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Preface

My aim with this book is to provide an introduction to all aspects of the 
field of in silico medicinal chemistry for the beginner, but this does not pre-
clude its usefulness to the intermediate and expert in terms of offering quick 
guides on specific areas. To this end, the book does not give a deep-dive into 
the field, but instead emphasises the key concepts that are of importance to 
understand in context and the more abstract challenges. However, to offer 
some kind of completeness, each chapter has a list of key references to which 
the reader is referred for further information, including methodologies and 
case studies where appropriate.

Having edited two books recently, I did not want another commission, but 
I could not turn down this invitation to write the kind of book that I felt 
would be of benefit to scientists starting out in the field. I also felt that this 
might be the right time to write such a book.

I would like to extend my thanks primarily to Prof. Jonathan Hirst at The 
University of Nottingham, who commissioned me to write this book. With-
out the Royal Society of Chemistry’s publishing team, I probably would not 
have finally finished writing this book.

I would like to thank the members of my team, past and present, who, 
whether they are aware or not, have contributed positively to this book: 
Yi Mok, Mike Carter, Berry Matijssen, Caterina Barillari, Nick Firth, Sarah 
Langdon, Lewis Vidler, Josh Meyers and Fabio Broccatelli. I asked for some 
guidance from an early research scientist who probably best represents the 
audience of this book, William Kew, then at The University of St. Andrews, 
and now a PhD student in whisky analysis at The University of Edinburgh, 
Scotland. Will’s feedback was invaluable in understanding how I should 
pitch the book and what I should cover. A heartfelt thanks to all of the many 
scientists with whom I have worked and co-authored research papers since 
starting out in this field: Bob Clark, Ben McKay, François Gilardoni, Ansgar 
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Schuffenhauer, Peter Ertl, Gisbert Schneider, Val Gillet, John Holliday, 
George Papadatos, Mike Bodkin, Andreas Bender, Richard Lewis, Edgar 
Jacoby, Christos Nicolaou and Swen Hoelder. I apologise if I have missed 
anyone off the list. I would also like to thank my colleague and medicinal 
chemistry mentor, Prof. Julian Blagg, who allowed me the time to dedicate 
to writing this book and has been a constant inspiration from his medici-
nal chemistry background.

A special thanks to my two academic mentors, Prof. Peter Willett from The 
University of Sheffield and Prof. Johnny Gasteiger from The University of 
Erlangen-Nuremberg. They both took a chance on me early in my career and 
gave me thorough grounding in using computers to solve problems in chem-
istry, and also instilled in me a full appreciation of the pragmatism required 
in computational methods, the importance of adherence to the scientific 
method and the essential, yet highly appropriate, design of experiments with 
the absolutely necessary control experiments.

Lastly, I would like to thank my Mum and Dad who encouraged me from 
an early age to be inquisitive about the world and ask questions, which led 
me to a career in science. I would also like to thank them for letting me have 
a ZX81 at a very, very young age, and also for letting me play with Lego a lot, 
which helped me to understand combinatorial explosion.
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Chapter 1

Introduction

1.1   Overview
the discovery and design of new drugs is an endeavour that humanity has 
undertaken  only  in  more  recent  history  thanks  to  the  scientific  advances 
made by scientists from many different fields. Chemists have been able to 
isolate, synthesise and characterise potential therapeutic agents. Biologists 
can then test  the safety and efficacy of  those agents  in multiple biological 
models,  and  clinicians  can  test  the  agents  in  humans.  however,  there  are 
more potential new chemical structures that could be synthesised than time 
allows. Some estimates have put the potential space of druglike molecules at 
1020 and others up to 10200. regardless of how precisely vast that space is and 
how much of it is actually worthy of exploration, I think we can agree that it 
is truly, astronomically vast.

Computers  have  transformed  our  lives  in  recent  times,  with  a  standard 
smartphone carried in our pockets having more computing power than all of 
the computing power that NaSa (National aeronautics and Space administra-
tion) had in 1969 when we put a man on the moon. the chip in a modern iphone 
has more than two billion transistors and is capable of running tens of billions 
of instructions per second. however, the ability to process more data does not 
necessarily mean that we automatically start making better decisions. Indeed, 
there is a misguided assumption that increased computer power means that 
we can get the right answers faster, but without careful thought and experi-
mental design with appropriate controls, we will only find the wrong answers 
faster and still waste a great deal of  time  in physical experiments based on 
inappropriate predictions made using computational methods.

the computer  is a  tool,  like any other. One would not go  into a chemis-
try or biology laboratory and simply start moving things around and think 
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we are conducting good science, and hope to leave the lab without causing 
considerable  harm  to  oneself.  Conducting  good  science  requires  a  signifi-
cant amount of expert training. the same can be said for the computer, it is 
essentially a molecular modeller’s laboratory. It is a facile assumption that 
because we can install molecular modelling software, then this will make us 
a modeller. to become an effective and successful modeller requires as much 
time as becoming an effective and successful  laboratory scientist.  It  is not 
sufficient to believe that installing software and clicking buttons will make 
you a good molecular modelling scientist; it may give rise to that being the 
case, but this is merely an illusion.

this book is an attempt to provide some of the history and popular meth-
ods applied  in modern day medicinal chemistry and drug discovery using 
computers  and  informatics  platforms,  a  discipline  for  which  an  appropri-
ate  title  may  be:  in silico  medicinal  chemistry.  In  this  title,  the  aim  is  to 
define a field of endeavour and scientific rigour that contributes positively 
in every appropriate aspect of medicinal chemistry and drug discovery, from 
the design of high-throughput screening libraries to providing predictions 
of  molecular  properties  required  for  drug  compounds  and  understanding 
how those molecules  interact with biological macromolecules.  It  is always 
my primary concern to contribute positively to the many projects I work on. 
By  ‘contribute positively’  I mean that  it  is  important for everyone involved 
to understand what  the predictions or analyses  tell us, as well as having a 
thorough understanding of  the  limitations of  these methods. With under-
standing comes control, and this can only assist  in designing experiments 
and  prioritising  possible  decisions.  It  is  important  as  a  practicing  molec-
ular  modeller  to  be  fully  aware  that,  despite  taking  relatively  little  time,  
in silico experiments can lead to a huge amount of wasted resource, both in 
chemistry and biology laboratories, if best practice and appropriate checks 
and balances are not put in place.

Molecular modellers should be hypothesis-driven scientists. the hypothesis 
is the core of science: just because we can do something does not mean that 
we should. We must have a specific question in mind. Once the hypothesis has 
been formalised then we can consider how we might tackle the challenge. It is 
important to understand the commitment required from the laboratory scien-
tists and project budgets to ensure that expectations are managed.

Drug discovery and design takes place in large pharmaceutical companies, 
biotechnology start-ups, and increasingly academicians are being ever more 
effective and demonstrably capable of drug discovery. anyone in a career in 
drug discovery, or with the intention of developing a career in this area, will 
be exposed to computational methods in chemistry regardless of where they 
sit in the organisation. Molecular modellers assist high-throughput screen-
ing (htS) teams in designing their compound libraries and analysing their 
hit matter through htS triaging. Medicinal chemists work most closely with 
molecular  modellers  and  chemoinformaticians  on  aspects  ranging  from 
compound registration of new molecular entities into databases to design-
ing vast virtual compound libraries from which targets for synthesis can be 
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prioritised. Working with structural biologists and crystallographers we can 
enable structure-based drug design, where we have experimental evidence 
for binding modes of potential drugs in protein binding sites allowing the 
project teams to design compounds that should, or sometimes should not, 
work to test specific hypotheses. Working with computational biologists we 
can assist in identifying and validating therapeutic targets in silico. and this 
is  without  considering  the  impact  we  can  have  in  basic  biology,  genetics, 
metabolism and pharmacokinetics.

It  is clear  that  the field of  in silico medicinal chemistry  is  truly  interdis-
ciplinary,  working  across  many  different  teams.  Furthermore,  the  in silico 
medicinal chemists of today increasingly come from different backgrounds 
and not just chemistry. Many computer scientists, mathematicians, statisti-
cians, physicists and scientists  from other disciplines work very effectively 
and contribute positively to the discovery of new drugs.

In  addition  to  working  with  multidisciplinary  teams  in  the  context  of 
drug discovery, we are still making  fundamental advances and discoveries 
in  the  field  of  in silico  medicinal  chemistry.  that  is  to  say  that  the  field  is 
not a solved problem and we still have many challenges to work on. a good 
molecular modeller is agile and adaptable to these new challenges and can 
see opportunities for contributing fundamentally to the community.

Computers, although all-pervasive nowadays, are actually a very modern 
advance. however, the advent of modern computation and all that it offers 
has  been  included  in  drug  design  for  many  more  years  than  one  might 
expect.

a more recent advance in in silico medicinal chemistry is the availability 
of toolkits implemented to allow for the quick development of software pro-
grams to tackle challenges quickly and easily, such as the rDKit apI. Work-
flow tools have become available that enable many non-expert scientists to 
quickly  generate  simple  processes  using  visual  programming  techniques. 
One  such  workflow  tool  is  KNIMe.  Data  analysis  is  also  becoming  more 
achievable on large data sets thanks to interactive data exploration and anal-
ysis tools such as DataWarrior. Lastly, all these methods and software would 
be  worthless  without  data.  again,  recently  datasets  have  become  available 
that  represent  marketed  drugs,  clinical  candidates,  medicinal  chemistry 
compounds  from  journals,  commercially  available  compounds,  and  those 
structures  contained  in  patents:  CheMBL,  DrugBank,  SureCheMBL.  the 
most amazing aspect of all of these advances is that everything mentioned 
in this paragraph is free. Free to download, free to install, free to use, with 
no limits.

this  truly  is  a  golden  age  of  in silico  medicinal  chemistry  as  a  data  sci-
ence, which is essentially what it is, working with lots of heterogeneous data 
(so-called big data) and various modelling techniques from structure-based 
modelling through to statistical learning methods. all of these and more are 
covered in this book.

the  title  of  this  book,  In Silico  Medicinal  Chemistry,  is  intended  as  an 
umbrella term for all approaches to using computers in chemistry to benefit 
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medicinal  chemistry  and  drug  discovery.  In  this  way,  one  can  see  in Silico 
Medicinal Chemistry as covering aspects of: chemoinformatics (also called 
cheminformatics), molecular modelling and computational chemistry. this 
book is not intended to be all-inclusive and exhaustive, but rather to make a 
solid foundation from which the reader can pursue aspects that most inter-
est  them  or  are  relevant  to  a  particular  scientific  challenge.  each  chapter 
concludes with an inexhaustive list of key references to which the interested 
reader  is  directed  for  more  in-depth  information  around  specific  subject 
areas from leading monographs in those areas.

the  book  covers  the  fundamentals  of  the  field  first:  how  we  represent 
and visualise those molecules in the computer, and how we compare them. 
the section begins, though, with a brief history and introduction to mathe-
matical graph theory and its close links with chemistry and molecular rep-
resentations going back to the advent of atomistic theory and even earlier. 
representing  molecules  in  the  computer  is  essential  for  whatever  subse-
quently needs to be achieved in the computer. For some applications it may 
be possible to have more complex representations, but more complex rep-
resentations will typically require more complex calculations to analyse and 
make best use of the data. the methods by which we compare molecules also 
lie at the heart of computational chemistry. Similarity is a philosophical con-
cept, but it is essential to consider the different types of similarities that may 
be measured and how they may be applied. all of these topics are covered in 
the first section of the book.

the second section of the book considers the many different ways we can 
describe molecules in the computer. the old parable of the ‘Six Blind Men 
and the elephant’ written by John Godfrey Saxe, from ancient tales, high-
lights  challenges  in  measuring  similarity  and  understanding  differences. 
In  the  parable,  six  blind  men  were  each  asked  to  describe  an  elephant. 
the first blind man suggested that the elephant was like a wall because he 
felt its body. the second thought it like a snake, having touched its trunk. 
the third identified it as like a spear when feeling its tusk, and so on. this 
parable  highlights  the  importance  of  recognising  and  understanding  the 
concept of similarity and why it is important. the section begins with phys-
icochemical  descriptors,  from  which  it  possible  to  calculate  properties 
that  are  measurable,  with  a  high  degree  of  accuracy.  the  second  chapter 
moves  onto  topological  descriptors  that  encode  aspects  of  the  molecular 
graph representation, whether through the calculation of a single value that 
encapsulates an aspect of the molecular graph but is interpretable, or large 
quantities of complex descriptors  that do not  tend to be so  interpretable, 
but are highly efficient and effective. the third class of molecular descrip-
tor is the topographical or geometric descriptor that encodes information 
about the shapes and geometries of molecules, since clearly they are typi-
cally not flat, or static, entities.

the third section of  the book considers statistical  learning methods, an 
integral aspect of computational drug discovery, and some of the best meth-
ods we have to investigate different properties. an introduction to statistical 



7Introduction

learning  will  be  given,  prior  to  breaking  off  into  two  different  aspects  of 
statistical  learning:  unsupervised  and  supervised  learning.  Unsupervised 
learning  uses  statistical  methods  to  understand  the  structure  of  data  and 
how  different  objects,  described  by  variables,  relate  to  each  other.  this  is 
important in understanding the proximity or otherwise of our data points, 
in our case molecules, and is integral to the concepts of molecular similarity 
and diversity in chemical databases and techniques used in many methods. 
Supervised  learning  still  uses  the  descriptions  of  our  objects,  molecules, 
but attempts  to  relate  these  to another variable or variables.  In chemistry, 
supervised learning can be used to make predictions about molecules before 
they are synthesised. this predictive learning can be very powerful in com-
putational chemistry since we can explore that vast space of possible small 
molecules discussed earlier in a much more effective and rapid way. Lastly, a 
discussion and some advice on best practices in statistical learning are given 
to assist the modern scientist using computers to make statistical analyses 
or summaries.

the next section moves on to explicit applications of computational meth-
ods  in drug discovery. these methods are well known in the field and use 
aspects of all of the previously discussed concepts and methods. Similarity 
searching  is  up  first,  which  is  focussed  on  the  identification  of  molecules 
that are similar to those that are already known, but also comparing large 
numbers of molecules for similarity and diversity. One of the most important 
aspects of similarity searching is the introduction of the concept of virtual 
screening, where new and interesting molecules can be identified by using 
ones that are already known, but with a similarity measure that is relevant to 
the challenge being addressed.

the second chapter in this section covers the twin concepts of bioisosteric 
replacements and scaffold hopping. these two concepts are related to sim-
ilarity searching, which was mentioned previously, but  instead of trying to 
identify  molecules  that  tend  to  have  structural  similarities,  this  approach 
looks  for  functional  similarity,  with  little  regard  for  the  underlying  struc-
ture. this is becoming increasingly important in drug discovery as it allows 
projects  to  move  away  from  troublesome  regions  of  chemistry  space  that, 
although important for potency, may exhibit other issues that are undesir-
able in drugs.

the third chapter covers clustering and diversity analysis, which are essen-
tially two sides of the same coin. Cluster analysis permits the identification 
of natural groupings of objects, molecules, based on molecular descriptors 
and example of the application of unsupervised learning. Using cluster anal-
ysis it is possible to select clusters of interesting molecules for follow-up or, 
using molecular diversity to select a subset of molecules that are different to 
each other.

Whereas cluster analysis is an example of unsupervised learning, Quanti-
tative Structure–activity relationships (QSars) are an example of supervised 
statistical  learning  methods.  here,  the  objective  is  to  correlate  molecular 
structure  with  known  biological  endpoints,  such  as  enzyme  potency,  and 
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build a statistical model. the benefit of such a model, a QSar, is that it may, 
with care and caution, be applied to predict for molecules that have not been 
tested, and have not even been synthesised. this allows vast virtual libraries 
to be analysed and prioritised to allow the focus to rest on those molecules 
that are most likely to succeed.

Since  proteins  began  being  crystallised  and  their  structures  identified 
through X-ray crystallography, the structures have held the promise of allow-
ing the optimisation of new molecular entities in silico that are predicted to 
be enhanced in potency against the enzyme-binding site of  interest. protein–
ligand  docking  methods  have  been  developed  for  more  than  30  years  to 
model virtual molecules that are more optimal in interactions and potency 
than  their predecessors. Many new methods and developments have been 
made and the predictive abilities of docking have improved greatly over the 
years. Still, however, challenges remain. this chapter considers the methods 
that have been developed, an understanding of how to validate docking models 
and finally how best to use the methods.

the last chapter in this section covers de novo design, arguably the pinna-
cle of computational drug discovery. the grand objective in de novo design 
is to design molecules in the computer that are entirely optimised for each 
of the objectives of interest. Clearly, the discipline is not that close to being 
able to achieve such a grand challenge, but much headway has been made, 
particularly in recent years, utilising all of the methods that go before in this 
book. a brief history of de novo design is given in structure- and ligand-based 
methods, with a final view towards the future and the incorporation of mul-
tiple objectives in de novo design workflows.

the penultimate section of the book looks at a few successful case studies 
and methods that have been applied in every stage of drug discovery, from 
aspects of target validation in terms of druggability analyses and hit discov-
ery, through to moving from hit compounds to leads and the optimisation 
of those leads. Some examples of methods that have or can be used in these 
in these are covered to set the context of the field and its level of importance 
through the drug discovery pipeline.

Lastly, the book concludes with the ‘Ghosts of Christmases past, present 
and Yet to Come’. this chapter represents the importance of remembering 
where  we  came  from  and  respecting  the  contributions  of  the  giants  that 
came before us; it reflects on where we are, how we got here and what has 
been achieved in recent years; and lastly, the chapter discusses what needs to 
be addressed in future, how can we achieve this and what we all need to do 
to prepare for the future.

this book is intended as an overview of a vast field, with thousands of sci-
entists working in it worldwide. each chapter has a set of key, yet not exten-
sive, references as guides to where the interested reader may go next in the 
development  of  their  skills  and  expertise  in  this  complex  field,  no  matter 
what it may be called.

Finally, it is important as you read through this book to remember the two 
mantras of anyone involved in modelling real-world systems:
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“In general we look for a new law by the following process. First we guess it. 
Then we compute the consequences of the guess to see what would be implied 
if this law that we guessed is right. Then we compare the result of the computa-
tion to nature, with experiment or experience, compare it directly with observa-
tion, to see if it works. If it disagrees with experiment it is wrong. In that simple 
statement is the key to science. It does not make any difference how beautiful 
your guess is. It does not make any difference how smart you are, who made the 
guess, or what his name is—if it disagrees with experiment it is wrong. That is 
all there is to it.”

richard p. Feynman
Chapter 7, Seeking New Laws. The Character of Physical Law, 1965.

“Since all models are wrong the scientist cannot obtain a ‘correct’ one by exces-
sive elaboration. On the contrary following William of Occam he should seek 
an economical description of natural phenomena. Just as the ability to devise 
simple but evocative models is the signature of the great scientist so overelabo-
ration and overparameterization is often the mark of mediocrity.”

George e. p. Box
Science and Statistics. J. Am. Statist. Assoc. 1976, 71, 791–799.
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Chapter 2

Chemistry and Graph Theory

2.1   Overview
One of the most important aspects of using computers to answer questions in 
chemistry is graph theory. the chemical structure representation we all recog-
nise today comes from the mathematical subfield of graph theory and is often 
termed a molecular graph. the molecular graph is the single-most important 
data  structure  in  computational  chemistry.  Graph  theory  has  been  intrin-
sically linked with chemistry since the advent of atomistic theory in the early 
nineteenth century and has given us the representation we identify today.

2.2   Graph Theory and Chemistry
Graph theory and chemistry have had a long-standing partnership from the 
mid-eighteenth  century  until  the  present  day.  From  their  undergraduate 
training, many computer scientists and mathematicians know of graph the-
ory, the data structures, algorithms and applications and how the concepts 
can  be  used  to  answer  very  complex  problems  in  a  very  logical  way.  how-
ever, what might be less known is that the name, Graph theory, originated 
directly from efforts in chemistry in the early 1800s at the advent of atomistic 
theory to determine a method by which the structures of molecules could be 
represented pictorially.1

the first example of a graph  theoretic approach  to solving a problem  is 
from Leonhard euler in 1735, and this work would even ultimately result in 
the field of topology. the problem that euler faced was based in the then city 
of Königsberg in prussia and considered just the landmasses in the city and 
the bridges that connected them. Königsberg is bordered on both sides by 
the river pregel and consisted of two large landmasses. to enable transport 
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and trade it was clearly necessary for a number of bridges to be built to cross 
the pregel at various points. In fact, the landmasses were interconnected by 
a total of seven bridges (Figure 2.1). this set euler wondering, would it be 
possible, starting from any landmass, to cross each one of the seven bridges 
once and only once? euler stipulated that the river must only be crossed by 
one  of  the  seven  bridges  and  once  someone  has  started  walking  across  a 
bridge, they cannot turn back and count that as a crossing. It was not nec-
essary that the start points and end points of the walk be the same. euler’s 
challenge was, could he solve this problem with sufficient abstract and math-
ematical  thoroughness  that  the  concepts  could  be  adapted  and  solved  for 
similar problems?

Considering the map, euler realised that  landmasses a and B were con-
nected by bridges a and b; a and C were connected by bridges c and d; a and 
D were connected by c only; B and C had no directly connecting bridges; B 
and D were connected only by bridge f; and C and D were connected by only 
bridge g. Since the start and end points were irrelevant, euler realised that 
the challenge was simply  the sequence  in which the bridges were crossed. 
this  permitted  euler  to  understand  that  all  that  was  important  was  how 
the bridges were connected to each other via the landmasses. this allowed 
euler to abstract the map representation, eliminating all extraneous features 
other than the bridges and how they intersected landmasses. In graph theory 
today, we would call each bridge an edge or an arc, and each landmass a node 
or  a  vertex.  the  abstracted  representation  of  the  landmasses  and  bridges 
connecting them is what is today called a graph and was the foundation of 
graph theory (Figure 2.2).

Using  his  graph  representation,  euler  understood  that  when  a  node  is 
entered via an edge, then another edge must be available that has not already 
been  crossed,  unless  at  the  start  or  beginning  of  the  walk.  therefore,  the 

Figure 2.1   the original map of Königsberg used by euler in his seminal work intro-
ducing the concepts of graph theory. It can be seen clearly that euler 
labelled the landmasses as a, B, C, and D whereas the bridges connect-
ing those four landmasses were labelled as a, b, c, d, e, f, and g. accessed 
from https://math.dartmouth.edu/∼euler/pages/e053.html.
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number of times a vertex is entered, not at the start or end of the walk, must 
equal the number of times that it is left. Since every bridge must be crossed 
only  once  then  each  landmass,  except  for  the  start  and  finish,  must  have 
an even number of bridges connecting them. however, all four of the land-
masses have an odd number of bridges, so it must be impossible to solve this 
problem for the Königsberg graph.

In the 1750s in edinburgh, two scientists, William Cullen and Joseph Black, 
devised a form of graph theory on the theory of the relationships between 
chemical  substances,  called  affinity  diagrams.  the  nodes  of  these  graphs 
were substances, and the edges the measured affinities between them. More 
than a century later, the new atomistic theory was being formalised and sci-
entists were attempting to understand the structures of molecules. this is 
where euler’s earlier work on mathematical graph abstractions was noticed 
and used to define relationships between atoms in molecular structures.

a large number of scientists of the time explored ways of pictorially rep-
resenting  molecules,  their  atoms  and  how  they  are  interconnected.  two 
scientists in particular probably did the most to give graph theory its name 
as we know it today: alexander Crum Brown and James Joseph Sylvester. In 
1864, Crum Brown devised his constitutional formulae where he represented 
atoms as nodes and bonds as edges.2 however, Crum Brown was  insistent 
that these were intended as an abstraction on not necessarily reality, merely 
representing the relationships between the atoms. Sylvester devised a very 
similar  representation  to  Crum  Brown,  but  whereas  Crum  Brown  referred 
to  his  representations  as  molecular  graphic  notations,  Sylvester  called  his 
molecular representation the chemicograph.3 It is likely that it will never be 
known which of the two chemists actually gave rise to the name of the field 
of Graph theory, but it is clear that both eminent scientists gave this old field 
its new name.

arthur  Cayley,  a  mathematician,  used  graph  theory  to  study  a  particu-
lar  subset,  called  trees,  which  are  acyclic.  Cayley  used  his  research  in  this 
area to begin his interest in what today we would call theoretical chemistry.  

Figure 2.2   the  labelled  physical  landmasses  on  the  left  can  be  reduced  to  the 
abstract  graph  representation  of  the  nodes  (landmasses)  and  edges 
(bridges) that represent all that euler required in terms of information 
to solve whether it was possible to cross each of the bridges of Konigs-
berg once and only once.
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Cayley  used  graph  theory  to  mathematically  enumerate  all  alkanes  possi-
ble containing a given number of carbon atoms. at the time, it was thought 
that the enumeration of the possible structures of alkanes could also inform 
about their possible properties. Sylvester’s work was the foundation of graph 
enumeration, which continues to be an area of great endeavor to this day.

the  field  of  Graph  theory  has  continued  progressing  and  is  now  a  fully- 
fledged field within mathematics in its own right. Now graph theory is hugely 
influential in all areas of science, such as social network analysis, routing in 
communications networks, and understanding of biological and biochemical 
pathways. Indeed, the Six Degrees of Kevin Bacon, where every actor can be 
linked  to any other actor within six degrees of connectivity,  is an example 
of small world phenomena that provides an understanding of how commu-
nities  can  emerge.  the  theory  was  extended  to  the  erdős  numbers,  which 
enable scientists to see how closely related they are to paul erdős, one of the 
most prolific scientists in history.

however, graph  theory  is  still  applied, and new algorithms designed,  in 
the field of chemistry, as will be seen in the remainder of this book. Graph 
theory and chemistry can be used together to understand chemical systems 
and make predictions from molecular structure. Before these data structures 
and algorithms are introduced, it might be worthwhile to review some of the 
concepts and terminology of graph theory.

2.3   Graph Theory in Chemistry
Graph theoretic techniques are widely applied in computer science; however, 
it is prudent here to provide a brief overview of graph theory and the terms 
and standards used in this article before moving on to the rest of the book.4 
a graph G is a collection of objects V(G) and the relationships between those 
objects E(G) called nodes (or vertices) and edges (or arcs), respectively. In the 
context of chemoinformatics, the nodes are the atoms of a molecule and the 
edges are the bonds. the nodes in G are connected if  there exists an edge  
(vi, vj) ∈ E(G) such that vi ∈ V(G) and vj ∈ V(G). the order of a graph G is given 
by the size of |V(G)|. a node vi  is incident with an edge if that edge is con-
nected to the node, while two nodes, vi and vj, are said to be adjacent if they 
are connected by the edge (vi, vj) ∈ E(G). two edges are said to be incident 
if  they  have  a  node  in  common.  a  complete  graph  is  where  every  node  is 
connected to every other node in the graph. the edge density of a graph can 
then be calculated as the number of edges in a particular graph normalised 
between the number of edges in a connected graph (|V(G)| − 1), and the num-
ber  of  edges  in  the  complete  graph  (|V(G)|  ·  (|V(G)|  −  1)/2),  with  the  given 
number of nodes, |V (G)|.

One of  the most  important applications of graph  theory  to chemoinfor-
matics is that of graph-matching problems. It is often desirable in chemoin-
formatics to determine differing types of structural similarity between two 
molecules, or a larger set of molecules. this will be expanded upon later in 
Chapter  4  on  Molecular  Similarity.  two  graphs  are  said  to  be  isomorphic 
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when they are structurally identical. Subgraph isomorphism of G1, G2 holds 
if G1 is isomorphic to some subgraph in G2. On the other hand, the identifica-
tion of the maximum common subgraph between two graphs is the determi-
nation of the largest connected subgraph in common between the two. Last, 
the  maximum  overlap  set  is  the  set  of  the,  possibly  disconnected,  largest 
subgraphs in common between two graphs. In chemoinformatics, the term 
structure  is often used  in place of graph. these graph-matching problems 
are thought to be Np-complete and therefore numerous methods have been 
applied to prune the search tree.

the molecular graph is a type of graph that is undirected and where the 
nodes are colored and edges are weighted. the individual nodes are colored 
according to the particular atom type they represent (carbon (C), oxygen (O), 
nitrogen (N), chlorine (Cl), etc.), while the edges are assigned weights accord-
ing to the bond order (single, double, triple, and aromatic). aromaticity is an 
especially important concept in chemistry. an aromatic system, such as the 
benzene ring, involves a delocalised electron system where the bonding sys-
tem can be described as somewhere between single and double bonds, as in 
molecular orbital (MO) theory. In the case of the benzene ring—a six-member  
carbon  ring—six  π  electrons  are  delocalised  over  the  entire  ring.  a  com-
mon approach to representing an aromatic system in a computer is to use 
resonant  structures,  where  the  molecule  adopts  one  of  two  bonding  con-
figurations using alternating single and double bonds. however,  this  is an 
inadequate  model  for  the  representation  of  aromaticity  and  therefore  the 
use of an aromatic bond type is also used. Molecular graphs also tend to be 
hydrogen depleted, that is, the hydrogens are implicitly represented in the 
graph since they are assumed to fill the unused valences of each of the atoms 
in the molecule. each atom is ascribed a particular valence that is deemed 
at least to be indicative of the typical valence of the molecule: carbon has a 
valence of 4, oxygen has 2, and hydrogen has 1.

Graph theory offers an excellent foundation on which to build computer 
systems that store, manipulate and retrieve chemical data. referring to the 
field of graph theory every so often is beneficial since many new algorithms 
have developed  in graph  theory  that may have direct applicability  to chal-
lenges in chemical structure analyses. Many of the algorithms and methods 
defined in this book will build on graph theoretic representations and their 
manipulation, and the terminology introduced in this chapter will be invalu-
able when reading through the remainder of the book.

2.4   Mathematical Chemistry and Chemical Graph 
Theory

the two fields of Mathematical Chemistry and Chemical Graph theory will 
not  be  discussed  explicitly  in  the  remainder  of  this  book,  but  these  fields 
are integral to many of the molecular descriptors that will be discussed in  
Section 3. pioneers in these fields, by the names of Balaban, Gutman, hosoya, 



Chapter 218

randic,  Wiener,  and  trinajstic,  developed  many  of  the  topological  indices 
that are still used today.5 their assertion is that the simple chemical topol-
ogy, the two-dimensional structure, can provide many insights into the many 
chemical  phenomena  that  can  be  observed  and  measured.  It  will  become 
clear that in many cases it is possible to correlate physical phenomena with 
aspects of the chemical structures under examination.

2.5   Summary
Graph  theory  is  integral  to  chemistry  as  its  data  structure  represents  the 
lingua franca of chemistry in the two-dimensional chemical structures. the 
history of chemistry and graph theory are inextricably linked from the foun-
dations of the latter. Once atomistic theory arose, chemists sought ways to 
represent the structures of their molecules in the belief that their structure 
would reveal explanations for their properties and that it would be possible 
to  predict  these  properties  without  the  need  to  make  and  test  these  com-
pounds.  essentially,  this  is  what  we  do  in  this  field,  make  predictions  for 
molecular structures that may or may not have ever been synthesised. this 
is the key to this field; we make predictions regarding the properties of mol-
ecules and use these to make better and rational decisions. In the remain-
der of this book, many of the most effective computational methods will be 
introduced and explained, with their context of application and effectiveness 
discussed. What is important to remember is that none of this would have 
been possible without the research and work of many scientists that came 
before us.
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Chapter 3

Structure Representation

3.1    Overview
the foundation of any computational manipulation of molecules requires 
a defined encoding scheme that permits the input into the computer in a 
machine-readable form, the molecular structure, which must also be repre-
sented in-memory, typically in a different format. the same format must also 
be adhered to when computer systems write out the resulting molecules to 
file, to ensure that the format is invariant and can be used interchangeably 
between software systems.

the simplest molecular structure representation is a list of the atoms in 
a molecule and how bonds connect those atoms; often the hydrogen atoms 
are not explicitly defined. the assumption here is that, with the molecular 
structure defined, everything else may be generated, or indeed regenerated, 
since many properties such as protonation states and three-dimensional 
structures are implicit in the topological structure. however, if this is not 
necessarily the case, and even if it may be, it can be more computationally 
time-consuming to recalculate properties of three-dimensional structures 
than to encode all of these additional properties in an appropriate file format.

this chapter provides a brief history and overview of some of the more 
common file formats used in modern chemistry software. advantages and 
limitations of each will be considered.

a warning here is that small discrepancies between programs may lead to 
an inability to read files generated in one system in another current system. 
this is particularly an issue when considering files with large numbers of 
chemical structures since these discrepancies are more likely to occur. Often-
times the associated errors can be overcome as a workaround by reading the 
file in an alternative software and writing out the file for reading into the 
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intended software. this is somewhat of a kludge, but is sadly necessary due 
to a lack of a defined common standard in many of our structure represen-
tation systems.

3.2    The Need for Machine-Readable Structure 
Representations

Substances have always been given names throughout history. Berzelius was 
the first to propose that chemicals should be named, not from where they 
came, but by what they are. We have seen already the close links between 
graph theory in mathematics and atomistic theory in chemistry, and how 
these two scientific branches merged with molecular graph notation being 
the progeny. however, there are many names for even a single substance.

Caffeine, a chemical compound close to the heart of anyone involved with 
computers, is an accepted name in general parlance for this chemical stimulant. 
however, it is known by many names. runge first isolated caffeine in 1819, which 
he called Kaffebase, a base that exists in coffee. however, it was given its name by 
French scientists, hence caffeine. In 1827, Oudry isolated what he called theine 
from tea, but this was later found by Mulder to be caffeine. Caffeine was given 
its name because it is most commonly extracted from the seeds of the coffee 
plant, but this breaks the rule of Berzelius since it is named from where it came, 
hence theine, rather than what it is. Indeed, a number of alternative common 
names are also given to caffeine: theine, 1,3,7-trimethylxanthine, 1,3,7-triméth-
ylxanthine, anhydrous caffeine, cafeina, caféine, caféine anhydre, caféine benzo-
date de sodium, caffeine sodium benzoate, caffeine anhydrous, caffeine citrate, 
caffeinum, citrate de caféine, citrated caffeine, methylxanthine, méthylxanthine, 
and trimethylxanthine, triméthylxanthine. all of these names describe precisely 
the same chemical. the structure of caffeine is given in Figure 3.1 and a number 
of its common representations in Figure 3.2.

Systematic names were developed by the International Union of pure and 
applied Chemistry (IUpaC) to provide standard naming conventions for 
chemical structures. While systematic names do not encode the connectivity 
of the chemical structure itself, the representation encodes the substituents, 
carbon chain lengths and chemical endings. For example, a systematic name 
ending in ‘ane’ defines a single bonded carbon chain, such as hexane. Sys-
tematic names can easily become unwieldy for large and more complex struc-
tures, defeating the point of having a standardised representation system 
that is easily written and understood. however, many chemical information 

Figure 3.1    the chemical structure of caffeine.
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systems can encode and decode systematic names such that they follow the 
naming conventions, but this representation is not commonly used in prac-
tice for computational work.

Chemical structures are the explicit representation and the chemist’s lingua 
franca. Chemical structure drawings appear in many scientific publications, 

Figure 3.2    a list of commonly accepted different types of chemical structure rep-
resentations, or simply names, for the chemical known commonly as 
caffeine.
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whether in chemistry or in related fields of physics and biology. although 
a chemist can look at a chemical structure picture, it is more difficult for 
a machine to process the graphical information into a chemical structure 
representation. however, software systems exist that can frequently and suc-
cessfully extract the chemical structure information from structure images, 
such as CLiDe from Keymodule.

the free and open-access database of chemical patents uses a combination 
of name-to-structure and image-to-structure tools to extract chemical struc-
ture data. While this works well in practice, issues can occur in the transla-
tion of these data from simple issues in the way the representations have 
been written or drawn. this remains a challenge for systems such as Sure-
CheMBL, a chemical patent database, since it applies an automated curation 
process. however, the CheMBL and SureCheMBL team are working towards 
improving their processes.

Sadly, much of the structure data information available in the scientific lit-
erature has largely been lost due to systematic names and chemical structure 
images, but recently the open-access and free database from CheMBL has 
abstracted much of the chemical structure data available in the literature, 
together with associated metadata, such as biological assay readouts. this 
was no mean feat and has been on going for many years. Moves are now afoot 
in the chemical community to not lose these data but instead associate the 
chemical structure data explicitly with scientific publications and chemistry 
patents to avoid the challenges in reverse engineering of the chemical struc-
ture information from text and images.

the machine-readable structure representation systems are manifold, 
but it is a fundament of chemical information systems. What follows is an 
overview of the some of the more commonly used chemical structure repre-
sentation systems today, with Molfiles (MOL or SDF) and SMILeS arguably 
being the most common. this is by no means an exhaustive list, but the 
interested reader can find many different chemical structure representa-
tions online.

3.3    Adjacency Matrix
the adjacency matrix (aM) is perhaps the simplest computer-readable rep-
resentation for molecules, although it is not often used as a file format, but 
is frequently used as an in-memory representation allowing rapid access to 
atom connectivity in a given molecule.

Given a molecule that contains n atoms, the adjacency matrix is a square 
(n × n) matrix of variables (typically integers) that define the bonding 
between each atom. typically, an n-length array would also be associated 
with an adjacency matrix to encode atom properties—often simply the ele-
mental atom type, but additional properties may also be included, such as 
xyz co-ordinate information. an adjacency matrix representation of caffeine 
is given in Figure 3.3.
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the adjacency matrix is typically represented in-memory as a redundant 
symmetric matrix that is equal to its transpose. this may be considered 
wasteful in memory requirements, since the memory required is twice that of 
a non-redundant implementation and both a[i ][  j ] and a[  j ][i ] must be updated 
consistently to retain validity of representation.

3.4    Connection Table
the connection table (Ct) is a much more common file format represen-
tation used in everyday chemoinformatics applications. a connection table 
consists of lines of information regarding the atoms in a particular molecule, 
such as elemental type and xyz co-ordinate information. In addition to the 
atom lines, or the atom block, is the bond block that encodes the connec-
tions between each of the atoms according to the index.

By far the most used connection table format in modern day use is the 
MDL Molfile (extension *.mol) or structure-data file (SDF, extension *.sdf),  
the latter for multi-record files containing more than one structure.  

Figure 3.3    an adjacency matrix representation of caffeine. the adjacency matrix 
is redundant, in that a[i][  j] = a[  j][i], and a[i][i] is always zero, since an 
atom may not be connected to itself. the total number of possible con-
nections for any molecule, is given by the general formula n(n − 1)/2, in 
this case 91.
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the Molfile contains the atoms and the bonding patterns between those 
atoms, but also includes xyz co-ordinate information so the 3D structure can 
be explicitly encoded and stored for subsequent use. the file format was orig-
inally developed by MDL Information Systems, which through a number of 
acquisitions and mergers, Symyx technologies and accelrys, respectively, is 
now subsumed with Biovia, a subsidiary of Dassault Systems.

the Molfile is split into distinct lines of information, referred to as blocks. 
the first three lines of any Molfile contain header information: molecule 
name or identifier; information regarding its generation, such as software, 
user, etc.; and the comments line for additional information, but in practice 
this is often blank. the next line always encodes the metadata regarding the 
connection table and must be parsed to identify the numbers of atoms and 
bonds, respectively. the first two digits of this line encode the numbers of 
atoms and bonds, respectively.

the atom block contains each of the atoms encoded in the Molfile, one 
atom per line. the standard format first encodes the xyz co-ordinates as 
real-valued data, followed by the elemental atom type of this particular atom. 
the atom type is followed by 12 atom property fields that can encode for a 
number of properties depending on the software used.

Directly after the last atom line in the atom block, the bond block begins. 
the first two values in each bond line inform the source and target atoms of 
each bond, the index given implicitly by the atom position in the atom block. 
the following digit encodes the bonding order or type: 1 = single bond, 2 = 
double bond, etc. the subsequent four bond property fields can encode for a 
number of properties depending on the software used.

For a Molfile, which always encodes a single molecular structure, although 
each record may contain many disconnected molecular structures, the struc-
ture record would then end. the SDF format wraps and extends the Molfile 
format. there are two distinct advantages in using SDF: incorporation of addi-
tional metadata and encoding multiple chemical structures in a single file.

In the SDF format, additional data is included by first defining the field 
name on a single line according to this format “> <NaMe>”, followed by a sin-
gle line that contains the actual field data. the field name and data pairs can 
repeated as required for the number of data fields you may wish to encode. 
Since the SDF format is designed to contain multiple molecules, it is neces-
sary to have a record delimited line so that the file parser can detect that one 
structure record has finished and a new one has begun. the record delimited 
in the SDF format is simply an additional line containing four dollar signs, 
“$$$$”. an example of the SDF file format for the chemical structure of caf-
feine is given in Figure 3.4.

a key advantage of the Molfile and SDF formats is the inclusion of geomet-
ric information regarding the spatial arrangement of atoms in three-dimen-
sional space. Furthermore, the hydrogen atoms may be defined explicitly to 
obviate the need for recalculation. these additional data, coupled with the 
additional metadata recorded in the SDF format, makes this file format ideal 
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for any computational method that relies on geometry, such as pharmaco-
phore or shape search (Chapter 7) and virtual ligand docking (Chapter 13).

however, this increased flexibility can come at the cost of storage space 
since the files will tend to be significantly larger than other file formats such 
as line notations (vide infra). Furthermore, manipulation of the data within 
the SDF format requires specialist chemoinformatics software, whereas it 
may often be easier to manipulate these data in generic data editors, such as 
a spreadsheet editor, but these lack the chemistry parsing ability.

3.5    Line Notations
Line notations are highly desirable structure representation methods as they 
fit within the alphanumeric string data often used in spreadsheets and rudi-
mentary database systems. they tend to offer a compact representation of 
the constitution and connectivity of a topological representation of chemical 
structures, but tend to lack additional information, such as protonation and 

Figure 3.4    MOL/SDF file format for the caffeine molecule.
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geometry, that is necessary for many modelling techniques. here, three line 
notations will be introduced: Wiswesser Line Notation (WLN), Simplified 
Molecular-Input Line-entry Specification (SMILeS), and IUpaC International 
Chemical Identifier (InChI). Other line notations of note are representation 
of Organic Structures Description arranged Linearly (rOSDaL) and SYBYL 
Line Notation (SLN) from tripos, Inc.

the linearisation of molecular structures means that one structure may 
have many different line notations in the same encoding scheme. this 
depends on the choice of starting atom, and decisions of direction and 
branching while translating the molecular graph into the line notation. 
Indeed, this is the case for any representation, including the previous ones 
described in this chapter, but is more pressing an issue in line notations. 
however, unambiguous representations are desirable, particularly for rapid 
molecular identity matching in, for instance, identifying duplicate mole-
cules. therefore, a number of canonicalisation schemes were investigated, 
with the Morgan algorithm becoming the de facto standard for structure 
canonicalisation.1

3.5.1    WLN: Wiswesser Line Notation
One of, if not the first, chemical structure line notations was that defined by 
William J. Wiswesser in 1949.2 the WLN, rather than encode explicit bond-
ing patterns, encoded fragments or groups. Wiswesser’s reasoning for this 
was that he believed that the valence bond model would eventually be super-
seded by the molecular orbital representation.

WLN uses 41 symbols in its encoding system: the 10 numerals, 26 upper-
case alphabetic characters, four punctuation symbols (&, -, /, *), and the 
blank space. all international elemental symbols are used, except for K, U, V, 
W, Y, Cl, and Br. elemental symbols that contain two characters are enclosed 
within hyphens. Cl and Br are represented as G and e, respectively.

WLN was used mainly in registration, search and retrieval in chemical 
information systems. perhaps the largest system that used WLNs was the 
CrOSSBOW database system at ICI. With the advent of structure and sub-
structure search systems, WLN fell out of favour and is now used in very few 
systems.

3.5.2    SMILES: Simplified Molecular-Input Line-Entry 
Specification

arguably the most commonly used line notation is the SMILeS string. the 
SMILeS representation uses alphanumeric characters that closely mimic 
atoms and bonds as drawn in two-dimensional chemical structures. By mim-
icking these structural elements, it is easy to explain the SMILeS encoding 
scheme and typically simple for an experienced human to roughly under-
stand the chemical structure represented by a particular SMILeS string at a 
simple glance.3,4
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atoms in a SMILeS string are represented by their elemental symbol in the 
periodic table of the elements, within square brackets. however, the square 
brackets can be implicit for the organic subset of elements: ‘B’, ‘C’, ‘N’, ‘O’, 
‘S’, ‘p’, ‘Br’, ‘Cl’, ‘F’, and ‘I’. the hydrogens are typically implicit, but can be 
defined in certain cases. an atom that contains one or more charges must be 
enclosed in square brackets followed by the ‘h’ symbol and number of hydro-
gens bonded to it—if only one then it may be omitted. Following this, a plus 
symbol represents a positive charge and a subtraction symbol represents 
a negative charge. the number of charges can be included after the charge 
symbol, with one charge again being implicit. the number of charges can 
also be included explicitly by additional charge symbols. therefore, methane 
is simply ‘C’ and water ‘O’.

Bonds in a SMILeS string are represented by symbols that mimic the chem-
ical structure diagram representations: a single bond is ‘-’; a double bond is 
‘=’; a triple bond is ‘#’; a quadruple bond is ‘$’; and an aromatic bond is ‘:’. 
however, bonds in a SMILeS string are implied in a large number of cases. 
Bonds between aliphatic atoms are implicitly assumed to be single bonds 
and therefore the single bond symbol is not required. therefore, ethanol, 
starting the SMILeS string from the monovalent carbon, is written as ‘CCO’, 
but is equally valid as ‘C–C–O’. Bonds between aromatic atoms are implicitly 
assumed to be aromatic.

Branching in a SMILeS string is defined by round brackets. therefore, eth-
anol, starting from the divalent carbon in the middle of the structure, would 
be ‘C(C)O’, to indicate that the first carbon is bonded to both the second car-
bon atom and the oxygen atom.

ring systems in a SMILeS string are encoded by ring closure tags, which 
indicate that two atoms in the string are connected and therefore form a 
ring system. So, hexane would be ‘CCCCCC’, whereas cyclohexane would be 
‘C1CCCCC1’. For a second ring, the ring closure tag would be ‘2’, and so on. If 
the number of ring closure tags needed exceeds ‘9’ then a percentage symbol 
must be used in front of the symbol. this is important since a single atom 
may encode two different ring closures, e.g. ‘–C12–’.

aromaticity in a SMILeS string is encoded by using the lowercase char-
acters for carbon, nitrogen, oxygen, and sulphur: ‘c’, ‘n’, ‘o’, ‘s’, respectively. 
therefore, cyclohexane, as we have already seen, is ‘C1CCCCC1’, whereas ben-
zene is ‘c1ccccc1’. aromatic bonds are implied between aromatic atoms, but 
may be explicitly defined using the ‘:’ symbol. an aromatic nitrogen bonded 
to a hydrogen must be explicitly defined as ‘[nh]’: pyrrole is ‘c1cc[nh]c1’ and 
imidazole is ‘c1cnc[nh]1’.

Stereochemistry in a SMILeS string is encoded by the special charac-
ters ‘\’, ‘/’, ‘@’, and ‘@@’. around two double bonds, the configuration 
specifies the cis and trans configurations. therefore, valid SMILeS strings 
of cis- and trans-butene are ‘C\CaC\C’ and ‘C\CaC/C’, respectively. the 
configuration around a tetrahedral carbon is specified by ‘@’ or ‘@@’. 
therefore, the more common enantiomer of alanine, l-alanine, is 
‘N[C@@h](C)C(aO)O’ and d-alanine is ‘N[C@h](C)C(aO)O’. the order 
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of the substituents is also important, so d-alanine may also be written as 
‘N[C@@h](C(aO)O)C’.

examples of some typical chemical structures encoded as SMILeS with 
common names are provided in Figure 3.5.

another language, based on conventions in SMILeS, has also been devel-
oped for rapid substructure searching, called SMiles arbitrary target Spec-
ification (SMartS). Similarly, SMIrKS has also been defined as a subset of 
SMILeS that encodes reaction transforms. SMIrKS does not have a defini-
tion, but plays on the SMILeS acronym. SMartS and SMIrKS will be consid-
ered in more detail in later chapters.

3.5.3    InChI: IUPAC International Chemical Identifier
the IUpaC International Chemical Identifier (InChI™) is an international 
standard in structure representation based on an open standard, as opposed 
to the Chemical abstracts Service (CaS) number. the first release date for 
the InChI standard was 15th april 2005 and it is now supported by the InChI 
trust, a not-for-profit organisation.5

Figure 3.5    examples of SMILeS string representations for a number of common 
molecular structures.
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the InChI identifier provides a layered representation of a molecule to 
allow for the representation of differing levels of resolution depending on 
the application in mind. the layers defined by InChI are as follows:
  

 ● Main layer
 ○ Chemical formula, no prefix
 ○ atom connections, prefix ‘c’
 ○ hydrogen atoms, ‘h’

 ● Charge layer
 ○ proton sublayer, ‘p’
 ○ Charge sublayer, ‘q’

 ● Stereochemical layer
 ○ Double bonds and cumulenes, ‘b’
 ○ tetrahedral stereochemistry of atoms and allenes, ‘t’ or ‘m’
 ○ Stereochemistry information type, ‘s’

 ● Isotope layer, ‘I’, ‘h’, and ‘b’, ‘t’ and ‘m’ for stereochemistry of isotopes
 ● Fixed-h layer, ‘f’

  
In addition to the InChI representation, the standard providers have also 

published an InChIKey. an InChIKey is a hashed representation of an InChI 
and, as such, is not machine readable as a structure representation but is 
rather a structure identifier for rapid structure identity searching. Further-
more, there is the additional chance, albeit minimal, that two molecules will 
be represented by a single InChIKey, known as a hash collision. the InChIKey 
is a 27-character version of the InChI representation using the Sha-256 hash-
ing algorithm. the InChIKey consists of 14 characters representing the hash 
code of the connectivity data in a given InChI, followed by a minus sign and 
a further 9 characters representing the hash code of the remaining layers in 
that InChIKey. While the InChI representation is normally too complex for a 
human to decode, it is impossible for even a computer to extract the chemical 
structure from the InChIKey. therefore, it is important that the InChI repre-
sentation is also included in any database. InChIKey resolutions to InChI 
representations are also available from NCI, pubChem and ChemSpider.6

3.6    Summary
Structure representations are one of the fundamental concepts in computa-
tional chemistry and chemoinformatics. Without an appropriate structure 
representation, ambiguities can arise as to the actual chemical structure being 
represented. this chapter has defined some of the more common chemical  
structure representations used in modern chemical information systems. Sub-
sequent chapters will consider what one can do with the chemical structures 
once they are represented in a machine-readable form, but the structure rep-
resentations themselves are fundamental to all of these applications. Many of 
the popular chemical structure representations are supported by both open-
source and commercial software, including the open-source rDKit apI.



Chapter 330

References
 1.  h. L. Morgan, the Generation of a Unique Machine Description for Chem-

ical Structures – a technique Developed at Chemical abstracts Service,  
J. Chem. Doc., 1965, 5(2), 107–113.

 2.  W. J. Wiswesser, how the WLN began in 1949 and how it might be in 1999, 
J. Chem. Inf. Comput. Sci., 1982, 22(2), 88–93.

 3.  D. Weininger, SMILeS, a chemical language and information system. 1. 
Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci., 
1988, 28(1), 31–36.

 4.  D. Weininger, a. Weininger and J. L. Weininger, SMILeS. 2. algorithm for 
the generation of unique SMILeS notation, J. Chem. Inf. Comput. Sci., 1989, 
29(2), 97–101.

 5.  a. McNaught, the IUpaC International Chemical Identifier: InChI – a 
New Standard for Molecular Informatics, Chem. Int., 2006, 28(6), 12–15.

 6.  S. heller, a. McNaught, S. Stein, D. tchekhovski and I. pletnev, InChI – the 
worldwide chemical structure identifier standard, J. Cheminf., 2013, 5(7), 
DOI: 10.1186/1758-2946-5-7.



31

RSC Theoretical and Computational Chemistry Series No. 8
In Silico Medicinal Chemistry: Computational Methods to Support Drug Design
By Nathan Brown
© Nathan Brown, 2016
Published by the Royal Society of Chemistry, www.rsc.org

Chapter 4

Molecular Similarity

4.1    Overview
the concept of molecular similarity is important and arguably core to the 
field of computational medicinal chemistry. however, as is often the norm 
for such key concepts, molecular similarity is highly subjective and context 
dependent. Ultimately, the only type of molecular similarity that counts in 
drug discovery is the biological response. therefore, two molecules may be 
significantly different in structure, but so long as they interact biologically 
in a similar way, they will said to be similar. however, this type of molecu-
lar similarity assumes more knowledge than is likely to be derived from the 
ligands alone.

When designing new drugs, one must often rely on similarity to a ref-
erence ligand alone when a protein–ligand crystal structure complex is 
not available. the structural or functional similarity of two ligands can 
assist in understanding whether they are likely to exhibit similar biologi-
cal similarity. the similar property principle is a concept that defines that, 
if two ligands are similar, they will also tend to have similar properties. 
Of course, there are many situations where this rule-of-thumb (or heuristic) 
breaks down, but in general the rule holds and can be applied effectively 
to many challenges in drug discovery. When the similar-property principle 
does break down, the effect is often referred to as an activity cliff. When an 
activity cliff occurs where the only difference between two chemical struc-
tures is a single methyl group, the effect is unscientifically defined as a 
magic methyl. the different classes of molecular similarity are illustrated 
in Figure 4.1.1

the inherent subjectivity of molecular similarity necessitates more objec-
tive measures of similarity that are invariant in application. For example, 
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Figure 4.1    Similarity perception and concepts. two exemplary vascular endothe-
lial growth factor receptor 2 ligands are shown, and different ways to 
assess their similarity are illustrated. reprinted with permission from 
G. Maggiora, M. Vogt, D. Stumpfe and J. Bajorath, Molecular Similarity 
in Medicinal Chemistry: Miniperspective, J. Med. Chem., 2012, 57(8), 
3186–3204. Copyright 2012 american Chemical Society.
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two chemists can easily disagree on the molecular similarity of two chemical 
structures. One chemist may be more concerned with synthetic accessibil-
ity and see the similarity, or lack thereof, in this light. however, the second 
chemist may be more concerned with how the structure may perform in the 
physiological environment and observe similarities or dissimilarities that 
relate to its solubility, potential for it to be rapidly metabolised, or likely 
issues in toxicity. Indeed, one can often ask the same chemist, at different 
times, to provide a measure of similarity, and they will often suggest differing 
measures of similarity.

4.2    Molecular Similarity
the concept of molecular similarity is highly subjective, even philosophi-
cal in nature. two expert medicinal chemists may disagree on the degree 
of molecular similarity of a set of chemical structures. Surprisingly still, 
the same expert medicinal chemist may even disagree with themselves 
on different days and given specific challenges. however, when dealing 
with computational approaches, we seek objective and invariant methods. 
Objectivity in the form of seeking unbiased approaches and invariance 
such that the results will not change over time so that comparisons may 
be made.2

Molecular similarity may be considered in terms of the connectivity of the 
atoms, which is called topological similarity. Many similarity methods work 
on the principle of topological similarity. topological similarity is very useful 
for identifying chemical structures that are similar, or analogues, in terms 
of the structural space they occupy. therefore, similar topological struc-
tures will naturally sit together in chemistry space allowing such methods as 
analogue-by-catalogue in which one can purchase or synthesise compounds 
to explore the structure–activity relationship (Sar) of chemical structures 
around a given chemotype or molecular scaffold.

property similarity is another approach to molecular similarity in which 
the chemical properties define the similarity of two given molecules. For 
example, two chemical structures may have the same molecular weight, 
but could be entirely different in their chemical constitution. the extreme 
case here would be classing all Lipinski-rule (Chapter 5) compliant drugs as 
similar since they fulfil the property criteria, which in some ways is a truth 
given that they match these criteria. however, this is not a form of similarity 
that is terribly useful.

topological similarity is an effective measure of structural similarity 
between two molecules, but molecules also have shape, which is a very 
important consideration in drug design. For example, two structures may 
be structurally similar, differing in only one position, a methyl group for 
example. although ostensibly highly similar, the methyl group could force a 
conformation change or stabilisation due to intramolecular clashes or inter-
actions, respectively. It is often desirable to pre-organise the conformations 
of molecules so as to minimise the entropic penalty upon binding. however, 
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the consideration of geometry introduces an additional challenge, often 
referred to as the conformer problem. here, one must explicitly consider the 
different shapes that the molecules under investigation may adopt, vastly 
increasing the number of comparisons needed to identify similarity and 
therefore concomitantly increasing the runtimes of the process. In this way, 
molecules are not only three-dimensional, but also four-dimensional, mov-
ing in time as well as space. the conformer problem is a significant ongoing 
challenge in drug discovery and careful application of conformer search and 
analysis must be undertaken to ensure that one is not simply introducing 
noise into your model system.

a further approach to measuring intermolecular similarity is through the 
use of pharmacophores. a pharmacophore is the hypothesised or known 
requirements for a molecule to interact with, for example, its protein target 
binding site. a pharmacophore is therefore an abstract model defining the 
necessary functional binding elements. pharmacophores are often defined 
geometrically, that is in the spatial arrangement that one would require for 
favourable interactions. however, pharmacophores may also be defined 
topologically with the geometric arrangement being implied in the through-
graph distances between structural features. these Ligand-Based Topological 
Pharmacophores will be discussed in more detail in Chapter 6 on topological 
Descriptors.

the last form of similarity that we will consider in this chapter is that of 
biological similarity, which is essentially our goal in the context of drug dis-
covery. here, we look at the relevant biological endpoints, such as enzyme 
potency in terms of its inhibitory concentration, or IC50. In the case of biolog-
ical similarity, the structures may be entirely unrelated, potentially not being 
recognised as similar by any of the previously discussed measures of similar-
ity. however, the assumption must be that they act on their target in a similar 
way so as to still remain comparable. the identification of biological similar-
ity with substantially diverse chemical matter is very important in drug dis-
covery. Firstly, it is often prudent to have at least one back-up chemical series 
in a drug discovery programme for situations where late-stage attrition may 
lead to the primary chemical series failing, for example, for toxicity reasons. 
Secondly, having diverse molecules that act on the same target is beneficial 
as chemical tools to assist in chemical biology and deconvoluting the effect 
on the target of interest.

topological similarity considers only the molecular structure of the mole-
cules being considered and highlights structures that are significantly sim-
ilar in appearance. this is useful in identifying close analogues to a known 
compound of interest. property similar can lead to identifying very diverse 
structures that share the same properties. this can be useful in designing 
focussed or diverse molecular libraries. 3D similarity considers the actual 
shape, or shapes when considering multiple conformers, of the molecules 
under consideration. this is useful when identifying similar or dissimi-
lar shapes for library designs, and can help identify structures that would 
otherwise be reported as topologically similar, but do not adopt similar 
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conformations due to a steric hindrance. pharmacophoric similarity can be 
calculated from both topological and geometric structures and encode the 
pharmacophores, or feature points that are likely to contribute positively, 
typically, to binding. this, often including geometric similarity as in rOCS 
(rapid Overlay of Chemical Structures), can often be a highly effective virtual 
screening strategy for identifying both analogues and structurally diverse 
molecules. the conformer problem is also a challenge here since multiple 
and appropriate conformers must be generated to appropriately consider 
similarity. the last method reported here is the biological similarity, which 
is simply the difference between the biological endpoints of interest. this 
can be useful for identifying scaffold hops (see Chapter 10), for example, 
where structures are identified that are structurally different but are similar 
in terms of biological activity.

4.3    Similar Property Principle
the similar property principle states that chemical structures that are highly 
structurally similar will tend to exhibit similar properties.3 these properties 
may be biological affinity or physicochemical properties, such as aqueous 
solubility. the similar property principle was also discussed as neighbour-
hood behaviour, but in the context of evaluating diversity measures and 
selection methods.4 a schematic diagram of neighbourhood behaviour is 
provided in Figure 4.2.

In Figure 4.3, the chemical structures of (a) morphine, (b) codeine, and  
(c) heroin exhibit highly similar chemical structures and also have similar 
therapeutic effects. these offer an illustrative example of how molecular 
structure similarity can be related to functional or therapeutic similarity.

While the similar property is straightforward and intuitive in concept, it is 
merely a concept and therefore qualitative at best. therefore, much research 
has been undertaken into quantifying the degree of similarity that is suffi-
cient between chemical structures to give an acceptable probability that they 
will exhibit the characteristics of this principle.

Brown and Martin reported an empirically derived threshold cut-off for 
molecular similarity in structural clustering studies.5 the authors report a 
tanimoto coefficient cut-off of 0.85 to represent the similarity (or dissimilar-
ity) value above which the structure pairs are deemed to be highly structur-
ally similar with an 80% probability of similar activity. however, one must 
express caution in using such a cut-off, as they will tend to not take into 
account structural decoration, which could introduce a steric or electronic 
clash that is unfavourable to binding.6 Furthermore, the cut-off is derived 
empirically for the tanimoto coefficient and for a single molecular descrip-
tor, the UNItY fingerprint as implemented by tripos (now Certara). recently, 
Maggiora et al. have dismissed this cut-off as the ‘0.85 myth’ mainly due to 
the lack of understanding of molecular similarity coefficients and descrip-
tors in medicinal chemistry.1 therefore, as always, due caution and appropri-
ate experimental controls should be employed.
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4.4    Molecular Descriptors
the focus of this chapter is the concept of molecular similarity, but molecu-
lar similarity is often calculated from molecular descriptors, rather than the 
actual molecular structures. exceptions to this exist, such as the degree of 
molecular graph overlap between two chemical structures, or the maximum 

Figure 4.3    the chemical structures of (a) morphine, (b) codeine and (c) heroin 
exhibit highly similar chemical structures and also have similar thera-
peutic effects.

Figure 4.2    a schematic diagram of neighbourhood behaviour demonstrating the 
ideal case, the line of identity; desirable characteristics, the lower trian-
gle of the plot; and undesirable characteristics, the triangle above the 
line of identity. Ideally, small changes in molecular similarity should 
represent small changes in biological endpoint too. Large changes 
in descriptor versus small or large changes in the biological endpoint 
are desirable in a medicinal chemistry programme since the molec-
ular descriptor can be tuned to the biological end point more easily. 
this would lead to the lower half of the plot being populated. If large 
changes in the biological endpoint only relate to small changes in 
molecular similarity, it would be difficult to optimise the molecular 
structures using the biological endpoint since the optimisation would 
be conducted within the noise of the descriptor.
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common substructure (MCS). Molecular descriptors will be covered exten-
sively in the following section, but it is important to refer to some aspects of 
molecular descriptors in the context of molecular similarity.

Many different molecular descriptors exist and have been developed for 
different motivations. the Daylight fingerprint system was not originally 
designed as a molecular descriptor, but as a vector representation that could 
be used for efficient screen-out in substructure searching. Latterly, however, 
scientists have recognised the power of fingerprint descriptors, such as the 
Daylight fingerprint, as effective and efficient molecular descriptors that 
encode entirely and invariantly the molecule they represent. a great deal of  
the molecular fingerprint analysis work was conducted in the laboratory  
of peter Willett at the University of Sheffield.

4.5    Calculation of Molecular Similarity
4.5.1    Similarity Coefficients
a graph-based calculation of two chemical structures can be achieved using 
graph-theoretic algorithms, but this is only one approach to calculating 
molecular similarity, and can often be too computationally intensive when 
considering large chemical structure databases. For this reason, molecular 
similarity is often calculated on molecular descriptors that encode aspects 
of the chemical structure. Oftentimes, molecular similarity is calculated on 
binary molecular fingerprints, of which there are many (Chapter 6). the cal-
culation of the similarity between two molecular fingerprints is achieved by 
means of a similarity coefficient and is important in many chemoinformatics 
applications.7

the most commonly used molecular similarity coefficient in chemical 
information systems is the tanimoto (or Jaccard) coefficient, although 
many have been reported in the literature to be useful in different circum-
stances. the tanimoto coefficient is, strictly speaking, an association coef-
ficient, which are most commonly considered with binary data and tend to 
be normalised in the range zero (no similarity) to one (complete identity). a 
summary of the most commonly applied similarity and dissimilarity coef-
ficients is provided in table 4.1 for both the continuous and dichotomous 
descriptors for integer or real-valued data vectors and binary descriptors, 
respectively.

One common misunderstanding in the medicinal chemistry community 
is the use of the term tanimoto similarity. this is largely due to the ‘0.85 
myth’ discussed earlier, where the tanimoto cut-off was considered as a 
method to identify molecules that are likely to maintain biological activity. 
the issue with referring to the tanimoto similarity as an approach is that 
it does not specify the descriptor under comparison. Different fingerprints 
can give vastly different similarity values, mainly due to the numbers of bits 
set (in fingerprints) or non-zero variables (in continuous data) leading to 
very sparse fingerprints, in the case of Morgan fingerprints, as compared 



Chapter 438

with Daylight-style path fingerprints, which tend to be much denser in 
terms of bits set.

the differences between similarity measures used together with differ-
ent molecular descriptors are illustrated in Figure 4.4.1 here, the first graph 
illustrates the differences in similarity distributions between using the 
tanimoto (blue) and Dice (green) coefficients using only the MaCCS struc-
ture key fingerprint. It is clear in this figure that with tanimoto it would be 
expected that, on average molecular similarities would be approximately 0.2 
less similar than would be assumed when compared with the Dice coeffi-
cient on the same fingerprint. Similarly, in the second graph, the difference 
in distributions of the similarities, using tanimoto (blue) and Dice (green) 
again, illustrates a substantial difference between the distributions when 
using the extended Connectivity Fingerprint (eCFp4) fingerprint, but here 
the average difference in similarity is only around 0.1. Furthermore, the 
distribution of the tanimoto similarities is much tighter, which explains to 
some extent the smaller difference in similarity distributions, but also high-
lights how the descriptor can offer very different values for similarity and 
also the expected ranges. Clearly, from these two examples it is important 
to understand what is being compared and in what way. Both the similarity 
coefficient and the molecular descriptor have a marked effect on the level of 
similarity, which highlights that caution should be used when working with 
molecular similarity methods. additionally, it is important to ensure that 
when such values are presented to other scientists the values and what they 

Table 4.1    List of similarity coefficients used widely in calculating molecular simi-
larity from molecular descriptors.
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mean are clearly articulated to ensure that the ‘tanimoto similarity’ myth is 
not propagated.

One must express caution when considering what tanimoto similarity 
may mean in its context of application and ensure that the descriptor is also 
included in the understanding and dissemination of any analysis.

Figure 4.4    Similarity coefficient distributions. Distributions of similarity values 
resulting from 10 million comparisons of randomly chosen ZINC com-
pounds are reported for the tanimoto and Dice coefficient and the  
(a) MaCCS and (b) eCFp4 fingerprint. reprinted with permission from 
G. Maggiora, M. Vogt, D. Stumpfe and J. Bajorath, Molecular Similar-
ity in Medicinal Chemistry: Miniperspective, J. Med. Chem., 2012, 57(8), 
3186–3204. Copyright 2012 american Chemical Society.
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For a coefficient to be formally referred to as a metric, it must obey a num-
ber of defined conditions. the four conditions necessary to be confirmed as 
a metric are:
  
 1.  Non-negativity: dxy ≥ 0
 2.  Identity of discernibles: dxy = 0, if and only if x = y
 3.  Symmetry: dxy = dyx
 4.  triangle inequality: dxz ≤ dxy + dyz

  
Should a coefficient fulfil each of these conditions, it can be said that the 

comparisons between objects are embedded in metric space and induce a 
topology on this space.

the euclidean, hamming and Soergel distances all fulfil these conditions. 
additionally, the complements of the tanimoto, Dice and Cosine coefficients 
also fulfil all four conditions except for the triangle inequality, although the 
binary complement of the tanimoto coefficient does.

the tanimoto coefficient is by far the most widely used coefficient in 
molecular similarity search, although there is no clear reason for this being 
the case. there is some benefit in terms of a lack of size dependence where 
larger molecules may be scored more highly than smaller molecules, due to 
the numbers of bits set in each.

4.6    Molecular Diversity
the opposite of molecular similarity, molecular diversity (or dissimilarity), is 
also a key concept in drug design. Often there are many more possible chem-
ical structures—virtual or physical—than could possibly be synthesised and 
tested. here, molecular diversity methods can be applied to select chemical 
structures that represent the diversity of the chemistry space under consid-
eration, but with far fewer actual structures. We will return to clustering and 
diversity selection in Chapter 11, but we will discuss it in brief here in the 
context of molecular similarity.

Molecular diversity is important in many different endeavours in drug design: 
screening library design, triaging hitlists from high-throughput Screening 
(htS), and also selecting structures from virtual libraries to prioritise for pur-
chase or synthesis. here, the approach is not to identify a set of similar mol-
ecules to prioritise for further analysis, but to select a subset that represents 
the entirety of the space under consideration. the anticipation is that the set 
will represent the distribution of chemical matter over the chemistry space to 
a greater extent, compared to a random sample, and therefore allow a greater 
exploration of the space with few molecular structures considered.

4.7    Summary
the concept of molecular similarity is key in the field of drug discovery and 
fundamental in computational methods that deal with chemical structures. 
there is no single measure of molecular similarity that is appropriate for all 
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applications and the users of these methods select and appropriately apply 
methods that meet their necessary criteria.

Molecular similarity is an important concept that is used in many of the 
methods discussed in greater detail throughout this book. therefore, it is 
important that one takes time to thoroughly understand what the different 
methods offer. the next section covers a wide range of molecular descriptors, 
from which one may calculate molecular similarities for application to new 
challenges in drug discovery.
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Chapter 5

Molecular Property Descriptors

5.1   Overview
Molecular  and  physicochemical  properties  are  some  the  most  important 
molecular  descriptors  that  are  used  in  drug  discovery  projects.  physico-
chemical  properties  are  calculated  from  measured  phenomena  of  extant 
compounds, from which statistical models can be empirically derived. phys-
icochemical properties can also provide the basis for further statistical mod-
els through combination of these descriptors with others and using statistical 
learning  methods  (Chapter  8).  Furthermore,  physicochemical  descriptors 
are often used as rules-of-thumb in drug discovery when linked to empiri-
cally observed undesirable traits in druglike molecules.

In this chapter, a number of physicochemical descriptors will be described, 
along with their utility in drug discovery and methods by which they are calcu-
lated. the importance of understanding the limitations of physicochemical 
descriptors, and indeed any empirical model, will be covered and approaches 
to ensuring these limitations are taken into account in their application.

5.2   Molecular Weight (MW or MWt)
the  calculation  of  the  molecular  weight  of  a  given  molecular  structure  is 
arguably the most accurate of all physicochemical properties in chemistry, 
since it is the sum of the mass of each atom in a molecule. Molecular weight 
has been shown to be correlated with liabilities in the development of a new 
drug, with larger molecules typically more likely to have undesirable proper-
ties. this is simply because larger molecules will have more chance of con-
taining undesirable moieties.
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MW is a key physicochemical descriptor used in the heuristics known as 
Lipinski’s rule-of-Five (Chapter 6) and also used in calculating a type of Ligand 
efficiency (Le), known as the Binding efficiency Index (BeI), which norma-
lises  the potency of  a particular  ligand by  its  mass. the argument  in  drug 
design is that every atom added should contribute efficiently to the potency 
of the ligand and not simply add weight without any perceived benefit.

Simple rules-of-thumb based on relatively simple physicochemical descrip-
tors are very useful, but it is important to ensure they are applied appropri-
ately and are not used without thought and consideration.

the calculation of molecular weight  is achieved by simply summing the 
molecular masses of each of the different heavy atoms, therefore omitting 
hydrogen, contained in a molecular structure. the masses of the common 
atoms  present  in  synthetic  organic  chemistry  are  given  in  table  5.1.  the 
resultant molecular weight value can then be applied in a number of applica-
tions from simple cut-offs, such as the Lipinski heuristic of 500 Da, to incor-
poration in statistical learning models for the prediction of other properties.

5.3   Octanol/Water Partition Coefficient (ClogP)
perhaps one of the most over-used physicochemical descriptors is logp. It has 
been identified as a property that can indicate whether a particular chemical 
structure may have liabilities in late-stage development, based on historical 
data. regardless of the application of logp as a surrogate for other properties, 
whether they be other physicochemical properties or historical trends, the 
descriptor itself is very useful.  logp is the partition coefficient as a ratio of 
the two concentrations of an unionised compound in two liquid phases, typ-
ically water and octanol. the logp value for a particular compound is given 
by the following equation:

[ ]
[ ]

octanol
octanol/water

water

solute
logP log

solute

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
  (5.1)

Simply put, the logp measurement indicates the extent to which a given 
molecule  is  hydrophilic  (water-loving)  and  hydrophobic  [water-fearing,  or 

Table 5.1   atomic  properties  of  common  organic  chemistry  elements  found  in 
drugs, used as a lookup table to calculate molecular weights from molec-
ular structures.

atomic no. element Symbol atomic mass

6 Carbon C 12.011
7 Nitrogen N 14.007
8 Oxygen O 15.999
9 Fluorine F 18.998
15 phosphorus p 30.974
16 Sulphur S 32.065
17 Chlorine Cl 35.453
35 Bromine Br 79.904
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lipophilic (grease-loving)]. the logp of a molecule can have an effect on drug 
administration, absorption, transport and excretion. logp is often used as a 
crude surrogate descriptor for aqueous solubility.

Many different approaches to calculate the logp of a given molecular struc-
ture have been proposed. any calculated logp value is generically called the 
Clogp, but it is important to state the specific method used in any commu-
nication to ensure that it is clear which method has been employed and any 
limitations identified.

here, only one method of calculating logp will be discussed, the Wildman–
Crippen model,1 as implemented in the rDKit apI.2 the Wildman–Crippen 
Clogp  model  is  an  atom  contribution  method  of  68  empirically  derived 
atom contributions from a training set of 9920 molecules. the correlation 
of the experimentally derived logp values and the Clogp using the Wildman– 
Crippen  model  was  reported  to  be  R2  =  0.918  with σ  =  0.677,  representing 
a highly predictive model. the 68 atomic contributions were derived using 
only the atom patterns of atoms commonly seen in drug molecules, C, h, N, 
O, S, p and halogens, and also includes noble gases and metals. each atom 
present in a molecule will only match a single atom type by design to ensure 
there is no ambiguity in the typing system. the atom types are given in the 
original paper by Wildman and Crippen [1999], including their SMartS rep-
resentations for easy re-implementation in another system.

the Clogp model and the Molecular refractivity model, derived by Wild-
man and Crippen, have been implemented in the rDKit apI, which is freely 
available.

5.4   Topological Polar Surface Area (TPSA)
polar Surface area (pSa) is an important physicochemical descriptor used in 
drug discovery as a surrogate descriptor for cell permeability. pSa is defined 
as  the  sum  of  the  surface  area  of  all  polar  atoms  in  a  molecule,  typically 
oxygen and nitrogen, including their connected hydrogens. pSa is most fre-
quently  used  in  drug  design  as  a  surrogate  property  for  cell  permeability 
with a rule-of-thumb that molecules with a pSa of  less  than 140 Å2 would 
be able to permeate cells. pSa is also used as a surrogate for penetrating the 
blood–brain barrier (BBB), where a pSa of less than 90 Å2 is often needed. 
BBB  penetration  is  a  key  property  in  central  nervous  system  (CNS)  drug 
development.4

the pSa of a molecule can, of course, be calculated from the three-dimen-
sional  structure  of  a  molecule,  but  its  calculation  can  be  quite  computa-
tionally  intensive, particularly due to the need for a 3D conformation. ertl 
et al. therefore developed a predictive model for pSa that only requires the 
topological structure of a molecule for its calculation.3 the result is a rapid 
descriptor calculator and, more importantly, a highly predictive and reliable 
statistical model that can be performed over many millions of structures very 
quickly. the pSa model from ertl et al. is called the topological polar Surface 
area (tpSa) and has been implemented in the rDKit apI.
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the tpSa of a given molecular structure is calculated simply by first iden-
tifying those atoms that contribute to the polar surface area using a sim-
ple look-up table of these atoms. For each occurrence of a particular atom 
and its environment (or bonding pattern), the values in this look-up table 
(table 5.2) are simply summed.

topological polar surface area is a rapidly calculable descriptor that can be 
applied in the drug discovery setting as an empirically appropriate surrogate 
for cell permeability. as with all descriptors, caution must be demonstrated 
in its application, but this tpSa has been demonstrated to be of great utility 
in drug design and it is now used commonly in designing new compounds as 
well as new screening libraries for high-throughput screening.

5.5   Hydrogen Bond Acceptors and Donors  
(HBA and HBD)

there are many way of calculating the number of hydrogen bond acceptors 
and donors in a given molecular structure. the actual numbers are depen-
dent on the context of the potential acceptors and donors in the molecule, 
and the ph (pKa), and this can complicate the calculations. Strictly speaking, 
the h-bond donor is the electron lone pair acceptor, and the h-bond acceptor 
is the electron lone-pair donor.

For  simplicity,  Lipinski,5  for  his  druglike  heuristics,  defined  the  num-
bers  of  hydrogen  bond  donors  as  the  sum  of  nitrogen–hydrogen  and  oxy-
gen–hydrogen bonds, whereas the number of hydrogen bond acceptors was 
defined as the sum of all nitrogen and oxygen atoms.

5.6   Lipinski’s Rule-of-Five
In the late 1990s, Chris Lipinski, then at pfizer, began investigating histori-
cal data regarding the oral bioavailability of drugs. In his studies, Lipinski 
identified that the vast majority of orally bioavailable drugs were small and 
moderately  lipophilic.  therefore,  Lipinski  was  able,  using  this  historical 
data, to define the following heuristics for druglikeness (or, more properly, 
oral bioavailability):
   
  1.   Molecular mass (molecular weight) of less than 500 daltons.
  2.   Octanol–water partition coefficient (logp) no greater than five.
  3.   No more  than five hydrogen bond donors, counted as  the sum of all 

nitrogen–hydrogen and oxygen–hydrogen bonding pairs.
  4.   No more than ten hydrogen bond acceptors, counted as the sum of all 

nitrogen and oxygen atoms.
   

these rules (or heuristics) are called the Lipinski rule-of-Five, since each 
of the parameters is a multiple of five. Oftentimes, the number of rotatable 
bonds  is  also  included  as  a  parameter,  with  ten  or  fewer  rotatable  bonds 
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Table 5.2   atom and bonding pattern contributions (Å2) to polar surface area.a

atom type Contribution (Å2)

[N](-*)(-*)-* 3.24
[N](-*)=* 12.36
[N]#* 23.79
[N](-*)(=*)=*b 11.68
[N](=*)#*c 13.60
[N]1(-*)-*-*-1 d 3.01
[Nh](-*)-* 12.03
[Nh]1-*-*-1 d 21.94
[Nh]=* 23.85
[Nh2]-* 26.02
[N+](-*)(-*)(-*)-* 0.00
[N+](-*)(-*)=* 3.01
[N+](-*)#*e 4.36
[Nh+](-*)(-*)-* 4.44
[Nh+](-*)=* 13.97
[Nh2+](-*)-* 16.61
[Nh2+]=* 25.59
[Nh3+]-* 27.64
[n](:*):* 12.89
[n](:*)(:*):* 4.41
[n](-*)(:*):* 4.93
[n](=*)(:*):* f 8.39
[nh](:*):* 15.79
[n+](:*)(:*):* 4.10
[n+](-*)(:*):* 3.88
[nh+](:*):* 14.14
[O](-*)-* 9.23
[O]1-*-*-1 d 12.53
[O]=* 17.07
[Oh]-* 20.23
[O-]-* 23.06
[o](:*):* 13.14
[S](-*)-* 25.30
[S]=* 32.09
[S](-*)(-*)=* 19.21
[S](-*)(-*)(=*)=* 8.38
[Sh]-* 38.80
[s](:*):* 28.24
[s](=*)(:*):* 21.70
[p](-*)(-*)-* 13.59
[p](-*)=* 34.14
[p](-*)(-*)(-*)=* 9.81
[ph](-*)(-*)=* 23.47

a an asterisk (*) stands for any non-hydrogen atom, a minus sign for a single bond, an equals 
sign for a double bond, a hash or pound sign for a triple bond, and a colon for an aromatic 
bond; atomic symbol in lowercase means that the atom is part of an aromatic system.

b as in nitro group.
c Middle nitrogen in azide group.
d atom in a three-membered ring.
e Nitrogen in isocyano group.
f as in pyridine N-oxide.
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being preferred. the calculation of rotatable bonds is simply the sum of the 
acyclic single bonds in the molecule.

It  is  most  important  to  consider  the  limitations  of  the  Lipinski  rule- 
of-Five, as has been highlighted by the original author. the rules are more 
properly  called  heuristics  or  rules-of-thumb.  they  are  trends  that  often 
appear to discriminate good from bad, in this case druglike molecules from 
those unlikely to be drugs.

Many enhancements have been proposed to these rules, but they are still 
commonly  applied,  often  as  a  crude  filter,  in  many  chemoinformatics  sys-
tems. One extension of the druglike parameters of the Lipinski rule-of-Five 
are the leadlike parameters of the astex rule-of-three, where, as one would 
expect,  the multiplier  is now three rather  than five.6 the reduction of  this 
parameter necessarily leads to smaller and less lipophilic compounds. these 
types of compounds are the ones commonly found through fragment-based 
screening strategies and worked on at  the early stages of a drug discovery 
programme, with the original rules written as:
   

“The study indicated that such hits seem to obey, on average, a ‘Rule of Three’, 
in which molecular weight is <300, the number of hydrogen bond donors is ≤3, 
the number of hydrogen bond acceptors is ≤3 and ClogP is ≤3. In addition, the 
results suggested number of rotatable bonds (NROT) (≤3) and PSA (≤60) might 
also be useful criteria for fragment selection.”

   
as for the Lipinski rules, the astex rules are also heuristics and must be 

employed  sensibly  with  appropriate  consideration.  however,  these  heuris-
tics are effective at designing fragment screening libraries, but it is import-
ant to say that these heuristics are not set in stone and they may be adjusted 
for a particular application.

5.7   Summary
the set of physicochemical descriptors are some of the most important and 
used,  sometimes over-used and abused,  in drug discovery. their  judicious 
application can often be informative of general trends in the physicochem-
ical property space and its relationship with specific parameters relevant to 
drug discovery, such as enzyme potency, cell permeability and other prop-
erties that are difficult to predict, such as aqueous solubility. however, it is 
important  to  remember  that  these  are  very  simple  parameters,  and  their 
over-interpretation and over-reliance on them are not advised.

Many  different  physicochemical  descriptors  exist  that  are  beneficial  in 
drug discovery, and only a few have been introduced here. Further physico-
chemical properties that are important to consider are pKa and logD, which 
describe the distribution coefficients, as opposed to the partition coefficient 
(logp).  here,  the  focus  was  on  the  Lipinski  rule-of-Five  and  its  associated 
physicochemical  descriptors  as  an  introduction  to  the  area.  Further  infor-
mation on other physicochemical parameters can be found in the literature 
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and  this  is  an  ever-changing  field  with  many  advances  being  made  in  the 
computational predictions.
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Chapter 6

Topological Descriptors

6.1    Overview
topological descriptors are widely used and highly regarded in the field of 
chemoinformatics. the exemplified use of topological descriptors in a wide 
range of applications is well known, from similarity search and clustering 
algorithms through to statistical modelling and de novo design. One of the 
most desirous aspects of many topological descriptors is their unbiased 
information content. these descriptors are not biased to empirical models, 
such as those we have seen in physicochemical descriptors, and also do not 
succumb to the conformer problem, although this itself can have limitations 
in some problem domains.

perhaps the most beneficial aspect of topological descriptors is their sole 
reliance on the molecular graph notation, and derivations thereof, and their 
typical rapidity in calculation permitting a huge number of molecules to be 
considered in a particular analysis. this especially makes them a popular 
go-to descriptor for many applications, including those that have a compu-
tational complexity in the algorithmic method that cannot be rationalised.

the topological descriptors that will be covered in this chapter use 
graph-theoretic representations of molecular structures, as covered in ear-
lier chapters. the graph theoretic notation is of great value to the field of  
chemistry and has a very closely connected history to the foundations of 
atomistic theory in the early nineteenth century.

6.2    Topological Indices
the family of topological indices (or tIs), also known as graph theoretic 
invariants, are graph theoretic in nature and result in a single value that char-
acterises certain aspects of a molecular structure. as to be expected with a 
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single numerical value that encodes a great deal of topological information, 
the topological indices can often convolute other properties.

a selection of topological index values for a set of simple molecular 
structures to more complex drug molecules is given in Figure 6.1. the 
topological indices are calculated from the molecular graph represen-
tation of the molecules using graph theoretic approaches. perhaps the 
simplest topological index is the edge density of a given molecular struc-
ture. Given a molecular structure with |V(G)| atoms (nodes or vertices), 
the maximum number of bonds (edges or arcs) that would be possible, 
assuming one bond possible between each atom (remember the implicit 
multigraph representation in molecular structures) is given by |V(G)| × 
(|V(G)| − 1)/2. a graph, like this molecular structure, where all atoms are 
connected to every other atom, is called a complete graph. the edge den-
sity of a given molecular structure would then be calculated by taking the 
actual number of bonds in the molecular structure (|E(G)|) and dividing 
this by the maximum number of bonds possible theoretically, but this the-
oretical maximum may not actually be feasible in terms of adhering to the 
valence bond model. therefore, the edge density would be calculated by 
the following equation: |E(G)|/(|V(G)| × (|V(G)| − 1)/2); more casually writ-
ten as e/(n × (n − 1)/2).

6.2.1    Wiener Index
the first topological index to gain much traction in the field was the  
Wiener index.1–4 Indeed, this index is the oldest topological index that 
encodes molecular branching. Developed by harry Wiener in 1947, the path 
number (now called the Wiener index) W, is “the sum of distances between 
any two carbon atoms in a molecule, in terms of carbon–carbon bonds”:

1 1
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n n
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i j

W d
= =

= ∑∑ (6.1)

6.2.2    Randić Index
the randić index, which is also known as the connectivity index, is a graph 
invariant that was introduced in 1975 by Milan randić.5 the randić index 
uses the bond contributions to describe the connectivity by summing the 
products of the atom degrees of the atoms connected by each bond. the 
square root is taken of the summed values and the reciprocal calculated:

( ) 1
deg degi j

C G
−

= ∑ (6.2)

the randić index has been shown to correlate with a number of chem-
ical properties, including boiling point, Kovats constants and a calculated 
surface.6
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Figure 6.1    Some examples of molecular graphs and their graph-theoretic 
properties.
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6.2.3    Petitjean Index
another popular topological descriptor is the petitjean index, which is a type 
of shape descriptor that is calculated from the distance matrix of a molecular 
structure.7 this index uses the longest through-graph distance between each 
atom in the structure using a variant of the all-pairs shortest path algorithm, 
such as the Floyd–Warshall or Dijsktra algorithm. petitjean defined the 
eccentricity of an atom in a molecular structure as the longest path between 
that atom and any other atom in the structure. petitjean thus defined the 
radius (R) of a molecular structure as the smallest atom eccentricity and the 
diameter (D) as the largest eccentricity. Using the radius and diameter of 
the molecular structure, petitjean defined a topological index of shape as 
 I = (D − R)/R, which represents a balance between its cyclic and acyclic parts. 
In a molecular structure where I = 0 the graph must be strictly cyclic. how-
ever, if I = 1 then the graph must be acyclic and have even diameter.

6.2.4    Zagreb Indices
the extent to which a given molecular structure is branched has been 
approached by two different topological indices by Balaban, called Zagreb 
indices.8 M1 is the first Zagreb index and is calculated using the atom degrees 
of each atom in a molecular structure. M1 is therefore calculated as the sum 
of the squares of the atom degrees in a given molecular structure. M2 is the 
second Zagreb index and is calculated again using the atom degrees, but this 
time using the atom degrees of adjacent atoms to the atom under consider-
ation. therefore, M2 is given as the sum of the products of the atom degrees 
of adjacent atoms. the Zagreb indices encode the extent to which a molecu-
lar structure is branched and provide a descriptor of structural complexity.

6.3    Molecular Fingerprints
the indices that we have discussed so far are very useful, but gross, descrip-
tors of molecular structure. It is clearly impossible to encode the complex-
ity of a molecular structure as a single number, but other descriptors are 
available that can encode more information about a molecular structure at a 
greater resolution.9,10

the molecular fingerprint descriptor has many different embodiments, 
but simply put can be described as the transformation of a molecular graph 
into a string of variables, most often binary variables. Originally, molecular 
fingerprints were developed to rapidly speed-up accurate screen-out of chem-
ical structures that, for certain, do not contain a particular chemical sub-
structure. this screen-out procedure meant that far fewer of the much more 
computationally intensive subgraph isomorphism algorithm calls needed to 
be made in a substructure search.

here, we will consider the two classes of molecular fingerprint that are 
most often used: structure-key and hash-key fingerprints. these can be 
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more generalised as knowledge-based and information-based descriptors  
(Figure 6.2). a knowledge-based fingerprint is one that encodes known molec-
ular structure moieties—or sometimes with some extent of fuzziness—and 
their presence or absence recorded. One issue with knowledge-key finger-
prints is that they can be brittle to new and unknown chemistries, which can 
limit their applicability. On the other hand, information-based fingerprints 
encode, using substructure enumeration techniques to encode typically lin-
ear or circular fragments from the molecular structure. the enumeration 
technique in information-based fingerprints reduces the brittleness seen in 
knowledge-based fingerprints, but the use of the often-necessary hashing 
algorithm can lead to mapping collisions into a fingerprint representation 
that can reduce their effectiveness. In general, however, both general classes 
of fingerprint representation are very useful.

6.3.1    Structure-Key Fingerprints
although we have emphasised that topological descriptors tend to be based 
solely on the information content of the molecular structure being encoded, 
structure-key fingerprints are an exception to this. Structure-key fingerprints 
(such as MaCCS keys) are based on an explicitly defined dictionary of molec-
ular keys or substructures. Since a human decision, albeit sometimes by 
committee, has been made in selecting these particular structural features, 

Figure 6.2    an illustration of the differences between knowledge-based and infor-
mation-based fingerprints. Knowledge-based or structure-key finger-
prints use predefined substructural keys that have been defined for the 
domain of interest, in this case small-molecule druglike molecules. 
Information-based or hash-key fingerprints encode the information 
present in the molecular structure being encoded.
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it is inevitable that biases may be incorporated into the resultant fingerprint. 
however, this does not necessarily make their application less useful. One 
must remember, however, that not only are biases likely included, but each 
feature will typically be weighted equally in the calculation of similarity 
measures, although it is likely that each of the features does not contribute 
equally to the degree of similarity.

6.3.2    Hash-Key Fingerprints
an alternative type of fingerprint that has been found to be very useful in 
many applications is the hash-key fingerprint. rather than taking a struc-
tural dictionary as for structure-key fingerprints, the hash-key fingerprint is 
an attempt to wholly encode the molecular graph structure into a fingerprint 
more akin to a mathematical graph-vector transform. Interestingly, due the 
nature of the transformation, it is often relatively simple to reconstruct the 
original molecular graph representation using simple graph optimisation 
tools (such as iterative optimisation in de novo design software). therefore, 
great care must be taken when disclosing these fingerprints, and indeed any 
molecular descriptors, where confidentiality is an issue.

the hash-key fingerprint was originally designed solely for the purpose of 
rapid screen-out of molecules when conducting a substructure search. the 
aim was to reduce as much as possible, but not too much, the number of 
calls to the substructure search algorithm, which was much more compu-
tationally expensive at the time. the substructure of interest was encoded 
as a fingerprint and then applied as a substructure screen against a large 
molecular database. a screen, in this instance, means that any fingerprint 
in the database that has the same bits set in its fingerprint as the substruc-
ture screen fingerprint will be passed to the substructure search algorithm. 
Since the substructure screen fingerprint is therefore entirely represented 
in the discovered fingerprint, it must also entirely contain the substructure 
of interest. however, it must be noted that bit collisions that occur with 
over-ambitious hashing and folding of the fingerprint, may bring about 
spurious matches, the beauty of this approach is that it will never lead to a 
false negative, it will only lead to more molecules that need to be considered 
with the substructure search algorithm. therefore, each new implementa-
tion can be tuned for screen-out performance without any risk of generating 
false negatives.

6.3.2.1   Fingal Fingerprints
the Fingerprinting algorithm (Fingal) fingerprint was developed as a hash-
key fingerprint based on the algorithm published online by Daylight Chem-
ical Information Systems.11 In this way, Fingal was not novel, but some 
algorithmic extensions and applications demonstrated the use of this fin-
gerprint in new domains. the fingerprint was originally developed for the 
Compound Generator (CoG) de novo design system as a rapid molecular 
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descriptor generator that could be used in proof-of-principle studies, but was 
latterly used to design median molecules as well as highly predictive QSar 
and QSpr models. Fingal was extended from binary fingerprints to integer 
fingerprints, such that the frequency of occurrence of molecular features is 
also included. In addition, the Fingal fingerprint was implemented to encode 
geometric information of molecules, such that conformational information 
could be included in the fingerprint.

Fingal fingerprints are generated by iterating over each atom in a mole-
cule and enumerating paths from these atoms. For each atom, every possible 
path, from zero up to a user-specified length in edges, is extracted and repre-
sented as a character string with bonding information. this provides a large 
number of possible paths for each atom. an example of how fingerprint keys 
are generated from a given molecule using the path-based approach is given 
in Figure 6.3 and the pseudocode is given below.

function makeFingerprint(Graph molecule, Size d, Int length)
fingerprint = initializeFingerprint(d)

paths = getPaths(molecule, length)

for each atom in molecule

for each path from atom
seed = hash(path)
indices = random(seed)

for each value in indices
index = value mod d
fingerprint[index] = trUe

return fingerprint

6.3.2.2   Morgan Fingerprints
a more recent extension to the hash-key fingerprint is the Morgan fingerprint, 
which looks at atom environments as circular substructures, as opposed to 
the path-based structural keys of Fingal, etc. the Morgan fingerprint is simi-
lar to the extended Connectivity Fingerprint (eCFp) that was originally popu-
larised in the pipelinepilot software from Scitegic (latterly accelrys, and now 
BIOVIa from Dassault Systèmes).12 however, the Morgan fingerprint has a 
long and illustrious history in chemoinformatics from the very early days of 
computers.

Named after henry Morgan, who was working for Chemical abstracts at 
the time, the Morgan algorithm forms the basis of the Morgan fingerprint 
and was published in 1965.13 the Morgan algorithm is a method to canoni-
calise a molecular structure such that the linear atom ordering is always the 
same for that particular structure. this algorithm was introduced for use in 
chemical database systems to allow for rapid structure search. the result is a 
systematic and unique numbering order for each atom in the molecule.
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Figure 6.3    a graphical representation of the generation of a molecular fingerprint 
using the Fingal algorithm. (a) the original molecule, caffeine. (b) Illus-
tration of the path tree through the molecule for one nitrogen atom up 
to a path length of three edges. (c) three paths being encoded into the 
fingerprint using the hashed indices. Note that the element highlighted 
in red in (c) is an example of a hashing collision where different paths 
hash into the same value. Multiple indices are often used to alleviate 
this problem as the chance of different paths hashing into identical sets 
of values is greatly reduced.
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the algorithm initialises the chemical structure by first assigning a 
numerical identifier to each non-hydrogen atom in the structure based on 
the node degree of each atom, the number of non-hydrogen atoms to which 
it is connected. the next iteration of the algorithm assigns a new numerical 
identifier to each atom as the sum of the previous identifiers of its direct 
neighbours. this procedure continues iterating until there is no increase the 
number of different identifiers.

the next step of the algorithm is to assign the ordering of the atoms using 
the generated numerical identifiers. the atom with the highest identifier is 
assigned as the first atom. the atoms connected to the first atom are then 
considered and the one with the highest identifier is assigned as atom 
number two, and the remaining neighbour atoms of atom one are labelled 
sequentially. Once all neighbours of atom one are numbered, the algorithm 
moves to number two and numbers its atoms accordingly. the algorithm 
then proceeds through each numbered atom in order, so atom number three 
is next and its neighbours numbered according to the same process. the 
final numbering is the ordered listing of each atom.

an illustration of the general extended connectivity principle is given 
in Figure 6.4 using the example given on the published algorithm for the 
extended Connectivity Fingerprint.12

the simple algorithm works well in practice but it does have some limita-
tions for which extensions of the algorithm have been published. however, 
the process of the algorithm is the same in principle as the other algorithms, 
an example of a relaxation algorithm from computer science.

the Morgan algorithm forms the basis of the extended Connectivity and 
Morgan fingerprints. the Morgan fingerprint is a member of a class known 
as circular fingerprints. each atom in a given molecular structure is assigned 
a value based on a number of atomic invariants, which can be user-defined, 
and are based on neighbourhood characteristics of the substructure, such 
as bonding orders or atomic numbers. For each atom in a molecule, sub-
structures are induced up to a specified radius, usually two or three, with 
the substructure at each radius from zero being retained. Iterations are then 
performed to update the initial atom identifiers and its neighbouring atoms 
until the specified radius is reached. the sets of numbers are then hashed 
into a single key that provides an identifier for each substructure. the result-
ing hash keys can then be folded into a fixed-length fingerprint using a hash 
function, which is where bit collisions may occur.

6.3.3    Ligand-Based Topological Pharmacophores
another often-used class of topological descriptor is the ligand-based topo-
logical pharmacophore. We will cover geometric pharmacophores in the 
following chapter, where the explicit spatial information of molecular con-
formations is used, but the topological equivalent uses through-graph dis-
tances as a surrogate for explicit geometry; the through-graph distances 
were discussed earlier in this chapter with regard to the petitjean index. 
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Ligand-based topological pharmacophores use the through-graph distances 
to represent the potential three-dimensional arrangements of the atoms in 
a given molecular structure. Furthermore, each atom is further abstracted 
to represent the potential for molecular interactions, rather than as the ele-
mental label.

6.3.3.1   CATS Vectors
One of the most popular ligand-based topological pharmacophores is the 
CatS vector (Chemically advanced template Search) published by Schneider 
et al. in 1999.14 Originally, the CatS vector representation was published for 

Figure 6.4    Illustration of the effect of iterative updating on the information rep-
resented by an atom identifier. here, we consider atom 1 in benzoic 
acid amide. each iteration has the effect of creating an identifier that 
represents larger and larger circular substructures around the central 
atom, as shown at the top of the figure. at iteration 0 (that is, the initial 
atom identifier), the atom only represents information about atom 1 
and its attached bonds, and can be represented by the substructure on 
the bottom left (‘a’ represents an atom of any type other than hydro-
gen). after one iteration, the identifier now contains information about 
the immediate neighbours of atom one, as shown in the bottom cen-
tre substructure. after two iterations, the represented substructure 
has grown further, now fully incorporating the amide group as well as 
much of the aromatic ring, as shown in the bottom right. reprinted 
with permission from D. rogers and M. hahn, extended-connectivity 
fingerprints, J. Chem. Inf. Model., 2010, 50(5), 742–754. Copyright 2010 
american Chemical Society.
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the application of scaffold hopping, a specific subset of bioisosteric replace-
ment, which we will cover in greater detail in Chapter 11. In scaffold hopping, 
the objective is to identify molecular structures that are likely to be function-
ally equivalent to a known molecular structure, but sufficiently different in 
their underlying chemical structure. the CatS fingerprint introduces two 
levels of abstraction from the typical topological fingerprints: disconnecting 
the representation from the underlying connectivity of the molecule, and the 
abstraction of atom types into functional (or pharmacophoric) features. this 
is a useful approach to maintain potency while modulating other proper-
ties, such as solubility and likely sites of metabolism. another, more prosaic, 
application is to move away from patented core scaffolds in an otherwise 
encumbered region of chemical space. In this way, the original objective of 
CatS vectors was to identify different molecular structures while retaining 
the key functional requirements for macromolecular recognition.

the algorithm to generate a CatS vector requires a number of independent 
steps to be conducted. the first step is to use an atom abstraction scheme 
that takes each atom in a given molecular structure in turn and encodes 
them as one of the following six pharmacophoric types: lipophilic (L), aro-
matic (r), hydrogen bond donor (D), hydrogen bond acceptor (a), positively 
charged or ionisable (p), and negatively charged or ionisable. the second 
abstraction of CatS is to reduce the explicit reliance on the topology of the 
features, but attempt to retain the general spatial (at least in a through-graph 
nature) constraints. through-graph distances are then calculated using an 
all-pairs, shortest path algorithm, such as the Floyd–Warshall or Dijkstra 
algorithms, with atoms being encoded between distances of typically one 
to ten atoms. an exemplar calculation of the calculation of a CatS vector is 
given in Figure 6.5.

Scaffold hopping, as mentioned, is the intended application of CatS vec-
tors and the descriptor has been applied successfully in this aim, including 
variants of the algorithm.15,16 although the main intended application of 
CatS vectors is to the scaffold hopping problem, they are a useful general 
topological descriptor and can be used in clustering and diversity selection.

the Schneider laboratory has made a version of CatS available online 
here: http://modlab-cadd.ethz.ch/. an implementation of CatS is also avail-
able, with greater options in parameterisation, in the rDKit apI.

6.3.3.2   Hopfen Fingerprints
the hopfen fingerprints were designed as a hybrid between the Morgan fin-
gerprints and the CatS vectors by combining the atom environments and 
the through-graph distances in atom pairs of triplets.17 hopfen fingerprints 
first enumerate the atom environments of each atom in a given molecule and 
encode each substructure as structural keys, as per Morgan Fingerprints. 
the next stage is to calculate the all-pairs, shortest-paths between each atom 
as a surrogate for interatomic distances in three-dimensional space. the 
last stage is to enumerate all shortest-path triplets between each atom and 
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each of the atom environment structural keys that have been generated. the 
triplets are then canonicalised and encoded as a key for incorporation into 
a fingerprint. the generation of a hopfen key for three atoms is given in  
Figure 6.6.

hopfen fingerprints were designed and implemented by the author and 
first reported in a prospective case study for scaffold hopping.17 In this study, 
the hopfen fingerprints were used to generate a Quantitative Structure– 
activity relationship (QSar) model using partial Least Squares (pLS) on a 

Figure 6.5    Calculation of the CatS descriptor. the two-dimensional graph is given 
first, followed by the graphs representing the atom indices and phar-
macophoric types.
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training and test set of known actives against the target of interest, MDM2/
p53 a protein–protein interaction (ppI). the approach was found to be 
favourable in finding good quality hits through experiment and the molec-
ular structures were more diverse than those found through other methods 
considered.

6.4    Summary
topological descriptors are some of the most used, and possibly least under-
stood, of the family of available molecular descriptors. Whenever you use a 
similarity searching system, such as that found in CheMBL or in the online 
vendor catalogues of eMolecules and Sigma-aldrich, invariably it is a topo-
logical descriptor that is being calculated or used behind the scenes and the 
similarity calculated according to the tanimoto coefficient. Often, scientists 
will refer to the tanimoto similarity of molecules, but it is important to know 
and understand the actual molecular descriptor that is being used behind the 
scenes. the Morgan fingerprint tends to have a much narrower distribution 
of similarities compared to the much wider similarity distributions observed 
with the Fingal fingerprint. the changes in the shape of the similarity distri-
butions can lead to misinterpretation of the similarity measure.
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Chapter 7

Topographical Descriptors

7.1    Overview
physicochemical and topological descriptors, describing physical phenom-
ena and molecular connectivity, respectively, are highly effective at tackling 
many modern challenges in modelling being fast to calculate yet still offering 
significant predictive power. however, as with all methods, they do have their 
limitations since they do not explicitly consider the three-dimensional, not 
to mention the four-dimensional, character of molecules, in that they have 
three-dimensional shape and move in geometric space and time.

Molecular shape is clearly important in invoking binding events since 
binding sites exist in three dimensions. therefore, the three-dimensionality of 
a molecular structure will be important in filling the binding site sufficiently 
to have the potential to make the appropriate interactions with the protein: 
shape complementarity. Without this shape complementarity, intermolecular  
interactions could not be formed with the protein even if the appropriate  
electronic interactions are present. therefore, topographical, or molecular 
shape, descriptors must appropriately describe the delicate balance of shape 
and electronics necessary for a binding event.

the similar-property principle also applies to three-dimensional (3D) 
shape and this has been known for decades. however, it is only relatively 
recently that the 3D methods have become mainstream. First, with the advent 
of the ability to computationally generate appropriate single conformations 
of given molecular structures. tools such as COrINa and CONCOrD were 
the first computer programs that could rapidly generate the 3D co-ordinates 
of a molecule using empirical data. With the advent of these tools, molecular 
shape searching could be expanded into many more applications than had 
previously been considered.
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Soon, though, practitioners became aware that a single conformation, per-
haps simulating the 3D co-ordinates observed in small molecular crystallog-
raphy, was not necessarily sufficient for shape matching since the multiple 
conformers that a molecule may adopt are also important: known as the con-
former problem. the conformer problem is a significant challenge and will 
be addressed in this chapter with solutions to overcome potential limitations.

In this chapter, we will explore the history of molecular shape descriptors 
and comparisons, through to the present day in terms of how they are used 
in the context of drug discovery. a few specific examples of molecular shape 
descriptors will be introduced with simple explanations and discussion.

7.2    Topographic Descriptors
Many different geometric descriptors have been defined over time, and a sum-
mary of many of them is available.1 Geometric descriptors can be calculated 
from conformations of molecular structures using the co-ordinate data of 
the atoms in the structures. two different classes of three-dimensional (3D) 
descriptor are possible using these co-ordinate data: Cartesian descriptors 
(external 3D [x3D]) and internal 3D (i3D). Descriptors that use Cartesian co-or-
dinates are placed within a reference co-ordinate frame and typically require 
alignment or some form of normalisation, such as placing the centre-of-mass 
of the structure on the origin in this space. i3D descriptors, however, are calcu-
lated based on the relative distances between the atoms within its own internal 
reference co-ordinate frame. Generally, x3D and i3D descriptors can be sum-
marised as alignment-dependent and alignment-free, respectively.

recently, a good deal of interest has been generated in the area of the 
three-dimensionality and quantifying the three-dimensionality of ligands.2 
the motivation to identify more three-dimensional molecular structures is to 
adapt screening libraries to new challenges in drug discovery, such as protein–
protein interactions. there is also good evidence to demonstrate that more 
three-dimensional molecules will also tend to have better physicochemical 
profiles, such as solubility, due to disrupting planarity and therefore less likely 
to pack tightly in crystal lattices. two descriptors will be described briefly here: 
principal Moments of Inertia (pMI) and plane of Best Fit (pBF).

the pMI were introduced into computational drug discovery to measure 
the diversity of combinatorial libraries in terms of the shapes covered.3 the 
pMI is a calculation of the first three principal moments of inertia, which 
essentially specify how rod-like, disc-like, and sphere-like the molecular 
shape is. therefore, it is necessary to calculate the geometric arrangement 
of atoms, or a conformer. a single conformer was used in this, and the fol-
lowing descriptor. Using these three descriptors from pMI, it is possible 
to plot the coverage of shape space on a so-called pMI plot (Figure 7.1).  
a pMI plot is a ternary plot where the three vertices of the triangle represent 
the three extremes of the shapes as described above. the space is contin-
uous, such that as a point on the pMI plot is moved along the edge from 
disc-like to sphere-like, the molecular structure represented by those points 
becomes more sphere-like and less disc-like. One limitation identified with 



Chapter 768

Figure 7.1    Normalised pMI ratios as shape descriptors: the position within the tri-
angle reveals the “envelope shape”. Structures (a), (b), and (c), represent 
spherical, planar, and rod-like shapes, respectively. Structures (d), (e), 
and (f), exhibit shapes that are between the three basic shapes above. 
Lastly, (g), represents a structure that is balance between the three gen-
eral shapes of rods, discs, and spheres. reprinted with permission from  
W. h. B. Sauer and M. K. Schwarz, Molecular shape diversity of com-
binatorial libraries: a prerequisite for broad bioactivity, J. Chem. Inf. 
Comput. Sci., 2003, 43, 987–1003. Copyright 2012 american Chemical 
Society.
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pMI, illustrated in Figure 7.2, is that there is no size dependence in the shape 
analysis, but this can be corrected by normalising for size by the number of 
heavy atoms in the molecule, for example.

the second descriptor that quantifies the three-dimensionality of molecular 
structure is the plane of Best Fit (pBF).4 pBF also requires the calculation of a 
conformer prior to calculation. pBF is most easily explained as an extension 
the line of best fit in two dimensions, but expanded into three dimensions. 
each heavy atom in a given molecule is treated as a data point in three-dimen-
sional space. a plane is then defined that is optimised using a least squares fit 
algorithm that minimises the distances of each atom from the plane. Once the 
optimisation has completed, the average of the errors from the plane is calcu-
lated giving the pBF value for that conformer of that structure.

exemplar pBF values for a range of structures from the fragment screening 
library are given in Figure 7.3. It can be observed that the structures (given 
in 2D and 3D representations) at the bottom end of the pBF range are much 

Figure 7.2    Limitations of the envelope shape analysis: degenerate situations. 
reprinted with permission from W. h. B. Sauer and M. K. Schwarz, 
Molecular shape diversity of combinatorial libraries: a prerequisite for 
broad bioactivity, J. Chem. Inf. Comput. Sci., 2003, 43, 987–1003. Copy-
right 2012 american Chemical Society.
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Figure 7.3    example molecules selected from the fragment library data set and 
their respective plane of Best Fit scores depicted on a linear scale in 
ångströms. It is observable that as the pBF score increases the mole-
cules that are representative of the increasing scores become visually 
more three-dimensional. reprinted with permission from N. C. Firth, 
N. Brown and J. Blagg, plane of Best Fit: a novel method to character-
ize the three-dimensionality of molecules, J. Chem. Inf. Model., 2012, 
52(10), 2516–2525. Copyright 2012 american Chemical Society.
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flatter than those towards the higher end, and that the continuum of calcu-
lated pBF values are intuitive in terms of increasing three-dimensionality.

pMI and pBF both compare the three-dimensionality of 3D molecular 
structures, but do they offer different information, or put another way, are 
they highly correlated? In Figure 7.4, a density plot correlation of pMI (sum 
of normalised pMIs) and pBF is given where it is clear that there is some 
weak correlation between the two descriptors but they do offer differences, 
especially in resolution. the pBF descriptor is much more discriminatory at 
the lower end of three-dimensionality than pMI, indicated by the heavy black 
lines. the increased discriminatory quality at the lower end of three-dimen-
sionality suggests that pBF may outperform pMI in discriminating the flat-
ter molecular structures, which is where most of the molecular structures in 
synthetic libraries occur.

7.3    Pharmacophores
the pharmacophore is a relatively recent term with many people having been 
credited for its introduction in the past, including the father of modern drug 
discovery, paul ehrlich in the early 1900s. however, extensive research by 
John van Drie5 has revealed that the first definition of pharmacophore was 
only described relatively recently, by Monty Kier in 1971.6 however, Kier had 
been using the approach on muscarinic agonists since 1967, but called them 
a ‘proposed receptor pattern’.7

the IUpaC now defines a pharmacophore to be “an ensemble of steric and 
electronic features that is necessary to ensure the optimal supramolecular 
interactions with a specific biological target and to trigger (or block) its bio-
logical response.”8

there are many different implementations of pharmacophore elucidation 
and search algorithms, and they function approximately similarly. however, 
the generation of a pharmacophore model often adopts a similar workflow. 
It is possible, and simple, to generate a pharmacophore model from a single 
ligand, but this may result in poor results of the final pharmacophore model 
in terms of consensus of the features that are desirable. Structurally diverse 
ligands are preferable, but oftentimes these will not be available early in drug 
discovery programmes. additionally, it is highly beneficial to include inactive 
ligands in the model generation stage since they will often add additional 
information regarding what is required to design more optimal ligands. 
however, if a bound ligand from a protein–ligand complex is available, it 
would make sense to derive a pharmacophore from this, obviating the next 
two steps.

the next step in generating a pharmacophore model is to enumerate sets 
of conformers for each of the ligands in the training set. the preference is for 
low energy conformers since the assumption is that bound conformations 
will typically be closer in shape to the bound conformations.

Once the conformers have been generated, the conformers of all of the 
ligands need to be aligned to each other using a superimposition algorithm. 
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Figure 7.4    Density plot of pBF score versus the sum of normalised principal moments of inertia (Npr) for the eMolecules data set with 
acyclic and ro5 noncompliant compounds removed. the horizontal black line represents a cutoff for 3D molecules for Npr1 +  
Npr2, and the vertical line, a corresponding cutoff for pBF. reprinted with permission from N. C. Firth, N. Brown and J. Blagg, 
plane of Best Fit: a novel method to characterize the three-dimensionality of molecules, J. Chem. Inf. Model., 2012, 52(10), 
2516–2525. Copyright 2012 american Chemical Society.
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Superimposition will attempt to align the low energy conformations of the 
ligands so that similar functional or bioisosteric features overlay (Chapter 10).  
the best overlay with a single conformer of each of the active ligands is taken 
as the optimal overlay.

the abstraction step is the final one in generating a pharmacophore model. 
the task of abstraction is to reduce the aligned atomic and substructural fea-
tures of the ligands into feature points or spheres. abstraction approaches 
vary between software, but benzene rings should be collapsed into a single 
aromatic ring feature and hydroxyl groups as acceptor/donor motifs.

Most modern molecular modelling software packages have protocols to 
derive pharmacophores automatically, including the alignment and abstrac-
tion steps. the flexible alignment, or multi-conformer alignment, task can 
be quite computationally intensive and therefore it is best to be pragmatic 
and build up from a few ligands to investigate the effect that the amount 
of data has on the quality of the pharmacophore models. the abstraction 
is also often implemented as an automated process in which pharmacoph-
oric features, such as aromatic ring, acceptor/donor and hydrophobic, are 
assigned based on the overlays of structural features of the ligands. however, 
there is a tendency for the autofit methods to over-specify the pharmaco-
phore, and therefore many software packages offer a manual curation step 
for the model. additionally, it is often possible to include any protein infor-
mation that may be available to define exclusion spheres to indicate where 
the protein is present and therefore any ligand discovered that extended into 
those exclusion spheres would likely cause a steric clash. as additional ligand 
and structural information becomes available, it may be necessary to refine 
and update the pharmacophore model to adapt it to new hypotheses to test. 
an illustration of the general workflow to generate pharmacophore models 
and subsequently compare them is given Figure 7.5.

Once a pharmacophore of appropriate quality has been generated, it is 
necessary to validate it retrospectively prior to prospective application in a 
virtual screen. retrospective studies are intended to ensure that a model ful-
fils its intention to separate actives from inactives, so that those predicted 
more likely to be active are prioritised for synthesis and/or testing. therefore, 
a sufficient dataset of experimentally identified active and inactive structures 
should be applied as a test case and the model statistics assessed for suitabil-
ity. Virtual Screening will be covered in more detail in Chapter 9.

the preceding has outlined the typical protocol for pharmacophore model 
elucidation from multiple ligands and their conformers, and the pharma-
cophore model abstracted from the overlays. however, as mentioned, many 
more recent software programs for shape-based searching have automated 
or streamlined many of these processes, but it is important to still be aware 
of the computation being performed. a number of more recent advances in 
shape-based molecular descriptors have been generated to permit both phar-
macophore and shape search in virtual screening and other applications. a 
selection of the more popular methods is presented in brief below: rapid 
Overlay of Chemical Structures (rOCS), Ultrafast Shape recognition (USr), 
and software from the Cresset Group.



Chapter 774

Figure 7.5    Virtual screening process. On the basis of multiple conformations of 
known ligands for both targets (a), a number of different pharmacoph-
ore models are generated (b). to find models sharing the same features at 
a similar spatial distance, pairwise alignments are computed (c). Using 
the aligned models, a pharmacophore search for molecules matching 
both models is performed (d). the potential “dual” compounds are 
scored by a shape-based comparison with the known active ligands (not 
shown). Different models are drawn in solid, as mesh, and as wireframe. 
the colours represent different pharmacophore features: green, hydro-
phobic; orange, aromatic; blue, h-bond acceptor; and purple, h-bond 
donor. reprinted with permission from D. Moser, J. M. Wisniewska, S. 
hahn, J. achenbach, e. L. Buscató, F. M. Klingler, B. hofmann, D. Stein-
hilber and e. proschak, Dual-target virtual screening by pharmacophore 
elucidation and molecular shape filtering, ACS Med. Chem. Lett., 2012, 
3(2), 155–158. Copyright 2012 american Chemical Society.
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7.4    ROCS: Rapid Overlay of Chemical Structures
the rapid Overlay of Chemical Structures (rOCS) software is a well-regarded 
and effective program that searches for optimal shape overlays and matching 
chemical types, or colour, mapped to each of the rOCS features.9 the rOCS 
algorithm uses Gaussians overlaid onto each atom in a given molecule to 
define its ‘shape’. the Gaussians are used to represent the volumes of the 
atoms and also significantly soften the sensitivity of using hard sphere cut-
offs as in many other shape overlay and pharmacophore matching methods. 
the method also represents functional features, akin to pharmacophoric 
features, for each of the atoms or groups of atoms that are assigned these 
features. again, each of these features is a Gaussian, to define its ‘colour’. the 
types of features that the colour spheres encode are rings, hydrogen bond 
donors and acceptors, etc. ring centroids are given an ‘extra credit’ if the cen-
troid aligns regardless of ring type. an example of an rOCS representation 
and its overlay using shape and colour is given in Figure 7.6.

rOCS has been demonstrated to be very effective at a variety of virtual 
screening campaigns, including in the challenge of scaffold hopping (see 
Chapter 10) where the aim is to replace the core scaffolds of molecules that 
maintain functional and/or geometric scaffolding properties.10

Figure 7.6    Illustration of a fundamental definition of shape similar, derived 
from the alignment that achieves an optimal overlap of objects. the 
mismatch volume between two objects is a true mathematical metric 
distance, i.e., obeys the triangle inequality that says the distance from 
object a to object C cannot be greater than the distance from a to B plus 
B to C nor less than the difference between these distances. however, 
the optimal overlap leads to the more intuitive shape tanimoto, i.e., 
the ratio of the overlap to the absolute difference of the sum of the self- 
overlaps and optimal overlap. It has the useful character of ranging from 
1.0 (perfect overlap) to 0.0 (no overlap). reprinted from a. Nicholls,  
G. B. McGaughey, r. p. Sheridan, a. C. Good, G. Warren, M. Mathieu, S. 
W. Muchmore, S. p. Brown, J. a. Grant, J. a. haigh, N. Nevins, a. N. Jain 
and B. Kelley, Molecular shape and medicinal chemistry: a perspective, 
J. Med. Chem., 2010, 53(10), 3862–3886.
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7.5    USR: Ultrafast Shape Recognition
the Ultrafast Shape recognition (USr) algorithm was introduced as a very 
fast method for calculating the similarities of 3D molecules.11 the method 
generates a series of discrete distance distributions based on the centroid 
atom and a variety of other atoms. these distributions are then used to cal-
culate statistical moments that encode the shape of the molecule. Once the 
vector of these moments is calculated it is possible to calculate intermolecu-
lar similarity using a normalised Manhattan distance (Figure 7.7).

Figure 7.7    (a) USr encoding. the shape of the molecule is characterised by the 
distributions of atomic distances to four strategic reference locations. 
In turn, each of these distributions is described through its first three 
moments. In this way, each molecule has associated a vector of 12 
shape descriptors. (b) Comparing the shape of two conformers with 
USr. each database conformer has a vector of 12 USr descriptors asso-
ciated, which are used to compare them through a normalised similar-
ity score. reprinted with permission from p. J. Ballester, p. W. Finn and 
W. G. richards, Ultrafast shape recognition: evaluating a new ligand-
based virtual screening technology, J. Mol. Graphics Modell., 2009, 27(7), 
836–845. Copyright 2009 elsevier Inc.
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USr was shown to outperform rOCS in terms of speed—1546 times 
speed-up was cited—mainly due to the removal of the more computationally 
intensive 3D alignment step required in rOCS.

7.6    XED: Cresset Group
Cresset Group tools use the extended electron Distribution (XeD) model 
that was developed by andy Vinter as a more complex and accurate descrip-
tion of the charge around atoms, making it possible to discern the lone pairs 
in the charge model making the model much richer and informative than 
many others available.12

Using the XeD model to generate the 3D field patterns from a 2D structure, 
it is necessary to reduce the field pattern to field points to make the com-
putational search much faster for matching with other molecules. the field 
pattern represents electrostatic, hydrophobic and shape properties of a mol-
ecule. a schematic of the generation of the Cresset Group virtual screening 
workflow is given in Figure 7.8.

Cresset Group tools using XeDs have been applied successfully to a wide 
range of challenges in drug discovery and their use in virtual screening was 
demonstrated to out-perform the well-known DOCK algorithm for ligand 
docking in terms of retrieval of novel active scaffolds using the Directory of 
Useful Decoys (DUD).13

7.7    Conformer Generation and the Conformer 
Problem

Conformer generation remains a challenging and time-consuming task and 
can require substantial storage requirements, given the number of conform-
ers (in addition to tautomers and stereoisomers) that may need to be stored. 
there exist a number of methods to automatically generate conformers from 
connection tables (2D structures). Software packages such as COrINa gen-
erate a single conformation based on 3D data mined from small molecular 
crystal structure databases and exhibit good agreement with those struc-
tures in terms of root-mean-square deviation (rMSD) of the heavy atoms 
when aligning two conformations of the same molecule.14 however, COrINa 
is limited to the generation of a single conformer by itself and typically many 
conformers are required to perform an effect shape similarity search. Con-
former generation can be achieved by a number of methods, but two of the 
most popular are systematic search and stochastic (or random) search. how-
ever, given an illustration of the conformer problem in Figure 7.9, it is clear 
that many conformers can be generated for typical drug like molecules and 
it is not clear which, if any, of those that are generated is the one that is most 
appropriate. this is the definition of the conformer problem.

Systematic search takes each rotatable bond in term and discretely explores 
the torsion angles of each bond. the simplest approach to systematic con-
former generation is to all conformers possible with each permitted torsion 
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Figure 7.8    Schematic representation of the steps involved in searching the Field-
Screen database: (a) select an active molecule and convert it to a relevant 
conformation; (B) add field points to the search ligand in the specified 
conformation to produce the FieldScreen search query, which consists of 
a ligand and its field points in a specified conformation; (C) search the 
FieldScreen database by alignment of every structure using field points; 
(D) retrieve the top scoring compounds (score expressed as a molecular 
similarity) as 3D alignments to the search query or as 2D structures. the 
FieldScreen database (e) is populated by exploration of conformations 
of all molecules with field point patterns added to and stored with each 
conformation. reprinted with permission from t. J. Cheeseright, M. D. 
Mackey, J. L. Melville and J. G. Vinter, FieldScreen: virtual screening using 
molecular fields. application to the DUD data set, J. Chem. Inf. Model., 
2008, 48(11), 2108–2117. Copyright 2008 american Chemical Society.

Figure 7.9    an illustration of the conformer problem using aUY922. On the left  
is a single energy-minimised conformation, but on the right hand side, 
a few hundred conformations have been generated. It is clear based on 
the distribution, and the shear infinity of torsion bond angles, that the 
conformer space is vast and it is important to use appropriate cut-offs 
to generate a sufficient quantity of appropriate conformations for the 
intended analysis.
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angle. typically, the torsion angle discretisation can be user-defined in most 
software packages. In systematic search, the main challenge to overcome 
is combinatorial explosion since all torsions are explored at all discretised 
angles. however, this exhaustive enumeration of the conformers will lead to 
many conformers that have steric clashes or are in very high predicted energy 
states. a number of heuristics have been introduced to avoid enumerating 
all conformers when situations such as those stated previously arise. One 
such method is to use a depth-first search with tree pruning that employs 
backtracking. Once an undesirable conformer has been identified, the tree 
is pruned and the algorithm backtracks to the next node on the tree not yet 
explored. another approach to limit the size of the conformer space being 
considered is to treat the molecular structures as larger fragments to explic-
itly reduce the search space.

Stochastic search randomly explores new conformers using the con-
formers that have been generated already. Once a random conformer has 
been generated and the energy minimised so that it is suitable to retain, 
in terms of user-definable parameters such as energy, a copy of that con-
former is made and then randomly perturbed at one torsion angle, and then 
minimised and retained if it fulfils the defined parameters. the process is 
repeated using a randomly selected conformer by perturbing it until some 
stop condition is met. Since this process is heuristic in nature, it is difficult 
to clearly understand when the process should be terminated. typically, a 
number of user-defined parameters are specified to invoke a termination 
condition, such as: maximum number of conformations reached or no new 
conformations have been generated after a number of cycles, where a new 
conformation would be classed as one that falls inside an rMSD window and 
therefore deemed too similar.

Once generated, it is difficult if at all possible to identify whether any of 
those conformations is appropriate in terms being similar to that expected 
in a binding event: this is referred to as the Conformer problem. the confor-
mational space of a single ligand is very complex and the energy landscape 
potentially even more complex, with many low energy wells that could be 
missed with extant conformer generation methods. the diversity of the con-
formations is also important and it is important to cover the diversity of the 
conformers available but this can be quite wasteful in compute-time. how-
ever, how can the appropriate conformer be identified without the relevant 
information? Low energy conformers are preferred, but this may be a dogma 
in modelling. and what does low energy mean? Certainly, energy calculators 
have errors and therefore relevant conformers may be missed in the search.

another question is to what are the generated conformers being compared 
to suggest that the appropriate conformations are not being generated? the 
two comparators that are used most are small molecule crystal structures, 
and the ligand conformation in complex with a biological macromolecule. 
the small molecular crystal structure databases are an excellent resource of 
experimentally determined structural information, but the conformations 
in small molecule crystal structures are not necessarily in what could be 
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called a biologically relevant conformation since they are packed together 
and therefore equilibrate over the entire system. protein–ligand co-crystals 
are another seemingly appropriate reference set for conformer generators, 
but this assumes that these ligand geometries are appropriate. Furthermore, 
crystallography offers only a snapshot of protein and ligand conformations, 
and the molecular dynamics that are undergone in solution are only begin-
ning to be investigated and understood.

there is no simple answer to the conformer problem and therefore it 
remains an open problem in molecular modelling. the best response that is 
possible at present is to put in place appropriate controls as best as is possi-
ble and understand the errors, both in models and experiments.

7.8    Summary
In drug discovery, the ligands being designed make three-dimensional inter-
actions with biological macromolecules and therefore it follows that charac-
terising the three-dimensionality and shape of those molecules is important. 
Since the advent of automated structure generators in the 1980s, it has been 
possible to rapidly generate reasonable ligand conformations, allowing for 
the comparison of 3D molecules rather than the 2D representations that pre-
ceded them. Many descriptors have been explored and their ability at tack-
ling pressing challenges in drug discovery assessed.

Descriptors regarding how 3D a molecule is have recently become a sci-
entific challenge since it has been reported the molecules that exhibit more 
3D character will also exhibit better properties than those that would be 
expected to be observed in drugs. a number of descriptors of three-dimen-
sionality have been reported and studies conducted that demonstrate that 
much of the ligand space in which research is focussed tends to be quite 
flat in nature, which is perhaps unsurprising. however, with the advent of 
descriptors such as pMI and pBF, the anticipation is that library design can 
be tweaked over time to the desired level of three-dimensionality.

pharmacophore representations have already been introduced in Chapter 
6 in the context of topology only, but these ligand-based topological phar-
macophores arose from 3D pharmacophores. the geometric arrangement of 
key interaction features that are relevant to binding is clearly important and 
these methods are able to abstract these key features successfully for use in 
virtual screening.

the tools of rOCS, USr and those from Cresset Group offer highly effective 
methods to conduct rapid virtual screening of large 3D databases and have 
been shown to be highly effective in a number of projects, both retrospec-
tive and prospective. their use is now routine in most drug discovery pro-
grammes and they have had a significant impact.

the main challenge going forward is to improve conformer generation 
methods, or at least better understand what the challenge is and how to 
know when an improvement is made. Currently, the lack of understanding 
of what makes an appropriate control experiment that indicates success is a 
high priority.
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Chapter 8

Statistical Learning

8.1   Overview
the field of statistical learning is essential in many disciplines and can be 
characterised as the science of learning from data. Using this learning, one 
can make informed and objective decisions about the future or, more simply, 
what we should do next. the emerging and highly desirable skillsets, such 
as data mining, big data and deep learning, are underpinned by a thorough 
and  appropriate  application  of  statistics  and  statistical  learning  methods. 
Increasingly, data is becoming openly available that enables statistical learn-
ing in many forms, such as the CheMBL database of chemical structures and 
biological data. Computer power has also increased to such an extent that 
most statistical methods can now be applied routinely. the statistical learn-
ing methods have been implemented and made available at no cost in pack-
ages such as scikit-learn, an apI in python and the r project for Statistical 
Computing.  however,  the  availability  of  the  data,  the  compute  power  and 
the methods only reinforce the importance of thorough analysis, design and 
implementation of statistical experiments.

8.2   Statistical Learning
the  computational  scientist  can  consider  many  millions  of  potential  data 
points, in our case virtual chemical structures, any of which may be of inter-
est  to  a  drug  discovery  project.  however,  the  speed  at  which  these  virtual 
experiments can be reduced to practice, synthesis and biological testing, is 
rate limiting. therefore, it of the utmost importance that the modeller does 
the  best  job  they  can  to  ensure  the  predictions  are  reliable.  a  morning  of 
routine modelling can easily translate into weeks, months or even years of 
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substantial real experimental work and it is the duty of the modeller to do 
their best to ensure that as little time as possible is wasted. however, it must 
also be borne in mind that appropriate negative experiments are as valuable, 
if not more valuable in some cases, than positive data, although there is of 
course a reluctance to generate negative results.

In  this  section  the  general  concepts  of  statistical  learning  will  be  intro-
duced,  specifically:  unsupervised  learning  and  supervised  learning.  these 
methods  are  the  most  relevant  to  the  in silico  medicinal  chemist  and  are 
arguably some of the most applied approaches in the field. the more gen-
eral approaches of clustering, classification and regression will be discussed 
with specific reference to some of the more frequently used algorithms. Best 
practices are advice only and not prescriptive, since it is difficult to write a 
successful recipe that can be applied in every eventuality. It is still the respon-
sibility of the modeller to critically determine the most appropriate methods 
to  apply  in  each  case,  weighing  the  advantages  and  limitations  of  each  of 
the respective methods. as such, this guidance is worthy of consideration, 
but one must still think how best to apply statistical learning methods and 
ensure that any potential limitations are communicated appropriately.

8.3   Unsupervised Learning
Unsupervised learning methods are one of the key statistical learning tech-
niques  applied  in  computational  drug  design.  an  introduction  to  unsu-
pervised  learning  and  where  it  may  be  applied  in  the  drug  design  setting 
is  provided.  a  number  of  examples  of  unsupervised  learning  methods  are 
introduced and discussed with examples from the literature. Cluster analysis 
is introduced using two different clustering algorithms: Sequential, agglom-
erative, hierarchical, Non-overlapping (SahN) clustering and k-means clus-
tering. Subsequently,  two different projection methods are  introduced and 
discussed: Self-Organising Maps (SOMs) and principal Component analysis 
(pCa). Importantly in this chapter, consideration is given to when and where 
one would apply these methods. the advantages and relative limitations of 
each method are discussed to provide the reader with an understanding of 
how they might apply similar methods in their own work.

8.3.1   Overview
Unsupervised learning, or ‘learning without a teacher’, is frequently used in 
drug discovery in a wide range of applications. Unsupervised learning meth-
ods assist in understanding the ‘natural’ structure of our data, in our case 
typically  chemical  structure  data.  Unsupervised  learning  methods  seek  to 
identify the relationships between given data points, which can then enable 
objective  decision  making  in  compound  selection  for  purchase  or  testing. 
Unsupervised  learning  also  allows  chemical  space  analysis,  or  where  our 
chemical structures lie in the enormous virtual space of feasible structures. 
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these  methods  link  in  with  the  applications  that  will  be  introduced  later 
in this book of subset selection, whether islands of highly similar chemical 
structures  or  diversity  selection  where  the  objective  is  to  identify  the  few-
est number of representative chemical structures that sufficiently explores 
chemical space for the particular scientific question under consideration.

In  this  chapter,  we  will  focus  on  some  of  the  most  often  used  unsuper-
vised  learning  methodologies  applied  in  drug  design.  the  methods  intro-
duced will not be exhaustive, but an introductory guide to ensure a thorough 
understanding required for application, therefore some other methods will 
be necessarily omitted.

8.3.2   Cluster Analysis
Cluster analysis is not a single algorithm, but a multitude of different meth-
ods that fall under the same umbrella. the objective in cluster analysis is to 
group objects, in our case chemical structures, based on defined properties, 
or  molecular  descriptors,  according  to  their  inter-object  similarities.  the 
resultant groups are referred to as clusters.

Cluster analysis has its foundations in anthropology where it was used for 
the  analysis  of  cultural  relationships  between  tribal  groups  by  Driver  and 
Kroeber  in  1932.1  Zubin  later  introduced  cluster  analysis  methods  to  psy-
chology  in  1938,  and  tryon  in  1939,  for  the  analysis  and  identification  of 
personality  types. these methods were  later applied  in 1943 by Cattell  for 
trait theory classification in psychology of personalities.

One of the most used algorithms in cluster analysis in chemoinformatics 
is called Sequential, agglomerative, hierarchical, Non-overlapping (SahN). 
here, the core concept is that objects that are proximate in the given similar-
ity in descriptor space will be more similar in general to each other. agglom-
erative clustering techniques proceed with each object being contained in its 
own cluster. pairs of these clusters are then combined based on similarity, so 
the two most similar objects are combined into one cluster, and this is con-
tinued until all clusters are combined into a single cluster. the result of this 
agglomerative process is an entire hierarchy of clusters and can be visualised 
as a dendrogram (Figure 8.1).

One of the main challenges in cluster analysis is the selection of the rep-
resentative  clusters.  One  of  the  most  common  methods  is  the  application 
of a stopping rule. In the dendrogram representation (Figure 8.1), a simple 
method is to move a line down from the top of the dendrogram to the bot-
tom. Given a particular line position, the points below that line are defined 
as the clusters. the decision where to stop can be given by a distance crite-
rion where clusters are too distal to each other to be merged. an alternative 
approach to identify the clusters is a stopping rule based on the number cri-
terion, where there are an appropriate number of clusters. a common heuris-
tic for identifying the number of clusters is the square root of the number of 
objects divided by two (sqrt(n)/2), which is also commonly used in k-means 
clustering.
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While hierarchical clustering methods are an excellent method  for clus-
tering  data,  it  is  very  computationally  intensive  in  the  general  case,  since 
it  has  computational  complexity  of  O(n3),  although  an  O(n2)  method  has 
been  reported  called  SLINK.2  therefore,  this  approach  is  appropriate  for 
small  datasets,  such  as  hit  list  analysis  from  high-throughput  screening 
(typically a few thousand objects), but unsuitable for larger datasets such as 
high-throughput screening libraries themselves (typically hundreds of thou-
sands of objects).

8.3.3   k-Means Clustering
k-Means clustering was first developed and applied in signal processing, but 
was not published outside Bell Labs until 1982.3 hugo Steinhaus described 
the method in 1957 and the standard algorithm was designed by Stuart Lloyd 
in the same year.4 however,  the method was not called k-means clustering 
until some ten years later in 1967 by James MacQueen.5

an alternative clustering algorithm to the hierarchical methods is k-means 
clustering. In this clustering algorithm, the objective is to cluster n objects 
into k clusters, where k is predefined. the objective function in k-means clus-
tering is to partition a given dataset into a specific number of clusters where 
the within-cluster sum of squares (WCSS) is minimised.

Initially, k points, or centroids, are placed into the same space occupied by 
the input objects; these are the initial group centroids. each object is then 
assigned  to  the closest centroid  in  the space and becomes one of  its clus-
ter members. Once all of  the objects have been assigned  to  the centroids, 

Figure 8.1   an exemplar cluster dendrogram with the individual compounds {a…h} 
at the leaves of the dendrogram, and each cluster being redefined as the 
clustering moves up the tree.



89Statistical Learning

the positions of  the centroids are recalculated. each of  the k centroids are 
updated to positions represented by the arithmetic mean of the values in the 
objects previously assigned to that centroid. the process is iterated until no, 
or little, variation is observed in the positions of the centroids.

k-Means  clustering  is  somewhat  faster  than  SahN  methods  described 
above  and  can  often  be  applied  to  much  larger  datasets.  although  it  is 
Non-deterministic  polynomial-time  hard  (Np-hard),  numerous  heuristics 
exist that lead to much faster runtimes in general. however, k-means cluster-
ing is very sensitive to the starting conditions, the initial centroid position 
assignments. Numerous algorithms exist that allow for the greedy initialisa-
tion of these positions based on the data.

8.3.4   Stirling Numbers of the Second Kind
It is often the case that an apparently simple procedure is intractable when 
considered in terms of enumeration. the relevant chemistry space of interest 
in drug design is one such example: a few atoms, from even fewer possible 
atoms, combined in multiple ways leads to vast space of potential chemical 
structures.  this  is  referred  to  as  combinatorial  explosion.  a  similarly  dra-
matic explosion occurs when considering how many ways are possible of par-
titioning n objects into k different clusters, the output from cluster analysis. 
these are called Stirling Numbers of the Second Kind. the number is calcu-
lated given the recurrence relation

S(N,k) = k·S(N − 1,k) + S(N − 1,k − 1)  (8.1)

as  an  example,  if  one  wanted  to  cluster  1006  objects  into  196  clusters, 
such that no cluster was empty, there are approximately 6.294 × 101939 possi-
ble ways of achieving this, and this is a relatively trivial clustering problem. 
therefore, it is perhaps not a surprise that there exist so many different clus-
tering algorithms and heuristics therein that have been developed due to an 
identified limitation in the existing methods. Furthermore, given the poten-
tial space of possible solutions, it is difficult to determine what is optimal in 
terms of  this partitioning and often a solution that appears appropriate  is 
likely the best one can achieve. however, it should be noted that it is import-
ant, as with all modelling methodologies,  to critically appraise  the output 
the analysis to identify whether the solution is appropriate and, if not, make 
suitable changes to the experimental design to achieve what is required.

8.3.5   Self-Organising Maps
a different type of unsupervised learning algorithm to clustering algorithms 
is the Self-Organising Map (SOM) or Kohonen Map (KM). the SOM is a mul-
tidimensional scaling method that takes high-dimensional data and maps it 
onto a lower-dimensional space, typically two dimensions. a major advan-
tage  of  SOMs  is  for  the  visualisation  of  groupings  of  data.  SOMs  are  also 
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described as a type of artificial Neural Network (aNN). a key benefit of SOMs 
is the preservation of the topology of the data being processed. By analogy, 
SOMs are often compared to the visual recognition system in humans since 
the  data  is  processed  from  a  multidimensional  stimulus  into  one-dimen-
sional or  two-dimensional neuronal structures  in  the brain. the Kohonen 
map was introduced by teuvo Kohonen in the 1980s,6 but is based on neu-
rological models from the 1970s and even the work from turing on morpho-
genesis models in the 1950s.7

the structure of a SOM is a discretised grid of cells called neurons. each 
neuron consists of a weighting vector equal in length to the input vectors 
of  the  objects  under  consideration.  In  our  case,  the  input  vector  length 
is  the  length  of  the  molecular  descriptor  vector.  each  neuron  also  has 
a defined position  in  the space of  the map. typically,  the map  itself  is a 
grid of  squares or hexagons  tessellated with neighbouring neurons. the 
map grid itself can have a periodic boundary, in which the map edges are 
defined, and also a toroidal topology in which the edges wrap around, so 
that bottom of the map connects to the top of the map, and the right con-
nects to the left. the toroidal topology provides a continuous space that 
avoids potential edge conditions that would be present with the periodic 
boundary.

the  weight  vector  of  each  neuron  (or  node)  is  initially  assigned  a  small 
random number. another approach is to seed the weight vectors with values 
sampled evenly from the two principal component eigenvectors. the latter 
approach  provides  for  much  more  rapid  learning  since  the  weight  vectors 
already  approximate  the  weights.  however,  as  with  many  statistical  learn-
ing methods, caution must be observed since this may lead to overtraining. 
training  examples,  the  molecular  descriptors,  are  then  iteratively  fed  into 
the SOM and the similarity calculated, typically euclidean distance, between 
it and each neuron in the map. the training example is then mapped to the 
most similar neuron, or Best Matching Unit (BMU), and the weight vector of 
the neuron updated. the BMU weight vector is updated to reflect the train-
ing example vector, but the neighbouring neurons are also updated, but by 
a diminishing magnitude as the distance from the BMU increases. this pro-
cess continues for each input vector for a large number of iterations. It may 
be necessary to fine tune the iteration limit to ensure that a reliable map of 
weight vectors has been generated.

Once trained with the training example vectors, the SOM is ready to use 
in the production mode. as for the training of the map, your dataset vectors 
are fed into the map and the euclidean distance calculated between it and 
each  and  every  neuron  in  the  map.  the  neuron  weight  vector  that  is  clos-
est to the dataset vector is said to be the winning vector and the data point 
can be assigned to that neuron. this process is repeated for each data point 
in the dataset. Visual examination of the map may then be conducted such 
that each neuron is coloured continuously depending on the number of data 
points that have mapped to that neuron. the population density of a neuron 
reflects the redundancy of the data points in that neuron. therefore, if you 
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wished for a diverse subset, you might  just select a single data point  from 
each neuron in the SOM. however, if you desired close analogues to a specific 
data point, you could simply take all data points mapped to that neuron, and 
potentially neighbouring neurons should there not be sufficient representa-
tives in the winning neuron.

Kohonen maps have been popularised in chemoinformatics by Jure Zupan 
and Johann Gasteiger, with a seminal volume published on the application of 
Kohonen maps and other aNNs.8 One recent application of SOMs has been 
in  the  prediction  of  biological  activities,  selection  of  screening  candidates 
(cherry picking), and selected representative subsets from large compound 
libraries  such  as  those  generated  by  combinatorial  chemistry.9  In  the  first 
example,  that  of  predicting  biological  activity,  the  training  examples  also 
contain a binary variable classifying it either as active or inactive. the clas-
sification value of each training data point is not used in the training of the 
actual map. the resultant map is then coloured by the numbers of actives 
and inactives represented by each neuron. Compounds for which the biolog-
ical activity was not known were then mapped to the SOM and a prediction 
made  regarding  its  activity  based  on  it  representative  neuron  activity.  the 
method was also demonstrated to be effective at separating different chemi-
cal series from each other in the map.

8.3.6   Principal Component Analysis
an alternative multidimensional scaling method, or data reduction method, 
that has been proven to be one of the most popular in chemistry data analy-
sis, is principal Component analysis (pCa). pCa was invented by Karl pearson, 
one of the most significant statisticians of his generation, in 1901.10 hotelling 
later developed pCa independently in the 1930s and also gave it its name.11,12 
Similarly to SOM, pCa offers an excellent method for exploratory data analysis 
and is also used in predictive modelling.

the simplest way to think of pCa is to imagine fitting an n-dimensional 
ellipsoid to your data. the longest axis of the ellipsoid is the first principal 
component. the second component is given by the second longest axis of the 
ellipsoid, and so on. By their nature, each principal component is orthogonal 
to each other. the first principal component explains the most variance of 
your data since it extends on the longest axis of the ellipsoid. each additional 
principal component explains concomitantly less variance up to a cumula-
tive value of one, and where the number of principal components is the same 
or fewer than the number of descriptors describing your data. the result of a 
pCa is new and orthogonal co-ordinate system that optimally describes the 
variance in a single dataset.

the outputs of a pCa, in addition to the variance explained by each princi-
pal component, are the scores and the loadings. the scores are the pCa data 
for the objects in your dataset, in our case the chemical structures. plotting 
the  data  points  of  your  dataset  reveals  the  underlying  structure  of  these 
data: the more proximate the points, the more similar those objects are with 
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regard to the molecular descriptors used. the loadings are the pCa data for 
the descriptors in your dataset, in our case the molecular descriptors. here, 
molecular descriptors that lie close together in the loadings plot can be said 
to be explaining the same variance and therefore exhibit similar behaviour. 
taking the scores and loadings plots together,  it  is possible to understand 
the descriptors and how they influence the differences between the different 
chemical structures.

8.4   Supervised Learning
Conversely  to  unsupervised  learning,  supervised  learning  learns  using  a 
dependent  variable,  such  as  a  biological  endpoint  like  pIC50.  the  concept 
is to use the known variable to derive a model that optimally separates the 
interesting  from  uninteresting  data  points,  or  active  from  inactive  mole-
cules. Many different methods have been applied  in  the field of computa-
tional drug discovery, and a few are provided below for further consideration 
of the methods.

8.4.1   Naïve Bayesian Classification
One of  the simplest probabilistic classifiers  that has  found  traction  in  the 
field  is  the  naïve  Bayesian  classifier  (NBC).  Based  on  the  Bayesian  theory 
of prior probabilities to predict whether a new observation belongs to one 
class  or  another  based  on  interpolated  posterior  probabilities.  One  of  the 
potential weaknesses of the NBC is that the features used are assumed to be 
independent and contribute independently to its predicted class. however, 
regardless of their apparent simplicity, the NBC has been used to great effect 
in the chemoinformatics community.

the abstract definition of an NBC  is a conditional model,  such  that  the 
dependent class (C) relies on a number of features or descriptors (F1…Fn):

  p(C|F1…Fn)  (8.2)

assuming a random distribution of 40 red and 20 green objects, it is given 
that  the  probability  of  being  red  is  two  thirds  (40/(40  +  20))  and  of  being 
green, one third (20/(40 + 20)). these are the prior probabilities of belonging 
to each of these classes.

When  a  new  object  is  identified,  for  which  we  want  to  predict  its  class 
membership, the objects proximate to it (given a radius defined a priori) are 
identified, which gives the likelihood of being red or green. therefore, the 
probability of being red  is  the number of red objects near  the new object, 
divided by the total number of red objects in the larger data set. the poste-
rior probability of being red, therefore, is the product of the prior probability 
of being red and the likelihood of it being red based on its location in the 
dataset (Figure 8.2).
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8.4.2   Support Vector Machine
another often-used classification modelling method used in the field is the 
Support Vector Machine (SVM), although the approach can also be applied 
in  regression  modelling.  Dissimilarly  to  NBCs,  SVMs  are  non-probabilistic 
binary linear classifiers. essentially, an SVM training algorithm assigns the 
dataset into two classes that maximises the partition that separates those two 
classes. a prediction for a new object can then be made according to which 
class in the dataset the new object is more proximate. the partitioning takes 
place in the high-dimensional space equal to the length of the descriptor vec-
tors being used. therefore, in a 1024-bit fingerprint the partitioning is made 
in a 1024-dimensional space. the partitioning itself is achieved by the optimi-
sation of a hyperplane (Figure 8.3) that maximally separates the data points 
in each dimension, referred to as the separation with the maximum margin.

8.4.3   Partial Least Squares
partial Least Squares (pLS) is a regression method, as opposed to the classi-
fication methods discussed above. pLS uses similar principles  to pCa, but 
instead identifies a linear regression model by projecting the predicted vari-
ables, molecular descriptors and the observed variables onto a new space.13 
pLS discovers the commonality between two matrices and finds the multi-
dimensional direction in the X-space (independent variable) that maximally 
explains  the  variance  in  the  Y-space  (dependent  variable).  the  result  is  a 
series of Latent Variables (LVs) that cumulatively improve the measure of fit 
of the regression model.

pLS  was  developed  by  the  Swedish  statistician  herman  Wold,  and  later 
expanded by his son, Svante Wold, with particular application to challenges 

Figure 8.2   a  schematic  example  regarding  the  decision  as  to  which  class  a  new 
data point belongs using the naïve Bayesian classifier.
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in chemistry. pLS is defined by Svante Wold, and he argues more correctly, as 
projection to Latent Structures, but partial Least Squares appears to be the 
most favoured naming.

8.5   Best Modelling Practice
as in all scientific disciplines, it is important to apply appropriate methods 
and safeguards to ensure that the results of the experiment are valid and rele-
vant. this is especially the case in statistical modelling since it is very simple 
to develop a model that agrees with hypothesis, regardless as to whether this 
is  valid  or  not.  therefore,  there  are  number  of  best  practices  that  are  rec-
ommended to be applied in all statistical modelling to ensure that the pre-
dictions have value and do not lead to incorrect expectations. this chapter 
explores a number of recommended practices in building useful statistical 
models given the data available.

there  are  many  approaches  to  building  a  statistical  model,  or  indeed 
making best use of any data set you may have, and therefore it can be very 
easy to make small mistakes or honest misjudgements that can lead to sig-
nificant errors in prediction and affect the confidence of those predictions 
downstream. this can then  lead to even more costly mistakes  in selecting 
synthetic targets in medicinal chemistry and subsequent assaying. however, 
there are a number of accepted best practices  that are designed  to  reduce 
potential issues in statistical modelling such that one may have an educated 
confidence in the extent to which the model predictions can be used reliably 
to make decisions. In this chapter, we will go through accepted best practices 
that have been published in the literature and understand how these can be 

Figure 8.3   a maximum-margin hyperplane separating two classes using a support 
vector machine.
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used to best effect to build useful and functional statistical models. While 
this is not an exhaustive consideration of the different statistical modelling 
best practices that have been reported, it will give a flavour of the types of 
things for which one should be on the look out.14

there is a wide range of statistical measures of confidence that are used 
in statistical modelling. One of the most commonly reported statistics is R2. 
this provides a measure of fit between the experimental data and the mod-
elled predictions, whether for the training set or the test set. the R2 is a mea-
sure of fit between these two datasets as a straight line that minimises the 
error, or residuals, of each data point in the set. therefore, the line of best fit 
can be useful in surmising general model quality, but it does have a number 
of issues with which it is associated.

One  of  the  most  common  limitations  with  only  trusting  the  R2  value  is 
the dynamic range of the data being modelled. If the range is too small, any 
signal in the model may be lost in the experimental and modelling error. the 
model may still be useful, but it will be important to look at different mea-
sures of quality, such as standard errors (vide infra). however, it is important 
to  note  that  too  narrow  a  range  will  typically  be  beyond  the  experimental 
limits of the data being modelled. a similar issue can be observed when the 
data being modelled is of a higher dynamic range, but falls in groups of data 
that therefore define the line of best fit. For example, considering a situation 
where there are two groups of data being modelled: one at a high activity and 
the other indicating low activity. With the line of best fit, these two groups of 
data in the range are essentially the two points that define the line. If one was 
to look at the errors of each data point, between the experimental and the 
modelled values, it is likely that the actual prediction errors are much larger 
than suggest by the R2 statistic.

Standard errors (Se) of prediction are useful in this case where the struc-
ture of the response data is not evenly distributed in the dynamic range. 
Using standard errors, root-mean-square error of estimation or prediction, 
the  actual  errors  from  experiment  of  each  data  point  can  be  scrutinised 
and  summarised  into  a  single  measure  of  the  quality  of  the  predictions 
being made.

8.6   Summary
Statistical learning methods are of great importance in computational drug 
discovery. the learning methods summarised here allow for the understand-
ing of the large and multivariate (and even megavariate) spaces in which we 
work, and also allow for making predictions about the future so that deci-
sions can be made, with caveats, regarding the likelihood of it being success-
ful or not.

Unsupervised learning algorithms are a statistical learning method that 
is useful when you need to understand the underlying structure of your data 
and make informed decisions regarding the data points in that space. Struc-
turing the data in clusters (SahN and k-means clustering), or distributed in 
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discretised (SOM) or continuous  (pCa) space allows for  the visual  inspec-
tion of the data. the applications of unsupervised learning methods have 
been  discussed  in  terms  of  numerous  challenges  in  chemoinformatics, 
such as: activity prediction, consideration of chemical clusters in data anal-
ysis, selection of representative or diverse subsets to reduce the number of 
chemical structures  that must be taken into more computationally  inten-
sive algorithms, such as docking or through to synthesis (or purchase) and 
biological testing.

One positive to unsupervised learning that is very important to consider, 
yet  ostensibly  the  most  obvious,  is  that  the  methods  offer  different  views 
of the same data. Looking at your data in different ways is one of the most 
important steps in exploratory data analysis and should not be underplayed.

Supervised  learning  offers  potentially  even  great  power  than  unsuper-
vised learning in that it becomes possible to not only understand the space 
in which you are working, but make predictions about the spaces that are 
most likely to bear the most fruit  in terms of success for a drug discovery 
project. With supervised statistical  learning  it  is possible, given sufficient 
data and data quality, to derive models that can accurately classify or even 
predict a value for a biological endpoint by using the extant data alone. the 
chapter on quantitative structure–activity relationships will discuss this in 
greater detail.

Statistical learning methods are very important in the toolbox of the mod-
eller and their power should not be under-estimated. however, it is important 
to understand how they work, their limitations and strengths, and also the 
appropriate measures of success that indicate the degree to which a model 
can be trusted. there are many parameters to consider and only a few have 
been presented here. Working from the position that all models are wrong 
can be useful as it helps to focus efforts on understanding whether predic-
tions that are made are valid and can be used prospectively.
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Similarity Searching

9.1   Overview
Modern rational drug discovery relies significantly on the concept of molec-
ular similarity, since molecular similarity also suggests similarity in the bio-
logical end-point of interest. While empirical and subject to exceptions, the 
similar-property principle is a highly effective approach to identifying inter-
esting structural analogues that are likely to invoke similar interactions and 
therefore prioritise compounds for purchase or synthesis based on vast vir-
tual libraries.

Molecular similarity is increasingly used in virtual sets of compounds to 
prioritise those for testing. The prioritisation approach can be as simple as 
ranking a list of virtual structures compared with a single reference ligand of 
interest. The approach can be extended to multiple ligands of interest when 
these  are  available,  and  the  resulting  structure  ranks  combined  using  an 
approach called, data fusion or consensus scoring.

another  challenge  in  similarity  searching  is  that  structures  that  are 
identified as  being similar  to a  known  or probe  ligand  are  not  necessar-
ily similar to each other. Indeed, as the similarity to the probe decreases, 
the potential for similarly scored hits to be different to each increases in 
probability.  Therefore,  it  may  also  be  prudent  to  consider  clustering  the 
identified hits to prioritise specific groups for follow-up, rather than just 
taking the top one hundred hits, which may not evenly represent the avail-
able space.

In  the  development  and  enhancement  of  virtual  screening  methods,  it 
is  important  to  have,  as  in  all  science,  appropriate  controls.  an  appropri-
ate positive control in virtual screening is comparison to an extant method 
that is known to work effectively and is typically used widely. however, this 
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comparison requires metrics to identify whether a newly developed method 
is actually effective for the intended purpose. There are many ways to quan-
tify  and  visualise  the  success  or  otherwise  of  a  virtual  screening  method. 
a number of  these approaches  that are commonly used will be covered  in 
this chapter, but many are also covered in the supervised statistical learning 
chapter.

Similarity  searching  is  highly  effective  when  one  only  has  information 
regarding  a  single,  or  perhaps  a  few,  ligands  of  interest.  however,  even  in 
situations where one can generate a pharmacophore model  from multiple 
ligands or a structural model, or even when a protein–ligand crystal structure 
is available, it is important not to forget the power of similarity searching. It 
is not only an effective approach to identify the most interesting structures 
to consider from a large list,  it  is also typically  incredibly rapid in calcula-
tion compared to other methodologies, such as docking. Therefore, similar-
ity searching is typically represented in some form in any virtual screening 
cascade. The key is to use the tools available on the available data to benefit 
a drug discovery programme and also improve the probabilities of success.

9.2   Similar Property Principle
The similar-property principle has a  long history, going back to alexander 
Crum Brown and Fraser in 1868,1 where their work consisted of “perform-
ing upon a substance a chemical operation which shall introduce a known 
change into its constitution, and then examining and comparing the phys-
iological action of the substance before and after the change.” This can be 
seen as an early and empirical investigation of molecular similarity. alexan-
der Crum Brown later stated clearly that physiological action is a function 
of chemical constitution,  leading to what is arguable the first Quantitative 
Structure–activity Relationship (QSaR) model: “It is obvious that there must 
exist  a  relation  between  the  chemical  constitution  and  the  physiological 
action of a substance, but as yet scarcely any attempts have been made to 
discover what this relation is.”

Clearly, the concept of the similar-property has been known for well over 
a  century,  but  it  was  not  formalised  until  1990  by  Johnson  and  Maggiora 
as “similar compounds have similar properties.”2 however, as we have dis-
cussed previously, the concept of molecular similarity is quite philosophi-
cal, so care must be taken and due consideration given to the appropriate 
molecular descriptor for a particular similarity search. The similar-property 
principle  is also called neighbourhood behaviour, and  is a key concept  in 
the field.3

Similarity  searching  of  chemical  databases  was  not  commonplace  until 
the pioneering work of Carhart et al.4 and Willett et al.5  in  the mid-1980s. 
Until the advent of these methods, most chemical databases were limited to 
structure and substructure searches.

Molecular  similarity  is  a  contentious  area  and  much  discussion  has 
been  published  in  the  field  with  regard  to  what  makes  a  useful  measure 
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of  molecular  similarity.  Two  excellent  references  for  additional  discus-
sion and conclusions are Kubinyi6 and Maggiora et al.7 an example of the 
main classes of molecular similarity  is given in Figure 9.1 from Maggiora 
et al.,  which  covers  chemical  (or  physicochemical)  similarity,  molecular 
and two-dimensional (2D or topological) similarity, three-dimensional (3D, 
topographic, or geometric), biological similarity, global similarity and local 
(or pharmacophoric) similarity.

Figure 9.1   Similarity perception and concepts. Two exemplary vascular endothe-
lial growth factor receptor 2 ligands are shown, and different ways to 
assess their similarity are illustrated. Reprinted with permission from 
G. Maggiora, M. Vogt, D. Stumpfe and J. Bajorath, Molecular Similarity 
in  Medicinal  Chemistry:  Miniperspective,  J. Med. Chem.,  2013,  57(8), 
3186–3204. Copyright 2013 american Chemical Society.
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9.3   Molecular Similarity and Virtual Screening
The concept of molecular similarity has been discussed already in Chapter 4,  
but  some  aspects  are  worthy  of  reiteration  here.  The  general  concept  of 
molecular similarity is an entirely philosophical one and can depend on the 
context in which the comparators are compared. Thus, two molecular struc-
tures can be seen to be topologically similar if they share the same core struc-
ture, or they may be said to be similar if the surface electronics are similar 
regardless of the underlying topological structure. however,  for reasons of 
pragmatism, and getting the job done, it is important to select a descriptor of 
relevance, and a similarity coefficient that are deemed to be appropriate for 
the challenge at hand: a molecular descriptor that fulfils the requirements of 
the similar-property principle.

In Similarity Searching, which can also be called Virtual Screening  (VS), 
molecular similarity is important since the objective is to identify molecules 
from  a  large  library  of  potential  hits  that  are  more  likely  to  be  those  hits. 
Many  different  molecular  descriptors  and  similarity  measures  have  been 
demonstrated  to  be  effective  at  enriching  the  number  of  active  molecules 
recalled in a ranked list, at least retrospectively.

The benefit of conducting a Virtual Screen, which can be achieved using 
any  of  the  modelling  methods  discussed  in  this  section,  as  opposed  to 
performing a full high-Throughput Screen is illustrated schematically in 
Figure 9.2.

The aim of a virtual screen is to screen as fewer molecules as possible to 
enrich actives that are then validated in far few real experiments. There is a 
trade-off to be had in how many compounds need to be screened in vitro with 
regard to the probabilities of success from the virtual screen. however, this 
potential success can vary substantially from project to project. another key 
potential advantage of performing a virtual screen and then  in vitro exper-
iments  is  that  it  is  possible  to  return  to  the  screening  library,  with  some 
knowledge in hand from the smaller screen guided by virtual screening, and 
attempt a virtual screen again to identify further compounds.

9.4   Data Fusion
Data  fusion,  often  called  Consensus  Scoring  in  docking  applications,  is  a 
method by which multiple ranked lists are combined from different exper-
iments to generate a new ranked list.8 The anticipation with data fusion is 
that the combined ranked list will be superior to conducting a single experi-
ment by the introduction of additional methods and/or chemical probes, in 
the case of virtual screening  like similarity searching. another driving  fac-
tor for using data fusion is that particular methods, although typically quite 
effective, can often under-perform relative to expectations, and it would not 
be possible to know this a priori when the objective is to reduce the predic-
tions  to  the  physical  experiments  of  synthesis  and  biological  testing.  This 
approach is also used with disparate methods, such as shape-screening and 
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virtual ligand docking, since it has been observed that when one under-per-
forms, the other method tends to maintain effectiveness (Table 9.1).

There are a large number of ways that a set of ranked or quantitative lists 
may  be  combined  to  generate  a  single  output  for  prioritisation.  The  SUM 
method  was  described  by  Ginn  et al.  in  which  the  rank  positions  of  each 
point in the ranked lists are summed giving a new position.9 The summed 
list is then re-ordered by the descending value of the summed ranks and a 
new ranking given.

Figure 9.2   The potential benefits of conducing a virtual screen over a full biologi-
cal screen is illustrated schematically, with the left-most cylinder repre-
senting the entire set of compounds in a screening library prior to any 
testing. The second cylinder represents a full screening campaign where 
the entire collection has been tested, and the small number of active 
molecules  identified in green. With the knowledge of  the full screen, 
it is now possible to demonstrate what the potential number of active 
molecules would be in the right-most cylinder, a highly unlikely perfect 
separation of active and inactive molecules. The third cylinder, where 
the molecules in the full deck were tested in silico and ranked according 
to the results, represents the virtual screen and only a top slice of the 
ranked list is tested in vitro giving enrichment in active molecules.

Table 9.1   List  of  common  Data  Fusion  rules  applied  to  challenges  in 
chemoinformatics.

Fusion rule Formula

MaX max{S1(dj),S2(dj)…Sn(dj)}
MIN min{S1(dj),S2(dj)…Sn(dj)}
SUM ( )

1

1 n

i jS d
n∑

MeD median{S1(dj),S2(dj)…Sn(dj)}
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9.5   Enrichment
There are many methods to quantify and visualise the output from a similar-
ity search or virtual screen. The main concern when selecting a virtual screen-
ing model to apply to in vitro experiments is the potential for enrichment in 
first 1–5% of  the ranked list. a number of methods have been reported to 
evaluate the enrichments of virtual screens. Some of these enrichment eval-
uation statistics are given below.

9.5.1   Lift Plots
The lift plot, or enrichment curve, is one of the simplest methods by which 
the ability for a virtual screening method to recall active molecules can be 
measured. This is particularly important in early recall, and trivial to under-
stand  and  explain,  making  it  perfect  for  presentations  particular  to  audi-
ences who may not have seen such kinds of results previously.

The enrichment curve is an xy-plot, where the x-axis represents the precise 
number, or percentage, of molecules screened in a database and the y-axis 
represents the precise number, or percentage, of active molecules retrieved 
from that database.

a  schematic  lift  (or  enrichment)  plot  is  given  in  Figure  9.3.  The  x-  and 
y-axes represent the percentage of the total ranked database that have been 
screened and the percentage of active structures identified from that percent-
age of the database, respectively. The perfect separation line is highlighted in 
green, where this would represent that all actives (a) were discovered in the 

Figure 9.3   an enrichment plot demonstrating perfect separation (green line) and 
a typical enrichment rate (blue line), above a random enrichment (the 
diagonal line).
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first a structures in the screened database. The random recall is specified by 
the diagonal line, which indicates that after n% of the ranked database has 
been screened, only n% of  the active structures are  recalled. The diagonal 
specifies a random model that contributes nothing above a random search 
of the entire library. The third trace is an idealised typical virtual screening 
result, indicating the objective of moving as far from the diagonal (random 
recall line) towards the perfect separation line.

9.5.2   Confusion Matrix
The confusion matrix  is one of  the simplest methods of summarising  the 
classification of objects into their observed classes using a predictive model. 
The confusion matrix for two categories, active and inactive structures, rep-
resents  how  well  the  model  has  correctly  classified  the  objects.  The  con-
fusion matrix allows for a much more reliable and detailed analysis of the 
predictive  power  of  a  classifier  than  the  accuracy  of  the  model  (accuracy 
simply  means  the  proportion  of  correct  guesses).  accuracy  is  not  reliable 
in  datasets  where  there  is  an  imbalance  in  the  numbers  of  objects  in  the 
classes. This  is  important as  typically  in drug discovery we have  far  fewer 
actives than inactives.

The  pro forma  confusion  matrix  of  experimental  outcome  versus  pre-
dicted class is given in Figure 9.4. additional statistics can be calculated 
from the confusion matrix using the true positives (TP), true negatives (TN), 
false positives (FP) and false negatives (FN), and these are summarised in 
Table 9.2.

Two of the most important statistical measures of classifier model qual-
ity are sensitivity and specificity. Sensitivity is the measure of the propor-
tion  of  actual  positives  that  were  correctly  predicted  as  such.  Similarly, 
specificity is the measure of actual negatives that were correctly predicted 
as such. a perfect model would have 100% sensitivity and 100% specific-
ity, which means all actives and inactives are correctly predicted as such, 
respectively.

Figure 9.4   The generic confusion matrix for the two-class predictive model against 
experiment (gold standard) and prediction (test outcome). The higher 
the values in the green cells, the better the separation of the positives 
and negatives, whereas higher values in the red cells would represent a 
model of less quality in terms of separating the classes.
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9.5.3   Receiver Operating Characteristic Curves
an alternative  to  the  lift plot, and much more popular  in reporting virtual 
screening  results  for  good  reason,  is  the  Receiver  Operating  Characteristic 
(ROC) curve. again, the ROC curve is an xy-plot, but this time the x-axis rep-
resents the false-positive (1 − specificity) rate, and the y-axis represents the 
true-positive (sensitivity or recall) rate. That is, as compounds are removed 
from the top of the ranked list, the point moves along the x-axis one unit if 
the compound is inactive and one unit up the y-axis if the compound is active. 
The diagonal of the plot represents a random recall of actives and inactives, 
with a line plotting the extreme upper triangle indicating perfect separation 
of the data, and a line plotting the extremes of the lower triangle of the plot 
indicating that all actives were found in the last of the ranked list (Figure 9.5).

The ROC curve was developed during the Second World War by electrical and 
radar engineers  to detect objects  in battlefield situations. The methodology 
was soon introduced to psychological applications to understand how stimuli 
are perceived. ROC curves are now used widely in many sciences, including: 
medicine, radiology, biometrics, machine learning and data mining research. 
One of the early applications of ROC curves in drug discovery was by Triballeau 
et al., where they emphasised its benefits over the enrichment curve.10

9.5.4   Enrichment Factors
another  method  to  summarise  the  results  of  a  virtual  screen  is  called  the 
enrichment Factor (eF). eFs are calculated as the number of experimentally 
discovered active structures in the top x% of the sorted databases of active and 
inactive structures. enrichment factors (eF) after x% of the prioritised library 
are calculated according to eqn (9.1), where Nexperimental = number of experi-
mentally discovered active structures in the top x% of the sorted database, 

Table 9.2   Summary of the terminology of the confusion matrix and the derivation 
statistical measures of quality and their respective equations.

Terminology equation

Positive P
Negative N
True positive (hit) TP
True negative (correct rejection) TN
False positive (Type I error, false alarm) FP
False negative (Type II error, miss) FN
Sensitivity or true positive rate (TPR) TPR = TP/P = TP/(TP + FN)
equivalent with hit rate, recall
Specificity (SPC) or true negative rate (TNR) SPC = TN/N = TN/(FP + TN)
Precision or positive predictive value (PPV) PPV = TP/(TP + FP)
Negative predictive value (NPV) NPV = TN/(TN + FN)
Fall-out or false positive rate (FPR) FPR = FP/N = FP/(FP + TN)
False discovery rate (FDR) FDR = FP/(FP + TP) = 1 − PPV
Miss rate or false negative rate (FNR) FNR = FN/P = FN/(FN + TP)
accuracy aCC = (TP + TN)/(P + N)



Figure 9.5   ROC  curves  in  a  nutshell.  (a)  Theoretical  distributions  of  scores  are 
obtained for both actives (red) and inactives (blue) after processing the 
sample by a suitable computer test. For intelligibility of the figure, it was 
hypothesised that  the scores  for both active and  inactive compounds 
had normal (i.e., Gaussian) distributions, although they are unlikely to 
be so in a usual case. Generally, these distributions overlap, leading to 
false predictions (coloured area). Upon threshold modification (dashed 
line), proportions of such erroneous classifications (reported in a con-
fusion matrix (b)) change dramatically. (c) For all possible score thresh-
olds,  the evolution of  the deduced sensitivity  (Se) and specificity  (Sp) 
is reported on a ROC graph with Se as a function of 1 − Sp. Calculating 
the area under the ROC curve is a practical way to quantify the overall 
performance of the computer test.
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Nexpected  =  number  of  expected  active  structures  in  the  top  x%,  and  Nactive  =  
number of active structures in the whole database:

 
% %

experimental experimental
%

expected active

EF
%

x x

x

N N
N N x

= =
⋅

  (9.1)

enrichment factors are particularly useful in comparing virtual screening 
results on the same datasets, but when applying different virtual screening 
methodologies.  Typically,  in  virtual  screening  studies,  the  eFs  would  be 
reported in the top 1%, 5% and 10% to indicate how far down the ranked 
lists must be travelled to find a suitable number of active structures.

9.6   Summary
Similarity  searching  is  one  of  the  most  frequently  used  methods  in  com-
putational medicinal chemistry applications.  It can be applied  in  the ana-
logue-by-catalogue approach to identify close analogues that are likely to be 
active according to the probe molecule used in the search. analogue-by-cata-
logue is a useful approach to identify follow-up hit matter in hTS-triage and 
will be discussed fully in Chapter 15 (vide infra).

a similar approach to analogue-by-catalogue, but with a different focus and 
ambition, is virtual screening by similarity searching. The objective in similar-
ity searching (which will be discussed later in this book) is, given a database 
of chemical structures and a chemical probe (or multiple probes), structures 
similar  in  the  database  to  the  probe  will  enrich  on  active  structures.  Using 
databases, such as those from hTS screens, it is possible to estimate the perfor-
mance of a virtual screening methodology prospectively by conducting retro-
spective experiments on this database. Once performed, numerous measures 
of  performance  can  be  reported—such  as  lift  plots,  ROC  curves  and  eFs—
which will confer a quantitative measure of the performance of each method.

Similarity searching  is vitally  important  in chemical  information retrieval 
systems,  where  it  must  be  performed  very  rapidly,  often  using  pre-com-
puted  descriptors  or  calculated  indices,  and  also  in  virtual  screening  meth-
ods, where computation time is not necessarily as important as the quality of 
the result. In the latter, it is more important to have reliable enrichments of 
predicted active structures. The balance to be sought here is between speed 
of computation  for  routine similarity  searches and quality of prediction  for  
project-critical virtual screens using similarity searching. however, the objec-
tive should always be towards improving enrichment regardless of application.
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Chapter 10

Bioisosteres and Scaffolds

10.1    Overview
One of the most important aspects of molecular design is the identification 
of appropriate substituents and molecular cores that contribute not only to 
the ligand binding event, but are often also implicated in other properties 
that are important to optimise in drug design. this chapter introduces the 
concept of bioisosterism in chemical structures, which enables the identifi-
cation of functionally equivalent chemical moieties.1 a brief history of bio-
isosterism, tracing its routes to the beginning of the 19th century, will be 
provided. the concept of bioisosteric replacement will be described and how 
it is used in tuning molecular properties that are important for drug design.1 
a subset of bioisosteric replacement, scaffold hopping, will be introduced 
and its importance in drug design placed in context.2 the history of molec-
ular scaffolds in drug discovery will be covered and a selection of popular 
algorithms for their determination for use in computational analyses is pre-
sented. the use of objective and invariant scaffold representations for the 
analysis of scaffold diversity, or otherwise, of databases, such as marketed 
drugs, biologically relevant compounds and screening libraries, will be dis-
cussed and conclusions drawn on the challenges in designing libraries and 
how we may use molecular scaffolds to improve these libraries. Lastly, a brief 
overview of scaffold hopping will be introduced, where the objective is to 
replace the core functional—either for scaffolding or functional interactions, 
or both—elements to modulate different parameters that, for example, are 
important in drug discovery.
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10.2    A Brief History of Bioisosterism
the concepts of isosterism can be traced back to James Moir in 1909.3 how-
ever, it took a further ten years before the subject was given its name, isoster-
ism, by the famous chemist, Irving Langmuir.4 Langmuir took the name 
isostere from the Greek for same (isos) and solid shape (stereos), literally 
meaning the same shape. In his seminal work, Isomorphism, Isosterism and 
Covalence, Langmuir identified isosterism according to the different electron 
configurations in groups of atoms.

Langmuir used the octet rule to identify isosteric groupings of a num-
ber of substances and their measured properties. the octet rule is a rule- 
of-thumb in chemistry that, at least for small molecules (fewer than 20 heavy 
atoms), eight electrons are preferred in the outer shell valence shell of a par-
ticular atom. this relationship was demonstrated by Langmuir to hold true 
for nitrogen and carbon monoxide with regard to their physical properties 
(table 10.1). the same observation was made for nitrous oxide and carbon 
dioxide through application of data from the Landolt–Börnstein tables and 
abegg’s handbook (table 10.2).5

the concept of isosterism was extended by Grimm in 1925,6 extending 
Langmuir’s definition of isosterism through the incorporation of his hydride 
displacement law, thus:

“Atoms anywhere up to four places in the periodic system before an inert gas 
change their properties by uniting with one to four hydrogen atoms, in such a 

Table 10.1    List of isosteres defined by Langmuir in 1919.4

type Isosteres

1 h−, he, Li+

2 O2−, F−, Ne, Na+, Mg2+, al3+

3 S2−, Cl−, a, K+, Ca2+

4 Cu+, Zn2+

5 Br−, Kr, rb+, Sr2+

6 ag+, Cd2+

7 I−, Xe, Cs+, Ba2+

8 N2, CO, CN−

9 Ch4, Nh4
+

10 CO2, N2O, N3
−, CNO−

11 NO3
−, CO3

2−

12 NO2
−, O3

13 hF, Oh−

14 ClO4
−, SO4

2−, pO4
3−

15 ClO3
−, SO4

2−, pO4
3−

16 SO3, pO3
−

17 S2O6
2−, p2O6

4−

18 S2O7
2−, p2O7

4−

19 Sih4, ph4
+

20 MnO4
−, CrO4

2−

21 SeO4
2−, asO4

3−
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manner that the resulting combinations behave like pseudo-atoms, which are 
similar to elements in the groups one to four places respectively, to their right.”

In this work, Grimm, further classified isosteres into two groups: classical 
and non-classical isosteres. Classical isosteres were those chemical moieties 
that included monovalent, bivalent, trivalent, tetravalent, and ring equiva-
lences (table 10.3). the non-classical isosteres included the carbonyl group, 

Table 10.2    experimental data from the Landolt–Börnstein tables and abegg’s 
handbook for nitrous oxide (N2O) and carbon dioxide (CO2).

property N2O CO2

Critical pressure (atm) 75 77
Critical temperature (°C) 35.4 31.9
Viscosity at 20 °C 148 × 10−6 148 × 10−6

heat conductivity at 100 °C 0.0506 0.0506
Density of liquid at −20 °C 0.996 1.031
Density of liquid at +10 °C 0.856 0.858
refractive index of liquid at 16 °C 1.193 1.190
Dielectric constant of liquid at 0 °C 1.598 1.582
Magnetic susceptibility of gas at 40 atm, 16 °C 0.12 × 10−6 0.12 × 10−6

Solubility in water 0 °C 1.305 1.780
Solubility in alcohol at 15 °C 3.25 3.13

Table 10.3    Some examples of classical bioisosteres—
the groups in each row are equivalent.

Monovalent bioisosteres
Oh, Nh
Oh, Nh or Ch3 for h
Sh, Oh
Cl, Br, CF3

Divalent bioisosteres
CaS, CaO, CaNh, CaC

Trivalent atoms or groups

Tetrasubstituted atoms

Ring equivalents
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carboxylic acid, hydroxyl, catechol, halogens, amides, esters, thiourea, pyri-
dine and cyclic versus acyclic groups.

the term bioisosterism was not itself introduced until 1951 by Friedman,7 
where the term broadened out the concept isosterism such that:

“We shall term compounds ‘bio-isosteric’ if they fit the broadest definition for 
isosteres and have the same type of biological activity.”

Clearly, this was a much broader concept than that originally proposed 
and studied by Langmuir, but the introduction of ‘bio’ into the concept nec-
essarily introduces a degree of fuzziness since we still do not yet have a clear 
grasp of many pathways and interactions in the human physiology.

10.3    Bioisosteric Replacement Methods
the identification of appropriate bioisosteres for replacement in a particular 
chemical structure can be achieved using a number of different approaches. 
Broadly speaking, the methods fall into two camps: knowledge-based and 
information-based.

10.3.1    Knowledge-Based Bioisosteric Replacements
Knowledge-based bioisosteric replacement methods include those meth-
ods where bioisosteric pairings have been identified from experimentally 
observed phenomena. the first database of bioisosteres to be compiled and 
distributed is the BIOSter™ database from Ujvary.8 In this database, Ujvary 
has manually curated many thousands of bioisosteric pairings observed in 
the literature. the database from Ujvary is comprehensive and covers the 
past 40 years of literature.

the DrugGuru (Drug Generation Using rUles) system was developed at 
abbott Laboratories as a tool to help medicinal chemists design their next 
synthetic targets, a type of de novo design system. to this end, DrugGuru 
uses a well-curated, albeit only available internally, database of molecular 
transforms for consideration by the chemists in designing their next com-
pounds. Combining the unbiased database of transforms and the intuition 
of an expert medicinal chemist can lead to much better design ideas than 
using either approach alone. the inclusion of various predictive models also 
assists in the generation of new ideas that will progress drug design projects 
much further.

the CheMBL database is the largest publicly available database of 
small-molecule chemical structures and associated biological endpoints. 
Using this database, one can use the matched molecule pair (MMp) con-
cept to identify all chemical structures that differ in only one position. 
Using this concept and associated measured of calculated data, relevant 
MMps can be identified as potential bioisosteres. One system that uses 
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CheMBL and MMps for the identification of appropriate bioisosteric 
replacements is SwissBioisostere, which has been made available at no cost 
online.9

Moving away from observed bioisosteric pairs from literature data and 
biological endpoints, the Cambridge Crystallographic Data Centre (CCDC) 
has used their comprehensive database of small molecule crystal structures, 
the Cambridge Structural Database (CSD), to mine bioisosteric pairs. Impor-
tantly, using the experimentally observed geometric data, the CSD can be 
used to select potential replacements that exquisitely mimic the geometries 
required for protein interactions.

10.3.2    Information-Based Bioisosteric Replacements
Complementary approaches to the database approaches to identify bio-
isosteric pairs are the information-based or descriptor-based methods. 
Descriptor-based methods, while not necessarily as reliable in practice as 
knowledge-based methods due to their lack of experimental evidence, can 
open up the space of available replacements that can be considered exten-
sively and truly look to the future in designing new drugs. the molecular 
descriptor methods available tend to fall into one of four subsets: physi-
cochemical properties; topological descriptors, such as molecular finger-
prints; molecular shape; and protein–ligand environments (although this 
can be seen as a hybrid between knowledge-based and information-based 
methods).

the classical descriptors for identifying bioisosteres are the hammett 
sigma constants, which play a significant role in describing the electron- 
donating or electron-accepting power of potential replacements, and the 
hansch parameter, which is defined as the difference between the octanol–
water partition coefficient (logp) of a substituted molecule and its parent.

One of the most used topological descriptor types for bioisosteric replace-
ment, and indeed scaffold hopping, are the ligand-based topological phar-
macophores. this class of descriptor attempts to characterise potential 
three-dimensional (3D) pharmacophoric representations using atomic 
abstractions into their potential functionality and using through-graph dis-
tances as a surrogate for the through-space distances one would normally 
consider in a 3D pharmacophore system.

One of the first ligand-based topological pharmacophores to be pub-
lished, at least for the identification of bioisosteres, was the Similog descrip-
tor. Similog encodes all atom triplets within a molecule and their shortest 
through-graph distances between each other. the atoms are abstracted 
according to the DaBe scheme: potential hydrogen bond donor; potential 
hydrogen bond acceptor; bulkiness; and electro positivity. each atom is 
therefore represented by a four-bit descriptor describing these three prop-
erties, and the triplet encoded with the distance information into Similog 
fingerprints. Schuffenhauer10 studied this fingerprint in whole molecule 
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similarity searching to identify structurally dissimilar but functionally 
similar molecules, so not strictly speaking a bioisosteric replacement tool, 
but one could see how this could be extended into identifying specific bio-
isosteric replacements.

a similar ligand-based topological pharmacophore is the Chemically 
advanced template Search (CatS) fingerprint, which was developed explic-
itly for scaffold hopping. CatS vectors have been discussed in great detail 
in the earlier chapter on topological descriptors, and the reader is referred 
to that chapter for more details on their construction. In summary, CatS 
vectors represent atoms as abstract pharmacophoric types and all pairs 
of atoms are encoded into the fingerprint with their associated shortest 
through-graph distance between those atoms. the power of CatS, and 
indeed Similog, fingerprints is that they disconnect from the underlying 
connectivity of the molecules under consideration and additionally abstract 
the atoms into generic pharmacophoric features. these approaches there-
fore introduce a level of ‘controlled fuzziness’ to the descriptors to identify 
molecules that are potentially functionally similar, but not necessarily sim-
ilar in structure.

10.4    Scaffold Representations
Not long after Langmuir introduced the concept of isosterism, eugene 
Markush introduced the concept of molecular scaffolds.11 the concept that 
Markush introduced was not truly for reasons of chemistry, but instead to 
assist in the protection of a chemical series of dyes in one of his patent appli-
cations. the Markush structure is now widely used in medicinal chemistry 
patents to protect a chemical series of compounds rather than just a single 
compound. however, the definition of a Markush structure as a scaffold of a 
series is highly subjective and typically the driving factor in the final decision 
is the ability to patent the structure and series: i.e. the Markush structure 
should be specific enough to be patentable, but also sufficiently generic so 
as to maximise the region of chemistry space covered. It should also be men-
tioned, and very importantly, that everything that is patented must be able to 
be synthesised within reason.

the Markush structure, while used effectively in patents and intellectual 
property protection, it is important for computational analyses to define 
objective and invariant approaches to scaffold definitions that can be gener-
ated rapidly, unambiguously and consistently.

the earliest reference to a molecular scaffold, as one might define it today, 
found so far was published in 1969 by reich and Cram12 and is defined as: 
“the ring system is highly rigid, and can act as a scaffold for placing func-
tional groups in set geometric relationships to one another for systematic 
studies of transannular and multiple functional group effects on physical 
and chemical properties.”



Chapter 10118

10.5    Scaffold Diversity Analysis
Scaffold diversity is an important characteristic of a screening library to study. 
the appropriate balance between representing scaffolds and how many rep-
resentatives are required is a difficult one to obtain. Using molecular scaffold 
representation methods, it is possible to identify the level of scaffold diver-
sity available. the task here is to identify the scaffolds that are present in a 
given library using an appropriate scaffold representation method and then 
calculate the frequency of occurrence of each of these scaffolds.

the Molecular Framework representation from Bemis and Murcko was 
one of the early scaffold representation methods to be applied to the under-
standing of scaffold diversity in drug libraries. Bemis and Murcko published 
an analysis of 5120 drugs in 1996.13 the Molecular Framework as defined by 
Bemis and Murcko separates out the ring systems, linkers and side chains 
in molecular structures as defined fragments. the Molecular Framework is 
then defined as the substructure represented by all of the rings and linkers in 
the structure under consideration. a Molecular Framework retains the atom 
labels and bond orders (Figure 10.1e), whereas the Graph Framework is more 
abstract, retaining only the nodes and edges and not further information, 
often represented as a carbon skeleton with single bonds only (Figure 10.1g).

Considering the set of marketed drugs of 5120 unique chemical struc-
tures, Bemis and Murcko identified 1179 and 2506 unique graph and molec-
ular frameworks, respectively. Bemis and Murcko then moved on to analyse 
the distribution of these scaffolds over the set of drugs, finding that 42 of the 
molecular frameworks are each represented in 10 or more drugs, which rep-
resents a total of 1235 drugs, or 24% of all drugs. Furthermore, 1908 of the 
molecular frameworks are represented in a single compound, representing 
76% of the molecular frameworks. this represents an uneven distribution of 
little scaffold diversity in a vast portion of marketed drugs.

Bemis and Murcko extended their scaffold analysis of marketed drugs 
using the graph framework, identifying a similar uneven distribution of scaf-
fold representation. this analysis demonstrates that marketed drugs have a 
small number of highly represented scaffolds and many scaffolds that have 
only one parent molecule represented.

a similar study to that of Bemis and Murcko was conducted by Lipkus 
et al.,14 but this time considering the scaffold diversity of the Chemical 
abstracts Service (CaS) registry. the CaS registry is a far more substantial 
dataset to work with, containing at the time 24 282 284 unique organic mol-
ecules. the Lipkus study again considered the molecular and graph frame-
works, but also considered hetero frameworks (Figure 10.1f), where the atom 
labels are retained, but the bond orders are all set to single bonds. this study 
found 836 708 unique graph frameworks, 2 594 334 hetero frameworks, and 
3 380 334 molecular frameworks.

Considering the hetero frameworks, the Lipkus study considered their fre-
quency of occurrence in the CaS registry. Overall, 75.5% of the structures 
from the CaS registry represented only 5% of the hetero frameworks iden-
tified. this result demonstrated that the database is heavily skewed towards 
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Figure 10.1    the kinase inhibitor lapatinib and exemplar scaffold representations. 
(a) Lapatinib, (b) Markush structure, (c) ring Systems, (d) Maximum 
Common Substructure, (e) Molecular Framework (also known as the 
Murcko Scaffold, or Bemis and Murcko Scaffold), (f) hetero Frame-
work, (g) Graph Framework and (h) the Scaffold tree. reproduced 
from S. r. Langdon, N. Brown, and J. Blagg, Scaffold diversity of exem-
plified medicinal chemistry space, J. Chem. Inf. Model., 2011, 51(9), 
2174–2185.
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a small number of scaffolds that represent a vast proportion of the library. 
Furthermore, taking the top 10 most-frequently occurring scaffolds, it was 
found that just those few hetero frameworks, representing less than one 
thousandth of one per cent of the total hetero frameworks, represented 
12.7% of the whole registry.

While the set of marketed drugs and the CaS registry are clearly good 
datasets to conduct these scaffold diversity analyses, the typical application 
of this type of analysis is to assist in designing more representative screen-
ing libraries. therefore, some work has been undertaken to investigate 
these types of libraries, including the sets from where screening libraries are 
typically purchased, vendor collections. analyses of the more appropriate 
screening-like libraries have also been done using different scaffold diversity 
methods and the results are quite similar to those above.

a scaffold composition study based on Maximum Common Substructures 
(MCS) was carried out on 17 screening libraries taken from 12 different sup-
pliers, giving a total of 2.4 million compounds. the MCSs identified in the 
libraries were categorised as classes if they represented at least two com-
pounds or singletons if they represented only one compound. It was found 
that for all libraries there were more “singletons” than “classes” and that 
the distribution of molecules over “classes” is highly skewed with a few very 
highly populated scaffolds. Several metrics are used to assess the distribu-
tion of compounds over scaffolds in the libraries; these will be discussed in 
more detail in Chapter 11.

One recent analysis of scaffold diversity compared the Molecular Frame-
works from Bemis and Murcko with a scaffold representation based on 
the Scaffold tree work from Schuffenhauer et al.15 this study, by Langdon  
et al.,16 considered a library of marketed drugs, a vendor collection, medic-
inal chemistry structures from the literature (CheMBL), but also an extant 
fragment library and a high-throughput screening library that are used rou-
tinely at the Institute of Cancer research, London. the aim of this study was 
to demonstrate potential issues in using the Molecular Framework represen-
tation and a new scaffold representation algorithm that goes some way to 
reducing certain artefacts of the Molecular Framework representation. the 
main challenge to Molecular Frameworks in this study was that the resulting 
scaffolds retained the vast majority of the parent molecule, and this is some-
what distant from what a medicinal chemist would identify as a chemical 
scaffold. typically, most substituents or functional groups explored in a drug 
discovery project will contain ring systems. therefore, the Molecular Frame-
work would also retain these moieties, which would typically not be retained 
in a medicinal chemistry analysis.

this study reiterated the previous work with both the Molecular Frame-
works and the Level 1 scaffolds. Furthermore, the Level 1 scaffolds demon-
strated even more markedly the lack of diversity of coverage of scaffolds in 
screening libraries. the Level 1 scaffold representation is less granular a 
representation than the Molecular Framework, since it contains less of the 
parent molecule. however, the representation is much more aligned to a 
medicinal chemistry representation of a scaffold.
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the studies above have demonstrated that medicinal chemistry relevant 
libraries contain a very few, but highly represented, scaffolds with a substan-
tial number of singleton scaffolds. Langdon et al. proposed potential reasons 
for the lack of representation of some scaffolds and the significant explora-
tion of others.16 the challenges are most likely a combination of biological 
activity being limited to small regions of the chemical space and synthetic, 
and therefore also commercial availability, accessibility of the scaffolds mak-
ing them less attractive as medicinal chemistry compounds. the synthetic 
tractability challenge may also be due to certain scaffolds offering simple 
syntheses that permit many more analogues to be synthesised during a 
medicinal chemistry programme.

Much work has gone into the generation, analysis and assessment of 
molecular scaffolds in the context of drug discovery. the overlap between 
drugs, bioactive libraries and commercially available screening libraries has 
been analysed by Shelat and Guy.17 this work considered the extent to which 
potential screening libraries have relevance in the biological space. the Shelat 
and Guy study used the molecular framework as their scaffold representation 
of choice and identified that commercially available bioactive molecules have 
a large overlap with scaffolds that are represented in marketed drugs. how-
ever, screening libraries generated using the Lipinski rule-of-five or libraries 
made using diversity-orientated synthesis methodologies represented only a 
small fraction of scaffolds identified in marketed drugs. Drugs and bioactive 
compounds will tend to have similar scaffolds represented in the libraries 
since they are active against the same, well-explored target families. Indeed, 
many of the bioactives have probably been synthesised and tested within the 
medicinal chemistry programme or programmes that eventually gave rise to 
the marketed drug. however, the rule-of-five and diversity-orientated synthe-
sis generated libraries may have activities against those biological targets that 
have not yet been explored significantly, or simply not tested against the more 
established targets. One must remember that absence of evidence does not 
necessarily indicate absence of evidence. that is, one cannot assume inactiv-
ity if the compounds simply have not been tested. therefore, it is important 
to explore these underrepresented regions of chemical space since they may 
bear fruit, but this comes at the cost of typically more complex synthesis, 
further biological testing and the possibility that the endeavour may simply 
fail due to being over-ambitious in exploring these uncharted territories. 
however, this should not dissuade scientists from exploring these spaces, 
but they should to do so with caution and appropriate modelling practices in 
place to maximise the probabilities of success.

10.6    Summary
the identification and appropriate replacements of functional groups and 
molecular scaffolds is an important aspect of rational drug design. however, 
the process by which they are defined and identified is by no means sim-
ple, since there is not really a rigorously definable concept applicable in all 
domains.
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the concept of isosterism and bioisosterism stretches back a century, and 
much research and consideration has been applied to the concept. Many 
tools have been developed that can be used to identify bioisosteric pairs from 
molecular descriptors and by mining chemical databases. While the meth-
ods are by no means perfect, the approaches do offer an opportunity to nar-
row down the space of possible replacements to be considered and therefore 
can provide a much more rational chemistry space to explore through virtual 
library enumeration.

Molecular scaffold representations are similarly challenging to define 
since there is no commonly accepted concept to allow definition. however, 
many different scaffold representation approaches have been published that 
allow for the objective and invariant generation of molecular scaffolds. these 
scaffolds can then be compared directly using a variety of methods to under-
stand the diversity of scaffolds covered, which can assist in library design 
and triaging hit lists from high throughput screening.

Once a scaffold definition can be accepted in the context of a project then 
possible scaffold replacements can be identified using similar approaches 
to identifying bioisosteres—since scaffold hopping is simply a subset of bio-
isosteric replacement.

the methods discussed in this chapter have done a great deal to assist 
medicinal chemistry thinking and decision making in recent times. the 
approaches permit rational thought and assist design teams in prioritising 
the most interesting possible compounds for synthesis. as time progresses 
and methods undoubtedly improve, bioisosteric replacements and scaffold 
hopping will become integral components of the medicinal chemistry tool-
box. however, we are still some way away from this goal and much research 
into the fundamental methodologies is needed to make these methods suffi-
ciently generic for application to new challenges.
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Chapter 11

Clustering and Diversity

11.1    Overview
the number of possible molecules that can be purchased or synthesised 
necessitates the application of methods to rationalise the list of feasible 
solutions to a number that is pragmatic and cost effective, but still gives a 
high chance of success with regard to the ongoing challenges of the thera-
peutic project concerned.

the related approaches of clustering and diversity selection belong to the 
set of unsupervised learning methods. the approaches seek to understand 
the general structure of the data sets under consideration and use that struc-
ture to pre-select clusters of interest or subsets that are representative of the 
data set as a whole.

In this chapter, a number of clustering and diversity selection methods 
will be presented that have been applied in the field of computational drug 
discovery and chemoinformatics.1,2 the types of clustering and diversity 
methods used are illustrated schematically in Figure 11.1: dissimilarity-based 
compound selection, sphere exclusion, clustering and cell-based selection.3 
the emphasis will not be placed on the appropriate molecular descriptors 
that can be used with these algorithms, rather the relative advantages and 
disadvantages of these methods, particularly in terms of the quality of out-
put and computational complexity. For instance, a particular clustering 
algorithm may be highly desirable in terms of the quality of the resultant 
clusters, but may be computationally intractable for even modestly sized 
data sets.
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11.2    Dissimilarity-Based Compound Selection
Sometimes called iterative selection, dissimilarity-based compound selec-
tion (DBCS) algorithms work iteratively. an initial seed data point is selected 
at random or using an heuristic to identify an appropriate starting point, 
such as the minimum average distance from every other point in the dataset 
provided or that is closest to the centre of the data set using an appropriate 

Figure 11.1    Schematic diagrams of clustering and diversity selection methods as 
a structured approach to exploring the data set under consideration. 
Qualitative illustration of different diversity selection algorithms. (a) 
Minimising mean pairwise similarity (MpS) using a dissimilarity-based 
compounds selection (DBCS) method. (b) Sphere exclusion. (c) Clus-
tering. (d) Cell-based selection.
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criterion. the algorithm then proceeds to select subsequent points from the 
data set based on a particular scoring function.4

subset = []
subset = database[i]
for i = 1 to n
calculateSimilarity(subset, database)
append subset maximumDissimilar(subset, database)

Algorithm 11.1  pseudocode of the maximum-dissimilarity selection method using 
a dissimilarity-based compound selection algorithm.

a number of different algorithms for selecting the next compound in a 
DBCS algorithm have been proposed, including MaxMin and MaxSum. Max-
Min scores each potential new compound to be selected by finding the clos-
est compound that has the highest dissimilarity to it; i.e. the next compound 
to be selected will have its nearest neighbour as the most distant to it when 
considering all of the other points for selection. MaxSum, however, selects 
the next compound based on the sum of distances between the compound 
being considered and the subset so far. the compound with the maximum 
sum of distances will then be selected. the equations for the scoring func-
tions of MaxMin and MaxSum are given in eqn (11.1) and (11.2), respectively.

MaxMin : scorei = minimum(Dij) (11.1)

MaxSum score: i
j

m

ijD=
=
∑

1

 (11.2)

One potential limitation of applying the DBCS diversity selection approach 
is that the computational complexity is O(n2N), where n is the number of 
molecular structures to be selected and N is the size of the total dataset from 
which the subset is to be selected. however, O(nN) algorithms have been 
reported for both MaxMin and MaxSum, which makes these approaches 
highly appropriate for clustering and diversity selection. While the applica-
tion to diversity selection is obvious, the application to clustering is perhaps 
not so apparent. Once a diverse subset of a certain size has been selected, the 
diverse subset can be seen as a set of cluster centroids that cover the large 
space. Once the centroids have been defined, it is trivial to then extend each 
centroid in turn by incorporating neighbouring molecular structures to be 
subsumed into the cluster represented by that centroid. this can then be 
iterated until all molecular structures are contained within a cluster or they 
are so distal to other clusters that they form their own cluster, a singleton.

MaxMin and MaxSum operate in different ways that can give very different 
results that may be desirable or undesirable depending on the application of 
the algorithms. MaxSum tends to pick subsets that represent the extremities 
of the space being considered, whereas MaxMin, although it begins similarly, 
will eventually begin to fill the gaps between the points and represent the 
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space in a more balanced distribution. therefore, MaxSum might be appro-
priate for sampling the limits of the space under consideration and MaxMin 
is more appropriate when the objective is to identify a representative subset 
over the whole space.

11.3    Sphere-Exclusion
While DBCS algorithms were initially designed solely for diversity selection, 
the algorithm may also be applied as a clustering algorithm. By specifying the 
number of desired clusters using a heuristic, the diverse points can be used 
as the cluster centroids. each cluster can then be expanded from the centroid 
using a simple neighbourhood metric based on the original descriptors used 
in the algorithm. those data points that are closer to one cluster centroid 
than another will be selected to be absorbed into that cluster. this approach, 
implemented in pipelinepilot’s Cluster Molecules component, is very cost 
effective compared with clustering algorithms that do not scale well, but this 
speed increase comes at the expense of the quality of the resultant clusters.

Sphere exclusion tends to start from the centre of the space under con-
sideration and expand outwards, making the method more representative 
of the overall space than the DBCS algorithms above. however, what sphere 
exclusion gains in representation, it can suffer in diversity.

11.4    Cell-Based Diversity Selection
In contrast to the distance-based (or dissimilarity) methods of the DBCS 
approaches above, cell-based selection uses a property space discretised 
into bins (in one-dimension), cells (in two-dimensions), volumes (in three- 
dimensions), and hyper-volumes (in greater than three-dimensions). the prop-
erties selected for cell-based selection, as for all of these methods, should be 
appropriate for the problem that is being addressed. For example, if you had a 
large number of ‘hit’ compounds around a common scaffold then you might 
consider taking a subset that covers the molecular weight range to effectively 
sample the space covered by the available structures rather than over-represent 
those structures closer to the mean of the property being considered.

In the molecular weight example described above, the problem can be 
addressed by simply discretising the molecular weight into bins of, say, 50 
daltons in size. Structures can then be selected from those falling into each 
bin according to the one, for example, that is closest to the centre of that bin.

an advantage of using cell-based diversity selection methods is that it is 
not necessary to calculate the distance or dissimilarity between each struc-
ture in your dataset. While relatively trivial in computation for low-dimen-
sion selections, this still requires n(n − 1)/2 relative calculations, therefore 
O(n2), where n is the number of structures being considered. this permits 
the consideration of much larger datasets than may be otherwise analysed, 
such as those coming from commercial vendors. Furthermore, you may also 
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increase the speed of calculation in higher-dimensional spaces, such as 
molecular fingerprints, by using a dimensionality-reduction method such as 
principal Components analysis (pCa) or Multi-Dimensional Scaling (MDS), 
with awareness of the concomitant reduction in resolution of data space.

another advantage of cell-based diversity selection methods is that they 
represent evenly the entirety of the space under consideration, including 
those cells that are under-represented. In certain circumstances, you may 
be interested in both low-occupancy cells and high-occupancy cells. In low- 
occupancy cells, these compounds (similar to singletons in clustering) may 
be interesting because they cover underexploited chemistry space. however, 
one must express caution in these low-occupancy cells since the reason may 
simply be that the synthesis is challenging and therefore more difficult to 
conduct an analogue-by-catalogue search and follow-up synthesis. the 
low-occupancy cells may though offer interesting structures since they are 
therefore, by definition, under-explored in medicinal chemistry projects. 
high-occupancy cells may also be of great interest since they offer rapid follow- 
up in terms of analogue-by-catalogue searches because structures are likely 
to be readily available from compound vendors. the availability may also 
reflect the ease of synthesis and therefore facilitate rapid synthetic follow-up 
to test specific hypotheses: a key element of early stage drug design.

11.5    Hierarchical Clustering
perhaps the most effective way to both find natural groupings of molecular 
structures and identify diverse subsets over a whole space is to use a clus-
tering algorithm. however, clustering algorithms are typically very computa-
tionally intensive and this must be taken into account when clustering large 
datasets with many descriptors.

Cluster analysis aims to partition a large number of points into natural 
groups, where points within the groups are more similar to ones outside the 
group. Once clustered, the data has additional metadata concerning its clus-
ter membership and this can be used to select individual clusters for spe-
cific analysis or select a representative or representatives from each cluster 
as members of a diverse subset. Clustering can also be useful for identifying 
singletons that may require specific analyses or perhaps discarded since they 
do not offer a great deal in terms of information and potential to explore 
structure–activity relationships.

to conduct a cluster analysis, it is important to first select and calculate 
the descriptors appropriate for the analysis. For instance, if the objective 
were to identify structurally similar molecular structures within clusters, 
it would not make much sense to use physicochemical descriptors. Once 
the descriptors are calculated, it is then necessary to calculate the pairwise 
similarity or distance matrix. this step is important since many compari-
sons will be made and it is much faster to have these calculated and avail-
able in a look-up matrix rather than re-calculated every time the comparison 
is required. additionally, some consideration of the similarity or distance 
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measure used should be made to ensure artefacts do not appear in the final 
clustering. here, only non-overlapping clustering methods will be consid-
ered, where each compound is assigned to only one cluster. typically, one 
of two clustering methods is applied in chemoinformatics: hierarchical or 
non-hierarchical.

agglomerative hierarchical clustering is one of the most common cluster-
ing algorithms and begins with all compounds as individual clusters. the 
two most similar clusters (or singleton compounds) are then merged into a 
single cluster. the algorithm then iterates, identifying the two most similar 
clusters at each iteration and merging them. there are a number of different 
methods of identifying the similarity of clusters. Single linkage, or nearest 
neighbour, clustering calculates the minimum distance between two com-
pounds, one from each cluster. Conversely, complete linkage, or furthest 
neighbour, calculates the furthest distance between two compounds, again 
one from each cluster. By far the most computationally intensive, although 
arguably more appropriate, is the group average method, which calculates 
the cluster similarity based on the average of the all-by-all distances between 
each compound in both clusters. One more approach that is often used, par-
ticularly in chemoinformatics, is Ward’s method.5

Ward’s method forms clusters so as to minimise the total variance in the 
resulting cluster, also known as the minimum variance method. the variance 
of a given cluster is calculated by the sum of the square of deviations of each 
compound from the cluster mean. the algorithm proceeds by identifying 
the two clusters to merge that result in the smallest change in total variance.

Divisive hierarchical clustering takes the opposite approach, by starting 
with all compounds in one cluster and iteratively partitioning the sets until 
all clusters contain only one compound. Divisive hierarchical clustering 
often results in poorer clusters than identified when using agglomerative 
methods. however, the divisive approach permits the user to terminate the 
algorithm when the requisite number of clusters is met, which is often typi-
cally small. this can make the calculation of the clustering much faster.

Once a hierarchical clustering analysis has been conducted, it is important 
to decide at which point in the hierarchy to define the optimal set of clusters, 
a stopping rule. the most common stopping rule applied in chemoinformat-
ics is called the Kelley function. the objective of the Kelley function is to 
optimise the balance between the number and the spread of the clusters.6 
the optimal number of clusters is the one given by the smallest Kelley value.

11.6    Non-Hierarchical Clustering
In contrast to hierarchical clustering, non-hierarchical methods assign com-
pounds to clusters with no formation of a hierarchical relationship between 
the clusters. the most common non-hierarchical clustering algorithm used 
in chemical structure analysis is the Jarvis–patrick method.7 the Jarvis–patrick 
clustering algorithm requires two integers to be defined to determine cluster 
placements: m, nearest neighbours, and p, nearest neighbours in common. 
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two compounds are put into the same cluster if they are contained in their 
respective lists of m nearest neighbours, and they have p nearest neighbours 
in common. empirically derived typical values the parameters are m = 14, 
and p = 8. Jarvis–patrick can suffer from disparity in identifying small num-
bers of large clusters and large numbers of singletons. however, additional 
parameterisation, such as a similarity cut-off above which to define nearest 
neighbours, can assist in removing the tendency to identify both large and 
small clusters.

another clustering algorithm that is popular in chemistry applications is 
k-means clustering. k-Means is a type of relocation clustering method.8,9 an 
initial number of clusters is defined, c; typically this is defined as √(n/2) as a 
rule-of-thumb, where n is the number of objects in the entire dataset being 
clustered. the initial seeds are typically selected at random or can be selected 
using a greedy initialisation heuristic. the remaining compounds in the set 
are then assigned to each of the c clusters, according to the initial seed that 
is closest to it. Once the first pass has been conducted, the cluster centroids 
are calculated for each cluster, c. each point is then reassigned to the closest 
cluster centroid. this process is repeated until there is no change in cluster 
allocations or a termination condition is met, such as a maximum number 
of iterations. It is especially important in k-means clustering to identify the 
level of sensitivity to selecting the initial random cluster seeds, since these 
seeds can lead to very different clustering. however, in practice, k-means 
offers a computationally inexpensive clustering algorithm that has found 
widespread use in drug discovery.

11.7    Summary
a wide range of clustering algorithms and diversity selection methods have 
been investigated and reported in the literature. as with many challenges in 
the field, there is no single, right answer for every occasion. arguably, the 
hierarchical cluster algorithms provide the preferred clustering, not least 
because the algorithms result in a defined hierarchy of cluster relationships 
that can be adjusted as required. however, what they offer in refinement of 
result they lack in the speed at which they can be calculated. Conversely, the 
non-hierarchical methods tend to be rapid in calculation, but can suffer in 
quality of output and they do not offer the power of hierarchical methods in 
selecting different levels of clusters.

the methods reported in this chapter offer solutions to generate appro-
priate groupings of molecules in a dataset, clusters, and for diverse subset 
selection. It is important to appropriately identify the molecular descriptors 
to be used, the measure by which their similarity (or distance) is calculated, 
the clustering algorithm to apply, and lastly how to apply the results to the 
challenge at hand. If the requirement is to find delineated clusters that can 
be considered for further analysis then one of the hierarchical methods is 
most likely preferred, but can be time consuming. Similarly, to select diverse 
subsets it is important to understand what is meant by diversity. Diverse sets 
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could be the ones that cover the extremities of the space or that distribute 
evenly over the entirety of the space. as with all modelling methods, it is 
important to understand the application prior to selecting the algorithms 
and other methods since the potential application will affect these decisions. 
If possible, multiple methods should be used and, importantly, the results 
visualised to identify whether ‘natural’ clusters are being identified. While 
it would be nice to have a generally applicable clustering or diversity selec-
tion for all applications, this is wishful thinking and it is still necessary, even 
given the considerable amount of research in this area, to fully consider the 
range of approaches and desired outputs.
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Chapter 12

Quantitative Structure–Activity 
Relationships

12.1    Overview
It might seem obvious to us today that the physiological action of a sub-
stance is related to its chemical structure; this is the foundation of the similar- 
property principle after all. however, what might be more surprising is that 
this observation was first made in 1868 by two leading natural scientists in 
Scotland, alexander Crum Brown and thomas r. Fraser.1 essentially, this 
relationship could be defined as:

Φ = f (C) (12.1)

where Φ is the physiological action, or biological activity, and C is the chem-
ical constitution or chemical structure. It is clear that Crum Brown’s work 
in atomistic theory and the chemical structures of compounds would have 
influenced his thinking in understanding these structural relationships.

Based on the principle from Crum Brown and Fraser, a Quantitative Struc-
ture–activity relationship (QSar) is a mathematical model with some asso-
ciated predictive error.

12.2    Free–Wilson Analysis
Much later than Crum Brown and Fraser, Free and Wilson described their 
later eponymous methodology (Free–Wilson analysis) for understanding 
the quantitative contribution that groups or other structural elements could 
make to a common parent structure.2 While this was very popular at its 
time, and is still applied successfully today, the model assumes that group 
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contributions are linear in nature and do not offer any so-called superaddi-
tivity, where the groups individually are greater than the sum of their parts, 
or indeed weaker in many cases. the linear contribution is due to Free– 
Wilson analysis only considering the presence or absence of groups and not 
their potential in combination. Free–Wilson analysis uses statistical regres-
sion methods to generate models that are fragment-based, or more properly 
group-contribution generated.

In Free–Wilson analysis, the group contributions are non-overlapping, but 
the fragment contributions may also be overlapping. this type of group-con-
tribution QSar can be seen in application in a wide range of physicochemi-
cal property QSar, such as many of those for calculated logp.

12.3    Hansch–Fujita Analysis and Topliss Trees
Corwin hansch and toshio Fujita developed one of the first logp calculators 
that was based on empirical data.3–5 hansch analysis subsequently demon-
strated the importance of the logp partition coefficient in drug discovery.

an alternative, and arguably more interpretable, modelling method was 
introduced by John topliss based on hansch analysis.6 here, the decision 
on what to synthesise next could be made by deconvoluting what is most 
likely to allow the biological activity to increase based on the probability of 
what modification will lead to an improvement in the property under opti-
misation. topliss used the hansch analysis approach to understanding 
the relative potencies of r groups according to three properties: electronic, 
hydrophobic and steric.

the topliss tree has recently been extended using the CheMBL dataset to 
Matched Molecular Series, where series of modifications have been extracted 
from published data and the equivalent of topliss trees generated to suggest 
modifications that may be of benefit.7

12.4    QSAR Model Generation
Many ways have been published by which one can generate an appropriate 
QSar model and assess its suitability to be used prospectively. after all, the 
point of a model is to inform on the information that can be garnered from 
your dataset, a diagnostic model, or generate appropriate predictions that 
help make decisions on a project, and understand the extent to which those 
predictions can be trusted.

a general process to generate a QSar model in practice is given in Figure 12.1. 
the workflow starts from the original dataset of chemical structures and 
the experimental readout of interest, often the biological activity, called the 
dependent variable, the one variable that is being modelled. the descriptors 
calculated from the chemical structures are referred to as the independent 
variables.

One of the most important steps in generating QSar models is the pro-
cess by which the dataset is split into modelling (both training and internal 
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modelling) sets and external test sets. It is imperative that an appropriate 
modelling methodology is applied and clearly articulated in any scientific 
communication allowing not only for reproducibility, but also to understand 
what potential limitations there may be in the approach used.8 an example 
of the QSar modelling workflow, including the separation of training set, 
internal and external test sets, and associated tasks is given in Figure 12.2.

Qualities that are desirable in partitioning training and test sets are as 
follows:

1.  the distribution of activities in training and tests should be similar.
2.  the training set itself should be distributed within the chemical space

of the dataset distribution.
3.  all points in the test set should be contained within the applicability 

domain defined by the training set, at least in the entire descriptor space.
4.  Ideally, each point of the training set should be close to at least one

point of the test set.

Figure 12.1    examples of the topliss trees from his original paper. reprinted with 
permission from J. G. topliss, Utilization of operational schemes 
for analogue synthesis in drug design, J. Med. Chem., 1972, 15(10),  
1006–1011. Copyright 1972 american Chemical Society.
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When dealing with small datasets, as is often the case, it can be difficult to 
partition sufficient data into the respective training and test sets, and here 
is where pragmatism may come to the fore. One approach may be to remove 
the requirement to have an internal test set altogether, although not neces-
sarily desirable sometimes the data do not allow for this additional complex-
ity. In situations where the dataset is very small, it is often desirable to utilise 
multiple train and test set partitions and generate multiple models. this is 
due to the sensitivity of the modelling methods in terms of their respective 
partitioning and therefore leading to vast discrepancies in statistical param-
eters representing the quality of your models. Indeed, you may also want to 
include multiple representatives of these models in your final model set due 
to these same reasons.

Figure 12.2    typical QSar model generation, internal validation, external valida-
tion, and experimental validation workflow.
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an extension of investigating multiple training and test set partitions is to 
use both multiple descriptors representations and multiple supervised sta-
tistical learning algorithms, and also combinations of these.

the number of ways of partitioning a set of objects into two or three dif-
ferently sized sets is fraught with risk. activity-based training and test set 
partitioning would take the activity data being modelled, order the data by 
those activity measurements and select every nth activity value to go into a 
particular. For example, you might require a training set of two-thirds of the 
overall dataset and the remaining third in the external test set. therefore, the 
first and second compounds would be selected for the training set, the third 
for the external test set, and iteration over this procedure until the end of the 
set is reached. this is often used when the dynamic range of the activity data 
is quite wide and therefore prone to issues in the quality of predictions on 
the external test set due to an imbalance of the activities, and therefore likely 
to not be modelled well due to this imbalance also being represented in the 
training set. In other words, the model that has been generated may contain 
a lot of data about inactive compounds, but little about active compounds. 
therefore, the model may be prone to inappropriately predicting the entire 
external test set as inactive because it does not have sufficient data to predict 
for actives.

as an alternative to using the activity, or measured data above, the selec-
tion of the training and test partitions can be achieved by considering the 
chemical structures in the dataset. the hypothesis here is that the coverage 
of the structural space will be more representative in the resulting partitions, 
and it is therefore more likely that the predictions will be more reliable since 
the entirety of the domain under consideration will be represented in both 
sets. however, one issue that may arise with this approach is that islands of 
chemistry space may not be represented in the external test set and these will 
reveal poor predictions.

Coverage of the chemistry space distribution can be achieved through 
using many of the unsupervised learning methods described previously, 
such as clustering. Further methods have been reported in the literature 
and the interested reader is especially directed to some of the many recent  
articles on good modelling practice.

12.5    Feature Selection
It is important to identify the appropriate set of molecular descriptors to 
use in model generation. typically, a number of camps exist that prefer 
one method to another. however, one should investigate the statistical 
learning community to understand where certain approaches can be used 
to benefit. the statistical learning community refer to feature selection to 
mean what we may intend by variable or descriptor selection, and there are 
very many methods by which one can select some number of n descriptors 
from a set of N as it suffers from combinatorial explosion in most practical 
cases.
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Feature selection can be applied for a number of reasons in the genera-
tion of a QSar model. One of the most compelling reasons reported in the 
QSar community is that appropriate feature selection leads to more inter-
pretable models, which we will discuss more fully below. another key point 
is that feature selection may simply be necessary to make model training 
or learning, and typically to a lesser extent application, faster in execution. 
however, in the age of Big Data and Deep Learning, and their associated 
algorithms, renders most of the modelling experiments you would want 
to perform achievable with a typical desktop computer. however, simply 
because one can do something, it does not follow that one must or even 
should—the foundation of hypothesis-driven science. there are many vari-
able selection methods used in chemoinformatics, and even more in the 
field of statistical learning, but a few are provided below that are commonly 
applied.

One of the commonly reportedly methods for variable selection in the 
beginnings of QSar was to select descriptors whereby they mean something 
experimentally and can be measured or modelled, as in one of the first uses 
of Clogp. this variable selection method is highly intuitive, but can lead to 
models that are not very predictive, especially when the model and the struc-
tures being predicted are unsuitable for the calculated properties. however, 
the interpretability of a QSar model should not be underestimated and can 
be highly effective in certain cases. having said that, though the calculated 
physicochemical properties can offer additional limitations in this, since it is 
not actually that simple to deconvolute what the, e.g. group contributions in 
Clogp actually contribute and if this is chemically meaningful (Figure 12.3). 
this can be seen as simply introducing another level of indirection from real-
ity, but with the comfort of ‘knowing’ what the descriptors on which the new 
model is generated mean.

another popular approach to variable selection, the Greedy Forward Selec-
tion approach, is also common amongst scientists from the philosophy of 
less complex and, assumedly, more interpretable models. here, the algo-
rithm will often begin with a one or a few ‘orthogonal’ descriptors from the 
set available and evaluate the quality of the resultant model. therefore, the 
likely high number of model evaluation steps can often lead to very substan-
tial calculations and subsequent runtimes, unless appropriate pragmatic 
heuristics are used. Similarly, Greedy Backward elimination uses a greedy 
algorithm by removing potential descriptors from the larger set, which could 
lead to even longer runtimes if model evaluation is strongly dependent on 
the number of descriptors used.

Common heuristics used in the greedy variable selection methods are 
also manifold, but oftentimes, simple correlation values are used between 
descriptors. For example, many implementations of calculated logp may be 
available in a given software package and it is unlikely to add much value to 
include all of them. here, one could simply discard all but one of the logp 
calculators. this would tend to be a more manual step, as reported by paul 
Labute, where a handcrafted set of descriptors was optimised to be applicable 
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to different challenges, including only descriptors that could be readily cal-
culated from connection table representations, including: atomic contribu-
tions to van der Waals surface area, logp (octanol/water), molar refractivity 
and partial charge.9

the last variable selection to be considered here that is widely used in 
QSar is using a Genetic Algorithm (Ga), a population-based natural heuris-
tic optimisation algorithm developed as an analogue of Darwinian evolu-
tion in nature. here, subsets can be selected from the entire set, and each 
subset represented as a chromosome. a population of chromosomes can 
be generated, evaluated in terms of the selected optimality criterion, or  
fitness function, and sampled according to how optimal each chromosome is. 
Once sampled according to the fitness function, analogues of recombination 
(called crossover) and mutation are applied, theoretically to take advantage 
of the genetic material present in the population and introduce limited new 
genetic information, respectively. the Ga approach has been used widely in 
this field, and many others, and has been shown to be competitive in rapidly 
identifying globally optimal solutions.

as mentioned, many other feature selection algorithms are available, and 
likely yet to be designed, and the challenge is not a solved problem.

Figure 12.3    the trade-off surface between interpretability and predictivity in pre-
dictive modelling. as the models become simpler—simple modelling 
methods and descriptors—the models themselves become easier to 
understand, but less predictive: models in the diagnostic mode. as 
the models become more complex—complex modelling methods and 
descriptors—the models themselves become better at predictions, but 
it is less easy to interpret what the predictions mean: models in the 
predictive mode.
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12.6    Methods for Estimating Model Validity, 
Predictive Power, and Applicability Domains

One of the key advances made in more recent times is the realisation that 
models do not necessarily help you if you apply them blindly and without 
consideration for the dataset, the molecular descriptors used, and the sta-
tistical learning method used to generate the classification or regression 
models.8

the dataset is important to consider, as it will have many different vari-
ables. the sheer size of the dataset will indicate from the start the ability of 
any model you may be able to generate and whether it is worth trying to build 
a model at all. One has to consider that for good modelling practice, you 
must have at least an external test set partition, and preferably an internal 
one too, to develop an understanding of whether the model is of any quality. 
relying on internal model statistics of predictive power is not sufficient in 
and of itself—e.g. the Kubinyi paradox.

there are many measures of both internal and external model suitability 
that have been reported in the field, far too many to cover in any great detail 
here. the essential measures are introduced below with brief descriptions as 
to how they may be applied appropriately to critically analyse QSar statisti-
cal models.

the coefficient of determination, R2 or r2, pronounced R-squared, is the 
workhorse of QSars and statistical learning in general. the R2 parameter 
indicates how well correlated, or otherwise, a particular model is, and it is 
based on the observed versus predicted values, those as predicted by the 
model. there are a number of definitions that are used in the field, but to 
maintain simplicity, we will refer to the R2 here as equivalent to the square 
of the pearson correlation coefficient between observed and modelled data 
of the dependent variable, in our case most often the biological activity. In 
linear least squares regression this is with an estimated intercept term. the 
R2 takes the range −1 to 1, representing anti-correlated and correlated, with 0 
indicating decorrelated points.

the cross-validation version of R2 is called q2 and is calculated in the 
same way, but this time it represents the predicted values for each one of 
the predicted versus measured points when cross-validation is used. Cross- 
validation is a simple, and often flawed, measure of predictive power that 
iteratively removes some portion of the dataset being modelled, adjusting 
the model appropriately, and predicting for the removed points. Leave-
one-out (LOO) cross-validation was used most often in the past, where 
only one point is removed at each iteration of the cross-validation and the 
model updated, but this has been identified to not reflect the predictive 
power of the model since the removed subset size of one has very little 
effect and is often supported by nearest neighbours. extensions to LOO 
cross-validation consider n-fold cross-validation or leave-many-out (LMO). 
In n-fold cross-validation, a proportion of the dataset is removed as before, 
but this portion is more of the order of 10–15% of the dataset. With n-fold 
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cross-validation, the effect on the model of the removed points is more 
marked and can highlight if the model is over-trained to the training set. 
however, this is still an estimate of the correlation between measurement 
and prediction. the next test is to calculate the same statistical measure 
on the internal and external test sets to get a truer consideration of the 
predictive power. however, this is still limited to the planned utility of the 
QSar model.10–13

R2 is highly used, perhaps over-used, in QSar models, but it should be 
clear that it offers a very global statistic that can lead to misinterpretation of 
the model quality. For instance, many distributions can offer the same indi-
cation of quality that may not be reflected uniformly over the data. Further-
more, the dynamic range of the data can affect the quality of the model. If the 
data range is too wide then the R2 may appear high, and indeed is high, but 
the R2 at the area of interest, often at the submicromolar level, may not allow 
a decision to be made rationally because of limited information regarding 
the R2 of the model at that level, and therefore any point may be selected with 
undefined confidence.

the highlighted issues with just using R2 in estimates of model quality 
require consideration of the error of the model in terms of the differences 
in each of the predictions and the measured data. therefore, the root-mean-
square errors of estimation (rMSee) and prediction (rMSep) can be used 
to inform more on the quality of the residual errors between measured and 
predicted data.

12.7    Automated Model Generation, Validation and 
Application

Much effort has also been expended on automatic generation and validation 
of models: autoQSar14 and DiscoveryBus.15 typically, these were intended 
as temporal models, being updated over time and as new data became avail-
able. these systems are now quite commonplace in large pharmaceutical 
and some smaller biotech companies, but as always caution should be taken 
when applying and interpreting the models.16

these automated model generation and validation systems have been 
shown to be of great importance to the field, but regular checks of data 
quality, changes in assay conditions, etc. can all lead to issues when apply-
ing them. additionally, the models generated may start occupying different 
regions of chemical space, or more densely representing the same spaces 
considered previously, a form of positive reinforcement. therefore, careful 
consideration of the applicability domains of the models and where your 
predictions lie is important.

the field has now reached a point where the automated model genera-
tion, validation and application stages can be achieved using a range of off- 
the-shelf application program Interfaces (apIs) available for many languages, 
either implemented directly in that language or with a wrapper implemented 
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to facilitate the use of the functionality in different languages to the ones in 
which they are natively implemented. a combination of rDKit (http://www.
rdkit.org), a chemoinformatics apI made open source by Greg Landrum 
at the Novartis Institutes for BioMedical research, and scikit-learn (http://
scikit-learn.org), now readily permits the implementation of relatively sim-
ple, and vastly more complex, workflows in python. rDKit can be used, as 
in many other applications discussed in this book, to calculate molecular 
descriptors, such as Morgan fingerprints, to enable the generation of appro-
priate variables for machine learning applications. the scikit-learn apI, a 
combination of Numpy, Scipy and matplotlib, can take care of the remainder 
of the machine learning, such as partitioning of the datasets, treatment of 
the data, generation of models, and calculation of the appropriate statistical 
measures that permit for an appropriate leave of validation: internal, exter-
nal and prospective. In addition, scikit-learn offers not only the supervised 
statistical learning methods discussed in this chapter and previously, classi-
fication and regression, but also unsupervised methods, such as clustering 
algorithms.

12.8    Summary
QSars and other predictive models have a long history in drug discovery 
and design, going back a century and a half to the pioneering work of Crum 
Brown and Fraser. With the advent of computers that slowly became avail-
able to scientists in the 1950s and 1960s, more analyses could be conducted 
and models generated. this work extended with much pioneering work on 
QSar equations, model generation and validity testing, which is still ongo-
ing to the present day. the main inflection point for QSar and its use in 
active research was with the work of hansch and Fujita, which led to a wide 
range of applications and developments over the past fifty years.

One of the main challenges in QSar methods is the understanding of 
when and where you can use a model reliably and with appropriate measures 
of the reliability. the challenge of model reliability only became apparent 
relatively recently in the significant sense and has had a profound impact 
on the use of QSar in drug design over the past twenty years or so. It was 
once thought that the internal prediction quality measures were sufficient 
and many models were published that offered these as the only improve-
ments. Indeed, models began to be more predictive and with less error than 
the experimental data on which they were trained. Clearly, this was a water-
shed moment in QSar, and all statistical learning methods, considering how 
we use these models. thankfully, many scientists have tackled these chal-
lenges and much advice has been offered to the community. this advice will 
undoubtedly continue, but already we can see much more reliable models 
being generated and applied, and it is now often a requirement for a journal 
publication to include experimental validation of the model predictions—
truly the acid test.
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CHAPTER 13

Protein–Ligand Docking

13.1    Overview
Protein–ligand docking is a commonly used method to predict the likely 
binding mode of a ligand in a protein-binding site. Given a particular ligand 
and an extracted binding site, the algorithm explores potential binding 
modes through rotation and translation in three-dimensional space, and 
then scores each pose identified for suitability. Various docking algorithms 
can additionally consider ligand and even protein flexibility.

There is a wide range of methods to search the space of potential bind-
ing modes in ligand docking and some of these approaches are introduced 
in brief. The second aspect of protein–ligand docking to be introduced, 
and the most challenging to perfect, is the scoring function, the method by 
which binding poses are scored. More in-depth information is given on one  
protein–ligand docking algorithm that has been applied and validated exten-
sively in retrospective and prospective studies.

13.2    Search Algorithms
Docking methods can be classified into three distinct types of varying com-
plexity. The first is rigid docking where both the ligand to be docked and 
the binding site are rigid. Although this is limited, since no account of flex-
ibility of the system is considered, typically multiple pre-generated con-
formers are used to overcome this problem. The second type of docking 
algorithm includes optimisation of both the rotation and translation in three- 
dimensional space for the ligand, as with rigid docking, but also explores mul-
tiple conformers on-the-fly as part of the search and optimisation process.
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The last type of docking approach introduces protein flexibility into the 
method. One approach, called flexible side-chain docking, as expected allows 
the side-chains of the amino acid residues to move during optimisation, while 
maintaining the rigidity of the alpha carbon backbone of the protein. Alter-
natively, implicit flexibility can be introduced with the addition of multiple 
crystal structure conformations, where available, in a process called ensem-
ble docking. The results of ensemble docking can then be combined using 
consensus scoring (or data fusion) to permit the prioritisation of results.

Docking has been applied successfully in virtual screening to identify poten-
tial hits that can then be tested. These hits can come from a large screening 
library of real samples, or from the virtual space of potential ligands. In the 
case of virtual ligands, oftentimes the library will be a focussed one around 
the scaffold of interest and docking is used frequently in lead optimisation.

13.3    Scoring Functions
Many different scoring functions have been developed to improve the accu-
racy of docking algorithms.1,2 Although none works perfectly, judicious selec-
tion of an appropriate scoring function can improve the quality of results in 
particular domains. The scoring functions that have been developed typi-
cally fall within one of four specific categories: force field; empirical; knowl-
edge-based; and consensus scoring. Many more recent docking algorithms 
also allow the user to define their own scoring function.

Force field scoring functions are a composition of the ligand binding 
energy and the interactions with the protein. GOLDScore is the default scor-
ing function in GOLD and is made up of four components: protein–ligand 
hydrogen bond energy (external H-bond); protein–ligand van der Waals (vdw) 
energy (external vdw); ligand internal vdw energy (internal vdw); and ligand 
torsional strain energy (internal torsion).

ChemScore, also available in GOLD, is a scoring function using hydrogen 
bond energies, atomic radii and polarisabilities, torsion potentials, hydro-
gen bond directionalities, etc. However, ChemScore is derived empirically 
based on a regression model of these parameters with binding affinities from 
82 protein–ligand complexes. It is not clear whether ChemScore is superior 
to GOLDScore, but since its objective is to model measured binding affinity, 
it is anticipated that the values will be more directly comparable.

For knowledge-based scoring functions, it is typical to extract structural 
information from the complex of the protein and the docked ligand and then 
use the Boltzmann law and calculate pairwise atom potentials that are dis-
tance dependent. However, this approach typically omits the directionality 
of the interactions, although efforts have been made to improve this type of 
scoring function.

The last general type of scoring function is not itself a scoring function 
but a method by which other scoring functions may be combined to mitigate 
limitations in some scoring functions that may not be known a priori. The 
combination scoring approach is commonly known as consensus scoring  
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(or data fusion, particularly in similarity search). As one can imagine, there 
are a large number of ways of combining multiple scores, from simple sums 
of scores, or weighted sums, to taking the maximum (or minimum) value 
discovered with each method.

13.4    GOLD: Genetic Optimisation for 
Ligand Docking

GOLD3–6 (Genetic Optimisation for Ligand Docking) was developed in 1995 
and uses a Genetic Algorithm (GA) as the means by which the space of solu-
tions is explored.7 GAs have been used widely in computational chemistry, 
with a book published reviewing a wide range of different applications by 
Clark, including for protein–ligand docking applications.8 GAs are search 
and optimisation heuristic algorithms that are modelled on Darwinian evo-
lution, and they are often used for typically intractable optimisations in a 
reasonable time frame. The problem space is encoded as a chromosome rep-
resentation, typically a binary string, which defines the genotype. Initially, 
a population of these chromosomes is randomly generated, often using 
greedy heuristics to encode any domain knowledge that may be known. Each 
chromosome is then mapped from this genotypic space into the phenotypic 
space and a score given for each individual chromosome by means of a fit-
ness function.

Once scored, the entire population is sampled using a fitness-based sam-
pling approach, where each individual will be represented in some propor-
tion to their overall suitability based on their fitness scores. One of the most 
common fitness proportionate sampling methods is the roulette wheel sam-
pling scheme, with each chromosome being given a portion of the roulette 
wheel proportionate to its fitness score in the population. The roulette wheel 
is then spun n times, where n is the number of chromosomes in the popula-
tion, resulting in a stochastically populated fitness proportionate sample of 
the population.

On completion of sampling, the population undergoes computational 
analogues of recombination, called crossover in GAs, and mutation. Cross-
over takes two chromosomes from the sampled population in turn, ran-
domly defines a crossover point, or locus, and exchanges the genetic material 
either side of this locus. Crossover attempts to exchange desirable genetic 
material information between increasingly highly scoring chromosomes in 
an attempt to capitalise on the genetic information in both and tends not to 
destroy the genetic information, but this can depend on the encoding strat-
egy. Mutation, however, introduces some noise into the population that is 
crossed-over by randomly inverting bits in the population according to some 
probability, typically low. The recommended probabilities of the crossover 
(chromosome-based) and mutation (gene-based) operators in a simple GA is 
typically around 0.7 and 0.01, respectively, but these tend to require a signif-
icant degree of optimisation for specific applications and problem domains.
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In the published implementation of GOLD, a similarly structured algo-
rithm is applied, but with some key alterations. The chromosome represen-
tation for each binding pose consisted of a chromosome each for the ligand 
pose and the protein conformation. Each byte (8-bits) in the chromosome 
encoded an angle of rotation around a defined rotatable bond in the ligand 
or protein, or torsion angle. This angle was encoded in step-sizes of approx-
imately 1.4° from −180° to +180°, with each byte representing 256 of these 
steps. When considering a rigid protein, only one binary chromosome is 
required to represent the ligand. In addition to the binary chromosomes, 
there are also two integer strings that represent the mapping of possible 
hydrogen bonds between the protein and ligand. A least-squares fitting pro-
cedure is applied on decoding the chromosome for evaluation to optimise 
the number of hydrogen bonds.

The original fitness function considered six aspects of the chromosomal 
representation of each binding pose:

1.  Conformation of both the ligand and protein was generated;
2.  Ligand was in the active site applying a least-squares fitting procedure;
3.  Hydrogen bonding energy was generated for the complex

(H_Bond_Energy);
4.  Steric interaction energy between ligand and protein (Complex_Energy);
5.  Internal energy of the ligand obtained using molecular mechanics

expressions (Internal_Energy);
6.  Summation of all energy terms, if present, to give a fitness score for

each pose.

A number of alternative docking algorithms have been applied successfully 
in drug discovery. Glide is one such docking algorithm from Schrodinger.9 In 
brief, Glide considers a systematic yet approximate search of the entire space 
of all potential solutions based on potential conformations, orientations, and 
positioning of the ligand under examination. Through a series of refinement 
filters applying ever more complex calculations, Glide finalises a pose using a 
Monte Carlo sampling of the pose conformation and a model energy function 
that is a combination of empirical and force-field based approaches.

Another very popular docking algorithm is FlexX from BioSolveIT.10 FlexX 
implements an alternative method to modelling protein–ligand binding and 
scoring. The algorithm proceeds by extracting the preferred sets of torsion 
angles for acyclic single bonds and ring conformations. The torsion angles for 
multiple bonds and the bond lengths and angles are applied as given to the 
software. After additional preprocessing to generate conformers using struc-
tures from the Cambridge Structure Database (CSD) and ring conformation 
exploration using CORINA from Molecular Networks GmbH, the algorithm 
proceeds to a fragmentation and incremental growth method. The ligands 
are fragmented into subunits by cleaving all acyclic single bonds. Next, base 
fragments are placed in the binding site and an incremental growth proce-
dure begins where the original ligand is gradually rebuilt with scoring at each 
stage until ligand poses are generated and a final score given.
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While the docking algorithms reported above operate with different search 
and scoring algorithms, it is difficult to identify a preferred algorithm in all 
cases. However, much research is being conducted to improve on the algo-
rithms available and it is expected that further improvements will be pub-
lished over time.

13.5    Model Validation
As with all modelling approaches, it is important to sufficiently validate the 
model system to ensure that the results from prospective studies may be 
trusted, or at least to understand the extent to which they may be trusted.  
A common approach in validating a docking protocol for a particular protein 
structure is to dock ligands for which the bound pose or biochemical read-
outs are known.

For protein–ligand complexes (holo structures), readily available as pub-
lic data from the Protein Data Bank (PDB) but often also available in-house, 
the objective in model validation is to recapitulate the bound conformation 
observed experimentally. One approach is to define the protein-binding site 
based on residues that are proximate to the ligand in the co-crystal struc-
ture and then extract the bound ligand. An important next step is to take the 
bound ligand conformation and remove any geometry bias that would not 
necessarily be present in a prospective study. It is often sufficient to render 
the ligand as a two-dimensional molecule and then generate a low-energy 
conformation for docking. The docked pose, or poses, can then be evaluated 
with reference to the bound conformation using the root-mean-square dis-
tance (RMSD) in ångströms (Å) of the heavy (non-hydrogen) atoms of the 
molecule. The lower the RMSD value, the closer the modelled pose is to the 
experimentally observed pose.

For protein structures where protein–ligand complexes are not available 
(apo structures), common in the early stages of drug discovery, it is neces-
sary to identify the most likely binding site using druggability analysis to find 
the ‘druggable’ pocket. In this situation, since no bound conformation for a 
ligand is available, it may be possible to use extant ligands and biological data 
to investigate whether the ranking is similar using the docking scoring func-
tion as a surrogate for biological activity. This approach reflects how the model 
system would be applied prospectively in virtual screening. However, caution 
must be shown since the conformation of the protein binding site may not be 
similar to that in the eventual protein–ligand complex, due to induced fit.

13.6    Docking in Prospective Studies
Docking has promised much over the thirty or so years since its inception 
and it has certainly contributed positively when applied very carefully. 
Indeed, it is possible to recapitulate the bound conformation of a ligand in 
its own binding site with a high degree of accuracy. Unfortunately, when the 
similarity of the ligands that are being docked decreases away from that of 
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the bound ligand, the docking algorithms begin to reduce in this ability sig-
nificantly and it becomes much more difficult to model these ligands. There-
fore, it should be clear that docking of close analogues to the ligand found 
in the bound crystal structure will be relatively successful, but this does not 
really inform much over and above what is already known from the origi-
nal protein–ligand crystal structure. Indeed, this does not offer much above 
three-dimensional ligand similarity re-scored in the context of the binding 
sites.

Clearly, docking does not live up to the anticipations and expectations of 
its early days and often this stymied its growth as a method since its results 
could be seen to be unreliable, at least in high-throughput docking studies, 
or requiring a substantial degree of manual inspection of the docked poses 
that would take a great deal of time to process.

It is evident that docking works sometimes, and that it tends to work more 
reliably when the ligands that are being docked are more similar to the ligand 
in the protein–ligand complex. It is likely that this is to some extent due to 
the induced fit problem; ensemble docking is one approach to overcoming 
this by introducing multiple protein conformations that have already been 
crystallised and using these as an ensemble of structures against the ligands 
being docked and the best-scored poses taken or somehow post-processed to 
combine the top poses. However, this relies on additional crystal structures 
that may not be available, particularly early on in a drug discovery project. 
Furthermore, the computational run times will increase linearly with the 
number of crystal structures available, thereby increasing further the over-
all docking experiment, which is not insubstantial compared with other 
methods.

Recently, a study by Broccatelli and Brown11 examined probabilities of suc-
cess in prospective docking studies using cross docking as a surrogate for 
the prospective data. Cross docking is when multiple protein–ligand crystal 
structures are available for the same protein but different ligands, in this case 
CDK2. Each ligand from each of the protein–ligand crystal structures is then 
docked into every other protein structure in turn and the best poses retained. 
The native docking, or self-docking, was compared to the cross docking 
experiments and the results are shown in Figure 13.1. The results from the 
cross docking experiment demonstrate that the docking success rate drops 
significantly across all variants of the Glide algorithm used. This reduction 
in docking performance when moving from native docking to cross docking 
highlights the kind of success that could be expected in a prospective study.

The study continued to investigate this challenge by moving away from 
native docking, which works well, to use an external test set of CDK2 ligands 
that had been published but for which no crystal structures have been pub-
lished. The CDK2 ligands had been tested and included both actives and inac-
tives. From Figure 13.2, it can be seen that, when ligand similarity is high, the 
docking results tend to be reliable, but as has been discussed this is expected 
and demonstrates that ligand similarity is a major driver in docking exper-
iments. Typically, the more interesting experiments are at the lower ligand 
similarity levels and this study demonstrated a ‘sweet spot’ of similarity in 
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the mid-ranges, Tanimoto similarity on Extended Connectivity Fingerprint 
with a diameter of four (ECFP_4) of 0.2–0.4, where it might be best to focus 
more considerable docking efforts. This study also demonstrated the likely 
probabilities of success at different ligand similarity levels, which can also 
assist in understanding how many ligands that have been docked should 
be put through screening to expect a significant signal in terms of activity 
enrichment.

The study clearly demonstrated, as with many of the methods applied in 
computational modelling, that using all of the available data is important, as 
in ensemble docking, and also that data fusion should be used where possible 
to make use of the benefits of both ligand-based and structure-based meth-
ods. Lastly, the study demonstrated that the probability of success of docking 
decreases significantly as the ligand similarities to the native ligands drop.

13.7    Summary
Docking has been part of the computational chemistry and molecular mod-
elling toolbox for more than three decades. Many different search algorithms 
have been developed that are capable of exploring the conformation of the 
ligands being docked, their rotations in three-dimensional space, and the 
positioning in that same space. These search algorithms are important in 
being able to explore the potential search space. Equally importantly is the 
scoring function that scores each one of those poses and the potential inter-
actions the pose may make.

Figure 13.1    Docking success rate for three Glide protocols: HTVS, SP and XP. 
Docking pose prediction is considered correct if the RMSD from the 
crystallographic ligand is below 2 Å. Reprinted from F. Broccatelli,  
N. Brown, Best of both worlds: on the complementarity of ligand-
based and structure-based virtual screening, J. Chem. Inf. Model., 2014, 
54(6), 1634–1641.
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Figure 13.2    Relative percentage of actives and decoys (Directory of Useful Decoys 
(DUD) data set, upper plot), and actives and inactives (GlaxoSmith-
Kline data set, lower plot) in different Extended Connectivity Fin-
gerprint with a diameter of four (ECFP_4) and High-Throughput 
Virtual Screening (HTVS) Glide docking score ranges. Reprinted from  
F. Broccatelli, N. Brown, Best of both worlds: on the complementar-
ity of ligand-based and structure-based virtual screening, J. Chem. Inf. 
Model., 2014, 54(6), 1634–1641.
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Many different improvements have been made in docking research since 
its inception. It is inevitable that the methods will improve over time, but 
a number of studies have demonstrated that docking still has a number of 
limitations to overcome. Not least of these is the improvement of scoring 
functions. The reduction in docking success between native docking, an 
experiment where the answer is known already, and cross docking, where 
it is expected we know the answer, has shown that docking is very good at 
recapitulating its own pose, but not effective at performing in an effectively 
prospective experimental study.

Using ligand similarity, a recent study has furthermore demonstrated that 
expectations of success can be estimated in docking. Highly similar ligands 
will tend to succeed, but there is a point at which docking, in the mid-range 
ligand similarity measure, will have a measurable probability of success. 
This type of study demonstrates that all methods are useful in computa-
tional medicinal chemistry, but it is important to find ways to understand 
when and where certain methods will and will not work, at least with some 
level of probability of success.

Docking has come a long way, and still has some way to go, but this does 
not mean it should not be used. As with all modelling, careful and consid-
ered construction of hypotheses and expectations will permit new methods, 
often hybrid methods, to work positively for modelling in the prospective 
use-case scenario.
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CHAPTER 14

De Novo Molecular Design

14.1    Overview
Combinatorial explosion is a significant challenge in all modern science, but 
nowhere can this be realised more clearly in this field than that of the sheer 
number of possible drug-like molecular objects that can be realised from just 
a couple of dozen carbon atoms, some oxygens and nitrogens, and perhaps a 
halogen or two. However, the estimated number of unique drug-like molecu-
lar structures has been conservatively estimated at 1060.

Considering just a single scaffold of interest in a medicinal chemistry proj-
ect, with two or three points of variation and a relatively conservative 1000 
common medicinal chemistry relevant substituents, a single virtual library 
for that scaffold contains one million to one billion unique molecules that 
could be considered for synthesis. However, a typical medicinal chemistry 
project considers only a few thousand in terms of synthesised compounds.

Clearly, computers can consider vastly more space than could realistically 
be synthesised with the same amount of laboratory work. However, even 
computers, with the vast amount of computing resource that could be ded-
icated to the challenge, could still only consider a few tens or hundreds of 
millions with sufficient scientific effort and hypothesis-driven science. This 
would result in useful output that has been validated in more routine algo-
rithms, but also the more complex and computationally intensive methods, 
such as docking and shape-based searching. Therefore, a ‘simple’ enumera-
tion of the space would be too vast to consider.

Here, the field of de novo design comes to the assistance of the drug design 
project team. De novo design is essentially an umbrella term for everything 
that is trying to be achieved in the field of computational drug discovery. 
All of our modelling methodologies are used to appropriately sample the 
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drug-like space for those molecules that are of interest, from molecular 
descriptors and similarity searching to QSARs and ligand docking, to iden-
tify the few that should be synthesised that have a high probability of suc-
cess against the multitude of read-outs we need to satisfy in modern drug 
design.

From the age of atomistic theory came the idea that chemists could sum-
mon up matter to design molecules that fulfil distinct purposes and we are 
now beginning to realise that dream routinely in drug design reaping real 
benefits in saving time, but more importantly not wasting time on molecules 
that are unlikely to be of interest. However, it has been a long road with many 
pitfalls in that journey. Many new methods arose that promised so much, 
a common problem in scientific computation, over the past thirty or forty 
years or more with peaks and troughs in the success and perceptions of  
de novo design. However, only recently have the systems been developed and 
the will to test the outputs, the synthesis of machine-designed structures, 
has the field really borne fruit. Indeed, the first volume dedicated to de novo 
molecular design was published only recently by Schneider.1 The interested 
reader is certainly directed to the book by Schneider for a full and compre-
hensive treatment of the state-of-the-art from many of the key leaders and 
champions of the field. Here, an overview of some of the different approaches 
used in de novo design is provided, from atom-based designs through to frag-
ment-based and reaction-based approaches.

The methods by which candidate solutions have been scored in the past 
and new methods for optimising across multiple read-outs will be discussed 
with reference to recently published algorithms.2

14.2    Receptor-Based Methods
As with all medicinal chemistry design efforts, some information is 
needed to be able to optimise away from and towards the ultimate goal. 
Therefore, some information is required: ligands of interest that exhibit a 
biological response and/or receptors of interest in a known drug binding 
site or a new desirable target. De novo-based design originated with the 
advent of structure-based methods in drug design. The first methods were 
published at a time when receptors were becoming increasingly available 
and the methods designed were mimics of what a molecular modeller 
would do if a receptor structure were available. Furthermore, at that time 
QSAR and other modelling methods were not sufficient to enumerate all 
of the ligands of interest that would be required. Instead, the receptor- 
based de novo design methods focussed on optimising interactions in the 
binding site.

Regions in the binding sites of interest would be identified through 
structure visualisation and pharmacophore maps generated to optimise 
interactions with complementary sterics and electronics on the designed 
ligand or ligands. The receptor-based methods were not overly successful in 
the early days of de novo design due in part to the difficulty in optimising 
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appropriately in protein binding sites due to lack of algorithms, computing 
power and appropriate scoring functions. In addition, there was a tendency 
for purely structure-based methods to over-optimise to the target, which is 
itself a dynamic system captured as a snapshot. With these limitations, de 
novo design was limited in predictive power and optimisation of appropriate 
drug-like ligands.

However, this does not indicate that structure-based de novo design meth-
ods were not successful, but instead they were highly beneficial in conduct-
ing rational design experiments that permitted scientists to ask questions 
of structural data that were otherwise quite difficult to answer. This period 
opened up the space of potential ligands for synthesis that otherwise would 
not necessarily have been considered.

One of the challenges of the time was to select appropriate building blocks 
for the design of new ligands that contained common structure moieties 
seen in the medicinal chemistry. Through this requirement a number of ret-
rosynthetic fragmentation schemes were developed, such as Retrosynthetic 
Combinatorial Analysis Procedure (RECAP), which applied a set of rational 
retrosynthetic rules that fragment given parent molecular structures into 
small building blocks that can be used for ligand generation.3

Another key method used at this time was skeleton graphs that were 
molecular templates where the atoms were labelled only with the hybridi-
sation type and bond orders. By placing the skeleton graphs in the binding 
site of interest, it was possible to explore more of the chemical space around 
those skeleton templates by focusing on geometry and optimising molecular 
interactions afterwards, thereby focusing on one aspect of the search space 
to reduce the search space of the atom mutations required later.4,5

A number of different approaches have been applied to generate new 
molecular structures: fragment linking, fragment growing, and sam-
pling approaches, including additional atom-based and fragment-based 
methods. Lastly, there are reaction-based methods. The next section will 
consider each of the approaches in turn with the successes and relative 
drawbacks to each.

14.3    Fragment-Linking Methods
Some of the first methods of exploring ligand space were the fragment-linking  
methods, where appropriate structural groups, such as those described 
above from RECAP, are positioned in a receptor-binding site and their posi-
tions optimised for their direct interactions. The fragments, once posi-
tioned, were then linked using skeletons, such as those from a dictionary 
of aliphatic and acyclic linkers, and optimised on a lattice of possible atom 
positions.

Once two or more fragments were linked by one of the methods described 
above, it was possible for the new structure to be optimised in situ to iden-
tify any potential undesirable steric clashes that may have been caused by 
a change in bond angles. The fragment-linking methods were successful at 
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the time and are still used today, but they tend to have issues in small local 
changes, particularly towards the centre of the molecules, which led to unde-
sirable global conformational changes that were not able to be predicted 
through the design stage.

14.4    Fragment-Growing Methods
A second, arguably more successful, approach is a fragment-growth strategy. 
While the fragment-linking strategies typically used two linkers and com-
bined them geometrically, in fragment growing a base fragment (or seed 
point) is positioned and optimised for individual interactions. The second 
step of this algorithm proceeded by connecting additional fragments or indi-
vidual atoms. The ligands would then grow to optimise the sterics and elec-
tronics within the protein-binding site.

Fragment-growing methods were somewhat more successful than frag-
ment-linking, finding particular favour with Astex Pharmaceuticals in their 
Pyramid™ platform for fragment-based drug discovery. The benefits of the 
technology available at Astex, namely biophysical techniques, X-ray crys-
tallography and nuclear magnetic resonance, made it possible to detect 
bound fragments at a much higher sensitivity than otherwise possible 
with other methods. These technologies, in concert with fragment-based 
computational design, have been highly successful in identifying and opti-
mising fragments using a combination of experimentally assisted design 
strategies.

14.5    Sampling Chemistry Space
The methods discussed so far tend to be based on local searches from seed 
fragments that are linked or grown. While these approaches are now being 
used to generate ligands in this way, they still tend towards the stepwise 
linking or growing of the ligands. This is a pragmatic decision to perform a 
local search around these seed fragments; it would not be possible to simply 
explore the vast space available and predict positively in these binding sites 
without globally sampling the space as opposed to the local search from frag-
ments described above.

Sampling chemistry space typically works in a population-based opti-
misation approach, where multiple candidate solutions are generated and 
evaluated at once. These solutions are then scored and ranked, often using 
some form of Genetic Algorithm (GA) or Evolutionary Algorithm (EA). The 
best aspects of each of the candidate ligands are then reassembled using a 
crossover operator or other genetic exchange method and small amounts of 
mutation to introduce new genetic material. The de novo design system then 
iterates over generations, constantly scoring and perturbing the structural 
elements in each generation. Eventually, after some termination condition is 
met, a set of final candidate solutions is output.
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The scoring functions used in the sampling strategies tend, at least, to 
not directly link the sampling and the scoring, as is the case in the frag-
ment-linking and fragment-growth methods described above. Instead, there 
is a distinct evaluation step, called a fitness function, which can combine a 
multitude of methods, including docking, but also ligand-based approaches, 
such as molecular similarity and Quantitative Structure–Activity Relation-
ships (QSARs).

14.6    Atom-Based De Novo Design
One such de novo design system, the Compound Generator (CoG), which 
is a dual atom-based and fragment-based population-sampling algorithm, 
was developed and implemented by Brown et al.6 CoG used bespoke genetic 
operators that were adapted from binary chromosome representations typ-
ically used in GAs into analogue algorithms that worked not on strings—
although they could—but also on graph structures, including the typical 
cycles found in many organic molecules. The crossover operators were able 
to break and form ring systems, while also attempting to not disrupt the 
genetic material too much, which would otherwise have the side effect of 
a pseudo-mutation operator. CoG also included new graph-based muta-
tion operators, which were able to add, prune, insert and delete atoms 
and bonds where these changes conformed to the standard valence bond 
model.

CoG was designed as a modular de novo design engine, or cog in the sys-
tem, allowing multiple optimisation procedures to be undertaken. Brown  
et al. first demonstrated the use of CoG to design molecules that were max-
imally similar to two probe molecules of interest, using Fingal fingerprints7 
and Pareto ranking to score the molecules (vide infra), and called them 
median molecules. The median molecules concept was applied successfully 
to generate many different candidate solutions that were maximally similar 
to two extant molecules, typically in the hundreds or sometimes thousands. 
The authors proposed that this would be an appropriate and controlled 
method to design focussed analogues around certain molecules of interest 
that could then be prioritised for synthesis using other methods, or perhaps 
for the identification of novel scaffolds.

The second approach proposed by Brown et al. was to use Quantitative 
Structure–Property Relationships (QSPRs) in the inverse mode, essentially 
de novo design but with statistical models.8,9 The authors realised that the 
predictions against two different models became untrustworthy due to the 
de novo design system optimising molecules that exploited the models. 
Therefore, they introduced additional parameters to the multiobjective opti-
misation procedure to include information not only regarding the actual pre-
diction, but also the quality of those predictions in terms of their domains 
of applicability. The inclusion of these parameters, Residual Standard Devia-
tion (RSD) and Leverage, optimised ligands that fit within the domain of the 
model much more appropriately.
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14.7    Fragment-Based De Novo Design
More recently, Firth et al.10 developed a new multiobjective de novo design 
system, Multiobjective Automated Replacements of Fragments (MOARF), 
which is an example of a fragment-based de novo design system. The system 
is highly extensible to new challenges with their exemplar being the opti-
misation of new ligands for a drug discovery project, CDK2, using ligand-
based shape similarity, QSAR models (Random Forests), and maintaining 
the ligands to within a physicochemical property of interest.

MOARF introduced two new methods for dealing with fragments in this 
publication: Synthetic Disconnection Rules (SynDiR) and Rapid Alignment 
of Topological Fragments (RATS). SynDiR is new retrosynthetic fragmenta-
tion scheme that has fewer rules than RECAP and generates few fragments 
of lower molecular weight. These fragments were also shown to be more rel-
evant to medicinal chemistry based on a comparison to physical samples 
available from Sigma-Aldrich.

The RATS system is a new fragment replacement algorithm that is able 
to align replacement fragments based on a simple topological fingerprint. 
This is an important step in fragment-based de novo design, particularly as 
shown above in receptor-based methods. The RATS method was demon-
strated to work comparably with the much more computationally intensive 
and complex BROOD algorithm, one of the leading methods for bioisosteric 
replacements. In this comparison, RATS recapitulated BROOD results far 
above what would be expected randomly, and reaching above 80% corre-
spondence the majority of the time.

Using MOARF, SynDiR and RATS, Firth et al. considered a virtual space 
of ca. 200 million unique structures while only sampling fewer than 50 000 
of those molecules in silico. More importantly, 14 of the top 25 resulting 
solutions were synthesised and tested against Cyclin-Dependent Kinase 2 
(CDK2) and Human Liver Microsome (HLM) exhibiting a good maintenance 
of potency against CDK2 while significantly reducing HLM turnover. Main-
taining metabolic stability is a key objective in drug design that is often 
overlooked until late in a programme after potency has been optimised. The 
optimisation to target potency is a common trope in medicinal chemistry 
and this paper demonstrated that it was possible to design in additional 
and necessary parameters to increase the probability that these compounds 
could be considered further as part of a drug discovery programme.

14.8    Reaction-Based De Novo Design
The last de novo design method to be considered in this chapter is the reac-
tion-based scheme, which is perhaps most familiar to the synthetic organic 
chemist. Synthesis can be seen mathematically as a context-dependent 
molecular graph transform, but this over-simplifies the art and science 
of making new compounds that have never been made before. One of the 
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main challenges to other de novo design methods described above is that, 
although the compounds are predicted to be of relevance to the objective 
under optimisation, their synthesis may not be trivial or even possible with 
current chemistry techniques.

It is important to consider in de novo design not just the optimisation of the 
desired property, but also the fact that someone has to make the compound. 
Furthermore, if the synthesis is likely to take 5–10 times longer than a more 
trivial synthesis that still has the potential to answer valid hypotheses, then 
the latter is likely to win in the decision-making priorities of a project. Here, 
reaction-based methods can be used to optimise not only the molecular 
structures, but at least make some headway towards the most likely synthetic 
route to make that compound with common medicinal chemistry synthetic 
methods and building blocks.

The Design of Genuine Structures (DOGS) system from Schneider et al.11,12 
allows for the reaction-based de novo design of synthetically accessible 
drug-like molecules. Using DOGS, it was shown that from 25 144 available 
synthetic building blocks and 58 established reactions, the algorithm first 
selects the reaction to be conducted in silico, and then which of the iden-
tified reactants to be taken forward to the next step. DOGS can introduce 
additional reactions with the decision to terminate the synthetic simulation 
taken based on whether the current product is not desirable according to a 
similarity-based kernel mode, or the size of the molecule becomes too large 
to be considered drug-like. Once a termination condition is met, the final 
product is stored, and the process iterated to identify a shortlist of possible 
products for subsequent consideration.

The DOGS system has been demonstrated to identify novel scaffold hops 
and has more recently designed a novel and selective inhibitor for Polio-Like 
Kinase 1 (PLK-1). The Schneider laboratory is now developing a system that 
could theoretically lead to automated design, synthesis and testing for the 
identification of novel leads, “Leads on Demand”. While this may seem far-
fetched, the tools and techniques being developed for this system are clearly 
highly effective at identifying novel scaffolds and also novel inhibitors, which 
are clearly valuable to a medicinal chemistry programme, whether auto-
mated or not.

Reaction-based de novo methods have been shown to be effective at identi-
fying potential new ligands that come readymade with a potential synthetic 
route that at the very least will give a medicinal chemist a head start in syn-
thesising that compound. However, one challenge to this approach of de novo 
design using virtual reactions is that the space covered by the products may 
be limited compared to the other de novo design methods discussed previ-
ously. This may be the case, but going a long way to solving the challenge of 
synthetic tractability in de novo design is a great step forward and might be 
the method by which de novo design becomes a routine tool actively sought 
out by medicinal chemists, not just as an ideas generator, but also a com-
pound maker.
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14.9    Multiobjective Optimisation
A key aspect of de novo design that is increasingly becoming a focus is multi-
objective optimisation, as opposed to single-objective optimisation. Histori-
cally, as we have seen in the work from Firth et al., drug design programmes 
typically focus on target potency early on in a project and can often get 
“locked in” to undesirable regions of chemical space, or not even allow for 
the possibility of exploring those spaces that may or may not be of interest 
(Figure 14.1). Here, multiobjective methods can be highly beneficial and are 
increasingly being used in de novo design systems.

Since for Food and Drug Administration (FDA) approval it is necessary for a 
small molecule to be safe and efficacious at its administrated dose, it is clear 
that drug design is an inherently multiobjective challenge. In fact, safety and 
efficacy are convolutions of multiple properties of small molecules, not just 
target potency. Additional properties that must be considered and optimised 
in a drug design project are: improved selectivity; few side effects; decreased 
toxicity; improved pharmacokinetics; and increased metabolic stability. 
More prosaically, but also vastly important, are the additional challenges of 
simplified synthetic routes and patented lead compounds.

Figure 14.1    Schematics of the multiobjective optimisation challenges in drug 
discovery. On the left there is a trade-off surface identified between 
solubility and potency. The over-riding objective for this project is to 
identify the preferred window on that trade-off surface and design 
small molecules that satisfy those objectives. On the right is a stylised 
illustration of the trajectory taken through a drug discovery pro-
gramme. The green line shows the ideal, where both solubility and 
potency are being optimised simultaneously, which is highly unlikely. 
The red-dotted line illustrates the typical trajectory through a drug 
discovery programme, where potency is typically optimised early, 
with random fluctuations in solubility. It is not until later in the pro-
gramme that solubility is necessarily considered and the late stage 
optimisation can lead to wild fluctuations in the properties being opti-
mised. What might be preferred is the orange line that approaches the 
optimal green line, but exhibits occasional changes in priority with 
regard to the property being optimised, but sights are always set on 
the ultimate outcome.
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Therefore, it is key that these types of properties, or appropriate surro-
gates, are considered as early as possible in a drug design project and appro-
priately included in the design, make and test cycle, and one way of achieving 
this can be through the use of multiobjective de novo design methodologies.

The first approach to incorporating multiobjective optimisation meth-
ods into de novo design was by Brown et al. in 2004,6 for the optimisation of 
median molecules (vide supra). The multiobjective optimisation was achieved 
by means of Pareto optimality. Pareto optimality is a method of identifying 
non-dominated solutions in a given co-ordinate space of competing objec-
tives to identify the optimal trade-off surface of solutions that are optimal 
in, for example two dimensions, with no other solution more optimal. This 
leads to a family of equally optimal points defining the trade-off surface. In 
the case of de novo design, each of the points is a potential molecular struc-
ture that could be prioritised for synthesis.

Many more recent multiobjective de novo design systems have been devel-
oped using different approaches. Two reviews have been published recently 
covering the current state-of-the-art in multiobjective de novo design.13,14

14.10    Summary
De novo design is a relatively recent advance in drug design and even more 
recently being used routinely in drug design projects. However, it has had a 
tremendous effect on medicinal chemistry thinking and projects.

In the early receptor-based de novo design projects, the emphasis was 
towards optimising ligands against a target of interest, with a relative dis-
regard for other properties. Furthermore, the receptor-based methods were 
limited in their search to a relatively local search algorithm.

The main advances in de novo design really came to the fore when pop-
ulation-sampling methods were developed to more effectively explore and 
exploit the search space compared to receptor-based de novo design. How-
ever, the approach still required further refinement, particularly in methods 
for synthetic accessibility and effective modelling methods.

Recently, approaches have been introduced that make multiobjective  
de novo design a more effective and potentially routine tool that can be used 
in medicinal chemistry projects of the future. It is possible now, and already 
premature projects from the Schneider laboratory at ETH-Zurich and Cyclo-
fluidic are demonstrating large parts of the entire de novo design workflow, 
including the synthesis of compounds and their subsequent testing, being 
operated as an automated iterative design paradigm with little human input 
but maximising human benefit.
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CHAPTER 15

Applications in Medicinal 
Chemistry

15.1   Overview
As has been shown throughout this volume, there are many computational 
approaches  that  have  been  developed  to  address  challenges  in  medicinal 
chemistry, and drug discovery and development. But how are these methods 
applied  in  practice?  This  chapter  aims  to  place  some  of  the  methods  dis-
cussed, and derivatives of those discussed, in context and demonstrate their 
actual impact in dug design. The chapter will address four of the main stages 
of drug discovery, from the identification of new drug targets, through to the 
identification of new hit matter that are relevant to those targets, followed 
by exploration and development of the hits in the hits-to-leads phase. Lastly, 
lead optimisation will be considered to bring to bear the wealth of medicinal 
chemistry data, information and knowledge to optimise the final compound 
or compounds  to  be  taken  through  to  the clinical  context.  Lead  optimisa-
tion necessarily includes consideration of ADME/Tox (Absorption, Distribu-
tion, Metabolism, Excretion, and Toxicology), and this will also be discussed.  
A schematic of the major processes involved in drug discovery is provided in 
Figure 15.1.

A drug discovery programme and the biology and medicinal chemistry 
effort  involved,  including  high-throughput  screening,  X-ray  crystallography,  
cell biology, and more besides, is a vastly complex process, and it is impossi-
ble to cover all of the challenges in one section alone. However, it is import-
ant  to  provide  a  flavour  of  the  work  done  to  support  the  scientists,  and 
more  importantly  the  overall  project  progression,  using  computational 
drug discovery methods.
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15.2   Early Stage Targets
Without  targets  of  clinical  relevance,  it  would  be  impossible  to  progress 
drug discovery projects in the modern world of therapeutic development. 
It  is  important to understand, as best we can,  the cellular and molecular 
processes that have been implicated in disease.

A protein structure may have been identified that has been implicated 
in a disease  indication, but  this does not necessarily render that protein 
structure as a drug target. There are potential targets and there are drug-
gable, or  ligandable,  targets, where  the  latter  suggests  that  it  is possible 
to somehow interact with a protein target to bring about a desirable bio-
logical  effect  that  is  beneficial  as  a  potential  therapeutic  indication.  For 
example, in a kinase structure one of the aims is to design ATP-competitive 
(adenosine  triphosphate)  ligands that block the ATP binding site so  that 
the  enzyme  cannot  catalyse  its  intended  reaction.  Therefore,  a  suitable 
ATP-competitive ligand will block the mode of action of an enzyme, which 
has  often  been  shown  to  be  important  in  killing  a  pathogen  or  correct-
ing a metabolic  imbalance. Protein kinases are clearly a well-established 
target class with over 500 identified protein kinases, many of which have 
been investigated as potential drug targets, and the protein family appears 
to have eminent druggability potential. The high druggability potential of 
protein kinases has been demonstrated both by modelling, but also, argu-
ably mainly, by experiments. However, the understanding gained in explor-
ing such druggable protein families can be incorporated into druggability 
analyses for new and exciting protein families that are only just being dis-
covered or have yet to be discovered. It is here where computational meth-
ods can offer an opportunity to identify where a given protein structure is 
druggable.

It is important here to take a moment to consider the terms druggability 
and ligandability. As with lead-like and drug-like, there are not really formal 
definitions for what we mean by these terms. For example, a protein may be 
identified as druggable by a modelling tool. However, the only proteins that 
can  truly  be  said  to  be  druggable  are  those  for  which  we  have  drugs.  The 
same challenge to these neologisms occurs with ligandability. For a protein 
to be liganded it is sufficient to say that a ligand is bound to it at its endog-
enous  binding  site  or  another  site  on  the  protein.  However,  this  does  not 
suggest  that  that protein  is druggable. Furthermore,  it does not suggest  it 
is  not.  While  the  terms  ligandable  and  druggable  are  useful  shorthand  to 

Figure 15.1   A Schematic overview of the general drug discovery and development 
workflow.
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describe briefly what we are trying to do, no small blessing when sitting in a 
conference on the subject, it is important to understand what is implied by 
these definitions and ensure that these implications are valid for the work 
being done and the conclusions drawn.

With the caveats and assumptions described above in place, it is how-
ever possible to gain great insights into new protein target classes using 
druggability  analyses.  Recently,  an  article  appeared  on  the  application 
of one druggability analysis to consider the novel protein target class of 
bromodomains.1  Bromodomains  are  a  new  and  exciting  protein  target 
class  that  have  been  implicated  in  cancer  and  therefore  are  well  worth 
consideration  of  study.  However,  what  is  the  most  effective  way  to  use 
the wealth of structural data to provide an objective assessment of which 
bromodomains are potentially druggable and therefore more likely that a 
chemical probe can be designed?

In  the study,  the authors  identified that not all bromodomains were as 
druggable  as  each  other,  but  this  was  based  on  a  subjective  assessment 
through  visualising  overlays  of  the  protein  binding  sites.  Therefore,  they 
realised that, rather than manually inspect all binding sites available, per-
haps it was possible to use a computational method to assess the druggabil-
ity of these sites. After some exploration of available software tools and their 
published applications to druggability analyses, the authors decided to use 
the SiteMap software from Schrödinger.

SiteMap uses a combination of measurable parameters that can be observed 
from a crystal structure: volume of the pocket; enclosure of said pocket, or 
buriedness; and the degree of hydrophobicity in the identified pocket. From 
these parameters, it is possible to calculate a druggability score, or DScore, 
which provides an estimate of how druggable each structure may be. This 
analysis provided a prioritised list of bromodomains where the top-ranked 
may be considered more druggable than the lower ranked ones. Figure 15.2 
illustrates the range and distribution of each of the bromodomains analysed 
in this study as a box-and-whisker plot.

The  authors  continued  their  study  by  analysing  the  identified  common 
binding  site  features  and  this  allowed a  grouping  of  bromodomains  to be 
determined  (Figure  15.2).  This  allowed  for  a  new  classification  of  bromo-
domains and significant differences to the whole-sequence alignment sim-
ilarity  cluster  performed  previously.  Using  the  structural  information,  and 
focussing on the acetyl-lysine binding site, the authors posit that this bro-
modomain grouping may be more appropriate for consideration in drug dis-
covery (Figure 15.3).

This  druggability  study  demonstrates  one  way  in  which  computa-
tional  methods  can  contribute  positively  to  a  drug  discovery  project.  The 
authors  went  to  expand  on  this  prospectively  with  the  identification  of 
novel small-molecule inhibitors of the BRD4 bromodomain through struc-
ture-based design2 and  the design of a chemical probe  for  the BAZ2A and 
BAZ2B bromodomains.3
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15.3   Hit Generation
One  of  the  first  tasks  of  any  drug  discovery  programme  is  to  identify  val-
idated  hit  matter.  Sometimes  this  is  achieved  through  serendipity  and  an 
understanding that we are lucky, and capitalising on that. Sometimes good 
quality hit matter already exists from published data in the literature. More 
often than not, many cycles of trial and error are required to identify and val-
idate good quality hit matter. One of the most common, and effective, meth-
ods for hit generation is High-Throughput Screening, where vast libraries of 
hundreds of thousands of diverse lead-like small molecules are screened in 
different assays to identify anything that can be identified as a hit, in other 
words  something  that  brings  about  the  desired  biological  response.  How-
ever, a HTS often generates such vast amounts of data that it is difficult to 
understand and prioritise the most important compounds to take through 
and investigate further.

Computational methodologies often play a key role in what is called HTS 
triage: the process by which we identify the compounds to take forward and 
those to drop. There are many processes by which computational methods 
can benefit a HTS triage. Property and structural filters may be applied that 
remove unwanted lipophilic compounds or undesirable structural moieties, 
respectively. One may argue that if those compounds are undesirable then 

Figure 15.2   Box-and-whisker plot showing the range and distribution of drug-
gability for each bromodomain across available structures passing 
imposed  filters  (including  presence  of  binding  site  water  mole-
cules).  Ranked  by  median  Dscore.  Colours  indicate  druggability 
classification: red, druggable; yellow, intermediate; white, difficult. 
Reprinted  from  L.  R.  Vidler,  N.  Brown,  S.  Knapp  and  S.  Hoelder, 
Druggability analysis and structural classification of bromodomain 
acetyl-lysine binding sites, J. Med. Chem., 2012, 55(17), 7346–7359.
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they should not have been screened in the first place. However, when work-
ing  with  vast  chemical  libraries,  the  logistics  of  frequently  removing  com-
pounds that should not be in the library are non-trivial and will most likely 
lead to even more errors creeping into the chemical compound database.

The primary hit list from an HTS is often defined as the top two or three 
standard deviations above the mean end-points, typically a single-point per-
centage inhibition measurement. This would often give more compounds to 
contend with than is practically possible to consider in a confirmation screen, 
or other follow-up. Therefore, other computational analyses must be brought 
in  to  consider  the  remaining  data.  The  property  filters,  or  preferably  flags, 
above can be used to reduce the dataset, but it must be remembered that it is 

Figure 15.3   Bromodomain classification tree generated on the basis of eight bind-
ing  site  amino  acid  signatures  showing  bromodomain  druggability. 
Reprinted from L. R. Vidler, N. Brown, S. Knapp, and S. Hoelder, Drug-
gability  analysis  and  structural  classification  of  bromodomain  ace-
tyl-lysine binding sites, J. Med. Chem., 2012, 55(17), 7346–7359.
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much easier to take away rather than re-introduce in these types of analyses; 
therefore it is always better to flag these data points rather than remove.

At the point of attempting to triage an HTS hit list, a multitude of chemo-
informatics methods are often introduced to tackle the challenge. One of the 
most common approaches  is  to first cluster or group  the hit  list based on 
the chemical structures. Descriptor-based clustering can be very powerful, 
but is prone to structural mismatches where particular molecular structures 
fall into inappropriate clusters. The mismatches can occur for a number of 
reasons, but typically  it  is either an issue with the molecular descriptor or 
the clustering method used, or a combination of the two, that renders it diffi-
cult to deconvolute the actual problem. Another issue with clustering is that 
it can be very computationally intensive, and heuristics applied in attempt-
ing  to  reduce  the  computational  complexity  can  often  lead  to  increased 
mismatches. Rather the priority in triage should be towards understanding 
what  the  desired  output  from  the  triage  is:  reliable  hit  series  that  demon-
strate, or may have potential to demonstrate, some Structure–Activity Rela-
tionship (SAR). Therefore, we must return to considering molecular scaffold 
representations.

Molecular scaffolds are a method by which compounds can be grouped 
on common scaffolds or cores. One hypothesis being that those structures 
that  naturally  group  together  will  tend  to  be  of  medicinal  chemistry  rel-
evance,  that  is  a  medicinal  chemist  will  consider  them  similar  and  also 
be  able  to  identify  the  potential  for  chemistry  expansion  around  those 
common  cores,  which  can  lead  to  much  scope  for  more  exploration  and 
exploitation in the lead optimisation phase. However, as have seen in Chap-
ter  10,  the  ways  by  which  we  define  scaffolds  can  be  limited  since  often-
times the scaffold can over-represent the determined scaffold in the parent 
molecule.

The Scaffold Tree method was developed to  improve  the scaffold repre-
sentations, not only  in  terms of how scaffolds are defined objectively and 
invariantly from parent molecules, but also to provide a hierarchy of mol-
ecules and their pruned fragments.4 The limitation of Murcko scaffolds is 
that the resulting scaffolds are over-specified and can therefore be reduced, 
since if the scaffold is over-represented in the scaffold tree, it will have very 
few  sub-ordinate  nodes  in  the  tree.  Using  Scaffold  Tree  and  the  Scaffold-
Hunter software, therefore, can permit a multi-level scaffold analysis, where 
different levels of the tree may be taken for different scaffolds. This can be 
a very  important consideration when dealing with a  large HTS with many 
random  screening  compounds,  but  also  some  focussed  libraries  around 
a  common  core.  An  illustration  of  the  Scaffold  Tree  results  from  apply-
ing the method to the results  from a pyruvate kinase assay  is provided in  
Figure 15.4. The Scaffold Tree method can therefore permit a greater control 
over the scaffold analysis of the available space than may otherwise be the 
case with alternative scaffold groupings and from cluster analysis. Scaffold-
Hunter was published by Wetzel et al.5 and is available as open source from 
http://www.scaffoldhunter.sourceforge.net/.
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Another very powerful  technique  for  triaging HTS data  is  through  inter-
active data exploration or data mining. Interactive data exploration allows a 
user to explore vast quantities of data across chemical structure and molec-
ular  properties.  Chemical  structure  analysis  typically  is  delivered  through 
substructure and similarity searches,  right  through to cluster and scaffold 

Figure 15.4   Scaffold tree for the results of a pyruvate kinase assay. Colour intensity 
represents the ratio of active and inactive molecules with these scaffolds. 
The 2-phenyl-benzoaxazole scaffold can be found at the top right corner. 
Reprinted with permission from A. Schuffenhauer, P. Ertl, S. Roggo, S. 
Wetzel, M. A. Koch, and H. Waldmann, The scaffold tree-visualization of 
the scaffold universe by hierarchical scaffold classification, J. Chem. Inf. 
Model., 2007, 47(1), 47–58. Copyright 2007 American Chemical Society.
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analysis. The interactivity of these methods tends to arise from the interac-
tive dynamic queries where it is possible to dynamically use sliders to make 
changes in, for example, property ranges, such as molecular weights between 
100 and 350 Da, and see those points appear alone, filtering out anything 
that does not conform to that query. Another aspect of explorative data anal-
ysis is the use of close-coupled data visualisation, where each of the plots is 
dynamically linked. If a selection of points or a dynamic query is introduced, 
then  all  views  of  the  data,  scatter  plots,  histograms,  etc.  are  automatically 
updated.

It is difficult to convey the power of explorative data analysis in static pic-
tures  (Figure  15.5),  but  thankfully  Actelion  Pharmaceuticals  has  recently 
released  a  version  of  the  in-house  explorative  data  analysis  tool  as  open 
source  that  is  available  at  no  cost  from  http://www.openmolecules.org/
datawarrior/.6 The software contains many features that you would otherwise 
find in commercial software, such as Spotfire, Gigawiz Aabel and Miner3D. 
Some of the features include:

 ● Interactive data visualisation and analysis
 ● Built-in chemical intelligence
 ● Real-time data filtering on alphanumerical and chemical criteria
 ● Prediction of molecular properties from the chemical structure
 ● Dedicated chemoinformatics modules to support drug discovery
 ● Table  view  with  columns  containing  alphanumerical  or  chemical 

information
 ● Versatile  graphical  2D-view  for  scatter  plots,  bar  and  pie  charts,  box 

plots, ...
 ● Graphical freely rotatable 3D-view for scatter plots and bar charts
 ● Dedicated chemical structure view with optional alphanumerical data
 ● Form based view with form designer and form based data editing
 ● Multiple views are shown side by side or are stacked on top of each other
 ● Views can be highly customised  to reveal multiple dimensions of  the 

data

DataWarrior is a very powerful piece of software that every modeller should 
have in their toolkit, and the developers are congratulated on contributing 
this excellent resource to the wider field.

15.4   Hits-to-leads
Once  the  hit  series  have  been  identified  from  the  previous  hit  discovery 
phase, the next stage is to explore those hit series. Historically, the process in 
hit-to-lead would have involved much trial and error in exploring the poten-
tial  SAR  in  each  hit  series.  The  exploration  would  have  taken  the  form  of 
adding  groups,  replacing  groups  with  bioisosteres,  and  removing  groups. 
While this can often be a little haphazard in its exploration of the chemis-
try space around each series, it should not be underestimated how powerful 
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Figure 15.5   Screenshots from the DataWarrior explorative data analysis software 
released by Actelion Pharmaceuticals. (a) Correlation plot, box plots, 
whisker  plot  and  statistical  parameters.  (b)  Combinatorial  library 
analysis. From a generic three-component reaction and provided reac-
tant  structures,  DataWarrior  calculated  the  product  structures  (bot-
tom half-right) and their physicochemical properties. Products were 
clustered  and  arranged  on  a  2-dimensional  self-organised  map  (top 
centre). Filters were adjusted (top right) and views created to show var-
ious aspects of the selected library subset. Reprinted with permission 
from T. Sander,  J. Freyss, M. von Korff and C. Rufener, DataWarrior, 
An Open-Source Program For Chemistry Aware Data Visualization And 
Analysis,  J. Chem. Inf. Model.,  2015,  55(2),  460–473.  Copyright  2015 
American Chemical Society.
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this technique can be with expert medicinal chemists. However, as with all 
humans, there can be a tendency to focus on exploitation rather than explo-
ration, and towards being blinded by local searches and a conservative nature 
in understanding the SAR around their series of interest. More recently, how-
ever, two particular methods have been used to great effect to assist in explor-
ing these series: analogue-by-catalogue and virtual combinatorial libraries.

Analogue-by-catalogue is a relatively simple process and takes advantage 
of the vast number of compounds that are commercially available from com-
pound vendors and brokers. Typically, most of  the big vendors offer many 
millions of compounds that have been synthesised or could be synthesised 
rapidly if the client requests. With this vast resource of available chemicals, 
there is a significant likelihood that chemical series of interest will also be 
present in these catalogues and that have not yet been tested for the particu-
lar end-point in which you are interested.

An analogue-by-catalogue search can be as simple as analysing your extant 
series and defining a single substructure as your series of interest. With the 
advent  of  improved  online  structure  searching,  the  substructure  of  inter-
est can be drawn directly into the preferred compound vendor website and 
within seconds a list of available compounds in that series can be obtained, 
together with quantity availabilities, estimated costs, and projected delivery 
dates. The ease of use of this system and reliable feedback of estimated costs 
and delivery dates can allow the computational and chemistry teams to liaise 
with the screening teams to expedite biological testing and feedback to the 
project team for further analysis and discussion on new chemical targets for 
synthesis.

The substructure search described above can be seen as quite primitive, 
particularly when the project may already have identified a specific SAR that 
suggests exploration of particular vectors would not contribute much in addi-
tion to what is already available. Here, the team can define SMARTS queries 
that can more explicitly  represent  the expected decoration on  the scaffold 
of interest. Some of the simple rules that can be encoded are: blocking exit 
vectors; specifying a preference for particular groups; and whether aromatic 
or aliphatic atoms should be present or not at specific positions. Using this 
rich  chemistry  pattern  search,  it  is  possible  to  refine  and  finesse  the  sub-
structure  search  with  great  control.  However,  caution  must  be  used  when 
applying these filters since it can be quite simple to accidentally ‘freeze’ out 
your search space and miss important virtual hits.

Another  approach  that  is  complementary  to  the  analogue-by-catalogue 
search above is the use of combinatorial virtual libraries. As the name sug-
gests, a combinatorial virtual  library takes the scaffold as defined through 
analysis of the SAR of the chemical series identified by the project team with 
exit vectors at which exploration may be made. Next, a set of potential sub-
stituents at each exit vector can be defined, or simply mined from datasets 
using fragmentation schemes, with the potential for filtering down on sim-
ple parameters, such as heavy atom count. Given the scaffold, the potential 
exit vectors, and substituents available at each of those exit vectors, a virtual 
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library can be defined combinatorially by enumerating every combination in 
this set.

One of the main challenges in applying virtual combinatorial libraries in 
practice is that it is very easy to define a vast library of potential targets for 
chemical synthesis that far outweighs the available resource assigned to that 
project. Here, there are two options that are not mutually exclusive: reduce 
the space or prioritise the space. Reducing the space would typically take the 
form of applying filters to remove synthetic targets that were desirable prior 
to enumeration, but when combined may be, for example, too lipophilic, or 
too homogeneous (cluster analysis). However, the space may be too vast sim-
ply because too many options for substituents have been provided. Reducing 
the number of substituents considered can drastically reduce the size of the 
virtual library. Prioritising the space requires statistical models of interest by 
which the virtual molecules can be considered. These models may be simple 
models of physicochemical properties applied as surrogates for other prop-
erties that cannot be modelled appropriately. However, care should be taken 
with using property models as surrogates for other properties as the correla-
tion may not be sufficiently strong to warrant that application. Alternatively, 
it may be possible to design bespoke statistical models, even at this relatively 
early stage, based on the data generated in hit discovery and hit-to-lead until 
that point. Simple naïve Bayesian models have been demonstrated to be very 
effective at modelling HTS readouts and these could be used here. Lastly, it is 
possible to combine models using multiobjective optimisation to prioritise 
the virtual molecules for synthesis that satisfy multiple properties of inter-
est, which will tend to reduce the space to a very focussed library, but care 
should be taken that the screen-out is appropriate.

15.5   Lead Optimisation
The final  stage of a medicinal chemistry drug discovery programme  to be 
considered  in  this  section  is  lead  optimisation.  Lead  optimisation  (LO)  is 
a critical stage of a project, if any stage can be said to be non-critical. Here, 
compounds do not need to only optimise, or maintain, potency against the 
enzyme target, but many other parameters need to be balanced. Cellular and 
toxicity assays remain vastly important, but by this stage it may be possible 
to define sufficiently reliable models for guiding predictions for use in syn-
thesis. In addition, consideration also needs to be made regarding the prop-
erties that govern good oral absorption, slow metabolic clearance in vivo, and 
displaying activity in animal models of the disease.

It  is  clear  that  LO  is  a  critical  and  difficult  challenge  and  fraught  with 
multiple competing readouts. At this stage, the data regarding the chemical 
series that remain in the project, typically one priority series and at least one 
back-up series, may now be sufficient to build more reliable models than pre-
viously possible in the project to predict for enzyme and cellular potency, and 
also potentially some off-target (selectivity) and anti-targets (such as hERG 
liabilities), but this may not be the case. However, regardless, the mantra in 



Chapter 15176

LO should be to make best use of the data but do not become beholden to 
it. The data can certainly inform the decision making in the team, but care 
must be taken to ensure critical and significant changes are reduced to exper-
iment where possible to test the assumptions made on the models.

Given  all  of  the  challenges  in  LO,  and  the  critical  role  that  data  plays  at 
this stage  in the process,  it  is clear  that  the Matched Molecular Pair Analy-
sis  (MMPA)  concept  could  play  a  pivotal  role.  The  Matched  Molecular  Pair 
(MMP) concept, introduced by Kenny and Sadowski, is one of the most recent 
advances in chemoinformatics and could offer a great deal to LO projects.7 
MMPA takes a pair of molecules that differ in only one minor way, but also have 
been measured using the same assay, to identify small structural changes that 
may have a desired effect. Given that the same matched molecular pair will 
often be seen in different pairs, confidence can be increased in the change in 
readouts as the number of pairs with the same modifications increases.

It is often claimed that QSARs are not as interpretable as would be desired, 
which is sometimes the case, but they can still be useful. It is true to say it can 
be difficult to understand precisely what modification had an effect and how 
these modifications can be designed. Regardless, the benefit of conducting 
multiobjective  de novo  design  in  a  late  stage  project  was  demonstrated  in 
the previous chapter. However, regardless of opinions regarding QSARs, it is 
clear that MMPA offers an alternative and interpretable approach to making 
changes to molecules such that the modification can be rationalised struc-
turally and it is an ideal approach, perhaps complementary to or in combi-
nation with other methods.

MMPA is clearly reliant on the data available and this may also be a rea-
son  for  reports  of  its  benefits  to  projects  in  pharmaceutical  companies, 
since they tend to have substantially more, and more relevant and reliable, 
data than is otherwise publicly available. However, more recently, an online 
bioisosteric replacement tool has been developed by Wirth et al.8 using the 
MMPA concept. The SwissBioisostere tool is available online at http://www.
swissbioisostere.ch/.

15.6   Summary
In this chapter, methods that have had a demonstrative impact on the various 
stages of drug discovery have been reported. It is often thought that compu-
tational methods in medicinal chemistry can tend to contribute only at cer-
tain stages within the drug discovery process, but it is clear for the examples 
above, and the many more examples that exist, that computational methods 
have been applied to a wide range of diverse challenges in drug discovery and 
medicinal chemistry.

The  evaluation  of  targets  early  in  a  potential  drug  discovery  project  is 
essential to understand whether the target has potential liabilities that may 
stymie its progress downstream. Using druggability analyses, it is possible to 
help prioritise potential drug targets for consideration to initiate a project. 
The analysis of bromodomains using just such a tool discovered that some 
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bromodomains  had  a  higher  chance  of  success  in  terms  of  exploiting  the 
endogenous  binding  site  than  others  and  that  those  protein  targets  could 
therefore  be  progressed  to  further  analysis,  and  even  the  identification  of 
chemical tools as demonstrated in that project.

It  is  always  important  to  look  at  the  available  data,  as  it  becomes  avail-
able, in different ways and using different approaches and statistical mod-
elling  methods  to  help  reveal  any  hidden  relationships  and  trends.  Two 
such  visualisation  tools  that  have  wide  application  within  drug  discovery 
projects  beyond  the  hit  generation  stage  were  presented  in  this  chapter: 
ScaffoldHunter and DataWarrior. ScaffoldHunter allows the organisation of 
structural data through iteratively pruning back the rings in the molecular 
structures in a given set and organising the structures hierarchically. By map-
ping the biological assay data, it is possible to highlight scaffolds that could 
be flagged for follow-up since they are represented by many structures that 
exhibit activity. Similarly, DataWarrior offers the ability to crosslink data in 
different data views that allows for the interactive exploration of data. Fur-
thermore, the dynamic filter queries enable the data scientist to drill down 
to the data of most interest and, if necessary, return to the data and ask dif-
ferent questions of the data.

The last approach covered in this chapter is one that is highly relevant to 
lead optimisation, but can also be applied with benefit in the earlier stages, 
bioisosteric replacement. With the  large amounts of public data  that have 
been collated and (re)digitised, it is possible to data mine structure trends 
in  big  data.  Using  ChEMBL  and  MMPA  permits  just  such  an  analysis  and 
can recover molecular substructures that have been demonstrated, by exper-
iment, to help maintain potency while ameliorating other properties, such as 
solubility. SwissBioisostere now offers this resource online so that anyone is 
able to mine these data in a quick and simple way and re-adjust their hypoth-
eses as the data reveals different possibilities.

It is important not to get carried away with all of the methods available 
today, but it is clearly difficult when they offer so much promise. Therefore, 
it  is essential to appropriately formulate the question being asked of the 
method  or  the  data,  and  understand  what  success  would  be  and  how  it 
would be measured. By maintaining this clear focus on research questions 
and  expectations  from  the  data  and  the  methods,  these  approaches  are 
incredibly valuable.
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CHAPTER 16

Summary and Outlook

16.1   The Past
Arguably,  computers  and  chemistry  have  gone  hand-in-hand  since  even 
before  computers  as  we  know  them  existed.  Mathematics  and  chemistry 
have certainly been closely linked for many centuries. It is important for any 
scientist to understand the context of what they are learning and this is why a 
history was given regarding the close links between graph theory and chem-
istry, going back to the advent of atomistic theory.

The work of Alexander Crum Brown and others gave rise to what we now 
see  as  the  chemistry  lingua franca  almost  two  hundred  years  ago.  Crum 
Brown’s  further  work  on  what  we  now  call  structure–activity  relationships 
was pioneering at its time and it is amazing to think now that this mathemat-
ical insight as to how molecules work physiologically is down to a simple, but 
oh-so-complicated, function of chemical constitution.

Moving forward to Langmuir’s work on isosteres, which founded a whole 
new field that only in recent times has begun to resonate with importance as 
to its impact in drug design and medicinal chemistry. Langmuir’s work led 
to the foundation of bioisosteric replacement, which is fast becoming one of 
the most important facilitators of new ideas for some time.

Markush introduced the protection of ideas to the chemistry world in 1924, 
but not just ideas, also families of ideas. Now every medicinal chemistry pat-
ent has generic Markush structures to represent the space to be covered by 
the patent, with the necessary caveats of the need for reduction to practice.

The  history  has  shown  us  much  and  I  think  still  has  much  to  show  us. 
There are most likely methods to be rediscovered, ideas from minds thinking 
well ahead of their time and awaiting the development of algorithms that can 
finally release those answers that were considered so long ago. What is clear 
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is that history has shown us that we have been doing a lot of what we think is 
new for a very long time. We may not have realised that we have already been 
doing it, but looking back to the history of the field and related fields demon-
strates that many of the theories and contexts are the same.

16.2   The Present
Now, everyday computers are used  in every aspect of drug discovery,  from 
their use as Electronic Laboratory Notebooks (ELNs), to central repositories 
or enterprise information systems that store all of our metadata about our 
compounds,  to  online  search  engines  that  permit  you  to  find  compounds 
you want to test using the Internet, or calculate properties, or perform a sub-
structure or similarity search to identify other interesting compounds.

All  of  the  systems  mentioned  above  use  the  foundations  of  everything 
that has been covered in this book. The concepts of molecular similarity are 
used every day, whether it is simply in finding something similar to what was 
wanted, through to analogue-by-catalogue searches where a range of similar 
compounds might be needed to follow up on a high-throughput screen.

Calculated  properties  are  all-pervasive  to  the  point  that  sometimes  one 
needs to be reminded that they are calculations after all. Data analysis tech-
niques now easily allow us to conduct vast analyses on tens of thousands of 
chemical structures, across dozens of descriptors. Models can be generated 
on an ad hoc basis, and derivatives used to generate ideas that might be oth-
erwise outside where the project was planning to go.

Other methods from areas of theoretical chemistry are also beginning to 
find their feet in computational drug discovery. Molecular dynamics simula-
tions are now frequently being used in drug discovery programmes to under-
stand where loops may move and how the overall carbon backbone may flex 
allowing the identification of potential binding sites we otherwise would not 
have recognised.

Over the past few years, the increase in routine calculations using molecu-
lar modelling approaches has been rapid. However, it is of utmost importance 
for us as scientists to question and formulate our hypotheses appropriately 
and have a realistic expectation of what to expect from the results. It is pos-
sible to generate vast swathes of data, but they cannot be considered results 
until they have been analysed and the conclusions interpreted and justified.

16.3   The Future
It is already possible to see some of the advances that could be seen as futur-
istic only a couple of years ago. The ready access to data will only become 
more  pronounced  as  search  and  retrieval  techniques  will  allow  us  to  not 
only release more and more data as it is generated, but also to go back into 
the archives and retrieve ‘lost’ data and chemical structures from chemical 
papers and archives.
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The new data  that will be generated and released will enable many new 
analyses, and even the development of methods that hitherto were merely 
pipedreams due to the paucity of available data. Large-scale databases, such 
as those from ChEMBL, have already revealed interesting trends that other-
wise would not have been identified. This will only increase in the future as 
we map more of the chemistry spaces in which we are working.

Future  successes  will  rely  on  data  and  new  algorithms,  but  also  on 
the  scientists  not  losing  sight  of  the  goal  and  using  the  different  meth-
ods  appropriately,  based  on  hypothesis-driven  science.  It  is  important  to 
understand how the algorithms work and what their potential failings may 
be. Without this understanding, the methods are black boxes that cannot 
reveal whether  the conclusions are valid and can therefore be very costly 
downstream when these ideas leave the computer and enter the lab, with 
the  relatively  much  more  expensive  processes  of  synthesising  these  new 
compounds and evaluating their utility in the biology labs. It is important 
as  a  modeller  to  ensure  that  every  aspect  has  been  considered  appropri-
ately and to understand limitations so that the project team, including the 
modellers, can be involved in the decision as to whether this idea or that is 
worthy of further consideration.

Structure-based  methods  continue  to  improve  and  will  most  likely  con-
tinue to do so in the future. Fundamental challenges remain, but these are 
being  addressed  as  time  passes.  For  instance,  understanding  when  and 
where docking methods can be applied, and an understanding of probabili-
ties of success, will inform on the ligand structures that we are investigating 
with  these  methods.  Additional  up-stream  filtering  and  consideration  will 
likely become more flexible to deal with new challenges as they are discov-
ered. As more structural data becomes available, it will be possible to make 
more accurate predictions routinely using multiple models and consensus 
or ensemble docking.

It  is  now  becoming  ever  more  apparent  that  no  single  method  will  out- 
perform another in all circumstances, but the understanding of where these 
different methods can be applied is becoming clearer. Methods of combining 
different methods—molecular descriptors, statistical learning, shape-based 
and pharmacophore analyses, and protein–ligand docking—will be refined 
with more methods used in concert to optimise not only the predictions, but 
also the quality of those predictions.

Perhaps the most exciting aspect of current and on-going research is the 
prospects that de novo design offer in terms of designing new molecular enti-
ties in silico. These methods will allow the modeller and the chemist to reveal 
hitherto uncharted regions of chemical space, and dig down to exploit those 
areas to maximum effect. It must be made clear that these approaches are 
unlikely to replace the expertise of the modeller or the chemist since these 
skillsets are still essential in using the tools appropriately as well as critically 
evaluating the results. However, it is clear, from a number of recent studies 
that in silico drug design is coming of age in terms of a demonstrable impact 
in drug discovery.
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16.4   Summary
This book covers a wealth of research, both historical and still active, in the 
field of computational drug discovery. Much had to be omitted due to clarity 
and brevity to appropriately cover the field for the beginners, but the book 
still also offer items of interest to those who have some more experience in 
the field. Where space was limited, appropriate review articles have been ref-
erenced as pointers to further and more in-depth information.

It is clear from the breadth of methods and algorithms discussed in this 
volume that the field covers a wide range of methods and therefore requires 
scientists  from  all  relevant  disciplines  to  get  involved  and  help  make  the 
future  discoveries  that  will  ultimately  result  in  benefits  to  humanity  as  a 
whole.
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Appendix A

Glossary of Terms

Summary
Many words and terms used in the field of in silico medicinal chemistry are 
non-obvious and potentially confused with their use in other fields. Here, a 
glossary of terms used in the context of in silico medicinal chemistry is pro-
vided that seeks to act as a ready reckoner of these terms and for clarification 
in reading both this text and other papers and books published in the field.

Term definition

Ångström (Å) The standard unit of length in chemistry where 1 ångström 
is equal to 10−10 metres, or one ten-billionth of a metre. 
As an example, a typical hydrogen-bond interaction is 
around 1.5 to 2.5 ångströms

Area under the curve 
(AUC)

The calculation of the area under the curve of a receiver 
operator characteristic or enrichment plot to quantify 
the relative enrichment of active molecules at a particular 
point or points in a screening experiment

Clogp Calculated descriptor of the octanol/water partition coef-
ficient. not to be confused with the measured property, 
logp

Cluster analysis Grouping objects according to similarity whereby the same 
groups or clusters are more similar to each other than 
they are to objects in other clusters

Conformer A specific spatial arrangement of atoms in a molecular 
structure in xyz space

Confusion matrix A simple method of summarising the quality of a binary 
statistical classifier by comparing the known classes and 
the predicted classes. This results in a two-dimensional 
matrix that summarises how many true positives, true 
negatives, false positives and false negatives have been 
predicted

(continued)
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dA discriminant analysis
dependent variable Represents the output or effect, often a biological end-

point, such as percentage inhibition or inhibitory 
concentration

descriptor A calculated, or sometimes measured, value that describes 
an aspect of the molecular structure. These range 
from calculated physicochemical properties and those 
determined from the connectivity of a structure to the 
geometries or conformers of the molecules

diversity in the context of molecules, diversity is a measure of the 
evenness of distribution of the molecular structures 
over a defined descriptor space. diversity is important 
in designing diverse libraries and analysing hit matter 
from high-throughput screens

docking The process by which, given a protein binding site, a small 
molecule (or ligand) is placed into the binding site such 
that internal and external strains and interactions are 
minimised and maximised, respectively. The search  
algorithms typically explore conformations, rotations, 
and positioning of the ligand in three-dimensional space

eC50 Half maximal effective concentration
enrichment The measurement of the quality of a ranked list of structures 

from a virtual (or any) screen in terms of the discrimina-
tion of active structures from inactive structures

Fingerprint A vector of binary, categorical, integer or real-valued data 
that can be applied as a mask screen, a complexity measure, 
or to calculated similarities between objects

fsp3 Fraction of sp3 centres in a given molecular structure as 
the number of heavy atoms contained in the whole mol-
ecule. Often presented as a descriptor of three- 
dimensionality, it is actually a descriptor of molecular 
complexity that could give rise to increased three- 
dimensionality. it is rapid to calculate, from topological 
structures, and therefore structural conformers are not 
required

Genetic algorithm  
(GA)

A natural heuristic optimiser that is a computational 
analogue of darwinian evolution. GAs are used widely in 
computational drug discovery where they are accepted 
as rapid and effective global optimisation algorithms

H-bond Hydrogen bond
HA Heavy atom
HBA Hydrogen bond acceptor
HBd Hydrogen bond donor
High-throughput 

screening (HTS)
The physical measurements of a, typically, biological end-

point of a large library of compounds in a suitably short 
timeframe, typically a few weeks

iC50 Half maximal inhibitory concentration
independent variable Represents the variables that can be tested to see if they 

are the cause
intellectual property 

(ip)
The means by which novel molecular entities are protected 

to enable revenue generation as compensation for the 
expense of drug discovery and development

Term definition
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Kd dissociation constant
Ki inhibition constant
Ligand in biochemistry or pharmacology, a ligand is usually a 

small molecule that complexes with a biological macro-
molecule to trigger or inhibit a signal. in drug discovery, 
the ligand is typically the small molecule being opti-
mised and will eventually lead to a small-molecule drug

logd Logarithm of distribution coefficient
logp Logarithm of partition coefficient
Ligand efficiency (Le) A parameter calculated as the ratio of the biological activity 

and size of the molecular structure, typically in heavy 
atoms. The higher the ligand efficiency, the more 
potency is generated without a concomitant increase  
in size

Lipophilic ligand  
efficiency (LLe)

The equivalent of ligand efficiency, but simply subtracts 
the Clogp from the potency in piC50 (negative logarithm 
of the iC50 data)

Matched molecular 
pairs (MMps)

Two molecular structures differing in only one substituent or 
group and having the same measured property. The  
difference in the measured property can then be 
inferred from the change in the matched molecular pair

Molecular weight  
(MW)

The mass of a molecular structure in terms of its atoms’ 
contributions to its mass measured in daltons (u or da)

Multiobjective 
optimisation

The process by which an optimiser takes into account 
multiple objectives or parameters when optimising. 
Typically in drug discovery this is used to mean optimising 
molecules that satisfy multiple properties, such as: 
enzyme potency, cell potency, solubility, toxicity, metab-
olism, etc. This is sometimes called multiparameter or 
multiparametric optimisation

Murcko scaffolds The Murcko scaffolds (proposed by Bemis and Murcko) is 
an objective and invariant scaffold representation of a 
molecular structure such that only the cyclic groups are 
retained and their interconnecting acyclic groups. The 
scaffold is applied in scaffold similarity and diversity 
analyses

naïve Bayesian  
classifier (nBC)

A simple supervised statistical learning method that uses 
Bayesian probabilities priors on extant objects to predict 
for unknown new objects. essentially, if a property has 
been observed before and was identified as ‘good’, it 
will be seen as good in any new object that exhibits that 
same property

pareto ranking of 
optimality

The calculation of a ranking of objects in greater than 
two-dimensions, such that the non-dominated objects 
are said to be those in which no other object out-performs 
them in all dimensions. The non-dominated front is the 
family of all non-dominated solutions

partial least squares 
(pLS)

A supervised statistical learning method to build a regression 
model. pLS can often work well when there are many 
more variables than observations

principal components 
analysis (pCA)

A statistical projection method used in multivariate and 
megavariate analysis to reduce the number of dimensions, 
but retain the explanation of as much statistical variance 
of the original data matrix

(continued)
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pharmacophore An ensemble of steric and electronic features that is necessary 
to ensure the optimal supramolecular interactions with 
a specific biological target and to trigger (or block) its 
biological response

physicochemical 
properties

Calculated properties that correlate with measured phe-
nomena. examples are molecular weight, Clogp, etc.

piC50 The negative logarithm base-10 of the iC50 value:

  • iC50 of 1 µM = 10−6 M: piC50 = 6.0
  • iC50 of 100 nM = 10−7 M: piC50 = 7.0
  • iC50 of 10 nM = 10−8 M: piC50 = 8.0
  • iC50 of 1 nM = 10−9 M: piC50 = 9.0
  • iC50 of 30 nM = 3 × 10−7 M or 10−7.5 M: piC50 = 7.5

plane of best fit (pBF) A molecular descriptor as a measure of three-dimensionality  
that calculates the best-fit plane between each of the 
heavy atoms and the average of the distances of those 
atom to the fit plane

principal moments  
of inertia (pMi)

A molecular descriptor that quantifies the degree to which 
a molecular structure is rod-like, disc-like, and sphere-
like. The calculation can therefore be applied to quantify 
the three-dimensionality of a given ligand structure

probe in the context of similarity searching and virtual screening, a 
probe is a ligand of interest that is used, through ligand 
similarity methods (sometimes using metadata), to 
identify similar ligands that may be of interest

protein–protein  
interaction (ppi)

The interface between two proteins that can be usefully 
disrupted by designed small molecules to therapeutic 
effect

Quantitative structure–
activity relationship 
(QSAR)

Quantitative structure–activity relationship, a supervised 
model that attempts to correlated an activity endpoint 
with molecular structure

Receiver-operating- 
characteristic (ROC) 
curve

A plot that illustrates the performance of a binary classifier 
model

Similarity normally used to denote molecular similarity. A quantifi-
cation of the level of similarity between two chemical 
structures based on descriptors, such as molecular 
fingerprints, structural overlap or physicochemical 
properties

Similarity searching Given a probe molecule and a database of chemical struc-
tures, the probe is compared to each structure in the 
database in turn using some similarity measure. Once 
the probe has screened the database, the database can 
be ranked in descending order of similarity. The most 
similar molecules to the probe will now appear at the 
top of the list for focussed analysis

SMiLeS arbitrary target  
specification 
(SMARTS)

Related to SMiLeS strings, but an extension that optimally 
permits the encoding of substructure search queries 
with varying levels of specificity

Simplified molecular- 
input line-entry  
specification 
(SMiLeS)

A line notation to denote the two-dimensional (or topological) 
structure of a molecular graph

Term definition
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Supervised learning Model that attempts to correlate an independent variable, 
typically biological activity, with dependent variables, 
typically calculated molecular descriptors

Unsupervised learning Model that reveals the structure of a given data matrix 
without any external training or correlating property

Virtual screening The process by which a large virtual library of chemical 
structures is prioritised using similarity searching, sta-
tistical model and simulations (such as docking) such 
that the most relevant structures will appear at the top 
of the list
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Appendix B

Professional Societies

Summary
This appendix provides an overview of some of the most important pro-
fessional societies in computational drug design worldwide. The list is not 
exhaustive and is limited to those with direct relevance to drug design.

Chemical Information and Computer Applications Group 
(CICAG)
Parent: The Royal Society of Chemistry, London

Website: http://www.rsc.org/Membership/networking/interestGroups/CiCAG/

Overview: The Chemical information and Computer Applications Group 
(CiCAG) emerged in 2007 from the unification of the Chemical information 
Group (CiG) and Computer Applications Subject Group (CASG), both from 
within The Royal Society of Chemistry, London. The objective of the commit-
tee is to raise awareness of chemical information and applications, including 
services and developments in this field of research that change very quickly. 
The CiCAG organise a range of conferences of relevance to its membership.

The UK-QSAR and Chemoinformatics Group 
(UK-QSAR)
Website: http://www.ukqsar.org/

Overview: The UK-QSAR and Chemoinformatics group was formed in  
Yugoslavia at the european QSAR Meeting held in 1986. it was identified by 
a group of British scientists that there was an opportunity to offer a similar 
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meeting to euroQSAR to serve research in the UK. initially formed as the UK 
QSAR discussion Group, the name later integrated chemoinformatics into 
its name to reflect the close links between these areas of endeavour and to  
co-ordinate activities. The UK-QSAR and Chemoinformatics Group now 
organises two one-day events per year around the United Kingdom at no 
charge to delegates interested in these fields.

Chemical Structure Association Trust (CSAT)
Website: http://www.csa-trust.org/

Overview: The Chemical Structure Association Trust (CSAT) is an interna-
tionally known society that promotes and supports education, research and 
development in the field of storage, processing and retrieval of information 
concerning chemical structures. The CSAT enables their support through a 
wide range of awards and travel grants and has supported many scientists 
during its existence. The CSAT publishes a regular newsletter that is available 
online.

Molecular Graphics and Modelling Society (MGMS)
Website: http://www.mgms.org/

Overview: The Molecular Graphics and Modelling Society (MGMS) was 
formed in 1981 to represent and support all scientists conducting research 
at the interface between different fields of study, such as chemistry, physics, 
biology, mathematics and computer science, who have a unified interest in 
molecular modelling and graphics. The MGMS is a charity that is voluntarily 
funded from both academia and industry. The society organises many con-
ferences under its umbrella and in collaboration with other learned societies, 
such as CSAT, and also organises lecture series of interest to members. The 
society also organises the long-running and highly popular Young Modellers’ 
Forum, at which a number of early-stage scientists are invited on abstract 
submission to present either orally or by poster presentation at a dedicated 
meeting for early-stage scientists. The society also supports its official jour-
nal, the Journal of Molecular Graphics and Modelling.

Division of Chemical Information (CINF)
American Chemical Society
Website: http://www.acscinf.org/

Overview: The ACS division of Chemical information (CinF) has as its primary 
objective the aim to promote the generation of, access to, and use of all the 
information and knowledge generated worldwide. As such, CinF balances its 
focus between expertise in science informatics, information technology, and 
librarianship to ensure all of its membership is covered and represented.
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Division of Computers in Chemistry (COMP)
American Chemical Society
Website: http://www.acscomp.org/

Overview: The ACS division of Computers in Chemistry has a highly diverse 
membership and seeks to support the application of the latest innovations in 
theoretical chemistry to the experimental, physical and biological sciences. 
The ACS COMp organise a twice-yearly session at the ACS national Meetings, 
which are held in a variety and ever-changing selection of American cities. in 
addition, the ACS COMp awards a number of prizes for excellence in com-
putational chemistry at all levels of scientific endeavour from graduate stu-
dents to established scientists.

The Cheminformatics and QSAR Society
Website: http://www.qsar.org/

Overview: The international QSAR Society was founded in 1989 at a Gordon 
Conference on QSAR. At the 1995 QSAR Gordon Conference, the title of the 
society was changed to The QSAR and Modelling Society. in spring 2007, the 
Board decided to change the title of the society to The Cheminformatics and 
QSAR Society. The change in name reflects the changing emphasis of com-
putational research in chemistry to increasingly include chemoinformatics. 
All scientists who are involved in chemoinformatics and/or investigate quan-
titative structure–activity relationships in medicinal, agricultural or environ-
mental chemistry are encouraged and invited to join the Cheminformatics 
and QSAR Society.

Chemistry-Information-Computer (CIC)
The German Chemical Society (Gesellschaft deutscher Chemiker e.V.)
Website: https://www.gdch.de/netzwerk-strukturen/fachstrukturen/chemie- 
information-computer-cic.html

Overview: The CiC organises an annual conference on chemoinformatics, 
held in Germany. The conference has been held for a number of years; the 
official langue of the conference is english and invitations to speak are 
accepted from all scientists active in the field.
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Appendix C

Journals

Summary
What follows is a list of some of the most popular journals in the field of 
molecular design and computational chemistry modelling. This list is by no 
means meant to be comprehensive, but represents a substantial subset of the 
most read journals in the field that would be well worth considering reading 
for someone starting out in the field.

Journal of Chemical Information and Modeling
J. Chem. Inf. Model.
American Chemical Society
2004–present

Previously:
Journal of Chemical Documentation (1961–1974)
J. Chem. Doc.
Journal of Chemical Information and Computer Sciences (1975–2004)
J. Chem. Inf. Comput. Sci.

Overview: The Journal of Chemical information and Modeling has long been 
the main journal in the field. The journal began in 1961 as the Journal of 
Chemical documentation. The remit of this journal is to publish new meth-
odologies and applications in the fields of chemical information and molec-
ular modeling. Specific areas of interest include: computer-based searching 
of chemical databases; molecular modeling; and computer-aided molecular 
design of new materials, catalysts or ligands. it is one of the most highly 
rated journals in modeling and also in computer science itself. This journal 



Appendix C196

is an excellent place to start investigating the long history of chemical infor-
mation right up to the present day, represented by a relatively high impact 
factor.

Website: http://pubs.acs.org/journal/jcisd8

Journal of Computer-Aided Molecular Design
J. Comput.–Aided Mol. Des.
Springer-Verlag GmbH
1987–present

Overview: This journal covers the theory and application of computer-based 
methods in the analysis and design of molecules. The journal covers the 
following topics, but this is not exhaustive: theoretical chemistry; computa-
tional chemistry; computer and molecular graphics; molecular modelling; 
protein engineering; drug design; expert systems; general structure–property 
relationships; molecular dynamics; and chemical database development and 
usage. The journal also incorporates the journal perspectives in drug discov-
ery and design, and each volume contains issues dedicated to the remit of 
that journal. The journal is the official journal of The Cheminformatics and 
QSAR Society (www.qsar.org).

Website: http://www.springer.com/chemistry/physical+chemistry/journal/10822

Molecular Informatics
Mol. Inf.
Wiley-VCH GmbH
2009–present

Previously:
QSAR and Combinatorial Science (1982–2009)
QSAR Comb. Sci.

Overview: This journal covers all aspects of molecular informatics, including 
biology, chemistry and computer-assisted molecular design. in particular, 
the journal seeks to enhance the understanding of ligand–receptor interac-
tions, macromolecular complexes, molecular networks, design concepts and 
processes. The journal also includes the unique ‘Methods Corner’ review-
type articles that feature important technological concepts and advances 
within the scope of this journal.

Website: http://www.onlinelibrary.wiley.com/journal/10.1002/(iSSn)1868-1751

Journal of Molecular Graphics and Modelling
J. Mol. Graphics Modell.
elsevier B.V.
1996–present
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Previously:
Journal of Molecular Graphics (1983–1996)
J. Mol. Graph.

Overview: This journal is dedicated to the publication of papers on the appli-
cation of computers in theoretical investigations of molecular structure, 
function, interaction and design. The scope covers all aspects of molecular 
modelling and computational chemistry. The journal publishes in asso-
ciation with two highly active professional societies in the field: Molec-
ular Graphics and Modelling Society (MGMS) (www.mgms.org) and the  
American Chemical Society division of Computers in Chemistry (COMp) 
(www.acscomp.org).

Website: http://www.sciencedirect.com/science/journal/10933263

Journal of Chemical Theory and Computation
J. Chem. Theor. Comp.
American Chemical Society
2004–present

Previously:
Journal of Chemical Documentation (1961–1974)
J. Chem. Doc.
Journal of Chemical Information and Computer Sciences (1975–2004)
J. Chem. Inf. Comput. Sci.

Overview: This journal covers more of the theoretical and computational 
chemistry aspects of the field, but tends to focus more on new theories and 
methodologies related to quantum electronic structure, molecular dynamics 
and statistical mechanics. Specific topics of interest to the journal include: 
ab initio quantum mechanics, density functional theory, design and prop-
erties of new materials, surface science, Monte Carlo simulations, solva-
tion models, QM/MM calculations, biomolecular structure prediction, and 
molecular dynamics in the broadest sense, including gas phase dynamics, 
ab initio dynamics, biomolecular dynamics and protein folding. The journal 
explicitly does not accept papers describing straightforward applications of 
known methods, including dFT and molecular dynamics, instead preferring 
to focus on fundamental breakthroughs and advances in theory or method-
ology with applications to compelling problems.

Website: http://pubs.acs.org/journal/jctcce

Journal of Cheminformatics
J. Cheminf.
Chemistry Central—Open Access chemistry platform of Springer Science+ 
Business Media
2009–present
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Overview: This journal is entirely open access, but all papers are still peer- 
reviewed, and it covers all aspects of molecular modelling and cheminfor-
matics. Coverage includes: chemical information systems, software and  
databases; molecular modelling; chemical structure representations and 
their application in structure, substructure and similarity searching of 
chemical substance databases and reaction databases. The journal also cov-
ers molecular graphics, computer-aided molecular design, expert systems, 
QSAR and data mining techniques.

Website: http://www.jcheminf.com/

Wiley Interdisciplinary Reviews: Computational Molecular 
Science
WIREs Comp. Mol. Sci.
John Wiley & Sons Ltd.
2011–present

Overview: This is a journal of essentially review articles that cover a wide vari-
ety of methods in the field of computational molecular science. The journal 
covers the following top-level disciplines as part of its remit: electronic struc-
ture theory, molecular and statistical mechanics, computer and information 
science, computational chemistry, and theoretical and physical chemistry.

Website: http://wires.wiley.com/WileyCdA/WiresJournal/wisid-WCMS.html.
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Appendix d

Resources for Computational 
Drug Discovery

Summary
it was not that long ago that both data and the software with which to analyse 
them were unavailable unless large licence fees were paid to various compa-
nies. While it is still the case that commercial vendors offer databases and 
software for licence fees, and often those resources can be worth it, much 
more data and software are becoming available to all as free downloads as 
both closed and open source offerings.

This appendix covers a range of the leading resources on offer in the field, 
from compound datasets with biological activities and software to analyse 
those data to software application program interfaces (Apis) to enable soft-
ware developers to design and implement new algorithms and protocols to 
conduct novel research. The list is not exhaustive, but covers a representative 
set of tools that are discussed frequently at relevant conferences. Apologies 
to any tools that have been left off the list, this was entirely by accident.

RDKit
Resource: Chemoinformatics Api for C++, C#, Java and python

Website: http://www.rdkit.org/

Overview: RdKit was first developed at Rational discovery to provide an Api 
platform for building supervised statistical models, but then in June 2006 
Rational discovery was closed down and the RdKit was released as open 
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source under a BSd licence. Since 2006, RdKit has remained open source 
and has been support by scientists at the novartis institutes for BioMedical 
Research and an increasingly sizeable user base in academia and industry.

The core functionality of RdKit is implemented in C++, but python, Java 
and C# wrappers are available, with the python Api appearing to be the most 
popular with users. The RdKit offers a substantial amount of functionality 
for both two-dimensional and three-dimensional molecular operations, and 
reads and writes most common file formats, including SMiLeS/SMARTS and 
SdF. The chemoinformatics functionality includes substructure searching, 
generation of canonical SMiLeS, support for chirality, chemical transforma-
tions and reactions, and serialisation of molecules into text.

in addition to the functionality above, RdKit offers a wide range of 2d fin-
gerprints (including ligand-based topological pharmacophores), similarity 
and diversity selection, generation of 2d and 3d co-ordinates, and a variety 
of common molecular and physicochemical descriptors. RdKit also has very 
close integration with ipython allowing for interactive and explorative script-
ing in ipython notebooks, which has been proposed as a method by which 
methods can be published with the actual implementations in journals in 
the future.

Regular updates to RdKit are released at six month intervals and the com-
munity is very active over email on the discussions list for asking questions 
and, if you can get there before Greg, answering them!

Use of RdKit has increased substantially in recent years, with the first 
RdKit UGM being held in London in 2012, and has been held annually every 
year since.

Scikit-Learn
Resource: Statistical Learning and Visualisation python Api

Website: http://www.scikit-learn.org/

Overview: While not strictly a domain-dependent Api, scikit-learn offers 
many of the unsupervised and supervised statistical learning methods men-
tioned in this book and those that are used widely in the community. integra-
tion with RdKit permits ipython notebooks to be written that can handle the 
chemoinformatics processes first, followed by statistical learning methods, 
and subsequent interrogation of numerical and structural data.

ChEMBL
Resource: Chemical database of bioactive molecules

Website: https://www.ebi.ac.uk/chembl/

Overview: CheMBL is one of the most outstanding resources of chemi-
cal biology data to be released in recent years. Originally, the database was 
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developed by a biotechnology company called inpharmatica and was called 
StARlite. in 2008, thanks to an award from the Wellcome Trust, CheMBL was 
created and a chemogenomics group at the Wellcome Trust in Cambridge 
created, led by John Overington, to support its maintenance and pursue 
research activities using the data.

The CheMBL database currently contains 10 744 targets, 1 715 667 com-
pound records, 1 463 270 distinct compounds and 13 520 737 activities man-
ually curated from 59 610 publications.

SureChEMBL
Resource: Chemistry patent database

Website: https://www.surechembl.org/

Overview: From the guys who brought you CheMBL! SureCheMBL is a huge 
online patent database that not only has access to the original patent docu-
ments, but it has also abstracted out the text and structural information. The 
system offers online structure searches using substructures and molecular 
similarity.

myChEMBL
Resource: Chemoinformatics Virtual Machine

Website: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myCheMBL/current/

Overview: Again from the CheMBL guys comes a virtual machine that is 
ready-to-run with many different computational drug discovery and chemo-
informatics functionalities. myCheMBL comes preinstalled with postgreSQL, 
which is preloaded with the latest CheMBL version, including additional 
tables to enable RdKit similarity searching. Therefore, as you would expect, 
RdKit is also installed. The system also comes with ipython preinstalled 
and ready-to-run, allowing interactive chemoinformatics scripting in RdKit 
using CheMBL.

DataWarrior
Resource: Visual explorative data analysis and interactive data mining

Website: http://www.openmolecules.org/datawarrior/

Overview: dataWarrior combines dynamic graphical views and interactive 
row filtering with chemical intelligence. Scatter plots, box plots, bar charts 
and pie charts not only visualise numerical or category data, but also show 
trends of multiple scaffolds or compound substitution patterns. Chemical 
descriptors encode various aspects of chemical structures, e.g. the chemi-
cal graph, chemical functionality from a synthetic chemist’s point of view 
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or 3-dimensional pharmacophore features. These allow for fundamentally 
different types of molecular similarity measures, which can be applied for 
many purposes including row filtering and the customisation of graphical 
views. dataWarrior supports the enumeration of combinatorial libraries 
for the creation of evolutionary libraries. Compounds can be clustered and 
diverse subsets can be picked. Calculated compound similarities can be used 
for multidimensional scaling methods, e.g. Kohonen nets. physicochemical 
properties can be calculated, structure–activity relationship tables can be 
created and activity cliffs visualised.

KNIME
Resource: interactive and Visual Workflow Tool

Website: https://www.knime.org/

Overview: KniMe is a free, yet closed source, tool to develop visual data 
pipelines using prewritten components or bespoke developed components. 
Many tools plug into KniMe, including RdKit and scikit-learn. The platform 
also has nodes available for commercial software tools, such as MOe from 
Chemical Computing Group and the Schrödinger suite. The company does 
offer enterprise editions of their software under commercial licences, but the 
standalone version is free.

PyMOL
Resource: interactive protein Structure Viewer

Website: https://www.pymol.org/

Overview: pyMOL is a user-sponsored molecular visualisation system on an 
open-source foundation. pyMOL offers protein structure visualisation that 
is interactive and has extensive functionality for adapting the visualisations 
and annotation of protein structures. pyMOL is excellent for high-resolution, 
publication-quality images.

SwissBioisostere
Resource: Online Bioisosteric Replacement Tool

Website: http://www.swissbioisostere.ch/

Overview: SwissBioisostere is a web-based bioisosteric replacement sugges-
tion tool using the Matched Molecular pair Analysis (MMpA) concept, and 
it mines its data from the CheMBL database. The tool has an easy-to-use 
interface and suggests replacements with associated target class annotations 
based on the potential change in activity. The system is very simple to use 
and ideal as an ideas generator for medicinal chemists.
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OpenBabel
Resource: The Open Source Chemistry Toolbox

Website: http://openbabel.org/

Overview: Open Babel is a chemical toolbox designed to primarily convert 
between the multitudes of chemical structure file formats that have been 
designed for different software packages; currently, this stands at 100 file 
formats. in addition, OpenBabel has a wide range of ready-to-use software 
programs to convert between file formats, generate conformers, generate fin-
gerprints, calculate molecular descriptors, and many more.

canSAR
Resource: integrated multidisciplinary knowledge-base

Website: https://cansar.icr.ac.uk/

Overview: From The institute of Cancer Research, London, canSAR is a vast 
knowledge base of linked data coming from biology, chemistry, pharmacol-
ogy, structural biology, cellular networks and clinical annotations, and applies 
machine learning approaches to provide drug-discovery useful predictions.

DrugBank
Resource: drug database with associated metadata

Website: http://www.drugbank.ca/

Overview: The drugBank database is a unique bioinformatics and chemoin-
formatics resource that combines detailed drug (i.e. chemical, pharmacolog-
ical and pharmaceutical) data with comprehensive drug target (i.e. sequence, 
structure and pathway) information. The database contains 7759 drug entries 
including 1600 FdA-approved small molecule drugs, 160 FdA-approved bio-
tech (protein/peptide) drugs, 89 nutraceuticals and over 6000 experimental 
drugs. Additionally, 4282 non-redundant protein (i.e. drug target/enzyme/
transporter/carrier) sequences are linked to these drug entries. each drug-
Card entry contains more than 200 data fields with half of the information 
being devoted to drug/chemical data and the other half devoted to drug tar-
get or protein data.

ScaffoldHunter
Resource: Visual exploration of Scaffold Trees

Website: http://scaffoldhunter.sourceforge.net/

Overview: Scaffold Hunter is a Java-based open source tool for the visual 
analysis of data sets with a focus on data from the life sciences, aiming at 
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intuitive access to large and complex data sets. The tool offers a variety of 
views, e.g. graph, dendrogram and plot view, as well as analysis methods, e.g. 
for clustering and classification. Scaffold Hunter has its origin in drug dis-
covery, which is still one of the main application areas, and has evolved into 
a reusable open source platform for a wider range of applications. The tool 
offers flexible plugin and data integration mechanisms to allow adaption to 
new fields and data sets, e.g. from medical image retrieval.

CheS-Mapper
Resource: Chemical Space Mapping and Visualization in 3d

Website: http://ches-mapper.org/

Overview: CheS-Mapper (Chemical Space Mapper) is a 3d-viewer for chemical 
datasets with small compounds. The tool can be used to analyse the relation-
ship between the structure of chemical compounds, their physicochemical 
properties, and their biological or toxic effects. CheS-Mapper embeds a data-
set into 3d space, such that compounds that have similar feature values are 
close to each other. it can compute a range of descriptors and supports clus-
tering and 3d alignment.
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