

College of Natural Science Department of Physics Classical Mechanics –II assignment

Part I Conceptual questions

- 1. Describe briefly the difference between elastic and inelastic collisions.
- 2. Define the following terms
 - i. Polarization
 - ii. Rigid bodies
 - iii. Wave interference
 - iv. Molecular vibration
 - v. Center of mass
 - vi. Virtual work

<u>Part II</u> Solve the following problems by showing all the necessary steps.

- 1. Find the center of mass of a hemispherical shell of constant density and inner radius r_1 and r_2 .
- 2. Consider two particles of equal mass m. The forces on the particles are $F_1=0$ and $F_2 = F_0i$. If the particles are initially at rest at the origin, what is the position, velocity and acceleration of the center of mass?
- 3. Even though the total force on a system of particles is zero, the net torque may not be zero. Show that the net torque has the same value in any coordinate system.

- 4. A particle of mass m₁ and velocity u₁ collides with a particle of mass m₂ at rest. The two particles stick together. What fraction of the original kinetic energy is lost in the collision?
- 5. A simple harmonic oscillator consists of a 100-g mass attached to a spring whose force constant is 10⁴ dyne/cm. The mass is displaced 3cm and released from rest. Calculate
 - a) The natural frequency v_0 and the period T_0 .
 - b) The total energy, and
 - c) The maximum speed.
- Calculate the moments of inertia I₁, I₂ and I₃ for a homogeneous sphere of radius R and mass M. (Choose the origin at the center of the sphere.)
- 7. A three-particle system consists of masses mi and coordinates (x_1 , x_2 , x_3) as follows;

 $m_1 = 3m, (b,0,b)$ $m_2 = 4m, (b, b - b)$ $m_3 = 2m, (-b, b, 0)$

Then, find

- i. the inertia tensor,
- ii. principal axes, and
- iii. principal moments of inertia.