati­
on as A-stack and the one obtained from the second 
configuration as 0-stack. A more detailed descrip­
tion of the computation method is given in /13/.

MONTE CARLO HYDRATION SIMULATION OF 
BASE ASSOCIATES
Some results of the study of association reaction 
obtained from the Monte Carlo hydration simulation 
data of Ura, Thy and their stacked dimers are pre­
sented in this work.

The calculation results for the changes of the 
average magnitudes of the water-water interaction
energy the water-base interaction energyww
^‘Uwb,̂ lie ^ase-base interaction energy A U ^  and the 
energy of the system a U are given in Table 1 (here 
and hereafter all the values are given in kcal/mol 
of dimer).

Table 1.
Energetic characteristics o f the base stacking reaction in water

Transition A ^ww A U wb AUbb AU

Ura+Ura stacked dimer -52 9.5 -4.2 -47
Thy+Thy stacked dimer -22 22.3 -5.1 -5

Their analysis shows that the change in the wa­
ter-water interaction associated with the structu­
ral rearrangement of water around monomers during
their association is the main factor promoting sta­
cked dimer stabilization. The stacked associate is 
considerably less stabilized by the base-base inte­
raction. At the same time the stack is destabilized
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substantially by the water-base interaction. This 
confirms the assumption /3~7/ about the decisive 
role of the water-water interaction for base sta­
cking.

Unfortunately, the results of the experimental 
study of stacking association enthalpy of Ura and 
Thy in water are absent. The data available for the 
different methylated derivatives of these bases 
/14/ show that the methylation of Ura derivatives 
in the C5 position leads to the decrease in the ab­
solute magnitude of association enthalpy. The va­
lues a U we have computated for Ura and Thy agree 
with these data.

Given in Table 2 are the changes in the poten­
tial energy a U8'̂  and the water-water a U,̂ 1p, wa-

a  T\ Q r\ WWter-base and base-base a U ^  interaction
energies upon the transition from the H-bonded di­
mer to the stacked one calculated from data /9,10/.

Table 2.
Energetic characteristics o f the transition from H-bonded base pair to

stacked dimer

Transition N a U 8 ’p A U S,P a U S£ n ww ^ wbp 40p.p

Base pair Ura-Ura — *- 200 -16 -14 -7.1 5.1
stacked dimer Ura/Ura 39 -21.7 -17.2-9.6 5.1

82 -18.7 -22.1-1.7 5.1
Base pair Thy*Thy — 200 -25 -24 -5.4 4.3

stacked dimer Thy/Thy 39 -9.0 -5.9 -7.4 4.3
82 -10.1 -9.0 -5.4 4.3

It follows from Table 2 that in water stacked 
Ura and Thy associates are energetically more pre­
ferable than H-bonded dimers. This preference is 
mainly due to value a U8!15 and is caused by the ene-
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rgetically more favourable structure of water aro­
und the stack. The wateri-base interaction also sta­
bilizes the stack as compared to the base pair; the 
stack being at the same time destabilized by the 
base-base interaction.

A considerably greater energetic preference of 
stacked dimers obtained by us in comparison with H- 
bonded ones hampers extremely the detection of the 
latter in water. Note that it is true irrespective 
of whether the base pair formation from monomers is 
favourable or not.

For a more detailed understanding of the nature 
of the preference of stacked dimer as compared to 
the H-bonded one, we have calculated the energetic 
properties of the transition from the base pair to 
the stack for the nearest 39 and 82 molecules of 
water cluster (Table 2) using data /9»10/. The Table 
shows that for the subsystem including 39 water mo­
lecules there is almost the same energetic advanta­
ge of the stacked Ura dimer when compared to the 
corresponding base pair as for the whole water clu­
ster. Term aÛ *,p makes the main contribution tog WW
value iUa,p. The data for the subsystems of Ura di- 
mert-82 water molecules leads to analogous conclusi­
ons. This testifies to the fact that the preference 
in the formation of the stack of Ura molecules is 
due to the nearest water molecules /9/.

It is appropriate to note that for the subsys­
tems of Ura dimer+39 water molecules the water-base 
interaction makes a tangible contribution to a grea­
ter stability of the stack as compared to the base 
pair. The performed analysis of the radial distribu­
tion of the water-base interaction energy shows that 
there is a layer of water molecules only 1.5 A thickO(5.3-6.8 A from the sphere centre) around the sta-
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eked Ura dimer, whose interaction with the bases 
makes the contribution to Uw^ that amounts to 
-46 keal/mol and makes up 47%. The existence of 
this layer around the stack and its absence around 
the base pair is primarily due to the different 
character of the distribution of hydrophilic groups 
for stacked and H-bonded Ura dimers.

The analysis of the data for the analogous sub­
systems of Thy dimer+water (Table 2) shows that a 
greater energetic preference of the stack as compa­
red to the base pair is also displayed when consi­
dering the nearest 39 and 82 water molecules around 
dimers. However, for the subsystems considered 
magnitude aUs,p makes but a small part of this 
value for the system including 200 water molecules. 
A greater energetic preference of the Thy stack as 
compared to the base pair is most likely due to the 
layers of water molecules more distant from the 
dimer /10/. Since the magnitudes aU8*p for subsys- 
terns are small in comparison with value A U ^ P for 
the whole cluster (see Table 2), the dominant cont­
ribution of the latter to aUs,p is also most like­
ly determined by more distant layers of water mole­
cules. This defines the difference between the hyd­
ration of Thy associates and those of Ura conside­
red above.

The differences of the potential energy aUs, 
the water-water aU8w, water-base a U ^ ,  base-base 
A U ^  interaction energies and the differences in 
the number of water-water H-bonds An8 for 0- and 
A-stacks in water are given in Table 3.

It is seen from this Table that the energetical­
ly most preferable systems among those of Thy di- 
mer+water and Ura dimer+water include different 
types of stacks.
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Table 3.
Energetic and structural characteristics o f the hydration o f uracil and thymine

stacked dimers

System N

02< A U8ww A Uwb A ”bb Ans

Stacked Thy di- 200 -34 -38 5.4 -0.5 6
mer+water 39 -12.1 -21.1 9.7 -0.5 2

82 —8.2 -15.6 7.6 -0.5 2
Stacked Ura di- 200 -34 -44 7.9 1.1 7

mer+water 39 -9.4 -21.1 10.5 1.1 3
82 -14.8 -23*8 8.2 1.1 4

The energetic preference of a more stable sta­
cked dimer when compared to a less stable one is
almost completely determined by the water-water in­
teraction. Water is more ordered around a more sta­
ble dimer. A greater number of water-water H-bonds 
testifies to this fact (see values A n 8 in Table 3). 
The base-base interaction does not almost make any 
contribution to the stability of one type of stacks 
as compared to another. A less preferable dimer is 
stabilized by the water-base interaction to a grea­
ter extent. Similar conclusions follow from the da­
ta of Table 3 for the subsystems including the nea­
rest 39 and 82 molecules of water cluster.

The analysis of the data obtained for stacked 
Thy dimers in water enables one to make one more 
important observation. It is seen from Table 3 that 
the dimer in which the methyl groups of Thy molecu­
les are adhered (O-stack) is more preferable than 
the one for which these groups are separated from 
each other (A-stack). This fact is analogous to the 
known phenomenon that in water two non-polar mole­
cules or groups aim”to adhere”.
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The ’’adhering” observed theoretically is most 
likely due to the effect of methyl groups and not 
to the rotation of one of the base rings around the 
glycosidic bond. This is shown by our data that in 
water the uracil A-stack is more stable than the 0- 
stack.

The nature of the methyl group ’’adhering” that 
leads to a more preferable type of the stack of Thy 
may be understood qualitatively from the calculated 
radial distribution functions of the water-water 
interaction energy, a number of water-water H-bonds 
and water molecules for the subsystems including 39 
and 82 water molecules. The analysis of these func­
tions performed by us for the A- and 0-stacks of 
Thy shows that due to a small number of water mole­
cules, water structuring around the A-stack for the 
layers positioned in a proximity to methyl groups 
is low. The transition from the A- to 0-stack leads 
to the increase in the number of water molecules for 
3.3-3.8, 4.8-5.3 and 6.3-6.8 A layers. This allows 
water molecules to form a greater number of water- 
water H-bonds in these layers. The decrease in a 
number of water-methyl group contacts observed du­
ring this transition leads to an additional formati-

Oon of water-water H-bonds in the 6.3-6.8 A layer 
that raises its structuring. It is evident to lower 
tangibly the system energy. Really, the energetic

ocontribution made by the 6.3-6.8 A layer to the pre­
ference of the 0-stack of Thy amounts to -22.5 kcal/ 
mol and is very close to value aU®w for the system 
including 39 water molecules (see Table 3). The ad­
ditional lowering of the system energy is caused by 
the cooperative effect of the adjacent methyl groups 
in the 0-stack of Thy on the structure of more dis­
tant layers of water molecules (Table 3).
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The '’adhering* of Thy molecule methyl groups 
upon the formation of the O-stack detected by us is 
a typical manifestation of the hydrophobic effect. 
Unlike the classical case, however, the enthalpy 
term calculated by us makes a considerable contri­
bution to the stabilization of the O-stack of Thy.
It should be noted that the similar phenomenon is 
observed for all the studied cases of nucleotide 
base association in water /I,14/. The multiply al­
kylated bases with the volume substituents are an 
exception. Their large hydrophobic surface formed 
due to alkyl substituents screens greatly a polar 
nucleus of the rings that leads to the classical 
(enthropy) nature of the base association.

The hydration simulation of stacked dimers per­
formed by us has shown that due to the possible 
change of their geometry in water the configuratio­
ns of stacks differ strongly from the most prefera­
ble configurations computated for vacuum (see /13/). 
This leads to a tangible decrease of the absolute 
value during the transition from vacuum to wa­
ter. So, for the A-stack of Ura the most preferable 
configuration of the bases in vacuum has the value 
Ubb amounting to -6.31 kcal/mol. During the transi­
tion to water the magnitude becomes equal to 
-4.15 kcal/mol. The same difference is also obser­
ved for the O-stack of Thy during the transition 
from vacuum to water (-7.33 and - 5.13 kcal/mol, 
respectively).

The comparison of our data on the hydration of 
the A-stack of Ura with the variable and fixed (va­
cuum) geometry of the dimer shows that values Uww 
and Uwt are changed, as well as value U^. Therefo­
re, the conclusions of the recent paper /15/ devo­
ted to the study of the base association reaction in
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water and based on the fixed geometry of the stacks 
should he considered with great caution. In additi­
on, the conclusion of authors /15/ that there is no 
enthalpy stabilization of stacked dimers by water 
obtained from their data is erroneous.
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Chapter 7

STERIC EFFECTS ON RATES 
AND EQUILIBRIA
DeLos F. DeTar
Department of Chemistry, Florida State University,
Tallahassee, Florida 32306 USA

ABSTRACT
New approaches to the theoretical prediction of 

relative rate constants based on estimations of rela­
tive enthalpies of formation of reactants and of mod­
els of transition states provide calculated rate con­
stants that agree with experimental values, in some 
cases within a factor of two. The underlying princi­
ples are described. Formal steric enthalpy (FSE), a 
new formal definition of steric properties has proved 
useful for calculating the relative enthalpies and in 
investigating the origins of the steric effects. 
Evaluation of steric effects on rates (and on equili­
bria) has wide applicability. It is a powerful tool 
that may be expected to serve as a stimulus for new 
studies of steric effects while providing the means 
toward a better understanding and a more effective 
use of these effects.

INTRODUCTION
For reactions controlled primarily by steric ef­

fects computations using molecular mechanics can re­
produce relative rate constants rather well. Repre­
sentative references are Bingham and Schleyer 1971, 
DeTar and Tenpas 1976b, DeTar et al 1978, DeTar and 
Luthra 1980, DeTar 1981a, 1981b, DeTar and Delahunty
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1983, Mttller and Perlberger 1976f Perlberger and 
Mttller 1977, Mttller et al 1982a, 1982b, Farcasiu 
1978, Beckhaus et al 1978, 1980, Bernltthr et al 1984, 
Ruechardt and Weiner 1979, Ruechardt and Beckhaus 
1980, Schneider and Thomas 1979, 1980, Schneider et 
al 1983, Mttller 1985.

In recent more detailed studies of esterification 
of RiR2CHCOOH and hydrolysis of the esters, we have 
been able to reproduce relative rate constants to 
within a factor of 1.7 over a range of 5 powers of 
ten for some 85 data values, DeTar et al 1985d. Ri is 
H, Me, Et, i-Pr, or t-Bu. These results together with 
those published show that chemists now have available 
a powerful tool for gaining new insights about steric 
effects on rates and equilibria.

The purpose of this discussion is to present the 
underlying principles and to indicate some techniques 
for applying them to more general problems of eval­
uating steric effects. The illustrations will be 
based primarily on esterification.

PRINCIPLES: RELATIVE RATE CONSTANTS AND TRANSITION 
STATE THEORY

The estimates of relative rate constants are based 
on the thermodynamic state approach of transition 
state theory, and they require calculation of rela­
tive free energies of formation of reactants and of 
models of transition states, DeTar and Tenpas 1976a, 
1976b, DeTar et al 1978, DeTar and Luthra 1980, DeTar 
et al 1985d.

Several problems have to be solved in order to ap­
ply this approach. First off it must be possible to 
calculate relative free energies of activation with 
high accuracy, preferably to better than 0.4 kcal/- 
mole. Attaining this level of accuracy in estimating 
enthalpy of activation imposes severe demands on the 
computations of relative enthalpies of formation and 
on the force fields.

We must devise adequate models for the transition 
states. We must use appropriate procedures for ap­
plying calculations to reactions in solution, not 
just the gas phase. We must treat entropy effects.
And we must develop methods for interpreting the 
results.

Turning first to the entropy problem, there are 
two approaches: calculate the entropy (DeTar and 
Luthra 1980), or ignore it on the grounds that the 
entropy of activation is effectively constant 
throughout the series of reactions. Both approaches 
can work (DeTar and Tenpas 1976b, DeTar et al 1985d).
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We cannot usually calculate the free energy of 
activation for a single reaction nor can we calculate 
the free energy of individual compounds in solution. 
What we can do is to calculate the difference of the 
free energy of activation for two reactions. This 
amounts to the calculation of a ratio of rate con­
stants, eq 1 .

log (k2 /k1) = (AG^ - AG2 *)/(2.3RT) (1)
Eq 1 makes use of the powerful standard method of 

double differences, illustrated further in eqs 2 to 
9. A generalization of the double difference method 
is a linear free energy expression, eq 10. It should 
perhaps be emphasized that eq 10 is not a catch-all 
application of the linear free energy approach; it is 
a theoretically correct generalization of the funda­
mental double difference method.
R'l -COOH + MeOH ---- ** R 1 -C (OH ) 2OMe (2 )

rl tl
Rp-COOH + MeOH ---- ^ R2-C (OH)2OMe (3)

r 2 t2

AHt* = AHfg(tl) - AHfg(r1) + AHs (tl) - AHs (rl) (4)
AH2* = AHfg (t2) - AHfg (r2) + AHS (12) - AHS (r2) (5)
AAH2 1 * = ah2* - AHt* (6 )
AAH2 i*(s) = AHfg (12) - AHfg ( r 2) -

AHfg (tl) + AHfg (rl) + AAHs (7)
AAHS = AHs (t2) - AHS (r2) - a Hs (tl) + a Hs (rl) (8 )
AAH21* s FSE(t2) - FSE(r 2) - FSE (tl) + FSE(rl) (9)

log (ki/k0 ) a + b'AFSE^ (1 0 )
AFSEi FSE(ti) - FSE(ri) (1 1 )

Eqs 2 and 3 represent formation of the tetrahedral 
intermediate in esterification; rl and r 2 are two 
acids and tl and t 2 are the respective transition 
states on the way to the tetrahedral intermediates. 
AH-}* and AHp* are the enthalpies of activation in 
solution, eqs 4 and 5, while AAH2 1 * is the relative 
difference of enthalpies of activation in solution 
and will be equal to the free energy difference of eq 
1 if the entropies of activation may be considered
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constant.
The enthalpy of formation of reactant 1 in solu­

tion, AH(rl), may be expressed as the sum of the gas 
phase enthalpy of formation, AHfg (rl), plus the en­
thalpy of solution, AHs (rl), and likewise for the 
transition state 1, AHfg (tl) and AHs (tl). The enthal­
py of activation in solution may then be expressed as 
eq 4. Eq 5 is the corresponding expression for the 
second reaction.

Expansion of the right hand side of eq 6 yields 
the summation shown in eq 7. The term AAHs, eq 8 , is 
expected to be nearly 0. The argument runs as fol­
lows: The enthalpy of solvation about the Ri group is 
nearly the same in reactant rl and in transition 
state t l ; likewise for solvation of R 2 . The enthalpy 
of solvation about the COOH group is nearly the same 
for reactant rl and reactant r2 ; likewise for solva­
tion about the C(OH)2 0 Me groups. Any steric effects 
on solvation will to a considerable extent tend to 
parallel structural steric effects and hence will be 
confounded with them.

We conclude therefore that the double difference 
of free energies of activation in solution is nearly 
equal to the double difference of free energies in 
the gas phase, and also nearly equal to the double 
difference of enthalpies of formation.

I will show presently that the gas phase double 
difference of enthalpies of formation incorporated 
into eq 7 may be represented by eq 9 in terms of a 
double difference of formal steric enthalpies. Eq 10 
is the linear free energy equation that generalizes 
eq 9, while eq 11 defines the independent variable. 
The slope b of eq 10 should be 1/(RT), but may be 
different if the assumptions are not all met. As 
examples, an imperfect model of the transition state 
used in calculating the FSE(ti) terms, failure of 
solvation effects to cancel, incorrect estimates of 
FSE values are three possible causes.

For intermolecular esterification the entropy 
tends to cancel out in the double difference. This is 
fortunate since the entropy of activation is a large 
negative quantity for most acyl transfer reactions, 
and it varies with solvent. There is, moreover, an 
established linear relationship between enthalpies of 
activation and entropies of activation for some es­
terifications, Krug et al 1976a, 1976b, 1976c, 1977. 
The successes of the calculation of relative rate 
constants owes a great deal to the various can­
cellations afforded by the double difference method.

For esterification and ester hydrolysis we have 
used the tetrahedral intermediate itself as the model 
of the transition state on the way to the intermed-
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iate. This is clearly inexact, since at the transi­
tion state the three C-0 bond lengths should be un­
equal. To date we have discovered no trends in the 
error residuals which would suggest the need for a 
more sophisticated model or which would permit a 
valid test of one. Uncertainties about models for 
transition states must, however, be kept in mind.
Even cruder models have been used in some of the 
studies referenced in the Introduction. It appears 
that the results are rather insensitive to models if 
they provide a reasonable representation of the ster­
ic effects in the transition state.

There are trade-offs in choosing a model for the 
transition state. If the model is actually a mole­
cule, then the force field may already include all 
necessary constants for estimating relative enthal­
pies of formation. If not, then several additional 
constants will have to be assigned and often there is 
no independent way of assessing their validity. Ex­
perience to date suggests that the double difference 
method pretty well cancels out the weaknesses of the 
models and of the assignments.

FORMAL STERIC ENTHALPY AND ENTHALPY OF FORMATION
Turning now to the estimation of relative enthal­

pies of formation, we assume that steric effects and 
bonding effects can be treated independently, as 
implied in eqs 12 to 14. This assumption is formally 
stated in eq 1 2 ; we postulate that the enthalpy of 
formation of a single conformer may be represented 
arbitrarily as the sum of formal bond enthalpy and 
formal steric enthalpy. We postulate further that the 
FBE term may be represented as a summation of group 
increments independently of structure. We interpret 
FBE as the enthalpy of formation of a hypothetical 
molecule having the prescribed structural units but 
having no intramolecular "strain".
AHf(g) = FBE + FSE (12)
AHf (single conformer) = £nj_Ci + FSE (13)

Eq 12 is a refinement of and an extension of the 
traditional representation of the enthalpy of forma­
tion of alkanes in terms of group increments based on 
a count of CH3 , CH2 , CH, and C units plus a correc­
tion for steric effects, Stull et al 1969, Cox and 
Pilcher 1970, Benson 1976. However, the enthalpy of

FSE SE (14)
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formation defined by eq 1 2 applies to a single con- 
former (rather than to the existing mixture of con- 
formers) and the FSE values are defined by the for­
malism described below.

Eqs 12 and 13 are therefore equivalent and for 
alkanes the FSE is equivalent to "single conformer 
strain energy", Schleyer 1970, or to "intrinsic 
strain energy", Burkert and Allinger 1982.

FSE values may, however, be defined independently 
of whether enthalpies of formation are available or 
not, and the assumption of additivity of group incre­
ments to give FBE may be' extended to many types of 
molecules containing functional groups. FSE values 
may be defined for transition state models and for 
molecules that are too unstable to be studied. Thus 
the FSE value has many advantages as a specialized 
and precise definition of what is implied less pre­
cisely by the idea of "molecular strain" insofar as 
it arises from intramolecular nonbonded repulsions 
and attractions.

Molecular mechanics calculations represent the 
"steric energy" of a molecule in terms of deviations 
from standard bonds, angles, and torsions plus non­
bonded interactions. The "steric energy" is calcu­
lated by purely empirical functions whose constants 
have been chosen so that at the minimum value the 
geometry, the enthalpy of formation, and perhaps 
other molecular properties agree with experiment.

The "steric energy" value obtained for a given 
conformer by molecular mechanics is force field de­
pendent. For some force fields the steric energies 
may even decrease with increasing substitution; DeTar 
et al 1985a. The problem lies in the fact that a raw 
SE value includes the desired FSE quantity of eq 12 
plus a variable and force field dependent admixture 
of residual FBE. For two molecules that are isostruc- 
tural, as are conformers, the difference of their 
steric energies is a valid estimate of AAHf since the 
residual FBE component is the same for both confor­
mers. For two molecules that are not isostructura1 
the difference of steric energies is force field de­
pendent and hence theoretically meaningless.

For an alkane the SE value may be converted to an 
enthalpy of formation, which is, of course, force 
field independent; Allinger et al 1971, Engler et al 
1973, Burkert and Allinger 1982. FSE values are also 
force field independent; they may be considered as 
corrected steric energies. Differences of FSE values 
are equal to differences of enthalpies of formation 
and are thus significant.

The definition of FSE values for a given set of 
molecules involves three steps: identification of the
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molecular groups necessary to define the FBE value 
for any member of the set by additivity, selection of 
suitable standard conformers, and arbitrary assign­
ment of FSE values to the standards. This formal (ar­
bitrary) assignment defines the FSE value of every 
member of the set of compounds and makes it possible 
to derive tables of steric properties that are inde­
pendent of method of calculation or of experimental 
estimate. The assignments provide the information 
necessary to calculate the ci values of eq 13 if the 
necessary enthalpy data are available, and they pro­
vide for the calculation of the correction terms di 
of eq 14. Examples are given by DeTar et al 1985a 
(alkanes), 1985b (alcohols, ethers, olefins), and 
1985c (esters).

Inasmuch as FSE values treat only the steric ef­
fects it is necessary either to limit the reaction 
set under consideration to compounds for which polar 
effects are negligible, or else to correct for polar 
effects by a linear free energy relationship, DeTar 
1980, DeTar et al 1985d.

It is also necessary to avoid changes in bonding 
conditions at the reaction center. For example, al­
pha-beta unsaturated acids may have the complication 
of steric effects on resonance.

HOW TO TREAT POPULATIONS OF CONFORMERS
Given, then, that there is a suitable set of com­

pounds to work with, a suitable force field, and a 
suitable model for the transition state and given 
further that we have calculated formal steric enthal­
pies for several conformers of each reactant and each 
transition state, how do we go about calculating the 
rate constants.

A fundamental requirement is to locate the global 
minima of energy for both the reactant and for the 
model of the transition state. For many acids the 
conformer of the R-group is the same for both, but 
this correspondence is not always found. In the acid 
the R-group opposes an sp2 carbon and in the transi­
tion state a developing sp3 carbon. On the supposi­
tion that the acid conformers are in rapid equilib­
rium it is still correct as a first approximation to 
base calculations on the two global minima.

It is of interest to consider in more detail how 
the predicted rate constants are modified due to the 
presence of populations of conformers of reactants 
and of transition states. One way to visualize the 
system is to consider that by least motion the con­
formation of the R-group does not change during the
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activation step. If we then picture the system as a 
mixture of conformers each with its own reaction 
path, we can describe the process as "adiabatic".
In more general thermodynamic terms we can lift this 
restriction and need not be concerned with details of 
the dynamics by which the several transition states 
are reached. We can accordingly look upon the process 
as involving an entropy correction. If there are 
several transition states of low energy, then there 
are multiple paths and the rate will be greater than 
through a single path based on the global minima. 
Conversely, if there are multiple low lying reactant 
states that match up with high energy transition 
states, then the reaction will be retarded. In either 
case the comparison is to the rate calculated from 
the reactant state and the transition state that are 
the global minima.

The theory for calculating the rate constant from 
FSE values for populations of conformers has been de­
scribed in both kinetic terms and in thermodynamic 
terms (DeTar et al 1985d). The result is eq 15. Each 
ki is to be calculated using the FSE value for the 
global minimum of the reactant conformers and the FSE 
value for each transition state in turn. D is the 
Boltzmann denominator, eq 16. In one set of acids the 
k derived by eq 15 differed from that obtained from 
the pair of global minima by factors ranging from 
about 0.5 to 2 .

MECHANISTIC VS OBSERVED RATE CONSTANTS
Another question to be settled is that of defining 

clearly the relationship between the rate constant 
that has been calculated and the phenomenological 
("experimental") rate constant. This is not always 
obvious. A theoretically calculated rate constant is 
a mechanistic rate constant, which may or may not be 
equal to or proportional to the phenomenological 
constant. In esterification, as an example, the ob­
served rate constant is usually a pseudo first order 
rate constant or a derived value based on the Gold­
schmidt correction, Goldschmidt 1913, Smith 1939.
This value is usually converted by proportion to the 
rate constant in 1 M catalyst acid, and the derived 
value is the phenomenological constant. The values 
are somewhat medium dependent, but this is not a 
serious problem as long as we work with relative rate

k = (1/D)(ki + k2 + k3 + ... ) 
D = 1 + exp[-(AG2 - AGi)/RT] +

(15)
(16)
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constants, which are independent of medium. Changing 
the concentration of HC1 catalyst from 0.5 M to 0.1 M 
causes the phenomenological rate constant to increase 
by from 10 to 20%, Smith and Reichardt 1941.

ki k2

R-COOH + MeOH « R-C(OH)2OMe  ** Ester
k-1

k2
kobsd = k, x -----------  = ki x f (17)

k_ i  + k2

Esterification and ester hydrolysis involve tetra­
hedral intermediates, and in consequence the pheno­
menological rate constant is the product of the mech­
anistic rate constant for forming the intermediate 
and a distribution fraction that represents the frac­
tion going on to products, DeTar 1982.

There is evidence that the distribution fraction f 
of eq 17 may be presumed to be relatively constant 
for R = alkyl; DeTar 1982, DeTar et al 1985d. The 
phenomenological rate constant should closely paral­
lel the mechanistic rate constant as long as the 
equilibrium constant for esterification stays con­
stant. This will probably hold for esters of n-alco- 
hols since there is no steric interaction between the 
alkoxyl group and the R-group of the acid.

Target rate constants that may be calculated in­
clude those for esterification in methanol (largest 
number of available data), for esterification in 
ethanol, for acid-catalyzed hydrolysis (a few exam­
ples), and extensive data for base-catalyzed hydroly­
sis of esters, limited, albeit, to a narrow range of 
structures. See DeTar et al 1985d for references.

Relative rate constants, taking acetic acid as the 
reference, are pretty well constant for all acid- 
catalyzed reactions within each series even though 
the data have been obtained at different temperatures 
and with different catalysts. For hydroxide-catalyzed 
hydrolyses of esters the relative rates are also 
constant even under differing conditions of solvent 
and temperature, but it is necessary to apply a small 
correction for the differing inductive effects of 
alkyl groups, DeTar 1980a, in order to bring acid- 
catalyzed and hydroxide-catalyzed reactions into 
coincidence. The distribution fraction, eq 1, is 
probably unity for alkaline hydrolysis, DeTar 1982.

Corrected relative rate constants also appear to 
be pretty much the same irrespective of whether the
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alkoxyl group is methoxyl or other primary alkoxyl 
group; if there are trends, they are masked by the 
experimental uncertainties of the data. We find no 
evidence of steric effect between the R 1 of a primary 
R'O group and the R 1 R2 R3C group of any acid we have 
investigated. Branched R'O groups do, of course, 
encounter steric interactions.

For reactions that differ in activation energy the 
relative rates will, of course, depend on what temp­
erature is selected as the reference temperature. For 
two esterification reactions having a ratio of rate 
constants of about 1 0 0 0  at one reference temperature 
(log k(rel) = 3.0) the change in log k(rel) is about 
0 . 2 for a 2 0 change in reference temperature, assum­
ing that the rate difference is due entirely to the 
enthalpy factor.

Most of the data for esterification were obtained 
prior to 1940 by many groups. The most extensive of 
these is by H. A. Smith; see Smith and Burn 1944 and 
earlier papers. The range of structures investigated 
was rather narrow. Newman (Loening et al 1952) great­
ly extended the range. The recent work of the Chapman 
group is a model of experimental excellence. Burden 
et al 1980 and earlier papers.

Two recent studies of methanolic esterification of 
highly hindered acids were based on competitive es­
terifications, Sniegoski 1976 and MacPhee et al 1978. 
Although gas chroma tography was used in the analysis, 
material balances were not reported and there are 
problems with the data. Rates for two key reference 
compounds, triethylacetic acid and t-butyldimethyl- 
acetic acid, are divergent by factors of 30 as r e ­
p o r t e d  by the several laboratories, Loening et al 
1952, Sniegoski 1976, and MacPhee et al 1978. As a 
consequence the rate constants for esterification of 
several highly hindered acids must for the present be 
considered unknown.

CALCULATION OF RATES OF ESTERIFICATION
To illustrate the method of calculation the above 

procedures have been applied to rate data for esteri­
fication of fifteen substituted acetic acids, R^R2 CH- 
COOH, having Ri and R2 H, Me, Et, i-Pr, and t-Bu. 
There are 15 acids in the set, and experimental 
values have been reported for all. However, data for 
three of these are uncertain for reasons mentioned 
above; they are i-Pr-i-PrCH-COOH, i-Pr-t-BuCH-COOH, 
and t-Bu-t-BuCH-COOH.

The data are summarized in Table 1. The column 
labelled Delta FSE is the difference in the formal



70 Steric Effects on Rates and Equilibria [Ch.7

steric enthalpies of the conformer of minimum energy 
of the tetrahedral intermediate (the transition state 
model) and of the conformer of minimum energy for the 
acid.

The column Adiabatic Corr is the adiabatic or ent­
ropy correction explained above to correct for popu­
lations of conformers.

Literature rate constants have been used in deriv­
ing Log k rel avg. Calculated rate constants are 
based on eq 18. The values calculated for the last 
three acids may be considered as predicted rate con­
stants .
log k rel = -0.72929 (. 04) - 0.98326 (.03)-AFSE

+ Adiabatic Corr (18)
standard deviation 0.22 R2 0.9788 28 d.f.
Comparison of the observed and calculated values 

of log k(rel) show that the refined approach we have 
described does in fact give a good correlation of the 
rate constants for the first 12 acids. Experimental 
problems with the data for the last three acids have 
been described above.

Making use of formal steric enthalpy it becomes 
possible to determine the origins of the steric ef­
fects. For example, we can compare the effects on the 
acid of replacing the alpha H of EtCH2 -COOMe in turn 
by Me, Et, i-Pr, and t-Bu. The respective FSE values 
(for the conformer of minimum energy) are 0.84, 1.01, 
1.22, 2.29, 3.66 kcal/mole. We can thus examine in 
detail the accumulation of steric effects with in­
creasing substitution.

The corresponding values for the model of the 
transition state are 0.26, 1.28, 2.48, 4.15, 8.39. 
There is a reasonable proportionality up to the Et-t- 
Bu-CH group. At this last step there is a large jump 
in the crowding of the tetrahedral structure. FSE 
values now make it possible to investigate in detail 
the effects of structure on steric properties.

It may be noted that the reported FSE values of 
the acids in Table 1 are actually those of the methyl 
esters. The two are the same except for a constant. 
Calculations were performed on the esters in order to 
discover whether there were any interactions between 
the methoxyl methyl group and the R-group of the 
acid. There are none for the acids discussed.
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Table 1. Formal Steric Enthalpy Values
ancI Rate Data for R 1R 2 C0 0 H Esterifica tion

Rl a r2 Deltab Adia-C -Log kd -Log k
FSE bat ic rel avg Calc

Cor r obsd
H H -.76 0 . 0 0 0 . 0 1 - . 0 2
Me H -.62 0 . 0 0 0.05 0 . 1 2
Et H -.58 -.14 0.31 0.31
i-Pr H 0.32 - . 1 2 0.93 1.17
t-Bu H 1.38 0 . 0 0 1.65 2.09
Me Me -.41 0 . 0 0 0.50 0.33
Et Me 0.27 0 . 0 2 0.99 0.97
i -Pr Me 0.67 - . 2 2 1.90 1.61
t-Bu Me 2.78 0 . 0 0 3.23 3.46
Et Et 1.26 0.06 1.96 1.91
i -Pr Et 1 . 8 6 -.06 3.25 2.62
Et t-Bu 4.73 0.28 5.14 5.09
i-Pr i-Pr 3.32 0.18 4.98 3.81
i -Pr t-Bu 4.84 - . 0 1 6.53 5.50
t-Bu t-Bu 8.58 0 . 0 0 6.97 9.17

aRlR2 CH-C0 0 H acid-catalyzed esterification in methan­
ol. bValue for tetrahedral conformer of minimum en­
ergy - value for ester conformer of minimum energy. 
cSee text, ^relative to acetic acid; average of sev­
eral values. See DeTar et al 1985d for references.

CONCLUSIONS
The procedures described have wide applicability. 

They can be applied to the prediction of steric ef­
fects in many types of reactions providing that the 
calculations are made with due consideration of the 
limitations of the method, particularly in regard to 
care with molecules involving steric effects on reso­
nance .

There are many opportunities for new experimental 
studies of steric effects. One example is the inves­
tigation of joint steric interactions in the sub­
strate and in the nucleophile in aminolysis reac­
tions, DeTar and Delahunty 1983. Another area of 
great interest is the treatment of cyclization reac­
tions, DeTar and Luthra 1980, for example. In lactone 
formation the differing equilibrium constants implies 
that there is no longer a proportionality between the 
phenomenological rate constants and the mechanistic 
rate constants. Many other types of reactions are 
controlled by steric effects, and may yield interest­
ing insights.
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A potentially very important use of the method 
can be in the design of enzyme-like catalysts. The 
fact that enzyme-substrate specificity can be repro­
duced indicates that potential catalysts can be eva­
luated computationally, DeTar 1981a, 1981b.

Many of these applications can benefit greatly by 
development of improved force fields. The potential 
number of constants needed for molecules containing 
half a dozen or so types of atoms runs into the hun­
dreds. It is going to require a great deal of evalua­
tion to learn effective ways to work with this prob­
lem.
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MOLECULAR TOPOLOGY, 
ELECTRON CHARGE 
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MOLECULAR PROPERTIES
Benjamin M. Gimarc and Jane J. Ott
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Columbia, S.C.29208, USA

INTRODUCTION
The problem with chemistry is that it has too many examples. 

Over 100 elements combine with themselves and each other to form 
an essentially limitless array of compounds, each with its own 
properties. This diversity is both the fascination and frustration of 
chemistry. A detailed knowledge of the properties of one compound 
tells us nothing a p rio r i about the properties of others. Thus, at the 
most fundamental level chemistry is a qualitative science through 
which we hope to understand trends in properties through broad 
classes of compounds.

One way to approach a qualitative synthesis of chemical 
information is by applying qualitative arguments, such as those 
involving symmetry properties and atomic orbital overlaps, within 
the framework of molecular orbital theory [1,2]. Another approach 
starts with molecular topology [3]. The connectivity of atoms within 
a molecule, or more succinctly if less correctly, molecular topology, 
is a structural feature of obvious and fundamental importance to 
chemistry. The pattern of charge densities in a molecule is 
determined by molecular topology and the number of electrons 
available. Nature prefers to place atoms of greater electronegativity 
in those positions where the topology of the structure tends to pile up 
extra charge. Since such heteroatomic systems are preferentially 
stabilized by charge distributions established by molecular 
connectivity, this effect has been called the rule o f  topo log ica l charge  
stab iliza tion  [4].
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The example of the linear triatomic azide anion N3“ serves to 
demonstrate the rule. The ion has 16 valence electrons with two 
identical but mutually perpendicular pi electron systems each 
containing 4 electrons. Each pi MO set is composed of three 
identical 2p AOs. For N3“ the calculated pi electron charge densities 
are greater at the terminal nitrogens (1.5) than at the central 
atom(l.O). This pattern of charge densities can be easily understood 
form the nodal properties of the occupied pi orbitals. In Hiickel 
theory charge densities are given by the squares of AO coefficients 
summed over occupied MO’s. In the lowest energy or bondng MO 
q/j(l) the 2p AO on the central nitrogen has a larger coefficient than 
do the terminal AO’s. In the higher occupied or nonbonding MO 4>2

(2), a nodal plane perpendicular to the molecular axis eliminates 
any contribution from the central atom 2p AO and pushes electron 
density to the terminal atoms. The net result is a greater electron 
density at the terminals than on the central atom. Although N3" is 
known it is usually reactive, in some cases explosive. Much more 
stable are isoelectronic, isostructural heteroatomic species such as 
C02, N02 + , and B02“ in which constituent atoms occupy positions 
that match their relative electronegativities with the distributions 
of charge determined in the homoatomic system N " for which only 
topology and electron filling level establish the pattern of electron 
densities. We refer to such a homoatomic system as the uniform  
reference fram e from which we can make rationalizations and 
predictions concerning atomic positions and relative stabilities of 
related heteroatomic species.

The validity of the rule of topological charge stabilization 
transcends simple Hiickel theory and indeed even the molecular 
orbital approximation as the following perturbation argument 
shows. Consider the uniform reference frame as the unperturbed 
system, with Hamiltonian H°, wavefunction 4*°, and total energy E(0) 
related by the Schrodinger equation:

H°qj° = E(0) 4*°.
Now introduce one or more heteroatoms as a perturbation, holding 
the molecular structure and the number of electrons fixed. The 
perturbing Hamiltonian H' is a sum of changes in Coulombic 
nuclear-electron attraction terms due to changes in nuclear charge 
AZa that result from substitution of a heteroatom at position a. For 
the perturbed system described by H = H° + H', the total energy

1 2
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can be ca lcu la ted  as a sum  o f h igh er order correction s, E = E (0) +
E m + — . The first-order correction  is ca lcu la ted  from  the 
unpertu rbed wavefunction:

E (1) = < x¥°\ H'| x¥°>
S in ce the opera tor H' in v o lv es on ly  s im p le  m u ltip lica tion , the W0 
factors can be com b in ed  w ith in  the in tegra l to g iv e the unpertu rbed 
electron  den sity  p°= (lP°)*lP0 a n d E (1) =  <p°H'>. Therefore, to 
ach ieve m ax im um  stab ility  or en ergy  low er in g  th rough  the 
correction  E (1), the heteroa tom s o f la rg e s t AZ sh ou ld  m atch th ose 
p os it ion s in the m o lecu le  w here p° is a lready g rea te st in the 
unpertu rbed or referen ce frame. For qu a lit itav e gen era liza tion s 
in v o lv in g  atom s in d ifferen t row s o f the per iod ic tab le it is 
conven ien t to con sid er va len ce e le c tron s on ly  and to rep lace AZa by 
ch an ges in effective nu clea r ch a rge A£a, or even m ore sim ply, to u se 
re la tive e le c tron ega tiv ity  as a rou gh  m ea su re o f A (a.

To dem on stra te the gen era l app lica b ility  o f the ru le o f 
top o log ica l charge stab iliza tion  and to show  in s igh ts  that can be 
deriv ed  from  it, the fo llow in g  section s p resen t m any exam p les from  
both in o rgan ic and organ ic chem istry.

PLANAR CON JU GA TED  SY STEM S

Pen ta len e (3) has 8  pi electrons. D iffe ren ces betw een  la rg e s t 
and sm a lle st H iick el pi charge d en s it ie s  are large. A ttem pts to 
prepare pen ta len e it s e lf have fa iled  a lth ou gh  1,3,5-triterbutyl 
p en ta len e has been syn thesized. The in o rgan ic an a lo g s 4 and 5 have 
been made. In these exam p les the e le c tron ega tiv it ie s  o f the 
con stitu en t a tom s m atch the cha rge d en is ity  d istr ibu tion s o f 3.

U i-
Me Me Me Me
\ J \ /

A N - \N N-Me S s
V * - / V
/ \ / \Me Me Me Me

3 4 5

The p en ta len e d ian ion  has a sy stem  o f 1 0  pi electrons. 
D iffe ren ces am on g H iickel pi ch a rge d en s it ie s  (6 ) are sm a lle r  than 
in pen ta len e it s e lf  (3), p robab ly  in crea s in g  the stab ility  o f the 
d ian ion  re la tiv e  to that o f pen ta lene. The un su b stitu ted  d ian ion  has 
been  prepared. The extra pa ir o f e le ctron s in the d ian ion  have gon e 
to p os it ion s 1, 2, 4, and 6  wh ich now  have the la rg e s t ch a rge 
densities. C on s id e r the ser ie s o f  isom er ic th ien o th ioph en es (7-10) 
wh ich are isoe lec tron ic w ith the p en ta len e dian ion. A ll fou r isom ers
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have now  been  prepared  a lth ou gh  1 0  is known on ly  as the 
te trapheny l derivative. C om pa r in g  th ese stru ctu res w ith the charge 
d istr ibu tion s in 6  su g g e s t s  that 7 and 8  sh ou ld  be o f com parab le 
stability, 9 less so, and 10 the lea st stab le o f all. These con c lu s ion s 
are in ex ce llen t a g reem en t w ith the know n rea ct iv it ie s  o f th is ser ies 
and w ith the resu lts o f  sev era l se ts o f  sem iem p ir ica l resonance 
en ergy  ca lcu la tion s [6 ].

The ru le o f top o log ica l ch a rge stab iliza tion  d oes not im p ly  that 
heteroa tom s cannot be in trodu ced  in to stab le sy stem s for wh ich the 
un iform  referen ce fram e has un iform  charge densities. C oun tle ss 
exam p les o f such sy stem s exist. For exam ple, a ll pi charge d en sit ie s 
in benzene (1 1 ) are unity. The isoelectron ic, h eteroa tom ic sp ec ie s 
1 2 , 13, and 14 are all known. T op o log ica l charge s tab iliza tion  
su g g e s t s  a d ecrea se in stab ility  th rough  th is series, fo llow in g  the 
trend o f in crea s in g  loca liza tion  o f charge on m ore e le c tron ega tiv e  
atoms.

V V

H
11 12 13 14

THREE-D IM EN SIONAL  SY STEM S

In P S, (15) the fou r ph osph oru s a tom s are at the four corners 
o f a d istorted  tetrahedron  w ith an ap ica l ph osph oru s lin k ed  bv 
b r id g in g  su lfu rs to a ba sa l tr ian g le  o f ph osph oru s atoms. AsJS, has 
an an a lo gou s structure. The known an ion  P ?3“ serv es as the un iform  
referen ce fram e for P 4 S 3 and A s 4 S3. Structu re 16 d isp la y s the 
M u llik en  n et a tom ic p opu la t ion s (or m ore sim ply, a tom ic charges) 
for P ?3" ca lcu la ted  from  ex ten ded  H iick el w avefun ction s [7]. The 
ex tended H iick e l m eth od  is known to y ie ld  ex a gg e ra ted  ch a rge s [8 ]
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15

but exper ien ce sh ow s that th ey are adequa te for the pu rposes here 
w h ich  requ ire  on ly  a qu a lita tiv e pattern  o f ch a rge d istribu tions.

The un iform  referen ce fram es for th ree-d im ensiona l sy stem s 
are often  hypoth etica l and have very  la rge  tota l charge Q. 
In d iv idu a l atom ic ch a rges q r sum  over all a tom s r to the tota l ch a rge
Q. S in ce we are in terested  on ly  in ch a rge d ifferen ces we have 
in trodu ced  normalized  charges q r' wh ich  sum  to zero:

qr' = qr - Q/N,
where N is the num ber o f a tom s in the structure. S tructu re 17 
sh ow s the n orm a lized  ch a rges o f P ?3' from  16. S in ce the referen ce 
fram e in 17 is no lon ger com posed  o f rea l a tom s we have su pp ressed

a tom ic sym bo ls in the co rre sp on d in g  stru ctu ra l formulas. The 
n orm a lized  ch a rge s in 17 em pha size  that the b r id g in g  p os it ion s are 
n ega tiv e  com pared  to ap ica l and ba sa l sites. H ence, the m ore 
e le c tron ega tiv e  su lfu rs sh ou ld  occu py  the b r id g e s  w ith less 
e le c tron ega tiv e  P or A s a tom s in the apex  and ba sa l tr ian g le as 
ob serv ed  in P 4 S 3 and A s 4 S3.

T op o lo g ica l charge sta b iliza t ion  o ffers a beau tifu l exp lan a tion  
for the d r iv in g  force to equ ilib r ium  in the sy stem  P.S 3 /As4 S 3. W hen  
rea ctan ts are m ixed  in the sto ich iom etr ic  ra tio  (1:3; the equ ilib r ium  
lie s p red om in a te ly  to the s id e o f the P S 3A s 3 p rodu ct [9]:

P 4 S 3 + 3 A s 4 S 3 4 P S 3A s 3

The stru ctu re o f the product P S 3A s 3  p re sum ab ly  has a ph osph oru s 
atom  at the apex, three b r id g in g  su lfurs, and a ba sa l tr ian g le  o f 
a rsen ic atom s, exa ctly  those p os it ion  in  w h ich  e le c tron ega tiv it ie s  o f
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con stitu en t a tom s m atch  the re la tive ch a rge s in the un iform  
referen ce fram e [1 0 ].

In P 4 S 4 (18) there are four equ iv a len t su lfu r atom s loca ted  at 
the corners o f a square p lane and bonded to pa irs o f phosph oru s 
atom s above and be low  the p lan e [18]. N orm a lized  ch a rge s 
ca lcu la ted  for an appropria te un iform  referen ce fram e (19) can 
ra tion a lize the d ifferen t pos it ion s taken  by a tom s o f G roups V and 
VI. The m ore e le c tron ega tiv e  atom s prefer the p lan e p os it ion s w ith

the less e le c tron ega tiv e  atom s o ccu py in g  s ite s above and be low  the 
plane, an a rran gem en t that is rea lized  in the know n exam p les o f 
th is ser ie s [11]. In S 4 N 4  and S e 4N ^th e G roup V e lem en t (N) occu p ie s 
the n ega tiv e square p os it ion s and in P 4 S4, A s 4 S 4, and A s 4S e 4  the 
G roup VI e lem en ts (S or Se) are on the plane.

The P 4 S, ca ge (2 0 ) is re la ted  to that o f P 4 S 4  (9) w ith an 
add itiona l su lfu r a tom  b r id g in g  one pa ir o f  ph osph oru s atoms. 
N orm alized  ch a rg e s for the un iform  referen ce fram e appear in 2 1 . 
A gain, the m ore e le c tron ega tiv e  su lfu rs occupy the n ega tiv e  s ite s

w h ile the less e le c tron ega tiv e  ph osph oru s a tom s take the pos it iv e  
positions. S im ilarly , in the re la ted stru ctu res P 4 Se- and A s 4 S5, the 
m ore e le c tron ega tiv e  G roup VI a tom s (S or Se) are in the n ega tiv e  
s ite s and the le ss e le c tron ega tiv e  G roup V a tom s (P or As) take up 
the positive location s. But p os it ion s o f G roup V and V I e lem en ts are 
reversed in S 4N 5" becau se N is m ore e le c tron ega tiv e  than S.

In sertion  o f  st ill an oth er su lfu r betw een  the bonded pa ir o f

f)hosphorus a tom s in 2 0  lead s to the structu re w h ich  one an tic ipa te s 
or P .S 6 (2 2 ), th is p a rticu la r m o lecu le  b e in g  as y e t unknown. The 

h igh ly  sym m etrica l stru ctu re is that o f adam antane. The ch a rg e s o f
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the un iform  referen ce fram e (23) show  four p ositiv e tetrahedra l s ite s 
and s ix  n ega tiv e  b r id g in g  p os it ion s that cover the ed ge s o f the

tetrahedron. The m ore e le c tron ega tiv e  e lem en t sh ou ld  be loca ted  in 
the b r id g e s w ith the less e le c tron ega tiv e  e lem en t at the te trah edra l 
sites, an arran gem en t that is w e ll known in P 4 0 6, A s.O e, A s,S6, and 
Sb.CL, as w ell as in h ydrogen  and m ethy l su b st itu ted  exam p le s such 
as r 4 iN M e )6 and (HSi)4 S6.

The adam an tane ex am p le s have 56 va len ce electrons. T h ese 
stru ctu res lead to an em p ir ica lly  ba sed  top o log ica l ru le that say s 
le ss e le c tron ega tiv e  atom s go  to the s ite s where they form  m ore 
bonds. T h is m ay be true for m ost 56 e lectron  sy stem s but ju s t the 
reverse is ob serv ed  in som e 44 e lectron  sp e c ie s that a lso have the 
adam an tane structure. In (HC)4 (BR )6 (R = Me, C l or Br) the 
ca rbon s are at the tetrahedra l s ite s w ith boron s in the bridges, an 
a rran gem en t that a g ree s exa ctly  w ith the p o la r ity  o f n orm a lized  
ch a rg e s for the un iform  referen ce fram e w ith 44 e le ctron s (24).

The ru le o f top o log ica l ch a rge s tab iliza tion  can be u sed to 
p red ict the re la tive s ta b ilit ie s  o f the p os it ion a l isom ers o f the w ell 
know n closo-carboranes, C 2 B n -2 H n, where 5  <  n <  1 2 . R eference 
fram es are requ ired  that s im u la te  the stru ctu re s o f c lo so-boron 
hydrides, B nH n2', 5 < n <  1 2 , the h om oa tom ic an a lo g s o f the 
carboranes. To em phasize ch a rge d iffe ren ces and s im p lify  the 
ca lcu la tion s we u sed un su b stitu ted  carbon  sy stem s C n2" ra th er than 
B nH n2“.

The C 2 B 3 H 5 sy stem  is a tr igon a l b ipyram id. C a lcu la ted  
ch a rg e s for th e un iform  re feren ce fram e (25) are n ega tiv e  at the 
ap ica l p os it ion s and p os it iv e  at the equ a to r ia l sites.
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S in ce carbon s p refer to occupy the n ega tiv e  sites, the three p oss ib le  
isom er ic ca rboran es sh ou ld  fo llow  the d e crea s in g  order o f stability: 

>  1,2- >2,3. Th is order a g ree s w ith the en ergy  order 
e stab lish ed  by ab in itio MO ca lcu lation s. M ore im portant, it agree s 
w ith what is known exper im en ta lly  abou t C 9 B 3H- isom ers. The 1,5- 
isom er is the on ly  know n  un su b stitu ted  isom er. The 1 ,2 -isom er 
ex ists on ly as the m eth y l sub stitu ted  form  and the 2,3-isomer has 
not been  reported in any form.

The carboran e C 2 B ,tL  has octah edra l geom etry. The six 
v ertices o f a regu la r octahedron  are equ iv a len t so the ch a rges on the 
a tom s o f the un iform  referen ce fram e m u st be iden tica l. The 
ru le o f top o log ica l ch a rge stab iliza tion  cannot d is t in gu ish  betw een  
the two poss ib le  ca rboran e isom ers. But suppose a s in g le  
e le c tron ega tiv e  h eteroa tom  is in trodu ced  at one o f the equ iv a len t 
v ertices o f C 62" to m ake C 5 N ”. In th is p ertu rbed sy stem  (26) ch arges 
are no lon ger the sam e everyw here and the ru le o f top o log ica l 
ch a rge stab iliza tion  can be used to p red ict the prefered loca tion s for 
the in trodu ction  o f the second e le c tron ega tiv e  heteroatom . The 
p ertu rb in g  h eteroa tom  at position  1  (indicated by • in 26) produces 
anoth er la rge n ega tiv e  ch a rge at p osition  6 . There fore l, 6 -C 2B 4fL  
sh ou ld  be m ore stab le  than the 1 ,2 -isomer, a ga in  in a greem en t w ith 
ab initio ca lcu la tion s and the experim en ta l report that the 1 ,2 - 
isom er qu an tita tiv e ly  rea rran ges to the 1 ,6 -isom er on h ea tin g  at 
250°.

W e have u sed  s im ila r  p rocedu res to p red ict the order o f 
s ta b ilit ie s  for the ca rboran e an a log s o f B ?H 72“ th rough  B 12H 2“ and 
in every  case our p red ic tion s agree w ith ava ila b le  exper im en ta l data
[1 2 ]. It is in te re s t in g  that our p red ic tion s ba sed  on crude charge 
d en s it ie s  ca lcu la ted  from  extended Hvickel w avefunction s, are often 
in better a g reem en t w ith exper im en t on re la tiv e  isom er stab ilit ie s  
than are tota l e n e r g ie s  ca lcu la ted  from  the sam e ex ten ded  H iick el 
w avefunctions.
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ON E-D IM EN SIONAL EXAM PLES

The pseudo-one-d im ensiona l ch a ra cter o f chain-type 
stru ctu res sh ou ld  m ake their e le c tron ic p rop ertie s ea sier to 
in terpret u s in g  qu a lita tiv e MO theory. B u t cha in s have low er 
sym m etry  than m ost o f the m o le cu le s m en tion ed  here prev iou sly.
F or exam ple, a five-atom  cha in  has th ree d ifferen t k inds o f s ite s 
com pared to on ly  two for the ten-atom  adam an tane cage. In th is 
section  w e rev iew  a num ber o f five-atom  ch a in s w ith sev era l c la sse s  
con ta in in g  d ifferen t num bers o f va len ce e lectrons.

The m o le cu le s O C C CO  and O BOBO  have 24 va len ce e lectrons. 
C 3 0 9 is a lm ost linear; it is a ctu a lly  a sem ir ig id  bender. The 
iso e lec tron ic sp e c ie s B 9CL and N C SCN  are V-shaped. E x ten ded  
H iick e l ch a rge d en sit ie s for the 24-electron five-atom  un iform  
referen ce fram e in lin ea r (27) and V-shaped (28) con form ation s both 
show  n ega tiv e  ch a rge s at the cha in  ends, d ir e c t in g  e le c tron ega tiv e  
a tom s to th ose term ina l sites. N otice th a t the chan ge from  lin ea r to

+°.83 ^ ^ ^ ° - 0.88
o — o o o — o

-0.90 4-0.15 -0.02
27 28

V-shape in crea se s the e lectron  den sity  at the cen tra l atom, 
p rov id in g  in crea sed  stab ility  for m ore e le c tron ega tiv e  atom s at that 
p osition  su ch  as the cen tra l O and S in B 2 0 3 and S(CN)2.

N 9 O 3 (28 va len ce electrons) has tw o isom er ic forms, a cha in  o f 
p lan ar W -shaped con form ation  (29) and a p lan ar branched stru ctu re 
(30). The bran ch ed isom er is the m ore stab le  o f the two. F rom  the 
n orm a lized  ch a rge s for the co r re sp on d in g  un iform  referen ce fram es 
(31, 32) one can see that the pattern  o f ch a rge  d en sit ie s in the

29

o o

W
\>

30

+ 0.91

+ 0.63

-0 .4 9\+0 .65

>-1.04

+1.88

- 1.00
31 32
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bran ched form  is m ore com pa tib le  w ith the loca tion  o f  a ll three 
oxygen  atom s at the m ost n ega tiv e  s ite s and su g g e s t s  top o log ica l 
ch a rge stab iliza tion  as the sou rce o f extra stab ility  for the p refered 
bran ched isom er o f N 20 3.

The ion C1SNSCU  (33), w ith 30 va len ce e lectrons, is p lanar 
and U-shaped. The n orm a lized  ch a rges for the un iform  referen ce 
fram e (34) do not fo llow  the order o f e le c tron ega tiv it ie s  o f  atom s 
a lon g  the chain, the on ly  s ign if ica n t dev ia tion  from  the ru le in th is 
series.

u
4*0.65

34

The ion s I5 +, I3C19 +, and LjBr^+ (34 va len ce electrons) are 
p lan ar cha in s ben t in a“zig-zag or Z-shape. In the h eteroa tom ic 
exam ples, such as C1IHC1+ (35) the a tom s are conn ected  such that 
the two m ore e le c tron ega tiv e  atom s are at the te rm in a ls and the 
three less e le c tron ega tiv e  a tom s occupy the in term ed ia te and 
cen tra l sites. No ex am p le s such as I9C13 + are known. These 
ob serva tion s are in accord w ith the d istr ibu tion  o f n orm a lized  
ch a rge s for the un iform  referen ce fram e (36).

Cl---

©
-- Cl

35

'» + 0.24

+0.28 0 .40
36

The 36 e lectron  chains, such as L", LC13‘, I2B r,‘, and X e2F3 + . 
are lin ear or V-shaped. In C l lC l I C r  (37),Tor exam ple, the three 
m ore e le c tron ega tiv e  a tom s are loca ted  at the term in a l and cen tra l 
p o s it ion s w ith the le ss e le c tron ega tiv e  a tom s at the in term ed ia te 
sites. E xam p le s su ch  a s IC IIC II' are unknown. The ob serv ed  
a rran gem en t o f  a tom s m a tch es perfectly  w ith the pattern  o f  ch a rges 
in the un iform  re feren ce fram e (38).

37 38
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CON CLU S ION S

A tom ic charge in a m o lecu le  is an old and u sefu l concept. Even  
the n otion  that ch a rges m igh t be d eterm in ed  by conn ectiv ity  goe s 
back at lea st 35 years [13]. W e have u sed  the ru le o f top o log ica l 
charge stab iliza tion  to ra tion a lize the stru ctu res and pred ict the 
re la tive s ta b ilit ie s  o f a w ide varie ty  o f  compounds. For each 
stru ctu ra l c la ss these con c lu s ion s w ere based  on charge d en sity  
d is tr ibu tion s ca lcu la ted  by sim p le  H iick e l or ex tended H iick el 
th eory for a sin gle, h om oatom ic referen ce structure. The ru le can be 
ju s t if ied  by first-order pertu rba tion  theory. C harge den sity  pattern s 
are often ea sy  to understand w ith the a id o f qu a lita tiv e MO theory. 
The ru le is ea sy  to app ly and cou ld  be u sed  to gu id e  syn th etic e fforts 
and to po in t ou t p rob lem s that m er it fu rth er study by both theory 
and experim ent. T op o lo g ica l ch a rge stab iliza tion  can serve as a 
un ify in g  p rin c ip le  for the o rgan iza t ion  o f ch em ica l in form ation.
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Chapter 9

SYSTEMATIC SYNTHESIS 
DESIGN BY COMPUTER
J.B. Hendrickson and A.G. Toczko 
Department of Chemistry, Brandeis University

The primary problem confronting the development of any system 
for synthesis design is the vast size of the necessary search 
space, a huge "synthesis tree" composed of the possible inter­
mediate structures and their interconversion reactions. Hence 
the criteria applied to select the best pathways must be not 
only clear but very stringent. Establishing adequate viable 
criteria, to be applied impartially by the computer rather than 
left to the user, is therefore the central and hardest task. 
As a basis for this selection we have chosen economy: the 
shortest, most efficient paths from the cheapest available 
starting materials. Since a synthesis is a sequence of 
reactions starting with small starting material molecules and 
leading to a large target structure, the only obligatory 
reactions are those that link those starting material molecules 
together, and so the shortest synthesis then will employ only 
those reactions. Such shortest paths then become our search 
goal.

To see the importance of this conclusion we must under­stand an organic structure as the sum of its skeleton and its 
functional groups. The skeleton is its a-bonded framework of 
carbon atoms, and the functional groups its attached heter­
oatoms and carbon-carbon n-bonds. This dichotomy is also seen 
in reactions: construction reactions are those that build the 
skeleton, i.e., that create C-C a-bonds; refunctionalization
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reactions alter the functional groups without changing the 
skeleton. Our goal then is to find sequences of construction 
reactions only, from starting materials to target. This is a 
very stringent criterion as indicated by the fact that the 
average synthesis has twice as many refunctionalization steps 
as constructions and constructs 1/4-1/3 of the skeletal bonds.

Approaching this huge tree search problem with the intent 
to assess all its many possible combinations, we need a clear, 
linear, digital expression of these organic molecules to define 
and simplify the structures and reactions in the search space, 
as well as to manipulate them rapidly. If we grant a canonic­
ally numbered list of the skeletal carbons and their connec­
tivity, then the functional groups could be expressed by a 
simple number at each carbon and the functionality of the mole­cule as an ordered list of such numbers. The net functional 
change in any reaction may then be annotated simply as the 
arithmetic change in such a functionality list from substrate 
to product, or vice-versa. Conversely, the substrate function­ality lists can be generated from the product lists (or vice- 
versa) by adding a "generator" list characteristic of a par­
ticular reaction. This assumes that the connectivity changes 
attendant on construction reactions are separately recorded. 
The necessary digital description of structure envisioned here 
should be fast and simple: fast for rapid computer manipula­
tion; and simple implying abstracted or generalized from normal 
functional group description to coalesce trivial distinctions 
and so reduce the number of items to examine in the search 
space.

An overview of the procedure derived has two phases. In 
the first only the skeleton of the target is dissected in order 
to find the most efficient modes of assembly of that skeleton 
from the largest skeletons of available starting materials. 
This designates a set of bonds that must be constructed (the 
bondset). In the second phase the functional groups necessary
to initiate constructions of those designated bonds are laid 
onto the skeletons so as to proceed, by a sequence of construc­
tion reactions only, from real starting materials to the tar­
get. Now we are dealing not only with the correct skeletons 
but also with the correct functional groups in the right 
positions on the skeletons as well. Both the best modes of 
skeletal ass e m b l y  (the bondsets), and the demands on 
functionality to create seqential construction reactions only, 
together constitute a very stringent basis for selection of the 
optimal synthesis pathways.

In the first place we seek to define which skeletal bonds 
should best be constructed, and in what order. Thus we are 
looking for the best ordered bondsets, and the problem is not 
trivial.1 To construct _X bonds from a target of b_ bonds, there 
are b!/(b-X)l ordered bondsets which may be followed. For a C 21 steroid, therefore, there are 3 x 1 0 10 ways to construct
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1/3 of its 24 bonds. The most efficient synthesis, however, is 
a convergent one and the number of these is much smaller. In 
order to find the fully convergent syntheses we must first 
dissect the target skeleton into two pieces and then each piece 
into two again, etc. If we were to stop this process at two 
such levels of dissection there would be four starting material 
skeletons. If we also apply the constraint that the only 
acceptable sets are those for which all four skeletons are 
found in the catalog of starting materials, then we have 
developed a very demanding criterion which will result in 
relatively similar starting skeleton sizes and reject many other sets. For a C 2Q target the average starting skeleton 
will have five carbons, and the variety of available starting materials falls off sharply above C 5. In the case of larger 
target it may therefore be necessary to look to a third level 
of dissection.

Comparison of the skeletal pieces from target dissection 
with skeletons of the starting materials in the catalog now 
becomes a primary need for our program. To this we sought a 
procedure which can create an unambiguous canonical numbering 
of any skeleton for its identification.2 The skeleton is a 
graph and so may be fully characterized by its adjacency matrix 
(an nxn connectivity matrix), but there are n! different 
matrices equally representing any skeleton and these differ in 
the numbering of the skeletal atoms. Therefore, we require a clear definition of a single, unique numbering such that any 
two molecules may be so numbered and then compared for 
identity.

The adjacency matrix may be strung out into a binary 
string of n(n-l)/2 bits and we may treat this string as a 
binary number. The particular numbering of the skeletal atoms 
(and its corresponding matrix) which affords the maximum numer­
ical value of this binary string is then a unique numbering and 
so may be used for our comparisons of skeleta. Owing to sym­
metry there may be several equivalent such maximal numberings 
for a given skeleton (cyclohexane has twelve), but tney all 
have the same maximal binary string and so comparison of the 
strings still identifies like skeleta. A procedure was 
developed for row-wise generation of the maximal matrix and its 
corresponding skeletal numbering. The catalog of starting 
material skeletons was then set up as a listing of their 
corresponding maximal binary strings in numerical order. Such 
an ordered listing can then be rapidly searched for the 
presence of a particular skeleton generated by the dissection 
of the target, and identified by its maximal binary number. 
Our procedure for making these comparisons is very fast and 
appears to be error-free, in contrast to some other methods for 
identifying such structural isomorphism.

By separating the skeleton and functional groups this 
dissection procedure first derives all skeletal bondsets cor-
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responding to fully convergent orders of construction of the 
skeleton from four smaller pieces found in the catalog. The 
whole synthesis tree is now rendered easier to search since 
each of these optimal bondsets so derived represents a small 
subtree of the whole, rooted on real starting materials; and 
each bondset is examined separately. For each bondset we now 
have a set of target bonds which must be constructed and the 
order in which they are to be made. Essentially, the next task 
is to examine the target functional groups out from either end 
of the last bond to be constructed; and then to ask what reac­
tions will produce those groups and what substrate functional 
groups are required to do it. Then each bond in the bondset, 
in order back from the target, is so examined, to identify for 
each product all possible reactions and their corresponding 
substrates. Thus the elements to establish a given reaction 
are both the position of the bond to be made as well as its 
neighboring functional groups.

In the second phase of the procedure we examine a partic­
ular bondset, i.e., an ordered sequence of skeletal bonds to 
construct, and we must find all ways to construct each bond 
without functional group repair reactions between the construc­
tions. The requirement that we assess all possible reactions, 
coupled with the huge search space, mandates an initial gener­alization or abstraction of the involved functionality to a 
broad, simple description which only in the successful cases 
needs to be refined later.

The system developed for this purpose,3 outlined in Figure 
1, consists of a definition of four generalized kinds of attachment on any carbon atom: H for hydrogen or other elec­
tropositive elements; R for a-bond (skeletal bond) to another 
carbon; n for a n-bond to carbon; and z for a bond (n- or a-) 
to electronegative heteroatom. For any carbon, then, the num­
ber of attachments of each kind is respectively, h,q,n, and z, 
such that h+cH-m-z = 4 . The functionality is then n+z and,

Figure 1. Characterization o f Structures

Kind Number Oxidation State
H h = 0-4 x = z - h

C a = 0-4 rSkeletal

£=4
Z - Functional

tt + z = 4 - a - h
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since the skeleton is given, _a is known and h_ derives by sub­
traction. The result is that any (connected) carbon function­
ality can be described by two digits, _z (=0-3) and n(=0-2), 
requiring only four bits per carbon to designate in the compu­
ter. Any structure is then easily described as a zn-list of 
the carbon values ordered by their skeletal numbering. In this 
way crotonic acid, linearly numbered (IUPAC rules), becomes 
30*01*01*00 and its 2,4-dichloro-derivative is 30*11*01*10. 
With this description structures can be very economically and 
rapidly manipulated as lists in the computer. The numbering of 
the carbons for these lists can be either the given numbering 
as input by the user or that derived by maximization of its 
adjacency matrix binary list. The fundamental nature of this description by attachment types is substantiated by the obser­
vation that the oxidation state (x_) at any carbon is given by 
x=z-h, and so the oxidation state change in any reaction is 
quickly calculated by ZAx for all changing carbons.

Reactions are characterized in this system very clearly 
and simply. A unit reaction is defined as a unit exchange of 
attachments on one carbon, and can be expressed as two letters, the first being the kind of attachment bond which is made and 
the second that which is broken. Thus the reduction of alkyl 
halide to alkane is an HZ unit reaction, as is reduction of 
ketone to alcohol. The oxidation state change is found from 
Ah=+1, Az=-1 and so Ax= Az-Ah=-2. Some reactions must involve 
more than one carbon at the same time, as in alkene reduction, 
Hn*Hn (EAx=-1+(-1)=-2), and of course in all constructions, 
such as alkyl-lithium addition to ketone, which is RH*RZ, with 
EAx=0. There are 16 possible unit exchanges which may be 
written from combinations of the four kinds of attachments. 
This system makes possible a very clear and simple basis for 
characterizing and cataloguing all possible organic reactions 
in terms of their net structural change, i.e., exchange of 
attachment types at the several involved carbons. Such a 
system for organizing reactions is analogous to the Beilstein 
sys tem for org a n i z i n g  s t r ucture s in that all p os sible  reactions, presently known or unknown, have a defined place in 
the catalog. This can certainly be a very useful basis for 
defining, creating and searching a compendium of organic 
reactions.

For our purposes we focus on the construction reaction 
types which may forge the skeletal bonds designated by a bond- 
set. Using these definitions we may easily derive all possible 
constructions of a given C-C a-bond. We may generalize any 
construction reaction with up to six involved carbons as shown 
in Figure 2. The position of the bond formed is already 
located on the skeleton by the bondset; we need only find the 
possible functionality changes on each side characteristic of 
construction reaction families. The carbons are labeled a, 3,y 
out from the constructing bond on each side. The functionality 
change on each side (a, 3, y) may be separately considered, as a 
construction "half-reaction11, such that the combination of two
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half-reactions will constitute a full construction.5 All 
possible half-reactions on up to three carbons on either side 
may be generated by unit exchanges, as summarized here with the 
oxidation state changes appended:
Simple: RH(Ax=+l) RZ(Ax=-l) at one carbon(a)
Addition:Rn»Zn( ZAx=+l) RlDHn( Ax=-1) at two carbons(a,3)
Allylic: Rn«nn*nH(EAx=+l Riwin*nZ( Ax=-l)at three carbons(a,3,Y)
If we accept only full constructions with no overall redox 
change, there are three possible half-reactions of each oxida­
tion state change and so only nine ± combinations as full con­
structions. The oxidative half-reactions (Ax=+1) are charac­
teristic of nucleophiles, reductive (Ax=-1) of electrophiles.

Figure 2. Generalized Form of Construction Reactions

Yi „ei ®i- * * a 2 62 Y2 SUBSTRATE: C —  C — C +  C— C — C
forward

PRODUCT: C — C— C
retrosynthetic 

C — C —  C
Half-reaction 1 
(nucleophilic)

Half-reaction 2 
(electrophilic)

The digital representation of structure as zn-list can now 
be applied to those construction reactions. Each construction 
demands a minimal characteristic zn-list across the six carbons 
of the substrate and of the product, hence a characteristic 
change or Azn-list, which may be regarded as a generator to 
generate the product from the substrate, or vice versa. In 
Figure 3 are shown two examples: the Michael reaction shown
from substrate to product and the Claisen rearrangement from 
product to substrate, both with the zn-lists written parallel 
to the corresponding carbons. These zn-lists are now treated 
as numbers so that a generator. A, may be derived such that its 
addition to the product zn-list yields the substrate zn-list 
(or vice-versa), i.e., PROD + A = SUB. In both examples the 
generator. A, is this retrosynthetic one which generates sub­
strate by addition to product. The generators are shown as 
decimal numbers to illustrate the addition although in the 
computer the generator and zn-lists are all binary numbers. 
Under each example is shown the basic unit reaction as a string 
of unit exchanges at each changing carbon. It may be observed 
that higher levels of functionality generate equally well as
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long as the minimum is present, i.e., addition of the generator 
creates the correct reaction partner. Indeed the right-hand 
3-carbon in the Claisen example is shown at higher than the 
minimum necessary functional group (z=2+3 instead of z=l+2).

When we apply these nine constructions systematically to 
the carbons on each side of designated construction bonds in 
various targets, we obtain proper substrates in many cases. 
But we also find that a number of known reactions do not turn 
up, while on the other hand some of the produced substrates 
represent constructions that are mechanistically unacceptable. 
Each kind of divergence from reality can be rectified after a 
closer examination.5* 6 The known constructions which are not 
produced are those which incorporate a spontaneous refunction­
alization with the construction. Thus a Wittig reaction pro­duces also a n-bond across the a-bond first constructed, in our 
terms a construction (RH*RZ) followed by an elimination (nZ-nZ). An organometallic carbanion like a Grignard reagent 
is first created by a reductive refunctionalization (RC1 + Mg -► 
RMgCl, or HZ half-reaction) followed in situ by its use in 
construction (half-reaction RH). We examined the whole spec­
trum of formal refunctionalization reactions for possible two- step combinations with construction and found three types to be 
general or useful: prior reduction, elimination after con­
struction, and tautomerism. Using these options we expanded 
the six fundamental construction half-reactions to include nine 
more such two-step combinations with concomitant refunctional­
ization, offering a set of 15 half-reactions which results in 
32 possible ± full constructions, which are isohypsic (no 
overall oxidation or reduction). In this way all of the 
"known" construction reactions were produced.

With respect to the mechanistically unacceptable results, 
one can easily see that application of the nine constructions 
to the central bond of 1-butene would produce (among others) 
RH *RZ and generate as substrates an ethyl carbanion (for RH) 
and vinyl chloride (for RZ), a reaction unlikely to succeed. 
Whereas our generators are only designed to produce all possib­
le combinations of net structural change, we also perceive (as 
in the correlation of oxidation state change with nucleophile/- 
electrophile) that these changes have a mechanistic basis,
i.e., that simple bond/electron movements are implied. With 
this recognition it is possible to apply mechanistic tests or 
qualifications to the generation of substrates to establish the 
viability of a generated reaction. Furthermore, with our 
numerical description of structure in terms of h,a,ir,z, these 
tests can be rapidly made simply by evaluating these numbers.

Mechanistically, these tests fall into two categories: 
required activation and disallowed functional groups, the first 
needed for a given reaction to proceed, the second rejecting it 
on the grounds of intervention of a different course of reac­tion (as in 3-elimination from a carbanion or incorrect regio- 
selectivity for addition). In order to apply these mechanistic
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tests we found that the umbrella definition of z as any bond to 
heteroatom was too broad to convey mechanistic function. 
Accordingly, we added a subset qualification of z to indicate 
leaving group (L), electron-withdrawing (E), electron-donating 
(0), or, for z>l, carbonyl-type withdrawing (W). The tests of 
these mechanistic qualifications must now be made not only on 
the carbons which change functionality in the construction but 
also on the carbons attached to these, since their functions 
may modify the reaction even though they are not changed. For 
illustration, both the ketone and nitrile in the Michael reac­
tion (Figure 3) do not change but are required to activate the 
construction, whereas a leaving group on another 3-carbon of 
the ketone (not shown) would vitiate its success and should be 
rejected.

Figure 3. Examples of Reaction Generators

SUB: -C—  C— i iCH + C = C — C— Ni
a „ Bo

00 20 00 + 01 01 30
A = + 00 00 0 0 - 0 1  01 00

00 20 00 • 00 00 30
0 I

PROD: -C— C---- i
I I-c —  C —  CH— C = NI I i

Unit
reaction: RH • R n  R n  

Michael Reaction

PROD: - C = C  —  O---- i i 'C— C— ORi
3, (X.

' 1 "1 ~1 ~2 "2

01 01 00 • 00 30
A = + 09 00 01 * 00 91

10 01 01+01 21

SUB: -C —  Ci

iiz nil Rn • Rn zii 
Claisen Rearrangement

For each half-reaction substrate or product we can test 
the viability of each of the 15 half-reactions by applying to a 
list of Zn-LEOW, not only for a, 3, Y but also for the relevant 
attached atoms, a parallel test-list, one for required activa­
tion features and one for disallowed functions.556 This is a 
simple AND operation of these two binary lists and applies all 
of the required mechanistic tests on all the atoms at once and 
very rapidly. Furthermore, this introduction of mechanistic 
test-lists now makes it possible to introduce heteroatoms 
(N,0,S) into the skeleton itself. They are treated as if they 
were carbon but the test-lists also include tests of whether 
a, 3, y and their connected atoms are heteroatom instead of 
carbon, and so can require or reject reactions on that basis as
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well. These test-lists consist of an "R-list" (require) and 
"X-list" (reject) for each of the 15 half-reactions and so 
constitute a kind for tuning of the quantity and quality of 
reactions which are generated and which will appear as syn­
thetic steps in the output. These tests are separated as mod­
ules which may be easily changed, made more or less demanding, 
as may be felt necessary. The less demanding they are, the 
more "new" reactions will appear but more output will have to 
be scrutinized. Made more demanding, only common, “reliable" 
sequences are likely to be generated.

We have incorporated the logic developed above into a 
program named SYNGEN.6 The program, written in FORTRAN, was 
developed on a DEC 11/23 mini-computer which utilizes a mega­
byte of active memory. Presently SYNGEN is being converted to 
a micro-VAX computer in more efficient form. It generally 
analyzes a given target structure in under ten minutes and 
stores the completed results for display by a second program, 
SYNOUT. In order to illustrate the operation of SYNGEN, we can 
follow its analysis of a particular target in Figure 4. The 
economical Torgov-Smith synthesis of estrone proceeds by a 
sequence of construction reactions only, to a penultimate pre­cursor which is shown at the top of Figure 4. It is labeled 
“Testrone" since it was commonly used as a test of our proce­dures, which must at least generate this known synthesis. The 
structure is entered graphically on a Tektronix terminal with 
thumb-wheels, as a fast, crude drawing with the heteroatom 
attachments shown as z-values on their attached carbons. 
SYNGEN then normalizes the structure so that it appears as in 
(A). The nature of z (as LEOW, above) is then queried for
each. SYNGEN then proceeds independently of the user to seek
out all convergent construction routes from no more than four 
starting materials available in our catalog. This catalog 
contains about 4000 unique zn-list entries numerically ordered 
by skeletal size and their maximized matrix binary lists.

The procedure followed by the program is illustrated with 
sample findings in Figure 4. The first phase is the skeletal 
dissection of the target into two pieces all ways such that 
each piece is larger than three carbons. This is the first 
level, and shown down the left side of Figure 4 is one such 
first-level bondset (B) with the bonds ordered one way. Here 
the two pieces in each set are compared with skeletons in the 
catalog: in this set (C) is not found, but (D) is found and so 
the set is marked for priority. Precursor skeleton (C) is now 
cut again at second level in all ways which yield found start­ing skeletons, one such set shown as (E) and (F).

For each of these bondsets the functionalized target (A) 
is now queried for viable construction reactions, shown down 
the right side in Figure 4. The two sequential constructions 
shown which are found at first level are annotated for priority 
since they are perceived as being capable of proceeding in one



Ch.9] Synthesis Design 95

laboratory operation, i.e., a true annelation procedure. These 
produce precursors (G) and (H), with skeletons (C) and (D), and 
(H) is searched in the catalog as a functionalized variant of 
found skeleton (D). Since (H) is now found as a true starting 
material, the priority for this path is maintained. At second 
level the intermediate (G) is further queried for construction
(3) in this bondset and the several resultant starting mater­
ials are again looked up in the catalog. Here real starting 
materials (J) and (K) are also found and so the whole route is 
stored for SYNOUT display, including annotation of the particu­
lar half-reaction pairs which generated these intermediates in 
the three successive construction reactions. The three actual 
starting materials found in the catalog are shown below in 
conventional notation as (H),(J) and (K).

At the bottom of Figure 4 is a summary map of the success­
ive zn-list changes undergone by the six skeletal carbons (8- 
14) in the retrosynthetic direction. These changes are the 
result of adding the generators for these successive construc­
tions, which were found viable by the mechanistic qualification 
tests. They end in implicit cleavage of the marked bondset 
bonds and so the three separate starting materials (H,J and K) 
with their generated functional groups at the six changing 
carbons.

The SYNOUT program now displays all the successful find­
ings as starting materials, first-level intermediates, and the 
reactions interconverting them. The mechanical nature of the 
generation procedure often produces minor variants of many 
reactions, such as both substrates for allylic reactions or 
6-halo-ketone displacement as well as conjugate addition. Such 
"chemical equivalents" are sorted out from their "primary" 
reactions to be looked at separately. For testrone SYNGEN 
found the route in Figure 4 and eleven other primary true 
annelations at first level, from three successful bondsets. 
All of the output generated in SYNGEN may be examined on the 
screen in a variety of displays allowing deletion of unwanted 
starting materials, intermediates or reactions, and the best 
final elected routes drawn out on a plotter. Not only is the 
known synthesis of testrone found, but also a number of other 
routes equally short.

The procedure outlined here is retrosynthetic and based on 
convergent bondsets to assemble the skeleton, followed by 
generation of functionality to create sequences of construction 
reactions only from found starting materials. These represent 
stringent criteria and the protocol used must find all possible 
routes which fit these criteria. In the event that none are 
found, or practical difficulties exist with the reactions gen­
erated, another option is available, i.e., a forward search 
which allows a limited number of refunctionalizing reactions to 
intervene. In this option the best bondsets are first assembl­
ed as at present. Then al1 starting materials available with
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Figure 4. Analytical Steps in Generating a Synthesis
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the skeletons so derived are allowed to react together pairwise 
in all viable constructions of the bonds designated. The same 
functionality generation, via the 15 half-reactions, is used 
here but in the forward direction, with the corresponding R- 
list and X-list qualification tests. This will generate all 
possible functionalized variants on the skeletons of the bond- 
set-designated intermediates, and hence all the functionalized 
variants of the target skeleton which can arise from combina­
tions of actual starting materials. These then must undergo 
refunctionalization reactions either to repair the intermedi­
ates or the final target variant to produce the true target 
functionality.

In practice this is usually an enormous combinatoric task 
owing to the variety of functional groups as starting materials 
on most small skeletons. It may be reduced to a practical 
range, however, by virtue of the fact that the system for des­
ignating structure by h, a, tt,z allows a simple calculation of 
"chemical distance," i.e., the number of unit reactions which 
are required to convert one structure to another.7 This chem­
ical distance, or number of steps, is given by N = 1/2Z-J (| Ah-j | + | AZ-j |). Using this formula we can compute the chem­
ical distance of the carbons in each starting material from the 
same carbons in the target and so eliminate many from consider­
ation at the outset. The same consideration can be applied to 
the intermediates, removing those which are intrinsically too 
many refunctionalization steps away from the target. This 
process in the forward direction then produces complementary 
syntheses which are a few steps longer than the retrosynthetic- ally derived routes based on constructions only. The power of 
this approach is to assemble all routes through any bondset 
from all of its starting materials.
Acknowledgment. The authors gratefully acknowledge the compu­
ter expertise and enthusiasm of their coworkers David L. 
Grier, Elaine Braun-Keller and Zmira Bernstein, as well as 
financial support provided by the National Science Foundation.
REFERENCES
1. Hendrickson, J. B., J. Am. Chem. Soc., 99̂ , 5439 (1977).
2. Hendrickson, J. B. and Toczko, A. G., J. Chem. Inf. Comp.

Sci., 23, 171 (1983); 24, 195 (1984).
3. Hendrickson, J. B., J. Am. Chem. Soc., 93_, 6847 (1971).
4. Hendrickson, J. B., J. Chem. Inf. Comp. Sci., _3> 129

(1979) .5. Hendrickson, J. B., Braun-Keller, E., Toczko, A. G., 
Tetrahedron (Suppl. 1), 3_7, 359 (1981).

6. Hendrickson, J. B., Grier, D. L., Toczko, A. G., J. Am.
Chem. Soc., 107, 0000 (1985).

7. Hendrickson, J. B., Braun-Keller, E., J. Chem. Comp., _1, 323
(1980) .



Chapter 10

VALENCE BOND STRUCTURE- 
RESONANCE THEORY FOR 
BORANES. PYROLYTIC INTER­
MEDIATES AND REACTIONS
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A BSTRA CT

Structure-resonance theory is used to estimate the 
relative stabilities of potential intermediates in 
the pyrolysis of diborane to yield the higher boron 
hydrides, and the results are compared with those 
obtained from recent molecular orbital calculations. 
In most cases where alternative isomeric structures 
are possible, the MO and this empirical VB method 
lead to qualitative agreement regarding the structure 
of the most stable isomer. Possible mechanisms of 
pyrolytic borane reactions are discussed. Some 
limitations of a VB resonance theory for boranes are 
delineated.
IN TRODU CT ION

The structure-resonance description of bonding in the 
boron hydrides, first proposed by Pauling [1,2], has 
recently been reconsidered [3,4], and a valence bond 
structure-resonance theory (VBSRT) for boranes based 
solely on two-electron two-center bond structures has 
been shown to provide realistic first-order descrip­
tions of known borane structures. Graph theoretical 
algorithms and computer programs for counting neutral 
and ionic two-center bond structures were described. 
Experimental thermodynamic data were used to parame-
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terize a four-term AH(atomization) equation in which 
one important factor was a VBSRT algorithmic estimate 
of resonance energy [5-7].

In this paper we use the AH (a) scheme to examine 
several possible mechanistic steps and intermediates 
that have been adduced to account for the formation 
of higher boron hydrides in the pyrolytic polymeriza­
tion of diborane. The reaction was discovered by 
Stock [8 ]; among many significant subsequent ther­
modynamic and/or kinetic studies were those carried 
out by Gunn [9,10], Bauer [11,12], Schaeffer [13-15], 
and their respective coworkers. The kinetics of par­
ticular important elementary steps have been investi­
gated by Fehlner [16,17] and more recently by 
Greenwood, et al. [18,19]. General mechanistic schemes 
have been advanced by Long [20] and Schaeffer [21]. 
The structures and heats of formation of many of the 
postulated intermediates have been calculated as part 
of the extensive theoretical research on boranes 
carried out by Lipscomb and his coworkers [22-25].
PA RA M ETER IZA T ION

We assume that the heat of atomization of a gaseous 
boron hydride can be assigned to four structure 
dependent features: terminal BH bonds H(t), bridging 
BH bonds H(b), coordinating BB atom pairs, and the 
resonance energy RE [3,4]. The R E 's are calculated 
by counting the neutral two-center bond covalent 
structures and using the algorithm for resonance 
energies Cxin(SC), where C is a determined constant 
and SC is the structure count [3,7]. The AH°(f) data 
for six of the boranes seem to be well established 
[26,27], and these data are used in a multiple linear 
regression procedure to determine the numerical 
values of parameters. The previous work [3,4] made 
use of an approximate value for the heat of sublima­
tion of boron; a more precise and accurate value, 
+134.4 kcal/mole, is now available [26]. Additional 
required data are AH°(f ) of hydrogen atoms = +52.1 
kcal/mole, and AH°(f) of carbon atoms (from graphite) 
= +171.3 kcal/mole.

Results of the analysis and the supporting data 
are given in Table 1; the derived linear equation is

AH(a) = 90.53xH(t) + 66.82xH(B) (1)
+ 13.89xBB + 91.84xln(SC).

The multiple correlation coefficient for eq (1) is 
unity (5 significant figures), and the standard error 
of a calculated AH(a) value is 2.2 kcal. The predic­
tive power of eq.(l) can be corroborated by comparing 
the calculated AH(a) of borane, 271.6 kcal/mole, with
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Table 1.
Heats o f Atomization (Kcal) and Structural Factors for Boron Hydrides

Compound H(t) H(b) BB SC AH(a)expt. AH(a)calc.

B 2H6 4 2 1 2 573.0 573.3

B4H10 6 4 5 6 1043.1 1044.5

B 5H9 5 4 8 24 1123.8 1122.9

B 5H11 7 4 7 11 1 2 2 0 . 8 1218.4

B 6H10 6 4 1 0 42 1305.3 1306.5

B 10H14 1 0 4 2 1 678 2062.9 2063.0

the value, 269.1 kcal/mole, derived from kinetic ex­
perimental data [17]. The low standard error and the 
fact that no single compound exhibits an exceptional 
deviation from its calculated AH(a) may indicate that 
the experimental data are known with good precision. 
In particular, the present analysis does not lend any 
support to the recent suggestion [28] that the AH°(f) 
of decaborane(14) should be substantially revised.

Eq(l) is used in the following section to calcu­
late the AH(a) of all borane species considered 
except for those which have formulas that are 
multiples of BH 3 and which have monocyclic structures 
with SC=2, triborane(9) and tetraborane (12)
shown in 1 .

B2H6

I

—  B------- B —
1' ^  1

V 1 2
RE=63•7 kcal RE=50.1 kcal RE=39.5 kcal

1

Previous VBSRT results for benzene and azulene [29], 
both also with SC=2, and several types of theoretical
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calculations [30-32] demonstrate that resonance inte­
grals (and RE's) decrease in size as the number of 
electrons involved in a cyclic permutation increases. 
This factor requires that RE's of the two larger com­
pounds in 1 be obtained as a calculated fraction of 
the RE of diborane. The values given were calculated 
following the method of Coulson and Dixon [33], using 
bond lengths taken from McKee and Lipscomb [24] , and 
using the potential functions recommended by House­
craft and Wade [34]. Eq(l) can then be used to cal­
culate the AH(a ) after replacing the last term with 
the modified RE's.

Only three compounds of those to be discussed have 
full covalent BB single bonds, viz one each of iso­
mers of diborane(4), triborane(7) and tetraborane(8 ). 
We estimate the energy of such a bond as 51.9 kcal, 
this estimate also being based on the Housecraft and 
Wade potential functions and a calculated bond length 
[24] of 1.689 A for the triborane(7). The theoreti­
cal MO bond index procedure of Laurie and Perkins 
[28] would yield a BB bond energy of 71.2 kcal. A 
single thermochemical measurement [1 0 ] carried out 
for decaborane(16), which contains pentaborane(8 ) 
moities connected by a full BB single bond, is the 
only available piece of relevant experimental infor­
mation. However, its non-inclusion in a recent com­
pilation of thermodynamic data [26] suggests that 
caution be exercised in using its value for calibra­
tion. The average of the two theoretical results, 
61.6 kcals, is therefore tentatively taken as the 
energy value for a single bond of this type.
RESULTS AND  D ISCU SSION

The structures and calculated AH(a )'s of the new spe­
cies considered in this work are listed in 2 , where 
all energies are given in kcal. The structures for 
compounds not depicted are given in earlier papers 
[3,4]. Alternative structures of several of the 
smaller possible transient species have been investi­
gated by MO techniques using extended basis sets 
including polarization and correlation correction 
terms (Lipscomb, et al. [23-25]). These MO relative 
calculated energies are shown in 2 labelled AE(MO). 
Some relative MNDO energies from calculations carried 
out by Dewar and McKee are also available [35,36] and 
are referred to in context. In 2, where only a 
single isomer corresponding to a formula is depicted, 
the structure given is the calculated most stable 
structure among several viable possibilities.

The relative calculated energies of the isomers of 
diborane(4) and triborane(7) are found in reasonable
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agreement; both MO and VBSRT theories give nonbridged 
and bridged most stable structures, respectively. 
MNDO gives the structure with a single bridged hydro­
gen as the most stable triborane(7) [36]. The rela­
tive VBSRT and MO stabilities of borane and tribor- 
ane(9) are also in satisfactory agreement. However, 
the tetraborane(8 ) results are not in consonance the 
VBSRT method finds that a tetrabridged structure is 
2 5.8 kcal lower in energy than the MO lowest energy 
tribridged structure. Furthermore, MNDO predicts a 
monobridged tetraborane(8 ) to be 13.0 kcal lower in 
energy than the tribridged structure. These differ­
ences appear irreconcilable at present, and it may be 
that these results are indicative of deficiencies in 
VBSRT. Nevertheless, the use of the VBSRT structure 
for tetraborane(8 ) seems to give the most sensible 
calculated endothermicity for the reaction of 
tetraborane(1 0 ) to give hydrogen and tetraborane(8 ), 
as will be discussed below. Also, since the VBSRT 
approach is parameterized with experimental data, we 
believe it is unlikely that it will give extremely 
large errors, as would be required if the other 
calculations are to be accepted without any further 
examination.

An attractive but very simplistic mechanism for 
the build-up of higher boranes in the borane pyroly­
sis involves sequences of addition of borane(3) and 
loss of hydrogen from intermediates and sometimes 
isolable species [17,20,21,37]. A thermochemical 
outline of this mechanism through nonaborane(15) is 
given in 3. One can see from the diagram that short­
comings of this reaction scheme cannot be ascribed to 
factors involving the thermodynamic feasibility of 
the reaction steps. Initial reactions are not prohi­
bitively endothermic, and many of the subsequent 
steps are calculated to be exothermic. In par­
ticular, the known compounds tetraborane(1 0 ), 
pentaborane(1 1 ), and pentaborane(9) are formed in 
exothermic reactions. Only the known hexaborane(10) 
is predicted to be produced by an endothermic process, 
and in this case the endothermicity is less than 8 
kcal.

The Lipscomb MO [23-25] and the VBSRT calculations 
are not in good agreement for the important sequence 
from diborane(6 ) to triborane(7); MO theory gives the 
first step endothermic by +4.1 kcal, but the second 
is found to be exothermic by -5.4 kcal. The
available MP3/6-31G total energies for borane(3), 
triborane(7), and tetraborane(10) [24,38] also allow
one to calculate a reaction enthalpy for the sub­
sequent formation of tetraborane(1 0 ), which is found 
to be +176.1 kcal. This result would infer substan-
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tial thermodynamic stability for triborane(7), which 
does not seem to be reasonable considering its known 
reactivity [39,40]. All of the VBSRT results in 3, 
however, can be easily rationalized except perhaps for 
the fact that boranes with 7 to 9 boron atoms are not 
usually isolated as products in the normal diborane 
pyrolysis [20,21,37]. At the least, the calculated 
VBSRT AH(a)'s indicate that no thermodynamic barriers 
exist that would bar the formation of the higher 
boranes.

The major deficiency of scheme 3 is the neglect of 
possible bimolecular reactions that could take place 
between the labile and stable intermediates. In fact, 
many reactions of this type have been studied [21,37], 
and they provide a synthetic source for many of the 
boranes with more than 6 carbon atoms. The source of 
decaborane(14) produced in the pyrolysis of diborane 
is most likely a reaction of this type. In other 
examples, decaborane is formed in good yield by co­
pyrolysis of diborane with pentaborane(9) [41] and
of hexaborane(1 0 ) with tetraborane(1 0 ).

Table 2 contains a list of several bimolecular 
reactions that could mediate the borane pyrolysis and 
their calculated VBSRT enthalpies. In each reaction 
involving either of the labile compounds triborane(7) 
or tetraborane(8 ), the intermediate would be presumed 
to be formed as outlined in 3. Most of the reactions 
in the table have been previously postulated, and in 
some cases, kinetic and product studies support the 
postulates as chemically realistic [8-21,37,39-41]. 
In addition, an MO calculation for the heat of the 
reaction of tetraborane(8 ) with pentaborane(1 1 ) gives 
a value of -30 kcal [25], which is in very good 
agreement with the VBSRT value.

On the basis of the VBSRT calculations, all the 
listed reactions seem thermochemically reasonable 
except for the fragmentation of nonaborane(15) to 
give octaborane(12) and borane, AH = +45.2 kcal. An 
independent value for the enthalpy of this reaction 
can be obtained since Housecraft and Wade have calcu­
lated both higher borane heats of atomization [34] 
based on bond lengths in the crystal structures 
[42,43]. The resulting heat of reaction is +61.9 
kcal [44], an even higher value than that from VBSRT. 
Since one of the best syntheses of octaborane (12) 
corresponds precisely to this fragmentation carried 
out at low temperatures [45], the calculations may 
indicate that a reinvestigation is warranted, and it 
is possible that the synthesis involves some uniden­
tified reaction or catalytic agent.

Schaeffer tentatively suggested [21,40] that for­
mation of decarborane(14) could involve condensation
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Table 2.
Heats o f Borane Pyrolytic Reactions

Reaction Enthalpy(heal)

(1 ) B 2H6 + BH3 = B 3H7 + H 2 +1 2 . 8
(2 ) B 3H7 + B2H6 = B 5H11 + B2H6 -37.6
(3) B3H7 + B4H10 = B5H 11 + B2H6 -40.0
(4) B 3 H 7 + B 5H11 = B6H12 + B2H6 -6 8 . 1
(5) B 3H 7 + B5H9 = B6H10 + B2H6 -51.7
(6 ) B 3H 7 + B6H10 = B9H15 + H 2 -55.5
(7) B4H10 = B4H8 + H 2 +13.3
(8 ) B4H8 + B 2H6 = B 5H 11 + BH3 +10.4
(9) B4H8 + B5H 11 = B5H9 + B4H10 -21.9

(1 0 ) B4H8 + V l O = B9H 15 + BH3 + 1 . 0
(1 1 ) B4H8 + B6H12 = B 5H9 + B5B 11 + 4.2
(1 2 ) B9H15 = B8H 12 + BH3 +45.2
(13) B4H8 + B8H12 = B10H 14 + B2H6 -63.0
(14) B9H15 + BH3 = B10H14 + 2 H 2 -36.8

of tetraborane(8 ) with hexaborane(1 0 ), and this pos­
sibility is certainly supported by the large calcu­
lated VBSRT negative heat of reaction, which is -35.8 
kcal for a combination of reactions (10) and (14) in 
table 2. However, a reaction scheme for formation of 
decaborane later proposed by Gibb, et al. [18], also 
involving the condensation between tetraborane(8 ) 
and hexaborane(10) is not supported. The steps in the 
Gibb mechanism are (7), (10), (12), and (13) from
table 2 taken in turn with an overall AH (reaction) = 
-3.5 kcal. Nevertheless this reaction sequence also 
includes the large positive enthalpy reaction to pro­
duce octaborane(1 2 ) discussed above, and for that 
reason, this particular proposed mechanism would seem 
unlikely. Again, the possibility that octaborane(12) 
is produced by an, as yet, unidentified process 
should be considered.
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A combination of the initial reactions depicted in 
scheme 3 (through pentaborane(9)) with the exothermic 
or thermoneutral reactions summarized in table 2 , 
accounts for the gross overall results of borane 
pyrolysis. The steps involved in the reaction or 
reactions that yield octaborane(1 2 ) are a remaining 
problem, since the VBSRT calculations infer that a 
thermal unimolecular reaction of nonaborane(15) 
would be highly endothermic. Any existing activation 
barrier would further add to the difficulty of such a 
reaction. After octaborane(12) is formed, subsequent 
reaction to give decaborane(14) would seem to be 
insured by the large negative enthalpies associated 
with decaborane-forming reactions.
REM ARKS ON  TH E  USE OF VBSRT

VBSRT is essentially an empirical quantification of 
the resonance theory approach used so successfully in 
teaching elementary chemistry. We have shown in this 
work that VBSRT provides a good first-order descrip­
tion of thermal borane chemistry. It must be noted 
that the successful use of the theory for boranes was 
critically dependent upon the availability of experi­
mental thermodynamic data and the results from the 
high-level MO calculations of Lipscomb and his 
coworkers[22-25] . An empirical theory of this type 
must be parameterized, and the accuracy of the para­
metric data governs the suitability of extending the 
theory to new chemistry. Of course once verified, 
the VBSRT procedures can be extended to additional, 
larger molecules with little expense and effort.

The boranes, with their sigma delocalized struc­
tures, constitute a difficult test for the effec­
tiveness of a valence-bond approach. The results 
outlined in this paper indicate that a successful 
VBSRT correlation of thermochemical borane data and 
reactions is possible. The transition states
involved in thermal borane reactions [25] will 
constitute an even more stringent test, but the abi­
lity to treat problems of this type by essentially 
additive methods would allow a more detailed con­
sideration of borane chemistry. Attempts to address 
the calculations of borane transition state energies 
using VBSRT are in progress.
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Chapter 11

TOPOLOGICAL INDEX AS A 
COMMON TOOL FOR 
QUANTUM CHEMISTRY, 
STATISTICAL MECHANICS, 
AND GRAPH THEORY
Haruo Hosoya
Department of Chemistry, Ochanomizu University, Tokyo, Japan

IN TRODU CT ION

The Z-index was originally proposed in 1971 by the 
present author under the name of "Topological Index" 
for characterizing the topological nature of the 
carbon atom skeleton of saturated hydrocarbons [1 ].
It was later found to be applicable to many different 
problems, not only in chemistry, but also in mathema­
tics, informatics, and physics, e.g., coding and 
identification of graphs, structure-activity rela­
tionship, analysis of TT-electronic structure of un­
saturated hydrocarbon molecules, dimer statistics, 
etc. As nowadays a number of topological indices 
have been proposed and good review articles are avai­
lable [2-6], here various aspects of the Z-index will 
be described with particular reference to its mathe­
matical properties which relate various concepts in 
different fields of science, i.e., quantum chemistry, 
statistical mechanics, and graph theory, with each 
other. The advantage of the Z-index over other 
topological indices comes from the fact that it is 
defined through the counting polynomial Q(x), which 
is closely related to the characteristic polynomial 
P(x). Thus the idea of Z-index can be extended to 
several counting polynomials, such as the matching 
polynomial 0( (x ), sextet polynomial B(x), distance 
polynomial S(x), etc., for a wide variety of 
problems.
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NON-ADJACENT NUM BER  AND Z-INDEX  [1]

In the application of the graph theory to chemistry, 
a graph may represent a molecular skeleton, crystal 
lattice, or reaction network. For the graph-theore­
tical terms adopted in this paper without any defini­
tion, consult the standard text books and monographs 
[6-9]. We will be mainly concerned with connected 
nondirected simple graphs. Define a non-adjacent 
number, p(G,k), as the number of ways for choosing k 
disconnected lines from graph G, with p(G,0) being 
taken as unity. The Z-counting poynomial Q^(x) is 
defined as

m ,
Qr (x ) = 2ZL p(Gfk) xK (1 )
G k = 0

where m is the maximum number of k. For G with an 
even number of points, N=2m, let us denote p(G,m) as 
K(G) and call it the perfect mathcing number, or 
Kekule number irrespective of the fact that G is 
derived from a conjugated unsaturated hydrocarbon or 
not. The Z-index is the sum of the p(G,k) numbers,

m
or 2 = 2 1  p(G,k) = Q (1). (2)

G k = 0 G
The set of p(G,k) numbers and Z values have been 
tabulated extensively [10-16]. The polynomials Q(x) 
for various series of graphs are shown to be trans­
formed into a family of orthogonal polynomials, such 
as the first and second kinds of Chebyshev, Hermite, 
Laguerre, and associated Laguerre polynomials [17- 
19]. As will be shown later the Z values for several 
series of typical graphs form widely known integer 
series. For example, the Z values of the path graphs 
(S }, and cycle graphs, {C }, respectively, form Fibo 
nacci and Lucas series.
These coincidences are the outcomes of the simple 
recurrence relations existing among the above- 
defined quantities. Namely, the inclusion-exclusion 
principle leads to the following recurrence relation 
for a given G and an arbitrarily chosen line ^ :

P (G ,k ) = p(G-i,k) + p(G0i,k-1), (3)
^-exclusive jf-inclusive

where G-jZ and GQ£, respectively, denote the subgraphs 
of G obtained by deleting JL (leaving its terminal 
points) and all the lines incident to the two points 
that define J?(See Fig.1).
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Figure 1. Subgraphs G-€  and G0€  derived from G

It is straightforward to get the recurrence relations 
for the other qauntities, such as

Qg (x ) = Qg _^(x ) + x Qq q ^ x ) (4)
and ZG ~ Z G-f. + (5)
Note the factor x in the second term of Eq. (4). 
Several recurrence relations are also found including 
the "jumbo" one, which is useful for treating highly 
symmetrical or highly branched large networks [15,20].
RELAT ION  BETW EEN  Q q(x) and PG(x)

Although there is no one-to-one correspondence bet­
ween the set of p(G,k)'s (or Z) with graph G, one can 
easily and roughly differentiate among the isomeric 
graphs with these quantities. Good examples are 
shown in Table 1, where the Z values of the nine 
heptane isomer graphs form a set of integers descen­
ding stepwise from 21 to 13, just as in the same 
order of the boiling point of the corresponding 
hydrocarbons with only one minor exception [1 ,2 1 ]. 
Several important issues come out from Table 1, e.g., 
on i) relation between Q(x) and P(x), the characteri­
stic polynomial, ii) topological dependency of the 
coefficients of these polynomials, iii) identifica­
tion and discrimination of graphs, iv) QSAR analysis, 
etc. These problems will be briefly explained in the 
following sections.
The p(G,k) numbers appearing in Table 1 are nothing 
else but the coefficients of the characteristic poly­
nomial. Namely for a tree graph G the following 
relation is shown to be valid:

pr (x) =Zjw(~1 )k p(G,k) xN~2k, (G : tree ) (6 )
k = 0

where PG <x) = det(A-xE) (for all G) (7)
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Table 1.
Relation between the branching and several topological quantities o f 

heptane isomers

Graph P(G, 
k= 0 1

k)
2 3 ZG bp(°C)

.. 1 6 1 0 4 21 98.4

- C
1 6 9 4 20 93.4

. .  i — 1 6 9 3 1 9 91 .9

. ] t T _ 1 6 9 2 1 8 90.0
1 6 8 2 1 7 89.7

^  I , , 1 6 7 2 1 6 8 6 . 0

. 1 : 1 . 1 6 8 0 1 5 80.5
1 6 7 0 1 4 79.2

• l i •
1 6 6 0 1 3 80.9

with N being the number of points in G, det the
determinant, and A the adjacency matrix. Also for a 
non-tree graph we have the following closed form:

PQ U) = K  (-1)k p(G,k) xN~2k 
G k = 0

RiCG m
+ H  (-2)ri{ Z  (-1 )k p(G©R. ,k ) xN~ni"2 k J, (8 ) 

i k =0

where R. denotes a ring or a set of disjoint rings 
composed of n. points [22,23]. In principle this 
expression is essentially the same as Sach's theorem 
[6,24,26]. However, Eq. (8 ) is superior to Sach's 
theorem in its explicit representation of the effect 
of the component rings to the counting polynomials 
Q(x) and P(x) and in its potentiality to yield useful 
recurrence formulas.
It is to be noted here that the definition of the 
matching polynomial Of(x) [ 1 7,27-29 ] is the same as 
P(x) in Eq. (6 ) but for any graph. Thus the conclu­
sions derived from 0((x) are automatically related to 
Q (x ) through the relation [30],
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0<G (x) = xNQg (-1/x 2 ). (9)
One can quite easily analyze the origin of the mathe­
matical interpretation of the so-called topological 
resonance energy [25,27,28,30], and also of the topo­
logical bond order [31,32] for bonds in the TT-elec- 
tronic network of unsaturated hydrocarbons.

TO PO LO G ICA L  ANALYSIS OF tt-ELECTRON IC  STRU CTURES  
OF U N SATU RATED  H Y D R O CA R BO N S

Consider the TT-electronic structure of unsaturated 
hydrocarbons. The secular determinant of the Hiickel 
molecular orbitals is known to be identical to the 
characteristic polynomial of the graph G for the 
carbon atom skeleton. Total TT-electronic energy, 
charge density, bond-order, and other TT-electronic 
properties are obtained from the solutions of P^(x)= 
0. Then Eq. (8) means that the magnitudes of all 
these quantities can rigorously be explained in terms 
of the set of the p(G,k) numbers. The topological 
index Z also reflects indirectly these TT-electronic 
properties. Especially for tree graphs, where the 
direct one-to-one correspondence between P(x) and 
Q(x) holds as in Eqs. (1) and )6), one can quite
easily estimate the stabilitiy of the TT-electronic 
structures from the following relation with a 
proper set of parameters and b [30]

E = a log Z + b (tree). (10)
Even for some selected series of cyclic compounds 
Eq. (10) can be applied. The extra stability or un- 
stability which cannot be accounted for by Z comes 
from the second summation in Eq. (8), which is 
nothing else but what is implied by the topological 
resoance energy. The Z-index can then be modified 
into Z' = Z + 4Z by adding the following terms 
representing the contributions from the component 
rings and also from the set of disjoint rings.

n=4k+2
2  zg O r R (r = 1 ) G O R 0 . C X x c C O .
n = 4k

□  ,R(r = 1 ) G° R o , C X x -
n=4k A □ o 0

R ( r = 2 ) G 0 R o , ■ O . ■ o . 0 . "
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n=4k+2. T7 „ A □ o A
R(r = 2) G ® R A , 0 , o ,■ o.“
n=4k+2 

+ 8 Z» Z q
R (r = 3 ) G W R

AA 
□ >

□ □ 
0 ’

o o  □ -
(11 )

Positive and negative terms, respectively, contribute 
the stability and instability of the TT-electronic 
system. The first and second summations in Eq. (11) 
simply express the so-called Huckel's 4n+2 rule.
Note the signs of the third and fourth summations 
showing that a set of two disjoint rings with a total 
of 4k and 4k+2 carbon atoms, respectively, stabilizes 
and destabilizes the if-electronic network. On the 
other hand, the fifth and sixth (not shown but ap­
parent) terms show that a set of three disjoint rings 
with a total of 4k+2 and 4k carbon atoms, respective­
ly, stabilizes and destabilizes the total system. 
These findings constitute the "extended Huckel rule". 
Except for a few cases the modified Z'-index is shown 
to be obtained by the sum of the absolute values of 
the coefficients of the even terms of P(x) as [30], 

N/2
V -£0la2kl 1121

Encouraged by these findings the topological bond 
order for bond £  in graph G was proposed to be 
defined as [31]

which was shown to be ^well correlated with the 
Coulson's bond order p^. The correlation is greatly 
improved by adding a psmall contribution of the 
Pauling's bond order p^ as

C T PPa = a(pf + b pa). (b=0.14:tree, 0.16:non-tree)
/  (14)

= K(G@X)/K(G). (15)
pNote here that the lengthy definition of p^ original­

ly proposed by Pauling [33] is not only turned into 
a compact form but also given a well-defined graph- 
theoretical meaning by using the concept and notation 
of the subgraph G © *  introduced in Fig. 1 (Compare 
Eqs. (13) and (15)).
The empirical relation (14) can almost rigorously be 
derived [32] by combining the enumeration technique
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of the graph theory and the complex integral deve­
loped by Coulson and Longuet-Higgins [34]. The esse­
nce of these findings is that if a function FG (y) 
is defined for bond jg in G as,

FG,£(y) = A , s (iy)/PG (iy)' (16)
A  radjunct of P^(x)^*r, s J G

the three different bond orders can be expressed in 
terms of F A (y ) as

^  r )t Mc rp* = (2 / i t )  I F _ „(y) dy (alternant hydrocarbon)
; Jo G '* n7)

V * = Fg ^(0) (18)
p] . rGjsm  (i9)

Topological factors causing the non-uniform TT-elec- 
tron charge distribution in non-alternant hydrocar­
bons can also be analyzed in terms of the properly 
defined topological charge density [35].
Recently Aono and his coworkers have developed the 
theory using the propagator technique for clarifying 
the topological analysis of various Tf-electronic 
quantities derived from the Huckel molecular orbi­
tals. Their method leads one to the same conclusions 
as those introduced above, since they also calculate 
the integral of the functionals of P(x) over the so- 
called "Coulson contour" [36-38].
TO PO LO G ICA L  DEPEN DEN CY  OF Z-INDEX

For the QSAR analysis of the thermodynamic properties 
of saturated hydrocarbons, turn to Table 1. Note 
that the p(G,2) value is a function of the numbers of 
tertiary (Y) and quarternary (X) carbon atoms, as

P (G ,2) = p(N,2) - (Y) - 3 (X), (20)

where N denotes the path graph S , with N points, or 
the carbon atom skeleton of normal hydrocarbon [1 ], 
Similar but more complicated relations can be ob­
tained between other p(G,k) values and the topologi­
cal structure of a graph. Thus one can show that 
among the isomeric tree graphs the unbranched path 
graph has the largest Z value, and that the more 
branches a graph has the smaller its Z values.
A number of empirical rules on the relation between 
the topological structure and the thermodynamic quan­
tities such as the boiling point and entropy can be
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explained in terms of the topological dependency of 
the Z-index, if one admits the relation between the 
Z-index and such quantity f as [21,39]

Systematic QSAR (quantitative structure-activity re­
lationship) analysis [40] revealed that for saturated 
acyclic hydrocarbon molecules most of the thermodyna­
mic quantities can be classified into several groups, 
i.e., Z-dependent, p-dependent, Z,p-dependent, and 
Z ,p-independent types, where p is another topological 
index, polarity number, proposed by Wiener in as 
early as 1947 [41].
Although Wiener [41], Platt [42], Cramer [43], and 
Randic and Wilkins [44] have similarly argued that 
many physico-chemical properties of chemical substan­
ces can be approximated with a set of two selected 
parameters, their chemical interpretation is not 
clear. Our "two-parameter" classification of the 
thermodynamic properties of acyclic saturated hydro­
carbons with Z and p suggests that most of these 
properties are determined by the combinations of two 
different topological factors, i.e., dynamical fac­
tor, Z, which accounts for the properties depending 
on the number of rotational degree of freedom, and 
static factor, p, which reflects the bulkiness of 
branches. One of the reasons for Z and p being a 
good pair of indices in this respect is ascribed to 
their "orthogonal" characters with a small correla­
tion coefficient.
SEA RCH  FOR  NON-REDUNDANT TO PO LO G ICA L  IN DEX

Although Table 1 shows a good discriminating power of 
Z for heptanes, for tree graphs with eight points we 
get a pair of isospectral graphs [6,7,10,11,26,45,46]

For eighteen isomers of octane, the Z-index ranges 
from 17 to 34 with a little disorder and redundancy 
[1]. This trend smoothly increases with the number 
of points. However, the Z-index is shown to be 
useful for rough sorting of graphs, especially with 
complicated structure [47].
Several different approaches have been chosen for 
getting as little redundant topological indices as 
possible [48]. Razinger et al. has shown that for 
alkane series Balaban's averaged distance sum connec­
tivity [49] has the best structural selectivity among

fOclog Z (21 )

H
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the currently used topological indices [50]. They, 
however, conclude that an index that would be highly 
selective and could at the same time be successful in 
correlating many different properties is not yet 
discovered.
D ISTAN CE  POLYNOM IAL AND  H IG H ER  GRAPHS

Now let us take another algebraic starting point for 
the analysis of the graph. A distance matrix D is 
defined as a matrix whose ij element is assigned the 
number or the shortest path between points i and j . 
One can apply the definition of the characteristic 
polynomial of Eq. (7) to D instead of A yielding the 
distance polynomial S(x) [51-53] as

N
S_(x ) = (-1)N det(D - xE) =lib(k)xN~k (22)
G k = 0

This polynomial is conjectured to have unique charac­
terization ability for graphs. Although we could not 
yet encountered any "isospectral" graph pair among 
the set of more than a thousand graphs studied, the 
above conjecture is still open. One of the most 
interesting features of the distance polynomical S(x) 
is that the last term of S(x), not necessarily the 
determinant of D, depends only on the number of 
points and the ring skeleton of the graph. Examples 
are shown in Table 2.

Table 2. Examples o f distance polynomial

Graph SG (x)

t
5X 50x3 - 140x2 - 1 20x - 32

U - M .  .
f

5X 38x3 - 116x2 - 1 1 2x - 32

H— 5X 28x3 - 88x2 - 96x - 32

> - -
5X 3 5x3 - 88x2 - 74x - 20

3 > 5X 30x3 - 82x2 - 72x - 20
5X 25x3 - 7Ox2 - 66x - 20ri> 6X 44x4 - 162x3 - 201 x 2 - 80x

T3> 6X 49x4 - 176x3 - 209x2 - 8 Ox

n>- 6X 49x4 - 180x3 - 220x2 - 80x
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It is known that the half sum of the off-diagonal 
elements D(ij) of D is the Wiener's path number w
[1]. The half sum of the squares of D(ij) is found 
to be equal to -b(2), while -b(N-1) is expressed in 
terms of the numbers of secondary, tertiary, quar­
ternary, *’* carbon atoms [51].
The distance matrix carries all the informations on 
the shortest distance between any pair of points. By 
picking out the term 1 's in D one gets the adjacency 
or 1 -neighbor relation of points yielding the origi­
nal graph, or first order graph, G^=G. Then by 
picking out the term 2's in D one gets the set of 
pairs of points whose shortest distance is two. This 
relation gives the graph of second order G~. Simi­
larly we get the graph of third order G-., the number 
of whose edges is Wiener's polarity number, p. The
set of the Z-indices { z \  Z^, Z^,...} obtained from 
Jg^, G ^ r •••} maY well represent the topological
features of the original graph.^ Fo^ example the 
second and*third order grphs, G z , G , of the last 
entry of Table 1 are as follows

G1 : — j- t » G2: G3:
{ z1, z2 , Z3 } = (13 , 40, 13}

In Fig.2 are shown the set of patterns (k-Z ) for the 
nine isomers of heptane (Table 1), which is very 
similar in shape with the original graph. However, 
we are still in a position to check the mathematical 
properties of these new topological indices.

Figure 2. Higher graphs and higher Z-indices o f heptane isomers. See Table 1.

RELATION S OF  Q(x) W ITH  PART IT ION  FUNCTIONS

Enumeration of the number of ways for placing indis-



120 Topological Index [Ch.ll

tinguishable dumbbells on various periodic lattice 
space like polyominoes (rectangular lattices) has a 
key role in solving various statistical problems, 
such as adsorption of diatomic molecules on a crys­
talline surface, magnetic properties of antiferro­
magnetic metals, stability of ionic crystals [54-56]. 
For complete covering on special lattices such as 
rectangular lattices and tori closed forms and/or 
recursion formulas have been obtained [57-59]. How­
ever, for incomplete covering problems very limited 
number of cases have been solved [15,56,60,61]. Our 
Z-counting polynomial is mathematically equivalent 
to the partition function for these statistical 
problems, if one substitutes x in Eq. (1) with exp 
(-£/kT), where k is the Boltzmann constant, T the 
absolute temperature, £  appropriate energy cor­
responding to the p(G,k) selection for each model.
By use of the operator technique proposed by us [62] 
the recursion formulas for various series of perio­
dic graphs such as mxn (m=1-4) rectangular and 3 - 
dimensional 2 x2 xn lattices have been obtained [15]. 
Extension to larger lattices and further elabora­
tion of this method are still under way.
From quite a similar standpoint to the above study 
one can define the rotational polynomial for count­
ing the number of the rotational isomers of alkanes 
and also for obtaining their absolute entropy sys­
tematically [63]. Sextet polynomial and king poly­
nomial have also been proposed by us, respectively 
for counting the numbers of the perfect matching on 
the hexagonal and rectangular lattices [64-69]. By 
use of these counting polynomials one can get not 
only the systematic view of the problem but also many 
important mathematical features involved. Applica­
tion of these enumeration techniques to a number of 
challenging problems is still open to us.
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Chapter 12

VALENCE - A MEASURE OF 
USED COVALENT BONDING 
CAPACITY OF ATOMS IN 
MOLECULES
Karl Jug, Theoretische Chemie, Universitat Hannover

A BSTRA CT

A definition of atomic valence in molecules is presented as a 
measure of used covalent binding capacity of atoms in mole­
cules. The proposed method is based on an analysis of the den­
sity matrix. It is general enough to be applicable in semi- 
empirical or ab initio calculations on SCF and Cl level. 
Calculations of selected examples demonstrate its use for 
structure and reactions of molecules. In particular it is 
possible to measure the radical, diradical and zwitterionic 
character of molecular states. More generally the ionicity, i.e. 
the extent of ionic character of molecular wave functions can 
be determined by this method. For acid base reactions a corre­
lation between energies and valence numbers can be established. 
Woodward-Hoffmann allowed and forbidden reactions can be 
distinguished by valence number changes during the reactions. 
Also nonconcerted and photochemical reactions can be analyzed 
with this method.
IN TRODU CT ION

The concept of valence dates back to the early days of quantum 
chemistry. It appeals to a conceptual understanding of bonding 
in molecules. This line of thought was primarily pursued by 
Coulson and had its highlight in his famous book by the same 
name /I/. With the advent of computers and the possibility of 
increasingly accurate calculations on single molecules, concepts
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like valence gradually lost importance, since they were cast in 
a framework which was no longer adequate for present day needs. 
In order to revive the idea of valence it was necessary to 
develop a formalism which could be applied to self-consistent- 
field (SCF) and configuration interaction (Cl) wave functions 
built from linear combinations of atomic orbital (LCAO) basis 
sets. It seemed natural to establish a new theoretical frame­
work of valence on the following premises /2/: 1. It must be 
invariant under coordinate transformation. 2. It should be a 
measure of the actual covalent bonding in molecules. 3. It 
should reflect saturation of bonding. 4. It should be related 
to the covalent reactivity of atoms in molecules. 5. It should 
be derived from the density matrix.
Such a formalism was introduced by the definition of valence 
numbers as the sum of squares of bond order elements from pairs 
of atoms of density matrices over orthogonalized atomic orbi­
tals /2/ and applied to a variety of compounds containing first- 
row atoms /3/. This idea originated from a footnote in a paper 
by Wiberg /4/ who advocated a bond index as a measure of co­
valent bonding. Independently, Perkins and coworkers /5/ and 
Semyonov /6/ had recognized the potential of Wiberg's formula 
and combined it with atomic valence considerations. Both groups 
applied the resulting formulas on a low level of computation, 
but failed to develop the formalism in an advanced form from 
first principles. After we had already investigated various pro­
perties of valence numbers in our initial papers, a more ele­
gant and comprehensive way to obtain valence numbers for gene­
ral wavefunctions on the LCAO SCF Cl level was introduced /7/.
We shall present this general theory of valence in the follo­
wing section. It will then be demonstrated how structure and 
reactivity of molecules can be related to the valence concept.
T H E O R Y
We now analyze the valence properties of a Cl wave function 
given in the form

U = I A TIVT (1)
I 1 1The density operator P of wave function (1) is a projection 

operator of the form
P = |t|J><ili| (2)

The configurations are constructed from molecular orbitals 
(MO's) i|j. by single or double substitution of an SCF wave 
function V The MO's are in turn expanded in orthogonalized 
atomic orbitals A 111

(3)
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The density operator P can then be reformulated conveniently 
in MO form /8/. It is now essential to realize that covalent 
bonding between two atoms A and B is related to the portion PHC 
of the density operator linking these two atoms

p AB = |i()A> < (j,B | + |ipB> < i)jA | ) (4)

ABP is not a projection operator. After reduction of the MO's 
to diatomic portions

i|i}B = ^  + ill6 , (5)

We can define the covalent bonding between the two atoms as an
AB ABexpectation value of operator P over occupied MO's i|>.

‘AB = <*f |PAB|*f> (6)

Here 
Evalua^f

n. is the generally fractional occupation number of MO i|̂  . 
aiion of (6 ) in LCAO form leads to

VAB = I (pJB )2 
M,v

(7)

with
PAB = 2 C n.cA cBpv * 1 ip IV

This proves that the heuristic form of sum of squares of den­
sity matrix elements related to the pair of atoms A and B is 
applicable even on the Cl level. Alternatively one can write 
ABV as the sum of squares of bond order eigenvalues p /2,7/

DAB,AB AB, AB (8)

This relates bond order and valence. Whereas bond order is 
linear in p , valence is quadratic.
The valenceMof an atom A is the sum over all contributions frcm 
the other atoms

I VAB (9)

The bond number of the total covalent bonding in the molecule 
is then given as
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M = \2 VA (10)A
We shall show in the following that this number can be used to 
measure the ionicity of the molecular wave function.
HYPERVALENCE AND  SUB VALENCE

The chemist's intuition assigns a normal valence to each atom. 
This number represents the normal number of single bonds that 
this atom is able to form. In the first row the normal valence 
is 1 for Li and F, 2 for Be and 0, 3 for B and N, 4 for C. In 
a heteropolar molecule deviations from these standard values 
of covalency will occur. We call an atom hypervalent if its 
actual valence exceeds the normal valence and subvalent if its 
actual value falls below the normal value. The sign and magni­
tude of AV^ is a measure of this property

ava = vjctua1 - vj0rma1 (11)
Subvalence with negative AV« will occur for radical and polar 
molecules. Hypervalence witn a positive AV^ can occur if lone 
pair of empty orbitals participate in the bonding.
The following examples in Table 1 may illustrate the different 
situations. Calculations for all molecules were performed on 
the SCF level with SIND01 / 9 ,10/. Valence numbers for all atoms 
were determined along the lines of the previous section. It is 
quite expected that we find valence number 4 for carbon in CH^, 
1 for fluorine in and lithium in L i ^ - Also NH^ and H^O have
normal values. But even B in B2F4 and Be in BeF^ have normal
valence numbers. The polarization of the 0 orbitals towards F 
is balanced on the n level by backbonding from the F atoms. 
Quite different is the situation in HNO^ and HNC. Here the 
nitrogen atom does not form three bonds plus one lone pair, 
but the lone pair is also involved in the bonding. The lithium 
compounds with unusual coordination numbers have been extensi­
vely investigated by Schleyer /II/. The bonding in C L U  can be 
explained if we assume that Li Li bonding is essential Din these 
compounds due to the long range of the diffuse Li orbitals and 
the involvement of p orbitals. The valence number of 1.50 for 
Li classifies Li as hypervalent. Participation of the p orbi­
tals in the bonding is the reason for the increase above 1. In 
this sense also CLi^ has hypervalent lithium.
In COo the polarization of the CO bond decreases the valenceL 3number of C below normal. In CHo we find the diradical charac­
ter of carbon characterized by the reduction of the valence 
number. 0^ is a triplet in its ground state. The valence number 
1.50 of oxygen is due to this open shell character and means
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that oxygen in is not saturated like in HoO. Be^ is very 
weakly bound, so the valence number of beryllium is close to 0 .

Table 1. Normal, hypervalent and subvalent atoms in molecules
Molecule Atom Valence Type
ch4 C 4.00 normal
C6H6 C 3.98
Pyridine N 3.02
N2 N 3.00
nh3 N 2.97
B 2F4 B 3.02
h 2o 0 1.96
BeF2 Be 1.95
F2 F 1.00

Li2 Li 1.00
ch4 H 1.00
hno3 N 3.75 hypervalent
HNC N 3.54
Pyrrole N 3.39
BH3NH3 B 3.43
B 2H6 B 3.41
°3 0a 2.80
h 3°+ 0 2.53
CBe2 Be 2.36
CL16 Li 1.50
CLi4 Li 1.40
C°2 C 3.74 subvalent
3ch2 C 1.91
CN N 2.78
NO N 2.13
BF3 B 2.80
BF B 1.27
°2 0 1.50
f 3n o 0 1.23
Be2 Be 0.03
LiFa central atom Li 0.81
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DIRADICALS AND ZWITTERIONS
Salem and Rowland /12/ and Dohnert and Koutecky /13/ have given 
global criteria for diradicals and zwitterions. These are either 
singlet-triplet degeneracy for diradicals and a pair of accom­
panying zwitterionic states / 12/ or the occurence of occupation 
number 1 for two natural orbitals. With the information in the 
previous section it is now possible to define diradicals and 
zwitterions with a local criterion /14/. The two lone electrons 
of a diradical do not contribute to covalent bonding. In conse­
quence the sum of atomic valence numbers should be reduced by
approximately two. Alternatively, the bond number fv]actua"* 0f
equ. (9) should be reduced by approximately 1 compared with
..normal ,, , , 3 ,̂. . ..normal ,M . We take again CH^ as an example : Vp = 4 ,
,normal _ , ^normal _ 0 factual _ „ n » wactual= 3, r r = 1.91, VH = 0.96,Vh ' = 1. M"p* p 4“ I j rs "1Mdt" = 1.92. If the valence reduction is distributed over 
many centers, the following general formula derived from (11) 
must be used.

A V = 2 AV, (12)

Such a case is the quadratic triplet of cyclobutadiene where 
AV = 2.16. But also the lowest triplet of benzene with a qui- 
noidal structure must be classified as a diradical because 
the valence of the two atoms in para position is 3.27 and the 
valence of the other four atoms is 3.80. This amounts to AV = 
2.26. Since no singlet-triplet degeneracy is present, Salem's 
criterion cannot arrive at this answer. But even Koutecky's 
natural occupation number does not give a clue in this case. We have investigated a series of monosubstituted benzenes with 
substituents CH^, NHo> OH, F and NO^ /15/. The valence numbers 
of the carbons at tne substitution sites are 3.26, 3.20, 3.07, 
3.05 and 3.05. So the diradical character is gradually more pro­
nounced in this sequence. We explain the nonplanarity of the 
last four compounds by the presence of a radical center at the 
substituent group.
In the case of zwitterions a donor atom should transfer an elec­
tron to an acceptor atom. The covalent bonding should be modi­
fied in such a way that the donor atom is subvalent and the 
acceptor atom hypervalent. A typical case is ammonia oxide 
H^NO, the isomer of hydroxylamine H^NOH. The migration of the 
hydrogen atom causes a substantial change of valence numbers. 
Whereas the latter molecule has valence numbers close to nor­
mal , the former has a hypervalent N with V^ = 3.67 and a sub­
valent 0 with Vq = 0.85. Also the dipole moment of H^NO is 
4.80 Debye compared to 0.56 of H^NOH. Dipole moments should 
be substantial in zwitterions ir they are not vanishing for 
symmetry reasons.
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IONICITY
Valence numbers can also be used to compare the relative 
polarization of atoms in molecules for different geometries. If 
the ionic character of a bond increases, the bond number M of 
covalent bonding decreases. In Table 2 we compare the changes 
AM in bond number, An in occupation number and AE in energy for 
different geometries of some hydrogen and lithium compounds.
Table 2. Changes o f bond number, occupation number and energy (kcal/mol) in 

strong and weak overlap binders dependent on geometry

Molecule Geometry AM fln1S fln2S fln2P AE
h 2o linear bent 0.248 0.346 0.239 -0.585 - 72.5
nh3 planar pyramidal 0.061 0.136 0.277 -0.413 - 13.5
ch4 planar tetrahedral 0.586 0.802 0.065 -0.867 -145.2
Li gO 1 inear bent 0.020 - 0.109 -0.109 - 12.1

Li 3" planar pyramidal 0.000 - 0.137 -0.137 - 10.6
C L U planar tetrahedral -0.044 - 0.064 -0.064 - 31.9
Epiotis has classified the hydrogen compounds as strong overlap 
binders and the lithium compounds as weak overlap binders /16, 
17/. The first group is characterized by stabilization through 
deexcitation from 2p to 2s and Is. H^O, NH^ and CH^ have less 
bond ionicity in the more stable form. In the lithium compounds 
the trend is just the opposite. The more stable form has the 
higher bond ionicity. But even in this case deexcitation from 
2p to 2s takes place. Because the lithium compounds are weak 
overlap binders, the effect of changes in valence, occupation 
and energy is much smaller than in the hydrogen compounds.
ACID-BASE REACTIONS

The reactivity of molecules can be studied with valence numbers 
in particular cases /18/. One such case are acid-base reactions. 
We define the absolute deviation of actual valence numbers from 
normal valence numbers

|AV| = 2 |V a c t u a l  - v " 0 rm a 1 | (1 3 )A A A
It is now possible to compare the absolute deviations for reac- 
tands and products

AAV = | AV . J  - I AV . .1 (14)1 product1 1 reactand'
These data are compared with energy changes AE in Table 3 for 
some simple acid-base reactions.
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It is apparent from these numbers that small changes in valence 
deviations are usually accompanied by small changes in energy. 
Stabilization leads to more normal values of valence numbers. 
For investigations in solution, a more comprehensive set of 
neutral molecules and ions has to be considered.
Table 3. Valence and binding energy changes (kcal/mol) in acid-base reactions

Reaction M V AEa
H30+ + oh' - 2 H,0 -1.94 - 27.3
nh3 + h3o+ - nh4 + h2o 0.03 - 36.1
NH4+ + OH" - NH3 + H20 -1.89 -191.2
F" + H30+ - HF + H20 -1.83 -202.0
HF + OH" - F" + H20 -0.03 - 25.3
n3" + h3o+ - hn3 + h2o -1.27 -191.5
hn3 + OH" - n3 " + h 2o -0.58 - 35.8
hco2" + h3o+ - hcooh + h2o -1.44 -163.5
HCOOH + OH" - HC02" + H20 -0.42 - 63.8
aadjusted for negative ions
CO N CER TED  AND  N O N CON CERTED  R EA CT ION S

Woodward and Hoffmann /19/ classified various types of reac­
tions, e.g. electrocyclic and cycloaddition reaction, as allo­
wed or forbidden according to orbital topology rules. In this 
section we wish to show that allowed reactions proceed with 
small changes in bond numbers M, whereas forbidden reactions 
undergo substantial reductions in valence numbers. The latter 
are an indication of the breaking of bonds without simultaneous 
formation of new bonds. So forbidden reactions which show bond 
breaking without bond formation are nonconcerted and involve diradicals. A typical electrocyclic reaction is the cyclobutene 
-> butadiene rearrangement. Whereas the allowed pathway shows a 
valence number increase of 0.01 from reactand to transition 
state and another 0.01 from transition state to product, the 
forbidden transition state of C, symmetry shows a reduction of
0.98 for M compared to the reaciand. It is clearly diradicaloid 
in the sense that we have defined in a previous section. We 
have also studied the cyclopropyl cation + allyl cation /20/.
In this case the difference in valence number changes is much 
less pronounced.
Much more pronounced is the effect of valence number change in 
fragmentation reaction of unsubstituted and substituted cyclo- 
butane as well as in the retro Diels-Alder reaction of cyclo­
hexene. In all these cases reaction pathways involve transition 
states and intermediates accompanied with orbital crossing.
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Such stationary points show reduction of the bond number in the 
order of 1 and consequently involve diradicals.
Although we had found that the Diels-Alder reaction involved 
intermediates in shallow wells, it was not clear whether these 
had any bearing on the selectivity of the reaction. A more pro­
nounced case of stepwise reaction is the fragmentation of cyclo­
butane to two ethylene. From the analysis of the valence numbers 
it becomes clear that a large portion of the reaction pathway of 
the unsubstituted and substituted reaction is involving diradi­
cals, starting from the twisting of one CC bond and up to the 
breaking of the second CC bond. Contrary to expectation from 
experiments in solution /22/, even the transition states of the 
donor-acceptor complex with an OChL group on one carbon and a 
CN group on the adjacent carbon did not show zwitterionic be­
haviour.Roth has studied rearrangement reactions which involve the 
2,3-dimethylene-1,4-cyclohexadiyl as an intermediate /23/. With 
the present method it is possible to assign each stationary 
state its degree of diradical character. From the twelve tran­
sition states and three intermediates of a previous study /24/ 
nine transition states and two intermediates have pronounced 
diradical character.The method is not limited to ground state reactions. The photo­
chemical conversion of cyclopentanone /25/ involves three di­
radical intermediates on the triplet surface which are not de­
generate with the ground state. Further reaction leads to cyclo­
butane or two ethylene plus CO via singlet-triplet degenerate 
diradicals or to 4-pentenal via a diradical transition state. 
Salem /12/ would not predict some of these and Koutecky /13/ 
could not identify the diradical centers with his method.
CON CLU D IN G  REM ARKS

The analysis of SCF and Cl wavefunctions in terms of atomic 
valence numbers is a helpful procedure to understand structure 
and reactivity in molecules. Valence can be reintroduced as a 
generalization of early ideas of Coulson. Different fromCoulson 
we emphasize that it is not the bond orders which are additive 
for the determination of actual covalent bonding of an atom in 
a molecule, but the bond valences. This avoids valence numbers 
much larger than 4 for carbon e.g. in trimethylenemethane or 
neopentane. Since the bond valences are quadratic in diatomic 
density matrix elements, whereas the bond orders are linear, 
one orbital can supply not more than one valence for binding to 
all atoms in a molecule. Lone electrons lead to a decrease and 
partial occupation of empty atomic shells to an increase in 
atomic valence numbers. This opens the way to trace radicals, 
diradicals and zwitterions. The polarity of bonding, i.e. ioni- 
city of the wave function, can also be measured by valence num­
bers for different geometries isomers or reactivity of molecules. 
If covalency or ionicity are related to stability of molecules, 
this index can be used to classify groups of molecules. Finally
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it is possible to use this index also in thermochemical and 
photochemical reactions to follow concerted and nonconcerted 
pathways.
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Chapter 13

QUANTUM CHEMICAL 
STUDIES AND PHYSICO­
CHEMICAL STUDIES OF 2-PAM 
AND DEPROTONATED 2-PAM 
(SYN AND ANTI)
Joyce J. Kaufman, P.C. Hariharan, W.S. Koski and Nora M. Semo
Department of Chemistry, The John Hopkins University, Baltimore, Maryland 21218

A BSTRA CT

Ab-initio MODPOT/VRDDO/MERGE calculations were carried out 
for different conformations of syn and anti 2-PAM (2- 
pyridiniumaldoxime methiodide) and on the deprotonated 2-PAM’s. 
Ab-initio all-electron calculations were also carried out on 
syn 2-PAM and deprotonated syn 2-PAM. Comparisons of our ab- 
initio MODPOT/VRDDO and ab-initio all-electron calculations 
confirmed again that there is excellent agreement of orbital 
energies and gross atomic populations betweeen the two methods 
when the same valence shell atomic basis set is used and the 
same inner shell basis set is used for the ab-initio effective 
core model potentials. There is also excellent agreement 
between the three-dimensional electrostatic molecular potential 
contour (EMPC) maps calculated from the ab-initio 
MODPOT/VRDDO/MERGE and the ab-initio all-electron calculations.

Computed conformational profiles indicated that there were 
multiple maxima and minima, thus emphasizing that merely op­
timizing geometry for such pyridinealdoximes and 
pyridiniumaldoximes by derivative methods from an initial 
starting guess would not be sufficient, especially for the 
great majority of cases where there is no experimental crystal 
structure data.

Three-dimensional electrostatic molecular potential con­
tour (EMPC) maps were generated from the quantum chemical wave 
functions. The deprotonated species of oxime reactivators had 
been suggested by pharmacologists to be the probable
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physiologically effective species for reactivation of acetyl­
cholinesterase (AChE) inhibited by organophosphorus compounds, 
although the pyridiniumaldoxime reactivators have only proven 
effective in the peripheral nervous system.

The 2-PAMfs themselves are charged quaternary compounds 
and thus would not be expected to partition through the lipid 
blood-brain barrier and hence not to be effective reactivators 
of inhibited AChE in the central nervous system. The 
deprotonated 2-PAM is an overall neutral compound. However, 
our three-dimensional EMPC maps of deprotonated 2-PAM1s indi­
cate that these species will be strongly dipolar ions and thus 
would not be expected to partition from aqueous to lipid phase.

These three-dimensional EMPC maps around the deprotonated 
2-p a m»s can also help to delineate stereoelectronic requisites 
for effective reactivating action and in addition they can help 
to determine the stereoelectronic complementary requisites of 
the AChE active sites - which have not yet been determined 
crystallographically.

Since the reactivation of phosphorylated acetylcholines­
terase is strongly dependent on the acidity of the oxime 
reactivators, we carried out accurate measurements for the pK^
and the lipophilicity of 2-PAM because of its importance in 
transport across membranes and partition through the blood- 
brain barrier into the central nervous system.

Our EMPC map findings on the deprotonated 2-PAMfs are 
confirmed by the experimental measurements of the lipophilicity 
and pk^ which show that there is very little tendency for
either the 2-PAM1s or the deprotonated 2-PAM's to partition 
from aqueous to lipid phase.

IN TRODU CT ION

Organophosphorus compounds inhibit acetylcholinesterase 
(AChE). If the aging of the phosphorylated (inhibited) AChE is 
not too rapid, then it is possible to reactivate the phosphory­
lated AChE with compounds such as 2-PAM (2-pyridiniumaldoxime 
methiodide.)

or related compounds. These 
SYN 2-PAM compounds were designed

originally in the 1950's by 
Wilson to be complements of the 
AChE active site based on avail­
able knowledge at that time [1- 
3].

The question of the relation of calculated quantum chemi­
cal indices to the conformations and pharmacological activity 
of the PAM1s has been of interest to us for the past two 
decades. Beginning in 1964, we carried out the first all­
valence-electron three-dimensional quantum chemical
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calculations on any drug or biological molecule for conforma­
tional analysis of the PAM!s, both protonated and deprotonated, 
and the charges on the atoms and total overlap populations [4- 
6 ].

From that time until we first presented in the spring of 
1984 the results of our ab-initio MODPOT/VRDDO/MERGE calcula­
tions on syn and anti 2-PA and syn and anti 2-PAM and 
deprotonated 2-PAM and the electrostatic molecular potential 
contour (EMPC) maps calculated from these wave functions, [7a] 
apparently there had not been any other quantum chemical inves­
tigations of the PAM’s. There had been experimental research 
on the PAM’s and development of related pyridine oxime reac­
tivators of phosphorylated AChE over these past twenty years 
[8,9].

During this past year we have continued our ab-initio 
MODPOT/VRDDO/MERGE investigations on a variety of other 
pyridiniumaldoxime and methyl imidazoliumaldoxime reactivators 
of inhibited AChE. We also carried out ab-initio all-electron 
calculations on syn 2-PAM and deprotonated syn 2-PAM.

2-PAM and other pyridiniumaldoxime reactivators of in­
hibited AChE are effective only in the peripheral nervous 
system, not in the central nervous system (CNS) [10]. While 2- 
PAM is a charged quaternary species and thus would not be 
expected to partition into the CNS through the lipid blood- 
brain barrier, deprotonated 2-PAM is a net neutral species. To 
investigate why deprotonated 2-PAM also does not partition into 
the CNS, we carried out experimental measurements of the pKa
and lipophilicity (as a function of pH), for both of the 2-PAM 
species.

M ETH OD S
Theoretical

1. AB-INITIO SCF
The ab-initio MODPOT/VRDDO/MERGE calculations were carried 

out with our MOLASYS computer program [11] which incorporates 
as options (which can be used or not used) several features 
desirable for ab-initio calculations on large molecules or 
those containing heavy atoms: ab-initio effective core model
potentials (M0DP0T) which permit calculations of valence 
electrons only explicitly, yet accurately; a charge conserving 
integral prescreening evaluation to determine whether or not to 
calculate integrals explicitly, (which we named VRDDO - vari­
able retention of diatomic differential overlap) especially 
useful for spatially extended molecules; and an efficient MERGE 
technique which permits reuse of common skeletal integrals 
[ 12].

The ab-initio all-electron calculations were also carried 
out with the MOLASYS program. The same valence shell atomic
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basis set was used for both calculations and the same all­
electron inner shell basis set was used for the ab-initio 
effective model core potentials.

ELECTR O STA T IC  M OLECU LA R  POTENT IAL  CON TO U R  MAPS
For molecular interactions involving molecules with net 

charges or permanent dipoles, useful information may be ob­
tained by examination of the electrostatic potential, [13] 
arising from one of the partners, and by simple calculations, 
involving a potential and a simplified description of the 
charge distribution of the other molecule involved in the 
interaction [14]. This concept is also very useful for gener­
ating electrostatic molecular potential contour (EMPC) maps 
around molecules which react with receptor sites or enzyme 
active sites where nothing at all is known about the molecular 
structure of the site. Even by calculating the EMPC map from 
the electrostatic potential and a test unit positive charge, 
the salient stereoelectronic features of a molecule in three- 
dimensional space around the molecule are revealed. Also, the 
EMPC maps for various molecules generated in this way can be 
compared to one another.

The electrostatic contribution is dominant in molecules 
such as endogenous biomolecules, drugs, toxicants, etc. where 
there are numerous heteroatoms and hence strong charge 
redistribution. Even when polarization is appreciable, the 
electrostatic term is by far the larger contribution when 
molecule A has significant charge redistribution [15].

We had long ago demonstrated that the EMPC maps generated 
from ab-initio MODPOT, ab-initio VRDDO and ab-initio 
MODPOT/VRDDO wave functions matched the EMPC maps generated 
from the ab-initio all-electron calculations (inner shell and 
valence electrons) with the same atomic valence basis set (and 
where the MODPOT input was matched to the same inner shell 
atomic basis set) [16]. Thus, in this present study we have 
reconfirmed this by generating the EMPC maps around 
deprotonated 2-PAM from our ab-initio MODPOT/VRDDO calculations 
and from ab-intio all-electron calculations, using the same 
atomic basis set as described in section 1.

The isopotential EMPC maps are generated in three dimen­
sions around the entire molecule. These isopotential EMPC maps 
can be displayed from any angle, since we can rotate the 
molecule along with its three-dimensional isopotential EMPC 
maps.

EXPER IM EN TAL
The lipophilicity of a drug (its ability to partition from 

water to lipid) influences the ability of that drug to 
penetrate lipid barriers such as the lipophilic CNS blood-brain 
barrier.

The pK^ values and partition coefficients as a function of
pH for 2-pyridiniumaldoxime methochloride were determined using 
a microelectrometric titration technique, described previously
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[17]. Since the partition coefficients of 2-PAM were so small 
at all pH values, the absolute partitioning of 2-PAM was 
measured spectrophotometrically.

RESULTS AND D ISCU SSION

Theoretical
When we initiated our recent studies on 2-PAM, there was 

only an old experimental crystal structure of syn 2-PAM 
reported [18] which did not place the hydrogen atoms. There 
were, however, more recent experimental crystal structures 
reported for syn and anti 4-PA (4-pyridinealdoxime) [19,20].
For an initial geometry for quantum chemical calculations we 
ansatzed the structure of the syn-aldoxime group onto the 
pyridine ring structure in the 2 position to give 2-PA and then 
ansatzed a CH^ group onto the pyridine N, using the experimen­
tal crystal structure of a methylpyridiniurn cation as a guide 
[ 21].
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For the lowest energy conformation of syn 2-PAM to date, 
we have generated electrostatic molecular potential contour 
(EMPC) maps in three dimensions around syn 2-PAM. From these 
potentials we then generated isopotential contour EMPC maps 
around the syn 2-PAM. A copy of those three-dimensional, 
isopotential EMPC maps around syn 2-PAM is included (Figure 2 
Syn 2-PAM Isopotential Contour EMPC Map Ab-initio 
MODPOT/VRDDO/MERGE)• Since 2-PAM is a positively charged 
quaternary species, all the EMPC isopotential contours are 
positive.

+6o.o
kcal/mol

Figure 2. Syn 2-PAM

+100.0
We also carried out ab-initio MODPOT/VRDDO/MERGE calcula­

tions for anti 2-PAM for six rotameric conformations with the 
CN0H dihedral angle 0°, ±60°, ±120°, 180° and and for
deprotonated anti 2-PAM and generated the EMPC maps [7],
(Figure 3 Deprotonated Anti 2-PAM Isopotential Contour Map Ab- 
initio MODPOT/VRDDO/MERGE).

Figure 3. Anti 2-PAM Deprotonated

-20.0 kcal/mol
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It is obvious from Figure 3 that even though deprotonated 
2-PAM is overall neutral, the isopotential EMPC maps show a 
distinct positive and negative region. The negative region of 
the EMPC map is located around the ring carbon attached to the 
ring nitrogen and around the entire oxime side chain. The 
positive EMPC region embraces the rest of the molecule. Thus, 
the EMPC maps around the deprotonated anti 2-PAM indicate that 
this species should behave experimentally as a dipolar ion - 
rather than as a neutral molecule. This predicted behavior is 
consistent with our experimental lipophilicity measurements.

Recently an experimental crystal structure of 2-PAM was 
reported [22]. We have carried out the ab-initio 
MODPOT/VRDDO/MERGE and ab-initio all electron calculations for 
2-PAM at its crystal structure coordinates.

We also carried out calculations for deprotonated syn 
2-PAM starting from the crystal structure coordinates and 
varying the bond lengths and bond angles in the deprotonated 
aldoxime side chain using our MERGE technique.

We have more recently generated the EMPC maps for 
deprotonated syn 2-PAM both from the ab-initio 
MODPOT/VRDDO/MERGE calculations (Figure 4 Deprotonated Syn 2- 
PAM Isopotential EMPC Contour Map Ab-initio MODPOT/VRDDO/MERGE) 
and from the corresponding Ab-initio all-electron calculations 
(Figure 5 Deprotonated Syn 2-PAM Isopotential Contour EMPC Map 
Ab-initio all electron).

Figure 4. Syn 2-PAM Deprotonated Figure 5. Syn 2-PAM Deprotonated
all-electron
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Again, as with anti 2-PAM, while deprotonated syn 2-PAM is 
overall neutral, the isopotential EMPC map shows the same 
distinct positive and negative regions as does the EMPC map 
around deprotonated anti 2-PAM.

Moreover, the EMPC maps abound deprotonated syn 2-PAM from 
the ab-initio all-electron calculations and from the ab-initio 
MODPOT/VRDDO/MERGE calculations are so close that they are 
indistinguishable. This agreement between the 
MODPOT/VRDDO/MERGE calculations and the corresponding ab-initio 
all-electron calculations could also be seen from comparisons 
of the gross atomic populations and the valence orbital 
energies.

The gross atomic populations confirm our very early work 
[5,6] that the positive charge in 2-PAM is not localized on the 
nitrogen. Also comparison of the charges on syn 2-PAM and 
deprotonated syn 2-PAM indicate there is considerable 
redistribution of charge in both species.

There is also excellent agreement in the orbital energies 
for syn 2-PAM or for deprotonated syn 2-PAM calculated by the 
ab-initio MODPOT/VRDDO/MERGE and by the ab-initio all-electron 
techni que.

However, the ab-initio all-electron calculation took about 
four times longer than the corresponding ab-initio MODPOT/VRDDO

-4calculation with THR 1 =10 (the size of the VRDDO pseudo-
-4overlap for prescreening integrals; 10 is sufficient to allow

_ o
all integrals 10 ) and THR 2 = 10 (the size of the 2-e
integrals) retained. This is a higher threshold than we nor-

-2mally use since we showed long ago that THR 1 =10 and THR 2 
-4= 10 were sufficient to reproduce gross atomic populations to 

-0.02 e, valence orbital energies to -0.002 a.u. and potential 
energy curves or isomer total energies to -0.001-0.0001 a.u. 
(compared to not using the VRDDO prescreening threshold). The 
ab-initio all electron calculation on syn 2-PAM took about five 
times longer than the corresponding ab-initio
MODPOT/VRDDO/MERGE with THR 1 = 1 and THR 2 = 10"\
E X P E R IM E N T A L  
M icroelectrometric Technique

The ionization constants and the octanol/water partition 
coefficients were determined for 2-pyridiniumaldoxime 
methochloride (2-PAM) at 20°C, 30°C, and 37°C.
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Below is the summary of the results. The pK^ values 
represent the average of at least 4 determinations.

TEMP CONDITIONS PKa

20°C Aqueous 7.904 ±
n-octanol/water 7.895 ±

30°C Aqueous 7.785 ±
n-octanol/water 7:773 ±

37°C Aqueous 7.675 ±
n-octanol/water 7.674 +

Since the difference in the pK^'s determined in aqueous
and n-octanol/water solution is within experimental error, we 
conclude from our microelectrometric determinations that to 
within experimental error there is virtually no partitioning of 
any of the species of 2-PAM from water to oil at any pH in the 
range from 20°C to 37°C.

A brief survey of the literature revealed the following 
pK^ values assigned for 2-PAM.

Ginsburg and Wilson [23] determined a pK of 8.0 at 25°Ca
by measuring the pH of a half neutralized solution; Mason [24] 
reports a value of 8.00 ± 0.01 at 20°C measured by poten- 
tiometric titration; Hagedorn et al. [25] report a value of 
7.68 ± 0.03 by potentiometric titration (no temperature 
stated).

Since some authors indicate that the reactivation ef­
ficiency of AChE is related to the concentration of the oxime 
anion at physiological pH, we calculated the fraction of the 
anion in the range 6.80 - 7.70 from the relationship:

= 1 antilog (pKa“ pH)
antilog (pK -pH) + 1 a

(for 2-PAM at 37°C)

pH oxime anion

6.80 11.8
7.10 21.0
7.20 25.1
7.35 32.1
7.40 34.7
7.45 37.3
7.50 40.1
7; 60 115:7
7.675 50:0
7.70 51 .11
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This might prove especially useful in the case of 
dioximes, where the true proportion of the oxime anion to 
molecules at physiological pH can be calculated knowing the two 
ionization constants.

UV Spectophotom etric Technique
2-PAM was one of the oximes for which our electrometric 

measurements indicated a very small distribution coefficient 
between octanol and water.

We began by first investigating the UV spectra of 2-PAM in 
HC1, NaOH and buffer at pH = 7.4, in order to establish the 
molar extinction, at X = 293 nm and from there a calibration 
curve for different concentrations.4e = 1.04 x 10 at X = 293 nm 
which means that the lower limit of the detectable amount of 2-
PAM in octanol is 2 x 10 g/1.

We determined the'solubility of 2-PAM in octanol, which is
2 x 105 g/1 (1.2 x 10“4M).

The following characteristic constants were determined for 
2-PAM from the optical measurements:

SOLUTION pH ? OXIME ANION X (nm) max

0.1N HC1 1 0% 293

0.1N NaOH 13 100? 336

Phosphate
Buffer 7.4 34.7? 295

e

1.219 x 104 

1.810 x 104

1.064 x 104

The distribution coefficient at 37°C was found to be 3.6 x
io“ 3 .
A CK N OW LEDGEM EN T
The theoretical and experimental research on the 

pyridiniumaldoxime reactivators of AChE was supported by the 
Army Medical Research and Development Command under Contract # 
DAMD 17-83“C-3219.

REFERENCES
1. I.B. Wilson and S. Ginsburg, Biochem. Biophys. Acta 1_8, 

168 (1953).

2. I.B. Wilson and S. Ginsburg, Arch. Biochem. and Biophys. 
54,'569 (1955).



144 Quantum and Physicochemical Studies of 2-PAM [Ch.13

3. S. Ginsburg and I.B. Wilson, J# Am. Chem. Soc. ]_9, 481 
U957).

4. Joyce J Kaufman, Principal Investigator, "A Quantum 
Mechanical Evaluation of the Mechanism of Action of 2-PAM 
Chloride and Analogs,” Contract DAI8-035-AMC-745(A), Final 
Report, RIAS, Baltimore, Maryland, February 1967.

5. W. Giordano, J.R. Hamann, J.J. Harkins and Joyce J. 
Kaufman. ’’Quantum Mechanically Derived Electronic 
Distributions in the Conformers of 2-PAM.” In PHYSICO­
CHEMICAL ASPECTS OF DRUG ACTION, Ed. A. Ariens, on the 
proceedings of the Illrd International Pharmacological 
Congress, Sao Paulo, Brazil, July 1966, Pergamon Press,
New York, NY, Vol. 7, pp.327“354, 1968.

6. W. Giordano, J.R. Hamann, J.J. Harkins and Joyce J. 
Kaufman, Mol. Pharmacol. _3, 307 (1967).

7a. Joyce J. Kaufman, ’’Quantum Chemical and Physiochemical 
Studies of Oxime Reactivators of Inhibited 
Acetylcholinesterase” An invited plenary lecture 
presented at the International Sanibel Symposium on 
Quantum Biology and Quantum Pharmacology, Palm Coast, 
Florida, March 1984.

7b. Joyce J. Kaufman, ’’Quantum Chemical and Physicochemical 
Studies of Old and New Oxime Reactivators of Inhibited 
Acetylcholinesterase”, An invited plenary lecture 
presented at the International Sanibel Symposium on 
Quantum Biology and Quantum Pharmacology, Marineland, 
Florida, March 1985.

8. I. Hagedorn, J. Stark, K. Schoene and H. Schenkel, 
Arzneim.-Forsch. 28, 2055 (1978).

9. K. Schoene, ’’Pyridinium Salts as Organophosphate 
Antagonists,” IN MONOGRAPHS IN NEUTRAL SCIENCES,
NEUROLOGY OF CHOLINERGIC AND ADRENERGIC TRANSMITTERS,”
Vol. 7, S. Karger, Basel, Switzerland, 1980, pp.85̂ *98.

10. C.A. Broomfield, B.E. Hackley, F.E. Hahn, D.E. Lenz and 
D.M. Maxwell, ’’Evaluation of H-^Series Oximes,”
Proceedings of a Symposium held September 19, 1981. 
Biomedical Laboratory Technical Report, USA BML-*59~8l- 
001, U.S. Army Medical Research and Development Command, 
Aberdeen Proving Ground, Maryland, April 1981.

11a. H.E. Popkie, ’’M0LASYS: A Computer Program for Molecular
Orbital Calculations on Large Systems,” The Johns Hopkins 
University, 1974.



Ch. 13] References 145

11b. H.E. Popkie, "MOLASYS-MERGE,” The Johns Hopkins 
University, 1978.

12. Joyce J. Kaufman, H.E. Popkie and P.C. Hariharan, MNew 
Optimal'Strategies for Ab-Initio Quantum Chemical 
Calculations on Large Drugs, Carcinogens, Teratogens and 
Biomolecules,” In COMPUTER ASSISTED DRUG DESIGN, Eds.
E.C. Olsen and R.E. Cristoffersen, ACS Symposium Series 
112, Am. Chem. Soc., Washington, D.C., 1979, pp.415-435.

13. E. Scrocco and J. Tomasi , Top. Curr. Chem. 21_, 97“127 
(1973) and references therein.

14. C. Petrongolo, Gazz, Chim. Ital. 108 445-478 (1978) and 
references therein.

15. W .A. Sokalski, S. Roszak, P.C. Hariharan, W.S. Koski, 
Joyce J. Kaufman, A.H. Lowrey and R.S. Miller. Int. J. 
Quantum Chem. SV7, 375 (1983)

16. C. Petrongolo, H.J.T. Preston and Joyce J. Kaufman, Int. 
J. Quantum Chem. 13, 457 (1978).

17. Joyce J. Kaufman, Nora M. Semo, and W.S. Koski, J. Med. 
Chem. ]_8, 647 (1975).

18. D. Carlstrom, Acta Chem. Scand. 20, 1240 (1966).

19. M. Martinez-Ripoll and H.P. Lorenz, Acta Cryst. B32, 2322 
(1976).

20. M. Martinez-Ripoll and H.P. Lorenz, Acta Cryst. B32, 2325 
(1976).

21. T.H. Lu, T.J. Lee, C. Wong, K.T. Kuo, J. Chinese Chem. 
Soc. 26, 53 (1979).

22. W. Van Havere, A.T.H. Lenstra and H.J. Geise, Acta Cryst. 
338, 2516 (1982).

23. S. Ginsburg and J.B. Wilson, J. Am. Chem. Soc. 79, 481
(1957). _

24. S.F. Mason, J. Chem. Soc. 22 (I960).

25. J. Hagedorn, J. Stark and H.P. Lorenz, Angen. Chem. Int. 
Ed. 11, 307 (1972).



Chapter 14

METAL CLUSTER TOPOLOGY: 
APPLICATIONS TO GOLD AND 
PLATINUM CLUSTERS
R.B. King
Department of Chemistry, University of Georgia

A BSTRA CT

The g raph -theo ry  de rived  approach fo r m eta l c lu s te r bonding is 
extended to  gold and p la tin um  c lus te rs  inc lud ing  spherica l and 
to ro id a l cen te red  gold c lus te rs  and stacked tr ia n g le  p la tin um  c lus te rs ; 
the la tte r  appear to  be novel exam ples o f Mdbius systems.

IN TRODU CT ION

In 1977 we published a g ra p h -th e o re tica l in te rp re ta tio n  o f the  bonding 
topo logy in de loca lized  inorgan ic  po lyhedra l m olecules [1], Our 
in it ia l tre a tm e n t [1] focussed on po lyhedra l boranes, carboranes, 
and m eta l c lus te rs . Subsequent work [2] extended these methods 
to  bare m eta l c lus te rs  o f p o s t- tra n s itio n  e lem ents such as t in , lead, 
and b ism uth . F u rth e r d e ta ils  o f our methods are given in a recen t 
book chap te r [3]. In general the resu lts  o f the g raph -theo ry  de rived  
m ethods, insofar as a com parison is possible, are cons is ten t w ith  
o the r approaches to  m eta l c lu s te r bonding by w orkers such as Mingos 
[4,5 ], Stone [6,7], and Teo [8,9,10].

This paper extends our g raph -theo ry  derived  approach fo r m eta l 
c lu s te r bonding to  gold and p la tin um  c lus te rs , w hich requ ire  a v a r ie ty  
o f new concepts. Mingos [11,12,13] has extended his methods to  
the  tre a tm e n t o f gold c lus te rs  bu t re la t iv e ly  l i t t le  success has 
been ach ieved u n til now in the understanding o f the  bonding in 
p la tin um  cluste rs . For exam ple, Tec's methods [9] do not g ive 
exac t e le c tro n  counts fo r some o f the most comm on types o f p la t­
inum carbonyl c lus te rs .
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BA CK G ROU N D

The atom s a t the  ve rtice s  o f po lyhedra l c lu s te r compounds may 
be lig h t atom s using on ly s and p o rb ita ls  fo r  chem ica l bonding 
(e.g., boron or carbon) or heavy atom s using s, p, and d o rb ita ls  
fo r chem ica l bonding (e.g., tra n s itio n  m eta ls  or p o s t- tra n s itio n  
e lem ents). If  these ve rte x  atom s are norm a l, they  use th ree  valence 
o rb ita ls  fo r in tra p o lyh e d ra l bonding leaving one or six exte rna l 
o rb ita ls  in the  case o f lig h t or heavy a tom s, re sp e c tive ly . The 
single ex te rna l o rb ita l o f a lig h t ve rte x  a tom  such as boron or carbon 
no rm a lly  bonds to  a single m onovalent e x te rn a l group (hydrogen, 
halogen, a lk y l, a ry l, n itro , cyano, e tc .). The six ex te rn a l o rb ita ls  
o f a heavy v e rte x  a tom  such as a tra n s it io n  m eta l may be used 
fo r a much g re a te r v a r ie ty  o f purposes inc lud ing  the fo llo w in g : 
(1) A single e x te rn a l o rb ita l bonding to  a ca rbony l, phosphine, or 
isocyanide ligand; (2) Three ex te rna l o rb ita ls  bonding to  a benzene 
or cyc lopen tad ieny l ring ; (3) A single e x te rn a l o rb ita l con ta in ing  
a non-bonding lone e le c tro n  pa ir (common fo r p o s t- tra n s itio n  e lem ent 
ve rtices).

An im p o rta n t question in po lyhedra l c lu s te r compounds is w hether 
th e ir  chem ica l bonding is loca lized  along the  edges o f the  polyhedron 
or de loca lized  in the  surface and volum e o f the  polyhedron. D e lo ca l­
ized bonding occurs when there  is a m ism atch  betw een the ve rte x  
degree o f the  polyhedron (i.e ., number o f edges m eeting  a t the 
ve rte x ) and the  number o f in te rna l o rb ita ls  fro m  the  ve rte x  a tom . 
For norm al v e rte x  a tom s using th ree  in te rn a l o rb ita ls  the re  are 
the fo llo w in g  th ree  fundam enta l cases:
(A) P lanar polygons (a ll ve rtice s  o f degree tw o ): M ism atch  (3^2) 
leading to  de loca lized  bonding in planar polygonal a ro m a tic  systems 
such as benzene and cyc lopentad ien ide .
(B) S im ple [14] po lyhedra (a ll ve rtice s  o f degree th ree): M atch (3=3) 
leading to  loca lized  bonding such as in polyhedranes (e.g., cubane, 
dodecahedrane, e tc .).
(C) D e ltahedra  (a ll tr ia n g u la r faces) having no te tra h e d ra l chambers 
(i.e ., a ll ve rtice s  o f degree fou r or g rea te r): M ism atch  (3^4 ,5 ,6 ,...) 
leading to  de loca lized  bonding in th ree -d im ens iona l a ro m a tic  systems 
such as po lyhedra l borane anions, carboranes, and many m eta l 
c lus te rs . The last case, o f course, is the one o f g rea tes t in te re s t 
in the co n te x t o f th is  paper.

The th ree  in te rn a l o rb ita ls  o f norm al v e rte x  a tom s in de loca lized  
polygons or po lyhedra  can be p a rtit io n e d  in to  tw o  types: (1) Tw in 
in te rna l o rb ita ls  (sp^ hybrids or p o rb ita ls  in a lig h t v e rte x  a tom  
polygon (Case A) or polyhedron (Case C), re sp e c tive ly ); (2) Unique 
in te rna l o rb ita l (p o rb ita l or an sp hybrid  in a lig h t ve rte x  a tom  
polygon (Case A) or polyhedron (Case C), re sp e c tive ly ). The in tra ­
po lyhedra l bonding in de loca lized  de ltahedra  w ith o u t te tra h e d ra l 
chambers and having n ve rtice s  requ ires 2n + 2 ske le ta l e lec trons  
a ris ing  fro m  the  fo llo w in g  sources:
(A) Surface bonding (2n ske le ta l e lec trons) a ris ing  fro m  pa irw ise  
overlap  (i.e ., n « 2  graphs) o f the ve rte x  a tom  tw in  in te rna l o rb ita ls
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in the po lyhedra l surface to  g ive n bonding and n an tibond ing  o rb ita ls .
(B) C ore bonding (2 ske le ta l e lec trons) a ris ing  fro m  n -cen te r overlap  
(i.e ., a single K n graph) o f the v e rte x  a tom  unique in te rna l o rb ita ls  
a t the po lyhedra l cen te r to  g ive a s ingle bonding o rb ita l and n-1 
an tibond ing  o rb ita ls .
E le c tro n -r ic h  de loca lized  po lyhedra having more than 2n + 2 ske le ta l 
e lec trons  fo rm  polyhedra having one or m ore n o n -tr ia ng u la r faces 
whereas e le c tron -poo r de loca lized  polyhedra having less than 2n + 2 
ske le ta l e lec trons fo rm  de ltahedra  having one or m ore te tra h e d ra l 
chambers. A more d e ta iled  discussion o f bonding models fo r these 
systems is given in the  previous papers [1,3].

G O LD  CLUSTERS

The ve rte x  atom s in the  po lyhedra l c lus te rs  tre a te d  in our previous 
papers [1,2,3] use a spherica l bonding o rb ita l m a n ifo ld  (sp^ fo r 
lig h t v e rte x  atom s and d^sp^ fo r heavy v e rte x  a tom s) having equal 
e x te n t in a ll th ree  dimensions leading to  the 8 -e le c tro n  (fo r lig h t 
atom s) or 18 -e lec tron  (fo r heavy atom s) co n fig u ra tio n s  o f the  next 
ra re  gas. H ow ever, in some systems con ta in ing  the la te  5d tra n s it io n  
and p o s t- tra n s itio n  m eta ls inc lud ing  gold, one or tw o  o f the ou te r 
p o rb ita ls  are raised to  an tibond ing  energy levels leading to  to ro id a l 
(d^)sp2 or c y lin d r ic a l (d^)sp bonding o rb ita l m an ifo lds, re sp e c tive ly . 
The (d^)sp to ro id a l bonding o rb ita l m an ifo ld  can bond on ly in the 
tw o  dimensions o f the plane o f the  ring  o f the  to rus leading, fo r 
exam ple, to  16 -e lec tron  square p lanar com plexes o f d^ la te  tra n s it io n  
m eta ls  such as Rh(l), lr ( l) , N i( ll) ,  P d(ll), P t( ll) , and A u (lll) . S im ila r ly , 
the  (d^)sp c y lin d r ic a l bonding o rb ita l m a n ifo ld  can bond on ly in 
a s ingle (ax ia l) d im ension leading, fo r exam ple, to  14 -e lec tron  
linear com plexes o f d ^  m eta ls  such as P t(O ), A g(l), A u(l), H g (ll), 
and TIG 11). The p o rb ita ls  ra ised to  an tibond ing  energy levels can 
p a rt ic ip a te  in do-* p a * or chr-> pir * back-bonding w ith  f i l le d  d o rb ita ls  
in ad jacent atom s as noted by Dedieu and H o ffm an  [15] fro m  
extended Hdckel ca lcu la tio n s  on P t(0 ) -P t(0 )  d im ers. The ra is ing  
o f one or tw o  ou te r p o rb ita ls  to  an tibond ing  levels in heavy la te  
tra n s it io n  m eta l and p o s t- tra n s itio n  m eta l com plexes has been 
a ttr ib u te d  to  re la t iv is t ic  e ffe c ts  [16].

The gold c lus te rs  o f p a rt ic u la r in te re s t [17,18] consist o f a cen te r 
gold a tom  surrounded by a puckered polygonal b e lt o f pe riphe ra l 
gold atom s genera lly  w ith  one or m ore a dd itiona l pe riphe ra l gold 
atom s in d is ta l positions above and/or below the b e lt. The pe riphe ra l 
gold atom s in such c lus te rs  use a 7 -o rb ita l d^sp c y lin d r ic a l bonding 
o rb ita l m an ifo ld , but th e ir  residual tw o  orthogona l an tibond ing  
p o rb ita ls  can rece ive  e le c tro n  dens ity  fro m  the f i l le d  d o rb ita ls  
o f ad jacent pe riphera l gold atom s leading to  bonding d istances 
between ad jacent pe riphera l gold a tom s. C en te red  gold c lus te rs  
can be c lass ified  as e ith e r spherica l or to ro id a l c lus te rs  [19] 
depending upon w hether the cen te r gold a tom  uses a 9 -o rb ita l d^sp^ 
spherical bonding o rb ita l m a n ifo ld  or an 8 -o rb ita l d^sp^ to ro id a l 
bonding o rb ita l m an ifo ld , resp e c tive ly . The topo logy o f the core 
bonding in the cen te red  gold c luste rs  is gene ra lly  not th a t o f the
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K n com ple te  graph found in the de loca lized  de ltahed ra l c lus te rs  
discussed above but instead corresponds to  the  topo logy o f the 
polyhedron fo rm ed  by the periphera l gold a tom s. This appa ren tly  
is a consequence o f the poor la te ra l ove rlap  o f the c y lin d r ic a l d^sp 
m an ifo lds o f the pe riphera l gold atom s. A lso the volum e o f the 
polyhedron o f pe riphera l gold atom s must be large enough to  con ta in  
the cen te r a tom . Thus the  icosahedron fo rm e d  by the tw e lve  p e r i­
pheral gold a tom s in A u ^ C ^ P tC F ^ ^ C fc F ^ J 'io ^  is regu lar [20] 
whereas the cube fo rm ed  by the e igh t pe riphe ra l gold atom s in 
A u9[P (C5H5)3]g+ is d is to rte d  fro m  to  D 3 sym m etry  [21]. This 
arises fro m  the  fa c t th a t the in te rna l vo lum e o f an A u ^  icosahedron 
is large enough to  accom odate the ce n te r gold a tom  whereas the 
in te rna l vo lum e o f an Aug cube is too sm all to  accom odate the 
cen te r gold a tom . The resu lting  sw e lling  o f the Aug cube leads 
to  the  observed sym m etry  reduc tion .

In the  e le c tro n  coun ting  o f cen te red  gold c lus te rs  the (neu tra l) 
cen te r gold a tom  is a donor o f one ske le ta l e le c tro n , i.e ., 11 valence 
e lectrons minus the  10 e lec trons  needed to  f i l l  its  fiv e  d o rb ita ls . 
A to ro id a l cen te red  gold c lus te r requ ires 6 ske le ta l e lec trons  whereas 
a spherica l cen te red  gold c lus te r requ ires 8 ske le ta l e lec trons . These 
numbers are fu l ly  cons is ten t w ith  the 12p + 16 to ta l (ske le ta l plus 
e x te rna l) e le c tro n  ru le  fo r to ro ida l cen te red  gold c lus te rs  and 12p 
+ 18 to ta l e le c tro n  ru le  fo r spherica l cen te red  gold c lus te rs  (p is 
the number o f pe riphe ra l gold atom s) used by M ingos and co-w orkers  
[19]. Such e le c tro n  counting  leads to  the  general fo rm u las 
A unLyX p /_-p?y fo r to ro id a l centered gold c lus te rs  and A unL y X n% 7y 
fo r spherica l cen te red  gold c lusters where L is a tw o -e le c tro n  donor 
ligand such as phosphine or isocyanide and X is a ha lide or 
pseudohalide. Exam ples o f w e ll-c h a ra c te riz e d  to ro id a l c lus te rs  
con fo rm ing  to  the  A unL y X $ i ! y  general fo rm u la  include 
A u8[P(C 6H 5)3]72+ [22], A u9[P (C 6H 5)3]83+ [23],
A u9(SCN)3[P (c -C 5H '] '])3]5 [24], A u 'io C Ig tP ^ -C g H 'i'i^ C g h ^ J fc  [19], 
and A u9[P (C gH4 0C H 3-p )3]g ^+ [25]. Exam ples o f w e ll-c h a ra c te riz e d  
spherica l c lus te rs  con fo rm ing  to  the A unL y X p Y ^y + general fo rm u la  
include A u9 [P (C6H 5)3]g+ [21], A u11 l3[P (C6H 5)3]7 [26], and
Aui3Cl2[P(CH3)2C6H5]io [20].

PLATINUM  CARBON Y L  CLUSTERS

The w e ll ch a ra c te rize d  large p la tinum  carbony l c lus te rs  fa l l  in to  
the fo llo w in g  tw o  ca tegories  (F igure 1): 2
(A) Stacked P t3(CO)g tr iang les  leading to  the  dianions P t3|<(CO)g|<
(k = 2,3,4,5) [27].
(B) Three s tacked P t5 pentagons (BDB in F igure  1) having a P t4 
chain (A C C A  in F igure  1) inside the stack the reby  leading to  the 
Pt-|9(CC»2^ c lu s te r [28].
A common fe a tu re  o f both o f these types o f systems is the s tacking  
o f P tn polygons leading to  a system con ta in ing  a p rin c ip a l C n axis 
on which none o f the polygon p la tinum  atom s are located. In the 
case o f the stacked tr ia n g le  P t3|<(CO)6 |< c lus te rs  having such a
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C 3 axis, the num ber o f e lec trons  a ris ing  fro m  the ve rte x  a tom s 
must be a m u ltip le  o f 3 or the to ta l num ber o f ske le ta l e lec trons  
must be 2 (mod 3) a f te r  a llow ing  fo r the -2 charge. This requ irem en t 
alone leads to  the  2n + 2 (n = 3k in th is  case) ske le ta l e lec trons  
requ ired  fo r  de loca lized  de ltahedra  bu t th is  is not cons is ten t w ith  
the observed stacked tr ia n g le  geom etry  o f the P t3i<(CO)£j<~ c luste rs . 
F u rth e rm o re  the he ight o f some o f these stacks (i.e ., k = 5 is known 
[27]) prevents the  unique in te rna l o rb ita ls  o f a ll 3k ve rte x  p la tin um  
atom s fro m  overlapp ing  a t the core o f the  stack in a 3k -ce n te r 
bond having the topo logy o f a com p le te  graph.

2-
A bonding model fo r  the stacked tr ia n g le  P13|<(CO)^^ c lus te rs  
based on the  observed geom etries  and e le c tro n  counts can in co rpo ra te  
the fo llo w in g  ideas:
(A) The P t(C O )2 ve rtice s  are anomalous using fo u r in te rna l o rb ita ls  
ra th e r than the  norm al th ree . They th e re fo re  have fiv e  e x te rn a l 
o rb ita ls  and are donors o f fo u r ske le ta l e lec trons  each. ^
(B) The ve rtice s  o f the in te r io r  tr ia n g le s  in the  P t3k(CO)fi[<
stack have degree fou r so th a t the in te rn a l o rb ita ls  fro m  these 
P t(C O )2 ve rtice s  m atch the  corresponding ve rte x  degrees in accord  
w ith  expecta tions  fo r edge -loca lized  bonding.
(C) The ve rtice s  o f the tw o  e x te n o r tr ia n g le s  in the P t3^ ( C O ) ^ “ 
stack have degree th ree . A f te r  using th ree  in te rna l o rb ita ls  o f 
these P t(C O )2 ve rtice s  fo r edge -loca lized  bonding, the re  rem ains 
one in te rn a l o rb ita l fro m  each o f the  six p la tin um  atom s o f the 
tw o  e x te r io r tr iang les  fo r fu r th e r ske le ta l bonding. L e t us ca ll 
these "e x tra " in te rn a l o rb ita ls  on each ve rte x  a tom  o f the  e x te r io r  
tr ia n g le s  the Mdbius o rb ita ls .
(D) E dge-loca lized  bonding in each o f the 6k - 3 edges o f the 
P t3k<CO)6£- stack requ ires 12k - 6 ske le ta l e lec trons . Since the re  
are a to ta l o f 12k + 2 ske le ta l e lec trons , e ig h t ske le ta l e lec trons  
are le f t  fo r the tw o  groups o f th ree  Mdbius o rb ita ls  a t the top  and 
b o tto m  o f the tr ia n g le  s tack. The sym m etry  o f the C 2 axes o f 
the 0 3 ^ P t3|<(C O )^<" stacks fo rces equal a llo ca tio n  o f these e igh t 
e lec trons  to  the top  and bo tto m  o f the  stack. This means th a t 
a t each end o f the  P t3}<(C O )^<" stack the re  are fou r e lec trons  fo r 
the m olecu la r o rb ita ls  fo rm ed  by the th ree  tr ia n g u la r ly  s itu a te d  
Mbbius o rb ita ls . This e le c tro n  count suggests th a t a t the  top  and 
b o tto m  tr iang les  o f the P t3|<(CO)^<" stacks, the re  is 4m e le c tro n  
(m is an in tege r, nam ely one in th is  case) Mbbius ove rlap  invo lv ing  
a tw is te d  ring  (Mdbius s tr ip ) o f the th ree  re le va n t o rb ita ls  ra th e r 
than 4m + 2 e le c tro n  un tw is ted  H dckel ove rlap  found in p lanar 
a ro m a tic  hydrocarbons such as benzene [29]. I f  the Mbbius o rb ita ls  
are d o rb ita ls , then tw is te d  Mdbius ove rlap  is possible fo r an odd 
num ber o f m eta l atom s (e.g., a tr ia n g le  or pentagon, bu t not a 
q u a d rila te ra l) since d o rb ita ls  change phase (i.e ., " tw is t" )  a t each 
m eta l c lus te r.

This bonding model fo r the P t3|<(C O )^<" stacked tr ia n g le  c lus te rs  
suggests edge -loca lized  bonding along the  6k - 3 edges o f the  stack 
coupled w ith  de loca lized  Mbbius tr ia n g le s  a t both the  top  and b o tto m
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o f the  stack. Thus the  edge -loca lized  bonding in the P t3 |<(C O )^<" 
c lus te rs  corresponds to  the  edge -loca lized  carbon-carbon o-bonding 
in benzene whereas the Mdbius bonding a t the top  and the  b o tto m  
o f the  P t3 j<(C O )^<" stack corresponds to  the H dckel tt-bond ing  in 
benzene.

The s tru c tu re  o f the  th readed tubu la r p la tin um  carbonyl c lu s te r 
P t^ C C O ) ^  (F igure 1) can be b u ilt as fo llow s :
(1) Three P t5 pentagons (BDB in F igure  1) are s tacked on top  o f 
each o the r fo rm in g  tw o  pentagonal p r is m a tic  cham bers sharing 
a pentagonal face .
(2) A linear P t4 chain (A C C A  in F igure  1) is placed on the  C 5 axis 
o f the stacked pentagons so th a t the tw o  end mem bers o f the  P t4 
chain are the  apices o f pentagonal pyram ids a t the  top  and b o ttom  
o f the  pentagonal stack and the  tw o  ce n tra l mem bers o f the  P t4 
chain are loca ted in the  centers o f the tw o  pentagonal p r is m a tic  
cham bers noted above.

4-
In th is  s tru c tu re  o f P t - jc ^ C O ^  the  in te rna l o rb ita ls  fro m  the  p la t­
inum atom s are used as fo llow s :
(A) End p la tinum  a tom s o f the  P t4 chain (tw o  p la tin u m  atom s): 
Three in te rna l o rb ita ls  a re  used fo r a de loca lized  pentagonal py ram id  
and the  fo u rth  in te rna l o rb ita l is used fo r a loca lized  bond to  the 
nearest in te rs t it ia l p la tin u m  a tom  also in the P t4 cha in .
(B) P la tinum  atom s o f the  top  and b o ttom  P t5 pentagons (ten p la t­
inum atom s): Three in te rna l o rb ita ls  are used fo r a de loca lized  
pentagonal pyram id  and the  fo u rth  in te rna l o rb ita l is used fo r a 
loca lized  bond to  the  nearest p la tinum  a tom  o f the  m idd le  P t5 
pentagon.
(C) In te rs t it ia l p la tin u m  atom s (the tw o  cen te r p la tin um  atom s 
o f the  P t4 chain): A ll nine p la tin um  valence o rb ita ls  are in te rna l 
o rb ita ls  so th a t a ll o f the  ten valence e lec trons  o f each in te rs t it ia l 
p la tin um  a tom  become ske le ta l e lec trons .
(D) P la tinum  atom s o f the  m idd le  P t5 pentagon (f iv e  p la tin um  atom s): 
A ll fou r in te rna l o rb ita ls  are used fo r edge -loca lized  bonds to  ne igh­
boring p la tin um  atom s.
This a llo ca tio n  o f p la tin u m  in te rna l o rb ita ls  leads to  the  fo llo w in g  
e le c tro n  counting  scheme fo r P t ^ C O ) ^ :

Source o f ske le ta l e lec trons :
17 P tC O  ve rtice s  using 4 in te rna l o rb ita ls : (17X2) =
5 "e x tra " CO groups: (5X2) =
2 in te rs t it ia l p la tin u m  atom s: (2X10) =
-4 negative  charge on anion 

T o ta l ava ilab le  ske le ta l e lec trons

Use o f ske le ta l e lec trons :
E dge-loca lized  bonding in the P t35 tube: 25 edges =
E dge-loca lized  bonding in the P t4 chain: 3 edges =
Increm enta l e lec trons  fo r the tw o  de loca lized  

pentagonal pyram ida l chambers: (2)[(2)(6)+4-10] =
T o ta l ske le ta l e lec trons  requ ired

34 e lec trons  
10 e lec trons  
20 e lec trons  
4 e lec trons  
68 e lec trons

50 e lec trons  
6 e lec trons

12 e lec trons  
68 e lec trons
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PtiglCO)̂
F igu re  1. S ch em a tic  d ia gram s o f  the p la tinum  ca rb on y l c lu sters d is cu sse d  in 
this paper.
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4-
This ind icates th a t the  anion P t 'jg C C O ^  has e x a c tly  the number 
o f e lec trons requ ired  fo r the above bonding m odel. F u rthe rm ore , 
the exis tence o f a homologous series o f th readed  tubu la r c luste rs  
is p red ic ted  having the  general fo rm u la  P t5n+'] ( C O ) ^ +^ >

SUM M ARY

This paper shows how our g raph -theo ry  de rived  approach fo r m eta l 
c lus te r bonding can be extended to  gold and p la tin um  c lus te rs  exh ib ­
itin g  new s tru c tu ra l fea tu res . For the tre a tm e n t o f these systems 
im p o rta n t ideas new to  th is  theory  need to  be in troduced , no tab ly  
non-spherica l ( i.e ., to ro id a l and c y lin d r ic a l)  bonding m an ifo lds fo r 
the gold c lus te rs  and Mdbius bonding fo r the  stacked tr ia n g le  
P t3 |<(C0 ) ^ <" c lus te rs .
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A BSTRA CT

There are numerous examples of chemical properties, 
phenomena and processes which correlate surprisingly well 
with ionization energies of its subjects. However, in many 
cases such correlations lack a sound physical basis. Elec­
trochemical oxidation of organic molecules and the one 
occurring in a noninteracting solution and/or gas phase by 
means of a strong oxidant can be considered, as processes 
with electron transfer taking place in the rate determining 
step. Since the latter processes are of great environmental 
significance the predictive power of an ionization energy 
reaction rate correlation would be of great use and impor­
tance. Examples leading to prediction of abiotic degrada­
bility of atmospheric pollutants and ozonization rates in 
drinking water treatment are presented.
IN TRODU CT ION

The primary concern of chemistry is compounds: 
their formation, properties and reactions. The obvious 
investigative route for satisfying these concerns is experi­
ment, namely observation and measurement; the other is the 
development of models and the construction of theories. The 
focus of this work concerns the latter (i.e., models and



156 Ionization Energy Correlations [Ch.15

theories). However, since we posit a chemocentric view, we 
assume that our results are also of fundamental significance 
to biology, physics, ecology, etc.

Chemistry assumes that electrons moving in the 
potential field of nuclei are crucial to the existence and 
development of those chemical forces that define the forma­
tion, properties and reactions of chemical compounds. One 
of the theoretical approaches that adopts this view is the 
orbital (atomic, AO, or molecular, MO) concept which de­
scribes the motion of an electron (or electrons) in the 
average field of a complicated system and assumes that the 
result bears on reality. The success of this method is well 
documented and the difficulties it encounters, particularly 
when confronted by spectroscopy [1], have been elaborated.

In this work, we will advocate the use of ionization 
energies as a basic parameter for the description of certain 
chemical processes. There are two main reasons for such an 
advocacy: (i), the ionization energy is an experimental
quantity that is readily determined by numerous methods 
based on the release of electrons from chemical compounds; 
and (ii), a direct relationship of the ionization energy and 
the orbital model exists, although it is not always as 
straightforward as Koopmans' theorem [2] would suggest.
PH OTO ION IZA T ION , ION IZA T IO N  EN ERGY  AND 
K OOPM ANS’ TH EOREM

The release of an electron from any chemical system 
is an ionization We will confine ourselves here to the 
ionization of free atoms and molecules in the gas phase 
caused by electromagnetic radiation (photons). Such events 
are known as "photoionization" processes, the released 
electrons are termed "photoelectrons" and the technique used 
to determine their excess kinetic energy is referred to as 
"photoelectron spectroscopy." If the photon energy, as 
obtained, say, by monochromatized synchrotron radiation or 
tunable laser radiation, is exactly equal to the ionization 
energy, the photoelectrons will escape with zero kinetic 
energy. This type of electron spectroscopy is known as 
"threshold photoelectron spectroscopy" (TPS). If the photon 
energy exceeds the ionization energy, the surplus excitation 
is transferred to the ejected electron as a kinetic energy. 
The technologies that measure this excess energy are re­
ferred to as "X-ray or uv-photoelectron spectroscopy" or, 
for short, XPS and UPS, respectively. When the excess 
kinetic energy, E^, of the photoelectrons ejected from a 
sample at fixed photon energy is plotted against their 
number, the result is a "photoelectron spectrum." The 
corresponding ionization energies, E^, (or ionization 
potentials I, or electron binding energies BE) follow from

E i,j = hv - E k ; j = 1.2,...w; w < hv



Ch.15] Koopman’s Theorem 157

In the MO picture, the photoelectrons originate in 
individual electronic orbitals of the molecular ground 
state. If spinorbit coupling is small, each nondegenerate 
orbital is occupied by two electrons of opposite spin (Fig­
ure 1). However, the photoionization spectrum need not
consist of the set of single-event processes that supposedly 
describes the UPS and XPS processes. Indeed, electron 
excitation can accompany electron ejection ("shake up"); two 
electrons can be ejected simultaneously ("shake off"); or a 
second electron can be subsequently ejected from the origi­
nal highly excited ion produced in XPS (Auaer orocessV

e
. 1i ______ i

' =; 1
i _____  Ji -----  1i ------

-N- 4+ 4- 4- 4+- 4--H- 4- 4— 4- -Hr 4—-H- 4+> 4-P> -H-> -H- 44-
><

-H-
<

4t <4-t- <4i- < -H-
GROUND UPS SHAKE-UP SHAKE-OFF XPS AUGER

F igu re 1. Ion iza t ion  p r o c e s s e s  in the s in g le  c on figu ra t ion  app rox im a tion .

The connection of theory and experiment is given by 
Koopmans1 theorem [2] which states that the electronic 
wavefunction of a singly ionized state is adequately de­
scribed by Slater determinants based on the set of N-l 
ground state self-consistent field (SCF) molecular spin 
orbitals (MSO). That is, if,

*0 = I f a (1) 4>b (2) . . . .  <Dn (N) |
is a good descriptor for the ground state, then 

* Nl J  = I <t>a (1) f>b (2) — - <t>m (N-l) |
is a good descriptor of the singly ionized state. The
ionization energy, then is

N-l N N-l N-l N-l N N N
Ei,n=E(HV  )“E ^ o )=<H/-n |H |4/-n > - < V HV o  > = ‘£ nn
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where HN 1 and HN are the SCF hamiltonians for the N-l and N 
electron systems, respectively. This statement, namely that 
the ionization energy equals the negative of the orbital 
energy of the ejected electron, -e , is the first part of 
Koopmans' theorem. nn

Now, the function 4*_n is by no means optimal. The
optimal function may be written as the Cl (configuration interaction) expansion

„N-1 J i|iU £Ukcocc -k k kjecoccucocc
Y u Cu-kjeL \a

where, for example, 4 ^ ^  denotes a determinant 4^ in which
spin-orbital <]) has been replaced by <|> ;

a p and where we have
dropped the N-l superscripting to avoid crowding. The 
function 4^, , as is obvious, is a shake-up configuration~ ̂  N-1(Figure 1). Simplification of 4; might consist of trunca­tion to N 1

» '  = keicc * -k Ck
However, what we desire is really

,N-1 = T
This gross simplification is equivalent to the demand that 
we find an orthogonal transformation of the set of Hartree- 
Fock MSO's so that the cationic state can be represented by 
one single determinant constituted from this set, namely 
4'_k , and the neutral ground state can be represented by one
single determinant constituted from the same set, namely by 
4*q . Koopmans' theorem asserts this possibility and it
identifies the appropriate MSO set as the canonical Hartree- 
Fock set.

This latter assertion is the second and more impor­
tant part of Koopmans' theorem. It may be rephrased alter­
natively: The only allowed ionizations are those which
remove an electron from an MSO [or shake-up and shake-off 
transitions are forbidden]. If spin-orbit coupling is small 
(<20 meV), a further restatement becomes possible: The only
allowed ionizations are those which remove one electron from 
an MO. Koopmans' theorem provides a salient experiment/ 
theory interface. Consequently, it is well to specify the 
approximations inherent in its derivation. These are: 
(i) Fixed-Nuclei Approximation - It is the Born-Oppenheimer 
approximation which permits the notion of "molecular geome­
try." Thus, in addition to this approximation, it is also
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understood that the cationic N-l electron system which is 
the immediately terminal state of the process

N-electron system + hv = (N-l)-electron system + e 
is identical in all geometric detail to the initial state of 
the N-electron system. This, of course, is the Franck-
Condon approximation. Consequently, Koopmans1 theorem 
applies only to vertical ionization events.(ii) The Correlation Energy - The neglect of correlation
energy is intrinsic to the Hartree-Fock approximation. The 
correlation energy is caused by the fact that electrons 
adjust their motions to the instantaneous charge distribu­
tion, and not to an average charge distribution (as is
assumed in the Hartree-Fock equations). In fact, the corre­
lation energy is the difference between the correct energy 
and the Hartree-Fock energy associated with any given Hamil­
ton operator. If relativistic effects are small, the latter 
is well known, and the "correct energy" is equivalent to the 
experimental energy. However, electrons of opposite spin 
usually tend to stay considerably further apart (i.e., correlate their motions better) than a single determinantal 
wavefunction will allow and, as a result, correlation ener­
gies can be quite substantial. Nonetheless, while large for 
any one state, it is only differences between two states,
namely between the initial N- and terminal (N-l)-electron
states, which is of significance to photoelectron spectros­
copy. This difference may well be small. Koopmans' theorem 
implies that it is zero.
(iii) The Relaxation Energy - The same set of spinorbitals 
is used to construct the Slater determinants for the N- and 
(N-l)-electron systems. This supposition implies that the 
electrons of the cation do not adjust in any way to the 
reduction of interelectronic repulsions which must charac­
terize the (N-l)-electron system. This supposition is known 
as the "frozen-core" or "frozen orbital" (fc) approximation.
(iv) The Non-Relativistic Approximation - This approximation 
is not a consequence of the functional nature of the wave- 
functions; it is, rather, a defect caused by the omission of 
relativistic terms from the Hamilton operator. We have 
omitted these terms solely for convenience. The various 
relativistic terms -- for example, spin-orbit or spin-spin 
interactions —  might have been included in the Fock opera­
tor in a way which would not have altered any of our conclu­
sions. In fact, in his original paper, Koopmans included 
relativistic effects explicitly -- and to no ill effects 
whatsoever.
(v) Restriction to Closed-Shell Systems - Koopmans' theorem 
is restricted to closed-shell N-electron systems. Thus, at 
least in the form expressed here, it is specifically inap­
plicable to non-closed-shell systems (e.g., many transition 
metal complexes).
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The relationships between the experimental ioniza­
tion energy, the MO energy and the Hartree-Fock ionization 
energy are schematized in Figure 2. The correlation energy 
is always negative and is shown to be slightly larger for 
the system with the larger number of electrons.

AE (corrj --
AE (fc)

energies of cation 
energies of neutral species, 
correlation energy 
frozen core energy correction

F igu re  2. R e la t ion sh ip  b e tw een  ex p er im en ta l ion iza t ion  en ergy , E i? the 
K o o pm a n s’ M O  en er gy  and the H a rtree-F ock  ion iza t ion  en ergy , SCF

The reorganization energy for the cation [i.e., AE+ (fc) =
[E+ (Koopmans) - E+ (HF)] is always positive. Hence, there is
a tendency for |AE+ (fc)| + |AE+ (corr)| to be approximately
equal to |AEU (corr)| and it is this tendency which is 
responsible for the moderate success of Koopmans1 theorem.

Clearly, the higher the ionization energy (that is, 
the deeper the MO from which electron ejection occurs) the 
greater is the chance for breakdown of this simple one- 
electron picture.

Thus, our advocacy of the parametric use of experi­
mental ionization energies refers only to the lowest (or, in 
some special cases, the next to lowest) I. The restrictions 
to experimental values is not particularly stringent in view 
of the numerous examples of correlations that exist between 
calculated and experimental ionization energies (e.g., 
Schmidt [3]). Extensive correlations of experimental ion-
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ization energies with various chemical properties are also 
available but, while often surprisingly good, they are 
usually difficult to justify theoretically. Such correla­
tions can be very useful: for example, they may permit
estimates of otherwise unattainable information. The fol­
lowing examples, all of which are based on processes in 
which organic compounds transfer an electron to a partner 
(electrode or reagent) and become oxidized, will now be 
discussed.
RELATIONSHIP OF THE STANDARD OXIDATION 
POTENTIAL TO THE IONIZATION ENERGY OF AROMATIC 
HYDROCARBONS [4]

Electron transfer to and from aromatic hydrocarbons 
plays an important role in various reductive and oxidative 
processes [5], [6]. The parameter of choice for the assess­
ment of the ease of electron transfer during the reactions 
of these compounds with electrophiles and oxidants is the 
standard oxidation potential, E°. The most direct access to 
oxidation potentials is provided by electrochemical methods, 
among which cyclic voltammetry (CV) is undoubtedly the most 
appropriate for organic solvents. Unfortunately, values of 
E° for benzene derivatives were in short supply: the brief
lifetime of arene cation radicals produces hysteresis in the 
cyclic voltammograms. However, the recent development of 
microvoltammetric electrodes [7], which makes it possible to 
record voltammograms at sweep rates larger than lOOOOV/s, 
has produced copious data for alkyl and polyalkylbenzenes
[4]. Concurrently, we have measured the vertical ionization 
energies, E. , using the Hel UPS technique [8-10]. Since

1  y VE. is a gas phase value, any correlation with E° may
permit estimation of solvation effects [11]. Similar, 
though different information may be obtained from i), the 
correlation of E° with the anodic peak potentials, E^,
obtained under irreversible CV conditions or from ii), the 
correlation of E° with the oxidation potentials of aromatic 
hydrocarbons when these are n-complexed to metal centers 
such as Cr(C0)3 -

The correlation of E° (volts relative to the normal 
hydrogen electrode, NHE) for 27 aromatic hydrocarbons in 
trifluoroacetic acid with E. (eV) for the gas phase is

1 y Vfound to be excellent. It is given by 
E° = 0.71 E. - 3.68

* y  Vwith a correlation coefficient r = 9.98 (i.e., confidence 
level > 99.9%) The slope is considerably less than unity, 
indicative of the fact that the energetics in the gas and 
solution phases, while related, are not identical. In fact,
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the solvation contribution is included in E° whereas the 
reorganization energy of the arene cation radical, which 
undergoes Jahn-Teller distortion [12, 13], is not included 
in E. . The difference in free energy, AG°, associated
with solution of the aromatic hydrocarbon Ar is

AG° = [(G°r+)s - ^GAr+>g ' <GArV
where g and s refer to gas phase and solvation states, 
standard oxidation potential

The
E" = (1/F) (4GJ ♦ t(GJr*)s - (GJr )g 1] + c

where F is the Faraday constant and C is a constant for a 
given electrode system. Since the vertical ionization 
energy is

E i , v = <1 / F > "GZr - <G A r V
where (G^ r+ )g 1S The free energy of formation of the unre­
laxed arene cation radical (Franck-Condon transition). 
Substitution in E° yields

E° = E. + [(AG° + AG°) /F] + C ), v r s
where AG°, the reorganization energy of Ar+ , represents the 
difference (G^r+)g ~ (G°r+). Comparison with the correla­
tion line then yields

AAG° = AG° + AG° = -0.29F . E. + C' r s l , v
C ' = 4.1 + C, indicating that AAG° is of the order of 7
kcal/mol for these compounds. Since the solvation energies
of the neutral species are small, these effects must be
attributed to the radical cations. It also appears that the
deviation of the slope from unity represents variations of
AG°, because, among certain sterically-related compounds,
the polyalkylbenzenes for example, the slope does approxi­
mate unity.

The correlation of E° with the anodic peak poten­
tials E obtained from irreversible CV in an acetonitrile Pmedium yields

E° = 1.01 E - 0.001 P
where both potentials are expressed in volts referenced to
NHE. This surprisingly good correlation (n = 0.98 for 18
compounds, slope ~ 1 , intercept ~ 0 ) leads to a more general
relationship that also includes many polycyclic aromatic
hydrocarbons (PAH) [11]. This correlation is shown in
Figure 3 and is given by

E = 0.63 E. - 3.01
P i , v
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F igu re 3. C o r r e la t io n  o f  the ir rev ers ib le  C V  p eak  p oten tia ls, ep, o f  va r iou s 
a rom a tic s in a ce ton itr ile  w ith the vertica l ion iza t ion  en ergy , Ex v n um bers re fe r to  
b en z en e  (0) and a lk y lb en zen e s  from  [4] and naph th a len e (28), an th racen e (25), 
ph en an th ren e (30), ch ry sen e  (31), o f  b en zan th ra cen e  (32), p y ren e  (33) and 
p e ry len e  (34) from  [11].

where E is expressed in volts relative to NHE and E. w is p i»vcited in eV. (r = 0.97 for 26 compounds). This linear
correlation resembles ones reported by Miller et a]_. [14],
Neikam et a]_. [15] and Pysh and Yang [16] for the
polarographic oxidation potentials, E^, of a great variety
of organic compounds and for which the slopes E^/E.. v =
0.89, 0.83 and 0.68, respectively. Thus, regardless of the 
variation of the free energy AG° and the kinetic contribu­
tions from the follow-on reactions of the radical cation, 
remarkable correlation quality was obtained, indicating that 
these variations/contributions are either small and constant 
and/or that there is much fortuitous cancellation between 
them. We assume that the former is the more likely.

We now investigate our ability to correlate some 
important electron transfer processes in both the gas and 
the solution phases to ionization energies.
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PREDICTION OF THE ABIOTIC  DEGRADABIL ITY  OF ORGAN IC 
COMPOUNDS IN THE TROPOSPHERE [17]

Numerous oxidation reactions occur in the tropo­
sphere. Many of these lead to degradation of natural gas­
eous organic compounds as well as anthropogenic pollutants. 
These reactions are part of the self-purifying tropospheric 
process and they belong to the global carbon cycle. It is 
now well established that certain photochemically-produced, 
short-lived radicals are responsible for these oxidative, 
tropospheric reactions [18]. Among these, the extremely 
reactive OH radical is surely determinative of the lifetime 
and the distance a pollutant can travel in the course of 
tropospheric transport. Indeed, even ten years ago [19], 
the relative reactivity 0:0H was known to be ~1:100.

The absolute rate, kQ H , for the reaction of OH with 
a gaseous chemical compoundu sets the upper limit for the 
troposphere lifetime of this compound. Indeed this reaction 
follows the pseudo-first order equation

^  = *"2/kQ H [0H]
where is the tropospheric lifetime and [OH] is the mean
annual concentration of tropospheric OH, for which Crutzen

5 3[20] cites the value 5*10 OH radicals/cm . Unfortunately,
this equation is only approximate: other processes such as
direct photolytic degradation by sunlight, the adsorption 
onto soil and the diffusion into the stratosphere can short­
en the lifetime considerably. Nonetheless, this equation 
does provide a secure prediction for the maximum persistence 
time of chemicals that enter the atmosphere.

Measurements of OH reactivity are complicated and 
restricted to readily vaporizable compounds. Consequently, 
a vital need for a predictive capability of "hydroxyl reac­
tivity" exists. Such a predictive capability, were it to 
exist, would also be of use in the liquid phase: Glisten et 
a l . [21], for example, have shown that a statistically
significant correlation of OH reactivity in water and OH 
reactivity in the gas phase does exist. Consequently, a 
great deal of correlative effort has been expended in this 
area: For H-atom abstraction from alkanes by OH-radicals, a
correlation of the reaction rate with the bond energy has 
been uncovered [22-25]. Zetzsch [26] used structure reac­
tivity relationships such as the Hammett equation to predict 
OH reactivities; and Gaffney and Levine [27] showed that the 
rate constant for the reaction of OH with alkenes and dienes 
correlates linearly with the first ionization energy.

We have recently constructed a large data base of 
kgH and E. v values [17] with the express purpose of study­
ing their use in predicting abiotic degradibi1ity and tropo-
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Figure 4. Correlation of - logkpH vs. E- for 161 organic compounds in the gas 
phase at 300K. The text should oe consulted for further elaboration. Open circles 
refer to aromatics and closed circles refer to aliphatics. The lettered datapoints, 
a-t, indicate reference chemicals [28].

Table 1. Predicted OH rate constants and mean tropospheric lifetimes of some
chemicals at 300K.

C0mp0und Ei,/eV ■1°9(k0H/cmY 1) ll/2/days

Diehlorodiphenyl ethylene
(DDE) 8.23* 10.4 0.40

Trichlorobi phenyl 8.34* 10.6 0.64
(TCB)
DDT 8.62* 11.0 1.6

Methyli socyanate
(MIC) 10.6 11.4 5

p-Ni trophenol 9. 38 12.1 25
2,6-Dichloro-
benzoni tri1 9.79* 12.8 100
:See text for approximations
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spheric lifetimes. This repository contains 361 k0„ data 
points for 161 different compounds and a considerably^larger 
number of ionization energies. No simple correlation of 
-logkg^ vs. E. was found to exist. However, knowing that
-logkQH for substituted benzenes does correlate with the
corresponding ionization energies [29], it was decided to 
treat the aromatics and the aliphatics separately. This 
correlative attempt was successful, the only sour note being 
the discordant behavior exhibited by ketones, carboxylic 
esters, epoxides and halides (fluorides excepted). All 
these latter compounds have one property in common: their
lowest energy ionization is associated with removal of an 
electron that is localized on the characteristic group (or 
atom). Consequently, it appears that the electrophilic OH 
radical does not attack organic molecules at the lone pair 
centers. Therefore, it seemed proper to substitute the 
deviant ionization energies by those for substitute mole­cules which were identical in all regards except for exclu­
sion of the possibility of lone-pair ionization. These 
substitute molecules are:
R-CO-R' -> RCH0R ' ; RCOOR RCH0R ' ; RCH-CH-R' RCH0CH0R ‘2 2 NgX 2 2

RX ( X=C£, Br, I) -» RH or, better, RF 
The correlative result using this tactic and embracing all 
161 compounds is presented in Figure 4. Two clearly dis­
tinct, excellent correlations exist:
- for aromatics, with n = 32, r = 0.95, s = 0.29 and t = 16,
we find ~ 1

'log (knu/cm s -1) = (1.52 ± 0.10) E. /eV - (2.06 ± 0.84) uii 1 , v
- for aliphatics, with n = 129, r = 0.95, s = 0.36 and t = 36,
we find ~ ..

-log (knu/cm s -1) = (0.79 ± 0.02) E. /eV + (3.06 ± 0.24)Un 1 , V
where n is the number of molecules in the class; r is the 
correlation coefficient; s is the standard deviation; and t 
is the Student's t function. Both equations yield a predic­
tive capability for k^H that is accurate to one order of
magnitude or better, the probability being about 90% (± 
1.5s). These two linear equations obviously reflect alter­
native reaction paths of the OH radical for aromatics and 
aliphatics at 300K, a view that is supported by the kinetic 
data of Rinke and Zetzsch [29] and Lorenz and Zellner [30].
In any event, for aromatics, the temperature dependency of 
kQ(, indicates that OH addition is the dominant reaction path at room temperature.

On the basis of the regression line behavior we have 
predicted the reaction rate constants and the mean trospo- 
spheric lifetimes of a few chemicals of environmental sig­
nificance (Table 1). One of these, methyl isocyanate (MIC),
is the compound responsible for the recent Bhopal (India) 
tragedy which killed or injured thousands. The tropospheric
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lifetime of this aliphatic compound was unknown but, from 
the published ionization energy [33], it was easily estimat­ed as = 5d.

PRED ICT ION  OF L IFET IM E OF TR A CE  OR G A N IC S  IN DR INK ING  
W ATER  TR EA TED  W ITH  O ZO N E

The growing pollution of surface and ground water by 
chemical compounds increases the possibility that these will

Figure 5. Correlation of log k0, vs. E- v [10] for organic compounds in water at 
25°C. The right ordinate gives half-lifetimes, t^(s), for an ozone concentration in 
water of lmg/1.
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enter the final stages of drinking water treatment. Among 
other methods for the final treatment of drinking water, the 
use of ozone, in particular, has a long tradition in Europe 
especially for removing bacteria and odor and improving 
taste. Thus, more than 150 ozone purification plants exist 
in Switzerland alone. These, operating with a 4-19 m con­
tact with 0.4-10 mg/£ ozone, achieve 99% reduction in bacte­
rial count [36-36]. Hoigne and Bader [ 3^-36 ] have
performed extensive measurements of reaction rates with 
ozone for numerous organic compounds in water, their aim 
being to determine pollutant lifetimes and to optimize the 
ozonation process. These authors found that the reaction 
was first order in both ozone and the organic, indicative of 
a situation similar to that for OH radicals. Thus, they 
found

\  = £n2/kQ3 [0 3]
where kQ3 is the reaction rate constant and [03] is ozone
concentration in the water system. Thus regardless of the 
actual reaction mechanism(s), it is almost certain that the 
rate determining step is an oxidative electron transfer from 
the dissolved substrate. If so, a linear correlation of log
kg3 with ionization energies is to be expected and a predic-
tivity of for trace organic compounds in water subjectedi?to ozonation would appear to be at hand.The reaction rate constants k^3 of some substituted
aromatics [38, 39] are plotted against lowest ionization 
energies in Figure 5.
The correlation is excellent. This correlation permits the 
prediction, for given E. and [03 ], of or, equivalently,
predicts the appropriate contact time and [03 ] for the
reduction of contaminant concentration to an acceptable 
value. The right-hand ordinate of Figure 5 shows the value
of at an ozone concentration of 1 mg/£ (or 2*10-5 M).
Within the 20m time used for bacterial desinfection at this 
ozone concentration, it is seen that all compounds higher 
than toluene are oxidized. Benzene and the chlorinated 
benzenes, however, require contact times of 3h under these 
same conditions. Thus, in order to achieve oxidation of 
benzene or the chlorinated benzenes in times under 20 minutes,

-4an ozone concentration of 10 mg/£ (2x10 M) is necessary.
The higher aromatic compounds are oxidized within a 

few seconds which, in view of their carcinogenicity, is an 
important finding. Indeed, until recently [38] polycyclic 
hydrocarbons were thought to be highly resistive to ozona­
tion [40, 41]. It is now clear that this is not so.



Ch. 15] Treatment with Ozone 169

Correlations such as those of Figure 5 can be used 
to predict the persistence of an organic to ozone if its 
ionization energy is known. Although is not as diffi­
cult to determine as k ^ ,  such prediction are very usefulUh
indeed.
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Chapter 16

CHEMICAL GRAPH-THEORETIC 
CLUSTER EXPANSIONS
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ABSTRACT

A general unifying computationally-amenable chemico- 
graph-theoretic cluster expansion method is offered 
as a paradigm for graph-theoretic applications in 
chemistry. The scheme is outlined and some of the 
multitude of possible applications are briefly 
indicated.
INTRODUCTION

There is a vast range of problems for which simple 
chemical structure ideas are relevant, and as a con­
sequence graph-theoretic methods are expected to aid 
in formalizing, quantifying, and extending these 
ideas. Such problems range from the empirical to 
semiempirical and on to more purely theoretical 
realms. Some corresponding example problems include: 
the organization of the variations of a biological 
activity for a range of related molecules or for a 
similar organization of chromatographic separation 
coefficients (in the empirical realm); component (or 
cluster) expansions of the ground-state electronic 
energy of individual molecules or of molecular mag­
netic susceptibilities (in the semiempirical area); 
and the construction of size-consistent ab initio 
wavefunctions or the computation of statistical 
mechanical partition functions (in the theoretical
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regime). Because simple chemical bonding ideas are 
used in conjunction with such a wide range of 
diverse problems there arises the fundamental ques­
tion: MIs there an underlying unifying computation-
ally-amendable chemico-graph-theoretic paradigm 
applicable over this wide range of problems?” Here 
we suggest a form for such a paradigm so as to 
indicate an affirmative answer to this question.
There has been previous work toward such a paradigm. 
Notable efforts in this area are by Gordon, Kennedy 
and coworkers [1,2,3] primarily for empirical appli­
cations and by Domb [4] for statistical mechanical 
problems. In addition to indicating a broader range 
of application we extend the paradigm to encompass a 
wider family of mathematical approaches. For 
instance, no limitation of the choice for the cluster 
function to the so-called zeta function is made here. 
The present lifting of earlier restrictions to con­
nected subgraphs permits the paradigm to extend to 
new (so-called multiplicative and derivative) classes 
of quantities, including partition functions and 
wavefunctions [5]. Much research [6-16] concerning 
so-called "topological indices” or graph-theoretic 
invariants for correlation with molecular properties 
can be viewed as making special choices for low- 
(and often fixed-) order cluster expansions of the 
type described here. A step further "back” is an 
immense quantity of work tabulating numerical results 
for particular properties via what may often be 
interpreted as fixed low-order graph-theoretic 
cluster expansions. For such work concerning thermo­
chemical properties of organics see ref. [17-20]. 
Curiously, related developments in statistical 
mechanics seem to have taken place quite indepen­
dently: earlier work dates back to the thirties [2 1 —
23]; the relevance of formal graph theory was 
emphasized in the fifties [24,25]; and Mobius inver­
sion was used in the sixties [26-28] . In the quantum 
chemical regime it turns out, for instance, that the 
(clearly graph-theoretically related) valence-bond 
type wavefunctions [29-31] can be viewed [32] within 
the present context; still the ideas apply over a 
much broader range [5] of wavefunctions, as well as, 
to matrix element evaluation.

GRAPH -TH EORET IC  B A CK G ROU N D

As usual a graph G is identified in terms of first a 
set V(G) of sites or vertices and second a set E(G) 
of edges consisting of (unordered) pairs of sites. 
There are many possibilities for what the sites may 
represent. Some examples include:
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(a) electrons or orbitals in atoms or molecules;
(b) chemical bonds or bond- and lone-pair geminals 

in a molecule;
(c) atoms or atomic ions in molecules or crystals;
(d) functional groups in molecules or polymers;
(e) molecules in an aggregate, liquid, or crystal. 
The corresponding different choices for edges of G 
are associated to near-lying or more directly inter­
acting pairs of sites. The usual molecular graphs of 
elementary chemistry are but one example of graphs.
The nomenclature here for subgraphs is standard [33]. 
Connected subgraphs are used to describe systems with 
no isolated (or noninteracting) pieces (or sub­
systems). A spanning subgraph G" of the graph G is 
such that V(G")=V(G). As indicated later these sub­
graphs are useful in describing many-body ("multi­
plicative") global quantities. The subgraph partial 
ordering relation G ' G  is defined to mean that 
V(G") s. V(G) and E(G") S  E(G). The components of a 
graph are the maximal connected subgraphs. A 
selected set of connected subgraphs is denoted by 
C(G), and the corresponding set of spanning subgraphs 
each component of which is a member of C(G) is 
denoted by Cx(G).
A useful type of function mapping graphs onto the 
real numbers consists of size functions s(-)« By 
definition

s (G ) ^ 0

G ^  G s(G") s(G)
Given such a size function, say c(•), on connected 
graphs a corresponding size function cx ( • ) on 
spanning graphs is to be such that cx(G) is the 
maximum of the sizes of its (disjoint) components as 
measured by c(*)- One choice for the size s(G) is 
the number |V(G)| of vertices of G. Another choice 
for c(G) is the (connected) graph's diameter, as 
measured by the maximum graph-theoretic distance bet­
ween two vertices of G.
CLUSTER EXPANSIONS
Consider a general "property" X and its realizations 
X(G) for systems labelled by graphs G. The asso­
ciated cluster expansion is

= f (G , G" ) x(f,GO
G '

X(G)
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where the x(f,G") are f-irreducible cluster 
quantities corresponding to X and to the cluster 
function f(«,*) which maps a pair of graphs onto the 
real numbers such that

f = 0 , G i G '
f (G ,G") f0 , G = G'

( = ? , G 3> G '
For example, for expansions of heats of combustion of 
hydrocarbons [7,17-20] in terms of connected-subgraph 
cluster expansions the x(f,G^) would be site 
energies, bond energies, etc. as G ' increases from 1 
site, to 2 sites, etc. A common choice for f(• , • ) 
is the zeta function

with G, G ' restricted to a set S of graphs such as 
C(G) or CX(G). Other common choices for f(•,• ) 
retain an "independence'' of the property X and take 
the function values to be nonnegative and are such 
that f(G,G") depend only upon portions of G that are 
"close" to G". Another example is

f(G,G")
I > L _ _ d ( u , G )  2 
ueV(G')
0 , otherwise

G ̂  G '

where d(u,G) is the "degree" of u in G and the sub­
graphs are restricted to a set S = C(G). This set 
introduced by Randic [12] has been extensively 
applied [13] to a great variety of biological 
activities.
The cluster expansions may be truncated to yield a 
sequence of approximants, the n^h order one being

s(GQ<n
X(f,n;G) = f (G, G" ) x(f,G')

G '

A significant feature here is that low-order approxi­
mants often yield very accurate estimates, as is 
commonly individually noted for a vast number of 
particular properties. (See, e.g., refs. [6-20].)
A second feature is that in principle a whole hier­
archy of approximants is possible. Different choices 
for X, f(•,•), associated set S, and s(*) lead to 
different cluster expansion approximants. A crucial 
point concerns.the manner of determination of the
x(f,G').
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Perhaps the most common approach to estimate the 
x(f,G^) is to restrict attention to a single low- 
order approximant (with say s(G")<n=2) and choose the 
associated x(f,G") so that X(f,n;G) least-squares fit 
the experimental X(G) for some chosen data set of 
systems G. Gordon and Kennedy [1] note that this 
least-square fitting approach has the undesired 
feature of dependence upon the data set chosen. 
Further extensions to higher order would entail a 
(typically) ever more rapidly increasing number of 
empirical parameters. Thence the physical-chemical 
meaning of these parameters becomes clouded and the 
possibility of multiple solutions to the least- 
squares optimization increases.
A second approach is to determine the x(f,G ) by 
"inversion" (from small subsystem data). That is, 
the f-irreducible cluster quantities are obtained 
from X(G"") for smaller subsystems G "  ,

x ( f , G ' )  =  ̂  ~ f"1 (G,G"") X (G")
G "

where f 1(*,#) is the inverse cluster function such 
that

f (G,G" )f"! ( G % G ^  ) = 6 (G,G")
G"

Thus f 1(•,•) for reasonable size graphs is available 
via standard matrix inversion or via the recursion 
relat ion

f- 1 (G,G) = 1/f(G,G)

f_ 1 (G,G~) = - T T T - r ^  * (G.G*)f_I (G* , G "
j G"CL G

This relation is entirely analogous to that for the 
Mobius function [34], which is the inverse of the 
zeta function, and which is already explicitly given 
[2-4,28] for several choices of the graph set S. The 
inversion approach for the x(f,G") has several desir­
able features: first, the x(f,G") take values
dependent only on the X(G"") for G ' ' G ' , so that as 
data for larger graphs is added (or improved) the 
x(f,G") do not change; and, second, no optimization 
is required but only a guaranteed well-defined com­
putationally tractable inversion problem independent 
of the property X.
Yet a third or fourth approach is sometimes possible.
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For instance, for wavefunctions the Rayleigh-Ritz 
variational principle might be used to make an 
optimal choice for the irreducible cluster wave- 
functions. Treatment of many theoretical quantities 
is feasible via perturbation expansions.
An illuminating analogy comparing the first two 
approaches is possible. The optimization method (in 
the n^h order) is analogous to curve fitting an n^h 
degree polynomial to a data set of points. On the 
other hand the inversion method is analogous to a 
Taylor-like series expansion with the x(f,G") corres­
ponding to derivatives and the f(G,G") to the 
monomials; more generally the f(G,G") correspond to 
(perhaps orthogonal) polynomials of increasing 
degrees with the x(f,G ) the associated expansion 
coefficients.
CATEGOR IZAT ION  OF PROPERTIES

A quantity X may be categorized in terms of its 
behavior in the limit that a system G = AYB breaks 
up into two separate noninteracting subsystems A and
B. The four considered possibilities

X(AVB) -* X(A) + X(B)
X(AYB) -> X(A) or X(B)
X(AVB) -> X(A)-X(B)
3 X (AY B ) + 9X(A)•X(B) + X(A)-3X(B)

are here termed additive, constantive, multiplica­
tive , and derivative, respectively. In the last case 
the derivative quantity 3X is associated with a cor­
responding multiplicative property X.
Very frequently attention has in the past been 
restricted to additive quantities. Representative 
examples include:
(a) various energies (free, combustion, ground- 

state , etc.);
(b) entropy;
(c) magnetic susceptibility;
(d) melting and boiling points;
(e) optical refractivity;
(f) chromatographic separation coefficients;
(g) biological activities;
(h) model Hamiltonians; and
(i) 1- and 2-particle Green's functions.
Actually most of the previous work [1-20] overlooks 
nonscalar examples such as the last two mentioned;
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these ideas, however, have actually been implemented 
[35-37] for such cases.
Constantive quantities are in fact just particular 
cases of additive quantities, where when the system 
separates one of the component subsystem quantities 
is zero. But there are many examples realizing this 
special circumstance:
(a) Many molecular excitation energies;
(b) ionization potentials;
(c) infra-red vibrational frequencies;
(d) NMR chemical shifts;
(e) dissociation constants; and
(f) model Hamitonians for an impurity center in a 

crystal.
Again nonscalar examples occur.
There are many examples of multiplicative quantities:
(a) wavefunctions;
(b) overlap matrices over bases of Slater deter­

minants with nonorthogonal localized orbitals;
(c) statistical mechanical partition functions;
(d) many-bond density operators;
(e) characteristic polynomials for adjacency 

matrices;
(f) matching polynomials; and
(g) possibly irreducible cluster quantities x(f,G). 
Also if X is additive, then exp{X} is multiplicative 
and may be used in making cluster expansions even 
though X might be the actual quantity of interest.
For instance, Hosoya et al. [10] treatment of boiling 
points X(G) actually is of the form of a low-order 
cluster expansion for exp{X(G)}; similar comments 
apply to one scheme [38] for the treatment of 
resonance energies.
There are many examples of derivative quantities 
also :
(a) Hamiltonian matrix elements for cluster expanded 

wavefunctions;
(b) Hamiltonian matrices over bases of Slater deter­

minants with nonorthogonal localized orbitals;
(c) the statistical mechanical trace of 

H* exp{-H/kT); and
(d) ordinary (first) derivatives of many 

multiplicative quantities.
There also occur second derivative quantities both in 
statistical mechanical and quantum chemical 
applications.
A key point is that each category entails its own 
general type of choice for the set S of subgraphs to 
be summed over in a cluster expansion. For the
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additive case S should be of the type C(G), con­
sisting of connected subgraphs; arguments supporting 
this contention for the circumstance of size-exten­
sive quantities are found elsewhere [4,27]. For the 
constantive case the relevant S consists of those 
G"eC(G) such that G ' contains the smallest subgraph 
G "  associated to a sole nonzero component in the 
limit where G "  is separated off as a noninteracting 
subsystem. For the multiplicative and derivative 
cases S should be of the type CX (G), consisting of 
spanning subgraphs. Under weak conditions on f(*,*) 
it turns out that the irreducible cluster quantities 
x(f,G) factor

x (f ,AU B ) = x(f,A)*x(f,B)
whenever G=AUB factors (i.e., when ADB=0).
Finally there are several interrelations amongst the 
four categories of quantities and their associated 
cluster-expansion approximants. If X is multiplica­
tive, then typically ln{X(G)} and 9X(G)/X(G) are 
additive as well as ln{X(f,n ;G)}, 9X(f,n ;G)/X (f ,n ;G ) , 
{lnX}(f ,n ;G ) , and {9X/X}(f ,n ;G ). When X is additive, 
then X and its approximants typically are ’’size- 
extensive’' in the sense that X(G)/|V(G)| and 
X( f , n ; G) / | V(G) | are bounded as |V(G)|->°°, and often 
their limits exist. When X is multiplicative similar 
size-extensivity comments apply to ln{X}, 9X/X and 
associated cluster-expansion approximants. All this 
indicates the correct qualitative behavior for 
cluster expansions as the system size changes, even 
in approaching the infinite extreme. That is, for 
instance, such wavefunction expansions [5] are ’’size- 
consistent” in a sense that many wavefunction 
calculations are not [39-42].
CONCLUSION

This brief presentation and overview of the chemico- 
graph-theoretic method of approximation has sought 
several goals. First, we have noted that many 
special treatments can be recognized as (often quite 
successful) low-order cluster expansions of our 
general type. Second, different attitudes toward and 
methodologies for the determination of the f-irreduc- 
ible cluster quantities were indicated. Third, some 
ideas about the categorization of quantities and 
associated effects in the cluster expansions and 
their approximants were hinted at. Fourth, the range 
of problems to which these techniques was indicated 
to be much wider than often thought. As such it is 
suggested that the overall view that emerges may
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represent a powerful and wide-ranging new paradigm.
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ABSTRA CT

Extensive evidence is provided which shows that 
atoms retain to a large extent their identity within 
molecules. It appears that a number of molecular 
properties can be rationalized by the model of per­
turbed or modified atoms in a molecule (MAM). Ato­
mic modifications upon formation of chemical bonds 
can be classified as isotropic and anisotropic chan­
ges. The former is given by the atomic monopole 
which is a consequence of the intramolecular charge 
migration. It successfully reproduces diamagnetic 
shielding of the nuclei, diamagnetic susceptibility 
of molecules and ESCA chemical shifts. The anisotro­
pic part of the electron charge distribution of an 
electron in a chemical environment is most easily 
described by the hybridization concept. It interpre­
ts directional features of covalent bonds and some 
energetic properties of molecules. In conclusion, 
the present results offer an intuitively appealing 
picture of molecules consisting of charged atomic 
cores immersed in a shallow "sea" of the mixed elec­
tron density.
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IN TRODU CT ION

There are several hints which indicate that atomic 
bricks are identifiable in molecular buildings. One 
clue supporting the notion of a modified atom in a 
molecule is provided by molecular binding energies 
which are by two orders of magnitude smaller than a 
sum of total energies of atoms forming chemical 
bonds. The other is given by the X-ray deformation 
density maps which convincingly show that the elec­
tron charge redistribution accompanying the molecu­
lar formation is very small /l/. It is, therefore, 
not surprising that a large variety of molecular 
properties can be expressed as sums of atomic like 
entities. We shall discuss first the simplest model 
which belongs to the MAM category. This is the so 
called promolecule model where spherical and neutral 
atoms are situated at the equilibrium positions ta­
citly assuming that their mutual interactions equal 
zero. This obvious idealization reproduces quite 
closely some diamagnetic properties. Then we shall 
remove the electroneutrality constraint allowing for 
the charge migration. This is of crucial importance 
in describing molecular properties involving atoms 
with pronounced difference in electronegativity.
Next we shall consider asymmetry of the local atomic 
charge distribution by using Pauling's hybridization 
concept /2 / neglecting at the same time the intramo­
lecular charge transfer. This type of approach is 
appropriate, e.g., in hydrocarbons where the charge 
drift can be abandoned to the first approximation.
It appears that hybridization has a very rich che­
mical content yielding useful information about mo­
lecular shape and size, local molecular properties 
like bond energies, angular strain, spin-spin coup­
ling constants across one bond, C-H stretching fre­
quencies and the like. Finally, the importance of 
the physical concepts in interpretational quantum 
chemistry will be briefly discussed.

TH E  M OD IF IED  A TOM  IN A M OLECU LE  (MAM) M ODEL

The idea of the distorted atom in a molecule was put 
forward by Moffitt /3/ in early fifties. More mana­
geable variants of this approach can be found in re­
cent works of Balint-Kurti and Karplus /4/, Goddard 
et al. /5/ and others /6 /. An interesting attempt 
to define an atom in a chemical environment is pro­
vided by the virial partitioning of the electron 
charge distribution /7/ offering deep insight into 
some bonding phenomena /8 /. We shall adopt a simple 
and pragmatic working hypothesis which is based in
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the first place on the assumption that molecules ha­
ve a definite geometric structure defined within the 
Born-Oppenheimer clamped nuclei approximation. Then 
it will be supposed that there is a good bona fide 
partitioning of the mixed electron charge. The Mul- 
liken population analysis will serve the purpose in 
our model calculations. This step in the MAM model 
building can be easily refined in the later stage if 
necessary. In particular, the population analysis 
which preserves higher atomic multipoles could be de­
vised if desired. Finally, the electron charge dis­
tributions in molecules will be produced by the se- 
miempirical IEHT method, which in turn appears to be 
one of the most reliable semiempirical schemes /9/. 
The local atomic anisotropies can be represented by 
hybrid atomic orbitals (HAO's). The latter can be 
generated in a number of different ways. Since hy­
bridization has not an absolute meaning, each theore­
tical scheme defines its own scale for this useful 
bonding parameter. Hence, if the hybridization is to 
be studied in a large variety of sizeable molecules, 
a simple and efficient criterion is desirable. The 
most economical procedure in a sense of the Ockham's 
razor principle is provided by the maximum overlap 
method /10-12/. We shall employ the iterative maxi­
mum overlap (IMO) method which is capable to give a 
good description of the molecular shapes and sizes 
particularly in hydrocarbons /13/. The hybridization 
parameters produced by the IMO method can be favou­
rably compared with indices calculated by the ab ini­
tio methods /14/.
CALCU LAT ION  OF  M OLECU LAR  PROPERT IES BY THE 
MAM  M ODEL
Electric m onopoles o f atoms and magnetic properties

One of the most important parameters characterizing 
a modified atom in a-molecule is the formal atomic 
charge. Some magnetic properties can be estimated 
by the atomic point charge approximation to a very 
good accuracy. One of them is the diamagnetic part 
of the temperature independent magnetic susceptibi-

*4 ■ K Eb*e + 111
Her^ a, b2and c denote the inertial coordinates, K= 
=Ne /4meCQ where N is the Avogadro constant and cQ 
is the velocity of light in the vacuum. We have 
shown that the ^veragg values of the electronic se­
cond moments < a ^ b S  and <£ c * / can be readily ob­
tained once the atomic chargesand atomic coordina­
tes are known /15,16/:
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Qfta J + Z n k  (2)
A P

where sum over A goes over all atoms. The first term 
gives a dominating contribution being a quadratic 
function of atomic coordinates a^. QA is the total 
electron charge ascribed to the atoin A. The second 
term is a relatively small correction to the first. 
It is isotropic and arises from the spatial exten­
sion of the atomic orbitals. Interestingly enough, 
the isotropic contribution is constant for all atoms 
belonging to the same p-th period of the Mendeleev 
system of elements. Therefore n is the number of 
atoms belonging to the p-th row^and k are the cor­
responding empirical parameters (TablS 1).

Table 1. Empirical Kp parameters for the calculation of molecular second 
moments (in 10'16 cm2)

row-p
k
P

0 1 2  3 4
0.2 1 2.5 3.5 5.5

The latter correspond quite closely to the free-atom 
Hartree-Fock < ( r / 3)>values /17/ averaged over the 
row of the periodic system. Consequently, by using 
these ab initio results, the equation (2 ) can be 
written in a form free of adjustable parameters. It 
turns out that the molecular second moments are not 
very sensitive to the intramolecular charge drift. 
Hence, the promolecule model involving Q^=ZA (notice 
that the minus sign of the second moments is dropped 
for the sake of simplicity) has a very good perfor­
mance in most cases /15,16/. Then the formula (2) 
takes a pocket-calculator form

- Z  V a + Z- V PA P
(3)

The charge transfer is important if atoms exhibiting 
widely different electronegativities are involved 
/18/. Alkali halides deserve a special attention in 
this respect. We assumed that 100 % ionic bond takes 
place in this family of compounds involving transfer 
of one valence electron of the alkali metal to the 
halide atom. Denoting alkali and halide atoms by M 
and X, respectively, the expression (3) reads as fol­
lows :

= {ZM~1 ) a M + < V 1 ) a x + k p,M
, + k ■1 P^ (4)

This formula gives results in good accordance with 
the available ab initio data /19/ yielding at the 
same time a transparent explanation of the ab initio
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finding that the second moments in NaF and KC1 are 
almost invariant to the shift of the coordinate sys­
tem from the alkali, atom to the halide atom /2 0 /.
Hence, the ionic M+1X 1 model works here very well.

Summarizing our extensive calculations of the 
diamagnetic (Langevin) susceptibilities of molecules 
/9,15,16,18,19,21/ we can say that formulas (2-4) yi­
eld results of the good quality which can be favou­
rably compared with ab initio and (or) experimental 
findings. In some cases they have led to detection 
of errors in the literature data. In particular, they 
are helpful in determining sign of the molecular g- 
-tensor which in turn is experimentally estimated on­
ly up to the sign /22/. In conclusion, a brief com­
ment on the Flygare's et al. /23/ method for the cal­
culation of second moments will be made. Their for­
mula reads:

< a 2> = Z. ZAa^ + Z. 2aA< a^> + Z . <  (a^)2>  (5)
There is an apparent similarity to the formula (3) 
because the first and the last terms in expressions 
(3) and (5) closely correspond to each other. Fly­
gare's approach has an additional term which invol­
ves atomic dipole components< a^>. The latter are
extracted from a large number of molecular dipole 
and quadrupole moments under the tacit assumption 
that atomic monopole contributions to these entities 
can be neglected. This is, however, a wrong hypo­
thesis /9/ and consequently the Flygare et al. sche­
me should be revised accordingly.
Diamagnetic shielding of the nuclei (Lamb's shift) 
is another property which can be conveniently decom­
posed into atomic components. It was shown by Ramsey 
/24/ that the following approximate expression sho­
uld hold:

6 ^  (A) = S'a^FA) + (e2/3mc2) Z i Zb/Rab (6 )
B

dwhere ^ av (A) refers to the free-atom value of atom 
A. One immediately observes that Ramsey's formula (6 ) 
is consistent with the promolecule picture. It yields 
reasonable estimates of the average diamagnetic shi­
elding /25-28/. Allowing for the intramolecular char­
ge transfer and including some adjustable constants 
in order to improve the performance, a semiempirical 
formula of the form:
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is obtained /29/. Here and QB are gross orbital
and gross atomic electron populations, respectively, 
f is the AO's screening constant and n is the
corresponding principal quantum number. It should be 
mentioned that the non-parametrized form k^i=k^ 2 = 1
and K -=0 yields also good results. The formula (7) 
is more general than the Ramsey's expression (6 ) be­
cause it encompasses charged species where (6 ) is not 
applicable. Test calculations have shown that IEHT- 
-M0 electron populations in conjunction with the for­
mula (7) give reliable diamagnetic shieldings in ra­
dicals and cations /9/. Less satisfactory results 
can be expected in anions because the used IEHT me­
thod has then subminimal basis set. If the charge 
migration is highly pronounced like in alkali hali­
des, then the screening constants are functions of

£ Athe orbital populations, i.e., $A^=f (Qy*) which should
be explicitly taken into account /30/. It should be 
also pointed out that the atomic dipole moment method 
for the calculation of diamagnetic shieldings of Gi­
erke and Flygare /31/ suffers the same conceptual 
drawback as in the case of diamagnetic susceptibili­
ties (vide supra).
Electric m onopoles o f atoms and energetic properties

The total molecular SCF energy is roughly given by a 
sum of potentials V exerted on the nuclei /32,33/

=SCF ~ ^  kA ZA VA (8)
where are atomic numbers and kA are weighting fac­
tors which depend only on the nature of the atom A. 
The formula is able to recover about 99.5 % of the 
total energy. Since the potentials at the nuclei can 
be calculated with a satisfactory accuracy by using 
the atomic monopole approximation /34/, the formula 
(8 ) takes a transparent form

JSCF = r
A kA Z

f A ■^v B ^ZB /RAB (9)
involving orbital and atomic electron populations. 
The IEHT charge distributions yield total SCF ener­
gies exhibiting standard deviation of 0.1 a.u. /35/. 
This is not too bad in view of the simplicity of the 
model. It is worthwhile to mention that adjustable 
k parameters are close to 0.5 value, which is re­
quired by the virial theorem.
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The dissociation energies to the ionic limit of the 
alkali halides are reasonably well reproduced by the
ionic M+1X 1 point charge model /9/. Trends of chan­
ges are particularly well described. For example, the 
energy decreases along the series MX for a fixed M 
and X=F/Cl /Br and I. Similarly, if the halogen atom 
is kept fixed, the bond strength decreases along the 
MX family (M=Li,N a ,K ,Rb, ^yd_Js). For large interio­
nic distances the ionic M X model yields almost 
quantitative estimates of the dissociation energies.

The atomic monopoles in conjunction with the 
electrostatic approximation are extremely useful in 
rationalizing the ESCA chemical shifts. As it is well 
known, X-ray photoelectron spectroscopy (XPS or ESCA) 
is a powerful tool for studying the charge distribu­
tion in molecules and crystals /36,37/. This finding 
is based on the fact that binding energies (BE) of 
the localized inner core electrons exhibit strong de­
pendence on chemical environment. Another interest­
ing feature is that binding energy shifts (4 BE) pa­
rallel the changes in electrostatic potentials exer­
ted on the nucleus of the ionized atom /36,38,39/.
We have shown in a number of papers /40-43/ that, at 
the semiempirical level, considerable gain in accu­
racy is obtained if the IEHT method is employed. The 
basic formula for the ground state potential appro­
ach (GPM) reads

^ BEA = kl°A + k3MA + k4 (10)
where M denotes the so called Madelung potential.
The weighting parameters k^ and k^ absorb a good
deal of the relaxation energy. However, generally 
better results are obtained if the reorganization en­
ergy of the valence electron cloud due to the crea­
tion of the positive hole is explicitly taken into 
account. This can be achieved by two models. The 
first invokes the equivalent core concept /44,45/ 
leading to the expression

&BEa - + k3(MA+Hj) ♦ k4 (11)
if the atomic monopoles are used. Here the bar deno­
tes the equivalent atom possessing the equivalent 
core. An alternative approach is provided by the 
pseudo-atom concept which simulates the transition 
potential describing the ionization process /46/. The 
corresponding formula is of the form

TP  TP
^ BEa " k l°A + k3MA + k 4 (12)
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where the superscripts TP refers to pseudo-atom enti­
ties. Formulas (11) and (12) belong to the transiti­
on potential formalism (TPM) for an obvious reason. 
Our extensive IEHT calculations have conclusively 
shown that the electrostatic (monopole) approximati­
on successfully describes main features of ESCA shi­
fts in gaseous state and in molecular solids /40- 
-43/. Performance of the IEHT method is illustrated 
by Table 2. Perusal of the data indicates that the
Table 2. Standard Deviations of the ESCA Chemical 

Shifts as Calculated by the SCC-MO Wave- 
functions employing Atomic Monopole Ap­
proximation (in eV).

Atom GPM RPM
B 0.3 -

C 0 . 6 0.3
N 0.4 0.4
0 0 . 6 0 . 6
F 0 . 2 -
Si 1 . 1 0 . 2
S 0.5 0 . 2
Ge 1 . 2 0.4

RPM approach is definitely better for heavier atoms 
like Si, S, Ge. The largest standard deviation is 
found for oxygen chemical shifts. It should be men­
tioned, however, that the IEHT method has appreciab­
ly better performance than other semiempirical me­
thods. This is remarkable because the IEHT method 
cen be easily applied to large molecules involving 
heavy atoms. It proved very useful in discussing 
charge distribution in biologically important puri­
nes and pyrimidines /42,43/, sydnones, ylides, keto- 
enol tautomerism of ascorbic acid /47/ etc.

Atom ic multipole moments and one-electron properties

Electric dipole and quadrupole moments of molecules 
can be reduced to atomic monopoles and dipoles /48/. 
One can quite generally say that higher molecular 
multipoles can be expressed by atomic multipole mo­
ments /49/. Another property of interest is extra- 
molecular electrostatic potential (EP) which provi­
des an indicator of chemical reactivity /50/. It can 
be satisfactorily reproduced by using polycentric 
expansion of the 1 /r operator by using local atomic 
multipole expansion /49/ which can be extended to 
encompass overlap charges /51/. It should be strong­
ly pointed out that atomic monopoles do not suffice
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and vice versa, the formal atomic charges derived 
from molecular EP's /52/ are unrealistic /9/.

H Y BR ID IZA T IO N  AND  GLOBAL  M OLECU LA R  PROPERT IES

Hybrid orbitals /2,6,9/ conform to the local site 
symmetry of an atom in a molecular environment. The­
refore hybrids represent chemically adapted atomic 
orbitals being particularly useful in describing lo­
calized (Lewis) covalent bonds. The approximate maxi­
mum overlap calculations are well documented /6,9,11- 
-14/. Consequently, we shall briefly discuss some of 
the main results. The local hybrid orbitals reprodu­
ce the salient features of the electron charge dis­
tribution in small strained rings offering a simple 
and natural explaination of the bent bond phenomenon 
/53/. Spatial characteristics of hydrocarbons are 
well reproduced. Bond angles are predicted with an a- 
ccuracy of a few degrees. Larger errors occur someti­
mes in dihedral angles. This is, however, not unex­
pected because the nonbonding repulsions are not ex­
plicitly considered and dihedral angles are easily 
deformed as a rule (the barrier is typically a cou­
ple of kcal/mole). The IMO method has a high predic­
tive power in estimating interatomic distances. In 
several interesting cases the predicted geometry was 
correct as confirmed later by experimental measure­
ments and ab initio calculations /9/. The bond over­
lap integrals can be successfully correlated with the 
heats of formation. The latter yield reasonable heats 
of hydrogenation and strain energies defined by a 
scale provided by the corresponding homodesmotic re­
actions /6 ,9/. In addition to these gross molecular 
properties, hybrid orbitals give a simple interpreta­
tion of local bond properties like the spin-spin cou­
pling constants, C-H stretching frequencies, proton 
acidity and last but not least - bond energies. Since 
hybridization is a physical model, hybrid orbitals 
offer probably the best possible basis sets for ap­
proximate (semiempirical) methods. This conjecture 
follows directly from the fact that hybrids are sym­
metry adapted zero-th order local wavefunctions.Hence 
hybridization concept is a golden mine which is not 
fully exhausted as yet.
CONCLU SION

Several general conclusions can be drawn from the 
presented material. Atoms combine in myriads of ways 
to form molecules exhibiting different propeties. A 
remarkable finding is that electronic structure of 
atoms is not scrambled by the formation of chemical
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bonds. Instead, a picture of atomic cores embedded 
in the mixed -electron density seems to be essential­
ly correct. It should be strongly pointed out that 
atomic cores involve not only the inner-shell elec­
trons, but also a good deal of valence electron den­
sity. This is reflected in a number of molecular pro­
perties which can be concomitantly expressed as sums 
of atomic-like entities. On the other hand, shared 
(mixed) electron densities are well described by the 
perturbed atom model, as revealed by the astonishing 
success of the hybridization concept. The latter ra­
tionalizes inter alia the main facet of covalent bon­
ding - spatial arrangement of chemical bonds - in an 
amazingly simple and elegant way. Of course, there 
are fine details and subtle molecular properties 
which can not be explained by the elementary models 
discussed above. They require closer scrutiny and mo­
re involved methods. Nevertheless, results presented 
here indicate rather strongly that chemistry is rela­
tively simple although we don 't know it in most ca­
ses. Another point of interest is that proper physi­
cal models usually require simple mathematics. All 
results given above can be obtained by the use of a 
mini-computer or even by a pocket-calculator. This 
is a very general feature of the quantum chemical me­
thods. For example, the Hartree-Fock theory is nume­
rically feasible because it is based on the polycen­
tric LCAO basis set expansion. This is compatible 
with the empirical idea about the atomic structure 
of molecules. Hence the contemporary ab initio metho­
ds are not of an a priori type as some people seem 
to think. As a counter example one can mention the so 
called one-center method where the total molecular 
electron density is obtained by an expansion at the 
single (heavy atom) point.This approach was a failu­
re in spite of the sophisticated mathematics. Its 
poor performance can be traced down to the underly­
ing basic assumption which is conceptually wrong. It 
follows that the choice of a proper physical model 
can considerably simplify the necessary mathematical 
procedures, leading to the results in a most econo­
mical and meaningful way.
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GIANT ATOMS AND 
MOLECULES
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ABSTRACT
Recent advances in the theory of atomic rydberg states 

have led to a reexamination of previous attitudes and to new 
modes of description for the highly-excited states of polyatomic 
molecules. This paper attempts to clarify some of these notions 
and to apply them, in order of increasing complexity, to the 
vacuum ultraviolet spectroscopy of a set of simple molecules.

With the demonstration by Seaton of a simple connection 
between the phase shift of scattering theory and the quantum 
defect of a rydberg equation, the whole of scattering theory 
infused the interpretation of rydberg spectra with new powerful 
technologies. It is the aim of this work to apply these technol­
ogies to a discussion of (i), single-channel; (ii), multi-channel 
quantum defect theory, particularly the Lu-Fano modification of 
Seaton's work, and its utility in treating perturbed spectra; and
(iii), the final elaboration, generalized quantum defect (GQDT) 
theory, in which both the electron coordinate r and the nuclear 
coordinate R are both variable and both productive of continua at 
either r or R equal to infinity. GQDT provides a simple means of 
introducing channel rydberg and discrete valence state interac­
tions. These interactions, depending on the energy of the ryd­
berg state (i.e., pre or post the first ionization limit) and the 
nature of the valence states (i.e., dissociative or non-dissocia- 
tive) can lead to autoionizations, predissociations or compli­
cated energy/intensity/bandshape behavior.
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INTRODUCTION
The purpose of this paper is to discuss the new field of 

giant atoms and molecules [1], It begins with the n-dependency 
of atom size and proceeds from there to discuss the ways in which 
the physics and chemistry of these "giants" differ from the ordi­
nary. In doing so, we have chosen to be eclectic: that is, we
use the opportunity to present odds and ends of hitherto unpub­
lished material from our own laboratories.

We also attempt to present a brief outline of single­
channel, multi-channel and generalized quantum defect theory 
[2,3,4]. We do so with intent, because we are convinced that 
this approach provides the method of choice for theoretical 
investigations of molecular electronic spectroscopy and molecular 
dynamics. Unfortunately, limitations of space dictate a certain 
brevity and our discussion is mainly aimed at demonstrating 
simplicity and pertinence.

Many varieties of "giant" molecule exist and many of these have nothing at all to do with Rydberg states. For exam­
ple. the delocalized excitations so common to the ordered solid 
state (e.g., excitons) [5] could well be considered to represent 
"giant" excitations, at least in a spatial sense. We will not 
consider such excitations in this work. However, we do consider 
one sort of delocalized excitation, namely a resonance phenomenon 
that typifies the spectroscopy of negative ions in aqueous phas­
es. This phenomenon, commonly termed "charge transfer to solvent 
(CTTS) [6], is included here for two reasons: firstly, we be­
lieve the resonance description to be appropriate and we demon­
strate this by specific consideration of the hydroxyl ion, OH ; 
secondly, such resonances may represent the norm, rather than the 
exception for small negative ions, ones which may not possess any 
bound rydberg states whatsoever. But, all in all, the inclusion 
of this topic is another example of the eclecticism that infuses 
this work.
THE SIZE OF RYDBERG ATOMS/MOLECULES

Atoms or molecules in highly-excited Rydberg states 
(i.e., states for which the principal quantum number n is big) 
can be exceedingly large. Indeed, since they can be considerably 
larger than either polymers or macromolecules, it is not improper 
to refer to them as "giant atoms" or "giant molecules" ... a 
terminology that is now generally accepted and, in our opinion, 
proper. The best way to appreciate just how large a highly-
excited Rydberg entity can be is to direct attention on the
hydrogen atom and the dependency of its physical properties on n.
These are listed in Table 1. In order to emphasize size, we nowodirect attention to the n dependency of the electronic "radius" 
r. We also choose two very commonplace molecules, namely benzene 
and methyl iodide, in order to make our conclusions concrete:
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Table I.
Dependence of Some Physical Properties of Rydberg State of a Hydrogenic 

System on the Principal Quantum Number n.

PROPERTY 
Radi us
Cross-sectional area 
Volume
F(Adjacents)a
FCSeries)^
AE(adjacents)
P(E) 6Ed
Electrostatic binding energy 
Electric polarizability 
Diamagnetic susceptibility 
Spin-orbit coupling 
Exchange energy

n-DEPENDENCY

-3

-3
n (2<x<7)

a) Transition probability between adjacent rydberg levels n 
n+1

b) Transition probability in the individual bands of a rydberg 
series m -> n, where n = m+1, m+2, m+3, etc.

c) Energy separation between adjacent rydberg levels n +-» n+1
d) Density of rydberg levels of a given series in the energy 

interval 6E

— Benzene: The circle which just encompasses the ben-_ ozene hexagon has r = 1.4 x 10 cm. Thus, when n = 30, r = 3.2 x
10~6cm (320A); and when n = 100, r = 3.5 x 10'5cm (3500A). It is 
important to stress that rydberg states of benzene for which n >o30 have been observed (i.e., that "benzene" with r > 320A does 
exist) [7].

— Methyl iodide: Methyl iodide is not spherical, theo oC-H bond distance being 1.09A and the C-I distance being 2.0A.
If we assume this C^v molecule to be roughly spherical, we find r 
= 1.55 x 10 ^cm and, therefore, its size for n = 30 and 100 should
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_ 7 o _ g  obe 5.6 x 10 cm (56A) and 6.2 x 10 (620A), respectively.
Rydberg states of methyl iodide for which n > 35 have been ob-

oserved. That is, CH^I molecules for which r > 56A exist [8 ].
These sizes appear in context when we note that a stan­

dard cell-wall protein, for which the number of amino acid resi­
dues is ~ 100, has a root mean square radius r = 110$; and that * rms ’
one of the very largest polymers, say polystyrene of molecular

6 °  weight 10 , exhibits an r rm$ ~ 400A. That is, known rydberg
states exceed macromolecules in size.

Finally, the use of two color laser spectroscopy has led 
to the detection of molecular rydberg states for which n = 65 
[9]. Indeed, in principle anyway, there exists no reason why 
appropriate molecules should not exhibit discrete rydberg states 
for which n > 100. That is, molecular rydberg states of radius 
greater than the largest known polymer have been detected already 
and ones that are at least ten times larger will be detected 
shortly.

Another way of looking at size, one with important conse­
quences for the question of existence criteria for rydberg states 
in condensed media, queries the number of solvent molecules sampled by the rydberg electron of a giant molecule that is 
embedded in the solvent. If we take the n = 30 rydberg state of 
benzene and if we assume a close-packed solvent structure in 
which each solvent molecule is spherical and possesses a radius ro= 1.75A, we conclude that the rydberg electron of benzene samples
10^-10^ solvent entities during the course of one orbit. That is 
a very large number, indeed. It suggests that a), such a rydberg 
state cannot exist in a condensed medium; b), if anything resem­
bling a rydberg state exists at all then it surely must behave as 
a Wannier exciton; and c), an exceedingly high probability exists 
for a trapping of the rydberg electron at some impurity or tran­
sient defect site (i.e., charge transfer to impurity or to sol­
vent [CTTI] or [CTTS]) in the solvent medium.

It is clear, then, that the rydberg states of atoms and 
molecules can readily surpass in size any known macromolecule and 
that the terminology "giant" is an apt descriptor.
CONSEQUENCES OF SIZE

One consequence of size, namely existence criteria for 
discrete molecular rydberg states in high pressure or condensed 
media, has been alluded to already and will be discussed in some 
detail later. For now, we content ourselves with a few, terse, 
important observations, some of which will be elaborated in the 
next section.(i) Diamagnetic susceptibility, with its cross-sectional 
nq dependence, will swamp any paramagnetism of the molecular 
system. That is, a linear Zeeman effect will be supplanted, at 
moderate n, say n > 8 , by a quadratic field dependence, and
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previously parity-forbidden transitions will begin to acquire 
intensity. At higher n values, the situation will be complicated 
further by progressive onsets of 4-mixing, n-mixing and various 
types of Landau resonances.

(ii) As with magnetic field effects, so also with elec­
tric field behavior. The electric polarizability, with its 
volume dependency, will completely dominate static dipole field 
effects, even at moderate n. Indeed, even the induced dipoles 
are not guaranteed to lie either parallel or anti-parallel to the 
zero-field static dipole moment, should one exist, of the ground 
state entity. And, as in (i), the induction of n- and 4-mixing 
will cause the appearance of many previously forbidden electronic transitions.

(iii) Spin-orbit coupling, £, and core/rydberg exchange, 
K, energies drop off rapidly with increasing n. However, the 
exchange energy drops precipitously (See Table 1), the result 
being that spin-orbit coupling dominates even at quite low n. 
Thus, in the atomic case, £/K >> 1, for n > 5 and (j,j)- coupling obtains. In the molecular case, (ft, iu)-coupling will dominate the affairs of molecular rydberg states.

(iv) The density of rydberg levels at high n, p(E)6E, 
becomes high (See Table 1) and the spacing between them, AE, 
becomes small. In fact, many level separations fall in the 
microwave region and, since the energy of these levels is very 
sensitive to applied electric fields (see item ii above), such a 
system may have manifest technological importance. Similarly, 
since the ionization potential refers to n = », the gross sensi­
tivity to electric field, implied in the n^-dependence of polari­
zability, may also provide certain technological advantages. The 
two technological possibilities hinted at here will be elaborated 
later. However, it is emphasized that these are randomly chosen 
and only exemplify the myriad device possibilities inherent in 
the area of giant atoms/molecules.

(v) The large size of the rydberg orbital suggests that 
the emphasis should lie on large r rather than small r behavior. 
In turn, this suggests that a scattering-theory approach or some 
variant thereof might be the approach of preference even for 
reasonably tightly-bound rydberg electrons. Such a variant 
exists and is known as quantum defect theory (QDT). Its basic 
premise consists of the assumption that the motion of the rydberg 
electron (or electrons) when it is outside the atomic molecular 
core may be treated differently from its motion when it is inside 
that core. The advantage of this dual view is that the proper­
ties of the separate motions, when appropriately parametrized and 
when matched at the core boundary, lead to relatively simple 
analytical formulations for energies, transition probabilities, 
band shapes, angular distributions of ionized electrons, etc. We 
will discuss certain of these formulations in some detail.

(vi) It is well to emphasize that some expectedly small 
rydberg states (i.e., ones of low n) may acquire "giant" charac­
ter by virtue of interaction with ionization continua. A case in
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point is the phenomenon of autoionization in those low-n rydbergs
2of xenon that terminate on the 2nd ionization limit, I ( Pi). 

These are usually referred to as Beutler-Fano resonances [§]. 
Similar effects also occur in molecules, as for example in the
low-n rydbergs that terminate on the 2Ei lonizatlon °f
gaseous methyl iodide [10]. However, there exists another type 
of autoionization, one that occurs in condensed media and which 
is commonly referred to as "charge transfer to solvent" (CTTS)
[6]. It is our contention that the CTTS process is actually a 
resonance phenomenon and that it does confer a form of giganti- 
cism on the molecule in which it occurs. However, this form of 
giganticism may have little or nothing to do with rydberg states. 
In view of that, a seeking for balance suggests that we discuss 
it in some detail. That we will do later.

Finally, we emphasize that we will not discuss any form 
of exciton behavior (which, of course, is also a form of orbital 
giganticism). This topic has been addressed by others and we 
refer the interested reader to those sources.
M AN IFESTATIONS OF S IZE

We now discuss items (i)-(vi) individually, the primary 
emphasis being on items (v) and (vi), with the others receiving 
terse but illustrative treatment.(i) DIAMAGNETISM: The diamagnetic magnitude [11] is
given by

Hp = (e2B2/8m)n^aQ^
where B is the magnetic field and aQ is the Bohr radius, and the
n^-dependence is explicitly stated. Relative to Hq  we may now 
formulate the various onsets for different magnetic perturba­
tions. These are:^-Mixing: Occurs when 2R/n3 ~ H^, R being an electron
coordinate in a center of mass frame. Total angular momentum 
loses its "good" quantum number characteristic in this regime 
whereas n remains unsullied.

n-Mixing: Occurs when 2R/n3 >>HQ . Adjacent rydberg
manifolds merge under these conditions and the spectrum may become "non-rydberg."

Strong Mixing: Occurs when 2R/n3 ~ hw /In where u> is
the cyclotron frequency = -eB/m. At this point, coulomb and
external magnetic field forces are effectively comparable.
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Landau Region: Occurs when 2R/n3 <<hwc . The dominant
force is now magnetic in nature and the result is an oscillatory 
spectrum reminiscent of cyclotron resonance behavior.

(ii) POLARIZABILITY: The extreme sensitivity of the nb
behavior is best illustrated by Figure 1. This figure compares

6p[3/2]2+10d[5/2]3
16734.15cm-1

Figure 1. A comparison o f the effect o f an rf field on bandshapes o f two rydberg 
transitions, one to low n (n = 10) and one to high n (n = 29), in gaseous xenon. 
The broadening o f the 16732.46cm1 band is attributable to extensive ^-mixing 
with the nominal € = 3 terminal orbital for this transition. This spectrum was 
obtained by optogalvanic sensing [12].

the bandshapes of two adjacent rydberg transitions, one of rela­
tively high n, the other of relatively low n. The large half 
bandwidth of the high n transition is the result of extensive 
£-mixing produced by an rf field, whereas the low n transition is 
unaffected by that same field.
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(iii) SPIN-ORBIT COUPLING: This topic has been discussed
in some depth [10]. Consequently, it will suffice here to provide 
one very illustrative, hitherto unpublished set of observations.
Of the four distinct transitions that result from the 5p-*6s 
rydberg excitation of CH^I, the oscillator strength ratio
to the two terminals states [13]

F(:ln1)/F(3n 1) = [K/C + (l + k2/̂ 2)15]2
turns out to be a very sensitive function of K/£. A plot of this 
function is given in Figure 2 and superposed on it are the exper­
imental data points for 5p-»s6 (HI), 4p+5s (HBr) and 3p-»4s (HC1). Obviously, the fit of experiment and theory is excellent. Fur­
thermore, it is quite clear that HI, even in its lowest energy 
rydberg states, represents an (ft,u>)- coupling situation.

K/C

Figure 2. A plot of the observed oscillator strength ration F(1ni)/F(3II1) for the 
hydrogen halides versus the exchange/spin orbit ratio K/£. The solid curve is also 
the theoretical plot.

(ft,w)- coupling in the higher states of these molecules, 
even in HF, can be taken to be complete.

(iv) TECHNICAL DEVICES: The large rydberg densities at
high-n imply small energy separations and the n6-dependence of 
the polarizability implies the ability to alter these level 
separations. The conjunction of these two characteristics sug­
gests the use of high-n rydberg systems as broad-band microwave 
detector/amplifiers. Finally, the ease of field-ionization of 
rydberg systems for which n > 100 and the ready detectability of 
the field electrons suggests the use of these systems as weak-
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field detectors. A schematic of both these devices is given in 
Figure 3.

Figure 3. A schematization o f a broad band microwave detector/amplifier and a 
weak electrical field sensor. The atomic core is denoted by a large solid point, the 
optical electron by smaller dots. The large size o f the rydberg atom is shown in the 
middle circuit and the complete breakdown into core and electron, and their 
attachments to the appropriate electrodes, is shown on the extreme right.

The reader may choose to "invent" other uses as his/her 
mood dictates.(v) QUANTUM DEFECT THEORY: An overview of this topic is
available in Rau [2], Lu [3] and Greene [4], and the interested 
reader should consult these authors for details. We shall devel­
op the topic in stages, starting with the simplest problem, 
namely the one-electron Coulomb problem.
—  One-electron Coulomb problem: We begin with the hydrogenic
atom. The radial Schroedinger equation (in Rydberg units) is

l _  - Mill) + 5 :  + 2e ] f>(r) _ o
dr2 r2 J J

where
e = -Z2/k2 ; k = w. for e<0; k=iy for e>0 C JThe bound states, e<0, are given by the regular Coulomb function 

f, which asymptotically is
f = u(v,r) sin - v(\>,r) cos m>

where u is a rising and v a falling exponential in r. Since 
bound functions must vanish at r-̂ ,  we find
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sin 7iv = 0
and, consequently, v must equal an integer n and the energy 
becomes

We now remove the hydrogen-1ike restriction by introduc­
ing another potential term V such that the radial equation, still 
spherical, contains the added term ^2V. We will also suppose 
that V is short-ranged so that at distances greater than some 
cut-off distance, say r , V=0 and the hydrogenic Schroedinger
equation is recovered. That is, an excited electron in any other 
atom than hydrogen sees a complicated potential, one that is 
usually stronger than -1/r, at r<rQ and a Coulombic potential at
r>rQ . The boundary condition at rQ , namely that there be a
smooth joining of the interior and exterior solutions to the 
Schroedinger equation containing V, yields for r > rQ

FJ.je(r) = fj(r)cos - gj(r)sin
where f and g are the regular and irregular Coulomb functions. 
In the absence of a core (i.e., V=0), the solution reverts to f 
simply because the boundary r retreats to r=0. That is, p-*o as 
r -*o.
u Using appropriate asymptotic forms for f. and g., we can

rewrite J J
2F.£ (r) - UjSin n ( v + P ^ - v - c o s  n(v+u^)

whence if follows that
sin 7t(v+ua) = 0 

and *
6 n£

In this way, the Rydberg equation has been established. 
It has also been determined that n is an integer and that p^, the
^-dependent non-integer part, is descriptive of the core effects. 
The quantity p^ is known as the quantum defect and its physical
interpretation is straightforward: If V is attractive, the
radial wavefunction is pulled into the core whereas, if V is
repulsive, the radial wavefunction is repelled by the core; this 
attraction/repulsi on is measured, in terms of its effects on the 
hydrogenic energy, by p and, in terms of its effects on the
hydrogenic wavefunction, Dy the phase shift 6-7tp^. That is, 7tp^ 
is the phase difference of the functions F and f.

— Single-channel quantum defect theory (SQDT): The
treatment just given involves a single ionization limit and it 
treats only those levels that converge on that limit. It is
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known as SQDT. It has the advantage of physical simplicity. It 
also places levels that lie above or below that limit on much the 
same footing (i.e., it does not impose any artificial limit on 
the size of the basis but includes all levels, discrete and 
continuum, into the same complete basis set).

— Multi-channel quantum defect theory (MQDT): MQDT
recognizes that most systems possess multiple ionization limits 
and that it is not a simple matter to assign a quantum defect to 
a given Rydberg level. Thus, if the system possess two distinct 
limits I., and I? , it is not clear that the quantum defect for a
Rydberg level of energy e should be given by e = L  * Z^/(n-vu

2 2 1 L or from e = ~ Z^yCn'-p') . This inherent ambiguity in the
assignment of a specific level to a specific channel is merely an 
admission that considerable channel mixing may occur. Thus, at 
the energy £, the eigenfunction may be written as a superposition 
of the various channels. One such superposition, for r>rQ , is

= I <(>. [f(v.,r) IU. cos 7tp At Yi i * of a
-g(v. ,r) IU. sin 7tu A ] s l’ a la cr

where <|>. represents the wavefunction for the i*'*1 ion core, for i t hspin and for angular momentum coupling in the iu  channel. That
is, only the radial part of the outer electron is excluded from 
<J).. This wavefunction has a rather simple interpretation. Once
one speaks of a core state such as <(>., one is essentially speak­
ing of a fragmentation channel in which the core and certain of 
the optical electron characteristics are held fixed; in other 
words, one is describing a situation that obtains only at large
r. In the case of an atom this would be a (Jc ,j)-coupled situa­
tion. At small r, on the other hand, core-electron interactions
may be so large as to dwarf the ^.-threshold separations and one
must speak of compound states or compound channels. These are 
best described, particularly in lighter atoms, by LS coupling. 
They are, in fact, referred to as cr-channels. In this context 
then, is merely an element of the matrix that projects i onto
a (i.e., of the matrix that transforms the (Jc ,j)-set into the
(L,S)-set). is termed the frame transformation and as
previously, is the phase shift induced in the large-r single­
electron function caused by scattering from the core.

Facile ways of using MQDT have been devised by Lu [3] for 
atoms and Dagata [8 ] for molecules.

— Generalized Quantum Defect Theory (GQDT): GQDT is
necessary for the extension from atoms to molecules, where dis­
crete and continuum states may also be built on excitations of 
the atomic framework. That is, we must admit the possibility of 
rotational and vibrational motions and, hence, of dissociative
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molecular events. To be precise, for the molecule, we may write V as
V = V + V + V ex so ss + VJs + FJT

where the exchange, spin-orbit and spin-spin parts are common to
both the atom and the molecule but where representative electronic
nuclear coupling terms (for example, spin uncoupling F, andJ sdynamic Jahn-Teller V̂ -j. terms) now mix the i/a channels with
framework channels. This sort of coupling may have two important 
consequences: it may lead to Born-Oppenheimer (BO) breakdown
and, in fact, provide a way of handling the non-BO situation; and 
it implies that the frame transformation matrix must be general­
ized to cover body frame/1aboratory frame basis set superposi­
tions [14].

Such GQDT approaches are in process of refinement. The reader is referred to Greene [4], and Dagata and McGlynn [14] for further reading in an area that is destined for importance.
(vi) CHARGE TRANSFER TO SOLVENT (CTTS): The topic of

rydberg states of neutral molecules in condensed media has been 
discussed by Jortner. We will not engage this topic further. 
Instead, we will broach the topic of charge transfer to solvent (CTTS) transitions. Such CTTS transitions are common to small
inorganic anions such as I , CN , SO3 , OH , etc. It has been
assumed that the excess negative charge on these ions causes them 
to have low ionization potentials and, hence, low-lying rydberg 
states; and that these rydberg states, because of a presumed 
big-orbit character and a low energy, are the natural precursors 
to CTTS and the production of trapped electrons. This, no doubt, 
is an interesting suggestion but one which may be flawed:

Firstly, if the ionization potential is very low, the 
potential surface on which the most loosely-bound electron moves 
may well be supportive of only one bound state, namely the ground 
state. That is, it is quite possible that no bound excited
states, rydberg or otherwise, exist in many such ions. In fact, 
in an atomic negative ion, since the core possesses zero charge, 
rydberg states cannot exist.

Secondly, if CTTS is a very probable and very fast pro­
cess, then this process is best thought of as a resonance. That 
is, CTTS may be akin to autoionization in a condensed medium. As 
such, the resonance "state" may be described by a binodal wave- 
function, a part from the ion and a part from the surrounding 
solvent medium. Since that from the medium may well be dominant, 
it is this part that may be determinative of energy, symmetry, 
etc. with the ion part important only in that it confers transi­
tion probability on the optical excitation process. In that 
sense, the ion part of the binodal wavefunction need bear no 
relationship to any state or type of state, bound or continuum, 
of the gaseous ion.

The topic of CTTS, being related to big-orbit states,
will now be discussed, the hydroxyl ion, OH , being taken as
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exemplar. However, we reemphasize that neither this implied 
big-orbit nature nor our discussion of CTTS in this work suggests 
any necessary connectedness to molecular rydberg states.

The ionization energy of OH^, where g denotes gas phase,
is only 1.8eV[15]. The ground state of 0H^ is well character!*zed.
However, no bound excited state of OH has ever been detected and9none is to be expected. Thus, with reasonable assurance, we may
accept that OH- possess only one bound state, namely the ground 
state. 9

When OHg is introduced into water, a diffuse absorption
oband onsets at ~2500A (~5eV). That is, aquation of 0H^ to yield

O H ^  leads to absorption in a region in which 0H^ does not absorb.
The resolution of this rather puzzling result is provided by the
further observation that the 5eV optical excitation leads to
production of e (as verified by near infrared absorption)a q , trap
and hydroxyl radicals, OH (as verified by ready detection ofag othe characteristic Gaydon emission system at 3300A). As far as
is known, the evolution of OH and e- are esentially coincident ’ aq aq J
with the absorptive act. Thus, the CTTS event

OH +hv = OH + aq aq eaq
is almost surely a resonance, an autoionization that evolves into 
the cited products.

A considerable amount of thermodynamic data is available 
for hydroxyl radical, hydroxyl ion and the electron, in both 
gaseous and aquated states [16]. These data are used to con­
struct Figure 4. The known data points in Figure 4 are all 
incorporated in the energies of the horizontal lines, the only
one that is indeterminate being that for OH aq + e- , which aq, trapmay lie anywhere between -2.2 and-3.8 eV, dependent on trap type, 
water purity, etc. The potential energy curves are purely schema­
tic, the upper referring to the gaseous system and the lower to 
the aquated situation. The dominant conjecture contained in this 
schematization is the supposition that the CTTS event le_ading to 
0 H „  + e - _  proceeds through an intervening OH _ + e set ofaq aq aq
intermediate products and may also eventuate in an OH + e-
set of final products. 39 a 9 ’ traP
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Figure 4. A schematization of potential energy curves for OH* in the gaseous 
(upper) and aqueous (lower) phases. The CTTS transition is denoted by the 5eV, 
arrow which terminates in an effective continuum. The 1.8eV arrow denotes the 
ionization potential o f OH*g and the 3.3eV arrow denotes the “barrier-free” 
ionization potential o f O H * .  The barrier in the lower curve occurs at -0.4eV and 
corresponds to OH aq+e*. Tne dashed line at -2.2eV corresponds to 
OH  +e* free. The symbol r denotes an electron coordinate.

The resonance, now placed at 5eV, is also shown on Figure 
4, the termini of the optical absorption being located in a 
continuum that barely dips below the potential maximum at -0.4eV. In view of this, the inner region (i.e., low r) part of the 
binodal function descriptive of the resonance "state" can and 
surely does possess character!*sties of virtually any excited 
state (i.e., rydberg, valence, dissociative, etc.) conceivable 
for an OH-^ system. Nonetheless, the absorption is surely one
that leads to the initial production of a giant molecule and to
the rapid evolution of new sets of products that more aptly
describe the re_sonance that does any supposed connection tostates of the OH entity.9
CON CLU SION

The purpose of this work is straightforward: To point
out that attitudes and techniques convenient for the study of 
low-energy, intravalence, molecular states may have little or no 
bearing on the types of theory and experiment required to provide 
insights into vuv spectroscopy. A secondary objective of course
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consists of the demonstration that vuv spectroscopy has much 
to say about electronic structure and dynamics and that it 
will be very surprizing indeed if it does not alter our con­
ceptual approaches to both structure and dynamics in very 
fundamental ways.
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A BSTRA CT

Differential and algebraic topology are exceptionally 
suitable mathematical tools for the local and global 
description of molecular structures and reaction mechanisms. 
In Reaction Topology geometrical concepts, such as nuclear 
position are replaced by topological concepts, such as open 
sets of wave packets. With respect to potential energy 
hypersurfaces, topology offers a new approach to the concept 
of quantum chemical reaction mechanisms. Whereas chemical 
species are represented by catchment regions of potential 
energy hypersurfaces, reaction mechanisms are represented by 
homotopy equivalence classes of reaction paths. These 
reaction mechanisms form a group, the one dimensional 
homotopy group of the low energy regions of the potential 
energy hypersurface. This group, referred to as the 
fundamental group of reaction mechanisms, serves as an 
algebraic framework for computer-based quantum chemical 
synthesis planning and molecular design.

IN TRODU CT ION

The energy content of a given collection of reacting 
molecules depends on their mutual arrangements in the 
ordinary, three dimensional space. In a semiclassical model
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of chemical reactions these arrangements can be described in 
terms of some internal coordinates, e.g. internuclear 
distances, bond angles, torsion angles, etc. When studying 
many chemical problems one may disregard the translation and 
rotation of the entire molecular system as a whole within a 
laboratory frame coordinate system. In such a case the 
mutual molecular arrangements (nuclear configurations) can 
be described within a 3N-6 dimensional, "reduced” nuclear 
configuration space M, that is a metric space (here N is the 
number of nuclei, and we assume that N>2). One can 
represent the energy of the reacting system of molecules in 
some specified electronic state as a hypersurface E(K) 
defined over M. The outcome of chemical reactions is, of 
course, strongly influenced by this energy hypersurface. In 
general, a chemical reaction can be thought of as a change 
in the nuclear configuration that corresponds to a formal 
displacement from one multidimensional basin of E(K) to 
another. These basins and analogous, lower dimensional 
point sets on the energy hypersurface are called the 
"catchment regions" of E(K).

Potential energy curves, surfaces and hypersurfaces have 
been studied for many reactions. Some (usually rather 
limited) parts of many hypersurfaces have been calculated 
and analyzed using quantum chemical methods [for recent 
reviews see e.g. 1-7] and also using the methods of 
molecular mechanics (empirical force fields) [8 ]. Most 
studies on the local properties of potential surfaces have 
been based on the semiclassical geometric model of 
molecules. Nonetheless, the fact that molecules are quantum 
mechanical entities is well recognized. Whereas the 
geometrical concepts of nuclear position and internuclear 
distance are satisfactory within a semiclassical model, 
alternative models are also explored, which are inherently 
more compatible with the probability density approach and 
the uncertainty relation of quantum mechanics. One such 
theoretical model, where geometrical concepts are replaced 
by topological concepts, is the subject of this review. In 
addition to a brief overview of some chemical applications 
of differential and algebraic topology, a simple method is 
given for the introduction of a fuzzy set structure and a 
fuzzy classification of chemical species within the 
differentiable manifold model of potential energy 
hypersurfaces.

D IFFEREN T IABLE  M ANIFOLDS, M OLECU LA R  G EOM ETRY  
AND M OLECU LA R  TO PO LO G Y

The mass-weighted cartesian coordinates of N nuclei
3Ndefine a 3N dimensional nuclear configuration space R.

The n=3N-6 dimensional reduced nuclear configuration space M 
is obtained from R as the quotient space with respect to
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the laboratory frame equivalence of nuclear configurations 
related to one another by rigid rotation and rigid 
translation [9,10]. The potential energy functional can be 
represented as a continuous hypersurface E(K) over space M.

Various chemical species are represented by catchment 
regions [11,12] of E(K). Each catchment region C(*,i) 
belongs to a critical point K(*,i), and is a collection of 
all points K of M from where a steepest descent leads to 
K(x,i). In the above notation \  is the critical point index 
of the i-th critical point K(X,i). For a stable chemical 
species *X.=0, (that is, K(^,i) is a minimum), for a 
transition structure ("transition state") *X=1 (that is, 
KfX,i) is a simple saddle point) and for formal unstable 
chemical species represented by lower dimensional catchment 
regions CCA,i), ̂  >2. Note, that in a complete catchment 
region partitioning of M these lower dimensional catchment 
regions (even zero dimensional, single point catchment 
regions C(n,i)={K(n,i)}, representing a highly unstable, 
formal "chemical species") play an important mathematical 
role, although their direct chemical significance is 
minimal. (However, they represent constraints on the 
chemically important stable species and transition 
structures). Those catchment regions from where steepest 
descent paths lead to points where E(K) (in fact, the 

3Noriginal E(r), r c  R) is not twice continuously 
differentiable, are denoted as C(-1,i).

These catchment regions generate a complete partitioning 
of M:

M = U  C(X,i). (1)
It is convenient to introduce local coordinate systems into 
these catchment regions. If T denotes the metric topology 
on M, then (M,T) is a normal topological space that fulfills 
the following separation axiom: if CC\,i) and C(’X* ,j)
denote the closures of catchment regions C(*X,i) and C(V , j), 
respectively, in the metric of M, and if

C(*,i) 0  C(v ,j) = 0 (2 )
then there exist T-open sets G(i) and G(j) such, that

c a . D c G t i ) (3)
c(\',j) aG( j) (4)

G(i) f\ G( j) = 0 . (5)
We may assume that an open set G(i) is given for every
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catchment region CC'Xji) that satisfies the above conditions 
for all possible pairwise combinations of catchment regions. 
Evidently, such G(i) open set exists, since, if G^(i), G^Ci) 
... G^(i) are sets chosen for a sequence 1 , 2 ... k oT
pairs, involving a fixed catchment region C(^,i), then the 
set

k
G(i) = n  G.(i) (6)

1 = 1 1
fulfills all k separation conditions.

We assume that a class {G(i)} of such sets is given. 
These T-open G(i) sets can then be used to define 
diffeomorphisms <J>(i) between subsets of M and subsets of the 
n-dimensional Euclidean space E. We shall assume that for 
every index i a diffeomorphism

$(i):G(i) H ( i ) d nE (7)
is given, where H(i) is open in the usual metric of nE.

The Euclidean space E is provided with the usual 
coordinate functions {u }, which are compatible with the 
usual metric, and are interpreted by

uk(t) = tk w
where

t = (t1, ... tn) e nE. (9)
The space (M,T) is a metric topological space, hence it 

is also a Hausdorff space. Function <|>(i) is a
diffeomorphism, hence it is also a homeomorphism form an 
open set of H to an open set of E. These are precisely the 
conditions required for a coordinate system, consequently, 
<t>( i) is an n-dimensional coordinate system in M. Since the 
catchment regions generate a partitioning of the nuclear 
configuration space M it follows that open sets {G(i)} form 
an open cover of M:

M = U  G(i) . (10)
That is, the nuclear configuration space M is covered by 
domains of n-dimensional coordinate systems {<t>( i)}, 
consequently, M is an n-dimensional topological manifold 
[13,9].

The G(i) domain of coordinate system <J>(i) is called the 
coordinate neighbourhood of $(i) and if Kc.G(i) then<t>(i) is 
said to be the coordinate system at K.

The composition of function f and g, that is, g followed 
by f, is denoted by f.g,
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f . g: A — * B (ID
where

g: X — >  Y (1 2)
f: Z — > W (13)

and
a = g- 1( z)n x, (14)
B<=W. (15)

The domain A of f.g may be empty. The composition of 
coordinate function u and diffeomorphism $  will be denoted
by V

\  = \  • <t> . (1 6)
Usually the same term, "coordinate system”, 
both (fc and the set of functions

is applied for

(x^ x2 ... xn) = , u2-<|) , ... un-(t>). (17)
The concept of coordinate neighbourhoods allows one to 

introduce a fuzzy set [14] topology into M and to give a 
fuzzy classification of nuclear configurations within M. 
The family

G = {G(i)} (1 8)
is a generating subbase for a topology T onU
define a family of membership functions [ p.} 
following conditions:

M. One may 
fulfilling the

/V  M I (19)
H / r  (K) = 1, V K £ M  
i

(2 0 )

/<±(K) = 0 if K^G(i) (2 1 )
where I = [0 ,1], the unit interval.

From eqs. (20) and (21) one obtains
/UK) = 1 if K ^ U g(j). (2 2)

The introduction of fuzzy membership functions relaxes 
the strict assignment of each point K(each nuclear
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configuration K) to one and only one formal chemical species 
C(A,i) as expressed by the "element of" relation KeC(\,i). 
In the fuzzy set model where chemical species are 
represented by the G(i) open sets, it is possible to regard 
a formal nuclear configuration K to belong to two or more 
chemical species, to a "degree" expressed by the magnitudes 
of the membership function values /t. (K).

A simple choice for the membership functions, that 
fulfills conditions (19)—(21) is as follows. Define a 
function

0 : M — > {positive integers} (23)
l> (K) = number of G(i) sets for which K€G(i). (24)

Then the membership function defined as

{0 if K^G(i) (25)

1/0(K) otherwise
fulfills the above conditions. For some applications it is 
advantageous to define membership functions which vary 
continuously with K.

Two coordinate systems 4>(i) and <̂ (j) are C -related if
both

<t(i) * (*(j))'1€ C 00 (26)
and

<JKj) • (<Ki))-1 e C°° (27)
meaning that the above compositions are infinitely 
differentiable.

The open sets {H (i)} of Euclidean space E are 
diffeomorphic images of the {G(i)} supersets of catchment 
regions C(X,i), which represent chemical species in M. 
Consequently, structural relations of chemical species in a 
nuclear configuration space (which is in general 
non-Euclidean) can be studied in an Euclidean space E. 

Relations between sets G(i) and G(j), where
G(i)0 G(j) i 0 (28)

may be obtained by defining a homeomorphism
<t>(ij) =<t»(i) • (4>(j) ) " 1 (29)where



214 Topology of Potential Surfaces [Ch.19

4>(ij):4>(j) (G(i)OG(j))— >4(i)(G(i)HG(j)). (30)
If the family {G(i)} of domains of coordinate systems is 

countable and if each ij) is differentiable, then M is an 
n-dimensional differentiable manifold [1 3,9 3•

In a non-empty set of the form
G(i)AG(j)CM (31)

at least two coordinate systems, <fc(i) and <J>(j), are given. 
The Jacobian determinant for the corresponding coordinate 
transformation <^(i)— *<fc(j) is defined by virtue of eq. (17) 
as

det *VJ)
(i)

(32)

where k is the row index and f is the column index of the 
determinant. In G(i)OG(j) homeomorphism <t>(ij) always has 
inverse, which is mapping 4>(ji),

(♦(ij) )-1 = ♦( ji) . (33)
It follows that the Jacobian determinant (32) is non-zero at 
all points of G(i)f\G(j).

Within the differentiable manifold model continuity and 
differentiation of functions defined over the nuclear 
configuration space M may be defined in terms of local 
coordinate systems of catchment regions, representing 
various chemical species. Properties of potential energy 
hypersurfaces can be analyzed in terms of local coordinate 
systems<^(i) over G(i) supersets of catchment regions, using 
the coordinates in open subsets H(i) of Euclidean space of 
E to label the corresponding points in G(i).

Consider a general real valued function f defined over a 
T-open subset G of the nuclear configuration space M. Take 
a point KeG which is also an element of some sets G(i) and 
G( j),

K€Gf\G(i)nG(j) . (3*0
-1 -1Consider the composed functions f*($(i)) and f*(<fr(j)) ,

defined over (J) (i) (GAG(i)) and ♦ (j) (GAG(j)), 
respectively. These functions may be thought of as function 
f expressed in terms of local coordinates set up in G(i) and 
G(j) by diffeomorphisms <$> (i) and <fc(j), respectively A
useful property of these functions is that f*($(i))” is 
differentiable in a neighbourhood of ♦ (i)(K) if and only if 
f*(4>(j))~ is differentiable in a neighbourhood of<fo(j)(K). 
This property follows from the identity
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f.(4>(±))-1 = f.(*(j» • (<K±)) 1 =

= f (35)
If f*($(j))  ̂ is differentiable, then f»($(i))  ̂ is a 
composition of differentiable functions and itself must be 
differentiable.

As it has been pointed out, [13,9] the above property 
ensures that the Euclidean coordinate representations of 
functions defined over M, consequently, various 
applications, e.g. normal coordinate representations of 
vibrational potentials, are related to one another in a 
simple way within the overlapping regions of coordinate 
domains. When reference from one chemical species C(X,i) is 
switched to reference to another chemical species C(V,j), 
then the change of coordinate systems does not interfere 
with the continuity and differentiability properties of 
function f. Consequently, functions defined over the entire 
nuclear configuration space M, for example, the energy 
hypersurface E(K) itself, may be treated locally in 
coordinate neighbourhoods G(i) as functions defined on an 
ordinary Euclidean space. At the same time the global 
interpretation is also preserved by ensuring an "orderly” 
switch of coordinate systems. The differentiable manifold 
model of potential energy hypersurfaces combines some of the 
advantages of local and global representations.

It is convenient to choose the $(i) coordinate systems 
in a sgecial form, which assigns the origin of the Euclidean 
space E,

(0,0, ... 0)e nE (36)
to the critical point K(X,i) in C(X,i).

Such a representation is not in general identical to an 
internal coordinate or normal coordinate representation of a 
vibrational problem, defined at an equilibrium point. 
However, by further restrictions on 4> C±) the local 
coordinate system may be made equivalent to a set of normal 
coordinates, at least in the immediate vicinity of the 
critical point K(X,i). Note, however, that ♦(i) is defined 
on a T-open set G(i) containing the entire catchment region 
C(X,i), within which large deviations from the harmonic 
approximation may be found. On the other hand, the large 
amplitude motion formalism shows some analogies with the 
manifold representation of M.

A global multidimensional model also have some 
disadvantages, associated primarily with computational 
difficulties. Even if the analysis is restricted to a few 
coordinate neighbourhoods G(i), the fact that the dimension 
n of the manifold may be very high, can render the analysis 
impractical. It is natural then to introduce further
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restrictions by investigating a given subspace only. In 
manifold theory the concept of subspace is much too general. 
If one differentiable manifold is contained in another, it 
is advantageous if the local coordinate systems and the 
coordinate neighbourhoods in the two are related in some 
simple way. There exists such a simple relation for a 
differentiable manifold and its submanifold. If 
(x ,x ...x ) are the local coordinates around point K of the 
n-aimensional manifold M, then an m-dimensional submanifold 
“m has the local equations

x „ = x _ = ... m+1 m+2 = o, (37)
and around point K the local coordinates are (x^x^.-.x^) in
submanifold mM. A submanifold of a manifold is a 
generalization of a cross-section of a hypersurface.

FUNDAM ENTAL G R O U PO ID S  AND  FUNDAM ENTAL GROU PS 
OF POTENTIAL  SU RFACES

Consider the level set
F~(A) = {K : E(K) < A} (38)

of space M with respect to energy hypersurface E(K) and 
energy bound A. In a formal sense, F (A) contains all 
nuclear configurations where the energy is less than the 
bound A.

A general reaction path p is a mapping [15-17]
P : I — > F‘(A) (39)

of the unit interval I to level set F (A). A special path, 
called a constant path, is one for which the entire image is 
a single point K€F (A):

p(I) = KeF'(A) . (40)
Let P denote the family of all paths within F (A).

For each path p eP we define two mappings, L* and R*, as
L* : P — *■ P (41)
R* : P — ► P (42)
L*(p) = qeP (43)

where
q(I) = P(0)€F’(A) , (44)



Ch.19] Fundamental Groupoids 217

and

R*(p) = q 1€  P (^5)
where

q f (I) = p ( 1 ) € F " ( A )  . (46)
Mapping L* (mapping R*) assigns to each path peP the 
constant path q at the origin p(0 ) (the constant path qf at 
the extremity p(1), respectively). Paths L*(p) and R*(p) 
are the left and right zero paths of reaction path p, 
respectively.

Evidently, for a closed path p, p(0)=p(1), one has
L*(p) = R*(p). (47)

The product p^p^p^ of paths p̂  and p^ is defined as the
continuation of p̂  by p̂ :

p^(2u) if 0 < u < 1/2
P3(u) = -

P2 (2u-1) if 1/2 < u < 1
that product exists if and only if 

R*(p<j) = L*(p2) .

(48)

(49)
Two paths, p and p' are homotopically equivalent in F (A), 

p ~  p* (50)
if they have common endpoints and if they can be 
continuously deformed into each other within F (A).

The homotopy equivalence class to which path p belongs 
is denoted by [p]. Evidently,

L*(p) = L*(p*) (51)
R*(p) = R*(pf)

for any two p>p'6 [p].
Let us denote the family of all such equivalence classes 

by TT (F~(A)) or in short, by 7T :
IT (F~( A)) = {[PoC]}. (5 2 )

This set IT is simpler than set P of all reaction paths. We 
may define two mappings L and R on IT as

L: TT ->TT (53)
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R: TT — V  TT (54)
L([pJ) = [L* (Ppt) ] (55)
n a p * ] )  = [R»(p«)] (56)
i condition
R([p1)] = L([p2)] (57)

implies the existence of the product [p^Hpp] of equivalence 
classes [p̂ ] and [p̂ ] of reaction paths, defined as

[p1][p2] = [p.,P2] . (58)
This product, if exists (i.e. if (57) is fulfilled), is 
unique and does not depend on the choice of reaction paths 
p.j,Pp€.P, representing equivalence classes [p̂  ] > [p̂ ] ̂  TT •

The family TT of all homotopy equivalence classes of the 
complete set P of all reaction paths within level set F (A), 
is a groupoid, which, together with mappings L and R,
fulfills the following conditions:
i) L * L = L = R » L  (59)

L • R = R = R - R . (60)
ii) For any class [p]c.TT the products L([p])[p] and 

[p]R([p]) exist and
L([p])[p] = [p] = [p]R( [p]) *TT. (6 1 )

iii) The products L([p])L([p]) and R([p])R([p]) exist for 
each [p]cTT and
L( [p] )L ([p]) = L ( [p]) € TT (6 2 )
R([p])R([p]) = R([p]) € TT (63)

i.e. L([p]) and R([p]) are idempotent.
iv) For any two [p^], [p2]eTT , fulfilling condition (57)

L([Pl][p2]) = L([Pip2]) = L([pn]) (64)
R(Cp1][p2]) = R([p1p2 l) = R([p2 3) (65)

hence, if in addition to (5 7), the condition
L([p3 3) = R([p2 3) (6 6 )

is also valid for some [p^leTT , then the following
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products also exists

(Cp1][p2 ))[p3] eTT (67)
[p1]([p2 ][p3 3) cTT • (6 8 )

The product"p^p^p” of reaction paths, 
associative, i.e.

is homotopically

(p1p2 )p3 ~ p1 (p2p3 )* (69)
Hence, if these products exist then for the products 
(6 7) and (6 8 ) of homotopy classes of reaction paths 
associativity is also assured:

(CPi3Cp2 ])Cp3] = [Pl]([p2 ][p3]) (70)
and one may simply write [p^lCp^ltp^].
There exists a unique inverse path p  ̂
defined as

for every p£P,

p-1(u) = p(1-u). (71)
This implies the existence of a unique inverse

[p] " 1 = tp'1] e T T  (7 2 )
for every [p]eTT, for which [p],[p]-1 pair

L([p]) = RCCp]"1) (73)
R([p]) = L([p]-1). (74)

Family TT is the fundamental groupoid of level set F (A). 
Elements [p] of TT represent configuration-to-configuration 
reaction mechanisms on the potential energy hypersurface 
[17] subject to the energy bound A. This interpretation of 
[p] equivalence classes is motivated by the actual chemical 
equivalence of all those reaction paths, which interconnect 
the same pair of nuclear configurations, and which paths are 
not separated by high energy domains above bound A.

For an arbitrary point KqcF”(A) consider the following 
subset TT\j of groupoid TT :

TT^Kq) = {[p];p(o) = p(1) = K0,^pe[p],[p]£TT}. (75)

It follows, that
L([p]),R([p])€TT1(K0) (76)
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[p1][p2]eTT1(K0) (77)
and

[ p p " 1 = [ p 1" 1] € T T 1( k 0 ) , V [ p ] , [ p 1] , [ p 2 ] c TT1( k 0 ) . ( 7 8 )

Eqs. (76)-(78) are the conditions of stability for a subset
of a groupoid, hence TT^CKq) is stable within groupoid TT ,
for any choice KQ€F~(A). With mappings L and R restricted
to subsets TT ̂ (Kq), these stable subsets are indeed
subgroupoids of groupoid TT .

Furthermore, definition (75) of TT^UCq ) implies that
L([p]) = R([p]) = [pQ] (79)

for every [p]eTT^(K ), where equivalence class [pQ] contains 
the element constant path p^ at point

P0€[p0] (8 0 )
P0 (I) = KQ. (81)

Hence both L and R, when restricted to TT^(Kq), are constant 
maps. Consequently, there exists a unique neutral element 
and subgroupoid TT^ is a group, a subgroup of groupoid TT.

If F (A) is arcwise connected, then these groups are 
isomorphic for any choice of point KQ, hence then the 
specification of is not essential, TT.j(Kq ) i-s the 
fundamental group of reaction mechanisms [14,15] in a 
connected level set F (A). These groups are dependent on 
the energy bound A, and are expected to find applications in 
theoretical, computer aided molecular design.

It has been shown that there exists a set of algebraic 
relations between the fundamental group of reaction 
mechanisms and the catchment region topology of the 
energy hypersurface [15,18]. This connection can be 
utilized in the actual construction of these groups. The 
determination of catchment regions CCX,i) is equivalent to 
the determination of their boundaries, that can be reduced 
to boundary networks [19]- These boundaries and boundary 
networks fulfill certain symmetry constraints on the 
corresponding nuclear configurations, analogous to symmetry 
constraints on transition structures and minimum energy 
reaction paths.
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THREE-DIMENSIONAL 
STRUCTURE-ACTIVITY 
RELATIONSHIPS AND 
BIOLOGICAL RECEPTOR 
MAPPING
I. Motoc, R.A. Dammkoehler
Department of Computer Science, School of Engineering and Applied Science, 
Washington University, St. Louis, M O  63130, USA 
G.R. Marshall
Department of Pharmacology, School of Medicine, Washington University,
St. Louis, M O  63110, USA

Quantitative structure-activity relationships (QSAR) 
quantify bioactivity as a function of molecular structure. The 
topological nature of traditional approaches to QSAR (denoted 
here by 2D-QSAR, i.e., Hansch [1] and Free-Wilson [2] type 
models) restricts their applicability to essentially congeneric 
and conformationally rigid molecules.

Development of a conceptually and computationally in­
tegrated framework applicable to structurally diverse compounds 
requires a topographical basis for QSAR. The resulting three- 
dimensional quantitative structure-activity relationships 
(3D-QSAR) would encompass, within a single QSAR, congeneric and 
non-congeneric molecules and account explicitely for the con­
formational variable, at least as far as the drug is concerned, 
in order to gain insight into the topography of the receptor 
itself by inference.

We emphasize here the mathematical aspects of the paradigm 
for extracting three-dimensional information from activity 
data. The present work is complementary to our recent review 
[3], and is organized as follows: In Sect. 1 a method for
systematic search of the conformational hyperspace available to 
a flexible molecule is presented; Sect. 2 summarizes some 
details of our force field molecular energy calculation and 
methods for comparison of either rigid or flexible molecules by
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geometrical congruence [4]. In Sect. 3 the pharmacophore 
concept [5] is reviewed and in Sect. 4 three-dimensional molec­
ular shape descriptors (3D-MSD and SIBIS-type) are discussed.
THE CONFORMATIONAL HYPERSPACE

The goal of this Section is to present a method for sys­
tematic search of the conformational hyperspace available to a 
conformationally flexible molecule. This analysis greatly 
facilitates identification of the most stable conformation of a 
complex molecule, assessment of the validity of a pharmacophore 
hypothesis, and estimation of the probable binding mode of a 
substrate in the active site of a receptor. Subsections 2.1 
and 2.2 summarize the necessary background concerning molecular 
topology and topography, and 2.3 describes the search method.
Molecular T opology

Formally, the topology of a molecule is fully described by 
a simple graph (i.e., a discrete topological space) G = (V,E) 
associated with the chemical constitution of the molecule 
considered [6 ]. The finite non-empty set V of p vertices and 
the prescribed set E of q edges collect, respectively, the 
atoms and the bonds constituting the molecule. We formalize 
the relationships between these sets using simple binary 
relations.

A binary relation 7 from a set A to a set B is a subset 
c AxB; it is conveniently represented on a nxm array by

marking the positions (kl) G M with 1 if â /yb̂ , a .̂ e A, 
b^ G B, and 0 otherwise. Here, n = |A|, m =  |B|, and | | de­
notes cardinality.

Two binary relations 7 and 6 are composable if R C AxB
and R^ C BxC. The composite 76 is a binary relation R  ̂c AxC
such that a(7 ^)c if, for some b, a7b and b6c, a e A ,  b G B ,  and 
c G C. Further, the array M  ̂representing the composite 78 is

. The product is defined [7] by the following
rule: the entry (ik) G is 1 iff there is at least one j,
1 < j < m, such that the j-th position of the i-th row in M
and of the k-th column in Mf are simultaneously 1 ; otherwise,0
it is 0 .

Consider now the binary relations
a: R C VxE , (1)a —
p: Rp c ExV , (V,E) = G , (2)

which assign vertices to edges and, respectively, edges to 
vertices. Evidently, p is the inverse of a, p = a , or 
a = p and the array is the transpose of the array M̂ ,

or M
a
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The binary relations a and p are composable and the com­
posites a/3 and fix are the binary relations C VxV and

c ExE. af) = aa  ̂represents a compatibility relation [7]
on the set V, and pa - pp  ̂is a compatibility relation on the
set E; aa is called the connectivity relation (i.e., the off- 
diagonal entries of M  ̂provide complete information regard- 

aa

ing the vertex adjacencies in G) , and PP  ̂is called the ad- 
iacencv relation (i.e., the off-diagonal entries of M

PPprovide complete information regarding the edge adjacencies in 
G).

Given a compatibility relation £ on A, a compatibility 
class induced by £ is a subset D C A such that, for any d^,
d̂  6 D, d^ £ d̂ . A compatibility class which is not properly
contained in any other compatibility class is called a maximal 
compatible [7].

Let E^ C E, 0 < i < k-1, be the maximal compatibles in­
duced by pp  ̂on E, and V. c V collect the end vertices of the
edges contained in E.. It follows that U  E. = E, U  V. = V,& 1 . 1 7  1l l
and for any E. there is at least one E. such that E. HE. * 6,

J i J i J
V ± O  V. * <f>. The subgraph G ± = (V^E^ is called an aggregate.

Two maximal compatibles E^ and Ej are composable if
E. H E. * <j> , (3)i Jand the composite E.. c E is given by
E. . = E. U  E. . (4)1J 1 JSimilarly, E. . and E are composable if E. . H E * <f> and the J ij g 1J gcomposite E.. c E is given by E.. - E.. U  E .ijg 6 J ijg ij g

"fcWe restrict the discussion to trees for which the follow­
ing relations hold:

\E± O  Ej| < 1, for any 0 < i, j < k-1, i^j,
IE . . HE |
1 • • .ij gThe concepts discussed above are illustrated in Figure 1.

(5)
1 , for any . . . ij and at least one g. (6 )

The complete composition E^, A (Ao,Ar • • • ’ Ak-i) e
x{0 ,l,...,k-l) is called the topological specification of the 
molecule considered. The set

E' = { U  (E.nE)| 0 <i,j<k-l, i^j) (7)
i J J

*As it is shown below, using appropriate topographical con­
straints, cyclic molecules can be converted into acyclics 
(trees) which adequately mimic the former.
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collects the edges shared by the k aggregates, and
|E'| = m (8 )

Note that for any e' =» (i,j) £ E' there is one and only one A.
and one and only one A^,Ax>A^ eXl0 ,1 ,...,k-1 }, such that

(B) M
a

(c) M - 
aa

el e 2 e3 e4 e5 e 6 e7

V 1 1 1 1 0 0 0 0

v 2 0 0 1 1 1 0 0

v3 0 0 0 1 0 0 0

v4 0 0 0 0 1 1 1

v5 0 0 0 0 0 1 0

v 6 0 0 0 0 0 0 1

v7 0 1 0 0 0 0 0

V 8 1 0 0 0 0 0 0

V 1 v 2 v3 v4 V5 v 6 V7 vl

V 1 1 1 0 0 0 0 1 1

v 2 1 1 1 1 0 0 0 0

v3 0 1 1 0 0 0 0 0

v4 0 1 0 1 1 1 0 0

V5 0 0 0 1 1 0 0 0

v 6 0 0 0 1 0 1 0 0

v7 1 0 0 0 0 0 1 0

v 8 1 0 0 0 0 0 0 1
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(D) M i
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{e5 ’e6 ’e7 ̂
Figure 1. Graph G  = (V,E) (A), array corresponding to binary relation a(B), 
array corresponding to compatibility relation a a l (C), and array corresponding to 
compatibility relation jS/31 and the maximal compatibles 
induced by /3/31 on E(D).

^3 ê4,e8,e9̂
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Figure 2. The maximal compatibles induced by l on {e1 ,e;i,...,e$} (A), and the 
graph of composability relation e' = e3 = (E0 ,E), e2 = e5 = (Ej,E2), e2 = e4 = 
(E„ E3). (B)

(i,j). It follows that composability is a binaryea n  eax y
relation on the set {E^} induced by the set of subscripts
assigned to the maximal compatibles and its graph coincides
with E' (see Figure 2 for an illustrative example). Further,
the isomorphism (i,j) - (A ,A ) allows systematic ennumerationx y
of the paths in E'.

Molecular Topography

Given the topological specification E^ of a molecule, the
molecular topography of each conformation is completely deter­
mined by A, a set of cartesian coordinates, where | A | = n is 
the number of constituent atoms, and a. e A is the coordinatesl
triple defining the equilibrium position of the atomic nucleus 
i, 1 < i < n. For a conformationally flexible molecule there 
are an infinite number of coordinate sets each specifying the 
topography of a particular conformation. Within the rigid 
geometry approximation, we represent the infinite set of con­
formations of a molecule with m rotational degrees of freedom 
in a continuous m dimensional hyperspace, in which each dimen­
sion corresponds to a variable torsion angle coy 1 < j < m.
Let P be a point in the continuous hyperspace. The coordinates 
of P, (p^,P2,...,pm), 0 < Pj < 360°, 1 < j < m, are the values
of torsion angles »w2’* *',com) a particular confor­
mation of the molecule. P represents a sterically allowed 
conformation if for all non-bonded atom pairs the inequality
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dij " cij ~ 1 < i < n-1, i < j < n (9)
is satisfied. Here, d. . is the Euclidian distance between theij
non-bonded atoms i and i, and c.. is the sum of their van derJ
Waals radii.

For practical reasons, we approximate the continuous 
hyperspace by a discrete topological space of the same dimen­
sionality. A generic point in that space is defined by 
PCn-^A^^A, . . . , n^A) , 0 < nj < 360/A, 1 < j < m. The use of a
constant A produces an uniform sampling over all dimensions of 
the continuous space. The number of points (NP) in the dis­
crete space is a function of m and A, and obtained by the 
formula

NP = rm , where r = 360/A . (10)
For each P there is a set of coordinates defining the topog­
raphy of the corresponding conformation. These coordinate sets 
can be generated by performing a series of coordinate
transformations on the set A. The coordinates a ,a ,a 6 A oft s’ r
three atoms, corresponding to vertices vt»vs>vr e Vq ,
(V^jE^) — and (v ,v ) — el are used to orient the initial 0 Cr 0 s r 1
conformation. A global translation and rotation are performed
on the coordinates A so that ag lies at the origin, a^ lies on
the positive x axis, and a l i e s  in the xy plane. The unit
length vector u = (1,0,0) defines the direction of the axis of
the first torsional rotation.

Methods for transforming the coordinates of a point as it 
rotates with respect to a fixed axis are conventionally given 
in matrix form [8]. An equivalent vector formulation for a 
torsional rotation can be obtained through algebraic analysis 
of the matrices [9], or derived from first principles [10] as 
shown below:

Let v be a displacement vector, v = - â , and u the
unit length vector corresponding to the direction cosines of 
the axis of rotation; v can be resolved into three orthogonal
component vector by the operations shown below

-3 = V X u

=2 = u X =3
Zi = V - -2
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The rotated displacement vector and the rotated coor­
dinates are then given by

v(a>) = v^ + v_2 COSU) + Y3 si-nw
aj(u>) a + v(o>) r =

(11)
(12)

Next, consider a fixed (non-rotating) atom a^ and the
displacement vector s a.1 The square of the distance
d̂ j as a function of to is given by direct application of the 
cosine law,

d?j(co) -= |l] 2 + |v|2 - 2 ] s. v(u>) | (13)
A more compact form may be obtained by observing that the 

sum of the constant terms in (13) defines a point a^ which is
the projection of aj onto the axis of rotation. One may there­
fore rewrite (11) and (12) as 

v(o>) = v^ cosw + v^ sinw (14)

one obtains an equation with scalar coefficients,
d?.(a?) d^ + d^ cosco + d̂  sino? (16)

-2(s.y2); d3 - -2(s.y3)
where

\  = I£|2 + |v|2; d2 
The equation above can be converted to a useful quadratic form 
by a substitution of variables, x 

2 X

totan ~
sina? = 2x/(l+x ) and coso> 
manipulation, one obtains

,2 ,__x , 2

(l-x2)/l+x2)
Then,

Following algebraic

where
d_ (x) = (ax +bx+c)/(l+x ) (17)

2d3; c di + d2.1 2 •
The relation shown below is called the differential dis­

tance function. Observe that the 
2 , . 2
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2 2function is positive when cLj (u>) > c.̂  and negative otherwise.
By converting (18) to quadratic form, i.e., first inserting

2(16) into (18), we can evaluate the discriminant, b -4ac, to 
determine whether there are any values of u (a? - 2 arctan x) 
for which 5.^(w) = 0. If the discriminant is strictly posi­
tive, has real roots indicating the van der Waals con­
straint (9) will be violated for some range of values of u>. If 
the discriminant is negative, has complex or real double
degenerate roots indicating that 5^ (co) will be positive or,
respectively, negative for all values of (j, depending whether

2 2 c - c.. > 0 , or, respectively, c - c.. < 0 .

Systematic Search o f the Conformational Hyperspace

Systematic Search is a computational procedure which 
generates and records all points in discrete hyperspace which 
correspond to sterically allowed conformations. The procedure 
also provides the capability for measuring and recording geo­
metric parameters derived from each allowed conformation; 
typical parameters are: interatomic distances between selected 
functional groups, coordinates defining the locii of one or 
more specified atoms with respect to a fixed reference frame, 
and vectors specifying the relative orientation of pairs of 
atoms in each conformation.

A topological specification, E provides the
0A1 ‘* m

information required to decompose an initial sterically allowed 
conformation, represented by A, into substructures, Aj,
0 < j < m, where A. C A determines the topography of the j-th
aggregate. Consistent with the assumptions of rigid geometry, 
the substructure represented by Â  has no internal degrees of
freedom. More importantly, the distances between all atom
pairs, (a ,a ) e A., are invariant with respect to the tor- r s j
sional rotations around an axis defined by any pair
(a ,a ) G A. . r’ s' j As a result, while the coordinates of A. are

Jtransformed by a torsional rotation, there is no requirement to 
verify that the re-oriented substructure is sterically allowed.

The topological specification of the molecule also pro­
vides an order in which the substructures may be combined to 
form complete conformations of the molecule, i.e., recall the
isomorphism (i,j) - (A ,A ). Each edge of the graph of thex y
composability relation induced by the labelling of the ag­
gregates is interpreted as an axis of a torsional rotation.
The two atoms corresponding to the end vertices of the edge 
shared by two adjacent aggregates, and , i < j, are as­
signed to the substructure A^. As a result, A^ Pi Aj = 0.
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procedure search(dim) 
begin

m :=dim 
Am:=update(LAm,LDm)

LPm:=copy(LTm)
if(Z,C „*</>)then LPm:=screen(LCm,LPm)

LPm '■=validate(LAm ,LPm)
for n =  1 to sizeof (LPm) 
begin pm:= nth element of LPm

A,„ :=rotate(Am,pm) 
if(m<M) then dim :=search(dim + 1)

else dim :=record(px, . . . , Pa/)
end

Pm'=0
return(dim-l)

end

procedure update(AmyLDm) 
begin

for i = 1 to m - 1 
begin if (i eLDm) AND 

then begin
if (qim<0) then vim := vector(i,m)

A,„
Qim ■'= Pm •'= -I

end
end
if (pm<  0) then vmm vector(m,m)
for k =  m+1 to M; if (qmk>0) then vmm := vector(m,m) 
Pm •= 0 
return (Am)

end

procedure validate(LAm LPm) 
begin

for r = 1 to sizeof(LAm) wh\le (LPm (̂j)) 
begin
for s — 0 to m-1 while (LPm <̂t>) 

begin
for k = 1 to sizeoffLAj while (LPm7*<f>) 
begin t := kth element of LAt

(f,d) := interatomfa^djjCij)
if (f<°) then LPm := <f>
else if (f>0) then LPm := compress(d,LPm)

end
end

end
return(LPm)

end

Figure 3.
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The coordinate set representing the position of atoms in 
substructure j > 1 rotated by p^ around axis i is denoted by
Aj(p^). A rotation around the i-th axis by p^ is represented
by R(p^) and, symbolically, Aj(p^) <- R(p^)Aj. Consequently,
the rotation of a substructure whose position is dependent on 
multiple (>2) consecutive torsion angles is specified by:

R(P1,P2,...,p„)A. , 1 < j < m (19)Aj(P1,P2, 
Further,

Aj(p1 -p2'

,Pp

.P.) R(p, ,pi)R(pl)Aj (20)
= p^ = 27r, specifies the conformations availablewith p^ =

to the substructure in the one dimensional space corresponding 
to the first axis; and, in general,R(Pj+1...p̂ )R(p1)•••R(p1)AjAj (P l ’ ,pj ,pj+l....pP

1 < i < i < j (21)
with ~ • • • = = 2n, specifies the conformations avail­
able to the sustructures in the i-dimensional subspace cor­
responding to the 1 - s t i - t h  axis. More generally, the 
position of substructure Aj is determined by an ordered set of
torsional rotations corresponding to the edges on the path from 
Eq to Ej in the graph E'(7), and we denote the effect of those
rotations on Aj by R^(P)Aj. Then for any flexible molecule,
the coordinate set corresponding to a point P in discrete 
hyperspace can be described by the linear notation,

A(P) = Aq + R1(P)A1 + ... + Rm(P)Am ,
or by the recurrence relation shown below:

A(p- , . . .p ) = A(p , . . .p -. ) + R (P)A rl rm *1 rm-1 m m
where A(p^) = Aq + R^(P)A^
Systematic search procedures have been programmed in a 

variety of languages, on multiple machines over a period of 
fifteen years in our laboratory [10b]. The most recent im­
plementations are based on the recursive procedure shown below 
in Figure 3.

Initial data values are produced by a pre-processor [10c] 
which performs the topological analysis described in Sect. 2.1. 
These data are read by a main routine and are globally acces­
sible to the recursive procedure named search and all of its 
subprocedures.

Data structures and variables are summarized below:

N = the number of atoms.
M = the number of variable torsion angles.
A = the coordinates of an initial sterically allowed 

conformation.
B = an Mx2 array whose j-th row references the coor­

dinates of the two atoms defining the axis of the 
j-th torsional rotation.

C = the van der Waals constraint array (NxN)
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For each substructure A , 0 < m < M,m
LA - a list of the atoms contained in A . m m
LC - a list of the distance constraints which are ap- m r

plicable to A .
LD = a list of the torsional rotations which terminate m

in A . m
LT^ = a list of the indices of trigonometric values

corresponding to points in the m-th dimension of 
the discrete hyperspace.

Control structures and variables are:
dim = a scalar variable whose value determines the dimen­

sionality of the discrete subspace containing the 
current sterically allowed conformation 

P = a one dimensional array of size M whose entries are 
the coordinates of the point in discrete hyperspace 
corresponding to the current value of the coor­
dinate set A.

Q - an MxM storage array called the control table. The 
super-diagonal entries of the m-th column indicate 
the status of the coordinates of A^ with respect to
the first m-1 torsion angle variables.

T - a table of trigonometric values (cos, sin pairs).
Temporary storage arrays are:
LP^ = a temporary storage array for the set of indices of

trigonometric values which when used to rotate A^
with respect to torsional axis m, will produce a 
set of sterically allowed conformations repre­
sentable in the m dimensional subspace.

= a storage array for the sets of vectors describing
the motion of A^ with respect to the i-th torsional
axis, 0 < i < m.

The functions and subprocedures used in Systematic Search
(Figure 3) are summarized below:

The function update is a generalized implementation of eq.
(21) which uses information contained in LD to select onlym J
those torsional rotations, R(p^), 0 < i < m < M, which are
applicable to A . The values contained in the m-th column of
the control table Q determine the status of the vector sets 
used to generate new coordinates of Â ; the first m-1 elements
of the global variable P indicate the torsion angle values of 
the current conformation. The coordinates returned by update 
represent Am updated by (p^,P2 »...,pm ^).
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The function copy creates an initial set of indices of 
trigonometric values corresponding to points in the m-th dimen­
sion of discrete hyperspace. This set is used by the function 
validate which eliminates from LP^ the indices of all trigono­
metric values do not produce sterically allowed conformations.

The function interatom is used by validate to generate the 
coefficients of the differential distance equations, 6 .̂ (w) = 0
in (18), for all non-bonded atom pairs (a^a^), ^  ag e A ,
p < m, a G A . The values returned by interatom are d. the r r m J --------
coefficients, and f, a variable reflecting the results of the
discriminant analysis: f < 0 indicates that there are no

2 2values of u> for which d (a? ) > c ; if f > 0 , then some m sr m sr
values of will cause a violation of the steric constraint m
between a and a .s r

The function compress evaluates the differential distance 
equation using each cos and sin pair referenced by LP^, and
eliminates those entries for which 8 (w ) < 0. If f * 0. thensrv nr
all values of would, for the pair (ag,ar), produce steri­
cally allowed conformations and it is not necessary to evaluate 
the differential distance equations.

The function rotate implements the rotation operator
defined in (21), A <- R(p )A .m m m

The function screen is invoked when there are additional
constraints on the allowed distance between an atom in A andm
an atom in Â , p < m. A constraint is specified by an atom
pair (as>ar) anc* the minimum and maximum allowed distances.
The function interatom is used by screen to generate the coef­
ficients of a differential distance equation for the atom pair 
using the minimum distance as the van der Waals constraint. A 
modified form of the compress function is used to eliminate 
values in LP^ which would produce interatomic distances less
than the minimum or greater than the maximum allowed values.

Significant reductions in the computational complexity of
a Systematic Search can be achieved by first applying the
search procedure to each of the substructures obtained by the
composition of each pair of adjacent aggregates. There are M
such substructures, each containing one torsional degree of
freedom. Let LT , 0 < m < M, be the set of indices of trigono- m &
metric values determined by A, | LT | - r = 360/A. Then, the
output produced by a search of each substructure, LT^,
1 LT' I = r', includes only those values of LT which can produce J m 1 m J m
sterically allowed conformations of the substructures. The 
excluded values are those which will always result in a viola­
tion of the steric constraints between two atoms in adjacent 
aggregates in the complete structure. If LT̂ , 0 < m < M, are
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used in place of LT^ as inputs to a Systematic Search, then the
computational complexity, measured in terms of the number of 
points (NP') in discrete hyperspace is given by the formula:

M
NP' = II r' , r' < r (22). . m  mm=l

In addition, the procedure validate may be modified to elimi­
nate the calculation of differential distance equations for 
atom pairs contained in adjacent aggregates [lOd].
THE M OLECU LA R  EN ERGY  CALCU LAT ION

Computation of the energy complex molecular systems, i.e., 
systems composed of 500 atoms or more with very many local 
energy minima, is usually performed using molecular mechanics 
methods [1 1 ,1 2 ] .

The molecular mechanics program (Maximin) developed in our 
laboratory uses a Simplex minimizer [15], White's force field 
[16], and energy functionals systematized in Table 1. The 
distinctive features which make Maximin extremely suitable for 
the specific requirements of computer-aided drug design are 
summarized below. Our approach requires the use of Systematic 
Search to identify representative and well-defined conforma­
tions for the system and the problem at hand, and their further 
refinement by Maximin, with molecular graphics [20] playing a 
secondary analysis role, see e.g., [17].

The symbols used in Table 1 have the following connota­
tion: (1 ) N̂ : no. of bonds in molecule; d^: length of the i-th

° o o  dbond, A; d^: equilibrium length for the i-th bond, A; : bond
-1 ° - 2stretching force constant, kcal mole A ; (2) N̂ : no. of

valence angles in molecule; 9^: value of the i-th valence
angle, degrees; 0?: equilibrium value for the i-th valence

9 -1angle, degrees; k̂ : angle bending force constant, kcal mole
-2degree ; N^p: no. of out-of-plane bending angles at trigonal

atoms; <L: value of the i-th out-of-plane bending angle, k?:
-1 -2out-of-plane bending constant, kcal mole degree ; (3) v^:

height of the i-th torsional barrier, kcal mole
periodicity of the torsion angle, , Ŝ  = sign|r?̂ |; N̂ : no. of 
torsional angles; (4) q̂ : net atomic charge at the i-th atom,

o

|e | ; rj[j : separation distance between charge carriers, A;
£(r̂ j): dielectric function. Due to the absence of obviously
applicable techniques for dealing with the dependence of the 
dielectric function on r̂ . [14], Maximin allows designation of
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three ranges for r^ , and for each of these ranges it is given
a choice of three functionals: £(r..) = ar̂ . + c, £(r..) =ij ij v ijy

2a[ 1 -exp (-brij ) ] + c, and eCr^) - a[ l-exp(-ar^ ) ] + c;
(5) N • no. of atoms in molecule; a.. = r../(R.+R.) where R. At ij ij i J iis the van der Waals radius of the i-th atom.

Table 1. Energy functionals used in Maximin

# Energy term Functional form

1. Bond stretching

2. Angle bending

3. Torsional

4. Electrostatic

5. Van der Waals

6 . Hydrogen bond

N.B
E = r I k? (d.-d? ) 2 str 2 l v ii=l

Eang “ 1  Iki (V V 2 + 2 4
i=l i=l

E = i Y v.[l+S.cos(In.|/w.)'tor 2 ^ iL l i ' i'*
i=l

At
Eele = 332.17 q.q./

i<j(i,j non-bonded)

£(r..)r..
ij ij

NAt
Evdw = I Eij ̂ 2'25/a^j

i<j(i,j non-bonded)
+8.28 105 exp(-13.586957 a _ ) ; 

for â j > 0.785555, and
NAt

- X E. . [1.0/aH-2.0/a?.]L, l j l i j  7 1 J J
i<j(i,j non-bonded)

for a.. < 0.785555 ij
The method described in [13]
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The capability provided in Maximin to hold constant 
< 40 parameters during a minimization greatly enhances its

utility to drug designers. By setting a large value for the
fixfixing force constant, , a small change, p̂ , in the fixed

parameter, p°, is extremely unfavorable. The potential func­
tions

N-.fix 9
Ef i *  - X k i  <“ >

1=1
allow the absolute coordinates of an atom, the distance between 
two atoms, the angle formed by three atoms, the dihedral angle 
formed by four atoms, the angle between a vector defined by two 
atoms and a plane defined by three atoms, and the angle between 
two planes defined by two sets of three atoms each to be held 
constant. Energy minimization with subsidiary constraints 
provides a way to preserve the stereoelectronic requirements 
characterizing the receptor-substrate interaction.

Another feature of Maximin, which further increases its 
versatility, is the multi-molecule fitting option, i.e., a 
procedure to force atoms of different molecules to occupy 
approximately the same position in space, adjusting their 
geometry to relieve any strain while maintaining low energy.
The procedure utilizes potentials

N
multi

ref 0
I kS. d2.
L ij iji=l

where d.. is the distance between the atom i of ij sr̂ , the i-th reference point, k„ is the spring 
necting atom i to the reference point, and N ^

(24)

molecule j and
constant con- 
denotes the

number of reference points.
Maximum provides alternative methods for 

comparing molecular geometries: The reference points may
correspond to atom positions of a reference molecule which is 
treated as a rigid entity; or all molecules compared are 
treated as conformationally flexible entities and the 
coordinates of the reference points are the arithmetic means of 
the coordinates of the atoms to be superimposed. Further, the 
possibility to assign different weights, w \ , to the molecules
considered, i.e., E , = Yw. k?. d?. , and the key-in-lock’ ’ multi u j ij ij * J
theory [19] allows one to explore and/or mimic to a certain
extent, the conformational features of an unknown biological
receptor. Note, also, that multi-molecule fitting offers an
elegant and straightforward approach to the determination of
the existence of a consistent pharmacophore hypothesis - the
question of its uniqueness may be addressed by use of
Systematic Search, as shown, e.g., in [18] for a series of
angiotension converting enzyme inhibitors.
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TH E  PH A RM A CO PH ORE

Consider the biologically active analogs M̂ , i < i < n,
and let F^, 1 < i < m, be the constituent functional groups
responsible for analog recognition and subsequent activation of 
the receptor.

Let {P^j} collect the points j in the discrete conforma­
tional hyperspace available to JT and corresponding to steri- 
cally allowed conformations, A^j be the coordinate set which 
specifies the topography of , and d ^  be the 3m-6 pairwise
distances between F and F , 1 < p, q < m, p < q ,  inP...p q’ H P H lj

A pharmacophore hypothesis consists of the specification
of (F-j ) <m> the correspondence between {F̂ } and {M^}^<^<n>
and the specification of d as d e D - [dp q  p q  p q  pq pq with
,111X11 j llldA . -d , d - given constants, 1 < p, q < m, p < q .p q  p q  * 1 *

If the set (25) is empty, there is no common three 
dimensional arrangement of {F̂ } in {hL} and, therefore, either
the hypothesis is invalid, or some e {M̂ } act at different
receptor sites, 
n
n < V  “ {Pi ii-1

Idpq £ Dpq> 1 S p, q < i, p < q, for any 1} (25)
If O  {P̂ j 5 * $ but (d^) cluster, e.g., as shown belowpq

(m-3):

F2

the hypothesis is not unique and additional information would 
be required for its resolution; if O  {P..} * $ and {d }i ij pq

^Evidently, if M^'s are conformationally rigid, or the topog­
raphy of the receptor is known, dmln = dmaX.7 pq pq
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cluster, e.g., as below

—F > '
p<qrepresent a pharmacophore model.

In the absence of any molecular information concerning the 
receptor, a pharmacophore model, once identified, should be 
regarded as a topographical and chemico-physical specification 
of the receptor and allows meaningful comparison of congeneric 
and/or non-congeneric molecules exhibiting the same biological 
action.

An illustrative example for identification and validation 
of pharmacophore hypothesis is provided [28] by a series of 
seven molecules, i.e., bamipine (1), clemastine (2 ), cyprohep­
tadine (3), triprolidine (4), promethazine (5), chlorpheni­
ramine (6 ), and carbinoxamine (7) - Figure 4 - which are only 
tenuously related structurally, possess relatively high confor­
mational flexibility, and represent potent antogonists (commer­
cially available drugs) of histamine receptor.

F̂ , a < S. < 4, correspond to the nitrogen of the cationic head 
d(NH  ̂ ) and N(l) atom of the imidazole ring of histamine, and,

respectively, to the centroids of the two benzene rings of 
cyproheptadine. The two nitrogens were selected to ensure that 
histamine also fits the pharmacophore model, and to account for
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©the ionic (NH  ̂ ) and hydrogen bond (N(l)) histamine recep­
tor interactions. The two benzene rings were selected for 
their probable implication in beneficial hydrophobic inter­
actions .

Systematic conformational search calculations have proved 
the uniqueness of the pharmacophore model shown in Figure 5.

Histamine ^an tagon ists: the energy o f the most stable conformation and the best
fitted conformation

Antagonist Ea)1 Eb)h2

Bamipine -5.8 1.9
Clameasitne 9.7 0.2
Cyproheptadine 9.7 1.7
Teriprolidine 8.1 4.9
Promethazine -0.1 1.6
Chlorpheniramine -0.1 2.3
Carbinoxamine -3.5 3.3

a) The lowest energy conformer (local mole ), minimized as a 
free molecule.
b) The difference (local mole between the energy of the 
best fitted conformation (Figure 4) and .

For further examples of pharmacophore model identification 
one may consult [29a] (angiotensin converting enzyme inhib­
itors), [29b] (antiulcer drugs), [29c] (muscarinic agonists), 
[29d] (histamine ^  antagonists).

Inspection of Figure 6 indicates a good geometrical fit of the 
pharmacophore model, and multi-molecule fitting calculations 
clearly show the ability of the molecules considered to achieve 
the pharmacophore topography at modest energy cost: an energy
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well up to 5 local mole  ̂ (Table 2) is within the range that 
might be expected in drug-receptor interactions.

Figure 6.

THREE-D IM EN SIONAL M OLECU LAR  SHAPE D ESCR IPTORS

Efforts to extract three-dimensional information regarding 
drug-(unknown) receptor interaction from measurements of po­
tency are generally centered on the QSAR paradigm [1], and 
appropriate characterization of the molecular shape is the 
major obstacle in the development of a topographical basis for 
QSAR.

The space occupied by a molecule can be defined conveni­
ently in the framework of the hard-sphere approximation: each 
atom of the molecule is represented by an isotropic sphere 
centered at the equilibrium position (X̂ ., Ŷ ., Ẑ.) of the atomic
nuclei I = 1 ,2 ,...,N, and having a radius equal to the van der 
Waals radius, r ̂ , of the atom; N is the number of atoms con­
stituting the molecule. The locus of points (x,y,z) within the 
molecule satisfies the following inequalities:

(Xj-x)2 + (Yr y)2 + (Zj.-z)2 < r2 , 1 < I < N (25)
A molecular van der Waals (vdW) envelope may be uniquely de­
fined as the surface of the intersection of the vdW spheres 
associated with the atoms in the molecule; consequently, the 
total volume inside the vdW envelope represents the vdW volume.

Evidently, for a given molecular geometry, the molecular 
shape and size depends to a major degree on the atomic vdW 
radii considered.

We have calculated [21] a set of effective atomic vdW 
radii, r̂ , which, unlike previous studies [2 2 ], reproduces
adequately (see Figure 7) the accessible areas of conforma­
tional space in the protein. This indicates that r^'s used
with (25) offer physically significant estimates of molecular 
shape and size.
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Figure 7. (a) Calculated map o f N H -O H  (PHI,#1) and (b) High-resolution 
crystal structures o f seven proteins O H - C O  (PSI,#3) torsional angles.

Atom H C O N F C I B r I S P

r 1.08 1.53 1.36 1.45 1.30 1.65 1.80 2.05 1.70 1.75
a

implies a repulsive interaction of approximately 5 kcal
mole  ̂at closest approval.

Consider the molecules M. , i = l,2,...,n, which exhibit3. * ’
the biological activity via a common mode of action, and let 
M^, 1 < r < n, be the most active compound in the data base.
It follows [23-25], in agreement with the drug-receptor theory 
[19], that M is the best available "copy" of the receptor
site, including steric features, and, therefore, it may be 
considered as a reference structure. Further, as the phar­
macophore represents a logical frame of reference for the 
receptor, meaningful comparison of M., 1 < i < n, with can
be achieved by geometrical congruence of over M ,̂ requiring
that the pharmacophore groups occupy approximately the same 
position. These geometrical congruences can be obtained using 
methods described in Sect. 3.

As the receptor and substrate "feel" the shape and size of 
each other through van der Waals interactions, it follows that 
the number pair (26) represents the simplest three-dimensional 
(3D) molecular shape descriptor (MSD):

3D-MSD(r,i) = [0V(r,i); N0V(i,r)] , (26)
0V(r,i) is the overlapping vdW volume of and M^, and
N0V(i,r) is the non-overlapping volume of superimposed over
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according to the criteria described above. OV may be re­
garded as the polarizability volume available to the molecule 
M ,̂ and NOV may represent either regions occupied by the recep­
tor and, therefore, not available for binding, and/or regions 
located away from the receptor and, therefore, sterically 
irrelevant.

We turn to numerical integration techniques [26] for
obtaining accurate estimate of OV and NOV, respectively.
Therefore, one determines the finite countable set W whose
elements W.(W. ,W. ,W. ) are points in the E~ space,J jx’ jy jz' K 3

W - {W |P1 ,P2) (27)
and satisfy the following properties:

(P^): Wj, for all j, lie within the parallelipiped
d^ < x < D̂ , < y < d̂  < z < which embeds
the collection of spheres (25) representing the 
superimposed molecules and ;

(P2 ): Wj, for all j, are uniformly distributed independ­
ent random points.

Next, one determines the sets
V s = (V^|P^5), p / ) ) , 5 = r or i , (28)

6 6 6 6whose elements ^j^jx’̂ jy ^jz^ satisfy the properties 
(P3): /  c » , J ■ r or i;

< V : for all j, satisfy at least one of the ine­
qualities (25) corresponding to the reference £molecule (5 = r, V ) and, respectively, to the
compared molecule (6 — i, V1).

As volume may be regarded as a non-negative continuous 
function in the closed bounded domain defined by the vdW en­
velopes, OV and NOV values are estimated by [27]:

OV(r, i) - g|Vrn VXI/1WI , (29)
and, respectively,

NOV(i.r) - g|Yx-Vr|/|W| , or
(30)

N0V(r,i) 
here, V1 - Vr

g|Yr-Vi|/|54| •,
{Vj|Vj e V1, Vj 0 Vr) is the relative comple­

ment of V1 in Vr, and g = (D^-d^)(D2-d2 )(D^-d^) represents the
volume of the parallelipiped which embeds the vdW envelopes of 
M^ superimposed over M̂ .

The W set is constructed using either Monte Carlo or 
strictly deterministic procedures. Within the first procedure 
Wj € W is given by: Wjx = di + (Di'di>?i: Wjy " d 2 +



244 3 D - Q S A R [Ch.20

(D2 'd2 ^ 2 : Wjz “ d3 + ^°3'd3 ^ 3 ’ where (?i>?2’̂ 3^ are unlformly 
distributed independent random sequences on the unit interval. 
The deterministic procedure, which mimics the stochastic ap­
proach, divides the parallelipiped into |W| subspaces ("elemen­
tary" parallelipipeds) whose centers (W. ,W. ,W. ) constitute
Wj e W, 1 < j < I HI. J jy J

The accuracy of the estimates (29) and (30), for given g, 
- 1/2is ~|W| ; this property implies relatively slow convergence

of the procedure and a requirement for W sets with large car­
dinality (>1 0 0,0 0 0).

Note that the molecular shape analysis (MSA) descriptor 
[27a], V , is clearly the 0V(r,i) and, therefore, it is a
particular case of the 3D-MSD. Further, the MSA procedure to
evaluate V overestimates its value and introduces a sizeable o
error which increases with the branching of molecules con­
sidered. Also, MSA generally assigns higher shape similarity 
between molecules compared: In the framework defined by the
reference structure and the criteria for geometrical congru­
ence, the shape of each molecule M̂ , 1 < i < n, is charac­
terized by the two dimensional vector
3D-MSD(r,i) = [0V(r,i); N0V(i,r)], and the n vectors are 
directly comparable.

A similarity measure [30], S(M^,M^), of the shape of
molecules M and M with respect to the same set of charac-P qteristics {0V,N0V} may be defined using [27] the single-valued 
monotonically-decreasing function

S(Mp>Mq) - [1 + d(Mp,Mq )]'1 , (31)
which has the following properties:

0 < S(M ,M ) < 1, M * M ; S(M ,M ) = 1;P q P g P PS(M ,M ) = S(M ,M ); S(d-co) = 0, and S(d->0) = 1.p q q pHere, d(M ,M ) is the Euclidean metric (32),P q
d(Mp,Mq) = [|OV(r,p)-OV(r,q)| 2 + |N0V(p,r)-N0V(p,q)|2]1/2. (32)
Note that from (32) and the triangle inequality and, respec­
tively, (31), it follows that S(M^,M^) with respect to the
whole set of characteristics considered, i.e., {0V,N0V}, and
S^(Mp,Mq) defined with respect to some of the characteristics,
i.e., {OV = Vq ) satisfy the inequality

S(M ,M ) < S5(M ,M ) . (33)p q p qFurther, it is easily seen that (30) allows accurate 
calculation of the three-dimensional version [33a] of the 
Minimal Steric Difference (MSD) descriptor [33b]:

MSD(r.i) = g|(Yr-V̂ ) U  (V1-^) |/|W| -
- g(|Yr-Vi| + |Vi-Vr|)/|W| =
- NOV(r.i) + N0V(i,r)

(34)
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The MSD approach, arbitrarily prescribing [34] equal weights to 
the non-overlapping volumes NOV(r,i) and NOV(i,r) lacks the 
needed flexibility to adequately account for the effect of 
molecular shape on bioactivity.

The most active compound in the data base considered does 
not necessarily provide the best topographical fit to the 
receptor active site. One should consider the possibility of 
missing sterically relevant atoms and/or the presence of steri- 
cally superfluous atoms. The problem is to determine, from the 
bioactivity of the molecules available, a better topography of 
the active site.

A classification methodology, the SIBIS algorithm [35], 
has been developed to map the receptor space explored by the 
molecules under study, i.e., to identify areas which correspond 
to the active site, areas occupied by the receptor, and, re­
spectively, areas which, pointing away from active site, offer 
little opportunity for interaction with the receptor and are, 
therefore, steric irrelevant. SIBIS is a self-consistent type 
procedure based on the least squares method with, or without 
subsidiary conditions; the convergence criterium is the best
overall agreement between the observed (Y^) and estimated (Y^)
bioactivities.

To obtain a framework on which to base a computational 
effort seeking the optimization of the reference structure, M ,
one must develop an appropriate basis from which to describe 
numerically the stereochemistry of the molecules considered.

One proceeds by superimposing the n molecules over M^;
the superposition procedure uses the multi-molecule fitting 
described in Sect. 2 supplemented with an allowance for con­
tracting into a simple vertex all nearby atoms, i.e., the atoms 
p e M ^ ,  1 < i < n, and q e occupy the same vertex if the
distance d(p,q) < 8, where 8 is given. The obtained pattern of 
vertices mimics the essential topographical features of the 
receptor space explored by the n molecules; it is called the 
investigated receptor space, abbreviated by IRS. One can use 
the IRS as coordinate system and ascribe to each the
m-dimensional row vector X. = [X..], 1 < i < m, with X.. = 1 if“ i ij J ij
the vertex j is occupied by an atom of M4 , and X.. = 0 if it is
empty; here, m denotes the number of IRS vertices.

Next, one derives the initial steric map. <IRS>. ... of ’  mit
the receptor as follows: (i) Consider the additional possible
connectivities in the IRS by connecting vertices p and q if the
resultant edge may represent a covalent bond; (ii) Partition
the IRS vertices into three classes: vertices assigned to the
active site (c), to the receptor backbone (w), and steric
irrelevant areas (i). The c-type vertices correspond to the
atoms of the M^, and the other vertices are of w-type. For
convenience, one introduces a dummy vertex of i-type and con­
nects it with those IRS vertices for which one wishes to check 
the steric relevance.



246 3D-QSAR [Ch.20

The steric molecular descriptor SMD = [SMD(r,i); SMD(i,r)] 
is an approximate measure of the overlapping volume of over

,(SMD(r,i)), and non-overlapping volume of over
Mr,(SMD(i,r)):
SMD(r,i) = I  S X SMD(l.r) = S X (35)

jE{c-type) J J jE{w-type) J J
where S.. is an additive measure of the size of the atom i e M.i j  J 1
and X.. EX., ij “I

The optimization of the reference structure consists of 
the following steps:

1) Consider <IRS>^  ̂ anc* compute the regression equation
(36) and the corresponding correlation coefficient Rq :

Y± = aQ + F(SMD(r,i), SMD(i,r)) + G ^  , a2 , . . . ) , (36)
where F - ^SMDtr, i)-£2SMD(i , r) or F - ^SMDtr, i)-£2SMD( i , r) - 

2 2^^[SMD(r,i) ] , if one wishes to obtain an estimate for the

receptor bulk tolerance, i.e., 3Y/3SMD(i,r) = 0 and
SMD(r,i) = ; G(a1 , a0 , . . . ) is (usually) a linear func-max j i z
tion of non-shape factors, quantified by o^, . which may
condition bioactivity, G - £ 7^0̂ .  G sorts out the non-shape

k
component of Y in order to prevent the contamination of the
SMD's due to their iterative correction.

2) Change the classification of i E <IRS>. ._ iff the & J mit
following two conditions hold:

i) the resultant eq. (36) has a better correlation 
coefficient R^ > Rq + AR; and

ii) the set of c- and i-type vertices, respectively, are 
all connected among themselves.
Changes of vertex classification are performed until 
no further improvement of the correlation coefficient 
is observed.

The condition (ii) is designed to be consistent with the con­
cept of reference structure which is represented by a connected 
graph (c-type vertices) and, respectively, with key-in-lock 
theory (i-type vertices).

3) The resultant <IRS> is then considered as <IRS>. .mit
and the step 2 is carried out for all j .

4) Repeat steps 2 and 3 until self-consistency is 
achieved, i.e., the vertex classification no longer changes 
within the given tolerance AR on repeated iteration.

The resultant <IRS> is optimal, <IRS>opt ’ and the set of
c-type vertices of <IRS>Q^t represents the "best" probable
molecular shape complementary to the receptor active site.

The recently developed version [36a] of the MTD approach 
[36b,c] parallel closely the SIBIS algorithm.
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Information energy method [32] can be used with the IRS 
concept to quantify the degree of relatedness of the molecular 
shape of M., 1 < i < n: one associates with each , via the
vectors, the finite probability scheme P^,

P.“l (p..)- , p.. = s..x../ y s..x.. ,ij'l<i<n 1J 1J lj'f;. lj lj 
1< j <m

(37)

o < p.. < i , y p.. - i, x.. g x. ,
1J jti U U -1

where P„  is the probability that occupies the receptor 
space centered around the vertex j of IRS. Because P^ is 
related to the shape of the molecule , the degree of related­
ness of the probability schemes P^ and P^ will characterize the 
degree of shape relatedness of the molecules, and M , pro­
vided that the vectors X and X were defined within the same“P ~q
IRS as coordinate system. The information correlation coeffi­
cient R(p,q), given by

R(P.q) = I  P..P ./[E(p)E(q)]1/2 , (38)
j=i rJ

expresses quantitatively the relationship between P^ and P̂ , 
and, accordingly, the relationship between the shapes of and 
M , i.e., R(p,q) - 1 if and P^ are identical repartized (M^ 
and have the same shape), and R(p,q) *= 0 if P^ and P^ are 
indifferent (the shape of M and M are not related); the
intermediate values 0 < R(p,q) < 1 are judged using the cri­
teria for the significance of the correlation coefficient [41]. 
Here, the quantity E(q) is called the information energy con­
tent of P ,“q

E(q) I  P* ; 1/m < E(q) < 1 ,
j-1 qj (39)

and it is a measure of the uniformity of the system described 
by P .̂ Other estimates [38,40] of the degree of similarity
between a pair of chemical structures are based on graph- 
theoretical and information-theoretical [37,39] concepts.

CONCLU SION S
In our view, one can make a convincing argument that model 

building and energy calculations are techniques which will play 
an increasingly important role in drug design [3,12,42]. While 
each technique may be applied independently, their combined 
application has a sinergistic effect.
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Chapter 21

HOW STRONG IS THE 
GAUCHEP -GAUCHEM 
INTERACTION?
Eiji Osawa
Department of Chemistry, Faculty of Science,
Hokkaido University, Sapporo 060, Japan

A BSTRA CT

Traditional areas of experimental organic chemi­
stry have been slow in adopting mathematical methods 
and concepts, although the relation is improving. 
As an example of obtaining benefits from application 
of computation, molecular mechanics simulation of 
the dependence of gauchep-gaucheM interaction on 
environments is presented.
IN TRODU CT ION

Mathematical concepts are generally not consi­
dered as the requisite for the study and practice of 
experimental organic chemistry, especially in those 
traditional areas like synthesis and natural pro- 
ducts. Concepts prevailing in these areas are usu­
ally expressed in terms of abstract words frequently 
ending with 'ty', such as affinity, reactivity or 
polarizability. In fact, chemists practicing in 
these areas can do very well even without recourse to 
mathematics at all. Despite this tradition, the 
entire history of chemistry can be viewed as that of 
progressively turning the vague ideas into concrete 
theories which can somehow be formulated with the aid
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of numerals. Those familiar terms like aromaticity 
[1], steric strain [2] and congestion [3] which once 
had only abstract meanings have recently been well 
quanti f i ed.

One of the most successful among these ap­
proaches is the empirical formulation of molecular 
force field [4]. Molecular mechanics, as it is 
usually called, actually does not involve any novel 
mathematical ideas but is a form of representing in­
tramolecular potential energy or force with a set of 
simple potential functions. Remarkably high reputa­
tion that this method has in recent years acquired as 
a practical means of predicting molecular properties 
like shape and vibrational behavior, rests entirely 
upon good set of parameters for potential functions. 
We are interested in molecular mechanics partly be­
cause it is a new way of doing chemistry while at the 
same time giving us ample opportunity to improve and 
update the art of simulating molecular force field. 
Several problems existing in molecular mechanics [5] 
need fresh concepts, hopefully with mathematically 
attractive ideas, but we do not touch on these prob­
lems here.

This article is intended to illustrate how the 
molecular mechanics can bg applied to practical or- 
ganic chemical problems. The problem discussed 
here started from one of the vague 'ty1 terms cur­
rently appreciated among organic chemists, namely, 
flexibility of organic molecules. Whereas some 
classes of molecules, for example saturated cyclic 
and acyclic alkanes, are generally considered flexi­
ble, the flexibility is more or less restricted by 
the shape of its energy hypersurface. Geometry of 
such a molecule changes through energetica 1 1 y the 
lowest possible paths along valleys and saddle points 
on the surface. Because of high dimensionality of 
ordinary organic molecules, no complete detail of 
energy hypersurface is known for molecules of practi­
cal interests to experimental organic chemists. 
However, several structural features that limit the 
flexibility under certain well-defined circumstances 
have been known for some time and they have been 
serving as indispensable guiding principles in con­
formational analysis. The particular feature that 
we are going to discuss here is the *forbidden* 
conformation of n-pentane, namely two adjacent 
gauches of opposite sign, i.e. gaucheF-gaucheM (1 ), 
or so-called 1,3-diaxial interaction when it is on 
the ring (2 ), wherein close approach of end carbon 
atoms (Cl and C5) of n-pentane or corresponding par-
* See also ref. [4] and [6 ] for other applications.
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M e ^ * M

U
1 2

P Mtial structure destabilizes the g g half-ring con­
formation. However, not much was known about the 
way this notable steric interaction can be relieved 
by the available flexibility of molecule or, inverse­
ly, how the interaction can be strengthened. Ener­
getics involved were also unknown. The situation 
was so, until molecular mechanics came to use. Now 
we can calculate this type of interaction under di­
verse circumstances and compare the computed results 
with experimental observations.

BA CK G ROU N D
p mAccording to Dale [7], the g g conformation of 

n-pentane is a shallow energy minimum, which is 14 
kJ/mol more strained than the global minimum anti- 
anti conformer. Our MM2* [8 ] calculations confirm 
this point and reveals several other interesting 
features: (1 ) the g Pg M conformer has no symmetry
element, namely the magnitudes of rotation about C2- 
C3 and C3-C4 bonds are not equal, (2) the C-C-C 
valence angles at C2, C3 and C4 are widened to 115 to 
116°, and (3) the shortest H/H contact distance is 
2.09 R [9]. Clearly this conformation is unlikely 
to populate to a significant extent under normal 
conditions. Since the predicted strain is the re­
sult of complete relaxation, it can be anticipated 
that the interactions present in this type of confor­
mation will readily increase if the relaxation is 
restricted by some means.
D ISCO V ER Y  OF STA G G ER ED  RO TA T ION A L  B A R R IER  
IN B ICYCLO-ALKANES

Our entry into this project occurred by chance 
which at first appeared to have nothing to do with 
the gPg M interaction, but seemed to be related with 
the molecular flexibility. In 1981, Ogawa et a 1>
[1 0 ] reported on the dnmr determination of activation
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barriers for the rotation of N-N bond in substituted 
l,l'-bipiperidines (3). A point of interest in 3 is 
that the inversion of nitrogen atom is 'prohibited' 
by the presence of one or two equator i a 1 alkyl sub­
stituents, which would give rise to 1,3-diaxial re­
pulsions if the nitrogen atom (and hence the piperi­
dine ring) is inverted. In this way, it was ex­
pected that only the N-N bond rotation process should 
be visible in the appropriate temperature range. 
The observed barriers (74 to 79 kJ/mol) were assigned 
to a 'single passing barrier' (4) where two N-C bonds 
are eclipsed.

We were first intrigued by the seemingly too 
high barrier for a sym-tetraalkylhydrazine (reason­
able guess is about 40 kJ/mol [11]) and tried to 
simulate the N-N bond rotation process by molecular 
mechanics [12]. Although MM2 force field [4] that 
we used has not been parameterized for N-N functio­
nality, it contained parameters for aliphatic amines
[13]. So we chose 1-(2'-methylcyclohexy1)-2-methyl- 
piperidine (5) as a model of 3 and performed dihedral 
driver calculation on the N-Cl' bond (Figure 1). 
Results were most surprising. Starting from the 
global minimum conformation A and driving the 6-1-1'- 
2 ' dihedral angle toward larger positive values, we 
did reach the single-passing, eclipsed barrier (B). 
However, as shown, (B) is not at all remarkable 
compared to the pronounced barrier (C). The calcu­
lated height of this barrier (about 60 kJ/mol) is the 
closest to what was observed, and in view of the 
recognized tendency of MM2 force field to grossly 
underestimate the rotational barrier height [6 ], this 
height can be considered reasonable. Then the cal­
culated height of (B) also appears as expected.

The 'unexpected' barrier (C) has perfectly stag­
gered conformation about the rotating bond. A close 
look at the calculated structure revealed that the 
strain arose from the long range, 1,5 type inter-
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F igu re  1. T o r s ion a l en ergy  cu rve o f  N - cy c loh ex y lp ip e r in e  (5, R = H ,  d o t te d  line) 
and meso-2,2''-dimethyl d er iv a tiv e (5, R = M e ,  so lid  line) [12]

actions across the C-N bond f namely a pair of 
strongly repulsive g g M interactions, 6-l-l'-2,-Me 
and 6'-T-l-2-Me. It should be emphasized here that 
only limited freedom is available at the top of the 
barrier, since any deformation in one of the g Pg M 
sequences to reduce the unfavorable interactions 
increases the strain in the other. Apparently the 
g g pair is locked simultaneously and inescapably 
into the narrow saddle point and the strain per one 
gPg^ interaction has been intensified from 14 kJ/mol 
in n-pentane (vide supra) to 38 kJ/mol!

At this point, we still could not believe the 
results. First, we thought that the new barrier may 
be an artefact of single bond drive calculation. 
Then we performed two bond driver calculation, ro­
tating 5-6-1-2 as well as 6 -l-l,~ 2 l dihedral angles 
of 5 [14]. This revealed a new pathway including 
twist form of piperidine ring and a new barrier of 
almost the same height as (C) , but the essential 
feature remained unchanged; again a pair of strongly 
constrained and hardly relaxable gPgW interactions as 
the source of barrier.
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RESTR ICTED  R O TA T IO N  IN CAN N A B ID IOL

Incidentally, a dnmr study of cannabidiol (6 ) by 
Kane and Martin [15] was reported shortly after our 
work mentioned above was completed and their results 
came to our attention again by chance. They gave 
very high barrier of rotation about the pivot bond of 
6 (61.5 kj/mol) in contrast to literature value.
Correspondence with the previous authors revealed 
their mistakes and the previous barrier height was 
corrected to 59.8 kJ/mol in good agreement with the 
Kane-Martin value. 6 is essentially a substituted 
phenylcyclohexene carrying 'ortho' substituents po­
tentially capable of g^gW and/or similar long-range 
nonbonded interactions across the pivot bond. Mole­
cular mechanics driver calculations of 6 confirmed 
the above initial guess on the source of rotational 
barriers [15].

Here, the presence of sp -hybridized carbon 
atoms somewhat complicates the situation. Take 
phenylcyclohexane (7, R=H) as the simplest model: for 
the gauche-like interaction across the pivot bond in 
the well known equatorial-perpendicular conformation 
8 , we proposed a name of 'progauche' interaction.

8
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Progauche differs from gauche in at least two as­
pects. First, the dihedral angle is about 30° in 
the former whereas it is about 60° in the latter. 
Second, the two sp -hybridized carbon atoms in the 
former have different valence angles and bond lengths 
from those of the latter. A progauche interaction 
is probably slightly stronger than gauche.
PHEN YLCYCLOHEXAN ES AND  B ICYCLOH EXYLS

It is now clear that the best model systems for 
systematic study of the staggered barrier are substi­
tuted phenyl eyelohexanes (7) and bieye 1ohexyls (9).

9
Although some of them have been subjected to prelimi­
nary calculations in the course of our works men­
tioned above [14,15], it was often difficult to ex­
actly locate barriers by the dihedral drive technique 
of the MM2 program. Namely, the dihedral drive 
algorithm can be used only for simple cases. A 
better method of exploring a complex torsional energy 
hypersurface is to use full-matrix Newton-Raphson 
geometry optimization which converges at an energy 
maximum of any dimensionality. The dimensionality 
is equal to the number of negative eigenvalues of F- 
matrix (second derivatives of potential energy with 
respect to nuclear coordinates) which is obtained 
during the Newton-Raphson optimization [16].

Program BIGSTRN3 [17] is equipped with this 
capability and several other convenient options for 
our present purpose [15]. Hence this program was 
used in conjunction with M M 2 1 force field [8 ] for an 
extensive study on the rotation about the pivot bond 
of variously methylated 7 and 9 [18]. Bicyclohexyls 
9 followed expectedly complex dynamics when more and 
more 'ortho* positions are methylated. The highest 
calculated barrier was 109 kJ/mol for l-(2',6,-di- 
methylphenyl)-2,6-dimethylcyclohexane (7, R's=Me).
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At this barrier, two sets of long-range interactions 
(999/9e9) occur simultaneously. During the calcula­
tion, one of the cyclohexyl ring was allowed to 
change its conformation, but the other ring was kept 
in chair form. This artificial constraint had to be 
imposed in order to reduce the amount of computatio­
nal load to a manageable size. Hence the predicted 
pathway and barrier height must be regarded provisio­
nal. Even higher barrier (127 kJ/mol) was predicted 
for 1 - (2 ,,6 I-dimethylphenyl )-2 -methylcyclohexane (7, 
R 2 =H, R 6 =R2 *=R6 ,=Me) • Generally, the pathways cal­
culated for the pivot rotation of 7 are less complex 
and have somewhat higher barriers than those of 9, 
reflecting the effect of more rigid phenyl compared 
to cyclohexane ring. Molecular mechanics predict 
that atropisomerism should be possible for appropri­
ately substituted 7 and 9.

No experimental information is available, how­
ever, regarding the rotational barriers of 9. Bi­
cyclohexyls 9 have anyhow been unpopular in organic 
chemistry and we wish to attract attention of experi­
mental chemists for this unexplored class of hydro­
carbon .

A few experimental determinations of rotational 
barriers are reported for the derivatives of 8 and 
related molecules [18]. Only one example will be 
mentioned here. An indole derivative (10) showed

^ See p. 270 of ref. [19]. In recent years, a 
large number of derivatives of 9 have been appearing 
in patents relating liquid crystals. We thank Mr. 
K. Yoshinaga of Canon Company for this information.



260 Gauche-Gauche Interaction [Ch.21

atropisomerism: isomers were separated by chromato­
graphy and identified by x-ray analysis [20]. Since 
the amide nitrogen should be able to avoid congestion 
by inversion, its substituent (COC^H^Cl) probably 
does not contribute to the rotational barrier. 
Then, the steric environments at the transition point 
of this molecule during the rotation of pivot bond 
correspond to those of trimethyl-7, the one which has 
been predicted to have the highest barrier!
CONCLU SION

Upon reflection, we realize that conformational 
analysis has long been dominated by the gauche effect 
and biphenyl isomerism (11) [19]. The former is 1,4

11

type and the latter 1,5 and 1 , 6 types of nonbonded 
interaction. Hence the important classes of van der 
Waals interaction had been covered, albeit in an 
unsystematic way. 7 and 9 can be regarded as the 
extension of biphenyl isomerism to saturated and more 
flexible analogues, which proved to offer rich mate­
rial for the study of g g , gPg^gP and similar long- 
range interactions.

Our initial aim, to see if the gPgM interaction 
can be increased by imposing extra constraints, has 
more or less been substantiated. It would be in­
teresting to seek other systems, than bicycloalkyls 
and arylcycloalkyls, that provide straining circum­
stances to the long-range nonbonded interactions.

ACK NOW LEDGEM ENTS

The author thanks Dr. Carlos Jaime for skillful­
ly carrying out all of the calculations referred in 
this work. We are indebted to Professor Y. Takeuchi 
and Dr. K. Ogawa for valuable suggestions and plea­
sant discussions. Partial financial supports were



Ch.21] References 261

provided by the Ministry of Eduction through Grants- 
in-Aid for Scientific Research.
REFERENCES

[1] S. Kuwajima, Am. Chem. Soc. 1984, 106, 6496 
and references cited therein.

[2] (a) R. Fuchs, Chem. Educ. 1984, 61_, 133.
(b) A. Greenberg et al. J. Am. Chem. Soc. 1983, 
105, 6855; Tetrahedron 1983, 39> 1533.

[3] M. L. Connolly, J. Am. Chem. Soc. 1985, 107, 
1118; Science 1983, 221, 709.

[4] U. Burkert and N. L. Allinger, "Molecular Mecha­
nics", American Chemical Society: Washington, D. 
C., 1982. A review of this book: P. Gund, J.
Chem. Inf. Compu t. Sc i. 1983, 23_, 8 8 .

[5] T. Hirano and E. 7 s a w a , Croat. Chem. Acta 1985, 
58, 1573.

[6 ] E. Gsawa and H. Musso, Ange w. Chem. Int. Ed. 
Engl. 1983, 22, 1; Top. Stereochem. 1982 13,
117.

[7] J. Dale, "Stereochemistry and Conformational 
Analysis", Verlag Chemie, New York, 1978.

[8 ] C. Jaime and E. Dsawa, Tetrahedron 1983, 39,
2769.

[9] Details to be published elsewhere.
[10] K. Ogawa, Y. Takeuchi, H. Suzuki and Y. Nomura

J. Chem. Soc., Chem. Commun. 1981, 1015; Chem. 
Lett. 1981, 607.

[11] S. F. Nelsen and G. R.Wisman, J. Am. Chem. Soc. 
1976, 98, 3281.

[12] C. Jaime and E. Qsawa, Chem. Soc., Chem.
Commun. 1983, 708.

[13] S. Profeta, Jr. and N. L. Allinger, J. Am. Chem. 
Soc. 1985, 107, 1907.

[14] C. Jaime and E. Csaw a, J. Chem. Soc., Perkin 
Trans. II 1984, 995.

[15] V. V. Kane, A. R. Martin, C. Jaime and E. Dsawa, 
Tetrahedron 1984, 40, 2919.

[16] P. M. Ivanov and E.Tsawa, J. Comput. Chem. 1984 
5, 307.

[17] Program BIGSTRN3 was kindly donated by Professor
K1f Mislow and Dr. R. B. Nachbar, Jr. See H.-B. 
Burgi, W. D. Hounshell, R. B. Nachbar, Jr. and
K. Mislow, J. A m. Chem. Soc. 1983, 10 5, 1427.

[18] C. Jaime and E. Csa w a , J. Mol. StTuct. 1985, 
126, 363.

[19] E. L. Eliel, "Stereochemistry of Carbon C o m ­
pounds", McGraw-Hill Book Co.; New York, 1962.

[20] K. Harano et a 1. Cryst. Struct. C o m m un. 1981, 
10, 165. See also, T. Kitamura et a 1. Hetero- 
cycles 1982, 19, 2015.



Chapter 22

TOPOLOGICAL EFFECTS ON 
MOLECULAR ORBITALS (TEMO)
O.E. Polansky
Max-Planck-Institut fur Strahlenchemie D-4330 Miilheim a.d. Ruhr

A BSTRA CT

Simple molecular topological considerations result 
in an interlacing theorem which produces TEMO. Its 
physical relevance is proved. The purely topologi­
cal feature of TEMO is found to have a strong pre­
dictive power and, hence, dominates over several 
physical factors in determining MO pattern.

IN TRODU CT ION

The interest in the influence of topology on mole­
cular properties has grown remarkably in the last 
few years. Much progress has been made in the various 
areas of chemical topology, for example the synthe­
sis of sterically unusual compounds like catenanes, 
rotaxanes [1,2], and Mobius strips [3] as well as 
the topological analysis of the electron density 
function [4] and energy hypersurfaces [5],
In the present paper some progress in the field of 
molecular topology is reported [6,7]: the concept of 
t o p o l o g i c a l l y  r e l a t e d  i b o m e r k , termed t o p o m e r b , as 
well as some t o p o l o g i c a l  m o d e l 6 f o r  their construc­
tion are presented; further a novel relation between 
the MO pattern of topomers is derived [ i n t e r l a c i n g  
t h e o r e m )  and its physical significance is proved by 
both, quantum chemical calculations (at the a b  
i n i t i o  SCF level) and experimental data.
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M OLECU LA R  TO PO LO G Y

Formally molecular topology is fully described by 
the simple graph G = [I/,E] associated with the chemi­
cal constitution of the molecule considered: The n 
vertices collected in the finite non-empty set V re­
present the atoms whilst the k unordered pairs of 
distinct vertices of (/, forming the set E, corres­
pond to the "chemical bonds" of the molecule in 
question. By means of the open set formalism it was 
shown [8 ] that a topological space is uniquely asso­
ciated with any simple graph. A simpler alternative 
to this important work is offered by the neighbour­
hood formalism [9] which results in that topologi­
cal space which is induced by the discrete metric 
defined upon a connected simple graph (note, by de­
finition, a simple graph has no loops, no arcs, and 
no multiple edges). The alternative approach is 
briefly outlined as follows:

(i) A ball-neighbourhood U (x) of the vertex x 
of 1/ is defined as the set of all elements y of 1/ 
whose distance to x, d(x,y), is smaller than an 
arbitrary positive nubmer e :
U 0 (x) = {y | y e 1/, d(x,y)<e}. (1 )

(ii) A subset of \J, 1/' cz \J, is said to be a 
neighbourhood U of the element x if and only if I/' 
contains a ball-neighbourhood of x:
U£ (x) Cl I/' . (2)

(iii) A topology ^ is defined upon the set I/ by 
associating each element x of 1/ with a system U (x)
of subsets of I/, the so-called neighbourhoods U of x, 
obeying the axiomes:
[T 1] x 6 U for all U 6 U ( x ).
[T 2] If U 6 U (x) and U' cz U, then U' 6 U(x).
[T 3] If U' , U" 6 U (x) then U' (1 U" e U (x) ? 1/6 U (x) . 
[T 4] For any U 6 U(x) there exists U' 6 U(x) such 

that U 6 U(y) for all elements y 6 U*.
(iv) The set I/ together with its topology T forms 

the t o p o l o g i c a l  A p a c e  T.
In such a way each molecule M is unequivocally asso­
ciated with a particular topological space T(M) by 
its molecular graph G(M) which represents the con­
stitution of the molecule under consideration. It 
may easily be verified that any fragment of the 
molecule, say A c  M, corresponds with a distinct sub­
space of its topological space, T(A) CZ T (M ).
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TOPOM ERS AND TO PO LO G ICA L  M ODELS

Two isomers are said to be t o p o l o g i c a l l y  r e l a t e d  if 
they are constituted from pairwise equal fragments, 
say A , B , C ,... . Thus, the difference between the 
isomers of such a pair arises solely from the dif­
ferent mutual linkage of their fragments. Topologi­
cally related isomers are called t o p o m e h b  .
The topological spaces associated with a pair of 
topomers may be divided into subspaces T(A), T(B),... 
associated with the building fragments, A,B,...; 
evidently, these subspaces are pairwise isomorphic. 
Thus the topological spaces associated with a pair 
of topomers differ only with regard to the respec­
tive conjunctions of their subspaces.
A particular mode for the construction of topomers 
is termed a t o p o l o g i c a l  m o d e l .  The number of topo­
logical models seems to be unlimited, but here we 
present only two such models of particular interest; 
more examples may be found elsewhere [1 0 , 1 1 ].
In m o d e l  1 two fragments, A and B, are combined to 
the topomers S and T by H > 2 bonds. In m o d e l  2 three 
fragments are used: the terminal fragments A and B 
are linked by £ > 2 bonds with £ centers of the 
central moiety C7 The two models are represented by 
the following schemes :

model 1: model 2:

The topomers formed by means of one of these models 
are denoted by S and T according to
lim cf) (S ,x ) < lim <f>(T,x) (3)
x+°° x̂ °°
where <|>(S,x) and <|>(T,x) stand for the characteristic 
polynomials of the respective graphs.
It should be noted that in order to construct two 
different topomers at least two bonds are needed 
and, further, not all the centers where the linking 
takes place are allowed to be equivalent.
The use of the models is illustrated by Figure 1.
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The topomeric pairs I-IV are constructed by means of 
model 1 while model 2 is used for V; as it can be 
seen from Figure 1 the pairs IV and V have the T 
isomer in common, IVT = VT.

Figure 1. Examples of pairs of topomers. 

IN TERLAC IN G  TH EOR EM  - TEM O

The characteristic polynomials of the topomers may 
be expressed in terms of the characteristic poly­
nomials of their constituents. Thus for model 1,
1 =  2 , one obtains
4>(S,x) = <J) (A,x) 4> (B,x) - 4> (A-k,x) 4> (B-p,x) -

- <J> (A-Hfx) (|> (B-q,x) + ()) (A-k-£ ,x) 4> (B-p-q , x) -

4> (T,x)
2[S4)(A-PV0 ,x) ] [ Z4> (B-P , x) ] ,K x, pq (4)
4> (A,x) 4> (B,x) - 4) (A-k,x) 4> (B-q, x) -
4) (A-£ ,x) 4) (B-p,x) + 4> (A-k-£ ,x) 4> (B-p-q,x) -
2[I4>(A-Pk£ ,x)][I4>(B-Ppq,x) ] .

In these expressions A-k denotes the graph obtained 
from A by deleting the vertex k, etc.; the summa­
tions run over the complete sets of paths {P^} 
connecting the vertices k,l 6 A and {P } 
connecting p,q,6B, respectively. ^
Note that the characteristic polynomials as expressed 
by eq. (4) consist of a number of bilinear terms;
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of the two factors forming such a term the one 
refers to subspace T(A) and the other to T(B).
The difference of these polynomials defined by
A  (x) = (p (T, x) - (p (S,x) (5)
is again a polynomial in x. In case of model 1,
1 = 2 , it follows from eq. (4) that
A  (x) =  [(f) (A-k,x) -(p (A-£,x) ] [<f> (B-p, x )-<p (B-q,x) ] . (6 )
Note that in eq. (6 ) all polynomials, but only those 
which are sensitive for the difference of the con­
junction of T(A) and T(B) in T(S) and T(T), respec­
tively appear. Thus A(x) incorporates these diffe­
rences in polynomial form and, hence, it is conside­
red as reflecting the tietatfue topology of a pair 
of topomers.
The expression of eq. (6 ) takes the form of a per­
fect square if the moieties A and B are isomorphic,
A ^ B, i.e. the centers k and £ of A may be mapped 
isomorphically onto the centers p and q of B, res­
pectively. Under these conditions one obtains
A(x) = [(f)(A-k,x) - (f)(A-£,x) ] 2 > 0. (7)
Obviously, in this specific case A(x) is non-negati­
ve within the complete range of its variable x; in 
view of eq. (7) A(x) = 0 has either no real roots 
or only real roots of even degeneracy.
From eqs. (5) and ) it follows that
(f) (S , x) < (f) (T, x) , x e (-«>, +°°) . (8 )
This relationship between the characteristic poly­
nomials of a pair of topomers is schematically de­
picted in Figure 2. Because both polynomials must

Figure 2. Schematic behaviour of ct>(S,x) and 4>(T,x) in case of model 1,
€ = 2, A  — B.
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have the same number of zeros, say N, in view of eq. 
(8 ) the zeros of the polynomials mutually interlace 
as follows: in the intervals given by two successive 
zeros of (J)(S,x) there are alternately two or no zeros 
of <J) (T,x) :
S< T< T< S< < S < T < T < S < /q \

X 1 X 1 x 2 X 2 • "  X 2k-1 x 2k-1 X 2k X 2k •** (9)
Two independent and detailed proofs of eq. (9) are 
found elsewhere [12,13]; in [1 2 ] it is shown further 
that the interlacing theorem, eq. (9), is also valid 
for a class of polynomials, not all of which neces­
sarily characteristic polynomials.
When the interlacing theorem, eq. (9), is applied 
to fully conjugated Tr-electron systems the zeros of 
the respective characteristic polynomials may be 
identified as the Huckel (HMO) eigenvalues of the 
topomers. Thus, eq. (9) relates in a novel manner 
the eigenvalue spectra of topologically related 
compounds which have been considered to be indepen­
dent hitherto. Since eq. (9) stems from A(x) which 
incorporates the relative topology of the topomers, 
the chemical application of the interlacing theorem 
has been termed t o p o l o g i c a l  c ^ c c t  o n MO (TEMO) .
It should be mentioned that by means of a Hiickel- 
like method the validity of TEMO also for a-MO has 
been shown.
Finally the other two models given above should be 
considered. In the case of model 2, £ = 2, A ^ B, 
one obtains
A (x) = [cf> (A-k,x) -<J> (A-£,x) ] 2 (p (C-a-b,x) .
Under some particular conditions demanded for the 
structure of the central moiety C, the polynomial 
(f) (C-a-t?,x) is a perfect square, say (j)(C-a-b,x) = 
[y(x)] ; then eqs. (8 ) and (9) are obtained again,
i.e. the MO spectra of the topomers in question ex­
hibit the TEMO pattern as described above.
In the case of model 1, Z = 3, the polynomial A(x) 
consists of four bilinear terms which have pairwise 
opposite sign; thus no conclusion can be drawn about 
the sign of A(x), even if A v b. With increasing Z 
the number of terms of A(x) also increases. The same 
is true for model 2 as well as for additional models 
not mentioned here.
PHYSICO-CHEMICAL CONSEQUENCES OF TEMO

Here we restrict the considerations to the n-electron 
systems of those pairs of topomers which may be con­
structed by means o^ model 1 o r 2 ,  Z =  2, A  ^  B , 
(j)(C-a-b,x) = [y(x)] . The mutual interlacing of the
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MO of the S and the T topomer according to eq. (9) 
is schematically shown in Figure 3. Let N denote the 
number of Tr-electrons of S and T , respectively. It 
is easy to show that N is even in all cases conside­
red here. If N = 4v + 2, an odd number of MO is 
doubly occupied in the ground state of the topomers 
and the HOMO (LUMO) of S lies below (above) that of 
T, i.e. the HOMO-LUMO separation is larger in S than 
in T (Figure 3a); if N = 4v, the opposite is true 
(Figure 3b).
This consequence of the TEMO pattern should be exhi­
bited by pertinent UV absorption bands provided the 
state transitions in question are mainly determined 
by MO transitions. Since this requirement is well 
met by the p-bands of polycyclic aromatic hydrocar­
bons (PAH), they have been examined with the view of 
probing the predictions of TEMO theorem. These were 
found to be in excellent agreement with the experi­
mental data (see Table 15 in [6 ]).
A similar consequence of the TEMO pattern should be 
shown by the first ionisation potentials, IP1.

S TAs seen from Figure 3 IP^ > IP^ should hold for N =
4v + 2 but IP^ < IP^, for N = 4v. This prediction
also was found in accord with the experimental data
[6 ].

a) tx b) fx
S i T S : T

Figure 3. Schematic illustration of eq. (8). The broken line separates the doubly 
occupied and the empty MO. The number of Tr-electrons, N, is assumed to be 
N= 4v + 2 in a) but N = 4v in b).

This first evidence for the physical relevance of 
TEMO theorem is supported by the results of some 
quantum chemical calculations as well as photoelec­
tron (PE) spectra of topomers. These additional data 
will be discussed briefly in Sect. 7.
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INVERSIONS
Let us return to eq. (6 ) valid for model 1 , 1 - 2 ,
A B. In the case of non-isomorphic moieties, in 
general, quadratic forms of the difference poly­
nomial A(x) will not be obtained and consequently 
A(x) will change its sign when the variable x goes 
through one of the real roots of A(x) = 0 provided 
the roots in question are not even-degenerated.
Let us denote the real roots of odd degeneracy in 
decreasing order as follows:

X1 > X2 > ‘ > x2 j-1 > X2j > x2j+1 > ••• * (10)
They determine open intervals within which A(x) is 
either non-negative or non-positive; but A(x) becomes 
zero within the interval if x takes the value of a 
root of even degeneracy. As a consequence of eqs.
(3) and (4) A(x) will be positive for sufficiently 
large values of x. Thus, one generally finds:
A(x) > 0 , iff x e , I I V

X 2 j+1 ' x 2 j ' (1 1 a)
A (x) < 0 , iff x e / I  I n  x 2 j ' X 2 j-1 ' (1 1 b)

j = 0 , 1 /2 , . . . I; x -> +00. o
For all the intervals where A(x) < 0, one obtains 
from eq. (5) 4>(S,x) < c|>(T,x). Using the same argu­
ments as before, one~derives from this inequality 
the sequence of eigenvalues as follows:

< 1  < <xT <x^ <x^ <xT < <xX < (12)'=x2j=''"=x2k-1=X2k-1=X2k=X2k='*'=X2j-1=* ’ U J
As shown by eq. (12) the interlacing theorem holds 
even if A ^ B, but within the intervals given by 
eq. (11b) the order of eigenvalues is inverted. Thus 
the real roots of odd degeneracy of A(x) = 0 have 
been termed i n v z t i A i o n  po^CntA . Inversions as expres­
sed by eq. (1 2 ) are said to be topologically induced. 
Attention should be paid to the following points:
(i) TEMO theorem predicts the mutual interlacing of 
the eigenvalues of a pair of topomers within defined 
intervals as alternatively expressed by eqs. (9) and 
(1 2).
(ii) Topologically induced inversions within the 
TEMO pattern as discussed above are a part of the 
generalized TEMO theorem.
(iii) The appearance of inversion points in a given 
TEMO pattern may be excluded when particular topo­
logical models are used; such an exclusion is due 
to an inherent property of the topological model
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in question.
(iv) No general rule can be given for the actual 
realization of inversions if they cannot be ex­
cluded; note: No inversion can be actualized if the 
polynomials in question have not at least one zero 
within the intervals given by eq. (1 1 b).
PHYSICAL RELEVAN CE  OF  TEM O

The quantum chemical calculation of the MO energies 
of a pair of topomers may serve as a test of the 
physical relevance of TEMO theorem. However, in such 
an appraisal one has to bear in mind that in de­
riving eq. (9) only two interactions of centers of A 
with those of B are considered, namely the inter­
actions of k and £ of A with their neighbours in B.
In contrast to that in any non-empirical quantum 
chemical calculation of MO energies, each center of 
A is found to interact with each center in B and 
vice versa; this leads to a.b >> £ interactions where 
a and b denote the number of centers of A and B, 
respectively. Thus, the situation met in non-empirical 
MO calculations resembles to model 1, £ > 2 (where 
inversions cannot be excluded!) more than to £ = 2 . 
Consequently a large number of inversions might be 
expected even if model 1, £ = 2, A ^ B is used. Sur­
prisingly, the spectra of a- and tt-MO of o-(IS) and 
p-benzoquinodimethane (IT) [6 ], shown in Table 1, 
exhibit only a few inversions: In the range from -0,4 
to -0,5 [au] where a- and tt-MO energies overlap the 
sequence of the respective MO inverted; only within 
the a-MO pattern there are two additional inversion 
intervals ranging from -0,53 to -0,56 and from 
-0,62 to -0,73 [au], respectively. In some other 
calculations of that kind [15,16] even less inver­
sions have been found. As seen from Table 1 the M0 
pattern of the topomeric pair I exhibits perfectly 
the interlacing of the M0 according to eqs. (9) and
(12). The number of inversion intervals is surpri­
singly low. Thus, the TEMO theorem stands very well 
the test by non-empirical M0 calculations.
Some examples [16-18] indicate that the physical 
origin of the additional inversions observed is 
nearly always the non-nearest neighbour interaction 
which is not considered in the course of deriving 
eqs. (9) and (12); an additional origin of physi­
cally induced inversions could be traced only in 
one case of heterocyclic topomers [17].
Another rigorous proof of the physical relevance of 
the TEMO theorem is offered by PE spectroscopy. Pro­
vided Koopmans theorem holds the vertical ionisation 
potentials as exhibited in the PE spectra should re-
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Table 1. The a  and tt-MO o f o-(IS) and p-benzoquinodimethane (IT) in [au] 
taken from [6] (STO 3G basis, standard geometry; inversion intervals are marked 
by dotted lines).

IS IT IS IT
a-MO:

-1 ,096  109 -0 ,523  718
-1 ,095  072 -0 ,516  540
-1 ,012  555 -0 ,503  316

-1 ,004  848 -0 ,496  719
-0 ,986  414 -0 ,472  228

-0 ,973  930 -0 ,453  912
-0,921 337 -0 ,432  840

-0 ,9 0 0  402 -0 ,412  978
-0 ,822  836 -0,411 872

-0 ,784  236
-0 ,767  785

-0 ,7 5 0  425
.....................- 6 ,7 2 ?  953 tt-MO :

-0 ,714  896 i -0 ,463  535:
-0 ,637  657 :-0 ,462  871 •

-0,621 709 -0 ,356  040
-0 ,6 2 0  554 -0 ,339  030

-0,611 044 -0 ,334  342
-0,601 409 -0 ,317  534

-0 ,594  379 -0 ,203  487
: -0 ,553  383 -0 ,203  378
| -0 ,5 4 0  443
: - 0 , 540 166

present the upper MO levels of the compounds in­
vestigated. Thus, the PE spectra of a pair of topo- 
mers should render the TEMO pattern. This is veri­
fied very well by the PE spectra of the topomeric 
pairs II, III, and V [19] collected in Table 2; 
some additional data are found in [20]. The examples 
given in Table 2 are taken from the class of PAH be­
cause the PE spectra of these compounds consists of 
a very large number of well-resolved peaks. But it 
should be mentioned that the PE spectra of more than 
a hundred pairs of topomers, selected from literature 
and exhibiting a wide variation in their constitu­
tional characteristics, satisfy the TEMO theorem 
with astonishing fidelity [2 1 ].
CONCLU SION S

(i) The interlacing theorem is a novel relation in 
mathematics; it has been proved rigorously.
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Table 2. PE spectra o f the topomeric pairs II, III, and V shown in Figure 1 (all 
data in [eV], taken from [19])

S II T S III T S V T

7,41 6,61 7,59
7,86 7,27 7,60
8,1 5

8,54
7,39

7,92
8 , 0 2

8 , 1 0
9,19 8,32 8 , 6 8

9,28 8,54 8,98
9,89

10,18
8,90

9,01
9,18

9,43
10,28 9,39 9,72

10,59 9,53 9,96
9,66

9,80
1 0 , 2 2

10,52
10,23

10,3
10,5

(ii) The interlacing theorem is derived using the 
relations between the molecular-topological spaces 
associated with a pair of topomers.
(iii) Hence, it is applicable to the a- and tt-MO of 
organic compounds, thus producing the TEMO, provided 
the topological features of the MO are considered.
(iv) The test of TEMO by non-empirical MO calcula­
tions, UV absorption, and PE spectra shows that 
TEMO strongly superceeds several physical factors.
(v) From this fact one may conclude that molecular 
topology is not so much only the end of rigorous 
abstractions rather than one of the first princip­
les; it seems it determines some sort of frame 
within which physical reality may be actualized.
(vi) Hence, besides its use in organic chemistry 
TEMO has some cognitive value too.
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A BSTRA CT

For individual Kekule valence structures we consider the 
smallest possible number of placements of CC double bonds such that a Kekule structure is fully determined. The number may 
be viewed as special weighting scheme for individual Kekule 
valence structures. A1ternatively its reciprocal indicates the 
degree of a long-range order in a Kekule structure. Contribu­tions from individual Kekule valence structure add to a novel 
structural invariant F, the innate degree of freedom associat­
ed to a conjugated system. We find that F correlates well 
with the molecular resonance energy.
IN TRODU CT ION

The question of the relative importance of Kekule valence 
structures has been frequently overlooked, implying by default 
that all Kekule valence structures have the same weight. In 
order to explain the reduced aromatic stability of nonbenzenoid 
systems in comparison with benzenoid systems having the same 
number of Kekule valence structures Longuet-Higgins and Dewar 
introduced the concept of parity for valence structures (1).
One can interpret parity formally by assigning to some valence 
structures a weight +1 and to other -1. Valence structures of 
opposite parity then cancel each others contributions to mole­
cular stability. The concept of parity, however, suffers from 
inconsistencies that become apparent when one extends the
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application to polycyclic systems having three odd fused rings 
(e.g., aceazulene) (2). Similarly it shows deficiency when 
applied to alternant systems having two or more four membered 
rings, in which cases the most stabilizing and the least sta­
bilizing valence structures may appear with the same parity 
(3). In contrast Clar, using chemical intuition and logic, 
argued that in polycyclic systems individual rings may differ 
considerably, some showing a great similarity to benzene ring, 
others bearing little resemblance (4). Formally the approach 
of Clar amounts to assigning to most Kekule valence structures 
weight 1 and to a few weight 0. While the work of Longuet- 
Higgins, Dewar, and Clar, clearly point to a need to differen­
tiate the relative importance of individual structures, the 
way to resolve this problem remains open. Recently several 
authors suggested a classification of valence structures into 
more than two classes (5). The present work reports yet an­
other approach to this problem.
INNATE D E G R E E S  OF FREEDOM  OF VALEN CE  STRUCTURES

Most chemists will agree that valence structures in Fig. 1 do not represent useful depiction of the molecules shown. Can we 
quantify the chemical intuition that guides us in rejecting 
the valence structures of Fig. 1 as unimportant? Can one esti-

Figure 1. Selected Kekule valence structures for polycyclic benzenoid systems.
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One clue is that the discriminated structures of Fig. 1 may 
be identified with a type of long-range order. That is, there 
are highly correlated couplings in the sense that the pairing 
of vertices at large distances is dictated by arrangement of 
CC double bonds in some local region. This suggests that one 
can speak of an innate degree of freedom of individual Kekule 
valence structures. The degree of freedom relates to the count 
of steps at which in completion of the Kekule valence structure 
one has the possibility to make a choice for CC bond type 
(single or double). Consider two Kekule valence structures of 
triphenylene:

For the left structure once we select any one C=C in the central ring al1 other C=C are determined and the complete 
Kekule valence structure can be written down. The valence 
structure at left has a single inherent degree of freedom. In 
the case of the valence structure at the right, however, by 
assigning one C=C in the central ring only, two additional C=C 
are determined (within the same side ring). In order to c o m ­
plete the Kekule valence structure two additional selections 
have to be made, each to fix C=C bonds in the remaining peri­
pheral rings. Hence, the structure at the right has three de­
grees of freedom. We can now present the definitions for the 
innate degree of freedom of an individual valence structure 
and the molecule as whole:Definition 1: The innate degree of freedom of a Kekule val­
ence structure is the smallest number f of choices of CC bond 
types that fully defines the structure.
Definition 2: The innate degree of freedom of a molecule F
is given as the sum of inherent degrees of freedom for all 
Kekule valence structures of the molecule.
The innate degrees of freedom f and F are structural invari­
ants. For a given Kekule valence structure f is unique, even 
though if one is to construct a Kekule valence structure the 
number of choices may depend on the order in which CC bonds are 
selected for considerations. That is the reason for emphasiz­
ing the smallest number of choices in the definition for f.
RESULTS

To find f and F is simple in some cases and more involved in 
other. For linear acenes all Kekule valence structures have 
f=l, and consequently F=K (K being the number of Kekule val­
ence structures). This simply follows from the fact that in 
such molecules each Kekule valence structure has a single
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"vertical" C=C bond which determines the CC type of all other 
bonds. In such systems CC double bonds are strongly correlat­
ed, and as the size of the molecule increases, their RE/e 
values (the ratio of the resonance energy per pi-electron) de­
crease. The decreasing aromatic characteristics of such linear 
polycyclic systems is reflected in their low value for F. If 
we compare angularly fused structures with a single "kink":

a ?  o a?
one finds that here there is for all such compounds a single 
valence structure which is fully determined by selecting one 
C=C bond in the central ring. The remaining Kekule structures 
may be viewed as composed from Kekule structures for the 
straight acenic fragments of rings on either side of the ring 
where the kink takes place. In these structures one needs to 
specify the location of two C=C double bonds transverse to the 
chain, one double bond in each straight acenic portion. Thus 
these structures have f=2, and F=2(K1)(’K2) + 1, where K1 and 
K2 are the numbers of Kekule structures possible for the two 
straight acenic legs. It is not difficult to generalize this 
rule for other catacondensed acenes. Finding f for periconden- 
sed systems is more involved. One essentially breaks down a 
larger structure into components of smaller size for which f 
values have already been found. A useful aid in determining 
f is to locate the smallest conjugated circuits R1 (6) (i.e., 
the rings with a benzene Kekule valence structure). The 
rationale for doing this is that f is at least as great as the 
(maximum) number of disjoint conjugated circuits that can be 
simultaneously identified to the Kekule structure. The conju­
gated 6-circuits are often the most important for benzenoids, 
and because they are the smallest circuits they lead to a 
greater number of such disjoint circuits to be found. Thence 
one sees that the number of circles in a Clar structure asso­
ciated to the given Kekule structure is a lower bound for f.
The innate degrees of freedom provide a weighting for Kekule 
structure that though it parallels Clar's ideas is different. 
That is, we see that those Kekule structures associated to a 
Cl ar structure with many Clar's circles will have a high weight 
f. Those with no or few Clar's circles however are not given 
a weight of zero, as Clar initially suggested, but generally a 
lower weight. It is possible to have structures with arbitrary 
large values for f. This is seen for long chains where the 
number of disjoint Clar's circles can scale as the chain length 
(for some Kekule structures). Moreover these same type of 
chains yield examples with variety of different values of f.



Figure 2. Long chain molecule with valence structures of variable f.

For instance, a chain molecule of Fig. 2 in addition to the 
f=6 valence structure also has f=5 and f=4 valence structures. 
In fact for such chains of M rings f takes all the integer 
values such that ( M + 2 ) / 3 $  f ^  (M+l)/2. In Table 1 we list 
the F values for numerous molecules,
RESON A N CE  EN ERG IES

A logarithmic relationship between RE and structure count has 
been indicated in the past (7). There is qualitative reason 
to anticipate such a correlation when we interpret RE as the 
correction to an energy of a single Kekule structure. An 
"appreciable" RE/e should occur under the circumstances that a 
typical Kekule structure interacts "directly" with "many" 
others, the strongest interactions being between two structures that differ but just slightly. For an appreciable RE/e the 
number of such strong interactions should scale with system 
size, say as measured by the number N of pi-centers. Thence 
modifications to a typical Kekule structure should be possible 
in a number of local areas scaling proportionally to N, each 
modification being independent of the others. Though a struc­
ture differing by a single local modification admixes most 
strongly, the possibil ity of making different modifications in 
different local regions indicates their independence. The 
total number of Kekule structures then scales proportional to 
M**S with M a mean number of modifications possible per local 
region and S the number of different local regions. But we 
have already argued that the total RE scales with S (when RE/e 
is appreciable) and of course S is proportional to N. Thus 
log K is anticipated t o s c a l e a s  the RE, at least in terms of
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Table 1. Polycyclic conjugated molecules considered, their F and K numbers (F is 
the number of innate degrees of freedom and K is the number of Kekule valence 
forms) shown as F/K.
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its "bulk" contributions. The rationale for a correlation be­tween log K and RE can be summarized more briefly in a frame­
work of multiplicative versus additive properties of structures. 
Kekule structure count K can be identified as "multiplicative" 
(when RE/e is appreciable) and RE as "additive" -- the log 
function being the well-known transformation from multiplica­
tive to additive quantities. Quite similar comments apply to 
the identification of F as multiplicative quantity, so that 
here too we anticipate a linear correlation between RE and 
log F. Indeed in Fig. 3 this is seen to occur to some degree 
(the RE have been taken from Dewar and de Llano (8)). As one 
sees there is a satisfactory correlation, which differ in de­
tail, but not in quality from the similar correlation based on 
K. Because K and F do not measure precisely the same struc­
tural features, F being a "refined" (weighted) K quantity, we 
see that the cause for the correlation is less apparent than 
first guessed. The dependence of F on K is not simple, as 
there are numerous cases of structures having the same K but 
di fferent F values.
eV RE 
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In conclusion, the quest for elucidation of molecular structure 
of complex molecules may well critically depend on the genera­
tion of novel concepts, rather than on the next generation of 
computers! With this in mind we have presented one such novel 
concept, the innate degree of freedom of valence structures. 
Possibly it may be of direct use or it may stimulate other 
novel inquiries in molecular structure.
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INTRODUCTION

Dynamic processes in molecules are usually regarded in terms 
of a few select degrees of freedom (modes). For example, the 
description of chemical reactions makes use of the reaction 
coordinate concept and molecular electronic spectroscopy makes 
use of electronic energy surfaces as functions of vibrational 
coordinates. It is both customary and reasonable to consider 
the smallest possible number of degrees of freedom of a 
molecular system required to understand its properties. On the 
other hand, it is generally recognized that every real system 
is composite in nature, consisting of very many modes that are 
at least weakly coupled to one another. In fact, since no part 
of the universe is truly isolated, every observed system is in 
principle coupled to the rest of the universe.
Our approach is to regard any given molecular system as consis­
ting of a Principal Subsystem (referred to as the PS) and a 
Background set of modes (referred to as the BG, or in some 
contexts as the Bath). The PS represents those modes that are 
directly involved in the process under observation, for example, 
a chromophore which absorbs light within a certain frequency 
range. The BG consists of all modes that are directly or
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indirectly coupled to the PS, for example, the substituent 
groups on a chromophore, solvent or other medium, radiation 
field modes, and phonon modes. Thus, the BG may be (in part) 
structurally an integral part of the PS and it may also include 
quite literally the surroundings.
In the theory of chemical reactions and of molecular spectros­
copy, the role of the BG as a source and sink for energy is 
generally taken for granted. Most processes involve at least 
part of the BG being in thermal equilibrium and the BG thus 
tends to direct the PS toward thermal equilibrium. However, 
the BG also plays a vital role in coherence relaxation in the 
PS; i.e., in the loss of a definite phase relation among its 
quantum states. Modulation of the PS by BG modes leads to 
dissipation of coherence as well as redistribution of energy. 
This is equivalent to a memory loss in the PS (see below) and 
can greatly modify its dynamics. In summary, the BG plays the 
important dual role of energy and coherence dissipation in the 
PS. The latter is of fundamental importance in the interplay 
of (coherent) dynamics and (incoherent) kinetics, the concept 
of irreversibility, and the approach to equilibrium of the PS.
In contrast to the dissipative forces of the BG there can be 
coherent forces acting on the PS due to potentials VP which are 
either extrinsic or intrinsic in nature. Such potentials tend 
to create or maintain definite phase relations among the PS 
states. Examples are applied coherent fields and intra­
molecular potentials producing nonradiative transitions. The 
theory developed here deals with the interplay of coherent and 
dissipative potentials.
There are numerous other theoretical approaches to macroscopic 
system dynamics and we mention a few that are relevant to ours. 
Grigolini (1985; 1981) has made extensive studies in terms of a 
reduced model theory, in which projection operator methods 
formulated by Zwanzig (1961) and by Mori (1965) are used.
Kubo (1969) has developed a stochastic Liouville equation 
method and similar stochastic equations have been used by 
Oxtoby (Bagchi and Oxtoby, 1982), Silbey (Jackson and Silbey, 
1981), Lin (Boeglin et al., 1983) and many others. These agree 
in general with the classic work of Redfield (1965) on spin 
relaxation. Finally, the subdynamics formalism of the 
Prigogine school (Prigogine, 1981) should be noted.
We define a subsystem basis { | i>} which spans the Hilbert 
Space of the PS. The matrix elements <i|p|j> of the entire 
system’s density operator p are operators with respect to the 
BG subsystem. A key feature of our method is to make the 
identification

p..(t) = <i I p I i> = p..(t) a. . (t)13 1K1J jv J 13
a.. (t) 5 trD p.. (t),13 J B 13 v } 5

(1)
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which is used provided Qjj is nonzero. Otherwise, the notation 
P-jj is retained. This defines the elements <Xjj of the reduced 
density operator for the PS and the associated operator for the 
BG. Our purpose is to formulate and evaluate the equations of 
motion for the â j for various kinds of molecular processes.
The diagonal element a-[i(t) represents the probability for 
state |i> of the PS, while o\j (î j) represents the coherence 
components (elements) of the PS. The latter is a measure of 
the coexistence of (probability) amplitudes for the state |i> 
and |j> in association (correlation) with the same wavefunction 
component of the BG. The coherence components play an 
important role in the dynamics of probabilities and other 
physical properties (e.g., average values of observables) of 
the PS.
By using eq. 1, it can be shown that the Liouville equation for 
the full system,

p(t) = - i Lp (t) , (2)
may be reduced to an effective equation of motion for the PS 
having the form

a..(t)i] 1 ‘ (3)

g
The effective Liouvillian depends on the bath operators p̂ p (t) 
in a manner implied by eq. 1. In general, its components 
depend on time t and the history of the system, including 
earlier values of the various amn. Eq. 3 permits the most 
complicated kind of dynamics in which the PS can have a major 
perturbation effect on the background, resulting in nonlinear 
equations for the amn. We are interested here, however, in the 
dissipative limit, whereby the BG is very large and nspongy,T 
and its properties do not change with time. Examples are non- 
stationary processes in molecules imbedded in a condensed 
medium at thermal equilibrium or molecular dynamics in a 
thermally equilibrated radiation field. For this limit 
^ijk^does not depend on t.
Even for the dissipative limit the dynamics of the PS can be 
quite complicated. The PS is generally composite and may 
consist of many degrees of freedom, some of which may be 
strongly coupled. We may wish to focus on one or a few modes, 
whereby further reduction of the PS is needed.
The discussion of background modulation effects on PS 
dynamics will develop in several stages. (1) The motion of 
the BG will be treated adiabatically. This means that the 
Hamiltonian of the BG depends on the state of the PS and the 
state wavefunctionsof the BG tend to evolve on the energy 
surfaces of the PS in a manner which modulates the dynamics of 
the latter. (2) The Liouville equation for the entire system
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is projected onto the diagonal components for the BG, the 
dissipative limit is used for the BG and reduction is made 
with respect to all background modes. The resulting reduced 
Liouville equation (RLE) describes coherent dynamics of the PS 
as modified by the dissipative background. (3) The non- 
Hamiltonian character of the RLE is examined and the criteria 
for an effective Hamiltonian component of the RLE is considered. 
(4) The special case of a two-level PS is discussed and results 
of computer calculations are presented for different coupling 
strengths and initial conditions. (5) Several important 
phenomenological consequences are considered for the effects 
of memory relaxation in the dissipative limit. These include 
structure stabilization, kinetic stabilization, and kinetic 
enhancement within the PS.
THE ADIABATIC HAMILTONIAN

The entire system consists of molecules and fields and their 
interactions. We tacitly assume that the Primary Subsystem 
(PS) contains a set of modes which can be clearly defined 
(e.g., a chromophore composed of bound electrons and nuclei). 
The system Hamiltonian is then

H = H h f + H + V + VFP + VAP (4)
where the first three terms represent the Hamiltonia for the 
free PS, nonadiabatic fields (e.g., radiation or applied 
fields), and the adiabatic part of the background (adiabatic- 
BG), respectively, and the last three terms represent intra-PS 
interactions, field-PS interactions and interactions between 
the adiabatic-BG and the PS, respectively.
The adiabatic formulation (Rhodes, 1981, 1982, 1983) involves 
the PS Schrodinger equation

(HP + VAP) | i> = 0L>i Cq) | i> , (5)
where q represents the set of BG coordinates that are to be 
treated adiabatically and (q) is the energy surface for the 
PS corresponding to PS state |i>. Strictly, |i> depends at 
least weakly on q, but this is neglected here. Each u)̂ (q) then 
serves as a potential for the motion of the BG modes. Thus,

[HA + <i |HA | i> + G).(q)] |A*> (6)

is the BG equation corresponding to PS state |i> . The 
adiabatic part of the system Hamiltonian may then be written
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h = T I i>h.< i v 1 1 (7)
l

and the full system Hamiltonian becomes

(8)
where

H° = HF + h

It is understood that residual nonadiabatic terms that are 
tacitly omitted in eq. (7) can be included by redefinition of 
the potentials Vp and VFP.
REDUCED LIOUVILLE EQUATION: DISSIPATIVE LIMIT
We begin with a Zwanzig-type projection (Zwanzig, 1961) in 
which diagonal elements of the background subsystem are 
projected by an operator P. This gives the standard structure

Where 0= 1-P. The last term depends on those elements of the 
initial density operator that are nondiagonal in BG states (for 
a given reference basis). For convenience, we assume that this 
term vanishes. Note that eq. 9 does not project diagonal 
components of the PS, so is fundamentally different from the 
usual Zwanzig projection. Next, we use the dissipative limit 
for eq. 9, whereby eq. 1 is used, reduction is made with 
respect to background modes, and the BG is assumed to be 
unperturbed by the PS (except for possible transient local 
perturbations). The resulting reduced Liouville equation (RLE) 
takes the form

P p(t) = -i PLP p(t)
t
dt^P L Q e 

-iQLQt

- i O L Q f t - t p
OLP p(tp (9)

o
-iP L Q e Q P(o)

£[Yimkj °kj + aik Yikmj]km
(10)

This form of eq. 3 is the fundamental equation for the 
dissipative limit. The components of are
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(10a)

(10b)

(10c)

(10d)

(10e)

Eq. 10a is the average frequency difference for PS states |i> 
and |j>. Note the two-sided character of the commutator-like 
structure. Eq. 10b is the very important memory relaxation 
(pure dephasing) constant resulting from adiabatic motion of 
the BG modes on the two PS surfaces. It is the average value 
of the squared difference potential between surfaces a)-[ and ooj 
(denoted b y ^ j  ). The conditions of validity for eq. 10b are 
that the diagonal BG components of pi) be real and slowly 
varying with BG energy levels. The yF terms in eqs. 10 c-e are 
coefficients for coherence transfer, probability and probability 
amplitude relaxation, and probability transfer, depending on 
the PS indices.
The RLE of eq. 10 describes the interplay of coherent and 
dissipative dynamics. It represents the play of nonequilibrium 
dynamics of the PS on a background of thermal equilibrium. This 
implies that pB and consequently the Y ’s depends on temperature. 
The coherent potentials are given by Vp and the coherence 
transfer components of Ŷ , while the dissipative potentials are 
given by YA and the probability (amplitude) relaxation and 
probability transfer components of YF.
The importance of the adiabatic formulation of the BG lies in 
the resulting memory relaxation term Y^ of eq. 10b and the 
associated simple conceptual picture. According to this 
picture coherence loss (pure dephasing) between Ii> and |j> is 
caused by a difference in the force acting on the BG coordinates 
in the two states (Rhodes, 1981,1982,1983). Other theories of 
dephasing have used collision models in which collision of a 
BG molecule with a PS molecule causes a phase disruption 
(Harris and Stodolsky, 1981). The adiabatic formulation shows 
clearly that dephasing depends on the difference in properties 
of the two PS states relative to the BG molecules.
EFFECTIVE HAMILTONIAN FORMULATION
In the most general situation, eq. 10 is a nonHamiltonian 
equation of motion for the PS. This means that ^  cannot be
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cast in commutator-like form involving a Hamiltonian. The 
presence of y^ alone is sufficient to destroy the Hamiltonian 
character. In addition, however, the existence of y^ terms, 
such as yiikp in eq. lOe describing probability transfer from 
state |k> to state |i>, also destroys the Hamiltonian structure.

On the other hand, it can easily be seen, that there exists a 
set of y^ components for which eq. 10 maintains (nonHermitian) 
Hamiltonian character. These consist of the elements in 
eqs. 10c and lOd corresponding to relaxation of amplitude of 
the PS states. For example, if the only surviving y elements 
in eq. 10 are Yikij in ecl- 10c an^ Yijmj in eq. lOd and if the 
former are independent of state |j> and the latter are 
independent of state |i> , then eq. 10 takes the form

O = -i EJ*0 - a * + ] , (11)
with the effective (nonHermitian) Hamiltonian 

= h + VP - i !2Y.
PIt is tacitly assumed that the matrix elements of V are real 

Thus,^ is a complex symmetric operator which can be 
diagonalized by a (complex) symmetric transformation. The 
discrete eigenvalues of lie in the lower half of the complex 
plane.

The dynamics described by eq. 11 is one in which the amplitudes 
and probabilities for states having a nonzero y component tend 
to decay exponentially. On the other hand, states coupled by 

tend to have oscillating probabilities. The resulting 
pattern is one of decays and oscillatory decays. Consequently, 
J4 is not norm conserving, the reason being that use of an 
effective, nonHermitian Hamiltonian implies that a projection 
onto a subspace of the Hilbert space of the PS has tacitly 
been made. The subspace removed by projection is effectively 
a probability sink for the PS. Effective Hamiltonians can be 
of great practical value in describing intramolecular 
dynamics (Heller, Elert, and Gelbart, 1978).

TWO-LEVEL SYSTEMS

The preceding sections have shown how modulation of the 
Principal Subsystem by Background modes in the dissipative 
limit leads to coherence (memory) relaxation within the PS.
Some of these dissipative (y) terms contribute a nonHermitian 
Hamiltonian component while others destroy the Hamiltonian 
character of the effective Liouvillian, £  . In order to 
understand the phenomenological consequences of these 
dissipative terms, including the introduction of irreversi­
bility and kinetics (vs. coherent dynamics), we now consider a 
prototype PS consisting of two states |a> and |b>.
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At first we let contain only an effective Hamiltonian part, 
eq. 11, and a pure memory relaxation term, Yabab = Yab- Note 
that symmetry requires that YAb = Yba. (cf. ecD 10b) • We 
assume that V has no diagonal elements and that V ^ E V is real. 
The equation of motion then becomes

daa -Yaa iV -iV 0 aaa
O u ab iV (-iWab-Yab} 0 -iV O uab

ba -iV 0 (-ia)b a - W iV ba

fbb 0 -iV iV ‘Ybb __bb

where y = y , y = y,,,,, and y , - yAu + h (y +y, , ). aa aaaa bb bbbb 1 ab ab  ̂aa bb'

(12)

The pure imaginary components in eq. 12 tend to produce 
coherent oscillation of a components, while the pure real (y) 
components tend to give monotonic relaxation. For simplicity, 
we now let yaa = ybb = 0, whereby the only dissipation is due 
to pure dephasing, Yab • We wish to compare the weak and strong 
coupling cases for the magnitude of V vs. yA^. Of course, for 
Yab = 0, we have simple, coherent, oscillatory Hamiltonian 
dynamics in which aaa and abb oscillate (for nonstationary 
initial conditions) about mean values which depend on coab . 
However, for y ^ > 0 the system always approaches a limit 
point aaa = abb =h, provided V f 0. This is shown in Figs, 
la and lb for the strong coupling (V> yÂ ) and weak coupling

Figure 1. Two-state relaxation dynamics, (a) Strong coupling: V = 1.0;
V lT ; 7abj=  0.4; = 7bb = 0. (b) Weak coupling: V = 1.0; wab = 10.0;

âb 10-0, -y3a -ybb
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A(V< Yab) cases, respectively.
Physical processes in which the strong coupling case is 
observed include optical nutation in laser driven excitation 
and quantum beats in molecules excited by light pulses. The 
weak coupling case is prototype for simple kinetic relaxation 
to equilibrium. For this limit the dynamics of aaa and a^  are 
accurately described by kinetically reversible equations m  
which the forward and reverse rate constants are equal and 
have the value

It can be shown by projecting eq. 12 onto aaa and Obb that the 
resulting equation is a Markovian master equation (Zwanzig, 
1961) in the limit Yab 00 and V/yab = constant.
Excitation energy transfer between molecules provides another 
good example of the dichotamy presented by strong and weak 
coupling. For strong coupling excitation transfer is a 
coherent delocalization of the excitation in which crab 
(coherence component) maintains a viable role in the dynamics, 
while for weak coupling crab is damped and maintained at a low 
level so that the excitation is transferred by an incoherent 
probability migration (hopping) mechanism (Forster limit).

AAnother possible role of Yab in eq. 12 is molecular structure 
stabilization. In principle, many molecular conformations can 
undergo isomerization through quantum mechanical tunneling. If 
Yab is larger than the tunneling matrix elements, there will 
be a kinetic stabilization of conformational isomers through 
modulation by the medium (Harris and Stodolsky, 1981). In 
this regard, medium effects via yA may play a role in the 
symmetry-breaking formulation of stable molecular structures. 
Such symmetry-breaking has been presented as a puzzle in recent 
papers (Wooley, 1980; Trindle, 1980).
Perhaps the simplest possible example of nonHamiltonian 
dynamics is provided by the case in which the only nonzero 
element of £  in eq. 12 is A . We then have

(13)

0 0 0 0
0 0

1 0 (14)
0 0 0 0

For components of a in the (a,b) basis the only dynamics 
generated by is the relaxation of aab and % a. A system 
initially in pure state |a> or |b> is stationary under ,
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while a coherent superposition of |a> and |b> relaxes to a 
statistical mixture. This looks like rather dull dynamics 
until we consider the equation of motion in a different basis. 
For example, if we make the unitary transformation to the basis 
|1> and |2>,

we obtain
li,2> =

-i<£ = -Vy

35( |a> ± |b>J y

’l 0 0 -l“
0 1 -1 0
0 -1 1 0

-1 0 0 1

(15)

(16)

The dynamics in this new basis now looks very interesting.
The equation of motion, eq. 3, is two uncoupled sets of 
equations, one for the probabilities o-q and 022 and one for 
the coherence components o12 anc* The coupled probability
equations describe Markovian kinetics. A system initially in 
state |l>, for example, undergoes a kinetic transformation to 
a statistical mixture of |l> and |2>. The coherence components 
are zero for all t.
In applying the results of eq. 16 to a model calculation we 
have included the parameters yaa = 0.2 and Ybb = 0.1 in order 
to make the dynamics more interesting. The results for the 
value Y^b = 0.5 are given in Fig. 2.

1.0

I 05
N o ’ll

—

/  1 1 l ___ 1______
0  2 4 6 

T IME (orb. units)
8 10

Figure 2. Two-state relaxation dynamics due solely to dissipative relaxation in the 
basis |a> and |b>. Parameters yab= 0-5; Yaa = 0.2; 7 bb = 0.1; V = coab = 0.

Analysis shows Ojx to have biexponential decay resulting from 
competitive kinetics for the transition |1> -* |2> and 
dissipative probability loss due to y and Ybb*



Ch.24] Two-level Systems 293

The important feature exhibited by eq. 16 and Fig. 2 is that 
purely dissipative dynamics (in particular, pure coherence 
relaxation) in one basis produces a kinetic enhancement in 
another basis. Such processes may occur in molecular excited 
state relaxation, where coherent excitation prepares the 
molecule in a nonstationary excited state while coherence 
relaxation occurs among the set of superposed states 
comprising the prepared state.

D ISCU SS ION

We have shown how the modes of the Principal Subsystem (PS) are 
modulated by the Background (BG) modes in the dissipative limit. 
Eq. 10 is the most general result, but eq. 12 shows familiar 
features more clearly for a special case of a two-level system. 
The dissipative components yaa and Ybb are often referred to 
as longitudinal relaxation (T]_) and Yab as the transverse 
relaxation (T2). These equations contain the interplay of 
coherent and dissipative dynamics. Of particular importance 
is the role of the nondiagonal (coherence) components o for 
the PS. The coherent potential, V^, couples cra^ to the diagonal 
elements (probabilities) . Thus, damping of cra^ affects 
probability rates. Furthermore, contributes directly to 
average values of PS observables.

Our key result is the adiabatic formulation of memory relaxation 
(pure dephasing), given in eq. 10b. The idea is that
transitions within the PS due to produce a motion of the BG
modes (’’shaking" of the bath) , which motion in turn modulates 
the dynamics of transitions in the PS (adiabatic modulation).
In the dissipative limit a strong correlation evolves between 
the PS and the BG. In terms of wavefunctions the BG wave- 
packets associated with different PS states tend toward 
orthogonality with rate Y^.

The damping of aab by Yab can greatly modulate the dynamics of 
aaa and producing a Markovian master (kinetic) equation
in the strong dissipative limit. Kinetics replaces coherent 
dynamics in the sense that crab is maintained at a low level 
(duetto large Yab)• Consequently the rate of transitions due 
to Vab is greatly lowered, resulting in kinetic stabilization. 
Eq. 16 shows how Yab produces kinetic enhancement in another 
basis. For transitions among more than two states, memory 
relaxation can produce sequential transitions, in which 
quantum interference terms are eliminated. This provides the 
distinction, for example, between coherent light scattering and 
resonance fluorescence (Rhodes, 1981).

Memory relaxation also gives a basis for understanding entropy 
production and the approach to equilibrium. A PS initially in 
a pure quantum state evolves into a statistical state with an 
increase in entropy from an initial value zero.
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ABSTRACT

The m a th e m a tica l p rope rties  o f the  to p o lo g ica l d istance m a tr ix  
are b r ie f ly  surveyed and the numerous a pp lica tions  o f th is  m a tr ix  
to  various branches o f chem is try  are then described. A d e ta iled  
discussion is devoted to  the W iener index, de fined  as one h a lf the 
sum o f the  en tries  in the d istance m a tr ix . This index has proved 
to  be one o f the  most va luable  topo log ica l indices in several d if fe re n t 
chem ica l con tex ts .

PRELIMINARY MATHEMATICAL SURVEY

A lthough  in its  o rig ins  the d istance m a tr ix  can be traced  back to  
the  work o f C ay ley [1], i t  was not u n til 1895 th a t the m a tr ix  was 
f i r s t  in troduced  in em bryon ic  fo rm  by Brunei [2]. The d is tance 
m a tr ix , D(G), fo r  a graph G is de fined  as a re a l, square, sym m e trica l 
m a tr ix  o f o rder n, w ith  en tries , dij, rep resen ting  the d is tance t r a ­
versed in m oving fro m  ve rte x  i to  ve rte x  j in G. The dij  en tr ie s  
must a lways sa tis fy  the fo llo w in g  c r ite r ia :

(i) d n  = 0 ( id e n tity  re la tio n )
( ii)  dij = dji  (sym m etry  re la tio n )
( i i i)  dij ± d i ^  + d^j  ( tr ia n g le  inequa lity )

where i, j,k = 1 ,2 ,...., n . In the  present co n te x t, the  dij  w il l 
re fe r on ly to  topo log ica l distances and not to  g e o m e trica l d istances, 
though D(G) is de fined  in the same way fo r  both . O nly in the case
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o f a tre e  graph, T, w ill the be un iquely de fined. To accom ­
m odate c y c lic  graphs, how ever, Hosoya [3] genera lized the  d e fin it io n  
o f the  d istance d^j  by tak ing  i t  to  be the  m in im um  num ber o f edges 
trave rsed  in m oving fro m  i t o j .

M a them atic ians  have s tud ied  D(G) ve ry  e x te n s ive ly  w ith  the m ajor 
emphasis focusing on tre e  graphs. Thus, Graham and Poliak [4] 
proved th a t fo r any tre e , T, on n ve rtice s , the  de te rm in an t o f D(G) 
w ill assume the fo rm  (- V n ~^ in - 1)2n"2. It fo llo w s  th a t D(T) w ill 
a lways have one p os itive  e igenvalue and in-1) nega tive  eigenvalues, 
irre sp e c tive  o f the na tu re  o f the tre e . The p rope rties  o f the d is tance 
m a tr ix  po lynom ia ls ob ta ined  by expanding the de te rm inan ts  have 
been inves tiga ted  by several authors [5-8], and it  has been found 
th a t such po lynom ia ls are h igh ly  unsu itab le  fo r the unique c h a ra c te r­
iza tion  o f trees [9], even though every  f in i te  tree  is un iquely d e te r­
m ined up to  isom orphism  by D(T) [10]. The cond itions under which 
a given D(G) can be re a lize d  by a graph, and espec ia lly  the  cond itions 
under which unique re a liz a tio n  is possible, have been w ide ly  s tud ied 
[11-15]. The de te rm inan ts  fo r d is tance m a trices  a ris ing  fro m  
w eighted, d ire c te d  graphs have also been exp lo red  [16]. Since 
d is tance m a trices  are c lose ly  re la te d  to  f in i te  m e tr ic  spaces, i t  
is not surpris ing th a t D(G) has been em ployed in the study o f iso­
m e tr ic  embeddings o f graphs in to  the ca rtes ian  products o f m e tr ic  
spaces [17-18].

6

-•--- i-- •-2 3 4
Chemical Graph

*5

/  \
1 2 3 4 5 6, /0 1 0 0 0 OX 1 2 3 4 5 6

1 /0 1 2 3 4 3\
Z 1 0 1 0 0 0 z 1 0 1 2 3 2
J  0 1 0 1 0 1 2 10 12 1
4 0 0 1 0 1 0 4 3 2 1 0 1 2
A  o o o i o o  i 5\ 4 32 1 03 /
6 Vo 0 1 0 0 0 6 V3 2 1 23 0/

Adjacency Matrix Distance Matrix

F igure  1. The ad jacency and d istance m a trices  fo r 3 -m e thy lpen tane

The redundancy o f much o f the in fo rm a tio n  conta ined in D(G) has 
been com m ented upon by several authors [19-22]. Thus, fo r any 
graph G, D(G) conta ins no more in fo rm a tio n  than th a t conta ined
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in the ad jacency m a tr ix , A(G), a m a tr ix  s im ila r to  D(G) but w ith  
a ll dij  >1 set to  zero. Both o f these m a trice s  are illu s tra te d  in 
F igure  1 fo r the  graph o f the m olecu le  o f 3 -m e thy lpen tane . Once 
A(G) is known, the  en tries  fo r D(G) may be re a d ily  de te rm ined  
ite ra t iv e ly  by ra is ing  A(G) to  the powers 2 ,3 ,. .. .,n . The a ij  e n try  
in [A(G)]n yie lds the number o f walks o f length n in m oving fro m  
ve rte x  i to  ve rte x  j  o f G [23-24]. A lg o r ith m s  fo r ca lcu la tin g  D(G) 
nowadays, how ever, make use o f fa s te r procedures than m a tr ix  
m u lt ip lic a tio n  o f powers o f A(G). Bersohn [25], Peredunova e t a l. 
[26], and Herndon [27] have a ll used ve ry  e f f ic ie n t  a lgo rithm s fo r 
ca lcu la tin g  D(G) fo r  any graph. R e ce n tly , a lgo rithm s have also 
been published fo r  de te rm in ing  the sho rtest path between tw o  given 
ve rtice s  in D(G) [28,29]; the shortest spanning tree  in D(G) [30]; 
the next to  sho rtes t and longest paths betw een a pa ir o f ve rtice s  
[29,31]; the m axim al degree o f a tre e  [32]; and the number o f branch 
po in ts and th e ir  respective  degrees in trees [33].

USES OF TH E  D ISTAN CE  M ATR IX

The d is tance m a tr ix  has found w idespread a p p lica tio n  in a v a r ie ty  
o f d if fe re n t guises in the physica l, b io lo g ica l and social sciences. 
Among d isc ip lines  re la tiv e ly  rem ote  fro m  ch e m is try , D(G) has 
been em ployed, fo r instance, in an th ropo logy fo r the study o f tr ib a l 
grouping p a tte rn s  [34]; in archaeology fo r  the c la ss if ica tio n  o f 
anc ien t a r t ifa c ts  [35]; in e le c tr ic a l eng ineering  fo r the m ode lling  
o f loop sw itch ing  [4]; in geography fo r the  p lanning o f tra n sp o rta tio n  
ne tw orks [36]; in geology fo r h ie ra rch ica l c lu s te r analysis [37]; 
in o rn ith o lo g y  fo r the c la ss ifica tio n  o f b ird  song [38]; in ph ilo logy  
fo r the study o f sem antics [39]; in psychology fo r the d e fin itio n  
o f psycho log ica l d is tance [40]; and in socio logy fo r the m ode lling  
o f social s tru c tu re s  [41].

Turn ing  now to  d isc ip lines more c lose ly  a llie d  to  ch e m is try , D(G) 
has been adopted in b iochem is try  fo r the com parison o f D NA re s t r ic ­
tion  maps [42], and fo r nuc le ic  ac id  and p ro te in  sequencing in m acro ­
m olecules [43,44]; in b io logy fo r the in ve s tig a tio n  o f e vo lu tion a ry  
distances in D N A  sequences [45,46]; in gene tics  fo r the in te rp re ta tio n  
o f phy logene tic  re la tionsh ips in m acrom olecu les [47,48]; and in 
physics fo r the study o f m ic roc lus te rs  [49].

In te rm s o f the number o f app lica tions  made to  date , ch e m is try  
has proved to  be the  most im p o rta n t c lie n t science fo r the services 
o f the d is tance m a tr ix . D(G) has been em ployed in ch e m is try  in 
both e x p lic it  and im p lic it  fo rm s, and the  en tr ies  in the m a tr ix  
have been represented by ge o m e tric  as w e ll as topo log ica l d istances. 
We shall not pursue here the uses o f D(G) based on g e o m e trica l 
d istances; in te res ted  readers are re fe rre d  to  rev iew s on th is  to p ic  
[50,51]. The f i r s t  e x p lic it  use o f D(G) in ch e m is try  w ith  the d^j 
rep resenting  topo log ica l distances was made in 1975 by C la rk  and 
K e tt le  [52]. In a general study o f s te re o ch e m ica lly  nonrig id  m o le ­
cules, these w orkers d is tinguished betw een the  various in te rc o n ­
version mechanisms fo r pairs o f p e rm u ta tio n a l isomers by d e te r-
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m in ing  the  shortest path sequence necessary to  e f fe c t the  rea rrange ­
m ent. These shortest paths were then used as the en tr ies
in the  cons truc tion  o f an a p p rop ria te  d is tance m a tr ix . A lthough  
th is  made the f i r s t  e x p lic it  use o f D(G), numerous o the r w orkers 
had previous ly  used such an approach in im p lic it  fo rm . Exam ples 
are to  be seen in the  s te reochem ica l m a trices  o f M u e tte rt ie s  [53], 
used in the inves tiga tion  o f po ly topa l rearrangem ents ; in the  
ad jacency m a trices  and th e ir  powers used by Balaban [54] to  re p re ­
sent in tra m o le cu la r isom eriza tions  o f octahedra l com plexes; and 
in the d e fin itio n  o f chem ica l m e trics  invo lv ing  the d is tance betw een 
m a trices  representing  chem ica l tra n s fo rm a tio n s  [55].

IN TRODU CT ION  TO  TH E  W IENER  IN DEX

In sp ite  o f the fa c t th a t the  e a rlie s t im p lic it  usage o f D(G) in chem ­
is try  dates back some fo u r decades, ve ry  im p o rta n t ra m if ic a t io n s  
o f th is  ea rly  work have m an ifes ted  them selves in recen t years. 
In 1947 W iener s ta rte d  publish ing several papers [56] in w hich he 
in troduced  fo r a lkane species the concepts o f the  path number 
and the p o la r ity  num ber. The path number he de fined  as the  sum 
o f the chem ica l bonds e x is tin g  between a ll the pa irs o f carbon 
atom s in the m olecu le ; and the  p o la r ity  number as the  num ber 
o f pairs o f carbon atom s separated by th ree  C -C  bonds. A t about 
the  same tim e , P la tt  [57] added a th ird  graph in va ria n t w hich he 
ca lled  the f i r s t  neighbor sum and de fined  as the sum o f the f i r s t  
C -C  neighbors fo r every  C -C  bond in the  species. C le a rly , a ll th ree  
o f these inva rian ts  are c lose ly  re la te d  to  the  d is tance m a tr ix .

It was shown by Hosoya [3], fo r instance, th a t the  W iener path 
num ber is equal to  one h a lf the  sum o f the e n tr ie s  in D(G)
fo r the graph G o f the m olecu le  in question, nam ely th a t

w ( o  = i £  2  d i ; i
i <7

where W(G) is the symbol fo r the W iener path num ber, nowadays 
usually re fe rre d  to  as the  W iener topo log ica l index [58]. The p o la r ity  
num ber, P(G), and the  f i r s t  neighbor sum, F(G), w ere also shown
[58] to  be expressib le in te rm s o f s im ple  fo rm u las:

P(G) = 1 2  W3(G),

w here W3(G) is an o ff-d ia g o n a l e n try  in D(G) having the  d is tance 
th ree , and

F(G) = E d e g ( e i ) ,
£=1

w here ne is the num ber o f edges in G and deg ei is the degree 
o f the ith edge in G.

The W iener index has been em ployed ex tens ive ly  fo r the c o rre la tio n  
o f the  physicochem ica l p rope rties  o f hydrocarbon species. W iener 
h im se lf [56] c o rre la te d  f i r s t  the bo iling  po in ts o f alkanes, using
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a b ip a ra m e tr ic  re la tio n sh ip  o f the fo rm :

t B = a W(G) + b P(G) + c,

where a , b and c were constants fo r a g iven group o f isomers, 
and then w ent on to  consider heats o f iso m eriza tion  and va p o riza tion , 
the A n to ine  vapor pressure constants, the  sp e c ific  d ispersion, the 
surface tension, and the c r i t ic a l so lu tion  te m p e ra tu re  in an iline . 
The good c o rre la tio n s  he obta ined encouraged him  to  speculate  
on the s ig n ifica n ce  o f the inva rian ts  he used. By se ttin g  a = 98/n 2, 
he concluded th a t the  bo iling  po in t o f a m olecu le  varies inverse ly 
w ith  its  degree o f com pactness. He in te rp re te d  P(G) as a measure 
o f the in tra m o le cu la r a ttra c t io n  fo rces tra n s m itte d  through the 
carbon chain.

P la tt  [57] made W iener-type  co rre la tio n s  w ith  m o lecu la r volum es 
and m olar re f ra c t iv it ie s ,  and also suggested th a t W(G) m igh t w e ll 
be app licab le  to  hydrocarbons o the r than alkanes. The good c o rre la ­
tions he ob ta ined w ere in te rp re te d  by hypothesiz ing  th a t W(G) 
provides a measure o f the mean e x te rna l c o n ta c t area o f the m o le ­
cu le . Use was also made o f W(G) by S tie l and Thodos [58] to  p re d ic t 
the  various c r i t ic a l constants o f the alkanes. R ouvray [59] f i r s t  
extended such studies to  the alkenes, a lkynes and arenes, in add ition  
to  the  alkanes, using an index, R(G), equal to  the sum o f the 
in D(G). The R ouvray index, R(G), is c le a r ly  equal to  2W(G). Good 
co rre la tio n s  w ere again obta ined w ith  six param ete rs  ranging fro m  
m e ltin g  p o in t to  v isco s ity , though now a W a lke r-type  re la tio n sh ip  
[60] was em ployed. This assumes th a t a bulk p ro p e rty , X, is re la te d  
to  the index W(G) in the fo llo w in g  way:

W(G) = a [X ]B ,

where a and 3 are constants which w ere de te rm ined  by p lo tt in g  
In W(G) against In X. It was then suggested by Randi£ [61] th a t W(G) 
m igh t be useful in s im p lify in g  the p re d ic tio n  o f ch rom atog raph ic  
re te n tio n  tim es by g re a tly  reducing the  number o f param ete rs  
needed fo r th is  purpose. This idea was taken up by Papazova e t 
a l. [62] who used W(G) w ith  o the r indices in th e ir  co rre la tio n s  w ith  
the  isoalkanes, and by Bonchev e t a l. [63] who used W(G) alone 
in a W a lke r-type  re la tio n sh ip  [60] fo r c o rre la t io n  w ith  the a lk y l-  
benzenes. Both groups achieved very  good co rre la tio n s ; in the 
la tte r  case the  co rre la tio n  c o e ff ic ie n t exceeded 0.999.

EVALU AT ION  OF TH E  W IENER  IN DEX

Because o f the g rea t usefulness o f W(G) in various branches o f 
ch e m is try , a n a ly tic  and recurs ive  fo rm u las  have been developed 
fo r its  eva lua tion  fo r  many graphs o f chem ica l in te re s t. The f i r s t  
a n a ly tic  expression was obta ined by W iener h im se lf [56], who showed 
th a t W(G) fo r  an unbranched path on n ve rtice s  is equal to  (n 3 
- n )/6 . In 1976 E n trin g e r e t a l. [64] published several basic fo rm u las  
and estab lished, in te r a lia , th a t fo r c y c lic  graphs on n ve rtice s
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W(G) = (n^ - n)/8 fo r  n odd whereas W(G) = n^/8 fo r  n even; 
and th a t the com p le te  graph, Kn, has W(G) = (n ^ - n )/2 . Bonchev 
and T rin a js tid  [65] obta ined  resu lts  fo r many d if fe re n t types o f 
tree  graphs, inc lud ing  the sta r graph, w hich has W(G) = (n - 1)2, 
bu t were unable to  tre a t the case o f trees w ith  branched branches. 
C losed fo rm ulas w ere also ob ta ined by Bonchev e t a l. [66] fo r m o le ­
cu la r species e x is tin g  in the fo rm  o f s tr ip s , such as linear ribbons 
o f fused cycles and the  edge-fused propel lanes. A genera l, recu rs ive  
procedure fo r d e te rm in in g  W(G) fo r  any tre e , regardless o f the 
am ount o f b ranching present, was re ce n tly  p resented by C a n fie ld  
e t a l. [67].

A large number o f ru les have been devised to  ch a ra c te rize  trends in 
the num erica l values assumed by W(G) w ith in  s p e c ific  classes o f 
m olecules. Rules have been put fo rw a rd  fo r species having graphs 
in the fo rm  o f trees [65], m onocycles [68], m onocycles w ith  a c y c lic  
branches [69], po lycyc les which are fus ion- [66], b ridge - [70], and 
sp iro -lin ke d  [71], and po lycyc les w ith  a c y c lic  branches [72]. W(G) 
appears to  be a ve ry  conven ien t device fo r expressing q u a n tita t iv e ly  
re g u la ritie s  and va ria tio n s  in the m olecu la r topo logy o f both a c y c lic  
and c y c lic  compounds. Some o f the  rules are in tu it iv e ly  obvious 
whereas o thers are by no means so. Thus, i t  is ev iden t, in going 
fro m  a tre e  graph having the fo rm  o f an unbranched path through 
a tre e  w ith  branches to  a sta r graph fo r  a constan t n , th a t the 
am ount o f branching is increasing and th a t W(G) w ill decrease [65]. 
One's in tu itio n  is not so h e lp fu l, how ever, in d e te rm in in g  th a t the 
value o f W(G) passes through a m in im um  in isom eric  graphs com prised 
o f a m onocycle w ith  a nonbranched side chain [69].

Our preceeding rem arks have po in ted  up the fa c t th a t W(G) provides 
a ve ry  good measure o f m o lecu la r com pactness: the m ore com pact 
the  graph o f a m olecu le  is the sm a lle r its  W(G) value w ill be. This 
renders W(G) a ve ry  useful index, fo r i t  is w e ll-know n  th a t a vast 
number o f p rope rties  - inc lud ing  phys icochem ica l, the rm odynam ic , 
and quan tum -chem ica l ones - are de te rm ined  p r im a r ily  by m o lecu la r 
size and shape. A lthough  W(G) does not p rov ide  a to ta lly  re lia b le  
means o f d is c rim in a tin g  between d if fe re n t isomers, i t  does re f le c t 
b e tte r  than most topo log ica l indices the degree o f branching present 
in species. For com parison o f the am ount o f b ranching in d if fe re n t 
types o f graphs, a mean branching index has been proposed. This 
index, W(G), has been defined^ [65] as W(G) d iv ided  by the  number 
o f d istances in the graph, i.e. W(G) = R(G)/ n (n - 1); a n a ly tic  expres­
sions fo r W(G) have been published fo r c e rta in  s im p le  graphs [65,68]. 
H ow ever, since even W(G) has not proved to  be co m p le te ly  adequate 
fo r isomer d is c rim in a tio n , a h igh ly  sensitive  new index, ca lled  the 
mean in fo rm a tio n  on d is tance e q u a lity , has been in troduced  fo r 
th is  purpose [65,73,74].

The to ta l in fo rm a tio n  on d is tance e q u a lity  is de fined  as fo llow s :

,E (G ) = n j M  - 1)
D 2

I°g2
n(n - 1) - 2  kl lo§2 kl

i=1
2
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and its  mean is given as:_ m

T  E (C )  = - y  —  ________  l o e ? __  _____1 n  2 j n (n-1) 1082 n(n  - 1)
1= 1

where the  d is tance I appears 2ki tim es in D(G) and m is the highest 
value o f I . The mean index has been em ployed fo r the p re d ic tio n  
o f ch rom a tog raph ic  re te n tio n  tim es in the  a lkylbenzenes; i t  not 
on ly d is c rim in a te d  between a ll the  d if fe r in g  isom eric  s tru c tu re s  
but also y ie lded  very  high co rre la tio n  c o e ff ic ie n ts  [75]. M oreover, 
a c lose ly  re la te d  in fo rm a tio n -th e o re tic a l index, known as the in fo r ­
m ation  on d is tance magnitudes and de fined  [65] as:

w JZ
I (G) = W(G) log2 W(G) - ki I log2 I ,
D 1

where the d istance I appears ki tim es in the W(G) p a r t it io n , 
co rre la te d  e x tre m e ly  w e ll w ith  several d if fe re n t param ete rs , 
inc lud ing  heats o f reac tion  and b o iling  po in ts  o f the a lkylbenzenes 
[76]. As lim ita t io n s  o f space p reclude fu r th e r  discussion here o f 
in fo rm a tio n th e o re tic a l indices based on D(G), the reader is re fe rre d  
instead to  a rev iew  [77] and a book [78] dea ling  w ith  the sub ject.

RECEN T  NOVEL  USES OF TH E  W IEN ER  IN DEX

In a d d ition  to  the co rre la tio n a l studies described above, a num ber 
o f w orkers have begun to  exp lore  several e x c itin g  new d ire c tio n s  
in w hich app lica tions  o f W(G) are now leading. The f i r s t  o f these 
concerns the use o f W(G) to  study the  energies in d if fe re n t types 
o f m olecules. It has been dem onstra ted  [71], fo r instance, th a t 
the re  is an e xce lle n t inverse c o rre la tio n  o f W(G) w ith  the a -e le c tro n  
energies in sp iro compounds: the sm a lle r W(G) w ith in  a group o f 
isomers the la rger the extended H dckel energy w ill be. S im ila r ly , 
a good inverse co rre la tio n  exis ts  [66] fo r the  Tr-electron energies 
in arene systems: when W(G) decreases, i.e. c y c lic ity  increases, 
the HOMO energy decreases whereas the LU M O  energy increases. 
In the  case o f c y c lic  m olecules w ith  a c y c lic  branches, both the 
branching and the c y c lic ity  a f fe c t the  ir -e le c tro n  energy. I f  e ith e r 
o f these fa c to rs  is held constan t, how ever, i t  is possible to  ob ta in  
a re lia b le  dependence o f the o the r fa c to r  on W(G) [69]. B ic y c lic  
systems e x h ib it an inverse p ro p o r tio n a lity  w ith  W(G) fo r (4n + 2) 
system s and a d ire c t p ro p o r tio n a ltiy  fo r An  systems [70). Such 
resu lts  are very im p o rta n t, fo r i t  is w e ll-know n  th a t the fro n tie r  
e le c tro n  o rb ita ls  la rge ly  govern the  m o lecu la r behavior in these 
systems. On the basis o f c y c l ic i ty  ru les, i t  becomes possible to  
de te rm ine  how the  f i r s t  ion iza tion  p o te n tia l, the e le c tro n  a f f in i ty ,  
the m axim um  am ount o f lig h t absorp tion , and the e le c tr ic a l conduc­
t iv i t y  w ill depend upon s tru c tu ra l changes in the  systems. P re d ic tio n  
o f the re la tiv e  s ta b ilit ie s  and p rope rties  o f unknown compounds 
is thus feas ib le . M oreover, i t  appears th a t the same rules can also 
be em ployed to  c la ss ify  m o lecu la r rearrangem ents  [69,70].

By extend ing  s trings o f such m o lecu la r system s to  in f in ity ,  i.e. by
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tre a tin g  them  as m onodim ensional c rys ta ls , one is led to  the p re d ic ­
tio n  o f the e le c tro n ic  energy as w e ll as the energy gap in polyenes 
w hich are p o te n tia l conductors or sem iconductors. The m ethod 
which has been used [79] involves essen tia lly  fiv e  steps, v iz . (i) 
d e riva tio n  by m a th e m a tica l induction  o f a po lynom ia l expression 
fo r W(G) fo r the monom er o f a given po lym er homologous series 
o f compounds; ( ii)  n o rm a liza tio n  o f the derived  W(G); ( i i i)  ca lcu la tio n  
o f the norm a lized  W(G) fo r an in f in ite  po lym er cha in ; (iv) c o rre la tio n  
between the no rm a lized  W(G) and some p ro p e rty  fo r several o lig o ­
mers in the po lym er series; and (v) p re d ic tio n  o f the  value o f th is  
p ro p e rty  fo r the in f in ite  po lym er chain. The m ethod has been u til iz e d  
on a v a r ie ty  o f d if fe re n t po lym er series, inc lud ing  a lte rn a n t and 
n o n -a lte rnan t benzenoid systems, po lym ers, and rad ia lenes [79,82]. 
In general, high c o rre la tio n  c o e ff ic ie n ts  w ere ob ta ined  fo r tt-e le c tro n  
energies, and the  h igher the degree o f the  po lynom ia l expression 
fo r  W(G) the b e tte r  the  resu lts . The m ethod has been tr ie d  ou t 
using both Hdlckel [79] and P a rise r-P a rr-P o p le  [80,81] fo rm a lism s. 
Physical p rope rties  w hich have been stud ied  inc lude the  m e ltin g  
p o in t, the re fra c t iv e  index, and the sp e c ific  ro ta tio n ; these have 
been p red ic ted  w ith  an accuracy r iv a ll in g  th a t o f o the r w e llknow n 
methods such as the Pad£ m ethod [82].

F u rth e r extension o f the above notions to  th ree -d im ens iona l systems 
has made it  possible to  use W(G) to  model the  behavior o f solids. 
In p a rt ic u la r, W(G) has been used in the study o f c rys ta l vacancies; 
these have im p o rta n t in dus tria l app lica tions  in areas such as corros ion  
c o n tro l, ca ta lys is  and chem iso rp tion . The fundam enta l idea is 
th a t a system may be regarded as being in its  m in im um  energy 
s ta te  when W(G) fo r the  system  has its  m in im um  value. Using 
th is  approach [83], s tru c tu re s  having vacancies in the  most favo red  
positions e n e rg e tic a lly  can be recogn ized by m in im iz in g  th e ir  W(G) 
value or by m a x im iz in g  AW(G) = W(G) - W0(G), where W0(G) 
represents the W iener index fo r the ideal c rys ta l w ith o u t any la tt ic e  
vacancies. By use o f a procedure s im ila r to  th a t o u tlin ed  above 
fo r  po lym er chains, i t  was possible to  p re d ic t the  most favo red  
vacancy positions in the  la tt ic e . AW was f i r s t  expressed in po lynom ia l 
fo rm  in te rm s o f the  number o f atom s present and the  various 
positions o f the  d e fe c t and then p a r t ia lly  d if fe re n tia te d  w ith  respect 
to  the positions and set to  zero. The m in im a the reby  obta ined 
y ie ld  the positions o f vacancies in the c rys ta l corresponding to  
the  W(G) m in im a. The m ethod has also been app lied  to  the  study 
o f double and t r ip le  vacancies [84], the m ig ra tio n  o f vacancies 
along p re fe rre d  d iffu s io n  paths [84], the d e te rm in a tio n  o f the o p tim a l 
positions o f d e fe c t atom s in c rys ta l la ttic e s  [85], and in the m ode lling  
o f the c rys ta l g row th  process [86]. More re c e n tly , a s im ila r approach 
invo lv ing  the study o f the ordered s tru c tu re s  o f adsorbed gases 
in host la ttic e s  [87], was c o rre c tly  able to  p re d ic t the s tru c tu re  
o f Y-PdD0 .5.

It has been suggested by Mekenyan e t a l. [69] th a t the  m a n ifo ld  
ru les g iv ing  trends in W(G) values fo r a v a r ie ty  o f d if fe re n t systems 
could  w e ll p rov ide  the  s ta r tin g  po in t fo r a novel approach to  both
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s tru c tu re -p ro p e rty  and s tru c tu re -a c t iv ity  co rre la tio n s . One m ajor 
advantage o f th is  approach is th a t i t  o ffe rs  an o p tim a l se lec tion  
o f isom er samples fo r usage in a g iven c o rre la tio n  [69]. To some 
e x te n t th is  approach _is a lready being tr ie d  ou t. Basak e t a l. [88-90] 
used W(G), |W (G) and |W (G ) fo r the  in ve s tig a tio n  o f s tru c tu re  
-a c t iv i ty  re la tionsh ips in b io a c tive  m olecu les ranging fro m  a lcohols 
to  b a rb itu ra te s . To make W(G) a pp rop ria te  fo r  m olecules con ta in ing  
he te roa tom s, it  has been proposed th a t w e igh ted  graphs be used 
to  d e te rm ine  D(G). L a ll and S rivastava [91] suggested using an 
edge -w e igh ting  fa c to r  based on H dckel pa ram ete rs , whereas Barysz 
e t a l. [92] thought the nuclear charage on the a tom  should be used. 
A discussion on d isc rim in a tin g  isomers by means o f th ree  new 
in fo rm a tio n - th e o re tic a l indices based on D(G) has re ce n tly  been 
presented [93]. The p re d ic tio n  o f c a rc in o g e n ic ity  in arene system s 
using indices based on D(G) has also been proposed; L a ll [94] used 
a f i r s t  neighbor degree sum, and Seybold [95,96] used the a to m ic  
path code o f Randid [97] w hich is equal to  the  sum o f the en tr ie s  
in one row  o f D(G).
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CO VARIANT AND CONTRA- 
VARIANT TRANSFORMATIONS
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A BSTRA CT

Let C be the transformation matrix from atomic orbitals to 
molecular orbitals in an LCAO calculation, and let the 
contribution of AO j to MO i be the element c... In the 
similar molecular vibration problem one describes the 
importance of internal motion j to normal mode i not by the 
corresponding element of the apparently analogous 
transformation matrix, but by this element of the transpose 
inverse matrix. The resolution of this seeming discrepancy is 
understood most clearly by comparing the covariant 
transformation of a basis in vector space and the contravariant 
transformation of the coordinates of a point in such a space.
IN TRODU CT ION

In the molecular orbital (MO) problem one writes [1]

ip = <PC
where (// is a row matrix of MO's

= (%. V  * * *n ) ,
and 0  is a row matrix of atomic orbitals (AO's)

<*> = (</>,» 4>z • • * . (3)
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The columns of the square matrix C are the eigenvectors of the 
LCAO SCF problem

FC = SC€ (4)

where F is the Fock matrix, S the overlap matrix and €  a 
diagonal matrix of orbital energies.
Molecular vibrational problems are similar in structure with 
the force constant matrix taking the place of the Fock 
matrix F in (4) and the kinetic energy matrix taking the place 
of S • Solutions of the vibrational eqns. are usually given in 
the form [2 ]

'S = LQ (5)

where "S is a column matrix of internal coordinates and Q a 
column matrix of normal modes. There are two differences 
between (1) and (5). The more trivial is that the vibrational 
results are in terms of column matrices rather than row 
matrices. The less trivial is that (1) transforms from the 
starting AO's to the solution MO's while (5) transforms from 
the solution normal modes back to the starting internal 
coordinates. To put (3) into a form apparently analogous to 
(1), multiply on the left by L”1 and then take the transpose to 
give

(6)
and /S are row vectors, and L of (6 ) takes the 

place of C of (1).
The question to be examined here is this: If (1) and (6 ) are
analogous, why is it that if a quantum chemist wants to know 
the importance of the 5th AO in the 3rd MO (say), he looks at 
the element in the 5th row of the 3rd column of C > while the 
vibrational spectroscopist who wants the importance of the 5th 
internal coordinate in the 3rd normal mode does not look at the 
element in the 5th row of the 3rd column of H ”* , but rather 
at this element in L ? It is true that the MO and vibrational 
problems are stated in somewhat different form, but as will be 
seen this does not provide the answer to our question. Instead 
the key to the problem is that if one makes a transformation in 
a vector space, the base vectors transform one way 
(covariantly) while the coordinates of a point in that space 
transform a different way (contravariantly). If the 
matrix A describes the first transformation, H  * describes 
the second. In the SCF problem one works directly with the 
base vectors, but with the coordinates of a point in the 
vibrational problem.
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CO  VAR IAN T AND CON TRA VA R IA N T  TRAN SFORM ATION S

Consider a vector space with the base vectors e^, e^, ... e^ 
A point in this space can be specified by its position vector

N
(7)

Two vectors are added by adding corresponding components. A 
vector can be multiplied by a scalar by multiplying all 
components by that scalar. Scalar products of two vectors, 
norms of vectors, the angle between two vectors, and the 
distance between points in the vector space need not be 
defined.

Now define a linear non-singular transformation to new base 
vectors

E.“3

N
L a. .13 3 = 1 , 2 . ..N (8)

or in matrix notation

E = eA (9)
where E and B are row matrices and A is square. 
Alternatively one could choose E and B to be column matrices 
and write

E = A e . (io)
The transformation would then use the rows rather than the 
columns of A • This choice is not key; let us choose the first 
alternative. Note that the E. are not normalized since no norm 
is defined in the vector spac^. Normalization could be 
defined, but it is not necessary here.

The position vector v_ can be written in terms of the new base 
vectors

N

j=i j (ii)

To find the new coefficients X., substitute (8) into (11) and 
equate to (4). ^
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■ i:j ) z i  -  X  >:i  %•i J i

Therefore

x. = / j a. . X . = /  j a . . X .i iJ J *-rJ  J 1 J

or

x = x A  no
where %  and X are row matrices. Multiplying (14) on the 
right by ( A  )"' = ( A-1 ) gives

x = x X - ' .  <15>
Thus if the base vectors transform as the columns of A by (9), 
the coordinates of a point in this vector space transform as 
the columns of A~* by (15). The base vectors are said to 
tranform covariantly and the coordinates contravariantly.
Had E  , e , X and %  been written as column rather than row 
vectors, the covariant and contravariant transformations would 
use rows (rather than columns) of A  and A " 1 respectively.
In the special case of an orthogonal transformation
A “' = A  and there is no distinction between covariant and
contravariant behavior.
Consider a 3-dimensional example using j_, k. in place of ê
... and x, y, z in place of x^, ...

Base Vectors (covariant)

E " e A e = E A"'
I = 2i + j + k i
J = i + j + k j
K = Oi + 2j + k k

I - J + OK 
I - 2J+ K 

-21 + 4J - K (16)
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Coordinates of a point (contravariant)

x = xA-' x = x A
X = x + y - 2z
Y = -x - 2y + 4z
Z = Ox + y - z

x = 2X + Y + OZ 
y = X + Y + 2Z 
z = X + Y + Z (17)

For example, the transformation of base vectors might be 
thought of as a set of recipes saying that 1 cake (I) is made 
by combining 2 times 1 cup of sugar (i), 1 cup of flour (_j) and 
1 cup of water (k_); similarly for 1 pie (Ĵ ) and 1 loaf of bread 
(K) • The contravariant transformations tell how the number of 
cups of sugar (x), number of cups of flour (y) and number of 
cups of water (z) are related to the number of cakes (X), 
number of pies (Y) and number of loaves of bread (Z) in some 
mixture (caused perhaps by the wreck of the bakery truck).
COM PAR ISON  OF FOU R  M ATR IX  PROBLEM S

The MO problem and the molecular vibration problem are both 
versions of the same abstract problem of diagonalizing two 
symmetric (or unitary) matrices simultaneously with the 
restriction that one of the two matrices be positive definite. 
Both problems could be worked in exactly parallel ways though 
it is traditional not to do so. To see that the methods 
actually used are equivalent we let A and B be square 
symmetric matrices, where A is positive definite, and examine 
four formulations of the same problem.

Find a Transformation that Diagonalizes A and B.

Since A is symmetric there exists a square matrix U such that
a. U is orthogonal ( 0 = U_l )
b. 0 A U = D = [d̂  j ] (a diagonal matrix).

Define

0
(18)

0
n

and
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D'l"2 (19)

These have the properties

d i/2di/2 dw d-,/2= I
Let

V = UD 1/2
so that

D -1/2D -1/2 _ q -I_ (20)

(21)

Vav = d i/20aud i/2 - d i/2dd ,/2 = i . (22)
Note that a similarity transformation instead of the congruence 
transformation of (2 2) would not work since

V"'a V = DI/2U 'a UDi/2 = Di/2DD'i/2 = D . (23)
Let

B' = tfBV . (24)
B1 is symmetric since

B1 = V S V  = VBV = B' . (25)
Therefore there exists a C such that

a. C is orthogonal
b. CB'C = A = [Xi8ij] (diagonal).

Further

CB'C = A = CVBVC = PBP (26)
where

P = VC = UD'i/2C (27)
and

Pap = Svavc = dc = i . (28)
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Thus by (26) and (28), a congruence transformation
with P diagonalizes both A and B • P is not orthogonal
since

PP =vcctf = UDl/2D l/20 = UD '0 = A 1 . (29)
Hence (26) and (28) are not orthogonal transformations.
Find the Eigenvectors of A-iB

Consider the similarity transformation of A* B with P
P A BP = P 'a 'P 'Pb P = (f*AP)''(?BP)

= l 'A = A . (30)
Note that here a congruence transformation with P would not 
work

PA'BP = PA'P'PBP = (Pa PT'a . (3D

Multiply (30) on the left by P
(A'B)P = PA (32)

so that the columns of P are eigenvectors of A'B , and 
problems 1. and 2 . are equivalent.

Solve the Generalized Eigenvalue Problem BP = APA.

Multiply (32) on the left by A to give the generalized 
eigenvalue equation

BP = APA (33)

so that problems 1., 2. and 3. are equivalent.

Diagonalize Two Quadratic Forms Simultaneously.

Start with the quadratic forms

E
i>  j iJ x. x.i J XB?

and

Q 2 E a. .iJ x. x. 
i  3

X AX
where X is a row matrix. From (34)

(34)

(35)
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Qi = xBx = xp-'PBPP"1? . (36)
Let

x1 =xp-' (37)

so that

Qi = x ' P b  P x 1 = x ' A x ' = L  A . X1.2 . 08), i i
Similarly

Q 2 = x A x  s x P ^ ' P a P P " ' *
= X'lX' = E  X'.2 . (39)

i 1

Hence transformation with P"* takes both quadratic forms to 
canonical form, and problems 1., 2., 3. and 4. are all 
equivalent.
The x^'s in these quadratic forms are the coordinates of a 
point in space and transform contravariantly• According to 
(37) they transform like the columns of . Therefore the
columns of P  (the eigenvectors) transform covariantly (like 
base vectors)•
APPLICATION TO THE MOLECULAR ORBITAL AND 
VIBRATIONAL PROBLEMS
The MO and vibrational problems are of essentially the same 
form. The matrix B  above becomes the Fock matrix F in the MO 
problem and the force constant matrix F (in internal 
coordinates) in the vibrational problem, A  becomes the 
overlap matrix S in the MO problem and the kinetic energy 
matrix in the vibrational case.
In discussions of the MO problem it is usual to use the 
generalized eigenvalue form (4) and (33), but solutions are 
usually found by going to the equivalent problem of 
diagonalizing F and S simultaneously.
The vibrational problem is completely analogous, but it is 
usual to write it in form (32), where A~*B is G  F of the 
Wilson method [3], This is usually solved by the Miyazawa [4] 
method which diagonalizes G  (rather than G ” 1 ) 
and F simultaneously.
In both cases one wants the transformation from old base 
vectors (AO's or internal coordinates) to new base vectors
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(MO's or normal modes). As seen above, these are given by the 
columns of the modal matrix of eigenvectors. In the MO problem 
one works directly with the covariant base vectors, the AO's 
and the MO's, when one writes an expression for the molecular 
energy. In the vibrational problem one works with the 
quadratic forms for kinetic and potential energy and, as seen 
in (34)-(39), with the contravariant coordinates of a point.
Eq. (6 ) therefore describes the transformation of these 
contravariant coordinates and is not analogous to (1) which 
gives a transformation between covariant base vectors. The 
transformation between base vectors in the vibrational problem 
is given by the transpose inverse of X ” 1 , i.e. by L itself.
In summary, in the MO problem one works with a transformation 
between the covariant AO and MO base vectors. In the 
vibrational problem one works instead with the transformation 
from the contravariant coordinates of a point in normal mode 
space to those in internal coordinate space. Then in reporting 
the results one takes the inverse transpose of this 
transformation to give the proper relation between the internal 
coordinate and normal mode base vectors.
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COMPUTATIONAL ASPECTS 
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A BSTRA CT

Algebraic chemistry as well as more conventional computational 
methods are at present frequently applied to problems of iso­
meric chemistry. For example, with evaluation of reaction 
graphs a reliable estimation of equilibrium and, particularly, 
rate constants is required. The contemporary possibilities of 
the joint quantum-chemical and statistical-thermodynamical 
treatment for evaluation of equilibrium and rate constants and 
its combination with algebraic approach to synthesis design 
are surveyed.
IN TRODU CT ION

The concept of isomerism, introduced into chemistry under this 
name by Berzelius /!/, is continually being tested and broade­
ned. New types of isomerism are being recognized and even very 
simple compounds (e.g. /2-4/, CIC^, N2O4 , H2SO4 , or the smal­lest amino acid, glycine /5/) can be observed (or expected) to 
exhibit isomerism. This procedure is assisted considerably by 
the theoretical approaches that at present enable the discovery 
of new isomers (e.g. the closed form of ozone /6/ or the pre­
diction of hitherto unforseen reactions within an isomeric 
system (e.g., rearrangements/7,8/). A number of chemically 
bizarre isomers of small organic molecules has recently been 
characterized in the study of interstellar species (for a re­
view, see /9/).
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The oldest theoretical means for studying the phenomenon of iso­
merism were algebraic methods, used for isomer enumeration (for 
reviews, see /10-15/); they are at present once again the subject 
of considerable interest, e.g. /16-75/. In addition to enumerat­
ion, algebraic techniques (set, group, and graph as well as in­
formation theory) are used especially for classification purpo­
ses - e.g. /76-80/. The algebraic generalization of the notion of isomerism was formulated for computer-assisted design of syn­
theses (e.g., /81-85/). Later the theoretical techniques were 
enriched by addition of quantum- and statistical-mechanical, 
quantum-chemical and molecular mechanics methods. In the two 
latter cases, the individual isomers and the relations between 
them are treated as minima and their interrelations on the cor­
responding potential energy hypersurface(s)t e.g., /86-90/. 
Description of an isomeric system in terms of local energy mini­ma and saddle points usually represents the present state-of- 
-the-art limit in theoretical studies. Hundreds of systems (for 
a review, see /91/) have been computationally characterized in 
this way.
G EN ER A L IZE D  ISOMERISM , R EA CT IO N  GRAPHS, AND 
NON-EM PIR ICAL DESIGN  OF SYNTHESES

Ugi et a l . /76, 81-83/ suggested to treat chemical isomerism as 
an equivalence relation. The equivalence relation of isomerism 
can further be generalized by transition from the individual mo­
lecules to ensembles of molecules. Consider a particular set of 
atoms and form individual compounds or ensembles of compounds so 
that all the atoms are employed. Each of these atomic arrange­
ments thus represents a single isomeric ensemble of molecules 
and all these ensembles form a family of isomeric ensembles of 
molecules. This concept represents a generalization of the equi­
valence relation from molecules to ensembles of molecules.
The equality introduced by the equivalence relation of the iso­
merism of the ensembles of molecules between the individual mem­
bers of the family of isomeric ensembles of molecules has a clear 
quantum-mechanical justification. All the members of a given fa­
mily of isomeric ensembles of molecules correspond to the same 
total Hamiltonian. In the framework of the Born-Oppenheimer ap­
proximation, multi-membered ensembles of molecules are included 
in the potential energy hypersurface as regions of dissociation 
products at infinity. The use of the equivalence relation in 
this connection is related /91/ to the uncertainty principle.
The possibility of obtaining detailed information concerning 
systems is limited by this principle regardless of further im­
provements in instrument precision. Thus it was suggested /91/ 
the generation of models of chemical systems that represents 
certain equivalence classes of states rather than the states 
themselves.Generalized isomerism provides a useful tool for computer-assis­
ted synthesis design as every chemical reaction can be interpre­ted as an interconversion between two isomeric ensembles of mo-
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lecules /81-83/. Planning of syntheses consists of two phases: 
first, pathways are sought that generally lead from the readily 
available starting materials to the target molecule T; then, 
from among these conceivable pathways, the optimal one is se­
lected on the basis of certain selection criteria. In terms of 
generalized isomerism this implies the establishment of a fami­
ly of isomeric ensembles of molecules that contain the target 
molecule T in at least one ensemble and the initial materials of 
the synthesis in another ensemble. The synthesis design then im­
plies finding a set of pathways connecting the ensemble of mole­
cules including T with the ensemble of molecules containing the 
starting material. In the solution of the problem of synthesis 
design, three levels can be distinguished /81/: non-empirical, 
semi-empirical, and empirical.The non-empirical approach to synthesis design assumes the con­
struction of a family of isomeric ensembles of molecules that 
includes all the chemical compounds that must be considered in 
the solution of the given problem.Then all of the pathways con­
necting the ensemble of the starting material with the target 
molecule ensemble are sought. A non-empirical (topological) pro­
gram based on these concepts generates a complete set of synthe­
tic pathways for a given target molecule and indiscriminately 
incorporates known and unknown chemical reactions into the syn­
thetic pathway generated. The non-empirical approach is, of 
course, limited /81/ to purely topological relationships and 
does not include the selection of in some sense optimal synthetic 
pathways from the topologically posible ones. Within the frame­
work of the purely non-empirical approach the selection can be 
carried out /83/ using the concept of the shortest reaction path­
way introduced in terms of chemical distance /83/. However, it 
is apparent that all the proposed topologically possible path­
ways, or rection graphs, should be classified in terms of a rea­
sonable yield and reasonable rate. From the most general point of 
view, the rate constant for each elementary step in every parti­
cular reaction graph (even in both directions of the step) 
should be available for such a classification. To keep the non- 
-empirical character of the synthesis design, the sets of rate 
constants should also be derived non-empirically, i.e. on the 
basis of quantum-chemical and statistical-thermodynamical me­
thods.
QUANTUM -CHEM ICAL AND  STATISTICAL- 
TH ERM ODY N A M ICA L  EVALU AT ION  OF EQU IL IBR IU M  
AND RA TE  CONSTANTS
The present theory of chemical reactivity is entirely based /92, 
93/ on representation of energy hypersurfaces by means of their 
stationary points. Location and identification of these points is 
however only the first step with calculations of the characte­
ristics of equlibrium and rate processes. For this purpose it is 
necessary to link effectively both quantum chemistry and statis­
tical thermodynamics, i.e. two fields of science traditionally somewhat disconnected /94,95/. Recent comprehensive studies /96,
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97/ testing the applicability of quantum-chemical methods as sources of molecular data for evaluation of partition functions 
have been successful. The used RRHO approximation /93/ of parti­
tion functions does not seem to depreciate the quality of the 
calculated reactivity characteristies. Thus, it has become possi­
ble in the case of the calculation of thermodynamic functions to 
replace the molecular parameters which are conventionally deri­
ved from (usually spectroscopic) experiment or merely estimated 
by those obtained from theoretical calculations.
The same holds for the evaluation of rate characteristics /93/ 
by means of the activated-complex theory. In fact the linking 
up of the activated-complex theory with quantum-chemical me­
thods has brought the theory to its renaissance. Besides the ge­
neration of reliable characteristics of activated complexes 
which follows from this symbiosis, one more thing is contribu­ting to its boom: test studies comparing in case of very simple 
rate systems the values of characteristies of the rate processes 
obtained on the basis of the activated-complex theory and on the 
basis of exact quantum-mechanical calculations have shown sur­prisingly good agreement /93/. Thus, a period of evaluating re­
action characteristics (standard as well as activation ones) completely independently of experimental information (with the 
exception of masses, fundamental physical constants, and the 
form of Coulomb's law) has begun. Characteristics of a large 
number of equilibrium and/or rate processes in the gas phase ha­
ve been calculated in this manner /93,94/. Hence, it is also 
meaningful to consider, at least in principle, a possibility to 
generate all the necessary elementary rate constants for the 
classification of all the topologically possible synthesis paths 
(and, thus, for a selection of an optimal pathway) exclusively 
from the joint quantum-chemical and statistical-thermodynamical 
treatment.
ISOM ER ISM  OF R EA CT ION  COM PONENTS OF EQU IL IBR IU M  
AND RA TE  PROCESSES

Systematic investigation of a potential energy hypersurface of­
ten reveals several different local energy minima all represen­
ted by one species in an experiment and/or several different 
saddle points corresponding to activated complexes in a single 
rate process. Potential energy criteria can sometimes prove only 
one structure to play an important role. However, it may also happen that two or more isomeric structures of comparable sta­
bility coexist and are indistinguishable under given experimen­
tal conditions. Then any structure-dependent observable can be 
considered as an average value resulting from contributions of 
all the isomers in question. In view of this reaction components 
isomerism, a new class of generalized chemical equilibria (viz. 
equilibria of which each component is a mixture of isomers /98/) 
as well as generalized rate processes with parallel /99,100/ 
or sequential /101,102/ isomerism of activated complexes have 
been introduced. Several examples of considerable differences
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CfejM

D5hiM D/hiS D*h; S

Figure 1. Schemes o f stationary points found /103/ on the MINDO/2 potential 
energy hypersurfaces o f C n (n = 4-7); M is a minimum, S a saddle point 
(courtesy o f American Chemical Society).
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Table 1. Partial and Total MINDO/2 Standard Enthalpy ATE and Entropy ASS 
Terms of 4C(s) ^  C4(g) Equilibrium at T — 2400 Ka

Process AH° (kJ/mol) b AS° (J/K/mol) b
4C(s) 5=^ C4 (g; D2h ) 904.1 210.2
4C(s) ^  cj(g; 952.2 213.6
4C(s) ^  cj(g; T^) 1301.5 205.5
4C(s) ^  C^(g; total) 909.9 213.6
^According to Ref. /103/.
“Standard state: ideal gas at 101325 Pa pressure.

between one-isomer and multiple-configuration equilibrium or ra­
te characteristics have been reported, e.g. /103-108/.
In contemporary quantum-chemical practice, a special case of the 
general reaction components isomerism is frequently met, viz. 
processes where theory has demonstrated that only a single com­
ponent is a mixture of more (n) isomers. Then weighting treat­
ment for a quantity AX can be simply expressed by:

A X  = f(AX., w., T); (1=1 • 2, ..., n), (1)
where AX-j denotes the quantity corresponding to the process 
considered, however, realized through the i-th isomer, and w^ 
denotes the weighting factor of the isomer related at temperatu­
re T by:

q, e x p ( - e ^ V k T )  w . = _ _ J ------— -----  (2)
2-. q n- e x p ( - e ^ / k T )j=l J 0

to the partition function, q , , of the i-th isomer and to its 
ground-state energy, e^1 ). Tne most interesting quantities in 
the weighting treatment are the enthalpy and entropy changes.
As an instructive example, the formation /103/ of Cn (g) aggre­
gates can be presented. For each of the Cn aggregates for n=4-7 
the MINDO/2 calculations /103/ demonstrated the existence of at 
least two isomeric structures (Figure 1). The formation of C0 (g) 
aggregates was studied experimentally by mass spectrometry, i.e. 
the technique not distinguishing among isomers. While the experi­
ment thus yielded the overall thermodynamic characteristics of 
the formation, the theory led primarily to partial values cha­
racterizing the formation of the individual isomers. Application 
of the weighting treatment for correct comparison of the theory 
and experiment was justified here as the high temperatures at which these experiments were carried out formed favourable con-
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Figure 2. Reaction potential profile for a rate process A—>C realized through one 
intermediate B, i.e. the process exhibiting double sequential isomerism of 
activated complexes (I,II).

ditions for attaining inter-isomeric equilibria. The weighting 
is illustrated in Table 1 on the C* system, for which the MINDO/2 
approacn predicted the existence o? three minimum energy struc­
tures all with different point groups of symmetry D2 > Th).
It is evident that representation of the overall process merely 
by partial terms belonging to the most stable structure (D£h) 
could be misleading. This is especially true for the entropy 
term: the change resulting from isomerism is of the same order 
as possible errors introduced by the use of the MINDO/2 molecu­
lar parameters instead of exact ones.The isomerism of reaction components in chemical equilibria is 
particularly important for the correct comparison of theory and 
experiment and for prediction of equilibrium behaviour. For the 
synthesis design, however, the sequential isomerism of activated 
complexes is of a primary importance.
THE OVERALL, EFFECTIVE RATE CONSTANT FOR A 
SYNTHESIS PATHWAY
Let us start with a simple situation: a single local minimum, 
i.e. an intermediate, separating two activated complexes lying 
on a common pathway from the reactant to the product - see Fi­
gure 2. At an elementary rate constant level, the kinetics of 
the system is essentially described by the elementary rate con­
stants k-j for the four partial rate processes involved. However, we can also be interested in an overall kinetics of the process 
A-^C, and we can evaluate an effective rate constant of this 
complex process. In Refs. /101,102/ several such effective, 
overall rate constants were derived, for example:
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Figure 3. Time dependences of the effective rate constants for the boat pathway 
o f the C ope rearrangement o f 1,5-hexadiene at 532.15 K treated as a process with 
double sequential activated-complex isomerism; for detailed description o f the 
individual curves - see Ref. /102/ (courtesy o f John Wiley & Sons, Inc.)

klk4
eff In u 2 ' U 1

u^u^t u2exp(-u.|t) - u.jexp(-u2t) (3)

where:
1 2 1 

U 1 >2=2(ki +k2+k3+k4+((kl +k2+k3+k4) ‘4(kl k3+kl k4+k2k3))? )' ^

Originally, we considered four (time-independent) rate constants 
k-j, now we have one, however, time-dependent effective rate 
constant ke ff. Its time dependence can be very pronounced - cf. 
Figure 3. Instead of this effective rate constant in a time t 
we can alternatively use the actual concentration of the pro­
duct in that time:

k kcc (t)=cA (0)--- — - - - (u2exp(-u1t)-u-,exp(-u2t)+u1-u2 ) , (5)
ulu2 ûl"u2 ^

where cA (0) designates the initial concentration of reactant A.
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Let us discuss now a more complex picture: there is altogether 
n-1 intermediates between the reactant and the product, i.e. 
the sequential isomerism of activated complexes of order n. The 
system is now kinetically described by two n-membered sets of 
elementary rate constants. Let us have a set of such kinetic 
systems between the same reactant and product. To decide which 
one of these systems is the most convenient from the kinetic 
point of view, a one-dimensional representation of the system 
would be desirable. For the purpose we can again derive an eff­
ective, overall rate constant as a generalization of Eq. (3), 
i.e. a complicated function of these 2n elementary rate const­ants and of time. The system with the highest value of the eff­
ective rate constant in a chosen time may be considered as the 
optimal at that time. A1ternatively, we can work on the level 
of the time dependences of the product concentrations and to 
consider the system with the highest value of the concentration 
in a chosen time as the optimal in that time. Clearly enough, in either of these criteria as well as in different time re­
gions different systems can be found as the most convenient.
The above effective rate constant may represent a proposal how 
to classify individual synthesis pathways in a one-dimensional 
representation in spite of many elementary rate constants invol­
ved. Of course, a real synthetic pathway is composed not from 
isomerizations only and, moreover, there are time discontinui­
ties in the synthesis pathways (isolation of a synthesis inter­
mediate). Thus, the one-dimensional representations of synthe­
tic pathways in kinetic terms still represent an open problem. 
Summarizing, a really non-empirical synthesis design consists 
of three (non-trivial) steps: (i) generation of all topologi­
cally possible pathways, (ii) evaluation of all the elementary 
rate constants involved using the joint quantum-chemical and 
statistical-thermodynamical treatment, and finally (iii) cla­
ssification of all the topologically possible pathways accor­
ding to a (one-dimensional) kinetic criterion.
CON CLU D IN G  REM ARKS

The recent development of algebraic (or mathematical) chemistry 
continuosly demonstrates that the use of algebraic methods is 
gradually becoming a useful, powerful complement to more con­
ventional computational methods of theory of chemical reactivi­
ty. Isomeric chemistry represents a pregnant example of the 
field where combined application of these theoretical approa­
ches is relevant and fruitful. The algebraic study of isomerism 
can, e.g., improve the procedures for determining the numbers 
of stationary points on potential hypersurfaces, their classi­
fication and mapping relationships between them. However, the 
usefulness of algebraic predictions most certainly depends on 
the degree how the physical reality is included in the mathe­
matical model used. In every application a delicate balance 
between generality of the mathematical model and a sufficient retention of physical or chemical reality should be respected.
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ABSTRA CT

The reduced graph model is discussed and applied 
to the enumeration of Kekule structures for several 
classes of benzenoid hydrocarbons.

IN TRODU CT ION

The reduced graph model has been introduced as an 
alternative way to represent benzenoid-type networks 
(1,2). This model has been shown to be very useful 
in the combinatorial problems of benzenoid systems 
(1-5) such as the enumeration and generation of 
Kekule structures, the enumeration and generation 
of conjugated circuits, the counting of all ben­
zenoid hydrocarbons for a given number of benzene 
rings, the construction of the sextet polynomials, 
etc .

Here we wish to clarify the graph theoretical 
aspects of the reduced graph model and give all 
necessary definitions. We will test this model on 
the enumeration of Kekule" structures of benzenoid 
hydrocarbons. The problems of enumeration (i.e. 
the production of the total number) and display (i. 
e. the construction of all the perfect matchings)
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of Kekule structures are continuously being discus­
sed in the literature (1,3,4,6-23)- In addition, 
recent interest in Kekule structures has been gene­
rated by their use in structure-resonance theory 
(24), in the conjugated circuits model (25), in 
valence bond resonance energy calculations (2 6 ), in 
the valence bond model using only significant va­
lence structures (2 7 ,2 8 ), in molecular orbital reso­
nance theory (2 9 ), in various valence bond calcula­
tions (3 0 -3 3 ), in the unified valence bond theory 
(34), etc. Finally, Kekule structures are important 
in understanding the mathematical basis for the 
intimate connection between Pauling's VB model and 
Hiickel's MO model (29,35), and in the history of 
modern chemistry, in which they play a significant 
role (3 6 -3 8 ).
R ED U CED  GRAPH  M ODEL

Let G be a connected graph (structure) in an in­
finite hexagonal planar lattice H. The infinite 
hexagonal lattice H is a planar bipartite infinite 
3-regular graph. The number of vertices in a graph 
which is 3-regular is always even (39). Three dis­
junctive sets of parallel edges arranged in rows 
are present in the lattice H. We can arbitrarily 
choose one of these three sets and call it vertical 
and the remaining two we can denote (in two dif­
ferent ways) as left or right diagonal. The hexa­
gonal lattice H with edges denoted as vertical, 
left diagonal, and right diagonal is called the 
oriented lattice H. Horizontal rows of hexagons in 
the oriented lattice H are called levels of lattice
H.

The oriented lattice H may be transformed into 
the trigonal planar lattice T according to the fol­
lowing transformation:

V(T) = ^vertical edges of
E (T) = {(v1 ,v2)l either

v^,v^ belong to the same ring in 
H or v^, v^ are connected by a 
diagonal edge} .

In accordance with the orientation of H, we can 
distinguish three disjunctive sets of edges in T: 
horizontal, left diagonal, and right diagonal. 
Horizontal rows of vertices in T are called hori­
zontal levels of T. By this transformation each 
graph G in H is transformed into a graph R(G) that 
is a part of T and is called a reduced graph.
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One of the uses of the reduced graph model is in 
the enumeration of the 1-factors of G. 1-factor of 
G is a graph F such that:

(a) F is a spanning subgraph of G
(b) V(F) = V(G)
(c) The components of F are only K0 graphs, 

i.e. F is a 1-regular graph.
1 -factorization is construction of 1-factors. 1- 
factors are isomorphic to Kekule graphs (40) which 
are employed to depict Kekule structures of benze- 
noid hydrocarbons.

The carbon skeletons of benzenoid hydrocarbons are 
graph-theoretically represented by benzenoid graphs 
(41-43) and are denoted here by G. A benzenoid graph 
is a bipartite planar graph which can be constructed 
in the plane by assembling h regular hexagons in 
such a way that two hexagons have exactly one common 
edge or are disjoint.

Below we demonstrate the transformation of a hexa­
gonal network H into a trigonal network T, and simul­
taneous changing the representation of a given 
benzenoid hydrocarbon from the benzenoid graph to 
the reduced graph (see Example 1).
Example 1

Network H
Graph G

We will now investigate the 1-factors of graph G 
in the oriented lattice H. It is clear that when­
ever we determine which of the vertical edges belong 
to the 1 -factors and which do not, this completely 
determines the assignment of all other (diagonal) 
edges. We need therefore work only with the vertices 
of the reduced graph R(G). If we have a horizontal 
edge in R(G) with no triangle above (and/or below), 
we can purely formally add above (and/or below) a 
vertex, and thus create an upper (and/or lower) tri­
angle. After doing the above whenever necessary, we
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obtain the complete reduced graph of G, CR(G). In 
CR(G), the set of all added vertices to R(G) to 
form upper triangles is denoted by UT and the set 
of all added vertices to R(G) to form lower tri­
angles is denoted by LT, respectively (see Example
1 ) •
Example 2

coco —  LT
G FUG) CR (G)

A sequence of adjacent vertices in T, connected 
only with diagonal edges, is called the vertical 
path. We will not require any other paths in T.

The following basic theorem gives the necessary 
and sufficient condition for graph G to have a 1- 
factor.

TH EO R EM
Let G be a graph in the oriented lattice H, CR(G) 

the complete reduced graph of G, and TJT (and LT) 
the set of all added vertices to R(G) to form upper 
(and lower) triangles. Then G has a 1-factor if, 
and only if, there exists a 1-1 mapping f: UT LT 
such that for each ue.UT there exists a path to 
f(u) 6  LT and these paths are pairwise disjunctive, 
i.e. no two of them have a common vertex.(a similar 
statement can be found in Ref. 8 supported only by pictorial

representation for case UT =1).
Proof

Let graph G have a 1-factor K and let 
S ={,v€rR(G)| v £ E ( K ) 3. We will prove that the set
P = Si/UTU LT uniquely determines a collection of 
paths in GR(G) with the required properties. The 
main part of the proof is formulated by the fol­
lowing proposition: In a given row in CR(G) let 
there be n^ vertices from UT, n^ from S, and n^
from LT. In the^row below it let there be n^ ver­
tices from UT, n^ S, and from LT. Then,
n 1+n2 = » and each vertex of U T U S  from the
row above is connected with exactly one vertex of 
SULT from the row below.

Proof of the proposition: We do not need to con­
sider vertices of LT from the row above, since 
these are clearly terminal ones. Thus, we have 
several sequences of vertices from UTUS, each
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separated by vertices belonging to K or totally 
disconnected. Such a sequence corresponds to the 
following situation in G:

where some edges in the first row may be missing. 
Point A- (Ap) is either peripheral (sequences are 
disconnected) or the third edge of A^ belongs to 
S (sequences are separated by vertices belonging to 
K). Let us consider point - vertical edge is 
either missing (UT) or does not belong to K(S) , 
i.e. one of the two adjacent diagonal edges must 
belong to K. This is true for all vertices , Bp,. 
...,B and as two diagonal edges belonging to K 
cannot meet at one point, we have only one pos­
sibility for the change of direction, namely

All left diagonal edges before Bj_ and all right 
diagonal edges after B ^  must belong to K, i.e. in 
the row below there can be only one vertical edge 
belonging to K, namely the edge between B^ and B ^ .  
If either A^ or Ap (but not both) is missing (i. 
e. B^ or B are peripheral), then all the vertical 
edges in tfie second row must belong to SULT. This 
completes the proof of the proposition.

The proposition shows that we can construct the 
desired paths, row after row, starting at the up­
permost level. Since we can reverse the direction 
(topsy-turvy position), it is clear that |UT | =1LT |.

Now, let there be in CR(G) an n-tuple of paths 
of the desired properties. Let us denote by S the 
set of all vertices of this n-tuple, and let 
K ’ = V(CR(G))\S. We will complete K ’ up to the 1- 
factor K of G: A diagonal edge belongs to K if it 
connects two vertical edges that are vertices of 
some path in CR(G). Then it is clear that the set 
K is a 1-factor of G, q.e.d.
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C orollary 1

If G has a 1-factor, then | UT | = | LT |.

C orollary 2

If G has a 1-factor, then R(G) has on each level 
at least n vertices, where n = |UT J.
C orollary 3

Let G be a graph in H having 1-factors and let 
|CR(G)|^ (i=1,2,3) be the corresponding complete
reduced graphs representing three different orien­
tations of H. Then:

(a) (UT). = (LT). = n. ; i=1,2,3
(b) The number of n.-tuples of pairwise dis­

junctive paths going from (UT). to (LT). 
equals the number of 1-factors of G, i.e. 
is the same for i = 1 ,2 ,3 -

Corolloary 4

A chain of n-rings has n+1 1-factors (8 ).

D ISCU SSION

The procedure, based on the reduced graph model, 
for the enumeration of Kekule structures (1-factors) 
of benzenoid hydrocarbons consists of three steps:

(a) The presentation of a corresponding ben­
zenoid graph,

(b) Its transformation to a complete reduced 
graph,
and

(c) The counting of the vertical paths over the 
complete reduced graph. (The count corre­
sponds to the number of Kekule structures).

We will apply this procedure to enumerate the 
Kekule structures of anthanthrene.
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EXAM PLE 3

anthanthrene graph

a

Path count
a b d g j 1 
a b e g j 1 
a b e h j 1 
a b e h k 1 
a c e g j 1 
a c e h j 1 
a c e h k 1 
a c f h j 1 
a c f h k 1 
a c f i k 1

The path count over the framework of CR(G) produces 
10 paths. Thus, the total number of 1-factors 
(Kekule structures) of G (anthanthrene) is 10, i.e. 
K(G) = the path count.

Since each vertical path in CR(G) corresponds to 
one 1-factor, these paths can easily be transformed 
into Kekule structures. The generation procedure is 
based on the following simple rule: The points in 
the vertical path in CR(G) correspond to single 
bonds in a given Kekule structure of a benzenoid
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hydrocarbon. We will transform ten paths of CR 
(anthanthrene graph) into 10 Kekule structures of 
anthanthrene in three steps: (a) we will first
present a given vertical path in CR(G), (b) CR(G), 
with a given vertical path will then be transformed 
into a structure with allocated single bonds cor­
responding to the position of the particular vertic­
al path in CR(G), and (c) this structure will 
finally be transformed into a corresponding Kekule’ 
structure.

(a bdg j I)

(a behj I)
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(acehjk)
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(acehkl)

(a c f h j I )

(acf hkl )

(a c f i kI)
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Naturally, when we try to enumerate 1-factors of 
a given complex graph G, we may use previously known 
values of the 1-factors for its constituent graphs. 
Hence, we split a given complete reduced graph cor­
responding to a complex graph along some convenient 
vertical path (we can assume that a single vertex 
represents a path of length zero) to two (or more) 
fragments with a known number of 1-factors. Then, 
the total value of 1-factors of G represents the 
combination of known values of 1-factors for con­
stituting fragments from which are excluded those 
values which correspond to two paths having one point 
in common. The procedure can be carried out, of 
course, only in such cases when there is no path 
(in any n-tuple) going from one fragment into anoth­
er .

E X A M P L E  4

G CR (G)

CR(G) in the above example can neither be broken 
along path AB^Cnor along path AB^C (because there 
always exists a path going from one fragment to 
another). The only case when we can perform the 
fragmentation of CR(G) without any problem is when 
one of the constituting fragments is a chain (and, 
of course, the fragmentation point is one vertex). 
Therefore, in the above example it suffices only 
to change the orientation of G:

G CR (G)
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We can easily find that there are 20 pairs of paths 
in the first (larger) fragment:

I path II path
a b c d e f g h i Ja b c d e f g 1 i ja b c d e f g 1 m J
a b c d e f k 1 i j
a b c d e f k 1 m J
a b c d e f k n m j <--
a b h d e f g 1 i J
a b h d e f g 1 m J
a b h d e f k 1 i Ja b h d e f k 1 m Ja b h d e f k n m J <--
a b h i e f g 1 m J
a b h i e f k 1 m j
a b h i e f k n m J «<—
a g h d e f k 1 i j
a g h d e f k 1 m j
a g h d e f k n m J +--
a g h i e f k 1 m j
a g h i e f k n m J <:--
a g 1 i J f k n m J <--

Six pairs among them (denoted by an arrow) contain 
a path going through the fragmentation point (de­
noted by a black dot in CR(G)). The smaller frag­
ment contains two paths, and one of them also goes 
through the fragmentation point. Each of twenty 1- 
factors belonging to the larger fragment may be 
combined with both possibilities of the second 
fragment. However, the obtained value must be cor­
rected for those paths belonging to both fragments 
which pass through the fragmentation point. Then, 
the total number of 1-factors for G, K(G), for the 
above example is equal to K(G) = 20-2 -6*1 = 3^.

If we denote by K(A) and K(B) the total numbers 
of paths belonging to fragments A and B making up G, 
and by P(A) and P(B) paths passing through the frag­
mentation point in both fragments, then the expres-



340 Reduced Graph Model [Ch.28

sion for calculating K(G) is given by 
K(G) = K (A )•K (B ) - P(A)-P(B) .
In some cases the task of calculating 1-factors 

by this procedure is considerably simpler.

EXAM PLE 5

Chain A has four 1-factors, three of them contain­
ing the fragmentation point. Fragment B has three 
1-factors, one of them containing the fragmentation 
point. Graph G has, therefore, altogether nine 1- 
factors, i.e.: K(G) = 4*3 - 3*1 = 9.

Below we give several more examples. Data will 
be arranged in the following order: (a) benzenoid 
graph G, (b) complete reduced graph of G CR(G), 
and (c) the number of 1-factors of G K(G), res­
pectively .

B

G CR (G)

G C R  |G)
K(G) = 6 . 6 - 1 - 5  = 31

G CR (G)
KIG) =14-7-8 6 *50
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K (G) = 6-6 -3-5 = 21

The question arises as to whether there is a suf­
ficient condition for structure G in H to have a 1- 
factor; i.e. can we find some general class of 
graphs having 1-factors ? In the first place, of 
course, there is a class of chains of fused hexa­
gons. All members of this class possess 1-factors.

Earlier it was stated (1) that structures called 
whole lattices always have 1 -factors (whole lattices 
are defined by conditions in Corollary 1, Corollary 
2_, and the following: Every vertex in the reduced 
graph, with the exception of vertices belonging to 
the first and the last level of R(G) is linked with 
at least two diagonal and one horizontal edge to 
the adjacent vertices). Unfortunately this is not 
true. An example of a whole lattice without 1-fac­
tors is the structure given below.
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Furthermore, it appears that the property of being 
a whole lattice is not a property of G, because it 
is not invariant with regard to the change of 
orientation of H:

In the first case a combination of two whole lat­
tices is obtained, whilst in the second case a sin­
gle whole lattice is generated. Thus, there is no 
simple sufficient condition available for a graph 
to have a 1 -factor.

CON CLU D IN G  REM ARKS

The reduced graph of a benzenoid graph is defined 
and some of its properties investigated. It is ap­
plied to the enumeration of Kekule structures of 
benzenoid hydrocarbons. The range of applicability 
of the reduced graph model at present is not fully 
explored. A lot more work is needed before the use­
fulness of this model is established. Work is in 
progress in this direction (44).
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Chapter 29

MOLECULAR ORBITAL 
RESONANCE THEORY 
APPROACH: APPLICATION 
AND DEVELOPMENT
T.P. 2ivkovic
The Rugjer Boskovic Institute, 41001 Zagreb, Croatia, Yugoslavia

A BSTRA CT

Molecular orbital resonance theory (MORT) com­
bines the intuitively appealing chemists picture of 
the molecule, as exemplified by the simple resonance 
theory (RT), with the numerical advantages of the 
MO theory. It gives much better description of the 
SCF ground states of conjugated molecules than the 
VB approach. It also conceptually enriches the mol­
ecular quantum theory, as illustrated by the split­
ting and the expansion theorems, and their implica­
tions .
IN TRODU CT ION

Historically, two most important methods in the 
treatment of the quantum chemical problems are the 
molecular orbital (MO) and the valence bond (VB) 
theory. The MO theory originated conceptually in 
physics. Despite undeniable mathematical advantages, 
this theory lacks chemical intuition, and it has no 
simple connection with the basic concepts of chem­
istry, for example, with the very important notion 
of the chemical bond. The VB theory originated con­
ceptually in chemistry, and it explicitly incorpo-
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rates via different VB resonance structures the 
chemists’ picture of the molecule. This approach 
is hence extensively used by the chemists, especial­
ly in its simplest form, the resonance theory (RT). 
However, if applied quantitatively and more rigoro­
usly, the VB approach becomes relatively inefficient 
and numerically quite inferior to the MO approach. 
This drawback of the VB approach is mainly due to 
the inadequate treatment of one- and two-particle 
energy contributions [ij. Physically, the main 
stabilising force in the molecule is the attractive 
force between electrons and the nuclei, while the 
electron-electron interaction, being repulsive, is 
destabilising. However, in the VB formalism the 
bonding is attributed mainly to the exchange in­
tegral K which is a part of a two-particle electron- 
electron interaction (provided the basis atomic 
orbitals are orthonormalized,what is usually as­
sumed), while the one-particle contributions are 
taken into account only in the next step, as a 
correction. In the MO approach the bonding is al­
ready on the simplest level, the Htickel theory, at­
tributed to the one-particle resonance integral (B , 
and the two-particle contributions are taken into 
account as a correction in the more sophisticated 
approaches. This hierarchy of approximations is 
physically natural, and it explains the computa­
tional superiority of the MO over the VB approach

In view of the relative advantages and disadvan­
tages of the MO and VB theory, it is desirable to 
formulate such a theory which would combine only 
their advantages. The above discussion suggests the 
way how this should be done. In order to conserve 
the close connection with the bond picture, and to 
retain all the conceptual advantages of the simple 
RT picture, one has to retain the notion of the 
resonance and of the resonance structure from the 
VB approach. In order to reestablish the correct 
hierarchy of one- and two-particle energy contri­
butions, one has to interpret each particular bond 
in the MO and not in the VB sense This is the
main idea of the Molecular Orbital Resonance Theory 
(MORT) approach. In this paper we intend to give a 
simple account of this method, its applications 
and the most important results.

TH E  CON F IGU RA T ION  IN TERACT ION  SPACE X n AND 
RE SON A N CE  STRU CTURES IN TH E  M ORT  A PPROACH

We shall consider the configuration interaction 
(Cl) space Xn build upon n electrons moving over
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2n orthonormalized orbitals X. (i= 1 , . . .,2n). In the 
MORT approach this space is spanned by regular reso­
nance structures (RRS). The set R(n) of all n-partic- 
le RRSs is defined in the following way [3]:
i ) Partition the set B E \± \ containing 2n vertices 
(i) into subsets B° and B* containing n vertices 
each. By definition, each vertex (i)€B° is "source" 
while each vertex (i)S B° is "sink".
ii) Form excited and non-excited bond orbitals (BO):

1
ips " îj = + Xj) non-excited BO

i (1)
<P* 3 3 Y ?  (Xi “ Xj) excited B 0

satisfying the condition
(i)6 B° and (j) € B* (1*)

iii) Each normalized determinant containing n mutu­
ally disconnected excited and/or nonexcited BOs 
satisfying the condition (I1) is J)y definition re­
gular resonance structure (RRS) Ld-

Graphically, each orbital is represented as a 
vertex (i). Excited and non-excited BOs are hence 
represented as oriented and non-oriented bonds, 
respectively. By convention, in the case of the 
oriented bond the end of the arrow coincides with 
the sink vertex

*
r\

*
j i * j

% ij

This uniquely defines 
RRSs. For example, in 
orbitals X., and one 
B° E {2,4) ,X B* E p  , 3 jr

graphical representation 
the case n= 2 one has four 

can chose the partition
of the set B z Jl,2,3,^V

of

1

U
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The corresponding set of RRSs is given in Fig. 1 .

□ □ □ □ □ □ □ □

Figure 1. Regular resonance structures in the case n=2.

One can show that non-excited and singly excited 
RRSs alone span the space Da- Accordingly,
doubly excited RRSs S^ and Sg in Fig.1 are linear 
combinations of other RRSs in this Figure, and 
hence they need not be considered. Further, the 
dimension of the space Xn equals d(n)=(2 n)!/(n ! ) 2 
£3}. In particular, the space X2 has d(2)=6 dimen­
sions. In Fig.1 there are exactly six non-excited 
and singly excited RRSs, and hence these RRSs are 
linearly independent. For higher n this is not the 
case. Thus, if n=3 there are 24 non-excited and 
singly excited RRSs

*

0 0 0 0 0 0
S 7 Sg S9 S10 sn S12

0 0 0 0 0 0
^13 ^14 ^15 ^16 ^17 ^18

0  0  0  0  0  0

^19 ^20 2̂1 ^22 ^23 ^2
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Figure 2. Non-excited and singly excited RRSs in the case n=3. These structures 
span the C l space X 3.

However, d(3)=20. The set given in Fig.2 is hence 
overcomplete by four structures. This is due to 
the fact that RRSs are in general not orthogonal 
to each other. The nonorthogonality of RRSs is a 
slight drawback of these structures. However, the 
some drawback is shared by VB resonance structures 
as well.

M ORT  VERSUS VB DESCR IPT ION  OF M OLECULES.
SOM E EXAM PLES

In the MORT approach the space is spanned by
RRSs. In the VB approach this space is spanned by
VB resonance structures. Formally, the two approaches
differ only in the choice of the basis set in X ./ nHowever, physically (and computationally) one choice
of the basis set can be highly adventageous over
another.

We shall now compare the VB and MORT descriptions 
of the ground states of conjugated molecules. As 
an example consider the butadiene molecule. The cor­
responding Cl space is the space X^. In the VB ap­
proach the ground state of the butadiene molecule 
is a linear combination of VB resonance structures. 
Some typical VB structures are shown in Fig.3.

0.2210 0.0100 0.2264 0.2320 0.0207

1 2 3 A 5

0.0207

6
0.1251

7
0.0538 0.0513 0.0009

8 9 10

Figure 3. Some VB structures o f butadiene and the corresponding structural 
weights according to Hiberty and Ohanessian [5].
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Structure 1 is the Kekule structure and it cor­
responds to the chemists simplified description of 
the butadiene molecule. Hence, one expects this 
structure to be dominant and all other structures 
to contribute only slightly to the ground state.
This is however not the case. Hiberty and Ohanessian 
[51 have recently calculated structural weights 
of structures 1 to 10 in the SCF ground state 
ijj of butadiene. These structural weights are
also given in Fig.3. The Kekule structure 1 con­
tributes only about 22% to the SCF ground state!
In addition, ionic structures 4 (there are two such 
structures due to the degeneracy) contribute about 
23% to the SCF ground state, i.e. more than the 
Kekule structure!! The contribution of some other 
ionic structures is also significant. Accordingly, 
the VB Kekule structure is not a very good approxi­
mation to the SCF ground state of butadiene.

Consider now this molecule in the MORT approach. 
The ground state is here a linear combination of 
RRSs. To a very good approximation the TT-electron 
ground state of an even conjugated hydrocarbon can 
be written in the spin-separated form Jj , 3} -

ip = |fU ~  >  ( 2 )

where $ and $ are normalized spin-a and spin-p 
substates, respectively. In particular, the SCF ground 
state i|JSCp is exactly of the form (2). One can now 
represent the state $ (and equally the state $) as 
a linear combination of RRSs

* = I  Xi S i  (3)
i

The approximation (2) substantionally simplifies the 
MORT approach. In particular, in the butadiene case 
instead to consider all four-particle RRSs spanning 
the space (which has d(4)=70 dimensions), one
has to consider only all two-particle RRSs spanning 
the space (which has only d (2 ) = 6 dimensions). 
These latter structures are given in Fig.4 together 
with the corresponding structural weights VL .
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2 4
0.805 0.274 0.006
5, S2 S3

0.000 0.000 0.000
5̂ s6 S7

Figure 4. Linearly independent RRSs o f butadiene and the corresponding 
structural weights. See Fig. 1.

Structural weights are defined according to [6]

“i = i< <4>
The MORT Kekule structure contributes now about 
80% to the butadiene ground state. The contribu­
tion of this structure to the ground state is thus 
dominant, in accord with the chemical intuition. 
Another striking feature of the MORT description is 
that structures , Sg and S^ do not contribute at 
all to the ground state. We shall return to this 
point in the next section.

As another example consider the benzene molecule. 
The structural weight of the two VB Kekule struc­
tures of benzene is (joinly) W=0.0486 , to be
compared with the structural weight W=0.8100 of the

1 2
0.0486 (VB5 )

S, s2
0.8100 (MORT)

Figure 5. Benzene VB and M ORT Kekule structures and the corresponding 
structural weights.
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two MORT Kekule structures of benzene (see Fig.5). 
The latter structural weight is calculated according
to £6,7]

W = [< Hiĝ l * V >I 2 (5)
where

* = (S1 + S2)/ 'JT.5 C5')
is the normalized spin-a substate containing the 
two Kekule RRSs £71. The linear combination of the 
two VB Kekule structures contains only about 5%, 
while the linear combination of the two MORT Kekule 
structures contains 81% of the SCF ground state of 
benzene! In summary, the MORT Kekule structures 
represent much better the ground state, and if more 
accurate description of the ground state is needed, 
the progressive inclusion of energetically higher 
resonance structures is relatively (in comparation 
to the VB approach) fast convergent.

This is a general result which one obtains for 
other molecules as well. The poor performance of 
the VB Kekule structures is due to the fact that 
the VB approach treats one- and two-particle energy 
contributions in an unnatural order Li . We have 
raised this argument in the introduction, and we 
now see that the choice of RRSs is fully justified: 
these structures conserve the close connection with 
the bond picture retaining the intuitively appealing 
notion of the resonance, and at the same time they 
reestablish the correct hierarchy of one- and two- 
particle energy contributions. As a result, the 
description of the ground states of conjugated com­
pounds is mathematically quite successful.

Beside the above theoretical argument based on 
the hierarchy of energy contributions, there is 
another less formal way to explain the superiority 
of the MORT approach. Each VB Kekul£ structure is 
purely covalent, while MORT Kekule structures con­
tain covalent as well as ionic contributions. The 
"true" ground state should contain both, covalent 
as well as ionic contributions. One can even show 
that the ionic contribution is significantly pre­
ponderant [53- Accordingly, in the VB approach one 
can never expect to obtain a good description of 
the ground state, unless one explicitly introduces 
ionic structures. In the MORT approach this is not 
necessary since on each level of the approximation 
the ionic contributions are automatically included.
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SPACES X+ AND X" AND THE CHARGE POLARIZATION

In order to apply efficiently the MORT approach 
to various quantum chemical problems, one has to 
derive simple and fast algorithms for the evaluation 
of overlaps and matrix elements of one- and two- 
particle operators between different RRSs. This is 
done elsewhere L8 J . One finds that the crucial no­
tion in the evaluation of these matrix elements is 
the notion of the superposition of two RRSs, and 
the notion of active and passive cycles [8 ] . The 
superposition of RRSs S& and S^ is a graph G^  
which is obtained by superimposing graphical r e ­
p r e s e n t a t i o n s  of these two structures, and it con­
sists of disconnected even cycles [2 ,8].
Each cycle Cp|£Gab is characterized by two numbers, 
n jj and m^ , where 2 n^ is the number of bonds in Cp , 
while mp is the number of oriented bonds in Cp.
Cycle Cp is "passive" if(np+nip) is even and "active" 
otherwise. Some examples are given in Fig.6 . Thus the

Figure 6. Some superpositions o f RRSs i 
are shown in Figure 2.

o a > $
^2,14 ^4,13 G|,22

the case n=3. The corresponding RRSs

superposition G^  ̂ contains one active cycle Ĉ  
(n^=3,m^=0), the superposition Ĝ   ̂ contains two 
active cycles, C1 C n 1 = 2, m^l) and fc2 (n2=1, m^O),
etc. After the examination of overlaps and matrix 
elements between different RRSs, one finds that 
the set R(n) of all these structures splits into 
two clearly distinguishable subsets R+ (n) and R“(n) 
containing "positive" and "negative" RRSs, respec­
tively [3,8J . The algorithm to perform this splitting
is simple: if the superposition G , of RRSs S and K  ̂  ̂ ab aSb contains an even number of passive cycles, these 
two structures are contained in the same subset, if
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however G contains an odd number of passive 
cycles, tfiese two structures are contained in the 
opposite subsets [3]- For example, in Fig. 6 the 
superposition Ĝ   ̂ contains no passive cycle (i. 
e. zero - an even number). Hence, RRSs and S^
in Fig.2 are of the same parity. Applying this cri­
terion to all RRSs in this Figure, one finds that 
structures Ŝ  to are o f  one parity (conven­
tionally taken to be positive), while structures 
S«ĵ  to are another parity (conventionally
taken to be negative). Similarly, in Fig.1 struc­
tures Ŝ  to Sjj are of one parity (positive), while 
structures S^ to Sg are of another parity (negative). 
The partition on positive and negative structures 
has many important consequences. Thus one can show 
that the overlap S&b = <S&1S^> between RRSs S& and 
S^ vanishes if the superposition G ^  contains at 
least one passive cycle m -  This implies S^rO
whenever S and S, are of the opposite parity, i.e. a D

SaS R +(n), Sb€rR'(n) =?> Sab = 0 (6)
Spaces X + and X” spanned by positive and negative 
RRSs, respectively, are hence orthogonal to each 
other.

> " b ^ x -  =i> < ,a t i | * b> =0 (6')

where, for the further convenience,Awe have^ex-
plicitly written the unit operator I, < i|j | I I i|j, > E"t- a b<i|Ja I l̂ib> * ^or examPleJ the space X^ spanned by 
structures Ŝ  to S ^  in Pig-2 is orthogonal to the 
space X^ spanned by remaining twelve structures S ^  
to S^^ , etc. In general, we call each state
i|i £  X+ (which is a linear combination of positive 

RRSs), as well as each state p€X~ (which is a
linear combination of negative RRSs) an "alternant-
like” (AL) state [ 3 ,8J .

Consider now the operator R.. ̂ 11
R. . = 2 p+ u. - 1 (7)11 M1 H1

where M* and Mi are fermion creation and annihila­
tion operators, respectively, of the orbital X̂ .
One can show that the matrix element of this opera­
tor between RRSs S and S, vanishes whenever thesea b fRRSs are of the same parity (. 8 J .
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Sa,Sb <s R+(n) or sa >sb € R~(n )
<S I R . . I S, > = 0 a1 ii I b

Relation (8 ) implies

Ya ’* b € r Xn 2 1  V * b ^ Xn = >
â! 6ii f V = 0 (8,)

and in particular
Y £ xa 2£. 4i€x~ <ijj|Rii|n|> = 0 (8 )

The expectation value of the operator R.. vanishes 
over each AL state Y ± €*X*. However, tiie operator 
0 i= Rjĵ  /2 is the effective charge density operator 
(at the vertex (i)). Accordingly, each AL state has 
vanishing effective charge at all vertices (i), i. 
e. it is completely nonpolarized. As a consequence, 
if the state tyQX is polarized, then it is necces- 
sarily a nontrivial linear combination of a positive 
and a negative AL state

ijj = \\i* + ijj” (9)
where if + 6 Xa , i|i~€ x~ and i|i+ 0, 0. The
charge polarization is hence due to the interfer­
ence between subspaces X* and X~ [3,8]. This is 
quite a remarkable property, and it is completely 
unlike the VB picture where one has to introduce ex­
plicitly the ionic structures. Let us give some ex­
amples .

Consider the butadiene molecule. Structures 
and in Fig.4. are positive, while structures , 
Sg ana S„ are negative. Hence each state $ which 
is a linear combination of structures and
alone, has the effective charge zero at all four 
vertices (i)=1,2,3,4. This can be upset only if the 
state b beside positive structures contains also 
some negative structures. However, we have found 
that structural weights of structures , Sg and 
are zero. Hence, the state $ corresponding to the 
butadiene ground state contains only positive RRSs, 
and it has the effective charge zero at all four 
vertices. This is spin-a effective charge since the 
state $ is the spin-cx substate of the state 
Hj=jb “$> . In the same token spin-p effective charge 
vanishes, and hence the total charge vanishes as 
well.
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The result obtained is by itself not surprising. 
Butadiene is an alternant hydrocarbon, and hence 
according ot the pairing theorem the effective tt - 
electron charge should vanish at all carbon atoms. 
What we gained is the insight into the mechanism of 
the charge polarization: the reason why butadiene is 
not polarized is that all RRSs contained in its 
ground state are of the same parity. The polarization, 
if any, can be due only to the interference between 
RRSs of the opposite parity. This is conceptually 
a new picture. Another gain is numerical: one has to 
consider only positive structures S ^ a n d  S^, and 
this significantly simplifies the evaluation of the 
ground state. Compare this with the VB approach: 
there one has to consider all structures in Fig.3- 
(there are 16 such structures, since the degeneracy 
of these structures should be also taken into ac­
count ) .

In the same way can be treated the benzene molec­
ule. In the spin-separation approximation (2) one 
has to consider the space X_. The corresponding RRSs 
are given in Fig.2. One finds that structural weights 
of all negative structures to vanish 4̂].
Accordingly, the ground state^contains only positive 
structures Ŝ  to S ̂ . This substantially simplifies 
the evaluation of tne ground state (in addition, the 
set to is overcomplete by two structures, and
it is sufficient to consider only the first ten 
structures to S ^  14]).

One should note the qualitative difference between 
the emergence of the charge polarization in the VB 
and in the MORT picture. In the VB picture one dis­
tinguishes covalent and ionic structures. Covalent 
structures (e.g. structures 1 and 2 in Fig.3.) have 
the effective charge zero at each vertex. Ionic 
structures (e.g. structures 3 to 10 in Fig.3.) have 
the effective charge different from zero,at least 
at two vertices. Covalent structures alone can never 
produce charge polarization. The charge polarization 
can be obtained only if one explicitly includes ionic 
structures. This is conceptually a classical picture. 
In the MORT approach all structures have the effec­
tive charge zero at each vertex. The charge polari­
zation is due to the interference (or, if one prefers, 
to the resonance) between structures of the opposite 
parity. This is conceptually a quantum picture.
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ALTERNANT SYSTEMS AND  TH E IR  CH A R A CTER IST IC  
PROPERT IES

The charge polarization is only a special case of 
many other remarkable properties of spaces X+ and XT 
All these properties are the consequence of the 
splitting theorem £3,8,9] . In short, this theorem 
states the following:

Each operator 6 is a unique linear combination of 
an "alternant" operator 0  ̂and an "antialternant" 
operator 0nal

6 = 6 al + nal (10)
where all alternant operators satisfy (6r), while all 
antialternant operators satisfy (81). Further, each 
alternant operator is a unique linear combination 
of "reduced" alternant operators, while each anti­
alternant operator is a unique linear combination of 
"reduced" antialternant operators. Reduced alternant 
and reduced antialternant operators thus form a 
basis in the space of all alternant and in the space 
of all antialternant operators, respectively [8,93- 
The set of all reduced operators is given elsewhere 

1 9 ] , and the identification of this set is the most 
important part of the splitting theorem. In partic­
ular, the unit operator^! is a reduced alternant 
operator, the operator R.. is a reduced antialternant 
operator, etc. L8,9J. 11

Due to the splitting theorem, one can generalize 
the results obtained in the preceding section to 
all alternant and to all antialternant operators.
One thus finds that alternant and antialternant ope­
rators complement each other in the following way: 

Alternant operators define alternant systems. 
These operators satisfy relation (6*), and hence they 
can be block-diagonalized in subspaces X* and X”.
As a consequence, each hermitian alternant operator 
has in Xq the complete set of AL eigenstates, i.e. 
it describes an alternant system [ 9 ] .  This implies a 
constructive and exhaustive definition of alternant 
systems. The definition is constructive since all 
alternant Hamiltonians can be easily constructed as 
linear combinations of reduced alternant operators 
[8,91. The definition is exhaustive since each opera­
tor 6 having the complete set of AL eigenstates can 
be represented as a linear combination of reduced 
alternant operators [9L (Operator 6 is not nec- 
cessarily an alternant operator,but rather a linear 
combination of an^alterpant operator and a "vanishing" 
operator Z , 0 = 0  ̂ * Z . However, as far as the 
space Xn is considered, operators 6 and 6ai are
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identical, since Z vanishes over X . Hence the ope-A r -» \ nrator Z can be omitted L9|).
Antialternant operators define characteristic pro­

perties of alternant systems. These operators satis- 
fy relation (8') and in particular relation (8").
One thus obtains the whole set of properties charac­
teristic to+AL states , i.e. to complementary
subspaces X and X~. The vanishing of the effective n ncharge density is only a particular example. Another 
example is the vanishing of the bond orders between 
vertices of the same parity, etc. The complete set 
of these properties is given elsewhere [ 9 ] •

Alternant systems and their properties have been 
investigated also by other authors using the MO 
theory [10]. All these approaches are based on the 
pairing theorem Doj. The most general constructive 
definition of an alternant system was given by 
McLachlan £l07. He has shown that the eigenstates of 
the PPP Hamiltonian describing an alternant hydro­
carbon satisfy the pairing theorem hoi. Koutecky 
has defined some more general alternant Hamiltonians 
satisfying the pairing theorem, but unfortunately in 
a rather implicite way £l Oj. In all these approaches 
it is cruical to prove the pairing theorem, since 
in the case of neutral alternant systems this theo­
rem guaranties the vanishing of bond orders between 
atoms of the same parity, for some eigenstates of 
the Hamiltonian L8-10J. The results obtained in the 
MORT approach are however much more general:

i) Each alternant Hamiltonian can be explicitly 
constructed. No further generalization of the notion 
of alternant systems is possible [91-

ii) All characteristic linear properties of alter­
nant systems are obtained £91- Beside charge density 
and bond orders this includes many other properties.

iii) These properties are shown to be character­
istic to all AL states, i.e. to entire spaces X+_   1 nand X^, and not only to particular eigenstates of
alternant Hamiltonians (which vary form case to case).

ANTIALTERNANT PERTU RBAT ION  OF  ALTERNANT SYSTEMS

According to (10) each Hamiltonian H can be written 
in the form

H = H X V 0 1 )al nal
where H  ̂is an alternant operator, Vna  ̂is an anti­
alternant operator, and X is a parameter. Hence, 
each system can be considered to be a perturbed al­
ternant system: H&  ̂ is the Hamiltonian of the
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unperturbed alternant system, whi le X Vnal is an 
antialternant perturbation. This leads to a partic­
ular kind of the perturbation expansion with many 
interesting properties [4,11]. In general, the eigen­
state Hj(X)£X of the Hamiltonian HEH(X) is a func­
tion of a parameter X. All the properties^of a 
system, expressed as expectation values <0 >\ =
<i|i ( X ) | 6 (ijj ( X ) >/< i|j ( X ) | ijj ( X ) > of various operators 0 
over the eigenstate ip( X ) , are hence also functions 
of X. Due to the particular form (11) of the per­
turbation, these expectation values obey some regularities 
which are expressed by the expansion theorem [l 1] .
In the case when \ff( 0 ) is nondegenerate, this theorem 
states the following: each alternant property is an 
even function of X, while each antialternant property 
is an odd function of X, i.e.

<0al >X <0al>_x 0 1 nal X r - < 0 vnal -X (12)

In addition, these functions are analytic in X (for 
all real X) [4].

Relations (12) in particular imply
<H(X)>X r <H(-X)>_X (13)

i.e. the energy E(X) E<H(X)>. is an even function of 
X. X

In order to illustrate the significance of the 
expansion theorem, we shall give here only one among 
many interesting consequences of this theorem. Re­
lations (1 2 ) imply

P<6al>„ Po ■ 0 <'">
i.e., the first derivative of an alternant property 
vanishes in the point X=0. Physically, this deriva­
tive is the rate of change of the property repre­
sented by the operator 0  ̂aŝ  a function of an in­
finitesimal perturbation3 This quantity is
recognized to be a polarizabilityx in a generalized 
sense. For example, the operator can be chosen
to be the effective charge density operator
0 .=R../2 , while the operator 0 1 can be chosen to be i n  ala bond-order operator connecting vertices of the 
opposite parity (this is, as required, an alternant 
operator [3,8]). In this case the expression (14) 
represents the bond-charge polarizability. One thus 
obtains the result that in an alternant system 
(point X=0) bond-charge polarizability vanishes,
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provided the bond connects vertices of the opposite 
parity. This particular result has been obtained in­
dependently by Coulson and Longuet-Higgins within 
the Huckel theory [12]. The present result is com­
pletely general, since it^applies to each alternant 
system, i.e. Hamiltonian can be any hermitian
alternant operator.

It is now obvious how other analogous results can 
be obtained. One has only to combine all possible 
antialternant perturbations ^  with all possible
alternant operators 6^. Each such combination leads 
to a particular relation involving various polari­
zabilities. Due to the expansion theorem, one thus 
generates a large set of linear relations which in­
volve different polarizabilities, and which are 
satisfied by all nondegenerate eigenstates of alter­
nant systems D e ­
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