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PREFACE TO THE THIRD EDITION

and summary of prefaces to the first two editions

This book, through its several editions,

Vi



Preface to the Third Edition Vi

the reality of our experiences. While such a discussion, per se, will not
help the reader to actually “do at-test,” I think it is important to provide
some introduction to the underlying framework of the field of epidemi-
ology and statistics, to understand why we do what we do.

(b) Many of the subsections stand alone; that is, the reader can turn to
the topic that interests him or her and read the material out of sequen-
tial order. Thus, the book may be used by those who need it for special
purposes. The reader is free to skip those topics that are not of interest
without being too much hampered in further reading. As a result there
is some redundancy. In my teaching experience, however, | have found
that it is better to err on the side of redundancy than on the side of
sparsity.

(c) Cross-references to other relevant sections are included when addi-
tional explanation is needed. When development of a topic is beyond the
scope of this text, the reader is referred to other books that deal with the
material in more depth or on a higher mathematical level. A list of rec-
ommended texts is provided near the end of the book.

(d) The appendices provide sample calculations for various statistics
described in the text. This makes for smoother reading of the text,
while providing the reader with more specific instructions on how ac-
tually to do some of the calculations.

The aims of the second edition are also preserved in this third edi-
tion. The second edition grew from feedback from students who indi-
cated they appreciated the clarity and the focus on topics specifically
related to their work. However, some users missed coverage of several
important topics. Accordingly, sections were added to include a full
chapter on measures of quality of life and various psychological scales,
which are increasingly used in clinical studies; an expansion of the
chapter on probability, with the introduction of several nonparametric
methods; the clarification of some concepts that were more tersely ad-
dressed in the first edition; and the addition of several appendices (pro-
viding sample calculations of the Fisher's exact test, Kruskal-Wallis



Viii Preface to the Third Edition

test, and various indices of reliability and responsiveness of scales used
in quality of life measures).

It requires a delicate balance to keep the book concise and basic,
and yet make it sufficiently inclusive to be useful to a wide audience. |
hope this book will be useful to diverse groups of people in the health
field, as well as to those in related areas. The material is intended for
(1) physicians doing clinical research as well as for those doing basic
research; (2) for students—medical, college, and graduate; (3) for re-
search staff in various capacities; and (4) for anyone interested in the
logic and methodology of biostatistics and epidemiology. The principles
and methods described here are applicable to various substantive areas,
including medicine, public health, psychology, and education. Of
course, not all topics that are specifically relevant to each of these disci-
plines can be covered in this short text.

Bronx, New York Sylvia Wassertheil-Smoller
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Chapter 1
THE SCIENTIFIC METHOD

Science is built up with facts, as a house is with stones. But a collec-
tion of facts is no more a science than a heap of stones is a house.
Jules Henri Poincare
La Science et I'Hypothese (1908)

1.1 The Logic of Scientific Reasoning

The whole point of science is to uncover the “truth.” How do we go
about deciding something is true? We have two tools at our disposal to
pursue scientific inquiry:

We have our senses, through which we experience the world and make
observations.

We have the ability to reason, which enables us to make logical
inferences.

In science we impose logic on those observations.

Clearly, we need both tools. All the logic in the world is not going to
create an observation, and all the individual observations in the world
won't in themselves create a theory. There are two kinds of relation-
ships between the scientific mind and the world, two kinds of logic we
impose—deductive and inductive, as illustrated in Figure 1.1.

In deductive inference, we hold a theory and based on it we make a
prediction of its consequences. That is, we predict what the observa-
tions should be. For example, we may hold a theory of learning that
says that positive reinforcement results in better learning than does
punishment, that is, rewards work better than punishments. From this
theory we predict that math students who are praised for their right
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Figure 1.1

answers during the year will do better on the final exam than those
who are punished for their wrong answers. We go from the gen-
eral—the theory—to the specific—the observations. This is known as
the hy pothetico-deductive method.

In inductive inference, we go from the specific to the general. We
make many observations, discern a pattern, make a generalization, and
infer an explanation. For example, it was observed in the Vienna Gen-
eral Hospital in the 1840s that women giving birth were dying at a high
rate of puerperal fever, a generalization that provoked terror in pro-
spective mothers. It was a young doctor named Ignaz Phillip Semmel-
weis who connected the observation that medical students performing
vaginal examinations did so directly after coming from the dissecting
room, rarely washing their hands in between, with the observation that
a colleague who accidentally cut his finger while dissecting a corpse
died of a
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sertion to say that most swans are white and that there are some black
swans. This assertion presumably is closer to the truth. In other
words, we can refute the assertion with one example, but we can't prove
it with many. (The assertion that all swans are white is a descriptive
generalization rather than a theory. A theory has a richer meaning
that incorporates causal explanations and underlying mechanisms.
Assertions, like those relating to the color of swans, may be compo-
nents of a theory.)

According to Popper, the proper methodology is to posit a theory,
or a conjecture, as he calls it, and try to demonstrate that it is false. The
more such attempts at destruction it survives, the stronger is the evi-
dence for it. The object is to devise ever more aggressive attempts to
knock down the assertion and see if it still survives. If it does not sur-
vive an attempt at falsification, then the theory is discarded and re-
placed by another. He calls this the method of conjectures and refuta-
tions. The advance of science toward the “truth” comes about by
discarding theories whose predictions are not confirmed by observa-
tions, or theories that are not testable altogether, rather than by shor-
ing up theories with more examples of where they work. Useful scien-
tific theories are potentially falsifiable.

Untestable theories are those where a variety of contradictory ob-
servations could each be consistent with the theory. For example, con-
sider Freud's psychoanalytic theory. The Oedipus complex theory says
that a child is in love with the parent of the opposite sex. A boy desires
his mother and wants to destroy his father. If we observe a man to say
he loves his mother, that fits in with the theory. If we observe a man to
say he hates his mother, that also fits in with the theory, which would
say that it is “reaction formation” that leads him to deny his true feel-
ings. In other words, no matter what the man says, it could not falsify
the theory because it could be explained by it. Since no observation
could potentially falsify the Oedipus theory, its position as a scientific
theory could be questioned.

A third, and most reasonable, view is that the progress of science
requires both inductive and deductive inference. A particular point of
view provides a framework for observations, which lead to a theory that
predicts new observations that modify the theory, which then leads to
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new, predicted observations, and so on toward the elusive “truth,”
which we generally never reach. Asking which comes first, theory or
observation, is like asking which comes first, the chicken or the egg.

In general then, advances in knowledge in the health field come
about through constructing, testing, and modifying theories. Epidemio-
logists make inductive inferences to generalize from many observa-
tions, make creative leaps of the imagination to infer explanations and
construct theories, and use deductive inferences to test those theories.

Theories, then, can be used to predict observations. But these ob-
servations will not always be exactly as we predict them, due to error
and the inherent variability of natural phenomena. If the observations
are widely different from our predictions we will have to abandon or
modify the theory. How do we test the extent of the discordance of our
predictions based on theory from the reality of our observations? The
test is a statistical or probabilistic test. It is the test of the null hypothe-
sis, which is the cornerstone of statistical inference and will be dis-
cussed later. Some excellent articles on the logic and philosophy of sci-
ence, and applications in epidemiology, are listed in the references at
the end of this book.**

1.2 Variability of Phenomena Require$Statistical Analysis

Statistics is a methodology with broad areas of application in science
and industry, as well as in medicine and in many other fields. A phe-
nomenon may be principally based on a deterministic model. One ex-
ample is Boyle's law, which states that for a fixed volume an increase
in temperature of a gas determines that there is an increase in pres-
sure. Each time this law is tested the same result occurs. The only vari-
ability lies in the error of measurement. Many phenomena in physics
and chemistry are of such a nature.

Another type of model is a probabilistic model, which implies that
various states of a phenomenon occur with certain probabilities. For
instance, the distribution of intelligence is principally probabilistic, that
is, given values of intelligence occur with a certain probability in the
general population. In biology, psychology, or medicine, where phe-
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blood pressure of every single member of this population, we would not
have to infer anything. We would simply average all the numbers we
obtained. In practice, however, we take a sample of students (properly
selected), and on the basis of the data we obtain from the sample, we
infer what the mean of the whole population is likely to be.

The reliability of such inferences or conclusions may be evaluated
in terms of probability statements. In statistical reasoning, then, we
make inductive inferences, from the particular (sample) to the general
(population). Thus, statistics may be said to be the technology of the
scientific method.

1.4 Design of Studies

While the generation of hypotheses may come from anecdotal
observations, the testing of those hypotheses must be done by making
controlled observations, free of systematic bias. Statistical techniques, to
be valid, must be applied to data obtained from well-designed studies.
Otherwise, solid knowledge is not advanced.

There are two types of studies: (1) Observational studies, where
“Nature” determines who is exposed to the factor of interest and who is
not exposed. These studies demonstrate association. Association may
imply causation or it may not. (2) Experimental studies, where the in-
vestigator determines who is exposed. These may prove causation.

Observational studies may be of three different study designs:
cross-sectional, case-control, or prospective. In a cross-sectional study
the measurements are taken at one point in time. For example, in a
cross-sectional study of high blood pressure and coronary heart dis-
ease the investigators determine the blood pressure and the presence of
heart disease at the same time. If they find an association, they would
not be able to tell which came first. Does heart disease result in high
blood pressure or does high blood pressure cause heart disease, or are
both high blood pressure and heart disease the result of some other
common cause?
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In a case-control study of smoking and lung cancer, for example,
the investigator starts with lung cancer cases and with controls, and
through examination of the records or through interviews determines
the presence or the absence of the factor in which he or she is interest-
ed (smoking). A case-control study is sometimes referred to as a retro-
spective study because data on the factor of interest are collected retro-
spectively, and thus may be subject to various inaccuracies.

In a prospective (or cohort) study the investigator starts with a co-
hort of nondiseased persons with that factor (i.e., those who smoke)
and persons without that factor (nonsmokers), and goes forward into
some future time to determine the frequency of development of the dis-
ease in the two groups. A prospective study is also known as a longitu-
dinal study. The distinction between case-control studies and prospec-
tive studies lies in the sampling. In the case-control study we sample
from among the diseased and nondiseased, whereas in a prospective
study we sample from among those with the factor and those without
the factor. Prospective studies provide stronger evidence of causality
than retrospective studies but are often more difficult, more costly, and
sometimes impossible to conduct, for example if the disease under
study takes decades to develop or if it is very rare.

In the health field, an experimental study to test an intervention of
some sort is called a clinical trial. In a clinical trial the investigator
assigns patients or participants to one group or another, usually
randomly, while trying to keep all other factors constant or controlled
for, and compares the outcome of interest in the two (or more) groups.
More about clinical trials is in Chapter 6.

In summary, then, the following list is in ascending order of
strength in terms of demonstrating causality:

cross-sectional studies: useful in showing associations, in providing
early clues to etiology.

case-control studies: useful for rare diseases or conditions, or when
the disease takes a very long time to become manifest (synonymous
name: retrospective studies).
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cohort studies: useful for providing stronger evidence of causality,
and less subject to biases due to errors of recall or measurement
(synonymous names: prospective studies, longitudinal studies).

clinical trials: prospective, experimental studies that provide the
most rigorous evidence of causality.

1.5 How to Quantify Variables

How do we test a hypothesis? First of all, we must set up the hypothesis
in a quantitative manner. Our criterion measure must be a number of
some sort. For example, how many patients died in a drug group com-
pared with how many of the patients died who did not receive the drug,
or what is the mean blood pressure of patients on a certain antihyper-
tensive drug compared with the mean blood pressure of patients not on
this drug. Sometimes variables are difficult to quantify. For instance, if
you are evaluating the quality of care in a clinic in one hospital com-
pared with the clinic of another hospital, it may sometimes be difficult
to find a quantitative measure that is representative of quality of care,
but nevertheless it can be done and it must be done if one is to test the
hypothesis.

There are two types of data that we can deal with: discrete or cate-
gorical variables and continuous variables. Continuous variables,
theoretically, can assume an infinite number of values between any two
fixed points. For example, weight is a continuous variable, as is blood
pressure, time, intelligence, and in general, variables in which meas-
urements can be taken. Discrete variables (or categorical variables) are
variables that can only assume certain fixed numerical values. For in-
stance, sex is a discrete variable. You may code it as 1 = male, 2 = fe-
male, but an individual cannot have a code of 1.5 on sex (at least not
theoretically). Discrete variables generally refer to counting, such as the
number of patients in a given group who live, the number of people
with a certain disease, and so on. In Chapter 3 we will consider a tech-
nique for testing a hypothesis where the variable is a discrete one, and



The Scientific Method 11

subsequently, we will discuss some aspects of continuous variables, but
first we will discuss the general concepts of hypothesis testing.

1.6 The Null Hypothesis

The hypothesis we test statistically is called the null hypothesis. Let us
take a conceptually simple example. Suppose we are testing the efficacy
of a new drug on patients with myocardial infarction (heart attack). We
divide the patients into two groups—drug and no drug—according to
good design procedures, and use as our criterion measure mortality in
the two groups. It is our hope that the drug lowers mortality, but to test
the hypothesis statistically, we have to set it up in a sort of backward
way. We say our hypothesis is that the drug makes no difference, and
what we hope to do is to reject the “no difference” hypothesis, based on
evidence from our sample of patients. This is known as the null
hypothesis. We specify our test hypothesis as follows:

Ho (null hypothesis): death rate in group treated with drug A=
death rate in group treated with drug B.
This is equivalent to:

Ho: (death rate in group A) — (death rate in group B) =0.

We test this against an alternate hypothesis, known as H,, that the
difference in death rates between the two groups does not equal 0.

We then gather data and note the observed difference in mortality
between group A and group B. If this observed difference is sufficiently
greater than zero, we reject the null hypothesis. If we reject the null
hypothesis of no difference, we accept the alternate hypothesis, which is
that the drug does make a difference.

When you test a hypothesis, this is the type of reasoning you use:

(1) I'will assume the hypothesis that there is no difference is true;
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(@) I will then collect the data and observe the difference between
the two groups;

(3) If the null hypothesis is true, how likely is it that by chance
alone 1 would get results such as these?

(4) Ifitisnot likely that these results could arise by chance under
the assumption than the null hypothesis is true, then | will
conclude it is false, and I will “accept” the alternate hypothesis.

1.7 Why Do We Test the Null Hypothesis?

Suppose we believe that drug A is better than drug B in preventing
death from a heart attack. Why don't we test that belief directly and see
which drug is better, rather than testing the hypothesis that drug A is
equal to drug B? The reason is that there is an infinite number of ways
in which drug A can be better than drug B, so we would have to test an
infinite number of hypotheses. If drug A causes 10% fewer deaths
than drug B, it is better. So first we would have to see if drug A causes
10% fewer deaths. If it doesn't cause 10% fewer deaths, but if it causes
9% fewer deaths, it is also better. Then we would have to test whether
our observations are consistent with a 9% difference in mortality
between the two drugs. Then we would have to test whether there is an
8% difference, and so on. Note: each such hypothesis would be set up
as a null hypothesis in the following form: Drug A — Drug B mortality
=10%, or equivalently,

(Drug A — Drug B mortality) — (10%) = 0;
(Drug A — Drug B mortality) — ( 9%) = 0;
(Drug A — Drug B mortality) — ( 8%) = 0; etc.

On the other hand, when we test the null hypothesis of no differ-
ence, we only have to test one value—a 0% difference—and we ask
whether our observations are consistent with the hypothesis that there
is no difference in mortality between the two drugs. If the observations
are consistent with a null difference, then we cannot state that one drug
is better than the other. If it is unlikely that they are consistent with a
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infinity. The relationships among significance level, power, and sample
size are discussed more fully in Chapter 6.

1.8 Types of Errors

The important point is that we can never be certain that we are right in
either accepting or rejecting a hypothesis. In fact, we run the risk of
making one of two kinds of errors: We can reject the null or test hy-
pothesis incorrectly, that is, we can conclude that the drug does reduce
mortality when in fact it has no effect. This is known as a type | error.
Or we can fail to reject the null or test hypothesis incorrectly, that is, we
can conclude that the drug does not have an effect when in fact it does
reduce mortality. This is known as a type Il error. Each of these errors
carries with it certain consequences. In some cases a type | error may
be more serious; in other cases a type Il error may be more serious.
These points are illustrated in Figure 1.2.

Null Hypothesis (H,): Drug has no effect—no difference in mortality
between patients using drug and patients not using drug.

Alternate Hypothesis (H,): Drug has effect—reduces mortality.

TRUE STATE OF NATURE

DRUG HAS NO DRUG HAS
EFFECT EFFECT;
Ho True H, False,
H, True
DO NOT NO TYPE I
DECISION REJECT H, ERROR ERROR
ON BASIS No Effect NO
OF SAMPLE REJECT H, TYPE] NO
(Accept H, ) ERROR ERROR
Effect

Figure 1.2
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If we don't reject H,, we conclude there is no relationship between

drug and mortality. If we do reject H, and accept H,, we conclude there
is a relationship between drug and mortality.

Actions to be Taken Based ofDecision:

€

@)

If we believe the null hypothesis (i.e., fail to reject it), we will not use
the drug.

Consequences of wrong decision: Type Il error. If we believe Hy
incorrectly, since in reality the drug is beneficial, by withholding it
we will allow patients to die who might otherwise have lived.

If we reject null hypothesis in favor of the alternate hypothesis, we
will use the drug.

Consequences of wrong decision: Type | error. If we have rejected
the null hypothesis incorrectly, we will use the drug and patients
don't benefit. Presuming the drug is not harmful in itself, we do
not directly hurt the patients, but since we think we have found the
cure, we might no longer test other drugs.

We can never absolutely know the “True State of Nature,” but we

infer it on the basis of sample evidence.

1.9 Significance Level and Types of Error

We cannot eliminate the risk of making one of these kinds of errors,
but we can lower the probabilities that we will make these errors. The
probability of making a type | error is known as the significance level
of a statistical test. When you read in the literature that a result was
significant at the .05 level it
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type Il error probability. To lower the probabilities of both the type |
and type Il error in a study, it is necessary to increase the number of
observations.

It is interesting to note that the rules of the Food and Drug Ad-
ministration (FDA) are set up to lower the probability of making type |
errors. In order for a drug to be approved for marketing, the drug
company must be able to demonstrate that it does no harm and that it
is effective. Thus, many drugs are rejected because their effectiveness
cannot be adequately demonstrated. The null hypothesis under test is,
“This drug makes no difference.” To satisfy FDA rules this hypothesis
must be rejected, with the probability of making a type | error (i.e., re-
jecting it incorrectly) being quite low. In other words, the FDA doesn't
want a lot of useless drugs on the market. Drug companies, however,
also give weight to guarding against type Il error (i.e., avoid believing
the no-difference hypothesis incorrectly) so that they may market po-
tentially beneficial drugs.

1.10 Consequences of Type | and Type Il Errors

The relative seriousness of these errors depends on the situation. Re-
member, a type | error (also known as alpha) means you are stating
something is really there (an effect) when it actually is not, and a type
Il error (also known as beta error) mean you are missing something
that is really there. If you are looking for a cure for cancer, a type |1
error would be quite serious. You would miss finding useful treat-
ments. If you are considering an expensive drug to treat a cold, clearly
you would want to avoid a type | error, that is, you would not want to
make false claims for a cold remedy.

It is difficult to remember the distinction between type | and Il er-
rors. Perhaps this small parable will help us. Once there was a King
who was very jealous of his Queen. He had two knights, Alpha, who
was very handsome, and Beta, who was very ugly. It happened that the
Queen was in love with Beta. The King, however, suspected the Queen
was having an affair with Alpha and had him beheaded. Thus, the
King made both kinds of errors: he suspected a relationship (with
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Alpha) where there was none, and he failed to detect a relationship
(with Beta) where there really was one. The Queen fled the kingdom
with Beta and lived happily ever after, while the King suffered torments
of guilt about his mistaken and fatal rejection of Alpha.

More on alpha, beta, power, and sample size appears in Chapter 6.
Since hypothesis testing is based on probabilities, we will first present
some basic concepts of probability in Chapter 2.



Chapter 2
A LITTLE BIT OF PROBABILITY

The theory of probability is at bottom nothing but common sense re-
duced to calculus.
Pierre Simon De Le Place
Theori Analytique des Probabilites (1812-1820)

2.1 What Is Probability?

The probability of the occurrence of an event is indicated by a number
ranging from 0 to 1. An event whose probability of occurrence is 0 is
certain not to occur, whereas an event whose probability is 1 is certain
to occur.

The classical definition of probability is as follows: if an event can
occur in N mutually exclusive, equally likely ways and if n, of these
outcomes hawe attribute A, then the probability of A, written as P(A),
equals n,/N. This is an a priori definition of probability, that is, one
determines the probability of an event before it has happened. Assume
one were to toss a die and wanted to know the probability of obtaining a
number divisible by three on the toss of a die. There are six possible
ways that the die can land. Of these, there are two ways in which the
number on the face of the die is divisible by three, a 3 and a 6. Thus,
the probability of obtaining a number divisible by three on the toss of a
die is 2/6 or 1/3.

In many cases, however, we are not able to enumerate all the pos-
sible ways in which an event can occur, and, therefore, we use the rela-
tive frequency definition of probability. This is defined as the number
of times that the event of interest has occurred divided by the total
number of trials (or opportunities for the event to occur). Since it is
based on previous data, it is called the a posteriori definition of prob-
ability.

For instance, if you select at random a white American female, the
probability of her dying of heart disease is .00287. This is based on the
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cannot), the probability of either one or the other occurring is the sum
of their individual probabilities. Symbolically,

P(Aor B)=P(A) +P(B)

An example of this is as follows: the probability of getting either a 3
or a4 on the toss of adie is 1/6 + 1/6 = 2/6.

A useful thing to know is that the sum of the individual probabili-
ties of all possible mutually exclusive events must equal 1. For example,
if A is the event of winning a lottery, and not A (written as A), is the
event of not winning the lottery, then P(A) + P (A) = 1.0 and P(A) = 1
-P(A).

Second, if there are two independent events (i.e., the occurrence of
one is not related to the occurrence of the other), the joint probability of
their occurring together (jointly) is the product of the individual prob-
abilities. Symbolically,

P(A and B) =P(A) xP(B)

An example of this is the probability that on the toss of a die you
will get a number that is both even and divisible by 3. This probability is
equal to 1/2 x 1/3 = 1/6. (The only number both even and divisible by 3
is the number 6.)

The joint probability law is used to test whether events are indepen-
dent. If they are independent, the product of their individual probabili-
ties should equal the joint probability. If it does not, they are not inde-
pendent. It is the basis of the chi-square test of significance, which we
will consider in the next section.

Let us apply these concepts to a medical example. The mortality
rate for those with a heart attack in a special coronary care unit in a
certain hospital is 15%. Thus, the probability that a patient with a heart
attack admitted to this coronary care unit will die is .15 and that he will
survive is .85. If two men are admitted to the coronary care unit on a
particular day, let A be the event that the first man dies and let B be the
event that the second man dies.



22  Biostatistics and Epidemiology: A Primer for Health Professionals

The probability that both will die is

P(A and B) =P(A) x P(B) =.15 x.15 =.0225

We assume these events are independent of each other so we can
multiply their probabilities. Note, however, that the probability that ei-
ther one or the other will die from the heart attack is not the sum of
their probabilities because these two events are not mutually exclusive.
It is possible that both will die (i.e., both A and B can occur).

To make this clearer, a good way to approach probability is
through the use of Venn diagrams, as shown in Figure 2.1. Venn dia-
grams consist of squares that represent the universe of possibilities and
circles that define the events of interest.

In diagrams 1, 2, and 3, the space inside the square represents all
N possible outcomes. The circle marked A represents all the outcomes
that constitute event A; the circle marked B represents all the outcomes
that constitute event B. Diagram 1 illustrates two mutually exclusive
events; an outcome in circle A cannot also be in circle B. Diagram 2
illustrates two events that can occur jointly: an outcome in circle A can
also be an outcome belonging to circle B. The shaded area marked AB
represents outcomes that are the occurrence of both A and B. The dia-
gram 3 represents two events where one (B) is a subset of the other
(A); an outcome in circle B must also be an outcome constituting event
A, but the reverse is not necessarily true.

N N

Figure 2.1

It can be seen from diagram 2 that if we want the probability of an
outcome being either A or B and if we add the outcomes in circle A to
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the outcomes in circle B, we have added in the outcomes in the shaded
area twice. Therefore, we must subtract the outcomes in the shaded
area (A and B) also written as (AB) once to arrive at the correct an-
swer. Thus, we get the result

P(Aor B)=P(A) +P(B) SP(AB)

2.3 Conditional Probability

Now let us consider the case where the chance that a particular event
happens is dependent on the outcome of another event. The probability
of A, given that B has occurred, is called the conditional probability of
A given B, and is written symbolically as P(A|B). An illustration of this
is provided by Venn diagram 2. When we speak of conditional prob-
ability, the denominator becomes all the outcomes in circle B (instead
of all N possible outcomes) and the numerator consists of those out-
comes that are in that part of A which also contains outcomes belong-
ing to B. This is the shaded area in the diagram labeled AB. If we re-
turn to our original definition of probability, we see that

P(A|B)="ze
n

B

(the number of outcomes in both A and B, divided by the total number
of outcomes in B).

If we divide both numerator and denominator by N, the total num-
ber of all possible outcomes, we obtain

n/N _P(AandB)
ng/N ~ P(B)

P(A|B)=

Multiplying both sides by P(B) gives the complete multiplicative law:

P(Aand B) =P(A|B) xP(B)
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Of course, if A and B are independent, then the probability of A given
B is just equal to the probability of A (since the occurrence of B does
not influence the occurrence of A) and we then see that

P(Aand B) =P(A) xP(B)

2.4 Bayesian Probability

Imagine that M is the event “loss of memory,” and B is the event
“brain tumor.” We can establish from research on brain tumor pa-
tients the probability of memory loss given a brain tumor, P(M|B). A
clinician, however, is more interested in the probability of a brain tu-
mor, given that a patient has memory loss, P(B M).

It is difficult to obtain that probability directly because one would
have to study the vast number of persons with memory loss (which in
most cases comes from other causes) and determine what proportion
of them have brain tumors.

Bayes' equation (or Bayes' theorem) estimates P(B M) as follows:

P(memory loss, given brain tumor) x P(brain tumor)

P(brain tumor, given memory loss) = A loss)
memory loss

In the denominator, the event of “memory loss” can occur either
among people with brain tumor, with probability = P(M B) P(B), or
among people with no brain tumor, with probability = P(M  B)P( B).
Thus,

b8 M= PMIBPB)
P(M|B)P(B)+P(M|B)P(B)

The overall probability of a brain tumor, P(B) is the *“a priori
probability,” which is a sort of “best guess” of the prevalence of brain
tumors.
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2.5 0Odds and Probability

When the odds of a particular horse losing a race are said to be 4 to 1,
he has a 4/5 = .80 probability of losing. To convert an odds statement to
probability, we add 4 + 1 to get our denominator of 5. The odds of the
horse winning are 1 to 4, which means he has a probability of winning
of 1/5 = .20.

P(A) __P(A)

The odds in favor of A= =—
P(not A) 1SP(A)

odds

P(A) 1 + odds

The odds of drawing an ace = 4 (aces in a deck) to 48 (cards that
are not aces) = 1 to 12; therefore, P(ace) = 1/13. The odds against
drawing an ace =12 to 1; P(Not Ace) = 12/13.

In medicine, odds are often used to calculate an odds ratio. An
odds ratio is simply the ratio of two odds. For example, say that in a
particular study comparing lung cancer patients with controls, it was
found that the odds of being a lung cancer case for people who smoke
were 5 to 4 (5/4) and the odds of having lung cancer for nonsmokers
was 1 to 8 (1/8), then the odds ratio would be

5/4_5><8=ﬂ=10
1/8 4x1 4

An odds ratio of 10 means that the odds of being a lung cancer
case is 10 times greater for smokers than for nonsmokers.

Note, however, that we cannot determine from such an analysis
what the probability of getting lung cancer is for smokers, because in
order to do that we would have to know how many people out of all
smokers developed lung cancer, and we haven't studied all smokers; all
we do know is how many out of all our lung cancer cases were smok-
ers. Nor can we get the probability of lung cancer among nonsmokers,
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because we would have to a look at a population of nonsmokers and
see how many of them developed lung cancer. All we do know is that
smokers have 10-fold greater odds of having lung cancer than non-
smokers.

More on this topic is presented in Section 4.12.

2.6 Likelihood Ratio

A related concept is the likelihood ratio (LR), which tells us how likely it
is that a certain result would arise from one set of circumstances in
relation to how likely the result would arise from an opposite set of cir-
cumstances.

For example, if a patient has a sudden loss of memory, we might
want to know the likelihood ratio of that symptom for a brain tumor,
say. What we want to know is the likelihood that the memory loss arose
out of the brain tumor in relation to the likelihood that it arose from
some other condition. The likelihood ratio is a ratio of conditional
probabil ities.

P(memory loss, given brain tumor)
P(memory loss, given no brain tumor)
P(M given B)
P(M given not B)

LR =

Of course to calculate this LR we would need to have estimates of
the probabilities involved in the equation, that is, we would need to
know the following: among persons who have brain tumors, what
proportion have memory loss, and among persons who don't have
brain tumors, what proportion have memory loss. It may sometimes be
quite difficult to establish the denominator of the likelihood ratio be-
cause we would need to know the prevalence of memory loss in the
general population.

The LR is perhaps more practical to use than the Bayes' theorem,
which gives the probability of a particular disease given a particular
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symptom. In any case, it is widely used in variety of situations because
it addresses this important question: If a patient presents with a symp-
tom, what is the likelihood that the symptom is due to a particular dis-
ease rather than to some other reason than this disease?

2.7 Summary of Probability

Additive Law:

P(Aor B)=P(A) +P(B) SP(A and B)
If events are mutually exclusive: P (Aor B)=P (A) +P (B).

Multiplicative Law:
P(Aand B) =P(A|B) xP(B)
If events are independent: P (Aand B)=P (A) xP (B).

Conditional Probability:

P(A|B) =%
BayeseTheorem:
P(B|A) = P(A|B) P(B)
P(A|B) P(B) +P(A|B) P(B)
Odds of A:

P(A)
1 S P(A)
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Likelihood Ratio:

P(A|B)
P(A|B)



Chapter 3
MOSTLY ABOUT STATISTICS

A statistician is someone who, with his head in an oven and his feet in
a bucket of ice water, when asked how he feels, responds: “On the
average, | feel fine.”

Anonymous

Different statistical techniques are appropriate depending on whether
the variables of interest are discrete or continuous. We will first con-
sider the case of discrete variables and present the chi-square test and
then we will discuss methods applicable to continuous variables.

3.1 Chi-Square for 2x 2 Tables

The chi-square test is a statistical method to determine whether the re-
sults of an experiment may arise by chance or not. Let us, therefore,
consider the example of testing an anticoagulant drug on female pa-
tients with myocardial infarction. We hope the drug lowers mortality,
but we set up our null hypothesis as follows:

Null There is no difference in mortality
Hypothesis between the treated group of
patients and the control group.
Alternate The mortality in the treated group is
Hypothesis: lower than in the control group.

(The data for our example come from a study done a long time ago
and refer to a specific high-risk group.® They are used for illustrative
purposes and they do not reflect current mortality rates for people with
myocardial infarction.)

We then record our data in a2 x 2 contingency table in which each
patient is classified as belonging to one of the four cells:

29
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Observed Frequencies

Control Treated
Lived 89 223 312
Died 40 39 79
Total 129 262 391

The mortality in the control group is 40/129 = 31% and in the
treated it is 39/262 = 15%. But could this difference have arisen by
chance? We use the chi-square test to answer this question. What we
are really asking is whether the two categories of classification (control
vs. treated by lived vs. died) are independent of each other. If they are
independent, what frequencies would we expect in each of the cells?
And how different are our observed frequencies from the expected
ones? How do we measure the size of the difference?

To determine the expected frequencies, consider the following:

Control Treated
Lived a b (a+b)
Died c d (c+d)
Total (a+c) (b+d) N

If the categories are independent, then the probability of a patient
being both a control and living is P(control) x P(lived). [Here we apply
the law referred to in Chapter 2 on the joint probability of two inde-
pendent events.]

The expected frequency of an event is equal to the probability of the
event times the number of trials = N x P. So the expected number of
patients who are both controls and live is
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N x P(control and lived) = N x P(control) x P(lived)

:N(a+c)x(a+b) :(a+c)><(a+b)
N N N
In our case this yields the following table:
Control Treated
312 312
Lived 129 x 2= =108 | 262 x —o5 = 209 312
79 79
Total 129 262 391

Another way of looking at this is to say that since 80% of the pa-
tients in the total study lived (i.e., 312/391 = 80%), we would expect that
80% of the control patients and 80% of the treated patients would live.
These expectations differ, as we see, from the observed frequencies
noted earlier, that is, those patients treated did, in fact, have a lower
mortality than those in the control group.

Well, now that we have a table of observed frequencies and a table
of expected values, how do we know just how different they are? Do
they differ just by chance or is there some other factor that causes
them to differ? To determine this, we calculate a value called
chi-square (also written as ?). This is obtained by taking the observed
value in each cell, subtracting from it the expected value in each cell,
squaring this difference, and dividing by the expected value for each
cell. When this is done for each cell, the four resulting quantities are
added together to give a number called chi-square. Symbolically this
formula is as fol lows:



32  Biostatistics and Epidemiology: A Primer for Health Professionals

2 2

2 2
(Oa_ea ) + (Ob_eb ) + (OC_EC ) + (Od_ed )
€a €p €¢ €d

where O is the observed frequency and e is the expected frequency in
each cell.

This number, called chi-square, is a statistic that has a known dis-
tribution. What that means, in essence, is that for an infinite number
of such 2 x 2 tables, chi-squares have been calculated and we thus
know what the probability is of getting certain values of chi-square.
Thus, when we calculate a chi-square for a particular 2 x 2 contin-
gency table, we know how likely it is that we could have obtained a value
as large as the one that we actually obtained strictly by chance, under
the assumption the hypothesis of independence is the correct one, that
is, if the two categories of classification were unrelated to one another
or if the null hypothesis were true. The particular value of chi-square
that we get for our example happens to be 13.94.

From our knowledge of the distribution of values of chi-square, we
know that if our null hypothesis is true, that is, if there is no difference
in mortality between the control and treated group, then the probability
that we get a value of chi-square as large or larger than 13.94 by
chance alone is very, very low; in fact this probability is less than .005.
Since itis not likely that we would get such a large value of chi-square
by chance under the assumption of our null hypothesis, it must be that
it has arisen not by chance but because our null hypothesis is incor-
rect. We, therefore, reject the null hypothesis at the .005 level of signifi-
cance and accept the alternate hypothesis, that is, we conclude that
among women with myocardial infarction the new drug does reduce
mortality. The probability of obtaining these results by chance alone is
less than 5/1000 (.005). Therefore, the probability of rejecting the null
hypothesis, when itis in fact true (type I error) is less than .005.

The probabilities for obtaining various values of chi-square are ta-
bled in most standard statistics texts, so that the procedure is to calcu-
late the value of chi-square and then look it up in the table to determine
whether or not it is significant. That value of chi-square that must be
obtained from the data in order to be significant is called the critical
value. The critical value of chi-square at the .05 level of significance for
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a 2 x 2 table is 3.84. This means that when we get a value of 3.84 or
greater from a 2 x 2 table, we can say there is a significant difference
between the two groups. Appendix A provides some critical values for
chi-square and for other tests.

In actual usage, a correction is applied for 2 x 2 tables known as
the Yates' correction and calculation is done using the formula:

2
N [ad-bc| - N
2

(a+Db)(c+d)(a+c)b+d

Note: | ad —bc | means the absolute value of the difference between a x
dand b x c. In other words, ifa x d is greater than b x c, subtract bc
from ad; if bc is greater than ad, subtract ad from bc. The corrected
chi-square so calculated is 12.95, still well above the 3.84 required for
significance.

The chi-square test should not be used if the numbers in the cells
are too small. The rules of thumb: When the total N is greater than 40,
use the chi-square test with Yates' correction. When N is between 20
and 40 and the expected frequency in each of the four cells is 5 or
more, use the corrected chi-square test. If the smallest expected fre-
guency is less than 5, or if N is less than 20, use the Fisher's test.

While the chi-square test approximates the probability, the Fisher's
Exact Test gives the exact probability of getting a table with values like
those obtained or even more extreme. A sample calculation is shown in
Appendix B. The calculations are unwieldy but the Fisher's exact test is
also usually included in most statistics programs for personal comput-
ers. More on this topic may be found in the book Statistical Methods
for Rates and Proportions by Joseph L. Fleiss. The important thing is
to know when the chi-square test is or is not appropriate.
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3.2 McNemar Test

Suppose we have the situation where measurements are made on the
same group of people before and after some intervention, or suppose
we are interested in the agreement between two judges who evaluate the
same group of patients on some characteristics. In such situations, the
before and after measures, or the opinions of two judges, are not inde-
pendent of each other, since they pertain to the same individuals.
Therefore, the Chi-Square test or the Fisher's Exact Test are not ap-
propriate. Instead, we can use the McNemar test.

Consider the following example. Case histories of patients who
were suspected of having ischemic heart disease (a decreased blood
flow to the heart because of clogging of the arteries), were presented to
two cardiology experts. The doctors were asked to render an opinion on
the basis of the available information about the patient. They could
recommend either (1) that the patient should be on medical therapy or
(2) that the patient have an angiogram, which is an invasive test, to de-
termine if the patient is a suitable candidate for coronary artery bypass
graft surgery (known as CABG). Table 3.1 shows the results of these
judgments on 661 patients.

TABLE 3.1
| EXPERT 1
Medical Surgical
E Medical a=397 b =97 a+hb =494
X
P
E
R
T
2 Surgical c=91 d=76 c+d=167

a+c=488 b+d=173 N =661



Mostly About Statistics 35

Note that in cell b Expert 1 advised surgery and Expert 2 advised medi-
cal therapy for 97 patients, whereas in cell ¢ Expert 1 advised medical
therapy and Expert 2 advised surgery for 91 of the patients. Thus, the
two physicians disagree in 188 of the 661 cases or 28% of the time.
Cells a and d represent patients about whom the two doctors agree.
They agree in 473 out the 661 case or 72% of the time.

To determine whether the observed disagreement could have arisen
by chance alone under the null hypothesis of no real disagreement in
recommendations between the two experts, we calculate a type of chi-
square value as follows:

% (chi-square) = A2 =Cl =3 - =2 - 33

( b —c means the absolute value of the difference between the two
cells, that is, irrespective of the sign; the -1 in the numerator is analo-
gous to the Yates' correction for chi-square described in Section 3.1,
and gives a better approximation to the chi-square distribution.) A chi-
square of .13 does not reach the critical value of chi-square of 3.84
needed for a .05 significance level, as described in Section 3.1, so we
cannot reject the null hypothesis and we conclude that our data are
consistent with no difference in the opinions of the two experts. Were
the chi-square test significant, we would have to reject the null hypothe-
sis and say the experts significantly disagree. However, such a test does
not tell us about the strength of their agreement, which can be evalu-
ated by a statistic called Kappa.

3.3 Kappa

The two experts could be agreeing just by chance alone, since both ex-
perts are more likely to recommend medical therapy for these patients.
Kappa is a statistic that tells us the extent of the agreement between the
two experts above and beyond chance agreement.

Proportion of observed agreement — Proportion of agreement by chance
1 — Proportion of agreement by chance

K =
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To calculate the expected number of cases in each cell of the table,
we follow the procedure described for chi-square in Section 3.1. The
cells a and d in Table 3.1 represent agreement. The expected number
by chance alone is

cell a: M = 365
661

celld: M = 44
661

So the proportion of agreement expected by chance alone is

365 + 44
661

= .619

that is, by chance alone the experts would be expected to agree 62% of
the time. The proportion of observed agreement is

397 + 76

= 716
661
Kappa = 716-.619 _ .097 _ 5
1-.619 381

If the two experts agreed at the level of chance only, Kappa would be 0;
if the two experts agreed perfectly Kappa would be 1. The topic of
Kappa is thoroughly described in the book by Fleiss listed in the Sug-
gested Readings.

3.4 Description of a Population: Use of the Standard
Deviation

In the case of continuous variables, as for discrete variables, we may be
interested in description or in inference. When we wish to describe a
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population with regard to some characteristic, we generally use the
mean or average as an index of central tendency of the data.

Other measures of central tendency are the median and the mode.
The median is that value above which 50% of the other values lie and
below which 50% of the values lie. It is the middle value or the 50th
percentile. To find the median of a set of scores we arrange them in
ascending (or descending) order and locate the middle value if there
are an odd number of scores, or the average between the two middle
scores if there are an even number of scores. The mode is the value
that occurs with the greatest frequency. There may be several modes in
a set of scores but only one median and one mean value. These defini-
tions are illustrated below. The mean is the measure of central ten-
dency most often used in inferential statistics.

Measures of Central Tendency

Set of scores Ordered
12 6
12 8
10
8 11 Median
11 12 Mode
10 12
15 15
SUM: 74 Mean = 74/7 = 10.6

The true mean of the population is called m and we estimate that
mean from data obtained from a sample of the population. The sample
mean is called X (read as x bar). We must be careful to specify exactly

the population from which we take a sample. For instance, in the gen-
eral population the average 1.Q. is 100, but the average 1.Q. of the
population of children age 6 to 11 years whose fathers are college
graduates is 112.° Therefore, if we take a sample from either of these
populations, we would be estimating a different population mean and
we must specify to which population we are making inferences.






Mostly About Statistics 39

Xa = Mean = 420 =100; xg = 4%0 = 100

. d :\/ of (each value - mean of group)® :\/ (xi - x)°
o n-1 n-1

s.d =

w|o
I
o

(In Group A since each score is equal to the mean of 100, there are no
deviations from the mean of A)

sdg = 400 = 41333 = 36.51

An equivalent formula for s.d. that is more suited for actual calcula-
tions is

2 —2
£ =N
s.d = _Xi 7 UX
n-1

For group B we have

2
Cd = \/44000 - 4(100)° _ \/44000 = 40000 _ 4000 .

Variance = (s.d.)’
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Note the mean of both groups is 100 but the standard deviation of
group A is 0 while the s.d. of group B is 36.51. (We divide the squared
deviations by n — 1, rather than by n because we are estimating the
population  from sample data, and dividing by n — 1 gives a better es-
timate. The mathematical reason is complex and beyond the scope of
this book.)

3.5 Meaning of the Standard Deviation: The Normal
Distribution

The standard deviation is a measure of the dispersion or spread of the
data. Consider a variable like 1.Q., which is normally distributed, that
is, it can be described by the familiar, bell-shaped curve where most of
the values fall around the mean with decreasing number of values at
either extremes. In such a case, 68% of the values lie within 1 standard
deviation on either side of the mean, 95% of the values lie within 2
standard deviations of the mean, and 99% of the values lie within 3
standard deviations of the mean.
This is illustrated in Figure 3.1.

Figure 3.1
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In the population at large, 95% of people have 1.Q.s between 68
and 132. Approximately 2.5% of people have 1.Q.s above 132 and an-
other 2.5% of people have 1.Q.s below 68. (This is indicated by the
shaded areas at the tails of the curves.)

If we are estimating from a sample and if there are a large number
of observations, the standard deviation can be estimated from the range
of the data, that is, the difference between the smallest and the highest
value. Dividing the range by 6 provides a rough estimate of the stan-
dard deviation if the distribution is normal, because 6 standard devia-
tions (3 on either side of the mean) encompass 99%, or virtually all, of
the data.

On an individual, clinical level, knowledge of the standard deviation
is very useful in deciding whether a laboratory finding is normal, in the
sense of “healthy.” Generally a value that is more than 2 standard de-
viations away from the mean is suspect, and perhaps further tests need
to be carried out.

For instance, suppose as a physician you are faced with an adult
male who has a hematocrit reading of 39. Hematocrit is a measure of
the amount of packed red cells in a measured amount of blood. A low
hematocrit may imply anemia, which in turn may imply a more serious
condition. You also know that the average hematocrit reading for adult
males is 47. Do you know whether the patient with a reading of 39 is
normal (in the sense of healthy) or abnormal? You need to know the
standard deviation of the distribution of hematocrits in people before
you can determine whether 39 is a normal value. In point of fact, the
standard deviation is approximately 3.5; thus, plus or minus 2 stan-
dard deviations around the mean results in the range of from 40 to 54
so that 39 would be slightly low. For adult females, the mean hema-
tocrit is 42 with a standard deviation of 2.5, so that the range of plus or
minus 2 standard deviations away from the mean is from 37 to 47.
Thus, if an adult female came to you with a hematocrit reading of 39,
she would be considered in the “normal” range.
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3.6 The Difference Between Standard Deviation and

Standard Error

Often data in the literature are reported as + s.d. (read as mean + or
-1 standard deviation). Other times they are reported as =+ s.e. (read as
mean + or -1 standard error). Standard error and standard deviation
are often confused, but they serve quite different functions. To under-
stand the concept of standard error, you must remember that the pur-
pose of statistics is to draw inferences from samples of data to the
population from which these samples came. Specifically, we are inter-
ested in estimating the true mean of a population for which we have a
sample mean based on, say, 25 cases. Imagine the following:

Population Sample means based on
1.Q. scoresx; 25 people randomly selected
110 X, =102
100
105 X, =99
98
140 73 =101
— X, =98
100 100
m = mean of m;=m
all the x;'s

= population standard

deviation

mean of the means is m,
the population mean

standard deviation of the distri-

Jn ~ butionof the X s called the stan-

dard error of the mean =
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There is a population of 1.Q. scores whose mean is 100 and its
standard deviation is 16. Now imagine that we draw a sample of 25
people at random from that population and calculate the sample mean
X. This sample mean happens to be 102. If we took another sample of
25 individuals we would probably get a slightly different sample mean,
for example 99. Suppose we did this repeatedly an infinite (or a very
large) number of times, each time throwing the sample we just drew
back into the population pool from which we would sample 25 people
again. We would then have a very large number of such sample
means. These sample means would form a normal distribution. Some
of them would be very close to the true population mean of 100, and
some would be at either end of this “distribution of means” as in Fig-
ure 3.2.

This distribution of sample means would have its own standard de-
viation, that is, a measure of the spread of the data around the mean of
the data. In this case, the data are sample means rather than individual
values. The standard deviation of this distribution of means is called
the standard error of the mean.

It should be pointed out that this distribution of means, which is
also called the sampling distribution of means, is a theoretical con-
struct. Obviously, we don't go around measuring samples of the
population to construct such a distribution. Usually, in fact, we just
take one sample of 25 people and imagine what this distribution might
be. However, due to certain mathematical derivations, we know a lot
about this theoretical distribution of population means and therefore
we can draw important inferences based on just one sample mean.
What we do know is that the distribution of means is a normal distri-
bution, that its mean is the same as the population mean of the indi-
vidual values, that is, the mean of the means is m, and that its standard
deviation is equal to the standard deviation of the original individual
values divided by the square root of the number of people in the
sample.

Standard error of the mean =

51
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In this case it would be

16 _ 16
J25 5

The distribution of means would look as shown in Figure 3.2.

Please note that when we talk about population values, which we
usually don't know but are trying to estimate, we refer to the mean as
m and the standard deviation as . When we talk about values calcu-
lated from samples, we refer to the mean as X

= 32
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Figure 3.3

Now imagine that we have a distribution of means based on sam-
ples of 64 individuals. The mean of these means is also m
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3.7 Standard Error of the Difference Between Two Means

This concept is analogous to the concept of standard error of the
mean. The standard error of the differences between two means is the
standard deviation of a theoretical distribution of differences between
two means. Imagine a group of men and a group of women each of
whom have an 1.Q. measurement. Suppose we take a sample of 64
men and a sample of 64 women, calculate the mean 1.Q.s of these two
samples, and obtain their differences. If we were to do this an infinite
number of times, we would get a distribution of differences between
sample means of two groups of 64 each. These difference scores would
be normally distributed; their mean would be the true average differ-
ence between the populations of men and women (which we are trying
to infer from the samples), and the standard deviation of this distribu-
tion is called the standard error of the differences between two means.

The standard error of the difference between two means of popula-
tions X and Y is given by the formula

where £ is the variance of population X and  is the variance of

population Y; n, is the number of cases in the sample from population
X and n, is the number of cases in the sample from population Y.

In some cases we know or assume that the variances of the two
populations are equal to each other and that the variances that we cal-
culate from the samples we have drawn are both estimates of a com-
mon variance. In such a situation, we would want to pool these esti-
mates to get a better estimate of the common variance. We denote this
pooled estimate as $%,q. =S, and we calculate the standard error of the
difference between means as
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We calculate s*, from sample data:

; — (nx = sk +(ny - 1sf
Sp nx + ny — 2

This is the equivalent to

_ i -x )+ -y )
Nx + Ny — 2

s

Since in practice we will always be calculating our values from
sample data, we will henceforth use the symbology appropriate to that.

3.8 Z Scores and the Standardized Normal Distribution

The standardized normal distribution is one whose mean = 0, standard
deviation = 1, and the total area under the curve = 1. The standard
normal distribution looks like Figure 3.4.

On the abscissa, instead of x we have a transformation of x called
the standard score, Z. Z is derived from x by the following:

7= X-m

Thus, the Z score really tells you how many standard deviations from
the mean a particular x score is.
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Figure 3.4

Any distribution of a normal variable can be transformed to a dis-
tribution of Z by taking each x value, subtracting from it the mean of
x (i.e., m), and dividing this deviation of x from its mean, by the stan-
dard deviation. Let us look at the 1.Q. distribution again in Figure 3.5.

Thus, an 1.Q. score of 131 is equivalent to a Z score of 1.96 (i.e., it
is 1.96, or nearly 2, standard deviations above the mean 1.Q.).

_ 131 - 100 _
T 1.96

One of the nice things about the Z distribution is that the probabil-
ity of a value being anywhere between two points is equal to the area
under the curve between those two points. (Accept this on faith.) It
happens that the area to the right of 1.96 corresponds to a probability
of .025, or 2.5% of the total curve. Since the curve is symmetrical, the
probability of Z being to the left of —1.96 is also .025. Invoking the ad-
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Figure 3.5

ditive law of probability (Section 2.2), the probability of a Z being either
to the left of —1.96 or to the right of +1.96 is .025 + .025 = .05. Trans-
forming back up to x, we can say that the probability of someone hav-
ing an 1.Q. outside of 1.96 standard deviations away from the mean
(i.e., above 131 or below 69) is .05, or only 5% of the population have
values that extreme. (Commonly, the Z value of 1.96 is rounded off to
+2 standard deviations from the mean as corresponding to the cutoff
points beyond which lies 5% of the curve, but the accurate value is
1.96.)

A very important use of Z derives from the fact that we can also
convert a sample mean (rather than just a single individual value) to a
Z score.
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Figure 3.6
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We can now say that the probability that the mean 1.Q. of a group of 25
people is greater than 106.3 is .025. The probability that such a mean is
less than 93.7 is also .025.

A Z score can also be calculated for the difference between two
means.

7 = (XA — YB) - (mA_mB)

Xa™Xg

But m, — mg is commonly hypothesized to be 0 so the formula be-
comes

You can see that a Z score in general is a distance between some
value and its mean divided by an appropriate standard error.

This becomes very useful later on when we talk about confidence
intervals in Sections 3.10 to 3.14.

3.9 The t Statistic

Suppose we are interested in sample means and we want to calculate a
Z score. We don't know what the population standard deviation is, but
if our samples are very large, we can get a good estimate of by cal-
culating the standard deviation, s.d., from our sample, and then getting

the standard error as usual: s.e. = s.d./v/n. But often our sample is not
large enough. We can still get a standardized score by calculating a
value called Student’s t:



52  Biostatistics and Epidemiology: A Primer for Health Professionals
— X—-m
t= S.e

X
It looks just like Z; the only difference is that we calculate it from the
sample and it is a small sample.

We can obtain the probability of getting certain t values similarly to
the way we obtained probabilities of Z values—from an appropriate
table. But it happens, that while the t distribution looks like a normal Z
distribution, it is just a little different, thereby giving slightly different
probabilities. In fact there are many t distributions (not just one, like
for Z). There is a different t distribution for each different sample size.
(More will be explained about this in Section 3.10.)

In our example, where we have a mean based on 25 cases, we
would need at value of 2.06 to correspond to a probability of .025 (in-
stead of the 1.96 for the Z distribution). Translating this back to the
scale of sample means, if our standard error were 3.2, then the prob-
ability would be .025 that we would get a sample mean as large as 106.6
(which is 100 + 2.06 times 3.2), rather than 106.3 (which is 100 + 1.96
times 3.2) as in the Z distribution. This may seem like nit-picking, since
the differences are so small. In fact, as the sample size approaches in-
finity, the t distribution becomes exactly like the Z distribution, but, the
differences between Z and t get larger as the sample size gets smaller,
and it is always safe to use the t distribution. For example, for a mean
based on five cases, the t value would be 2.78 instead of the Z of 1.96.
Some t values are tabled in Appendix A. More detailed tables are in
standard statistics books.

3.10 Sample Values and Population Values Revisited

Al this going back and forth between sample values and population
values may be confusing. Here are the points to remember:

(1) We are always interested in estimating population values from
samples.

(2) In some of the formulas and terms, we use population values
as if we knew what the population values really are. We of



Mostly About Statistics 53

course don't know the actual population values, but if we have
very large samples, we can estimate them quite well from our
sample data.

(3) For practical purposes, we will generally use and refer to tech-
niques appropriate for small samples, since that is more com-
mon and safer (i.e., it doesn't hurt even if we have large sam-

ples).

3.11 A Question of Confidence

A confidence interval establishes a range and specifies the probability
that this range encompasses the true population mean. For instance, a
95% confidence interval (approximately) is set up by taking the sample
mean, X, plus or minus two standard errors of the mean.

95% confidence interval:

sd.
Jn

Thus, if we took a random sample of 64 applicants to the Albert
Einstein College of Medicine and found their mean 1.Q. to be 125, say,
(a fictitious figure) we might like to set up a 95% confidence interval to
infer what the true mean of the population of applicants really is. The
95% confidence interval is the range between 125-2 s.e. and 125 + 2s.e.
We usually phrase this as,

Xt2se=X=%2

“We are 95% confident that the true mean 1Q of Einstein medical
school applicants lies within 125 + 2 s.e.”

For the purposes of this example, assume that the standard devia-
tion is 16. (This is not a particularly good assumption since the 1.Q.
variability of medical school applicants is considerably less than the
variability of 1.Q. in the population in general.) Under this assump-
tion, we arrive at the following range:
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125 + %%) =125 * @ =125 + 4 =121-129

Our statement now is as follows: “The probability is approximately
.95 that the true mean 1.Q. of Einstein Medical School applicants lies
within the range 121-129.” (A more rigorous interpretation of this is
given in Section 3.11.)

A 99% confidence interval is approximately the sample mean
* 3s.e. In our example this interval would be:

125 + 3 16) =125 £ 6 = 119-131

N

We would then be able to say: “The probability is approximately .99
that the true mean 1.Q. of Einstein Medical School applicants lies
within the range 119-131.”

The “approximately” is because to achieve .95 probability you don't
multiply the s.e. by 2 exactly as we did here; we rounded it for conve-
nience. The exact multiplying factor depends on how large the sample
is. If the sample is very large, greater than 100, we would multiply the
s.e. by 1.96 for 95% confidence intervals and by 2.58 for 99% confi-
dence intervals. If the sample is smaller, we should look up the multi-
plier in tables of t values, which appear in many texts. These t values
are different for different “degrees of freedom,” explained in Section
3.13, which are related to sample sizes. Some t values are shown in
Appendix A. (Also refer back to Section 3.9 for the meaning of t statis-
tics.)

Note that for a given sample size we trade off degree of certainty for
size of the interval. We can be more certain that our true mean lies
within a wider range but if we want to pin down the range more pre-
cisely, we are less certain about it (Figure 3.7). To achieve more preci-
sion and maintain a high probability of being correct in estimating the
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Figure 3.8

3.13 Degrees of Freedom

The t values that we use as the multiplier of the standard error to con-
struct confidence intervals depend on something called the degrees of
freedom (df), which are related to the sample size. When we have one
sample, in order to find the appropriate t value to calculate the confi-
dence limits, we enter the tables with n — 1 degrees of freedom, where n
is the sample size. An intuitive way to understand the concept of df is to
consider that if we calculate the mean of a sample of, say, three values,
we would have the “freedom” to vary two of them any way we liked af-
ter knowing what the mean is, but the third must be fixed in order to
arrive at the given mean. So we only have 2 “degrees of freedom.” For
example, if we know the mean of three values is 7, we can have the fol-
lowing sets of data:
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Value1: 7 -50
Value 2: 7 +18
Value 3: 7 +53
Sum = 21 21
Mean = X=7 X=7

In each case, if we know values 1 and 2, then value 3 is determined
since the sum of these values must be 21 in order for the mean to be 7.
We have “lost” one degree of freedom in calculating the mean.

3.14 Confidence Intervals for Proportions

A proportion can be considered a continuous variable. For example, in
the anticoagulant study described in Section 3.1, the proportion of
women in the control (placebo-treated) group who survived a heart at-
tack was found to be 89/129 = .69. A proportion may assume values
along the continuum between 0 and 1. We can construct a confidence
interval around a proportion in a similar way to constructing confi-
dence intervals around means. The 95% confidence limits for a pro-
portion are p + 1.96 s.e.,, where s.e.,, is the standard error of a propor-
tion.

To calculate the standard error of a proportion, we must first cal-
culate the standard deviation of a proportion and divide it by the square
root of n. We define our symbology:

s = standard deviation of a proportion = /pq

number of survivors in control group
total number of women in control group

p = sample proportion =
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number dead in control group
total number of women in control group

— VP9 _ /P9
s.e = Y1 = =1
° vn n

In our example of women survivors of a heart attack in the control
group, the 95% confidence interval is

69 + 1.96 X /£§9131£§12 = 69 + .08
129

And we can make the statement that we are 95% confident that the
population proportion of untreated women surviving a heart attack is
between .61 and .77 or 61% and 77%. (Remember this refers to the
population from which our sample was drawn. We cannot generalize
this to all women having a heart attack.)

For 99% confidence limits, we would multiply the standard error of
a proportion by 2.58, to get the interval .59 to .80. The multiplier is the
Z value that corresponds to .95 for 95% confidence limits or .99 prob-
ability for 99% confidence limits.

q=1-p-=

3.15 Confidence Intervals Around the Difference Between
Two Means

We can construct confidence intervals around a difference between
means in a similar fashion to which we constructed confidence inter-
vals around a single mean. The 95% confidence limits around the dif-
ference between means are given by
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(X =) % (tar, g5) (S-€5-3)

In words, this is the difference between the two sample means, plus
or minus an appropriate t value, times the standard error of the differ-
ence; df is the degrees of freedom and .95 says that we look up the t
value that pertains to those degrees of freedom and to .95 probability.
The degrees of freedom when we are looking at two samples are n, +
n,—2. This is because we have lost one degree of freedom for each of
the two means we have calculated, so our total degrees of freedom is
(n,-1) +(n,~1)=n, +n-2.

As an example consider that we have a sample of 25 female and 25
male medical students. The mean 1.Q.s for each sample are

ifemales = 130’ imales = 126’ Spooled = 12’ df = 48

The 95% confidence interval for the mean difference between men and
women is calculated as follows:
From t tables, we find that the t value for df =48 is 2.01

_ _ 11
Xtemales — Xmales T 2.01 x Sp — t — =
Nx Ny

(130 - 126) + 2.01 x 12(1/25 + 1/25) = 4 + 6.8

The interval then is-2.8 to 10.8, and we are 95% certain it includes the
true mean difference between men and women. This interval includes
0 difference, so we would have to conclude that the difference in 1.Q.
between men and women may be zero.
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3.16 Comparisons Between Two Groups

A most common problem that arises is the need to compare two groups
on some dimension. We may wish to determine, for instance, whether
(1) administering a certain drug lowers blood pressure, or (2) drug A
is more effective than drug B in lowering blood sugar levels, or (3)
teaching first-grade children to read by method | produces higher
reading achievement scores at the end of the year than teaching them
to read by method 1.

3.17 Z-Test for Comparing Two Proportions

As an example we reproduce here the table in Section 3.1 showing data
from a study on anticoagulant therapy.

Observed Frequencies

Control Treated
Lived 89 223 312
Died 40 39 79
Total 129 262 391

If we wish to test whether the proportion of women surviving a
heart attack in the treated group differs from the proportion surviving
in the control group we set up our null hypothesis as

Ho: P,=P,or P,-P,=0; P, = proportion surviving in
treated population

P, = proportion surviving in
control population

Ha: P,-P, 0 (the difference does not equal 0)
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We calculate

Z:pl_pZ

S.e.pl_p2

_ 223 _ _ _ _
p= 565 =8, g =1-p =15 n =262

p, = & = 69, q,

1-p =31 =12
129 P, = 3L 2 °

Thus, the numerator of Z=.85 -.69 =.16.

The denominator =
standard error of the difference between two proportions =

- |5y 1 1
S€.(p-p) = 4PA T T

where P and Q are pooled estimates based on both treated and control
group data. We calculate it as follows:

B = N, Pi+n, B, number of survivors in treated + control
N, +n, total number of patients in treated + control

_ 262(.85) + 129(.69) _ 223 + 89
262 + 129 391

= .80
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f]=1—f)=1—.80=.20

1

1
s.e. = /(.80) (.20) — + — = .043
(P1—P2) \/( ) ( ) 262 129

— .85 — .69 _

We must now look to see if this value of Z exceeds the critical value.
The critical value is the minimum value of the test statistics that we
must get in order to reject the null hypothesis at a given level of signifi-
cance.

The critical value of Z that we need to reject H, at the .05 level of
significance is 1.96. The value we obtained is 3.74. This is clearly a
large enough Z to reject H at the .01 level at least. The critical value for
Z to reject H,, at the .01 level is 2.58.

Note that we came to the same conclusion using the chi-square test
in Section 3.1. In fact 2= * = (3.74)° = 13.99 and the uncorrected
chi-square we calculated was 13.94 (the difference is due to rounding
errors). Of course the critical values of * and Z have to be looked up in
their appropriate tables. Some values appear in Appendix A.

3.18 t-Test for the Difference Between Means of Two
Independent Groups: Principles

When we wanted to compare two groups on some measure that was a
discrete or categorical variable, like mortality in two groups, we used
the chi-square test, described in Section 3.1. Or we could use a test be-
tween proportions as described in Section 3.17. We now discuss a
method of comparing two groups when the measure of interest is a
continuous variable.
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Let us take as an example the comparison of the ages at first preg-
nancy of two groups of women: those who are lawyers and those who
are paralegals. Such a study might be of sociological interest, or it
might be of interest to law firms, or perhaps to a baby foods company
that is seeking to focus its advertising strategy more effectively.

Assuming we have taken proper samples of each group, we now
have two sets of values: the ages of the lawyers (group A) and the ages
of the paralegals (group B), and we have a mean age for each sample.
We set up our null hypothesis as follows:

Ho:  “The mean age of the population of lawyers from which we
have drawn sample A is the same as the mean age of the
population of paralegals from which we have drawn sample
B.”

Our alternate hypothesis is

H,:  “The mean ages of the two populations we have sampled are
different.”

In essence then, we have drawn samples on the basis of which we
will make inferences about the populations from which they came. We
are subject to the same kinds of type | and type Il errors we discussed
before.

The general approach is as follows. We know there is variability of
the scores in group A around the mean for group A and within group
B around the mean for group B, simply because even within a given
population, people vary. What we want to find is whether the variability
between the two sample means around the grand mean of all the
scores is greater than the variability of the ages within the groups
around their own means. If there is as much variability within the
groups as between the groups, then they probably come from the same
population.

The appropriate test here is the t-test. We calculate a value known
as t, which is equal to the difference between the two sample means
divided by an appropriate standard error. The appropriate standard
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error is called the standard error of the difference between two means
and is written as

S.€5, _x

—X2

The distribution of t has been tabulated and from the tables we can
obtain the probability of getting a value of t as large as the one we actu-
ally obtained under the assumption that our null hypothesis (of no dif-
ference between means) is true. If this probability is small (i.e., if it is
unlikely that by chance alone we would get a value of t that large if the
null hypothesis were true) we would reject the null hypothesis and ac-
cept the alternate hypothesis that there really is a difference between the
means of the populations from which we have drawn the two samples.

3.19 How to Do a t-Test: An Example

Although t-tests can be easily performed on personal computers, an
example of the calculations and interpretation is given below. This sta-
tistical test is performed to compare the means of two groups under the
assumption that both samples are random, independent, and come
from normally distributed populations with unknown but equal vari-
ances.

Null Hypothesis: m, = mg, or the equivalent: m, —mg; = 0.
Alternate Hypothesis: m, mg, or the equivalent: m, —m; 0.

[Note: When the alternate hypothesis does not specify the direction
of the difference (by stating for instance that m, is greater than mg) but
simply says the difference does not equal 0, it is called a two-tailed test.
When the direction of the difference is specified, it is called a one-tailed
test. More on this topic appears in Section 5.4.]

t = (YA — YB)

SXa-%g
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Ages of Sample A Ages of Sample B
X, (% — Xu) (% —%y)° X, (% = Xg) (% = Xg)?
28 -3 9 24 2.4 5.76
30 -1 1 25 34 11.56
27 -4 16 20 -16 2.56
32 1 1 18 -36 12.96
34 3 9 21 06 0.36
36 5 25 =108 =0 =33.20
30 -1 1
=217 =0 =62
Meana = XA=%=2—$7=31: Means=i3=%=%=21-6
(The subscript i refers to the ith score and is a convention used to
indicate that we sum over all the scores.)

The numerator of t is the difference between the two means:
31-216=94

To get the denominator of t we need to calculate the standard error of
the difference between means, which we do as follows:

First we get the pooled estimate of the standard deviation. We cal culate:
_ i = Xa) *+ (ki - %) _ 62 + 33.20
> Na + neg — 2 7+5 -2

= % = 952 = 3.09
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Sxyry = S p. | :3.09\/1 + 1230013428 =3.09 x 5854 =1.81
Na  nNg 7 5

Xy — X 9.4
t= A B = = 5.19
Sxa-%g 1.81

This t is significant at the .001 level, which means that you would
get a value of t as high as this one or higher only 1 time out of a thou-
sand by chance if the null hypothesis were true. So we reject the null
hypothesis of no difference, accept the alternate hypothesis, and con-
clude that the lawyers are older at first pregnancy than the paralegals.

3.20 Matched Pair t-Test

If you have a situation where the scores in one group correlate with the
scores in the other group, you cannot use the regular t-test since that
assumes the two groups are independent. This situation arises when
you take two measures on the same individual. For instance, suppose
group A represents reading scores of a group of children taken at time
1. These children have then been given special instruction in reading
over a period of six months and their reading achievement is again
measured to see if they accomplished any gains at time 2. In such a
situation you would use a matched pair t-test.

A B
Initial reading Scores of same
scores of children after 6
Child children months' training | d=B-A d-d [ (d- d)?
(1) 60 62 2 14 1.96
(2) 50 54 4 34 11.56
(3) 70 70 0 -06 0.36
(4) 80 78 -2 26 6.76
(5) 75 74 -1 -16 2.56
Sum 3 0 23.20
Mean difference = d =3/5=0.60
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Null Hypothesis: Mean difference = 0.

Alternate Hypothesis: Mean difference is greater than 0.

t=%; sazin
s = (dn:f)zz\/@zﬁzz.m
s:%:g-—g:ms
t=%=.56

This t is not significant, which means that we do not reject the null
hypothesis and conclude that the mean difference in reading scores
could be zero; that is, the six months' reading program may not be ef-
fective. (Or it may be that the study was not large enough to detect a
difference, and we have committed a type Il error.)

When the actual difference between matched pairs is not in itself a
meaningful number, but the researcher can rank the difference scores
(as being larger or smaller for given pairs). The appropriate test is the
Wilcoxon matched-pairs rank sums test. This is known as a nonpara-
metric test, and along with other such tests is described with exquisite
clarity in the classic book by Sidney Siegel, Nonparametric Statistics for
the Behavioral Sciences (listed in the Suggested Readings).

3.21 When Not to Do a Lot of t-Tests:
The Problem of Multiple Tests of Significance

A t-test is used for comparing the means of two groups. When
there are three or more group means to be compared, the t-test is not
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appropriate. To understand why, we need to invoke our knowledge of
combining probabilities from Section 2.2.

Suppose you are testing the effects of three different treatments for
high blood pressure. Patients in one group A receive one medication, a
diuretic; patients in group B receive another medication, a
beta-blocker; and patients in group C receive a placebo pill. You want to
know whether either drug is better than placebo in lowering blood
pressure and if the two drugs are different from each other in their
blood pressure lowering effect.

There are three comparisons that can be made: group A versus
group C (to see if the diuretic is better than placebo), group B versus
group C (to see if the beta-blocker is better than the placebo), and
group A versus group B (to see which of the two active drugs has more
effect). We set our significance level at .05, that is, we are willing to be
wrong in rejecting the null hypothesis of no difference between two
means, with a probability of .05 or less (i.e., our probability of making
a type I error must be no greater than .05). Consider the following:

Probability of not making a
Probability of type | error =
Comparison type | error 1- P (type I error)
1. Avs.C .05 1-.05=.95
2. Bvs.C .05 1-.05=.95
3. Avs.B .05 1-.05=.95

The probability of not making a type | error in the first comparison
and not making it in the second comparison and not making it in the
third comparison = .95 x .95 x .95 = .86. We are looking here at the
joint occurrence of three events (the three ways of not committing a
type | error) and we combine these probabilities by multiplying the indi-
vidual probabilities. (Remember, when we see “and” in the context of
combining probabilities, we multiply, when we see “or” we add.) So
now, we know that the overall probability of not committing a type |
error in any of the three possible comparisons is .86. Therefore, the
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probability of committing such an error is 1—the probability of not
committing it, or 1 —-.86 = .14. Thus, the overall probability of a type |
error would be considerably greater than the .05 we specified as desir-
able. In actual fact, the numbers are a little different because the three
comparisons are not independent events, since the same groups are
used in more than one comparison, so combining probabilities in this
situation would not involve the simple multiplication rule for the joint
occurrence of independent events. However, it is close enough to illus-
trate the point that making multiple comparisons in the same experi-
ment results in quite a different significance level (.14 in this example)
than the one we chose (.05). When there are more than three groups to
compare, the situation gets worse.

3.22 Analysis of Variance: Comparison Among Several
Groups

The appropriate technique for analyzing continuous variables when
there are three or more groups to be compared is the analysis of vari-
ance, commonly referred to as ANOVA. An example might be com-
paring the blood pressure reduction effects of the three drugs.

3.23 Principles

The principles involved in the analysis of variance are the same as
those in the t-test. Under the null hypothesis we would have the fol-
lowing situation: there would be one big population and if we picked
samples of a given size from that population we would have a bunch
of sample means that would vary due to chance around the grand
mean of the whole population. If it turns out they vary around the
grand mean more than we would expect just by chance alone, then
perhaps something other than chance is operating. Perhaps they don't
all come from the same population. Perhaps something distinguishes
the groups we have picked. We would then reject the null hypothesis
that all the means are equal and conclude the means are different from
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each other by more than just chance. Essentially, we want to know if
the variability of all the groups means is substantially greater than the
variability within each of the groups around their own mean.

We calculate a quantity known as the between-groups variance,
which is the variability of the group means around the grand mean of
all the data. We calculate another quantity called the within-groups
variance, which is the variability of the scores within each group
around its own mean. One of the assumptions of the analysis of vari-
ance is that the extent of the variability of individuals within groups is
the same for each of the groups, so we can pool the estimates of the
individual within group variances to obtain a more reliable estimate of
overall within-groups variance. If there is as much variability of indi-
viduals within the groups as there is variability of means between the
groups, the means probably come from the same population, which
would be consistent with the hypothesis of no true difference among
means, that is, we could not reject the null hypothesis of no difference
among means.

The ratio of the between-groups variance to the within-groups
variance is known as the F ratio. Values of the F distribution appear in
tables in many statistical texts and if the obtained value from our ex-
periment is greater than the critical value that is tabled, we can then
reject the hypothesis of no difference.

There are different critical values of F depending on how many
groups are compared and on how many scores there are in each
group. To read the tables of F, one must know the two values of de-
grees of freedom (df). The df corresponding to the between-groups
variance, which is the numerator of the F ratio, is equal to k — 1, where
k is the number of groups. The df corresponding to the denominator
of the F ratio, which is the within-groups variance, is equal to k x (n —
1), that is, the number of groups times the number of scores in each
group minus one. For example, if in our hypertension experiment
there are 100 patients in each of the three drug groups, then the nu-
merator degrees of freedom would be 3 — 1 = 2, and the denominator
degrees of freedom would be 3 x 99 = 297. An F ratio would have to be
at least 3.07 for a significance level of .05. If there were four groups
being compared then the numerator degrees of freedom would be 3,
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and the critical value of F would need to be 2.68. If there is not an
equal number of individuals in each group, then the denominator de-
grees of freedom is (n, —1) +(n, —1) +(n; —1).

We will not present here the actual calculations necessary to do an
F test because nowadays these are rarely done by hand. There are a
large number of programs available for personal computers that can
perform F tests, t-tests, and most other statistical analyses. However,
shown below is the kind of output that can be expected from these pro-
grams. Shown are summary data from the TAIM study (Trial of An-
tihypertensive Interventions and Management). The TAIM study was
designed to evaluate the effect of diet and drugs, used alone or in com-
bination with each other, to treat overweight persons with mild hyper-
tension (high blood pressure).'**

The next table shows the mean drop in blood pressure after six
months of treatment with each drug, the number of people in each
group, and the standard deviation of the change in blood pressure in
each group.

Mean drop (in diastolic
blood pressure units Standard
Drug group n after 6 months of deviation
treatment)
A. Diuretic 261 121 79
B. Beta-blocker | 264 135 8.2
C. Placebo 257 9.8 8.3

The next table results from an analysis of variance of the data
from this study. It is to be interpreted as follows:
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ANOVA

Source of Degrees of Sum of Mean
variation freedom squares square F ratio P,>F
Between 2 1776.5 888.2 13.42 .0001

groups

Within 779 5256.9 66.2

groups

781

The mean square is the sum of squares divided by the degrees of
freedom. For between-groups, it is the variation of the group means
around the grand mean, while for within-groups it is the pooled esti-
mate of the variation of the individual scores around their respective
group means. The within-groups mean square is also called the error
mean square. (An important point is that the square root of the error
mean square is the pooled estimate of the within-groups standard de-

viation. In this case it is v66.2 =8.14. It is roughly equivalent to the av-
erage standard deviation.) F is the ratio of the between to the within
mean squares; in this example it is 888.2/66.2 = 13.42.

The F ratio is significant at the .0001 level, so we can reject the null
hypothesis that all group means are equal. However, we do not know
where the difference lies. Is group A different from group C but not
from group B? We should not simply make all the pairwise compari-
sons possible because of the problem of multiple comparisons dis-
cussed above. But there are ways to handle this problem. One of them
is the Bonferroni procedure, described in the next section.

3.24 Bonferroni Procedure: An Approach to Making
Multiple Comparisons

This is one way to handle the problem of multiple comparisons. The
Bonferroni procedure implies that if for example we make five com-
parisons, the probability that none of the five p values falls below .05 is
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at least 1 — (5 x .05) = .75 when the null hypothesis of equal means is
really true. That means that
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It turns out that the probability of getting such a high t value by
chance is only .0014. We can safely say the diuretic reduces blood pres-
sure more than the placebo. The same holds true for the comparison
between the beta-blocker and placebo. Now let us compare the two
drugs, B versus A:

. 135121 _ ifl .
814 O

4+ =
264 261

The p value corresponding to this t value is .049. It might be
tempting to declare a significant difference at the .05 level, but remem-
ber the Bonferroni procedure requires that we get a p value of .017 or
less for significance adjusted for multiple comparisons. The critical
value of t corresponding top =.017 is 2.39 and we only got a t of 1.97.
Recently,”” there has been some questioning of the routine adjustment
for multiple comparisons on the grounds that we thereby may commit
more type Il errors and miss important effects. In any case p levels
should be reported so that the informed reader may evaluate the evi-
dence.

3.25 Analysis of Variance When There Are Two
Independent Variables: The Two-Factor ANOVA

The example above is referred to as the one-way ANOVA because you
can divide all the scores in one way only, by the drug group to which
patients were assigned. The drug group is called a “factor” and this
factor has three levels, meaning there are three categories of drug.
There may, however, be another factor that classifies individuals, and
in that case we would have a two-way, or a two-factor, ANOVA. In the
experiment we used as an example, patients were assigned to one of the
three drugs noted above, as well as to one of three diet regi-
mens—weight reduction, sodium (salt) restriction, or no change from
their usual diet, which is analogous to a placebo diet condition. The
diagram below illustrates this two-factor design, and the mean drop in
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blood pressure in each group, as well as the numbers of cases in each
group, which are shown in parenthesis.

Diet
Weight Sodium
Drug Usual reduction restriction Total
Diuretic 10.2 145 116 12.1
(87) (86) (88) (261)
Beta-blocker 12.8 15.2 12.6 135
(86) (88) (90) (264)
Placebo 8.7 10.8 10.1 9.8
(89) (89) (79) (257)
Total 105 135 115
(262) (263) (257)

Now we are interested in comparing the three means that represent
change in blood pressure in the drug groups, the three means that rep-
resent changes in the diet groups, and the interaction between drug
and diet. We now explain the concept of interaction.

3.26 Interaction Between Two Independent Variables

Interaction between two independent variables refers to differences in
the effect of one variable depending on the level of the second variable.
For example, maybe one drug produces better effects when combined
with a weight-reduction diet than when combined with a sodium-
restricted diet. There may not be a significant effect of that drug when
all diet groups are lumped together but if we look at the effects sepa-
rately for each diet group we may discover an interaction between the
two factors: diet and drug.

The diagrams below illustrate the concept of interaction effects. WR
means weight reduction and SR means sodium (salt) restriction.
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In example 1 drug B is better than drug A in those under weight
reduction but in those under salt restriction drug A is better than drug
B. If we just compared the average for drug A, combining diets, with
the average for drug B, we would have to say there is no difference
between drug A and drug B, but if we look at the two diets separately we
see quite different effects of the two drugs.

In example 2, there is no difference in the two drugs for those who
restrict salt, but there is less effect of drug A than drug B for those in
weight reduction.

In example 3, there is no interaction; there is an equal effect for
both diets: the two lines are parallel; their slopes are the same. Drug B
is better than drug A both for those in weight reduction and salt re-
striction.

3.27 Example of a Two-Way ANOVA

Next is a table of data from the TAIM study showing the results of a
two-way analysis of variance:

Two-Way ANOVA From TAIM Data

ANOVA
sum of Mean
Source DF squares square F value  Probability
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Note that the error mean square here is 64.93 instead of 66.9 when we
did the one-way analysis. That is because we have explained some of
the error variance as being due to diet effects and interaction effects (we
have “taken out” these effects from the error variance). Thus, 64.93
represents the variance due to pure error, or the unexplained variance.
Now we can use the square root of this which is 8.06 as the estimate of
the common standard deviation. We explain the results as follows:
There is a significant effect of drug (p = .0001) and a significant effect
of diet (p =.0001), but no interaction of drug by diet (p = .509).

We have already made the three pairwise comparisons, by t-tests
for the difference between two means among drugs (i.e., placebo vs.
diuretic, placebo vs. beta-blocker, and diuretic vs. beta-blocker). We can
do the same for the three diets. Their mean values are displayed below:

Mean drop in diastolic Standard
Diet group n blood pressure deviation
Weight reduction 263 135 8.3
Sodium restriction 257 115 8.3
Usual diet 262 105 8.0
(Pooled estimate of s.d. = 8.06)

If we did t-tests, we would find that weight reduction is better than
usual diet (p = .0000), but sodium restriction shows no significant im-
provement over usual diet (p = .16).

Weight reduction when compared with sodium restriction is also
significantly better with p = .005, which is well below the p = .017 re-
quired by the Bonferroni procedure. (The t for this pairwise compari-
son is 2.83, which is above the critical value of 2.39.)

3.28 Kruskal...Wallis Test to Compare Several Groups

The analysis of variance is valid when the variable of interest is con-
tinuous, comes from a normal distribution, that is, the familiar bell-
shaped curve, and the variances within each of the groups being com-
pared are essentially equal. Often, however, we must deal with situa-
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tions when we want to compare several groups on a variable that does
not meet all of the above conditions. This might be a case where we can
say one person is better than another, but we can't say exactly how
much better. In such a case we would rank people and compare the
groups by using the Kruskal-Wallis test to determine if it is likely that
all the groups come from a common population. This test is analogous
to the one-way analysis of variance but instead of using the original
scores, it uses the rankings of the scores. It is called a non-parametric
test. This test is available in many computer programs, but an example
appears in Appendix C.

3.29 Association and Causation: The Correlation Coefficient

A common class of problems in the accumulation and evaluation of
scientific evidence is the assessment of association of two variables. Is
there an association between poverty and drug addiction? Is emotional
stress associated with cardiovascular disease?

To determine association, we must first quantify both variables.
For instance, emotional stress may be quantified by using an ap-
propriate psychological test of stress or by clearly defining, evaluating,
and rating on a scale the stress factor in an individual's life situation,
whereas hypertension (defined as a blood pressure reading) may be
considered as the particular aspect of cardiovascular disease to be
studied. When variables have been quantified, a measure of association
needs to be calculated to determine the strength of the relationship. One
of the most common measures of association is the correlation coeffi-
cient, r, which is a number derived from the data that can vary between
-1 and +1. (The method of calculation appears in Appendix D.) When
r = 0 it means there is no association between the two variables. An ex-
ample of this might be the correlation between blood pressure and the
number of hairs on the head. When r = +1, a perfect positive correla-
tion, it means there is a direct relationship between the two variables:
an individual who has a high score on one variable also has a high
score on the other, and the score on one variable can be exactly pre-
dicted from the score on the other variable. This kind of correlation
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exists only in deterministic models, where there is really a functional
relationship. An example might be the correlation between age of a tree
and the number of rings it has. A correlation coefficient of -1 indicates
a perfect inverse relationship, where a high score on one variable
means a low score on the other and where, as in perfect positive corre-
lation, there is no error of measurement. Correlation coefficients be-
tween 0 and +1 and between 0 and -1 indicate varying strengths of as-
sociations.

These correlation coefficients apply when the basic relationship
between the two variables is linear. Consider a group of people for each
of whom we have a measurement of weight against height; we will find
that we can draw a straight line through the points. There is a linear
association between weight and height and the correlation coefficient
would be positive but less than 1.

The diagrams in Figure 3.9 illustrate representations of various
correlation coefficients.

3.30 How High Is High?

The answer to this question depends upon the field of application as
well as on many other factors. Among psychological variables, which
are difficult to measure precisely and are affected by many other vari-
ables, the correlations are generally (though not necessarily) lower
than among biological variables where more accurate measurement is
possible. The following example may give you a feel for the orders of
magnitude. The correlations between verbal aptitude and nonverbal
aptitude, as measured for Philadelphia schoolchildren by standardized
national tests, range from .44 to .71 depending on race and social class
of the groups.®

3.31 Causal Pathways

If we do get a significant correlation, we then ask what situations could
be responsible for it? Figure 3.10 illustrates some possible strucstruc-
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Figure 3.9
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tions may arise because one variable is the partial cause of another or
the two correlated variables have a common cause. Other factors, such
as sampling, the variation in the two populations, and so on, affect the
size of the correlation coefficient also. Thus, care must be taken in in-
terpreting these coefficients.

(1) W = weight gain; B = blood pressure
W > B W entirely determines B
rwe =1
2) w W W is one of several determinants of B
A = age; K = kidney function These variables
A —» B '
K -7 could also affect blood pressure
rwe IS less than 1
(3) B The common cause, age, totally determines
A <: both blood pressure and weight gain
W f'we =1
(4) The correlation between W and B is due to a
K > B common cause, A (age), but C (caloric in-
A KX take) and K (kidney function) also determine
— W W (weight gain) and B (blood pressure re-
¢ spectively
rwe IS less than 1
(5) A —» B Correlation between W and B is due to two
>§ common causes, A (age) and G genetic
factors
—>
G w rwe IS less than 1
(6) The correlation between W and B is due to

the direct effect of W (weight gain) on B
(blood pressure) as well as to a common
cause, A (age) which affects both variables;
G (genetic factors) also affect B (blood pres-
sure) and C (caloric intake) affects W
(weight gain)

rwe IS less than 1

v Y

Figure 3.10
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The calculations to determine the best-fit line are shown in Appen-
dix D. However, most statistical computer packages for personal com-
puters provide a linear regression program that does these calcula-
tions. Figure 3.11 illustrates these points plotted in a scattergram and
shows the least-squares line.

The equation for the lineisY =2.76 + .40 X. The intercept a is 2.76
so that the line crosses the y axis at Y = 2.76. The slope is .40. For ex-
ample, we can calculate a predicted Y for X =10 to get

Y =2.76 + (.40)(10) = 2.76 + 4 = 6.76

The d;’s are distances from the points to the line. It is the sum of
these squared distances that is smaller for this line than it would be for
any other line we might draw.

The correlation coefficient for these data is .89. The square of the
correlation coefficient, r’, can be interpreted as the proportion of the
variance in Y that is explained by X. In our example, .89 = .79; thus

Figure 3.11
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79% of the variation of Y is explainable by the variable X, and 21% is
unaccounted for.

3.33 The Connection Between Linear Regression and the
Correlation Coefficient

The correlation coefficient and the slope of the linear regression line
are related by the formulas

r=pb3x b=r
Sy Sx

where s, is the standard deviation of the X variable, Sy is the standard
deviation of the Y variable, b is the slope of the line, and r is the corre-
lation coefficient.

3.34 Multiple Linear Regression

When we have two or more independent variables and a continuous
dependent variable, we can use multiple regression analysis. The form
this takes is

Y=a+biXs+ b2Xo + bsXz + ...+ buXx

For example, Y may be blood pressure and X, may be age, X, may be
weight, X, may be family history of high blood pressure. We can have
as many variables as appropriate, where the last variable is the kth
variable. The b;’s are regression coefficients. Note that family history of
high blood pressure is not a continuous variable. It can either be yes or
no. We call this a dichotomous variable and we can use it as any other
variable in a regression equation by assigning a number to each of the
two possible answers, usually by making a yes answer = 1 and a no
answer = 0. Statistical computer programs usually include multiple
linear regression.
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An example from the TAIM study follows and is meant only to give
you an idea of how to interpret a multiple regression equation. This
analysis pertains to the group of 89 people who were assigned to a pla-
cebo drug and a weight-reduction regimen. The dependent variable is
change in blood pressure.

The independent variables are shown below:

Variable Coefficient: b; p
Intercept -15.49 .0016
Age 077 .359
Race 1 = Black 422 021

0 = Nonblack
Sex 1= Male 1.50 .390

0 = Female
Pounds lost 13 .003

Note: Sex is coded as 1 if male and 0O if female; race is coded as 1 if
black and 0 if nonblack; p is used to test if the coefficient is significantly
different from 0. The equation, then, is

change in blood pressure =
—-15.49 + .077 (age) + 4.22(race) + 1.5(sex) + .13 (change in weight)

Age is not significant (p = .359), nor is sex (p = .390). However, race is
significant (p = .021), indicating that blacks were more likely than
nonblacks to have a drop in blood pressure while simultaneously con-
trolling for all the other variables in the equation. Pounds lost is also
significant, indicating that the greater the weight loss the greater was
the drop in blood pressure.
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3.35 Summary So Far

Investigation of a scientific issue often requires statistical analysis, es-
pecially where there is variability with respect to the characteristics of
interest. The variability may arise from two sources: the characteristic
may be inherently variable in the population and/or there may be error
of measurement.

In this chapter we have pointed out that in order to evaluate a pro-
gram or a drug, to compare two groups on some characteristic, to con-
duct a scientific investigation of any issue, it is necessary to quantify the
variables.

Variables may be quantified as discrete or as continuous and there
are appropriate statistical techniques that deal with each of these. We
have considered here the chi-square test, confidence intervals, Z-test,
t-test, analysis of variance, correlation, and regression. We have
pointed out that in hypothesis testing we are subject to two kinds of er-
rors: the error of rejecting a hypothesis when in fact it is true, and the
error of accepting a hypothesis when in fact it is false. The aim of a
well-designed study is to minimize the probability of making these types
of errors. Statistics will not substitute for good experimental design, but
it is a necessary tool to evaluate scientific evidence obtained from
well-designed studies.

Philosophically speaking, statistics is a reflection of life in two im-
portant respects: (1) as in life, we can never be certain of anything (but
in statistics we can put a probability figure describing the degree of our
uncertainty), and (2) all is a trade-off—in statistics, between certainty
and precision, or between two kinds of error; in life, well, fill in your
own trade-offs.



Chapter 4
MOSTLY ABOUT EPIDEMIOLOGY

Medicine to produce health has to examine disease; and music to
create harmony, must investigate discord.
Plutarch
A.D. 46-120

4.1 The Uses of Epidemiology

Epidemiology may be defined as the study of the distribution of health
and disease in groups of people and the study of the factors that influ-
ence this distribution. Modern epidemiology also encompasses the
evaluation of diagnostic and therapeutic modalities and the delivery of
health care services. There is a progression in the scientific process
(along the dimension of increasing credibility of evidence), from casual
observation, to hypothesis formation, to controlled observation, to ex-
perimental studies. Figure 4.1 is a schematic representation of the uses
of epidemiology. The tools used in this endeavor are in the province of
epidemiology and biostatistics. The techniques used in these disciplines
enable “medical detectives” both to uncover a medical problem, to
evaluate the evidence about its causality or etiology, and to evaluate
therapeutic interventions to combat the problem.

Descriptive epidemiology provides information on the pattern of
diseases, on “who has what and how much of it,” information that is
essential for health care planning and rational allocation of resources.
Such information may often uncover patterns of occurrence suggest-
ing etiologic relationships and can lead to preventive strategies. Such
studies are usually of the cross-sectional type and lead to the formation
of hypotheses that can then be tested in case-control, prospective, and
experimental studies. Clinical trials and other types of controlled stud-
ies serve to evaluate therapeutic modalities and other means of inter-
ventions and thus ultimately determine standards of medical practice,
which in turn have impact on health care planning decisions. In the
following section, we will consider selected epidemiologic concepts.

87
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USES OF EPIDEMIOLOGY

DESCRIPTIVE:

—

ETIOLOGIC:

—

Distribution of HEALTH
diseases in CARE —
population —» PLANNING
subgroups
(Cross
sectional
studies)
EMERGENCE
OF PATTERNS
(suggesting)
Associations FORMATION
among —» OF
variables, HYPOTHESES
temporal

relationships
(case-control and
prospective studies)

‘— (suggesting)

EXPERIMENTAL:

4.2 Some Epidemiologic Concepts: Mortality Rates

Testing of
interventions

(clinical trials)

Figure 4.1

STANDARDS OF

MEDICAL
PRACTICE

In 1900, the three major causes of death were influenza or pneumo-
nia, tuberculosis, and gastroenteritis. Today the three major causes of
death are heart disease, cancer, and accidents; the fourth is strokes.
Stroke deaths have decreased dramatically over the last few decades
probably due to the improved control of hypertension, one of the pri-
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mary risk factors for stroke. These changing patterns of mortality re-
flect changing environmental conditions, a shift from acute to chronic
illness, and an aging population subject to degenerative diseases. We
know this from an analysis of rates.

The comparison of defined rates among different subgroups of in-
dividuals may yield clues to the existence of a health problem and may
lead to the specification of conditions under which this identified health
problem is likely to appear and flourish.

In using rates, the following points must be remembered:

(1) Avrate is a proportion involving a numerator and a denomina-
tor.

(2) Both the numerator and the denominator must be clearly de-
fined so that you know to which group (denominator) your rate
refers.

(3) The numerator is contained in (is a subset of) the denomina-
tor. This is in contrast to a ratio where the numerator refers to
a different group from the denominator.

Mortality rates pertain to the number of deaths occurring in a par-
ticular population subgroup and often provide one of the first indica-
tions of a health problem. The following definitions are necessary be-
fore we continue our discussion:

The Crude Annual Mortality Rate (or death rate) is:

the total number of deaths
during a year in the population at risk
the population at risk
(usually taken as the population at midyear)

The Cause-Specific Annual Mortality Rate is:

number of deaths occurring due to a particular cause
during the year in the population at risk

population at risk (all those alive at midyear)
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The Age-Specific Annual Mortality Rate is:

number of deaths occurring in the given age group
during the year in the population at risk

population at risk
(those in that age group alive at midyear)

A reason for taking the population at midyear as the denominator
is that a population may grow or shrink during the year in question
and the midyear population is an estimate of the average number dur-
ing the year. One can, however, speak of death rates over a five- year
period rather than a one-year period, and one can define the popula-
tion at risk as all those alive at the beginning of the period.

4.3 Age-Adjusted Rates

When comparing death rates between two populations, the age compo-
sition of the populations must be taken into account. Since older people
have a higher number of deaths per 1,000 people, if a population is
heavily weighted by older people, the crude mortality rate would be
higher than in a younger population and a comparison between the
two groups might just reflect the age discrepancy rather than an intrin-
sic difference in mortality experience. One way to deal with this prob-
lem is to compare age-specific death rates, death rates specific to a par-
ticular age group. Another way that is useful when an overall
summary figure is required is to use age-adjusted rates. These are
rates adjusted to what they would be if the two populations being com-
pared had the same age distributions as some arbitrarily selected stan-
dard population.

For example, the table below shows the crude and age-adjusted
mortality rates for the United States at five time periods.15,7 The ad-
justment is made to the age distribution of the population in 1940 as
well as the age distribution of the population in 2000. Thus, we see that
in 1991 the age-adjusted rate was 5.1/1000 when adjusted to 1940 stan-
dard, but the crude mortality rate was 8.6/1000. This means that if in
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2001 is similar to the age distribution in 2000 so age-adjustment
doesn’t really change the mortality rate much.

The age-adjusted rates are fictitious numbers—they do not tell you
how many people actually died per 1,000, but how many would have
died if the age compositions were the same in the two populations.
However, they are appropriate for comparison purposes. Methods to
perform age-adjustment are described in Appendix E.

4.4 Incidence and Prevalence Rates

The prevalence rate and the incidence rate are two measures of mor-
bidity (illness).

Prevalence rate of a disease is defined as

Number of persons with a disease

Total number of persons in population
at risk at a particular point in time

(This is also known as point prevalence, but more generally referred to
just as “prevalence.”) For example, the prevalence of hypertension in
1973 among black males, ages 30-69, defined as a diastolic blood pres-
sure (DBP) of 95 mm Hg or more at a blood pressure screening pro-
gram conducted by the Hypertension Detection and Follow-Up Pro-
gram (HDFP),*® was calculated to be:

4,268 with DBP >95mmHg
15,190 black men aged 30 S69 screened

x 100 = 28.1 per 100

Several points are to be noted about this definition:

(1) The risk group (denominator) is clearly defined as black men,
ages 30-609.

(2) The point in time is specified as time of screening.
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(3) The definition of the disease is clearly specified as a diastolic
blood pressure of 95 mm Hg or greater. (This may include
people who are treated for the disease but whose pressure is
still high and those who are untreated.)

(4) The numerator is the subset of individuals in the reference
group (denominator) who satisfy the definition of the disease.

The incidence rate is defined as:

Number of new cases of a disease per unit of time

Total number at risk in beginning of this time period

For example, studies have found that the ten-year incidence of a major
coronary event (such as heart attack) among white men, ages 30-59,
with diastolic blood pressure 105 mm Hg or above at the time they were
first seen, was found to be 183 per 1,000." This means that among
1,000 white men, ages 30-59, who had diastolic blood pressure above
105 mm Hg at the beginning of the ten-year period of observation, 183
of them had a major coronary event (heart attack or sudden death)
during the next ten years. Among white men with diastolic blood pres-
sure of <75 mm Hg, the ten-year incidence of a coronary event was
found to be 55/1,000. Thus comparison of these two incidence rates,
183/1,000 for those with high blood pressure versus 55/1,000 for those
with low blood pressure, may lead to the inference that elevated blood
pressure is a risk factor for coronary disease.

Often one may hear the word “incidence” used when what is really
meant is prevalence. You should beware of such incorrect usage. For
example, you might hear or even read in a medical journal that the in-
cidence of diabetes in 1973 was 42.6 per 1,000 individuals, ages 45-64,
when what is really meant is that the prevalence was 42.6/1,000. The
thing to remember is that prevalence refers to the existence of a disease
at a specific period in time, whereas incidence refers to new cases of a
disease developing within a specified period of time.

Note that mortality rate is an incidence rate, whereas morbidity may
be expressed as an incidence or prevalence rate. In a chronic disease
the prevalence rate is greater than the incidence rate because preva-
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lence includes both new cases and existing cases that may have first
occurred a long time ago, but the afflicted patients continued to live
with the condition. For a disease that is either rapidly fatal or quickly
cured, incidence and prevalence may be similar. Prevalence can be es-
tablished by doing a survey or a screening of a target population and
counting the cases of disease existing at the time of the survey. This is a
cross-sectional study. Incidence figures are harder to obtain than prev-
alence figures since to ascertain incidence one must identify a group of
people free of the disease in question (known as a cohort), observe
them over a period of time, and determine how many develop the dis-
ease over that time period. The implementation of such a process is dif-
ficult and costly.

4.5 Standardized Mortality Ratio

The standardized mortality ratio (SMR) is the ratio of the number of
deaths observed to the number of deaths expected. The number ex-
pected for a particular age group for instance, is often obtained from
population statistics.

_ observed deaths

SMR= ————————
expected deaths

4.6 Person-Years of Observation

Occasionally one sees a rate presented as some number of events per
person-years of observation, rather than per number of individuals ob-
served during a specified period of time. Per person-years (or months)
is useful as a unit of measurement when people are observed for dif-
ferent lengths of time. Suppose you are observing cohorts of people
free of heart disease to determine whether the incidence of heart dis-
ease is greater for smokers than for those who quit. Quitters need to be
defined, for example, as those who quit more than five years prior to
the start of observation. One could define quitters differently and get
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different results, so it is important to specify the definition. Other con-
siderations include controlling for the length of time smoked, which
would be a function of age at the start of smoking and age at the start
of the observation period, the number of cigarettes smoked, and so
forth. But for simplicity, we will assume everyone among the smokers
has smoked an equal amount and everyone among the quitters has
smoked an equal amount prior to quitting.

We can express the incidence rate of heart disease per some unit of
time, say 10 years, as the number who developed the disease during
that time, divided by the number of people we observed (humber at
risk). However, suppose we didn't observe everyone for the same length
of time. This could occur because some people moved or died of other
causes or were enrolled in the study at different times or for other rea-
sons. In such a case we could use as our denominator the number of
person-years of observation.

For example, if individual 1 was enrolled at time 0 and was ob-
served for 4 years, then lost to follow-up, he would have contributed 4
person-years of observation. Ten such individuals would contribute 40
person-years of observation. Another individual observed for 8 years
would have contributed 8 person-years of observation and 10 such in-
dividuals would contribute 80 person-years of observation for a total of
120 person-years. If six cases of heart disease developed among those
observed, the rate would be 6 per 120 person-years, rather than 6/10
individuals observed. Note that if the denominator is given as per-
son-years, you don't know if it pertains to 120 people each observed for
one year, or 12 people each observed for 10 years or some combina-
tion. Another problem with this method of expressing rates is that it
reflects the average experience over the time span, but it may be that the
rate of heart disease is the same for smokers as for quitters within the
first 3 years and the rates begin to separate after that. In any case,
various statistical methods are available for use with person-year
analysis. An excellent explanation of this topic is given in the book An
Introduction to Epidemiologic Methods, by Harold A. Kahn.
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4.7 Dependent and Independent Variables

In research studies we want to quantify the relationship between one
set of variables, which we may think of as predictors or determinants,
and some outcome or criterion variable in which we are interested.
This outcome variable, which it is our objective to explain, is the de-
pendent variable.

A dependent variable is a factor whose value depends on the level of
another factor, which is termed an independent variable. In the exam-
ple of cigarette smoking and lung cancer mortality, duration and/or
number of cigarettes smoked are independent variables upon which the
lung cancer mortality depends (thus, lung cancer mortality is the de-
pendent variable).

4.8 Types of Studies

In Section 1.4 we described different kinds of study designs, in the
context of our discussion of the scientific method and of how we know
what we know. These were observational studies, which may be cross-
sectional, case-control, or prospective, and experimental studies, which
are clinical trials. In the following sections we will consider the types of
inferences that can be derived from data obtained from these different
designs.

The objective is to assess the relationship between some factor of
interest (the independent variable), which we will sometimes call expo-
sure, and an outcome variable (the dependent variable).

The observational studies are distinguished by the point in time
when measurements are made on the dependent and independent vari-
ables, as illustrated below. In cross-sectional studies, both the depend-
ent and independent (outcome and exposure) variables are measured
at the same time, in the present. In case-control studies, the outcome is
measured now and exposure is estimated from the past. In prospective
studies, exposure (the independent variable) is measured now and the
outcome is measured in the future. In the next section we will discuss
the different inferences to be made from cross-sectional versus pro-
spective studies.
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Time of Measurement

Past Present Future
Cross-Sectional: exposure
outcome
Case-Control: exposure outcome
Prospective: exposure outcome

4.9 Cross-Sectional Versus Longitudinal Looks at Data

Prospective studies are sometimes also known as longitudinal studies,
since people are followed longitudinally, over time. Examination of
longitudinal data may lead to quite different inferences than those to be
obtained from cross-sectional looks at data. For example, consider age
and blood pressure.

Cross-sectional studies have repeatedly shown that the average
systolic blood pressure is higher in each successive ten-year age group
while diastolic pressure increases for age groups up to age 50 and then
reaches a plateau. One cannot, from these types of studies, say that
blood pressure rises with age because the pressures measured for 30-
year-old men, for example, were not obtained on the same individuals
ten years later when they were 40, but were obtained for a different set
of 40-year-olds. To determine the effect of age on blood pressure we
would need to take a longitudinal or prospective look at the same indi-
viduals as they get older. One interpretation of the curve observed for
diastolic blood pressure, for instance, might be that individuals over 60
who had very high diastolic pressures died off, leaving only those indi-
viduals with lower pressure alive long enough to be included in the
sample of those having their blood pressure measured in the
cross-sectional look.

The diagrams in Figure 4.2 illustrate the possible impact of a “co-
hort effect,” a cross-sectional view and a longitudinal view of the same
data. (Letters indicate groups of individuals examined in a particular

year.)
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CROSS SECTIONAL DATA

A

45 A B C
40 B C D Cohort or
Longitudinal Data
Age of Individuals 35 Cc D E
Examines / A/
30 D E NV F 30 Year Olds in
/ / Successive Years
25 V F/’ G H I

1955 1960 1965 1970 1975

Year of examination
Figure 4.2

If you take the blood pressure of all groups in 1965 and compare
group F to group D, you will have a cross-sectional comparison of 30-
year-olds with 40-year-olds at a given point in time. If you compare
group F in 1965 with group F (same individuals) in 1975, you will
have a longitudinal comparison. If you compare group F in 1965 with
group H in 1975, you will have a comparison of blood pressures of 30-
year-olds at different points in time (a horizontal look).

These comparisons can lead to quite different conclusions, as is
shown by the schematic examples in Figure 4.3 using fictitious
numbers to represent average diastolic blood pressure.

= D= =
40 Year Olds D=110 7 F=90 | D=9 jm 110 7110
F

30 Year Olds F=90 F=90 90
1965 1975 1965 1975 1965 1975

Cross-Sectional: D-F=110-90=20, 90-90=0, 110-90=20,
1965 1965

Longi tudinal:
F-F=90-90=0, 110-90 =20, 10-90 =20,
1975 1965

Hori zontal
F-D=90-110=-20, 110-90 = 20, 10-110=0
1975 1965

Figure 4.3
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In example (1) measurements in 1965 indicate that average dia-
stolic blood pressure for 30-year-olds (group F) was 90 mm Hg and
for 40-year-olds (group D), it was 110 mm Hg. Looking at group F ten
years later, when they were 40-year-olds, indicates their mean diastolic
blood pressure was 90 mm Hg. The following calculations result:

cross-sectional look: D - F=110-90=20
1965 1965

conclusion: 40-year-olds have higher blood pressure than
30-year-olds (by 20 mm Hg).

longitudinal look: F - F=90-90=0

1975 1965
conclusion: Blood pressure does not rise with age.
horizontal look: F - D=90-110=-20

(cohort comparisons) 1975 1965

conclusion: 40-year-olds in 1975 have lower blood pres-
sure than 40-year-olds did in 1965.

A possible interpretation: Blood pressure does not rise with age, but
different environmental forces were operating for the F cohort, than
for the D cohort.

In example (2) we have

cross-sectional look: D - F=90-90=0mmHg
1965 1965
conclusion: From cross-sectional data, we conclude that

blood pressure is not higher with older age.
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longitudinal look: F - F=110-90=20
1975 1965
conclusion: From longitudinal data we conclude that

blood pressure goes up with age.

horizontal look: F - D=110-90=20
1975 1965
conclusion: 40-year-olds in 1975 have higher blood pres-

sure than 40-year-olds in 1965.
A possible interpretation: Blood pressure does rise with age and differ-
ent environmental factors operated on the F cohort than on the D co-
hort.

In example (3) we have

cross-sectional look: D - F=110-90=20

1965 1965

conclusion: Cross-sectionally, there was an increase in
blood pressure for 40-year-olds over that for
30-year-olds.

longitudinal look: F - F=110-90=20
1975 1965

conclusion: Longitudinally it is seen that blood pressure

increases with increasing age.

horizontal look: F - D=110-110=0
1975 1965
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conclusion: There was no change in blood pressure
among 40-year-olds over the ten-year period.

A possible interpretation: Blood pressure does go up with age (sup-
ported by both longitudinal and cross-sectional data) and environ-
mental factors affect both cohorts similarly.

4.10 Measures of Relative Risk:
Inferences From Prospective Studies:
the Framingham Study

In epidemiologic studies we are often interested in knowing how much
more likely an individual is to develop a disease if he or she is exposed
to a particular factor than the individual who is not so exposed. A sim-
ple measure of such likelihood is called relative risk (RR). It is the ratio
of two incidence rates: the rate of development of the disease for people
with the exposure factor, divided by the rate of development of the dis-
ease for people without the exposure factor. Suppose we wish to deter-
mine the effect of high blood pressure (hypertension) on the develop-
ment of cardiovascular disease (CVD). To obtain the relative risk we
need to calculate the incidence rates. We can use the data from a classic
prospective study, the Framingham Heart Study.*

This was a pioneering prospective epidemiologic study of a popu-
lation sample in the small town of Framingham, Massachusetts. Be-
ginning in 1948 a cohort of people was selected to be followed up bien-
nially. The term cohort refers to a group of individuals followed longi-
tudinally over a period of time. A birth cohort, for example, would be
the population of individuals born in a given year. The Framingham
cohort was a sample of people chosen at the beginning of the study pe-
riod and included men and women aged 30 to 62 years at the start of
the study. These individuals were observed over a 20-year period, and
morbidity and mortality associated with cardiovascular disease were
determined. A standardized hospital record and death certificate were
obtained, clinic examination was repeated at two-year intervals, and the
major concern of the Framingham study has been to evaluate the rela-
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tionship of characteristics determined in well persons to the subsequent
development of disease.

Through this study “risk factors” for cardiovascular disease were
identified. The risk factors are antecedent physiologic characteristics or
dietary and living habits, whose presence increases the individual's
probability of developing cardiovascular disease at some future time.
Among the most important predictive factors identified in the
Framingham study were elevated blood pressure, elevated serum cho-
lesterol, and cigarette smoking. Elevated blood glucose and abnormal
resting electrocardiogram findings are also predictive of future cardio-
vascular disease.

Relative risk can be determined by the following calculation:

incidence rate of cardiovascular disease (new cases)
over a specified period of time among people free
of CVD at beginning of the study period who have

the risk factor in question (e.g., high blood pressure)

incidence rate of CVD in the given time period among
people free of CVD initially, who do not have the risk
factor in question (normal blood pressure)

From the Framingham data we calculate for men in the study the

353.2/10,000 personsat risk
RRof CVDwithin - ith definite hypertension
18 yeagi:;:er first = 123.9/10,000 personsat risk
with no hypertension

3532 _ 5 85

123.9
This means that a man with definite hypertension is 2.85 times
more likely to develop CVD in an 18-year period than a man who does
not have hypertension. For women the relative risk is
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1879 _5 98

57.3

This means that hypertension carries a somewhat greater relative risk
for women. But note that the absolute risk for persons with definite
hypertension (i.e., the incidence of CVD) is greater for men than for
women, being 353.2 per 10,000 men versus 187.9 per 10,000 women.

The incidence rates given above have been age-adjusted. Age ad-
justment is discussed in Section 4.3. Often one may want to adjust for
other variables such as smoking status, diabetes, cholesterol levels, and
other factors that may also be related to outcome. This may be accom-
plished by multiple logistic regression analysis or by Cox proportional
hazards analysis, which are described in Sections 4.16 and 4.18, re-
spectively, but first we will describe how relative risk can be calculated
from prospective studies or estimated from case-control studies.

4.11 Calculation of Relative Risk from Prospective Studies

Relative risk can be determined directly from prospective studies by
constructing a2 x 2 table as follows:*

DISEASE
(developing in the specified period)
Yes No
RISK PRESENT a+b=493
FACTOR (high blood a=90 b =403 (persons with
(determined ~ pressure) factor)
at be-
ginning of ABSENT c+d=1271
study peri- (normal c=70 d =1201 | (persons without
od) blood pres- factor)
sure)
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Relative risk is

incidence of disease among those with high BP
incidence of disease among those with normal BP
al(a+b) _ 90/493 _331
c/(c+d) 70/1271

Relative risk, or hazard ratio, can be calculated from Cox proportional
hazards regression models (which allow for adjustment for other vari-
ables) as described in Section 4.19.

4.12 Odds Ratio: Estimate of Relative Risk from
Case-Control Studies

A case-control study is one in which the investigator seeks to establish
an association between the presence of a characteristic ( a risk factor)
and the occurrence of a disease by starting out with a sample of dis-
eased persons and a control group of nondiseased persons and by
noting the presence or absence of the characteristic in each of these two
groups. It can be illustrated by constructing a 2 x 2 table as fol lows:

DISEASE
PRESENT ABSENT
PRESENT a b
RISK
FACTOR
ABSENT c d
a+c b+d
(number of persons  (number of persons
with disease) without disease)

The objective is to determine if the proportion of persons with the
disease who have the factor is greater than the proportion of persons
without the disease who have the factor. In other words, it is desired to
know whether a/(a + c) is greater than b/(b +d).
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Case-control studies are often referred to as retrospective studies
because the investigator must gather data on the independent variables
retrospectively. The dependent variable—the presence of disease—is
obtained at time of sampling, in contrast to prospective studies where
the independent variables are measured at time of sampling and the
dependent variable is measured at some future time (i.e., when the dis-
ease develops). The real distinction between case-control or retrospec-
tive studies and prospective studies has to do with selecting individuals
for the study—those with and without the disease in case-
control/retrospective studies, and those with and without the factor of
interest in prospective studies.

Since in prospective studies we sample the people with the charac-
teristic of interest and the people without the characteristic, we can ob-
tain the relative risk directly by calculating the incidence rates of disease
in these two groups. In case-control studies, however, we sample pa-
tients with and without the disease, and note the presence or absence of
the characteristic of interest in these two groups; we do not have a di-
rect measure of incidence of disease. Nevertheless, making certain as-
sumptions, we can make some approximations to what the relative risk
would be if we could measure incidence rates through a prospective
study. These approximations hold best for diseases of low incidence.

To estimate relative risk from case-control studies note that

al(a+h) _ a(c+d)
c/(c+d) c(a+b)

Now assume that since the disease is not all that common, c is negligi-
ble in relation tod (in other words among people without the risk factor
there aren't all that many who will get the disease, relative to the num-
ber of people who will not get it). Assume also that, in the population, a
is negligible relative to b, since even among people with the risk factor
not all that many will get the disease in comparison to the number who
won't get it. Then the terms in the parentheses become d in the nu-
merator and b in the denominator so that
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M reduces to OR:ﬂ
c(a+b) bc

This is known as the odds ratio (OR) and is a good estimate of relative
risk when the disease is rare.

An example of how the odds ratio is calculated is shown below. In
a case-control study of lung cancer the table below was obtained.” Note
that we are not sampling smokers and nonsmokers here. Rather we
are sampling those with and without the disease. So although in the
population at large a is small relative to b, in this sample it is not so.

Patients with Lung Matched Controls
Cancer with Other Diseases
Smokers of 15-24
cigarettes daily 475 a 431 b
Nonsmokers 7 c 61 d
(persons with (persons without
disease) disease)

The odds ratio, as an estimate of the relative risk of developing lung
cancer for people who smoke 15-24 cigarettes a day, compared with
nonsmokers is

. 475x61 . L
Odds ratio= 415701 9.60 =estimate of relative risk
431x7

This means that smokers of 15-24 cigarettes daily are 9.6 times more
likely to get lung cancer than are nonsmokers.

One more thing about the odds ratio: itis the ratio of odds of lung
cancer for those who smoke 15-24 cigarettes a day, relative to odds of
lung cancer for those who don't smoke. In the example above, we get
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for smokers : odds of lung cancer are %

for nonsmokers: odds of lung cancer are 611

475/ 431
7161

ratio of odds =

So the point is, the odds ratio is the odds ratio, whether the disease is
rare or not. It is always the ratio of odds of disease for those with the
exposure versus the odds of disease for those without the exposure. But
when the disease is rare, it is also a good estimate of the relative risk.
We can also put confidence limits on the odds ratio, shown in Appen-
dix F. Odds ratios can be calculated from logistic regression (which
allow for adjustment for other variables) as described in Section 4.17.

4.13 Attributable Risk

Attributable risk (AR) is:
risk in exposed—risk in unexposed individuals.

Population attributable risk (PAR) is:
AR x risk factor prevalence

While relative risk pertains to the risk of a disease in exposed per-
sons relative to the risk in the unexposed, the attributable risk pertains
to the difference in absolute risk of the exposed compared to the unex-
posed persons. It may tell us how much excess risk there is due to the
exposure in the exposed. In the example in Section 4.11, the 10 year
risk among those with high blood pressure was 90/493 = 0.183, (or 183
per 1000 people with high blood pressure) while in those with normal
blood pressure it was 70/1271 = 0.055 (or 55 per 1000 with normal
pressure).
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Thus the attributable risk in those exposed (i.e. with high blood
pressure) is 0.183-0.055 = 0.128 (128 per 1000). In other words, heart
disease events in 128 of the 183 people per 1000 with high blood pres-
sure can be attributed to the high blood pressure. We can also express
this excess as a percentage of the risk in the exposed that is attributable
to the exposure:

128/1000
183/1000

=128=.700r 70%

BUT, we must be very careful about such attribution—it is only valid
when we can assume the exposure is causes the disease (after taking
into account confounding and other sources of bias).

Population attributable risk (PAR) is a useful measure when we
want to see how we could reduce morbidity or mortality by eliminating
a risk factor. It depends on the prevalence of the risk factor in the
population as noted above. Here is an example from the Women’s
Health Initiative (described in more detail in Chapter 6). It was found
in a clinical trial that postmenopausal women who were taking estro-
gen plus progestin had an annualized rate of coronary heart disease of
39 per 10,000 compared to a rate of 33 per 10,000 for women taking
placebo.*

Thus:

39 S33
AR 10.000 .0006
or 6 excess coronary heart disease events per 10,000 women taking this
preparation, per year.

Since approximately 6,000,000 women were taking that hormone
preparation at the time (exposed), then .0007 x 6,000,000 = 3600 coro-
nary heart disease events per year could be attributed to taking estrogen
plus progestin.

The prevalence of use of estrogen plus progestin estimated from
the same study when it was first begun, was about 18%. If we use this
estimate,
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PAR = AR x prevalence of risk factor = .0006 x .18 = .000108;

Thus, if use of estrogen plus progestin were eliminated there would
be 10.8 per 100,000 postmenopausal women who had fewer coronary
heart disease events.

4.14 Response Bias

There are many different types of bias that might lead you to either un-
derestimate or overestimate the size of a relative risk of odds ratio, and
it is important to try to anticipate potential sources of bias and avoid
them. The illustration on the next page shows the impact of one kind of
possible bias: ascertainment or response bias.

Assume that you have the following situation. Of 100 people ex-
posed to a risk factor, 20% develop the disease and of a 100 people un-
exposed, 16% develop the disease, yielding a relative risk of 1.25, as
shown in the illustration.

Now imagine that only 60% of the exposed respond to follow-up, or
are ascertained as having or not having the disease, a 60% response
rate among the exposed. Assume further that all of the ones who don't
respond happen to be among the ones who don't develop disease. The
relative risk would be calculated as 2.06.

Now imagine that only 60% of the nonexposed reply, a 60% re-
sponse rate among the nonexposed, and all of the nonexposed who
don't respond happen to be among the ones who don't have the dis-
ease. Now the relative risk estimate is 0.75.

To summarize, you can get conflicting estimates of the relative risk
if you have differential response rates. Therefore, it is very important to
get as complete a response or ascertainment as possible. The tables
showing these calculations follow.
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FULL RESPONSE RATE

DISEASE
+ —
E
X R = 100% 100%
+ 100
P
0 20 80
S
U 100% 100%
r| - 100
£ 16 84
36 164 200
_ 20/100 :E ~195
16/100 .16
DIFFERENTIAL RESPONSE RATE
DISEASE
+ —
E U . 60
X + R = 100% 50% (response
) rate =
0 20 40 60%)
S
100% 100%
U - 100
R 16 84
E
36 124 160
20/60 33

16/100 .16
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DIFFERENTIAL RESPONSE RATE

DISEASE
+ p—
E
X R = 100% 100%
+ 100
P
o 20 40
S
100% 52% 60
ul (response
R rate =
E 16 84 60%)
36 124 160

- 20/100 _ .20 _

4.15 Confounding Variables

A confounding variable is one that is closely associated with both the
independent variable and the outcome of interest in those unexposed.
For example, a confounding variable in studies of coffee and heart dis-
ease may be smoking. Since some coffee drinkers are also smokers, if
a study found a relationship between coffee drinking (the independent
variable) and development of heart disease (the dependent variable), it
could really mean that it is the smoking that causes heart disease,
rather than the coffee. In this example, smoking is the confounding
variable.

If both the confounding variable and the independent variable of
interest are closely associated with the dependent variable, then the ob-
served relationship between the independent and dependent variables
may really be a reflection of the true relationship between the con-
founding variable and the dependent variable. An intuitive way to look
at this is to imagine that if a confounding variable were perfectly asso-
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ciated with an independent variable, it could be substituted for it. It is
important to account or adjust for confounding variables in the design
and statistical analysis of studies in order to avoid wrong inferences.

There are several approaches to dealing with potential confound-
ers. One approach is to deal with it in the study design by matching, for
example, as described in Section 4.16 below; another way of controlling
for confounding variables is in the data analysis phase, by using multi-
variate analysis, as described in Sections 4.17, 4.18 and 4.20 below. An
excellent discussion is found in Modern Epidemiology by Kenneth J.
Rothman and Sander Greenland.

4.16 Matching

One approach to dealing with potential confounders is to match sub-
jects in the two groups on the confounding variable. In the example
discussed above concerning studies of coffee and heart disease, we
might match subjects on their smoking history, since smoking may be
a confounder of the relationship between coffee and heart disease.
Whenever we enrolled a coffee drinker into the study, we would deter-
mine if that person was a smoker. If the patient was a smoker, the next
patient who would be enrolled who was not a coffee drinker (i.e., a
member of the comparison group), would also have to be a smoker.
For each coffee-drinking nonsmoker, a non-coffee-drinking non-
smoker would be enrolled. In this way we would have the same num-
ber of smokers in the two groups. This is known as one-to-one
matching. There are other ways to match and these are discussed more
fully in the Suggested Readings section, especially in Statistical Meth-
ods for Comparative Studies by Anderson et al. and in Causal Rela-
tionships in Medicine by J. Mark Elwood.

In case-control studies finding an appropriate comparison group
may be difficult. For example, suppose an investigator is studying the
effect of coffee on pancreatic cancer. The investigator chooses as con-
trols, patients in the hospital at the same time and in the same ward as
the cases, but with a diagnosis other than cancer. It is possible that pa-
tients hospitalized for gastrointestinal problems other than cancer
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might have voluntarily given up coffee drinking because it bothered
their stomachs. In such a situation, the coffee drinking habits of the
two groups might be similar and the investigator might not find a
greater association of coffee drinking with cases than with controls. A
more appropriate group might be patients in a different ward, say an
orthopedic ward. But here one would have to be careful to match on
age, since orthopedic patients may be younger than the other cases if
the hospital happens to be in a ski area, for example, where reckless
skiing leads to broken legs, or they may be substantially older than the
other cases if there are many patients with hip replacements due to falls
in the elderly, or osteoarthritis.

It needs to be pointed out that the factor that is matched cannot be
evaluated in terms of its relationship to outcome. Thus, if we are com-
paring two groups of women for the effect of vitamin A intake on cervi-
cal cancer and we do a case-control study in which we enroll cases of
cervical cancer and controls matched on age, we will not be able to say
from this study whether age is related to cervical cancer. This is be-
cause we have ensured that the age distributions are the same in both
the case and control groups by matching on age, so obviously we will
not be able to find differences in age between the groups.

Some statisticians believe that matching is often done unnecessarily
and that if you have a large enough study, simple randomization or
stratified randomization is adequate to ensure a balanced distribution
of confounding factors. Furthermore, multivariate analysis methods,
such as logistic regression or proportional hazards models, provide
another, usually better, way to control for confounders. A good discus-
sion of matching can be found in the book Methods in Observational
Epidemiology, by Kelsey, Thompson, and Evans.

4.17 Multiple Logistic Regression

Multiple logistic regression analysis is used to calculate the probability
of an event happening as a function of several independent variables.
It is useful in controlling for confounders when examining the rela-
tionship between an independent variable and the occurrence of an
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outcome (e.g., such as heart attack) within a specified period of time.
The equation takes the form of

1
P(event) = <
(event) T+ &

wherek=C, +C, X, +C,X, +C,;X; +... +C_ X,

Each X; is a particular independent variable and the corresponding
coefficients, C's, are calculated from the data obtained in the study. For
example, let us take the Framingham data for the probability of a man
developing cardiovascular disease within 8 years. Cardiovascular dis-
ease (CVD) was defined as coronary heart disease, brain infarction,
intermittent claudication, or congestive heart failure.

P(CVD) =

1

J519.77+37(age) 2002(age)? 4026(chl) 4016( SBP) 4558(SM) 2.053(LVH) 602(Gl) $0036(chl age)]

1+e

where chl = serum cholesterol,
SBP =systolic blood pressure,
SM =1 ifyes for smoking, 0 if no,
LVH = left ventricular hypertrophy, 1 if yes, 0 if no,
Gl = glucose intolerance, 1 if yes, 0 if no.

For example, suppose we consider a 50-year-old male whose choles-
terol is 200, systolic blood pressure is 160, who smokes, has no LVH,
and no glucose intolerance. When we multiply the coefficients by this
individual's values on the independent variables and do the necessary
calculations we come up with a probability of .17. This means that this
individual has 17 chances in a 100 of developing some form of cardio-
vascular disease within the next 8 years.

The coefficients from a multiple logistic regression analysis can be
used to calculate the odds ratio for one factor while controlling for all
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the other factors. The way to do this is to take the natural log e raised to
the coefficient for the variable of interest, if the variable is a dichoto-
mous one (i.e., coded as 1 or 0). For example, the odds of cardiovas-
cular disease for smokers relative to nonsmokers among males, while
controlling for age, cholesterol, systolic blood pressure, left ventricular
hypertrophy, and glucose intolerance is €™ = 1.75. This means that a
person who smokes has 1.75 times higher risk of getting CVD (within
8 years) than the one who doesn't smoke if these two individuals are
equal with respect to the other variables in the equation. This is
equivalent to saying that the smoker's risk is 75% higher than the non-
smoker’s.

If we want to compare the odds of someone with a systolic blood
pressure of 200 versus someone with systolic blood pressure of 120, all
other factors being equal, we calculate it as follows:

OR=¢e (2003120) —016(80) —o128 _3 ¢

The man with systolic blood pressure of 200 mm Hg is 3.6 times more
likely to develop disease than the one with pressure of 120. (Of course,
this would imply that someone with systolic blood pressure of 260
would also be 3.6 times more likely to develop CVD than one with pres-
sure of 180. If the assumption of a linear increase in risk didn't hold,
then the prediction would be incorrect.)

Logistic regression can also be used for case-control studies. In
this case raising e to the coefficient of the variable of interest also gives
us the odds ratio, but we cannot use the equation to predict the prob-
ability of an event, since we have sampled from cases and controls, not
from a general population of interest.

Multiple logistic regression analysis has become widely used largely
due to the advent of high-speed computers, since calculating the coeffi-
cients requires a great deal of computer power. Statistical packages are
available for personal computers.

Multiple logistic regression is appropriate when the dependent var-
iable (outcome) is dichotomous (i.e., can be coded as 1 = event, 0 = no
event), and when the question deals with the occurrence of the event of
interest within a specified period time and the people are all followed for
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more likely to have had a calcium channel blocker prescribed if they
had angina for example, and we know that angina is related to mortal-
ity. We might then take the following steps:

(1) Calculate a multiple logistic regression where:
Y=1if on drug, O otherwise (dependent variable)
X’s (independent variables) = age, race/ethnicity, angina, BMI,
systo