Ch-2-Introduction to GIS & Geographic Phenomena

Ins. Biruk G. (MSc.)

Why GIS?

- Around 80% of the information includes some geographical facts in the decision-making process
- Ability to assimilate divergent source of data: both spatial and non-spatial (attribute data)
- Maps, surveys, plans, addresses...
- Visualization impact
- "A picture is worth a thousand words" Chinese proverb
- Spatial data is vital to delivery of service

Why GIS? ... cont

- Emergency response (police, fire, flooding...)
- Managing infrastructure (utilities, land, streets...)
- Basic services (mail, transportation, sanitation...)
- Sharing of information
- It allows systematic way of storing spatial data
- Analytical capability in a spatial context

What GIS?

Geographic Information Systems (GIS)

- G Location based, spatial, geo-referenced
- I attribute data, spreadsheets
- S processes, software/hardware, Science

Definition of GIS?

Burrough (1986) defines GIS as

• "a set of tools for collecting, storing, retrieving at will, transforming and displaying spatial data from the real world for a particular set of purpose."

Definition of GIS?...cont

Definition of GIS after Aronoff (1989)

- A GIS is a *computer-based system* that provides the following *four sets of capabilities* to handle geo-referenced data:
 - 1. Data capture and preparation
 - 2. Data management, including storage and maintenance
 - 3. Data manipulation and analysis
 - 4. Data presentation

Definition of GIS?...cont

GI-Systems vs. GI-Science

GI-System

• GIS is a *computerized system* that facilitates the phase of data entry, data analysis and data presentation that deals with geo-referenced data.

GI-Science

- The *discipline* that deals with all aspects of the handling of spatial data and geo-information.
- Also called Geoinformatics, Geomatics, and Spatial information science.

A Brief History of GIS...cont

- Geographic information systems (GIS) were devised in the 1960s as computer applications
 - for handling large volumes of information obtained from maps, and
 - for performing operations that would be too tedious, expensive, or inaccurate to perform by hand.
- The Canada Geographic Information System, widely recognized as the first GIS, was built for the purpose of *making vast numbers of calculations of area, reporting the results in tables.*

A Brief History of GIS...cont

- 1963-1977 Innovation
 - Canadian Land Inventory system, Harvard Graphics & S.A.
 Lab, US Census Bureau, ERTS-1 (Landsat 1)
- 1981-1999 Commercialization
 - ArcInfo, GPS, MapInfo, TIGER, NSDI, MapQuest
 - >7 billion industry, >1 million users

GIS Data

- GIS data can be described by *three data types*
 - Spatial data
 - Geospatial data tells you where it is.
 - Attributes data (None spatial data)
 - Attributes data tells you what it is.
 - Metadata
 - Metadata (data about data) describes both geospatial and attribute data.

GIS Data...cont

Spatial vs. None spatial data

Spatial data?

- Any data that is associated with a specific geographic location
- Describes the absolute and relative location of geographic features.
- Where it is?
- eg. Soil map, Aerial photography, Remotely sensed imagery, Road networks, Wetlands delineation, Stream gauges, Dam sites, land use/land cover map, Etc...

GIS Data...cont

Non-spatial data?

- Is any data which cannot be explained or associated in terms of position.
- Describes characteristics of the spatial features.
- These characteristics can be quantitative and/or qualitative in nature.
- Attribute data is often referred to as tabular data.
- What it is?
- eg. Human resource and financial data of an organization

Questions a GIS Can Answer

- A GIS allows the user to answer a number of types of questions.
- ESRI (1992) noted that *a GIS can answer five generic types of questions*.
- These are (in increasing order of complexity):
 - Location Where is it...?
 - Condition What is it...?
 - Trends What has changed since...?
 - Pattern How is it distributed...?
 - Modeling What if...?

(1) Where is it...? (LOCATION).

- simplest operations in a GIS
- find out what exists at a particular location.
- a project manager can use the GIS to determine what vegetation, habitat, soil type, or hydrologic conditions exist at the proposed site.

(2) What is it...? (CONDITION).

- to locate an area matching a certain set of conditions.
- For example, a manager may wish to determine which areas are most suited for supporting a certain wildlife species.
- He or she may wish to produce a map showing areas with particular vegetation types of a specific size and greater than a critical distance away from recreation activities.
- The GIS is designed to handle such queries in a straightforward and rapid fashion.

(3) What has changed since...? (TRENDS).

- For instance, there may be interest in quantifying long-term changes to vegetation composition.
- GIS can be useful *for determining long-term changes* to vegetation that may be caused by different types of land use.
- For example, overuse of riparian areas by grazing and off-road vehicles may have caused erosion conditions that altered downstream vegetation composition.
- Such changes may be slow and imperceptible to the observer on the ground, but they can become very apparent when 10 to 20 years of vegetation change is viewed in a GIS.

(4) What spatial patterns exist? (PATTERNS).

- For example, if nest sites of a particular species are of concern, it may be possible to use the GIS to link these nest sites to other types of information, such as:
 - specific vegetation types,
 - Undergowth conditions,
 - distance from water,
 - topography, etc.

- (5) What if...? (MODELING).
- The *most complex* use of a GIS involves tying the GIS to a known set of relationships, scientific laws, etc.,
- to model real-world phenomena.
- **Hydrology, soil loss, and habitat quality** are all examples of geographic phenomena often modeled in a GIS environment.
- it often *opens the door for both trend and predictive analysis,* which can prove quite useful in planning operations.

Components of GIS

GIS is an integration of five basic components

Components of GIS

People

- This is the most important component in a GIS.
- People must develop the procedures and define the tasks of the GIS.
- People can often overcome shortcomings in other components of the GIS, but the best software and computers in the world cannot compensate for the incompetence of people.

Data

• The availability and accuracy of data can affect the results of any query or analysis.

Components of GIS

Hardware

• Hardware capabilities affect processing speed, ease of use, and the type of output available.

Software

• This includes not only actual GIS software but also various database, drawing, statistical, imaging, or other software.

Procedures

• Analysis requires well-defined, consistent methods to produce accurate, reproducible results.

GIS Functional Components

- GIS mainly consists of four functional components, which support key GIS functions.
- These are:
 - Data capture and preparation,
 - Data storage,
 - Data analysis (Query and analysis), and
 - Presentation of spatial data (Data display and output)

GIS Functional Components

A) Spatial data capture and preparation

B. Spatial data storage and maintenance

> Vector formats

Discrete representations of reality

> Raster formats

• Use square cells to model reality

Reality (A highway)

C. Spatial query and analysis

> Identifying specific features

Identify Results			×
Layers: <top-most layer=""></top-most>		-	
COUNTIES	Location: (-83.598050 30.124164)		
i Taylor	Field	Value	<u>م</u>
	FID	2808	
	Shape	Polygon	
	NAME	Taylor	
	STATE_NAME	Florida	~
	4		•

> Identifying features based on conditions

Weredas with a population greater than 300,000

C. Spatial query and analysis...cont

D. Spatial data presentation

D. Spatial data presentation...cont

Assignments 1 (Individual)

1. Explain the remote sensing process?

2. Write three definitions of GIS taken from books, journals, and/or the World Wide Web.

3. Explain how is spatial information used in environmental applications?

- NB: Please include your source (References)

