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Chapter One 

Dynamics of System of Particles 

 

1.1 System of Particles and Centre of Mass 

 
For a system composed of n particles, the total mass M is given by 

        

                          𝑀 = ∑ 𝑚𝛼𝛼                                                                                          (1.1) 

 

where 𝑚𝛼  is the mass of the ith particle, with  𝛼= 1, ... ,n . If each particle is (mathematically) 

connected to the origin of the system through a position vector ri , then the centre of mass vector is 

defined as 

 

                      𝑅 =
1

𝑀
∑ 𝑚𝛼𝛼 𝑟𝛼                                                                                       (1.2) 

For a continuous system, the summation over 𝛼  is replaced with an integral over an infinitesimal 

amount of mass dm such that 

 

                      𝑹 =
𝟏

𝑴
∫ 𝒓𝒅𝒎                                                                                           (1.3)       

It is important to realize that the position vector R of the centre of mass depends on the 

origin chosen for the coordinate systems. 

 

 

1.2 The Conservation of Linear Momentum 
 

The force acting on particle 𝛼 of a system of particles is composed of the resultant of all forces 

external to the system 𝐹𝛼
(𝑒)

, and the resultant of the internal forces 𝑓𝛼 stemming from its interaction 

with the other particles that are part of the system. If we define these internal interaction forces as 

𝑓𝛼𝛽, the resulting force 𝑓𝛼 acting on particle 𝛼 is 

 

 

                            𝑓𝛼 = ∑ 𝑓𝛼𝛽𝛽≠𝛼                                                                                       (1.4) 

 

 

The total force 𝐹𝛼 acting on the particle is, 

 

 

                                   𝐹𝛼 = 𝐹𝛼
(𝑒)

+ 𝑓𝛼                                                                                   (1.5) 
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From Newton’s Second law we can write 

 

                                    �̇�𝛼 = 𝐹𝛼
(𝑒)

+ 𝑓𝛼                                                                                     (1.6) 

 

                        
𝑑2

𝑑𝑡2
(𝑚𝛼𝑟𝛼) = 𝐹𝛼

(𝑒)
+ 𝑓𝛼                                      

 

                                         = 𝐹𝛼
(𝑒)

+ ∑ 𝑓𝛼𝛽𝛽≠𝛼                                                                      (1.7) 

 

 

 

where no summation on repeated index is implied. Summing equation (1.7) over all particles we 

get 

 

                       

                       
𝑑2

𝑑𝑡2
(∑𝑚𝛼𝑟𝛼) = ∑𝐹𝛼

(𝑒)
+ ∑𝛼 ∑ 𝑓𝛼𝛽𝛽≠𝛼  

 

                                            = 𝐹 + ∑ (𝑓𝛼𝛽 + 𝑓𝛽𝛼),𝛼,𝛽𝑝𝑎𝑖𝑟𝑠                                                     (1.8) 

 

 

where we have defined the sum over all external forces as 

 

                              

                                     𝐹 = ∑ 𝐹𝛼
(𝑒)

𝛼                                                                                       (1.9) 

 

 

and the second term on the right of equation (1.8) was replaced by a single summation over every 

pair of internal interactions between the particles. However, we know from Newton’s Third Law 

that  𝑓𝛼𝛽 = −𝑓𝛽𝛼 . We can therefore write, from equation (1.8) that 

 

                                           MR̈ = F                                                                                      (1.10) 

 

This last equation can also be used to express the conservation of momentum since 

 

 

                                                              𝑷 = ∑ 𝒎𝜶𝜶 �̇�𝜶                                      

 

                                                                =
𝒅

𝒅𝒕
(∑ 𝒎𝜶𝜶 𝒓𝜶) 

 

                                                                 𝑷 = 𝑴�̇�,                                                             (1.11) 
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and then 

 

                                �̇� = 𝑴�̈� = 𝑭                                                                                                (1.12) 

 

 

 

We can summarize as follows 

 

I. The center of mass of a system moves as if it were a single particle of mass equal to the 

total mass of the system, acted upon by the total external force, and independent of the 

internal forces (as long as 𝑓𝛼𝛽 = −𝑓𝛽𝛼  (Newton’s Third Law) holds). 

 

II. The total linear momentum of a system is the same as that of a singe particle of mass M 

located at the position of the center of mass and moving in the manner the center of mass 

moves. 

III. The total linear momentum for a system free of external forces is a constant and equal to 

the linear momentum of the center of mass (the law of conservation of linear momentum 

for a system). 

 

 

 

 

1.3 The Conservation of Angular Momentum 

 
As we saw in the previous chapter on central force motion, it is often more convenient to define 

the positions of the particles composing a system by vectors 𝑟𝛼
′ originating at the centre of mass 

(see Figure 1-1). The position vector 𝑟𝛼 in the inertial frame is 

 

           

                                      𝒓𝜶 = 𝑹 + 𝒓𝜶
′ .                                                                                     (1.13) 

 

 

The angular momentum of the 𝛼th particle is given by 

 

 

                                         𝐿𝛼 = 𝑟𝛼 × 𝑝𝛼                                                                                        (1.14) 

 

 

and summing over all particles, 
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Figure 7.1 - Description of the position of a particle using its position vector from the 

                   centre of mass of the system. 

 

 

                                                         1.15 

 

The second and third terms on the right hand side equal zero from 

 

 

                                                                                1.16  

 

since, from equations (1.2) and (1.13),    

 

                                 ∑ 𝑚𝛼𝛼 𝑟𝛼
′ = 0                                                                                                 1.17 

 

 

Equation (1.15) now becomes 

 

                              𝐿 = (𝑅 × ∑ 𝑚𝛼�̇�𝛼 ) + ∑ (𝑟𝛼
′ × 𝑚𝛼�̇�𝛼

′
𝛼 ) 
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                                 𝐿 = 𝑅 × 𝑃 + ∑ 𝑟𝛼
′

𝛼 × 𝑝𝛼
′ )                                                                                 1.18 

 

We, therefore, have this important result 

 

IV. The angular momentum about an origin is the sum of the angular momentum of the      

centre of mass about that origin and the angular momentum of the system about the 

position of the centre of mass. 

 

 

 The time derivative of the total angular momentum is 

 

 

                                                                                              1.19 

 

Where  ∑𝛼<𝛽  means a sum over 𝛼 𝑎𝑛𝑑 𝛽  𝑤𝑖𝑡ℎ 𝛼 < 𝛽 

 

We know, however, from Newton’s Third Law that 𝑓𝛼𝛽 = −𝑓𝛽𝛼 

so that equation (1.19) can be re-written 

 

 

 

                         �̇� = ∑ (𝑟𝛼 × 𝐹𝛼
(𝑒)

) +  ∑ [(𝑟𝛼 − 𝑟𝛽) × 𝑓𝛼𝛽]𝛼<𝛽𝛼                                           1.20 

 

 

If we further limit ourselves to internal forces 𝑓𝛼𝛽 that are also directed along the straight 

line joining the two interacting particles (i.e., along 𝑟𝛼 − 𝑟𝛽), we must have the following 

 

 

                            (𝒓𝜶 − 𝒓𝜷) × 𝒇𝜶𝜷 = 𝟎                                                                             1.21 

 

 

The time derivative of the total angular momentum is then 

 

 

                        �̇� =  ∑ (𝒓𝜶 × 𝑭𝜶
(𝒆)

)𝜶                                                                                    1.22 

 

or if we express the right hand side as a sum of the external torque applied on the different particles 

𝝉𝜶
(𝒆)

,       
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                           �̇� =  ∑ 𝝉𝜶
(𝒆)

=  𝝉(𝒆)
𝜶                                                                                           1.23 

 

 

We, therefore, have the following results 

 

V. If the net resultant external torque about an axis vanishes, then the total angular 

momentum of the system about that axis remains a constant in time. 

 

 

 

 

Furthermore, since we found that the total internal torque also vanishes, i.e., 

 

 

                 ∑ (𝑟𝛼 × ∑ 𝑓𝛼𝛽) =  ∑ [(𝑟𝛼 − 𝑟𝛽) × 𝑓𝛼𝛽] = 0𝛼<𝛽𝛽≠𝛼𝛼                                                1.24 

 

 

And we can state that 

 

VI. The total internal torque must vanish if the internal forces are central (i.e., 

          𝑓𝛼𝛽 = −𝑓𝛽𝛼 and the internal forces between two interacting particles are directed   along 

the line joining them), and the angular momentum of an  isolated system  cannot be altered without 

the application of external forces. 

 

 

 

 

 1.4) Conservation of energy 

 

Consider a system of particles that evolves from a starting configuration “1” to an ulterior 

configuration “2” where the positions 𝑟𝛼 the particles may have changed in the process. We can 

write the total work done on the system as the sum of the work done on individual particles. 

 

 

                                                                         1.25 
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Where 

 

                     𝑇 = ∑ 𝑇𝛼 = ∑
1

2𝛼𝛼 𝑚𝛼𝑣𝛼
2                                                                                   1.26 

 

 

Using equation (1.13) we can write 

 

 

                      𝑣𝛼
2 = �̇�𝛼 ∙ �̇�𝛼 

 

                           = (�̇� + �̇�𝛼
′) ∙ (�̇� + �̇�𝛼

′) 

                           = �̇� ∙ �̇� + 2(�̇�𝜶
′ ∙ �̇�) +(�̇�𝜶 ∙ �̇�𝜶) 

 

                              = 𝑉2 + 2(�̇�𝜶 ∙ �̇�) + (𝑣𝛼
′ )2                                                                          1.27 

 

 

 

Where   𝑣𝛼
′ = |�̇�𝛼

′|  and 𝑉 = |�̇�|. Inserting equation (1.27) into equation (1.26), while using the 

earlier result that states that ∑ 𝑚𝛼𝑟𝛼
′ = 0,𝛼  we find that 

 

 

                       𝑇 =
1

2
𝑀𝑉2 + ∑ 𝑚𝛼(𝑣𝛼

, )2
𝛼                                                                          1.28 

 

 

In other words 

 

VII. The total kinetic energy of the system is equal to the sum of the kinetic energy of a particle 

of mass M moving with velocity of the center of mass and the kinetic energy of motion of 

the individual particles relative to the center of mass.   

 

 

 

Alternatively, we can rewrite first of equations (1.25) by separating the total force applied on each 

particle in its external and internal components 

 

 

                             𝑊12 =  ∑ ∫ 𝐹𝛼
(𝑒)

∙ 𝑑𝑟𝛼 +  ∑ ∫ 𝑓𝛼𝛽 ∙ 𝑑𝑟𝛼
2

1𝛼,𝛽≠𝛼
2

1𝛼                                         1.29 

 

If the forces involved are conservatives, we can then derive them from potentials such 

That 

 

                                        𝐹𝛼
(𝑒)

= −∇𝛼𝑈𝛼 

                                                                                                                                    1.30 
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                                      𝑓𝛼𝛽 = −∇𝛼𝑈𝛼𝛽, 

 

 

Where 𝑈𝛼 and �̅�𝛼𝛽 are independent potential functions. The gradient operator ∇𝛼  is a vector 

operator meant to apply to the coordinate components of the !th particle (i.e., 𝛼 is the index that 

specifies a given particle, and does not represent a coordinate such as x, y, or z ). 

 

The first term on the right hand side of equation (7.29) can be written as 

 

                                                                                           1.31 

 

 

The last term of the same equation is transformed to 

 

 

 
                                                                                                                                1.32 

 

Before we use the last of equations (1.30) to further transform equation (1.32), we 

consider the following differential 

 

 

                                                                          1.33 

 

 

Since   ∇𝛽�̅�𝛽𝛼 = −𝑓𝛽𝛼 = 𝑓𝛼𝛽 (note also that �̅�𝛽𝛼 = �̅�𝛼𝛽). Combining this result with equations 

(1.29),(1.31), and (1.32), we get 

 

 

                                                                                                  1.34 
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If we define the total potential energy as 

 

                                 𝑈 = 𝑈𝛼 + �̅�𝛼𝛽                                                                              1.35 

 

We get 

                                                                                                    1.36 

 

Combining equation (1.36) and the last of equations (1.25), we find that 

 

                                      𝑇2 − 𝑇1 = 𝑈1 − 𝑈2                                                                 1.37 

 

Or, 

 

                   

                                     𝑇1 + 𝑈1 = 𝑇2 + 𝑈2,                                                                1.38 

 

 

and finally 

           

                                         E1 =E2 ,                                                                        1.39 

 

 

We have therefore proved the conservation of energy for a system of particles where all the forces 

can be derived from a potential that are independent of time; such a system is called conservative. 

 

VIII. The total energy for a conservative system is constant. 

 

 

 

 

 

 

 1.5) Motion of systems with variable mass 

 

1.5.1 Introduction 

 
So far we have considered DMSs and CMSs in which masses of particles mn and their number 

have not changed. In nature and technology, however, phenomena are commonly known where 

the number of particles of a system or their mass change over time. If floating icebergs are heated 

by the Sun’s rays, then the ice melts and their mass decreases. If the falling snow becomes frozen 

to the floating icebergs, then their mass increases. Earth’s mass increases when meteorites fall on 

its surface. In turn, the mass of the meteorites before they reach Earth’s surface decreases as a 

result of burning in Earth’s atmosphere. The mass of rockets decreases as the fuel they contain 

burns. The mass of elements transported on a conveyor belt changes as a result of their loading 

and unloading. 
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1.5.2 Change in Quantity of Motion and Angular Momentum 
 

Let the mass of a mechanical system m.t/ be changing in time according to the equation 

 

                                    𝑚(𝑡) = 𝑚𝑜 − 𝑚1(𝑡) + 𝑚2(t) ,                                                                 1.5.1 

 

Where m(t) =m(to)  ,  m1(t) ≥ 0, (m2 (t) ≥ 0)   denotes the mass of particles leaving (entering) the 

system(Fig. 1.2)  

 

Let us choose a time instant t during motion of the system, and let for this instant the momentum 

p of the considered system of particles increase by Δp during time Δt. Then, by p* let us denote 

the momentum of analogous system, but of a constant mass. At the instant t + Δt the quantity of 

motion of a system of variable mass is equal to 

 

                       𝑃 + Δ𝑝 = 𝑝∗ + Δ𝑝∗ − Δ𝑝1 + Δ𝑝2                                                                                       1.5.2 

 

 

 

 

 
 

 

Fig. 1.5.2 Motion of a body of variable mass with respect to the inertial coordinate system 

O’X’1X’2X’3 

 

This means that the increment of momentum of the investigated system follows from the increment 

of momentum of a system of constant mass and the additional quantity of motion delivered ( Δ p2) 

and removed ( Δ p1) to/from the system during time Δt. 

 

From the preceding equation we obtain 

 

                                             Δp = Δ𝑝∗ − Δ𝑝1 + Δ𝑝2                                                                    1.5.3 
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Because at the instant t we have 

 

           

                                  P = P*                                                                                           1.5.4 

 

Dividing by Δt and on the assumption that Δt → 0   we get, 

 

                                                                             1.5.5 
 
Hence 
 
 

                      
𝑑𝑝

𝑑𝑡
= 𝐹 + 𝐹1

𝑅 + 𝐹2
𝑅                                                                               1.5.6 

 
where  
 
 

                     𝐹 = lim
∆𝑡→0

∆𝑝∗

∆𝑡
=

𝑑𝑝∗

𝑑𝑡
,  

 

                         𝐹1
𝑅 = − lim

∆𝑡→0

𝑑𝑝1

𝑑𝑡
,          𝐹2

𝑅 = − lim
∆𝑡→0

𝑑𝑝2

𝑑𝑡
                                                  1.5.7 

 
 
and F is a main vector of a system of external forces acting at the time instant t . Equation (1.5.6) 

extends the well-known theorem concerning the change in the quantity of motion (momentum) of 

a system. On its right-hand side additionally appear the so-called thrust forces, 𝐹1
𝑅and 𝐹2

𝑅. 

 

 

In a similar way one can generalize the theorem regarding the change in angular momentum 

(moment of momentum) of a system. Applying an argument analogous to the previous one, we 

obtain 

 

                      K + ∆K = K* + ∆K* - ∆K1 + ∆K2                                                                      1.5.8 

 

where K is the moment of momentum of the system with respect to a certain arbitrary chosen fixed 

pole in the coordinate system O’X’1X’2X’3 and ∆K1(2) denotes the sum of moments of a quantity 

of motion for those particles that left (entered) the considered system of variable mass during the 

time interval ∆t. Dividing the preceding equation by ∆t and proceeding to the limit as ∆t→0 we 

have 

 

                                      
𝑑𝐊

𝑑𝑡
= 𝑀 + 𝑀1

𝑅 + 𝑀2
𝑅 ,                                                                            1.5.9 
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Where 

                                 
 

Equation (1.5.9) is a generalization of a theorem concerning changes in the angular momentum of 

a mechanical system. On its right-hand side additionally appear moments of a thrust force, 𝑀1
𝑅 and 

𝑀2
𝑅. 

 

 

 

.1.6 Collision and conservation laws 
 
Consider the collision between two particles of masses m1 and m2 shown in the figure below. If the 
two particles form an isolated system, the momentum of the system must be conserved. Therefore, 
the total momentum of an isolated system just before a collision equals the total momentum of the 
system just after the collision. But, the total kinetic energy of the system of particles may or may not 
be conserved, depending on the type of collision. Whether or not kinetic energy is conserved is used 
to classify collisions as either elastic or inelastic. 
 

 
A. Elastic collision: - An elastic collision between two objects is one in which the total kinetic energy as 

well as total momentum of the system is conserved. 
 Consider two particles of masses m1 and m2 moving with initial velocities and along the same straight 
line, as shown in the figure below. The two particles collide head-on and then leave the collision site 
with different velocities, 𝑣1𝑓 and 𝑣2𝑓. If the collision is elastic, both the momentum and kinetic 

energy of the system are conserved. Therefore, considering velocities along the horizontal 

direction we have: 

 

                    𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 =  𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓                                       1.6.1 

 

                    
1

2
𝑚1𝑣1𝑖

2 +
1

2
𝑚2𝑣2𝑖

2 =  
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2                                1.6.2 
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Because all velocities in the figure are either to the left or the right, they can be represented by 

the corresponding speeds along with algebraic signs indicating direction. We shall indicate v as 

positive if a particle moves to the right and negative if it moves to the left. 

 

From conservation of kinetic energy (eq. 1.6.2), we can cancel the factor ½ as 

 

                               𝑚1(𝑣1𝑖
2 − 𝑣1𝑓

2 ) =  𝑚2(𝑣2𝑖
2 − 𝑣2𝑓

2 )                                  

 
Then factor both sides 

 

 

         𝑚1(𝑣1𝑖 − 𝑣1𝑓)(𝑣1𝑖 + 𝑣1𝑓) = 𝑚2(𝑣2𝑖 − 𝑣2𝑓)(𝑣2𝑖 + 𝑣2𝑓)                        (a) 

 

 

By separating the terms containing m1 and m2 

 

 

                 𝑚1(𝑣1𝑖 − 𝑣1𝑓) = 𝑚2(𝑣2𝑖 − 𝑣2𝑓)                                                        (b) 

 

 

 

Dividing equation (a) by eq. (b) 

 

                            𝑣1𝑖 + 𝑣1𝑓 = 𝑣2𝑖 + 𝑣2𝑓 

 

                                  𝑣1𝑖 − 𝑣2𝑖 = −(𝑣1𝑓 − 𝑣2𝑓)                                                                                     1.6.3 

 
 
B. Inelastic Collision: - An inelastic collision is one in which the total kinetic energy of the system 

is not conserved. But the momentum of the system is conserved. Therefore, for inelastic collision 

of two particles: 
                                        
 

                                          𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 =  𝑚1𝑣1𝑓 + 𝑚2𝑣2𝑓  

 

1

2
𝑚1𝑣1𝑖

2 +
1

2
𝑚2𝑣2𝑖

2 ≠  
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2  

 

 

C. Perfectly Inelastic Collision: -When the colliding objects stick together after the collision, the 

collision is called perfectly inelastic. Consider two particles of masses m1 and m2 moving with 

initial velocities and along the same straight line, as shown in the figure below.  
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The two particles collide head-on, stick together, and then move with some common velocity vf 

after the collision. The total momentum before the collision equals the total momentum of the 

composite system after the collision 

 
 

                                          𝑚1𝑣1𝑖 + 𝑚2𝑣2𝑖 =  (𝑚1 +  𝑚2)𝑣𝑓 

 

 
gives                                                                    

                                                                𝑣𝑓 =
(𝑚1𝑣1𝑖+𝑚2𝑣2𝑖)

𝑚1+𝑚2
                                       1.6.4 

 

 

 

 

 

 

 

Example 

 
A block of mass m1=1.6kg initially moving to the right with a speed of 4m/s on a horizontal 

frictionless track collides with a second block of mass  m2=2.1kg initially moving to the left with 

a speed of 2.5m/s. If the collision is elastic, find the velocities of the two blocks after collision. 
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 1.7) Two body problem in center of mass coordinate system 

 
In the previous lecture, we discussed a variety of conclusions we could make about the motion of 

an arbitrary collection of particles, subject only to a few restrictions. Today, we will consider a 

much simpler, very well-known problem in physics - an isolated system of two particles which 

interact through a central potential. This model is often referred to simply as the two-body problem. 

In the case of only two particles, our equations of motion reduce simply to 

 

                                                 𝑚1�̈�1 = 𝐹21 
  

                                                       𝑚2�̈�2 = 𝐹12                                                                                   1.7.1 

 

A famous example of such a system is of course given by Newton's Law of Gravitation, where the 

two particles interact through a potential energy given by 
 
                                           𝑈12(|𝑟1 − 𝑟2|) = 𝑈21(|𝑟2 − 𝑟1|) 
 

                                                      = 𝐺
𝑚1𝑚2

|𝑟1−𝑟2|
2 ,                                                                  1.7.2 

 

where G is Newton’s constant, 

 

                             G = 6.673 X 10-11 Nm2/kg2                                                                         1.7.3 

 

How can we go about _nding the most general solution to this set of equations? As with any physics 

problem, the _rst thing we should do is make maximal use of the symmetries or conservation laws 

of our problem. First, because the two particles interact via a central potential, these two forces 

should obey Newton's third law, as we discussed in the previous lecture. We know that as a result, 

the total momentum of our system will be conserved, and so we should consider the center of mass, 

 

 

 

                 𝑅 =
𝑚1𝑟1+𝑚2𝑟2

𝑚1+𝑚2
=  

𝑚1𝑟1+𝑚2𝑟2

𝑀
                                                        1.7.4 

 

 

 

the time derivative of which is given by the center of mass velocity, 
 

                                     𝑉𝐶𝑀 =
𝑚1𝑣1+𝑚2𝑣2

𝑀
                                                                               1.7.5 

 

Now, in the previous lecture, we found that the acceleration of the center of mass depended on the 

net external force, 
 
               

                                        𝐹𝑒𝑥𝑡 = 𝑀𝑎𝐶𝑀                                                                                             1.7.6 
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Since our system is isolated, the center of mass acceleration must be zero, and hence the center of 

mass velocity must be a constant, 
 
 

                                     𝑉𝐶𝑀
(0)

=
𝑚1𝑣1

(0)
+𝑚2𝑣2

(0)

𝑀
                                                                           1.7.7 

 

Thus, the center of mass motion is given by 

 

                         𝑅(𝑡) = 𝑉𝐶𝑀
(0)

𝑡                                                                                             1.7.8 

 

Since we already know the motion of the center of mass on general grounds, we can make use of 

this information to simplify our problem. To see how, let's define the vector of relative distance 

 

 

                                 𝑟 = 𝑟1 − 𝑟2                                                                                        1.7.9 

 

A simple algebraic rearrangement then yields 

 

 

𝑟1 = 𝑅 +
𝑚2

𝑚1+𝑚2
𝑟 ;     𝑟2 = 𝑅 −

𝑚1

𝑚1+𝑚2
𝑟                                                                                     1.7.10 

 

 

From this expression, and the fact that we already know R, our problem simply reduces to finding 

r. 

 

To find the equation of motion satisfied by r, we return to our original equations of motion and 

multiply the first by m2 and the second by m1, in order to find  

 

 

                                          𝑚1𝑚2�̈�1 = 𝑚2𝐹21                           
 

                                          𝑚1𝑚2�̈�2 = 𝑚1𝐹12                                                                                                       1.7.11 

 

 

If we then subtract the second equation from the first, we have 
 

 
𝑚1𝑚2(�̈�1 − �̈�2 = 𝑚2𝐹21 − 𝑚2𝐹12 

 

 

                                                                 
𝑚1𝑚2

(𝑚1+𝑚2)
�̈� = 𝐹21                                                                             1.7.12 

 

where we have made use of  Newton's third law in the second equation. Because the forces are 

derived from a central potential which only depends on the distance between the two particles, 

we have 
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                                               1.7.13 

 

Now, since the potential only depends on r, and not the center of mass R, we can use the chain 

rule to write for the x-component of the derivative, for example, 

 

                   1.7.14 

 

 

and so on for the other coordinates. Thus, I find that I can write 
 

                                                                         1.7.15 

 

Where 

 

                                     𝑚∗ =
𝑚1𝑚2

(𝑚1+𝑚2)
                                                                     1.7.16 

 

is the reduced mass of the system. Thus, our problem has effectively been reduced to a one-

particle system - mathematically, it is no different than a single particle with position vector r and 

mass m*, subject to an external force F. Therefore, conservation of momentum has dramatically 

simplified our system.        

 

 

 

Conservation of angular momentum of two body problem 

 
Since our two particles interact with each other through a central potential, we know that the total 

angular momentum of the system is conserved. However, since we have reduced our problem to a 

one-particle system, it makes more sense to reformulate this statement in terms of the angular 

momentum of this fictitious particle, 

 

                                   𝐿 = 𝑚∗𝑟 × 𝑣,                                                                                      1.7.17 

 

Where 

                                    𝑣 = �̇�                                                                                                   1.7.18 

 

Now, a short exercise in the chain rule shows us that 

 

                                                                                      1.7.19 
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Therefore, the torque on the particle due to F is 

 

                                               𝜏 = 𝑟 × 𝐹 ∝ 𝑟 × 𝑟 = 0                                                          1.7.20  

 

That is, the torque vanishes because the force is parallel to the displacement vector. Thus, in the 

absence of any torque, the angular momentum of the particle must be constant,   

 

                                                    
𝑑

𝑑𝑡
𝐿 = 0                                                                                   1.7.21 

 

This fact is a general result for the motion of a particle in an external central potential. 

 

For our one-particle system, conservation of angular momentum allows us to make a further 

simplification. For any three vectors, we can form the scalar triple product, 

 

 

                          𝑎 ⋅ (𝑏 × 𝑐) = 𝑏 ⋅ (𝑐 × 𝑎) = 𝑐 ⋅ (𝑎 × 𝑏)                                                   1.7.22 

 

The fact that all three of these expressions are equal is left as an exercise onyour homework. If we 

use this identity, we can see that 

 

                        𝑟 ∙ 𝐿 = 𝑚∗𝑟 ⋅ (𝑟 × 𝑣) = 𝑚∗𝑣 ∙ (𝑟 × 𝑟) = 0                                              1.723 

 

Because this inner product is zero, it must be the case that r is always perpendicular to the angular 

momentum L, 

 

                          𝑟 ⊥ 𝑳                                                                                                      1.7.24 

 

However, because the angular momentum is constant, there must be a fixed vector in space which 

the position vector r is always perpendicular to. Given that the position vector is always 

perpendicular to a certain orientation in space, it must be the case that the position vector always 

lies in a plane. As a result of this fact, not only has our problem been reduced to a one particle 

system, it has also been effectively reduced to two dimensions. Because our problem is described 
by a radial force in two dimensions, at this point it is most convenient to switch over to polar 

coordinates, 
 

                             𝑟𝑥 = 𝑟𝑐𝑜𝑠𝜃 ;   𝑟𝑦 = 𝑟𝑠𝑖𝑛𝜃                                                                     1.7.25 

 

 

We have chosen the convention that the plane which the particle travels in is the x-y plane, and 

that the angular momentum is oriented along the z-axis. In this set of coordinates, we can write 

 

 

                           
𝑑𝜃

𝑑𝑡
=

𝑙

𝑚∗𝑟2   ;    𝑙 ≡ |𝐿|                                                                             1.7.26  
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which you'll show on your homework. This expression for the time derivative of the angular 

coordinate makes another fact clear - the sign of 𝑑𝜃/𝑑𝑡 is always positive, so that the particle 

always rotates around the center of our coordinate system in the same direction.     
 

 

1.8 collisions in the Center of Mass reference frame 
 

i) Elastic collisions in the CM frame  

 
In center of mass frame (zero momentum frame), 

 

 
 

 Conservation of momentum is given by, 

 

          𝑚1𝑢1
′ + 𝑚2𝑢2

′ = 0 
          

           𝑚1𝑣1
′ + 𝑚2𝑣2

′ = 0                                                                                        1.8.1 

 

 Conservation of energy is given by, 

 

              
1

2
𝑚1𝑢1

′2 +
1

2
𝑚2𝑢2

′2 =
1

2
𝑚1𝑣1

′2 +
1

2
𝑚2𝑣2

′2                                                   1.8.2 

 

 

 

 

ii) Inelastic collision in CM frame 

 

 Case of perfectly inelastic collision (e=0) 

 

                     

                                               
 After collision, total mass (𝑚1 + 𝑚2) is at rest in CM: 
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 KE in CM: Tcm= TLAB -1/2(𝑚1 + 𝑚2) v2
CM 

 The maximum energy that can be lost during the collision is then, 

 

                                        𝑻𝑪𝑴 =
1

2
𝑚1𝑢1

2 +
1

2
𝑚2𝑢2

2 −
1

2
(𝑚1 + 𝑚2)𝑣𝐶𝑀

2                                        1.8.3 
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Chapter Two 
 

 Rigid Body Dynamics  
 

2.1 Introduction 
 

In this chapter, unless otherwise stated, the following notation conventions will be used: 

 

1. Einstein’s summation convention. Whenever an index appears twice (an only 

      twice), then a summation over this index is implied. For example, 

 

                    𝑥𝑖𝑥𝑖 =  ∑ 𝑥𝑖𝑥𝑖𝑖 = ∑ 𝑥𝑖
2

𝑖                                                                                         2.1 

 

2. The index i is reserved for Cartesian coordinates. For example, xi , for i = 1,2,3 ,  

representseither x, y, or z depending on the value of i . Similarly, pi can represent     px , py 

,or pz . This does not mean that any other indices cannot be used for Cartesian coordinates, 

but that the index i will only be used for Cartesian 

             coordinates. 

3.  When dealing with systems containing multiple particles, the index ! will be used to identify 

quantities associated with a given particle when using Cartesian coordinates. For example, if 

we are in the presence of n particles, the position vector for particle 𝛼 is given by 𝑟𝛼 , and its 

kinetic energy 𝑇𝛼  by 

 

          𝑇𝛼 =
1

2
𝑚𝛼�̇�𝛼,𝑖�̇�𝛼,𝑖 ,                               𝛼 = 1,2, … . . 𝑛  𝑎𝑛𝑑 𝑖 = 1,2,3.                   2.2 

 

Take note that, according to convention 1 above, there is an implied summation on the Cartesian 

velocity components (the index i is used), but not on the masses since the index 𝛼 appears more 

than twice. Correspondingly, the total kinetic energies is written as 

 

𝑇 =
1

2
∑ 𝑚𝛼�̇�𝛼,𝑖�̇�𝛼,𝑖

𝑛

𝛼=1

 

 

                                                                    =
1

2
 ∑ 𝑚𝛼(�̇�2 + �̇�2 + �̇�2).𝑛

𝛼=1                                    2.3 

 

 

 

2.2  The Inertia Tensor 

 
Let’s consider a rigid body composed of n particles of mass 𝑚𝛼 , 𝛼 = 1,2, … , 𝑛. If the body rotates 

with an angular velocity ! about some point fixed with respect to the body coordinates (this “body” 

coordinate system is what we used to refer to as “noninertial” or “rotating” coordinate system ), 

and if this point moves linearly with a velocity V with respect to a fixed (i.e., inertial) coordinate 

system, then the velocity of the !th particle is given by 
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                                𝑣𝛼 = 𝑉 + 𝜔 × 𝑟𝛼                                                                                      2.4 

 

 

 

Where we omitted the term 

 

                                   𝑣𝛼,𝑟 = (
𝑑𝑟𝛼

𝑑𝑡
)rotating   = 0                                                          2.5 

 

since we are dealing with a rigid body. We have also dropped the f subscript, denoting the fixed 

coordinate system, as it is understood that all the non-vanishing velocities will be measured in this 

system; again, we are dealing with a rigid body. 

 
The total kinetic energy of the body is given by 

 

                    

                                                                                   2.6 

   

 

 

Although this is an equation for the total kinetic energy is perfectly general, considerable 

simplification will result if we choose the origin of the body coordinate system to coincide with 

the centre of mass. With this choice, the second term on the right hand side of the last of equations 

(2.9.6) can be seen to vanish from 

 

                 ∑ 𝑚𝛼𝑉𝛼 ∙ (𝜔 × 𝑟𝛼) = 𝑉 ∙ [𝜔 × (∑ 𝑚𝛼𝑟𝛼)𝛼 ] = 0,                                         2.7 

 

since the centre of mass R of the body, of mass M , is defined such that 

 

 

                           ∑ 𝑚𝛼𝑟𝛼 = 0𝛼                                                                                     2.8 

 

The total kinetic energy can then be broken into two components: one for the translational kinetic 

energy and another for the rotational kinetic energy. That is, 

 

                              𝑇 = 𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑜𝑡                                                                               2.9 

 

With 
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                                                                                                 2.10 

 

 
The expression for Trot can be further modified, but to do so we will now resort to tensor 
(or index) notation. So, let’s consider the following vector equation 
 
(𝜔 × 𝑟𝛼)2 =(𝜔 × 𝑟𝛼) ∙ (𝜔 × 𝑟𝛼),                                                                   2.11 

 

and rewrite it using the Levi-Civita and the Kronecker tensors, 
 
 

                                                                              2.12 
 
Inserting this result in the equation for Trot in equation (2.10) we get 
 

                                                                                                 2.13 
Alternatively, 
 

                                                                                  2.14 
 

We now define the components 𝐼𝑖𝑗 of the so called inertia tensor {𝐼} by 

 

                                                                                                  2.15 
and the rotational kinetic energy becomes 
 

                          𝑇𝑟𝑜𝑡 =
1

2
𝐼𝑖𝑗𝜔𝑖𝜔𝑗                                                                                  2.16 

 
Or in vector notation 
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                            𝑇𝑟𝑜𝑡 =
1

2
𝜔 ∙ {𝐼} ∙ 𝜔                                                                                         2.17 

 

 
 
 

For our purposes it will be usually sufficient to treat the inertia tensor as a regular 3 ×3 

matrix. Indeed, we can explicitly write Iusing equation (2.15) as                                                                                    

 
 

                                                       2.18 

 

 

It is easy to see from either equation (2.15) or equation (2.18) that the inertia tensor is symmetric, 

that is, 

 

                                                     𝑰𝒊𝒋 = 𝑰𝒋𝒊                                                                                        2.19 

 

The diagonal elements I11, I22 , and I33 are called the moments of inertia about the x1-, x2 -, and 

x3-axes , respectively. The negatives of the off-diagonal elements are the products of inertia. 

Finally, in most cases the rigid body is continuous and not made up of discrete particles as was 

assumed so far, but the results are easily generalized by replacing the summation by a 

corresponding integral in the expression for the components of the inertia tensor 

 

 

                       𝐼𝑖𝑗 = ∫
𝑣

𝜌(𝑟)(𝛿𝑖𝑗𝑥𝑘𝑥𝑘 − 𝑥𝑖𝑥𝑗)𝑑𝑥1𝑑𝑥2𝑑𝑥3 ,                                                                   2.20 

 

where 𝜌(r) is the mass density at the position r , and the integral is to be performed over the whole 

volume V of the rigid body. 
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Example 

 

Calculate the inertia tensor for a homogeneous cube of density 𝜌, mass M , and side length b . Let 

one corner be at the origin, and three adjacent edges lie along the coordinate axes (see Figure 2-

1). 

 

 

 
 

Fig. 2.1  A homogeneous cube of sides b with the origin at one corner. 
 

 

 

 

 
Solution. 
We use equation (2.20) to calculate the components of the inertia tensor. Because of the 
symmetry of the problem, it is easy to see that the three moments of inertia I11, I22 , and I33 

are equal and that same holds for all of the products of inertia. So, 
 

 
 
And for the negative of the products of inertia 

 

 
 

It should be noted that in this example the origin of the coordinate system is not located at the 

centre of mass of the cube. 
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2.3 Angular Momentum 
 

Going back to the case of a rigid body composed of a discrete number of particles; we can calculate 

the angular momentum with respect to some point O fixed in the body coordinate system with 

 

                                          𝐿 = ∑ 𝑟𝛼 × 𝑝𝛼 .𝛼                                                                                       2.23 

 

Relative to the body coordinate system the linear momentum of the 𝛼th particle is 

 

                              𝑝𝛼 = 𝑚𝛼𝑣𝛼 = 𝑚𝛼𝜔 × 𝑟𝛼,                                                                             2.24 

 

and the total angular momentum becomes 

 

                                        𝐿 = ∑ 𝑚𝛼𝑟𝛼 × (𝛼 𝜔 × 𝑟𝛼)                                                                       2.25 

 

Resorting one more time to tensor notation we can calculate 𝑟𝛼 × (𝜔 × 𝑟𝛼) as 

 

                                                                                  2.26 

 

or alternatively in vector notation 

 

                                                                                               2.27 

 

Then, the total angular momentum is given by 
 

                                                                                                     2.28 

 

Using the tensor notation the component of the angular momentum is 

 

                                                                                         2.29 

 

and upon using equation (2.15) for the inertia tensor 

 
                               𝐿𝑖 = 𝐼𝑖𝑗𝜔𝑗                                                                                                   2.30 
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Or in tensor notation 

 

                            𝑳 = {𝐈} ∙ 𝝎                                                                                                     2.31 

 

 

Finally, we can insert equation (2.31) for the angular momentum vector into equation (2.17) for 

the rotational kinetic energy to obtain 

 

 

                           𝑇𝑟𝑜𝑡 =
1

2
𝐿 ∙ 𝜔                                                                                                 2.32 

 

 

 

 

2.4  The Principal Axes of Inertia 

 
We now set on finding a set of body axes that will render the inertia tensor diagonal in form. That 

is, given equation (9.18) for {I}, we want to make a change in the body basis vectors (i.e., a 

change of variables) that will change the form of the inertia tensor to 

 

                              

                              {𝐈} = {
𝐼1 0 0
0 𝐼2 0
0 0 𝐼3

}                                                                                    2.33 

 

We will then require that all the products of inertia be zero. Carrying this program will provide a 

significant simplification for the expressions of the angular momentum and the kinetic energy, as 

measured in the inertial reference frame. That is, these two quantities will be given by 

 

𝐿1 = 𝐼1𝜔1 
 

𝐿2 = 𝐼2𝜔2 
 

                                                                              𝐿3 = 𝐼3𝜔3                                                           2.34 

 

and 

 

                                               𝑇𝑟𝑜𝑡 =
1

2
(𝐼1𝜔1

2 + 𝐼2𝜔2
2 + 𝐼3𝜔3

2,                                               2.35 
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The set of axes that allow this transformation is called the principal axes of inertia. When the 

equations for the components of the angular momentum can be expressed as in equation (2.33), 

then L, and 𝜔 are directed along the same axis. 

 

 

The problem of finding the principal axes is mathematically equivalent to solving a set of 
linear equations. More precisely, we have from equation (2.31) that 
 
                                      𝐿 = {𝐈} ∙ 𝜔                                                                                     2.36 

 

but we are actually looking for a way to reduce this equation to the following form 

 

 

                                     𝐿 = {𝐈} ∙ 𝜔 = 𝐼𝜔                                                                                 2.37 

 

Mathematically speaking, I , which is called a principal moment of inertia, is an eigenvalue of 

the inertia tensor, and 𝜔 , which will give us the corresponding principal axis of inertia, is an 

eigenvector. The system of equations (2.37) can be written as 

 

                                                                                                      2.38 

 

or, after some rearranging 

 

                                                                                                    2.39 

 

The mathematical condition necessary for this set of equation to have a nontrivial solution is that 

the determinant of the coefficient vanishes 

 

 

                                                                                                     2.40 

 

 

The expansion of this determinant leads to the so-called secular or characteristic equation for 

the eigenvalues I (i.e., I1, I2 , and I3 in equation (2.34)); it is a third order polynomial. Once the 

characteristic equation has been solved, the principal axes can be determined by inserting the  
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eigenvalues back in equation (2.39) and evaluating the ratios of the angular velocity components 

(𝜔1, 𝜔2,𝜔3 ), therefore, determining the corresponding eigenvectors. 

 

It is important to realize that in many cases, the rigid body under study will exhibit some symmetry 

that will allow one to guess what the principal axes are. For example, a cylinder will have one of 

its principal axes directed along the centre axis of the cylinder. The two remaining axes will be 

directed at right angle to this axis (and to each other). 

 

Finally, here are a few definitions: a body that has 

i) I1= I2= I3 is called a spherical top, 

ii)  I1=I2≠I3 is a symmetric top,  

iii)  I1≠ I2≠ I3 is an asymmetric top, and finally, if  

iv) I1= 0, I2= I3 the body is a rotor. 

 

 

 

 

 

 

2.5 Moments of Inertia for Different Body Coordinate Systems 
 
We consider two sets of coordinate axes that are oriented in the same direction, but have different 

origins. The xi-axes have their origin O located at the centre of mass of the rigid body, and the Xi-

axes have their origin Q located somewhere else inside, or outside, of the body (Figure 2.2) 

 

 
Figure 2-2 – The Xi-axes are fixed in the rigid body and have the same orientation as thexi-axes , 

but its origin Q is not located at the same point O, which is the centre of mass of the body. 

 

The elements of the inertia tensor {J} relative to the Xi -axes are  

 

                     𝐽𝑖𝑗 = ∑ 𝑚𝛼(𝛿𝑖𝑗𝑋𝛼,𝑘𝑋𝛼,𝑘−𝑋𝛼,𝑖𝑋𝛼,𝑗)𝛼                                                                2.41 
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If the vector a connects the origin Q to the centre of mass (and origin) O, then thegeneral vector 

R for the position of a point within the rigid body is written as 𝑅𝛼 = 𝑎 + 𝑟𝛼, or using components 

 

                                       𝑋𝛼,𝑖 = 𝑎𝑖 + 𝑥𝛼,𝑖.                                                                 2.42 

 
Inserting equation (2.42) into equation (2.41) we get 
 

                   2.43 
 
But from the definition of the centre of mass itself, the last term on the right hand side of the last 

of equations (2.43) equals zero since 

 

                                 ∑ 𝑚𝛼𝑥𝛼,𝑖 = 0𝛼                                                                                      2.44 

 

We then find the final result that 

 

                                                                                                     2.45 

 

with M = ∑ mα α    and   a2 = akak. 
 

We see from equation (2.45) that the inertia tensor components are minimum when measured 

relative to the centre of mass. 

 

 

 

 

 

 

2.6 The Euler Angles 

 
We stated in previous sections that of the six degrees of freedom of a rigid body, three are rotational 

in nature (the other three are for the translation motion of the centre of mass). In this section, we 

set to determine the set of angles that can be used to specify the rotation of a rigid body. 

 

We know that the transformation from one coordinate system to another can be 

represented by a matrix equation such as 

 

                        𝑥 = 𝜆𝑥′                                                                                 2.46  
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If we identify the inertial (or fixed) system with x’ and the rigid body coordinate system with x , 

then the rotation matrix 𝜆 describes the relative orientation of the body in relation to the fixed 

system. Since there are three rotational degrees of freedom, 𝜆 is actually a product from three 

individual rotation matrices; one for each independent angles. Although there are many possible 

choices for the selection of these angles, we will use the so-called Euler angles  𝝓, 𝜽 𝒂𝒏𝒅 𝛙. 
 

The Euler angles are generated in the following series of rotation that takes the fixed x’ system to 

the rigid body x system( see Fig. 2.3) 

 

1. The first rotation is counterclockwise through an angle 𝜙  about the 𝑥3
′  -axis. It transforms 

the transforms the inertial system into an intermediate set of 𝑥𝑖
′′-axis. The transformation 

matrix is 

 

 

 

                                      𝜆𝜙 = [
cos (𝜙) sin (𝜙) 0

−sin (𝜙) cos (𝜙) 0
0 0 1

]                                                               2.47 

 

 

With 0 ≤ 𝜙 ≤ 2𝜋, and 

 

 

                                          𝑥′′ = 𝜆𝜙𝑥′                                                                                               2.48 

 
 

 

 
Fig. 2.4 The Euler angles are used to rotate the fixed x’ system to the rigid body x system. (a) The first 

rotation is counterclockwise through an angle 𝜙 about the 𝑥3
′ -axis. (b) The second rotation is 

counterclockwise through an angle 𝜃 about the 𝑥1
′′-axis. (c) The third rotation is counterclockwise through 

an angle 𝜓 about the 𝑥3
′′′-axis. 
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2. The second rotation is counterclockwise through an angle 𝜃 about the 𝑥1
′′-axis. (also called 

the line of nodes). It transforms the inertial system into an intermediate set of 𝑥𝑖
′′′ − 𝑎𝑥𝑖𝑠. 

The transformation matrix is 

 

 

 

                                      𝜆𝜃 = [

1 0 0
0 cos (𝜙) sin (𝜃)
0 −sin (𝜃) cos (𝜃)

] ,                                                                 2.49 

 

 

with 0 ≤ 𝜃 ≤ 𝜋, 𝑎𝑛𝑑 

 

 

 

                                 𝑥′′′ = 𝜆𝜃𝑥′′.                                                                                            2.50 

 

3. The third rotation is counterclockwise through an angle 𝜓 about the 𝑥3
′′′-axis. It transforms 

the inertial system into the final set rigid body 𝑥𝑖 − 𝑎𝑥𝑖𝑠. The transformation matrix is 

 

                                      𝜆𝜙 = [
cos (𝜓) sin (𝜓) 0

−sin (𝜓) cos (𝜓) 0
0 0 1

] ,                                            2.51 

 

With   0 ≤ 𝜓 ≤ 𝜋 

 

 

 

 

                                                     𝐱 = 𝛌𝛙𝐱′′′                                                               2.52 

 

Combining the three rotations using equations (2.48), (2.50), and (2.52) we find that the complete 

transformation is given by 

 

                              

                                                        x = λψλθλϕx′,                                                                2.53   

 

and the rotation matrix is 

 

 

                                                  𝜆 = 𝜆𝜓𝜆𝜃𝜆𝜙                                                                            2.54 

 

 

 

 



35 
 

Upon calculating this matrix, we find that its components are        

 

 

 
 

with 0 ≤ 𝜓 ≤ 2𝜋  , 0 ≤ 𝜃 ≤ 𝜋  , 0 ≤ 𝜙 ≤ 2𝜋 

 

 

Correspondingly, the rate of change with time (i.e., the angular speed) associated with each of the 

three Euler angles are defined as 𝜃,̇ �̇�, Ψ.̇  The vectors associated with 

𝜃,̇ 𝜙 ̇ 𝑎𝑛𝑑  Ψ̇ 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 

 

                                                                            2.55  
 
Taking the projections of the unit bases vectors appearing in equation (2.55) on the rigid 
body bases vectors, we find  
 

                                  2.56 
 

 
Combining the three equations (2.56), we can express the components of the total 

angular velocity vector 𝜔as a function of 𝜃,̇ 𝜙 ̇ 𝑎𝑛𝑑  Ψ̇ 
 
 

                                                                2.57 
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2.8  Euler’s Equations of motion for a rigid body 

 
To obtain the equations of motion of a rigid body, we can always start with the fundamental 

equation 

 

                                 (
𝑑𝐿

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑
= 𝑁,                                                                                             2.58 

 

where N is the torque, and designation “fixed” is used since this equation can only applied in an 

inertial frame of reference. We also know that  

 

           

                                (
𝑑𝐿

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑
= (

𝑑𝐿

𝑑𝑡
)

𝑏𝑜𝑑𝑦
+  𝛚 × 𝐋,                                                             2.59  

 

Or 

 

                                  (
𝑑𝐿

𝑑𝑡
)

𝑏𝑜𝑑𝑦
+  𝛚 × 𝐋 = 𝐍                                                                      2.60  

 

                     

 

Using tensor notation we can write the components of equation (2.60) as   
 

                             

                             �̇�𝑖 + 휀𝑖𝑗𝑘𝜔𝑗𝐿𝑘 = 𝑁𝑖 .                                                                                2.61   

 

 

Now, if we chose the coordinate axes for the body frame of reference to coincide with the 

principal axes of the rigid body, then we have from equations (2.34)  

 

 

𝐿1 = 𝐼1𝜔1 
 

𝐿2 = 𝐼2𝜔2 
 

                                                                               𝐿3 = 𝐼3𝜔3                                                   2.62                                    

 

Since the principal moments of inertia I1, I2 , and I3 are constant with time, we can combine 

equations (2.61) and (2.62) to get 

 

                                                                         2.63 
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Alternatively, we can combine these three equations into one using indices 

 
 

                                    2.64 

 

 

where no summation is implied on the i and j indices. Equations (2.64) are the socalled Euler 

equations of motion for a rigid body. 

 

 

 

                                           

 

2.9 Principle of virtual work     

 

            

2.9.1 Constraints and degrees of freedom 

 
The number of degrees of freedom of a system is equal to the number of variables required to 

describe the state of the system. For instance: 

 

 A particle constrained to move along the x axis has one degree of freedom, the position   x 

on this axis. 

 A particle constrained to the surface of the earth has two degrees of freedom, longitude and 

latitude. 

 A wheel rotating on a fixed axle has one degree of freedom, the angle of rotation. 

 A solid body in free space has six degrees of freedom: a particular atom in the body can  

move in three dimensions, which accounts for three degrees of freedom; another atom can 

move on a sphere with the first particle at its center for two additional degrees of freedom; 

any other atom can move in a circle about the line passing through the first   two atoms. 

No other independent motion of the body is possible. 

 N atoms moving freely in three-dimensional space collectively have 3N degrees of 

freedom. 

 

 

i) Holonomic constraints 

 
Suppose a mass is constrained to move in a circle of radius R in the x-y plane. Without this 

constraint it could move freely over this plane. Such a constraint could be expressed by the 

equation for a circle, x2 + y2 = R2. A better way to represent this constraint is 

 

                                 𝐹(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑅2 = 0                                                                      2.65 
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As we shall see, this constraint may be useful when expressed in differential form: 

 

                       𝑑𝐹 =
𝜕𝐹

𝜕𝑥
𝑑𝑥 +

𝜕𝐹

𝜕𝑥
𝑑𝑦 = 2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 = 0                                                                            2.66 

 

A constraint that can be represented by setting to zero a function of the variables representing the 

configuration of a system (e.g., the x and y locations of a mass moving in a plane) is called 

holonomic. 

In a more complex system, there may be more than one constraint. For instance, if the mass in the 

above case is moving in x-y-z space, but in addition is constrained to remain on a horizontal surface 

at elevation a, the additional constraint 

 

 

                     G(z) = z - a = 0                                                                                   2.67 

 

would apply. 
 
 

ii) Non-holonomic constraints 

 
Sometimes a constraint on the motion of an object cannot be represented in holonomic form. For 

instance, imagine a car moving on a horizontal plane. The car would normally have three degrees 

of freedom, two translational represented by the car’s position (x; y) and a rotational degree of 

freedom about the vertical axis, represented by an angle 𝜙 counterclockwise from the x axis. (We 

neglect the possibility of the car overturning!) However, if the car is not skidding, it is constrained 

at a particular instant to move in the direction it is pointing, which can be represented by the 

differential relation 

 

                           

                                     𝑠𝑖𝑛𝜙𝑑𝑥 − 𝑐𝑜𝑠𝜙𝑑𝑦 = 0                                                                         2.68 

 

 

This constraint cannot be integrated to the form F(x; y) = 0, because 𝜙 can change as the car moves 

due to the driver turning the steering wheel. It thus depends on more than x and y. Thus, for 

infinitesimal motions, the car can only move along a particular line in the x-y plane as represented 

by equation (2.68), whereas with driver input, the car can reach any point in this plane with any 

rotational orientation, but only through finite motions. (This is what makes parallel parking so 

complicated!) Thus a car exhibits only one degree of freedom in infinitesimal motion, but three 

degrees of freedom in finite motion.  

A constraint of this type is called non-holonomic. In general, non-holonomic constraints are more 

difficult to deal with than holonomic constraints. 

 

 

2.9.2 Internal and external forces on a system 

 
In mechanics, the definition of what constitutes a system is arbitrary; the choice is completely 
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up to us, and is based on what we are trying to accomplish. A system consisting of many atoms is 

in principle very complicated, because one must consider not only external forces acting on the 

system, but internal forces acting between each pair of atoms within the system. However, 

Newton’s third law says that the force of atom A on atom B is equal and opposite to the force of 

atom B on atom A. Thus, the net force on the system due to atoms within the system acting on 

each other is zero. This result is related to the conservation of linear momentum in isolated systems. 

Thus, in considering the overall motion of a system, only external forces need be considered. 

 

 

 
Figure 2.5 The balance beam. 

 

Principle of virtual work 

 
The modern approach to a statics problem is to apply the two conditions that the total force and 

the total torque acting the system of interest each sum to zero. Sommerfeld invokes an older 

method of handling such problems called the principle of virtual work. This method has the 

advantage that forces of constraint, i.e., forces that keep the system from moving, may be 

neglected, thus potentially simplifying the analysis. Only forces, not torques, need to be 

considered, as the locations at which the forces are applied are used in the analysis. Since the action 

of a torque is really the action of a force applied at a particular location, the consideration of torques 

becomes less important. 

 

Uneven balance beam 

 

A simple example is the uneven balance beam, illustrated in figure 2.5. The modern approach sets 

the total force and torque on the beam to zero: 

 
                                                                      𝑸 − 𝑭𝒂 − 𝑭𝒃 = 𝟎                                                 2.69          

 

                                                               𝒂𝑭𝒂 − 𝒃𝑭𝒃 = 𝟎                                                 2.70 

 

Solving the first equation tells us that the upward force of the pivot on the beam just balances the 

two downward forces at the opposite ends of the beam: 

 

                                                        𝑄 = 𝐹𝑎 + 𝐹𝑏                                                             2.71 

 

The second equation gives us the ratio of the two end forces: 
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𝐹𝑎

𝐹𝑏
=

𝑏

𝑎
.                                                                             2.72 

 
These forces can also be obtained in terms of the beam dimensions and Q: 

 

𝐹𝑎 =
𝑏𝑄

𝑎 + 𝑏
 

 

                                                                   𝐹𝑏 =
𝑎𝑄

𝑎+𝑏
                                                              2.73 

 

The principle of virtual work can be used to obtain the same results. The idea is that if the beam 

tilts by a small angle 𝛿𝜙 in the clockwise direction, then the forces Fa and Fb respectively do work 

−𝐹𝑎𝑎𝛿𝜙 𝑎𝑛𝑑  𝐹𝑏𝑏𝛿𝜙. This is because the left end of the beam moves a distance 𝑎𝛿𝜙 in a direction 

opposite that of the force whereas the right end of the beam moves a distance 𝑏𝛿𝜙 in the same 

direction as the force. The force of the pivot on the beam does no work, as the pivot is assumed 

not to move, so the total work done is 

 

                                                         𝛿𝑊 = (−𝐹𝑎𝑎 + 𝐹𝑏) 𝛿𝜙                                                     2.74 

 

This work increment is zero as a result of the torque balance expressed by equation (2.70). 

Thus, assuming that the work increment is zero in a small displacement of the system is equivalent 

to the condition of zero net torque. 

If instead of tilting the beam, the pivot and beam are lifted vertically by a small distance 

𝛿z, the work done by the three forces in this case would be 

 

 

 

                                                              𝛿𝑊 = (𝑄 − 𝐹𝑎 − 𝐹𝑏)𝛿𝑧,                                                          2.75 

 

 

which according to equation (2.69) is also zero. Setting _W = 0 in this equation allows us to obtain 

the pivot support force Q. Thus, setting the work done in small displacements of the system to zero 

allows us to determine all of the relevant forces via computing the work done by these forces. The 

work is called virtual, because no real motion of the system is envisioned, with the corresponding 

complications resulting from generation of kinetic energy. In this example, there is little 

computational advantage in using the principle of virtual work over the method of zero forces and 

torques. However, its virtues become more evident as the problem becomes more complex. 
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Problems 
 

1. Use the principle of virtual work to determine the ratio M=m that results in static 

equilibrium in figure 2.6. 

 

 
Figure 1.4.1: The pulley on the left is frictionless and the wheel on the right rolls  up or 

down the ramp. The string wraps around the wheel on the ramp. 

 

 

2. Use the principle of virtual work to determine the tensions in the clothes line from which 

a mass M is hung, as illustrated in figure 2.7. Note that you will need to apply the principle 

twice, once for small virtual displacements of the point P horizontally and again for small 

vertical displacements. The tensions Ta and Tb are kept constant in these displacements. 

 

 

                                              

 
 

                                                Figure 2.6: Mass hanging from clothes line. 
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Chapter Three 

 
Theory of Small Oscillations 

 
3.1 Introduction 

 
When a conservative system is displaced slightly from its \stable" equilibrium position, it 

undergoes oscillation. The cause of oscillation is the restoring forces which are called into play. 

Restoring forces can do both positive and negative work. When the work done is positive, the 

restoring forces change the potential energy into kinetic energy and when the work done is 

negative, they change kinetic energy back into potential energy. For most mechanical systems, 

when the system is not too far from the equilibrium, the restoring force is proportional to the 

displacement (F = �kx). Such oscillators are called linear oscillators. For linear oscillators, the 

oscillation frequencies are independent of the amplitude of oscillation. Oscillator motion can be 

damped in the presence of resistive forces. Resistive forces extract energy from the oscillator. For 

low velocities, the resistive forces are proportional to velocity. Oscillators, whether damped or 

undamped, can be driven by external agencies which continuously supply energy to the oscillator 

to keep it oscillating. Such oscillators are known as \forced" or \driven" oscillators. Driven 

oscillators can cause amplitude of oscillation to become very large when the driving frequency 

matches the natural frequency of oscillation. This is known as the phenomenon of resonance. 

 

 

 

3.2 Equilibrium and potential energy 

 
Consider a system with {𝑞𝑗} as the generalised coordinates. Since the system is conservative, the 

forces acting on the system are derivable from a potential energy function V(q1, q2,… qN). 

Lagrange defined equilibrium as a confguration in which all generalized forces vanish, i.e. 

 

                                
𝜕𝑉

𝜕𝑞𝑗
= 0.                                                                                                          3.1 

  

Clearly, in such a situation, the system will not change its configuration. However, even when Qi 

= 0, the system may not be stable in the sense that if it is slightly disturbed from a position of 

equilibrium, it may not return to the position of equilibrium. If it does, such a configuration is 

called one of stable equilibrium - otherwise the equilibrium is unstable. 

 

Example: Simple Pendulum 

 

The potential energy is given by     𝑉(𝜃) = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃), 𝑠𝑜 𝑡ℎ𝑎𝑡 
 

𝐹(𝜃) = −
𝜕𝑉

𝜕𝜃
= −𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −𝑚𝑔𝑥 



43 
 

 

 
 
The “generalised force" corresponding to 𝜃 in this case is actually the restring torque. Equilibrium 

occurs when the restoring torque is zero. There are two such positions, 𝜃 = 0   𝑎𝑛𝑑 𝜃 = 𝜋= 0 

Let us look at the form of the Lagrangian near these two positions. 

 

ℒ =
1

2
𝑚𝑙2�̇�2 − 𝑚𝑔𝑙(1 − cos 𝜃) 

 

Near 𝜃 = 0,     𝑐𝑜𝑠𝜃 ≈ 1 −
1

2
𝜃2  so that 

 

ℒ =
1

2
𝑚𝑙2�̇�2 −

1

2
𝑚𝑔𝑙𝜃2 

 

 

so that the potential energy is 𝑉(𝜃) =
1

2
𝑚𝑔𝑙𝜃2

 and the corresponding generalised force is -mgl𝜃 

which is of restoring nature. On the other hand, near the second position of equilibrium 𝜃 = 𝜋,

𝑐𝑜𝑠𝜃 = cos(𝜋 + 𝛿𝜃) ≈ −𝑐𝑜𝑠𝛿𝜃 = −1 +
1

2
𝛿𝜃2. In this situation, 

 

ℒ =
1

2
𝑚𝑙2�̇�2 +

1

2
𝑚𝑔𝑙(𝛿𝜃)2 

 
the corresponding force is \anti-restoring", making the equilibrium unstable. For one dimensional 

holonomic systems, equilibrium can be either stable on unstable (leaving out a trivial case of 

neutral equilibrium where the potential energy function is spatially at) for which the potential 

energy has an extremum 

 

 
𝜕𝑉

𝜕𝑞𝑖
= 0 

 

 

for every generalised coordinate qi. Let the position of equilibrium be qi0. If the position 

is one of stable equilibrium, the potential energy has to be minimum. This is because, the 

system being conservative, the total energy is constant. If we go away from the position of 

minimum potential energy, it leads to an increase in the potential energy and a consequent 

decrease in the kinetic energy. Thus the system returns back to the equilibrium position. 
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For stable equilibrium, we, therefore, have 

 

𝜕2𝑉

𝜕𝑞𝑖𝜕𝑞𝑗
> 0 

 

The converse would be true for an unstable equilibrium. 
 
 
 

 3.3) Two coupled oscillators and normal coordinates 

 
We consider the problem of two particles of similar mass M connected by a spring of Constant  

𝑘12 , and further each particle connected to fixed points with springs of constant  . The motion of 

particles is restricted to direction along the x-axis , so the system has two degrees of freedom x1 

and x 2 that give the displacement of the masses from their respective equilibrium position (see 

Figure 3-1). 

The kinetic and potential energies of the system is given by 

 

                                                                                                            3.1 

 

And 

 

                                                                                                 3.2 

 

respectively. Using  L = T - U for the Lagrangian, we can easily calculate the equations of 

motion to be 

 

                                                                                   3.3 

 

Because we expect oscillatory motions for the systems response, we attempt a solution of the form 

 

                                                𝑥𝑘(𝑡) = 𝐵𝑘𝑒𝑖𝜔𝑡,           k=1,2                                                   3.4 

 

with Bk  the complex amplitudes and 𝜔 a frequency of oscillation. As we will see, BK  and 𝜔 can 

take different values depending on the mode of oscillation.  
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Figure 3-2 Two masses connected by a spring to each other and by other springs to fixed points. 

 

Using equations (3.4) along with �̈�𝑘 = −𝜔2𝑥𝑘 we can transform equations (2.3) to 

 

                                           3.5 

 

Regrouping terms and simplifying (by dropping the common exponential term), this equation can 

be written in a matrix form as 

 

                                                    3.6 

As usual, for this system of equations to have a non-trivial solution the determinant of 
the matrix on the left side of equation (3.6) must vanish. That is, 
 

                                         3.7 
 

The expansion of this determinant yields the so-called characteristic equation of the system 

 

                                                           3.8 

 

or, if we take the square root, 

 

                                                                   3.9 
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Solving for  , we find the characteristic frequencies (or eigenfrequencies, or eigenvalues) of the 

system. In this case, there are four frequencies: ±𝜔2 and ±𝜔1, with  

 

                                𝜔1 = √
𝑘+2𝑘12

𝑀
    ,                𝜔2 = √

𝑘

𝑀
                                                         3.10 

 

 

If we set 𝜔 = ±𝜔1 in equations (3.4) and insert it in equation (3.6), we find that B1= -B2 . 

Similarly, if we set 𝜔 = ±𝜔2 in equations (3.4) and insert it in equation (3.6), we find that B1= 

B2 . If we associate one amplitude constant for each eigenfrequency, i.e., 𝐵𝑖
± 𝑓𝑜𝑟 ± 𝜔𝑖, we can 

write the complete solution to the system of equations (3.6) as 

 

                                                       3.11 

 

We see from this last set of equations that the position of the particles are both functions of the 

two frequencies 𝜔1 𝑎𝑛𝑑 𝜔2 , The two degrees of freedom x1(t ) and x2(t ) are not, therefore, 

independent of each other. We would like to find out if there exists a transformation that will lead 

to a new set of coordinates that would be decoupled along the different modes of oscillation. 

Inspection of equations (3.11) suggests an obvious candidate. That is, if we introduce the following 

new coordinates   

 

                                                                             𝜂1 = 𝑥1 − 𝑥2         

                                                                             𝜂1 = 𝑥1 − 𝑥2                                                     3.12 

 

Or 

 

                                                                                                              3.13 

 

and we substitute this last set of equations into equations (10.5) we find 

 

                                                  3.14 

By adding and subtracting the last two equations, we easily solve this system to obtain 
 

                                                                  3.15 

We can proceed as was done for x1(t ) and x2(t ) to find that 
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                                       3.16 

 

where the frequencies 𝜔1 𝑎𝑛𝑑 𝜔2 are defined by equetions (3.10). We see from equations (3.15) 

and (3.16) that 𝜂1(𝑡)𝑎𝑛𝑑 𝜂2(𝑡) are decoupled and independent. 

 

 
  Symmetrical mode of oscillation. 

 

 

 

 

 

 

 

3.4   Theory of small oscillations 
 

Any mechanical system can perform oscillations in the neighbourhood of a position of stable 

equilibrium. These oscillations are an extremely important feature of the system whether they are 

intended to occur (as in a pendulum clock), or whether they are undesirable (as in a suspension 

bridge!). Analogous oscillations occur in continuum mechanics and in quantum mechanics. Here 

we present the theory of such oscillations for conservative systems under the assumption that the 

amplitude of the oscillations is small enough so that the linear approximation is adequate.  This 

treatment is restricted to systems with two degrees of freedom and does not make use of Lagrange’s 

equations. Although the material in the present chapter is self-contained, it is helpful to have solved 

a few simple normal mode problems before.  

 

The best way to develop the theory of small oscillations is to use Lagrange’s equations. We will 

show that it is possible to approximate the expressions for T and V from the start so that the 

linearized equations of motion are obtained immediately. The theory is presented in an elegant 

matrix form which enables us to make use of concepts from linear algebra, such as eigenvalues 

and eigenvectors. We prove that fundamental result that a system with n degrees of freedom always 

has n harmonic motions known as normal modes, whose frequencies are generally different. 

These normal frequencies are the most important characteristic of the oscillating system. One 

important application of the theory is to the internal vibrations of molecules. Although this should 
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really be treated by quantum mechanics, the classical model is extremely valuable in making 

qualitative predictions and classifying the vibrational modes of the molecule. 

 

 

3.4.1 THE APPROXIMATE FORMS OF T AND V 
 

 
Now that we know small oscillations can take place about any minimum point of 
V, we can go on to find approximate equations that govern such motions. The obvious (but 
not the best!) way of doing this is as follows: Take the example of the double pendulum. 
In this case, T and V are given(see the following figure) by 
 

 
FIGURE 3.3  The double pendulum. Left: The generalised coordinates θ, φ. Right: The velocity diagram. 

 

                                     3.16 and 3.17 
 

 
If these expressions are substituted into the Lagrange’s equations, we obtain (after some 
simplification) the exact equations of motion 
 

         
 

 

This formidable pair of coupled, second order, non-linear ODEs govern the large oscillations of 

the double pendulum. However, for small oscillations about θ = φ = 0, these equations can be 

approximated by neglecting everything except linear terms in θ, φ and their time derivatives. On 

carrying out this approximation, the equations simplify dramatically to give 

 

                                                                           3.18 and 3.19 

 

These are the linearised equations governing small oscillations of the double pendulum about the 

downward vertical. They are a pair of coupled, second order, linear ODEs with constant 

coefficients. An explicit solution is therefore possible. While the above method of finding the 

linearised equations of motion is perfectly correct, it is wasteful of effort and is also unsuitable  



49 
 

 

when presenting the general theory. What we did was to obtain the exact expressions for T and V, 

derive the exact equations of motion, and then linearise. In the linearisation process, many of the 

terms we took pains to find were discarded. It makes far better sense to approximate the 

expressions for T and V from the start so that, when these approximations are used in Lagrange’s 

equations, the linearised equations of motion are produced immediately. The saving in labour is 

considerable and this is also a nice way to present the general theory. 
Consider the double pendulum for example. The exact expression for V is given by equation (3.17) and when θ, 

φ are small, this is given approximately by 

 

 

 
 

 

where the neglected terms have power four or higher. Similarly, when θ, φ and their time 

derivatives are small, T is given approximately by 

 

 

 
 
where the neglected terms have power four (or higher) in small quantities. If these approximate 
forms for T and V are now substituted into Lagrange’s equations, the linearized equations of motion 
(3.18), (3.19) are obtained immediately. This is clearly superior to our original method. 
 
 

The general approximate form of V 
 

In the general case, suppose that the potential energy V(q) of the system S has a minimum at q = 0 

and that V(0) = 0. (If the minimum point of V is not at q = 0, it can always be made so by a simple 

change of coordinates.) Then, for q near 0, V(q) can be expanded as an (n-dimensional) Taylor 

series in the variables q1, q2, . . . , qn. For the special case when S has two degrees of freedom, 

this series has the form 

 

 
 

where all partial derivatives of V are evaluated at the expansion point q1 = q1 = 0. Now V has been 

selected so that V(0, 0) = 0. Also, since (0, 0) is a stationary point of V (q1, q2), it follows that 

∂V/∂q1 = ∂V/∂q2 = 0 there. Thus the constant and linear terms are absent from the Taylor expansion 

of V . It follows that V can be approximated by 
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where v11, v12, v22 are constants given by 

 

 
 

 

and the neglected terms have power three (or higher) in the small quantities q1, q2. The 

corresponding approximation to V(q) in the case when S has n-degrees of freedom is 

 
 

                                          3.20 

 

 

where the {v jk} are constants given by 
 

 

 

 
 

and the neglected terms have power three (or higher) in the small quantities q1, q2, . . . , qn. This 

is the general form of the approximate potential energy Vapp(q). It is a homogeneous quadratic 

form in the variables q1, q2, . . . , qn. In the theory that follows, we will always assume that q = 0 

is also a minimum point of the approximate potential energy Vapp(q).∗ This condition is equivalent 

to requiring that the quadratic form (15.8) should be positive definite. This simply means that it 

takes positive values except when q = 0. 

 

 

The general approximate form of T 

 
For any standard mechanical system with generalised coordinates q, the kinetic energy T has the 

form 

 

                                       
a quadratic form in the variables ˙ q1, ˙ q2, . . . , ˙ qn with coefficients that depend on q. If we 

expand each of these coefficients as a Taylor series about q = 0, the constant term is 

simply t jk(0) and 
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It follows that T can be approximated by 
 

                                                                                                          3.21 

 

where the constants {t jk } are what we previously called {t jk(0)}, and the neglected terms have 

power three (or higher) in the small quantities q1, q2, . . . , qn, ˙ q1, ˙ q2, . . . , ˙ qn. This is the 

general form of the approximate kinetic energy V app(q). It is a homogeneous quadratic form in 

the variables ˙ q1, ˙ q2, . . . , ˙ qn. Since T (q, ˙ q) > 0 except when ˙ q = 0, it follows that the 

quadratic form (15.9) must also be positive definite. 

 

 

 

3.5 Small oscillations in normal coordinates 

 
The preceding theory applies for any choice of the generalised coordinates {q j }. Changing the 

generalised coordinates will change the V- and T -matrices, but the normal frequencies and the 

physical forms of the normal modes will be the same. This suggests that it might be possible to 

make a clever choice of coordinates so that the V- and T - matrices have a simple form leading to 

a much simplified theory. In particular, it would be very advantageous if T and V had diagonal 

form. 

 

Normal coordinates; A set of generalised coordinates in terms of which the T - and V-matrices         

have diagonal form are called normal coordinates 

 

Actually, every oscillating system has normal coordinates, as we will now show. Let q be the 

original choice of coordinates with corresponding matrices V and T. Then 
 

                                                                3.22 

Now consider a change of coordinates from q to η defined by the linear transformation 

 

                                                                                                     3.23 

 
where P can be any non-singular matrix. On substituting the transformation (15.28) into 
the expressions (3.22), we obtain 
 
 



52 
 

 
 
from which we see that this transformation of coordinates causes V and T to be transformed as 

 

                                        3.24 
 

Can we now choose the transformation matrix P so that the new T- and V-matrices are diagonal? 

 

Let a1, a2, . . . , an be the amplitude vectors of the normal modes when they are expressed in terms 

of the coordinates q and let ω1, ω2, . . . , ωn be the corresponding normal frequencies. We will 

suppose that these amplitude vectors have been chosen so that they satisfy the orthonormality 

relations, that is 

 

                                                                                  3.25 

 

Now consider the matrix P whose columns are the amplitude vectors {aj }, that is, 

 

             

                                                                                                                     3.26 

 

Since the amplitude vectors are known to be linearly independent, P has linearly independent 

columns and is therefore a non-singular matrix. Let us now try this P as the transformation matrix. 

Then 

 

 
 

The jk-th element of this matrix is given by 

 

 
 
by the orthonormality relations. Hence, with this choice of P, 

 

𝑃′ ∙ 𝑇 ∙ 𝑃 = 1 
 

where 1 is the identity matrix. In the same way, 
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The jk-th element of this matrix is given by 
 

 
 

Hence, with this choice of P, 

 

𝑃, ∙ 𝑉 ∙ 𝑃 = 𝜔2 
 

where X is the diagonal matrix whose diagonal elements are the normal frequencies, that is, 
 
 

 
 

We have thus succeeded in reducing both V and T to diagonal form. Hence the coordinates {ηj } 

defined by (15.28) with P = (a1| a2| · · · | an) are a set of normal coordinates. They are given 

explicitly by 

 

 
 

on using the formula P’· T · P = 1. This can also be written in the semi-expanded form 

 

                                                3.27 

 

 

From this last formula, we can see that, if the amplitude vectors {aj } are not normalised, then the 

coordinates {ηj } are simply multiplied by constants. They are therefore still normal coordinates. 

The corresponding V- and T-matrices are still diagonal, but T is no longer reduced to the identity. 

 

Our results are summarised as follows:  
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When expressed in terms of normal coordinates, the small oscillation equations become 

 

 

 
In expanded form, this is 
 

 
 

 

a system of n uncoupled SHM equations. The solution η1 = C1 cos(ω1t − γ1), η2 = η3 = · · · = ηn = 

0 is the first normal mode, the solution η2 = C2 cos(ω2t − γ2), η1 = η3 = · · · = ηn = 0 is the second 

normal mode, and so on. 

 

Note. Using normal coordinates is not a practical way of solving normal mode problems. Indeed 

the problem has to be solved before the normal coordinates can be found! Normal coordinates are 

important because they simplify further developments of the general theory. 

 

 

 

3.6 General problem of coupled oscillations 

 

 

We now consider a general problem of a conservative system with n degrees of freedom and a 

corresponding set of generalized coordinates qk , with k = 1,2, ... ,n . We suppose that there exists 

a configuration where the system is at equilibrium, with the generalized coordinates having values 

qk 0 . We expand the potential energy U of the system with a Taylor series around this configuration 

of equilibrium 

 

                         Finding normal coordinates 

Let a1, a2, . . . , an be the amplitude vectors of the normal modes when expressed 

in terms of the coordinates {q j }. Then the coordinates {ηj } defined by 

 

are a set of normal coordinates, as are any constant multiples of them. (The 

amplitude vectors only need to be normalised if it is required to reduce the matrix 

T to the identity.) 
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                                 3.28 

 

 
where we neglected any terms of higher than second order, and summation over repeated indices 

is implied. We can arbitrarily set the first term on the right hand side U0(the potential energy at 

equilibrium) to zero since the potential energy can only be defined up to a constant; therefore, U0= 

0 . Moreover, the existence of an equilibrium configuration implies that the first derivative of the 

potential energy relative to each generalized coordinate evaluated at the corresponding positions 

of equilibrium (i.e., at qk 0 ) is also zero. That is, 

 

                                                                         3.29 

 

and U is at a minimum when qk= qk0 . Finally, if we further simplify the notation by setting qk0=0, 

we can approximate the potential energy by 

 

                                                𝑈 =
1

2
𝐴𝑗𝑘𝑞𝑗𝑞𝑘                                                                        3.30 

 

With 

 

                                                                                                                   3.31 

 

It is obvious from the form of equation (10.20) that Ajk is symmetric (i.e., Ajk= Akj ). 

 

If the potential energy is a quadratic function of the generalized coordinates, as is evident from 

equation (3.30), we can use already derived results for the kinetic energy of the system when the 

equations connecting the generalized coordinates and the Cartesian coordinates do not explicitly 

involve time. That is, if  

 

 

                              𝑥𝛼,𝑖 = 𝑥𝛼,𝑖(𝑞)               𝑜𝑟            𝑞𝑘 = 𝑞𝑘(𝑥𝛼,𝑖)                                                          3.32 

 

then the kinetic energy is given by 

 

                                                                                                                   3.33 

 

 



56 
 

With 

                                        
 

As was the case for Ajk , mjk is symmetric (i.e., mjk = mkj ). Just as we did for the potential energy, 

we can expand the expression for the quantities mjk about the position of equilibrium; we then get 

 

                                    3.34 

 

However, in order to be consistent in the accuracy kept for both the potential and kinetic energies, 

we only keep the first term on the right hand side of equation (3.34). This way, both expressions 

are valid to the second order (in velocities for the kinetic energy, and in displacement for the 

potential energy). We then write 

 

                                                                                           3.35 

 

with the understanding that mjk consists only of the first term in the expansion on the right side of 

equation (3.34). We are now interested in solving for the equations of motion of the system, using 

the Lagrangian formalism. That is, 

 

                                                                                        3.36 

 

which, in this case simplifies to 

 

                                                                                                     3.37 

 

Using equations (3.35), the equations of motion are reduced to the following 

 

                                             3.38 

 

Equations (3.38) represent a set of coupled second-order differential equations with constant 

coefficients. Since we expect oscillatory motions, we propose a solution of the form 

 

𝑞𝑗(𝑡) = 𝑎𝑗𝑒𝑖(𝜔𝑡−𝛿), 
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where the amplitudes aj are real. Inserting this equation in equations (3.38), we find for the 

equations of motion 

 

                          (𝐴𝑗𝑘 − 𝜔2𝑚𝑗𝑘)𝑎𝑗 = 0                                                                                 3.40 

 

Alternatively, the system of equations (3.40) can be written in a matrix form 

 

                                   (𝐴 − 𝜔2𝑚) ∙ 𝑎 = 0,                                                                           3.41 

 
 
where the matrices A and m are composed of the elements Ajk and mjk , respectively (remember 

that A and m are symmetric). In order to get a non-trivial solution to this equation, the determinant 

of the quantity in parentheses must vanish 

 

 

                                                                                                               3.42 

 

This determinant is called the characteristic or secular equation and is an equation of degree n 

in 𝜔2 . The corresponding n roots 𝜔𝑟
2 are the characteristic frequencies or eigenfrequencies of 

the system. The eigenvector associated with a given root 𝜔𝑟 can be evaluated by inserting it back 

in equations (3.40) to determine the ratios a1: a2: ... : an. If we represent by ajr the jth component 

of the rth eigenvector, we can write the generalized coordinate qj as a linear combination of the 

solutions for each root 

 

 

                                         𝑞𝑗(𝑡) = ∑ 𝑎𝑗𝑟𝑒𝑖(𝜔𝑟𝑡−𝛿𝑟) .𝑟                                                                   3.43 

 

 

It is, however, understood that the actual solution must be real (in a mathematical sense) 

and we must, therefore, take real part of equation (3.43). That is, 

 

 

                               𝑞𝑗(𝑡) = ∑ 𝑎𝑗𝑟𝑐𝑐𝑜𝑠(𝜔𝑟𝑡 − 𝛿𝑟).𝑟                                                                    3.44 

 

 

 

 3.9 Sympathetic vibrations and beats 

 
Sympathetic vibrations are when an object begins to oscillate or vibrate because of an external vibration 
which matches the resonance frequency of the object. In other words, when the resonance1 of one object 
causes another object to resonate, that is sympathetic resonance or sympathetic vibrations. 
 

Or, a Sympathetic vibrations is an induced resonant vibration. All objects have some natural 

frequency at which they vibrate. External vibrations at this frequency will be more readly absorbed, 

and the object will begin to vibrate “in sympathy” with the inducing energy. An object that absorbs  
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sufficient vibrational energy will shake apart. The term “sympathetic vibration” has generaly given 

way to the more accurate and general term “resonance”. 

 

 

Beats 

 
When two waves with different frequencies interfere, the resulting wave will oscillate between 

high and low amplitudes with a given frequency. This oscillation is referred to as Beats. In the 

diagram below, two sound waves are added together. One wave has a frequency of 10 Hz, while 

the other has a frequency of 12 Hz. Their sum (the resulting wave when they interfere) is shown 

in the bottom graph. Notice that the resulting wave rises and falls in a sinusoidal way; at some 

points, the interference is constructive; at other times, it is destructive. The net result is that the 

sound wave we hear (the sum of the two waves) will oscillate between loud and faint. The 

frequency of the Beat is equal to the difference in the frequency of the two initial waves. In this 

case, the sound wave we hear (the combination of the initial waves) will have a Beat Frequency of 

2 Hz [12 Hz – 10 Hz]. 

 
 

 

 
 

 

 

Beats are used to tune musical instruments. When a piano tuner is tuning a piano, he or she will 

use a tuning fork (that puts out a pure sound frequency) and listen for beats between it and the 

vibrating string. When no beats occur, the piano is correctly tuned. The same is true of when a 

symphonic band tunes their instruments. 
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3.10  Molecular vibrations 

 
Our theory of coupled oscillations has many important applications in molecular physics. Each 

atom in a molecule has 3 degrees of freedom, and if we are looking at a molecule with n atoms, 

we have a total of 3n degrees of freedom. Three different types of motion can be carried freedom), 

and vibration (3n - 6 degrees of freedom). 

Consider a linear molecule (the equilibrium positions of all atoms are located along a straight line) 

with n atoms. The number of degrees of freedom associated with Vibrational motion is 3n – 5 

since there are only 2 rotational degrees of freedom. The vibrations in a linear molecule can be 

longitudinal vibrations (there are n - 1 degrees of freedom associated with this type of vibrations) 

and transverse vibrations (there are (3n - 5) - (n - 1) = (2n - 4) degrees of freedom associated with 

this type of vibration). If the vibrations are planar vibrations (the motion of all atoms is carried out 

in a single plane) we can specify any transverse vibration in terms of vibrations in two mutually 

perpendicular planes. The characteristic frequencies in each of these planes will be the same 

(symmetry) and the number of characteristic frequencies will thus be equal to n - 2. 

 

To illustrate molecular vibrations let us consider the dynamics of a triatomic molecule (see the  

Figure ). 

 

 

 

 
 

                              Figure; Vibrational motion of a linear triatomic molecule. 
 
In order to determine the vibrational modes of this system we look at the longitudinal and 

transversal modes separately. Since we are not interested in pure translational motion we can 



60 
 

require that the center of mass of the system is at rest. This means that we do not have 3 

independent position coordinates, but only 2. For example, we can eliminate the position of the 

heavy atom: 

 

 
 

 

In order to determine the normal modes, we will follow the following procedure. 

 

1. Choose generalized coordinates. The proper generalized coordinates in this problem are 

the displacements x1 and x2. The kinetic and the potential energy of the system can be 

easily expressed in terms of these displacements. The kinetic energy of the system is thus 

just equal to the kinetic energy of the three atoms, and thus equal to 

 

 
 

The potential energy of the system is the sum of the potential energy associated with the 

compression of the springs. The total potential energy is thus equal to 

 

 
 

2. Determine the A and m tensors. In order to calculate these tensors we use the expressions 

for T and U obtained in step 1. Since the kinetic energy obtained in step 1 does not contain 

products of the generalized velocity of mass 1 and the generalized velocity of mass 2, the 

mass tensor will be a diagonal tensor. We can see this by looking at the definition of the 

mass tensor elements: 

 

            The mass tensor is thus equal to 
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The A tensor is equal to 

 

 

 

3. Determine the eigen frequency and the eigen vectors. The eigen frequencies can be 

determined by requiring that the determinant of the coefficients of the equations of motions 

vanishes: 

 

 

This requires that 

 

Or 
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Consider the two signs. First the positive sign: 

 

 

This is equivalent to 

 

Or 

 

 

Now consider the negative sign: 

 

 

 

This is equivalent to 

 

 

 

Or 
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Consider the first eigen frequency, and assume the corresponding eigen vector is (a11, a21). 

The equations of motion for this frequency are 

 

 

 

Substituting the expression of the first eigen frequency in these equations we obtain for each 

equation the following expression: 

 

 

 

This equations tells us that a11 = -a31. Since the eigen vectors are orthogonal, we expect that the 

eigen vector for the second eigen frequency is given by a12 = a32. 

4. Determine the scale factors required to match the initial conditions. In this example, 

we do not need to match initial conditions (such as the initial displacement or the initial 

velocity and we thus do not need to determine scale factor). 

 

5. Determine the normal coordinates. The normal coordinates are those coordinates that 

oscillate with a single frequency. In the current example we thus observe the following 

normal coordinates: 

 

 

 

 Note: the constants in these equations need to be adjusted to match the initial conditions. 

The system will carry out a motion with normal frequency 1 when η2 = 0. This requires 

that x1 = -x3 and the motion is asymmetric. The system will carry out a motion with normal 

frequency 2 when η1 = 0. This requires that x1 = x3 and the motion is symmetric. Note: 

the normal frequency 1 is equal to the frequency of a mass m on a spring whose other end 

remains fixed. This mode requires the central atom to remain fixed, and this can be 
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achieved when the motion is asymmetric since the forces exerted by the two springs on the 

central mass cancel. 

The transverse vibration of the molecule can be specified in terms of a single parameter 𝛼. For this 

mode of vibration we will get a single "uncoupled" differential equation with a single 

corresponding characteristic frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Four 
Wave propagation 

 

4.1 Introduction 

 
Why are we able to see? Answer: Because there is light. 

And…what is light? Answer: Light is a wave. 

So…what is a wave? 

 

Answer: A wave is a disturbance that carries energy from place to place. A wave does NOT carry 

matter with it! It just moves the matter as it goes through it. 
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Some waves do not need matter (called a “medium”) to be able to move (for example, through 

space). 

These are called electromagneticwaves(or EM waves). 

Some waves MUST have a medium in order to move. These are called mechanical waves. 

 

Wave types 

 
1. Transverse waves: Waves in which the medium moves at right angles to the direction of 

the wave 

 

 
 

 

 

                    
 

 

 

 

 

Parts of transverse waves: 

i. Crest: the highest point of the wave 

ii. Trough: the lowest point of the wave 
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2. Compressional (or longitudinal) waves: Waves in which the medium moves back and forth in 

the same direction as the wave 

 

 
 

                     
 

 

 

 

 

 

 

Parts of longitudinal waves: 

i. Compression: where the particles are close together 

ii. Rarefaction: where the particles are spread apart 
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Wave Properties 

 
Wave properties depend on what (type of energy) is making the waves. 

1. Wavelength: The distance between one point on a wave and the exact same place on the 

next wave. 

 

 

 
 

 

2.  Frequency: How many waves go past a point in one second; unit of measurement is hertz 

(Hz). 

 

The higher the frequency, the more energy in the wave. 

    10 waves going past in 1 second = 10 Hz 

    1,000 waves go past in 1 second = 1,000 Hz 

    1 million waves going past = 1 million Hz 

 

3. Amplitude: How far the medium moves from rest position (where it is when not moving). 

 

Remember that for transverse waves, the highest point is the crest, and the lowest point is the 

trough. 

 
 

4. Wave speed: Depends on the medium in which the wave is traveling. It varies in solids, liquids 

and gases. 

 

A mathematical way to calculate speed: 

 

wave speed = wavelength x frequen 

 

 

OR 

                                               v = f x ג 
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4.2 Wave equation 
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4.3 Reflection and Transmission 

 
A wave reaching the end of its medium, but where the medium is still free to move, will 

be reflected (b), and its reflection will be upright. 
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A wave hitting an obstacle will be reflected (a), and its reflection will be 

inverted. 

 

 
 

 
 

A wave encountering a denser medium will be partly reflected and partly transmitted; if the wave 

speed is less in the denser medium, the wavelength will be shorter. 

 

 

Two- or three-dimensional waves can be represented by wave fronts, which are curves of surfaces 

where all the waves have the same phase. 

 

 

 

 
 

 

Lines perpendicular to the wave fronts are called rays; they point in the direction of propagation 

of the wave. 
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 The law of reflection: the angle of incidence equals the angle of reflection. 

 

 

 

 
 

 

 

 

 

 

 

4.4 Interfirance 

 
The superposition principle says that when two waves pass through the same point, the 

displacement is the arithmetic sum of the individual displacements. 

In the figure below, (a) exhibits destructive interference and (b) exhibits constructive interference. 
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These graphs show the sum of two waves. In (a) they add constructively; in (b) they 

add destructively; and in (c) they add partially destructively. 

 

 
 

 

4.5 Polarization 

 
The polarization of a wave becomes very important when we consider radio communication sys- 

tems, and radio wave propagation. The performance of communication systems can be strongly 

affected by the polarization of a wave, if it is not \matched" to the intended polarization. Along 

similar lines, propagation of a wave introduces potential changes to its polarization which will in 

turn affect communication system performance. Hence, it is important to understand how waves 

are polarized and the different polarization classifications. 

 

The polarization of a wave is defined as the figure that the instantaneous electric _eld traces out 

with time at a fixed observation point that is normal to the direction of propagation. Perhaps 

the most common example of polarization you have heard of is linear polarization. A linearly 

polarized plane wave is illustrate graphically below. We might define this as vertically polarized 

but in general linear polarization could refer to linear polarization vectors pointed in any direction 

(e.g. a horizontally polarized wave is also a form of linear polarization). 
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In general, the figure traced out by the electric field is not a line, but in fact an ellipse, of which 

a line is a degenerate case. Consider a wave travelling in the +z-direction. Its polarization will 

then be traced out in the xy-plane, and appears as shown in the figure below. 

Some important definitions are called for here: 

 𝜏is the major axis angle, i.e. how far the major axis of the ellipse is tilted away from the x-

axis; 

 E1 and E2 are the two components of the electric field, which will be defined momentarily; 

 

  
 
Axial ratio is a measure of how close the polarization is to circular; if AR = 1, the polarization 

traced out is a circle. More specifically, a wave can be defined as being right hand circularly 

polarized (RHCP) or left hand circularly polarized (LHCP) if AR = 1. The \handedness" of the 

polarization is observed by viewing the rotation of the wave vector as it travels. If your thumb 

points in the direction of propagation, your _fingers should curl in the direction of polarization, 

hence the use of \hand" in the polarization description. A sign can be arbitrarily added to the 

axial ratio to be more specific as to the handedness of the wave it is referring to. A positive 

AR indicates a right-hand polarized wave while a negative AR indicates a left-hand polarized 

wave (note, not necessarily circularly-polarized). Note that the sign is simply used to indicate the 

handedness of the wave; it is not possible to generate a negative AR from the formulae shown 

above. 


