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PREFACE TO THE
THIRD EDITION

The purpose of the third edition of this book is to give a sound and self-con-
tained (in the sense that the necessary probability theory is included) introduction
to classical or mainstream statistical theory. It is not a statistical-methods-
cookbook, nor a compendium of statistical theories, nor is it a mathematics
book. Thé book is intended to be a textbook, aimed for use in the traditional
full-year upper-division undergraduate course in probability and statistics,
or for use as a text in a course designed for first-year graduate students. The
latter course is often a ‘‘service course,” offered to a variety of disciplines.

No previous course in probability or statistics is needed in order to study
the book. The mathematical preparation required is the conventional full-year
calculus course which includes series expansion, multiple integration, and par-
tial differentiation. Linear algebra is not required. An attempt has been
made to talk to the reader. Also, we have retained the approach of presenting
the theory with some connection to practical problems. The book is not mathe-
matically rigorous. Proofs, and even exact statements of results, are often not
given. Instead, we have tried to impart a “feel” for the theory.

The book is designed to be used in either the quarter system or the semester
system. In a quarter system, Chaps. I through V could be covered in the first

2



Xiv PREFACE TO THE THIRD EDITION

quarter, Chaps. VI through part of VIII the second quarter, and the rest of the
book the third quarter. In a semester system, Chaps. I through VI could be
covered the first semester and the remaining chapters the second semester.
Chapter VI is a ““ bridging > chapter; it can be considered to be a part of * proba-
bility >’ or a part of ““statistics.”” Several sections or subsections can be omitted
without disrupting the continuity of presentation. For example, any of the
following could be omitted: Subsec. 4.5 of Chap. I1; Subsecs., 2.6, 3.5, 4.2, and
4.3 of Chap. III; Subsec. 5.3 of Chap. VI; Subsecs. 2.3, 3.4, 4.3 and Secs. 6
through 9 of Chap. VII; Secs. 5 and 6 of Chap. VIII; Secs. 6 and 7 of Chap. 1X;
and all or part of Chaps. X and XI. Subsection 5.3 of Chap VI on extreme-value
theory is somewhat more difficult than the rest of that chapter. In Chap. VII,
Subsec. 7.1 on Bayes estimation can be taught without Subsec. 3.4 on loss and
risk functions but Subsec. 7.2 cannot. Parts of Sec. 8 of Chap. VII utilize matrix
notation. The many problems are intended to be essential for learning the
material in the book. Some of the more difficult problems have been starred.

ALEXANDER M. MOOD
FRANKLIN A. GRAYBILL
DUANE C. BOES



EXCERPTS FROM THE FIRST
AND SECOND EDITION PREFACES

This book developed from a set of notes which I prepared in 1945. At that time
there was no modern text available specifically designed for beginning students
of mathematical statistics. Since then the situation has been relieved consider-
ably, and had I known in advance what books were in the making it is likely
that I should not have embarked on this volume. However, it seemed suffi-
ciently different from other presentations to give prospective teachers and stu-
dents a useful alternative choice.

The aforementioned notes were used as text material for three years at Iowa
State College in a course offered to senior and first-year graduate students.
The only prerequisite for the course was one year of calculus, and this require-
ment indicates the level of the book. (The calculus class at Iowa State met four
hours per week and included good coverage of Taylor series, partial differentia-
tion, and multiple integration.) No previous knowledge of statistics is assumed.

This is a statistics book, not a mathematics book, as any mathematician
will readily see. Little mathematical rigor is to be found in the derivations
simply because it would be boring and largely a waste of time at this level. Of
course rigorous thinking is quite essential to good statistics, and T have been at
some pains to make a show of rigor and to instill an appreciation for rigor by
pointing out various pitfalls of loose arguments.



XVvi EXCERPTS FROM THE FIRST AND SECOND EDITION PREFACES

While this text is primarily concerned with the theory of statistics, full
cognizance has been taken of those students who fear that a moment may be
wasted in mathematical frivolity. All new subjects are supplied with a little
scenery from practical affairs, and, more important, a serious effort has been
made in the problems to illustrate the variety of ways in which the theory may
be applied.

The problems are an essential part of the book. They range from simple
numerical examples to theorems needed in subsequent chapters. They include
important subjects which could easily take precedence over material in the text;
the relegation of subjects to problems was based rather on the feasibility of such
a procedure than on the priority of the subject. For example, the matter of
correlation is dealt with almost entirely in the problems. It seemed to me in-
efficient to cover multivariate situations twice in detail, i.e., with the regression
model and with the correlation model. The emphasis in the text proper is on
the more general regression model.

The author of a textbook is indebted to practically everyone who has
touched the field, and I here bow to all statisticians. However, in giving credit
to contributors one must draw the line somewhere, and I have simplified matters
by drawing it very high; only the most eminent contributors are mentioned in
the book.

I am indebted to Catherine Thompson and Maxine Merrington, and to
E. S. Pearson, editor of Biometrika, for permission to include Tables III and V,
which are abridged versions of tables published in Biometrika. 1 am also in-
debted to Professors R. A. Fisher and Frank Yates, and to Messrs. Oliver and
Boyd, Ltd., Edinburgh, for permission to reprint Table IV from their book
*“Statistical Tables for Use in Biological, Agricultural and Medical Research.”

Since the first edition of this book was published in 1950 many new statis-
tical techniques have been made available and many techniques that were only in
the domain of the mathematical statistician are now useful and demanded by
the applied statistician. To include some of this material we have had to elim-
inate other material, else the book would have come to resemble a compendium.
The general approach of presenting the theory with some connection to prac-
tical problems apparently contributed significantly to the success of the first
edition and we have tried to maintain that feature in the present edition.
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PROBABILITY

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to define probability and discuss some of its prop-
erties. Section 2 is a brief essay on some of the different meanings that have
been attached to probability and may be omitted by those who are interested
only in mathematical (axiomatic) probability, which is defined in Sec. 3 and
used throughout the remainder of the text. Section 3 is subdivided into six
subsections. The first, Subsec. 3.1, discusses the concept of probability models.
It provides a real-world setting for the eventual mathematical definition of
probability. A review of some of the set theoretical concepts that are relevant
to probability is given in Subsec. 3.2. Sample space and event space are
defined in Subsec. 3.3. Subsection 3.4 commences with a recall of the definition
of a function. Such a definition is useful since many of the words to be defined
in this and coming chapters (¢.g., probability, random variable, distribution,
etc.) are defined as particular functions. The indicator function, to be used
extensively in later chapters, is defined here. The probability axioms are pre-
sented, and the probability function is defined. Several properties of this prob-
ability function are stated. The culmination of this subsection is the definition
of a probability space. Subsection 3.5 is devoted to examples of probabilities
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defined on finite sample spaces. The related concepts of independence of |,
events and conditional probability are discussed in the sixth and final subsection.
Bayes’ theorem, the multiplication rule, and the theorem of total probabilities
are proved or derived, and examples of each are given.

Of the three main sections included in this chapter, only Sec. 3, which is
by far the longest, is vital. The definitions of probability, probability space,
conditional probability, and independence, along with familiarity with the
properties of probability, conditional and unconditional and related formulas,
are the essence of this chapter. This chapter is a background chapter; it intro-
duces the language of probability to be used in developing distribution theory,
which is the backbone of the theory of statistics.

2 KINDS OF PROBABILITY

2.1 Introduction

One of the fundamental tools of statistics is probability, which had its formal .
beginnings with games of chance in the seventeenth century. ,

Games of chance, as the name implies, include such actions as spinning a
roulette wheel, throwing dice, tossing a coin, drawing a card, etc., in which the
outcome of a trial is uncertain. However, it is recognized that even though the
outcome of any particular trial may be uncertain, there is a predictable lon.g-
term outcome. It is known, for example, that in many throws of an ideal
(balanced, symmetrical) coin about one-half of the trials will result in heads.
It is this long-term, predictable regularity that enables gaming houses to engage
in the business.

A similar type of uncertainty and long-term regularity often occurs in
experimental science. For example, in the science of genetics it is uncertain
whether an offspring will be male or female, but in the long run it is known
approximately what percent of offspring will be male and what percent will be
female. A life insurance company cannot predict which persons in the United
States will die at age 50, but it can predict quite satisfactorily how many people
in the United States will die at that age, -

First we shall discuss the classical, or a priori, theory of probability; then
we shall discuss the frequency theory. Development of the axiomatic approach
will be deferred until Sec. 3.
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2.2 Classical or A Priori Probability

As we stated in the previous subsection, the theory of probability in its early
stages was closely associated with games of chance. This association prompted
the classical definition. For example, suppose that we want the probability of
the eventithat an ideal coin will turn up heads. We argue in this manner: Since
there are Bnly two ways that the coin can fall, heads or tails, and since the coin
is well balanced, one would expect that the coin is just as likely to fall heads as
tails; hence, the probability of the event of a head will be given the value .
This kind of reasoning prompted the following classical definition of prob-
ability.

Definition 1  Classical probability If a random experiment can result
in n mutually exclusive and equally likely outcomes and if n, of these
outcomes have an attribute A, then the probability of A is the fraction

n,/n. Il

We shall apply this definition to a few examples in order to illustrate its meaning.
If an ordinary die (one of a pair of dice) is tossed—thereare six possible out-
comes—any one of the six numbered faces may turn up. These six outcomes
are mutually exclusive since two or more faces cannot turn up simultaneously.
--And if the die is fair, or true, the six outcomes are equally likely, i.e., it is expected
that each face will appear with about equal relative frequency in the long run.
Mow suppose that we want the probability that the result of a toss be an even
number. Three of the six possible outcomes have this attribute. The prob-
~ ability that an even number will appear when a die is tossed is therefore 2, or §.
Similarly, the probability that a 5 will appear when a die is tossed is 3. The
probability that the result of a toss will be greater than 2 is %.

To consider another example, suppose that a card is drawn at random from
an ordinary deck of playing cards. The probability of drawing a spade is
readily seen to be 13, or . The probability of drawing a number between 5
and 10, inclusive, is 2%, or &.

The application of the definition is straightforward enough in these simple
cases, but it is not always so obvious. Careful attention must be paid to the
qualifications “ mutually exclusive,” “equally likely,” and “random.” Suppose
that one wishes to compute the probability of getting two heads if a coin is
tossed twice. He might reason that there are three possible outcomes for the
two tosses: two heads, two tails, or one head and one tail. One of these three
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outcomes has the desired attribute, i.e., two heads; therefore the probability is
1. This reasoning is faulty because the three given outcomes are not equally
likely. The third outcome, one head and one tail, can occur in two ways
since the head may appear on the first toss and the tail on the second or the
head may appear on the second toss and the tail on the first. Thus there are
four equally likely outcomes: HH, HT, TH, and TT. The first of these has
the desired attribute, while the others do not. The correct probability is there-
fore 3. The result would be the same if two ideal coins were tossed simul-
taneously.

Again, suppose that one wished to compute the probability that a card
drawn from an ordinary well-shuffled deck will be an ace or a spade. In enu-
merating the favorable outcomes, one might count 4 aces and 13 spades and
reason that there are 17 outcomes with the desired attribute. This is clearly
incorrect because these 17 outcomes are not mutually exclusive since the ace of
spades is both an ace and a spade. There are 16 outcomes that are favorable to
an ace or a spade, and so the correct probability is 13, or %5

We note that by the classical definition the probablllty of event A is a
number between 0 and 1 inclusive. The ratio n,/n must be less than or equal to
1 since the total number of possible outcomes cannot be smaller than the
number of outcomes with a specified attribute. If an event is certain to happen,
its probability is I; if it is certain not to happen, its probability is 0. Thus, the
probability of obtaining an 8 in tossing a die is 0. The probability that the
number showing when a die is tossed is less than 10 is equal to 1.

The probabilities determined by the classical definition are called a priori
probabilities. When one states that the probability of obtaining a head in
tossing a coin is 4, he has arrived at this result purely by deductive reasoning.
The result does not require that any coin be tossed or even be at hand. We say
that if the coin is true, the probability of a head 1s 1, but this is little more than
saying the same thing in two different ways. Nothing is said about how one
can determine whether or not a particular coin is true.

The fact that we shall deal with ideal objects in developing a theory of
probability will not trouble us because that is a common requirement of mathe-
matical systems. Geometry, for example, deals with conceptually perfect
circles, lines with zero width, and so forth, but it is a useful branch of knowl-
edge, which can be applied to diverse practical problems.

There are some rather troublesome limitations in the classical, or a pr10r1
approach. It is obvious, for example, that the definition of probability must
be modified somehow when the total number of possible outcomes is infinite.
One might seek, for example, the probability that an integer drawn at random
from the positive integers be even. The intuitive answer to this question is 1
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If one were pressed to justify this result on the basis of the definition, he might
reason as follows: Suppose that we limit ourselves to the first 20 integers; 10
of these are even so that the ratio of favorable outcomes to the total number is
45, or . Again, if the first 200 integers are considered, 100 of these are even,
and the ratio is also 4. In general, the first 2V integers contain N even integers;
if we form the ratio N/2N and let N become infinite so as to encompass the whole
set of positive integers, the ratio remains 4. The above argument is plausible,
and the answer is plausible, but it is no simple matter to make the argument
stand up. It depends, for example, on the natural ordering of the positive
integers, and a different ordering could produce a different result. Thus, one
could just as well order the integers in this way: 1, 3, 2; 5, 7, 4; 9, 11, 6; ...,
taking the first pair of odd integers then the first even integer, the second pair
of odd integers then the second even integer, and so forth. With this ordering,
one could argue that the probability of drawing an even integer is 1. The
integers can also be ordered so that the ratio will oscillate and never approach
any definite value as NV increases.

There is another difficulty with the classical approach to the theory of
probability which is deeper even than that arising in the case of an infinite
number of outcomes. Suppose that we toss a coin known to be biased in
favor of heads (it is bent so that a head is more likely to appear than a tail).
The two possible outcomes of tossing the coin are not equally likely. What is
the probability of a head? The classical definition leaves us completely helpless
here.

Still another difficulty with the classical approach is encountered when we
try to answer questions such as the following: What is the probability that a
child born in Chicago will be a boy? Or what is the probability that a male
will die before age 507 Or what is the probability that a cookie bought at a
certain bakery will have less than three peanuts in it? All these are legitimate
questions which we wantto bring into the realm of probability theory. However,
notions of “‘symmetry,” “equally likely,” etc., cannot be utilized as they could
be in games of chance. Thus we shall have to alter or extend our definition to
bring problems similar to the above into the framework of the theory. This
more widely applicable probability is called a posteriori probability, or frequency,
and will be discussed in the next subsection.

2.3 A Posteriori or Frequency Probability

A coin which seemed to be well balanced and symmetrical was tossed 100 times,
and the outcomes recorded in Table 1. The important thing to notice is that the
relative frequency of heads is close to 3. This is not unexpected since the coin
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was symmetrical, and it was anticipated that in the long run heads would occur
about one-half of the time. For another example, a single die was thrown 300
times, and the outcomes recorded in Table 2. Notice how close the relative
frequency of a face with a | showing is to %; similarly for a 2, 3, 4, 5, and 6.
These results are not unexpected since the die which was used was quite sym-
metrical and balanced; it was expected that each face would occur with about
equal frequency in the long run. This suggests that we might be willing to use
this relative frequency in Table 1 as an approximation for the probability that
the particular coin used will come up heads or we might be willing to use the
relative frequencies in Table 2 as approximations for the probabilities that
various numbers on this die will appear. Note that although the relative fre-
quencies of the different outcomes are predictable, the actual outcome of an
individual throw is unpredictable.

In fact, it seems reasonable to assume for the coin experiment that there
exists a number, label it p, which is the probability of a head. Now if the coin
appears well balanced, symmetrical, and true, we might use Definition 1 and
state that p is approximately equal to 4. 1t is only an approximation to set p
equal to 1 since for this particular coin we cannot be certain that the two cases,
heads and tails, are exaétly equally likely. But by examining the balance and
symmetry of the coin it may seem quite reasonable to assume that they are.
Alternatively, the coin could be tossed a large number of times, the results
recorded as in Table 1, and the relative frequency of a head used as an approxima-
tion for p. In the experiment with a die, the probability p, of a 2 showing
could be approximated by using Definition 1 or by using the relative frequency
in Table 2. The important thing is that we postulate that there is a number p
which is defined as the probability of a head with the coin or a number p,
which is the probability of a 2 showing in the throw of the die. Whether we use
Definition 1 or the relative frequency for the probability seems unimportant in
the examples cited.

Table 1 RESULTS OF TOSSING A COIN 100 TIMES

Long-run expected

Observed Observed relative relative frequency

Outcome Frequency frequency of a balanced coin
H 56 .56 .50
T 44 44 .50

Total 100 1.00 1.00
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Suppose, as described above, that the coin is unbalanced so that we are
quite certain from an examination that the two cases, heads and tails, are not
equally likely to happen. In these cases a number p can still be postulated
as the probability that a head shows, but the classical definition will not help us
to find the value of p. We must use the frequency approach or possibly some
physical analysis of the unbalanced coin.

In many scientific investigations, observations are taken which have an ele-
ment of uncertainty or unpredictability in them. As a very simple example, sup-
pose that we want to predict whether the next baby born in a certain locality will
be a male or a female. This is individually an uncertain event, but the results of
groups of births can be dealt with satisfactorily. We find that a certain long-
run regularity exists which is similar to the long-run regularity of the frequency
ratio of a head when a coin is thrown. If, for example, we find upon examination
of records that about 51 percent of the births are male, it might be reasonable to
postulate that the probability of a male birth in this locality is equal to a number
p and take .51 as its approximation.

To make this idea more concrete, we shall assume that a series of observa-
tions (or experiments) can be made under quite uniform conditions. That is,
an observation of a random experiment is made; then the experiment is repeated
under similar conditions, and another observation taken. This is repeated
many times, and while the conditions are similar each time, there is an uncon-
trollable variation which is haphazard or random so that the observations are
individually unpredictable. In many of these cases the observations fall into
certain classes wherein the relative frequencies are quite stable. This suggests
that we postulate a number p, called the probability of the event, and approximate
p by the relative frequency with which the repeated observations satisfy the

Table 2 RESULTS OF TOSSING A DIE 300 TIMES

Long-run expected

Observed Observed relative frequency
Outcome Frequency relative frequency of a balanced die
N i 51 170 1667
2 54 .180 1667
3 48 .160 1667
4 51 170 .1667
5 49 .163 1667
6 47 157 .1667

Total 300 1.000 1.000
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event. For instance, suppose that the experiment consists of sampling the
population of a large city to see how many voters favor a certain proposal.
The outcomes are “favor™ or *“do not favor,” and each voter’s response is un-
predictable, but it is reasonable to postulate a number p as the probability that
a given response will be “favor.” The relative frequency of ““ favor ” responses
can be used as an approximate value for p.

As another example, suppose that the experiment consists of sampling
transistors from a large collection of transistors. We shall postulate that the
probability of a given transistor being defective is p. We can approximate p by
selecting several transistors at random from the collection and computing the
relative frequency of the number defective.

The important thing is that we can conceive of a series of observations or
experiments under rather uniform conditions. Then a number p can be postu-
lated as the probability of the event A happening, and p can be approximated by
the relative frequency of the event A in a series of experiments.

3 PROBABILITY—AXIOMATIC

3.1 Probability Models

One of the aims of science is to predict and describe events in the world in which
we live. One way in which this is done is to construct mathematical models
which adequately describe the real world. For example, the equation s = 1g¢?
expresses a certain relationship between the symbols s, g, and ¢. Tt is a mathe-
matical model. To use the equation s = Lgt? to predict s, the distance a body
falls, as a function of time ¢, the gravitational constant g must be known. The
latter is a physical constant which must be measured by experimentation if the
equation s = gt? is to be useful. The reason for mentioning this equation is
that we do a similar thing in probability theory; we construct a probability
model which can be used to describe events in the real world. For example, it
might be desirable to find an equation which could be used to predict the sex of
each birth in a certain locality. Such an equation would be very complex, and
none has been found. However, a probability model can be constructed which,
while not very helpful in dealing with an individual birth, is quite useful in
dealing with groups of births. Therefore, we can postulate a number p which
represents the probability that a birth will be a male. From this fundamental
probability we can answer questions such as: What is the probability that in
ten births at least three will be males? Or what is the probability that there will
be three consecutive male births in the next five? To answer questions such as
these and many similar ones, we shall develop an idealized probability model.
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The two general types of probability (a priori and a posteriori) defined
above have one important thing in common: They both require a conceptual
experiment in which the various outcomes can occur under somewhat uniform
conditions. For example, repeated tossing of a coin for the a priori case, and
repeated birth for the a posteriori case. However, we might like to bring into
the realm of probability theory situations which cannot conceivably fit into the
framework of repeated outcomes under somewhat similar conditions. For
example, we might like to answer questions such as: What is the probability my
wife loves me? Or what is the probability that World War I1I will start before
January 1, 1985? These types of problems are certainly a legitimate part of
general probability theory and are included in what is referred to as subjective
probability. We shall not discuss subjective probability to any great extent in
this book, but we remark that the axioms of probability from which we develop
probability theory are rich enough to include a priori probability, a posteriori
probability, and subjective probability.

To start, we require that every possible outcome of the experiment under
study can be enumerated. For example, in the coin-tossing experiment there are
two possible outcomes: heads and tails. We shall associate probabilities only
with these outcomes or with collections of these outcomes. We add, however,
that even if a particular outcome is impossible, it can be included (its probability
is 0). The main thing to remember is that every outcome which can occur
must be included.

Each conceivable outcome of the conceptual experiment under study will be
defined as a sample point, and the totality of conceivable outcomes (or sample
points) will be defined as the sample space.

Our object, of course, is to assess the probability of certain outcomes or
collections of outcomes of the experiment. Discussion of such probabilities
is conveniently couched in the language of set theory, an outline of which
appears in the next subsection. We shall return to formal definitions and
examples of sample space, event, and probability.

3.2 An Aside—Set Theory

We begin with a collection of objects. Each object in our collection will be
called a point or element. We assume that our collection of objects is large
enough to include all the points under consideration in a given discussion.
The totality of all these points is called the space, universe, or universal set.
We will call it the space (anticipating that it will become the sample space when
we speak of probability) and denote it by Q. Let w denote an element or point
in Q. Although a set can be defined as any collection of objects, we shall
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assume, unless otherwise stated, that all the sets mentioned in a given discussion
consist of points in the space Q.

EXAMPLE | Q = R,, where R, is the collection of points w in the plane and
w = (x, ) is any pair of real numbers x and y. /1]

EXAMPLE 2 Q = {all United States citizens}. /]

We shall usually use capital Latin letters from the beginning of the
alphabet, with or without subscripts, to denote sets. If w is a point or element
belonging to the set 4, we shall write w € 4; if @ is not an element of A, we
shall write @ ¢ A.

Definition 2 Subset If every element of a set A is also an element of a
set B, then A is defined to be a subset of B, and we shall write A < B or
B o A; read “A is contained in B” or *“ B contains A.” /1]]

Definition 3 Equivélent sets Two sets A and B are defined to be equiva-
lent, or equal, if A< B and Bc A. This will be indicated by writing

A =B. 1/

Definition 4 Empty set If a set A contains no points, it will be called
the null set, or empty set, and denoted by ¢. 1]

Definition 5 Complement The complement of a set A with respect to
the space Q, denoted by A4, A°, or Q — A, is the set of all points that are in
Q but not in A. /1]

Definition 6 Union Let 4 and B be any two subsets of Q; then the
set that consists of all points that are in 4 or B or both is defined to be
the union of A and B and written 4 U B. /1]

Definition 7 Intersection Let 4 and B be any two subsets of Q; then
the set that consists of all points that are in both 4 and B is defined to be
the intersection of A and B and is written A N B or AB. /1]

Definition 8 Set difference Let 4 and B be any two subsets of Q. The
set of all points in 4 that are not in B will be denoted by 4 — B and is
defined as set difference. /1]
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EXAMPLE 3 Let Q={(x, ): 0<x <1 and 0 <y <1}, which is read the
collection of all points (x, y) for which0 <x<land0<y <1 Define
the following sets:

A ={(x,):0<x<1;0<y<1},
A, ={(x,):0<x<};0<y<1},
A; ={(x,y):0<x<y<1},

Ay ={(x»):0<x<};0<y<i}

(We shall adhere to the practice initiated here of using braces to embrace
the points of a set.)
The set relations below follow.

Ay < Ay Ay < Ay; Ay N Ay =AA; = Ay
Ay, UAs=A, UA;; A ={xy:0<x<l;i<y<l1};
A — Ay ={xy):1<x=<1;0<y< 4 /111

EXAMPLE 4 Let Q, 4,, A,, and A, be as indicated in the diagrams in Fig. |
which are called Venn diagrams. /1]

The set operations of complement, union, and intersection have been
defined in Definitions 5 to 7, respectively. These set operations satisfy quite a
number of laws, some of which follow, stated as theorems. Proofs are omitted.

Theorem 1 Commutativelaws AU B=BuAdand AnB=Bn A.

/1

Theorem 2 Associative laws A U (Bu C)=(4uB)uC, and
ANBNnCO)=AnBnC. I

Theorem 3 Distributive laws 4 N (BuU C)=(4 n B) u (4 n C), and
AuBNnC)=(AUuB nAdvC). /1]

Theorem 4 (4°)€ = (—A—S = A; in words, the complement of A4 comple-
ment equals 4. /1]

Theorem 5 AQ=A4;4A0 Q=Q; A¢p =¢;and 4 U ¢ = A. /1]

Theorem 6 AA=¢;, AUVA=Q;ANnA=A;and A U A=A 111/
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Theorem 7 (4 U B)= 4 B,and (4 n B) = A U B. These are known
as De Morgan’s laws. /1]

Theorem8 A4 — B — AB. /]

Several of the above laws are illustrated in the Venn diagrams in Fig. 1.
Although we will feel free to use any of the above laws, it might be instructive
to give a proof of one of them just to illustrate the technique. For example,

let us show that (4 U B) = A n B. By definition, two sets are equal if each is
contained in the other. We first show that (4 U B) = A n B by proving that if
weAu B thenwedn B. Nowwe (4 U B)impliesw ¢ 4 U B, whichimplies
that o ¢ A and w ¢ B, which in turn implies that w € 4 and w € B; that is,
weAn B. Wenextshowthat A " Bc (4 U B). Letwe A n B,which means
w belongs to both 4 and B. Then w ¢ A U B for if it did, @ must belong to at
least one of A or B, contradicting that w belongs to both 4 and B; however,

w ¢ AV B means w € (4 U B), completing the proof.

We defined union and intersection of two sets; these definitions extend
immediately to more than two sets, in fact to an arbitrary number of sets. It
is customary to distinguish between the sets in a collection of subsets of Q by
assigning names to them in the form of subscripts. Let A (Greek letter capital
lambda) denote a catalog of names, or indices. A is also called an index set.
For example, if we are concerned with only two sets, then our index set A
includes only two indices, say | and 2; so A ={l, 2}.

Definition 9 Union and intersection of sets Let A be an index set and
{A;: e A} ={A4,}, a collection of subsets of Q indexed by A. The set
of points that consists of all points that belong to A4, for at least one 4 is

called theunion of thesets {4,} and is denoted by ) 4,. The set of points
LeA

that consists of all points that belong to 4, for every 1 is called the inter-
section of the sets {4,} and is denoted by () 4,. If Ais empty, then define

AEA

|JA4,=¢and ) 4,=0Q. /11

AEA AEA

EXAMPLE 5 If A={l, 2, ..., N}, ie., A is the index set consisting of the

first N integers, then | ) 4 is also written as
LeA

N
"szlA,,=A1quu---uAN. I/
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One of the most fundamental theorems relating unions, intersections, and
complements for an arbitrary collection of sets is due to De Morgan.

Theorem 9 De Morgan’s theorem Let A be an index set and {4,} a
collection of subsets of Q indexed by A. Then,

® U=
@ A= U4 I

We will not give a proof of this theorem. Note, however, that the special
case when the index set A consists of only two names or indices is Theorem 7
above, and a proof of part of Theorem 7 was given in the paragraph after
Theorem 8.

Definition 10 Disjoint or mutually exclusive Subsets 4 and B of Q are
defined to be mutually exclusive or disjoint if A B=¢. Subsets
Ay, A, ...are defined to be mutually exclusive if A; A; = ¢ for every i # j.

1

Theorem 10 If 4 and B are subsets of Q, then (i) 4 = AB U AB, and
(i) ABn AB = ¢.

PROOF () A=ANnQ=An(BuB)=ABuU AB. (ii) ABn AB
= AABB = A¢ = ¢. 1l

Theorem 11 If A « B, then AB= A, and A U B = B.

PROOF Left as an exercise. /1]

3.3 Definitions of Sample Space and Event

In Subsec. 3.1 we described what might be meant by a probability model.
There we said that we had in mind some conceptual experiment whose possible
outcomes we would like to study by assessing the probability of certain outcomes
or collection of outcomes. In this subsection, we will give two important

definitions, along with some examples, that will be used in assessing these
probabilities.

Definition 11 Sample space The sample space, denoted by Q, is the
collection or totality of all possible outcomes of a conceptual experiment.

i
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One might try to understand the definition by looking at the individual
words. Use of the word “space can be justified since the sample space is the
total collection of objects or elements which are the outcomes of the experiment.
This is in keeping with our use of the word *“space” in set theory as the collec-
tion of all objects of interest in a given discussion. The word *“sample” is
harder to justify; our experiment is random, meaning that its outcome is un-
certain so that a given outcome is just one sample of many possible outcomes.

Some other symbols that are used in other texts to denote a sample space,
in addition to Q, are S, Z, R, E, X, and A.

Definition 12 Event and event space An event is a subset of the sample
space. The class of all events associated with a given experiment is
defined to be the event space. ' /]

The above does not precisely define what an event is. An event will
always be a subset of the sample space, but for sufficiently large sample spaces
not all subsets will be events. Thus the class of all subsets of the sample space
will not necessarily correspond to the event space. However, we shall see that
the class of all events can always be selected to be large enough so as to include
all those subsets (events) whose probability we may want to talk about. If the
sample space consists of only a finite number of points, then the corresponding
event space will be the class of all subsets of the sample space.

Our primary interest will not be in events per se but will be in the prob-
ability that an event does or does not occur or happen. An event A is said to
occur if the experiment at hand results in an outcome (a point in our sample
space) that belongs to A. Since a point, say w, in the sample space is a subset
(that subset consisting of the point w) of the sample space Q, it is a candidate to
be an event. Thus w can be viewed as a point in Q or as a subset of Q. To
distinguish, let us write {w}, rather than just w, whenever w is to be viewed as a
subset of Q. Such a one-point subset will always be an event and will be called
an elementary event. Also ¢ and Q are both subsets of Q, and both will always
be events. Q is sometimes called the sure event.

We shall attempt to use only capital Latin letters (usually from the begin-
ning of the alphabet), with or without affixes, to denote events, with the excep-
tion that ¢ will be used to denote the empty set and Q the sure event. The event
space will always be denoted by a script Latin letter, and usually o¢. % and £,
as well as other symbols, are used in some texts to denote the class of all events.

The sample space is basic and generally easy to define for a given experi-
ment. Yet, as we shall see, it is the event space that is really essential in de-
fining probability. Some exam