Jimma University, College of Natural Sciences

Department of Physics

Mathematical Methods of Physics II (Phys 2032), Assignment I

1. The orbital angular momentum \mathbf{L} of a particle is given by $\mathbf{L}=\mathbf{r} \times \mathbf{p}=m \mathbf{r} \times \mathbf{v}$, where \mathbf{p} is the linear momentum. With linear and angular velocities related by $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$, show that

$$
\mathbf{L}=\operatorname{mr}^{2}[\boldsymbol{\omega}-\hat{\mathbf{r}}(\hat{\mathbf{r}} . \boldsymbol{\omega})]
$$

Here $\hat{\mathbf{r}}$ is a unit vector in the \mathbf{r}-direction.
2. The Pauli spin matrices are

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Show that
a. $\left(\sigma_{\mathrm{i}}\right)^{2}=\mathrm{I}_{2}, I_{2}$ is a 2×2 unit matrix
b. $\sigma_{j} \sigma_{k}+i \sigma_{l},(j, k, l)=(1,2,3),(2,3,1),(3,1,2)$ (cyclic permutations)
c. $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} I_{2} ; I_{2}$ is the 2×2 unit matrix
d. Show that $(\boldsymbol{\sigma} . \mathbf{a})(\boldsymbol{\sigma} . \mathbf{b})=\mathbf{a} \cdot \mathbf{b} I_{2}+i \boldsymbol{\sigma} .(\mathbf{a} \times \mathbf{b})$

Here, $\boldsymbol{\sigma}=\sigma_{1} \hat{\mathbf{x}}+\sigma_{2} \hat{\mathbf{y}}+\sigma_{3} \hat{\mathbf{z}}, \mathbf{a}$ and \mathbf{b} are ordinary vectors, and I_{2} is the 2×2 unit matrix
3. Find the eigenvalues and the normalized eigenvectors of the following matrices.

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
5 & 0 & \sqrt{3} \\
0 & 3 & 0 \\
\sqrt{3} & 0 & 3
\end{array}\right)
$$

4. Solving the following system of linear equations

$$
\begin{gathered}
2 a+5 b+6 c=5 \\
a+2 b+3 c=9 \\
a+b+c=4
\end{gathered}
$$

5. Show that charge density (ρ) and current density (J) go together to make a 4 -vector.
6. Solving the following system of linear equations and give the results to three decimal places

$$
\begin{gathered}
1.0 a+0.9 b+0.8 c+0.4 d+0.1 e=1.0 \\
0.9 a+1.0 b+0.8 c+0.5 d+0.2 e+0.1 f=0.9 \\
0.8 a+0.8 b+1.0 c+0.7 d+0.4 e+0.2 f=0.8 \\
0.4 a+0.5 b+0.7 c+1.0 d+0.6 e+0.3 f=0.7 \\
0.1 a+0.2 b+0.4 c+0.6 d+1.0 e+0.5 f=0.6 \\
0.1 b+0.2 c+0.3 d+0.5 e+1.0 f=0.5
\end{gathered}
$$

7. Two equal masses are connected to each other and to walls by springs as shown below. The masses are constrained to stay on a horizontal line.

a. Set up the Newtonian acceleration equation for each mass.
b. Solve the secular equation and determine the eigenvalues (the normal modes of vibration).
c. Determine the eigenvectors.
