Reagent preparation procedures

Environmental Health quality control Laboratory unit, Jimma University

1. ACIDITY

Titration Method

A) Carbon dioxide-free water: - prepare all stock and standard solutions and dilution water for the standardization procedure with distilled or de-ionized water that has been freshly boiled for 15 min and cooled to room temperature. The final pH of the water should be $>$ 6.0 and its Conductivity should be $<2 \mu \mathrm{mhos} / \mathrm{cm}$.
B) Potassium hydrogen phthalate solution:- approximately 0.05 N : crush 15 to 20 g primary Standard KHC8H4O4 to about 100 mesh and dry at 120OCfor 2h. Cool in a desiccators. Weigh $10.0+0.5 \mathrm{~g}$ (to the nearest mg), transfer to a $1-\mathrm{L}$ volumetric flask, and dilute to 1000 ml .
C). Standard sodium hydroxide titrant, $\mathbf{0 . 1} \mathbf{N}$:- prepare approximately 0.1 N by dissolving 4 g NaOH in CO 2 free water and diluting to 1liter. Standardize by titrating 40.00 mL KHC8H4O4 solution using a $25-\mathrm{mL}$ burette. Titrate to the inflection point, which should be close to pH 8.7. Calculate the normality of NaOH :-

> Normality = A x B
204.2 X C

Were:
A: gkHC8H4O4, Weighed In to 1-L Flask
B: mL kHC 8 H 4 O 4 solution taken for titration and
$\mathrm{C}: \mathrm{mL} \mathrm{NaOH}$ solution used.
Use the measured normality in further calculations or adjust to $0.1 \mathrm{~N} ; 1 \mathrm{~mL}=5.00 \mathrm{mg}$
D). Standard sodium hydroxide titrant, 0.02N:- Dilute 200 mL 0.1 N NaOH to 1000 mL and store in a polyolefin bottle protected from atmospheric CO2 by a soda lime tube or tight cap. $1 \mathrm{~mL}=100 \mathrm{mg}$ CaCO3.
E). Hydrogen peroxide, $\mathrm{H} 2 \mathrm{O} 230 \%$.
F). Bromophenol blue indicator solution, pH 3.7 indicator:- Dissolve 100 mg bromophenol blue, sodium salt, in 100 ml water.
G). Meta cresol purple indicator solution, pH 8.3:- Dissolve 100mg metacresol purple in 100 ml water.
H).Methyl orange indicator solution: - dissolve 500 mg methyl-orange powder in distilled water and dilute to 1 L
I). Phenolphthalein indicator solution, alcoholic, $\mathrm{PH}=8.3$ indicator:- Dissolve 8 g phenolphthalein in $500 \mathrm{~mL} 95 \%$ ethyl or isopropyl alcohol and add 500 mL distilled water. If necessary add 0.02 N NaOH drop wise until a faint pink color appears.
J). Sodium thiosulfate, $\mathbf{0 . 1 N}$:- dissolve 25 g Na 2 S 2 O 3.5 H 2 O and dilute to 1000 mL with distilled water.

2. ALKALINITY

Titration Method

A. Standard sulfuric acid or hydrochloric acid, 0.1N: Dilute 2.8 mL Conc. H2So4
(Specific gravity 1.834-1.836, 96-99\% W/W H2SO4) or 8.3 mL ConC. Hcl (Specific gravity $1.174-1.189,36-37 \% \mathrm{w} / \mathrm{w} \mathrm{HCl})$ to 1000 mL . Standardize against the standard NaoH Solution prepared for Acidity determination.
B. Standard sulfuric acid or hydrochloric acid, 0.02N: Dilute 200.00 mL 0.1000 N standard Acid to 1000 mL with distilled water.
C. Mixed bromocresol green -Methyl red indicator solution: Dissolve 0.02 g methyl red and 0.1 g bromocresol green in $100 \mathrm{ml} 95 \%$ ethyl alcohol.
D. Phenolphthalein solution, alcoholic ph 8.3 indicator: same as for acidity
E. Sodium thiosulfate, $\mathbf{0 . 1} \mathbf{N}$. look on reagent preparation for acidity test

3. TOTAL HARDNESS TEST

EDTA Titrimetric Method

A. Buffer solution: Dissolve 16.9 g ammonium chloride (NH 4 Cl) in 143 mL of conc.

Ammonium hydroxide (NH 4 OH). Add 1.25 g magnesium salt of EDTA and dilute to 250 mL with distilled water. Store in a plastic or borosilicate glass container for no longer than 1 month. Stopper tightly to prevent loss of ammonia or pick up of CO2. Dispense by means of a bulb-operated pipette.

B. Complexing agents:

Inhibitor I - Sodium cyanide powder
Inhibitor II- Dissolve 5.0 g sodium sulfide anhydride (Na2S.9H2O) or 3.7 g Na 2 S .5 H 2 O in 100 mL distilled water.

Inhibitor III - Dissolve 4.5 g hydroxylamine hydrochloride in 100 mL of 95% ethyl alcohol.

C. Indicators:

Liquid indicator: Dissolve 0.5 g Eriochrome Black T in 100 g triethanolamine or 2methoxymethanol. Add 2drops per 50 mL solution to be titrated.

Solid indicator: mixture-weigh separately 0.5 g Eriochrome black T dye and 100 g sodium chloride. Place in a mortar and grind together with a pestle until the dark dye is uniformly distributed through the white salt. Store in a tightly stopper bottle.
D. Standard EDTA titrant, $0.01 \mathrm{M}(0.02 \mathrm{~N})$:

Weigh 3.723 g analytical reagent-grade disodium ethylene diaminetraacetate dehydrate, dissolve in distilled water and dilute to 1000 mL . Standardize against standard calcium solution and store in a polyethylene bottle. Compensate for gradual deterioration by periodic re-standardization and by using a suitable correction factor.

E. Standard Calcium Solution:

Weigh 1.000 g anhydrous CaCO 3 power into a $500-\mathrm{mL}$ Erlenmeyer flask. Place a funnel in the flask neck and add, a little at a time, $1+1 \mathrm{HCl}$ until all the CaCO 3 , has dissolved. Add 200 mL distilled water and boil for a few minutes to expel CO 2 cool, add a few drops of methyl red indicator and adjust to the intermediate orange color by adding 3 N NH 4 OH or $1+1 \mathrm{HCl}$ as required. Transfer quantitatively and dilute to 1000 mL with distilled water, $1 \mathrm{~mL}=1.00 \mathrm{mg} \mathrm{CaCO} 3$
F. Sodium Hydroxide: $\mathrm{NaOH}, 0.1 \mathrm{~N}$

4. CALCIUM HARDNESS

EDTA Titrimetric Method

A. Standard CaCO3 Solution: Weigh 1.000 g anhydrous CaCO 3 into 500 mL Erlenmeyer flask. Place a funnel in the flask neck and add a little at a time $1+1 \mathrm{HCl}$ until all the CaCO 3 has dissolved. Add 200 ml distilled water and boil for a few minutes to expel CO 2 . Cool and adjust pH to a value of 5.0 using 3 N NH 4 OH or $1+1 \mathrm{HCl}$ as required.

Transfer to a 1 liter volumetric flask and bring up to volume.
B. Buffer Solution: Dissolve 16.9 g ammonium chloride $(\mathrm{NH} 4 \mathrm{Cl})$ in 143 ml concentrated ammonium hydroxide; add 1.170 g of disodium ethylene diamine tetracetate dihydrate and 780 mg of MgSO 4.7 H 2 O and dilute to 250 ml with distilled water. Keep in the hood in a tightly stoppered plastic or resistant glass container.
C. EDTA Titrant,approx. $0.01 \mathrm{M}(\mathbf{1} \mathbf{~ m l}=1 \mathbf{~ m g}$ hardness as CaCO3): Dissolve 3.723 g disodium ethylene diamine tetraacetate dihydrate (a.k.a. Titra Ver Hardness Reagent or Ethylenediamanetetraacetic Acid, Disodium Salt, Dihydrate) in distilled water and dilute to 1 liter.
D. EBT indicator: Dissolve 0.5 g of Eriochrome Black T and 4.5 g hydroxylamine hydrochloride in 5\%ethyl alcohol.

E. Sodium Hydroxide, 1N

F. Indicators: Murexide ammonium purpurate or calcon (Eriochrome blue black R) solid Indicator mixture:

Weigh separately: 100 g sodium chloride and either 0.2 g murexide or 0.2 g calcon place the NaCl and the indicator in a mortar and grind and the indicator in a mortar and grind together with a pestle until the dye is uniformly distributed through white salt. Store in a tightly stoppered bottle.

5. CHLORIDE TEST

Argentometric Method

A. Potassium chromate indicator solution: Dissolve 50 g K 2 CrO 4 in a little distilled water. Add AgNO 3 solution until a definite a red precipitate is formed. Let stand 12 h filter and dilute to 1 L with distilled water.
B. Standard silver nitrate titrant, $\mathbf{0 . 0 1 4 1 N}$: Dissolve 2.395 g AgNO3 in distilled water and dilute to 1000 mL . Standardize against 0.0141 N NaCl solution.
$1.00 \mathrm{~mL}=500 \mu \mathrm{gCl}-$, store in a brown bottle.
C. Standard sodium chloride. 0.0141N: Dissolve 824 g NaCl (dried at $140^{\circ} \mathrm{C}$) in distilled water and dilute to $1000 \mathrm{~mL}, 1.00 \mathrm{~mL}=600 \mu \mathrm{~g}$ cl-.
C. Special reagents for removal of interference:
I. Aluminum hydroxide suspension: dissolve 125 g Aluminum potassium sulfate or aluminum ammonium sulfate, in 1 L distilled water. Warm to 60 Oc and add 55 mL conc. NH 4 OH slowly with stirring. Let stand about 1 hr transfer to a large bottle, and wash precipitate by successive additions, with thorough mixing and decanting with distilled water, until free from chloride.
II. Phenolphthalein in indicator solution.
III. Sodium hydroxide 1N.
IV. Sulfuric acid, 1N.
V. Hydrogen peroxide, 30\%.

6. AMMONIA NITROGEN

Direct Nesslerization Method

A. Zinc sulfate solution: Dissolve 100 g ZnSO 4.7 H 2 O and dilute to 1 L with water.
B. Stabilize reagent (Rochelle salt solution): Dissolve 50 g potassium sodium tartarate tetrahydrat in 100 mL distilled water. Remove ammonia usually present in the salt by boiling off 30 mL of solution. After cooling, dilute to 100 mL .
C. Nessler reagent: Dissolve 100 g HgI 2 and 70 g KI in a small quantity of water and add this mixture slowly, with stirring, to a cool solution of 160 g NaOH dissolved in 500 mL water. Dilute to 1L. Store in rubber stoppered borosilicate glassware and out of sunlight to maintain reagent stability for up a year under normal laboratory conditions. Check reagent to make sure that it yields the characteristic color with $0.1 \mathrm{mg} \mathrm{NH} 3-\mathrm{N} / \mathrm{L}$ with in 10 min after addition and does not produce a precipitate with small amounts of ammonia with in 2h. (Caution: Toxic care to avoid ingestion).
D. Stock ammonium solution: Dissolve 3.819 g anhydrous NH 4 Cl , dried at 1000 c In water and dilute to $1000 \mathrm{~mL}, 1 \mathrm{~mL}=1.00 \mathrm{mgN}=1.22 \mathrm{mg}$ NH3.
E. Standard ammonium solution: Dilute 10 mL stock ammonium solution to 100 mL with water, $1.00 \mathrm{~mL}=10.00 \mu \mathrm{~g} \mathrm{~N}=12.2 \mu \mathrm{~g} \mathrm{NH} 3$.

F. $\mathbf{6 N} \mathbf{N a O H}$ solution

7. NITRITE NITROGEN

Diazotization Method

A. Nitrite-free water: use nitrite - free water in making all reagents and dilutions
B. Sulfanilamide reagent: Dissolve 5 g sulfanilamide in a mixture of 50 mL conc. HCl and about 300 mL water. Dilute to 500 mL with water. The solution is stable for many months.
C. N-(1-naphthyl-) ethylenediamine dihydrochloride solution: Dissolve 0.5 g NED dihydrochloride in 500 mL water. Store in dark bottle. Replace monthly or immediately when it develops a strong brown color.
D. Hydrochloric acid, $\mathbf{H c l}, \mathbf{1 + 3}$: Use water for dilution.
E. Stock Nitrite solution: Dissolve 1.232 g NaNO 2 in water and dilute to $1000 \mathrm{~mL} 1.00 \mathrm{~mL}=$ $250 \mu \mathrm{gN}$. Preserve with 1 mL CHCl3.
F. Intermediate nitrite solution: Dilute 50 mL stock nitrite solution to 250 mL with distilled water, $1.00 \mathrm{~mL}=50.0 \mu \mathrm{~g} \mathrm{~N}$ prepare daily.
G. Standard nitrite solution: dilute $10,00 \mathrm{~mL}$ intermediate NO 2 - solution to 1000 mL with water $1: 00 \mathrm{~mL}=0.500 \mu \mathrm{~g}$ prepare daily.

8. NITRATE NITROGEN

Phenoldisulfonic Acid Method

A. Standards silver sulfate solution: Dissolve 4.40 g silver sulfate free from nitrate in distilled water and dilute to $1000 \mathrm{~mL}, 1.00 \mathrm{~mL}=1.00 \mathrm{mg} / \mathrm{L}$
B. Phenoldisulfonic acid reagent: Dissolve 25 g pure white phenol in 150 mL conc. H2SO4.Add 75 mL fuming H2SO4 (15\% free SO3) stir well and heat for 2 hour on a hot water bath.
C. Ammonium hydroxide Conc: if this can not be used, prepare 12 NKOH solution by dissolving 673 g KOH in distilled water and diluting to 1 liter
D. EDTA reagent: Rub 50 gm disodium ethylendeiamine tetracetae dehydrate with 20 mL distilled water to form a thoroughly weight paste add 60 ml concentrated ammonium hydroxide(NH 4 OH) and mix well to dissolve the paste.
E. Stock nitrate solution: dissolve 9.7218 g anhydrous potassium nitrate and dilute
to 1000 mL with distilled water $1 \mathrm{~mL}=100 \mu \mathrm{~g} \mathrm{~N}$.
F. Standard Nitrate solution: Evaporate 50.0 mL stock nitrate solution to dryness on a steam or water bath dissolve the residue by rubbing with 2.0 mL phenoldisulfonic acid reagent, and dilute to 500 mL with distilled water, $1.00 \mathrm{~mL}=10.0 \mu \mathrm{~g} \mathrm{~N}=44.3 \mu \mathrm{~g} \mathrm{No} 3$

G. Reagent for treatment of unusual interference:

a. Aluminum hydroxide suspension-prepares as in for chloride determination but wash KHO free of ammonia, chloride nitrite, and nitrate
b. Sulfuric acid 1N dilutes cautiously 28 mL conc. H 2 SO 4 to 1 L with distilled water.
c. Potassium permanganate $\mathbf{0 . 1} \mathbf{N}$: dissolve 0.316 g KMNO4 in distilled water and dilute to 100 mL .
d. Dilute hydrogen peroxide solution: dilute 10 mL of 30% hydrogen peroxide to 100 mL with distilled water.
e. Sodium hydroxide $\mathbf{1 N}$: dissolve 40 g NaOH and dilute to 1 Liter with distilled water.

9. FLUORIDE

Alizarin Photometric Method

A. Stock fluoride solution: Dissolve 0.2210 g anhydrous sodium fluoride, NaF , in distilled water and dilute to $1000 \mathrm{~mL}, 1.00 \mathrm{ml}=100 \mu \mathrm{gF}{ }^{-}$.
B. Standard fluoride solution: Dilute 100 mL stock fluoride solution to 1000 mL with distilled water, $1.00 \mathrm{ml}=10.0 . \mu \mathrm{gF}-$.
C. Alizarin red solution: Dissolve 0.75 g alizarin reds in distilled water and dilute to 1 liter. If insoluble material is present, filter protect from direct sun light.
D. Zirconyl acid reagent: Dissolve 133mg zirconyl chloride octahydrate, ZrOCl 2.8 H 2 O , in about 25 ml distilled water. Add 350 ml con H2SO4 slowly, and dilute to 500 ml with distilled water. Cool to temperature and after one hour the reagent is ready to use.
E. Sodium arsenite solution: Dissolve 5.0 g NaAsO2 and dilute to 1 L with distilled water. (Caution: Toxic 1 - avoid ingestion).

10. PHOSPHATE

Stannous Chloride Method

A. Phenolphthalein indicator aqueous solution
B. Strong-acid solution: slowly add $300 \mathrm{~mL}-\mathrm{ConC} . \mathrm{H}_{2} \mathrm{SO}_{4}$ to about 600 mL distilled water. When cool, add 4.0 mL conc HNO_{3} and dilute to 1 L .
C. Ammonium molybdate reagent: Dissolve $25 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{7} \mathrm{O}_{24} .\left(4 \mathrm{H}_{2} \mathrm{O}\right)$ in 1750 mL distilled water. Cautiously add 280 mL ConC. H 2 SO 4 to 400 ml distilled water. Cool, and molybdate solution, and dilute to 11 .
D. Stannous chloride reagent: Dissolve 2.5 g fresh Sncl 2 . 2 H 2 O in 100 mL glycerol. Heat in a water bath and stir with a glass rod to hasten dissolution. This reagent is stable and requires neither preservatives nor special storage.
E. Stock phosphate solution: dissolve in distilled water 0.7165 g anhtydrous KH2 PO4 and dilute to $1000 \mathrm{~mL} ; 1.00 \mathrm{~mL}=500 \mathrm{ug}$ po3-4
F. Standard phosphate solution - Dilute 10 mL stock to 11 with distilled water, $1 \mathrm{~mL}=$ 5.0ug PO4-3.

11. IRON

Phenanthroline Method

A. Concentrated hydrochloric acid: The acid must contain less than 0.00005% iron.
B. Ammonium acetate buffer solution: Dissolve 250 g ammonium acetate [NH 4 CH 3 COO] in 150 mL deionized water. Add 700 mL glacial acetic acid and bring up to 1 L with de ionized water.
C. Hydroxylamine solution: Dissolve 10 g NH 2 OH HC 1 in 100 mL of de ionized water.
D. 0.1 N Potassium Permanganate solution: Dissolve 3.2 g of potassium permanganate [KMnO 4$]$ in 1L of deionized water.
E. Phenanthroline solution: Dissolve 1.0 g of 1,10-phenanthroline monohydrate [C12H8N2(H2O)] in 1L of de ionized water that contains 20 drops of concentrated hydrochloric acid by stirring and heating to $80^{\circ} \mathrm{C}$.

Note: The stoichiometric ratio for the complex is 3 moles of phenanthroline per mole of $\mathrm{Fe} 2+$, or 10.65 g phenanthroline per g of $\mathrm{Fe} 2+$. This implies that $1 \mathrm{~mL}(1 \mathrm{mg}$ phenanthroline) of this reagent is sufficient for about $100 \mu \mathrm{~g}$ of Fe. However, in order to get rapid, complete complexation, excess phenanthroline is required and in practice 1 mL of this solution suffices for no more than $2.5 \mu \mathrm{~g}$ of $\mathrm{Fe} 2+$.
F. Stock Iron Solution: Slowly add 20 mL of concentrated sulfuric acid to 50 mL of deionized water and dissolve 1.404 g of ferrous ammonium sulfate [Fe(NH4)2(SO4)2(H2O)6] in the acid/water mixture. Add 0.1 N potassium permanganate drop wise until a faint pink color persists. Dilute to 1 L with de ionized water. Note, $1.00 \mathrm{~mL}=200 \mu \mathrm{~g}$ Fe.
G. Standard Iron Solution: Prepare this solution daily. Using a volumetric pipette, pipette 50 mL of the stock iron solution into a 1 L volumetric flask and dilute to 1 L with deionized water. Note, $1.00 \mathrm{~mL}=10 \mu \mathrm{~g}$ Fe.

12. MANGANESE

Persulfate Method

A. Special reagent: Dissolve 75 g HgSO 4 in 400 mL Conc HNO3 and 200 mL distilled water. Add $200 \mathrm{~mL} 85 \%$ phosphoric acid, and 35 mg silver nitrate. Dilute the cooled solution to 1L.
B. Ammonium Per sulfate, (NH4)2S2O8, solid.
C. Stock manganese solution: Weigh 0.308 g dry manganese sulphatemnohydrate (MnSO4. H2O). Carefully transfer the weighed comical to a 250 mL beaker and dissolve in 100 mL distilled water. Cautiously add 1.0 mL concentrated sulfuric acid with constant mixing. Transfer the acid solution to a 1 L volumetric flask \& dilute to volume. Stopper \& mix thoroughly. $1 \mathrm{~mL}=100 \mu \mathrm{~g} \mathrm{Mn}$.
D. Standard manganese solution: with a volumetric pipet, measure 10 mL stock manganese solution into a 100 mL volumetric flask. Dilute to the mL mark with distilled water. Stopper and mix thoroughly. Prepare on the day of use $1 \mathrm{~mL}=10 \mu \mathrm{gMn}$.
E. Hydrogen Peroxide H2O2, 30\%.

13. BIOLOGICAL OXYGEN DEMAND (BOD)

The Azide Modification of the Winkler Method
A. Manganese sulfate: Dissolve 480 gm MnSO4 4H2O2 400 gm MnSO4-2H2O or
$364 \mathrm{~g} \mathrm{MnSO} 4-\mathrm{H} 2 \mathrm{O}$ in distilled water filter and dilute to 1 L . MnSO4 solution should not give a color with starch when added to an acidified KI solution.
B. .Alkali-iodide-azide: Dissolve 500 g NaOH (or 700 g KOH) and 235 g NaI (or 100 g KI) in distilled water and dilute to 1L Add 10 g sodium azide dissolved in 40 mL distilled water potassium and sodium salts may be used interchangeably. This reagent should not give a colour with starch solution when diluted and acidified.
C. Sulfuric acid: H2SO4 conc.: One millimeter is equivalent to about 3 ml alkali Iodideazide reagent.
D. Starch Indicator: Dissolve 2 g of starch and 0.2 g salicylic acid in 100 mL of hot deionized water.
E. Sodium thiosulfate, $\mathbf{0 . 0 2 5}(\mathbf{m})$ N: Dissolve 6.205 g of Na 2 S 2 O 3.5 H 2 O in deionized water, add 0.4 g NaOH and dilute to 1 L . (Note: Sodium thiosulfate absorbs and loses water readily, so this solution should be standardized against potassium bi-iodate.). Add 1.5 mL 6 N NaOH or 0.4 g solid NaOH and dilute to 1000 mL . Standardize with bi - iodate.
F. Standard potassium bi - iodate solution 0.0021 M. $0.025 N$: Dissolve $0.8124 \mathrm{~g} \mathrm{KH}(\mathrm{I} 03) 2$ in distilled water and dilute to 1000 mL .Standardization=dissolve approximately 2g KI, Free from iodate, in an Erlenmeyer flask with 100 to 150 mL distilled water. Add 1 mL 6 N H 2 SO 4 or a few drops of conc. H 2 SO 4 and 20 mL of standard bi - iodate solution. dilute to Ml and titrate the liberated iodate with thiosulfate titrant adding starch toward end of titration, when a pale straw color is reached adjust the Na 2 S 2 O 3 solution to 0.025 N if necessary.
G. Potassium fluoride solution: dissolve 40 g KF .2 H 2 O in distilled water and dilute to 100 mL .
H. Phosphate buffer solution: Dissolve 8.5 g KH2PO4, 21.75 g K2HPO4, 33.4 g Na 2 HPO 4 7 H 2 O , and 1.7 g NH 4 Cl in about 500 mL distilled water and dilute to 1 L . The PH should be 7.2 without further adjustment. Discard reagent (or any of the following reagent) if there is any sign of biological growth in the stock battle.
I. Magnesium sulfate solution: Dissolve 22.5 g MgS 4.7 H 2 O in distilled water and dilute tolL.
J. Calcium chloride solution: dissolve 27.5 g CaCl 2 in distilled water and dilute to 1 L .

1. Ferric Chloride solution: dissolve 0.25 g FeCl 3 . 6 H 2 O in distilled water and dilute to 1 L
M. Acid and alkali solutions, IN: for neutralization of caustic or acidic waste sample.
N. Sodium sulfite solution 0.025N: Dissolve 1.575 g Na2SO3 in 1000 mL distilled water. This solution is not stable; prepare on the day of use.
O. Nitrification inhibitor: 2-chloro-6- (trichloro methyl) pyridine.
P. Glucose-glutamic acid solution: Dry reagent-grade glucose and reagent-grade glutamic acid at 103 OC for 1 h . Add 0.150 g glucose and 0.150 g glutamic acid to distilled water, dissolve and dilute to 1 liter. Prepare fresh immediately before use.

14. CHEMICAL OXYGEN DEMAND (COD)

Open Reflux Method, Titrimetric Method

A. Standard potassium dichromate solution, $\mathbf{0 . 0 4 1 7} \mathbf{M}(\mathbf{0 . 2 5 N})$: dissolve 12.259 g K2Cr2O7 primary standard grade previously dried at 103OC for 2 h in distilled water and dilute 100 mL
B. Sulfuric acid reagent: Add Ag 2 SO 4 at the rate of 5.5 g Ag SO 4 per Kg H 2 SO 4 Let stand 1 to 2 days to dissolve Ag 2 SO 4 per kg H2SO4 let 1 to 2 days to dissolve Ag 2 SO 4 .
C. Ferroin indicator solution: dissolve 1.485 g 1,10-phenanthrolina monohydrate and 0.695 g FeSO 4.7 H 2 O in distilled water and dilute to 100 mL .
D. Standard ferrous ammonium sulfate (FAS) titrant approximately $0.25 \mathrm{M}(0.25 \mathrm{~N})$: Dissolve 98 g Fe (NH4)2 (SO4)2 6H2O in distilled water. Add 20 mL Conc. H2SO4 Cool, and dilute to 1000 mL . Standardize daily against K 2 Cr 2 O 7 solution as follows:Dilute 10.0 mL standard K 2 Cr 2 O 7 to about 100 mL . Add 30 mL Concentrated H2SO4 and cool. Titrate with FAS titrant using 0.10 to 0.15 mL (2 to 3 drops) Ferroin indicatory
E. Mercuric sulfate, crystals or powder. (extra pure)

F. Sulfamic acid

G. Potassium hydrogen phthalate (KHP) standard: Lightly crush and then dry KHP to constant weight at 1200 C . Dissolve 0.425 g in distilled water and dilute to 1000 mL . KHP has a theoretical COD of 1.176 mg O2/mg this solution has a theoretical COD of $5000 \mathrm{~g} \mathrm{O} 2 / \mathrm{mL}$. This solution is stable when refrigerated for up to 3 months.

15.SULFATE

Gravimetric Method with Ignition of Residual

A. Methyl red indicator solution: dissolve 0.1 g methyl red sodium salt in distilled water and dilute to 100 mL
B. Hydrochloric acid HC1 1+1
C. Barium chloride solution: dissolve 100 g bacl2. 2 H 2 O in 1L distilled water. Filter through a membrane filter or hard-finish filter paper prior use 1 mL is capable of precipitating approximately 40 mg S04
D. Silver nitrate - nitric acid reagent: dissolve 8.5 g AgNO3 and 0.5 mL Conc. HNO3 in 500 mL distilled water.

16.Chromium

Diphenyl Carbazide Method

A. Stock chromium solution: Dissolve 141.1 mg K 2 Cr 2 O 2 in water \& dilute to 1 L . $1 \mathrm{~mL}=50.0 \mu \mathrm{~g} \mathrm{cr}$.
B. Standard chromium solution: Dilute 10.0 mL stock chromium solution to 1000 mL $1.00 \mathrm{~mL}=5.00 \mu \mathrm{~g} \mathrm{Cr}$.
C. Nitric acid, HNO3 conc.
D. Sulfuric acid. H2SO4 1+1
E. Methyl orange indicator solution
F. Hydrogen peroxide $\mathbf{H 2 O 2}, 30 \%$.
G. Redistilled water: - Distilled water re-distilled in all-glass apparatus.
H. NH4OH, Conc.
I. Potassium permanganate solution: dissolve 4 g KMnO4 in 100 mL water.
J. Sodium azide solution: Dissolve 0.5 g NaN3 in 100 mL water
K. Diphenylcarbazide solution: dissolve 250 mg 1.5 - diphenylcarbazide in 50 Ml acetone.

Store in a brown bottle discard when solution becomes discolored.

1. Sulfuric acid. H2SO4 0.2N: dilute 17 mL 6 N H2SO4 to 500 mL with water.
M. Chloroform - chemically pure.
N. Cupferron solution: Dissolve 5 g C6H5N (NO) ONH4 in 96 m water
