Jimma University, College of Natural Sciences

Department of Physics

Mathematical Methods of Physics II (Phys 2032), Assignment II

1. If $\mathbf{A}=\left(2 x y+z^{3}\right) \hat{\mathbf{x}}+\left(x^{2}+2 y\right) \hat{\mathbf{y}}+\left(3 x z^{2}-2\right) \hat{\mathbf{z}}$, show that (a) $\boldsymbol{\nabla} \times \mathbf{A}=0$ (\mathbf{A} is irrotational), (b) Find a scalar function \emptyset such that $\mathbf{A}=\boldsymbol{\nabla} \varnothing$.
2. For the position vector $\mathbf{r}=\mathrm{x} \hat{\mathbf{x}}+\mathrm{y} \hat{\mathbf{y}}+\mathrm{z} \hat{\mathbf{z}}$, show that $\mathrm{r}^{\mathrm{n}} \mathbf{r}$ is solenoidal only if $\mathrm{n}=-3$.
3. An electric dipole moment is located at the origin. The dipole creates an electric potential at \mathbf{r} given by

$$
\mathrm{V}(\mathbf{r})=\frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon_{0} \mathrm{r}^{3}}
$$

Find the electrostatic field $\mathbf{E}=-\boldsymbol{\nabla V}$ at \mathbf{r}.
4. The velocity of a two-dimensional flow of liquid is given by

$$
\mathbf{v}=\mathrm{u}(\mathrm{x}, \mathrm{y}) \hat{\mathbf{x}}-\mathrm{w}(\mathrm{x}, \mathrm{y}) \hat{\mathbf{y}}
$$

If the fluid is incompressible and the flow is irrotational, show that

$$
\frac{\partial u}{\partial x}=\frac{\partial w}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial w}{\partial x}
$$

5. Show that the vector field

$$
V=\frac{-\mathrm{x} \hat{\mathbf{x}}-\mathrm{y} \hat{\mathbf{y}}}{\sqrt{x^{2}+y^{2}}}
$$

is a sink. Give physical interpretation.
6. Classically, orbital angular momentum is given by $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, where \mathbf{p} is the linear momentum. To go from classical mechanics to quantum mechanics, replace \mathbf{p} by the operator $\frac{\hbar}{i} \boldsymbol{\nabla}$. Show that the quantum mechanical angular momentum operator has Cartesian components,

$$
L_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right), \quad L_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right), \quad L_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

7. If a vector function \mathbf{F} depends on both space coordinates (x, y, z) and time t, show that

$$
\mathrm{d} \mathbf{F}=(\mathrm{d} \mathbf{r} . \boldsymbol{\nabla}) \mathbf{F}+\frac{\partial \mathbf{F}}{\partial \mathrm{t}} \mathrm{dt}
$$

8. Obtain the expressions of the gradient, divergence and curl in circular cylindrical and spherical polar coordinates.
