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PREFACE

This book contains the invited and special
Jectures presented at the INTERNATIONAL SYMPOSIUM ON
THE APPLICATIONS OF MATHEMATICAL CONCEPTS TO CHEM1S-
TRY held in Dubrowvnik, Croatia, from September 2 to
September 5, 1985. The Symposium was sponsored by the
International Union of Pure and Applied Chemistry in
conjunction with the Union of Chemical Societies of
Yugoslavia, the Croatian Chemical Society, and the
Department of Physieal Chemistry of the Rugjer Bos-
kovic Institute in Zagrelb.

Not long ago, several researchers from dif-
ferent countries working in various fields of theo-
retical chemistry, suggested that an international
symposium on some aspects of Mathematical Chemistry
be organized. These included Professor B.M. Gimarc
(Columbia, SC), Professor M. Randic (Ames), Profes-
sor D.J. Klein (Galvestom), Dr. R.B. Mallion (Canter-
bury), Dr. D. Bonchev ((Burgas), Professor P.G. Mezey
(Saskatoom), Professor J.V. Knop (Diksseldorf), Dr. P.
Krivka ((Pardubice), Professor B.A. Hess, Jr. (Nash-
ville), Professor A.T. Balaban ((Bucharest). The sug-
gestion specifically indicated the Theoretical Chem-
istry Group at the Rugjer Boskoviec Institute in Za-
greb as organizer, primarily because of our past ac-
tive role in developing and promoting Mathematiecal
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Chemistry in general and Chemical Graph Theory in
particular. We accepted the responsibility, both as
an honour and a privilege. We are especially happy
that the long standing tradition of Mathematical
Chemistry in this country, and in Croatia in parti-
cular, has been recognized in this way. Hence, fthis,
the fFirst symposium dealing exclusively with topics
that constitute Mathematical Chemistry has been or-
ganized by our Group with great fervour and enthusi-
asm.

We selected Dubrovnik as the site of the Sympo-
sium because it is one of the most interesting Croa-
tian cities with a distinguished historical, cultural,,
and scientific heritage. The famous Croatian scientist
Rugjer Boskowic, fellow of the Royal Society ((London),,
Professor of Mathematiecs at Collegium Romanum in Ro-
me, and founder of the Observatory at Brera, was born
there ((May 18, 1711). Besides Dubrownik, known for
its mild Mediterranean climate, is a frequent site
for scientific meetimgs, and is easily accessible by
land, sea and air.

The International Symposium on the Applications
of Mathematical Concepts to Chemistry was attended
by 121 participants from 21 countries. The Symposium
brought together mathematical chemists, computer
chenmists, theoretical chemists, mathematically and
theoretically minded experimental chemists, mathe-
matical physicists and mathematicians, for discus-
sions about the status of Mathematical Chemistry,,
its perspectives, and its influence on various as-
pects of Chemistry.

Last day of the Symposium has been dediecated
to the memory of the late Professor Andrej Azman
(Celje 1937 - Ljubljana 1980) who in his time was
the leading chemical theoretician in Yugoslavia and
inspiring supporter of Mathematical Chemistry. Last,
but not least, during the Symposium important preli-
minary steps have been made to establish an Interna-
tional Society of Mathematical Chemistry. We expect
that the combination of exciting science, beautiful
scenery, warm weather and the hospitality of the
local people made the Symposium a memorable experi-
ence for all participants..

The lectures and posters covered a significant
part of the broad spectrum of problems in Mathemati
cal Chemistry and its interactions with other areas
of Chemistry. The Symposium also revealed the per-
manent need for Mathematics in all branches of Che-
mistry. 1n additiom, it became evident that Mathe-
matical Chemistry will continue to grow as a part of
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Theoretical Chemistry; other overlapping but distin-
guishable parts include Quantum Chemistry, Statistiecal
Mechanies and Computational Chemistry..

The contributed papers presented at the Sym-
posium will appear in a special issue of Croatieca
Chemica Acta, a chemistry journal published by the
Croatian Chemical Society.

Zagreld,, September 1985.

Nenad Trinajstic



Chapter L

INTRODUCTORY REMARKS

V. Prelog
Organic Chemistry Laboratory of the Swiss Federal Institute of Technolagy,,
CH-8092 Zricth, Switzerland

About 200 years ago iImmanuel Kant wrote in his
"Kleinere Schriften zur Naturphilosopie™: *1ch be-
haupte, dass in jeder besonderen Naturlehre nur so
viel Wissenschaft angetroffen werden konne, als darin
Mathematik anzutreffen ist™. He wrote then: “Solange
also noch fur die chemischen Wirkungen der Materien
aufeinander kein Begriff aufgefunden wird, der sich
konstruieren lasst ... .eine Fondbnungg, die schwerlich
jemals erfiillt werden wird - so kann Chemie nichts
mehr als Kunst oder Experimentallelre, niemals aber
eigentliche Wissenschaft werdem". Just about the same
time Lavoisier was introducing mathematics into chem-
istry through his use of the balance. The law of de-
finite proportions became the basis of stoichiometry
and every chemist-artist had to learn some arithme-
tic.

The next great step in development of chemistry
was the structural theory, but the pioneers in this
field, Butlerow, Couper and Kekule did not realize
that the structural formulae are actually mathemati-
cal objects, graphs. 1t was the mathematician Arthur
Cayley who first became aware of that and he devel-
oped the theory of tree-graphs by trying to calculate
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the number of possible constitutional isomers of par-
affin hydrocarbons €pKz2pt2* Later,” Geor=? Polya, in an
encounter with problems of isomerism discovered his
famous theorem which became one of the fundaments of
combinatorics. These mathematical achievements, how—
ever, had very little impact on the daily praxis of
chemists, because their everyday problems were usual-
1y so simple that they could mostly be solved by tri-
al and error.

Soon after the structural theory had been devel-
oped Jacobus Kendricus vami1i Hoff and Achilles Le Bel
founded organic stereochemistry and Alfred Werner the
stereochemistry of inorganic complexes. Symmetry, di-
symmetry and asymmetry became recognized as important
features of molecules, and although group theory was
clearly the branch of mathematies most appropriate
for treating problems in this area very few chemists
made use of it.

The gate of entrance for more sophisticated
mathematics into chemistry was and still is physical
chemistry. Step by step, methods of mathematieal
physics penetrated into chemistry: first caleulus, to
deal with problems of chemical thermodynamics and
kinetics, then linear algebra and group theeory, as
additional tools of quantum chemistry and moleecular

SPECTIOSCOPY ..

The more recent general impact of computers on
chemistry and on chemists cannot be overestimated.
Without computers theoretical chemistry, structural
analysis by diffraction metheds, molecular mechanics,
etc. could not have developed far, and the collec-
tion, retrieval and classification of the terrifying
multiplicity of chemical data would be almost impos-—
sible .. The design of syntheses and analyses of reac-
tion pathways are other promissing applications.

Last but not least topological aspects of chemi-
cal concepts such as e.g. aromaticity, should be men-
tioned. Thus the progress of chemistry depends more
than ever on applications of mathematics.

The important aims of such conferences as this
one are to bring together scientists whe use the many
different branches of mathematies in chemistry and to
bridge existing gaps between them, to learn about the
new work of pioneers and about the progress in estab-
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1ished fields. The titles in the programme indicate
that almost all mentioned topics will be covered.

1n summary one can say that chemistry today in-
cludes quite enough mathematies to be considered a
respectable science from the Kantian point of view,
but let us also not forget what Lord Kelvin said
about physies: "1t is as dangerous to let mathematics
take charge of physics as to let an army run a
govern .Y
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THE MATHEMATICAL
TRAINING OF CHEMISTS

J.N. Murrell
School of Molecular Sciences, The University of Sussex,
Brighton BN1 9QJ, England, UK

1 was recently a member of an appointing committee for a
university lectureship in mechanical engineering and was
struck by the fact that none of those interviewed had dirty
fingernails.. 1 should put it less glibly; everyone that
was seriously considered for the post was involved in the
computer simulation of structures rather than the building
and testing of rigs. Of course, one can understand why
this s so; it is far cheaper to do a computer simulation
of an oil rig than to build one and test it to
destructiom.. 1 assume that somewhere in the background
there must be engineers with oily hands who are still
building and testimg, because one can only confidently use
mathematical models to extend empirical knowledge by small
amounts.. Nevertheless, the balance between the
mathematical model builders, and the rig builders and
testers, seems to have swung far towards the clean handed
people in recent years.

1 do not think this situation has occurred yet in chemistry
which is still predominantly an empirical subject. In
fact. 1 would go as far as to say that the mathematical
models used in chemistry still have rather poor predictive
performance.. How often does an experimental chemist ask
ffor the results of a calculation before deciding whether an
experiment is likely to prove fruitful? In part this is
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because chemical experiments are still generally cheap and
not %oo time consumimg. It is quite often quicker to do a
good experiment than a poor calculatiom.

However, the situation is bound to change in the future and
one can see already that this is beginning in some of the
more expensive fFields such as the pharmaceutical industry.
1t costs several million pounds to bring a new drug to the
market so that any model which can narrow the field of
1ikely candidates is very usefuli.

The point of this preamble is to stress that what has in the
past been found adequate by the chemical community for their
models may not be adequate ffor the future. 1 am not saying
that our chemistry courses should ignore the Friedel-Craffit"s
reaction in favour of more time for the Schrodinger
equatiom. Rather that we should move our theoretical
studies a little away from conceptual models towards more
quantitative models..

1 have for many years been struck by the fact that chemists
and physicists seem to have different approaches to
theoretical problems. Physicists like to solve approximate
models exactly and chemists prefer to solve good models
approximately.. Think how far the physicist has gone with
the particle-im-a-hox. In ffact, 1 believe that most
physicists are by training or inclination even less inclined
to seek the help of quantitative mathematical models than
are chemists.

You might justly ask whether 1 practice what 1 preach.
Well, with my close colleagues Sydney Kettle and John Tedder
1 have written two undergraduate textbooks on the theory of

the chemical bond. The first of these. Valence theory, was
written in 1965 and is quite Firmly based on mathematical
skills. For example, the book shows how to derive the

ligand field matrix for p2 in the intermediate (weak-strong)
coupling regime, which 1 think is quite tough for an
undergraduate text. We assumed that the reader had a prior
knowledge of vector, operator and matrix algebra and
possessed a spirit which was not overawed by mathematical
manipulations.. However, Valence theory is essentially a
book that deals with concepts. In a later edition we
derived the Hartree-Fock-Roothaan equations but there were
ffew references to the results which could be obtained from
them..

Our second book, The Chemical Bond, was published in 1978
and is much less mathematically demandimg: nothing more is
required than the ability to expand a secular determimamtt..
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However, the principles underlying the ab-initio SCF
approach are explained and the results of such calculation
are used to establish the validity of the qualitative MO
approach.. For example, the concept of a molecular orbital
is developed not only by arguments based on the LCAO
approximation but also by examining the actual ab-initio
results for Hj.. Our view in 1978 was that students could
appreciate the basis of quantitative calculations without
having the mathematical ability to follow the problems
encountered in, say, integral evaluatiom. In a new edition
of the book, soon %o appear, we are more expansive on the
mathematical basis of the ab-initio method and on the
general structure of the commonly available black-box SCF
programns.. 1 stress my belief that one can get students to
understand the basis of the ab-initio method and to
appreciate the results of such calculations even though
their mathematical background is poorer than is required to
follow many of the conceptual models of valence theory..

We have been struggling ffor many years to produce students
who are literate and numerate.. We should now also require
them to be computerate.. 1 do not much like the word but 1
am sure it will not be long before it appears in the Oxford
English Dictiomanry..

1 had originally intended to start this essay with a list of
the mathematical tools that all chemists should know.. On
further reflection 1 decided that was not very useful. 1
am sure that most of us would take the view that almost any
mathematical skill can be valuable. Putting this the other
way round; 1 would be most reluctant to pick out any
mathematical topic as being unworthy of study or as being of
no use to chemists. The reason that we are at this
conference rather than the Burgenstock conference on Natural
Products (1 know a few of us go to both) is not that we know
a great deal of mathematics but that we have an appreciation
ffor tthe mathematical approach.. 1 would even say that most
of us would find some joy in the proof that the square root
of two is not a rational number - and 1 cannot think that
has much relevance to theoretical chemistry..

However. 1 will finish by telling you what mathematics is
known by one of our most eminent organic chemists. 1 told
Professor John Cornforth that 1 was to give this talk and in
order to see what was the minimum requirement for a good
organic chemist 1 asked for the things he knew. This was
his list:;

(i) Elementary arithmetic
((@i) Two-dimensional geometry including analytical
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geometry
(@ii) Plane trigonometry and trigonometric functions
{@v) Conic sections
(v) Elementary algebra
{(vi) Simultaneous equations
(vii) Permutations and combinations
(viii) Differential calculus
{ix) Integral calculus
(x) Differential equations ((imcluding partial)
(xi) Theory of probability
(xii) Theory of errors
(xiiid) Exponential functions
{(xiv) Binomial theorem

He regretted not knowing

(@) Prime numbers
(@i) Diophantine equations
(@ii) Topology
(Gv) Symmetry

Well, 1 suspect we do not have a typical case here. 1 am
certain that if he had sought my opinion on what organic
chemistry a theoretician needed to know my list would have
been much less impressive.



Chapter 3

THE EFFECT OF ELECTRO-
NEGATIVITY ON BOND
LENGTHS IN MOLECULAR
MECHANICS CALCULATIONS

Norman L. Allinger, Mita R. Imam, Manton R. Frierson, and Young Yuh
Department of Chemistiry, University of Geongjiz, Athens, GA 30602
Lothar Schafer

Department of Chemiistry, University of Arkansas, Fayetteville, AR 72701

ABSTRACT

The attachment of an electronegative atom or group to a
carbon~carbon bond causes that bond #o have a reduced
length. The magnitude of the reduction is roughly propor-
tional tto the electronegativity of the attached atom. The
substitution of multiple electronegative atoms on the same
bond leads to a further reduction of the bond length, unless
the size and number of the groups is sufficient so that steric
effects outweigh the electronegativity effect. Carbon-
hydrogen bonds and carbon-halogen bonds behave similarly,
except that the degree of shrinkage differs, depending upon
the particular bond. Attachment of an electropositive atom
causes a bond lengthenimg. Within the context of molecular
mechanics, these changes in bond length occur in the “natural
bond lengtih™, or 1g value for the bond, and whatever other
effects may be present in the bond due to its particular
environment also occur as usual, giving a resulting bond
length which may be smaller or larger than the usual value by
as much as 0.030 % or so.
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INTRODUCTION

The energy of an electron in a 2s orbital on carbon is much
Jower than that of an electron in the corresponding 2p
orbital. Hence, if a hydrogen atom in an alkane is replaced
by an electronegative atom, the carbon bonded to that
electronegative atom responds by donating electron density to
the electronegative atom, which means the bond %o that atom
contains more p character than it did in the alkane. 1f one
bond to a carbon has the amount of p character in it
increased, the other bonds to that carbon must between them
have an increased amount of s character. Considering carbon-
carbon bonds in general, an increase in s character (from an
sp hybridizatiom) will give a shorter bond, while increased p
character will give a longer bond. Thus the attachment of an
electronegative atom in, say, ethane, t%o give fluoroetiname,
yields a molecule with a shorter carbon-carbon bond than in
ethane itself. And attachment of an electropositve atom would
yield a 1longer carbon-carbon bond, for analogous reasons.
Experimentally these changes in bond length have 1long been
known, as has the interpretation givem.

The molecular mechanics treatment of hydrocarbons has been
worked out in considerable detail. While it cannot be said
that all problems have been solved in this area, most of them
have beem, at least to a reasonably good approximatiom. Thus
for ordinary saturated hydrocarbons, one can calculate good
structures by what are now standard methods.

When one adds other atoms onto the hydrocarbon framework, then
the situation is somewhat differemt. [DCeppeddigg oon thke typpe
and number of the substituents on the hydrocaribomn, the
geometries as now calculated by molecular mechanics may be
appreciably in error. Since most organic molecules contain
various kinds of functionalized substituents, it s also
important to be able o deal with the effects of these
substituents accurately.

We have been interested in refining the MM2 force field so as
to obtain more accurate structures for functionalized
iolecules. As a prelude to this, we gathered a large amount
of representative experimental data so as #o quantitatively
study this electronegativity effect. We have also carried out
ab initio calculations on this effect, and in particular on
the torsional dependence of the effect. Some of these
calculations have been published previously

As far as molecular ground states, theory and experiment show
substantially the same thing, namely that a given bond will be
shortened if an electronegative atom or substituent is
attached to it, and lengthened if an electropositive atom is
attached to it Rz The amount of shortenimg or lengthening
is roughly proportional to the electronegativity of the
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attached substituento,, but also depends upon steric effects
and other interactions of the substituent with the rest of the
molecule. Theory indicates that these electronegativity
effects should be generall, that is, they should occur for all
substituents and all bonds, the only requirement being a
difference in electronegativity between the substituent and
the atom to which it is attached. But quantitatively, the
effects can be small or large, and important or otherwise,
depending upon the case. The torsional dependence of these
bond length effects upon the substituent is a somewhat more
complicated matter, and that will not be discussed further
here. There is also some dependence of the bond angles upon
the electronegativity of the attached substituemt, and in the
direction predicted by the model outlined. Thus, if we
substitute a fluorine atom into ethame, the C-C-F bond angle,
because of the extra p character in the bond to the fluorine,
will be somewhat smaller than tetrahedral, whereas the other
bond angles at the central carbon will be somewhat Ilarger.
The effect has also been studied experimentally with respect
to benzene rings having attached substituents, where a great
deal of information is availlatike.

RESULTS

In the pressent weokk wee hbaee exeaniimeld aa fEew tohphkcdl
substituents,, and we have noted how carbon-carbon bonds are
affected by their attachment. Many of the substituents
examined were halogens, and if one attaches two or more
halogens to the same carbom, then one may also note the effect
of one halogen on the other carbon-halogen bond. To a lesser
extent we have looked also at carbon-hydrogen bonds.

Our formulation ds that the natural bond Ilength, 1 , is
changed by an amount 61 , to give a new natural bond Ilength
@ ") such that; .

1 =1++61481

o o e
where 61 dis a negative quantity for an atom more
electronegative than the atom to which it is attached, and is
a positive quantity for an atom more electropositive than the
atom to which it is attached. The quantities 61 are given
for various atoms and bonds in Table 1. If we &consider a
given bond, for example C-C, which has multiple electro-
negative (or electropositive) substituemts, A, B, C, D,...
etc;
'

1" =1 +50 + 0.62361 +
[v] [o] e e

Gy ® © ®

where the substituents are ordered A, B, C, D,... in order of
their decreasing values of 61 (@bsolute values). The factor
of 0.62 in the above equatimm%was arrived at by studying the
data for a number of compounds belonging to six different
classes, but it was mainly chosen to fit the available data on

+ 0.6261 + 0.62261
e e
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fluorides. Because there is a relatively large amount of gas
phase data for alkyl fluorides, and because the fluorine,
being most electronegative, has the largest effect, this was
taken as the case to Fit.

In Table 1 are given the electronegativity correction
parameters to 1lg. For a carbon-carbon bond the amount of
shrinkage is largest in the case of fluorine (.022 £), but
other electronegative atoms such as halogens and oxygen show
effects of the order of 5-10 thousandths of an &  The only
electropositive atoms studied were silicon , which in silanes
yields a 1lengthening of .015 3, and hydrogen when attached to
oxygen or nitrogem.

The effects tend to be smaller, usually unobservably small,
for a C-H bond. (They can, however, be seen in gb initio
calculations). But for carbon-halogen bonds, the effects can
be even larger than they are for carbon-carbon bonds. Thus,
fluorine attached %o the carbon of a C-F bond yields a
shortening of .034 &.

1t is also of interest that a hydrogen attached to an oxygen
(@1cohol) or to a nitrogen (@mine) yields a substantial bond
lengthening, relative to the analogous molecule in which there
is a carbon attached instead of a hydrogem. (The hydrogen may
be thought of as being more electropositive than the
carbon.) Thus, the C-0 bond in an alcohol is in general
longer than that in an ether, and the C-N bond in methylamine
is longer than that in dimethylamime, which in turn is longer
than that in trimethylamime. These bond length relationships
are the reverse of those which result from simple steric
effects, as were applied in the earlier versions of the MM2
program. With those versions of the program, the best that
could be done was to average out the bond lengths, so that we
calculated the C-N bond length in methylamine as being too
short, and that in trimethylamine as being too long. But with
this electronegativity correctiom, we can get this order
correct.

We might mention the anomeric effect, which occurs when one
has two atoms, each of which contain a lone pair of electrons,,
attached to a common atom. 1f these atoms are both halogens,
no special treatment is needed, because the collective
orientation of 1lone pairs can always be viewed as being
optimal. ITf onee oor mavee Obf thheee akomms iss aan omygeen,
nitrogem, or sulfur, tthen a special treatment of the anomeric
effect is required, depending on the orientations of the lone
pairs. We presented a formulation of this treatmerllt elsewhere
for the case where tthe two atoms are both oxygem.’l One could
similarly formulate an analogous treatment for other
combinations of these electronegative atoms.
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Table L. Electromeggitivity Correction Parameters to 1

BOND TYPE END OF BOND ATOM TYPE CORRECTION TO 10
1-1 L 6 -.009
I-1 L 8 <.001
1-1 1 n -.022
1-1 1 12 =.008
1-1 il 13 =-.012
1-1 ik 14 =.005
-1 il 15 = 66
I-1 L 19 015
1-5 1 6 -.002
1-5 1 8 =.001
1-5 1 n =-.010
-5 1 12 =.005
1-5 1 13 =-.002
1-5 1 14 =.001
1-11 L n -.034
1-11 L 12 =.020
1-11 L 3 -.004
1-12 L mn =-.030
1-12 1L 12 =.020
1-12 1 13 =.003
1-13 1 n -.002
1-13 1 12 =.003
1-13 1 13 =-.002
1-14 il 1 = 56
1-14 1 12 = 66
1-14 L 13 -.001
1-6 6 21 019
1-8 8 23 015

4The atom type numbers have the usual meamimg: 1 is carbom, 5
hydrogem, etc

In Table 2 are given parameters that should be used to replace
those in earlier versions of MM2, which need to be changed
because of the introduction of the electronegativity effect.
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In a few cases they are just updates, because better
information is available now than was available when the
original formulation was carried out.

In Table 3 are summarized some experimental bond length data
for a group of fluorides, together with the corresponding
values as given now by the MM2 program. Table 4 gives a
similar summary for chlorides, and for a few compounds which
contain both chlorine and fluorine.

Table 2. Revised MMZ2 Parameters

Torsional Parameters ((kcal/mol)

Atom Type Nos. Vi V2 V3

m oL 1 m -.100 -2.000 ~200
6 1 1L 12 000 -1.400 .180
6 1 1 13 000 =-1.400 180
6 1 1oL 14 .000 =-1.400 .180

Stretching Parameters

Bond Type Kg(mdyn/&) 19 ®
L- 6 5.36 1.402
L- 8 5.10 1.4380
L-Mn 5.10 1.3920
- 12 3.23 1.7950
1-13 2.30 1.9490
L - 14 2.20 2.1490

Bending Parameters

Atom Types lge)(nmdyn %/ rad’z) 9 (deg)
5 1M1 «490 110.500
n 1m 1.070 107.100
L 1 m +650 109.500
L 1m 650 107.500

1L 1m 650 109.500
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Compound

Ethyl Fluorided?

IL,2-Difluoro-
ethanedr»

1, I-IDii koo tiamed R

1,1, 1-Trifluoro-
e A

1,1,2-Trifluoro-
ethane3~

1,1,1,2-Tetra-
fluoroethane*
n,1,2,2-Tetra~-
fluoroethaned;

Pemtaﬂﬂlumm:tm:mék

o1
Hexafluoroethane

2-Fluorop ropane2 2

I, 3-Difluoro-
propane; B»23

€h.3
Table 3. €-C and C-F Bond Lengths in Some Fluorides'®
C-C bond length C-F bond length
Exper. MM2 Exper. MM2
1L.504(5) 1.511 1.399(4) 1.394
1.505(3) L.507 1.391(2) 1.395
1.500(4) 1.496 1.366(2) 1.360
L.496(3) L.486  1.342(2) 1.338
1.355(4)CF, H 1.361
L.502(5) 1.505  L.3B9(8)CHEF  1.396
1.391(6)CH,.F 1L.397
1.503(4) 1.507 11..3{36(2)CF§ 1.339
1.520¢5) 1L.518  1.352(2) 1.361
1. 349CHF= L.361
1.527(4) 1.532 1. 329CF= 1.340
1.337(2)av. 1.348
L.545(6)  L.560 1.326(2) L.340
1.514(4) 1.512  1.405(5) 1.396
1.515¢3) 1.516 1.393(2) 1.394
1.5%22(24) 1.517 1.427(24) 1.399

teBanyl F1 uorideA

4The MM2 values are for the conformation which is calculated
to be of lower enthalpy.

Brhe experimental numbers are average values for the

confformers.
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Table 4. C—C and C-C1 Bond Lengths in Some Chlorides'®
Compound C-C bond length C-CL bond length

Exper. MM2 Exper. MM2

Ethyl Chllemiidé?  1.528(4) 1.523  1.802(3) L.799
1,2-Dichloro- 1.530(4) 1.523 1.795(1) 1L.800
ethaned”
L, 1-Dichloro- L.540(15) 1.521 L.766(15) 1.780
ethaﬁs(rg
I, 1, I~Trichloro- 1.541(15) 1.524 L. 7712(100) 1.772
@t:haﬁ@(fg
L,1,2-Trichloro~ 1.530 1.778(5) 1.789
ethaned;
Hexachloroethane3? 1.566(20) 1.623 1.771(6) 1.780
1-Chloro- L.525(2) 1.531 1.796(2) 1.799
propane&; B>
2-Chloropropane3? 1.529(1) 1.527 1.814(1) 1.805
1L, 1-Dichloro=~ 1.522¢6)  L1.531 1.781(6) L.781
propaned:
2,2-pDichloro- 1.523(4) 1.526 1.799(3) 1.789
propane
1,3-Dichloro- L.531¢8) 1.529  L.798(6) 1.799
pfopaneé*bwéé
Octachloro- 1.764(24)(CC1,) 1.778
propane 1.657(60) 1.640 ng&nz(QO)(CCl%) 1.812
t-Butyl L.532(6) 1.531 1.828(10) 1.814
Chilawiiid
I-Chloro-;1-di- 1.490(20) 1.496 L. 736(1%)(C-Cl) 1.753
fluoroethane(r~)38 1.328(20)(C-F)  1.348
1-Chloro-2-fluoro- 1.530(20) 1.511 L.787(20)(C-Cl) 1.801
ethanea(ro L.365(20)(C-F)  1.395
I,1,I~Trichloro-  1.539¢(15) 1.573  L.77L(L0)(C-CL) 1.776
2-2-2-trifluyoro- 1L.330(20) (C-F) 1.341

ethane(rg)’0

4The MM2 values are for the conformation which is calculated

to be of lower enthalpy.

If there is more than one bond of a

particular kind, the MM2 value is an average bond length.

b‘The experimental numbers are average values for the

conforners.
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Alkyl bromides were studied in a manner similar to that
described for the chlorides and fluorides. The number of
compounds for which data are available is much, smaller.
Compounds ac%ually used werg ethyl bromide 1, 1,2
dibromoethane[' ’ 2—bromopropane[‘ 5 1,3—dibromopropane“, n-
butyl bromide’~, and 2-bromo-l-chloro-2-methylpropane’~. The
last three of these were studied by electron diffractiom, the
others by spectroscopic methods. Constants chosen to fit the
data are included in Table L.

The gas phase structural data available for ethers are
limited, and for alcohols extremely so. Many of the data
which are awailable are from microwave studies with large
uncertainties. 1In general, the effect of an oxygen attached
to a C-C bond is not very great, so corrections are not very
large. On the other hand, the change in the C-0 bond length
when a hydrogen is attached to an oxygen (rather than a carbon
as in an ether) is considerably larger. The numbers that were
arrived at were -0.009 & for the shrinkage of a C-C bond due
to the attachment of an alcohol or an ether oxygem, and +0.019
for the 1lengthening of the C-0 bond from attachment of a
hydrogem. The electronegativity correction caused by oxygen
on the C-H bond was taken to be -0.002 8. The natural bond
length for a C-0 bond was reduced from 1.407 % to 1.402 8 wo
better fit ethers and alcohols simultaneously. (The earlier
bond length had been chosen to do as well as could be done
with a single value for both alcohols and ethers, but
weighting the Fit towards the ethers). The data used wgre
taken from the following compounds: methanol *, ethanol
dimethyl ether’/‘ » ethyl methyl e » diethyl etﬁ'kea*?l\,,
methyl propyl ettitear 1‘,, tetrahydropyran A dimethoxy~
metttamee~”* , and 1,3-dioxane” . The last two compounds also
involve the anomeric effect, which has been treated
elsewhere.

Amines have also been examined (Table 5). Simee  the
electronegativity difference between nitrogen and carbon is
auite small, the correction needed is also quite small (-0.001
3). But the correction needed for a hydrogen attached to
nitrogen fs sizeable (*+0.015 ﬂ). Amine C-N bond lengths in
fact get shorter along the series primary, secondary,
tertiary. When only steric interactions are considered, the
calculated C-N bond is found €o be too short in methylamime,
and too long in trimethylamime, a necessary result from the
steric effects. However, in the current procedure when the
effects of electronegativity are taken into account, these
bond lengths turn out %o be in the correct order.



Ch.3] Conclusions 17

Table 5. C-N and C-C Bond Lengths in Some Amines®

C-N bond 1ength C=C bond length

Compound Exper. MM2 Exper. MM2
Methyl amiines? L.467(2) 1.466
Dimethyllamiied®  [1.457(2) 1.463
Trimetiglbaiied?  L.456(2) L.455

1.458(r )

a

Ethylenediamine®? 1.469 1.469 L.545(8) 1.534
Dimethyl~ 1.454(6) 1.458 1. 541(24) 1.536
ethyl amik
piperidine®® L.474(11) L.464 1.533(6) 1.534
CONCLUSIONS

In general we feel that the introduction of the “electro-
negativity effect” including both variable natural bond
lengths and angles will bring considerable improvement to
molecular mechanies results for functionalized molecules
without a significant increase in computation time.
Geometries in molecular mechanics should take into account the
most significant effects of the environment on bond distances

and angles. These effects idnclude the electronegativity
effect discysgged here and the conformational effects discussed
previously. 7 Systematic studies of these effects are

underway in our laboratory. RResliss waill bbe reppotedd
elsewhere.
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Chapter 4

ON GRAPH-THEEORETICAL
POLYNOMIALS IN CHEMISTRY

K. Baddauliyranzaniart
Department of Chemistiry, Arizona State University, Tempe, AZ 85287 USA

Recent developments in the area of applications of graph-
theoretical polynomials to several branches of Chemistry are
outlined. 1In particular, the use of characteristic
polynomials, matching polynomials, king and color polynomials
is considered. The developments of fimportant computational
techniques such as Frame"s method (lLeVerrier-Faddeev method),
recursive Pascal programs for matching polynomials etc. are
reviewed. Applications to several areas of chemistry such as
statistical mechanics, quantum chemistry, random walks on
graphs and lattices, electronic structure of organic polymers
and periodic lattices, exact finite lattice statistics etc.
are considered.

INTRODUCTION

Graph theory and combinatorics have made significant impact on
several areas of chemistry such as quantum chemistry,
spectroscopy, stereochemistry, chemical kinetics, statistical
mechanics etc. The applications of graph theory and
combinatorics to spectroscopy and quantum chemistry were
recently reviewed by the present author [1]. Graphs are
useful as representation of molecules, chemical reactions,

¥ Alfred P. Sloan fellow
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isomerizations, quantum mechanical and statistical=mechanical
interactions, NMR spin hamiltonians etc.

Graphs are useful in characterizing carcinogenic benzenoid
hydrocarbons and identification of potentially carcinogenic
bay regions [2,3].

A number of polynomials can be associated with graphs. A few
such polynomials are characteristic polynomials, matching
polynomials, king polynomials, color polynomials, sextet
polynomials, chromatic polynomials, cyclic polynomials etc.

The characteristic polynomial of a graph iis defined as the
secular determinant of the adjacency matrix of a graph. The
fijth matrix element of the adjacency matrix fis L if the
vertices i and j are connected; otherwise, it fs zero.

In recent years characteristic polynomials and related
polynomials of graphs and other applications of graph theory
to chemistry have been the subjects of a large number of
investigations [%=53]. Characteristic polynomials play an
important role fin several branches of chemistry. These
polynomials are structural invariants and are thus useful in
coding chemical structures. They are generating functions for
dimer statistics on trees (such as Bethe lattices) and thus
they play an important role in statistical mechanics
[35,44,46]. Characteristic polynomials of graphs have
applications in quantum chemistry, chemical kinetics, dynamics
of oscillatory reactions etc. They are also useful in
estimating the stability of conjugated systems.

The present author [#7,48] showed the use of Frame"s method
for evaluating characteristic polynomials of graphs containing
large numbers of vertices and further developed a computer
program based on this method. Krivka, Jericevic and
Trinajstic [49] have recently shown that the Frame"s method
outlined fin the present author"s paper fis similar to Le
Verrier-Fadideew"s method. Other versions of the Frame"s
method could also be found fin the literature [50].

Characteristic polynomials of organic polymers and periodic
networks have been evaluated recently by extending the
computer program developed by the author %o complex hermetian
matrices [51].

Matching polynomials of graphs generate the number of ways a
given number of disjoint dimers can be placed on graphs and
lattices. They are generators of Kekule structures and dimer
coverings on 1sing lattices. These polynomials are also
useful in the calculation of the grand canonical partition
function of a lattice gas. Ramaraj and present author [45]
recently developed a computer program fn Pascal to compute the
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matching polynomials of a number of graphs and lattices. The
use of matching polynomials in the chemical literature can be
found fn the papers of Hosoya [26,54], Mohar and Trimajstic
551 and Gutman and Hosoya [56].

The king polynomial was first defined by Motoyama and Hosoya
57] wim allsy showed tire potential sayppdlicetions off thess
polynomials. These polynomials are useful in a number of
applications such as enumeration of Kekule structures,
adsorption of molecules on surfaces, aromaticity, exact finite
lattices statistics etc. The present author and Ramaraj [“4]
developed a computer program %o generate the king polynomials
and color polynomial and demonstrated the usefulness of these
polynomials.

In the next section we review the construction and
applications of characteristic polynomials. 1In the third
section the uses of matching polynomials and king or color
polynomials are outlined.

CHARACTERISTIC POLYNOMIALS

Frame [41] developed a very elegant method discussed, for
example, in the book by Dwyer [44]. Krivka, Jericevic and
Trinajstic [49] have recently shown that this is the same as
Le Verrier-Faddeev"s method. This method provides an
excellent algorithm for the computer generation of the
characteristic polynomials of graphs of interest in
chemistry. We outline here first, the essential steps of the
Frame method.

Let A be the adjacency matrix of a graph. Define the set of
matrices Bﬁ's recursively by the following recipe.

Ci ==TEeaee A (D)
Bx = A(A - C)@)

€2 =112 Theaee @
B2 = A(Bj - 052D

C3 = -11/3 Tieaee B2 (©)]

A@Bn-2 ™~ €n-11)
Cp = L/n Trace Bp-| @)

Bn-1
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The characteristic polynomial of the graph whose adjacency
matrix iis A, is given by

xR = qx™Y- caAlls ... = Ca-iX = Cn ®)

Thus the coefficients are generated as traces of
matrices obtained fin the above recursive matrix product.

Hence the Frame method provides a very efficient algorithm for
the generation of coefficients Cj, C2, etc., and consequently,
the characteristic polynomial. The above algorithm can be
coded into FORTRAN. The present author [%7] developed such a
program which fis applicable to a number of graphs.

We now give a few examples. Table 1 lists a few graphs
containing 10 vertices and their characteristic polynomials.
These polynomials were generated using our computer program

7).

Table 1L
Characteristic
Graph polynomial
W XB - 9B + 28A8 — 85A% + 15X3 - 1

NP — 938 + 2728 — 30A1 + 9A2

XP — 1328 + 4828 - 524 + 16A2

XD - 1108 + 4128 — 65X% + 4303 - 9

X — 1728 — 1647 + 7808 + 1328
—20A% - 16823 - 100A% — 16X

XB - 1408 — 4N + 5936 + 18A3
Q1AL - 2233 + 3T+ 10X -1 b

We next consider two lattice graphs that are of interest in
lattice statistics. 1In Figure I we show a square lattice
graph and in Figure 2 we show a honeycomb lattice containing
54 vertices. The characteristic polynomials of both these
graphs were obtained using our program. The characteristic
polynomial of the square lattice graph in Figure 1 is given
below.

M6 - 240k + 206012 - 804ANG + 14BIAE - 1260A6 + 400Xt

@)
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The characteristic polynomial of the hexagonal lattice graph
in Fig. 2 fis given below.
X84 - 72x52 + 2430x80 - 51,152xt8 + 753 ,867x46
= 8,227,552X'M, + 70,3%6,30K43 = 474,823,692\
+ 2,589,615,333x38 = 10,556, 300, 56435
+ 42,569,538,372x3 = 130,222,965, 528x32
+ 332,069,146,453x30 = 707, 192,300, 956x28

+ 1,257,989, 920,284x26 = 1,%66,287,443,412X24

+ 2,300,545, 556, BR5XS2

2,347,222,219, 224Xt

+ 1,965,105,361, 102x418 = I,33%7, 106, 350, 756x46

+ 729,597,602,706x14 - 313,604,239, 964x42

+ 103,654,073, D0axb - 25,479,629, B0x8

+ 4,438,832,481x6 = 508,728, SR/

+ 33,696,516x2 = 960,400. Q)

The present author [31] recently extended the computer program
for characteristic polynomials to complex hermesdtian

matrices. As a result of this extension it has been possible
to evaluate the characteristic polynomials of several organic
polymers and periodic networks. Table 2 shows the
characteristic polynomial of a one-dimensional square lattice
containing 61 unit cells as a function of the crystal momentum
n.
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Figure 1. A two tier square lattice graph comtaining 16 vertices. For the
characteristic polynomial of this graph, see expression (6).

Eigure 2. A honeycomb lattice graph comtaining 54 vertices. For the characteristic
polynomial of this graph, see expression (7).
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Table 2.
Characteristic polynomial of a one-dimensional square lattice comtaining 61 unit
cells; n is the crystal momemtuwm. The polynomials for only n > 0 are shown since
the polynomials for -k and k are the same.

61

n Characteristic Polynomial
Y X4 = 5x2 = AX

L X4 = 52 = 3.9788x

2 X4 = 5X2 = 3.9154X

3 x4 = 5x% = 3.8105X

4 X4 = 5Xx2 = 3.6653X

5 x4 = 5x2 = 3.4811X

6 x4 = 5x2 = 3.2601x

7 X4 = 52 = 3.0045X

8 X4 = 5X2 = 2.717IX

9 X4 = 5X2 = 2.4009X

10 X4 = 52 = 2.0392X

n X4 = 5%2 = L.6957X

12 X4 = 5x2 = 1.3142X



Ch.4]

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Characteristic Polynomials

X4 =

X4 =

X% =

5x2

5x2

5X2 +

5X2 +

52 +

5% +

5x2 +

52 +

5%2 +

5X2 +

5X2 +

5% +

5X2 +

5X2 +

52 +

5x% +

52 +

0.9188x

0.5136x

0.1030x

0.3087X

0.77171X

B.1179X

1.5069x

1.8799x

2.2330x

2.5624X

2.8646X

3.1365x

3.3751x

3.5779x

3.7428X

3.8681x

3.9524x

3.9947X
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MATCHING POLYNOMIALS AND KING POLYNOMIALS

The matching polynomial of a graph fis defined as

it}
Mgo) = 1 =Dk P(6,k) xN 2K 8
g = 1 x @)

where P(G,k) fs the number of ways of choosing k disjoint
edges from G containing N vertices. The computation of
matching polynomial for any graph fis an extremely tedious
problem for graphs containing large number of vertices.
Ramaraj and Balasubramanian [45] have developed a Pascal
program which recursively reduces a given graph into trees.
This fis based on the following recursive relation for the
matching polynomial of a graph G.
MG(x) = MG_e(x) = MGOe(x) )
where G=e is the graph obtained by deleting an edge e from G
and GPe is the graph obtained by deleting e and the vertices
of e together with the edges comnected to the vertices of e.
The characteristic polynomial of a tree fis the same as the
matching polynomial. The recursive relation (6) is used until
the graph we start with reduces to trees. Then computer
program for characteristic polynomials [47] is used to
generate the characteristic polynomials (matching polynomials)
of the trees generated by pruning the graph we start with.
Using the relation (9) the polynomials are assembled back to
generate the matching polynomial of the graph one starts with.

The computer program for matching polynomials was written in
Pascal since this language fs most suited for recursive
programming. We now illustrate with an example. Consider the
bathroom-tile lattice fin Fig. 3. The matching polynomial of
this lattice is given by expression (A0)

x368 — 48x3 + 1044x32 - 13628x30
+ 119223528 - 739404x26 + 3354422x2i
- LI327084x22 + 28704111x26

54656592x}8 + 778291%4x16

81989532xi" + 62781122x42

- 34032630x16 + 12564268x8 - 2980608x5
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+ 413985t - 2BUIBD + 648 (10)

N

R

Figure 3. A bathroom-tile lattice of interest in the Ising problem.

A king pattern on a chessboard fis simply a way of placing
kings on the chessboard so that no two kings take each
other. Suppose is the number of ways of placing k non=-
taking kings on a chess board then the king polynomial K is
defined as

K=1L+CMx+ Cax2+ CxB+ ... + b ay

This polynomial was first defined by Motoyama and Hosoya

[57]1. The present author and Ramaraj [44] showed that king
polynomial fis the same as the color polynomial of the
associated dual graph which is obtained by joining the centres
of the cells. Suppose p{ is the number of ways of coloring k
vertices of a graph with one type of color such that no two
adjacent vertices carry the color. Then one can define the
color polynomial as

C=1L+pfx +paxd+ «us + prxch 12

The color polynomial defined above fs different from chromatic
polynomials. The recurrence relation for the color polynomial
of a graph G fis given by

€6 = fe=v T Caov @3

where G-v fs the graph obtained by removing a vertex v and GOv
s the graph obtained by removing v and all the vertices which
are adjacent to v. The given graph is reduced to smaller
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graphs using the relation (13) until paths of various lengths
are obtained. For a path of length n, L7, the coefficients in
the color polynomial are given by a special type of FEibonnaci
numbers. An analytical form for the color polynomial is
shown below. n

=1+ f(n,1)x + f(n,2)x2 + ...
f
+ f, )k + ... + f(n,n)xM, a4

o =B ET Y as)

Using the above relationships a recursive pascal program was
developed to generate the color (king) polynomial.

Consider the graph fn Fig. 3. The color polynomial of this
graph obtained using our pascal program is shown below.

1L + 386 HEZRR + 335668033+ 1599, 132 + A B3 7BBGERS
+ 1,219,984x6 + 2,148,728x7 + 2,813,856x8 + 2,732,684xD
+ 1,953 5BHd® + 1,014,796x11 + 375,212x12 + 95,634x13

+ 15,968x1Y + 1,604x15 + 84x16 + 2xi7 (16)

The color polynomials thus obtained are useful in exact
lattice statistics ([44].

Thus with the use of recursive programming techniques and
other computational methods, several graph-=theoretical
polynomials which have several useful applications in
chemistry can be obtained. With the advent of these
computational techniques, it is expected that polynomials of
graphs and lattices of finterest in a variety of chemical
problems can be obtained. 1t is then hoped that these
polynomials will be exploited in a number of chemical
applications.
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Chapter 5

ALGORITHMS FOR CODING
CHEMICAL COMPOUNDS

D. Boncheva, O. Mekenyan3 and A.T. Balabanb
Higher School of Chemical Technology, Burgas 8010, Bulgaria
BThe Polytechnic, Bucharest, Roumania

ABSTRACT

A classifTication of the coding algorithms is propo-
sed. Two effective coding systems, designed by the
anthors are outlined. The HOC system is based on
three principles: a hierarchical ordering of vertex-
extended connectivities, a unique topological repre-
sentation of the molecule, and treatment of molecu-
les at three 1levels of complexity. The algorithm
DISTANCE proceeds from three centric criteria and
from an iterativecombined specification of the cen-
trik ordering of graph vertices and edges.

INTRODUCTION

The fast computerization of chemistry generated the
creation of a multitude of chemical imformation cemn-
tres and data banks. The efficient processing of
chemical imformation and, particularly, the imforma-
tion on chemical structures is impossible without an
effective coding system. The requirements as to the
coding algorithms have recently been outlined (Read,
1978) referring mainly to the code uniqueness and
compactness, the fast coding and retrieval, etc. The
number of the coding systems developed is rapidly
growing raising thus the question of their classifi-
cation and comparisom.. An attempt for such a classi-
fication 1is presented here stressing on the classi-
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fication of the algorithms that are topological in
nature. Two original algorithms are also presented
and their effectiveness demonstrated.

CLASSIFICATION OF MOLECULAR CODES

The classification of algorithms for coding chemical
compounds is a problem of debate. The chemical nomen-
clature is usually not regarded as a coding system
since it does not meet some of the requirements as

to coding algorithms, and, first of all, it is not

a sufficiently computer-oriented system. We classi-
fy molecular codes into three groups: fragment, mi-
xed, and topological codes, two of which coincide
with those from the recent classification of Moreau
(1980) .

Fragment Codes (e. g. the Ring Analysis Index, 1979)
contain a list of molecular fragments which are in-
cluded iIn the thesaurus of chemical compounds. The

connectedness of the fragments is, however, not gi-
ven .

Mixed Codes list fragments together with some struc-
tural connections between them. The Dyson (1949) and
Wiswesser (1954) codes are the most widely known rep-
resentatives of this group.

Topological Codes comprise the whole structural 1in-
formation on the chemical compound, 1i. e. atoms and
their mutual connections are described in the langu-
age of graph theory. Codes of this group are consi-
dered below iIn more detail and subjected to an addi-
tional classification. Only universal codes applicab-
le to all chemical compounds will be considered.

(i) Algorithms based on topological indices of mole-
cular graphs (Bonchev et al., 1981; Randic, 1984)
These algorithms are useful in a preliminary screen-
ing of chemical compounds but do not provide unique
codes.

(ii) Algorithms based on the connectivity (i. e. the
adjacency matrix) of molecular graphs. The FEVA algo-
rithm of Randic (1975) 1is based on the FirstValue
coefficients from the adjacency matrix. Another algo-
rithm proposed by Randic (1974) generates the so-cal-
led Smallest Binary Code (SBL) after permutations of
rows and columns in the adjacency matrix. A faster
version of Largest Binary Code (LBC) has been recent-
ly presented by Hendrickson and Toczko (1983).
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A large group of algorithms 1is related to the Mor-
ganTs Extended Connectivity Algorithm (1965) which
will be discussed later. The improvements or/and mo-
difications of ECA made by Wipke and Dyott (1974),
Corneil and Gotlieb (1970), Frieland et al. (1975),
Shelly and Munk (1977), Schubert and Ugi (1978),
Moreau (1980), Zu and Zang (1982), Herndon (1983),
etc. should be mentioned here. The HOC algorithms
developed by the authors also belong to this group.

(iii) Algorithms based on the centric properties of
molecular graphs. This is another large group of co-
ding algorithms. All of them proceed from the order-
ing of graph vertices around a central vertex using
also connectivity and chromatic properties of graphs.
The DENDRAL system (Lederberg, 1966) utilizes the
mass centre of the graph while the classical graph
centre 1is used by Jochum and Gasteiger (1977). The
central vertex in the DARC-ELCO system of Dubois
(1973) is not always chosen on a topological basis,
it is rather a characteristic functional focus of
the molecule. An extended graph centre definition
(Bonchev et al., 1980, 198la) is applied for obtain-
ing the topological code (Bonchev et al., 1981b,
1983) which forms the major part of the compound’s
name within the newly proposed universal nomenclatu-
re of chemical compounds. The same type of centre
is used in our algorithm DISTANCE which will be dis-
cussed later. The AVTOGRAF program of Trach and Ze-
firov (1980) makes use of the so-called binary equi-
distancy matrix, i. e. the metric properties of the
graph are used rather than the centric ones.

(iv) Algorithms based on the clusterization of mole-
cule. Differing from all other topological algo-
rithms these algorithms do not deal with individual
atoms only but rather with some groups of atoms,
called clusters, uniquely selected on a structural
basis. Such algorithm have so far been proposed by
Read (1978, 1980),as well as by Lozac’h,Goodson and
Powell (1979).

(v) Other algorithms. The original work of Golender
et al. (1981) is based on the so-called vertex po-
tentials (first, second, etc.) introduced by analo-
gy between graphs and electrical networks.

THE HOC ALGORITHMS BASED ON THE HIERARCHICALLY
ORDERED EXTENDED CONNECTIVITIES OF GRAPHS

As mentioned in the previous section, a large number
of coding algorithms exploit the idea of extended
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connectivity, i. e. they account not only for the
atoms directly connected with the atom under consi-
deration but alse for its second, third, etc. neigh-
bouring atoms. The different approaches vary in the
specific realization of this idea. The original algo-
rithm of Morgan ((1965) counts first the connectivity
of each atom as the total number of the neighbouring
nonhydrogen atoms.. Then, the sum of the connectivities
of the first neighbours, called extended connectivi-
ty, EC, is calculated for each atom. The procedure
continues m successive stages until the number of
different EC values is the same in two iterative

steps (Fig- 1) .

9 9
1 14
o0 10 5
S n=b
2 &4
2 2 5 5
e fi—
3 3 5 5
1 3 13 6 3
4o,
n=3 n-=4 N
2
3 3
5 5
1 L 1
n=5

Eigure I. Amn example illustrating the difference between the Morgan and
HOX1 algorithms

The pitfalls of the Morgan algorithm are mainly in
the EC oscillation during the iterations (e. g. the
pair of vertices having EC = 10 in the last itera-
tion has different values both in the preceding step
“,6) and in the following step (18,28). Topologi-
cally non-equivalent atoms also could acquire the
same EC valwes. These disadvantages have been over-
come i#n some algorithms proposed later. Yet, the
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search for a better coding algorithm is one of the
most attractive trends in contemporary chemical graph

theony..

We present here the outline of a coding system based
on two ideas:

(@) treatment of simple compounds by means of a sim-
ple” algorithm while more complex compounds are treated by
means of a more sophisticated algorithm

{@i) use of hierarchically ordered extended connecti-
vities

(G3ii) use of a Unigue Topological Representation of

molecule «mmeﬁ The first idea is an extension of so-
me previous studies (Comneil and Gotlieb, 1979; Go-

lender et al., 1981, etc.) in which a more powerful
(@nd time-consuming) algorithm is used after the
simpler one has failed in finding the topological
equivalence of atoms in the compound unter examina-
tion. Our coding system (Ralaban et al., 1985) makes
an automatic preliminary selection of out of three
algorithms - HOC 1, HOC - 2, and HOC - 2 A, proce-
eding from the mathematical proff ((=kenyan et al.,
1985) for sufficiency of each of them for rigorously
specified classes of structures with imcreasing com-
plexity. Thus, the majority of chemical compounds is
handled by the simple and fast HOC-1 procedure while
the third level of complexity deals with some cases
not relevant to chemistry but frequently used as
counter-examples to different coding algorithms.

A hierarchical iterative procedure can be used as

a convenient tool for avoiding ascillations of ex-
tended connectivity, as shown previously by Corneil
and Gorlieb ((1970), Shelly and Munc ((1977) and Hern-
dan (1983). We present here a different, simple hie-
rarchical approach, called HOC-1. In each iteration
this procedure orders the non-hydrogen atoms imto
classes of topological equivalence which receive the
ranks 1, 2, ..., k. The HOC - ranks of the atoms nei-
ghbouring a certain atom are ordered in the next ite-
ration in an imcreasing sequence and then summed up.
The EC value thus obtained and its summands are used
as discrimination criteria which may divide further
the atoms from a certain equivalence class into two
of more such classes. In a few iterations the proce-
dure terminates by finding the orbits of the automor-
phismgroup of the molecular graph, as well as by
ordering them according to their HOC - ranks. As seen
from Fig. 1, in contrast to the Morgan algorithm,
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our HOC-1 algorithm detects the topological equiva-
1ent atoms and makes it sufficiently fast.

For asymetrical molecules HOC-1 terminates with the
canonical nlmbering of all atoms (Fig-2). In case
of symmetrical molecules this is a job of a special
algorithm HOC-3.

9Q,7) 4 6 9 1
n
503) 3
e — — E— 8 ————
5(2,3) 1 : 0 4
§ 93,6) 5 7
i = 2 = 7
2
7 10 1
9 4 2
8 3 " 2
6 8
i-3 =3

Figure 2. An example illustrating the HOC-1 procedure

The simplest structure which requires the more sop-
histicated wHoc-2 algorithm for Finding the topologi-
cal equivalence of atoms is shown in Fig. 3. HOC-I
fails in solving this job puttimg all four vertices
of degree two in the same equivalence class. HOC-2
makes use of supplementary imput imformation on the
cycles to which all graph vertices belong. This im-
formation is provided by the program "RING™ which
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will be described elsewhere Karabunarliev et al.).
This imformation is imtroduced in the inmitial itera-
tion as an additional discrimination criterion for
the graph vertices with the same connectivity. Then
the basic algorithm HOC-1 suffices to specify com-
pletely the topological equivalence of atoms in the
molecule under examinatiomn. For the example conside-
red in Fig. 3 one thus arrives at two orbits of two
vertices each, imnstead of the initial clas of four
vertices .

1

HIOG-1- ranks HOGC-2-ramks
13€C4; 20ECE 56,78 &Cfl,(‘?‘ and Q,MCﬂans

Figure 3. Am example illustrating the HOC-2 algorithm

In the very rare cases of third-level complexity
graphs of the HOC-2A algorithm makes use of some
supplementary imput data. These are the ordered sets
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of the degrees of all vertices that belong to a cer-
tain cycle, which are also provided by the program
"RING™..

A special swbroutine called "Graph classifier™ IS
introduced in the computer”s options. Thus, the
HOC-1 algorithm is applied to molecules whose graphs
have a cyclomatic number of lest than four @t was
found that structures of 1evel B of complexity have
at least four peri-condensed cycles of different
sizes). Graphs that are composed by weakly connected

Figure 4. An example illustrating the Unique Topologiical Represemtation (UTR)
of a molecule, as well as its Topological Code (TC) and Compressed Toplogical
Code (CTE)

components, each one having less than four cycles are
also classified into the lowest of structural com-
plexity. Many more chemical compounds belong to this
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level but their automatic recognition needs time com-
parable to that for the direct handling of the struc-
tures of B complexity level by the HOC-2 algorithm.
Almost all regular graphs also belong to this level.

The third basic idea of our approach is the concept
of a Unique Topological Representation (UIR) of a
molecule. This is a pictorial representation of the
molecule in which atoms are located at the levels of
topological equivalence (the orbits of the graph’s
automorphism group)arranged according to their in-
creasing HOC-ranks. At each level, topologically
equivalent vertices are arranged from right to left
according to their increasing numbering, as specifi-
ed by the HOC-3 procesure (Fig- 4).

Further to discerning symmetry (Bonchev et al .,

1985) the UTR of molecules may be regarded as a very
convient basis of molecular codes (Balaban et al.,
1985a). As seen from the example in Fig. 4 the topo-
logical code (TC)y describes in increasing numerical
order the neighbours of the vertices from each orbit
(topological equivalence level) starting from the
left- most vertex at the lowest level. The neighbours
to vertices of different orbits are separated in the
code by semicolumns while those to vertices of the
same orbit are separated by commas. When the adjacent
vertex 1is located on the same orbit this type of con-
nection is denoted by a full stop. Connections to
neighbouring vertices at higher levels or at the same
level are used only. The advantages of the topologi-
cal code proposed here are obvious. Its total number
of symbols (including the punctiation marks) 1is clo-
se to that of the Morgan’s From and Ring Closure list
(Morgan, 1965) but the topological code is more in-
formative containing the complete information on the
orbits of the graph’s automorphism group. If this
supplementary information is not given, as all other
molecular topological codes do, then the compressed
topological code (ctc) can be obtained by omitting
all puctuation marks except that for separating the
vertices adjacent to the same vertex. CTC seems to be
one of the shortest molecular codes.

The proposed topological code can be used as a basis
for the complete coding of chemical compounds by sup-
plementing information on the kind of atoms and
bonds, as well as on stereochemistry, isotopic com-
position, etc. (Balaban et al., 1985a).

The FIOC-system of algorithms incorparates also the
HOCCANON algorithm oriented towards fast canonical
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numbering of atoms in molecules HOCCANON discrimima-
tes the atoms and bonds still in the imitial stage
(@nd before imtroducing extended connectivities) by
means of the chemical and isotopic nature of atoms,
their charges, the bond multiplicity, etc., as well
as by means of the size of the rings to which the
vertex belongs (for B complexity level only) and the
vertex degree sequences of the rings ((for C complexi-
ty level only). Having thus the maximal preliminary
distinction of atoms HOCCANON continues with the ba-
sic HOC-1I treatment arriving very fast to classes of
topochemical equivalence of atoms. This equivalence
may be regarded as a result of the combination of the
point group symmetry of the molecule with the 1local
symmetries of molecular fragments (mainly terminal

groups)..
o 6
N
10[:: j:f:::::JB
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TCC 4/N.9,3/N;677,5~;2,1;2,1;;1,

Figure 5. An example illustrating the HOCCANON vertex numbering and the
Topo-Chemical Code (TCC)

An example of the HOCCANON canonical numbering of
atoms s presented in Fig. 5, together with the res-
pective topo-chemicall code (TcC). The latter resul-
ted from the Unigue Topo-Chemical Representation
(UTCR) of the molecule which is constructed similar-
1y to UTR. The chemical symbols of heteroatoms are
presented there after a slash while the multiplicity
of bonds ((higher than one)is specified as exponent
after the vertex number denoting one endpoint of the
bomd..

THE ALGORITHM DISTANCE BASED ON THE CENTRIC
PROPERTIES OF GRAPH VERTICES AND EDGES

This algorithm based on the gtaph distances and

more spesifically it makes use of the cehtric pro-
perties of molecular graphs.

The procedure consists of two parts. The first one
orders centrically the graph vertices and edges imto
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equivalence classes on the basis of the recently de-
veloped (Bomchev et al., 1980, 1981la) generalized
graph centre concept. Proceeding from the adjacency
matrix of the graph the three centric characteris-
tics are calculated for each vertex: 1its radius ((the
maximal distance), r, its ditance number, d , which
1s the sum of distances to the remaining graph ver-
tices, and the distance code, dc, which imcludes the
frequency numbers of the different for the vertex
frequency numbers of the different distances for the vertex
trie criteria coincides with the first discriminating
criterion, the number of the occupied neighbouring
spheres (WNOOW),, in the Jochum and Gasteiger algorirtm
(1978). All graph vertices are thus divided into
equivalence classes which are ranked according to
their centric properties starting with rank 1 for the
central vertices. The same procedure is applied then
to all graph edges.

An 1iterative two-step procedure of centric re-orde-
ring of the graph vertices and edges followes. (1) .
The ranks of the incident edges are taken imto
account by summing and forming an imcreasing sequence
for each vertex. Some of the vertices classified as
equivalent in the fFirst part of the procedure may
thus appear as nonequivalemt. This imcreases the num-
ber of equivalence classes which receive new ranks.
(@)- The new ranks of the imcident vertices are ana-
logously taken into account for each graph edge. The
equivalence classes of graph edges thus may on their
turn be partitioned into smaller classes and be re-
ranked.. Steps (1) and (2) are repeated until two suc-
cessive 1iterations result in the same centric order-
ing of the graph vertices and edges.

The procedure is illustrated in Figr 6 where the
three centric criteria are presented for all graph
vertices and edges. 1t is shown that two iterations
suffice for finding the ultimate vertex and edge cen-
tric ordering into equivalence classes which coinci-
de with the orbits of the graph's automorphism group.
The 1ast assertion is not proven in the general case
but it is supported by the lack of a counter-example
among the imspected several thousand graphs, imclud-
ing regular ones, as well as all the counter-examples
to the known algorithmes (Bonchev et al., in prepara-
tion) ..

Having obtained the levels of topological equivalence
of atoms (UTR) one can proceed finding the topologi-
cal code of the compound which is analogous to ((but

not identical with) the topological code described in
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Figure 6. An example illustrating the iterative centric re-ordering of the graph
vertices and edges according to the DISTANCE algorithm

the previous section.
CONCLUDING REMARKS

The HOC and DISTANCE algorithms outlined in this pa-
per have a number of advantages. They are free of
nontopological conventions and they can be easily
implemented both manually and by computer program
(Ralev et al., 1985). Being considerably faster than
many of the existing algorithms also provide concise
molecular codes. Perhaps the most important feature
of the HOC and DISTANCE codes is in preserving the
symmetry of molecular graphs, as well as in preser-
ving the ordering of vertices according to the con-
nectivity or centric properties of graphs, respecti-
vely. This ordeting reproduces surprisingly well so-
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me experimental data such as H-NMR chemical shifts
in polycyclic benzenoid aromatic hydrocarbons (Bon-
chev et al., 198la; Mekenyan et al., 1983, 1985a).
Thus, HOC and DISTANCE appear so far as the single
procedures, out of the known unique and universal
coding algorithms, that have some physico-chemical
significance.. In addition, the conservation of the
topological similarity of molecules of a different
chemical composition could help in the search for
structure-activity correlations (lekenyan et al.,
1985b), in classification and nomenclature problems,
etc ..
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Chapter 6

APPLICATION OF THE MONTE
CARLO METHOD FOR
STUDYING THE HYDRATION
OF MOLECULIES:

BASE STACKING

V.1. Danilov ]
Institute of Molecular Biology and Gemetiss,
the Ukrainian SSR Academy of Sciences, Kiev, USSR

ABSTRACT

A Monte Carlo hydration simulation of uracil, thy-
mine and their associates has teen performed. The
results obtained enable one to elucidate the nature
of nucleotide base stacking.

INTRODUCTION

The factors providing the stability of nucleic acid
gecondary structure in water are already displayed
in the interactions between separate nucleotide ba-
ges in different associates. Therefore, the inves-
tigation of the nature of base associate stability
in water is very important to understand the stabi-
1ity conditions of different confformational states
and the mechanisms of intramolecular structural
transitions in nucleic acids,

With the help of the thermodynamic and spectro-
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scoplc study of interactions of the bases, their
derivatives, nucleosides and nucleotides it is sho-
wn that stacked associates exclusgsively are formed
in aqueous solutions ((see, for example, /1/). It is
impossible as yet to detect in-plane hydrogen-bon-
ded (H-bonded) base pairs in water.

At the same time from theoretical investigati-
ons /2,3/ one may conclude that H-bonded base pairs
in vacuum are energetically more preferable than
stacked associates for the majority of dimers of
the same composition. The analysis of the whole va-
riety of the experimental and theoretical data ava-
ilable has allowed us to make as assumption /3,4/
about an important role of water in the formation
of stacked dimers. Sinanoglu and Abdulnur arrived
at the similar conclusion /5y6,7/ on the basis of
the rough estimates of different solvent contribu-
tions to the s¥ability of nucleotide base associa~
tes performed by meams of solvophobic force theory.

Despite numerous experiments, the energetic ad-
vantage of the base association reaction in water,
in particular, the factors stabilizing base stacking
and the role of water as the solvent for this have
been studied insufficiently. In additiom, it rema-
ins not realized enough why stacked dimers are more
preferable than H-bonded base pairsj; the role of
hydrophobic groupg in base stacking being not made
clear enough either. Elucidation of the nature of
stacking interactions may promote considerably the
understanding of the nature of hydrophobic interac-
tions playing so important role in the organization
of biological structures.

To elucidate the mechanism of nucleotide base
stack formation in water, it is necessary to study
water-water, water-base and base~base interactions
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on molecular level /8/. Similar investigations on
this problem have been already begun. It is even
obvious now, however, that using quantum mechanical
methods one is hardly able to investigate directly
the systems containing more than 150-200 atoms. In
such a situation to refuse the obtaining of inter-
molecular interactions for real system in numerical
form is most likely the only way out. The analyti-
cal form of interaction potentials for the diffe-
rent pairs of atoms should be then found from the
results of quantum mechanical or semiempirical stu-
dy of different configurations of the system simu-
Jating molecular complex.

The analytical potentials available allow us to
use statistical thermodynamics, for which the Monte
Carlo method is the most efffective when averaging
temperatures in real system. For recent years this
method is widely used in chemistry and biology for
calculating the average values of different proper-
ties,

In this connection we have begun a Monte Carlo
computer hydration simulation of nucleic acid bases
and their dimer associates in the cluster of N#200
water molecules /9-12/. The enthropy has not been
considered for simulation. This is justified for
our aim, since it has been shown experimentally
that the association of the bases and their deriva-
tives in water is determined by enthalpy /1/.

In the process of the Monte Carlo computations
one of the bases in each stacked dimer was moved
randomly according to the Metropolis algorithm. As
the starting configurations for stacked uracil
(Ura) and thymine (Thy) dimers the most preferable
for vacuum antiparallel configuration and the anti-
parallel one with the further rotation of a base on
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180° around the glycosidic bond were chosen. Let us
call the stack obtained from the first configurati-
on as A-stack and the one obtained from the second
configuration as O-stack. A more detailed descrip-
tion of the computation method is given in /13/.

MONTE CARLO HYDRATION SIMULATION OF

BASE ASSOCIATES

Some results of the study of association reaction
obtained from the Monte Carlo hydration simulation
data of Ura, Thy and their stacked dimers are pre-
sented in this work.

The calculation results for the changes of the
average magnitudes of the water-water interaction
energy WW the water-base interaction energy
AUyp, e base-base interaction energy AUy and the
energy of the system AU are given in Table 1 (Chere
and hereafter all the values are given in kcal/mol
of dimer).

Table L
Energetic characteristics of the base stacking reaction in water

Transition Aww  AUwp AUpp AU
Ura+Ura stacked dimer -52 9.5 =4.,2 47
Thy+Thy stacked dimer -22 22,3 5.1 -5

Their analysis shows that the change in the wa=
ter-water interaction associated with the structu-
ral rearrangement of water around monomers during
their association is the main factor promoting sta-
cked dimer stabilizatiom. The stacked associate is
considerably less stabilized by the base-base inte-
raction. At the same time the stack is destabilized
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substantially by the water-base interaction. This
confirms the assumption /3-7/ about the decisive
role of the water-water interaction for base sta-
cking.

Unfortunately, the results of the experimental
study of stacking association enthalpy of Ura and
Thy in water are absent. The data available for the
different methylated derivatives of these bases
/14/ show that the methylation of Ura derivatives
in the C5 position leads to the decrease in the ab-
solute magnitude of association enthalpy. The va-
Jues aU we have computated for Ura and Thy agree
with these data.

Given in Table 2 are the changes in the poten-
tial energy a UR’R and the water-water AU;%B,, wa-
ter-base “ P and base-base aUggp interaction
energies upon the transition from the H-bonded di-
mer to the stacked one calculated from data /9,10/.

Table 2.
Energetic characteristics of the transition from H-bonded base pair to
stacked dimer

Transition R aUB*P puStP AUSEB 40P

Base pair Ura-Ura —&= 200 =16 =14 7.1 5,1
stacked dimer Ura/Ura 39 -21.7 -17.2-9.6 5.1
82 -18,7 -22.1-1.7 5.1

Base pair Thy*Thy — 200 =25 =24 «5,4 4,3
stacked dimer Thy/Thy 39 ~9.0 -5,9 -7,4 4.3
82 -10,1 -9.0 -5.4 4.3

It follows from Table 2 that in water stacked
Ura and Thy associates are energetically more pre-
ferable than H-bonded dimers. This preference is
mainly due to value aU8!®and is caused by the ene-
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rgetically more favourable structure of water aro-
und the stack. The watem-tmse interaction also sta-
bilizes the stack as compared to the base pair; the
stack being at the same time destabilized by the
base~base interactiom.

A considerably greater energetic preference of
stacked dfimers obtained by us in comparison with H-
bonded ones hampers extremely the detection of the
Jatter in water., Note that it is true irrespective
of whether the base pair formation from monomers is
favourable or not.

For a more detailed understanding of the nature
of the preference of stacked dimer as compared to
the H-bonded one, we have calculated the energetic
properties of the transition from the base pair to
the stack for the nearest 39 and 82 molecules of
water cluster (Table 2) using data /9y10/. The Table
shows that for the subsystem including 39 water mo-
lecules there is almost the same energetic advanta-
ge of the stacked Ura dimer when compared to the
corresponding base pair as for the whole water clu-
ster. Te mU%@B makes the main contribution to
value jUa’,%. The data for the subsystems of Ura di-
ment-82 water molecules leads to analogous conclusi-
ons. This testifies %o the fact that the preference
in the formation of the stack of Ura molecules is
due to the nearest water molecules /9/.

It is appropriate to note that for the subsys-
tems of Ura dimer+39 water molecules the water-base
interaction makes a tsngible contribution to a grea-
ter stability of the stack as compared to the base
pair. The performed analysis of the radial distribu-
tion of the water-base interaction energy shows that
there is a Jayer of water molecules only 1.5 A thick
(5.3-6.8 A from the sphere centre) around the sta-
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eked Ura dimer, whose interaction with the bases
makes the contribution to UWQ that amounts to

~46 keal/mol and makes up 4Th. The existence of
this layer around the stack and its absence around
the base pair is primarily due to the different
character of the distribution of hydrophilic groups
for stacked and H-bonded Ura dimers.

The analysis of the data for the analogous sub-
systems of Thy dimerswater (Table 2) shows that a
greater energetic preference of the stack as compa-
red to the base pair is also displayed when consi-
dering the nearest 39 and 82 water molecules around
dimers., However, for the subsystems considered
magnitude aUEEB makes but a small part of this
value for the system including 200 water molecules.
A greater energetic preference of the Thy stack as
compared to the base pair is most 1likely due to the
layers of water molecules more distant from the
dimer /10/. Since the magnitudes aU8’B for subsys-
tems are small in comparison with value AUZRP for
the whole cluster (see Table 2), the dominant cont-
ribution of the latter to aU2:B is also most like-
1y determined by more distant layers of water mole-
cules., This defines the difference between the hyd-
ration of Thy associates and those of Ura conside-
red abowve.

The differences of the potential energy aU%,
the water-water nUgw,, water-base ntfl;*w, base-base
‘AUQ% interaction energies and the differences in
the number of water-water H-bonds An8 for O- and
A-stacks in water are given in Table 3.

It is seen from this Table that the energetical-
1y most preferable systems among those of Thy di-

mer+water and Ura dimer+water include different
types of stacks,
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Table 3.
Energetic and structural characteristics of the hydration of uracil and thymine
stacked dimers

System N 2R AGR, AU AUy, AnE
Stacked Thy di- 200 =34 ~38 54 «0.5 6
mer+water 3% =121 211 9,7 -0.5 2
82 «B8,2 -15.6 7.6 =0,58 2
Stacked Ura di~ 200 =34 =44 7.9 1.1 7
mer+water 39 =9.4 -21.1 10.5 14 3
82 -14.8 -23%8 8.2 1.1 4

The energetic preference of a more stable sta-
cked dimer when compared to a less stable one is
almost completely determined by the water-water in-
teraction., Water is more ordered around a more sta-
ble dimer. A greater number of water-water H-bonds
testifies to this fact (see values AmB in Table 3).
The base~base interaction does not almost make any
contribution to the stability of one type of stacks
as compared to another. A less preferable dimer is
stabilized by the water-base interaction to a grea-
ter extent. Similar conclusions follow from the da-
ta of Table 3 for the subsystems including the nea-
regt 39 and 82 molecules of water cluster.

The analysis of the data obtained for stacked
Thy dimers in water enables one to make one more
important observation. It is seen from Table 3 that
the dimer in which the methyl groups of Thy molecu-
les are adhered (O-stack) is more preferable than
the one for which these groups are separated from
each other (A-simek)). This fact is analogous to the
known phenomenon that in water two non-~polar mole-
cules or groups aim"to adhere®.
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The "adhering™ observed theoretically is most
likely due to the effect of methyl groups and not
to the rotation of one of the base rings around the
glycosidic bond. This is shown by our data that in
water the uracil A-stack is more stable than the O-
stack.

The nature of the methyl group "adhering™ that
leads to a more prefferable type of the stack of Thy
may be understood qualitatively from the calculated
radial distribution functioms of the water-water
interaction energy, a number of water-water H-bonds
and water molecules for the subsystems including 39
and 82 water molecules. The analysis of these func-
tions performed by us for the A- and O-stacks of
Thy shows that due to a small number of water mole-
cules, water structuring around the A-stack for the
layers positioned in a proximity to methyl groups
is low. The transition from the A- to O-stack leads
to the increase in the number of water molecules for
3.3-3.8, 4.8-5.3 and 6.3-6.8 A layers. This allows
water molecules to form a greater number of water-
water H-bonds in these layers. The decrease in a
number of water-methyl group contacts observed du-
ring this transition leads to an additional formati-
on of water-water H-bonds in the 6.3-%.8 A layer
that raises its structuring. 1t is evident to lower
tangibly the system energy. Really, the energetic
contribution made by the 6.3-%.8 A layer to the pre-
ference of the O-stack of Thy amounts to -22.5 kcal/
mol and is very close to value AU@W for the system
including 39 water molecules ((see Table 3). The ad-
ditional lowering of the system energy is caused by
the cooperative efffect of the adjacent methyl groups
in the O-stack of Thy on the siructure of more dis-
tant layers of water molecules (Table 3).
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The “adhering® of Thy molecule methyl groups
upon the Formation of the O~stack detected by us is
a typical manifestation of the hydrophobic effect.
Unlike the classical case, however, the enthalpy
term calculated by us makes a considerable contri-
bution to the stabilization of the O-stack of Thy.
It should be noted that the similar phenomenon is
observed for all the studied cases of nucleotide
base association in water /1,14/. The multiply al-
kylated bases with the volume substituents are an
exception. Their large hydrophobic surface formed
due to alkyl substituents screens greatly a polar
nucleus of the rings that leads to the classical
(enthropy) nature of the base association.

The hydration simulation of stacked dimers per-
formed by us has shown that due to the possible
change of their geometry in water the configuratio-
ns of stacks differ strongly from the most prefera-
ble configurations computated for vacuum ((see /13/).
This leads to a tangible decrease of the absolute
value during the tramsition from vacuum to wa-
ter. So, for the A-stack of Ura the most preferable
configuration of the bases in vacuum has the value
Upp amounting to -6.31 kcal/mol. During the transi-
tion to water the magnitude becomes equal to
-4.15 kcal/mol. The seme difference is also obser-
ved for the O-stack of Thy during the transition
from vacuum to water (-~7.33 and -5.13 kcal/mol,
respectively)).

The comparison of our data on the hydration of
the A-stack of Ura with the variable and fixed (va-
cuum) geometry of the dimer shows that values Uy
and Uwg are changed, as well as value Uy Therefo-
re, the conclusions of the recent paper /15/ devo-
ted to the study of the base association reaction in
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water and based on the fixed geometry of the stacks
should be considered with great csution. In additi-
on, the conclusion of authors /15/ that there is no
enthalpy stabilization of stacked dimers by water
obtained from their data is erroneous.
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STERIC EFFECTS ON RATES
AND EQUILIBRIA

DelLos F. DeTar
Department of Chemisstry, Florida State University,
Tallahassee, Florida 32306 USA

ABSTRACT

New approaches to the theoretical prediction of
relative rate constants based on estimations of rela-
tive enthalpies of formation of reactants and of mod-
els of transition states provide calculated rate con-
stants that agree with experimental values, in some
cases within a factor of two. The underlying princi-=-
ples are described. Formal steric enthalpy (FSE), a
new formal definition of steric properties has proved
useful for calculating the relative enthalpies and in
investigating the origins of the steric effects.
Evaluation of steric effects on rates (@nd on equili-
bria) has wide applicability. 1t is a powerful tool
that may be expected %o serve as a stimulus for new
studies of steric effects while providing the means
toward a better understanding and a more effective
use of these effects.

INTRODUCTION

For reactions controlled primarily by steric ef-
fects computations using molecular mechanics can re-
produce relative rate constants rather well. Repre-
sentative references are Bingham and Schleyer 1971,
DeTar and Tenpas 1976, DeTar et al 1978, DeTar and
Luthra 1980, DeTar 198l1a, 1981k, DeTar and Delahunty
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1983, Mtitller and Perlberger 1976f Perlberger and
Mtitller 1977, Mtidller et al 1982a, 1982b, Farcasiu
1978, Beckhaus et al 1978, 1980, Bermlitthr et al 1984,
Ruechardt and Weiner 1979, Ruechardt and Beckhaus
1980, Schneider and Thomas 1979, 1980, Schneider et
al 1983, Mmtiiller 1985.

In recent more detailed studies of esterification
of RiR2CHCOOH and hydrolysis of the esters, we have
been able %o reproduce relative rate constants to
within a factor of 1.7 over a range of 5 powers of
ten for some 85 data values, DeTar et al 1985d. Ri 1is
H, Me, Et, i-Pr, or t-Bu. These results together with
those published show that chemists now have available
a powerful tool for gaining new imsights about steric
effects on rates and equilibria.

The purpose of this discussion is to present the
underlying principles and to indicate some techniques
for applying them to more general problems of eval-
uating steric effects. The illustrations will be
based primarily on esterification.

PRINCIPLES: RELATIVE RATE CONSTANTS AND TRANSITION
STATE THEORY

The estimates of relative rate constants are based
on the thermodynamic state approach of transition
state theory, and they require calculation of rela-
tive free energies of formation of reactants and of
models of transition states, DeTar and Tenpas 1976a,
1976lbb, DeTar et al 1978, DeTar and Luthra 1980, DeTar
et al 1985d.

Several problems have %o be solved in order to ap-
ply this approach. First off it must be possible to
calculate relative free energies of activation with
high accuracy, preferably to better than 0.4 kcal/-
mole. Attaining this level of accuracy in estimating
enthalpy of activation imposes severe demands on the
computations of relative enthalpies of formation and
on the force fields.

We must devise adequate models for the transition
states. We must use appropriate procedures for ap-
plying calculations to reactions in solutiom, not
just the gas phase. We must treat entropy effects.
And we must develop methods for imtterpreting the
results.

Turning first to the entropy problem, there are
two approaches: calculate the entropy (@eTar and
Luthra 1980), or ignore it on the grounds that the
entropy of activation is effectively constant
throughout the series of reactioms. Both approaches
can work (@eTar and Tenpas 1976lb, DeTar et al 1985d).
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We cannot usually calculate the free energy of
activation for a single reaction nor can we calculate
the free energy of imdividual compounds in solutiom.
What we can do is %o calculate the difference of the
free energy of activation for two reactioms. This
amounts to the calculation of a ratio of rate con-
stants, eq 1.

log (ke/ki) = @G - AGp¥)/(2.3®Wm) @

Eq 1 makes use of the powerful standard method of
double differences, illustrated further in egs 2 to
9. A generalization of the double difference method
is a linear free energy expressiom, eq 10. 1t should
perhaps be emphasized that eq 10 is not a catch-all
application of the linear free energy approach; it is
a theoretically correct generalization of the funmda=-
mental double difference method.

RJ-COOH + MeOH ———# R1-C (@H)20Me @)
rl tl

Rp-COOH + MeOH ———  R2-C (@H)20Me ®
r2 t2

AHt* = AHfg(tL) - AHfg(rl) + AHg(t1) - AHg(@D) @

AHR* = AHfg(X2) - AHfg (@2) + AHS(R2) - AHS@2) )

AAHz1* = aHg* = AHg* @)

AAHp j*(s) = AHfg (@2 - AHfg(@2) -

AHfg (@) + AHfg (@D + AAHs (D
AAHS AHg (12) - AHS(@2) - aHs (D) + aHs (@D @)
AAH21* & FSE(#2) - FSE(@2) - FSE (ml) + FSE(rl) ()

log (Kqi/kQ) a + bFAFSE} Qo)
AFSE}{ FSE(ti) - FSE(ri) @y

Eqs 2 and 3 represent formation of the tetrahedral
intermediate in esterificatiom; ri and r2 are itwo
acids and £l and t2 are the respective transition
states on the way to the tetrahedral imtermediates..
Af}* and AHp* are the enthalpies of activation in
solutiom, egs 4 and 5, while AAHz3¥* is the relative
difference of enthalpies of activation in solution
and will be equal to the free energy difference of eq
1 if the entropies of activation may be considered
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constantt.

The enthalpy of formation of reactant 1 in solu-
tiom, AH(rL), may be expressed as the sum of the gas
phase enthalpy of formatiom, AHfg(rl), plus the en-
thalpy of solutiom, AHg(@1), and likewise for the
transition state 1, AHfg(#l) and AHg(itl). The enthal-
py of activation in solution may then be expressed as
eq 4. Eq 5 is the corresponding expression for the
second reactiom.

Expansion of the right hand side of eq 6 yields
the summation shown in eq 7. The term AAHgs, eq 8, is
expected %o be nearly 0. The argument runs as fol-
lowsz The enthalpy of solvation about the R§ group is
nearly the same in reactant ri and in transition
state ti; likewise for solvation of R2. The enthalpy
of solvation about the COOH group is nearly the same
for reactant ri and reactant r2; likewise for solva-
tion about the C(OH)20Me groups. Any steric effects
on solvation will to a considerable extent tend %o
parallel structural steric effects and hence will be
confounded with them.

We conclude therefore that the double difference
of free energies of activation in solution is nearly
equal to the double difference of free energies in
the gas phase, and also nearly equal to the double
difference of enthalpies of formatiom.

1 will show presently that the gas phase double
difference of enthalpies of formation incorporated
into eq 7 may be represented by eq 9 in terms of a
double difference of formal steric enthalpies. Eq 10
is the linear free energy equation that generalizes
eq 9, while eq 11 defines the independent variable.
The slope b of eq 10 should be 1/(RT), but may be
different if the assumptions are not all met. As
examples, an imperfect model of the transition state
used in calculating the FSE(ti) terms, failure of
solvation effects to cancel, imcorrect estimates of
ESE values are three possible causes.

For imittermolecular esterification the entropy
tends to cancel out in the double differemce. This is
fortunate since the entropy of activation is a large
negative quantity for most acyl transfer reactions,
and it varies with solvemt. There is, moreowver, an
established linear relationship between enthalpies of
activation and entropies of activation for some es-
terificatioms, Krug et al 1976a, 1976b, 1976c, 1977.
The successes of the calculation of relative rate
constants owes a great deal to the various can-
cellations afforded by the double difference method.

For esterification and ester hydrolysis we have
used the ftetrahedral intermediate itself as the model
of the transition state on the way to the imtermed-
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iate. This is clearly inexact, since at the transi-
tion state the three C-0 bond lengths should be un-
equal. To date we have discovered no trends in the
error residuals which would suggest the need for a
more sophisticated model or which would permit a
valid test of one. Uncertainties about models for
transition states must, however, be kept in mind.
Even cruder models have been used in some of the
studies referenced in the Introductiom. 1t appears
that the results are rather imsensitive to models if
they provide a reasonable representation of the ster-
ic effects in the transition state.

There are trade-offs in choosing a model for the
transition state. 1f the model is actually a mole-
cule, then the force field may already imclude all
necessary constants for estimating relative enthal-
pies of formatiom. 1f not, then several additional
constants will have to be assigned and often there is
no independent way of assessing their validity. Ex-
perience to date suggests that the double difference
method pretty well cancels out the weaknesses of the
models and of the assignmemts..

FORMAL STERIC ENTHALPY AND ENTHALPY OF FORMATION

Turning now to the estimation of relative enthal-
pies of formatiom, we assume that steric effects and
bonding effects can be treated imdependently, as
implied in egs 12 to 14. This assumption is formally
stated in eq 12; we postulate that the enthalpy of
formation of a single conformer may be represented
arbitrarily as the sum of formal bond enthalpy and
formal steric enthalpy. We postulate further that the
FBE term may be represented as a summation of group
increments imdependently of structure. We interpret
FBE as the enthalpy of formation of a hypothetical
molecule having the prescribed structural units but
having no imtramolecular "straim™.

AHf(g) = FBE + FSE Q2
AHE (single conformer) = Enﬁﬁi + EFSE (¢E))
FSE SE Q@

Eq 12 is a refinement of and an extension of the
traditional representation of the enthalpy of forma=
tion of alkanes in terms of group imcrements based on
a count of CH3, CHz, CH, and C units plus a correc=
tion for steric effects, Stull et al 1969, Cox and
Pilcher 1970, Benson 1976. Howewver, the enthalpy of
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formation defined by eq 12 applies to a single con-
former (@ather than to the existing mixture of con-
formers) and the FSE values are defined by the for-
malism described below.

Eqs 12 and 13 are therefore equivalent and for
alkanes the FSE is equivalent to "single conformer
strain energy"”, Schleyer 1970, or to "intrinsic
strain energy™, Burkert and Allinger 1982.

FSE values may, however, be defined imdependently
of whether enthalpies of formation are available or
not, and the assumption of additivity of group imcre=-
ments to give FBE may be" extended to many types of
molecules containing functional groups. FESE values
may be defined for transition state models and for
molecules that are too unstable to be studied. Thus
the FSE value has many advantages as a specialized
and precise definition of what is implied less pre-
cisely by the idea of ™molecular strain™ insofar as
it arises from inmtramolecular nonbonded repulsions
and attractioms.

Molecular mechanics calculations represent the
"steric energy™ of a molecule in terms of deviatioms
from standard bonds, angles, and torsions plus non-
bonded interactioms. The "steric energy™ is calcu-
Jated by purely empirical functions whose constants
have been chosen so that at the minimum value the
geometry, the enthalpy of formatiom, and perhaps
other molecular properties agree with experimemt.

The "steric energy™ value obtained for a given
conformer by molecular mechanics is force field de-
pendemt.. For some force fields the steric energies
may even decrease with imcreasing substitutiom; DeTar
et al 1985a. The problem lies in the fact that a raw
SE value imcludes the desired FSE quantity of eq 12
plus a variable and force field dependent admixture
of residual FBE. For two molecules that are isostruc-
tural, as are conformers, the difference of their
steric energies is a valid estimate of AAHf since the
residual FBE component is the same for both confor-
mers. For two molecules that are not isostructural
the difference of steric energies is force field de-
pendent and hence theoretically meaningless.

For an alkane the SE value may be converted to an
enthalpy of formatiom, which is, of course, force
Ffield imdependent; Allinger et al 1971, Engler et al
1973, Burkert and Allinger 1982. FSE values are also
force field imdependemt; they may be considered as
corrected steric energies. Differences of FSE values
are equal to differences of enthalpies of formation
and are thus significamt..

The definition of FSE values for a given set of
molecules imvolves three steps: identification of the
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molecular groups necessary %o define the FBE value
for any member of the set by additivity, selection of
suitable standard conformers, and arbitrary assign-
ment of FSE values to the standards. This formal (@r-
bitrary) assignment defines the FSE value of every
member of the set of compounds and makes it possible
to derive tables of steric properties that are imde-
pendent of method of calculation or of experimental
estimate. The assignments provide the imformation
necessary to calculate the ci values of eq 13 if the
necessary enthalpy data are available, and they pro-
vide for the calculation of the correction terms di
of eq 14. Examples are given by DeTar et al 1985a
(®@1kanes), 1985b (@lcohols, ethers, olefins), and
1985c¢ (esters).

Inasmuch as FSE values treat only the steric ef-
fects it is necessary either to 1imit the reaction
set under consideration to compounds for which polar
effects are negligible, or else #o correct for polar
effects by a linear free energy relationship, DeTar
1980, DeTar et al 1985d.

1t is also necessary to avoid changes in bonding
conditions at the reaction center. For example, al=-
pha-beta unsaturated acids may have the complication
of steric effects on resonance.

HOW TO TREAT POPULATIONS OF CONFORMERS

Givem, then, that there is a suitable set of com=
pounds to work with, a suitable force field, and a
suitable model ffor the transition state and given
further that we have calculated formal steric enthal-=-
pies ffor several conformers of each reactant and each
transition state, how do we go about calculating the
rate constants.

A fundamental requirement is to locate the global
minima of energy for both the reactant and for the
model of the transition state. For many acids the
conformer of the R-group is the same for both, but
this correspondence is not always found. 1In the acid
the R-group opposes an spg carbon and in the transi-
tion state a developing sp3 carbom. On the supposi-
tion that the acid conformers are in rapid equilib-
rium it is still correct as a First approximation to
base calculations on the two global minima.

1t is of interest to consider in more detail how
the predicted rate constants are modified due to the
presence of populations of conformers of reactants
and of transition states. One way %o visualize the
system is to consider that by least motion the con=-
formation of the R-group does not change during the
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activation step. 1f we then picture the system as a
mixture of conformers each with its own reaction
path, we can describe the process as ™adiabatic™.

In more general thermodynamic terms we can 1ift this
restriction and need not be concerned with details of
the dynamics by which the several transition states
are reached. We can accordingly look upon the process
as imvolving an entropy correctiom. 1f there are
several transition states of low energy., then there
are multiple paths and the rate will be greater than
through a single path based on the global minima.
Conversely, if there are multiple low lying reactant
states that match up with high energy transition
states, then the reaction will be retarded. 1In either
case the comparison is to the rate calculated from
the reactant state and the transition state that are
the global minima.

The theory for calculating the rate constant from
FSE values for populations of conformers has been de-
scribed in both kinetic terms and in thermodynamic
terms (@eTar et al 1985%d). The result is eq 15. Each
ki is to be calculated using the FSE value for the
global minimum of the reactant conformers and the FSE
value for each transition state in turn. D is the
Boltzmann denominator, eq 16. In one set of acids the
k derived by eq 15 differed from that obtained from
the pair of global minima by factors ranging from
about 0.5 to 2.

A/DHks + kz + k3 + .. ) @as)
1 + exp[-(8G2 - AGH)/EIT + @e)

k

D

MECHANISTIC VS OBSERVED RATE CONSTANTS

Another question to be settled is that of defining
clearly the relationship between the rate constant
that has been calculated and the phenomenoleogical
("experimental'") rate constamt. This is not always
obvious. A theoretically calculated rate constant is
a mechanistic rate constant, which may or may not be
equal %o or proportional to the phenomenological
constamt. 1In esterificatiom, as an example, the ob=-
served rate constant is usually a pseudo Ffirst order
rate constant or a derived value based on the Gold=-
schmidt correctiom, Goldschmidt 1913, Smith 1939.
This value is usually converted by proportion to ihe
rate constant in 1 M catalyst acid, and the derived
value is the phenomenolegical constant. The values
are somewhat medium dependemt, but this is not a
serious problem as long as we work with relative rate
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constamnts, which are imdependent of medium. Changing

the concentration of HC1 catalyst from 0.5 M to 0.1 M
causes the phenomenological rate constant to imcrease
by from 10 to 20%, Smith and Reichardt 1941.

ki k2
R-COOH + MeOH ¥r——— R-C(OH)20Me -———— Ester
k-1
k2
kobsd = ki X mee—eeeeeeo = ki x f Q@)
k_ii + k3

Esterification and ester hydrolysis imvolve tetra-
hedral imtermediates, and in consequence the pheno-
menological rate constant is the product of the mech-
anistic rate constant for forming the imtermediate
and a distribution fraction that represents the frac-
tion going on to products, DeTar 1982.

There is evidence that the distribution fraction £
of eq 17 may be presumed to be relatively constant
for R = alkyl; DeTar 1982, DeTar et al 1985d. The
phenomenological rate constant should closely paral-
Jel the mechanistic rate constant as long as the
equilibrium constant for esterification stays con-=
stant. This will probably hold for esters of n=-alco-
hols since there is no steric imteraction between the
alkoxyl group and the R-group of the acid.

Target rate constants that may be calculated in=
clude those for esterification in methanol (argest
number of available data), for esterification in
ethaneol, for acid-catalyzed hydrolysis (@ few exam=-
ples), and extensive data for base-catalyzed hydroly-
sis of esters, limited, albeit, to a narrow range of
structures. See DeTar et al 1985d for references.

Relative rate constants, taking acetic acid as the
reference, are pretty well constant for all acid-
catalyzed reactions within each series even though
the data have been obtained at different temperatures
and with different catalysts. For hydroxide~catalyzed
hydrolyses of esters the relative rates are also
constant even under differing conditions of solvent
and temperature, but it is necessary to apply a small
correction for the differing imductive effects of
alkyl groups, DeTar 1980a, in order to bring acid-
catalyzed and hydroxide-catalyzed reactions into
coincidemce.. The distribution fractiom, eq 1, is
probably unity for alkaline hydrolysis, DeTar 1982.

Corrected relative rate constants also appear o
be pretty much the same irrespective of whether ithe
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alkoxyl group is methoxylk or other primary alkoxyl
group; iIf there are trends, they are masked by the
experimental uncertainties of the data. We find no
evidence of steric effect between the RY of a primary
R*0O group and the R3R2R3C group of any acid we have
investigated. Branched R'0O groups do, of course,
encounter steric interactiomns.

For reactions that differ in activation energy the
relative rates will, of course, depend on what temp-
erature is selected as the reference temperature. For
two esterification reactions having a ratio of rate
constants of about 1060 at one reference temperature
@og k(rel) = 3.0) the change in 1log k(rel) is about
6.2 for a 20 change in reference temperature, assum-
ing that the rate difference is due entirely to the
enthalpy factor.

Most of the data for esterification were obtained
prior %o 1940 by many groups. The most extensive of
these is by H. A. Smith; see Smith and Burn 1944 and
earlier papers. The range of structures imvestigated
was rather narrow. Newman ((loening et al 1952) great-
ly extended the range. The recent work of the Chapman
group is a model of experimental excellence., Burden
et al 1980 and earlier papers.

Two recent studies of methanolic esterification of
highly hindered acids were based on competitive es-
terificatioms, Sniegeoski 1976 and MacPhee et al 1978.
Although gas chromatography was used in the analysis,
material balances were not reported and there are
problems with the data. Rates for two key reference
compounds, triethylacetic acid and t-butyldimethyl-
acetic acid, are divergent by factors of 30 as re-
ported by the several laboratories, Loening et al
1952, Sniegoski 1976, and MacPhee et al 1978. As a
consequence the rate constants for esterification of
several highly hindered acids must for the present be
considered unknowm.

CALCULATION OF RATES OF ESTERIFICATION

To illustrate the method of calculation the above
procedures have been applied to rate data for esteri-
fication of Ffifteen substituted acetic acids, R{R2CH-
COOH, having Ri and R2 H, Me, E%, i-Pr, and t-Bu.
There are 15 acids in the set, and experimental
values have been reported for all. However, data for
three of these are uncertain for reasons mentiomed
above; they are i-Pr-i-PrCH-COQH#, i-Pr-f-BuCH-COOH,
and t-Bu—t-BuCH-COOH..

The data are summarized in Table 1. The column
labelled Delta FSE is the difference in the formal
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steric enthalpies of the conformer of minimum energy
of the tetrahedral imtermediate (tthe transition state
model) and of the conformer of minimum energy for the
acid.

The column Adiabatic Corr is the adiabatic or ent-
ropy correction explained above %o correct for popu-
lations of conformers.

Literature rate constants have been used in deriv-
ing Log k rel avg. Calculated rate constants are
based on eq 18. The values calculated for the last
three acids may be considered as predicted rate con-
stants.

Jog k rel = -0.72929 (.04) - 0.98326 (..-@3)-AFSE
+ Adiabatic Corr @as)

standard deviation 0.22 R% 0.9788 28 d.f.

Comparison of the observed and calculated values
of log k(rel) show that the refined approach we have
described does in fact give a good correlation of fthe
rate constants for the first 12 acids. Experimemtal
problems with the data for the last three acids have
been described above.

Making use of formal steric enthalpy it becomes
possible to determine the origins of the steric ef-
fects. For example, we can compare the effects on the
acid of replacing the alpha H of EtCH2-COOMe in turn
by Me, Et, i-Pr, and t-Bu. The respective FSE values
(Tor the conformer of minimum energy) are 0.84, 1.01,
1.22, 2.29, 3.66 kcal/mole. We can thus examine in
detail the accumulation of steric effects with in-
creasing substitutiom.

The corresponding values for the model of the
transition state are 0.26, 1.28, 2.48, 4.15, 8.39.
There is a reasonable proportionality up to the Et-t-
Bu~CH group. At this last step there is a large jump
in the crowding of the tetrahedral structure. FSE
values now make it possible to imvestigate in detail
the effects of structure on steric properties.

1t may be noted that the reported FSE values of
the acids in Table 1 are actually those of the methyl
esters. The two are the same except for a constamt.
Calculations were performed on the esters in order fto
discover whether there were any imteractions between
the methoxyl methyl group and the R-group of the
acid. There are none for the acids discussed.
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Table 1. Formal Steric Enthalpy Values
andl Rate Data for R1R2C600H Esterification

REA R2 Deltab Adia-€ -Log k8 -Log k
FSE batic rel avg Calc
Corr obsd
H H -.76 0.00 0.01 -.02
Me H -.62 0.00 0.05 0.12
Et H -.58 -.14 0.31 0.31
i-Pr H 0.32 =.12 0.93 1.17
t-Bu H 1.38 0.00 1.65 2.09
Me Me -.41 0.0 0.50 0.33
Et Me 0.27 6.02 0.99 0.97
i-Pr Me 0.67 =.22 1.90 1.61
t-Bu Me 2.78 0.00 3.23 3.46
Et Et 1.26 0.06 1.96 1.91
i-Pr Et 1.86 -.06 3.25 2.62
Et t-Bu 4.73 0.28 5.14 5.09
i-Pr i-Pr 3.32 0.18 4.98 3.81
i-Pr t-Bu 4.84 =.01 6.53 5.50
t-Bu t-Bu 8.58 0.080 6.97 9.17

4R1R2CH-COOH acid-catalyzed esterification in methan-
ol. Bvalue for tetrahedral conformer of minimum en-
ergy - value for ester conformer of minimum energy.
£See text, drelative to acetic acidy; average of sev-
eral values. See DeTar et al 1985d for references.

CONCLUSIONS

The procedures described have wide applicability.
They can be applied to the prediction of steric ef-
fects in many types of reactions providing that the
calculations are made with due consideration of the
limitations of the method, particularly in regard to
care with molecules involving steric effects on reso-
nance .

There are many opportunities for new experimental
studies of steric effects. One example is the imves-
tigation of joint steric imteractions in the sub-
strate and in the nucleophile in aminolysis reac-
tions, DeTar and Delahunty 1983. Another area of
great imterest is the treatment of cyclization reac-
tions, DeTar and Luthra 1980, for example. 1n lactone
formation the differing equilibrium constants implies
that there is no longer a proportionality between the
phenomenological rate constants and the mechanistic
rate constants. Many other types of reactions are
controlled by steric effects, and may yield imtterest-
ing insights.
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A potentially very important use of the method
can be in the design of enzyme-like catalysts. The
fact that enzyme-substrate specificity can be repro-
duced imdicates that potential catalysts can be eva-
Juated computatiomally, DeTar 198la, 1981.

Many of these applications can benefit greatly by
development of improved force fields. The potential
number of constants needed for molecules containing
half a dozen or so types of atoms runs into the hun-
dreds. 1t is going to require a great deal of evalua-
tion to learn effective ways to work with this prob-
Jem.
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Chapter 8

MOLECULAR TOPOLOGY,
ELECTRON CHARGE
DISTRIBUTIONS, AND
MOLECULAR PROPERTIES

Benjamin M. Gimarc and Jane J. Ott
Department of Chemiistry, University of South Caroliiina,
Columibiza, S.C.29208, USA

INTRODUCTION

The problem with chemistry is that it has too many examples.
Over 100 elements combine with themselves and each other to form
an essentially limitless array of compounds, each with its own
properties. This diversity is both the fascination and frustration of
chemistry. A detailed knowledge of the properties of one compound
tells us nothing a priort about tge properties of others. Thus, at the
most fundamental level chemistry is a qualitative science through
which we hope to understand trends in properties through broad
classes of compounds.

One way to approach a qualitative synthesis of chemical
information is by applying qualitative arguments, such as those
involving symmetry properties and atomic orbital overlaps, within
the framework of molecular orbital theory [1,2]. Another approach
starts with molecular topology [3]. The connectivity of atoms within
a molecule, or more succinctly if less correctly, molecular topology,
is a structural feature of obvious and fundamental importance to
chemistry. The pattern of charge densities in amolecule is
determined by molecular topology and the number of electrons
available. Nature prefers to place atoms of greater electronegativity
in those positions where the topology of the structure tends to pile up
extra charge. Since such heteroatomic systems are preferentially
stabilized by charge distributions established by molecular
connectiviitty, this effect has been called the rule of topological charge
stabilization [4].
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The example of the linear triatomic azide anion N," serves to
demonstrate the rule. The ion has 16 valence electrons with two
identical but mutually perpendicular pi electron systems each
containing 4 electrons. Each pi MO set is composed of three
identical 2p AOs. For N~ the calculated pi electron charge densities
are greater at the terminal nitrogens (1.5) than at the central
atom(1.0). This pattern of charge densities can be easily understood
form the nodal properties of the occupied pi orbitals. In Huckel
theory charge densities are given by the squares of AO coefficients
summed over occupied MO’s. In the lowest energy or bondng MO
y,(1) the 2p AO on the central nitrogen has a larger coefficient than
do the terminal AO’s. In the higher occupied or nonbonding MO ¥,

(2), a nodal plane perpendicular to the molecular axis eliminates
any contribution from the central atom 2p AO and pushes electron
density to the terminal atoms. The net result is a greater electron
density at the terminals than on the central atom. Although N, is
known it is usually reactive, in some cases explosive. Much more
stable are isoelectronic, isostructural heteroatomic species such as
CO,,NO,*, and BO," in which constituent atoms occupy positions
thaf match their relative electronegativities with the distributions
of charge determined in the homoatomic system N, ~, for which only
topology and electron filling level establish the pattern of electron
densities. We refer to such a homoatomic system as the uniform
reference frame from which we can make rationalizations and
predictions concerning atomic positions and relative stabilities of
related heteroatomic species.

The validity of the rule of topological charge stabilization
transcends simple Hiickel theory and indeed even the molecular
orbital approximation as the following perturbation argument
shows. Consider the uniform reference frame as the unperturbed
system, with Hamiltonian H°, wavefunction ¥°, and total energy E'*
related by the Schrédinger equation:

Hw® = E© g°,
Now introduce one or more heteroatoms as a perturbation, holding
the molecular structure and the number of electrons fixed. The
perturbing Hamiltonian H’ is a sum of changes in Coulombic
nuclear-electron attraction terms due to changes in nuclear charge
AZq that result from substitution of a heteroatom at position a. For
the perturbed system described by H = H®° + H’, the total energy
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can be calculated as a sum of higher order corrections, E = EQ) +
Efh + —. The first-order correction is calculated from the
unperturbed wavefunction:

Ed) = <\ H] >
Since the operator H' involves only simpie muitiplication, the W
factors can be combined within the integral to give the unperturbed
electron density p>= (PP and E() = <p®H'>. Therefore, to
achieve maximum stability or energy lowering through the
correction E(), the heteroatoms of largest AZ should match those
positions in the molecule where p®is already greatest in the
unperturbed or reference frame. For qualititave generalizations
involving atoms in different rows of the periodic table it is
convenient to consider valence electrons only and to replace AZa by
changes in effective nuclear charge Afa, or even more simply, to use
relative electronegativity as a rough measure of Ala.

To demonstrate the general applicability of the rule of
topological charge stabilization and to show insights that can be
derived from it, the following sections present many examples from
both inorganic and organic chemistrny.

PLANAR CONJUGATED SYSTEMS

Pentalene (@) has 8 pi electroms. Differences between largest
and smallest Hiickel pi charge densities are large. Attempts to
prepare pentaiene itself have failed although 1,3 5% trrientvatyl
pentalene has been synthesizedl. The inorganic analogs 4 and 5§ have
been made. In these examples the electronegativities of the
constituent atoms match the charge denisity distributions of 3.

[Aveeey Me Me
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The pentalene dianion has a system of 10 pi electroms.
Differences among Hiickel pi charge densities (6) are smaller than
in pentalene itself (@), probably increasing the stability of the
dianion relative to that of pentalene. The unsubstituted dianion has
been preparnedl. The extra pair of electrons in the dianion have gone
to positions 1, 2, 4, and 6 which now have the largest charge
densities. Consider the series of isomeric thienothiophenes (7-10)
which are isoelectronic with the pentalene diamion. All four isomers
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\2%.1.32

1.17

have now been prepared although 10 is known only as the
tetraphenyl derivatime. Comparing these structures with the charge
distributions in 6 suggests that 7 and 8 should be of comparabie
stabillity, 9 less so, and 10 the least stable of all. These conclusions
are in excellent agreement with the known reactivities of this series
and with the results of several sets of semiempirical resonance
energy calculations [6].

The rule of topological charge stabilization does not imply that
heteroatoms cannot be introduced into stable systems for which the
uniform reference frame has uniform charge densities. Countless
examples of such systems exist. For example, all pi charge densities
in benzene (11)are unity. The isoelectromic, heteroatomic species
12, 13, and 14 are all knowm. Topological charge stabilization
suggests a decrease in stability through this series, following the
trend of increasing localization of charge on more electronegative

atoms.
v, v
H
NZ SN N o Yo
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1 12 13 14

THREE-DIMENSIONAL SYSTEMS

In P S, (15) the four phosphorus atoms are at the four corners
of a distorted tetrahedron with an apical phosphorus linked by
bridging sulfurs to a basal triangle of phosphorus atoms. As]S, has
an analogous structure. The known anion P7% serves as the uniform
reference frame for P,S; and As,83 Structure 16 displays the
Mulliken net atomic populatlons or more simply, atomic charges)
for P2¥ calculated from extended Hiickel wavefunctions [7]. The
extended Hiickel method is known to yield exaggerated charges [8]
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but experience shows that they are adequate for the purposes here
which require only a qualitative pattern of charge distributions.

The uniform reference frames for three-dimensional systems
are often hypothetical and have very large total charge Q.
Individuai atomic charges qf sum over all atoms r to the total charge
Q. Since we are interested only in charge differences we have
introduced normalized charges qf" which sum to zero:

o' = g - QN,

where N is the number of atoms in the structwre. Structure 17
shows the normalized charges of P?%¥ from 16. Since the reference
frame in 17 is no longer composed of real atoms we have suppressed

-0.259 +0.170
P
p// Tpo_0.720 -0.291
\ 1/
P\‘l7l’ -0.194 +0.235
16 17

atomic symbols in the corresponding structural formulas. The
normalized charges in 17 emphasize that the bridging positions are
negative compared to apical and basal sites. Hence, the more
electronegative suifurs should occupy the bridges with less
electronegative P or As atoms in the apex and basal triangie as
observed in P,8, and As,S3

Topological charge stabilization offers a beautiful explanation
for the driving force to equilibrium in the system P. S,/As;S3 When
reactants are mixed in the stoichiometric ratio (1:3) t?le equlllbrlum
lies predominately to the side of the PS;As, product [9]:

P,S, + 3As;8, 4PSAs,
The structure of the product PS, Asi presumably has a phosphorus

atom at the apex, three bndglng su funms,, and a basal triangie of
arsenic atoms, exactly those position in which electronegativities of
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constituent atoms match the relative charges in the uniform
reference frame [10].

In P,;S, (18) there are four equivalent sulfur atoms located at
the corners of a square plane and bonded to pairs of phosphorus
atoms above and below the plane [18]. Normalized charges
calculated for an appropriate uniform reference frame (19) can
rationalize the diffgrent positions taken by atoms of Groups V and
VL. The more electronegative atoms prefer the plane positions with

PN
VAERY,

+0.244

-0.244

19

the less electronegative atoms occupying sites above and below the
plane, an arrangement that is realized in the known examples of
this series [11). In §,N, and Se,N, the Group V element (N) occupies
the negative square positions and in PS4, As,S4, and As,Se, the
Group VI elements (S or Se) are on the plane.

The P,S. cage (20)is related to that of P, S, (8) with an
additional sulfur atom bridging one pair of phosphorus atoms.
Normalized charges for the uniform reference frame appear in 21.
Agaim, the more electronegative suifurs occupy the negative sites

PP +0.13
s/s/\s\s -0.27
\/ X/
'\s /' +0.66

-0.50
20 21

while the less electronegative phosphorus atoms take the positive
positions. Similarly, in the related structures P,8e- and As,Sg, the
more electronegative Group VI atoms (S or Se) are in the negative
sites and the less electronegative Group V atoms (B or As) take up
the positive locatioms. But positions of Group V and VI elements are
reversed in §,N5" because N is more electronegative than S.

Insertion of still another sulfur between the bonded pair of
horus atoms in 20 leads to the structure which one anticipates
r P.S; (22), this particular molecuie being as yet unkmowm.. The
highly symmetrical structure is that of adamamtame. The charges of



& Topology, Charges and Properties [Ch.8

the uniform reference frame (23) show four positive tetrahedral sites
and six negative bridging positions that cover the edges of the

4 s>, +0.893
s\js/\bs -0.595

P
S
22 23

tetrahedirom. The more electronegative element should be located in
the bridges with the less electronegative element at the tetrahedral
sites, an arrangement that is well known in P,0g, As.Og, As,Sg and
Sb.€ , as well as in hydrogen and methyl substituted examples such
as r;(NMe), and (HSI),Sg.

The adamantane examples have 56 valence electroms. These
structures lead to an empirically based topological rule that says
less electronegative atoms go to the sites where they form more
bonds. This may be true for most 56 electron systems but just the
reverse is observed in some 44 electron species that alse have the
adamantane structure. In (HC),(BR); (R = Me, Ci or Br) the
carbons are at the tetrahedral sites with borons in the bridges, an
arrangement that agrees exactly with the polarity of normalized
charges for the uniform reference frame with 44 electrons (24).

-0.077

+0.052

24

The rule of topological charge stabilization can be used to
predict the relative stabilities of the positional isomers of the well
known closo-carborames, C,Bn., Hp, where 5<n<12. Reference
frames are required that simulate the structures of closo-boron
hydrides, BaHpZ, 5<n<12, the homoatomic analogs of the
carborames. To emphasize charge differences and simplify the
callci{ul;tions we used unsubstituted carbon systems €% rather than
BrHpZ:

The C,B;H; system is a trigonal bipyramid. Calculated
charges for %he uniform reference frame (25) are negative at the
apical positions and positive at the equatorial sites.
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+0.013

Since carbons prefer to occupy the negative sites, the three possibie
isomeric carboranes should follow the decreasing order of stabillity:

>1,2->2 8. This order agrees with the energy order
established by ab initio MO calculatioms. More importamt, it agrees
with what is known experimentally about €;B;H- isomers. The 1,6-
isomer is the only known unsubstituted isomer. The 1,2-isomer
exists only as the methyl substituted form and the 2,3-isumer has
not been reported in any form.

The carborane C,B,H.. has octahedral geomettmy. The six
vertices of a regular octahedron are equivalent so the charges on the
atoms of the uniform reference frame must be identical. The
rule of topological charge stabilization cannot distinguish between
the two possible carborane isomers. But suppose a single
electronegative heteroatom is introduced at one of the equivaient
vertices of CgZ to make C;N>2 In this perturbed system (26) charges
are no longer the same everywhere and the rule of topologicai
charge stabilization can be used to predict the prefered locations for
the introduction of the second electronegative heteroatom. The
perturbing heteroatom at position 1 (indicated by ®in 26) produces
another large negative charge at position 6. Therefore 1,6-C,B 4.
should be more stabie than the 1,2-isomer, again in agreement with
ab initio calculations and the experimental report that the 1,2-
isomer quantitatively rearranges to the 1,6-isomer on heating at

‘A —0.228

26

We have used similar procedures to predict the order of
stabilities for the carborane analogs of ByH72*through BiH %and
in every case our predictions agree with available experimental data
12} Itisinteresting that our predictions based on crude charge
densities calculated from extended Huickel wavefunctions, are often
in better agreement with experiment on relative isomer stabilities
than are total energies calculated from the same extended Hiickel
wavefunctions.
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ONE-DIMENSIONAL EXAMPLES

The pseudo-one-diimensional character of chain-type
structures should make their electronic properties easier to
interpret using qualitative MO theory. But chains have lower
symmetry than most of the molecules mentioned here previously.
For examplle, a five-atom chain has three different kinds of sites
compared to only two for the ten-atom adamantane cage. In this
section we review a number of five-atom chains with several classes
containing different numbers of valence electrons.

The molecules OCCCO and OBOBO have 24 valence electrons.
€,0, is almost linear; it is actually a semirigid bender. The
isoelectronic species BOL and NCSCN are V-shapedl. Extended
Hiickel charge densities for the 24-electron five-atom uniform
reference frame in linear (27) and V-shaped (28) conformations both
show negative charges at the chain ends, directing electronegative
atoms to those terminal sites. Notice that the change from linear to

+0.83 N 5 p-2=0.88

0—0——>—D>
=0.90 +4+0.15 -0.02
27 28

V-shape increases the electron density at the central atom,
providing increased stability for more electronegative atoms at that
position such as the central O and S in B;0; and S(CN)2.

N,0, (28 valence electrons) has two isomeric forms, a chain of
planar W-shaped conformation (29) and a planar branched structure
(@0). The branched isomer is the more stable of the two. From the
normalized charges for the corresponding uniform reference frames
(31, 32) one can see that the pattern of charge densities in the

29 30
-0.49 >-1.04
+0.90
+0.65
+0.63 -1.00

31 32
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branched form is more compatibie with the location of all three
oxygen atoms at the most negative sites and suggests topological
charge stabilization as the source of extra stability for the prefered
branched isomer of N2O2

The ion CISNSCL (33), with 30 valence electroms, is planar
and U-shapedl. The normalized charges for the uniform reference
frame (34) do not follow the order of electronegativities of atoms
along the chaim, the only significant deviation from the rule in this
series.

c\l c’ |
S @ S }
\N/
+0.65
33 34

The ions I3+, Iﬁisi, and LBr,* (34 valence electrons) are
planar chains bent in a*zig-zag or Z-shape. In the heteroatomic
examples, such as CIIHC1 % (35) the atoms are connected such that
the two more electronegative atoms are at the terminals and the
three less electronegative atoms occupy the intermediate and
central sites. No examples such as Ié!gi + are knowm. These
observations are in accord with the distribution of normalized
charges for the uniform reference frame (36).

Cle—|

| >+0.24
—Q

|
! +0.28 0.40
s 36

The 36 electron chaims, such as L7, LE13%; I2Br,™ and XegE3%.
are linear or V-shaped. In ClICHNICl (@7), for exampile, the three
more electronegative atoms are located at the terminal and centrai
positions with the less electronegative atoms at the intermediate
sites. Examples such as ICIICII" are unknown. The observed
arrangement of atoms matches perfectly with the pattern of charges
in the uniform reference frame (38).

-0.33

4] Cl
N © Vi +0.39
\c|/ -0.1

37 38
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CONCLUSIONS

Atomic charge in a molecule is an old and useful concept. Even
the notion that charges might be determined by connectivity goes
back at least 35 years [13]. We have used the ruie of topological
charge stabilization to rationalize the structures and predict the
relative stabilities of a wide variety of compoumndts. Eor each
structural class these conclusions were based on charge density
distributions calculated by simplie Hiickel or extended Hiickel
theory for a single, homoatomic reference structure. The rule can be
justified by first-order perturbation theory. €harge density patterns
are often easy to understand with the aid of qualitative MO theory.
The rule is easy to apply and could be used to guide synthetic efforts
and to point out problems that merit further study by both theory
and experiment. Topological charge stabilization can serve as a
unifying principie for the organization of chemical informatiom..
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Chapter 9

SYSTEMATIC SYNTHESIS
DESIGN BY COMPUTER

J.B. Hendrickson and A.G. Toczko
Department of Chemistiry, Brandeis University

The primary problem confronting the development of any system
for synthesis desigm is the vast size of the necessary search
space, a huge "synthesis tree™ composed of the possible inter-
mediate structures and their interconversion reactioms. Hence
the criteria applied to select the best pathways must be not
only clear but very stringemt. Establishing adequate viable
criteria, to be applied impartially by the computer rather than
left to the user, is therefore the central and hardest task.
As a basis for this selection we have chosen economy: the
shortest, most efficient paths from the cheapest available
starting materials. Since a synthesis 1is a sequence of
reactions starting with small starting materi@l molecules and
leading to a large target structure, the only obligatory
reactions are those that link those starting materiall molecules
together, and so the shortest synthesis then willl employ only
those reactioms. Such shortest paths them become our search
goal.

To see the importance of this conclusiom we must under-
stand an organic structure as the sum of its skeletom and its
functiomall groups. The skeletom is its a-bonded framework of
carbon atoms, and the functiomall groups its attached heter-
oatoms and carbon-carbem n-bonds. This dichotomy is also seen
in reactioms: constructiom reactions are those that build the
skeletom, 1i.e., that create C-C a-bonds; refunctionalizatiom
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reactions alter the functiiomall groups without changing the
skeletom. Our goal them is to find sequences of constructiom
reactions only, from starting materials to target. This is a
very stringent criterion as indicated by the fact that the
average synthesis has twice as many refunctionalizationm steps
as constructions and constructs 1/4-1/3 of the skeletall bonds.

Approaching this huge tree search problem with the intent
to assess all its many possible combinatioms, we need a clear,
linear, digitall expressiom of these organic molecules to define
and simplify the structures and reactions in the search space,
as welll as to manipulate them rapidly. 1f we grant a canonic-
ally numbered 1list of the skeletall carbons and their connec-
tivity, them the functiiomal! groups could be expressed by a
simple number at each carbon and the functionality of the mole-
cule as an ordered list of such numbers. The net functiomall
change in any reaction may them be annotated simply as the
arithmetic change in such a functionality list from substrate
to product, or vice-versa. Converselly, the substrate function-
ality lists can be generated from the product lists (or vice-
versa) by adding a "generator® 1list characteristic of a par-
ticular reactiom. This assumes that the connectivity changes
attendant on constructiom reactions are separately recorded.
The necessary digitall descriptiom of structure envisioned here
should be fast and simple: fast for rapid computer manipula-
tion; and simple implying abstracted or generalized from normal
functiiomall group description to coalesce triviall distinctions
and so reduce the number of items to examine in the search
space..

An overview of the procedure derived has two phases. 1In
the first only the skeleton of the target is dissected in order
to find the most efficiemt modes of assembly of that skeletom
from the 1largest skeletons of available starting materials.
This designates a set of bonds that must be constructed (the
bondset). 1In the second phase the functiomall groups necessary
to initiate constructions of those designated bonds are laid
onto the skeletons so as to proceed, by a sequence of construc-
tion reactions only, from reall starting materials to the tar-
get. Now we are dealing not only with the correct skeletons
but also with the correct functiomall groups 1in the right
positions on the skeletons as well. Both the best modes of
skeletall assembly (the bondsets), and the demands on
functionality to create segentiiall construction reactioms only,
together constitute a very stringent basis for selection of the
optimall synthesis pathways..

In the first place we seek to define which skeletall bonds
should best be constructedl, and in what order. Thus we are
looking for the best ordered bondsets, and the problem is not
trivial.l To construct X bonds from a target of b bonds, there
are b!/gb-%))ll ordered bondsets which may be followed.. For a
C;]I steroid, therefore, there are 3 x 1018 ways to construct
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1/3 of its 24 bonds. The most efficient synthesiis, however, is
a convergent one and the number of these is much smaller. In
order to find the fully convergemt syntheses we must first
dissect the target skeletom into two pieces and then each piece
into two agaim, etc. 1f we were to stop this process at two
such levels of dissectiom there would be four starting materiial
skeletons.. 1f we also apply the constraimt that the only
acceptable sets are those for which all four skeletons are
found 1in the catalog of starting materials, then we have
developed a very demanding criterion which will result in
relatively similar starting skeletom sizes and reject many
other sets. For a CJQ target the average starting skeleton
will have five carbons, and the variety of available starting
materials falls off sharply above C5. 1In the case of larger
target it may therefore be necessary to look to a third level
of dissectiom.

Comparison of the skeletal pieces from target dissectiom
with skeletons of the starting materials in the catalog now
becomes a primary need for our program. To this we sought a
procedure which can create an unambiguous canonicall numbering
of any skeleton for its identificatiom.2 The skeleton is a
graph and so may be fully characterized by its adjacency matrix
(an nxn connectivity matrix), but there are n! differemt
matrices equally representing any skeletom and these differ in
the numbering of the skeletall atoms. Therefore, we require a
clear definition of a single, unique numbering such that any
two molecules may be so numbered and them compared for
identity.

The adjacency matrix may be strung out into a binary
string of n(n-1)/2 bits and we may treat this string as a
binary number. The particular numbering of the skeletall atoms
(and its corresponding matrix) which affords the maximum numer-
ical value of this binary string is then a unique numbering and
so may be used for our comparisens of skeleta. Owing to sym-
metry there may be severall equivalent such maximall numberings
for a given skeletom (cyclohexane has twelve), but tney alb
have the same maximal binary string and so comparisem of the
strings stilh identifies 1like skeleta. A procedure was
developed for row-wise generatiom of the maximall matrix and its
corresponding skeletall numberiimg. The catalog of starting
materiial skeletons was them set up as a listing of their
corresponding maximall binary strings in numericall order. Such
an ordered 1listing can them be rapidly searched for the
presence of a particular skeletom generated by the dissectiiom
of the target, and identified by its maximall binary number.
Our procedure for making these comparisoms 1is very fast and
appears to be error-free, in contrast to some other methods for
identifying such structural isomorphiism.,

By separating the skeletom and functiomall groups this
dissection procedure first derives alll skeletall bondsets cor-
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responding to fully convergemt orders of constructiom of the
skeleton from four smaller pieces found in the catalog. The
whole synthesis tree is now rendered easier to search since
each of these optimsll bondsets so derived represents a smalll
subtree of the whole, rooted on reall starting materials; and
each bondset is examined separately. For each bondset we now
have a set of target bonds which must be constructed and the
order in which they are to be made. Essentially, the next task
is to examine the target functiomall groups out from either end
of the last bond to be constructed; and then to ask what reac-
tions will produce those groups and what substrate functiomall
groups are required to do it. Then each bond in the bondset,
in order back from the target, is so examimed, to identify for
each product all possible reactions and their corresponding
substrates. Thus the elements to establish a given reactiom
are both the position of the bond to be made as welll as its
neighboring functiomall groups.

In the second phase of the procedure we examine a partic-
ular bondset, 1i.e., an ordered sequence of skeletall bonds to
constryct, and we must find all ways to construct each bond
without functiomall group repair reactions betweem the construc-
tions. The requirement that we assess alll possible reactions,
coupled with the huge search space, mandates an initiall gener-
alization or abstractiom of the 1involved functionality to a
broad, simple descriptiom which only in the successfull cases
needs to be refined later.

The system developed for this purpose,3 outlined in Figure
1, consists of a definition of four generalized kinds of
attachmemt on any carbon atom: H for hydrogem or other elec-
tropositive elements; R for a-bond (skeletall bond) to another
carbom; n for a n-bond to carbom; and z for a bond (N- or a-)
to electronegative heteroatom. For any carbom, them, the num-

ber of attachments of each kind is respectively, h,w,m, and z,
such that h+aemz = 4. The functionality is then n+z and,

Figure I Characterization of Structures

Kind Number Oxidation State
H h = 0-4 X =2z-h
c /R & = 0-4 rSkelstal
\bn m = 0-2
\ - Funct iomall
JA z = 0-4 7+ Z = 4-0-h

=4
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since the skeleton is glvemn,, @ is known and h_derives by sub-
traction. The result is that any (connected) carbon function-
ality can be described by two digits, z (=0-3) and n(=0-2),
requiring only four bits per carbom to designate in the compu-
ter. Any structure is then easily described as a zm-list of
the carbon values ordered by their skeletal numberimg. 1n this
way crotonic acid, Tlinearly numbered (JUPAC rules), becomes
30%01%01%00 and its 2,4-dichloro-derivative is 30%11%0L%10.
With this description structures can be very economically and
rapidly manipulated as lists in the computer. The numbering of
the carbons for these lists can be either the given numbering
as input by the user or that derived by maximizatiom of its
adjacency matrix binary list. The fundamemtzl nature of this
description by attachmemt types is substantiated by the obser-
vation that the oxidation state (x) at any carbon is given by
x=z-f, and so the oxidation state change in any reactiom is
uicEIy calculated by ZAx for all changing carboms..

Reactions are characterized in this system very clearly
and simply. A unit reactiom is defined as a unit exchange of
attachments on one carbom, and can be expressed as two letters,
the first being the kind of attachment bond which is made and
the second that which is brokem. Thus the reductiom of alkyl
halide to alkane is an HZ unit reactiom, as is reduction of
ketone to alcoholl. The oxidation state change is found from
Ah=+1, Az=-1 and so Ax=Az-Mh=-2. Some reactions must involve
more than one carbom at the same time, as in alkene reductiom,
HWSHE  (EAseI{(-1)=2), and of course in all constructions,
such as alkyT-Tithium addition to ketone, which is RH*RZ, with
EAx=0. There are 16 possible unit exchanges which may be
written from combinations of the four kinds of attachmemts.
This system makes possible a very clear and simple basis for
characterizing and cataloguing alll possible organic reactions
in terms of their net structural change, i.e., exchange of
attachment types at the severall involved carboms.  Such a
system for organizing reactions 1is analogous to the Beilsteim
system for organizimg structures in that alll possible
reactions, presently known or unknowm, have a defined place in
the catalog. This can certainly be a very usefull basis for
definimg, creating and searching a compendium of organic
reactions..

For our purposes we focus on the constructiom reaction
types which may forge the skeletall bonds designated by a bond-
set. Using these definitions we may easily derive all possible
constructions of a given C-C a-bond. We may generalize any
construction reactiom with up to six involved carbons as shown
in Figure 2. The position of the bond formed is already
located on the skeletom by the bondset; we need only find the
possible functionality changes on each side characteristic of
construction reaction families. The carbons are labeled &8,y
out from the constructing bond on each side. The functionality
change on each side (@, &y) may be separately considered, as a
construction "half-reaction?, such that the combination of two
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half-reactions willi constitute a full construction.§  All
possible half-reactioms on up to three carbons on either side
may be generated by unit exchamges, as summarized here with the
oxidation state changes appended:

Simple: RH(Ax=+L) R pre=1)) at one carbon(a)
Addition:Rm-Zm( ZAx=+l) RIDHNG(Ax=1)) at two carbons(a,d)
Allylic: RmenmsmH(EAx=+L RilvitZ( Ax=-1)at three carbons(a,3,)

1f we accept only fulll constructions with no overalll redox
change, there are three possible half-reactions of each oxida-
tion state change and so only nine t combinatioms as full con-
structions. The oxidative half-reactions (Ax=+1) are charac-
teristic of nucleophiiles, reductive (Ax=-1) of electrophiiles.

Figure 2. Gemeralized Form of Comstruction Reactions

supsTRTE: O @Y _8r, f2 b b

forward ” retrosynthetic

Half-reaction 2

t
PRODUCT > c—C—¢C T —C=—C

Half-reaction 1 l

]

{mucleophilic) (electrophiliic)

The digitall representation of structure as zm-list can now
be applied to those construction reactioms. Each construction
demands a minimall characteristic zm-list across the six carbons
of the substrate and of the product, hence a characteristic
change or Azm-list, which may be regarded as a generator to
generate the product from the substrate, or vice versa. In
Figure 3 are shown two examples: the Michaell reaction shown
from substrate to product and the Claisen rearrangement from
product to substrate, both with the zm-lists written parallell
to the corresponding carboms. These zm-lists are now treated
as numbers so that a generator, A, may be derived such that its
addition to the product zm-list yields the substrate zm-list
(or vice-versa), i.e., PROD + A = SUB. 1In both examples the
generator, A, is this retrosynthetic one which generates sub-
strate by addition to product. The generators are shown as
decimali numbers to illustrate the addition although in the
computer the generator and zm-lists are all binary numbers.
Under each example is shown the basic unit reaction as a string
of unit exchanges at each changing carbom. 1t may be observed
that higher levels of functionality generate equally welll as
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long as the minimum is presemt, i.e., additiom of the generator
creates the correct reaction partmer. 1Indeed the right-hand
B-carbon in the Claisem example is shown at higher than the
minimum necessary functiomall group (z=2+3 instead of z=1+2)..

When we apply these nine constructions systematically to
the carbons on each side of designated constructiom bonds in
various targets, we obtaim proper substrates in many cases.
But we also find that a number of known reactions do not turn
up, while on the other hand some of the produced substrates
represent constructions that are mechanistically unacceptable.
Each kind of divergence from reality can be rectified after a
closer examinatiom.3#8 The known constructions which are not
produced are those which incorporate a spontaneous refunction-
alization with the constructiom. Thus a Wittig reactiom pro-
duces also a f-bond across the ae-bond first constructed, in our
terms a constructiom (RH*RZ) followed by an elimination
(nZ-n2). An organometallic carbaniom like a Grignard reagent
is first created by a reductive refunctionalization (RCI + Mg »
RMgCE, or HZ half-reactiom) followed in situ by its use in
constructiom (half-reaction RH). We examined the whole spec-
trum of formall refunctionalizatiom reactions for possible two-
step combinations with construction and found three types to be
generall or usefullz prior reductiom, eliminatiom after con-
structiom, and tautomeriism. Using these options we expanded
the six fundamemtzll constructiom half-reactioms to include nine
more such two-step combinations with concomitamt refunctional-
izatiom, offering a set of 15 half-reactions which results in
32 possible z fulll constructioms,, which are isohypsic (no
overall oxidation or reductiom)). In this way all of the
"known™ constructiom reactions were produced.

With respect to the mechanistically unacceptable results,
one can easily see that application of the nine constructioms
to the centrall bond of 1-butene would produce (among others)
RH#RZ and generate as substrates an ethyl carbaniom (for RH)
and vinyll chloride (for RZ), a reaction unlikely to succeed.
Whereas our generators are only designed to produce alll possib-
le combinations of net structurall change, we also perceive (as
in the correlation of oxidation state change with nucleophile/-
electrophiile)) that these changes have a mechanistic basis,
i.e., that simple bond/electrom movements are implied. With
this recognitiom it is possible to apply mechanistic tests or
qualifications to the generatiom of substrates to establish the
viability of a generated reactiom. Furthermore, with our
numericall descriptiom of structure in terms of h,a,if,z, these
tests can be rapidly made simply by evaluating these numbers.

Mechanisticallly, these tests falll into two categories:
required activation and disallowed functiomall groups, the first
needed for a given reaction to proceed, the second rejecting it
on the grounds of intervention of a differemt course of reac-
tion (as in B-eliminatiom from a carbaniom or incorrect regio-
selectivity for additiom). 1In order to apply these mechanistic
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tests we found that the umbrella definition of z as any bond to
heteroatom was too broad to convey mechanistic function.
Accordingly, we added a subset qualificatiom of z to indicate
leaving group (L), electron-withdrawing (E), electron-donating
(0), or, for z>L, carbonyl-type withdrawing (W). The tests of
these mechanistic qualifications must now be made not only on
the carbons which change functionality in the constructiom but
also on the carbons attached to these, since their functiomns
may modify the reactiom even though they are not changed. For
illustratiom, both the ketone and nitrile in the Michael reac-
tion (Figure 3) do not change but are required to activate the
constructiion, whereas a leaving group on another B-carbon of
the ketone (not showm) would vitiate its success and should be
rejected.

Figure 3. Examples of Reaction Generators
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For each half-reactiom substrate or product we can test
the viability of each of the 15 half-reactions by applying to a
list of Zm-LEOW, not only for a,B,Y but also for the relevant
attached atoms, a parallel test-list, one for required activa-
tion features and one for disallowed functions.5586 This is a
simple AND operatiom of these two binary lists and applies all
of the required mechanistic tests on all the atoms at once and
very rapidly. Furthermore, this introduction of mechanistic
test-lists now makes it possible to introduce heteroatoms
(N,0,S) into the skeleton itself. They are treated as if they
were carbom but the test-lists also include tests of whether
a,8,y and their connected atoms are heteroatom instead of
carbon, and so can require or reject reactioms on that basis as
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well. These test-lists consist of an "R-list™ (require) and
"X-list™ (reject) for each of the 15 half-reactions and so
constitute a kind for tuning of the quantity and quality of
reactions which are generated and which willl appear as syn-
thetic steps in the output. These tests are separated as mod-
ules which may be easily changed, made more or less demandimg,
as may be felt necessary. The 1less demanding they are, the
more "new™ reactioms willl appear but more output willl have to
be scrutimized. Made more demandimy, only common, “reliable™
sequences are likely to be generatedi.

We have incorporated the 1logic developed above into a
program named SYNGEN.8® The program, writtem in FORTRAM, was
developed on a DEC 11/23 mini-computer which utilizes a mega-
byte of active memory. Presently SYNGEN is being converted to
a micro-VAX computer in more efficiemt form. 1t generally
analyzes a given target structure in under ten minutes and
stores the completed results for display by a second program,
SYNOUT. 1In order to illustrate the operation of SYNGEM, we can
follow its analysis of a particular target in Figure 4. The
economiicall Torgov-Smith synthesis of estrone proceeds by a
sequence of construction reactions only, to a penultimate pre-
cursor which is shown at the top of Figure 4. 1t is labeled
"Testrone™ since it was commonly used as a test of our proce-
dures, which must at least generate this known synthesis. The
structure is entered graphically on a Tektromix termimall with
thumb-wheells, as a fast, crude drawing with the heteroatom
attachments shown as z-values on their attached -carboms.
SYNGEN them normalizes the structure so that it appears as in
(A). Thee nadtuwee off z (bss LEDQY, adiowed) ibs thieen queaiddd foor
each. SSNGBEN theenppeoeedsis iiddpprddatt)yobf thaeuaser tao sselek
out alll convergent constructiom routes from no more tham four
starting materials available in our cataleg. This catalog
contains about 4000 unique zm-list entries numerically ordered
by skeletall size and their maximized matrix binary lists.

The procedure followed by the program is illustrated with
sample findings in Figure 4. The first phase is the skeletall
dissection of the target into two pieces all ways such that
each piece is larger than three carboms. This is the first
level, and shown down the left side of Figure 4 is one such
first-level bondset (B) with the bonds ordered one way. Here
the two pieces in each set are compared with skeletons in the
catalog= in this set (C) is not found, but (D) is found and so
the set 1is marked for priority. Precursor skeletom (C) is now
cut again at second level in alll ways which yield found start-
ing skeletoms, one such set shown as (E) and (F).

For each of these bondsets the functionalized target (A)
is now queried for viable construction reactiomns, shown down
the right side in Figure 4. The two sequentiiall constructions
shown which are found at first levell are annotated for priority
since they are perceived as being capable of proceeding in one
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laboratory operation, i.e., a true annelation procedure. These
produce precursors (G) and (H), with skeletons (C) and (D), and
(H) is searched in the catalog as a functionalized variant of
found skeleton (D). Since (H) is now found as a true starting
material, the priority for this path is maintaimed. At second
level the intermediate (G) is further queried for construction
(3) iim this Hondset amd tiie several wresultant starting matter—
ials are again looked up in the catalogy. Here real starting
materials (J) and (K) are also found and so the whole route is
stored for SYNOUT display, including annotatiom of the particu-
lar half-reaction pairs which generated these intermediates in
the three successive construction reactioms. The three actual
starting materials found in the catalog are shown below in
conventiomal notation as (H),(J) and (K).

At the bottom of Figure 4 is a summary map of the success-
ive zm-list changes undergone by the six skeletall carbons (8-
14) in the retrosynthetic directiom. These changes are the
result of adding the generators for these successive construc-
tions, which were found viable by the mechanistic qualification
tests. They end in implicit cleavage of the marked bondset
bonds and so the three separate starting materials (H,J and K)
with their generated functiom®l groups at the six changing
carbons..

The SYNOUT program now displays all the successfull find-
ings as starting materials, first-level intermediates, and the
reactions inmterconverting them. The mechanicall nature of the
generation procedure often produces minor variants of many
reactioms, such as both substrates for allylic reactions or
g-fhalo-ketone displacement as welll as conjugate additiom. Such
*chemicall equivalents™ are sorted out from their "primary™
reactions to be looked at separately. For testrone SYNGEN
found the route in Figure 4 and eleven other primary true
annelations at first 1level, from three successfull bondsets.
All of the output generated in SYNGEN may be examined on the
screen in a variety of displays allowing deletion of unwanted
starting materials, intermediates or reactions, and the best
final elected routes drawn out on a plotter. Not only is the
known synthesis of testrone found, but also a number of other
routes equally short.

The procedure outlined here is retrosynthetic and based on
convergent bondsets to assemble the skeletom, followed by
generation of functionality to create sequences of construction
reactions only from found starting materials. These represent
stringent criteria and the protecoll used must find all possible
routes which fit these criteria. In the event that none are
found, or practicall difficulties exist with the reactions gen-
erated, another option is available, i.e., a forward search
which allows a limited number of refunctionalizing reactions to
intervene. 1In this option the best bondsets are first assembl-
ed as at presenmt. Thenm all starting materials available with
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Figure 4. Analytical Steps in Generating a Synthesis
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the skeletons so derived are allowed to react together pairwise
in all viable constructions of the bonds designated. The same
functionality generatiom, via the 15 half-reactioms, is used
here but in the forward directiom, with the corresponding R-
list and X-list qualificatiom tests. This willl generate all
possible functionalized variants on the skeletoms of the bond-
set-designated intermediates, and hence all the functionalized
variants of the target skeletom which can arise from combina-
tions of actuall starting materialls. These them must undergo
refunctionalizatiom reactions either to repair the intermedi-
ates or the fimall target variant to produce the true target
functionabity.

In practice this 1is usually an enormous combinatoric task
owing to the variety of functiomall groups as starting materials
on most smalll skeletoms. 1t may be reduced to a practical
range, however, by virtue of the fact that the system for des-
ignating structure by h,a, w2z allows a simple calculatiom of
*chemicall distance," i.e., the number of unit reactions which
are required to convert one structure to another.? This chem-
ical distance, or number of steps, 1is givem by N = 1/2%3
(I & [+ &z I). Using this formula we can compute the chem-
jcal distance of the carbons in each starting materiall from the
same carbons in the target and so eliminate many from consider-
ation at the outset. The same consideratiom can be applied to
the intermediates, removing those which are intrinsically too
many refunctionalization steps away from the target. This
process in the forward directiom then produces complementary
syntheses which are a few steps longer tham the retrosynthetic-
ally derived routes based on constructions only. The power of
this approach 1is to assemble all routes through any bondset
from all of its starting materials.
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Chapter 10

VALENCE BOND STRUCTUREHE:-
RESONANCE THEORY FOR
BORANES. PYROLYTIC INTER-
MEDIATES AND REACTIONS

W.C. Herndom, M.L. Ellzey,Jr., R.L. Armstrong, and 1.S. Millett
Department of Chemiisttiny, The University of Texas at El Paso, El Paso, Texas USA,, 79968

ABSTRACT

Structure-resonamce #theory 1is used %o estimate the
relative stabilities of potential intermediates in
the pyrolysis of diborane %o yield the higher boron
hydrides, and the results are compared with those
obtained from recent molecular orbital calculatiors.
In most cases where alternative isomeric structures
are possible, the MO and this empirical VB method
lead to qualitative agreement regarding the structure
of the most stable isomer. Possible mechanisms of
pyrolytic borane reactions are discussed. Some
limitations of a VB resonance theory for boranes are
delineated.

INTRODUCTION

The structure-resonance description of bonding in the
boron hydrides, first proposed by Pauling [1,2], has
recently been reconsidered [3,4], and a valence bond
structure-resonance theory (VBSRT) for boranes based
solely on two-electron two-center bond structures has
been shown %o provide realistic first-order descrip-
tions of known borane structures. Graph theoretical
algorithms and computer programs for counting neutral
and ionic two-center bond structures were descritbed.,
Experimental thermodynamic data were used %o parame-
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terize a four-term AH(@tomizattiiom) equation in which
one important factor was a VBSRT algorithmic estimate
of resonance energy [5-7].

In this paper we use the AH(@) scheme to examine
several possible mechanistic steps and intermediates
that have been adduced to account for the formation
of higher boron hydrides in the pyrolytic polymeriza-
tion of diborame. The reaction was discovered by
Stock [8]; among many significant subsequent ther=
modynamic andf/or kinetic studies were those carried
out by Gunn [9,10[, Bauer [11,12]l, Schaeffer [13-15],
and their respective coworkers. The kimetics of par=
ticular important elementary steps have been investi=-
gated by Fehlner [16,17] and more recently by
Greemwaowd, et al. [18,19[l.. General mechanistic schemes
have been advanced by Long [20] and Schaeffer [21].
The structures and heats of formation of many of the
postulated intermediates have been calculated as part
of the extensive theoretical research on boranes
carried out by Lipscomb and his coworkers [22-25].

PARAMETERIZATION

We assume that the heat of atomization of a gaseous
boron hydride can be assigned to four structure
dependent features: terminal BH bonds H(t)), bridging
BH bonds H(b)), coordinating BB atom pairs, and the
resonance energy RE [3,4]. The RE"s are calculated
by counting the neutral two-center bond covalent
structures and using the algorithm for resonance
energies Cxin(SC), where C is a determined constant
and SC is the structure count [3,7]l. The AH°(f) data
for six of the borames seem to be well established
126,27]l, and these data are used in a multiple linear
regression procedure to determine the numerical
values of parameters. The previous work [3,4] made
use of an approximate value for the heat of sublima-
tion of boromy a more precise and accurate value,
+134.4 kcalyYmole, is now available [26]l. Additional
required data are AH®(f) of hydrogen atoms = +52.1
kcal/mollee, and AH®°(f) of carbon atoms (from graphite)
= +171.3 kcal//mole.

Results of the analysis and the supporting data
are given in Table 1; the derived 1linear equation is

AB(@) = 90.53xH(tt) + 66.82xH(B) €Y
+ 13.89xBB + 91.84x1n(SC))..

The multiple correlation coefficient for eqg(Q) is
unity (5 significant figures)), and the standard error
of a calculated AH(a) value is 2.2 kcal. The predic-
tive power of eq.(L) can be corroborated by comparing
the calculated AH(a) of borame, 271.6 kcal/mole, with
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Table 1.
Heats of Atomization (Kcal) and Structural Factors for Boron Hydrides

Compound H(t) H(b) BB SC AH(a)expt. AH(a)calc.

Bolle 4 2 1 2 573.0 573.3
BaH1o0 6 4 5 6 1043.1 1044.5
BsHo 5 4 8 24 1123.8 1122.9
Bshi1 7 4 7 11 1226.8 1218.4
Beh10 6 4 10 42 1305.3 1306.5

10 4 21 678 2062.9 2063.0

EIOH 14

the value, 269.1 kcal/mole, derived from kinetic ex-
perimental data [17]. The low standard error and the
fact that no single compound exhibits an exceptional
deviation from its calculated AH(a) may indicate that
the experimental data are known with good precision.
In particular, the present analysis does not lend any
support to the recent suggestion [28] that the AH°(E)
of decaborame{(14) should be substantially revised.

Eq(L) is used in the following section to calcu-
late the AH(a) of all borane species considered
except for those which have formulas that are
multiples of BH3z and which have monocyclic structures
with SC=2, triborane(®) and tetraborane {(12)
shown in 1.

\///\\\ h
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e S 4 /e I h:\\ﬁ//h
Bolle Bsfy Bafliz
RE=63#7 kcal RE=50.1 kcal RE=39.5 kcal
1

Previous VBSRT results for benzene and azulene [29],
both also with SC=2, and several types of theoretical
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calculations [30-3Z] demonstrate that resonance inte-
grals (@nd RE"s) decrease in size as the number of
electrons involved in a cyclic permutation increases.
This factor requires that RE's of the &wo larger com-
pounds in 1 be obtained as a calculated fraction of
the RE of diborame. The values given were calculated
following the method of Coulson and Dixon [33], using
bond lengths taken from McKee and Lipscomb [24}), and
using the potential functions recommended by House-
craft and Wade [34]. Eq(L) can then be used %o cal-
culate the AH{a) after replacing the last term with
the modified RE's.

Only three compounds of those %o be discussed have
full covalent BB single bonds, viz one each of iso-
mers of diborame(4)), triborane(7) and tetraborame(8 ).
We estimate the energy of such a bond as 51.9 kcal,
this estimate also being based on the Housecraft and
Wade potential functions and a calculated bond length
[24] of 1.689 A for the triborame(7). The theoreti-
cal MO bond index procedure of Laurie and Perkins
28] would yield a BB bond energy of 71.2 kcal. A
single thermochemical measurement [10]] carried out
for decaborame(16), which contains pentaborame(8)
moities connected by a full BB single bond, is the
only available piece of relevant experimental infor-
matiom. Howewver, its non=-inclusion in a recent com=-
pilation of thermodynamic data [26] suggests that
caution be exercised in using its value for calibra-
tion. The average of the two theoretical results,
61.6 kcals, is therefore tentatively taken as the
energy value for a single bond of this type.

RESULTS AND DISCUSSION

The structures and calculated A#i{a)"s of the new spe-
cies considered iIn this work are listed in 2, where
all energies are given in kcal. The structures for
compounds not depicted are given in earlier papers
3.4)- Alternative structures of several of the
smaller possible transiemt species have been investi-
gated by MO techniques using extended basis sets
including polarization and correlation correction
terms ((Lipscomb, et al. [23-25]). These MO relative
calculated energies are shown in 2 labelled AE(MO).
Some relative MNDO energies from calculatioms carried
out by Dewar and McKee are also available [35,36] and
are referred to in context. In 2, where only a
single isomer corresponding %o a formula is depicted,
the structure given is the calculated most stable
structure among several viable possibilities.

The relative calculated energies of the isomers of
diborame(4)) and triborame(7) are found in reasonable
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agreememt; both MO and VBSRT theories give nonbridged
and bridged most stable structures, respectiwvely.
MNDO gives the structure with a single bridged hydro-
gen as the most stable triborame(7) [36]l. The rela-
tive VBSRT and MO stabilities of borane and tribor-
ane(®) are also in satisfactory agreememt. Howewer,
the tetraborame(8) results are not in consonance the
VBSRT method finds that a tetrabridged structure is
25.8 kcal 1lower in energy than the MO lowest energy
tribridged structure. Furtheromore, MNDO predicts a
monobridged tetraborame(8) to be 13.0 kcal lower in
energy than the tribridged structure. These differ=-
ences appear irreconcilable at presemt, and it may be
that these results are indicative of deficiencies in
VBSRT. Nevertheless, the use of the VBSRT structure
for tetraborame(8) seems to give the most sensible
calculated endothermicity for the reaction of
tetraborame(106) to give hydrogen and tetraborame(8),
as will be discussed below. Alsw, since the VBSRT
approach is parameterized with experimental data, we
believe it is unlikely that it will give extremely
large errors, as would be required if the other
calculations are to be accepted without any further
examinatian.

An attractive but very simplistic mechanism for
the build-up of higher boranes in the borane pyroly=-
sis involves sequences of addition of borame(3) and
loss of hydrogen from intermediates and sometimes
isolable species [17,20,21,37]. A thermochemical
outline of this mechanism through nonaborame(d5) is
given in 3. One can see from the diagram that short-
comings of this reaction scheme cannot be ascribed to
factors involving the thermodynamic feasibility of
the reaction steps. Initial reactions are not prohi-
bitively endothermic, and many of the subsequent
steps are calculated to be exothermic. In par-
ticular, the known compounds tetraborame{(10),
pentaborame(ll), and pentaborame{(9) are formed in
exothermic reactioms. Only the known hexaborame(10)
is predicted to be produced by an endothermic process,
and in this case the endothermicity is less than 8
kcall .

The Lipscomb MO [23-25] and the VBSRT calculations
are not in good agreement for the important sequence
from diborane(6) to triborame(7); MO theory gives the
first step endothermic by +4.1 kcal, but the second
is found to be exothermic by =5.4 kcal. The
available MP3/6~-31G total energies for borane(3),
triborame(7), and tetraborame(10) [24,38] also allow
one to calculate a reaction enthalpy for the sub-
sequent formation of tetraborame(l0), which is found
to be +176.1 kcal. This result would infer substan-
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tial thermodynamic stability for triborame(7), which
does not seem to be reasonable considering its known
reactivity [39,40fl. AllL of the VBSRT results in 3,
howewsir, can be easily rationalized except perhaps for
the fact that borames with 7 to 9 boron atoms are not
usually isolated as products in the normal diborane
pyrolysis [20,21,37]. At the least, the calculated
VBSRT AH(a)"s indicate that no thermodynamic barriers
exist that would bar the formation of the higher
boranes.

The major deficiency of scheme 3 is the neglect of
possible bimolecular reactiomns that could take place
between the labile and stable intermediates. In fact,
many reactions of this type have been studied [21,37],
and they provide a synthetic source for many of the
boranes with more than 6 carbon atoms. The source of
decaborame(14) produced in the pyrolysis of diborane
is most 1likely a reaction of this type. In other
examples, decaborane is formed in good yield by co-
pyrolysis of diborane with pentaborame(9) [41] and
of hexaborame(l10) with tetraborame(20).

Table 2 contaims a 1list of several bimolecular
reactions that could mediate the borane pyrolysis and
their calculated VBSRT enthalpies. In each reaction
involving either of the labile compounds triborame(7)
or tetraborame(8), the intermediate would be presumed
to be formed as outlined in 3. Most of the reactions
in the table have been previously postulated, and in
some cases, kinetic and product studies support the
postulates as chemically realistic [8-21,37,39-41]l.
In additiom, an MO calculation for the heat of the
reaction of tetraborame(8) with pentaborame(ll) gives
a value of -30 kcal [25]l, which is in very good
agreement with the VBSRT value.

On the basis of the VBSRT calculatians, all the
listed reactions seem thermochemically reasonable
except for the fragmentation of nonaborame(15) to
give octaborame(l2) and borame, AH = +45.2 kcal. An
independent value for the enthalpy of this reaction
can be obtained since Housecraft and Wade have calcu-
lated both higher borane heats of atomization [34]
based on bond 1lengths 1in the crystal structures
T42,43]. The resulting heat of reaction is +61.9
kcal [44], an even higher value than that from VBSRT.
Since one of the best syntheses of octaborane (12)
corresponds precisely to this fragmentation carried
out at low temperatures [45], the calculations may
indicate that a reinvestigation is warramted, and it
is possible that the synthesis involwves some uniden-
tified reaction or catalytic agemt.

Schaeffer tentatively suggested [21,40] that for-
mation of decarborame(l4) could involve condensation
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Table 2.
Heats of Borane Pyrolytic Reactions

Reaction Enthalpy (heal )
@) BoHle + Bz =Ballr *Ha +12.8
() Ball; T Bale = BsHir * Bole -37.6
() B3fi7 1 Ballio = BsHir * Balle -40.0
@) BiH] + Belyy = Befliz * Bolle —68.1
(5) B3H3 + BsHe = Beflio * Bolle -51.7
(6 B3Hi7 + BeHio = Bollas * Ha -55.5
™ Balio “Bdls * 2 +13.3
(8D Byfle T Bolle = BsHin * Blis +10.4
) B4Hle T BsHar = BsHe  * Baluo -21.9
@0) BaHg T Befloo = Boflus * Blis + 1.0
Q1) BalHs T Bell12 = Bslo  * BsBn * 4.2
A2) Bofiss = Befliz * BHs *+45.2
Q3) Balg ¥ Balli2 = Baolua * Balle -63.0
Q4) Bollys T Bl = BioHisa * 2l -36.8

of tetraborame{(8) with hexaborame(l0), and this pos-
sibility is certainly supported by the large calcu=-
lated VBSRT negative heat of reactiom, which is =-35.8
kcal for a combination of reactions (A0) and ((A4) in
table 2. Howewerr, a reaction scheme for formation of
decaborane later proposed by Gibb, et al. [18], also
involving the condensation between tetraborame(8)
and hexaborame(10) is not supported. The steps in the
Gibb mechanism are (7)., 10), 12), and ((13) from
table 2 taken in turn with an overall AH((reaction) =
=-3.5 kcall. Nevertheless this reaction sequence also
includes the large positive enthalpy reaction to pro-=-
duce octaborame(l2) discussed abowe, and for that
reasam, this particular proposed mechanism would seem
unlikely. Agaim, the possibility that octaborame(12)
is produced by an, as yet, unidentified process
should be considered.
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A combination of the initial reactions depicted in
scheme 3 ((through pentaborame(9)) with the exothermic
or thermoneutral reactions summarized in table 2,
accounts for the gross overall results of borane
pyrolysis. The steps involved in the reaction or
reactions that yield octaborame(l2) are a remainimng
problem, since the VBSRT calculations infer that a
thermal wunimolecular reaction of nonaborame ((15)
would be highly endothermic. Any existing activation
barrier would further add %o the difficulty of such a
reactiom. After octaborame(12) is formed, subsequent
reaction to give decaborame{14) would seem %o be
insured by the 1large negative enthalpies associated
with decaborane-forming reactioms.

REMARKS ON THE USE OF VBSRT

VBSRT is essentially an empirical quantification of
the resonance theory approach used so successfully in
teaching elementary chemistry. We have shown in this
work that VBSRT provides a good first-order descrip-
tion of thermal borane chemistry. 1t must be noted
that the successful use of the theory for boranes was
critically dependent upon the availability of experi-
mental thermodynamic data and the results from the
high-levelk MO calculations of Lipscomb and his
coworkens[22-25] . An empirical theory of this type
must be parameterized, and the accuracy of the para-
metric data governs the suitability of extendimg the
theory to new chemistmry. Of course once verified,
the VBSRT procedures can be extended to additiomal,
larger molecules with little expense and effort.

The borames, with their sigma delocalized struc-
tures, constitute a difficult test for the effec-
tiveness of a valence-bond approach. The results
outlined in this paper indicate that a successful
VBSRT correlation of thermochemical borane data and
reactions is possible. The transition states
involved in thermal borane reactions [25] will
constitute an even more stringent test, but the abi-
Jity to treat problems of this type by essentially
additive methods would allow a more detailed con-
sideration of borane chemistry. Attempts to address
the calculations of borane transition state energies
using VBSRT are in progress.
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Chapter 11

TOPOLOGICAL INDEX AS A
COMMON TOOL FOR
QUANTUM CHEMISTRY,,
STATISTICAL MECHANICS,
AND GRAPH THEORY

Haruo Hosoya
Department of Chemistiry, Ochanomizu University, Tokyo, Japan

INTRODUCTION

The Z-index was originally proposed in 1971 by the
present author under the name of "“Topological Index"
for characterizing the topological nature of the
carbon atom skeleton of saturated hydrocarbons [1i].
It was later found to be applicable %o many different
problems, not only in chemistry, but also in mathema-
tics, informatics, and physics, e.g., coding and
identification of graphs, structure-activity rela-
tionship, analysis of Wellecttronic structure of un-
saturated hydrocarbon molecules, dimer statistics,
etc. As nowadays a number of topological indices
have been proposed and good review articles are avai-
lable [2-6], here various aspects of the Z-index will
be described with particular reference to its mathe-
matical properties which relate various concepts in
different fields of science, i.e., quantum chemistry,
statistical mechamics, and graph theory, with each
other. The advantage of the Z-index over other
topological indices comes from the fact that it is
defined through the counting polynomial Q(x), which
is closely related to the characteristic polynomial
P(x). Thus the idea of Z-index can be extended to
several counting polynomials, such as the matching
polynomial & (x)), sextet polynomial B(x), distance
polynomial S(x), etc., for a wide variety of
problems.
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NON-ADJACENT NUMBER AND Z-INDEX [ij

In the application of the graph theory to chemistry,
a graph may represent a molecular skeletom, crystal
lattiece, or reaction network. For the graph-theore-
tical terms adopted in this paper without any defini-
tiom, consult the standard text books and monographs
[6-9]. We will be mainly concerned with connected
nondirected simple graphs. Define a non-adjacent
number, p(G,k), as the number of ways for choosing k
disconnected lines from graph G, with p(G,@) being
taken as unity. The Z-counting poynomial Qe(x) is
defined as

m
Qe = Z p(GHi) xR @)

where m is the maximum number of k. For G with an
even number of points, N=2m, let us denote p(G,m) as
K(6) and call it the perfect mathcing number, or
Kekule number irrespective of the fact that G is
derived from a conjugated unsaturated hydrocarbon or
not. The Z-index is the sum of the p(G,k) numbers,,

m
or Z., = p(G,K) = Q.{(1). @
¢~ B e

The set of p(G,k) numbers and Z values have been
tabulated extensively [10-16]. The polynomials Q(x)
for various series of graphs are shown to be trans-
formed into a family of orthogonal polynomials, such
as the first and second kinds of Chebyshew, Hermite,
Laguerre, and associated Laguerre polynomials [17-
19). As will be shown later the Z values for several
series of typical graphs form widely known integer
series. For example, the Z values of the path graphs
{s }. and cycle graphs, {C }, respectively, form Fibo
nacci and Lucas series.

These coincidences are the outcomes of the simple
recurrence relations existing among the above-
defined quantities. Namely, the inclusion-exclusion
principle leads to the following recurrence relation
for a given G and an arbitrarily chosen line )=

p(thD = p(G—lik) + P(C@lyk—iﬂ_)' ((3)
Z-exclusive pFiimclusive

where G-j2 and GO{, respectively, denote the subgraphs
of G obtained by deleting ¥ ({deaving its terminal
points) and all the lines incident to the two points
that define #iGee Fig.l).
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Q@ Q0

GoL

Figure 1. Subgraphs G¢¢ and G&¢ derived from G

1t is straightforward to get the recurrence relations
for the other gauntities, such as

QaxD = Qg_g(xD + x Qpay(x) @

and % = %60 ¥ ®

Note the factor x in the second term of Eq. (4).
Several recurrence relations are also found including
the "“jumbo™ one, which is useful for treating highly
symmetrical or highly branched large networks [15,20].

1

RELATION BETWEEN Qg(x) and Pg(x)

Although there is no one-to-one correspondence beft-
ween the set of p(G,k)'s {(or Z) with graph G, one can
easily and roughly differentiate among the isomeric
graphs with these quantities. Good examples are
shown in Table 1, where the Z values of the nine
heptane isomer graphs form a set of integers descen-
ding stepwise from 21 to 13, just as in the same
order of the boiling point of the corresponding
hydrocarbons with only one minor exception [1,21].
Several important issues come out from Table 1, e.g.,
on i) relation between Q(x) and P(x), the characteri-
stic polynomial, ii) topological dependency of the
coefficients of these polynomials, iii) identifica-
tion and discrimination of graphs, iv) QSAR analysis,
etc. These problems will be briefly explained in the
following sectiomns.

The p(G,k) numbers appearing in Table 1 are nothing
else but the coefficients of the characteristic poly-

nomiall. Namely for a tree graph G the following
relation is shown to be valid:z

BE () =izuv(-1»i§ p(G,k) xN=2%, (Gztree) (6)
=0

where  PGkx) = det(A-xE)) (for all G) )
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Table L.
Relation between the branching and several topological quantities of
heptane isomers

G, K
Graph k= op(1 )2 3 %6 bp(°C)

. 1 616 4 21 98.4
1 6 9 4 20 93.4

- c:::
I 1 6 9 3 19 91.9
Lsg 1 6 9 2 18 90.0
1 6 8 2 17 89.7
] 16 7 2 16 86.0
I . l i 6 8 0 15 80.5
i 6 7 0 14 79.2

ettt el it —
_r*_. 1 6 6 6 13 80.9

with N being the number of points in G, det the
determinant, and A the adjacency matrix. Also for a
non-tree graph we have the following closed form:

PRuy) =Kl »k pe,y xN3E
k=0

B]Eg m
+ 0 (—2)Fi{ 7 1)k peeer. k) xN=Ri kDb, @)
i k=0

where R. denotes a ring or a set of disjoint rings
compose& of n. points [22,23]. 1In principle this
expression is essentially the same as Sach's theorem
16,24,26]. However, Eq. (8) is superior to Sach's
theorem in its explicit representation of the effect
of the component rings to the counting polynomials
Q(x) and P(x) and in its potentiality to yield useful
recurrence formulas.

It is to be noted here that the definition of the
matching polynomial OF(x) [17,27-29] is the same as
P(x) in Eq. (6) but for any graph. Thus the conclu-
sions derived from ofi() are automatically related to
Q(x) through the relation [30],
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50 = xNog (-1/x2). ©))

One can quite easily analyze the origin of the mathe-
matical interpretation of the so-called topological
resonance energy [25,27,28,30}, and also of the topo-
logical bond order [31,32] for bonds in the T«lec-
tronic network of unsaturated hydrocarbons.

TOPOLOGICAL ANALYSIS OF a-ELECTRONIC STRUCTURES
OF UNSATURATED HYDROCARBONS

Consider the TFedlkectronic structure of unsaturated
hydrocarbons. The secular determinant of the Hiiidkel
molecular orbitals is known to be identical to the
characteristic polynomial of the graph G for the
carbon atom skeletom. Total TiF«lkectronic energy,
charge density, bond-order, and other TFedbsctronic
properties are obtained from the solutions of PA(X)=
0. Then Eq. (B8) means that the magnitudes of ~all
these quantities can rigorously be explained in terms
of the set of the p(G,k) numbers. The topologiecal
index Z also reflects indirectly these Wredlsatronic
properties. Especially for tree graphs, where the
direct one-to-one correspondence between P(xX) and
Q(x) holds as in Egs. (1) and )6), one can quite
easily estimate the stabilitiy of the Tfredbectwronic
structures from the following relation with a
proper set of parameters and b [30])

E =alogZ+»> (tree). (10)

Even for some selected series of cyclie compounds
Eq. ((10) can be applied. The extra stability or un-
stability which cannot be accounted for by Z comes
from the second summation in Egq. (8), whieh is
nothing else but what is implied by the topological
resoance energy. The Z-index can then be modified
into Z' =Z +AZ Dby adding the following terms
representing the contributions from the component
rings and also from the set of disjoint rings.

Eowee O.CO.CCD

e 1.0, 50,
n=4k A D O O
e 88 O 0 u) . O,

car
(1]
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n=dks2 A& 8 (3} [Q;
ree=2) PR AL, Q) , O, 6)

. n=4k+2 AA mln @@
BR ((23»28 B 0 @ )7 ,
(11))

Positive and negative terms, respectively, contribute
the stability and instability of the TFellectronic
system. The first and second summations in Eq. ((11)
simply express the so-called Huckell"s 4n+2 rule.

Note the signs of the third and fourth summations
showing that a set of two disjoint rings with a total
of 4k and 4k+2 carbon atoms, respectively, stabilizes
and destabilizes the fiF=llectronic network. On the
other hand, the fifth and sixth (mot shown but ap-
parent)) terms show that a set of three disjoint rings
with a total of 4k+2 and 4k carbon atoms, respective-
ly, stabilizes and destabilizes the total system.
These findings constitute the "“extended Huckel rule®“.
Except for a few cases the modified Z'-index is shown
to be obtained by the sum of the absolute values of
the coefficients of the even terms of P(x) as [30].,

N -Elak
Encouraged by these findings the topological bond

order for bond g in graph G was proposed to be
defined as ([31]

T '

Pp = Zcoa’%c
which was shown to be Awell correlated with the
Coulson"s bond order p%. The correlation is greatly

Jmproved by adding a Esmall contribution of the
Pauling’s bond order pp as

95 = a(gf +Db pg). (b=0.14:tree, 0.16:non-tres))
a4
= K(GO&DVK((®)) .. (15)

Note here that the lengthy definition of pﬁ original-
1y proposed by Pauling [33] is not only turned into

a compact form but also given a well-defined graph-
theoretical meaning by using the concept and notation
of the subgraph G@®¥% introduced in Fig. 1 (Compare
Egs. (13) and (15)).

The empirical relation (14) can almost rigorously be
derived [32] by combining the enumeration technique
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of the graph theory and the complex integral deve-
loped by Coulson and Longuet-Higgins [34). The esse-
nce of these findings is that if a function Fg '$))
is defined for bond B in G as,

Fo.e) =Rz, GY3/Be Cigh 8
&h;sfadJUHCt of Pe(x)

the three different bond orders can be expressed in
terms of F . 4(y) as
brﬁ M,

pg = ((2/rlr))£FG (y) dy (@lternant hydrocariom)
: s0 Gk A7)
Pp = Fegled) @8y

o)
Nl
tl

= F Gl (i9)

Topological factors causing the non-uniform Mrellec-
tron charge distribution in non-alternant hydrocar-
bons can also be analyzed in terms of the properly
defined topological charge density [35]}.

Recently Aono and his coworkers have developed the
theory using the propagator technique for clarifying
the topological analysis of various TFelkecttronic
quantities derived from the Huckel molecular orbi-
tals. Their method leads one to the same conclusioms
as those introduced above, since they also calculate
the integral of the functionals of P(x) over the so-
called "“Coulson contour™ [36-38].

TOPOLOGICAL DEPENDENCY OF Z-INDEX

For the QSAR analysis of the thermodynamic properties
of saturated hydrocarbons, €turn to Table 1. Note
that the p(G,2) value is a function of the numbers of
tertiary (Y) and quarternary (X) carbon atoms, as

B(G,2) = p(N,2) - (Y - 3X), (20)

where N denotes the path graph S , with N points, or
the carbon atom skeleton of normal hydrocarbon [1],
Similar but more complicated relations can be ob-
tained between other p(G,k) values and the topologi-
cal structure of a graph. Thus one can show that
among the isomeric tree graphs the unbranched path
graph has the largest Z value, and that the more
branches a graph has the smaller its Z values.

A number of empirical rules on the relation between
the topological structure and the thermodynamic quan-
tities such as the boiling point and entropy can be
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explained in terms of the topological dependency of
the Z-index, if one admits the relation between the
Z-index and such quantity f as [21,39]

foclog Z (21 )

Systematic QSAR {(@guantitative structure-activity re-
lationship) analysis [40] revealed that for saturated
acyclic hydrocarbon molecules most of the thermodyna-
mic quantities can be classified into several groups,
i.e., Z-dependemt, p-dependent, Z,p-dependemit, and

Z ,p-independent types, where p is another topological
index, polarity number, proposed by Wiener in as
early as 1947 [41]).

Although Wiener [41], Platt [42]), Cramer [43]), and
Randic and Wilkins [44] have similarly argued that
many physico-chemical properties of chemical substan-
ces can be approximated with a set of two selected
parameters, their chemical interpretation is not
clear. Our “two-parameter™ classification of the
thermodynamic properties of acyclic saturated hydro-
carbons with Z and p suggests that most of these
properties are determined by the combinations of two
different topological factors, i.e., dynamical fac-
tor, Z, which accounts for the properties depending
on the number of rotational degree of freedom, and
static factor, p, which reflects the bulkiness of
branches. One of the reasons for Z and p being a
good pair of indices in this respect is ascribed to
their “orthogonal™ characters with a small correla-
tion coefficiemt.

SEARCH FOR NON-REDUNDANT TOPOLOGICAL INDEX

Although Table 1 shows a good discriminating power of
Z for heptames, for tree graphs with eight points we
get a pair of isospectral graphs [6,7,10,11,26,45,4%]

I " | QG(x) =1 + 7x + 9x2
8 6 4
PG(x) = x - 7x° + 9x
For eighteen isomers of octame, the Z-index ranges
from 17 %o 34 with a little disorder and redundancy
f1]1. This &rend smoothly increases with the number
of points. However, the Z-index is shown to be

useful for rough sorting of graphs, especially with
complicated structure [47]}.

Several different approaches have been chosen for
getting as little redundant topological indices as
possible [48). Razinger et al. has shown that for
alkane series Balaban's averaged distance sum connec-
tivity [49] has the best structural selectivity among
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the currently used topological indices [50]. They,
however, conclude that an index that would be highly
selective and could at the same time be successful in
correlating many different properties is not yet
discovered.

DISTANCE POLYNOMIAL AND HIGHER GRAPHS

Now let us take another algebraic starting point for
the analysis of the graph. A distance matrix D is
defined as a matrix whose ij element is assigned the
number or the shortest path between points i and j.
One can apply the definition of the characteristic
polynomial of Eq. (7) to D instead of A yielding the
distance polynomial S(x) [51-53] as

N

Sg(xb = DN det(D - xE) =R xN=k @2

k=0
This polynomial is conjectured to have unique charac-
terization ability for graphs. Although we could not
yet encountered any “isospectral™ graph pair among
the set of more than a thousand graphs studied, the
above conjecture is still opem. One of the most
interesting features of the distance polynomical S(x)
is that the last term of S(x), not necessarily the
determinant of D, depends only on the number of
points and the ring skeleton of the graph. Examples
are shown in Table 2.

Table 2. Examples of distance polynomial

Graph SE(X)

—_— x>  s0x3 - 140x2 - 120x - 32

. x> 38x3 - 116x2 - 112x - 32

1—}—-‘_ x>  28x3 - 88x2 - 96x - 32
D—— x>  35x3 - 88x2 - 74x - 20

X 30x3 82x2 72x - 20

X 25x§ 7@x% - 66x - 20

IE|> x®  aaxd - 162x3 - 201x% - 80x

T3> x®  aoxd
m— Xe 49xi

176x§ - ZOQX% - 80x

180x§ 220x% - 80x
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1t is known that the half sum of the off-diagomnal
elements D(ij) of D is the Wiener's path number w
[1]. The half sum of the squares of D(ij) is found
to be equal to -b(2), while -b(N-1) is expressed in
terms of the numbers of secondary, tertiary, quar-
ternary, *"* carbon atoms [51].

The distance matrix carries all the informations on
the shortest distance between any pair of points. By
picking out the term 1"s in D one gets the adjacency
or 1-neighbor relation of points yielding the origi-
nal graph, or first order graph, G?EG- Then by
picking out the term 2's in D one gets the set of
pairs of points whose shortest distance is two. This
relation gives the graph of second order Gx. Simi-
larly we get the graph of third order G-, the number
of whose edges is Wiener"s polarity number, p. The

set of the Z-indices {Zk, ZZ, Zi....} obtained from

@@fh G@n ’rv} may well represent the topological

features of the original graph.% Fog example the
second and*third order grphs, 6z, G, of the last
entry of Table 1 are as follows

Gl- -i—L—» G2: G3: (:I:) G*: none
{zl, 22, 23} = fus, 40, 13}

In Fig.2 are shown the set of patterns (k-Z ) for the
nine isomers of heptane (Table 1), which is very
similar in shape with the original graph. However,
we are still in a position to check the mathematical
properties of these new topological indices.

YA N

Figure 2. Higher graphs and higher Z-indices of heptane isomens. See Table L

RELATIONS OF Q(x) WITH PARTITION FUNCTIONS

Enumeration of the number of ways for placing indis-
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tinguishable dumbbells on various periodic lattice
space like polyominoes (@rectangular lattices)) has a
key role in solving various statistical problens,,
such as adsorption of diatomic molecules on a crys-
talline surface, magnetic properties of antiferro-
magnetic metals, stability of ionic crystals [54-56]-.
For complete covering on special lattices such as
rectangular lattices and tori closed forms and/or
recursion formulas have been obtained [57-59]. How-
ever, for incomplete covering problems very limited
number of cases have been solved [15,56,60,61]. Our
Z-counting polynomial is mathematically equivalent
to the partition function for these statistical
problems, if one substitutes x in Eq. (1) with exp
(- £/Ma1),, where k is the Boltzmann constamt, T the
absolute temperature, € appropriate energy cor-
responding to the p(G,k) selection for each model..
By use of the operator technique proposed by us [62]
the recursion formulas for various series of perio-
dic graphs such as mxn (m=1-4) rectangular and 3-
dimensional 2x2xn lattices have been obtained [15]}.
Extension to larger lattices and further elabora-
tion of this method are still under way.

From quite a similar standpoint to the above study
one can defime the rotational polynomial for count-
ing the number of the rotational isomers of alkanes
and also for obtaining their absolute entropy sys-
tematically [63]. Sextet polynomial and king poly-
nomial have also been proposed by us, respectively
for counting the numbers of the perfect matching on
the hexagomal and rectangular lattices [64-69]. By
use of these counting polynomials one can get not
only the systematic view of the problem but also many
important mathematical features involved. Applica-
tion of these enumeration techniques to a number of
challenging problems is still open to us.
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Chapter 12

VALENCE - A MEASURE OF
USED COVALENT BONDING
CAPACITY OF ATOMS IN
MOLECULES

Karl Jug, Theoretische Chemie, Universitat Hannover

ABSTRACT

A definitiom of atomic valence in molecules is presented as a
measure of used covalent binding capacity of atoms in mole-
cules. The proposed method is based on an analysis of the den-
sity matrix. 1t is generall enough to be applicable in semi-
empiriicall or ab initio calculations on SCF and CI Tevel.
Calculations of selected examples demonstrate its use for
structure and reactions of molecules.. In particular it is
possible to measure the radical, diradicall and zwitterionic
character of molecular states. More generally the donicity, i.e.
the extent of ionic character of molecular wave functions can
be determined by this method.. For acid base reactions a corre-
lationm betweem energies and valence numbers can be establishedi.
Woodward-Hoffmanm allowed and forbiddem reactions can be
distinguished by valence number changes during the reactioms.
Also nonconcerted and photochemicall reactions can be analyzed
with this methodi.

INTRODUCTION

The concept of valence dates back to the early days of quantum
chemistry. 1t appeals to a conceptumll understanding of bonding
in molecules.. This line of thought was primarily pursued by
Coulsom and had its highlight in his famous book by the same
name /I/. With the advent of computers and the possibility of
increasingly accurate calculatioms on single molecules, concepts
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like valence gradually lost importance, since they were cast in
a framework which was no longer adequate for present day needs.
In order to revive the idea of valence it was necessary to
develop a formalism which could be applied to self-consistemt-
field (SCF) and configuratiom interaction (CI) wave functioms
built from linear combinatioms of atomic orbital (LCAO) basis
sets. It seemed naturall to establish a new theoreticall frame-
work of valence on the following premises /2/: 1. 1t must be
invariant under coordinate transformatiiom. 2. 1t should be a
measure of the actuall covalent bonding in moleculles. 3. 1t
should reflect saturatiom of bondimg. 4. 1t should be related
to the covalent reactivity of atoms in moleculles. 5. 1t should
be derived from the density matriix.

Such a formalism was introduced by the definitiom of valence
numbers as the sum of squares of bond order elements from pairs
of atoms of density matrices over orthogonalized atomic orbi-
tals /2/ and applied to a variety of compounds containing first-
row atoms /3/. This idea originated from a footnote in a paper
by Wiberg /4/ who advocated a bond index as a measure of co-
valent bonding. Independently, Perkins and coworkers /5/ and
Semyonov /6/ had recognized the potentiall of Wiberg®s formula
and combined it with atomic valence consideratiors. Both groups
applied the resulting formulas on a low levell of computatiom,
but failed to develop the formalism in an advanced form from
first principles. After we had already investigated various pro-
perties of valence numbers in our initiall papers, a more ele-
gant and comprehensive way to obtain valence numbers for gene-
ral wavefunctioms on the LCAO SCF CI level was introduced /7/.
We shalll present this generali theory of valence in the follo-
wing sectiom. 1t willl then be demonstrated how structure and
reactivity of molecules can be related to the valence concept.

THEORY

We now analyze the valence properties of a CI wave functiom
given in the form

V=1 AW W)
1 1 1
The density operator P of wave function (1) is a projectiom

operator of the form

P @

The configurations are constructed from molecular orbitals
(MO's) ifj. by single or double substitution of an SCF wave
function ¥  The M0's are in turn expanded in orthogonalized
atomic orbitals A A1

©)
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The density operator P can then be reformulated conveniently

in MO form /8/. It is now essentiall to realize that covalent
bonding between two atoms A and B is related to the portion pHE
of the density operator linking these two atoms

BAB = JigRo<h® I [iB2<ih) (#

PAB is not a projection operator. After reduction of the M0's
to diatomic portioms

wm- V% avd, ®

We can define the covalent bonding between the two atoms as an

expectation value of operator PAB over occupied MO"s ﬂéB
AB | AB, AB
“p = <boF [PABISF> ®)

Here n. is the generally fractiomall occupation number of MO df;.
Evalladtion of (6) in LCAO form leads to

a8 - 1 @B a

u,v

ol = 2 ekl

This proves that the heuristic form of sum of squares of den-
sity matrix elements related to the pair of atoms A and B is
applicable even on the CI levell. Alternatively one can write

VAB as the sum of squares of bond order eigenvalues p /2,7/

pAB, AB AB, AB @)

with

This relates bond order and valemce. Whereas bond order is
Tinear in p , valence is quadratic.

The valencellof an atom A is the sum over alk contributions from
the other atoms

E Vg ©)

The bond number of the total covalent bonding in the molecule
is then given as
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I M= X vy (10)

We shalll show in the following that this number can be used to
measure the ionicity of the molecular wave functiom.

HYPERVALENCE AND SUBVALENCE

The chemist®s intuition assigns a normall valence to each atom.
This number represents the normall number of single bonds that
this atom is able to form. In the first row the normall valence
is 1 for Li and F, 2 for Be and 0, 3 for B and N, 4 for C. In
a heteropolar molecule deviations from these standard values
of covalency willl occur. We calll an atom hypervalent if its
actuall valence exceeds the normall valence and subvalent if its
actuall value falls below the normall value. The sign and magni-
tude of AV} is a measure of this property

avg = vicital - vioral 1)

Subvalence with negative AV« willl occur for radicall and polar
moleculles.. Hypervalence witn a positive AV} can occur if lone
pair of empty orbitals participate in the bondimg.

The following examples in Table 1 may illustrate the different
situvatioms.. Calculatioms for alll molecules were performed on
the SCF levell with SINDDY /9,10/. Valence numbers for all atoms
were determined along the lines of the previous sectiom. It is
quite expected that we find valence number 4 for carbom in CHj,
1 for fluorine in and lithium in Li?r Also NH3 and H30 have

normall values. But evem B in BgFﬁ and Be in BeF% have normall

valence numbers. The polarization of the ¢ orbitals towards F
is balanced on the 1m levell by backbonding from the F atoms.
Quite different is the situatiom in HNOY and HNC. Here the
nitrogen atom does not form three bonds™ plus one lone pair,
but the Tone pair is alse involved in the bonding. The Tithium
compounds with unusuall coordinatiom numbers have beem extensi-
vely investigated by Schleyer /11/. The bonding in Cmi% can be
explained if we assume that LilLi bonding is essemtiiall Din these
compounds due to the long range of the diffuse Li orbitals and
the involvement of p orbitalis. The valence number of 1.50 for
Li classifies Li as hypervalemt. Participation of the p orbi-
tals in the bonding is the reasom for the increase above 1. In
this sense also CLij has hypervalent Tithium.

In COg the polarizatiom of the CO bond decreases the valence

number of C below normall.. In “CHo we find the diradiicall charac-
ter of carbon characterized by the reductiom of the valence
number. 04 is a triplet in its ground state. The valence number
1.50 of oxygen is due to this open shell character and meams
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that oxygem in is not saturated like in He0. Be’ 1is very
weakly bound, so the valence number of beryllium is close to 6.

Table 1 Normal, hypervalent and subvalent atoms in molecules

Molecule Atom Valence Type
CHg c 4.00 normell
belle C 3.98

Pyridine N 3.02

N3 N 3.00

NH3 N 2.97

B2Es ; 3.02

H20 0 1.96

BeF3 Be 1.95

Es F 1.606

Lis Li 1.66

CHg H 1.00

HNO3 N 3.75 hypervalent
HNC N 3.54

Pyrrole N 3.39

BHNHG B 3.43

Bafle B 3.4

0 04 2.80

H§0¢ 0 2.53

CBez Be 2.36

tkie Li 1.50

CLig Li 1.40

EQQ C 3.74 subvalent
CH3 C 1.91

CN N 2.78

NO N 2.13

BE3 B 2.80

BF B 1.27

05 0 1.50

F3No 0 1.23

Beg Be 0.03

LiF Li 0.81

i
a centrall atom
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DIRADICALS AND ZWITTERIONS

Salem and Rowland /12/ and Dohnert and Koutecky /13/ have given
globall criteria for diradicals and zwitterioms. These are either
singlet-triplet degeneracy for diradicals and a pair of accom-
panying zwitterionic states /12/ or the occurence of occupatiom
number 1 for two naturall orbitals. With the informatiom in the
previous sectiom it is now possible to define diradicals and
zwitterions with a local criterion /14/. The two lone electroms
of a diradicall do not contribute to covalent bondimg. In conse-
quence the sum of atomic valence numbers should be reduced by

approximately two. Alternatively, the bond number WRCEIRY of
equ. (9) should be reduced by approximately 1 compared with

Mnunnan_ We take again 3%H% as an example = Vﬂﬂn'an =44,
N
rmall _ 1. Mnonmmll =9, vﬁctwaﬂ = 1.5, Wactwaﬂ = 0.96,

MEPWE‘11 = 1.92. 1f the valence reduction is distributed over
many centers, the following general formula derived from (it)
must be used.

AW = 3 AV, @2)

Such a case is the quadratic triplet of cyclobutadiene where

AV = 2.16. But also the lowest triplet of benzene with a qui-
noidal structure must be classified as a diradicall because
the valence of the two atems in para positiom is 3.27 and the
valence of the other four atoms is 3.80. This amounts to AV =
2.26. Since no singlet-triplet degeneracy is present, Salem's
criterion cannot arrive at this answer. But even Koutecky's
naturall occupation number does not give a clue in this case. We
have investigated a series of monosubstituted benzenes with
substituents CHg, NHez OH, F and NO% /15/.. The valence numbers
of the carboms “at tne substitution sites are 3.26, 3.20, 3.07,
3.05 and 3.05. So the diradicall character is gradually more pro-
nounced in this sequence. We explaim the nonplanarity of the
last four compoumds by the presence of a radicall center at the
substituent group.

In the case of zwitterioms a donor atom should transfer an elec-
tron to an acceptor atom. The covalent bonding should be modi-
fied in such a way that the donor atom is subvalent and the
acceptor atom hypervalemt. A typicall case is ammonia oxide
HZNO, the isomer of hydroxylamine H5NOH. The migration of the
hydrogen atom causes a substamtiall “change of valence numbers.
Whereas the latter molecule has valence numbers close to nor-
mal , the former has a hypervalent N with VQ = 3.67 and a sub-
valent O with Vy = 0.85. Also the dipole ‘moment of HANO is
4.80 Debye compared to 0.56 of HoNOH. Dipole moments “should
be substamtiiall in zwitterioms ir they are not vanishing for
symmetry reasoms..



130 Valence in Molecules [Ch.i2

IONICITY

Valence numbers can also be used to compare the relative
polarizatiom of atoms in molecules for different geometries. 1f
the ionic character of a bond increases, the bond number M of
covalent bonding decreases. In Table 2 we compare the changes
AM 1in bond number, An in occupatiom number and AE in energy for
different geometries of some hydrogem and lithium compoumds..

Table 2. Changes of bond number, occupation number and energy (kcal/mol) in
strong and weak overlap binders dependent on geometry

Molecule Geometry AM Qnms QRQS QﬂQP AE

H20 Tinear bent 0.248 0.346 0.239 -0.585 - 72.5
NH§ planar pyramidal 0.061 0.136 0.277 -0.413 - 13.5
CHg planar tetrahedral 0.586 0.802 0.065 -0.867 -145.2
Lig0 linear bent 0.0626 - 0.109 -0.109 - 12.1
bign planar pyramicial 0.000 - 0.137 -0.137 - 10.6
Cliy planar tetrahedirall -0.044 - 0.064 -0.064 - 31.9

Epiotis has classified the hydrogem compounds as strong overlap
binders and the Tithium compounds as weak overlap binders /16,
17/. The first group is characterized by stabilizatiom through
deexcitatiom from 2p to 2s and 1s. H50, NHS and CH) have less
bond ionicity in the more stable forfi. In %he Tithium compounds
the trend is just the opposite. The more stable form has the
higher bond ionicity. But even in this case deexcitatiom from
2p to 2s takes place. Because the lithium compounds are weak
overlap binders, the effect of changes in valence, occupatiom
and energy is much smaller tham in the hydrogen compoumds..

ACID-BASE REACTIONS

The reactivity of molecules can be studied with valence numbers
in particular cases /18/. One such case are acid-base reactioms.
We define the absolute deviatiom of actuall valence numbers from
normall valence numbers

N iwg‘cﬂ‘?ﬂ L (13)

1t is now possible to compare the absolute deviatioms for reac-
tands and products

AV = AV roducth - PV reactamrt €D

These data are compared with energy changes AE in Table 3 for
some simple acid-base reactioms.
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1t is apparent from these numbers that smalll changes in valence
deviations are usually accompanied by smalll changes in energy.
Stabilization leads to more normall values of valence numbers.
For investigatioms in solutiom, a more comprehensive set of
neutrall molecules and ions has to be considered.

Table 3. Valence and binding energy changes (kcal/mol) in acid-base reactions

Reactiom By AFd

Hgot + R - 2 H,0 -1.94 - 213
NHg + H§@¢ - NHg + K20 0.03 - 36.1
NH£1 + OH™ - NHg + H30 -1.89  -191.2
F* + H§oi - HF + H30 -1.83  -202.6
HF + OW - F" + H20 -0.03 - 25.3
N3" + Hgo! - HNg + K30 -1.27  -191.5
HNg + OH™ - N3™ + H30 -0.58 - 35.8

HCO3" + Hg0f- HCOOH + HZ0  -1.44  -163.5
HCOOH + OH™ - HCO3™ + H30  -0.42 - 63.8

3adjusted for negative ions
CONCERTED AND NONCONCERTED REACTIONS

Woodward and Hoffmann /19/ classified various types of reac-
tions, e.g. electrocyclic and cycloadditiom reactiom, as allo-
wed or forbiddem according to orbitall topology rules. In this
section we wish to show that allowed reactioms proceed with
smalll changes in bond numbers M, whereas forbiddem reactions
undergo substamtiiall reductions in valence numbers.. The latter
are an indication of the breaking of bonds without simultaneous
formation of new bonds. So forbiddem reactions which show bond
breaking without bond formatiom are nonconcerted and involve
diradicalls. A typicall electrocyclic reactiom is the cyclobutene
- butadiene rearrangement. Whereas the allowed pathway shows a
valence number increase of 6.601 from reactand to transitiom
state and another 6.61 from transitiom state to product, the
forbidden transitiom state of C, symmetry shows a reductionm of
0.98 for M compared to the reaciand. 1t is clearly diradicaloid
in the sense that we have defined in a previous sectiom. We
have also studied the cyclopropyll catiom + allyll cation /26/.
In this case the difference in valence number changes is much
less pronouncedi.,

Much more pronounced is the effect of valence number change in
fragmentation reactiom of unsubstituted and substituted cyclo-
butane as wellll as in the retro Diels-Alder reactiom of cyclo-
hexene. 1In all these cases reactiom pathways involve transition
states and intermediates accompanied with orbitall crossimg.
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Such stationary points show reductiom of the bond number in the
order of 1 and consequently involve diradicals.

Although we had found that the Diels-Alder reaction involved
intermediates in shallow wells, it was not clear whether these
had any bearing on the selectivity of the reactiom. A more pro-
nounced case of stepwise reaction is the fragmentatiom of cyclo-
butane to two ethyleme. From the analysis of the valence numbers
it becomes clear that a large portiom of the reaction pathway of
the unsubstituted and substituted reactiom is involving diradi-
cals, starting from the twisting of one CC bond and up to the
breaking of the second CC bond. Contrary to expectatiom from
experiments in solutiom /22/, even the transitiom states of the
donor-acceptor complex with an OCHL group on one carbon and a
CN group on the adjacent carbon did not show zwitterionic be-
haviourr..

Roth has studied rearrangement reactioms which involve the
2,3-dimethylene-1 4-cycloiexadtiiyll as an intermediate /23/. With
the present method it is possible to assigm each stationary
state its degree of diradicall character. From the twelve tran-
sition states and three intermediates of a previous study /24/
nine transitiom states and two intermediates have pronounced
diradiicall character.

The method is not limited to ground state reactioms. The photo-
chemicall conversiom of cyclopentanone /25/ involves three di-
radicall intermediates on the triplet surface which are not de-
generate with the ground state. Further reaction leads to cyclo-
butane or two ethylene plus CO via singlet-triplet degenerate
diradicals or to 4-pentemall via a diradicall transitiom state.
Salem /12/ would not predict some of these and Koutecky /13/
could not identify the diradicall centers with his methodl.

CONCLUDING REMARKS

The analysis of SCF and CI wavefumctioms in terms of atomic
valence numbers is a helpfull procedure to understamd structure
and reactivity in moleculles. Valence can be reintroduced as a
generalizatiom of early ideas of Coulsom. Different fromCowlsom
we emphasize that it is not the bond orders which are additive
for the determinatiom of actuall covalent bonding of an atom in
a molecule, but the bond valences.. This avoids valence numbers
much larger than 4 for carbom e.g. in trimethylenemethane or
neopentame.. Since the bond valemces are quadratic in diatomic
density matrix elements, whereas the bond orders are linear,
one orbitall cam supply not more than one valence for binding to
all atoms in a molecule. Lone electrons lead to a decrease and
partiall occupation of empty atomic shells to an increase in
atomic valence numbers. This opens the way to trace radicals,
diradicals and zwitterioms. The polarity of bonding, i.e. ioni-
city of the wave functiom, can also be measured by valence num=-
bers for different geometries isomers or reactivity of moleculbss
If covalency or ionicity are related to stability of molecules,
this index can be used to classify groups of molecules. Finally
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it is possible to use this index also in thermochemicall and
photochemiicall reactioms to follow concerted and nonconcerted
pathways..
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Chapter 13

QUANTUM CHEMICAL
STUDIES AND PHYSICO-
CHEMICAL STUDIES OF 21PAM
AND DEPROTONATED 24PAM
(SYN AND ANTYI)

Joyce J. Kaufman, P.C. Hariharan, W.S. Koski and Nora M. Semo
Depantment of Chemistiry, The John Hopkins University, Baltimore, Maryland 21218

ABSTRACT

Ab=initio MODPOT/VRDDO/MERGE calculations were carried out
for different conformations of syn and anti 2-PAM (2~
pyridiniumaldoxime methiodide) and on the deprotonated 2-PAM"s.
Ab=initio all=electron calculations were also carried out on
syn 2=PAM and deprotonated syn 2=PAM. Comparisons of our ab=
initio MODPOT/VRDDO and ab=initio all-electron calculations
confirmed again that there is excellent agreement of orbital
energies and gross atomic populations betweeen the two methods
when the same valence shell atomic basis set is used and the
same inner shell basis set is used for the ab=initio effective
core model potentials. There is also excellent agreement
between the three-dimensional electrostatic molecular potential
contour (EMPC) maps calculated from the ab=initio
MODPOT/VRDDO/MERGE and the ab=initio all=electron calculations.

Computed conformational profiles indicated that there were
multiple maxima and minima, thus emphasizing that merely op=
timizing geometry for such pyridinealdoximes and
pyridiniumaldoximes by derivative methods from an initial
starting guess would not be sufficient, especially for the
great majority of cases where there is no experimental crystal
structure data.

Three=dimensional electrostatic molecular potential con=
tour (EMPC) maps were generated from the quantum chemical wave
functions. The deprotonated species of oxime reactivators had
been suggested by pharmacologists to be the probable
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physiologically effective species for reactivation of acetyl-
cholinesterase (AChE) inhibited by organophosphorus compounds,
although the pyridiniumaldoxime reactivators have only proven
efffective in the peripheral nervous system.

The 2-PAN'fs themselves are charged quaternary compounds
and thus would not be expected o partition through the 1lipid
blood-brain barrier and hence not to be effective reactivators
of inmhibited AChE in the central nervous system. The
deprotonated 2-PAM is an overall neutral compound. However,
our three-dimensional EMPC maps of deprotonated 2=Pi'ls indi=
cate that these species will be strongly dipolar ions and thus
would not be expected to partition from aqueous to 1lipid phase.

These three-dimensional EMPC maps around the deprotonated
2-paM%s can also help to delineate stereoelectronic requisites
for effective reactivating action and in addition they can help
to determine the stereoelectronic complementary requisites of
the AChE active sites ~ which have not yet been determined
crysttalllognraphicalllly .

Since the reactivation of phosphorylated acetylcholines=
terase is strongly dependent on the acidity of the oxime
reactivators, we carried out accurate measurements for ithe ng

and the lipophilicity of 2-PAM because of its importance in
transport across membranes and partition through the blood=
brain barrier into the central nervous system.

Our EMPC map findings on the deprotonated 2=PiMi'fs are
confirmed by the experimental measurements of the lipophilicity
and pkg which show that there is very little tendency for

either the 2-Pis or the deprotonated 2=PAM's to partition
from aqueous to lipid phase.

INTRODUCTION

Organophosphorus compounds inhibit acetylcholinesterase
(xchE). 1f the aging of the phosphorylated (imhibited) AChE is
not too rapid, then it is possible to reactivate the phosphory=
lated AChE with compounds such as 2=PAM ((2=pyridiniumaldoxime
methiodiidie.)

or related compounds. These
(:) - I SYN 2-PAM compounds were designed
originally in the 1950's by

C
T H” :bN Wilson to be complements of the
CHy | AChE active site based on avail=
/Q able knowledge at that time [1-
H

The question of the relation of calculated quantum chemi=
cal indices to the conformations and pharmacological activity
of the PAM'Is has been of interest to us for fthe past two
decades. Beginning in 1964, we carried out the first all-
valence-electron three=dimensional quantum chemical
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calculations on any drug or biological molecule for conforma=
tional analysis of the PAMI's, both protonated and deprotonated,
and the charges on the atoms and total overlap populations [4-

6].

From that time until we first presented in the spring of
1984 the results of our ab=initio MODPOT/VRDDO/MERGE calcula=
tions on syn and anti 2=PA and syn and anti 2-PAM and
deprotonated 2=PAM and the electrostatic molecular potential
contour (EMPC) maps calculated from these wave functions, [7a]
apparently there had not been any other quantum chemical inves=
tigations of the PAM"s. There had been experimental research
on the PAM"s and development of related pyridine oxime reac=
tivators of phosphorylated AChE over these past twenty years
[8,97.

During this past year we have continued our ab=initio
MODPOT/VRDDO/MERGE investigations on a variety of other
pyridiniumaldoxime and methyl imidazoliumaldoxime reactivators
of inhibited AChE. We also carried out ab=initio all=electron
calculations on syn 2-PAM and deprotonated syn 2=PAM.

2=-PAM and other pyridiniumaldoxime reactivators of in=
hibited AChE are efffective only in the peripheral nervous
system, not in the central nervous system (CNS) [[10]. While 2=
PAM is a charged quaternary species and thus would not be
expected to partition into the CNS through the 1lipid blood=
brain barrier, deprotonated 2-PAM is a net neutral species. To
investigate why deprotonated 2=PAM also does not partition into
the CNS, we carried out experimental measurements of the ng

and lipophilicity (@s a function of pH), for both of the 2-PAM
species.

METHODS

Theoretical
1. AB=INITIO SCF

The ab=initio MODPOT/VRDDO/MERGE calculations were carried
out with our MOLASYS computer program [11] which incorporates
as options (which can be used or not used) several features
desirable for ab=-initio calculations on large molecules or
those containing heavy atoms: ab=initio effective core model
potentials (MODPOT) which permit calculations of valence
electrons only explicitly, yet accurately; a charge conserving
integral prescreening evaluation to determine whether or not to
calculate integrals explicitly, (which we named VRDDO = vari=
able retention of diatomic differential overlap) especially
useful for spatially extended molecules; and an efficient MERGE
Eec?nique which permits reuse of common skeletal integrals

12].

The ab=initio all=electron calculations were also carried

out with the MOLASYS program. The same valence shell atomic
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basis set was used for both calculations and the same all=-
electron inner shell basis set was used for the ab~initio
efffective model core potentials.

ELECTROSTATIC MOLECULAR POTENTIAL CONTOUR MAPS

For molecular interactions involving molecules with net
charges or permanent dipoles, useful infformation may be ob=
tained by examination of the electrostatic potential, [13]
arising from one of the partners, and by simple calculations,
involving a potential and a simplified description of the
charge distribution of the other molecule involved in the
interaction [14). This concept is also very useful for gener=
ating electrostatic molecular potential contour (EMPC) maps
around molecules which react with receptor sites or enzyme
active sites where nothing at all is kmown about the molecular
structure of the site. Even by calculating the EMPC map from
the electrostatic potential and a test unit positive charge,
the salient stereoelectronic features of a molecule in three-
dimensional space around the molecule are revealed. Also, the
EMPC maps for various molecules generated in this way can be
compared ¥o one another.

The electrostatic contribution is dominant in molecules
such as endogenous biomolecules, drugs, toxicants, etc. where
there are numerous heteroatoms and hence strong charge
redistribution. Even when polarization is appreciable, the
electrostatic term is by far the larger contribution when
molecule A has significant charge redistribution [15].

We had long ago demonstrated that the EMPC maps generated
from ab=initio MODPOT, ab=initio VRDDO and ab=initio
MODPOT/VRDDO wave functions matched the EMPC maps generated
from the ab=initio all-electron calculations mner shell and
valence electrons) with the same atomic valence basis set (@nd
where the MODPOT input was matched %o the same inner shell
atomic basis set) [[16]. Thus, in this present study we have
reconfirmed this by generating the EMPC maps around
deprotonated 2=PAM from our ab-initio MODPOT/VRDDO calculations
and from ab=intio all=electron calculations, using the same
atomic basis set as described in section 1.

The isopotential EMPC maps are generated in three dimen-
sions around the entire molecule. These isopotential EMPC maps
can be displayed from any angle, since we can rotate the
molecule along with its three-dimensional isopotential EMPC
maps.

EXPERIMENTAL

The lipophilicity of a drug ({@ts ability to partition from
water to 1ipid) influences the ability of that drug %o
penetrate lipid barriers such as the lipophilic CNS blood-brain
bamrier.

The ng values and partition coefficients as a function of

pH for 2=pyridiniumaldoxime methochloride were determined using
a microelectrometric €ittration technique, described previously
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M17]). Since the partition coefficients of 2-PAM were so small
at all pH values, the absolute partitioning of 2-PAM was
measured spectrophotonetmiically..

RESULTS AND DISCUSSION

Theoretical

When we initiated our recent studies on 2-PAM, there was
only an old experimental crystal structure of syn 2-PAM
reported [18] which did not place the hydrogen atoms. There
were, however, more recent experimental crystal structures
reported for syn and anti 4=~PA (U~pyriidinealdoxime) [19,20].
For an initial geometry for quantum chemical calculations we
ansatzed the structure of the syn=aldoxime group onto the
pyridine ring structure in the 2 position to give 2=PA and then

ansatzed a CH’3\ group onto the pyridine N, using the experimen=

tal crystal structure of a methylpyriddiviium cation as a guide
[21].

Figure 1. As preliminary studies, we carried

(AN A out ab-initio MODPOT/VRDDO/MERGE
' T‘ H/c’§ quantum chemical calculations on syn and anti
gy 'l‘z 2-PAM for six different rotameric conforma-
Wl "M | tions with the CNOH dihedra angle 0°, +60°,
o Heo W £120°, 180° (Figure 1 2-PAM - Energy vs
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For the lowest energy conformation of syn 2-PAM to date,
we have generated electrostatic molecular potential contour
(@WPC) maps in three dimensions around syn 2=PAM. From fthese
potentials we then generated isopotential contour EMPC maps
around the syn 2-PAM. A copy of those three=dimensional,
isopotential EMPC maps around syn 2=PAM is included (Figure 2
Syn 2=PAM 1sopotential Contour EMPC Map Ab=initio
MODPOT /VRDDO/MIERGE) » Since 2=PAM is a positively charged
quatternary species, all the EMPC isopotential contours are
posittive.

Figure 2. Syn 24PAM

+100.0

We also carried out ab=initio MODPOT/VRDDO/MERGE calcula=
fions for anti 2~PAM for six rotameric conformations with fhe
CNOH dihedral angle 0°, #60°, +120®, 180° and and for
deprotonated anti 2=PAM and generated the EMPC maps [7].
(Figure 3 Deprotonated Anti 2-PAM 1sopotential Contour Map Ab=
initio MODPOT/VRDDO/MERGE) .

Figure 3. Anti 24PAM Deprotomated
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1t is obvious from Figure 3 that even though deprotonated
2-PAM is overall neutral, fthe isopotential EMPC maps show a
distinct positive and negative region. The negative region of
the EMPC map is located around the ring carbon attached to the
ring nitrogen and around the entire oxime side chain. The
positive EMPC region embraces the rest of the molecule. Thus,
the EMPC maps around the deprotonated anti 2-=-PAM indicate that
this species should behave experimentally as a dipolar ion =
rather than as a neutral molecule. This predicted behavior is
consistent with our experimental lipophilicity measurements.

Recently an experimental crystal structure of 2-=-PAM was
reported [22]. We have carried out the ab=initio
MODPOT/VRDDO/MERGE and ab=initio all electron calculations for
2=PAM at its crystal structure coordinates.

We also carried out calculations for deprotonated syn
2=-PAM starting from the crystal structure coordinates and
varying fthe bond lengths and bond angles in the deprotonated
aldoxime side chain using our MERGE technique.

We have more recently generated the EMPC maps for
deprotonated syn 2=PAM both firom the ab=initio
MODPOT/VRDDO/MERGE calculations ((Figure 4 Deprotonated Syn 2=
PAM Isopotential EMPC Contour Map Ab=initio MODPOT/VRDDO/MERGE)
and from the corresponding Ab=initio all=electron calculations
(Figure 5 Deprotonated Syn 2-PAM lIsopotential Contour EMPC Map
Ab=initio all electron).

Figure 4. Syn 2-PAM Deprotomated Figure 5. Syn 2-PAM Deprotomated
all-ellectron

:'v keal/mol
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Again, as with anti 2-PAM, while deprotonated syn 2=PAM is
overall neutral, the isopotential EMPC map shows the same
distinct positive and negative regions as does the EMPC map
around deprotonated anti 2=PAM.

Moreowar, the EMPC maps abound deprotonated syn 2-PAM from
the ab=initio all=electron calculations and from the ab=initio
MODPOT/VRDDO/MERGE calculations are so close that they are
Indistinguishable. This agreement between the
MODPOT/VRDDO/MERGE calculations and the corresponding ab=initio
all=electron calculations could also be seen from comparisons
of the gross atomic populations and the valence orbital
energies.

The gross aftomic populations confirm our very early work
I5,6] that the positive charge in 2=PAM is not localized on the
nitrogen. Also comparison of the charges on syn 2=PAM and
deprotonated syn 2-PAM indicate there is considerable
redistribution of charge in both species.

There is also excellent agreement in the orbital energies
for syn 2-PAM or for deprotonated syn 2-PAM calculated by the
ab=initio MODPOT/VRDDO/MERGE and by the ab=initio all=electron
techni que..

However, the ab-initio all-electron calculation took about
four times longer than the corresponding ab=initio MODPOT/VRDDO

calculation with THR 1 EJJ(ID-4 (the size of the VRDDO pseudo=
overlap for prescreening integrals; 11.0_4 is sufficient to allow
@

all integrals 10 ) and THR 2 = 10 (the size of the 2=e
integrals) retained. This is a higher threshold than we nor=~
mally use since we showed long ago that THR 1 E]Mm-z and THR 2
= ILO"'4 were sufficient to reproduce gross atomic populations to
~0.02 e, valence orbital energies to -0.002 a.u. and potential
energy curves or isomer total energies to -0.001-0.0000 a.u.
(mompared to not using the VRDDO prescreening threshold). The
ab=initio all electron calculation on syn 2-PAM took about five
times longer than the corresponding ab=initio

MODPOT/VRDDO/MERGE with THR 1 = 1 and THR 2 = HQFR\

EXPERIMENTAL
Microelectrometric Technique

The jonization constants and the octanol/water partition
coefficients were determined for 2=pyridiniumaldoxime
methochloride ((2-PAM) at 20°C, 30°C, and 37°C.
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Below is the summary of the results. The ng values

represent the average of at least 4 determinations.

TEMP CONDITIONS Bﬁa
20°C Aqueous 7.904 £
n=octanol/water 7.895 +
30°C Aqueous 7.785 =
n=octanol/water 7:773
37°C Aqueous 7.675 =
n=octanol/water 7.674 +

Since the difference in the ng's determined in aqueous

and n=octanol/water solution is within experimental error, we
conclude from our microelectrometric determinations that to
within experimental error there is virtually no partitioning of
any of the species of 2=PAM from water to oil at any pH in the
range from 20°C €o 37°C.

A brief survey of the literature revealed the following
ng values assigned for 2=PAM.

Ginsburg and Wilson [23] determined a pKa of 8.0 at 25°C

by measuring the pH of a half neutralized solutiom; Mason [24]
reports a value of 8.00 # 0.01 at 20°C measured by poten~-
tiometric titration; Hagedorn et al. [25] report a value of
7.68 + 0.03 by poitentiometric titration (mo temperature
statted).

Since some authors indicate that the reactivation ef-
ficiency of AChE is related to the concentration of the oxime
anion at physiological pH, we calculated the fraction of the
anion in the range 6.80 = 7.70 from the relationship:

=1 antilog (@Kg* pH) (for 2-PAM at 37°C)
antilog (PK_-ppt)) + 1

oxime anion

&

11.8
21.0
251
32
34T
37:3
4011
W7
5 50:@
5h a4

s wr 8

NNIISNINNO
~NOQUEIIWN = ®
cyNOomomooo
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This might prove especially useful in the case of
dioximes, where the true proportion of the oxime anion to

molecules at physiological pH can be calculated knowing the two
ionization constants.,

UV Spectophotometric Technique

2=PAM was one of the oximes for which our electrometric
measurements indicated a very small distribution coefficient
bettween octanol and water.

We began by first investigating the UV spectra of 2=-PAM in
HC1, NaOH and buffer at pH = 7.4, in order o establish the
molar extinction, at X = 293 nm and from there a calibration
curve for different concentrations.

e = 1.04 x lom'at X = 293 nm
which means that the lower limit of the detectable amount of 2=

PAM in octanol is 2 x 10 g/l.
We determined the“"solubility of 2-PAM in octanol, which is

2 w1005 gL (L2 % 105+ 4.
The following characteristic constants were determined for
2=PAM from the optical measurememts:

SOLUTION  pH % OXIME ANION X (m) e
0.1N HC1 1 0% 203 1.219 x 104
0.1N NaOH 13 1003 336 1.810 x 104
Phosphate

Buffer 7.4 34,74 295 1.064 x 104

The distribution coefficient at 37°C was found %o be 3.6 x
io™3.
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METAL CLUSTER TOPOLOGY:

APPLICATIONS TO GOLD AND
PLATINUM CLUSTERS

R.B. King
Department of Chemistiry, University of Georgia

ABSTRACT

The graph-theory derived approach for metal cluster bonding is
extendled to gold and platimum clusters including splverical and
toroidial centered gold clusters and stacked tritamgle platimum clusters;
the latter appear to be novel examples of Mdbius systems.

INTRODUCTION

in 1977 we published a grapih~-theoretical interpretatioom of the bonding
topology in delocalized inorganic polyhedral molecules [1}, Our
initial treatment [1] focussed on polyhedral boranes, carborames,
and metal clusters. Subsequent work [2] extemdied these methodls
to bare metal clusters of post-transitiom elements such as tim, lead,
and bismuth. Further details of our methods are givem in a recent
book chapter [3]. In general the results of the graph-theory derived
methodis, insofar as a comparison is possible, are consistent withh
other approaches to metal cluster bonding by workers such as Mingos
(4,51, Stone (6,71, and Teo [8,9,10].

This paper extemdls our graph-theory derived approach for metal
cluster bonding to gold and platimum clusters, which require a variety
of new concepts. Mingos [11,12,13] has extemded his methods to
the treatment of gold clusters but relatiwely littke success has
been achieved umtil now in the understanding of the bonding in
platimum clusters. For example, Tec’s methodls [9] do not give
exact electrmm counts for some of the most common types of plat-
inum carbonyl clusters.
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BACKGROUND

The atoms at the vertises of polyhedral cluster compounds may
be light atoms using only s and p orbitals for chemical bonding
{e.g., boron or carbonm) or heavy atoms using s, p, and d orbitals
for chemical bonding (e.g., transitiom metals or post-transitiom
elements). if these vertex atoms are normal, they use three valence
orbitalks for intrapolythedral bonding leaving one or six extermal
orbitals in the case of light or heavy atoms, respectively. The
single extermal orbital of a light vertex atom such as boron or carbon
normally bonds to a single monovalent extermal group (hydrogen,
halogen, alkyl, aryl, nitre, cyano, etc.). The six extermal orbitals
of a heavy vertex atorm such as a transitiom metal may be used
for a much greater variety of purposes including the follkowimg:
(1) A single extermal orbital bonding to a carbonyl, phosphine, or
isocyanide ligand; (2) Three extermal orbitals bonding to a benzene
or cyclopentadienyl rimg; (3) A single extermal orbital contaimimg
a non=bonding lone electrom pair {common for post-tramsiticom element
vertioees).

An important questiom in polyhedral cluster compounds is whether
their chemical bonding is localized along the edges of the polyhedrom
or delocalized in the surface and volume of the polyhedron. Delocal-
ized bonding occurs when there is a mismatch between the vertex
degree of the polyhedrom (i.e., number of edges meeting at the
vertex) and the number of intermal orbitals from the vertex atomm.
For normal vertex atoms using three intermal orbitals there are
the followimg three fundamental cases:

(A) Planar polygoms (all vertices of degree two): Mismatch (342)
leading to delocalized bonding in planar polygonal aromatic systems
such as benzene and cyclopentadienide.

(B) Simple [14] polyhedra (all verticzes of degree three): Match (3=3)
leading to localized bonding such as in polyhedrames (e.g., cubane,
dodecahedrane, etc.).

(C) Deltahedra (all tritangular faces) having no tetrahedral chambers
(i.e., all vertices of degree four or greater): Mismatch (3#4,5,6,...)
leading to delocalized bonding in three-dirmemsional aromatic systems
such as polyhedral borane anions, carborames, and many metal
clusters. The last case, of course, is the one of greatest interest
in the context of this paper.

The three intermal orbitals of normal vertex atoms in delocalized
polygons or polyhedra can be panrtiticoned into two types: (1) Twim
intermal orbitals (sp2 hybrigis or p orbitals in a light vertex atom
polygon (Case A) or polyhedrom (Case C), respectively); (2) Unique
intermal orbital (p orbital or an sp hybrid in a light vertex atomn
polygon (Case A) or polyhedrom {Case C), respectively). The intra-
polyhedral bonding in delocalized deltahedra without tetrahedral
chambers and having n vertikes requires 2n + 2 skeletal electrams
arisimg from the followimg sources:

(A) Surface bonding (2n skeletal electroms) arisimg from pairwise
overlap (i.e., n K3 graphs) of the vertex atom twim intermal orbitals
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in the polyhedral surface to give n bonding and n antitbonding orbitalls.
(B} Care hundiimg (2 skedttill ellectirons)) ariising firom m-aater owerliap
(i.e., a single Kp graph) of the vertex atom unique intermal orbitals
at the polyhedral center to give a single bonding orbital and n-1i
antiibondimg orbitalks.

Electron-ricih delocalized polyhedra having more than 2n + 2 skeletal
electroms formn polyhedra having one or more nom-triamgular faces
whereas electrom-poor delocalized polyhedra having less tham 2n + 2
skeletal electroms formn deltahedra having one or more tetrahedral
chambers. A more detailed discussiom of bonding models for these
systems is given in the previows papers {1,3].

GOLD CLUSTERS

The vertex atoms in the polyhedral clusters treated in our previows
papers [1,2,3] use a spherical bonding orbital mamifold (sp‘?' for
light vertex atoms and d55p3 for heavy vertex atoms) having equal
extent in all three dimensioms leading to the 8-electrom (for light
atoms) or 18-electrom (for heavy atoms) configuratioms of the next
rare gas. However, in some systems containimg the late 5d transitiom
and posti-transitiom metals includimg gold, one or two of the outer
p orbitals are raised to antulhmmdmg energy levels leading to toroidal
(d )spg or cylindrical (d Ysp bonding orbital manifoldls, respectively.
The (d )sp toroidlal bonding orbital mamifold can bond only in the
two dimemsions of the plane of the rimg of the torws leading, for
example, to 16-~-electrom square planar complexes of d® late transition
metals such as Rh(l), Ir(ly, Ni(lly, Bd(l), Pt(lly, and Au(llly. Similarly,
the (dE')sp cylimdrical bonding orbital mamifold can bond only in
a single (axial) dimensiom leading, for example, to 14-electrom
limear complexes of d¥ metals such as Pt(0), Ag(l), Au(ly, Hg(l),
and Tidl). The p orbitals raised to antibonding energy levels can
participate in de-* pa* or dr> pir* back-bondimg witth fillked! d orbitalls
in adjacent atoms as noted by Dediew and Hoffimam [15] from
extendled Hdckel calculatioms on Pt(0)-Pt(®) dimers. The raisimg
of one or two outer p orbitals to antibondimg levels in heavy late
tramsitiom metal and post-tramsitiom metal complexes has been
attribbwteed! to relativistic effects [16].

The gold clusters of particular interest [17,18] consist of a center
gold atorm surrounded by a puckered polygonal belt of peripheral
gold atoms gemerally with one or more additiomal peripherai gold
atoms in distal positioms above and/or below t|h1e belt. The peripheral
gold atoms in such clusters use a 7-orbital dBsp cylindrical bonding
orbital mamifold, but their residual two ortihogonal antitbondimg
p orbitals can receive electrom density from the filllked! d orbitals
of adjacent peripheral gold atoms leading to bonding distances
between adjacent peripheral gold atoms. Centered gold clusters
can be classified as either spherical or toroidlal clusters [J]g
depending upon whether the center gold atom uses a 9-orbital dsp
spherical bonding orbital manifold or an 8-orbital disp? toroidial
bonding orbital manifold, respectively. The topology of the core
bonding in the centered gold clusters is gemnerally not that of the
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Kp complete graph found in the delocalized deltahedral clusters
discussed above but instead corresponds to the topology of the
polyhedron formed by the peripheral gold atoms. This apparemtly
is a consequence of the poor lateral overlap of the cylindrical d®sp
manifolltls of the peripheral gold atoms. Also the volume of the
polyhedrom of peripheral gold atoms must be large enough to contaim
the center atom. Thus the icosahedron formed by the twelwe permi-
pherali gold atoms in Au{yCARRCGEHPCGgEsHPY is regular [20]
whereas the cube formed by the eight peripheral gold atoms in
Aug[P(€gH5)3lgt is distorted from to D3 symmetry [21]. This
arises from the fact that the intermal volume of an Auwty icosahedrom
is large enough to accomodate the center gold atom whereas the
intermal volume of an Aug cube is too small to accomodate the
center gold atomn. The resulting swelling of the Aug cube leads
to the observed symmetry reductiom.

In the electrom countimg of centered gold clusters the (neuwtral)
center gold atom is a donor of one skeletal electrom, i.e., 11 valence
electrams mimus the 10 electrums needed to fill its five d orbitals.
A toroidial centered gold cluster requires 6 skeletal electroms whereas
a spiherrical centered gold cluster requires 8 skeletal electrums. These
numbers are fully consistent with the 12p + 16 total (skeletal plus
external) electrom rule for toroidal centered gold clusters and 12p
+ 18 total electrom rule for spherical centered gold clusters (p is
the number of peripheral gold atoms) used by Mimgos and co-workers
[19]. Such electrom countimg leads to the general formuias

AuHLy,Xg/L:p_ for toroidlal centered gold clusters and AuHLyXf&i&;
for spierical centered gold clusters where L is a two-electrom donor
ligand such as phosphine or isocyanide and X is a halide or
pseudohalide. Examples of well-characterized toroidal clusters
conformimg to the AuHLyxﬁﬁ&, general formula inelvge
AuglP(CgH5)3172+ [22], Aug[P(CgHs)3ig3t [23],
Aug(SCN)3[P(c-CgH74)3l5 r2241' Au'jpClglPle-CehtiPegesie (191,
and Aug[P(CgH40CH3-p)3lg2* [25]. Examples of well-characterized
spherical clusters conformimg to the AuHLyXH\f(_TZWj- general formula
include AuglP(CgHg)3lgt [21], Aui3lg[P(CgH5)3l7 [26], and
AuigCIRIP(CH3)2CeHS o [20].

PLATINUM CARBONYL CLUSTERS

The well characterized large platimum carbonyl clusters fall into
the following two categories (Figure 1):

(A) Stacked Pt3(CO)g tricamgles leading to the dianioms Ptg[g((‘:@)g,%s

k = 2,3,4,5) [27].

(B) Three stacked Pt§ pentagoms (BDB in Figure 1) having a Pt4
chain (ACCA in Figure 1) inside the stack thereby leading to the
Pt49(€E»25 cluster [28].

A common feature of both of these types of systems is the stackimg
of Pty polygons leading to a systemn containimg a principal Cp axis
on which none of the polygon platimym atoms are located. In the
case of the stacked tritamgle Pt3(CO) clusters having such a



150 Metal Cluster Topology [Ch.14

€3 axis, the number of electroms arisimg from the vertex atoms
must be a multiple of 3 or the total number of skeletal electroms
must be 2 {mod 3) after allowing for the -2 charge. This requirement
alone leads to the 2n + 2 (n = 3k in this case) skeletal electrams
required for delocalized deltahedra but this is not consistent with
the observed stacked trieamgle geometry of the Pttgjg(CO)gi% clusters.
Eurthermore the height of some of these stacks (i.e., k = 5 is known
[271) prevents the unique intermal orbitalls of all 3k vertex platimum
atoms fromn overlappimg at the core of the stack in a 3k-center
bond having the topology of a complete graph.

A bonding model for the stacked trieamgle Pngk(@@)@% clusters
based on the observed geometries and electrmm counts can incorporate
the followimg ideas:

{A) The Pt(CO)y verticzes are anomalows using four intermal orbitals
rather tham the normal three. They therefore have five extermal
orbitals and are donors of four skeletal electrooms each. A

(B) The vertices of the interior triamgles in the Pt3k(COM

stack have degree four so that the intermal orbitals from these
Pt(CO) verticzes match the corresponding vertex degrees in accord
with expectations for edge-~localized bonding.

(C) The vertices of the two extenior triamgles in the Pth(@@)@;ﬁ"
stack have degree three. After using three intermal orbitals of
these Pt(CO)2 vertimes for edge-localized bonding, there remaims
one intermal orbital from each of the six platinum atoms of the
two exterior trieangles for furtther skeletal bonding. Let us call
these "extra* intermal orbitals on each vertex atom of the exterior
tricanglkes the Mdbius orbitals.

(D) Edge-localized bonding in each of the 6k - 3 edges of the
Pt3k4CO)gh- stack requires 12k - 6 skeletal electroms. Since there
are a total of 12k + 2 skeletal electrmms, eight skeletal electroms
are left for the two groups of three Mdbius orbitals at the top and
bottorm of the tritamgle stack. The symmetry of the C2 axes of
the D3f, Pt3ldCO)S2 stacks forwes equal allocatiom of these eight
electroms to the top and bottom of the stack. This means that
at each end of the Pttgpg(COﬁg‘t stack there are four electroms for
the molecular orbitals formed by the three triamgularly sitwated
Mbbius orbitals. This electrom count suggests that at the top and
bottom triEangles of the Pt3jK@OEE stacks, there is 4m electrom
(m is an integer, namely one in this case) M6bius overfap involving
a twisted rimg (Mdbius strip) of the three relevant orbitals rather
thanm 4m + 2 electrom untwisted Hdckel overlap found in planar
aromatic hydrocariboms such as benzene [29]. If the M8bius  orbitalls
are d orbitals, then twisted Mdbius overlap is possible for an odd
number of metal atoms (e.g., a tricangle or pentagon, but not a
quadhilateral) since d orbitalls change phase (i.e., "twist") at each
metal cluster.

This bonding model for the Pt3j(CO)2 stacked trimangle clusters
suggests edge-~localized bonding along the 6k - 3 edges of the stack
coupled with delocalized Mibius tritanglkes at both the top and bottem
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of the stack. Thus the edge-localized bonding in the Pt3g(CO)&z
clusters correspondis to the edge-localized carbon-carbon c-bonding
in benzene whereas the Mdbius bonding at the top and the bottom
of the Ptgjg(@@»&g stack corresponds to the Hickel  #t-bomdimg in
benzene.

The structwre of the threaded twbular platimwm carbonyl cluster
Pn‘]gi@@)fz‘ {Eigure 1) can be built as follows:

(I) Three Ptg pentagoms (BDB in Figure 1) are stacked on top of
each other formimg two pentagonal prismatic chambers sharimg
a pentagonal face.

{2) A linear Pt4 chaim (ACCA in Figure 1) is placed on the Cg§ axis
of the stacked pentagoms so that the two end members of the Pt4
chaim are the apices of pentagonal pyramidis at the top and bottom
of the pentagonal stack and the two central members of the Pt4
chaim are located in the centers of the two pentagonal prismatic
chambers noted above.

In this structure of Bttqj@(ﬁ@@z‘}i the intermal orbitals from the plat-
inum atoms are used as folllows:

(A) End platimum atoms of the Pt4 chaim (two platimum atoms):
Three intermal orbitalls are used for a delocalized pentagonal pyramid
and the fourth intermal orbital is used for a localized bond to the
nearest interstitial platimwm atom also in the Pt4 chain.

(B} Platimum atoms of the top and bottom Pt§ pentagons (tenm plat-=
inum atoms): Three intermal orbitals are used for a delocalized
pentagonal pyramid and the fourth intermal orbital is used for a
localized bond to the nearest platimwm atom of the middle Ptg
pentagon.

(C) Interstitial platimum atoms (the two center platimwm atoms
of the Pt4 chain): All nine platimum valence orbitals are intermal
orbitalls so that all of the tem valence electroms of each interstitiial
platimwm atom become skeletal electroms.

(D) Platimwm atoms of the middle Ptg§ pentagon (five platimwm atoms):
All four intermal orbitals are used for edge-localized bonds to neigh-
borimg platimum atoms.

This allecatiom of platimum intermal orbitals leads to the folllwing
electrom countimg scheme for Ptt1\3¢C@))j12'::

Source of skeletal electmors:

17 Pt€O verticees using 4 intermal orbitals: (17X2) = 34 electroms
5 "extira" CO gnoups: (BX2) = 10 electrams
2 interstitial platimwm atoms: (2X10) = 20 electmoms
-4 negative charge on aniom 4 electrams
Total available skeletal electrams 68 electroms

Use of skeletal electruoms:

Edge-localized bonding in the Pt3g tube: 25 edges = 50 electrmms
Edge-localized bonding in the Pt4 chain: 3 edges = 6 electroms
Incremental electroms for the two delocalized

pentagonal pyramidial chambers: (2){(2)(6)+4-10] = 12 electrams

Total skeletal electroms required 68 electroms
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Figure 1. Schematic diagrams of the platinum carbonyl clusters discussed iR
this paper.
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This indicates that the anion Plt‘jg@@@‘}i has exactly the number
of electrams required for the above bonding model. Furthermore,
the existemce of a homologous series of threaded tubular clusters
is predicted having the general formula Pt@ﬁ;tﬁ]((@@)‘é’r;iz?

SUMMARY

This paper shows how our graph-theory derived approach for metal
cluster bonding can be extended to gold and platimwm clusters exhib-
iting new structural featwres. For the treatment of these systems
important ideas new to this theory need to be intredluced, notably
non-sphenrical (i.e., toroidlal and cylindrical) bonding manifolts for
the gold clusters and Mdbius bonding for the stacked tricangle
Ptgﬁ(C@)&g clusters.
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ABSTRACT

There are numerous examples of chemicall properties,
phenomena and processes which correlate surprisingly well
with jonizatien energies of its subjects. However, in many
cases such correlations lack a sound physicall basis. Elec=
trochemicall oxidation of organic molecules and the one
occurring in a noninteracting solution and/or gas phase by
means of a strong oxidant can be considered, as processes
with electron transfer taking place in the rate determining
step. Since the latter processes are of great envirommemtal
significance the predictive power of an ionization energy
reaction rate correlation would be of great use and impor-
tance. Examples leading to prediction of abiotic degrada-
bility of atmospheric pollutants and ozonization rates in
drinking water treatment are presemitsdi.

INTRODUCTION

The primary concern of chemistry 1is compoumdis:
their formatiom, properties and reactions. The obvious
investigative route for satisfying these concerns is experi=
memt, namely observatiom and measurememt; the other is the
development of models and the constructiom of theoriies. The
foeus of this werk concerns the latter (i.e., models and
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theories)).. However, since we posit a chemocentric view, we
assume that our results are alse of fundamemtall significance
to biology, physics, ecology, etc.

Chemistry assumes that electrons moving 1in the
potentiah field of nucleii are crucial to the existence and
development of those chemiicall forces that define the forma-
tiom, properties and reactions of chemiicall compoumits. One
of the theoreticall approaches that adopts this view is the
orbitah (atomic, A0, or molecular, MO) concept which de-
scribes the motien of an electrom (or electroms) in the
average field of a complicated system and assumes that the
result bears on reality. The success of this method is wehh
documented and the difficulties it encoumters, particularly
when confronted by spectroscopy [1], have been elaboraittadi.

In this work, we willh advocate the use of fionization
energies as a basic parameter for the description of certain
chemicall processes. There are two main reasons for such an
advecawy: (i), the {fonizatien energy is an experimemtah
guantity that is readily determined by numerous methods
based on the release of electrons from chemicall compowmds;
and (1i), a direct relationship of the ionization energy and
the orbitall modeh exists, although it is not always as
straightforward as Koopmans™ theorem [2] would suggest.

PHOTOIONIZATION, IONIZATION ENERGY AND
KOOPMANS " THEOREM

The release of an electron from any chemicall system
is an ionization We wilh confine ourselves here to the
jonization of free atoms and molecules in the gas phase
caused by electromagnetic radiation (photoms). Such events
are known as “photoionizatiom™ processes, the released
electrons are termed "photoelectroms” and the technique used
to determine their excess kinetic energy is referred to as
"shotoelectron spectroscopy.”™ 1f the photon energy, as
obtaimed, say, by monochromatized synchrotron radiation or
tunable laser radiatiom, is exactly equall to the ionizatiom
energy, the photoelectrons willl escape with zere kinetic
energly. This type of electron spectroscopy 1is known as
"threshold photoelectron spectroscopy™ (TPS). 1f the photon
energy exceeds the ionization energy, the surplus excitatiom
is transferred to the ejected electron as a kinetic energy.
The technologies that measure this excess energy are re=
ferred to as "X-ray or uv-photoelectrom spectroscopy™ or,
for short, XPS and UPS, respectively. Whem the excess
kinetic energy, E{, of the photoelectrons ejected from a
sample at fixed 'Bhoton energy 1is plotted against their
number, the result 1is a "photoelectrom spectrum.”™ The
corresponding ionization energies, E}, (or 1ionization
potentials 1, or electron binding energles BE) follow from

E,f& = hv = Ek; J = 1,2,...%; I < hv
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In the MO piecture, the photoelectroms originate in
individuwah electronic orbitals of the molecular ground
state. 1f spinorbit coupling is smalll, each nondegenerate
orbitall is occupied by two electrons of opposite spin (Fig-
ure 1). Howewer, the pHotkoilonizetion speectium mesd ot
consist of the set of single-event processes that supposedly
describes the UPS and XPS processes. Indeed, electron
excitation can accompany electron ejection (“shake up"“); two
electrons can be ejected simultaneously ("shake off“); or a
second electron can be subsequently ejected from the origi-
nab highly excited ion produced in XPS (Auaer orocessV.
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Figure 1. lonizatiom processes in the single configuration approximation.

The connection of theory and experiment is given by
Koopmans't theorem [2] which states that the electronic
wavefunction of a singly ionized state is adequately de-
scribed by Slater determinants based on the set of N-1
ground state self-consistent field (SCF) molecular spin
orbitals (MS0). That is, if,

| 020(1) #g (2) ab-29,.(N) dn (V) |

is a good descriptor for the ground state, then

YLk = | g () 0 () = e (D)
is a good dessctipdor off the singly iiomized stedee. The
fonization energy, then is
_epN-R o NN NAELN-RL L N-L NLONLAN
Bi,nZEflen BRI Y-n I Hen 3-f?oﬁﬂv'yo $ 2 "Em
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where HY 1 and HY are the SCF hamiltonians for the N-1 and N
electron systems, respectiiwelly. This statememt, namely that
the 1{onization energy equals the negative of the orbital
energy of the ejected electrom, -e_, is the first part of
Koopmans" theorem. il

Now, the function V_p] is by no means optimall.. The

optimall function may be writtem as the CI (configuration
interactiom) expansion

N1 Y
kegcc #-jjkék llg%c@gc wt_imgﬁu
where, for example, 4"1*'& denotes a determinant W’a in which

spin-orbiitah @ﬂ has been replaced by ql>p; and where we have

dropped the N-1 superscripting to avoid crowdimg. The
function W‘j',m, as is obvious, is a shake-up configuration

(Figure 1)_'~ Simplification of 4!,N'n might consist of trunca-
tion to N-%
¥,

2 kebec Y-k
Howevetr, what we desire is really
N1 g

This gross simplificatiom is equivalent to the demand that
we find an orthogomall transformatiom of the set of Hartree-
Fock MS0's so that the cationic state can be represented by
one single determinant constituted from this set, namely
41'_}5, and the neutrall ground state can be represented by one

single determinant constituted from the same set, namely by
4’5_ Koopmang™" theorem asserts this possibility and it

identifies the appropriate MSO set as the canoniicall Hartree-
Fock set.

This latter assertion is the second and more impor=
tant part of Koopmans™ theorem. 1t may be rephrased alter-
nativelly: The only allowed 1ionizations are those which
remove an electrom from an MSO [or shake-up and shake=off
transitions are forbiddem]). 1f spin-orbit coupling is small
(<20 meV), a further restatement becomes possiiblie: The only
allowed ionizations are those which remove one electron from
an MO.

Koopmang™" theorem provides a salient experiment/
theory interfaze. Consequemthy, it is well to specify the
approximatioms inherent 1in 1its derivatiom. These are:
(1) Fixed-Nucheli Approximatiom - 1t is the Born=Oppenheimer
approximation which permits the notion of "molecular geome=
try.™ Thus, in additiom to this approximatiom, it is also
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understood that the cationiec N-1 electron system which is
the immediately termimali state of the process

N-electron system + hv = (N-1)-electron system + e
is identical in all geometric detail to the initiah state of
the N=-electron system. This, off coowsse, ibs thke Franck-
Condon  approximatiiamn. Consequenthy, Koopmans® theorem
applies only to verticall ionization evemts.
(ii) The Correlation Energy - The neglect of correlation
energy is intrinsic to the Hartree-Fock approximattiiaom. The
correlation energy is caused by the fact that electroms
adjust their motioms to the instantaneows charge distribu-
tion, and not tm am e chage distribution (as s
assumed in the Hartree-Fock equatioms)). 1n fact, the corre-
lation energy is the difference between the correct energy
and the Hartree-Fock energy associated with any given Hamil-
ton operatar. 1f relativistic effects are small, the latter
is welh known, and the "correct energy” is equivalent to the
experimemtall energy. However, electrons of opposite spin
usually tend to stay considerably further apart (i.e.,
correlate their motions better) than a single determimantal
wavefunction wilh allow and, as a result, correlation ener-
gies can be quite substamtiall.. Nonetheless, while large for
any one state, iktiisooh)ydifffereoceshbtteerntiwo states,
namely between thke iimitial N~ and termrinedl (N-L)-ehectran
states, which is of significance to photoelectrom spectros-
copy. This difference may welll be smakli. Koopmais" theorem
implies that it is zerm.
(111} The Relaxation Energy - The same set of spinorbitals
is used to construct the Slater determinants for the N- and
(N-1)-electron systems. This supposition implies that the
electrons of the cation do not adjust in any way to the
reduction of interelectronic repulsions which must charac=-
terize the (N-1)-electron system. This supposition is known
as the "frozen-core™ or "frozen orbital™ (fc) approximathan.
(iv) The Non-Relativistic Approximation - This approximation
is not a consequence of the functiomall nature of the wave-
functioms; it is, rather, a defect caused by the omission of
relativistic terms from the Hamilton operatwr. We have
omitted these terms solely for convemiemnzm=. The various
relativistic terms -- for example, spin-orbit or spin-spin
interactions =- might have been included in the Fock opera-
tor in a way which would not have altered any of our conclu=-
stons. 1In fact, in his origimall paper, Koopmans included
relativistic effects explicitly -- and to no ill effects
whatsoeuar..
(v) Restriction to Closed-Shell Systems - Koopmans™ theorem
is restricted to closed-sihebl N-electrom systems. Thus, at
least in the form expressed here, it is specifically inap-
plicable to non-closed-shelll systems (e.g., many transition
metall complexes)).

159
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The relationships between the experimemtal ioniza-
tion energy, the MO energy and the Hartree-Fock ionization
energy are schematized in Figure 2. The correlation energy
is always negative and 1is shown to be slightly larger for
the system with the larger number of electrors.

+
L (Koopmans)

A":E+(fc) +
*E+(Corr) E+(“F)
S 2 E (exnt)
=y
By, SCF
E, l J
2 B
EO(HF)
iEo(corr)
Eo(expt)
energies of cation
energies of neutral speciiess
AE (corrj — correlation energy
AE (fc) frozen core energy correction

Figure 2. Relationship between experimental ionization energy, Ej; the
Koopmans-MO energy and the Hartree-Fock ionization energy,  $eF

The reorganization energy for the cation [i.e., AEI(fc) =
[E$(Koopmams) - EI(HF)] is always positiue. Hence, there is
a tendency for ﬂAEI(fc)H + ﬂAEI(corr»n to be approximately

equal to JAEU(corr)] and it 1is this tendency which fis
responsible for the moderate success of Koopmams' theorem.

Clearly, the higher the ionization energy (that is,
the deeper the MO from which electrom ejection occurs) the
greater 1is the chance for breakdown of this simple one-
electron picture.

Thus, our advocacy of the parametric use of experi-
mentall ionization energies refers only to the lowest (or, in
some speciall cases, the next to lowest) 1. The restrictions
to experimemtal values is not particularly stringent in view
of the numerous examples of correlations that exist between
caleculated and experimemtal ionization energies (e.g.,
Schmidt [3])- Extensive correlations of experimemtal ion-
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ization energies with various chemicall properties are also
available but, while often surprisingly good, they are
usually difficult to justify theoretiicallly. Such correla-
tions can be very usefullz: for example, they may permit
estimates of otherwise unattainable informatiam. The fol-
lowing examples, alh of which are based on processes in
which organic compounds transfer an electron to a partner
(electrode or reagent) and become oxidized, will now be
discussat.

RELATIONSHIP OF THE STANDARD OXIDATION
POTENTIAL TO THE IONIZATION ENERGY OF AROMATIC
HYDROCARBONS [4]

Electron transfer to and from aromatic hydrocarboms
plays an 1important role in various reductive and oxidative
processes [5], [6]. The parameter of choice for the assess-
ment of the ease of electron transfer during the reactioms
of these compounds with electrophiles and oxidants is the
standard oxidation potentiall, E°. The most direct access to
oxidation potentials is provided by electrochemicall methods,
among which cyclic voltammetry (CV) is undoubtedly the most
appropriate for organic solvemts. Unfortunately, values of
E® for benzene derivatives were in short supply: the brief
lifetime of arene cation radicals produces hysteresis in the
cyclic voltammogians. However, the recent development of
microvoltammetric electrodes [7], which makes it possible to
record voltammograms at sweep rates larger than 10000V/s,
has produced copious data for alkyh and polyalkylbemzenes
[4]l. Concurremthy, we have measured the vertical ionization
energies,, Ei v using the Hel UPS technique [8-10]l. Since

Ty

E. is a gas phase valuve, any correlation with E° may

permit estimation of solvation effects [11].. Simidar,
though different information may be obtained from i), the
correlation of E° with the anodic peak potentials, E*,

obtained under irreversible CV conditions or from ii), the
correlation of E° with the oxidation potentials of aromatic
hydrocarboms when these are n-complexed to metal centers
such as Cf(c0)§r

The correlation of E° (volts relative to the normal
hydrogen electrodie, NHE) for 27 aromatic hydrocarbons in
trifluoroacetic acid with Ei v(eV) for the gas phase is

found to be excebbemnt. 1t is given by
E® = 0.71 E, - 3.68

with a correlation coefficient r = 9.98 (i.e., confidence
level > 99.9%) The slope is considerably less than unity,
indicative of the fact that the energetics in the gas and
solution phases, while related, are not identical. 1n fact,

161
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the solvation contributiom 1is included in E° whereas the
reorganizatiom energy of the arene cation radicall, which
undergoes Jahn-Teller distortiom [12, 13], is not included

in E. . The difference in free energy, AG®, associated
with solution of the aromatic hydrocarbom Ar is
AG® = [(6°f+)g — KEg ™ GAry

where g and s refer to gas phase and solvation states, The
standard oxidation potemtiiah

E° = (U/F) {e6] + E(GR*)g = (GAr)g H +C

where F is the Faraday constant and C is a constant for a
given electrode system. Since the vertical ionization
energy 1is

Biw: /R - GardeH A v

where (GRp)g i8 the free energy of formation of the unre-

laxed arene cation radical (Franck-Condon transitiom).
Substitution in E° yields
E° = E.') vt [(AG; *AG';)) /F) + C

where AG®, the reorganizatien energy of Art, represents the
difference (G‘A‘p)g - (G°;+)_ Comparison with the correla-

tion line then yields
AAG® = AGY + AGT = -0.29F . E,  + C

C" = 4.1 + C, indicating that AAG® is of the order of 7
keal/moh for these compoundis. Since the solvation energies
of the neutrall species are small, these effects must be
attributed to the radicall catioms. 1t also appears that the
deviation of the slope from unity represents variatioms of
AG®, becawse, among certain sterically-related compoumdts,

the polyalkylbenzenes for example, the slope does approxi-
mate unity.

The correlation of E° with the anodic peak poten-
tials E_ obtained from dirreversible CV in an acetonitrile

medium yiebds
E° =1.01 Ep - 0.001

where both potentials are expressed in volts referenced to
NHE. This surprisingly good correlation (n = 0.98 for 18
compoundis,, slope ~~1, intercept ~0) leads to a more generall
relationship that also includes many polycyclic aromatic
hydrocarbons (PAH) [11].. This correlation 1is shown in
Figure 3 and is given by

EP = 0.63 Ei v 3.01
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Figure 3. Correlation of the irreversible €V peak potentials, ep, of various

aromatics in acetomitrile with the vertical ionization energy, Exynumbers refer to

benzene (0) and alkylbenzenes from [4] and naphthalene (28), anthracene (25),
phenanthrene (30), chrysene (31), of benzanthracene (32), pyrene (33) and
perylene (34) from [11].

where Ep is expressed in volts relative to NHE and E'i»W/ is

cited in ev. (r = 0.97 for 26 compoumds). This Tlinear
correlation resembles ones reported by Miller et a]. [14],
Neikam et aj. ([15] and Pysh and Yang [16] for the
polarographic oxidatiom potentials, E;‘E,, of a great variety

of organic compounds and for which the slopes E’;;//EE, v =

0.89, 0.83 and 0.68, respectivelly.. Thus, regardless of the
variation of the free energy AG® and the kinetic contribu-

tions from the follow-on reactions of the radicall catiom,
remarkable correlation quality was obtaimedi, indicating that
these variations/contributions are either small and constant
and/or that there is much fortuitous cancellation between
them. We assume that the former is the more likely.

We now investigate our ability to correlate some
important electron transfer processes in both the gas and
the solution phases to ionization energiies.
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PREDICTION OF THE ABIOTIC DEGRADABILITY OF ORGANIC
COMPOUNDS IN THE TROPOSPHERE [17]

Numerous oxidatiom reactions occur in the tropo-
sphere. Many of these lead to degradationm of naturall gas-
eous organic compounds as welll as anthropogenic pollutants.
These reactions are part of the self-purifying tropospheric
process and they belong to the globall carbon cyche. 1t is
now wellh established that certaim photochemically-produced,
short-lived radicals are responsible for these oxidatiwe,
tropospheric reactions [18]. Among these, the extremely
reactive OH radical is surely determinative of the lifetime
and the distance a pollutant can travel in the course of
tropospheric transportt. 1ndeed, even ten years ago [19],
the relative reactivity 0:0H was knowh to be ~1:10WD.

The absolute rate, kﬁ , for the reaction of OH with
a gaseous chemiicall compoundl 'sets the upper 1imit for the
troposphere lifetime of this compoundi. Indeed this reactiom
follows the pseudo-first order equation

%, = 2n2/kgHiBH]
where is the tropospheric lifetime and [OH] is the mean
annuall concentration of tropospheric OHW, for which Crutzenm

{20] cites the value 5%10° OH radicals/cm>. Unfortumatehy,,
this equation is only approximate: other processes such as
direct photolytic degradation by sunlight, the adsorption
onte soik and the diffusion into the stratosphere can short-
en the lifetime considerablly. Nonetheless, this equatiom
does provide a secure prediction for the maximum persistence
time of chemicals that enter the atmospheire.

Measurements of OH reactivity are complicated and
restricted to readily vaporizable compoundis. Consequemthy,
a vital need for a predictive capability of "hydroxyll reac-
tivity" exists. Such a predictive capabiliity, were it to
exist, would also be of use in the liquid phase: Glisten et
al. [21] for examplle, have shown that a statistically
significant correlation of OH reactivity in water and OH
reactivity in the gas phase does exist. Consequemthy, a
great deah of correlative effort has been expended in this
arem: For H-atom abstractiom from alkanes by OH-radicals, a
correlation of the reaction rate with the bond energy has
been uncovered [22-2%].. Zetzsch [26] used structure reac=
tivity relationships such as the Hammett equation to predict
OH reactivitiies; and Gaffney and Levine [27] showed that the
rate constant for the reaction of OH with alkenes and dienes
correlates linearly with the first ionization energy.

We have recently constructed a large data base of
kgn and E. v values [17] with the express purpose of study=

jng their use in predicting abiotic degradibility and tropo-
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Figure 4. Coicelation of — logkphivs. E- for 161 organic compounds in the gas
phase at 300K. The text should be consulted for further elaboratiom. Open circles
refer to aromatics and closed circles refer to aliphatics. The lettered datapoimts,
a-t, indicate reference chemicals [28].

Table 1. Predicted OH rate constants and mean tropospheric lifetimes of some

chemicals at 300K.

Eompodnd Bi /& wowents D 1/2/days
Diehlorodiphenyl ethylene

(00E) 8.23* 10-4 0.40
Trichlorobi phenyl 8.34* 10.6 0.64

ooT 8.62* 1.0 16
Methyli socyanate

™10 10.6 11.4 5

p~Ni tephenol 9.3 12.1 sy
2,6-Dichloro-
benzoni il 9.79* 12.8 100

‘See text for approximations



166 ITonization Energy Correlations Ch.15

spheric Tlifetimes. This repository contains 361 k{, data
points for 161 different compounds and a considerably”larger
number of ionization energiies. No simple correlation of
-Iogkg"}l vs. E. was found to exiist. However, knowing that

=Iogk8ﬂ for substituted benzenes does correlate with the

corresponding ionization energies [29], it was decided to
treat the aromatics and the aliphatiecs separately. This
correlative attempt was successfull, the only sour note being
the discordant behavior exhibited by ketones, carboxylic
esters, epoxides and halides (fluorides exceptad). Abh
these Tlatter compounds have one property in commun: their
lowest energy ionization is associated with removal of an
electron that is localized on the characteristic group (or
atom). Consequemtly, it appears that the electrophilic OH
radicall does not attack organic molecules at the lone pair
centerss.  Therefore, it seemed proper to substitute the
deviant 1{onization energies by those for substitute mole-
cules which were identicall in all regards except for exclu-
ston of the possibility of 1lone-pair i{onizatian. These
substitute molecules are:

R-CO-R" > RCHgR"; RCOOR  RCHgR"; R(;g;(CIrHR" RCHgCHgR™

RX ( X=C2, Br, 1) » RH or, better, RF
The correlative result using this tactic and embracing all
161 compounds is presented in Figure 4. Two clearly dis-
tinct, excellent correlations exist:
= for aromatlcs,, with n= 32, r=0.95, s =0.29 and t = 16,

we find ]!1
*log (kBH/cm s 1) = (1.52 + 0.10) I;_ /eV - (2.06 + 0.84)
0.36 and t = 36,

= for aliphatlcs with n =129, r = 0. 95 s
we find
=log (kBH/c"' s -41) = (0.79 £ 0.02) Es W/eV + (3.06  0.24)

where n 1is the number of molecules in the class; r is the
correlation coefficiemt; s is the standard deviati@m;; and t
is the Student's t functiom. Both equations yield a predic-
tive capability for kan that is accurate to one order of

magnitude or better, the probability being about 90% (2
1.55). These two linear equatioms obviously reflect alter-
native reaction paths of the OH radicah for aromaties and
aliphatics at 300K, a view that is supported by the kinetiec
data of Rinke and Zetzsch [29] and Lorenz and Zellner [30].
In any event, for aromatics, the temperature dependency of
k§ indicates that OH additiom is the dominant reaction
h at room temperature.

On the basis of the regression line behavior we have
predicted the reaction rate constants and the mean trospo-
spheric lifetimes of a few chemicals of envirommemtahl sig-
nificance (Table 1). One of these, methyl isocyanate (MIC),

is the compound responsible for the recent Bhopall (India)
tragedy which killed or injured thousaits. The tropespheric
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lifetime of this aliphatic compound was unknown but, from
tge publisheg ionization energy [33], it was easily estimat-
ed as = 5d.

PREDICTION OF LIFETIME OF TRACE ORGANICS IN DRINKING
WATER TREATED WITH OZONE

The growing pollution of surface and ground water by
chemicall compounds increases the possibility that these wilh

L

Pyree O

O Q5= Trimethyibenzene

O W3- Mimathylbenzene

Benzoidenyde O

Methyl benzoate O

Chiorodenzens O

-

E [ev

Figure 5. Coxrelation of log k) vs. E- y[[10] for organic compounds in water at
ﬁgt‘; The right ordinate gives half-iifietimes, t)(s), for an ozone concentration in
water of Imggdl.
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enter the final stages of drinking water treatmenit. Among
other methods for the finall treatment of drinking water, the
use of ozome, in particubar, has a long tradition in Europe
especially for removing bacteria and odor and improving
taste. Thus, more than 150 ozone purification plants exist
in Switzerland alome. These, operating with a 4-19 m con-
tact with 0.4-10 mg/2 ozome, achieve 99% reduction in bacte-
rial count [36-36].. Hidigee amtd DBalder [[B4386 J) Havee
performed extensive measurements of reaction rates with
ozone for numerous organic compounds in water, their aim
being to determine pollutant lifetimes and to optimize the
ozonation process. These authors found that the reaction
was first order in both ozone and the organic, indicative of
a situation similar to that for OH radicahs. Thus, they

found
Y = £n2/k8§|[6§]

where k8§ is the reaction rate constant and [0§] is ozone

concentration in the water system. Thus regardless of the
actual reaction mechanism(s), it is almost certain that the
rate determining step is an oxidative electron transfer from
the dissolved substratte. 1f so, a linear correlation of log

k8§ with fonization energies is to be expected and a predic-
tivity of P for trace organic compounds in water subjected

to ozonation would appear to be at hamdi.
The reactiom rate constants k6§ of some substituted

aromatics [38, 39] are plotted against Tlowest ionization
energies in Figure 5.

The correlation is excelbentt. This correlation permits the
prediction, for given E. and [Og], of or, equivalenthy,

prediects the appropriate contact time and [og] for the

reduction of contaminant concentration to an acceptable
valuge. The right-hand ordinate of Figure 5 shows the value

of at an ozone concentration of 1 mg/2 (or 2%10-5M).

Within the 20m time used for bacteriiall desinfection at this
ozone concentratiom, it 1is seen that alll compounds higher
than toluene are oxidizedl. Benzene and the chlorinated
benzemes, howeverr, require contact times of 3h under these
same conditiars. Thus, 1in order to achieve oxidatiom of
benzene or the chlorinated benzenes in times under 20 minutes,

an ozone concentration of 10 mg/f (2x10 4M) is necessamy..

The higher aromatic compounds are oxidized within a
few seconds which, in view of their carcinogenicity, is an
jmportant findimy. Indeed, untih recently [38] polycyclic
hydrocarbons were thought to be highly resistive to ozona=
tion [40, 41]l. 1t is now clear that this is not so.
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Correlations such as those of Figure 5 can be used
to predict the persistence of an organic to ozone if its
fonization energy is knowm. Although its nodt ass ddiffffii-

cult to determine as k(,)\H’ such prediction are very useful
indeedi.
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Chapter 16

CHEMICAL GRAPH-THIEORETIC
CLUSTER EXPANSIONS

D.J. Klein
Department of Marine Sciences
Texas A&M University at Galveston

ABSTRACT

A general unifying computationally-amenable chemico-
graph-theoretic cluster expansion method is offered
as a paradigm for graph-theoretic applications in
chemistiry. The scheme is outlined and some of the
multitude of possible applications are briefly
indicatted.-

INTRODUCTION

There is a vast range of problems for which simple
chemical structure ideas are relewvamt, and as a con-
sequence graph-theoretic methods are expected to aid
in formalizing, quantifyimng, and extending these
ideas. Such problems range from the empirical to
semiempirical and on to more purely theoretical
realms. Some corresponding example problems include:
the organization of the variations of a biological
activity for a range of related molecules or for a
similar organization of chromatographic separation
coefficients (dn the empirical realm); component (or
cluster) expansions of the ground-state electronic
energy of individual molecules or of molecular mag-
netic susceptibilities (in the semiempirical area);
and the construction of size-consistent ab initio
wavefunctions or the computation of statistical
mechanical partition functions ((in the theoretical
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regime). Because simple chemical bonding ideas are
used in conjunction with such a wide range of
diverse problems there arises the fundamental ques-
tiom: WNM1s there an underlying unifying computation-
ally-amendable chemico-graph-theoretic paradigm
applicable over this wide range of problems?” Here
we suggest a form for such a paradigm so as to
indicate an affirmative answer to this questiom.

There has been previous work toward such a paradigm.
Notable efforts in this area are by Gordom, Kennedy
and coworkers [1,2,3] primarily for empirical appli-
cations and by Domb [[4] for statistical mechanical
problems.. 1n addition to indicating a broader range
of application we extend the paradigm to encompass a
wider family of mathematical approaches.. For
instance, no limitation of the choice for the cluster
function to the so-called zeta function is made here.
The presemt 1lifting of earlier restrictions to con-
nected subgraphs permits the paradigm to extend to
new (so-called multiplicative and derivative) classes
of quantities, including partition functions and
wavefunctions [3]. Much research [6-16] concerning
so-called "topological indices”™ or graph-theoretic
invariants for correlation with molecular properties
can be viewed as making special choices for low-

(and often fixed-) order cluster expansions of the
type described here. A step further "back” is an
immense quantity of work tabulating numerical results
for particular properties via what may often be
interpreted as fixed low-order graph-theoretic
cluster expansioms.. For such work concerning thermo-
chemical properties of organics see ref. [17-20]..
Curiously, related developments in statistical
mechanics seem to have taken place quite indepen-
dently: earlier work dates back to the thirties [2i-
23]; the relevance of formal graph theory was
emphasized in the Ffifties [24,25]; and Mobius inver-
sion was used in the sixties [[26-28] .. 1In the quantum
chemical regime it turns out, for instamce, that the
{clearly graph-theoretically related) valence-bond
type wavefunctions [29-31] can be viewed [32] withimn
the presemt context; still the ideas apply over a
much broader range [5] of wavefunctioms, as well as,,
to matrix element evaluatiom..

GRAPH-THEORETIC BACKGROUND

As usual a graph G is identified in terms of first a
set V(G) of sites or vertices and second a set E(G)
of edges consisting of ((unordered) pairs of sites..
There are many possibilities for what the sites may
represemtt.. Some examples include:
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(a) electrons or orbitals in atoms or molecules;
() chemical bomnds or bond- and lone-pair geminals
in a molecule;;

{c) atoms or atomic ions in molecules or crystals;
(d) functional groups in molecules or polymers;,

(e) molecules in an aggregate, liquid, or crystal.
The corresponding differemt choices for edges of G
are associated to near-lying or more directly inter-
acting pairs of sites. The usual molecular graphs of
elementary chemistry are but one example of graphs..

The nomenclature here for subgraphs is standard [33].
Connected subgraphs are used to describe systems with
no isolated (or noninteractimg) pieces (or sub-
systems)).. A spanning subgraph G* of the graph G is
such that V(G")=V(®)).. As indicated later these sub-
graphs are useful 1in describing many-body ("multi-
plicative™) global quantities.. The subgraph partial
ordering relation G* GG is defined to mean that
V(G™”) = V(G) and E(G")< E(G). The components of a
graph are the maximal connected subgraphs. A
selected set of connected subgraphs is denoted by
C(G),, and the corresponding set of spanning subgraphs
each component of which is a member of C(G) is
denoted by CX(G).

A useful type of function mapping graphs onto the
real numbers consists of size functions s(=)x By
definition

s(G) 2 6
G'= G s(G") s

Given such a size functiom, say c{(-), on connected
graphs a corresponding size function cX(~=) on
spanning graphs is to be such that cX(G) is the
maximum of the sizes of its (disjoint) components as
measured by c(*)- One choice for the size s(G) is
the number “W(G)H of vertices of G. Another choice
for c¢(G) is the ((connected) graph's diametemr, as
measured by the maximum graph-theoretic distance bet-
ween two vertices of G.

CLUSTER EXPANSIONS

Consider a general "property™ X and its realizations
X(G) for systems labelled by graphs G. The asso-
ciated cluster expansion is

X(&) = £(G.G") x(F,&0
G/
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where the x(f,G") are f-irreducible cluster
quantities corresponding to X and to the cluster
function f(«,*) which maps a pair of graphs onto the
real numbers such that

F=0 , G¥cG"
) 0 ,G=G‘ Fi0) ,G:
(=2 .,Gc>e6"

f(@G,.G"

For example, for expansiomns of heats of combustiom of
hydrocarbons [7,17-20] in terms of connected-subgraph
cluster expansions the x(f,&*) would be site
energies, bond energies, etc. as 6 increases from 1
site, to 2 sites, etc. A common choice for f(~ ,-)

is the zeta function
0 ,G$&G
1 , G=G

with G, 6 restricted to a set S of graphs such as
C(G) or CX(G)- Other common choices for f{=,=)
retain an "indeps=mddeced™ of the property X and take
the function values to be nonnegative and are such
that f(G,G”) depend only upon portioms of G that are

"close™ to G”. Another example is
> d@uyd) 2 G= 6
£(G,G") ueV(G*)
(V] » Ootherwise

where d(u,G@) is the "degree™ of u in G and the sub-
graphs are restricted to a set S = C(G). This set
introduced by Randic [12]} has been extensively
applied [13] to a great variety of biological
activities..

The cluster expansions may be truncated to yield a
sequence of approximamits, the n3R order one being

s(GQrxsm

X(f,n;6) = = (&) (@, 65))

A significant feature here is that low-order approxi-
mants oftem yield very accurate estimates, as is
commonly individually noted for a vast number of
particular properties. (See, e.g., refs. [6-20].)

A second feature is that in principle a whole hier-
archy of approximants is possible. Differemt choices
for X, f(-,*), associated set S, and s(*) lead to
different cluster expansion approximamts.. A crucial
point concerns.the manner of determination of the

x(£,6%).
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Perhaps the most common approach to estimate the
x(f,6*) 1is to restrict attention to a single low-
order approximamt (with say s(G*)€n=2) and choose the
associated x(f,G") so that X(f,mn;&) least-squares fit
the experimental X(G) for some chosen data set of
systems G. Gordom and Kennedy [1] note that this
least-square fitting approach has the undesired
feature of dependence upon the data set chosem..
Further extensions to higher order would entail a
(typically) ever more rapidly increasing number of
empirical parameters. Thence the physical-chemical
meaning of these parameters becomes clouded and the
possibility of multiple solutions to the least-
squares optimizatiom increases.

A second approach is to determine the x(f,G ) by
"inversion™ ((from small subsystem data)).. That is,
the f-irreducible cluster quantities are obtained
from X(G"") for smaller subsystems G*~,

X(£,67) = =>~ UG, X(G™))
&
where f 1(*,#) is the inverse cluster function such

that

(G, )FI(®@YUG™) = §(6,&™))
Gla

Thus f li(e-,-) for reasonable size graphs is available
via standard matrix inversiomn or via the recursion
relation

f-1(G,6) = 1/£(G,6)

f 1(6,6~-)3GG6 ") = - ——— {61, G (G (&)1 (G* L 6
j G"eE G

This relation is entirely analogous to that for the
Mobius function [34], which is the inverse of the
zeta functiom, and which is already explicitly given
I2-4,28] for several choices of the graph set S. The
inversion approach for the x(f,G") has several desir-
able features: first, the x(f,G") take values
dependent only on the X(G"') for G** 6, so that as
data for larger graphs is added (or improved) the
x(f,G") do not change; and, secomnd, no optimizatiomn
is required but only a guaranteed well-defined com-
putationally tractable inversion problem independent
of the property X.

Yet a third or fourth approach is sometimes possible..
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For instamce, for wavefunctioms the Rayleigh-Ritz
variational principle might be used to make an
optimal choice for the dirreducible cluster wave-
functions.. Treatmemt of many theoretical quantities
is feasible via perturbation expansions..

An illuminating analogy comparing the first two
approaches 1is possible.. The optimization method (in
the n®h order) is analogous to curve fitting an n?®
degree polynomial to a data set of poimts.. On the
other hand the inversion method is analogous to a
Taylor-like series expansion with the x(f,G") corres-
ponding to derivatives and the f(G,G") to the
monomiizls;; more generally the f(G,G") correspond to
(perhaps orthogomnal)) polynomials of increasing
degrees with the x(f,G ) the associated expansion
coefficients..

CATEGORIZATION OF PROPERTIES
A quantity X may be categorized in terms of its
behavior in the limit that a system G = AYB breaks
up into two separate noninteracting subsystems A and
B. Thee fHour comss teeesd ppesdibiilliittess

X(AVB) -+ X(A) + X(B)

X(AYB) = X(A) or X(B)

X(AVB) = X(A)+X(B)

XX ANBB )+ 33X A XX BB ) ++ XX @AY 33U @)
are here termed additiwve, constamtiwe, multiplica-
tive, and derivattiwe, respectiwvely.. 1In the last case

the derivative quantity 3X is associated with a cor-
responding multiplicative property X.

Very frequently attention has in the past been

restricted to additive quantities.. Representative

examples includie:

(a) various energies (free, combustiom, ground-
state, etc.);

(b) entropy;

(c) magnetic susceptibility;;

(d) melting and boiling points;

(e) optical refractivityy;

() chromatographic separation coefficients;;

(g) biological activities;

(h) model Hamiltomiams; and

(@) 1- and 2-particle Green"s functiors..

Actually most of the previous work [[1-20] overlooks

nonscalar examples such as the last two mentiomedi;
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these ideas, howeverr,, have actually been implemented
I35-37] for such cases..

Constantive quantities are in fact just particular

cases of additive quantities, where when the system

separates one of the component subsystem quantities

is zero. But there are many examples realizing this

special circumstamce::

(@) Many molecular excitation energies;;

(b) 1ionization potentials;

(c) 1infra-red vibrational frequencies;

(d NMR chemical shifts;;

(e) dissociation constants; and

() model Hamitomiams for an impurity center in a
crystall ..

Again nonscalar examples occur..

There are many examples of multiplicative quantities:

(@) wavefunctions;

(b) overlap matrices over bases of Slater deter-
minants with nonorthogomal localized orbitals;

(c) statistical mechanical partitiomn functions;

(d many-bond density operators;;

(e) characteristic polynomials for adjacency
matrices;

() matching polynomials; and

{g) possibly idirreducible cluster quantities x(f,@)..

Also if X is additiwve, then exp{X} is multiplicative

and may be used in making cluster expansions even

though X might be the actual quantity of interest..

For instance, Hosoya et al. [10] treatmemt of boiling

points X(G) actually is of the form of a low-order

cluster expansion for exp{X(G)}; similar comments

apply to one scheme [38] for the treatment of

resonance energies.

There are many examples of derivative quantities
also :
(a) Hamiltonian matrix elements for cluster expanded
wavefunctioms;
(b) Hamiltoniam matrices over bases of Slater deter-
minants with nonorthogonal localized orbitals;
(c) the statistical mechanical trace of
H* exp{-H/KT);; and
(d) ordinary (First) derivatives of many
multiplicative quantities..
There also occur second derivative quantities both in
statistical mechanical and quantum chemical
applications..

A key point is that each category entails its own
general type of choice for the set S of subgraphs to
be summed over in a cluster expansiom. For the
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additive case S should be of the type C(G), con-
sisting of connected subgraphs; arguments supporting
this contention for the circumstance of size-exten-
sive quantities are found elsewhere [4,27]. For the
constantive case the relevamt S consists of those
G“eC(G) such that G~ contaimns the smallest subgraph
6*~ associated to a sole nonzero component in the
limit where 6*° is separated off as a noninteracting
subsystem. For the multiplicative and derivative
cases S should be of the type CX(G), consisting of
spanning subgraphs.. Under weak conditions on F(*,*)
it turns out that the irreducible cluster quantities
x(£,6) Factor

x(f,AVB) = x(f,A)*x(T,B)
whenever G=AUB factors ((i.e., when ADB=0))..

Finally there are several interrelations amongst the
four categories of quantities and their associated
cluster-expansion approximamits.. 1f X is multiplica-
tive, then typically In{X(&)} and 3X(G)/X(G) are
additive as well as In{X({,n;G)}, 9X(&,.n;;G)/X(Ff,n;;G),
{AnX}(Ff,.n;G), and {9X/X}(F,.n;G). When X is additiwe,,
then X and its approximants typically are "size-
extensive™ in the sense that X(G)/[W(&)| and
X(f,n;G)/|IV(6) || are bounded as |[V(®]}>*2, and often
their limits exist. When X is multiplicative similar
size-extensivity comments apply to In{X}, 9®X/X and
associated cluster-expansion approximamts. All this
indicates the correct qualitative behavior for
cluster expansions as the system size changes, even
in approaching the infinite extreme. That is, for
instamce, such wavefunction expansions [5] are "size-
consistent” in a sense that many wavefunction
calculations are not [39-42].

CONCLUSION

This brief presentatiom and overview of the chemico-
graph-theoretic method of approximation has sought
several goals. First, we have noted that many
special treatments can be recognized as (often quite
successful) low-order cluster expansions of our
general type. Second, differemt attitudes toward and
methodologies for the determination of the f-irreduc-
ible cluster quantities were indicated.. Third, some
ideas about the categorization of quantities and
associated effects in the cluster expansiomns and
their approximants were hinted at. Fourth, the range
of problems to which these techniques was indicated
to be much wider than oftem thought. As such it is
suggested that the overall view that emerges may
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represent a powerful and wide-ranging new paradigm.
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ABSTRACT

Extensive evidence is provided which shows that
atoms retain to a large extent their identity within
molecules.. It appears that a number of molecular
properties can be rationalized by the model of per-
turbed or modified atoms in a molecule @@M¥). Ato-
mic modifications upon formation of chemical bonds
can be classified as isotropic and anisotropic chan-
ges. The former is given by the atomic monopole
which is a consequence of the intramolecular charge
migratiom. It successfully reproduces diamagnetic
shielding of the nuclei, diamagnetic susceptibility
of molecules and ESCA chemical shifts. The anisotro-
pic part of the electron charge distribution of an
electron in a chemical environment is most easily
described by the hybridization concept. It interpre-
ts directional features of covalent bonds and some
energetic properties of molecules. In conclusion,,
the present results offer an intuitively appealing
picture of molecules consisting of charged atomic
cores immersed in a shallow "sea™ of the mixed elec-
tron density.
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INTRODUCTION

There are several hints which indicate that atomic
bricks are identifiable in molecular buildimgs.. One
clue supporting the notion of a modified atom in a
molecule is provided by molecular binding energies
which are by two orders of magnitude smaller than a
sum of total energies of atoms forming chemical
bonds. The other is given by the X-ray deformation
density maps which convincingly show that the elec-
tron charge redistribution accompanying the molecu-
lar formation is very small /1/. It is, therefore,
not surprising that a large variety of molecular
properties can be expressed as sums of atomic like
entities. We shall discuss first the simplest model
which belongs to the MAM category. This is the so
called promolecule model where spherical and neutral
atoms are situated at the equilibrium positions ta-
citly assuming that their mutual interactiomns equal
zero. This obvious idealization reproduces dquite
closely some diamagnetic properties. Then we shall
remove the electroneutrality constraint allowing for
the charge migratiom. This is of crucial importance
in describing molecular properties involving atoms
with pronounced difference in electronegativity.
Next we shall consider asymmetry of the local atomic
charge distribution by using Pauling”s hybridization
concept /2/ neglecting at the same time the intramo=
lecular charge transfer. This type of approach is
appropriate, e.g., in hydrocarbomns where the charge
drift can be abandoned to the first approximatiom.
It appears that hybridization has a very rich che-
mical content yielding useful information about mo-
lecular shape and size, local molecular properties
like bond energies, angular straim, spin-spin coup-=
ling constants across one bond, C-H stretching fre=
qguencies and the like. Finally, the importance of
the physical concepts in interpretational gquantum
chemistry will be briefly discussed.

THE MODIFIED ATOM IN A MOLECULE (MAM) MODEL

The idea of the distorted atom in a molecule was put
forward by Moffitt /3/ in early fifties. More mana=
geable variants of this approach can be found in re=
cent works of Balint-Kurti and Karplus /4/, Goddard
et al. /5/ and others /6/. An interesting attempt

to define an atom in a chemical environment is pro=
vided by the virial partitioning of the electron
charge distribution /7/ offering deep insight into
some bonding phenomena /8/. We shall adopt a simple
and pragmatic working hypothesis which is based in
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the first place on the assumption that molecules ha-
ve a definite geometric structure defined within the
Born=Oppenheimer clamped nuclei approximatiom. Then
it will be supposed that there is a good bona fide
partitioning of the mixed electron charge. The Mul-
liken population analysis will serve the purpose in
our model calculatioms. This step in the MAM model
building can be easily refined in the later stage if
necessary. In particular, the population analysis
which preserves higher atomic multipoles could be de-
vised if desired. Finally, the electron charge dis-
tributions in molecules will be produced by the se-
miempirical IEHT method, which in turn appears to be
one of the most reliable semiempirical schemes /9/.
The local atomic anisotropies can be represented by
hybrid atomic orbitals #¥0"s). The latter can be
dgenerated in a number of different ways. Since hy-
bridization has not an absolute meanimg, each theore-
tical scheme defines its own scale for this useful
bonding parameter. Hence, if the hybridization is to
be studied in a large variety of sizeable molecules,
a simple and efficient criterion is desirable. The
most economical procedure in a sense of the Ockham’s
razor principle is provided by the maximum overlap
method /10-12/. We shall employ the iterative maxi-
mum overlap (@AMO) method which is capable to give a
good description of the molecular shapes and sizes
particularly in hydrocarbomnrs /13/. The hybridization
parameters produced by the IMO method can be favou-
rably compared with indices calculated by the ab ini-
tio methods /14/.

CALCULATION OF MOLECULAR PROPERTIES BY THE
MAM MODEL

Electric monopoles of atoms and magnetic properties

One of the most important parameters characterizing
a modified atom in a-molecule is the formal atomic
charge. Some magnetic properties can be estimated

by the atomic point charge approximation to a very
good accuracy. One of them is the diamagnetic part
of the temperature independent magnetic susceptibi-

%2 e + an

Her¢ a, b2and c denote the inertial coordinates, K=
=Ne” /4me€(] where N is the Avogadro constant and 08
is the “velocity of light in the vacuum. We have
shown that the gveragg values Qf the electronic se-
cond moments <& " k18> and €£¢*7 can be readily ob-
tained once the atomic chamrgesamd atomic coordina-
tes are known /15,16/:
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Qfiad) + Z_nnkk ®
A P

where sum over A goes over all atoms. The first term
gives a dominating contribution being a quadratic
function of atomic coordinates a’%. QA is the total
electron charge ascribed to the atmin A. The second
term is a relatively small correction to the first.
It is isotropic and arises from the spatial exten-
sion of the atomic orbitals. Interestingly enougth,
the isotropic contribution is constant for all atoms
belonging to the same p-th period of the Mendeleev
system of elememts. Therefore n_ is the number of
atoms belonging to the p-th rowRand k_ are the cor=
responding empirical parameters KTablB 1).

Table 1. Empirical Kpparameters for the calculation of molecular second
moments (in 10"Bcmy)

TOW=p 0 1 2 2 3 4

kp 0.2 1 2.5 3.5 5.5

The latter corrgspond quite closely to the free=atom
Hartree-Fock &(EfF/3)>values /17/ averaged over the
row of the periodic system. Consequemtly, by using
these ab initio results, the equation (2) can be
written in a form free of adjustable parameters. It
turns out that the molecular second moments are not
very sensitive to the intramolecular charge drift.
Hence, the promolecule model involving Q4=ZA ((mnotice
that the minus sign of the second moments is dropped
for the sake of simplicity) has a very good perfor=-
mance in most cases /15,16/. Then the formula )
takes a pocket=-calculator form

= ZA ¢ala 1 % bp*p &)
The charge transfer is important if atoms exhibiting
widely different electronegativities are involved
/18/. Alkali halides deserve a special attention in
this respect. We assumed that 100 % ionic bond takes
place in this family of compounds involving transfer
of one valence electron of the alkali metal to the
halide atom. Denoting alkali and halide atoms by M
and X, respectively, the expression (3) reads as fol=
lows ¢

= Ontigne t Uythlag EpM.[ *Kon @

This formula gives results in good accordance with
the available ab initio data /19/ yielding at the
same time a transparent explanation of the ab initio
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finding that the second moments in NaF and KC1 are
almost invariant to the shift of the coordinate sys-
tem from the alkali, atom to the halide atom /26/.

Hence, the ionic Milx 1 model works here very well.
Summarizing our extensive calculations of the
diamagnetic (@Qangevim) susceptibilities of molecules
/9,15,16,18,19,21/ we can say that formulas (@-4) yi-
eld results of the good quality which can be favou-
rably compared with ab initio and (or) experimental
findings. In some cases they have led to detection
of errors in the literature data. In particular, they
are helpful in determining sign of the molecular g-
=tensor which in turn is experimentally estimated on-
ly up to the sign /22/. In conclusiom, a brief com-
ment on the Flygare”s et al. /23/ method for the cal-
culation of second moments will be made. Their for-
mula reads:

cad> = Z_ zpat + 2 2apcal> + 2.4 @E> ©®

There is an apparent similarity to the formula ((3)
because the first and the last terms in expressions
(3 and (5) closely correspond to each other. Fly-
gare”s approach has an additional term which invol-
ves atomic dipole compomamts<a£>_ The latter are

extracted from a large number of molecular dipole
and quadrupole moments under the tacit assumption
that atomic monopole contributions to these entities
can be neglected.. This is, however, a wrong hypo-
thesis /9/ and consequently the Flygare et al. sche-
me should be revised accordingly..

Diamagnetic shielding of the nuclei (@Lamb’'s shift)
is another property which can be conveniently decom-
posed into atomic components. It was shown by Ramsey
/24/ that the following approximate expression sho-
uld hold:z

AN d@y = sty + (@2/amcd)T i
Tav. @ = ST + (@/3meIZiz/Ry 6D

where © d(A) refers to the free-atom value of atom
A. One immediately observes that Ramsey’s formula (6)
is consistent with the promolecule picture. It yields
reasonable estimates of the average diamagnetic shi-
elding /25-28/. Allowing for the intramolecular char-
ge transfer and including some adjustable constants
in order to improve the performamce, a semiempirical
formula of the form:
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is obtained /29/. Here and QE are dgross orbital

and gross atomic electron populatioms, respectively,
[ g is the A0’'s screening constant and n is the

corresponding principal quantum number. It should be
mentioned that the non=parametrized form kaj=Kas=1

and K ==0 yields also good results. The formula (7)
is more general than the Ramsey's expression (6) be=
cause it encompasses charged species where (6) is not
applicable. Test calculations have shown that IEHT=
-MO electron populations in conjunction with the for=
mula (7)) give reliable diamagnetic shieldings in ra=-
dicals and cations /9/. Less satisfactory results

can be expected in anions because the used IEHT me=
thod has then subminimal basis set. If the charge
migration is highly pronounced like in alkali hali-
des, then the screening constants are functions of

the orbital populatioms, i.e., Eﬁﬁ?f@éb which should

be explicitly taken into account /30/. It should be
also pointed out that the atomic dipole moment method
for the calculation of diamagnetic shieldings of Gi-
erke and Flygare /31/ suffers the same conceptual
drawback as in the case of diamagnetic susceptibili-
ties (wide supra)).

Electric monopoles of atoms and energetic properties

The total molecular SCF energy is roughly given by a
sum of potentials V exerted on the nuclei /32,33/

scp = ZA_- ka %a Va @)

where are atomic numbers and kA are weighting fac=
tors which depend only on the nature of the atom A.
The formula is able to recover about 99.5 % of the
total energy. Since the potentials at the nuclei can
be calculated with a satisfactory accuracy by using
the atomic monopole approximation /34/, the formula
(8) takes a transparent form

WAy / )
8CF ~ A EAE vﬁ AAV) B L‘%B /BAB (9

involving orbital and atomic electron populations.
The 1EHT charge distributions yield total SCF ener-
gies exhibiting standard deviation of 0.1 a.u. /35/.
This is not too bad in view of the simplicity of the
modell. It is worthwhile to mention that adjustable

k parameters are close to 0.5 value, which is re-

quired by the virial theorem.
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The dissociation energies to the ionic limit of the
alkali halides are reasonably well reproduced by the

ionic Miix % point charge model /9/. Trends of chan-
ges are particularly well described. For example, the
energy decreases along the series MX for a fixed M
and X=F/C1/Br and 1. Similarly, if the halogen atom
is kept fixed, the bond strength decreases along the
MX family {(=Li,Na,K,Rb, ¥d_gsbh For large interio-
nic distances the ionic M X model yields almost
quantitative estimates of the dissociation energies.
The atomic monopoles in conjunction with the
electrostatic approximation are extremely useful in
rationalizing the ESCA chemical shifts. As it is well
knowm, X=-ray photoelectron spectroscopy (XPS or ESCR)
is a powerful tool for studying the charge distribu-
tion in molecules and crystals /36,37/. This finding
is based on the fact that binding energies (BE) of
the localized inner core electrons exhibit strong de-
pendence on chemical environmemt. Another interest-
ing feature is that binding energy shifts (& BE) pa-
rallel the changes in electrostatic potentials exer=-
ted on the nucleus of the ionized atom /36,38,39/.
We have shown in a number of papers /40-43/ that, at
the semiempirical level, considerable gain in accu-
racy is obtained if the IEHT method is employed. The
basic formula for the ground state potential appro-
ach (GPM) reads

SBEa = k19 T kala T ka &)

where M denotes the so called Madelung potentiall.

The weighting parameters k? and kg absorb a good

deal of the relaxation energy. However, dgenerally
better results are obtained if the reorganization en-
ergy of the valence electron cloud due to the crea-
tion of the positive hole is explicitly taken into
account. This can be achieved by two models. The
first invokes the equivalent core concept /44,45/
leading to the expression

&BE] = + k3 @ER+4Y) » ki @

if the atomic monopoles are used. Here the bar deno-
tes the equivalent atom possessing the equivalent
core. An alternative approach is provided by the
pseudo=atom concept which simulates the transition
potential describing the ionization process /46/. The
corresponding formula is of the form

ABEs 7 ka9 t kel t ka az)
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where the superscripts TP refers to pseudo-atom enti-
ties. Formulas (11) and (@2) belong to the transiti-
on potential formalism (TPM) for an obvious reasom.
Our extensive I1EHT calculations have conclusively
shown that the electrostatic (@monopols) approximati=
on successfully describes main features of ESCA shi=-
fts in gaseous state and in molecular solids /40~
-43/. Performance of the I1IEHT method is illustrated
by Table 2. Perusal of the data indicates that the

Table 2. Standard Deviatiomns of the ESCA Chemical
Shifts as Calculated by the SCC~-MO Wave=-
functions employing Atomic Monopole Ap-=-
proximation (@n eV).

Atom GPM RPM

L

Qaunnmo=z0Ow

HFOHOOOOQ
1 ] .
VDORNMNABW

e

RPM approach is definitely better for heavier atoms
like Si, S, Ge. The largest standard deviation is
found for oxygen chemical shifts. It should be men=
tioned, however, that the IEHT method has appreciab-=-
1y better performance than other semiempirical me=
thods. This is remarkable because the IEHT method
cen be easily applied to large molecules involvimng
heavy atoms. It proved very useful in discussing
charge distribution in biologically important puri-
nes and pyrimidines /42,43/, sydnones, ylides, keto-
enol tautomerism of ascorbic acid /47/ etc.

Atomic multipole momemts and one-electron properties

Electric dipole and quadrupole moments of molecules
can be reduced to atomic monopoles and dipoles /48/.
One can quite generally say that higher molecular
multipoles can be expressed by atomic multipole mo=
ments /49/. Another property of interest is extra-
molecular electrostatic potential (EP) which provi=
des an indicator of chemical reactivity /50/. It can
be satisfactorily reproduced by using polycentric
expansion of the 1/r operator by using local atomic
multipole expansion /49/ which can be extended to
encompass overlap charges /51/. It should be strong=
ly pointed out that atomic monopoles do not suffice
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and vice versa, the formal atomic charges derived
from molecular EP's /52/ are unrealistic /9/.

HYBRIDIZATION AND GLOBAL MOLECULAR PROPERTIES

Hybrid orbitals /2,6,9/ conform to the local site
symmetry of an atom in a molecular environmemt. The-
refore hybrids represent chemically adapted atomic
orbitals being particularly useful in describing lo=-
calized (@ewis) covalent bonds., The approximate maxi-
mum overlap calculations are well documented /6,9,11~-
=14/. Consequently, we shall briefly discuss some of
the main results. The local hybrid orbitals reprodu=-
ce the salient features of the electron charge dis-
tribution in small strained rings offering a simple
and natural explaination of the bent bond phenomenon
/53/. Spatial characteristics of hydrocarbons are
well reproducedl. Bond angles are predicted with an a-
ccuracy of a few degrees. Larger errors occur someti=-
mes in dihedral angles. This is, however, not unex=-
pected because the nonbonding repulsions are not ex-
plicitly considered and dihedral angles are easily
deformed as a rule ((the barrier is typically a cou-
ple of kcal/mole)). The IMO method has a high predic-
tive power in estimating interatomic distamces. In
several interesting cases the predicted geometry was
correct as confirmed later by experimental measure=-
ments and ab initio calculations /9/. The bond over=
lap integrals can be successfully correlated with the
heats of formatiom. The latter yield reasonable heats
of hydrogenation and strain energies defined by a
scale provided by the corresponding homodesmotic re-
actions /6,9/. In addition to these gross molecular
properties, hybrid orbitals give a simple interpreta-
tion of local bond properties like the spin-spin cou-
pling constamts, C-H stretching frequencies, proton
acidity and last but not least - bond energies. Since
hybridization is a physical model, hybrid orbitals
offer probably the best possible basis sets for ap-
proximate ((semiempiricall) methods. This conjecture
follows directly from the fact that hybrids are sym=-
metry adapted zero-th order local wavefunctions.Hence
hybridization concept is a golden mine which is not
fully exhausted as yet.

CONCLUSION

Several general conclusions can be drawn from the
presented material. Atoms combine in myriads of ways
to form molecules exhibiting different propeties. A
remarkable finding is that electronic structure of
atoms is not scrambled by the formation of chemical
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bonds. Instead, a picture of atomic cores embedded

in the mixed —electron density seems to be essential-
1y correct.. It should be strongly pointed out that
atomic cores involve not only the inner=-shell elec-
trons, but also a good deal of valence electron den-
sity. This is reflected in a number of molecular pro-
perties which can be concomitantly expressed as sums
of atomic-like entities. On the other hand, shared
((nixed) electron densities are well described by the
perturbed atom model, as revealed by the astonishing
success of the hybridization concept. The latter ra=-
tionalizes inter alia the main facet of covalent bon=-
ding - spatial arrangement of chemical bonds = in an
amazingly simple and elegant way. Of course, there
are fine details and subtle molecular properties
which can not be explained by the elementary models
discussed above. They require closer scrutiny and mo=
re involved methods. Nevertheless, results presented
here indicate rather strongly that chemistry is rela-
tively simple although we dom‘t know it in most ca=-
ses. Another point of interest is that proper physi-
cal models usually require simple mathematics. AllL
results given above can be obtained by the use of a
mini-computer or even by a pocket-calculator. This

is a very general feature of the gquantum chemical me=
thods. For example, the Hartree-Fock theory is nume=
rically feasible because it is based on the polycen=
tric LCAO basis set expansiom. This is compatible
with the empirical idea about the atomic structure

of molecules.. Hence the contemporary ab initio metho=
ds are not of an a priori type as some people seem

to thimnk. As a counter example one can mention the so
called one-center method where the total molecular
electron density is obtained by an expansion at the
single (theavy atom) point.This approach was a failu=
re in spite of the sophisticated mathematics. Its
poor performance can be traced down to the underly-
ing basic assumption which is conceptually wromng. It
follows that the choice of a proper physical model
can considerably simplify the necessary mathematical
procedures, leading to the results in a most econo-
mical and meaningful way.

Acknowledgement: I would like to thank the Alexander
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GIANT ATOMS AND
MOLECULES

S.P. McGlymn, L. Klasinc, D. Kumar, P. Clancy, S.W. Felps and J. Dagata
Chemistry Dejpsartmemit, The Louisiana State University, Baton Rouge, LA 70803, USA

ABSTRACT

Recent advances 1in the theory of atomic rydberg states
have led to a reexamination of previous attitudes and to new
modes of description for the highly-excited states of polyatomic
molecwhes.. This paper attempts to clarify some of these notions
and to apply them, in order of increasing complexiity, to the
vacuum ultraviolet spectroscopy of a set of simple molecwles.

With the demonstration by Seaton of a simple connectiom
between the phase shift of scattering theory and the quantum
defect of a rydberg equatiom, the whole of scattering theory
infused the interpretation of rydberg spectra with new powerfuwl
technologiies.. 1t is the aim of this work to apply these technol-
ogies to a discussiom of (i), single-chammel; (1i), multi-chanmeh
guantum defect theory, particularly the Lu-Fane modification of
Seaton's work, and its utility in treating perturbed spectra; and
(1ii), the finah elaboratiom, generalized quantum defect (GQDT)
theory, 1in which both the electron coordinate r and the nuclear
coordinate R are both variable and both productive of continua at
either r or R equah to infinity. GQDT provides a simple means of
introducing chammel rydberg and discrete valence state interac-
tioms. These interactioms, depending on the energy of the ryd-
berg state (i.e., pre or post the first ionization limit) and the
nature of the valence states (i.e., dissociative or non-dissocia-
tive) can lead to autoionizatioms, predissociatioms or compli=
cated energy/intensity/bandshape behaviiair..
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INTRODUCTION

The purpose of this paper is to discuss the new field of
giant atoms and molecules [1], 1t begins with the n-dependency
of atom size and proceeds from there to discuss the ways in which
the physics and chemistry of these "giants™ differ from the ordi-
nary. 1n doing so, we have chosen to be eclectiic: that is, we
use the opportunity to present odds and ends of hitherte unpub-
1ished materiiah from our own laboratories.

We also attempt to present a brief outline of single-
channell, multi-chammel and generalized quantum defect theory
[2,3,4). We do so with intemt, because we are convinced that
this approach provides the method of choice for theoretiical
investigations of molecular electronic spectroscopy and molecular
dynamiics. Unfortumately, limitations of space dictate a certain
brevity and our discussion is mainly aimed at demonstrating
simplicity and pertimeme.

Many varieties of "giant™ molecule exist and many of
these have nothing at all to do with Rydberg states. For exam-
ple. the delocalized excitatioms so common to the ordered solid
state (e.g., excitoms) [5] could welll be considered to represent
"giant" excitatioms, at least in a spatial semse. We wibh not
consider such excitations in this work. Howevelr, we do consider
one sort of delocalized excitatiom, namely a resonance phenomenon
that typifies the spectroscopy of negative ions in aqueous phas-
es. This phenomemom, commonly termed "charge transfer to solvent
(CTTS) [6], is included here for two reasoms: firstly, we be-
lieve the resonance description to be appropriate and we demon-
strate this by specific consideration of the hydroxyll ion, OH ;
secondly, such resonances may represent the norm, rather than the
exception for smalh negative ions, ones which may not possess any
bound rydberg states whatsoewsr. But, all in all, the inclusion
of this topic is another example of the eclecticism that infuses
this worlk.

THE SIZE OF RYDBERG ATOMS/MOLECULES

Atoms or molecules 1in highly-excited Rydberg states
(1.e., states for which the principall quantum number n is big)
can be exceedingly large. Indeed, since they can be considerably
larger than either polymers or macromolecwles, it is not improper

to refer to them as "giant atoms™ or "giant molecules™ ... a
terminology that is now generally accepted and, in our opiniom,
propa.

The best way to appreciate just how large a highly-
excited Rydberg entity can be 1is to direct attention on the
hydrogen atom and the dependency of its physical properties on n.
These are listed in Table 1. 1n oerder to emphasize size, we now

R Q
direct attention to the n dependency of the electronic "radius”
f. We alse choose two very commonplace molecules, namely benzene
and methyh d{odide, in order to make our conclusions concrete:
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Table 1.
Dependence of Some Physical Properties of Rydberg State of a Hydrogenic
System on the Principal Quantum Number n.

PROPERTY n=DEPENDENCY
Radiii us

Cross-sectiomall area

Volume

F(Adjacents)d

Feseries)?

AE (adjacents)

p(ey o]

Electrostatic binding energy
Electric polarizability
Diamagnetic susceptibility
Spin-orbit coupling

Exchange energy n (2<x<7)

-3

a) Transition probability between adjacent rydberg levels n
n+i

b) Transition probability in the individuall bands of a rydberg
series m > n, where n = m+l, M2, mM+3, ete.

¢) Energy separation between adjacent rydberg levels A +» n+l

d) Density of rydberg levels of a given series in the energy
intervall &E

=--Benzeme: The circlg which just encompasses the ben-
zene hexagom has r = 1.4 x 10" em.  Thus, whem n = 30, r = 3.2 x

10-8em (320A); and when n = 100, r = 3.5 x 10*3em (35004). 1t is
important to stress that rydberg states of benzene for which n >

30 have been observed (i.e., that "benzeme™ with r > SZOX does
exist) [7]-

=--Methyll iodid: Methyh iodide 1is not spherical, the

o

C-H bond distance being 1. 093 and the C-I distance being 2.0M.
If we assume this CAv molecule to be roughly sphericall, we find r
= 1.55 x 10 Rem and therefomm” its size for n = 30 and 100 should
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be 5.6 x 10" cm (563) and 6.2 x 10°° (620&)” respectiivehy..
Rydberg states of methyh iodide for which n > 35 have been ob-

servedi. That s, CHg[ molecules for which r > 56A exist [8].

These sizes appear in context when we note that a stan-
dard cell-walh proteiim, for which the number of amino acid resi-

dues is ~100, has a root mean square radius Fens = 1103; and that

one of the very largest polymers, say polystyrene of molecular
[+]

weight 106, exhibits an rpp$ - 400A. That s, known rydberg

states exceed macromolecules in size.

Finalby, the use of two color laser spectroscopy has led
to the detection of molecular rydberg states for which n = 65
[9)- 1ndeedi, in principle anyway, there exists no reason why
appropriate molecules should not exhibit discrete rydberg states
for which n > 100. That is, molecular rydberg states of radius
greater than the largest knownh polymer have been detected already
and ones that are at least ten times larger willl be detected
shorthy..

Another way of looking at size, one with important conse-
quences for the question of existence criteria for rydberg states
in condensed media, queries the number of solvent molecules
sampled by the rydberg electrom of a giant molecule that is
embedded in the solvemt. 1f we take the n = 30 rydberg state of
benzene and if we assume a close-packed solvent structure in
which each solvent molecule is sphericall and possesses a radius r

o
= 1.75h, we conclude that the rydberg electron of benzene samples

108-10F solvent entities during the course of one orbiit. That is
a very large number, indeedl. 1t suggests that a), such a rydberg
state cannot exist in a condensed medium; b), if anything resem-
bling a rydberg state exists at alll then it surely must behave as
a Wannier excitom; and c¢), an exceedingly high probability exists
for a trapping of the rydberg electron at some impurity or tran=
sient defect site (i.e., charge transfer to impurity or to sol-
vent [CTTL] or [CTTS]) in the solvent medium.

1t is clear, themn, that the rydberg states of atoms and
molecubles can readily surpass in size any knowh macromolecwle and
that the terminology "giant®™ is an apt deseriptwr.

CONSEQUENCES OF SIZE

One consequence of size, namely existence criteria for
discrete molecular rydberg states in high pressure or condensed
media, has been alluded to already and willl be discussed in some
detaiih later. For now, we content ourselves with a few, terse,
important observatiioms, some of which willl be elaborated in the
next sectiam.

(i) DiamagnebDiamagaetpeilsusteptibithtyrswitbsdtsectosnadecti
nd dependemece, wild swamp any paramagnetism of the molecular
systeim. That 1is, a linear Zeeman effect wilh be supplanted, at
moderate n, say n > 8, by a quadratic field dependemce, and
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previously parity-forbidden transitioms willl begin to acquire
intensiity.. At higher n values, the situation willl be complicated
further by progressive onsets of 4-miximg, n-mixing and various
types of Landau resonamcas..

(1) As with magnetic field effects, so also with elec-
tric field behaviimr. The electric polarizabibity, with its
volume dependemcy, wilih completely dominate static dipole field
effects, even at moderate n. 1ndeed, even the induced dipoles
are not guaranteed to lie either parallieh or anti-parabbeh to the
zero-field static dipole momemt, should one exist, of the ground
state entity. And, as in (i), the induction of n- and 4-mixing
willl cause the appearance of many previously forbidden electronic
transitions.

(iii) Spin-orbit couplimy, £, and core/rydberg exchamge,
K, energies drop off rapidly with increasing n. However, the
exchange energy drops precipitously (See Table 1), the result
being that spin-orbit coupling dominates even at gquite low n.
Thus, 1in the atomic case, E/K >> 1, for n > 5 and (j,j)- coupling
obtains. 1n the molecular case, (ft, i))«oupling willl dominate
the affairs of molecular rydberg states.

(iv) The density of rydberg levels at high n, p(E)sE,
becomes high (See Table 1) and the spacing between them, AE,
becomes smalll. 1n fact, many level separatioms fall in the
microwave region and, since the energy of these levels is very
sensitive to applied electric fields (see item ii above), such a
system may have manifest technologicall importamee. Similarhy,
since the ionization potemtial refers to n = », the gross sensi-

tivity to electric field, implied in the nﬁ-dependence of polari-
zability, may also provide certain technologicall advantages. The
two technologiicall possibilities hinted at here willl be elaborated
later. However, it is emphasized that these are randomly chosen

and only exemplify the myriad device possibilities inherent in

the area of gtant atoms/mollecidess..

(v) The large size of the rydberg orbitall suggests that
the emphasis should 1ie on large r rather than smalll r behaviiar.
1n turm, this suggests that a scattering-theory approach or some
variant thereof might be the approach of preference even for
reasonably tightly-bound rydberg electrams. Such a variant
exists and is known as quantum defect theory (QDT). 1ts basic
prenise consists of the assumptiom that the motion of the rydberg
electron (or electroms) whem it is outside the atomic molecular
core may be treated differently from its motion when it is inside
that core. The advantage of this dual view is that the proper=-
ties of the separate motioms, when appropriately parametrized and
when matched at the core boundary, lead to relatively simple
analytiicah formulations for energies, transition probabilities,
band shapes, angular distributioms of ionized electroms, etc. We
willh diseuss certaim of these formulatioms in some detaiill.

(vi) 1t is welll to emphasize that some expectedly small
rydberg states (i.e., ones of low n) may acquire "giant™ charac-
ter by virtue of interaction with ionization contimum. A case in
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point is the phenomenon of autoionizatien in these low-n rydbergs

of xenon that terminate on the 2nd ionization 1imit, 1 (sz),
These are usvally referred to as Beutler-Fano resonances [8].
Similar effects also occur in molecwhes, as for example in the

low-n rydbergs that terminate on the 2Ei 19R1%ati6R of
gaseous methyl iodide [10]). Howeverr, there exists another type
of autoionizatiom, one that ocecurs in condensed media and which
is commonly referred to as "charge transfer to solvemt™ (CTTS)
{6].- 1t is our contention that the CTTS precess is actually a
resonance phenomenon and that it does confer a form of giganti-
cism on the molecule in which it occurs. However, this form of
glganticism may have little or nothing to do with rydberg states.
In view of that, a seeking for balance suggests that we discuss
it in some detaiill. That we wiblh do later.

Finally, we emphasize that we wilh not discuss any form
of exeiton behavior (which, of course, is also a form of orbital
giganticrism).. This topic has been addressed by others and we
refer the interested reader to those sourees.

MANIFESTATIONS OF SIZE

We now discuss items (1)-(vi) individuablhy, the primary
emphasis being on items (v) and (vi), with the others receiving
terse but illustrative treatmemi.

(1) DIAMAGNETESM: The diamagnetic magnitude (11} is

given by
Hy = (e2B2/8m)ntagf

where B is the magnetic field and ag is the Bohr radius, and the

n*-dependehee is explicitly statedl. Relative to Hy we may now
formulate the various onsets for different magnetic perturba-
tions.. These are:

2-Wixiingy:  Occurs when 2R/n3 ~ Hy, R being an electrom

coordinate in a center of mass frame. Totahl angular momentum
loses its "good™ quantum number characteristiec in this regime
whereas n remains unsulBiiedl.

A-Mixing: Occurs whem 2R/n3 >>HJ. Adjacent rydberg

manifolds merge under these conditioms and the spectrum may
beeoie "Aon-rydberg.”
Strong Miximg: Occurs whem 2R/n3 ~ hw /Bn where w 1s

the eyelotron frequency = =eB/m. At this point, coulomb and
extermah magnetic field forces are effectively comparablie.
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Landau Regiem: Oeeurs whemn 2R/n3 <<hwg- The dominant

force is now magnetic in nature and the result is an oscillatory
spectrum reminiscent of cyclotron resonance behaviwr.

(ii) POLARIZABILEMY: The extreme sensitivity of the nB
behavior is best illustrated by Figure 1. This figure compares

6p[3/212100(5/213
16734.15cm-1

5d[7/2],+29¢
>
16732, 46cm

Figure 1. A comparison of the effect of an rf field on bandshapes of two rydberg
transitions, one to low n (n = 10) and one to high n (n = 29), in gaseous xenom.
The broadening of the 167322466om'Lband is attributable to extensive €-mixing
with the nominal € = 3 terminal orbital for this transitiom. This spectrum was
obtained by optogalvanic sensing [12].

the bandshapes of two adjacent rydberg transitiomns, one of rela-
tively high n, the other of relatively low n. The large half
bandwidth of the high n transition is the result of extensive
£-mixing produced by an rf field, whereas the low n transition is
unaffected by that same fielldl
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(iii) SPIN-ORBIT COUPLENG: This topic has been discussed
in some depth [10l. Consequemtly, it wilhl suffice here to provide
one very illustrative, hitherto unpublished set of observatthianss.
0f the four distinct transitions that result from the 5p6s
rydberg excitation of CHgl,, the oscillator strength ratio

to the two terminals states [13]

FCnpsecny = e + @+ R

turns out to be a very sensitive function of K/E. A plot of this
function is given in Figure 2 and superposed on it are the exper-
imentah data points for 5p»s6 (HI), 4p+5s (HBr) and 3p»ds (HCI).
Obviowshy, the fit of experiment and theory is excelbemit. Fur-
thermore, it is quite clear that HI, even in its lowest energy
rydberg states, represents an (fiLuw)- coupling situatian.

20~ HCI

5r HBr
HI

P

0 0.8944 2.1794
K/C ——

Figure 2. A plot of the observed oscillator strength ration F(T1 MA@l Dfor the
hydrogen halides versus the exchange/spin orbit ratio K/£. The solid curve is also
the theoretical plot.

(Gtw)=- coupling in the higher states of these molecules,
even in HF, can be taken to be complets.
(iv) TECHNOCAL DEVICES: The large rydberg densities at

high-n imply smalll energy separations and the ng-dependence of
the polarizability implies the ability to alter these Tlevel
separatiiors. The conjunction of these two characteristies sug=
gests the use of high=-n rydberg systems as broad-band microwave
detector/amphiifiiens. Finally, the ease of field-ionization of
rydberg systems for which n > 100 and the ready detectability of
the field electroms suggests the use of these systems as weak-
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field detectars. A schematic of both these devices is given in
Figure 3.

—

Tom 0
) PRI | P T

Figure 3, A schematization of a broad band microwave detecten/amplifier and a
weak clectrical field sensor. The atomic core is denoted by a large solid poinit, the
optical electron by smaller dots. The large size of the rydberg atom is shown in the
middle circuit and the complete breakdown into core and electrom, and their
attachments to the appropriate electrodes, is shown on the extreme righit.

The reader may choose to "invent™ other uses as his/her
mood dictates.

(V) QUANTTUM DEFRECT THEGRY: An overview of this topic is
available in Rau [2], Lu (3]} and Greene [4], and the interested
reader should consult these authors for detaiils. We shalll devel=
op the topiec in stages, starting with the simplest problem,
namely the one-electron Coulomb problem.

--- One-electron Coulomb probliem: We begin with the hydrogenic
atom. The radial Schroedinger equation (in Rydberg units) is

2 VA
& opewn) ;B p e B -0
drs 3 ¥
where
e = —Zé/k§; k= wy for e<0; keiy for e>0
The bound states, e<0, are given by the regular Coulomb function
f, which asymptotically is
f = u(v,p) sin = v(w,r) cos mv

where U 18 a rising and v a falling expomemtiial in r. Since
beund functions must vanish at r2s, we find
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sin Av = 0

and, consequemtly, v must equal an integer n and the energy
becomes

We now remove the hydrogen-like restriction by introduc-
ing another potemtii@l term V such that the radiah equatiom, stikh
spherical, contains the added term ~2¥. We willl alse suppose
that V is short-ranged so that at distances greater than some
cut-off distamce, say r , V=0 and the hydrogenic Schroedinger

equation is recoverstl. That is, an excited electron in any other
atom than hydrogen sees a complicated potemtiiall, one that is
usually stronger than -1/r, at r<rg and a Coulombie potentiall at

r>rg- The boundary conditionm at rg,, namely that there be a

smooth joining of the interior and exterior solutioms to the
Schroedinger equation containing V, yields for r > rg

Fjlie(r) = f&'(r)cos - ggjj((rb;sihn

where f and g are the regular and irregular Coulomb functianrs.
In the absence of a core (i.e., V=0), the solution reverts to f
simply because the boundary r retreats to r=0. That is, p¥o as
r Jo.

i Using appropriate asymptotic forms for f. and g¢., we can
rewrite J J

F.i(r‘)2 - U&Sin n(vﬂl?é‘)wm n(wuu’;l)

whence if follows that

sin nt((\wuﬁ) =0

and

Sng

1n this way, the Rydberg equation has been establiisiad.
1t has also been determined that n is an integer and that p’é,, the

f-dependent non-integer part, is descriptive of the core effects.
The quantity pg is known as the guantum defect and its physicall

interpretation isstearghighufemird: 1fVv s attractive, the
radial wavefunctiom is pulled ihtko tthe conee witeeess, &ff W i
repulsive, the radial wavefunction is repelled by the core; this
attraction/repulisiion is measuredi, in terms of its effects on the
hydrogenic energy, bybyu p anahd,iin terms off its effects on the
hydrogenic wavefumctiom, By the phase shift &-mp). That is, pj
is the phase difference of the functioms F and ffz
---Single-chamrel quantum defeet theory (SQDT): The
treatment just givenm involves a single ionization 1imit and it
treats only those leh@kbdstHamtaomerge am that 1imit. 1t is
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known as SQDT. 1t has the advantage of physicall simplichtty. It

also places levels that lie above or below that 1imit on much the
same footing (i.e., it does not impose any artificiahl 1imit on

the size of the basis but includes all 1levels, discrete and

contimuum, into the same complete basis set).

=--Multi-chammel quantum defect theory (MQDT):  MQDT

recognizes that most systems possess multiple jonization limits

and that it is not a simple matter to assign a quantum defect teo

a given Rydberg levell. Thus, if the system possess two distinet

limits 1, and 13, it is not clear that the quantum defect for a

Rydberg level of energy e should be given by e = L. * 24/(n-wy
or from e = -~ nyim‘-p‘)z- This inherent ambiguwity in the

assignment of a specific level to a specific chanmeh is merely an
admission that considerable chanmeh mixing may occwr. Thus, at
the energy £, the eigenfunction may be writtem as a superposition
of the various chanmells. One such superpositiom, for r>rg, is

= § @§ [f(vi,r) épﬂ cos p Aa
-g‘wi,r) LU sin A A J

where ¢ represents the wavefumction for the igq_ion core, for

spin ahJ for angular momentum coupling in the iU chammell.. That
is, only the radial part of the outer electrom is excluded from
¢).. This wavefunction has a rather simple interpretatiiam. Once

one speaks of a core state such as ¢, one is essentially speak=-

ing of a fragmentation chanmell in which the core and certain of
the opticall electron characteristies are held fixed; in other
words, one is describing a situation that obtains only at large
r. 1In the case of an attom thtits weedld be a (Jg,j)-coupled situa-

tion. At smabl 1, on thise odticer haadd, core-electron interactioms
may be so large as todwnxﬁfthneALf{hWEehbdmdse@aaatimoasaaddooae

must speak of compound states or compound chammels. These are
best described, particularly in lighter atoms, by LS coupliing.
They are, in fact, referred to as arci@mnels. 1In this context

them, is merely an element of the matrix that projects i onto
a (i.e., of the matrix that transforms the (Jg,j)-set into the
(L,5)-set)).. is termed the frame transformatiom and as

previously, is the phase shift induced in the large-r single-
electron function caused by scattering from the core.

Facile ways of using MQDT have been devised by Lu [3} for
atoms and Dagata [8] for molecwhss.

---Generalized Quantum Defect Theory (GQDT): GQDT is
necessary for the extension from atoms to molecubes, where dis-
crete and continuum states may also be built on excitatioms of
the atomic framewoidc. That is, we must admit the possibility of
rotationall and vibratiomasl motions and, hence, of dissociative
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molecular evemts. To be precise, for the moleculle, we may write
V as

V= Vax * Vo * Vs * Vs * Fr
where the exchamge, spin-orbit and spin-spin parts are commen to
both the atom and the molecule but where representative electronic
nuclear coupling terms (for example, spin uncoupling Fas and

dynamic Jahn=Teller Vﬁ% terms) now mix the i/a channels with

framework chammels. This sort of coupling may have two important
consequencass: it may lead to Born-Oppenheimer (B0) breakdown
and,, in fact, provide a way of handling the non-BO situatiom; and
it implies that the frame transformatiom matrix must be general-
ized to cover body frame/laboratory frame basis set superposi-
tions [14].

Such GQDT approaches are in process of refinemgnit. The
reader is referred to Greene [4], and Dagata and McGlynn [14] for
further reading 1in an area that is destined for importaics.

(vi) CHARGE TRANSFER TO SOLVENT (CTTS): The topic of
rydberg states of neutrall molecules in condensed media has been
discussed by Jortmmr. We wilhl not engage this topic further.
Instead,, we willl broach the topic of charge transfer to solvent
(CTTS) transitiais. Such CTTS transitioms are common to smalh

inorganic anions such as 1 , CN , SO3, OH , ete. 1t has been

assumed that the excess negative charge on these ions causes them
to have low ionization potentials and, hence, low-lying rydberg

states; and that these rydberg states, because of a presumed

big-orbit character and a low energy, are the naturall precursors

to CTTS and the productiom of trapped electrens. This, ne doubt,
is an interesting suggestiom but one which may be flawedt:

Firstly, if the ionization potentiall is very 1low, the
potentiall surface on which the most leosely-bound electrom moves
may webl be supportive of only one bound state, namely the ground
state. Thadt ibs, itt ibs qgitee poesdbee thadt noo hiseadd excdtedd
states, rydberg or otherwiise, exist in many such ions. 1n fact,
in an atomic negative ion, since the core possesses zero charge,
rydberg states cannot exist..

Secondly, if CTTS is a very probable and very fast pro-
cess, then this process is best thought of as a resoname®. That
is, CTTS may be akin to autoionization in a condensed mediwm. As
sueh, the resonance "state™ may be described by a binedah wave-
functiom, a part from the ion and a part from the surrounding
solvent medium. Since that from the medium may welll be domimamt,
it is this part that may be determinative of energy, symmetry,
etc. with the ion part important only in that it confers transi-
tion probability on the opticall excitation process. 1n that
sense, the ion part of the binodah wavefunctiom need bear no
relationship to any state or type of state, bound or contimuum,
of the gaseous iom.

The topic of CTTS, being related to big-orbit states,

wilh now be discussedi,, the hydroxyl iom, OH , being takem as
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exemplar. However, we reemphasize that neither this implied
big-orbit nature nor our discussiomn of CTTS in this work suggests
any necessary connectedness to molecular rydberg states.

The ionization energy of OH%” where g denotes gas phase,
is only 1.8eV[1%]l.. The ground state of OHg is welll charactesttzed.

However, no bound excited state of OH Hhas ever been detected and
none is to be expectetl. Thus, with reasonable assuramce, we may

accept that OHé possess only one bound state, namely the ground
state.
When OH% is introduced into water, a diffuse absorption

band onsets at ~2500§ (~5e¥).. That is, aguatiom of OHg to yield

OH;& leads to absorptiom in a region in which OH" does not absoirh.

The resolution of this rather puzzling result is provided by the
further observatiom that the 5eV opticall excitation leads to
production of eaq trap (as verified by near infrared absorptiom)

and hydroxyh radicals, OHa (as verified by readxadetection of
the characteristic Gaydon emission system at 3300K). As far as
is knowm,, the evolution of OHa and e-aql are esentiallg coincident

with the absorptive act. Thus, the CTTS event
0I-||aq +hy = OHa

g " Cag

is almest surely a resonamce, an autoionizatiom that evolves into
the cited products.

A considerable amount of thermodynamic data is available
for hydroxyll radieah, hydrexyll ion and the electrom, in both
gaseous and aquated states [16].. These data are used te con-
struct Figure 4. The known data peints in Figure 4 are all
incorporated in the energies of the horizemtah 1ines, the only
one that is indeterminate being that for OHaql + e-aq trap which

may lie anywhere between -2.2 and-3.8 eV, dependent on trap type,
water purity, etc. The potemtiall energy curves are purely schema-
tie, the upper referring to the gaseous system and the lower to
the aquated situatiiam. The dominant conjecture contained in this
schematization is the supposition that the CTTS event leaatling to
OHaq + e=&q proceeds through an intervening OHaq + e set of

intermediate products and may alse eventuate in an OH_ + e-
set of final products. 39 39~ tFap
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Figure 4. A schematization of potemtial energy curves for OHf in the gaseous
(upper) and aqueous (lower) phases. The CTTS transition is denoted by the 5eV,
arrow which terminates in an effective comtinuwm.. The 182V arrow denotes the
ionization potemtial of OII‘II’E and the 3.32V arrow denotes the “barrier-firee”~
ionization potemtial of OH* .. The barrier in the lower curve occurs at -@.42V and
corresponds to OHgg+e". Tne dashed line at <22V corresponds to

OH +e frge. The symbol r denotes an electron coontiimzte..

The resonamee, now placed at 5ev, is alse shown on Figure
4, the termimi of the optical absorptiom being located in a
continuum that barely dips below the potentiiall maximum at -0.4eW.
In view of this, the inner region (i.e., low r) part of the
binodwl function descriptive of the resonance "state™ can and
surely does possess characttan¥sties of virtually any excited
state (i.e., rydberg, valence, dissociative, ete.) conceivable
for an OH=’(‘] system. Nonetheless, the absorption is surely one

that leads to the initial production of a giant molecule ard to
the rapid evolution of new sets of products that more aptly
describe the ressomance that does any supposed connectiom to
states of the OH9 entity..

CONCLUSION

The purpose of this work is straightfForvandi: To point
out that attitudes and techniques convenient for the study of
low-energy, intravalemee, molecular states may have little or no
bearing on the types of theory and experiment required te provide
insights into vuv spectroscopy. A secondary objective of course
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consists of the demonstration that wvuv spectroscopy has much
to say about electromic structure and dynamics and that it
willl be very surprizing indeed if it does not alter our con-
ceptual approaches to both structure and dynamics in very
fundamemtall ways.
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Chapter 19

DIFFERENTIAL AND
ALGEBRAIC TOPOLOGY OF
CHEMICAL POTENTIAL
SURFACES

Paul G. Mezey
Department of Chemisttry, University of Saskatchewan,
Saskatoom, Saskatchewan, Canada STN OWO

ABSTRACT

Differential and algebraic topology are exceptionally
suitable mathematical tools for the 1ocal and global
description of molecular structures and reaction mechamisms.
In Reaction Topology geometrical concepts, such as nuclear
position are replaced by topological concepts, such as open
sets of wave packets. With respect to potential energy
hypersurfaces, topology offers a new approach to the concept
of quantum chemical reaction mechanisms. Whereas chemical
species are represented by catchment regions of potential
energy hypersurfaces, reaction mechanisms are represented by
homotopy equivalence classes of reaction paths. These
reaction mechanisms form a group, the one dimensional
homotopy group of the low energy regions of the potential
energy hypersurface. This group, referred to as the
fundamental group of reaction mechanisms, serves as an
algebraic framework for computer-based quantum chemical
synthesis planning and molecular design.

INTRODUCTION

The energy content of a given collection of reacting
molecules depends on their mutual arrangements in the
ordinary, three dimensional space. 1In a semiclassical model
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of chemical reactions these arrangements can be described in
terms of some internal coordinates, e.g. internuclear
distances, bond angles, torsion angles, etc. When studying
many chemical problems one may disregard the translation and
rotation of the entire molecular system as a whole within a
laboratory frame coordinate system. 1In such a case the
mutual molecular arrangements (@muclear configurations) can
be described within a 3N-6 dimensional, m™reduced™ nuclear
configuration space M, that is a metric space (there N is the
number of nuclei, and we assume that N>2). One can
represent the energy of the reacting system of molecules in
some specified electronic state as a hypersurface E(K)
defined over M. The outcome of chemical reactions is, of
course, strongly influenced by this energy hypersurface. 1In
general, a chemical reaction can be thought of as a change
in the nuclear configuration that corresponds to a formal
displacement from one multidimensional basin of E(K) to
another. These basins and analogous, lower dimensional
point sets on the energy hypersurface are called the
"catchment regions"™ of E(K).

Potential energy curves, surfaces and hypersurfaces have
been studied for many reactions. Some (usually rather
limited) parts of many hypersurfaces have been calculated
and analyzed using quantum chemical methods [for recent
reviews see e.g. 1-7] and also using the methods of
molecular mechanics (empirical force fields) ([8]. Most
studies on the local properties of potential surfaces have
been based on the semiclassical geometric model of
molecules. Nonetheless, the fact that molecules are quantum
mechanical entities is well recognized. Whereas the
geometrical concepts of nuclear position and internuclear
distance are satisfactory within a semiclassical model,
alternative models are also explored, which are inherently
more compatible with the probability density approach and
the uncertainty relation of quantum mechanics. One such
theoretical model, where geometrical concepts are replaced
by topological comceptts, is the subject of this review. In
addition to a brief overview of some chemical applications
of differential and algebraic topology, a simple method is
given for the introduction of a fuzzy set structure and a
fuzzy classification of chemical species within the
differentiable manifold model of potential energy
hypersurfaces.

DIFFERENTIABLE MANIFOLDS, MOLECULAR GEOMETRY
AND MOLECULAR TOPOLOGY

The mass-weighted cartesian coordinates of N nuclei

define a 3N dimensional nuclear configuration space 3NR.

The n=3N-6 dimensij%nal reduced nuclear configuration space M
is obtained from "R as the quotient space with respect to
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the laboratory frame equivalence of nuclear configurations
related %o one another by rigid rotation and rigid
translation [9,10). The potential energy functional can be
represented as a continuous hypersurface E(K) over space M.
Various chemical species are represented by catchment
regions [11,1Z] of E(K). Each catchment region C(%,1)
belongs to a critical point K(%*,i), and is a collection of
all points K of M from where a steepest descent leads to
K(x,i). 1In the above notation W\ is the critical point index
of the i-th critical point K(X,i). For a stable chemical
species X=0, (that is, K(A,i) is a minimum), for a
transition structure ("transition state™) N=i (#hat is,
KfX,i) is a simple saddle point) and for formal unstable
chemical species represented by lower dimensional catchment
regions C(A,i), A >2. Note, that in a complete catchment
region partitioning of M these lower dimensional catchment
regions (even zero dimensional, single point catchment
regions C(n,i)={K(m,i)}, representing a highly unstable,
formal "chemical species™) play an important mathematical
role, although their direct chemical significance is
minimal. (However, they represent constraints on the
chemically important stable species and transition
structures). Those catchment regions from where steepest
descent paths lead to points where E(K) (Gn fact, the

original E(r), rcmR) is not twice continuously
differentiable, are denoted as C(-1,i).

These catchment regions generate a complete partitioning
of Mz

M= U cex,b. @

It is convenient to introduce local coordinate systems into
these catchment regions. If T denotes the metric topology
on M, then (,T) is a normal topological space that fulfills
the following separation axiom: if CQA,i) and C(X*,j)
denote the closures of catchment regions C(%,i) and C(A!,j),
respectively, in the metric of M, and if

cex, i) O cv .j) = o @)

then there exist T-open sets G(i) and G(j) such, that

c@, DeE i) ®
c\",J)  6(3) aGh “
e Rao(j) =0 . G)

We may assume that an open set G(i) is given for every
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catchment region CC%*ji) that satisfies the above conditions
for all possible pairwise combinations of catchment regions,
Evidently, such G(L) open set exists, since, if G’\(i),

e GQ(L) are sets chosen for a sequence 1, 2 u. k o%‘
pairs, “involving a fixed catchment region C(®,i), then the
set

k
o = MG ®

fulfills all k separation conditions.

We assume that a class {G(@)} of such sets is given.
These T-open G(i) sets can then be used to define
diffeomorphisms ¢¥@) between subsets of M and subsets of the
n-dimensional Euclidean space E. We shall assume that for
every index i a diffeomorphism

$(i) :6(D) H(@) )z fE @

is given, where H(i) is open in the usual metric of RE.

The Euclidean space E is provided with the usual
coordinate functions {u }, which are compatible with the
usual metric, and are interpreted by

CIER W)

where

€= (] oen tg»e'r‘rs. @)

The space (M,T) is a metric topological space, hence it
is also a Hausdorff space. Fumcttion $[6@) idis a
diffeomorphism, hence it is also a homeomorphism form an
open set of M to an open set of E. These are precisely ithe
conditions required for a coordinate system, consequently,
d¢{(i) is an n-dimensional coordinate system in M. Since the
catchment regions generate a partitioning of the nuclear
configuration space M it follows that open sets {G(@)} form
an open cover of M:

M =) G(D) - Qo)

That is, the nuclear configuration space M is covered by
domains of n-dimensional coordinate systems &)},
consequently, M is an n-dimensional topological manifold
3,9j-

The G(i) domain of coordinate system ¢¥@) is called the
coordinate neighbourhood of $(i) and if K& G(i) themxth(i) is
said to be the coordinate system at K.

The composition of fumction f and g, that is, followed
by £, is denoted by f.g,
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f.gA—3B '
where

gX—>Y Q2)

f1Z—>W 3
and

A= g?l(z)ﬁ X, a»

B<W. @s)

The domain A of f.g may be empty. The composition of
coordinate function u and diffeomorphism ¢ will be denoted

Byt
‘k = ‘k - ¢> . (16D

Usually the same term, "coordinate system™, is applied for
both € and the set of functions

G Xz wee X)) = b 2e 5 weo un-le). (A7)

The concept of coordinate neighbourhoods allows one #o
introduce a fuzzy set [14] topology into M and %o give a
fuzzy classification of nuclear configurations within M.
The family

G = {GE)} @8)

is a generating subbase for a topology TU on M. One may

define a family of membership functions t)n.-} fulfilling the
following conditions:

e @9
7x ® =1, Vkem @0)
i
/élt((K) = 0 if K¢oq() @1)

where 1 = [0,1], the unit interval.
From egs. (20) and (21) one obtains

M = 1 ir keld 5@). @2)

The introduction of fuzzy membership functions relaxes
the strict assignment of each point K(each nuclear
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configuration K) %o one and only one formal chemical species
C(A,i) as expressed by the "element of" relation KeC{®Q,i) .
In the fuzzy set model where chemical species are
represented by the G(i) open sets, it is possible %o regard
a formal nuclear configuration K to belong %o #wo or more
chemical species, to a "degree™ expressed by the magnitudes
of the membership function values A. (K).

A simple choice for the membership functions, that
fulfills conditions (19)-(21) is as follows. Define a
function

pcM—> {positive integers} @3
# () = number of G(i) sets for which Ke&(). @4)
Then the membership function defined as
Kea(i)

/V(K) otherwise

0(K) otherwise
fulfills the above itions. For some applications it is
FdTFivageane disovee loreli BRBRershipr tamed ignd ivhEebnyaivy is
acpsheugesyy widhdéfine membership functions which vary
contTraogspPydipeieK systems &(i) and ¢(j) are C -related if
bothTwo coordinate systems 4>(i) and <\j) are C -related if
both

@)

) - @ Tec™ (26)
<t(@) * (*g))"1€Cowo (¢5))
and
and -1 e
&3 - (i) 'ecC (27
<XKj) = (<Kiy)-1 ec> @n

meaning that the above compositions are infinitely

déffengntiahte.the above compositions are infinitely
difféhentipede sets {H(i)} of Euclidean space E are
diffqrn@ormw boages{ofi fheof G EL) igvpersssdcof gatghment
vdgienmoric) imadeichofrapee sgoti PheniraketeofeTatshibnt
fenieaderddy i )struptuna rapgtabiansciadmiciiamispdc fpeciies Mn a
cbpseatienePpl igurekioRalSReqatiorBier dienidal &R in a
nostBaelideafigopnthenstupied igwaicBuciidesn speperak.
non-Rad#bdens) bebreen setdiblilinand €lUdlidwharepace E.
Relatio between sets G(i) and G(jJ), where
G(i)??G(j) £ 0 (28)

G(i)ocy) i O @)
may be obtained by defining a homeomorphism
may be obtained by definin? aqhomeomorphism

$(id) =d (1) - () (29)

<) =) = @1 @)

where
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GNP @NGE))—>4 DI G0

1f the family {G(d)} of domains of coordinate systems is
countable and if each ij) is differentiable, then M is an
n-dimensional differentiable manifold [13,93~

In a non-empty set of the form

CGEHPNGGRIEM @D

at least two coordinate systems, ¢fé@) and $X(j), are given.
The Jacobian determinant for the corresponding coordinate
transformation ¢{G)—3<4(j) is defined by virtue of eq. (17)

as
i 2
@

where k is the row index and F is the column index of the
determinant. In G(E)OE(j) homeomorphism §&(ij) always has
inverse, which is mapping §¢Gi),

@G =8¢ - @)

1t follows that the Jacobian determinant (32) is non-zero at
all points of G()N\G(i)-

Within the differentiable manifold model continuity and
differentiation of functions defined over the nuclear
configuration space M may be defined in terms of 1local
coordinate systems of catchment regions, representing
various chemical species. Properties of potential energy
hypersurfaces can be analyzed in terms of local coordinate
systems<¢(i) over G(i) supersets of catchment regions, using
the coordinates in open subsets H(i) of Euclidean space of
E to label the corresponding points in G(i).

Consider a general real valued function f defined over a
T-open subset G of the nuclear configuration space M. Take
a point KeG which is also an element of some sets G(i) and

G(i)»
K€ING(i)AcXG)) - G*

Consider the composed functions f=(§(i)) -2 and ﬁ(ﬁ(‘i»)-ﬂ »
defined over @@GE) GAX(EY) and ¢ @) GAD) .,
respectively. These functions may be thought of as function
f expressed in terms of local coordinates set up in G(i) and
G(J) Hdy diifEcomoptiems ¢&@) and $(F), respectivedly A
useful property of these functions is that Ff«@(i))” is
differenqable in a neighbourhood of ¢ (A)(K) if and only if
Fo(@(F))~ is differentiable in a neighbourhood of<¢d@G)(K)-
This property follows from the identity

det 32
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f @@t = F@G» -y 1 =
=f @5)

If F<@(j)) » §s differentiable, then f»(§(i)) » is a
composition of differentiable functions and itself must be
differentiable.

As it has been pointed out, [13,9] the above property
ensures that the Euclidean coordinate representations of
functions defined over M, consequently, various
applications, e.g. normal coordinate representations of
vibrational potentials, are related to one another in a
simple way within the overlapping regions of coordinate
domains. When reference from one chemical species C(X,i) is
switched to reference to another chemical species C(V,j),
then the change of coordinate systems does not interfere
with the continuity and differentiability properties of
function f. Consequently, functions defined over the entire
nuclear configuration space M, for example, the energy
hypersurface E(K) itself, may be treated 1locally in
coordinate neighbourhoods G(i) as functions defined on an
ordinary Euclidean space. At the same time the global
interpretation is also preserved by ensuring an "orderly™
switch of coordinate systems. The differentiable manifold
model of potential energy hypersurfaces combines some of the
advantages of local and global representations.

1t is convenient to choose the $(i) coordinate systems
in a special form, which assigns the origin of the Euclidean
space E,

©,0, ... 0)eE (€]

to the critical point K(X,i) in C(X,i).

Such a representation is not in general identical to an
internal coordinate or normal coordinate representation of a
vibrational problem, defined at an equilibrium point.
However, by further restrictions on ¢(i) the 1local
coordinate system may be made equivalent to a set of normal
coordinates, at least in the immediate vicinity of the
critical point K(X,i). Note, however, that (i) is defined
on a T-open set G(i) containing the entire catchment region
C(X,i), within which large deviations from the harmonic
approximation may be found. On the other hand, the 1large
amplitude motion formalism shows some analogies with the
manifold representation of M.

A global mnmultidimensional model also have some
disadvantages, associated primarily with computational
difficulties. Even if the analysis is restricted %o a few
coordinate neighbourhoods G(i), the fact that the dimension
n of the manifold may be very high, can render the analysis
impractical. It is natural then to introduce further
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restrictions by investigating a given subspace only. 1n
manifold theory the concept of subspace is much too general.
If one differentiable manifold is contained in another, it
is advantageous if the local coordinate systems and the
coordinate neighbourhoods in the #two are related in some
simple way. There exists such a simple relation for a
differentiable manifold and its submanifold. 1rf

(x »x ~..x ) are the local coordinates around point K of the
n-aimensional manifold M, then an m-dimensional submanifold

has the local equations

Xped? = Xpap 5 =0 =0, @n

and around point K the local coordinates are (x1";o(‘2..—.-.>§(‘m) in

submanifold fiM. A submanifold of a manifold is a
generalization of a cross-section of a hypersurface.

FUNDAMENTAL GROUPOIDS AND FUNDAMENTAL GROUWPS
OF POTENTIAL SURFACES

Consider the level set

F~(A) = &K  E(K) < A} 6]

of space M with respect to energy hypersurface E(K) and
energy bound A. 1In a formal sense, F (&) contains all
nuclear configurations where the energy is less than the
bound A.

A general reaction path p is a mapping [15-17)

Pzl =>EQ @®9)

of the unit interval 1 %o level set F (A). A special path,
called a constant path, is one for which the entire image is
a single point K€F (@):

(D) = Ke&F (A . o)

Let P denote the family of all paths within F (&).
For each path peP we define two mappings, L¥ and R¥, as

LY 2P —sm P 1)
R¢ tP—> P ©w2)
L¥*(p) = qeP @3)

where

oD = PA@EF @) ,, @
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and

R*p) =ql&r (45)

where

qf(D) =p(BYsErTA)) .. (46)

Mapping L¥ (@mapping R¥) assigns %o each path pe® the
constant path q at the origin p(0) (the constant path qf at
the extremity p(1), respectively). Paths L¥(p) and R¥(p)
are the left and right zero paths of reaction path p,
respectively.

Evidently, for a closed path p, p(0)=p(1), one has

L¥(p) =) - @n

The product p?”‘m“m{é of paths p!1‘ and p’2‘ is defined as the
continuation of p/1\ by p’z\:

pi(au) if 0 < u < 1/2
P3@ = { “d®
P2 (@u-1) if 1/2 < u ¢ 1

that product exists if and only if

REGE]) = L*(p2) - @9)
Two paths, p and p' are homotopically equivalent in F (@),
p~ p* G0)

if they have common endpoints and if they can be
continuously deformed into each other within F (@).

The homotopy equivalence class to which path p belongs
is denoted by [[p]. Evidently,

L¥p) = L*(»*) G
R¥(p) = R*(p'¥)
for any two pyp™e [p].
Let us denote the family of all such equivalence classes
by T (F<®)) or in short, by T ¢
™ @FE(A)) = U G2)

This set 1T is simpler than set P of all reaction paths. We
may define two mappings L and R on Ml as

L: Tr->TT ®3)
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R: TT=—»1T Gy
LD = IL*Gaol G5)
Rebealy = [R¥(pgd] G6)
i condition

R([p1)] = L([p2)] @

implies the existence of the product l[]p)’\]-[g%] of equivalence
classes [[p/1‘] and [[pé‘] of reaction paths, defined as

Tp4 121 = [p, 21 - ©8)

This product, if exists (@#.e. if (&B7) is fulfilled), is
unique and does not depend on the choice of reaction paths
pﬂ;Pﬁf.P, representing equivalence classes [[p/‘]?l[p’\]é:'lTP

family TT of all homotopy equlvalence classes of the
complete set P of all reaction paths within level set F (&),
is a groupoidl, which, together with mappings L and R,
fulfills the following conditions:
i) L¥L=L=R»LL G9)
L=R=R=R+R . ®0)

if) For any class [pleTl the products L([p])I[p]} and
PIR([P]) exist and

L(eDp) = [p] = [PIRCTRY) &TTT. G1)

fii) The products L({([pDL([p]) and R{[p])R([p])) exist for
each [p]le™™ and

L(pIL@el) = L@ApY) € TT G2)

R(EPDR(pD) = R([PY) € T ®3)

i.e. L(@pI) and R([p)) are idempotent.
iv) Feor amyy tho [Eq’}] [ A3, , fRIFELENEy condd bt bon (§57)

L(EPJIZD) = L(IPjp2D) = L@EyiD ©)

R(Cpi1[p2Y) = R(Ipipz)) = Rdm:B) ©5)
hence, if in addition to ((7), the condition

L(Ip3}) = ReTp3D) ©6)

is also valid for some [[nn;]eTT » then the following
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products also exists
(@13 Dip3) 617 Clp)

(P2 Mipg B € - ©8)

The prmmtt'm’mz’)p“’ of reaction paths, is homotopically
associatiwve, :i.e.

(B1P23ks 2 P1 (PP~ ®9)

Hence, if these products exist then for the products
(67) and (68) of homotopy classes of reaction paths
associativity is also assured:

(@@§3bp3 Dbp3] = [PJA(Ip31ip3D) @
and one may simply write l[p;\]Cp’Z‘ltp’:}]],

There exists a unique inverse path p A for every p£FP,

defined as

po1@ = p(i-w). @)
This implies the existence of a unigque inverse

pi*! = gy erW @2)
for every [plef¥, for which mp],ip]:i pair

L(pY) = FAeT'D) @3)

RCTPY) = LUCEAT- D). @)

Family TT is the fundamental gwroupoid of level set F (&).
Elements [p] of TT represent configuration-to-configuration
reaction mechanisms on the potential energy hypersurface
17]) subject to the energy bound A. This interpretation of
Ip] equivalence classes is motivated by the actual chemical
equivalence of all those reaction paths, which interconnect
the same pair of nuclear configurations, and which paths are
not separated by high energy domains above bound A.

For an arbitrary point KBGF’-’(A) consider the following
subset ’m' of groupoid T ¢

TINRg) = Wnlkp(0) = w(1) = Kk, Yedbd) [DIETTE. (@75)
1t follows, that

L(pD),RAPDETT, &p) @s)
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Tpaip2)e ) an
and

™ = [oy7LeTTa(kg), ¥ ip], [p41, [n31€TF1(Kg) (T8)

Egs. (76)-(78) are the conditions of stability for a subset
of a groupoid, hence ﬂ’}c(lif%) is stable within groupoid TT,,
for any choice K8€F:(A). With mappings L and R restricted
to subsets 'IT{‘(KS), these stable subsets are indeed

subgroupoids of groupoid TT .
Furthermore, definition (75) of "IT’1‘UK‘,8) implies that

L(rD) = R(IPD = Ipy] @9

for every [pleTN(K ), where equivalence class [pQ] contains
the element constant path pa at point

pgelpg) @0)
Py = Kg- @1

Hence both L and R, when restricted to ﬁ’;( , are constant
maps. Consequently, there exists a unique neutral element
and subgroupoid T, is a group, a subgroup of groupoid 7.

If F (&) is arcwise connected, then these groups are
isomorphic for any choice of point K8,, hence then the
specification of is not essential,” TT_j(Ky) is the
fundamental group of reaction mechanisms {[14,15] in a
connected level set F (A). These groups are dependent on
the energy bound A, and are expected %o find applications in
theoretical, computer aided molecular desigmn.

It has been shown that there exists a set of algebraic
relations between the fundamental group of reaction
mechanisms and the catchment region topology of the
energy hypersurface [15,18]. This connection can be
utilized in the actual construction of these groups. The
determination of catchment regions CCX,i) is equivalent %o
the determination of their boundaries, that can be reduced
to boundary networks [19]- These boundaries and boundary
networks fulfill certain symmetry constraints on the
corresponding nuclear configurations, analogous to symmetry
constraints on #ransition structures and minimum energy
reaction paths.
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Quantitative structure-activity relationships (QSAR)
quantify bioactivity as a function of molecular structure. The
topological nature of traditional approaches to QSAR (dienoted
here by 2D-QSAR, i.e., Hansch [1] and Free-Wilson [[Z] type
models) restricts their applicability to essentially congenerie
and conformationally rigid molecules.

Development of a conceptually and computationally im-
tegrated framework applicable to structurally diverse compounds
requires a topographical basis for QSAR. The resulting three-
dimensional gquantitative structure-activity relationships
(3D-QSAR) would encompass, within a single QSAR, congeneric and
non-congeneric molecules and account explicitely for the con-
formational variable, at least as far as the drug fs concermecd,
in order to gain insight into the topography of the receptor
itself by inference.

We emphasize here the mathematical aspects of the paradigm
for extracting three-dimensional information from activity
data. The present work is complementary to our recent review
[3]. and is organized as follows: 1In Sect. 1 a method for
systematic search of the conformational hyperspace avafilable to
a flexible molecule is presented; Sect. 2 summarizes some
details of our force field molecular energy calculation and
methods for comparison of either rigid or flexible molecules by



Ch.20} The Conformedtion Hyperspace 223

geometrical congruence [[4]. 1In Sect. 3 the pharmacophore
concept [[5] is reviewed and in Sect. 4 three-dimensional molec-
ular shape descriptors (3-MSD and SIBIS-type) are discussed.

THE CONFORMATIONAL HYPERSPACE

The goal of this Section is to present a method for sys-
temnatiec search of the conformational hyperspace available to a
eonformationally flexible molecule. This analysis greatly
facilitates identification of the most stable conformation of a
complex molecule, assessment of the validity of a pharmacophore
hypothesis, and estimation of the probable binding mode of a
substrate in the active site of a receptor. Subsections 2.1
and 2.2 summarize the necessary background concerning molecular
topology and topography, and 2.3 describes the search method.

Molecular Topology

Formally, the topology of a molecule is fully described by
a simple graph (i.e., a discrete topological space) G = (V,E)
assocliated with the chemical constitution of the molecule
considered [6]]. The finite non-empty set V of p vertices and
the prescribed set E of q edges collect, respectively, the
atoms and the bonds constituting the molecule. We formalize
the relationships between these sets using simple binary
relations..

A binary relation 73 from a set A to a set B is a subset

c A@B; it is conveniently represented on a nxm array by

marking the positions (klI) é M with 1 if aﬁ:ﬁ,&{‘, a{(‘ € A,
b’l\ € B, and 0 otherwise. Here, n = ||A], m= ([B], and ||

notes cardinality.
Two binary relations 3 and § are composable if R € AxB

and Rg € BxC. The composite %6 is a binary relation R 3\ C AxC

such that a(38)c if, for some b, ayb and béc, aeAs, bGBBR, and
€ & C. Further, the array M grepresenting the composite 78 is

The product is defined [7] by the following
rule: the entry (dk) & is 1 iff there is at least one j,
1 < j < m, such that the j-th position of the i-th row in M
and of the k-th column in MJ are simultaneously 1;; otherwise,

it is 0.
Consider now the binary relations
a: R, € VxE , @

B R% c Exv , (V,E) =6 , @
which assign vertices to edges and, respectively, edges to
vertices. Evidently, p is the inverse of a, § =a , or
a=g and the array is the transpose of the array Mg,

| de-

or M
a
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The binary relatiens a and p are composable and the com-
posites aff and fix are the binary relations € VxV and

C EXE. off = aa A represents a compatibility relation [7]

on the set V, and pa = pp A is a compatibility relation on the

set E; aa is called the connectivity relation (@.e., the off-
diagonal entries of M i\provlde complete information regard-
eea

ing the vertex adjacencies in G),, and pgp K is called the ad-
ifacencv relation (d.e., the off-diagonal entries of M

68
provide complete information regarding the edge adjacencies in

G).

Given a compatibility relation £ on A, a compatibility
class induced by £ is a subset D c A such that, for any df,,
d’z\ € D, d’l\ £ d’2\_ A compatibility class which iis not properly
contained in any other compatibility class is called a maximal

compatible [7]-
Let E’l\ c E, 0< i< k-1, be the maximal compatibles ifimn-

duced by pg A on E, and V. c V collect the end vertices of the

edges contained in l‘:'i . 1t follows that Uijl‘:t.llE E., uiJV.1 =V,
and for an Ei there is at least one Ej such that Eii AEE, = 6,

V{ 0O V. # ¢ The subgraph G{ = (Wi’,‘Ei") is called an aggregade.
Two maximal compatibles E’l‘ and E{' are composable if
Ei 2] Ej &, ()
and the composite E... ¢ E is given by
E..=E WUE. . 4
1 (O

L J
Similarl%. E__ and E_are composable if EUFD E » & and the

- . = E..UE_ .
ijg ijg W 8

We restrict the discussion to trees for which the follow-
ing relations hold:

r\EfO\ Eﬂ-|<]" for any 0 < d, j < k-1, 4], ®)

IE i.j..FhEE: I 1, for any ...ij and at least one g. (6)
1 -.._

The concepts discussed above are illustrated in Figure 1.

The complete composition E;‘,, A @(D,’)lr cae’ N("ib =
x{0,,1,,.-..-.k-1) is called the topological specification of the
molecule considered. The set

E = (U @.ME)) 0 <ii,j<kkll, i @
id

composite E c E 48 given by E
6 J

#As it is shown below, using appropriate topographical comn-
straints, cyclic molecules can be converted into acyclics
(trees) which adequately mimic the former._
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collects the edges shared by the k aggregates, and

E"] =m ) @)
Note that for any e” = (d,j) € E' there is one and only one A
and one and only one A;\,Ag{(?A;\ exlo,l,,....k-1}, such that

= (VLE); V = (Vl,...,VB) and E = (el,. ,e7)
€1 &2 83 B4 85 S6 &7
v |t 1 i 0 0 0 0
v 0 0 i i i 0 0
v?2
vy |0 0 0 i 0 0 0
®) Moy, |0 0 0 0 1 1 1
Ve | O 0 0 0 0 1 0
N 0 0 0 6 0 i} 1
vr | © 1 0 0 0 0 0
v 1 0 0 0 0 0 0
v8
Vi V2 V3 v4 Vs Ve Vzr Vi
vy |1 i 0 0 i} 0 i 1
v 1 1 i i 0 0 0 0
v2
v 0 1 i 0 0 0 0 0
v3
Va |0 1 0 i 1 i 0 0
@©) M = ys |0 0 0 1 i 0 0 0
aa
v 0 0 0 1 0 0
v6
vr |t 0 0 0
ve |1 0 0
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1
1 or
1 1 1 0
© M j 0 0 107
1
0 0 0~ i -
0 0 0

(e182-83h F1 = 1e3a-dsh
(85 "6 R7h

Figure 1. Graph G = (V,E) (A), array corresponding to binary relation «(B),
array corresponding to compatibility relation aa 1(C), and array corresponding to
compaitibility relation j3B31and the maximal compatibles

induced by AB3ion E(D).

Ey = (e).e5,83)5 Ey = leg,e .eq), By = (eg,eq,8;5],

B3 4 %8 %90
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(B)

Figure 2. The maximal compatlbles induced by  Yon {e;.ej,....eH} (A), and the
%Eapg ;gf zgmpmlblhty relation e = e; = (Ey,E), &3 = 5 = 35 ,3=¢3=

L &

g&xp ghy (i,j)- 1t follows that composability is a binary

relation on the set ({E’i‘} induced by the set of subscripts

assigned to the maximal compatibles and its graph coincides
with E' (see Figure 2 for an illustrative example).. Further,,
the isomorphism (d,j) - (Ax,,Ay) allows systematic ennumeration

of the paths in E”.

Molecular Topaography

Given the topological speciFication Ef\\ of a molecule, the

molecular topography of each conformation is completely deter-
mined by A, a set of cartesian coordinates, where {|A [|= n is
the number of constituent atoms, and a, e A is the coordinates

triple defining the equilibrium position of the atomic nucleus
i, 1 < i < n. For a conformationally Flexible molecule there
are an infinite number of coordinate sets each specifying the
topography of a particular conformatiom. Within the rigid
geometry approximatiem, we represent the infinite set of con-
formations of a molecule with m rotational degrees of freedom
in a continuous m dimensional hyperspace, in which each dimen-
sion corresponds to a variable torsion angle c%y, 1<j<m

Let P be a point in the continuous hyperspace. The coordinates
of P, (p){‘,,ﬁg,,..-.,plnﬂ),, 0 < B&' < 360°, 1 < j < m, are the values
of torsion angles WG, ) a particular confor=-

mation of the moleculle. P represents a sterically allowed
conformation if for all non-bonded atom pairs the inequality
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dﬂ*'eﬂ= 1£j<€npl, i€j<n ®
is satisfied. Here, di" is the Euclidian distance between the
non-bonded atoms i and 3, and c.. is the sum of their van der

Waals radii.

For practical reasons, we approximate the continuous
hyperspace by a discrete topological space of the same dimen-
sionality. A generic point in that space is defined by
PCnTAAﬁQQ”u“_”nQA)" 0 < nS < 360/A, 1 < j <m. The use of a

constant A produces an uniform sampling over all dimensions of
the continuous space. The number of points (NP) in the dis-
crete space is a function of m and A, and obtained by the
formula

NP = rfl, where r = 360/A .. ao)
For each P there is a set of coordinates defining the topog-
raphy of the corresponding conformatiom. These coordinate sets
can be generated by performing a series of coordinate
transformations on the set A. The coordinates at“asﬂar 6 A of
three atoms, corresponding to vertices v%xvg;vg € VB”

(VSan? = 0 and (vs”vr) - ei are used to orient the initial

conformatiom. A global translation and rotation are performed
on the coordinates A so that ag lies at the origim, a@ lies on

the positive x axis, and al ietes in the xy plane. The unit
length vector u = (1,0,0) defines the direction of the axis of

the first torsional rotatiom.

Methods for transforming the coordinates of a point as it
rotates with respect to a fixed axis are conventionally given
in matrix form [B]. An equivalent vector formulation for a
torsional rotation can be obtained through algebraic analysis
of the matrices [9], or derived from first principles [l10] as
shown below:

Let v be a displacement vector, v = - ag, and u the

unit length vector corresponding to the direction cosines of
the axis of rotatiom; v can be resolved into three orthogonal

component vector by the operations shown below

3 -VvXxu q
- SUX _g i a
-1 R
v
S
Y u
a w (0]
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The rotated displacement vector and the rotated coor—
dinates are then given by

V@) = V) + V3 cosy + Y3 siw @)

54 ot Y™ @2)

ggxt censider a fixed (mon-rotating) atom a" and the
displacement vector s a, The square of lhe distance

d’l\a as a function of w is given by direct application of the
cosine law,
ah@@ < |12+ M2 - 2]k.veo) | a3

A more compact form may be obtained by observing that the
sum of the constant terms in (I3) defines a point a;)\ which is

the projection of aﬂ' onto the axis of rotatiom. One may there-
fore rewrite (11) and (12) as

@) = v’z\ cosw + v’3\ sinw s
aj (w) = ap + v(w), where ap =ik Yy o (15)
qa.
a. )
|
S v

)

CIs w Or Op

Finally, redefining s as the displacement vector from ap to a

1
one obtains an equation with scalar coefficients,

@ & + & camo + a sind @as)
where
- feF K iR ¢2(s.92)5 43 - -2(s.33)
The egquation above can be converted to a useful quadratic form
by a substitution of variables, x tan e Then,,

sin? = 2x/(1+x°) and cos>  (A-x2)/Mx2) Following algebraic
manipulatiom, one obtains

d:z; . (75( = (a)(2+bx+c)/(l+x ) QQn
where
i 24e 2di§;; c df + dg..
The relation shown below is called the differential dis-

tance functiemn. Observe that the
2 .- 2
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function is positive when dgﬁ' ) > c?t].‘ and negative otherwise.
By converting (18) to quadratic form, fi.e., Ffirst inserting

(16) into (18), we can evaluate the discriminamt, bz—l«lac, to
determine whether there are any values of w (@ = 2 arctan x)
for which 5.3‘(\1») = 0. 1If the discriminant is strictly posi-

tive, has real roots indicating the van der Waals con-

straint (9) will be violated for some range of values of w». 1If
the discriminant is negatiwve, has complex or real double

degenerate roots indicating that 51’3 (@) will be positive or,
respectively, negative for all values of ¢, depending whether
€ - c.z- > 0, or, respectively, c - cg.. < 0.

Systematic Search of the Comfommatiomal Hyperspace

Systematic Search is a computational procedure which
generates and records all points in discrete hyperspace which
correspond to sterically allowed conformatioms. The procedure
also provides the capability for measuring and recording geo-
metric parameters derived from each allowed conformatiom;
typical parameters are: interatomic distances between selected
functional groups, coordinates defining the locii of one or
more specified atoms with respect to a fixed reference frame,
and vectors specifying the relative orientation of pairs of
atoms in each conformatiom.

A topological specificatiomn, E A provides the

6A1“* m
information required to decompose an fnitial sterically allowed
conformatiom, represented by A, into substructures, A J| .

0 < j <m, where A. € A determines the topography of the j-th

aggregate. Consistent with the assumptions of rigid geometry,
the substructure represented by A has no internal degrees of

freedom. More importantly, the distances between all atom
pairs,, (ar,,as» € Aj’ are invariant with respect to the tor-

sional rotations around an axis defined by any pair
(ar,,as» & Aj .- As a result, while the coordinates of Aj are

transformed by a torsional rotatiom, there fs no requirement to
verify that the re-oriented substructure is sterically allowed.
The topological specification of the molecule also pro-
vides an order in which the substructures may be combined to
form complete conformations of the molecule, i.e., recall the
isomorphism (d,j) - (Ax,,Ay). Each edge of the graph of the

conposability relation induced by the labelling of the ag-
gregates is interpreted as an axis of a torsional rotatiom.
The two atoms corresponding to the end vertices of the edge
shared by two adjacent aggregates, and i< j, are as-

signed to the substructure A7. As a result, LA A{' =0
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procedure searcih(dim)
begin
m=dim
Apv=update(LAm LDy)
LBp=copy(LTH)
if(Ze then LP,, :=screcf{&C) B, Pscreen(LCm,LPm)
LBm ‘=i A LP)
for n = 1 to sizeof (LPp)
begin pp:= nth element of LPy
A,, :=rotate(Am,pm)
if(m<f) then dim :=search(dim +1)
else dim =record(py, - - - ,.B%)
end
Pai=0
returm((@im-)
end

procedure update(ApLDp)
begin
fori=1tom-1
begin if (i eLDy) AND
then begin
if (gin<®@) then vjgp := vector(i,m)
A,
= P = -1 Qe Pm «=-|
end
end
if (pp< 0) then vy vector(m,m)
for k= m+1 to M; if (gic®) then vy = vector(m,m)
Pm o=@

return (Ag)

end

procedure validate(LANLP)
begin
for r = 1 to sizeof(LAp) while (LPyu()
begin
for s = 0 to m-1 while(LPy¥<)
begin
for k= 1 to sizeofffl 4] while (LPy=4)
begin t = kth element of LA}
(f.d) = interatomfa/\djj@ij)
if (<) then LPp = &

else if (@) then LPp := compress(d,LPp)
end

end
end
return(LPp)
end

Figure 3.
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The coordinate set representing the position of atoms in

substructure j > 1 rotated by pg around axis i is denoted by
Aj(p;)“ A rotation around the i-th axis by A is represented

by R(pg) and, symbolically, Ai(pg) 6—R(pf)ﬂ§" Consequenitly,,

the rotation of a substructure whose position is dependent on
multiple (#) consecutive torsion angles is specified by:

Aj®LP3. PP  RELPZo-Ph. » L<j<m Q9
Furtiher,,

AjPape- P Ry RORBIY @o)

with pa = = p? = Zf, specifies the conformations available

to the substructure in the one dimensional space corresponding
to the first axis; and, in general,

Ri@r~  RiRjeroge)  REJEL- . EPRED=REDA,
1<i<ic<j (2n)
with = sees = =277, sppeiffdestitheconfifivratidionsagaall-

able to the sustructures in the i-dimensional subspace cor-
responding to the 1-sts t i -itth axis. More generally, the
position of substructure AS is determined by an ordered set of

torsional rotations corresponding to the edges on the path from
Eg to Ei in the graph E"(7), and we denote the effect of those

rotations on AS by Rg(P)&?" Then for any flexible molecule,,

the coordinate set corresponding to a point P in discrete
hyperspace can be described by the linear notatiom,

AR) = Ag + RL(P)AL + ... + Rn(PAn

or by the recurrence relation shown below:
A(@j,pﬂﬂ¥h) = A(an“hﬁPm_f) + Rm(P)Am
where A(p}) = Ag + RM(P)A}

Systematic search procedures have been programmed in a
variety of languages, on multiple machines over a period of
fifteen years in our laboratory [1Ob]. The most recent im-
plementations are based on the recursive procedure shown below
in Figure 3.

Initial data values are produced by a pre-processor [10c]
which performs the topological analysis described in Sect. 2.1.
These data are read by a main routine and are globally acces-
sible to the recursive procedure named search and all of its
subprocedures..

Data structures and variables are summarized below:

N = ttiee nuunideer off adtomss..

M= ttiee nuntteer off vead Bl e ttonsdibon angdess .

A= the coordinates of an initial sterically allowed
conformatiom.

B = an Mx2 array whose j-th row references the coor-

dinates of the two atoms defining the axis of the
j-th torsional rotatiom.
C = the van der Waals constraint array (NxN)
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For each substructure Am" 0<m<M,

LAm = a list of the atoms contained in Am"

LCm = a list of the distance constraints which are ap-
plicable to A .

LDm = a list of the torsional rotations which terminate
in Am"

a list of the indices of trigonometric values

corresponding to points in the m-th dimension of
the discrete hyperspace..

LT
m

Control structures and variables are:

dim = a scalar variable whose value determines the dimem-
sionality of the discrete subspace containing the
current sterically allowed conformation

P= a one dimensional array of size M whose entries are
the coordinates of the point in discrete hyperspace
corresponding to the current value of the coor-
dinate set A.

Q =~ an MxM storage array called the control table. The
super-diagonal entries of the m-th column indicate
the status of the coordinates of AQ with respect to

the First m-1 torsion angle variables.
T - a table of trigonometric values (cos, sin pairs).
Temporary storage arrays are:

LPQ = a temporary storage array for the set of indices of
trigonometric values which when used to rotate Ag

with respect to torsional axis m, will produce a
set of sterically allowed conformations repre-
sentable in the m dimensional subspace.

= a storage array for the sets of vectors describing

the motion of Aa with respect to the i-th torsional

axis, 0 < # < m.
The functions and subprocedures used in Systematic Search
(Figure 3) are summarized below:
The function update is a generalized implementation of eq.
(21) which uses information contained in LDm to select Gﬁ]X

those torsional rotatioms, R(pf»" 0< 4<m <M, which are
applicable to A .. The values contained in the m-th column of

the control table Q determine the status of the vector sets
used to generate new coordinates of AQ; the First m-1 elements

of the global variable P indicate the torsion angle values of
the current conformatiom. The coordinates returned by update
represent An updated by (p{;ﬁ?;x"“”$m f»“
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The function copy creates an fnitial set of indices of
trigonometric values corresponding to points in the m-th dimen-
sion of discrete hyperspace. This set is used by the functien
validate which eliminates from Lp~ the indices of all trigone-

metric values do not produce sterically allowed conformatioms.
The function interatom is used by validate to generate the
coefficients of the differential distance equatiomns,, Bﬂf(w) =0

in (18), for all non-bonded atom pairs (;gya;»” 4—&9 e-A -
p<m a &A . The values returned by interatom are d. the

coefficients, and f, a variable reflecting the results of the
discriminant analysis: f < 0 indicates that there are no
values of uE for which dircﬂi» > cir; if £ > 0, then some
values of n will cause a violation of the steriec constraint
between as and ar“

The function compress evaluates the differential distance
equation using each cos and sin pair referenced by LPQ, and

eliminates those entries for which ésrgu < 0. 1If £= (0. then
all values of would, for the pair (@gﬂa{), produce steri-

cally allowed conformations and it is not necessary to evaluate
the differential distance equatioms.

The function rotate implements the rotation operator
defined in (21), Am <—R(pm)ﬁm“

The function screen is invoked when there are additional
constraints on the allowed distance between an atom in Am and

an atom in Ag, p < m. A constraint is specified by an atom
pair (ag;a{) anct* the minimum and maximum allowed distances.

The function interatom is used by screen to generate the coeff-
ficients of a differential distance equation for the atom pair
using the minimum distance as the van der Waals constraimt. A
modified form of the compress function is used to eliminate
values in LPS which would produce interatomic distances less

than the minimum or greater than the maximum allowed values.
Significant reductions in the computational complexity of
a Systematic Search can be achieved by first applying the
search procedure to each of the substructures obtained by the
composition of each pair of adjacent aggregates. There are M
such substructures, each containing one torsional degree of
freedon. Let LTm" 0<m<M, be the set of indices of trigpn@—

metric values determined by A, |[LT ||= r = 360/A. Then, the
output produced by a search of each substructure, LT%,
ELT;]lz r;, includes onlx those values of LTm which can produce

sterically allowed conformations of the substructures. The
excluded values are those which will always result in a viola-
tion of the steric constraints between two atoms in adjacent
aggregates in the complete structure. 1Ff LT?, 0 <m <M, are
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used #n place of L'l';; as inputs to a Systematic Search, then the

computational complexity, measured in terms of the number of
points (NP') in discrete hyperspace is given by the formula:

M
" = ~ =
NP m:I re . e <r (029

In addition, the procedure validate may be modified to elimi—
nate the calculation of differential distance equations for
atom pairs contained in adjacent aggregates {[1kmdl]..

THE MOLECULAR ENERGY CALCULATION

Computation of the energy complex molecular systems, i.e.,
systems composed of 500 atoms or more with very many local
energy minima, is usually performed using molecular mechanics
methods [[11,12]]..

The molecular mechanics program (Maximin) developed in our
laboratory uses a Simplex minimizer [15], White's force Field
[16], and energy functionals systematized in Table 1. The
distinctive features which make Maximin extremely suitable for
the specific requirements of computer-aided drug design are
summarized below. Our approach requires the use of Systematic
Search to identify representative and well-defined conforma-—
tions for the system and the problem at hand, and their further
refinement by Maximim, with molecular graphics [20] playing a
secondary analysis role, see e.g., [17].

The symbols used in Table 1 have the following connota-
tion: (1) N’\‘ no. of bonds in molecule; d’\ length of the i-th

& o
bond, A; d?‘:: equilibrium length for the i-th bomd, A; d:: bond

stretching force constant, kcal mole"]l 5’2;; (¢3) N’A: no. of

valence angles in molecule; ei‘:: value of the i-th valence
angle, degrees; 6%: equilibrium value for the i-th valence
angle, degrees; kA;: angle bending force constamt, kcal mole‘1
deree’z;; NA\ ;» no. of out-of-plane bending angles at trigonal
atoms; &L: value of the i-th out-of-plane bending angle, k'§7::
out-of-plane bending constant, kecal mole -1 deree—z;; @) vi

height of the fi-th torsional barrier, kcal mole
periodicity of the torsion angle, AR si@ml]ﬁ?’i\l; N7: no. of
torsional angles; (@ q’i\: net atomic charge at the i-th atom,

el r{q : separation distance between charge carriers, .;‘;
E(f’i‘j): dielectric functiom. Due to the absence of cbviously

applicable techniques for dealing with the dependence of the
dielectrie function on LA (4], Maximin allows designation of
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three ranges for riAj ,» and for each of these ranges it is given

a choice of three functionals: £(rij)

ar]Q + e, Egrﬁ,=

a[l—aip(—brﬂ)]] + ¢, and eCu’i’E) - a[]—ekqp((—-ﬁtz" ) + &
o NAt' no. of atoms in molecule; a.. = r--/(R +R3) where R

1)
is the van der Waals radius of the i-th attm

Table 1. Energy functionals used in Maximin

# Energy term Functional form
NB d
1. Bond stretching Estr =7 ki (/di-d?l)l%? d.-d?»>2
2 Angl 2 2
. gle bending Eang = ki (0i'91)ki+(2/ vV 2 +62
i=1 i=1
3. Torsional Beor = i X v;[1+8 cos(in, L/u; )t
i=1
At
4. Electrostatic Eeie = 332.17 q-9-7£Qr. )r
ele < fj j
{.j non—boge@l)
NAt
5. Van der Waals Evdw = z Eij h 2. %%/ o

G.j %on—bonde«l)
+8.28 10)5 exp((-13.586957 a..);
for 3/1\5 > 0.785555, and

Nat

- & Eij.;[n.ay/ D—z.@y@tg.j;lb

gy
(3,j non-bonded)
for aij' < 0.785555

6.. Hydrogen bond The method described in [13]
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The capability provided in Maximin to hold constant
< 40 parameters during a minimization greatly enhances its

utility to drug designers. By setting a large value for the
fixing force constant, fix" a small change, p’I\, in the fixed

parameterr,, pg,, is extremely unfavorable. The potential func-

tions
N_

Fix
Brix = & K (23)
1=1
allow the absolute coordinates of an atom, the distance between
two atoms, the angle formed by three atams, the dihedral angle
formed by four atoms, the angle between a vector defined by two
atoms and a plane defined by three atoms, and the angle between
two planes defined by two sets of three atoms each to be held
cofistant. Energy minimization with subsidiary constraints
provides a way to preserve the stereoelectronic requirements
characterizing the receptor-substrate interactiom.

Another feature of Maximim, which further increases its
versatility, is the multi-molecule fitting optiomn, i.e., a
procedure to force atoms of different molecules to occupy
approximately the same position in space, adjusting their
geometry to relieve any strain while maintaining low energy.

The procedure utilizes potentials
ref § %
multi E: kij' dij' %)
i=1

where dij' is the distance between the atom i of molecule j and

r’i\, the i-th reference point, k?,. is the spring constant con-
necting atom i to the reference point, and N %‘ denotes the

number of reference points.

Maximum provides alternative methods for
conmparing molecular geometries: The reference points may
correspond to atom positions of a reference molecule which is
treated as a rigid entity; or all molecules compared are
treated as conformationally flexible entities and the
coordinates of the reference points are the arithmetic means of
the coordinates of the atoms to be superimposed. Further, the
possibility to assign different weights, w\,, to the molecules

considered,, i.e... E ... = wa.j k?j‘ d%j‘* and the key-in-lock

theory [19] allows one to explore and/or mimic to a certain
extent, the conformational features of an unknown biological
receptor. Note, also, that multi-molecule Fitting offers an
elegant and straightforward approach to the determination of
the existence of a consistent pharmacophore hypothesis - the
question of its uniqueness may be addressed by use of
Systematic Search, as shown, e.g., in [18] for a series of
angiotension converting enzyme inhibitors.
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THE PHARMACOPHORE

Consider the biologically active analogs M} i i<i<n,

and let 1'—'3‘,, 1 < i < m, be the constituent functional groups

responsible for analog recognition and subsequent activation of
the receptor.

Let ({P{\JJ} collect the points j in the discrete conforma-
tional hyperspace available to MI and corresponding to steri-
cally allowed conformatioms, A’l\& be the coordinate set which
specifies the topography of ,» and dp’;l be the 3m-6 pairwise
distances between F_ and F , 1 < p, ﬂ’ <nm, B«qa, imPP.I--.

A pharmacophore hypothesis consists of the specification

of ((§J) <p» the correspondence between ({Ff\} and ({M’\}i\g’l\ Py

and the specification of d asd eD - [d with
Pq P Pq Pq Pg
d""““,, 'l;';“ - given constants, 1 < p, q < m, P<0g.

If the set (25) is empty, there is no common three
dimensional arrangement of ({F’l‘} in (L} and, therefore, either
the hypothesis is invalid, or some € ({M’i‘} act at different

receptor sites,
n

P, = {P b
!Qii U “({Pnlldlgg € Dggk 18Sp, g<m, p<gq, for any 1} ()

1f O ({P’i‘iﬁi" ¢ but (dip’;l)) cluster, e.g., as shown below
(@=3)>

—T]

s b

the hypothesis is not unique and additional finformation would

be required for its resolutiom; if O ({Pij'} # & and ({dlpq}
1

#Evidently, if M’.\'s are conformationally rigid, or the topog-

raphy of the receptor is knowm, dfﬁin = dm aX..
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cluster, e.g., as below

3 Pl
L %y
1 dy, 2
the hypothesis is unique, and (FE) together with (dpq)lsp,qsm

P<q
represent a pharmacophore modell..
In the absence of any molecular information concerning the

receptor, a pharmacophore model, once identified, should be
regarded as a topographiecal and chemico-physical specification
of the receptor and allows meaningful comparison of congeneric
and/or non-congeneric molecules exhibiting the same biologieal
actiom_

An illustrative example for identification and validation
of pharmacophore hypothesis is provided [28] by a series of
seven molecules, f.e., bamipine (1), clemastine (2), cyprohep-
tadine (3), triprolidine (4), promethazine (5), chlorpheni-
ramine (6), and carbinoxamine (7) - Figure 4 - which are only
tenuously related structurally, possess relatively high confor-
mational Flexibility, and represent potent antogonists (Caonmer—
cially available drugs) of histamine receptorr..

A,
M T TR

Figure 4.

-
(NH%‘ ) and N(L) atom of the imidazole ring of histamime, and,
respectively, to the centroids of the two benzene rings of
cyproheptadime. The two nitrogens were selected to ensure that
histamine also fits the pharmacophore model, and to account for

a < g < 4, correspond to the nitrogen of the cationic head
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the ionic (H ? ) and hydregen bond (M(1)) histamine recep-

tor interactioms. The two benzene rings were selected for
their probable implication in beneficial hydrephebiec inter-
actions ..

Systematic conformational search calculations have proved
the uniqueness of the pharmacophore model shown #n Figure 5.

Table 2.
Histamine Mantggonisis: the energy of the most stable confonmation and the best
fitted conformation

Antagonist E%j E@i
Bamipine -5.8 1.9
Clameasitne 9.7 6.2
Cyproheptadine 9.7 1.7
Teriprolidine 8.1 4.9
Promethazine 0.1 1.6
Chlorpheniramine 0.1 2.3
Carbinoxamine -3.5 3.3

a) The lowest energy conformer ((local mole ), minimized as a
free molecule..

b) The difference ((local mole between the energy of the
best fitted conformation (Figure 4) and -

For further examples of pharmacophore model identification
one may consult [2%9a] (amngiotensin converting enzyme inhit-
itors), [29b] (@antiulcer drugs), [2%] (muscarinie agonists),
[29d] (histamine Hz antagonists)..

Inspection of Figure 6 indicates a good geometrical fit of the
pharmacophore model, and multi-molecule fitting calculations
clearly show the ability of the molecules considered to achieve
the pharmacophore topography at modest energy cost: an energy
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well up to 5 1ocal mole L (Table 2) is within the range that
might be expected in drug-receptor interactioms.

Figure 6.

v

THREE-DIMENSIONAL MOLECULAR SHAPE DESCRIPTORS

Efforts to extract three-dimensional information regarding
drug-(unknown) receptor interaction from measurements of po-
tency are generally centered on the QSAR paradigm [1], and
appropriate characterization of the molecular shape is the
major obstacle in the development of a topographical basis for
QSAR.

The space occupied by a molecule can be defined conveni-
ently in the framework of the hard-sphere approximatiom: each
atom of the molecule is represented by an isotropic sphere

centered at the equilibrium position (X’I‘Y’fZ’i_) of the atonmic

nuclei 1 =1,2,...,N, and having a radius equal to the van der

Waals radius, rf,, of the atom; N iis the number of atoms con-

stituting the molecule. The locus of points (Xx,y,z) within the
molecule satisfies the following inequalities:

(X(;—x)% + (Y{-y)% + (Z_!—Z)% < r% ., 1 <1<N @5

A molecular van der Waals (wvdW) envelope may be uniquely de-
fined as the surface of the intersection of the vdW spheres
associated with the atoms in the molecule; consequently, the
total volume inside the vdW envelope represents the vdW volune.

Evidently, for a given molecular geometry, the molecular
shape and size depends to a major degree on the atomie vdW
radii considered..

We have calculated [[21] a set of effective atomic vdW
radii, 1‘3, which, unlike previous studies [22], reproduces

adequately (see Figure 7) the accessible areas of conforia-
tional space in the proteim. This indicates that rg's used

with (25) offer physically significant estimates of molecular
shape and size.
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Eigure 7. (a) Calculated map of NH-O+H (BHI#1) and (b) High-resolution
erystal structures of seven proteins CHH-CQ (PSI,#3) torsional angles.
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Effective atomic vdW radii, r, (%).

Atom H CC OON W CF ICLBBaxr I SSP P

r, 1.08 1.53 1.36 1.45 1.30 1.65 1.80 2.05 1.70 1.75

implies a repulsive interaction of approximately 5 keal
mole A at closest approval.

Consider the molecules M,, i = 1,2,...,m, which exhibit

the biological activity via a common mode of action, and let
M’;, 1 < r <n, be the most active compound in the data base.

1t follows [23-25], in agreement with the drug-receptor theory
M9], that M is the best available "copy" of the receptor

site, including steric features, and, therefore, it may be
considered as a reference stwuctwie. Further, as the phar-
macophore represents a logical frame of reference for the
receptoirr, meaningful comparison of M., 1 < i < n, with can

be achieved by geometrical congruence of over M:, requiring

that the pharmacophore groups occupy approximately the same
positiom. These geometrical congruences can be obtained using
metheds described in Sect. 3.

As the receptor and substrate *feel™ the shape and size of
each other through van der Waals interactioms, it follows that
the number pair (26) represents the simplest three-dimensional
(3D) molecular shape descriptor (HSD):

3D-MSD(r,i) = [V(r,i); NOV(i.©)] . (26)
ov(e,i) is the overlapping vdW volume of and M} i and

NOV(i,¢) is the non-overlapping volume of superimposed over
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according to the criteria described above. OV may be re-

garded as the polarizability volume available to the molecule
M’i\,, and NOV may represent either regions occupied by the recep-

tor and, therefore, not available for binding, and/or regions
located away from the receptor and, therefore, sterically
irrelevant..

We turn to numerical integration techniques [[26] for
obtaining accurate estimate of OV and NOV, respectively.
Therefore, one determines the finite countable set W whose

elements WJ(\ij,,ij,,w. ) are points in the_ El-stpaee 3

W - QP F2) @
and satisfy the following properties:

(P{\)):: W} » Tor all j, lie within the parallelipiped
d’\<x<D’1\, <y < di\<<z<< witiicth emidesss
the collection of spheres (25) representing the
superimposed molecules and 5

(PE)): WS, for all j, are uniformly distributed independ-

ent random points.
Next one determines the sets

(V/&Ill”g‘%,, BM)) »d=rori, (28)

whose elements W}(nggg, gy ’0‘5%0 satisfy the properties
®@3): ZSCW . 8 ®ror i

QPV); for all j, satisfy at least onhe of the ine-
qualities (25) corresponding to the reference
molecule (G =r, V') and, respectively, to the

compared molecule 6 = 1, Vi).

As volume may be regarded as a non-negative continuous
function in the closed bounded domain defined by the vdW en-
velopes, OV and NOV values are estimated by [[27]:

ov@r i) - gIvim vEym |, @)

and, respectively,
NOV(L,€) = glYX-VF /W] , or
0)
NOVEr.)  gIYF-VAIE
here, VI - VF ({V{Wﬁ e Vi, V{ e VF» is the relative comple-

meat of VI in VI, and g = (IID{‘—@I{‘)(DQ —dig»(l)g‘—d’g) represents the
volue of the parallelipiped which embeds the vdW envelopes of
M’i\ super imposed over M’r\-

The W set is constructed using either Monte Carlo or
strictly deterministic procedures. Within the first procedure

Wj €W is given by: Wjx = 8j + @i °ap%i: Wjy = d +
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@825 Hjz = g3 + Pyedp)i3~ where Gusbefst are uRiformly
distributed independent random sequences on the unit interval.
The deterministiec proecedure, which mimies the stochastiec ap-
proach, divides the parallelipiped into ||W| subspaces (“elemnan-

tary" parallelipipeds) whose centers (W. 1)’ M. ) constitute
W% ew, 1<j< M. 1y

The accuracy of the estimates (29) and (30), for given g,
s ~|w) 2. this property implies relatively slow convergence
of the procedure and a requirement for W sets with large car-
dinality (100,000).

Note that the molecular shape analysis ((SA) descriptor
f27a], V ,, is clearly the OV(r,i) and, therefore, it is a

particular case of the 3D-MSD. Further, the MSA procedure to
evaluate Vo overestimates its value and introduces a sizeable

error which increases with the branching of fiolecules con-
sidered. Also, MSA generally assigns higher shape similarity
between molecules compared: 1In the framework defined by the
reference structure and the criteria for geonetrical congru-
ence, the shape of each molecule M’i\, 1 < § < n, is charac-

terized by the two dimensional vector
3D-MSD(r,i) = [OV(r,i); NOV(i,r)], and the n vectors are
directly comparable..

A similarity measure [30], S(MS,M’\q),, of the shape of

molecules Mp and M with respect to the same set of charac-

teristies {OV,NOV} may be defined using [27] the single-valued
monotonically-decreasing function

S(uprig) - L + d(mB,mgn% . @)

which has the following properties:
0 < S(up,m»< 1, Mp M o S(”p’"b»s 1;

S(M ,m»=S(M M ); S(@es) = 0, and S@>0) =
Here, d(ﬁ ,ﬁﬂ ) is ﬂ'ie Euclidean metriec (32),

aqup ;) = iouce.-ovCe. 1 + P> s P12 )

Note that from (32) and the triangle inequality and, respec-
tively, (31), it follows that S(Mg,M"q) with respect to the

whole set of characteristics considered, i.e., {OV,NOV}, and
Sﬁ‘(MB,M(a) defined with respect to some of the characteristics,
ie., fov= VGD satisfy the inequality

S ,m»<s%m MY . @3)

F-urgher it is easgly seen that (30) allows accurate

calculation of the three-dimensional version [33a] of the
Minimal Steric Difference (SD) descriptor [33b]:
MSD(r,i) = gl(¥F-VY W 1Y) VWl -

- g(IYF-vij + uw’i—vFll))/lwn (€]
- NOV(k.i) + NOV(i,®)
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The MSD approach, arbitrarily prescribing [34] equal weights to
the non-overlapping volumes NOV(r,i) and NOV(i.r) lacks the
needed fFlexibility to adequately account for the effect of
molecular shape on bioactiwity..

The most active compound in the data base considered does
not necessarily provide the best topographical fit to the
receptor active site. One should consider the possibility of
missing sterically relevant atoms and/or the presence of steri-
cally superfluous atoms. The problem is to determime, from the
bioactivity of the molecules available, a better topography of
the active site.

A classification methodology, the S1BIS algorithm [35],
has been developed to map the receptor space explored by the
molecules under study, i.e., to identify areas which correspond
to the active site, areas occupied by the receptor, and, re-
spectively, areas which, pointing away from active site, offer
little opportunity for interaction with the receptor and are,
therefore, steric irrelevamt. SIBIS is a self-consistent type
procedure based on the least squares method with, or without
subsidiary conditioms; the convergence criterium is the best

overall agreement between the observed (Yg) and estimated (Yg)

bioactivitiies..
To obtain a framework on which to base a computational
effort seeking the optimization of the reference structure, M ,,

one must develop an appropriate basis from which to describe
numerically the stereochemistry of the molecules considered.
One proceeds by superimposing the n molecules over M;;

the superposition procedure uses the multi-molecule Fitting
described in Sect. 2 supplemented with an allowance for con-
tracting into a simple vertex all nearby atoms, i.e., the atoms
p(EMHf, l1<i<mn, and q € occuppy the same wertex if the

distance d(p,q) < 8, where 8 is givem. The obtained pattern of
vertices mimics the essential topographical features of the
receptor space explored by the n molecules; it is called the
investigated receptor space., abbreviated by IRS. One can use

the IRS as coordinate system and ascribe to each the
m-dimensional row vector ¥i = ﬂﬁij], 1< j < m, with Xi" =1 if
the vertex j is occupied by an atom of M4, and X.. = 0 if it is
empty; here, m denotes the number of IRS vertices..

Next,, one derives the initial steric map. <[Rs>ﬁﬁﬁf- of

the receptor as follows: (i) Consider the additional possible
connectivities in the IRS by connecting vertices p and q if the
resultant edge may represent a covalent bomd; (@i) Partition
the 1RS vertices into three classes: vertices assigned to the
active site («), to the receptor backbone (W), and steric
irrelevant areas (i)- The c-type vertices correspond to the
atoms of the MQ, and the other vertices are of w-type. For

convenience, one introduces a dummy vertex of i-type and con-
nects it with those 1RS vertices for which one wishes to check
the steric relevamce.
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The steric molecular descriptor SMD = [@D(r,i); SMD(i,e)]

is an approximate measure of the overlapping volume of over
»(SMD@r,,i)), and non-overlapping volume of over
M{;,,(SMD(Lr))::
SMD(r,, i) = ) S X SMD(L,x) = S X 35)
jE{c-type) I 3 jE(w-type) 3 I
where Siﬁ is an additive measure of the size of the atom j e Mil.
and X__. Exggi,.

i

’l‘ﬂle optimization of the reference structure consists of
the following steps:

1) Consider <[R$>’i ’1‘ amwt compute the regression equation

{36) and the corresponding correlation coefficient Rg b

Ylti 69 + F(SMD(r,.i), SMD(i,r)) + G(ﬁl,,ag,,......) » 36)

where F = ﬂ?.‘lm)tr,,i)—ﬁgSMD(i,,r) or F = ﬁmtr,,i)—ﬁgsm(i,,r)—
ﬂ’3‘[SMID(r:, i 2]]2,, if one wishes to obtain an estimate for the

receptor bulk toleramce, i.e., 3Y/3SMD(i,r) = O and

SMD(r,i)max = b G(a},,ag,,......) is (usually) a linear fune-

tion of non-shape factors, quantified by 0’5_,,

condition bioactivity, G = E 7@6’;1( G sorts out the non-shape
k

which may

component of Y in order to prevent the contamination of the
SMD's due to their iterative correctiam.
2) Cham% the classification of !' E <m{m‘ﬁt iff the
following two conditions hold:
i) the resultant eq- (36) has a better correlation
coefficient R’l\ > Rﬂ + AR; and

[ )]
=
o

the set of c- and i-type vertices, respectively, are
all connected among themselves.
Changes of vertex classification are performed until
no further improvement of the correlation coefficient
is observed.
The condition (i) is designed to be consistent with the con-
cept of reference structure which is represented by a connected
graph (c-type vertices) and, respectively, with key-in-lock
theory (@-type vertices))..

3) The resultamt <IRS> is then considered as <[IRS>.mﬂt
and the step 2 is carried out for all j.

4) RepeatReypegpk tepsl 3 amd il welil ceabistensiystiency is
achieved, i.e., the vertex classification no longer changes
within the given tolerance AR on repeated iteratiom.

The resultant <IRS> is optimal,, <IRS>opt » and the set of

c-type vertices of <IRS>QSE: represents the "best™ probable
molecular shape complementary to the receptor active site.

The recently developed version [36a] of the MTD approach
I36b,c} parallel closely the SIBIS algorithm.
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Information energy method [32] can be used with the 1IRS
concept to quantify the degree of relatedness of the molecular
shape of M., 1 < i < n: one associates with each » via the

vectors, the finite probability scheme P?,

By @ pici<n ~ Pry = Sp¥aéel. Sy -
I<j<m
(&)
0<p..<T1, i P..=-1, X_. €6 X. ,
1) —pti Hu o -

where P,,. is the probablllty that occupies the receptor
space centered around the vertex j of IRS. Because Pg is
related to the shape of the molecule .~ the degree of related-
ness of the probability schemes PS and Pa will characterize the

degree of shape relatedness of the molecules, and M ,, pro-

T

vided that the vectors Xp and X were defined within the same

IRS as coordinate system. The information correlation coeffi-
cient R(p,q), given by

RE) = L PP SE@E@IVZ @9
expresses quaniitatively the relationship between P* and P,
and, accordimgly, the relationship between the shapes of and
M, di.e., R(p,9 = 1 if and Pa are identical repartized (Mg
and have the same shape), and R(p,q) =0 if Pg and Pa are
indifferent (the shape of M and M are not related); the

intermediate values 0 < R(p.q) < 1 are judged using the cri-
teria for the significance of the correlation coefficient [41].
Here, the quantity E(q) is called the information energy con-

tent of P

»

E(@ L P‘;j 5 1/m<E@ <1, 39)
i=1
and it is a measure of the uniformity of the system described
by Pa- Other estimates [38,40] of the degree of similarity

between a pair of chemical structures are based on graph-
theoretical and information-theoretical [37,39] concepts..

CONCLUSIONS

In our view, one can make a convincing argument that model
building and energy calculations are techniques which will play
an increasingly important role in drug design [3,12,42]. While
each technique may be applied independemtly, their combined
application has a sinergistic effect.
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Chapter 21

HOW STRONG IS THE
GAUCHEP-GAUCHEM
INTERACTION?

Eiji Osawa
Department of Chemisttiry, Faculty of Science,
Hokkaido University, Sapporo 060, Japan

ABSTRACT

Traditiomal areas of experimemtal organic chemi-
stry have been slow in adopting mathematical methods
and concepts, although the relatiom is impreowimg.
As an example of obtainimg benefits from application
of computatiom, molecular mechamnics simulatiom of
the dependemce of gaucheB—gauchem interactiom on
environments is presemted.

INTRODUCTION

Mathematical concepts are generally not consi-
dered as the requisite for the study and practice of
experimemtal organic chemistiry, especially in those
traditiomal areas like synthesis and natural pro-
ducts. Concepts prevailimg in these areas are usu-
ally expressed in terms of abstract words frequently
ending with "ty', such as affimity, reactivity or

polar izalbi Lityy.. In fact, chemists practicimg in
these areas can do very well even without recourse #o
mathematics at all. Despite this traditiom, the

entire history of chemistry can be viewed as that of
progressively #turning the vague ideas into concrete
theories which can somehow be formulated with the aid
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of numerals. Those familiar terms like aromaticity
[1], steric strain [Z2] and congestion [3] which once
had only abstract meanings have recently been well
quanti Fied.

One of the most successfull amomg these ap-
proaches is the empirical formulatiom of molecular
force field [4]-. Molecular mechamics, as it is
usually called, actually does not involwve any novel
mathematical ideas but is a form of representimg in-
tramolecular potential energy or force with a set of
simple potential functioms. Remarkably high reputa-
tion that this method has in recent years acquired as
a practical means of predicting molecular properties
like shape and vibratiomnzl behaviomr, rests entirely
upon good set of parameters for potential functiors.
We are interested in molecular mechanics partly be-
cause it is a new way of doimg chemistry while at the
same time givimg us ample opportunity to improve and
update the art of simulatimg molecular force Fieldl..
Several problems existing in molecular mechanics [5]
need fresh concepts, hopefully with mathematically
attractive ideas, but we do not touch on these prob-
lems here.

This article is intended to illustrate how the
molecular mechanics can bg applied %o practical or-
ganic chemicall problems. The problem discussed
here started from one of the vague "ty' terms cur-
rently appreciated amomg organic chemistss, namelyy,,
flexibility of organic molecules. Whereas some
classes of moleculless, for example saturated cyclic
and acyclic alkames, are generally considered flexi-
ble, the flexibility is more or less restricted by
the shape of its energy hypersurfacs. Geometry of
such a molecule changes through energetically the
lowest possible paths along valleys and saddle points
on the surface. Because of high dimensiomality of
ordinary organic molecules, no complete detail of
energy hypersurface is known for molecules of practi-
cal interests %o experimemtall organic chemistss.
Howewerr, several structural features that limit the
flexibility under certain well-defined circumstances
have been knowm for some time and they have been
serving as indispensable guiding principles in con-
formatiomal analysis. The particular feature that
we are going %o discuss here is the “forbiddent
conformatiom of n-pentame, namely two adjacemnt
gauches of opposite sigm, i.e. gaucheE-gauchem Qa),
or so-called 1,3-diaxial interactiom whem it is on
the ring (2), whereim close approach of end carbom
atoms (€l and C5) of n-pentane or corresponding par-

% See also ref. 41 and [6] for other applications.
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tial structure destabilizes the gng half-ring con-
formaticm. Howewelrr,, not much was knowm about the
way this notable steric interactiom can be relieved
by the available flexibility of molecule or, inverse-
ly, how the interaction can be strengthemsd. Ener-
getics involved were also unknowr. The situatiom
was so, until molecular mechanics came to use. Now
we can calculate this type of interactiom under di-
verse circumstances and compare the computed results
with experimental observatiors.

BACKGROUND

Accordimg to Dale {[7], the gng conformation of
n-pentane is a shallow energy minimuwm, which is 14
kJ/moll more strained tham the global minimum anti-
anti conformarr. Our Mm2* [B]] calculations confirm
this point and reveals several other interesting
features: (@) the ngM conformer has no symmetry
elememt, namely the magnitudes of rotation about C2-
C3 and C3-C4 bonds are not equal, (2) the C-C-C
valence angles at C2, C3 and C4 are widened to 115 to
116°, and (@) the shortest H/H contact distamce is
2.09 R [9]. Clearly this conformatiom is unlikely
to populate %o a significant extent under normall
conditiorss. Since the predicted straim is the re=
sult of complete relaxatiom, it can be anticipated
that the interactions present in this type of confor=
matiom will readily increase if the relaxatiom is
restricted by some meamns.

DISCOVERY OF STAGGERED ROTATIONAL BARRIER
IN BICYCOLO-ALKANES

Our entry into this project occurred by chance
which_at first appeared to have nothimg to do with
the gPgM interactiom, but seemed to be related with
the molecular flexibilityy. In 1981, Ogawa et al»
I16] reported on the dnmr determimation of activation
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G- =
3 4

barriers for the rotation of N-N bond in substituted
1, 1~ldipiiperidines (@). A point of interest in 3 is
that the inversiom of nitrogem atom is "prohibited™
by the presence of one or twe equatorial alkyl sub-
stituemtss,, which would give rise to 1,3-diaxial re-
pulsions if the nitrogen atom (@nd hence the piperi-
dine ring) is inverted. In this way, it was ex-
pected that only the N-N bond rotation process should
be visible in the appropriate temperature range.
The observed barriers (74 to 79 kJ/mell) were assigned
to a "simgle passing barrier™ (4) where twoe N-C bonds
are eclipsed.

We were first intrigued by the seemimngly too
high barrier for a sym-tetraalkylhydrazine (n==son-
able guess is about 40 kJ/meol [11]) and tried %o
simulate the N-N bond rotation process by molecular
mechanics [12]. Although MM2 force Ffield [4] that
we used has not beem parameterized for N-N functio-
nality, it contained parameters for aliphatic amines
3]. So we chose 1~ =medtipliycllohexyl)-2-methyl-
piperidine (B3) as a model of 3 and performed dihedral
driver calculatiom on the N-CI" bond (Figure 1).
Results were most surprisimg. Starting from the
global minimum conformation A and drivimng the 6-1-1"-
2" dihedral angle toward larger positive values, we
did reach the single-passimg, eclipsed barrier (B).
Howewelr, as showm, (B) is not at all remarkable
compared to the pronounced barrier (C). The calcu-
lJated height of this barrier (@bout 60 kJ/mel)) is the
closest to what was observed, and in view of the
recognized tendency of MM2 force field to grossly
underestimate the rotational barrier height {6], this
height can be considered reasonalble. Then the cal-
culated height of (B) also appears as expected.

The "umexpected” barrier (C) has perfectly stag-
gered conformation about the rotating bomd. A close
Jook at the calculated structure revealed that the
straim arose from the long range, 1,5 type inter-
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Figure 1. Torsiomal energy curve of N-cyclohexylpiperine (5, R=], dotted line)
and meso-2,2"-dimethyl derivative (5, R=Wle, solid line) [12]

actioms across the C-N bond f namely a pair of
strongly repulsive g gM interactioms, 6-1-1'-2'-Me
and 6*—=II'-L-2-\ee. 1t should be emphasized here that
only limited freedom is available at the top of the
barrier, since any deformatiom in one of the gPg
sequences to reduce the unfavorable interactioms
increases the straim in the other. Apparently the
g g pair is locked simultaneously and inescapably
into the narrow saddle point and the straim per one
ngkl interaction has been intensified from 14 kJ/mol
in n-pentane (ide supra) to 38 kJ/mol!

At this point, we still could not believe the
results. First, we thought that the new barrier may
be an artefact of single bond drive calculatiom.
Then we performed two bond driver calculatiom, ro=
tating 5-6-1-2 as well as 6-1-1'-2'1 dihedral angles
of 5 [14]. This revealed a new pathway including
twist form of piperidime ring and a new barrier of
almost the same height as (C), but the essential
feature remained unchanged; again a_ pair of strongly
constrained and hardly relaxable gEgW interactions as
the source of barrien.
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RESTRICTED ROTATION IN CANNABIDIOL

Incidentallly, a dnmr study of cannabidiol (%) by
Kane and Martim [15] was reported shortly after our
work mentiomed above was completed and their results
came to our attentiom agaim by chamce. They gave
very high barrier of rotation about the pivot bond of
6 (®l.5 kj/mxll)) in contrast to literature value.
Correspondence with the previous authors revealed
their mistakes and the previous barrier height was
corrected to 59.8 kJ/mol in good agreememt with the
Kane-Martim valuee. 6 is essentially a substituted
phenylcyclohexene carrying "ortheo" substituemts po-
tentially capable of g*gW and/or similar long-range
nonbonded interactions across the pivot bomnd. Mole-
cular mechamics driver calculatioms of 6 confirmed
the above initial guess on the source of rotational
barriers [15].

O QP

R, R2.

6 7

Here, the presence of sp =-hybridized carbom
atoms somewhat complicates the situation. Take
phenylcyclohexane (7, R=if) as the simplest model: for
the gauche-like interaction across the pivot bond in
the well known equatorial-perpendicular conformatiom
8, we proposed a name of "progauche™ interactiom.
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Progauche differs from gauche in at least two as-
pects.. First, the dihedral angle is about 30° in
the former whereas it is about 60° in the latternr.
Secomdl,, the two sp ~hybridized carbon atoms in the
former have different valence angles and bond lengths
from those of the lattenr. A progauche interactiom
is probably slightly stronger than gaucte.

PHENYLCYCLOHEXANES AND BICYCLOHEXYILS

1t is now clear that the best model systems for
systematic study of the staggered barrier are substi-
tuted phenyl eyelohexames (7) and bieyelohexyls (9).

Rs R

G
Ry Ry

9

Although some of them have been subjected %o prelimi-
nary calculatioms in the course of our works men-
tioned above [14,15], it was oftenm difficult to ex-
actly locate barriers by the dihedral drive technique
of the MM2 program. Namelly, the dihedral drive
algorithm can be used only for simple cases. A
better method of exploring a complex torsional energy
hypersurface is to use full-matrix Newtom-Raphsom
geometry optimizatiom which converges at an energy
maximum of any dimensiomalityy. The dimensionality
is equal %o the number of negative eigenvalues of F-
matrix (®=cond derivatives of potential energy with
respect to nuclear coordimates) which is obtained
during the Newton-Raphson optimization [16].

Program BIGSTRN3 [17] is equipped with this
capability and several other convenient options for
our present purpose [15]. Hence this program was
used in conjunction with MM2i force field [B8] for an
extensive study on the rotation about the pivot bond
of variously methylated 7 and 9 [18]. Bicyclohexyls
9 followed expectedly complex dynamics when more and
more "ortho’ positions are metihylated. The highest
calculated barrier was 109 kJ/mol for 1-(2',.6'-di-
methylphenyl)=2,6=dimethylcyclohexame (7, R's=Me)).
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At this barrier, two sets of long-range interactions
@p9/9e§) occur simultareousy. During the calcula=-
tiom, one of the cyclohexyl ring was allowed to
change its conformatiom, but the other ring was kept
in chair form. This artificial constraint had %o be
imposed in order to reduce the amount of computatio-
nal load %o a manageable size. Hence the predicted
pathway and barrier height must be regarded provisio-
nal. Even higher barrier (27 kJ/mml) was predicted
for 1-@'.6'+dimethylphenyl )-2-methylcyclohexane (7,
Ry=H, Rg=R3=Rg.=MNe)s Generally, the pathways cal-
culated for the pivot rotation of 7 are less complex
and have somewhat higher barriers than those of 9,
reflecting the effect of more rigid phenyl compared
to cyclohexane ring. Molecular mechanics predict
that atropisomerism should be possible for appropri-
ately substituted 7 and 9.

No experimental information is availabBle, how-
ever, regardimg the rotatiomal barriers of 9. Bi-
cyclohexyls 9 have anyhow been unpopular in organmic
chemistry and we wish to attract attention of experi-
mental chemists for this unexplored class of hydro-
carbon.

A few experimemtall determinatioms of rotational
barriers are reported for the derivatives of 8 and
related molecules [18]. Only one example will be
mentiomed here. An indole derivative (10) showed

g

X see p- 270 of ref. [19]. In recent years, a
large number of derivatives of 9 have been appearing
in patents relatimg liquid crystals. We thank Mr.
K. Yoshinaga of Canon Company for this informatiom.
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atropisomerism: isomers were separated by chromato-
graphy and identified by x-ray analysis [20]. Since
the amide nitrogen should be able to avoid congestion
by inversiom, its substituent ((CCID)C@HQ\}«:II)) probably
does not contribute to the rotatiomall barriernr..
Them, the steric environments at the transition point
of this molecule during the rotatiom of pivot bond
correspond %o those of trimethyl-77, the one which has
been predicted %o have the highest barrienr!

CONCLUSION

Upon reflectiom, we realize that conformatiomal
analysis has long been domimated by the gauche effect
and biphenyl isomerism (@1) [19]. The former is 1,4

RG RG'

Q

R2 Rz'
11

type and the latter 1,5 and 1,6 types of nonbonded

interactionm. Hence the important classes of van der
Waals interactiom had beem covered, albeit in an
unsystematic way. 7 and 9 can be regarded as the

extension of biphenyl isomerism #to saturated and more
flexible analogwes, which proved to offer rich mate-
rial for the study of g g , gPg”™gP and similar long-
range interactiomss.

Our initial aim, to see if the ngM interaction
can be increased by imposimg extra constraimts, has
more or less been substamtiamted. 1t would be in-
teresting %o seek other systems, than bicycloalkyls
and arylcycloalkyls, that provide straining circum-
stances to the long-range nonbonded interactianrs.
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Chapter 22

TOPOLOGICAL EFFECTS ON
MOLECULAR ORBITALS (TEMO)

O.E. Polansky
Max-Planck-Institut fur Strahllenchemie D-4330 Miilheim a.d. Rubr

ABSTRACT

Simple molecular topological consideratioms result
in an interlacing theorem which produces TEMO. 1Its
physical relevance is proved. The purely topologi-
cal feature of TEMO is found to have a strong pre-
dictive power and, hence, dominates over several
physical factors in determining MO pattemm.

INTRODUCTION

The interest in the influence of topology on mole-
cular properties has grown remarkably in the 1last
few years. Much progress has been made in the various
areas of chemical topology., for example the synthe-
sis of sterically unusual compounds like catenanes,,
rotaxanes [[1,2], and Mobius strips [3] as well as
the topological analysis of the electron density
function [4] and energy hypersurfaces [5].

In the present paper some progress in the field of
molecular topology is reported [6,7]z the concept of
topologically nelated isomerk, termed Lopomerd, as
well as some topofogieal modefs for their construc-
tion are presemted; further a novel relation between
the MO pattern of topomers is derived [interfacimg
theoveom) and its physical significance is proved by
both, quantum chemical calculations (@t the ab
initiie SCF level) and experimental data.
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MOLECULAR TOPOLOGY

Formally molecular topology is fully described by
the simple graph 6 = [V/,,E] associated with the chemi=-
cal constitution of the molecule considered: The n
vertices collected in the finite non-empty set ( re-
present the atoms whilst the k unordered pairs of
distinct vertices of ¥, forming the set E, corres-
pond to the "chemical bonds™ of the molecule in
questian. By means of the open set formalism it was
shown [8] that a topological space is uniquely asso=
ciated with any simple graph. A simpler alternative
to this important work is offered by the neighbour-
hood formalism [9] which results in that topologi-=-
cal space which is induced by the discrete metric
defined upon a connected simple graph (@mote, by de-
finitiom, a simple graph has no loops, no arcs, and
no multiple edges). The alternative approach is
briefly outlined as follows:

@) A ball-neighbourhood U (X) of the vertex x
of ¥ is defined as the set of all elements y of
whose distance to x, d(x,Yy)., is smaller than an
arbitrary positive nubmer e:

Ug x) = {Yllyewa d(x,y)<e}. @)

{@L) A subset of ¥, U* , is said to be a
neighbourhood U of the element x if and only if W*
contains a ball-neighbourhood of x:

UE a W @

{@ii) A topology T is defined upon the set W by
associating each element x of ¥ with a system U()
of subsets of W, the so=called neighbourhoods U of x,
obeying the axiomes:

[[I'l]erforalerLm.

T 2] 1f U € U(XX) and U » then U 6 U(x).

fT 3] 1£f U*, U™ 6 U(X) then U Q U" & Uy ? U/6 U .

IT 4] For any U €& U(x) there exists U* €& U(x) such
that U 6 U(y) for all elements y 6 U*.

(@v) The set W together with its topology T forms
the topological space T.
In such a way each molecule M is unequivocally asso=
ciated with a particular topological space T(M) by
its molecular graph G(M) which represents the con=
stitution of the molecule under consideratiom. It
may easily be verified that any fragment of the
molecule, say A&« M, corresponds with a distinct sub-
space of its topological space, T(R) €& T M).-
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TOPOMERS AND TOPOLOGICAL MODELS

Two isomers are said to be topolegically refated if
they are constituted from pairwise equal fragments,,
say A,B,C,... . Thus, the difference between the
isomers of such a pair arises solely from the dif-
ferent mutual linkage of their fragments. Topologi-
cally related isomers are called fopomeds .

The topological spaces associated with a pair of
topomers may be divided into subspaces T(A), T(B),.--
associated with the building fragments, A,B,...;
evidently, these subspaces are pairwise isomorphic.
Thus the topological spaces associated with a pair
of topomers differ only with regard to the respec-
tive conjunctions of their subspaces.

A particular mode for the construction of topomers
is termed a teopological moded.. The number of topo-
logical models seems to be unlimited, but here we
present only two such models of particular interest;
more examples may be found elsewhere [10,11].

In medel 1 two fragmemts, A and B, are combined to
the topomers S and T by H > 2 bonds. In medef 2 three
fragments are usedz the terminal fragments A and B
are linked by £ » 2 bonds with £ centers of the
central moiety C7 The two models are represented by
the following schemes ¢

model 1: model 2:

o

The topomers formed by means of one of these models
are denoted by S and T according to

1im @G ,.x) < Lim $R,X) ®

XHW XA

where ¢[6£5.x) and ¢EITx) stand for the characteristic
polynomials of the respective graphs.

It should be noted that in order to construct two
different topomers at least two bonds are needed
and, further, not all the centers where the 1linking
takes place are allowed to be equivalemt.

The use of the models is illustrated by Figure 1.
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The topomeric pairs I-IV are constructed by means of
model 1 while model 2 is used for V; as it can be
seen from Figure 1 the pairs 1V and V have the T
isomer in commom, IVT = VT.

<

S
&
&y O
SRS

s ©
@

O .

Q

=X

A,
Y

<

Figure 1. Examples of pairs of topomars.
INTERLACING THEOREM - TEMO

The characteristic polynomials of the topomers may
be expressed in terms of the characteristic poly-
nomials of their constituemts.. Thus for model 1,

i = 2, one obtains

#&S,X) = A #(B,¥) - ¢@E-Kk,x) &(B-p,x) -
= SO-HX) PB=g,x) + P@-k-£ ,.X) ¢(B-p-g,x) =
2[54’)@9\‘1’}/(% »X) ]”[m’ (B‘Pm X)) 1n ?h))

¢(T,x) @A) ¢(B,X) = H@-k,x) ¢(B-q,%) -
DAL .) H(B-p.xX) + $@-k-£,.X) $B-p-q.x) =
2[[4X@-PK £ »x)] [M>(@3‘PB§ »X) 1

In these expressions A-k denotes the graph obtained
from A by deleting the vertex k, etc.; the summa=
tions run over the complete sets of paths {{P’kl}}
connecting the vertices k,L 6 A and P }

connecting p,q,6B, respectively. g

Note that the characteristic polynomials as expressed
by eq. (4@ consist of a number of bilinear terms;



266 Topulbiical Effects on MO {Ch22

of the two factors forming such a term the one
refers to subspace T(A) and the other to T(B).
The difference of these polynomials defined by

AED = ¢(Mx - 6.0 ®

is again a polynomial in x. 1In case of model 1,
i=2, it follows from eq. (@) that

A (X() = [@ (@‘k:x)) =@ ((A‘gix) ]Wm‘prx)"«b (QB‘(LX)) ]|- ((6 )]

Note that in eq. (6) all polynomials, but only those
which are sensitive for the difference of the con-
junction of T(®) and T(B) in T(S) and T(T), respec-
tively appear. Thus A(x) incorporates these diffe-
rences in polynomial form and, hence, it is conside-
red as reflecting the tietatfue topology of a pair

of topomers..

The expression of eq. (6) takes the form of a per-
fect square if the moieties A and B are isomorphic,
A n~ B, i.e. the centers k and £ of A may be mapped
isomorphically onto the centers p and q of B, res-
pectivelly.. Under these conditioms one obtains

AGD = [RRAKGX) - CEXAEX012 > O. @

Obviously, in this specific case A(x) is non-negati-
ve within the complete range of its variable x; in
view of eq. (@) A(X) = 60 has either no real roots

or only real roots of even degeneracy..

From egs. (B) and ) it follows that

(0((51’)() < O LX), X € (>, +¥9). @)

This relationship between the characteristic poly-
nomials of a pair of topomers is schematically de-
picted in Figure 2. Because both polynomials must

Figure 2. Schematic behaviour of di#&x) and ¢4({T,x) in case of model 1,
€=2,A-B.
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have the same number of zeros, say N, in view of eq.
(8) the zeros of the polynomials mutually interlace

as follows=: in the intervals given by two successive
zeros of ¢IK5.X) there are alternately two or no zeros

of &(T,x) ¢

(ST, T, 8¢ < T <T<S < \
X1 %1 X2 X2 = §2k—ﬂ X2k-1 X2k Xak =** @3

Two independent and detailed proofs of eq. (3 are
found elsewhere [12,13]; in [12] it is shown further
that the interlacing theorem, eq. (@), is also valid
for a class of polynomialls, not all of which neces-
sarily characteristic polynomials.

When the interlacing theorem, eq. (@), is applied
to fully conjugated Tredbscitwron systems the zeros of
the respective characteristic polynomials may be
identified as the Huckel (@MO) eigenvalues of the
topomers. Thus, eq. (9) relates in a novel manner
the eigenvalue spectra of topologically related
compounds which have been considered to be indepen=-
dent hithertw. Since eq. (3 stems from A(x) which
incorporates the relative topology of the topomers,
the chemical application of the interlacing theorem
has been termed topological effecd on MO (TEMO) .

It should be mentioned that by means of a Hiitdiel-
like method the validity of TEMO also for a-MO has
been showm.

Finally the other two models given above should be
considered.. In the case of model 2, £ = 2, A » B,
one obtains

A = [#E@-k,%) <+@-£,%) 136(C-a-b,x) .

Under some particular conditions demanded for the
structure of the central moiety C, the polynomlal
®C-aty,x) is a perfect square, say ¢ff(caalp,¥) =
Iy(x)1 ; then eqs. (B) and (9) are obtained agaim,
i.e. the MO spectra of the topomers in question ex=
hibit the TEMO pattern as described above.

In the case of model 1, 2 = 3, the polynomial A¢(x)
consists of four bilinear terms which have pairwise
opposite sigm; thus no conclusion can be drawn about
the sign of A(x), even if A ¥ B. With increasing £
the number of terms of A(x) also increases. The same
is true for model 2 as well as for additional models
not mentioned here.

PHYSICO-CHEMICAL CONSEQUENCES OF TEMO

Here we restrict the considerations to the m-electron
systems of those pairs of topomers which may be con-
structed by means og model 122, 2 = 2, A A~ B,

¢ €azih, x) [y(x)1“. The mutual interlacing of the
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MO of the S and the T topomer according to eq. (9)
is schematically shown in Figure 3. Let N denote the
number of Tredksttrons of S and T, respectively. 1t
is easy to show that N is even in all cases conside-
red here. If N = 4v + 2, an odd number of MO is
doubly occupied in the ground state of the topomers
and the HOMO (@UMO) of S lies below (@bove) that of
T, i.e. the HOMO-LUMO separation is larger in S than
in T (@igure 3a); if N = 4v, the opposite is true
(Figure 3b).

This consequence of the TEMO pattern should be exhi-
bited by pertinent UV absorption bands provided the
state transitions in question are mainly determined
by MO transitioms. Since this requirement is well
met by the p-bands of polycyclic aromatic hydrocar-
bons (@), they have been examined with the view of
probing the predictions of TEMO theorem. These were
found to be in excellent agreement with the experi-
mental data (see Table 15 in [61])-

A similar consequence of the TEMO pattern should be
shown by the first ionisation potentials,, IPl.

As seen from Figure 3 IP'? > lP’rf should hold for N =
4v + 2 but ]P’1S < ]P%‘,, for N = 4v. This prediction
also was found in accord with the experimental data

i6l.
B & B
S 1T S =T

Figure 3. Schenztic illsstration of eq. (8). The broken llire separates tine doutbly
occupied and tie enpty MD. The numiter of firellatinans, N, isassumed 0 be
N= 4v + 2@#na) but N = 4vimb).

This first evidence for the physical relevance of
TEMO theorem is supported by the results of some
guantum chemical calculations as well as photoelec-
tron (PE) spectra of topomers. These additional data
will be discussed briefly in Sect. 7.
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INVERSIONS

Let us return to eq. (6) valid for model 1, & —22,
A B. In the case of non-isomorphic moieties, in
general, quadratic forms of the difference poly-
nomial A(x) will not be obtained and consequently
A(x) will change its sign when the variable x goes
through one of the real roots of A(xX) = 0 provided
the roots in question are not even-degenerated..
Let us denote the real roots of odd degeneracy in
decreasing order as follows:

¥1 3 %23 <3 %251 3> ¥2§ 3 X2jan 3w+ (G

They determine open intervals within which A(x) is
either non-negative or non-positiwve; but A(x) becomes
zero within the interval if x takes the value of a
root of even degemeracy. As a consequence of egs.

(3 and (@ A(X will be positive for sufficiently
large values of x. Thus, one generally finds:

. . 1V

A® > o0, iff x € ’352j+1" §2j e @1a)
- /ML In

AX < o0, iff x € %25 " 322].911‘ - (tib)

i=0,4/2,0c0 xz = +60.

For all the intervals where A(x) < 0, one obtains
from eq. () @i&.xX) < ¢fXT). Using the same argu=
ments as before, one~derives from this inequality
the sequence of eigenvalues as follows:

R SIS c WL ¢ =3 T s CIE )

As shown by eq- ((12) the interlacing theorem holds
even if A B, but within the intervals given by

eq-. ((11b) the order of eigenvalues is inverted. Thus
the real roots of odd degeneracy of A(x) = 0 have
been termed iwvevision pesicnis . Inversions as expres=
sed by eq. ((12) are said to be topologically induced.
Attention should be paid to the following points:

(@) TEMO theorem predicts the mutual interlacing of
the eigenvalues of a pair of topomers within defined
intervals as alternatively expressed by egs. (@) and
Qa2).

(@i) Topologically induced inversions within the
TEMO pattern as discussed above are a part of the
dgeneralized TEMO theorem.

(@ii) The appearance of inversion points in a given
TEMO pattern may be excluded when particular topo=-
logical models are used; such an exclusion is due
to an inherent property of the topological model
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in gquestiom.

@Gv) No gemerall nulle cam e gifven fior tte actusl
realization of inversions if they cannot be ex-
cludedl; notex: No inversion can be actualized if the
polynomials in question have not at least one zero
within the intervals given by eq. @ib).

PHYSICAL RELEVANCE OF TEMO

The gquantum chemical calculation of the MO energies
of a pair of topomers may serve as a test of the
physical relevance of TEMO theorem. However, in such
an appraisal one has to bear in mind that in de-
riving eq. (9@ only two interactioms of centers of A
with those of B are considered, namely the inter-
actions of k and £ of A with their neighbours in B.
In contrast to that in any non-empirical quantum
chemical calculation of MO energies, each center of
A is found to interact with each center in B and
vice versa; this leads to a.b >> £ interactions where
a and b denote the number of centers of A and B,
respectivelly.. Thus, the situation met in non-empirical
MO calculations resembles to model 1, £ > 2 (Ghere
inversions cannot be excluded!) more than to £ = 2.
Consequently a large number of inversions might be
expected even if model 1, £ = 2, A » B is used. Sur-
prisimgly, the spectra of a- and @=MO of o-(ILI%) and
p-benzoquinodimethane @T) [6], shown in Table 1,
exhibit only a few inversioms: In the range from -0,4
to =0,5 [au] where a- and @®™MO energies overlap the
sequence of the respective MO inverted; only within
the a@-MO pattern there are two additional inversion
intervals ranging from -0,53 to =-0,56 and from

=0,62 to -0,73 [au], respectiwvelly.. In some other
calculations of that kind [15,16] even less inver-
sions have been found. As seen from Table 1 the MO
pattern of the topomeric pair 1 exhibits perfectly
the interlacing of the MO according to eqs. (9 and
(12). The number of inversion intervals is surpri-
singly low. Thus, the TEMO theorem stands very well
the test by non-empirical MO calculations.

Some examples [16-18] indicate that the physical
origin of the additional inversioms observed is
nearly always the non=-nearest neighbour interaction
which is not considered in the course of deriving
egs. (@ and ((12); an additional origin of physi-
cally induced inversioms could be traced only in

one case of heterocyclic topomers [17]}.

Another rigorous proof of the physical relevance of
the TEMO theorem is offered by PE spectroscopy.. Pro=-
vided Koopmans theorem holds the vertical ionisation
potentials as exhibited in the PE spectra should re-
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Table 1. The a and m=-MO of 0-(IS) and p-benzoquinodimethane (IT) in [fau]
taken from [6] (STO 3G basis, standard geometiny; inversion intervals are marked
by dotted lines)).

1S 1T 1S 1T
a=-MOz=
-1,096 109 -0,523 718
-1,095 072 -0,516 540
-1,0102 555 -0,5038 316
-1,004 848 QA6 719 o
o o8E 414 R L L5 558
-0,973 930 -0,453 912
-0, 9211 337 :-0,432 840 :
-0,900 402 10,412 978 :
-0,822 836 E 0,401 872!
-0,784 236
-0,7167 785
-0,750 425
LSRRI 7 2l 3 E wMO
-0,7714 896 P -0,463 535}
0,637 657 im0 B2 BTN e -
N TQ.8620, 709 -0.356 040
-0,620 554 -0,339 030
-0,6011' 044 -0,334 342
-0,&01 409 -0,317 534
I B T S -0,208 487
: -0,5563 383: -0,203 378
-0,540 443:
=0,540 166

present the upper MO levels of the compounds in=-
vestigated.. Thus, the PE spectra of a pair of topo-
mers should render the TEMO pattemm. This is veri-
fied very well by the PE spectra of the topomeric
pairs 1I, 1IL, and V [19] collected in Table 2;

some additional data are found in [20]. The examples
given in Table 2 are taken from the class of PAH be-=-
cause the PE spectra of these compounds consists of
a very large number of well-resolved peaks. But it
should be mentioned that the PE spectra of more than
a hundred pairs of topomers, selected from literature
and exhibiting a wide variation in their constitu=
tional characteristics, satisfy the TEMO theorem
with astonishing fidelity [21].

CONCLUSIONS

@) THe imterllacimy tteemem ikss aa moxell neellsttiom im
mathematics; it has been proved rigorously..
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Table 2. PE spectra of the topomeric pairs II, III, and V shown in Figure 1 (all
data in feV], taken from [[19])

S 1I T S III T S v T
7,41 6,61 7,59
7,86 7,27 7,60
8,15 7,39 , 02
8,54 7,92 8,10
9,19 8,32 8,68
9,28 8,54 8,98
9,89 8,90 9,18
10,18 9,01 9,43
10,28 9,39 9,72
10,59 9,53 9,96
9,66 10,22
9,80 10,52
10,23
10,3
10,5

(@i) The interlacing theorem is derived using the
relations between the molecular-topological spaces
associated with a pair of topomers..

(@ii) Hence, it is applicable to the a- and w-MO of
organic compounds, thus producing the TEMO, provided
the topological features of the MO are considered.
(@v) The test of TEMO by non-empirical MO calcula-
tions, UV absorptiam, and PE spectra shows that
TEMO strongly superceeds several physical factors..
(@) From this fact one may conclude that molecular
topology is not so much only the end of rigorous
abstractions rather than one of the first princip-
les; it seems it determines some sort of frame
within which physical reality may be actualized.
(vi) Hence, besides its use in organic chemistry
TEMO has some cognitive value too.
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ABSTRACT

For individwl Kekule valence structures we consider the
smallest possible number of placements of CC double bonds such
that a Kekule structure is fully determimed.. The number may

be viewed as speciall weighting scheme for individuamh Kekule
valence structures. Alternatively its reciprocal indicates the
degree of a long-range order in a Kekule structure. Contribu-
tions from individuall Kekule valence structure add to a nowel
structwrall invariant F, the innate degree of freedom associat-
ed to a conjugated system. We find that F correlates well

with the molecular resonance energy.

INTRODUCTION

The question of the relative importance of Kekule valence
structures has been frequently overlooked, implying by default
that all Kekule valence structures have the same weight. 1In
order to explaim the reduced aromatic stability of nonbenzenoid
systems in comparisom with benzenoid systems having the same
number of Kekule valence structures Longuet-Higgins and Dewar
introduced the concept of parity for valence structures (1).
One can interpret parity formally by assigning to some valence
structures a weight +1 and to other -1. Valence structures of
opposite parity then cancell each others contributioms to mole-
cular stability. The concept of parity, however, suffers from
inconsistencies that become apparent whem one extends the
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applicatiom to polycyclic systems having three odd fused rings
(e.9., aceazuleme) (2). Similarly it shows deficiency when
applied to alternant systems having two or more four membered
rings, in which cases the most stabilizing and the least sta-
bilizing valence structures may appear with the same parity
(3). 1In contrast Clar, using chemicall intuitiom and logic,
argued that in polycyclic systems individusl rings may differ
considerably, some showing a great similarity to benzeme ring,
others bearing little resemblance (4). Formally the approach
of Clar amounts to assigning to most Kekule valence structures
weight 1 and to a few weight 0. While the work of Longuet-
Higgins, Dewar, and Clar, clearly point to a need to differen-
tiate the relative importance of individual structures, the
way to resolve this problem remains opem. Recently sevenall
authors suggested a classification of valence structures into
more than two classes (5). The present work reports yet an-
other approach to this problem.

INNATE DEGREES OF FREEDOM OF VALENCE STRUCTURES

Most chemists willl agree that valence structures in Fig. 1 do
not represent usefull “depictiom of the molecules shownm. Can we

quantify the chemiicall intuitiom that guides us in rejecting
the valence structures of Fig. 1 as unimportant? Can one esti-

mate the importance of a valence structure a priori? ‘
OO@‘ 6068 OO%

Figure 1. Selected Kekule valence structures for polycyclic benzenoid systems.
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One clue is that the discriminated structures of Fig. 1 may

be identified with a type of long-range order. That is, there
are highly correlated couplimgs in the sense that the pairing
of vertices at large distances is dictated by arrangement of

CC double bonds in some locall regiom. This suggests that one
can speak of an innate degree of freedom of individual Kekule
valence structures. The degree of freedom relates to the count
of steps at which in completion of the Kekule valence structure
one has the possibility to make a choice for CC bond type
(single or double)). Consider two Kekule valence structures of

triphenylene: ‘] @
OQ@ @‘O

For the left structure once we select any one C=C in the
central ring all other C=C are determined and the complete
Kekule valence structure can be writtem down. The valence
structure at left has a single inherent degree of freedom. 1In
the case of the valence structure at the right, however, by
assigning one C=C in the centrall ring only, two additiomall C=C
are determined (within the same side ring). 1In order to com-
plete the Kekule valence structure two additiomall selectioms
have to be made, each to fix C=C bonds in the remaining peri-
pherall rings. Hence, the structure at the right has three de-
grees of freedom. We cam now present the definitioms for the
innate degree of freedom of an individual valence structure
and the molecule as whole:

Definitiom 1: The innate degree of freedom of a Kekule val-
ence structure is the smallest number f of choices of CC bond
types that fully defines the structure.

Definitiom 2: The innate degree of freedom of a molecule F
is gliven as the sum of inherent degrees of freedom for alll
Kekule valence structures of the molecule.

The innate degrees of freedom f and F are structwral invari-
ants. For a givem Kekule valence structure f is unique, evem
though if one is to construct a Kekule valence structure the
number of choices may depend on the order in which CC bonds are
selected for consideratioms. That is the reason for emphasiz-
ing the smallest number of choices in the definitiom for f.

RESULTS

To find f and F is simple in some cases and more involved in
otherr. For linear acenes alll Kekule valence structures have
f=1, and consequently F=K (K being the number of Kekule val-
ence structures). This simply follows from the fact that in
such molecules each Kekule valence structure has a single
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"vertical™ C=C bond which determimes the CC type of all other
bonds. 1In such systems CC double bonds are strongly correlat-
ed, and as the size of the molecule increases, their RE/e
values (the ratio of the resonance energy per pi-electrom) de-
crease. The decreasing aromatic characteristics of such linear
polycyclic systems is reflected in their low value for F. 1f
we compare angularly fused structures with a single "kink™:

one finds that here there is for all such compounds a single
valence structure which is fully determined by selecting one
C=C bond in the centrall ring. The remaining Kekule structures
may be viewed as composed from Kekule structuwes for the
straight acenic fragments of rings on either side of the ring
where the kink takes place. 1In these structures one needs to
specify the locatiom of two C=C double bonds transverse to the
chain, one double bond in each straight acenic portion. Thus
these structures have f=2, and F=2(K1)(X2) + 1, where K1 and
K2 are the numbers of Kekule structures possible for the two
straight acenic legs. 1t is not difficult to generalize this
rule for other catacondensed acenes.. Finding f for pericondem-
sed systems is more involved. One essentially breaks down a
larger structure into components of smaller size for which f
values have already been found. A usefull aid in determining

f is to locate the smallest conjugated circuits Rl (6) (i.e.,
the rings with a benzene Kekule valence structure). The
rationale for doing this is that f is at least as great as the
(maximum) number of disjoint conjugated circuits that can be
simultaneously identified to the Kekule structure. The conju-
gated 6-circuits are oftem the most important for benzenoids,
and because they are the smallest circuits they lead to a
greater number of such disjoint circuits to be found. Thence
one sees that the number of circles in a Clar structure asso-
clated to the given Kekule structure is a lower bound for f.

The innate degrees of freedom provide a weighting for Kekule
structure that though it parallels Clar's ideas is differemt.
That is, we see that those Kekule structures associated to a
€lar structure with many Clar's circles willl have a high weight
f. Those with no or few Clar’s circles however are not given

a weight of zero, as Clar initially suggested, but generally a
Tower weight. 1t is possible to have structures with arbitrary
large values for f. This is seen for long chaims where the
number of disjoint Clar's clrcles can scale as the chaim length
(for some Kekule structures). Moreover these same type of
chains yield examples with variety of different values of f.
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QP -
9 %a%a % %a®

Figure 2. Long chain molecule with valence structures of variable f.

For instance, a chaim molecule of Fig. 2 in addition to the
f=6 valence structure also has f=5 and f=4 valence structures.
In fact for such chains of M rings f takes alll the integer
values such that (M+2)y/BE f £ (M+1)/2. 1In Table 1 we Tist
the F values for numerous molecules,

RESONANCE ENERGIES

A logarithmic relationship betweem RE and structure count has
been indicated in the past (7). There is qualitative reasom
to anticipate such a correlation whem we interpret RE as the
correction to an energy of a single Kekule structure. An
"appreciable™ RE/e should occur under the clrcumstances that a
typicall Kekule structure interacts "directly™ with "many™
others, the strongest interactioms being betweem two structures
that differ but just slightly. For an appreciable RE/e the
number of such strong interactions should scale with system
size, say as measured by the number N of pi-centers. Thence
modiFications to a typicall Kekule structure should be possible
in a number of locall areas scaling proportionally to N, each
modificatiom being independent of the others. Though a struc-
ture differing by a single locall modificatiom admixes most
strongly, the possibihity of making different modificatioms in
different locall regions indicates their independence. The
totall number of Kekule structures then scales proportiomall to
M**S with M a mean number of modificatioms possible per Tlocall
region and S the number of different locall regions. But we
have already argued that the totall RE scales with S {(when RE/e
is appreciable) and of course S is proportiomall to N. Thus
log K is anticipated toscaleas the RE, at least in terms of
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Table 1. Polycyclic conjugated molecules considered, their F and K numbers (Fis

the number of innate degrees of freedom and K is the number of Kekule valence
forms) shown as F/K.
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its "bulk™ contributioms. The rationale for a correlatiom be-
tween log K and RE can be summarized more briefly in a frame-
work of multiplicative versus additiwe properties of structunes.
Kekule structure count K can be identified as "multiplicatiwe™
{when RE/e s appreciable) and RE as "additive™ -- the log
function being the well-kmown transformatiom from multiplica-
tive to additive quantities.. Quite similar commemts apply to
the identificatiom of F as multiplicative quantity, so that
here too we anticipate a 1inear correlatiom betweem RE and

log F. 1Indeed in Fig. 3 this is seem to occur to some degree
(the RE have been taken from Dewar and de Llano (8)). As one
sees there is a satisfactory correlatiom, which differ in de-
tail, but not in quality from the similar correlatiom based on
K. Because K and F do not measure precisely the same struc-
turall features, F being a "refined™ (weighted) K quantity, we
see that the cause for the correlatiom is less apparent tham
first guessed. The dependence of F on K is not simple, as
there are numerows cases of structures having the same K but
di fferent F values.

ev RE
3.0~ o
]
o
0
o
2.5~
[
o
2.0 o
o
o
1.5 |-
<}
Tog F
B omooe e oo e e oo oo oo 1
0.5 1100 1.5

Figure 3. A plot of molecular resonance energy (RE) against log E.
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In conclusiom, the quest for elucidation of molecular structure
of complex molecules may welll critically depend on the genera-
tion of novel concepts, rather than on the next generatiom of
computers! With this in mind we have presented one such novell
concept, the innate degree of freedom of valence structures.
Possibly it may be of direct use or it may stimulate other
novell inquiries in molecular structure.
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INTRODUCTION

Dynamic processes in molecules are usually regarded in terms
of a few select degrees of freedom ((odes). For example, the
description of chemical reactions fiakes use of the reaction
coordliinate concept and molecular electronic spectroscopy makes
use of electronic energy surfaces as functions of vibrational
coordinates. 1t is both customary and reasonable to consider
the smallest possible number of degrees of freedom of a
molecular system required 1o understand its properties. On the
other hand, it is generally recognized that every real system
is composite in nature, consisting of very many modes that are
at least weakly coupled to one ancther. 1In fact, since no part
of the universe is truly isolated, every observed system is in
principle coupled 1o the rest of the universe.

Qur approach is 1o regard any given molecular system as consis-
ting of a Principal Subsystem (referred 1o as the PS) and a
Background set of modes (eferred to as the BG, or in some
contexts as the Bath). The PS represents those modes that are
directly involved in the process under observation, for exanple,
a chromophore which absorbs light within a certain frequency
range. The BG conslsts of all modes that are directly or
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indirectly coupled tv the PS, for example, the substituent
groups on a chromophore, solvent or other medium, radiation
field modes, and phonon modes. Thus, the BG may be ((@n part)
structirally an dimtegral part of the PS and it may also include
quite literally the surroundings.

In the theory of chemical reactions and of molecular spectros-
copy, the role of the BG as a source and sink for enmergy is
generally taken for granted. Most processes involve at least
part of the BG being in thermal eguilibrium and the BG thus
tends to direct the PS toward thermal equilibrium. However,
the BG also plays a vital role in coherence relaxation in the
PS; d.e., in the loss of a definite phase relation among its
quantum states. Modulation of the PS by BG modes leads to
dissipation of coherence as well as redistribution of energy.
This is equivalent to a memory less in the PS (sce below) and
can greatly modify its dynamics. 1In sunmary, the BG plays the
nportant dual role of energy and coherence dissipation in the
PS. The latter is of fundamental Fmportance in the interplay
of (@sherent) dynamics and ((imcoheremnt) kinetics, the concept
of irreversibility, and the approach to eguilibrium of the PS.

In contrast to the dissipative forces of the BG there canh be
coherent forces acting on the PS due 1o potentials VP which are
either extrinsic or intrinsic in nature. Such potentials tend
1 create or maintain definite phase relations among the PS
states. Examples are applied coherent fields and fmtra-
molecular potentials producing nonradiative transitions. The
theory dieveloped here deals with the dmterplay of coherent and
dissipative potentials.

There are numerous other theoretical approaches to macroscopic
em dynamics and we mention a few that are relevant to ours.
Grigolini (@985; 1981) has made extensive stidies in terms of a
reduced model theory, in which projection operator methods
formulated by Zwanzig (1961) and by Mori (1965) are used.
Kubo (1969) has developed a stochastic Liocuville eguation
method and similar stochastic equations have been used by
Oxtoby (®agchi and Oxtoby, 1982), Silbey ([lackson and Silbey,
1981), Lin (Boeglin et al., 1983) and many others. These agree
in general with the classic work of Redifield ((@965) on spin
relaxation. Finally, the subdynamics formalism of the
Prigogine school (@rigogine, 1981) should be noted.

We define a subsystem basis {|[i>} which spans the Hilbert
Space of the PS. The matrix elements <i|p|j> of the entire

systten’s density operator p are operators with respect to the
BG subsysten. A key feature of our method is to make the
identification

by ® = <SRl = p5() o, © ®
a;+@ = Of p (0,
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which is used provided 3]_6} is nonzero. Otherwise, the notation
Biij is retained. This ines the elements s)gi, of the reduced
density operator for the PS and the assoclated operator for the
BG. Qur purpose is to formulate and evaluate the eguations of
motion for the afj for various kinds of molecular processes.

The diagonal element &fi(t) represents the probability for
state |[i> of the PS, while o) (G4j) represents the coherence
components (elerents) of the PS. The latter is a measure of
the ooexistence of (orobebility) amplitudesfor the state |[i>
and |[§> in association (@arrelation) with the same wavefunction
component of the BG. The coherence components play an
inportant role in the dynanics of probabilities and other
%]gs;gal properties (e.g., average values of observables) of

By using eq. 1, it cen be shoun that the Liouwwille eguation for
the full system,

MO =-iLp@© (ed)

may be reduced to an effective equation of motion for the PS
having the form

Gli.]-((t) 1 o= (&)

The effective Liouwvillian depends on the bath operators p)Ep((t)
in a manner Implied by eg. 1. 1In general, its components
depend on time t and the history of the system, #including
earlier values of the various agp.. Eq. 3 permits the most
coiplicated kind of dynamics #n which the PS can have a major
perturbation effect on the background, resulting in nonlinear
equations for the q‘m We are interested here, however, in the
dissipative 1imit, whereby the BG is very large and hspomgy'T
and its properties do not change with time. Examples are non-
stationary processes in molecules inbedded in a condensed
medium at thermal egquilibrium or molecular dynamics in a
thermally equilibrated radiation field. For this 1imit
dijipdoes not depend on t.

Even for the dissipative limit the dynamics of the PS can be
quite complicated. The PS is generally composite and may
consist of many degrees of freedom, some of which may be
strongly coupled. We may wish to focus on one or a few modes,
whereby further reduction of the PS is needed.

The discussion of background modulation effects on PS

dynamics will develop in several stages. (@) The motion of
the BG will be treated adisbaticallly.. This means that the
Hamiltonian of the BG depends on the state of the PS and the
state wavefunctionsof the BG tend o ewolve on the energy
surfaces of the PS in a manner which modulates the dynamics of
the latter. (2 The Liowwville equation for the entire system
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is projected onto the diagonal components for the BG, the
dissipative I1amit is used for the BG and reduction is made
with respect to all background modes. The resulting reduced
Liouville equation (RLE) describes coherent dynamics of the PS
as modified by the dissipative background. (3) The non-
Hamiltonian character of the RLE is examined and the criteria
for an effective Hamiltonian component of the RLE is considemsell
(@ The special case of a two-level PS is discussed and results
of computer calculations are presented for different coupling
strengths and initial conditions. (B) Several important
phenomenological consequences are considered for the effects
of memory relaxation in the dissipative limit. These include
structure stabilizatiom, kinetic stabilizatiom, and kinetic
enhancement within the PS.

THE ADIABATIC HAMILTONIAN

The entire system consists of molecules and fields and their
interactions. We tacitly assume that the Primary Subsystem
{(®S) contains a set of modes which can be clearly defined
(®.g., a chromophore composed of bound electrons and nuclei).
The system Hamiltonian is then

H=H Hf+R +v +Vv° «V¥ @

where the first three terms represent the Hamiltonia for the
free PS, nonadiabatic fields (e.g., radiation or applied
fieldls), and the adiabatic part of the background (@dtfiabatic-
BG), respectively, and the last three terms represent intra-PS
interactions, field-PS interactions and interactions between
the adiabatic-BG and the PS, respectively.

The adiabatic formulation (®hodes, 1981, 1982, 1983) involves
the PS Schrodinger equation

@b + VAP |p> = aga) 5> ®

where q represents the set of BG coordinates that are to be
treated adiabatically and @ 3is the energy surface for the
PS corresponding to PS state |[i>. Strictly, ||i> depends at
least weakly on q, but this is neglected here. Each uW'(@ then
serves as a potential for the motion of the BG modes. Thus,

BA + <i|phlE> + ©.@] > ©)

is the BG equation corresponding to PS state [|i> . The
adiabatic part of the system Hamiltonian may then be written
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h = § |£1>1mi.<1 (7)
and the full system Hamiltonian becomes

BB 5 W v @®)

where
H® = HE + h

1t is understood that residual nonadiabatic terms that are
tacitly omitted in eq. (@) can be included by redefinition of
the potentials VP and VEP.

REDUCED LIOQUVILLE EQUATION: DISSIPATIVE LIMIT

We begin with a Zwanzig-type projection (@wanzig, 1961) in
which diagonal elements of the background subsystem are
projected by an operator P. This gives the standard structure

P p(t) = -i PLP p(t)

t - 10LQ(ft-ttp
dtPLQ e OLP p(ip (8)

-iQLQt
-iPLQ e Q oéey

Where O= 1-P. The last term depends on those elements of the
initial density operator that are nondiagonal in BG states ({for
a given reference basis).. For convenience, we assume that this
term vanishes. Note that eq. 9 does not project diagonal
components of the PS, so is fundiamentally different from the
usual Zwanzig projectiom. Next, we use the dissipative 1imit
for eq. 9, whereby eq. 1 is used, reduction is made with
respect to background modes, and the BG is assumed to be
unperturbed by the PS (@xcept for possible transient local
perturbatimms). The resulting reduced Liouville equation (RLE)
takes the form

- o}
& i mied Wy s =1 [\"Ek‘:ki"qik\{i]
2 k 1 ’

Yijij %ij
é‘[ﬁfimkj % % Lik Vikmi)
gLy

L
L

F
Yijk® kg @0

This form of eq. 3 is the fundamental equation for the
dissipative 1imit. The components of are
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oocd = (o] B B 70
s = trB[Hi Dij - OinJ.] @oa)
N e pem TR o @ob
Tigig =~ " WY Py @A6b)
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Vimkj = B “" Yim ‘mk Pkj @6
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ijke B ik © Pke¥ej

Eq. 10a is the average frequency difference for PS states ||i>
and |[§>. Note the two-sided character of the commutator-like
structure. Eq. 10b is the very important memory relaxation
@pure dephasimg) constant resulting from adiabatic motion of
the BG modes on the two PS surfaces. 1t is the average value
of the squared difference potential between surfaces @ and aj
(@enoted b)y‘D’jj ). The conditians of validity for eq. 10b are
that the diagonal BG components of pi) be real and slowly
varying with BG energy levels. The yF terms in eqs. 10 c-e are
coefficients for coherence transfer, probability and probabillity
amplitude relaxatiom, and probability transfer, depending on
the PS indices.

The RLE of eq. 10 describes the interplay of coherent and
dissipative dynamics. It represents the play of nonequilibrium
dynamics of the PS on a background of thermal equilibrium. This
implies that pB and consequently the Y"s depends on temperature.
The coherent potentials are given by VP and the coherence
transfer components of YK, while the dissipative potentials are
given by YA and the probability (@mplitude) relaxation and
probability transfer components of YE..

The importance of the adiabatic formulation of the BG Iies in
the resulting memory relaxation term YA of eq. 16b and the
associated simple conceptual picture. According to this
picture coherence loss ((oure dephasing) between li> and ||j> is
caused by a difference in the force acting on the BG comrdinates
in the two states (Fhodes, 1981,1982,1983). Other theories of
dephasing have used collision models in which collision of a
BG molecule with a PS molecule causes a phase disruption
((tzoris and Stodolsky, 1981). The adiabatic formulation shows
clearly that dephasing depends on the difference in properties
of the two PS states relative to the BG molecules..

EFFECTIVE HAMILTONIAN FORMULATION

In the most general situation, eq. 10 i#s a nonHamiltonian
equation of motion for the PS. This means that & cannot be
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cast in commutator-like form involving a Hamiltomiazm. The
presence of yA alone is sufficient to destroy the Hamiltonian
character. In additiom, however, the existence of y" terms,
such as yjikp in eq. 10e describing probability transfer from
state ||k> to state ||i>, also destroys the Hamiltonian structuse.

On the other hand, it can easily be seen, that there exists a
set of yR components for which eq. 10 maintains @nontiermitiam)
Hamiltonian character. These consist of the elements in

eqs.. 10c and 10d corresponding to relaxation of amplitude of
the PS states. For example, if the only surviving y elements
in eq. 10 are Yikij in eqk- 10c and Yijpj in eq. 10d and if the
former are independent of state |j> and’ the latter are
independent of state |[i> , then eq. 10 takes the form

6 = -iEWO - a%i] , (11)
with the effective (momHermitiam) Hamiltonian

=h+Vp-iky.

1t s tacitly assumed that the matrix elements of VP are real
Thus, 9§ is a complex symmetric operator which can be
diagonalized by a (complex) symmetric transformatiom. The
discrete eigenvalues of I1ie in the lower half of the complex
plane..

The dynamics described by eq. 11 is one in which the amplitudes
and probabilities for states having a nonzero y component tend
to decay exponentially. On the other hand, states coupled by
tend to have oscillating probabilities. The resulting
pattern is one of decays and oscillatory decays. Consequently,
¢ is not norm conservimg, the reason being that use of an
effective, nonHermitian Hamiltonian implies that a projection
onto a subspace of the Hilbert space of the PS has tacitly
been made. The subspace removed by projection is effectively
a probability sink for the PS. Effective Hamiltonians can be
of great practical value in describing intramolecular
dynamics (fteller, Elert, and Gelbart, 1978).

TWO-LEVEL SYSTEMS

The preceding sections have shown how modulation of the
Principal Subsystem by Background modes in the dissipative
1imit leads to coherence (@memomy) relaxation within the PS.
Some of these dissipative (y) terms contribute a nonHermitian
Hamiltonian component while others destroy the Hamiltonian
character of the effective Liouvilliam, z . In order to
understand the phenomenological consequences of these
dissipative terms, including the introduction of irreversi-
bility and kinetics (¥s. coherent dynamics), we now consider a
prototype PS consisting of two states |j&> and |[b>.
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At first we let contain only an effective Hamiltonian part,
eq. 11, and a pure memory relaxation term, Yghah = Ygh= Note
that symmetry requires that Yﬁg = Yga. (cf. ed 10b)~- We
assume that V has no diagonal elements and that V 2 E V is real.

The equation of motion then becomes b
daa *Yaa iv .\ 0 %aa
O, v %_—il?ﬁab:vab% 0 -1V a8 @)
pa| |V 0 o Taw) WV ba
v 0 d v Fbb| | Wb

where yaa = yaaaa,’ ybb = ybbbb, and ¥ab - @*hwaawbb)-

The pure imaginary components in eq, 12 tend to produce
coherent oscillation of a components, while the pure real (¥)
components tend to give monotonic relaxatiom., For simplicity,
we now let yag = yhj = 0, whereby the only dissipation is due
to pure dephasimg, Yag~ We wish to compare the weak and strong
coupling cases for the magnitude of V vs. yA). Of course, for
Yah = 0, we have simple, coherent, oscillatory Hamiltonian
dynamics in which agg and app oscillate (@or nonstationary
initial conditioms) about mean values which depend on m%B
However, for yA’t‘)> 0 the system always approaches a limi

point agg = ags =h, provided V# 0. This is shown in Figs,

1a and 1b for the strong coupling (W> yA"t? and weak coupling

1.0
S 05 -
a
1.0 L ' ' :
bS 0.5} =
b
| | | L
% 2 4 6 8 10

TIME (arb. units)

Figure L Two-state relaxation dynamics, (a) Strong coupling: V = 1.0;
VIa; di= 04; =, = O(b) OVéak\WeaplooypVing: 1\0 7w ], G; Web6;10.0;
M 100, 3 b



Ch.24] Two-level Systems 291

< Yglg) cases, respectively.

Physical processes in which the strong coupling case is
observed include optical nutation in laser driven excitation
and quantum beats in molecules excited by light pulses. The
weak coupling case is prototype for simple kinetic relaxation
to equilibrium. For this 1imit the dynamics of agg and %\b are
accurately described by kinetically reversible equations m
which the forward and reverse rate constants are equal and
have the value

ye. @3

ke D22 2
& / { +
3 (Jab Yab

1t can be shown by projecting eq. 12 onto aga and Ghh that the
resulting equation is a Markovian master equation ((Zwanzig,
1961) in the Ximit Yah @ and V/ygh = constamt.

Excitation energy transfer between molecules provides another
good example of the dichotamy presented by strong and weak
coupling. For strong coupling excitation transfer is a
coherent delocalization of the excitation in which agh
(@oherence component) maintains a viable role in the dynamics,
while for weak coupling agp is damped and maintained at a low
Ievel so that the excitation is transferred by an inccherent
probability migration ((hopping) mechanism ((Farster 1amit)..

Another possible role of Yé@ in eq. 12 is molecular structure
stabilization. In principle, many molecular conformations can
undergo isomerization through quantum mechanical tunnelimg. 1f
Yab is larger than the tunneling matrix elements, there will

be a kinetic stabilization of conformational isomers through
modulation by the medium (@ Harris and Stodolsky, 1981). 1In

this regard, medium effects via yﬁ may play a role in the
symmetry-breaking formulation of stable molecular structures.
Such symmetry-breaking has been presented as a puzzle in recent
papers ((Wooley, 1980; Trindle, 1980).

Perhaps the simplest possible example of nonHamiltonian
dynamics is provided by the case in which the only nonzero

element of in eq. 12 is -~ We then have
0 0 o0
0 1 0 0
i =y o 0 1 6 as
0 0 O O

For components of & in the (@,b) basis the only dynamics
generated by is the relaxation of agh and #pa. A system
initially in pure state I or [b> is stationary under
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while a coherent superposition of |j&> and > relaxes to a
statistical mixture. This looks 1ike rather dull dynamics
until we consider the equation of motion #n a different basis.
For example, if we make the unitary transformation to the basis
In> and ﬁ)|2>

B2r = Kl = o, @)
we obtain ~
1 06 6 -F
6 1 -1 6
= P @9

The dynamics in this new basis now looks very interesting.

The equation of motion, eq. 3, is two uncoupled sets of
equations, one for the probabilities org and 033 and one for
the coherence components 0j3 and The coupled probability
equations describe Markovian kinetics. A system initially in
state |[1>, for example, undergoes a kinetic transformation to
a statistical mixture of |[I> and ||2>. The coherence components
are zero for all t.

In applying the results of eq. 16 to a model calculation we
have imcluded the parameters yag = 6.2 and Ygh = 6.1 in order
to make the dynamics more interestimng. The results for the
value Y‘a\g = 0.5 are given in Fig. 2,

LO
N n
f CF -
)
I L b | I
0] 2 4 6 8 i)

TIME (arb. units)

Figure 2. Twooskate rellaxatiion dynaniics due solely o dissipstive rellxatiion iim the
besis |le> and |po>. Parametiers yg= 0-5; Y@= 0.2; 7 (= 0.1, V = agh= 0.

Analysis shows Qjx %o have biexponential decay resulting from
competitive kinetics for the transition [i> + ||2> and
dissipative probability loss due to y and YB}t)).*
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The important feature exhibited by eq. 16 and Fig. 2 is that
purely dissipative dynamics (@n particular, pure coherence
relaxatiom) in one basis produces a kinetic emhancement in
another basis. Such processes may occur in molecular excited
state relaxatiomn, where coherent excitation prepares the
molecule in a nonstationary excited state while coherence
relaxation occurs among the set of superposed states
comprising the prepared state.

DISCUSSION

We have shown how the modes of the Principal Subsystem (PS) are
modulated by the Background (BG) modes in the dissipative limit.
Eq. 10 is the most general result, but eq. 12 shows familiar
features more clearly for a special case of a two-level system.
The dissipative components yaa and Ybp are often referred to

as longitudinal relaxation (T}) and Yzh as the transverse
relaxation (T2).. These equations contain the interplay of
coherent and dissipative dynamics. Of particular importance

is the role of the nondiagonal (@oherence) components ¢  for
the PS. The coherent potential, VR, couples Gz to the diagonal
elements ((urobabilities) . Thus, damping of agfy affects
probability rates. Furthermore, contributes directly to
average values of PS observables..

Our key result is the adiabatic formulation of memory relaxation
(@rure dephasimng) ., given in eq. 10b. The idea is that
transitions within the PS due to procioee ea medtibon oft ttee G
modes (("shaking"™ of the bath) , which motion in turn modulates
the dynamics of transitions in the PS (@diiabatic modulatiam))..
In the dissipative 1imit a strong correlation evolves between
the PS and the BG. 1In terms of wavefunctions the BG wave-
packets associated with different PS states tend toward
orthogonality with rate Yé‘..

b
The damping of @ab by Yab can greatly modulate the dynamics of
Gaa and producing a Markovian master (Kkinetic) equation

in the strong dissipative limit. Kinetics replaces coherent
dynamics in the sense that agh is maintained at a Jow Jevel
(@uegto Jarge Yab)~ Consequently the rate of transitions due
to Vab is greatly lowered, resulting #n kinetic stabilizatiom.
Eq. 16 shows how Yab produces kinetic enhancement in another
basis. For transitions among more than two states, memory
relaxation can produce sequential transitiomns, in which
quantum interference terms are eliminated. This provides the
distinctiom, for example, between coherent light scattering and
resonance fluorescence ((Fhodes, 1981).

Memory relaxation also gives a basis for understanding entropy
production and the approach to equilibrium. A PS initially in
a pure quantum state evolves into a statistical state with an
increase in entropy from an initial value zero.
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Chapter 25

THE ROLE OF THE
TOPOLOGICAL DISTANCE
MATRIX IN CHEMISTRY

i D.H. Rouvray
Department of Chemistry, University of Geongiia, Athens, Georgia 30602, USA

ABSTRACT

The mathematical properties of the topological distamce matrix
are briefly surveyed and the numerous applicatioms of this matirix
to variows branches of chemistry are them described. A detalled
discussion is devoted to the Wiener index, defimed as one half the
sum of the entriees in the distamce matrix. This index has proved
to be one of the most valuable topological indices in several different
chemical contexts.

PRELIMINARY MATHEMATICAL SURVEY

Althowgh in its origims the distance matrix can be traced back to
the work of Cayley [1}, it was not umtil 1895 that the matrix was
first introdlwced in embryonic forrm by Brunel [2]. The distance
matrix, D(G), for a graph G is defimed as a real, square, symmetrical
matrix of order n, with entriees, dij; representing the distance tra-

versed in moving from vertex i to vertex J in G. The djj entriees
must always satisfy the folllowimg criteri:

() dp; =0 ((emtityy regbatoon)
(i) d;‘y = djﬁ' (bsymmrettyyreddaidion)
(iii) diy dhyy +dpj (trimmgle inequaliity)

where i, j,k = 1,2,....,n . In the present context, the dw will
refer only to topological distamces and not to geometrical distamces,
though D(G) is defimed in the same way for both. Only in the case
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of a tree graph, T, will the be uniquely defimed. To accom-
modate cyclic graphs, however, Hosoya [3] generalized the definition
of the distance dzj by takimg it to be the minimum number of edges
traversed in moving from 4 to j.

Mathematicitens have studied D(G) very extensively with the major
emphasis focusing on tree graphs. Thus, Graham and Poliak [4]
proved that for any tree, T, on n vertices, the determinant of D(G)
will assume the form (-DH=A Gn - 12K, It follows that D(T) will
always have one positive eigenvalue and #n-1) negative eigenvalues,
irrespective of the nature of the tree. The properties of the distance
matrix polynomials obtaimed by expanding the determimants have
been investigated by several authors [%8], and it has been found
that such polynomials are highly unsuitable for the unique character-
izatiom of trees [9], even though every fimite tree is uniquely deter-
mined up to isomorphism by D(T) [10). The conditiems under which
a givem D(G) can be realized by a graph, and especially the conditicmms
under which unique realizatiom is possible, have been widely studied
{11-15]. The determimants for distance matrices arisimg from
weighted, directed graphs have also been explored [16). Since
distance matrices are closely related to fimite metric spaces, it
is not surprisimg that D(G) has been employed in the study of iso-
metric embeddimgs of graphs into the cartesiam products of metric

spaces [7-18].
Chemical Graph

3 4 56 \ll 2 3 4 56

| 0000 1 /012343

.. LO1000© : L0O1232

Jd 0101011 2 10 12 1L

«+ 00101® 321012
0000 %432 103

s XOO 1000 6¥321230

Adjacency Matrix Distance Matrix

Figure 1. The adjacency and distamce matricees for 3-methylpentamne

The redundancy of much of the informatiom contaimed in D(G) has
been commented upon by several authors [19-22]. Thus, for any
graph G, D(G) contaims no more informatiom tham that contaimed
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in the adjacency matrix, A(G), a matrix similar to D(G) but with
all dgj >1 set to zero. Both of these matrices are illustrated in
Figure 1 for the graph of the molecule of 3-methylpentane. Once
A(G) is known, the entries for D(G) may be readily determimed
iteratively by raising A(G) to the powers 2,3,....,n. The &ij entry
in [A(G)IR yieldls the number of walks of length n in moving from
vertex i to vertexj of G [23-24]. Algoritthms for calculatimg D(G)
nowadays, however, make use of faster procedures tham matrix
multiplicatiom of powers of A(G). Bersohm [25], Peredunova et al.
{26], and Herndlon [27] have all used very efficient algoritinms for
calculatimg D(G) for any graph. Recemtly, algoritinms have also
been published for determimimg the shartest path between two givem
verticees in D(G) [28,29]; the shartest spanning tree in D(G) [30];
the next to shortest and longest patihs betweem a pair of verticzes
[29,31); the maximal degree of a tree [32]; and the number of branch
points and their respective degrees in trees [33].

USES OF THE DISTANCE MATRIX

The distance matrix has found widespread applicatiom in a variety
of different guises in the physical, biological and social sciences.
Among disciplimes relatively remote from chemistry, D(G) has
been employed, for instance, in anthropology for the study of triibal
grouping pattenms {34]; in archaeology for the classificatiom of
ancient artifiacts [35]; in electrical engineerimg for the modellimg
of loop switchimg [4]; in geography for the planning of tramsporrta tiom
networks [36]; in geology for hierarchical cluster analysis [37];
in ornithology for the classificatiom of birdl song [38]; in philology
for the study of semantics [39]; in psychology for the definitiom
of psychological distamce [40]; and in sociology for the modellimg
of social structwres [41].

Turnimg now to disciplines more closely allied to chemistry, D(G)
has been adopted in biochemistry for the comparisom of DNA restiric-
tiom maps [42], and for nucleic acid and proteim sequencing in macro-
molecules [43,44]; in biology for the investigatiom of evolutiomary
distamces in DNIA sequences [45,46]; in genetics for the interpretatiom
of phylogemetic relatiorships in macromoleculles [47,48]; and in
physics for the study of microclusters [49].

In termns of the number of applicatioms made to date, chemistry
has proved to be the most important client science for the services
of the distamce matrix. D(G) has been employed in chemistry in
both expllicit and implicit forms, and the entries in the matirix
have been represented by geometiric as well as topological distamces.
We shall not pursue here the uses of D(G) based on geomeitrical
distances; interested readers are referred to reviews on this topic
(50,51]. The first explicit use of D(G) in chemistry with the d;j
representing topological distamces was made in 1975 by Clark and
Kettle [52]. In a general study of stereochemically nomrigid mole=
cules, these workers distimguished betweem the variows intercon-
versiom mechanisms for pairs of permutatiomal isomers by deter-
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mining the shentest path sequence necessary to effect the rearrange-
ment. These shartest paths were them used as the entries
in the constructiom of an appropriate distance matrix. Alihowgh
this made the first explicit use of D(G), numerous other workers
had previously used such an approach in implicit form. Examples
are to be seen in the stereochemical matrices of Muetiterties [53],
used in the investigatiom of polytopal rearramgements; in the
adjacency matrices and their powers used by Balaban [54] to repre-
sent intramolecular isomerizatioms of octahedral complexes; and
in the definiticom of chemical metrics involvimg the distance between
matrices representing chemical transformatiooms [55].

INTRODUCTION TO THE WIENER INDEX

In spite of the fact that the earliest impllicit usage of D(G) in chem-
istry dates back some four decades, very important ramificzaatioons
of this early work have manifested themselwes in recent years.
In 1947 Wiener started publishing several papers [56] in which he
intretiuced for alkame species the concepts of the path number
and the polarity number. The path number he defimed as the sum
of the chemical bonds existimg betweem all the pairs of carbom
atoms in the molecule; and the polarity number as the number
of pairs of carbon atoms separated by three C-C bonds. At about
the same time, Platt [57] added a third graph invariant which he
called the first neighbor sum and defimed as the sum of the first
€-C neighbors for every €-C bond in the species. Clearly, all three
of these invariants are closely related to the distance matrix.

It was shown by Hosoya [3], for instance, that the Wiener path
number is equal to one half the sum of the entries in D(G)
for the graph G of the molecule in question, namely that

We =122 dij
T oA

where W(G) is the symbol for the Wiener path number, nowadays
usually referred to as the Wiener topological index [58]. The polarity
number, P(G), and the first neighbor sum, F(G), were also shown
58] tiw bee escppreesssliil e iin temms aff ssimpdie flemmulas:

P(G) = 1 2, W3(G),

where W3(G) is an off-ddeagomal entry in D(G) having the distance
three, and

F(G) = ),
() éldeg(au

where #g is the number of edges in G and deg ey is the degree
of the ith edge in G.

The Wiener index has been employed extensively for the correlation
of the physicochemical properties of hydrocarbon species. Wiener
himself [56] correlated first the boilimg points of alkames, using
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a biparametric relationship of the form:
tg= aW(G) + bP@) + ¢,

where & , b and ¢ were constants for a givem group of isomers,
and them went on to consider heats of isomerizatiom and vapaorizatiom,
the Antoime vapor pressure constants, the spedific dispersion, the
surface tension, and the critical solutiom temperature in anilime.
The good correlations he obtaimed encouraged him to speculate
on the significamce of the invariants he used. By settimg a = 98/n 3,
he concluded that the boilimg point of a molecule varies inversely
with its degree of compactmess. He interpreted P(G) as a measure
of the intramolecular attractiom forces transmitted through the
carbon chain.

Platt [57] made Wiemer-type correlatimms withh molecular volumes
and molar refractivitiess, and also suggested that WAG) might well
be applicable to hydrocaribboms other tham alkames. The good correla-
tioms he obtaimed were interpretedl by hypothesizing that WAG)
providies a measure of the mean extermal contact area of the mole-
cule. Use was also made of WAG) by Stiel and Thodos [58] to predict
the variows critical constants of the alkames. Rouvray {59] first
extemdled such studies to the alkemes, alkymes and arenes, in addiitiom
to the alkames, using an index, R(G), equal to the sum of the

in D(G). The Rouvray index, R(G), is clearly equal to 2W(G). Good
correlatimns were again obtaimed with six parameters ranging from
meltimg point to viscosity, though now a Walker-type relatiomship
{60] was employed. This assumes that a bulk property, X, is related
to the index WAG) in the followimg way:

W(G) = a[x]B,

where a and B8 are constants which were determimed by plottimg
In WAG) against In X. It was then suggested by Randi£ [61] that WAG)
might be useful in simplifyimg the predictiom of chromatographic
retentiom times by greatly reducing the number of parameters
needed for this purpose. This idea was takem up by Papazova et
al. {62] who used WAG) with other indices in their correlaticons witin
the isoalkames, and by Bonchev et al. [63] who used WAG) alone
in a Walker-type relatiornship [60] for correlatiom witth the alkyl-
benzenes. Both groups achieved very good correlations; in the
latter case the correlation coefficient exceeded 0.999.

EVALUATION OF THE WIENER INDEX

Because of the great usefulimess of WAG) in various branches of
chemistry, amallytic and recursive formulas have been developed
for its evaluatiom for many graphs of chemical interest. The first
analytic expression was obtaimed by Wiener himself [56], who showed
that WAG) for an unbranched path on # verticees is equal to

- n)/6. In 1976 Entrimger et al. [64] published several basic formuias
and established, inter alia, that for cyclic graphs on n vertices
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W(G) = (13 - /8 for n odd whereas W/(G) = n3/8 for n even;
and that the complete graph, K5, has WAG) = - n )/2. Bonchev
and Trinajsti¢ [65] obtaimed results for many dlffferent types of
tree graphs, including the star graph, which has WKG) = (n - 1)8,
but were unable to treat the case of trees with branched branches.
Closed formulkas were also obtaimed by Bonchev et al. [66] for mole-
cular species existimg in the form of strijps, such as linear ritbbons
of fused cycles and the edge-fused propellanes. A general, recursive
procedure for determinimg WAG) for any tree, regardikess of the
amount of branchimg present, was recently presented by Canfield

et al. [67].

A large number of rules have been devised to characterize tremds in
the numerical values assumed by WAG) withim spedific classes of
moleculles. Rules have been put forward for species having graphs
in the form of trees [65], monocycles [68], monocycles witih acyclic
branches [69], polycyclkes which are fusion- [66], bridige- [70], and
spiro-limked [71], and polycycles with acyclic branches (72]. WAG)
appears to be a very convenient device for expressing quarntiitatively
regularities and variatioons in the molecular topology of both acyclic
and cyclic compounds. Some of the rules are intuitively obvious
whereas others are by no means so. Thus, it is evident, in going
from a tree graph having the formn of an unbranched path throwgih
a tree with branches to a star graph for a constant n, that the
amount of branching is increasing and that WAG) will decrease [65].
One’s intuitiom is not so helpful, however, in determimimg that the
value of WAG) passes throwgh a minimum in isomeric graphs comprised
of a monocycle with a nonbranched side chain [69].

Our preceeding remarks have pointed up the fact that WAG) providies
a very good measure of molecular compactrness: the more compact
the graph of a molecule is the smaller its WAG) value will be. This
renders WAG) a very useful index, for it is welldkmowm that a vast
number of properties - includimg physicochemical, thermodynamic,
and quamtum-chemical ones - are determimed primarily by molecular
size and shape. Alithmwgh WAG) does not provide a totally reliable
means of discriminatimg between different isomers, it does reflect
better than most topological indices the degree of branching present
in species. For comparison of the amount of branching in different
types of graphs, a mean branchimg index has been proposed. This
index, W(G), has been defiext? [65] as WAG) dividled by the number
of distamces in the graph, i.e. W(G) = R(G)/ n{n - 1); anallytic expres=
sions for W{G) have been published for certaim simple graphs [65,68].
However, since even W(G) has not proved to be completely adequate
for isomer discrimimatiom, a highly semsitive new index, called the
mean informatiom on distance equaliity, has been introdgluced for
this purpose [65,73,74].

The total informatiom on distance equallity is defimed as follows:

S e I )

i=1
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and its mean is given as:

:'_E
5 © =

T 825G ¥ n @ tos2men
1=1

where the distamce 1 appears 2k} tiimes in D(G) and m is the highest
value of 1. The mean index has been employed for the predictimm

of chromatographic retentiom times in the alkyllemzenes; it not
only discrimimatedl betweem all the diffierimg isomeric structwres

but also yieldled very high correlaticom coefficiemts [75]. Moreover,

a closely related information-theoretical index, known as the infor=
matiom on distamce magnituties and defimed [65] as:

W Z
' (G) = WG) log2 W(G) -~ ki llog2 1,

where the distance 1 appears kj times in the WAG) partiticom,
correlated extremely well with several different parameters,
includimg heats of reactiom and boilimg points of the alkyllbenzenes
[76]. As limitzticons of space preclude furtther discussion here of
informationtheoretical indices based on D(G), the reader is referred
instead to a review [77] and a book [78] dealing with the suthject.

RECENT NOVEL USES OF THE WIENER INDEX

In additiom to the correlatimmal studies described above, a number
of workers have begun to explore several exciting new directioms
in which applicatioms of WAG) are now leading. The first of these
concerms the use of WAG) to study the energies in different types
of molecules. It has been demomstrated [71], for instance, that
there is an excellent inverse correlaticom of WAG) with the a-electmom
energies in spiro compounds: the smaller WAG) withim a group of
isomers the larger the extemdled Hdckel energy will be. Similarly,
a good inverse correlatiom exists [66] for the Tredlectrom energies
in arene systems: when WAG) decreases, i.e. cyclicity increases,
the HOMO energy decremses whereas the LUMO energy increases.
In the case of cyclic molecules withh acyclic branches, both the
branchimg and the cyclicity affect the ir-electrmm energy. If either
of these factors is held constant, however, it is possible to obtaim
a reliable dependence of the other factor on WAG) [69]. Bicyclic
systemms exhibit an inverse propantionality with WAG) for (4n + 2)
systerms and a direct propantionalitiy for 4m systemms [70). Such
results are very important, for it is wellskmowm that the frontier
electrom orbitalls largely govern thhe molecular behavior in these
systemms. On the basis of cyclicity rules, it becomes possible to
determime how the first ionizatiom potential, the electrom affimity,
tihe maximumm amount of light absonption, and the electrical conduc=
tivityy will depend upon structural changes in the systems. Prediction
of the relative stabilities and properties of unknown compounds
is thus feasible. Moreover, it appears that the same rules can also
be employed to classify molecular rearramgements [69,70].

By extendiimg strimgs of such molecular systems to infinity, i.e. by
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treating them as monodimensional crystals, one is led to the predic-
ticom of the electronic energy as well as the energy gap in polyenes
which are potential conductors or semiconductors. The method
which has been used [79] involves essatiially five steps, viz. (i)
derivatiom by mathematical inductiom of a polynomial expressiom
for W(G) for the monomer of a givenm polymer homologous series
of compounds; (ii) normalizatiom of the derived W(G); (iii) calculaticon
of the normalized W(G) for an infinite polymer chain; (iv) correlatiom
between the normalized W(G) and some propenrty for several oligo-
mers in the polymer series; and (v) predictiom of the value of this
property for the infinite polymer chain. The method has been utilizzed
on a variety of different polymer series, includimg altermant and
nom-altermant benzenoid systems, polymers, and radialkemes [79,82].
In general, high correlation coefficients were obtaimed for Tr-electrom
energies, and the higher the degree of the polynomial expressiom
for W(G) the better the results. The method has been trieedl out
using both Hdickel [79] and Pariser-Parr-Pople [80,81] formalitsms.
Physical properties which have been studied include the melting
point, the refractive index, and the spedific rotatiom; these have
been predicted with an accuracy riwvalling that of other wellkmowm
methodis such as the Padé method [82].

Further extension of the above notioms to three-diimemsional systems
has made it possible to use W(G) to model the behavior of solids.
In particular, W(G) has been used in the study of crystal vacancies;
these have important industirial applicatioms in areas such as corrosion
control, catalysis and chemisorption. The fundamental idea is
that a systemm may be regarded as being in its minimum energy
state when W(G) for the system has its minimum value. Using
this approach [83], structwres having vacancies in the most favored
positions enengetically can be recognized by minimizing their W(G)
value or by maximizing AW(G) = W(G) - Wg(G), where Wg(G)
represents the Wiener index for the ideal crystal without any lattice
vacancies. By use of a procedure similar to that outlimed above
for polymer chaims, it was possible to predict the most favored
vacancy positioms in the lattice. AW was first expressed in polynomial
form in tenrms of the number of atems present and the variows
positioms of the defect and them pantially differentiated with respect
to the positioms and set to zero. The minima thereby obtaimed
vield the positioms of vacancies in the crystal corresponding to
the W(G) minima. The method has also been applied to the study
of double and triple vacancies [84], the migratiom of vacancies
along preferred difffusiom paths [84], the determinatiom of the optimal
positioms of defect atoms in crystal lattioes [85], and in the modellimg
of the crystal growth process [86]. More recently, a similar approach
involvimg the study of the ordered structwres of adsorbed gases
in host lattices [87], was correctly able to predict the structure
of ¥-PdDg.s5.

It has been suggested by Mekenyan et al. [69] that the mamifold
rules giving tremds in W(G) values for a variety of different systems
could well providle the starting point for a novel approach to both
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structure-property and structure-actiivity correlatiions. One major
advantage of this approach is that it offers an optimal selectiom
of isomer samples for usage in a givem correlatiom [69]. To some
extent this approach iis already being trieed out. Basak et al. [88-90]
used W(G), IW(G) and \W(G) for the investigatiom of structure
-activity relatiorships in bioactive moleculkes ranginmg from alcohols
to barbitwrates. To make W(G) appropriate for molecules contaimimg
hetercatoms, it has been proposed that weighted graphs be used
to determime D(G). Lall and Srivastava [91] suggested using an
edge-weightimg factor based on Hickel parameters, whereas Barysz
et al. [92] thought the nuclear charage on the atom should be used.
A discussiom on discriminatimg isomers by means of three new
information-tiheoretical indices based on D(G) has recently been
presented [93]. The predictiom of carcinogemicity in arene systems
using indices based on D(G) has also been proposed; Lall [94] used
a first neighbor degree sum, and Seybold [95,96] used the atomic
path code of Randid {97] which is equal to the sum of the entries
in one row of D(G).
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Chapter 26

COVARIANT AND CONTRA-
VARIANT TRANSFORMATIONS
IN CHEMISTRY

L.J. Schaad, B.A_ Hess, Jr. and P.L. Polavarapu
Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA

ABSTRACT

Let € be the transformation matrix from atomic orbitals to
molecular orbitals in an LCAO calculation, and let the
contribution of A0 j to MO i be the element c.... 1In the
similar molecular vibration problem one describBes the
importance of internal motion j to normal mode i not by the
corresponding element of the apparently analogous
transformation matrix, but by this element of the transpose
inverse matrix. The resolution of this seeming discrepancy is
understood most clearly by comparing the covariant
transformation of a basis in vector space and the contravariant
transformation of the coordinates of a point in such a space.

INTRODUCTION

In the_molecular orbital (MO0) problem one writes ()]

where  is a row matrix of MO's

= '(”ﬂv(/zo":*’%.);

and @ is a row matrix of atomic orbitals (A0‘s)

@ = Q%,» .o . o ) (©)]
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The columns of the square matrix € are the efigenvectors of the
LCAO SCF problem

FC =SC€ )

where F is the Fock matrix, § the overlap matrix and € a
diagonal matrix of orbital energies.

Molecular vibrational problems are similar in structure with
the force constant matrix taking the place of the Fock

matrix F dn (@) and the kinetic energy matrix taking the place
of § - Solutions of the vibrational eqns. are usually given in
the form [2]]

5=LQ ®)

where & is a column matrix of internal coordinates and Q a
column matrix of normal modes. There are two differences
between (1) and (5). The more trivial is that the vibrational
results are in terms of column matrices rather than row
matrices. The less trivial is that (1) transforms from the
starting A0"s to the solution MO"s while (5) transforms from
the solution normal modes back o the starting internal
coordinates. To put (3) into a form apparently analogous to
(1), multiply on the left by L’"land then take the transpose to
give

(Q)

and A are row vectors, and L of (6) takes the
place of €& of ().

The question o be examined here is this: 1If (1) and (6) are
analogous, why is it that if a quantum chemist wants to know
the importance of the Sth A0 in the 3rd MO (say), he looks at
the element in the 5th row of the 3rd column of € ;> while the
vibrational spectroscopist who wants the fmportance of the 5th
internal coordinate in the 3rd normal mode does not look at tthe
element in the 5th row of the 3rd column of L% » but rather
at this element in L # 1t §s true that the MO and vibrational
problems are stated in somewhat different form, but as will be
seen this does not provide the answer to our gquestion. Instead
the key to the problem is that if one makes a transformation in
a vector space, the base vectors transform one way
(covariantly) while the coordinates of a point in that space
transform a different way (contravariamily). 1f the

matrix A describes the First transformation, % describes
the second. 1In the SCF problem one works directly with the
base vectors, but with the coordinates of a point in the
vibrational problem.
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COVARIANT AND CONTRAVARIANT TRANSFORMATIONS

Consider a vector space with the base vectors e_i\, €5, ees eﬁ
A point in this space can be specified by its position vector

N
@

X (="
s
Two vectors are added by adding corresponding components. A
vector can be multiplied by a scalar by multiplying all
components by that scalar. Scalar products of two vectors,
norms of vectors, the angle between two vectors, and the
distance between points in the vector space need not be
definadl.

Now define a linear non-singular transformation to new base
vectors

N
E, }: Ay 3=1,2...N ®)

or in matrix notation
E —eA ®)

where E and @ are row matrices and A is square.
Alternatively one could choose E and @ to be column matrices
and write

E=Ae . @)

The transformation would then use the rows rather than the
columns of A » This choice is not key; let us choose the first
alternative. Note that the E, are not normalized since no norm
is defined in the vector spacé, Normalization could be
defined, but it is not necessary here.

The position vector v can be written in terms of the new base
vectors

N

@D
=i d

To find the new coefficients X., substitute (8) into (11) and
equate to (4). A



310 Cowariant and Contravariant Transformations [€h.26

?‘.ﬁ)&i = 21 3 &

Therefore

X, = ja.. X, = y A,... X..
i /s 13377 L—n' NE SN
or

X =XK noe

where ® and X are row matrices. Multiplying (14) on the
right by (K ¥ = (A1) gives

X=5 K. Qs

Thus if the base vectors transform as the columns of A by (@),
the coordinates of a point in this vector space transform as
the columns of A+ by (15). The base vectors are said to
tranform covariantly and the coordinates contravariamtlly.

Had E,e , X and ® been written as column rather than row
vectors the covariant and contravariant tramsformations would
use rows (rather than columns) of A and K-\ respectively.

In the special case of an orthogonal transformation
K" = A and there is no distinction between covariant and
contravariant behavior.

Consider a 3-dimensional example using 1, k in place of e}
«.. and x, y, z in place of x’l‘, aae

Base Vectors (covariamt)

E “eA e =EK*
1=2i+ j+k i I- J+ 0K
J= i+ J+k j 1- 20+ K
K=0i+2j+k k -21+4 - K @6)
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Coondiimates of a poimnt (contravariant)

X = ¥& X =X K

X = x4 y~2z x=2X+Y+ 0Z
Y = —x By + 4z y= X+Y+ 2Z
Z=00 Wy~ z z= X+Y+ Z @n

For example, the transformation of base vectors might be
thought of as a set of recipes saying that 1L cake (1) is made
by combining 2 times 1 cup of sugar (i), I cup of Flour (J) and
1 cup of water (k) similarly for 1 pie (J) and L loaf of bread
(K)» The contravariant transformations tell how the number of
cups of sugar (x), number of cups of Fflour (y) and number of
cups of water (Z) are related to the number of cakes (X),
number of pies (Y) and number of loaves of bread (Z) in some
mixture (caused perhaps by the wreck of the bakery truck).

COMPARISON OF FOUR MATRIX PROBLEMS

The MO problem and the molecular vibration problem are both
versions of the same abstract problem of diagonalizing two
symmetric (or unitary) matrices simultaneously with the
restriction that one of the two matrices be positive definite.
Both problems could be worked in exactly parallel ways though
it is tradlitional not to do so. To see that the methods
actually used are equivalent we let A and B be square

symmetric matrices, where A is positive definite, and examine
four formulations of the same problem.

Find a Transformation that Diagomalizes A and B.

Since A is symmetric there exists a square matrix U such that
a. U is orthogonal ( 0 = U__i )
b. GAU =D = [[di’i\ j]l (a diagonal matrix).

Define

and
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¥ 5
D';IE ; d;?' O 1
O R d;’z @9)
These have the properties
DD BV D2 B2 -p"- @9
Let
V=Ub'1® @)
so that

Vav =p'#0aup 'iv- p'vDo'2=1i .

Note that a similarity transformation instead of the congruence
transformation of (22) would not work since

VAV =D'i’&) AUD 2= DD = D .

@3
Let
B' - ¥8V . @
Bl is symmetric since
B1= VBV = vBVvV = B'. @)
Therefore there exists a € such that
a. € is orthogonal
b. CIB'C =A = Ixi 81 J1 (tiagonal).
Further
CB'C=A=CVBVC = PBP c5)
where
P =VC =UD'¥X 2
and
Pap =8&vavec =8c =1 .

@
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Thus (26) and (28), a congruence transformation

with diagonalizes both A and B ® P is not orthogonal

since

PP =vou¥ =UD'¥D ¥ —UD ' =A"..
Hence (26) and (28) are not orthogonal transformations.
Find the Eigenvectors of A-iB
Consider the similarity transformation of A*B with P

P A BP =P A'W'HBP = ({xP) " (REP)
=1'K=A .

Note that here a congruence tramsformation with P would not

work
BA'BP =PA'PHBP = (AP A ..
Multiply (30) on the left by P

(A"B)P =PA

so that the columns of P are efgenvectors of A'B , and
problems 1. and 2. are equivalent.

Solve the Generalized Eigenvalue Problem BP = APA.

Multiply (32) on the left by A to give the generalized
efigenvalue equation

BP = APA
so that problems 1., 2, and 3. are equivalent.

Diagonalize Two Quadratic Forms Simultaneousdly..

Start with the gquadratic forms

E Py XxBYX
> j
and

B2 E ay gy  KAR

where X is a row matrix. From (€7))

@5

(€Y)

(3b

33

@&»

(35)
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QG =xBx = xp='EBPP"'T .. @
Let

xT=xB @
so that

G=xPBPxl=xAx" = Z AXIE . 0%)
Similarly

Q3= xAx s xPBAPPX
= xlg = 2 02 )
i

Hence transformation with p-;! takes both quadratic fforms to
canonical form, and problems 1., 2., 3. and 4. are all
equivalent,.

The x{\*s in these quadratic forms are the coordinates of a
point in space and transform contravariamtllys According to
(37) they transform 1ike the columns of « Therefore the
columns of P (the eigenvectors) transform covariantly (@ike
base vectors)s

APPLICATION TO THE MOLECULAR ORBITAL AND
VIBRATIONAL PROBLEMS

The MO and vibrational problems are of essentially the same
form. The matrix B above becomes the Fock matrix F in the MO
problem and the force constant matrix F (@n internal
coordinates) in the vibrational problem, A becomes the
overlap matrix 8§ in the MO problem and the kinetic energy
matrix in the vibrational case.

In discussions of the MO problem it is usual to use the
generalized eigenvalue form (4) and (33), but solutions are
usually found by going to the equivalent problem of
diagonalizing F and S simultaneously.

The vibrational problem is completely analo.ous, but it is
usual to write it in form (32), where A*B is G F of the
Wilson method [3], This is usually solved by the Miyazawa [4]
method which diagonalizes G (rather than G7')

and F simultaneously.

1In both cases one wants the transformation firom old base
vectors (A0"s or finternal coordinates) to new base vectors
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(€0"s or normal modes). As seen above, these are given by the
columns of the modal matrix of eigenvectors. 1In the MO problem
one works directly with the covariant base vectors, the AO‘s
and the MO“s, when one writes an expression for the molecular
energy. 1In the vibrational problem one works with the
quadratic forms for kinetie and potential energy and, as seen
in (34)-(39), with the contravariant coordinates of a point.
Eq. (6) therefore describes the transformation of these
contravariant coordinates and is not analogous to (1) which
gives a transformation between covariant base vectors. The
transformation between base vectors in the vibrational problem
is given by the transpose inverse of ) &l » i.e. by L idtself.

In summary, in the MO problem one works with a transformation
between the covariant A0 and MO base vectors. 1In the
vibrational problem one works instead with the transformation
from the contravariant coordinates of a point in normal mode
space to those in internal coordinate space. Then in reporting
the results one takes the inverse transpose of this
transformation to give the proper relation between the internal
coordinate and normal mode base vectors.
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ON ALGEBRAIC AND
COMPUTATIONAL ASPECTS
OF ISOMERIC-CHEMISTRY

Z. Slanina
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ABSTRACT

Algebraic chemistry as welll as more convenmtiomell computatiomell
methods are at present frequently applied to problems of iso-
meric chemistry. For example, with evaluation of reactiom
graphs a reliable estimatiom of equilibrium and, particularly,
rate constants is requiredl. The contemporary possibilities of
the joint quantum-chemiczll and statistical-thermodymamnczll
treatment for evaluatiom of equilibrium and rate constamts and
its combination with algebraic approach to synthesis desigm
are surveyed.

INTRODUCTION

The concept of isomerism, introduced into chemistry under this
name by Berzelius /1/, is continually being tested and broade-
ned. New types of isomerism are being recognized and evem very
simple compounds (e.g. /2-4/, C10%, N204, H2S04, or the smal-
lest amino acid, glycine /5/) can be observed (or expected) to
exhibit isomerism. This procedure is assisted considerably by
the theoreticall approaches that at present enable the discovery
of new isomers (e.g. the closed form of ozone /6/ or the pre=
dictiom of hitherto unforseen reactioms withim an isomeric
system (e.9., rearrangenents/7,8/). A number of chemically
bizarre isomers of smalll organic molecules has recently beem
characterized in the study of interstellar species (for a re-
view, see /9/).
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The oldest theoretiicall means for studying the phenomenom of iso-
merism were algebraic methods, used for isomer enumeratiom (for
reviews, see /10-15/); they are at present once again the subject
of considerablle interest, e.g. /16-7%/. In addition to enumerat-
ion, algebraic techniques (set, group, and graph as well as in-
formationm theory) are used especially for classificatiom purpo-
ses = e.g. /76-80/. The algebraic generalization of the notiom
of isomerism was formulated for computer-assisted design of syn-
theses (e.g., /81-8%/)).. Later the theoreticall techniques were
enriched by addition of quantum- and statistical-mechamical,
quantum-chemiicall and molecular mechanics metheds. In the two
latter cases, the individuzll isomers and the relations between
them are treated as minima and their interrelatioms on the cor-
responding potentiall energy hypersurface(s)f e.q., /86-90/.
Descriptiom of an isomeric system in terms of locall energy mini-
ma and saddle points usually represemts the present state-of-
-the-art limit in theoreticall studies. Hundreds of systems (for
a review, see /91/) have been computationally characterized in
this way.

GENERALIZED ISOMERISH, REACTION GRAPHS, AND
NON-EMPIRICAL DESIGN OF SYNTHESES

Ugii et al. /76, 81-83/ suggested to treat chemicall isomerism as
an equivalence relatiom. The equivalence relatiom of isomerism
can further be generalized by transitiom from the individual mo-
lecules to ensembles of molecules. Consider a particular set of
atoms and form individuall compounds or ensembles of compounds so
that all the atoms are employed.. Each of these atomic arrange-
ments thus represents a single isomeric ensemble of molecules
and alll these ensembles form a family of isomeric ensembles of
moleculles. This concept represents a generalizatiom of the equi-
valence relationm from molecules to ensembles of moleculles.

The equality introduced by the equivalence relatiom of the iso-
merism of the ensembles of molecules between the individuall mem-
bers of the family of isomeric ensembles of molecules has a clear
quantum-mechamicel justificatiom. Al the members of a given fa-
mily of isomeric ensembles of molecules correspond to the same
totall Hamiltomii@n. In the framework of the Born-Oppenheimer ap-
proximatiom, multi-membered ensembles of molecules are included
in the potemtiall energy hypersurface as regioms of dissociatiom
products at infinity. The use of the equivalemce relation in
this connectiom is related /91/ to the uncertainty principle.
The possibility of obtaining detailed informatiom concerning
systems s limited by this principle regardless of further im-
provements in instrument precisiom. Thus it was suggested /91/
the generatiomn of models of chemicall systems that represemts
certain equivalence classes of states rather than the states
themselves..

Generalized isomerism provides a usefull tool for computer-assis-
ted synthesis design as every chemicall reactiom can be interpre-
ted as an interconversion between two isomeric ensembles of mo-
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lecules /81-83/. Planning of syntheses consists of two phases:
first, pathways are sought that generally lead from the readily
available starting materialls to the target molecule T; then,
from among these conceivable pathways, the optimell one is se-
lected on the basis of certaim selection criteria. In terms of
generalized isomerism this implies the establishment of a fami-
ly of isomeric ensembles of molecules that contain the target
molecule T in at least one ensemble and the initiall materials of
the synthesis in another ensemblle. The synthesis desigm then im-
plies finding a set of pathways connecting the ensemble of mole-
cules including T with the ensemble of molecules containing the
starting material. In the solutiom of the problem of synthesis
desigm, three levels can be distinguished /81/: non-empirical,
semi-empiricall, and empiricall.

The non-empiriicall approach to synthesis desigm assumes the con-
struction of a family of isomeric ensembles of molecules that
includes alll the chemicall compounds that must be considered in
the solution of the given problem,Then alll of the pathways con-
necting the ensemble of the startimg materiial with the target
molecule ensemble are sought. A non-empiricall (topological) pro-
gram based on these concepts generates a complete set of synthe-
tic pathways for a given target molecule and indiscriminately
incorporates known and unknown chemicall reactioms into the syn-
thetic pathway generated.. The non-empiiricall approach is, of
course, limited /81/ to purely topologiicall relationships and
does not include the selectiom of in some sense optimall synthetic
pathways from the topologically posible ones. Within the frame-
work of the purely non-empiricall approach the selection can be
carried out /83/ using the concept of the shortest reaction path-
way introduced in terms of chemicall distance /83/. However, it
is apparent that all the proposed topologically possible path-
ways, or rection graphs, should be classified in terms of a rea-
sonable yield and reasonable rate. From the most generall point of
view, the rate constant for each elementary step in every parti-
cular reactiom graph (even in both directioms of the step)
should be available for such a classificatiam. To keep the nonm-
-empiriicall character of the synthesis desigm, the sets of rate
constants should also be derived non-empiricallly, i.e. on the
basis of quantum-chemiicall and statistical-thermodymamiicall me-
thods..

QUANTUM-CHEMICAL AND STATISTICAL-
THERMODYNAMICAL EVALUATION OF EQUILIBRIUM
AND RATE CONSTANTS

The present theory of chemical reactivity is entirely based /92,
93/ on representation of energy hypersurfaces by meams of their
stationary poinmts. Locationm and identification of these points is
however only the first step with calculatioms of the characte-
ristics of equlibrium and rate processes. For this purpose it is
necessary to link effectively both quantum chemistry and statis=
ticall thermodymamics, i.e. two fields of science traditionally
somewhat disconnected /94,9%/. Recent comprehensive studies /96,
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97/ testing the applicability of quantum-chemicall methods as
sources of molecular data for evaluatiom of partition functions
have been successfull. The used RRHO approximatiom /93/ of parti-
tion functions does not seem to depreciate the quality of the
calculated reactivity characteristies. Thus, it has become possi-
ble in the case of the calculatiom of thermodynamic functioms to
replace the molecular parameters which are conventionally deri-
ved from (usually spectroscopic) experiment or merely estimated
by those obtained from theoretiicall calculatiions..

The same holds for the evaluatiom of rate characteristics /93/
by meams of the activated-complex theory. In fact the linking

up of the activated-complex theory with quantum-chemicall me-
thods has brought the theory to its renaissamee. Besides the ge-
neration of reliable characteristics of activated complexes
which follows from this symbiosis, one more thing is contribu-
ting to its boom: test studies comparing in case of very simple
rate systems the values of characteristies of the rate processes
obtained on the basis of the activated-complex theory and on the
basis of exact quantum-mechamiicall calculations have shown sur-
prisingly good agreement /93/. Thus, a period of evaluating re-
action characteristics (standard as welll as activation ones)
completely independently of experimemtall informatiom (with the
exception of masses, fundamemtzll physicall constamts, and the
form of Coulombs 1aw) has begum. Characteristics of a large
number of equilibrium and/or rate processes in the gas phase ha-
ve been calculated in this manner /93,94/. Hence, it is also
meanimgful to consider, at least in principle, a possibility to
generate all the necessary elementary rate constants for the
classification of alll the topologically possible synthesis paths
(and, thus, for a selectiom of an optimall pathway) exclusively
from the joint quantum-chemicall and statistical-thermodymamicsl
treatment..

ISOMERISM OF REACTION COMPONENTS OF EQUILIBRIUM
AND RATE PROCESSES

Systematic investigatiom of a potemtiall energy hypersurface of-
ten reveals severall different locall energy minima all represen-
ted by one species in an experiment and/or severall different
saddle points corresponding to activated complexes in a single
rate process. Potentiall energy criteria can sometimes prove only
one structure to play an important role. However, it may also
happem that two or more isomeric structures of comparable sta-
bility coexist and are indistinguishable under givenm experimen-
tal conditioms. Then any structure-dependemt observable can be
considered as an average value resulting from contributions of
alll the isomers in questiam. In view of this reaction components
isomerism, a new class of generalized chemicall equilibria (viz.
equilibria of which each component is a mixture of isomers /98/)
as welll as generalized rate processes with paraklel /99,100/

or sequemtiall /101,162/ isomerism of activated complexes have
been introduced. Severall examples of considerable differences
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Figure b. Sehemes of stationary points found 7103/ on the MIND@/2 potemtial
energy hypersurfaces of Cp(n = 4-7); M is a minimum, S a saddle point
(courtesy of American Chemical Socirity)).



Ch.27] Isomerism of Reaction Compememnts 1

Table 1. Partial and Total MIND®)/2 Standard Enthalpy AH2 and Entropy ASS
Terms of 4C(s) &= Cqg) Equilibrium at T —2400 Ka

Process AHO (kJ/mol) B AS® (3/K/mob) B
4C(s) s== C4(9s Dzp) 904.1 210.2
aC(s) &= ¢f(g> 952.2 213.6
ac(s) &= cj(gz 1301.5 205.5
ac(s) &= Cj(gs total)  909.9 213.6

EAccordimg to Ref. /103/.
Standard state: ideall gas at 101325 Pa pressure.

between one-isomer and multiple-configuratiom equilitimiiun or ra-
te characteristiics have been reported, e.g. /103-108/.

In contemporary quantum-chemiicall practice, a speciall case of the
generall reaction componemts isomerism is frequently met, viz.
processes where theory has demonstrated that only a single com-
ponent is a mixture of more (n) isomers. Them weighting treat-
ment for a quantity AX can be simply expressed by:

AX = f(AX., w., T);  (1=1# 2, ..., n), 6)

where AX} denotes the quantity corresponding to the process
considered, however, realized through the i-th isomer, and w}
denotes the weighting factor of the isomer related at temperitu-
re T by:

VRN, R ) @
- ~ed iy
;Z-Tl' 9 exnb((eg D)

to the partition functiom, q,, of the i-th isomer and to its
ground-state energy., e 1). Tne most interesting quantities in
the weighting treatment are the enthalpy and entropy changes.

As an instructive example, the formation /103/ of Cp(g) aggre-
gates can be presemted. For each of the Cp aggregates for n=4-7
the MINDO/2 calculatioms /103/ demonstrated the existence of at
least two isomeric structures (Figure 1). The formation of Cg(g)
aggregates was studied experimentally by mass spectrometry, 1.e.
the technique not distinguishing among isomers. While the experi=
ment thus yielded the overalll thermodynamic characteristics of
the formatiom, the theory led primarily to partiall values cha-
racterizing the formation of the individuall isomers. Application
of the weighting treatment for correct comparison of the theory
and experiment was justified here as the high temperatures at
which these experiments were carried out formed favourable con-
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Eigure 2. Reaction potemtial profile for a rate process A—C realized through one
intermediate B, i.e. the process exhibiting double sequential isomerism of
activated complexes (,IL).

ditioms for attaining inter-isomeric equilibria. The weighting
is illustrated in Table 1 on the C% system, for which the MINDO/2
approacn predicted the existence of three minimum energy struc-
tures alll with different point groups of symmetry D27 Th)-
1t is evident that representatiom of the overalll process merely
by partiall terms belonging to the most stable structure (DfR)
could be misleadiimg.. This is especially true for the entropy
term: the change resultimg from isomerism is of the same order
as possible errors introduced by the use of the MINDO/2 molecu-
lar parameters instead of exact ones.

The isomerism of reactiom componemts in chemicall equilibria is
particularly important for the correct comparison of theory and
experiment and for prediction of equilibrium behaviour. For the
synthesis design, however, the sequenmtiial isomerism of activated
complexes is of a primary importamce.

THE OVERAILL, EFFECTIVE RATE CONSTANT EOR A
SYNTHESIS PATHWAY

Let us start with a simple situatiom: a single locall minimum,
i.e. an intermediate, separating two activated complexes lying
on a common pathway from the reactant to the product - see Fi-
gure 2. At an elementary rate constant level, the kinetics of
the system is essentially described by the elementary rate con-
stants kj for the four partiall rate processes involved.. However,
we can alse be interested in an overalll kinetics of the process
A-#C, and we can evaluate an effective rate constant of this
complex process. In Refs. /101,102/ severall such effective,
overalll rate constants were derived, for example:
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Figure 3. Time dependences of the effective rate comstants for the boat pathway
of the Cope rearrangement of 1, 5-rexcadiene at 532.15 K treated as a process with
double sequential activated-complex isomerism; for detailed description of the
individual curves - see Ref. /102/ (courtesy of John Wiley & Soms, Inc.)
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where:
1
1 s Satkatkan o etkatka) At ket katkda)?) W)

Originally, we considered four (time-indeperdbnt) rate constants
ki, now we have one, however, time-dependent effective rate
constant kgﬁ. 1ts time dependence can be very pronounced - cf.
Figure 3. Instead of this effective rate constant in a time t
we can alternatively use the actuall concentration of the pro-
duct in that time:

k k
cE(t)=c (0)==~—————(uzexp(-ujt)-urexp(-uzt) +u3-uz), O]
TP PR

where cﬁ(O) designates the initiall concentration of reactant A.
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Let us discuss now a more complex picture: there is altogether
n=1 intermediates between the reactant and the product, i.e.
the sequentiall isomerism of activated complexes of order n. The
system is now kinetically described by two n-membered sets of
elementary rate constamts. Let us have a set of such kinetic
systems betweem the same reactant and product. To decide which
one of these systems is the mest convenient from the kinetic
point of view, a one-dimemsiomall representatiom of the system
would be desirable. For the purpose we can again derive an eff-
ective, overalll rate constant as a generalization of Eq- (3),
i.e. a complicated functiom of these 2n elementary rate const-
ants and of time. The system with the highest value of the eff-
ective rate constant in a chosen time may be considered as the
optimall at that time. Alternatively, we can work on the levell
of the time dependences of the product concentratiomns and to
consider the system with the highest value of the concentratiom
in a chosen time as the optimall in that time. Clearly enough,
in either of these criteria as welll as in different time re-
gions different systems can be found as the most conveniemt.
The above effective rate constant may represent a proposall how
to classify individuall synthesiis pathways in a one-dimemsioneall
representation in spite of many elementary rate constamts invol
ved. Of course, a reall synthetic pathway is composed not from
isomerizations only and, moreover, there are time discontinui-
ties in the synthesis pathways (isolation of a synthesis inter-
mediate)).. Thus, the one-dimemsiiomall representatioms of synthe-
tic pathways in kinetic terms stilll represent an opem problem.
Summarizimg, a really non-empiriicall synthesis designm consists
of three (mom-trivial) steps: (i) generatiom of alll topologi-
cally possible pathways, (ii) evaluatiom of alll the elementary
rate constamts involved using the joint quantum-chemiicall and
statistical-thermodymamicell treatmemt, and finally (iii) cla-
ssification of all the topologically possible pathways accor-
ding to a (one-dimensional) kinetic criteriam.

CONCLUDING REMARKS

The recent development of algebraic (or mathematical) chemistry
continuosly demonstrates that the use of algebraic methods is
gradually becoming a useful, powerfull complement to more con=
ventionall computatiiomall methods of theory of chemicall reactivi-
ty. Isomeric chemistry represemts a pregnant example of the
field where combined application of these theoreticall approa-
ches is relevant and fruitfull. The algebraic study of isomerism
can, e€.g., improve the procedures for determining the numbers
of stationary points on potentiall hypersurfaces, their classi-
fication and mapping relationships between them. However, the
usefulness of algebraic predictions most certainly depends on
the degree how the physiicall reality is included in the mathe=
maticall modell used.. In every applicatiom a delicate balance
between generality of the mathematiicall modell and a sufficient
retention of physicall or chemicall reality should be respectedl.
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ABSTRACT

The reduced graph model is discussed and applied
to the enumeration of Kekule structures for several
classes of benzenoid hydrocarbomns.

INTRODUCTION

The reduced graph model has been introduced as an
alternative way to represent benzenoid-type networks
(1,2). This model has been shown %o be very useful
in the combinatorial problems of benzenoid systems
(1-5) such as the enumeration and generation of
Kekule structures, the enumeration and generation
of conjugated circuits, the counting of all ben-
zenoid hydrocarbons for a given number of benzene
rings, fthe construction of the sextet polynomials,,
ete ..

Here we wish to clarify the graph theoretical
aspects of the reduced graph model and give all
necessary definitions. We will test this model on
the enumeration of Kekule! structures of benzenoid
hydrocarbons. The problems of enumeration ({.e.
the production of the total number) and display (.
e. the construction of all the perfect matchings)
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of Kekule structures are continuously being discus-
sed in the literature (1,3,4,6-23)-~ 1In additiom,
recent interest in Kekule structures has been gene-
rated by their use in structure-resonance ftheory
(@4), in the conjugated circuits model (25), in
valence bond resonance energy calculations 26), in
the valence bond model using only significant va-
lence structures (27,28), in molecular orbital reso-
nance theory (29), in various valence bond calcula-
tions (36-33), in the unified valence bond theory
(34), etc. Finally, Kekule structures are important
in understanding the mathematical basis for the
intimate connection between Pauling’s VB model and
Hiitdkell”s MO model ((29,35), and in the history of
modern chemistry, in which they play a signhificant
role (G6-38).

REDUCED GRAPH MODEL

Let G be a connected graph ((structure) in an in-
finite hexagonal planar lattice H. The infinite
hexagonal Tattice H is a planar bipartite infinite
3-regular graph. The number of vertices in a graph
which is 3-regular is always even ((39). Three dis-
junctive sets of parallel edges arranged in rows
are present in the lattice H. We can arbitrarily
choose one of these three sets and call it vertical
and the remaining two we can denote (in two dif-
ferent ways) as left or right diagonal. The hexa-
gonal lattice H with edges denoted as vertical,,
left diagonal, and right diagonal is called the
oriented lattice H. Horizontal rows of hexagons in
the oriented lattice H are called levels of lattice
H.

The oriented lattice H may be transformed into
the trigonal planar lattice T according to the fol-
lowing transformatiom:

vV(T) {wemtical edges of
E(T) {(w:[ ,,wg)l either

v?,vg belong to the same ring in

H or v?”vg are connected by a

diagonal edge} -

In accordance with the orientation of H, we can
distinguish three disjunctive sets of edges in T:
horizontal, 1left diagomal, and right diagonal.
Horizontal rows of vertices in T are called hori-
zontal levels of T. By this transformation each
graph G in H is transformed into a graph R(G) that
is a part of T and is called a reduced graph.
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One of the uses of the reduced graph model is in
the enumeration of the 1-factors of G. 1-factor of
G is a graph F such that:

(@ F is a spanning subgraph of G

® VEF) = V@)

© The components of F are only Kg graphs,
.e. F is a l-regular graph.

1-factorization is construction of 1-factors. 1-
factors are isomorphic to Kekule graphs (40) which
are employed to depict Kekule s&ructures of benze-
noid hydrocarbons..

The carbon skeletons of benzenoid hydrocarbons are
graph-theoretically represented by benzenoid graphs
(41-43) and are denoted here by G. A benzenoid graph
is a bipartite planar graph which can be constructed
in the plane by assembling h regular hexagons in
such a way that two hexagons have exactly one common
edge or are disjoint.

Below we demonstrate the transformation of a hexa-
gonal network H into a trigonal network T, and simul-
taneous changing the representation of a given
benzenoid hydrocarbon from the benzenoid graph to
the reduced graph ((see Example 1).

Example 1

Network H
Graph €]

We will now investigate the 1-factors of graph G
in the oriented lattice H. 1t is clear that when-
ever we determine which of the vertical edges belong
to the i1-factors and which do not, this completely
determines the assignment of all other ((diagonal)
edges. We need therefore work only with the vertices
of the reduced graph R(G). 1f we have a horizontal
edge in R(G) with no triangle above (@nd/or below),
we can purely formally add above ((@nd/or below) a
vertex, and thus create an upper (@and/or 1lower) #tri-
angle. After doing the above whenever necessary, we
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obtain the complete reduced graph of G, CR(G).- In
CR(G), the set of all added vertices to R(G) to
form upper triangles is denoted by UT and the set
of all added vertices to R(G) to form lower f#ri-
angles is denoted by LT, respectively (see Example

2)-

Example 2

o000 ——— [I
L
6 RUG) ER (&)

A sequence of adjacent vertices in T, connected
only with diagonal edges, 1is called the vertical
path. We will not require any other paths in T.

The following basic theorem gives the necessary
and sufficient condition for graph G %o have a 1-
facitor .

THEOREM

Let G be a graph in the oriented lattice H, CR(G)
the complete reduced graph of G, and UT (@nd LT)
the set of all added vertices to R(G) to form upper
(and 1lower) triangles.. Then G has a 1-factor if,
and only if, there exists a 1-1 mapping f: UT LT
such that for each uelT there exists a path %o
f(w)& LT and these paths are pairwise disjunctive,,
i.e. no two of them have a common veritex.(a similar
stattement can be found in Ref. 8 supported only by pictorial

representation for case UT =I).

Proof

Let graph G have a l1-factor K and let
s ={,veR@®)| ve=(K)}. We will prove that the set
P = SIMUTVULT uniquely determines a collection of
paths in CR(G) with the required properties. The
main part of the proof is formulated by fthe fol-
lowing propositiom: In a given row in CR(G) 1let
there be nq vertices from UT, n3 from S, and nj}

2 3
from LT. In the”row below it let there be nﬁ ver-
tices from UT, N} S, and from LT. Them,
ni+ng = » and each vertex of UTVS from the

row abowve is connected with exactly one vertex of
SUYLT from the row below.

Proof of the propositiom: We do not need to con-
sider vertices of LT from the row above, since
these are clearly terminal ones. Thus, we have
several sequences of vertices from UTUSS,, each
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separated by vertices belonging to K or totally
disconnected.. Such a sequence corresponds to the
following situation in G:

B, B, | Bs

A

where some edges in the first row may be missimg..
Point A- g either peripheral (seguences are
disconnected) or the third edge of Aq belongs fto

S (sequences are separated by vertices belonging fto
K). Let us consider point - vertical edge is
either missing (UT) or does not belong to K(S) ,
i.e. one of the two adjacent diagonal edges must
belong to K. This is true for all vertices » BQ”.
~-~<,B and as two diagonal edges belonging to K
cannot meet at one point, we have only one pos-
sibility for the change of directiom, namely

All left diagonal edges before Bj and all right
diagonal edges after Bfw must belong to K, i.e. in
the row below fthere can be only one vertical edge
belonging %o K, namely the edge betweem B”? and BQJ.
If either AA or Ap (but not both) is missing (-

e. BY or are peripheral)), ithen all the vertical
edges in tﬁe second row must belong %o SUOT. This
completes the proof of the propositiom.

The proposition shows that we can construct fthe
desired paths, row after row, starting at the up-
permost level. Since we can reverse the direction
(topsy-turvy positiom)), it is clear that [JUT || = hLT|L

Now, let there be in CR(G) an n-tuple of paths
of the desired properties. Let us denote by S the
set of all vertices of this n-tuple, and let
K” = V(CR(G)INS.. We will complete K” up to the 1-
factor K of G: A diagonal edge belongs to K if it
connects two vertical edges that are vertices of
some path in CR(G). Then it is clear that the set
K is a 1-factor of G, q.e.d.
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Corollary 1
1f G has a 1i-factor, then ||UT l| = I|LT ||.

Corollary 2

1f G has a 1-factor, then R(G) has on each level
at least n vertices, where n =|[UT }.

Corollary 3

Let G be a graph in H having 1-factors and let
l|CR(G)||’i\ (=1,2,3) be the corresponding complete
reduced graphs representing three differemt orien-
tations of H. Them:

@ @n. = @T. =n ; i=1,2,3

(b The number of n.-tuples of pairwise dis-
junctive paths going from @WT). to (QLT).
equals the number of 1-factors of G, i.e.
is the same for i=1,2,.3-

Corolloary 4

A chain of n-rings has n+l1 1-factors (@§).

DISCUSSION

The procedure, based on the reduced graph model,,
for the enumeration of Kekule structures (1-factors)
of benzenoid hydrocarbons consists of three steps:

(@ The presentation of a corresponding ben-
zenoid grapf,,

(b) Its transformation %o a complete reduced
grapth,,
and

(c) The counting of the vertical paths over the
complete reduced graph. (The count corre-
sponds to the number of Kekule structures)..

We will apply this procedure to enumerate fthe
Kekule structures of anthanithreme..
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EXAMPLE 3
G CR(G)
antharthrene greph
Path count

PRPLPRPPLYLDLR
OO0 CTUODUTO
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el e N I A S SR S

The path count over fthe framework of CR(G) produces
10 paths. Thus, the total number of 1-factors
(Kekule structures) of G (@amthanthreme) is 10, i.e.
K(G) = the path count.

Since each vertical path in CR(G) corresponds to
one i-factor, these paths can easily be transformed
into Kekule structures.. The generation procedure is
based on the following simple rule:x The points in
the vertical path in CR(G) correspond to single
bonds in a givem Kekule structure of a benzenoid
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hydrocarbon. We will transform ten paths of CR
(@ntthanthrene graph) into 10 Kekule structures of
anthanthrene in three steps: (@) we will first
present a given vertical path in CR(G), (b) CR(G),
with a given vertical path will then be transformed
into a structure with allocated single bonds cor-
responding to the position of the particular vertic-
al path in CR(G), and () this structure will
finally be transformed into a corresponding Kekule~
structure..

648

(@bdg ji1)
. 4
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% Q‘ 9@
- ]
(abegjl)

458

(@ betnjj )
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Naturally, when we &ry #o enumerate 1-factors of
a given complex graph G, we may use previously known
values of the i-factors for its constituent graphs.
Hence,, we split a given complete reduced graph cor-
responding to a complex graph along some convenient
vertical path (we can assume that a single vertex
represents a path of length zero) to two (or more)
fragments with a known number of 1-factors.. Them,,
the total value of 1-factors of G represents the
combination of known values of i-factors for con-
stituting fragments from which are excluded those
values which correspond to two paths having one point
in commom. The procedure can be carried out, of
course, only in such cases when there is no path
(dn any n-tuple) going from one Ffragment into anoth-
er.

EXAMPLE 4

G CR ©®

CR(G) in the above example can neither be broken
along path AB?Cnmm along path AB@C (because fthere
always exists a path going from one fragment %o
another)). The only case whem we can perform the
fragmentation of CR(G) without any problem is when
one of the constituting fragments is a chain (@and,
of course, the fragmentatiom point is one vertex).
Therefore, in the above example it suffices only
to change the orientation of G:

6 CR @)
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We can easily find that there are 20 pairs of paths
in the first ((Jarger) fragment:
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S S5S8588mMm3ESS338 3 M35 3 e
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Six pairs among them (denoted by an arrow) contain
a path going through the fragmentation point (de-
noted by a black dot in CR(G)). The smaller frag-
ment contaims two paths, and one of them also goes
through the fragmentation poimt. Each of twenty 1-
factors belonging to the larger fragment may be
combined with both possibilities of the second
fragmemt.. However, the obtained value must be cor-
rected for those paths belonging to both fragments
which pass through the fragmentation point. Them,,
the total number of 1-factors for G, K(G), for the
above example is equal to K(G) = 2042 -6*1 = 34.

If we denote by K(A) and K(B) the total numbers
of paths belonging to fragments A and B making up G,
and by P(A) and P(B) paths passing fthrough the frag-
mentation point in both fragmemts, fthen the expres-
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sion for calculating K(G) is given by
K(G) = K(QA)=K@B) - P(A-P(B) -

In some cases the task of calculating 1-factors
by this procedure is considerably simpler.

EXAMPLE 5

G CRG

Chain A has four 1-factors, three of them contain-
ing the fragmentatiomn point. Fragment B has three
i-factors, one of them containing the fragmentation
point. Graph G has, therefore, altogether nine 1-
factors, i.e.z K(G) = 4*3 - 3*1 = 9.

Below we give several more examples. Data will
be arranged in the following order: (@) benzenoid
graph G, (o) complete reduced graph of G CR(G)),,
and () the number of 1-ffactors of G K(G), res-
pectively .

G CR (6)
K@) =6-.6-11-% =3

KIG) =14-7-86 50
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G CR(G)
K(G) =5:5-11= 24

-

G CR(G)
K(G) =66-3-5=21

The question arises as to whether there is a suf-
ficient condition for structure G in H to have a 1~
factor; i.e. can we find some general class of
graphs having 1-factors ? In the first place, of
course, there is a class of chains of fused hexa-
gons. All members of this class possess L-factors.

Earlier it was stated (1) that structures called
whole lattices always have 1-factors (whole lattices
are deTined by conditions in Corollary 1, Corollary
2, and the followimg: Every vertex in the reduced
graph, with the exception of vertices belonging to
the first and the last level of R(G) is linked with
at least two diagonal and one horizontal edge to
the adjacent vertices). Unfortunately this is not
true. An example of a whole lattice without 1-ffac-
tors is the structure given below.

EXAMPLE 6
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Furthermore, it appears that the property of being
a whole lattice is not a property of G, because it
is not dinvariant with regard to the change of
orientation of H:
G CR(G)
G

CR(G)

In the first case a combination of two whole lat-
tices is obtained, whilst in the second case a sin-
gle whole lattice is generated. Thus, there is no
simple sufficient condition available for a graph
to have a i1-factor.

CONCLUDING REMARKS

The reduced graph of a benzenoid graph is defined
and some of its properties investigated. It is ap-
plied to the enumeration of Kekule structures of
benzenoid hydrocarboms.. The range of applicability
of the reduced graph model at present is not fully
explored. A lot more work is needed before the use-
fulness of this model is established.. Work is in
progress in this direction (U44).
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MOLECULAR ORBITAL
RESONANCE THEORY
APPROACH: APPLICATION
AND DEVELOPMENT

T.P. Zivkovic
The Rugjer Boskovic Institute, 41001 Zagreb, Croatia, Yugoslavia

ABSTRACT

Molecular orbital resonance theory (ORT) com-
bines the intuitively appealing chemists picture of
the molecule, as exemplified by the simple resonance
theory (RT), with the numerical advantages of the
MO theory. It gives much better description of the
SCF ground states of conjugated molecules than the
VB approach. It also conceptually enriches the mol-
ecular quantum theory, as illustrated by the split-
ting and the expansion theorems, and their implica-
tions .

INTRODUCTION

Historically, two most important methods in the
treatment of the quantum chemical problems are the
molecular orbital (¥0) and the valence bond ((¥VB)
theory. The MO theory originated conceptually in
physies. Despite undeniable mathematical advantages,,
this theory lacks chemical intuitiom, and it has no
simple connection with the basic concepts of chem-
istry, for example, with the very important notion
of the chemical bond. The VB theory originated con-
ceptually in chemistry, and it explicitly incorpo-
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rates via different VB resonance structures the
chemistts” picture of the molecule.. This approach

is hence extensively used by the chemists, especial-
ly in its simplest form, the resonance theory (RT)-.
However, if applied quantitatively and more rigoro-
usly, the VB approach becomes relatively inefficient
and numerically quite inferior to the MO approacth..
This drawback of the VB approach is mainly due to
the inadequate treatment of one- and two-particle
energy contributions [i]J. Physically, the main
stabilising force in the molecule is the attractive
force betweemn electroms and the nuclei, while the
electron-electron interactiom, being repulsiwve, is
destabilisimg.. However, in the VB formalism the
bonding is attributed mainly to the exchange in-
tegral K which is a part of a two-particle electron-
electron interaction (provided the basis atomic
orbitals are orthonormalized,what is usually as-
sumed), while the one-particle contributions are
taken into account only in the next step, as a
correctiom.. In the MO approach the bonding is al-
ready on the simplest level, the Htimikel theory, at-
tributed to the one-particle resonance integral (g,
and the two-particle contributions are taken into
account as a correction in the more sophisticated
approaches.. This hierarchy of approximatiomns is
physically natural,, and it explains the computa-
tional superiority of the MO over the VB approach

In view of the relative advantages and disadvan-
tages of the MO and VB theory, it is desirable to
formulate such a theory which would combine only
their advantages.. The above discussion suggests the
way how this should be done. In order %o conserve
the close connection with the bond picture, and to
retain all the conceptual advantages of the simple
RT picture, one has to retain the notion of the
resonance and of the resonance structure from the
VB approacih.. In order %o reestablish the correct
hierarchy of one- and two-particle energy contri-
butioms, one has to interpret each particular bond
in the MO and not in the VB sense This is the
main idea of the Molecular Orbital Resonance Theory
(MORT) approacin.. In this paper we intend %o give a
simple account of this methaod, its applicatioms
and the most importamt results.

THE CONFIGURATION INTERACTION SPACE Xp AND
RESONANCE STRUCTURES IN THE MORT APPROACH

We shall consider the configuratiomn interaction
(CI) space Xp build upon n electrons moving over
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2n orthonormalized orbitals X. (=1,....,2m). In the

MORT approach this space is spanned by regular reso-
nance structures (RRS). The set R(n) of all n-partic-
le RRSs is defined in the following way [3]:

i) Partition the set B E{i}\containing 2n vertices
(@) into subsets B° and B* containing n vertices
each. By definitiom, each vertex (@)€B® is "source"
while each vertex (i)& B° is ™sink™.

ii) Form excited and non-excited bond orbitals (B0):
1
LR T + Xj) non-excited BO

‘ i , 1
5 5yr Ga- X)) exeited BF &

satisfying the condition
Gi)€B® and (j) € B* ) B

iii) Each normalized determinant containing n mutu-
ally disconnected excited and/or nonexcited BOs
satisfying the condition (11) is Dy definition re-
gular resonance structure (RRS) }31—.

Graphically, each orbital s represented as a
vertex (d). Excited and non-excited BOs are hence
represented as oriented and non-oriented bonds,,
respectively. By conventiom, in the case of the
oriented bond the end of the arrow coincides with
the sink vertex

% %
j Ty j

Fis i

This uniquely defines graphical representation of
RRSs. For example, in the case n-=2 one has four
orbitals X., and one can chose the partition

B® E{2,4) ,Xx B*E}1,3} of the set B z §1,2,3,4Y
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The corresponding set of RRSs is given in Fig. 1.

A B &R &R

Figure 1. Reguilar resonance structures in the case n=2.

One can show that non-excited and singly excited
RRSs alone span the space Dal. Accordimgly,,
doubly excited RRSs S{} and Sg in Fig.1 are 1linear
combinations of other ﬁRSS in this Figure, and
hence they need not be considered. Further, the
dimension of the space Xp equals d()=(n)1/(n1)3
E3}. 1In particular, the space Xy has d(2)=6 dimen-
sions. 1In Fig.1 there are exactly six non-excited
and singly excited RRSs, and hence these RRSs are
limearly independent. For higher n this is not the
case. Thus, if n=3 there are 24 non-excited and
singly excited RRSs
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Figure 2. Non-excited and singly excited RRSs in the case n=3. These structures
span the CI space X3

However, d(3)=20. The set given in Fig.2 is hence
overcomplete by four structures. This is due fto
the fact that RRSs are in general not orthogonal
to each other. The nonorthogonality of RRSs is a
slight drawback of these structures.. However, the
some drawback is shared by VB resonance structures
as well.

MORT VERSUS VB DESCRIPTION OF MOLECUILES.
SOME EXAMPLES

In the MORT approach the space is spanned by

RRSs. In the VB approach this space is spanned by
VB resonance structures.. Formally, the two appruaches
differ only in the choice of the basis set in X_.
However, physically (énd computationally) one cnoice
of the basis set can be highly adventageous over
anoither .

We shall now compare fthe VB and MORT descrigtions
of the ground states of conjugated molecules. As
an example consider the butadiene molecule. The cor-
responding CI space is fthe space X{. In the VB ap-
proach the ground state of the butadieme molecule
is a linear combination of VB resonance structures.
Some ftypical VB structures are shown in Fig.3.

N NS NF N

0.2210 0.0100 0.2264 0.2320 0.02067
1 2 3 A 5
* . - - + = - + + a
0TS BENEST S NEE AT RN
0.0207 0.1251 0.0538 0.0513 0.00668
6 7 8 9 10

Figure 3. Some VB structures of butadiene and the corresponding structural
weights according to Hiberty and Ohanessian [[5).
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Structure 1 is the Kekule structure and it cor-
responds %o the chemists simplified description of
the butadiene molecule.. Hence, one expects this
structure to be dominant and all other structures
to contribute only slightly to the ground state.
This is however not the case. Hiberty and Ohamesssian
{51 have recently calculated structural weights
of structures 1 to 10 in the SCF ground state
I ] of butadieme.. These structural weights are
also given in Fig.3. The Kekule structure 1 con-
tributes only about 22% to the SCF ground statell
In additiom, ionic structures 4 (ithere are #two such
structures due to the degeneracy) contrilbute about
23% to the SCF ground state, i.e. more fthan the
Kekule structure!! The contribution of some other
ionic structures is also significamt. Accordimngly,,
the VB Kekule structure is not a very good approxi-
mation to the SCF ground state of butadieme..
Consider now this molecule in the MORT approacih..
The ground state is here a linear combination of
RRSs. To a very good approximation the TFedksciron
ground state of an even conjugated hydrocarbon can
be written in the spin-separated form H,Eﬂr

b= jo- > (2

where 8 and 8 are normalized spin-a and spin-J
substaties, respectively. 1In particular, the SCF ground
state ﬂg%nis exactly of the form (2). One can now
represent the state $ {(and equally the state $) as
a linear combination of RRSs

¢ =1 %8 &)

The approximation {2) substantionally simplifies the
MORT approacth.. In particular, in the butadiene case
instead to consider all four-particle RRSs spanning

the space (which has d(4)=70 dimensioms)), one
has to consider only all two-particle RRSs spanning
the space {(which has only d{2)=6 dimensions)..

These latter structures are given in Fig.4 together
with the corresponding structural weights WL .
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P
f0'c:3 o Qi
5, > S

371) 71 2701)
%5 $6 S

Figure 4. Linearly independent RRSs of butadiene and the corresponding
structural weights. See Fig. 1L

Structural weights are defined according to [6]

Wy = ke 2

The MORT Kekule structure contributes now about
80% to the butadiene ground state. The contribu-
tion of this structure to the ground state is thus
dominant, in accord with the chemical intuitiom.
Another striking feature of the MORT description is
that structures » Sg and S5 do not contribute at
all to the ground state. We shall return o this
point in the next section.

As another example consider the benzene moleculle.
The structural weight of the two VB Kekule struc-
tures of benzene is ((Joinly) W=0.0486 » to be
compared with the structural weight W=0.8100 of the

DO Q0

0.0486 (WB2 ) 0.8100 (MORT

Figure 5. Benzene VB and MORT Kekule structures and the corresponding
structural weights.
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two MORT Kekule structures of benzene ((see Fig.5%).
The latter structural weight is calculated according

to [5,7]

W= cuigle 17 V2 (5)
where
= (3 + sg)/VEis %)

is the normalized spin-a substate containing the
two Kekule RRSs [E7]. The linear combination of the
two VB Kekule structures contains only about %%,
while the linear combination of the #two MORT Kekule
structures contains 81% of the SCF ground state of
benzene! 1In summary, the MORT Kekule structures
represent much better the ground state, and if more
accurate description of the ground state is needed,
the progressive inclusion of energetically higher
resonance structures is relatively ((@n comparation
to the VB approach) fast convergent.

This is a general result which one obtains for
other molecules as well. The poor performance of
the VB Kekule structures is due to the fact that
the VB approach treats one- and two-particle energy
contributions in an unnatural order [i . We have
raised this argument in the introductiom, and we
now see that the choice of RRSs is fully justified:
these structures conserve the close connection with
the bond picture retaining the intuitively appealing
notion of the resonance, and at the same fttime they
reestablish the correct hierarchy of one- and two-
particle energy contributions. As a result, the
description of the ground states of conjugated com-
pounds is mathematically quite successful.

Beside the above theoretical argument based on
the hierarchy of energy contributions, there is
another less formal way to explain the superiority
of the MORT approach. Each VB Kekulf structure is
purely covalent, while MORT Kekule structures comn-
tain covalent as well as ionic contributions. The
"true™ ground state should contain both, covalent
as well as ijonic contributions. One can even show
that the ionic contribution is significantly pre-
ponderant [53- Accordingly, in the VB approach one
can never expect fo obtain a good description of
the ground state, unless one explicitly introduces
ionie structures. 1In the MORT approach this is not
necessary since on each level of the approximation
the ionic contributions are automatically included.
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SPACES X+ AND X* AND THE CHARGE POLARIZATION

In order to apply efficiently the MORT approach
to various quantum chemical problems, one has %o
derive simple and fast algorithms for the evaluation
of overlaps and matrix elements of one- and #&two-
particle operators betweemn different RRSs. This is
done elsewhere [3]. One finds that the ecrucial no-
tion in the evaluation of these matrix elements is
the notion of the superposition of &two RRSs, and
the notion of active and passive cycles [8]. The
superpositiomn of RRSs Sg and Sg is a graph Ga
which is obtained by superimposing graphical re-
presentatiomns of these #two structures, and it con-
sists of disconnected even cycles I?HS]_
Each cycle CgliGgB is characterized by #two numbers,,
nj and my where 2nﬁ is the number of bonds in CB”
while mp is the number of oriented bonds in Cp.
Cycle Cp is "passive™ if«ngﬁmig) is even and "actiwe™
otherwise.. Some examples are given in Fig.6. Thus the

O P P

G 1,2 Gl,3 G7,8 %2,14 Qd.,,ﬁ 91.22

Figure 6. Some superpositions of RRSsi the case n=3. The corresponding RRSs
are shown in Eigure 2.

superposition G3 é\ contains one active cycle C’1\
((m?:zs,m’{:«))),, the superposition G 4 contains two
active cycles,Cl Onl=2, m7d7) and ((Img_:l, mé‘Q@),,
etc. After the examination of overlaps and matrix
elements between different RRSs, one finds that

the set R(n) of all these structures splits into
two clearly distinguishable subsets R*(n) and R=(n)
containing ™positive™ and '"negative™ RRSs, respec-
tively [B.8]. The algorithm to perform this splitting
is sile@:: if the superposition Gab of RRSs Sa and
SB contaiims an even number of passive cycles, these
two skructures are contained in the same subset, if
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however G contains an odd number of passive
cycles, tfiese two structures are contained in the
opposite subsets [[3]- For example, in Fig. 6 the
superposition G’1\ é\ contains no passive cycle (.-
e. zero - an even number). Hence, RRSs and 8’2‘
in Fig.2 are of the same parity. Applying this cri-~
terion to all RRSs in this Figure, one finds that

structures 3% to are of one parity (conven-
tionally ftaken to be positive), while structures
j, to are another parity (wonventionally

en to be negative). Similarly, in Fig.1 struc-
ttures 8’1\ to S_u are of one parity (positive), while
structures S to are of another parity (hegative).
The partition on positive and negative structures
has many important consequences. Thus one can show
that the overlap Sggi <SLUST> between RRSs S§L and
Sg vanishes if the superposition Ga’\ contains at
least one passive cycle [8]. This implies S{\rO
whenever Sa and Sﬁ) are of tthe opposite parity, i.e.

Sa&Rt(n), SpEeR*(n) =2 Sgh=0 )

Spaces X+ and X™ spanned by positive and negative
RRSs, respectively, are hence orthogonal to each
othenr..

> wpex” b <yal iflvp> =0 ()

where, for the further convenience,Awe have’ex-
plicitly written the unit operator 1, <y_| 11 nu'é> E
§h I Wp> ~ For examPleJ the space X5 spanned by
structures S o 31/\2 in Pig-=2 is orthogonal to the
space X4 spanned by remaining twelve structures 31’\3
o 3’2\’4\ ,» €tc. 1n general, we call each state

i & X} (which is a linear combination of positive
RRSs), as well as each state p&X~ (which is a

linear combination of negative RRSs) an "alternant-
like” (AL) state [3,.8]

Consider now fthe operator Riq

Ry = 2@% -1 @

where M* and Mj are fermion creation and annihila-
tion operators, respectively, of the orbital X2

One can show that the matrix element of this opera-
tor between RRSs Sa and Sb vanishes whenever these

RRSs are of the same parity {(8J.
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Sg.pSRIM or §38p€ R-(n) =D
S Rip ISp> = 0 @

Relation (8) implies

Ya ”‘“lbé’&n r Yax¥p & §n =T>>
‘gl %ii lfv :0 @

and in particular

YEXa 2B 4EKT <ifiFijflop = 0 @)

The expectatiom value of the operator R.. vanishes
over each AL state Y% &X¥. However, tiie operator
@{: Ryflé is the effective charge density operator
@Gt the vertex (@)). Accordimgly, each AL state has
vanishing effective charge at all vertices (@), i.
e. it is completely nonpolarized. As a consequemce,,
if the state #&X dis polarized, then it is necces-

sarily a nontrivial linear combinatiom of a positiwve
and a negative AL state

§ o=t o+ @
where W€ Xa §i€ x= and W O, 0. TleThe
charge polarization is hence due_to the interfer-
ence between subspaces X* and X~ B.8)- This is

quite a remarkable property, and it is completely
unlike the VB picture where one has to introduce ex-
plicitly the ionic structures. Let us give some ex-
amples .

Consider the butadiene molecule. Structures
and in Fig.4. are positive, while structures ”

Sg ana S,, are negative. Hence each state $ which
is a ]ingar combination of structures and

alone, has the effective charge zero at all four
vertices ({)=1,2,3,4. This can be upset only if the
state ® beside positive structures contains also
some negative structures. However, we have found
that structural weights of structures ” Sg and

are zero. Hence, the state $ corresponding to the
butadiene ground state contaims only positive RRSs,
and it has the effective charge zero at all four
vertices.. This is spin-a effective charge since the
state $ is the spimex substate of the state

Hi=jbo > . In the same token spin-p effective charge
vanishes, and hence the total charge vanishes as
well.
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The result obtained is by itself not surprisimg.
Butadiene is an alternant hydrocarbom, and hence
according ot the pairing theorem the effective m-
electron charge should vanish at all carbon atoms.
What we gained is the insight into the mechanism of
the charge polarizatiom: the reason why butadiene is
not polarized is that all RRSs contained in its
ground state are of the same parity_ The polarizztiom,
if any, can be due only to the interference between
RRSs of the opposite parity. This is conceptually
a new picture. Another gain is numerical: one has to
consider only positive structures S1A a nadd S3, and
this significantly simplifies the evaluation o% the
ground state_. Compare this with the VB approach:
there one has to consider all structures in Fig.3-
{(there are 16 such structures, since the degeneracy
of these structures should be also taken into ac-
count ).

In the same way can be treated the benzene molec-
ule. In the spin-separation approximation (2) one
has to consider the space X.. The corresponding RRSs

are given in Fig.2. One finds that structural weights
of all negative structures to vanish [4].
Accordingly, fthe ground state?contains only positive
structures S} to S2,. This substantially simplifies
the evaluation of tﬁ% ground state ((@n additiom, the
set to is overcomplete by two structures, and
it is sufficient to consider only the first ten
structures to S5 B4]).

One should note the qualitative difference between
the emergence of the charge polarization in the VB
and in the MORT picture. 1In the VB picture one dis-
tinguishes covalent and ionic structures. Covalent
structures (e.g- structures 1 and 2 in Fig.3.) have
the effective charge zero at each vertex. 1lonic
structures (e.g. sktructures 3 to 10 in Fig.3.) have
the effective charge different from zero,at least
at two vertices. Covalent structures alone can never
produce charge polarizatiom. The charge polarization
can be obtained only if one explicitly includes ionic
structures. This is conceptually a classical picture.
In the MORT approach all structures have the effec-
tive charge zero at each vertex. The charge polari-
zation is due to the interference (or, if one prefers,
to the resonance) between structures of the opposite
parity. This is conceptually a quantum picture.
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ALTERNANT SYSTEMS AND THEIR CHARACTERISTIC
PROPERTIES

The charge polarization is only a special case of
many other remarkable properties of spaces X% and XT
All these properties are the consequence of the
splitting theorem [E3,8,9] . In short, this theorem
states the followimg

Each operator 6 isa unique linear combination of
an "altermanit" operator O ’\ and an "antialternant™

operator Oggi

@'eal¢nal (o)

where all alternant operators satisfy (69, while all
antialternant operators satisfy (®). Further, each
alternant operator is a unique linear combination

of "reduced™ alternant operators, while each anti-
alternant operator is a unique linear combination of
"reduced™ antialternant operators. Reduced alternant
and reduced antialternant operators thus form a
basis in the space of all alternant and in the space
of all antialternant operators, respectively [8,93-
The set of all reduced operators is given elsewhere
19], and the identification of this set is the most
important part of the splitting theorem. In partic-
ular, the unit operator“f is a reduced alternant
operator” the operator R.. is a reduced antialtesmant
operator, etc. [8,9].

Due #o the splitting theorem, one can generalize
the results obtained in the preceding section #o
all alternant and to all antialternant operators.
One thus finds that alternant and antialternant ope-
rators complement each other in the following way:

Alternant operators define alternant systems.
These operators satisTy relation (&), and hence they
can be block-diagonalized in subspaces X* and X”™.

As a consequence, each hermitian alternant operator
has in Xg the complete set of AL eigenstates, i.e.
it describes an alternant system [9]. This implies a
constructive and exhaustive definition of alternant
systems. The definition is constructive since all
alternant Hamiltonians can be easily constructed as
linear combinations of reduced alternant operators
i 91. The definition is exhaustive since each opera-
tor 6 having the complete set of AL eigenstates can
be represented as a linear combination of reduced
alternant operators [HL (Operator 6 is not nec-
cessarily an alternant operator,but rather a 1inear
combination of an‘alterpant operator and a ™vanishing"
operator Z ,, 0 = 0 { # Z . However, as far as the
space Xn is considered, operators 6 and 6ai are
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identical, since Z vanishes over xn_ Hence the ope-

rator 2 can be omitted ED}’)\_

Antialternant operators define characteristic pro-
perties of alternant sysftems. These operators satis-
fy relation (8') and in particular relation &").
One thus obtains the whole set of properties charac-
teristic torAL states 5 i.e. ®o complemamtary
subspaces X  and X-ﬁ_ The vanishing of the effective
charge dens?ty is only a particular example. Another
example is the vanishing of the bond orders between
vertices of the same parity, etc. The complete set
of these properties is given elsewhere [9]-.

Alternant systems and their properties have been
investigated also by other authors using the MO
theory [10]. All these approaches are based on the
pairing theorem Ddj.. The most general constructive
definition of an alternant system was given by
McLachlan E107. He has shown that the eigenstates of
the PPP Hamiltonian describing an alternant hydro-
carbon satisfy the pairing theorem [0f. Koutecky
has defined some more general alternant Hamiltonians
satisfying the pairing theorem, but unfortunately in
a rather implicite way EIO)j.. In all these approaches
it is cruical to prove the pairing theorem, since
in the case of neutral alternant systems this theo-
rem guaranties the vanishing of bond orders between
atoms of the same parity, for some eigenstates of
the Hamiltonian [8-10). The results obtained in the
MORT approach are however much more general:

i) Each alternant Hamiltonian can be explicitly
constructed. No further generalization of the notion
of alternant systems is possible [9]-

ii) All characteristic 1inear properties of alter-
nant systems are obtained [9]- Beside charge density
and bond orders this includes many other properties.

iii) These properties are shown to be character-
istic to all AL states, i.e. to entire spaces X%
and X<, and not only #o particular eigenstates of

altergamt Hamiltonians (which vary form case to case).

ANTIALTERNANT PERTURBATION OF ALTERNANT SYSTEMS

According to ((10) each Hamiltonian H cam be written
in the form

H=H XV

al nal 011)
where H i\ is an alternant operator, V'Qg\f is an anti-
alternant operator, and X is a parameter. Hence,
each system can be considered to be a perturbed al-
ternant system: HEM is the Hamiltonian of the
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unperturbed alternant system, while X Vpg| is an
antialternant perturbatiom. This leads to a partic-
ular kind of the pertuntstion expansion with many
interesting properties i}u,,11]_ In general, the eigen-
state WOX)EX_ of the Hamiltonian HEH(X) is a fune-
tion of a paraBeter X. All the properties”of a
system, expressed as expectation values <0>)\ =
<HX) I 0 @X)>7/<y (X)IW(X)> of various operators 0
over the eigenstate #(X), are hence also functioms
of X. Due to the particular form ((11) of the per-
turbatiom, fthese expectation values obey some regularities
which are expressed by the expansion theorem [Il]..
In the case when WRﬁb is nondegenmerate, this theorem
states the followimg: each alternamt property is an
even function of X, while each antialternant property
is an odd function of X, i.e.

$Ba1 3x Ban3_x Onat x ¥ < Opar -¥ (12)

In additiom, these functions are analytic in X @for
all real Xx) §u].
Relations (12) in particular imply

<H(x)>;\< r <H(-X)>_X 13)
i.e. the energy E(X) E<H@)»»., is an even function of

X. X

In order to illustrate the significance of the
expansion theorem, we shall give here only one among
many interesting consequences of fthis theorem. Re-
lations ((12) imply

pcal>, JRo RS

i.e., the first derivative of an alternant property
vanishes in the point X=0. Physically, this deriva-
tive is the rate of change of the property repre-
sented by the operator 0_% as' a function of an in-

finitesimal per"l:urbation?,1 This quantity is
recognized to be a polarizabilityy in a generalized
sense.. For example, the operator can be chosen

to be the effective charge depsity operator
OfERﬁilé » while the operator @ai can be chosen to be
a bond-order operator connecting vertices of the
opposite parity (this is, as required, an alternant
operator [3,8]). In this case the expression (14)
represents the bond-charge polarizability.. One thus
obtains the result that in an alternant system
((point X=0) bond-charge polarizability vanishes,,
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provided the bond connects vertices of the opposite
parity. This particular result has been obtained in-
dependently by Coulson and Longuet-Higgins within
the Huckel theory [iZ]. The present result is com-
pletely general, since it’applies to each alternant
system, i.e. Hamiltonian can be any hermitian

alternant operator.

1t is now obvious how other analogous results can
be obtained. One has only #o combine all possible
antialternant perturbations ~, with all possible
alternant operators 8”... Each such combination leads
to a particular relatibn involving various polari-
zabilities. Due to the expansion theorem, one fthus
generates a large set of linear relations which in-
volve different polarizabilities, and which are
satisfied by all nondegenerate eigenstates of alter-
nant systems [3}-
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reactivity, 318, 319
GLaisen rearrangement, 91,
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concerted reactions, 131,
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222, 223, 230, 238
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288

electric multipoles of atoms,
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correction parameters, 11, 12

electrostatic potentials, 188
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enthalpy

of activation, 61-63

of formation, 63-65
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expansion theorem, 346, 360
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graph, 172, 175

theory, 110, 111, 116, 152,
171, 172, 295-300
theoretical polynomials, 20,
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Grignard reagent, 92

Hamiltonian dynamics, 283, 284,
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Hartree-fock ionization energy,
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hexagonal planar lattice, 329

HOC-system of algorithms, 34,
36-43, 45, 46

hybridization, 181, 183, 189,
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inversions, 269, 270
ionicity, 124, 127,
ionisation potentials,
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158, 160-164, 166, 168
Ising problem, 21, 29
isomeric chemistry, 316-324

190, 132
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isomerism, 316-319, 321-324
isomers, 264

Kekule

graph, 330

structures, 274-279, 281,
328-330, 333-335, 342
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Markovian Kinetics, 292, 293

maximal matrix, 88

mechanistic test, 92, 93, 95

metal cluster topology, 146

metropolis algorithm, 50

Michael reaction, 91, 93

11INDO/2 calculations, 320-322

liobius function, 172, 175

HO calculations, 270

models of transition states,
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modified atoms model,
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181-183
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non-Hamiltonian dynamics,
284, 286, 288, 290-292
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reactions, 124,

283,
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organophosphorus compounds, 135
oxidative electron transfer

processes, 163, 168

partition function, 119, 120
p-bands UV absorption, 268
perfect matching, 328
perturbation theory, 84

pharmacophore

hypothesis, 223, 237-239
model, 238-240

phenomenological rate constant,
67, 68, 71

phenylcyclohexanes, 257, 258

photoelectron spectra, 156,
159, 268
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pi-electron couplings, 274

pi-electronic structure of
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quantum defect theory, 193,

194, 197, 201, 2021 203
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principle, 176
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graphs, 317, 318

potential profile, 322

receptor space, 245
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reduced graph model,
335, 337, 339, 342
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relative stabilities, 81

resonance energies, 274, 277,
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restricted rotation,
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atoms, 194,
molecules,

328-333,

257

196, 201
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scattering theory, 193, 197

secondary structure of nucleic
acids, 48

sigma delocalized structure,
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spinorbit coupling, 195, 197,
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splitting theorem, 346, 354,
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staggered rotational barrier,
254

statistical mechanics, 110
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statistical-thermodynamical
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316, 318

steric map, 245

structural theory, 2

structure-activity corre-
lations, 46
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subgraph, 173, 178
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Torgov-3mith synthesis, %4

torsional energy, 256, 258

transition state theory, 61

tropospheric lifetime, 164-166

isomers,
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bond theory, 107, 346, 347,
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structure resonance theory,
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Editors: G. VERNIN and M. CHANON, Laboratoire de Chemie Organique, Universite
de Droit d’'Economie et des Sciences, Marseilles, France

A timely introduction on the uses of computing in chemistry, which will have wide-
spread appeal, as the area is topical and fast-growing. A clear, up-to-date treatment
useful for both researchers in various branches of chemistry, e.g. organic synthesis,
catalysis, analytical chemistry, kinetics, chemometrics, flavour chemistry, and
information science, as well as those interested in the latest developments in
chemical information.

A.F. CARLEY and P.H. MORGAN, Department of Chemistry, University College,
Cardiff

Microcomputers are now so popular that they have made available to the chemist
a wide range of numerical methods. This book enables the reader to understand,
use and develop classical and modern computational methods for his or her own
application. It assumes little mathematical background on the part of the reader
beyond that encountered in A-level physics or similar courses.

E.H. TWIZELE, Department of Mathematics and Statistics, Brunel University,
Uxbridge

Draws attention to the availability of a vast number of numerical methods for
solving some of the equations arising from the mathematical modelling of bio-
medical systems. Deals with preliminary mathematics, covers matrix algebra,
linear and non-linear algebraic systems, interpolation and approximation,
differentiation and integration, and ordinary and partial differential equations.
There are case studies and numerous worked examples.

J.E. ASH, Consultant (Information Science); P.A. CHUBB, Consultant, Logica UK
Limited; S.E. WARD, Head of Information Services, Glaxo Group Research Limited;
S.M. WELFORD, Research Assistant, University of Sheffield; and P. WILLETT,
Lecturer in Information Studies, University of Sheffield

“does not restrict its consideration to printware, rightly paying great attention to on-line information
sources. The major problem in the handling of chemical information is of course the treatment of
structures: the authors spend much ink on their consideration of different approaches here . . . never
becomes hard to read, and indeed one must congratulate the writing team on their success in
communicating their own information” — Eric Deeson in Laboratory Equipment Digest

M.J. PITT, Department of Chemical Engineering, University of Leeds, and E. PITT,
Cancer Research Campaign Group Laboratories, Department of Pharmacy,
University of Aston in Birmingham

This wealth of practical information on waste disposal in a wide range of laboratory
disciplines seeks solutions to real-life problems, with safety a major consideration.
It reflects the authors’ years of practical industrial experience.

“of significant practical assistance . . . well written . . . informative” — A .E. Higginson, MBE, in Institute
of Wastes Management
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