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Chapter One
Strategy of Experimentation
Experiments are performed by investigators in virtually all fields of inquiry, usually to discover something about a particular process or system. Liberally, an experiment is a test. More formally we can define an experiment as a test or series of test in which purposeful changes are made to the input variables of a process or system so that we may observe and identify the reasons for changes that may be observed in the output response. 
As an example of an experiment suppose that a person may plan to compare the effect of two different types of fertilizers on the yield of the crop. But when we possess such kind of experiment a number of important questions may be raised. Some of the questions may be:
· Are these two types of fertilizers are the only factors that affect the yield of the crop?
· Are there any other factors that may affect the yield of the crop?
· How many plot of land should need for the experiment?
· How do we allocate the fertilizer to the plot of land?
· What method of data analysis should be applied?
All of these questions, and perhaps many others, will have to be answered satisfactorily before the experiment is performed. Therefore, the general approaches of planning and conducting the experiment is called strategy of experimentation. Now let us define and explain some terms commonly used in this course. 
Treatment: it is the different procedure under comparison in an experiment. Example, in an agricultural experiment the different crops, the different manures will be considered as a treatment. 
Experimental unit /material/: it is a material to which applied the treatments and on which the variable under study is measured. Example, in an agricultural experiment the plot of land is considered as the experimental unit.
Response variable: a characteristic of an experimental unit measured after the treatment and analyzed to address the objective of the experiment. Example, in an agricultural experiment the yield of the crop is considered as the response variable. 
In short design of experiment is a plan used in experimentation. It is mainly used in comparative experiment and it is a complete sequence of steps or it touches the following points:
· The set of treatments selected for comparisons
· The specification of unit on which treatments are to be applied
· The rule by which the treatments are to be allocated to the experimental unit
· The specification of measurements or other records to be made in each unit


Basic Principles
If an experiment such as the ones described in the above is to be performed most efficiently, a scientific approach to planning the experiment must be employed. Statistical design of experiment refers to the process of planning the experiment so that appropriate data that can be analyzed by statistical methods will be collected, resulting in valid and objective conclusions. The statistical approach of experimental design is necessary if we wish to draw meaningful conclusions from the data. When the problem involves data that are subjected to the experimental error, statistical methodology is the only objective approach to analysis. Thus there are two aspects to any experimental problem: the design of experiment and the statistical analysis of data. These two subjects are closely related because the method of analysis depends directly on the design employed. The three basic principles of experimental design are replication, randomization and blocking. 
Replication: we mean a repetition of a basic experiment or it refers to the numbers of experimental units that receive the same treatment. It has two important properties, first it allows the experimenter to obtain an estimate of the experimental error. This estimate or error becomes a basic unit of measurement for determining whether observed differences in the data are really statically different. Second, if the sample mean is used to estimate the effect of a factor in the experiment, replication permits the experimenter to obtain a more precise estimate of this effect. 
Randomization: is a cornerstone of underlying the use of statistical methods in experimental design. By randomization we mean that both the allocation of the experimental material and the order in which the individual runs or trails of the experiment are to be performed are randomly determined. Statistical methods require that the observation (or errors) be independently distributed random variables. Randomization usually makes this assumption valid. 
Blocking: is a design technique used to improve the precision with which comparison among the factors of interest are made. Often blocking is used to reduce or eliminate the variability transmitted from nuisance factors; that is, factors that may influence the experimental response but in which we are not directly interested.  
Guidelines for design designing of experiments
To use the statistical approach in designing and analyzing an experiment, it is necessary for everyone involved in the experiment to have a clear idea in advance of exactly what is to be studied, how the data are to be collected, and at least qualitative understanding of how these data how these data are to be analyzed. In short we can describe as follow:
· Recognition of and statement of the problem
· Choice of factors, levels, and ranges
· Selection of the response variable
· Choice of experimental design
· Performing the experiment
· Statistical analysis of the data
· Conclusion and recommendation
Remark: step 1 and 2 are called pre experimental planning and steps 2 and 3 are often done simultaneously or in reverse order. 
Historical Perspective
There have been four eras in the modern development of statistical experimental design. The agricultural era was led by the pioneering work of Sir Ronald A. Fisher in the 1920s and early 1930s. During this time, fisher was responsible for statistics and data analysis at the Rothamsted Agricultural experimental station near London, England. The second or industrial era was categorized by the development of response surface methodology (RSM) by Box and Wilson (1951). They recognized and exploited the fact that many industrial experiments are fundamentally different from their agricultural counterparts in two ways: (1) the response variable can usually be observed (nearly) immediately, and (2) the experimenter can quickly learn crucial information from a small group of run that can be used to plan the next experiment. Box (1999) calls these two features of industrial experiments immediacy and sequentiality. 
The increasing interest of western industry in quality improvement that began in the late 1970s ushered in the third era of statistical design. The work of Genichi Taguchi had a significant impact on expanding the interest in and use of designed experiment.  










Chapter 2
Simple comparative experiment
Here we consider the experiment to compare two conditions (sometimes called treatments). This are often called simple comparative experiments. Example an experiment performed to determine whether two different formulations of product give equivalent results. The discussion leads to a review of several basic statistical concepts, such as random variables, probability distribution, random samples, sampling distribution and test of hypothesis.  
Hypothesis testing: it allows the comparison of the two formulations to be made on objective terms with knowledge of the risk associated with reaching the wrong conclusion. Before presenting procedures for hypothesis testing in simple comparative experiments, we will briefly summarize some elementary statistical concepts.  
Basic Statistical Concepts
Each observation in any given observation called a run. Notice that the individuals run differ, so there is fluctuation or noise in the result. This noise is usually called experimental error or simply error. It is a statistical error meaning that it arises from variation that is uncontrolled and generally unavoidable. The presence of error or noise implies that the response variable is a random variable. 
Sampling and Sampling Distribution
The objective of statistical inference is to draw conclusions about the population using a sample from that population. Most of the methods that we will study assume that random sample are used. That is if the population contains N elements and samples of n them is to be selected and if each of the  possibe sample has an equal probability of being choosen, then the procedure empolyed is called random sampling.
Reading Assignment: Inference about the difference in means (Randomized design and Paired), Comparison design Inferences about the variances of normal distribution. 





Chapter 3
Completely randomized design (CRD): Single Factor Analysis of Variance (ANOVA)
In this section we present methods for the design and analysis of single factor experiment with  level of factors (or treatments). We will assume that the experiment has been completely randomized.
Example: A product development engineer is interested in investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men’s shirt. The engineer knows from previous experience that the strength is affected by the weight percent of cotton used in the blend of materials for the fiber. Furthermore, he suspects that increasing the cotton contain will increase the strength, at least initially. He also knows that the cotton contain should range between 10 and 40 % if the final product is to have other quality characteristic that are desired (such as the ability to take a permanent – press finishing treatment). The engineer decides to test specimens at five levels of cotton weigh percent: 15, 20, 25, 30 and 35 %. He also decides to test five specimens at each level of cotton contain.
This is an example of a single factor experiment with (levels of the factor) and n=25 replicates. The 25 run should be made in random order. To illustrate how the run order may be randomized, suppose that we number the run as follows: 
	Cotton weight in percent
	
Experiment run number

	15
	1           2           3          4            5

	20
	6           7           8          9           10

	25
	11        12         13        14          15

	30
	16         17        18        19          20

	35
	21         22         23       24          25



Now we select a random number between 1 and 25. Suppose this number is 8. Then the number 8 observation (20 % of cotton) is run first. This process could be repeated until all 25 observations have been assigned a position in the test sequence. The only restriction on randomization here is that if the same number (eg. 8) is drawn again, it is discarded. Suppose that the test sequence obtained is:


 This randomized test sequence is necessary to prevent the effects of unknown nuisance variables, perhaps varying out of control during the experiment, from contaminating the result. To illustrate suppose that we were to run the 25 test specimens in the original nonrandomized order (that is all five 15 percent cotton specimens are tested first, all five 20 percent cotton specimens are tested next and so on).  If the tensile strength testing machine exhibits a warm-up effect such that the longer it is on, the lower the observed tensile strength reading will be the warm up effect will potentially contaminate the tensile strength data and destroy the validity of the experiment. 





Completely Randomized Design (CRD)
The experimenter involves a comparison of a number of treatment say “a” of treatments based on independent random samples of n1, n2, ……, na observation drawn from population associated with treatments 1,2,……a respectively. 
Completely Randomized Design (CRD) is the design in which the treatments are assigned completely at random to the experimental unit or vice versa. It improves no restriction on the allocation of treatment on the experimental unit. 
Analysis of Variance (ANOVA)
Suppose we have a treatments or different levels of a single factor that we wish to compare. The observed response from each of the treatment is a random variable. The data would appear as in the following table (e.g. yij represents the jth observation taken under factor level or treatment i). There will be n observation under the ith treatment.


The total variation present in the set of observation quantity may under certain circumstance and be partitioned in to number of components associated with the nature of classification of the data. The systematic procedure of achieving this is called ANOVA. 
Example: Consider a random sample of grade 10 students in 3 Gondar secondary schools. A certain intelligence test is applied to the selected student and their performances as determined by the score are noted. The total variation is measured by the sum of square of deviation of scores from the mean score. 
In this case there are two sources of variation present in to which the total variation may be portioned. (1) The score with a school differ and it is true for all schools and (2) There may be an effect due to schools; i.e. the mean score from the three schools may vary (between schools). 

























Statistical Analysis
· Total variation 

=

where N=an
· Within Variation


· Between variation 
In general the table of ANOVA is given as follows:
	Source of variation
	Degree of freedom
	Sum square
	Mean square
	F

	Between group
	a-1
	SSbetween
	SSbetween/a-1
	MSbetween/MSwithin

	Within group
	N-a
	SSwithin
	SSwithin/N-a
	

	Total
	N-1
	SStotal
	
	



Example: Suppose that the development engineer is interested in determining if the cotton weight percentage in a synthetic fiber affect the tensile strength and he has run a complete randomized experiment with five level of cotton weight percentage and five replicates.


Analysis the above data.
Model: 



ANOVA table: 



Decision: Since Fcal>Ftab reject H0
Conclusion: We conclude that the treatment means differ; that is the cotton weight percentage in the fiber significantly affects the mean tensile strength. 






interval
Unbalanced Data





Model Adequacy Checking
The decomposition of the variability in the observation through an analysis of variance is pure algebraic relationship. However the use of the partitioning to test formally for no difference in treatment means requires that certain assumptions be satisfied. Specifically, these assumptions are that the observations are adequately described by the model and that the error is normally and independently distributed with mean zero and constant but unknown variance. The violation of this assumption can easily be investigated by the examination of residuals () where  is an estimate of the corresponding observation of. Examination of the residuals should be an automatic part of any analysis of variance. If the model is adequate, the residuals should be structure less that is they should contain no obvious pattern.  


Normality Assumption 


Plot of residuals in time sequence 


Plot of residual versus fitted value
If the model is correct and if the assumptions are satisfied, the residuals should be structures; in particular they should be unrelated to any other variables including the predicted response. The simple cheek is to plot the residuals versus the fitted values. This plot should not reveal any obvious pattern.  A defect that occasionally shows up on this plot is non-constant variance. A simple check is to plot the residual versus the fitted value; shows the constant of variance. 






Comparison among Means
Having completed that, there is significance different between class means or significance effect due to treatment questions naturally arises regarding the mean such as “which mean are different or which of the mean are responsible for the rejection of H0”.
We can handle this problem depending upon when a selection is made of the contrast among means that are to be interested before the experiment is performed. Such comparison can be usually to be set without adjusting the risk of orthogonal “ANOVA”. 
Recall that: 
L is called contrast if  the contribution of L to the treatment SS is:

And with a set of (a-1) mutually orthogonal components,
Q1+Q2+…………………+Qa-1=SStreat
· There are (a-1) contrasts. The method used is known as orthogonal contras 
L1 and L2 are orthogonal, Iff=0
Example: Suppose we have four different diets which we want to compare the diet are labeled diet A, B, C and D. we are interested in how the diet affect the coagulation rate of 16 rabbit. The coagulation rate is the time in second that it take for a cut to stop bleeding. The measured coagulation time for each diet are given below.
	
	Diet A
	Diet B
	Diet C
	Diet D

	
	62
	63
	68
	56

	
	60
	67
	66
	62

	
	63
	71
	71
	60

	
	59
	74
	69
	61

	Yi.
	244
	265
	272
	239
	1020(Y..)

	
	
	66.25
	68
	59.75
	63.75 ()


The ANOVA table for the following data is:
	SV
	Df
	SS
	MS
	F

	Treatment
	3
	191.5
	63.85
	9.17(*)

	error
	12
	83.5
	6.96
	

	Total
	15
	275
	
	



From the above ANOVA table we can conclude that the treatment means are not all equal. But here we don’t know which treatments mean is responsible for rejection of Ho. But through considering different types of contrast we can assure the responsible means. 
Then from the above example, the contrast may be:
· 
· 
· 
By considering contrast (iii) check the above example
Hypothesis: 
And the respective components of treatments are:
There for the ANOVA table becomes to
	SV
	Df
	SS
	MS
	F

	Treatment
	3
	191.5
	63.85
	9.17(*)

	L1
	1
	40.33
	40.33
	5.80(*)

	L2
	1
	15.04
	15.04
	2.16

	L3
	1
	136.25
	136.25
	19.56 (*)

	Error
	12
	83.5
	6.96
	

	Total
	15
	275
	
	



F0.05(3,12)=3.49 and F0.05(1,12)=4.75
So L1 and L2 are rejected. That is the average mean of diet B, C and D are different from diet A and diet C and diet D are not equal. At the reverse the average of C and D are equal to the mean of diet B. 
Comparing Pairs Of Treatment Means
Suppose that we are interested in comparing all pairs of a treatment means and that the null hypothesis that we wish to test are  for all i and j. we now list for methods for making such comparison 
· Turkeys test
· Duncan’s multiple range test
· Newman-Keuls test
· The fisher least significance difference method
Exercise: Discuss on the above test with examples
Comparison Treatment Means With a Control
In many experiments, one of the treatments is a control and the analysts are interested in comparing each of the other a-1 treatments means with the control. Thus there are only a-1 comparisons to be made. Suppose that treatment a is the control and we wish to test the hypothesis:
 Vs   for i=1,2,3,…………………a-1
This procedure is developed by Dunnett (1964). It is a modification of the usual t-test. For each hypothesis we compute the observed differences in the sample means.

The null hypothesis is rejected using a type one error rate alpha if 
Where  is the Dunnett table.




Regression Approach to ANOVA
General Regression Significance Test
Considering CRD in the model  and  are LS estimate of  respectively. 
Step 1: Obtain the total for each term in the model
Step 2: Obtain the grand total of the experiment
Step 3: Obtain the normal equation in (terms of the estimates of the parameter). The equation for each total in steps 1 and 2. 
We come to the expanding for of the above equation: 
Step 4: Solve equation of   abd 
Step 5: Obtain the regression sum of due to the estimates
Step 6: Rewrite the model, omitting the parameter assuming to be zero when the hypothesis under test is true (H0 is true). Or 
Step 7: Determine the normal equation for this reduced formula 
Step 8: Solve the normal equation and determine the regression sum of square due to estimates:
Step 9: obtain treatment SS
Step 10: Obtain with in treatment SS
Step 11: Make F test
Example: Suppose we have four different diets which we want to compare the diet are labeled diet A, B, C and D. we are interested in how the diet affect the coagulation rate of 16 rabbit. The coagulation rate is the time in second that it take for a cut to stop bleeding. The measured coagulation time for each diet are given below.
	
	Diet A
	Diet B
	Diet C
	Diet D

	
	62
	63
	68
	56

	
	60
	67
	66
	62

	
	63
	71
	71
	60

	
	59
	74
	69
	61

	Yi.
	244
	265
	272
	239
	1020(Y..)

	
	
	66.25
	68
	59.75
	63.75 ()



The ANOVA table for the following data by using Regression approach is:
By using the above equation
The notation  means the notation reduction in the sum of square from fitting the model containing  and also the notation is called the regression sum of squares for the CRD model. 
ANOVA
	SV
	Df
	SS
	MS
	F

	Treatment
	3
	191.5
	63.85
	9.17(*)

	Error
	12
	83.5
	6.96
	

	Total
	15
	275
	
	


F0.05(3, 12)= 9.17
Conclusion: Reject H0, that is there is a significance difference between diets A, B, C and D. 
Chapter 4
Randomize Complete Block and Related Design
In any experiment, variability arises from the nuisance factor can affect the result. Generally we define a nuisance factor as a design factor that probably has an effect on the response, but we are not interested in the effect. Sometimes a nuisance factor is un-known and uncontrolled; that is, we don’t know that the factor exists and it may even be changing level while we are conducting the experiment.  Randomization is a design technique used to guard against such a “lurking” nuisance factor in other case, the nuisance factor known but controllable. If we can at least observe the value that the nuisance factor takes on at each run the experiment. When the nuisance source of variability is known and controllable, a design technique is called blocking can be used to systematically eliminate its effect on the statistical comparison among treatments. Blocking is extremely important design technique. 
CRD is not applicable if the experimental units are not alike. But the simplest design which enables as to take care of variability among the unit is called Randomized complete block design (CRBD). It consists:
· First divide the unit in to “b” homogenous group (blocks) in each block we take as many units as a treatment. 
· Assign the treatments at random to the units of block
Remark: The word complete indicates that each block contains all treatments.
	
Block
	Treatment

	
	1
	2
	…………….
	a

	1
	Y11
	Y21
	
	Ya1

	2
	Y12
	Y22
	
	Ya2

	.
.
.
.
	
	
	
	.
.
.
.

	b
	Y1b
	Y2b
	
	Yab


Always the specialist knowledge of the experimenter about his/her experimental unit must be most important source of information in determining block of units. 
Example: suppose that an experimental unit may be an animal, in this case block can be based on 
· The genetic similarity of the animal
· The weight of the animal
· The history of the animal
Note: RCBD can be employed whenever it is possible to identify and isolate one extraneous source of variation. And in which requires that each treatment be used once in each block.
Example:     
C(1)      A(2)         B(3)         D(4)
A(5)      D(6)         B(7)       C(8)
D(9)       B(10)      C(11)      A(12)
A(13)      C(14)      D(15)       B(16)

                   A               B           C             D
                    2               3             1            4
                    5                7            8            6
                    12               10          11           9
                  13                16         14          15
Analysis of Variance (ANOVA)
Suppose we have in general “a” treatments that are to be composed and “b” block. The data lay out is:
	
Treatment (i)
	Block (j)
	
Yi.

	
	1
	2
	…………….
	b
	

	1
	Y11
	Y12
	
	Y1b
	Y1.

	2
	Y21
	Y22
	
	Y2b
	Y2.

	.
.
.
.
	
	
	
	.
.
.
.
	

	a
	Ya1
	Ya2
	
	Yab
	Ya.

	Y.j
	Y.1
	Y.2
	
	Y.2
	Y..



Model of RCBD

Where
·  is the ijth observation
·  is over all mean (a parameter common for all treatments)
·  is the ith treatment effect
·  is the jth block effect
·  is the random error
When the treatments and the blocks are assumed to be fixed,
Hypothesis 
Analysis: To determine the Sum of Square 
· 
· 
· 
· 
ANOVA TABLE


Example: there are four brands to be compared in an exp’t. Each brand contains “4 tires”. Assigning the 16 tires to the four cars in a complete random manures result each car get one tire of each brand. The measured loss in thickness of the 16 tires is given as follows:
	
Brand 
	Car
	
Yi.

	
	I
	II
	III
	IV
	

	A
	17
	14
	13
	13
	57

	D
	14
	14
	13
	8
	49

	C
	12
	12
	10
	9
	43

	D
	13
	11
	11
	9
	44

	Y.j
	56
	51
	47
	39
	193


Analyze the above data.
Solution 
ANOVA table 
	SV
	df
	SS
	MS
	F

	Treat 
	3
	30.69
	10.23
	8.00(*)

	Block
	3
	38.69
	12.90
	10.08(*)

	Error 
	9
	11.56
	1.28
	

	Total 
	15
	80.94
	
	



F0.05(3, 9)=3.86
Since the calculated value is greater than the tabulated, we reject Ho. Therefore there is significance difference between brand name and type of cars or a brand name affect the loss thickness of tires in four cars. 
Missing Value
Occasionally in a CRBD an object is lost i.e. an animal may be die, a tire may be disintegrated. So there occurs one or missing observation in the data. 
Suppose one observation is the missing and let this observation denoted Y’ and Let
· be the grand total with missing value
·  be the treatment total with missing value
·  be the block total with missing value
Then the missing value is calculated by    
Therefore the sum of square is calculated as follows:
Exercise: Proof that 
Example: Estimate the value of Y and analyze the data
	Treatment 
	Block
	


	
	1
	2
	3
	4
	

	1
	4
	1
	0
	0
	5

	2
	1
	1
	0
	-5
	-3

	3
	-1
	-1
	Y
	-4
	-6

	4
	0
	-2
	-2
	-4
	-8

	
	4
	-1
	-2
	-13
	-12



Solution: 
Incomplete Block Design (IBD)
Some randomized block design; it may not be possible to all treatments in every block. i.e when a large number of treatment must be included in an experiment or when the number of blocks is less than the number of treatments. 
An IBD is a design in which there are more treatments than that can be put in a single block. Example to compare 6 brand of tire on a four wheel cars or two compare 8 types of fertilizers on a block of 6 plots. When all treatment comparison is equally important the treatments comparison used in each block should be selected in a balanced manner. I.e. any pair of treatment occurs together at the same number of times as any other pairs. Thus a BIBD (balanced incomplete black design) is IBD (Incomplete Block Design) in which any two treatment appears together at equal number of times. It can be derived in terms of:
· The number of treatments (a)
· The number of block (b)
· The number of treatments in each block or block size (k)
· The number of replicates or plots of each treatment (r)
· The number of times each pairs of treatments appears throughout the experiment 

· Total observation N=ar=bkr=bk/a
· If a=b, the design is said to be symmetric 
Example:
	Block
	Treatment combinations

	1
	AB

	2
	AC

	3
	AD

	4
	BC

	5
	BD

	6
	CD



· a=4 (A, B, C, D) , b=6 (1, 2,……,6), k=2, r=bk/a3, 
· each pairs occurs one time in a given experiment.
Statistical Analysis of a BIBD
Model:  
Analysis:
Where &                                 
Note: The adjusted treatment total for the ith treatment always sum to zero. 
Example:




· Write the ANOVA and identify all terms
· Analyze the data and draw conclusion
Solution 
· Model: 
· a=5, b=5, k=4, r=bk/a4, 
· 
· 
·  where &                                  
· 
· 
· 
· 
ANOVA table 
	SV
	Df
	SS
	MS
	F

	Treat (adj)
	4
	35.73
	8.94
	9.81(*)

	Block
	4
	31.2
	7.80
	

	Error 
	11
	10.02
	0.91
	

	Total 
	9
	76.95
	
	


F0.05(4,11)=3.36
Conclusion: There are highly significance differences between gasoline additives with regard               to the car. 

Latin Square Design (LSD)
In this we introduced the randomized block design as a design to reduce the residual error in an experiment by removing variability due to a known and controlable nusiance variable. There are several other types od designs that utilize the blocking principle.  
Latin square design is a square arrangement and that the treatments are denoted by the Latin letters (A, B, …….) hence the name latin letters. It is used to eliminate to nuisance source of variability that is it systematically allows blocking in two directions. Thus, the rows and columns are actually to represent two directions on randomization. In general, latin square for P factors or “pxp” latin square is, containing ‘p’ rows and ‘p’ columns and each treatment appears once and once only in each row and columns. 
Example: If 3X3 Latin square 
	Rows
	Column

	
	1
	2
	3

	1
	A
	B
	C

	2
	B
	C
	A

	3
	C
	A
	B



Standard Latin Square (SLS): It is a Latin square of which first row and column are written in alphabetical order.  
Model of Latin square design: 
·  = Over all mean
· = ith treatment effect
·  =jth row effect 
· =random error 
· 
Assumption:  
·  Grand Total
·  Treatment Total
· Rows total 
·  Column Total 
Analysis 
with (p-1) d.f.  
with (p-1) d.f. 
with (p-1) d.f. 
with (p2-1) d.f.
with (p-1)(p-2) d.f. 
Example: The following is 5*5 latin square for data taken from a numerical experiment with sugar cane. The five treatments are denoted by (A, B, C, D, E) and yield of sugar cane (in suitable unit) per plot.
	Row
	Columns 
	Y.j.

	
	I
	II
	III
	IV
	V
	

	I
	A=52
	E=46
	D=44
	C=48
	B=41
	231

	II
	D=44
	B=43
	A=51
	E=49
	C=33
	220

	III
	B=49
	A=47
	C=38
	D=41
	E=47
	222

	IV
	C=43
	D=43
	E=67
	B=55
	A=45
	253

	V
	E=47
	C=43
	B=47
	A=46
	D=43
	226

	Y..K
	235
	222
	247
	239
	209
	1152



Solution:  
	Treat
	A
	B
	C
	D
	E

	Yi..
	241
	235
	205
	215
	256





ANOVA 
	SV
	d.f.
	SS
	MS
	F

	Row
	4
	114.84
	35.46
	

	Column
	4
	179.84
	44.96
	

	Treat
	4
	334.24
	83.56
	3.46(*)

	Error
	12
	289.92
	24.16
	

	Total
	24
	945.84
	
	


   F0.05 (4, 12)=3.26
 Since Fcal. > Ftab. reject Ho that is no treatment effect is rejected at 5% level of significance.
Youden Square
When the condition for latin square are met except for the fact that lack of treatment i.e. (it may be row or columns) that is called Youden square. 

	Row
	Column

	
	1
	2
	3
	4

	1
	A
	B
	C
	D

	2
	B
	C
	D
	A

	3
	C
	D
	A
	B

	4
	D
	A
	B
	C

	Row
	Column

	
	1
	2
	4

	1
	A
	B
	D

	2
	B
	C
	A

	3
	C
	D
	B

	4
	D
	A
	C


Model: 

Analysis 
where and 
Note: The block is taken to be the extraneous factors with largest number of levels. 
Examples:  The figures in the following Youden square are the number of minute’s engines E1, E2, E3, E4 turned by operator O1, O2, O3, O4 and O5 run with a gallon of few A, B, C, D & E.
	
Operator
	Engines
	
Y.j.

	
	E1
	E2
	E3
	E4
	

	O1
	A=31
	B=24
	C=20
	D=20
	95

	O2
	B=21
	C=27
	D=23
	E=25
	96

	O3
	C=22
	D=27
	E=25
	A=29
	103

	O4
	D=20
	E=25
	A=33
	B=25
	103

	O5
	E=18
	A=37
	B=24
	C=33
	103

	Y..k
	112
	140
	125
	123
	500


Analyze the data and test whether treatments affects are the same.
Solution:
	Treat
	A
	B
	C
	D
	E

	Yi..
	130
	94
	93
	90
	93


Where   and
Q1=4(130)-(95+103+103+103)=116
Q2=4(94)-(95+96+103+103) = -21
Q3=4(93)-(95+96+103+103) =  -25
Q4= 4(93)- (96+103+103+103)= -33

ANOVA
	SV
	d.f.
	SS
	MS
	F

	Treat (adj)
	4
	283
	70.75
	12.75(*)

	Row
	4
	17
	
	

	Column
	3
	79.6
	
	

	Error
	8
	44.4
	5.55
	

	Total
	19
	424
	
	



F0.05(4, 8)=3.84, reject H0 since the calculate value is greater than the tabulated, therefore there is a significance difference between treatment means (treatment). 
Greco Latin Square
This is another name for a pair of orthogonal latin square super imposed on one another. The treatment being represented by Greek letters in one square, and latin letters in others.  
Example: 4X4 Greco-latin letters square is the following, that is:

Latin letters
	Row
	Column

	
	1
	2
	3
	4

	1
	A
	B
	C
	D

	2
	B
	C
	D
	A

	3
	C
	D
	A
	B

	4
	D
	A
	B
	C



Greek letters
	Row
	Column

	
	1
	2
	3
	4

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	


Greco-Latin Squares
	Row
	Column

	
	1
	2
	3
	4

	1
	A
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	



Model: 

Where  effect due the extraneous factor represent by Greek letters 
Analysis 
with (p-1) d.f.  
with (p-1) d.f. 
with (p-1) d.f. 
with (p-1) d.f. 
with (p2-1) d.f.
with (p-1)(p-3) d.f. 

Example: 
Solution 
	Y.j..
	90
	89
	76
	83
	82

	Y..k.
	79
	88
	92
	83
	78

	
Yi…
	A
	B
	C
	D
	E

	
	118
	78
	94
	75
	65

	
Y…l
	
	
	
	
	

	
	83
	85
	91
	82
	89




ANOVA
	SV
	d.f.
	SS
	MS
	F

	Treatment 
	4
	342.8
	85.7
	14.65(*)

	Row (batch)
	4
	10
	
	

	Column (Acidic Concentration)
	4
	24.4
	
	

	Greek (catalyst )
	4
	12
	
	

	Error 
	8
	46.8
	5.85
	

	Total 
	24
	436
	
	



F0.05(4, 8)=3.84 < 14.65 Reject H0
Therefore, there is no significance difference between treatment means (standing time)
1


image4.png
Table 3-1 Data (in Ib/in®) from the Tensile Strength Experiment

\S/(:itg}?t Observations
Percentage 1 2 3 4 5 Total Average
15 7 7 15 11 9 49 9.8
20 12 17 12 18 18 77 154
25 14 18 18 19 19 88 17.6
30 19 25 22 19 23 108 21.6
35 7 10 11 15 11 54 10.8

376 15.04
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Suppose that the engineer runs the test in the random order we have determined.
The observations that she obtains on tensile strength are shown in Table 3-1.

It is always a good idea to examine experimental data graphically. Figure 3-1 pre-
sents box plots for tensile strength at each level of cotton weight percent, and Figure 3-2
(on the facing page) is a scatter diagram of tensile strength versus cotton weight per-
centage. In Figure 3-2, the solid dots are the individual observations and the open circles
are the average observed tensile strengths. Both graphs indicate that tensile strength
increases as cotton content increases, up to about 30 percent cotton. Beyond 30 percent
cotton, there is a marked decrease in tensile strength. There is no strong evidence to
suggest that the variability in tensile strength around the average depends on the cotton
weight percentage. Based on this simple graphical analysis, we strongly suspect that (1)
cotton content affects tensile strength and (2) around 30 percent cotton results in maxi-
mum strength.

Suppose that we wish to be more objective in our analysis of the data. Specifically,

30

8]
o

L1
-

Tensile strength (Ibfin?)

-
o

15 20 25 30 35 40
Cotton weight percentage

Figure 3-1 Box plots of tensile strength versus cotton weight
percentage.
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30

N
o

10

Tensile strength (Ib/in?)

15 20 25 30 35
Cotton weight percent

Figure 3-2 Scatter diagram of tensile strength versus
cotton weight percentage.

suppose that we wish to test for differences between the mean strengths at all @ = 5
levels of cotton weight percentage. Thus, we are interested in testing the equality of all
five means. It might seem that this problem could be solved by performing a r-test for
all the possible pairs of means. However, this is not the best solution to this problem
because it would lead to considerable distortion in the type I error. For example, suppose
we wish to test the equality of the five means using pairwise comparisons. There are 10
possible pairs, and if the probability of correctly accepting the null hypothesis for each
individual test is 1 — « = .95, the probability of correctly accepting the null hypothesis
for all 10 tests is (.95)'° = .60 if the tests are independent. Thus, a substantial increase
in the type I error has occurred.

The appropriate procedure for testing the equality of several means is the analysis
of variance. However, the analysis of variance has a much wider application than the
problem above. It is probably the most useful technique in the field of statistical inference.
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Table 3-2 Typical Data for a Single-Factor Experiment

Treatment
(level) Observations Totals Averages
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Models for the Data
We will find it useful to describe the observations from an experiment with a model.
One way to write this model is

+ i=1,2,...,a 3-1)
p— i Ei . -
Yi = B Nj=12...,n

where y;; is the ijth observation, u, is the mean of the ith factor level or treatment, and
€, is a random error component that incorporates all other sources of variability in the
experiment including measurement, variability arising from uncontrolled factors, differ-
ences between the experimental units (such as test material, etc.) to which the treatments
are applied, and the general background noise in the process (such as variability over
time, effects of environmental variables, and so forth). It is convenient to think of the
errors as having mean zero, so that E(y;) = u,.

Equation 3-1 is called the means model. An alternative way to write a model for
the data is to define

m = M+ T, i=1,2,...,a

so that Equation 3-1 becomes

Vo=t T+ e,.,{;_ B (3-2)
In this form of the model, u is a parameter common to all treatments called the overall
mean, and 7; is a parameter unique to the ith treatment called the ith treatment effect.
Equation 3-2 is usually called the effects model.

Both the means model and the effects model are linear statistical models; that is,
the response variable y,; is a linear function of the model parameters. Although both
forms of the model are useful, the effects model is more widely encountered in the
experimental design literature. It has some intuitive appeal in that w is a constant and
the treatment effects 7; represent deviations from this constant when the specific treat-
ments are applied.

Equation 3-2 (or 3-1) is also called the one-way or single-factor analysis of vari-
ance model because only one factor is investigated. Furthermore, we will require that
the experiment be performed in random order so that the environment in which the
treatments are applied (often called the experimental units) is as uniform as possible.
Thus, the experimental design is a completely randomized design. Our objectives will
be to test appropriate hypotheses about the treatment means and to estimate them. For
hypothesis testing, the model errors are assumed to be normally and independently dis-
tributed random variables with mean zero and variance 0. The variance o~ is assumed
to be constant for all levels of the factor. This implies that the observations

Yij ™~ N + 7, 0'2)

and that the observations are mutually independent.
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Fixed or Random Factor?

The statistical model, Equation 3-2, describes two different situations with respect to the
treatment effects. First, the a treatments could have been specifically chosen by the
experimenter. In this situation we wish to test hypotheses about the treatment means,
and our conclusions will apply only to the factor levels considered in the analysis. The
conclusions cannot be extended to similar treatments that were not explicitly considered.
We may also wish to estimate the model parameters (u, 7;, o). This is called the fixed
effects model. Alternatively, the a treatments could be a random sample from a larger
population of treatments. In this situation we should like to be able to extend the con-
clusions (which are based on the sample of treatments) to all treatments in the population,
whether they were explicitly considered in the analysis or not. Here the 7; are random
variables, and knowledge about the particular ones investigated is relatively useless.
Instead, we test hypotheses about the variability of the 7; and try to estimate this vari-
ability. This is called the random effects model or components of variance model. We
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3-3 ANALYSIS OF THE FIXED EFFECTS MODEL

In this section, we develop the single-factor analysis of variance for the fixed effects
model. Recall that y, represents the total of the observations under the ith treatment. Let
y.. represent the average of the observations under the ith treatment. Similarly, let y_
represent the grand total of all the observations and y _ represent the grand average of all
the observations. Expressed symbolically,

i—.=y,»./n i=1,2,...,a

<
II
-

NS
Il
.

(3-3)

<
Il
INZR
<
3

y.=y.IN

1
—-
~.

If
—_

where N = an is the total number of observations. We see that the ‘‘dot’’ subscript
notation implies summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means; that is, E(y;) =
w+ 1=, i=1,2,...,a The appropriate hypotheses are

Horpy = po = -+ = Wy
Hyip # py for at least one pair (i, j)

In the effects model, we break the ith treatment mean w; up into two components such
that u; = u + 7,. We usually think of p as an overall mean so that

;“‘i

a

This definition implies that

D

i=1

A
i
o
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That is, the treatment or factor effects can be thought of as deviations from the overall
mean.” Consequently, an equivalent way to write the above hypotheses is in terms of the
treatment effects 7;, say

H:mn=7n=---7,=0
H:m+0 for at least one i

Thus, we speak of testing the equality of treatment means or testing that the treatment
effects (the ;) are zero. The appropriate procedure for testing the equality of a treatment
means is the analysis of variance.

3-3.1 Decomposition of the Total Sum of Squares

The name analysis of variance is derived from a partitioning of total variability into its
component parts. The total corrected sum of squares

Z Oy —

is used as a measure of overall var1ab111ty in the data. Intuitively, this is reasonable
because, if we were to divide SS; by the appropriate number of degrees of freedom (in
this case, an — 1 = N — 1), we would have the sample variance of the y’s. The sample
variance is, of course, a standard measure of variability.

Note that the total corrected sum of squares SSr may be written as

S - 2 2 (5. = ¥.) + g — YOP (3-4)

i=1 j=1 i=1 j=

||
nMn

or

()’u ‘.. 2 =n E (yt -

N
M=

Z (yij - yi.)2

IIM::

i=1 j=1

2 2 0= 305 =) (3-5)

||Ma

However, the cross-product term in Equatlon 3-5 1s zero, because

D Gy =) =y — ny. =y, — n(yifn) =0
j=1

Therefore, we have

2 vy =V =n 2 G. — I+ 21 21 vy — 3:)° (3-6)
j=1 i= i=1 j=

Equation 3-6 states that the total variability in the data, as measured by the total corrected
sum of squares, can be partitioned into a sum of squares of the differences between the
treatment averages and the grand average, plus a sum of squares of the differences of
observations within treatments from the treatment average. Now, the difference between

||Ma
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the observed treatment averages and the grand average is a measure of the differences
between treatment means, whereas the differences of observations within a treatment
from the treatment average can be due only to random error. Thus, we may write Equation
3-6 symbolically as

SST = SSTreatments + SSE

where SStreamments 1S called the sum of squares due to treatments (i.e., between treatments),
and SSg is called the sum of squares due to error (i.e., within treatments). There are an =
N total observations; thus, S§7 has N — 1 degrees of freedom. There are a levels of the
factor (and a treatment means), SO SStrearments Nas @ — 1 degrees of freedom. Finally,
within any treatment there are n replicates providing n — 1 degrees of freedom with
which to estimate the experimental error. Because there are a treatments, we have a(n —
1) = an — a = N — a degrees of freedom for error.

It is helpful to examine explicitly the two terms on the right-hand side of the fun-
damental analysis of variance identity (Equation 3-6). Consider the error sum of squares

21 E (ylj yz Zl |:§:1 (yij - yi.)2:|
i ji= i j=

In this form it is easy to see that the term within square brackets, if divided by n — 1, is
the sample variance in the ith treatment, or

DINCTES

=" i=12...,a
n—1

Now a sample variances may be combined to give a single estimate of the common
population variance as follows:

> [2 vy — w]
(- DSi+t@-DS+- A @-Dse T -
n-D+m-D+-+@— D Sy—

N
(N —a)
Thus, SSz/(N — a) is a pooled estimate of the common variance within each of the a
treatments.
Similarly, if there were no differences between the a treatment means, we could use

the variation of the treatment averages from the grand average to estimate o’
Specifically,

n Z G — y.)

a—1 a—1

S S Treatments __

is an estimate of ¢ if the treatment means are equal The reason for this may be intui-
tively seen as follows: The quantity 2 ,(y;, — ¥.) /(@ — 1) estimates o*/n, the variance
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of the treatment averages, so n2 (¥, — y.)*/(@ — 1) must estimate ¢ if there are no
differences in treatment means.

We see that the analysis of variance identity (Equation 3-6) provides us with two
estimates of o>—one based on the inherent variability within treatments and one based
on the variability between treatments. If there are no differences in the treatment means,
these two estimates should be very similar, and if they are not, we suspect that the
observed difference must be caused by differences in the treatment means. Although we
have used an intuitive argument to develop this result, a somewhat more formal approach
can be taken.

The quantities

SS reatments
MSTreatments = et :
a—1
and
SSe
MSg = —>2—
F"  N-a

are called mean squares. We now examine the expected values of these mean squares.
Consider

EMS;) = E( NSfEa) =5 L - E[ Z Oy — w]
- L E[EE O}~ 2. + iﬁ)]
:NiaE[égyi_znéy’ Z ]
w2513

Substituting the model (Equation 3-1) into this equation, we obtain

a n a n 2
EMSg) = ;E[Z D+ T+ e) - 12 (2 wE T+ e,-j)]
N-a |iZ1j=1 =1 \j=
Now when squaring and taking expectation of the quantity within the brackets, we see
that terms involving € and €] are replaced by o and no?, respectively, because
E(e;;) = 0. Furthermore, all cross-products involving €, have zero expectation. Therefore,
after squaring and taking expectation, the last equation becomes

1 a a
EMS;) =V = I:Ny,2 +n D 72+ No* — Nu? — n> - a02:|

i=1 i=1

EMSg) = o
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By a similar approach, we may also show that’

a
n 2 72
i=1

1

E(MSTreatments) = 02 + —
a-—1
Thus, as we argued heuristically, MS; = SSz/(N — a) estimates ¢, and, if there are no
differences in treatment means (which implies that 7, = 0), MStrcaiments = S Treatments/
(a — 1) also estimates o°. However, note that if treatment means do differ, the expected
value of the treatment mean square is greater than o2,

It seems clear that a test of the hypothesis of no difference in treatment means can
be performed by comparing MStcaumens and MSz. We now consider how this comparison
may be made.
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Weight
Percentage
of Cotton
15
20
25
30
35

12
14
19

Observed Tensile Strength

(Ib/in) Totals Averages

2 3 4 5 Vi, ¥i.

7 15 11 9 49 9.8
17 12 18 18 77 15.4
18 18 19 19 88 17.6
25 22 19 23 108 21.6
10 11 15 11 54 10.8

y. =376 y. = 15.04
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We will use the analysis of variance to test Hy:pty = ptp = M3 = Ma = Ms against

the alternative H, : some means are different. The sums of squares required are computed

as follows:
5 5 2
_ Y.
r=2 20y
376)*
= (D + (7)P® + A52 + - + (15> + (11)* — g2—5)_ = 636.96
1< 2
SSTrea&mems = ; Z yﬁ
1 376)
(@97 + -+ (547 - ¢ 7Y = 47576

SSE = SST - SSTrealments
= 636.96 — 475.76 = 161.20
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Sum of Degrees of Mean
Source of Variation Squares Freedom Square Fo

Cotton weight percentage 475.76 4 118.94 Fy = 14.76
Error 161.20 20 8.06
Total 636.96 24
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These estimators have considerable intuitive appeal; note that the overall mean is esti-
mated by the grand average of the observations and that any treatment effect is just the
difference between the treatment average and the grand average.

A confidence interval estimate of the ith treatment mean may be easily determined.
The mean of the ith treatment is

7

A point estimator of u; would be i; = @ + % = y.. Now, if we assume that the errors
are normally distributed, each y, is NID(u;, o*/n). Thus, if 0* were known, we could
use the normal distribution to define the confidence interval. Using the MSy as an esti-
mator of o2, we would base the confidence interval on the ¢ distribution. Therefore, a
100(1 — a) percent confidence interval on the ith treatment mean w, is

_ IMS _ IMS
Yi. = tapN—a TE M=y, t topna TE (3-12)

A 100(1 — «) percent confidence interval on the difference in any two treatments means,

say w; — M;, would be
- - [2MS
Yi =Y.t tapn-a TE (3-13)

I

<
|
=
g
p
N
N
™
A
k3
|
F
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EXAMPLE 3-3 +tccveteceetseocatssssonssosssssssactasasasssssnassssnnss

Using the data in Example 3-1, we may find the estimates of the overall mean and the
treatment effects as gt = 376/25 = 15.04 and

H=y.—y. = 980 — 1504 = =524
=y, —y.= 1540 — 15.04 = +0.36
3 =y; —y. = 17.60 — 15.04 = —2.56
7=y, —y.=21.60 — 1504 = +6.56
s =ys. — y. = 10.80 — 15.04 = —4.24

A 95 percent confidence interval on the mean of treatment 4 (30 percent cotton) is
computed from Equation 3-12 as

8.06 /8.06
21.60 — 2.086 wa = uy = 21.60 + 2.086 e

or
21.60 — 2.65 = u, < 21.60 + 2.65
Thus, the desired 95 percent confidence interval is 18.95 = u, =< 24.25.
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Simultaneous Confidence Intervals

The confidence interval expressions given in Equations 3-12 and 3-13 are one-at-a-time
confidence intervals. That is, the confidence level 1 — « applies to only one particular
estimate. However, in many problems, the experimenter may wish to calculate several
confidence intervals, one for each of a number of means or differences between means.
If there are r such 100(1 — a) percent confidence intervals of interest, the probability
that the r intervals will simultaneously be correct is at least 1 — ra. The probability ra
is often called the experimentwise error rate or overall confidence coefficient. The
number of intervals r does not have to be large before the set of confidence intervals
becomes relatively uninformative. For example, if there are » = 5 intervals and o = 0.05
(a typical choice), the simultaneous confidence level for the set of five confidence inter-
vals is at least 0.75, and if » = 10 and « = 0.05 the simultaneous confidence level is at
least 0.50.

One approach to ensuring that the simultaneous confidence level is not too small is
to replace a/2 in the one-at-a-time confidence interval Equations 3-12 and 3-13 with
af/(2r). This is called the Bonferroni method, and it allows the experimenter to construct
a set of r simultaneous confidence intervals on treatment means or differences in treat-
ment means for which the overall confidence level is at least 100(1 — «) percent. When
r is not too large, this is a verv nice method that leads to reasonably short confidence
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In some single-factor experiments the number of observations taken within each treat-
ment may be different. We then say that the design is unbalanced. The analysis of
variance described above may still be used, but slight modifications must be made in the
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sum of squares formulas. Let n; observations be taken under treatment i i = 1, 2, ...,
a) and N = Z{.| n,. The manual computational formulas for SS; and SScaments DECOmME

SSr= > V- Y- (3-14)
and

SSTreaLmems = 2 y_ - (3'15)
No other changes are required in the analysis of variance.

There are two advantages in choosing a balanced design. First, the test statistic is
relatively insensitive to small departures from the assumption of equal variances for the
a treatments if the sample sizes are equal. This is not the case for unequal sample sizes.
Second, the power of the test is maximized if the samples are of equal size.
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A check of the normality assumption could be made by plotting a histogram of the
residuals. If the NID(0, o%) assumption on the errors is satisfied, this plot should look
like a sample from a normal distribution centered at zero. Unfortunately, with small
samples, considerable fluctuation often occurs, so the appearance of a moderate departure
from normality does not necessarily imply a serious violation of the assumptions. Gross
deviations from normality are potentially serious and require further analysis.
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Plotting the residuals in time order of data collection is helpful in detecting correlation
between the residuals. A tendency to have runs of positive and negative residuals indi-
cates positive correlation. This would imply that the independence assumption on the
errors has been violated. This is a potentially serious problem and one that is difficult to
correct, so it is important to prevent the problem if possible when the data are collected.
Proper randomization of the experiment is an important step in obtaining independence.
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Statistical Tests for Equality of Variance

Although residual plots are frequently used to diagnose inequality of variance, several
statistical tests have also also been proposed. These tests may be viewed as formal tests
of the hypotheses

Hyol=03=---=o02
H, :above not true for at least one o7
A widely used procedure is Bartlett’s test. The procedure involves computing a
statistic whose sampling distribution is closely approximated by the chi-square distri-
bution with a — 1 degrees of freedom when the @ random samples are from independent
normal populations. The test statistic is
2 _ q
X6 = 2.3026 - (3-19)
c
where

g = (N — a)log, S2 2 (n; — Dlogyo S

c=1+ (2 (n; — )71 — (N — a)_1>

3a—1)
E (n; — 1)§?
2 _ i=1
Sr N —a

and S? is the sample variance of the ith population.
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The quantity g is large when the sample variances S7 differ greatly and is equal to
zero when all S7 are equal. Therefore, we should reject H, on values of x3 that are too
large; that is, we reject H, only when

X% > Xi,afl

where x,,—; is the upper a percentage point of the chi-square distribution with a — 1
degrees of freedom. The P-value approach to decision making could also be used.

Bartlett’s test is very sensitive to the normality assumption. Consequently, when the
validity of this assumption is doubtful, Bartlett’s test should not be used.
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3-7 DETERMINING SAMPLE SIZE

In any experimental design problem, a critical decision is the choice of sample size—
that is, determining the number of replicates to run. Generally, if the experimenter is
interested in detecting small effects, more replicates are required than if the experimenter
is interested in detecting large effects. In this section, we discuss several approaches to
determining sample size. Although our discussion focuses on a single-factor design, most
of the methods can be used in more complex experimental situations.

3-7.1 Operating Characteristic Curves

Recall that an operating characteristic curve is a plot of the type II error probability
of a statistical test for a particular sample size versus a parameter that reflects the extent
to which the null hypothesis is false. These curves can be used to guide the experimenter
in selecting the number of replicates so that the design will be sensitive to important
potential differences in the treatments.
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An engineer is studying the mileage performance characteristics of five types of gasoline
additives. In the road test he wishes to use cars as blocks; however, because of a time
constraint, he must use an incomplete block design. He runs the balanced design with the
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five blocks that follow. Analyze the data from this experiment (use @ = 0.05) and draw
conclusions.

Car
Additive 1 2 3 4 5
1 17 14 13 12
2 14 14 13 10
3 12 13 12 9
4 13 11 11 12
5 11 12 10 8
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The yield of a chemical process was measured using five batches of raw material, five
acid concentrations, five standing times (A, B, C, D, E), and five catalyst concentrations
(o, B, 7, 6, €). The Graeco—Latin square that follows was used. Analyze the data from
this experiment (use & = 0.05) and draw conclusions.

Batch 1
1 Aa = 26
2 By =18
3 Ce =20
4 DB =15
5 ES=10

2
BB =16
Cé =21
Da =12
Ey=15
Ae = 24

Acid Concentration

Cy=19
De = 18
EB =16
A =122
Ba =17

4

D& = 16
Ea=11
Ay =25
Be = 14
CB=17

5
Ee =13
AB =121
B& = 13
Ca=17

Dy=14
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1.2 SOME TYPICAL APPLICATIONS OF EXPERIMENTAL DESIGN

Experimental design methods have found broad application in many disciplines. In fact,
we may view experimentation as part of the scientific process and as one of the ways
we learn about how systems or processes work. Generally, we learn through a series of
activities in which we make conjectures about a process, perform experiments to generate
data from the process, and then use the information from the experiment to establish new
conjectures, which lead to new experiments, and so on.

Experimental design is a critically important tool in the engineering world for im-
proving the performance of a manufacturing process. It also has extensive application in
the development of new processes. The application of experimental design techniques
early in process development can result in

1. Improved process yields

2. Reduced variability and closer conformance to nominal or target requirements
3. Reduced development time

4. Reduced overall costs

Experimental design methods also play a major role in engineering design activities,
where new products are developed and existing ones improved. Some applications of
experimental design in engineering design include

1. Evaluation and comparison of basic design configurations

2. Evaluation of material alternatives

3. Selection of design parameters so that the product will work well under a wide
variety of field conditions, that is, so that the product is robust

4. Determination of key product design parameters that impact product
performance

The use of experimental design in these areas can result in products that are easier to
manufacture, products that have enhanced field performance and reliability, lower prod-
uct cost, and shorter product design and development time. We now present several
examples that illustrate some of these ideas.
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Test Sequence Run Number Cotton Weight Percentage

1 8 20
2 18 30
3 10 20
4 23 35
5 17 30
6 5 15
7 14 25
8 6 20
9 15 25
10 20 30
11 9 20
12 4 15
13 12 25
14 7 20
15 1 15
16 24 35
17 21 35
18 11 25
19 2 15
20 13 25
21 22 35
22 16 30
23 25 35
24 19 30





