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Overview 
Many of you will know a good deal already about Vector Algebra — how to add and subtract 

vectors, how to take scalar and vector products of vectors, and something of how to describe 

geometric and physical entities using vectors. This course will remind you about that good stuff, 

but goes on to introduce you to the subject of Vector Calculus which, like it says on the can, 

combines vector algebra with calculus. 

To give you a feeling for the issues, suppose you were interested in the temperature T of water in 

a river. Temperature T is a scalar, and will certainly be a function of a position vector x = (x, y, z) 

and may also be a function of time t: T = T (x, t). It is a scalar field. 

Suppose now that you kept y, z, t constant, and asked what is the change in temperature as you 

move a small amount in x? No doubt you’d be interested in calculating ∂T /∂x. Similarly, if you 

kept the point fixed, and asked how does the temperature change of time, you would be interested 

in ∂T /∂t. 

But why restrict ourselves to movements up-down, left-right, etc.? Suppose you wanted to know 

what the change in temperature along an arbitrary direction. You would be interested in 
𝜕𝑇

𝜕𝑥
, 

but how would you calculate that? Is ∂T /∂x a vector or a scalar? 

Now let’s dive into the flow. At each point x in the stream, at each time t, there will be a stream 

velocity 𝑣(𝑥, 𝑡). The local stream velocity can be viewed directly using modern techniques such 

as laser Doppler anemometry, or traditional techniques such as throwing twigs in. The point now 

is that v is a function that has the same four input variables as temperature did, but its output 

result is a vector. We may be interested in places x where the stream suddenly accelerates, or 

vortices where the stream curls around dangerously. That is, we will be interested in finding the 

acceleration of the stream, the gradient of its velocity. We may be interested in the magnitude of 

the acceleration (a scalar). Equally, we may be interested in the acceleration as a vector, so that we can apply 
Newton’s law and figure out the force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vector Analysis 
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1. Vector Analysis  
1.1. Vectors 

Many physical quantities, such a mass, time, temperature is fully specified by one number 

or magnitude. They are scalars. But other quantities require more than one number to 

describe them. They are vectors. You have already met vectors in their purer mathematical 

sense in your course on linear algebra (matrices and vectors), but often in the physical 

world, these numbers specify a magnitude and a direction — a total of two numbers in a 

2D planar world, and three numbers in 3D. 

Obvious examples are velocity, acceleration, electric field, and force. Below, probably all 

our examples will be of these “magnitude and direction” vectors, but we should not forget 

that many of the results extend to the wider realm of vectors.  

There are three slightly different types of vectors: 

• Free vectors: In many situations only the magnitude and direction of a vector is 

important, and we can translate them at will (with 3 degrees of freedom for a vector 

in 3-dimensions). 

• Sliding vectors: In mechanics the line of action of a force is often important for 

deriving moments. The force vector can slide with 1 degree of freedom.  

• Bound or position vectors: When describing lines, curves etc. in space, it is 

obviously important that the origin and head of the vector are not translated about 

arbitrarily. The origins of position vectors all coincide at an overall origin O. 

One the advantages of using vectors is that it frees much of the analysis from the restriction 

of arbitrarily imposed coordinate frames. For example, if two free vectors are equal, we 

need only say that their magnitudes and directions are equal, and that can be done with a 

drawing that is independent of any coordinate system. However, coordinate systems are 

ultimately useful, so it useful to introduce the idea of vector components. Try to spot things 

in the notes that are independent of coordinate system. 
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1.1.1. Vector elements or components in a coordinate frame 

A method of representing a vector is to list the values of its elements or components in a sufficient number of 

different (preferably mutually perpendicular) directions, depending on the dimension of the vector. These 

specified directions define a coordinate frame. In this course we will mostly restrict our attention to the 3-

dimensional Cartesian coordinate frame 𝑂(𝑥, 𝑦 , 𝑧). When we come to examine vector fields later in the 

course you will use curvilinear coordinate frames, especially 3D spherical and cylindrical polar, and 2D plane 

polar, coordinate systems.  

 

In a Cartesian coordinate frame, we write 
𝑎 =  [𝑎1, 𝑎2 , 𝑎3]  =  [𝑥2  −  𝑥1, 𝑦2  −  𝑦1, 𝑧2 − 𝑧1] 𝑜𝑟 𝑎 =  [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 ] 

as sketched in Figure 1.2. Defining �̂�, 𝒋̂, �̂� as unit vectors in the x, y, z directions 

𝑖̂  =  [1, 0, 0] 𝑗̂ =  [0, 1, 0] �̂� =  [0, 0, 1] 

 
Fig.1.3. (a) Addition of two vectors is commutative, but subtraction isn’t. Note that the 
coordinate frame is irrelevant. (b) Addition of three vectors is associative. 

we could also write 

𝑎 =  𝑎1𝑖̂  +  𝑎2𝑗̂  +  𝑎2�̂�  . 
Although we will be most often dealing with vectors in 3-space, you should not think that 

general vectors are limited to three components. 
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In these notes we will use bold font to represent vectors 𝒂, 𝝎, In your written work, 

underline the vector symbol 𝑎, 𝜔 and be meticulous about doing so. We shall use the hat to 

denote a unit vector. 

1.1.2. Vector equality 

Two free vectors are said to be equal 𝑖𝑓𝑓 their lengths and directions are the same. If we 

use a coordinate frame, we might say that corresponding components of the two vectors 

must be equal. This definition of equality will also do for position vectors, but for sliding 

vectors we must add that the line of action must be identical too. 

1.1.3. Vector magnitude and unit vectors 

Provided we use an orthogonal coordinate system, the magnitude of a 3-vector is  

𝑎 = |𝒂| = √𝑎1
2 + 𝑎2

2 + 𝑎3
2 

To find the unit vector in the direction of a, simply divide by its magnitude 

�̂� =
𝑎

|𝑎|
 

1.1.4. Vector Addition and subtraction 

Vectors are added/subtracted by adding/subtracting corresponding components, 

exactly as for matrices. Thus 

𝑎 +  𝑏 =  [𝑎1  +  𝑏1, 𝑎2  + 𝑏2 , 𝑎3  +  𝑏3] 

Addition follows the parallelogram construction of Figure 1.3 (a). Subtraction (𝒂 −  𝒃) is 

defined as the addition (𝒂 +  (−𝒃)). It is useful to remember that the vector 𝑎 − 𝑏 goes 

from b to a. 

The following results follow immediately from the above definition of vector addition: 

a) 𝑎 +  𝑏 =  𝑏 +  𝑎 (commutativity) (Figure 1.3(a)) 

b) (𝑎 +  𝑏)  +  𝑐 =  𝑎 +  (𝑏 +  𝑐)  =  𝑎 +  𝑏 +  𝑐 (associativity) (Figure 1.3(b)) 

c) 𝑎 +  0 =  0 +  𝑎 =  𝑎, where the zero vector is 0 =  [0, 0, 0]. 
d) 𝑎 +  (−𝑎)  =  0 

1.1.5. Multiplication of a vector by a scalar. (NOT the scalar product!) 

Just as for matrices, multiplication of a vector a by a scalar c is defined as multiplication of 

each component by c, so that 

𝑐𝑎 =  [𝑐𝑎1 , 𝑐𝑎2, 𝑐𝑎3]. 
It follows that: 

|𝑐𝒂| = √(𝒄𝒂𝟏)2 + (𝒄𝒂𝟐)2 + (𝒄𝒂𝟑)2 = |𝑐||𝑎| 
The direction of the vector will reverse if c is negative, but otherwise is unaffected. (By the 

way, a vector where the sign is uncertain is called a director.) 
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1.2. Scalar, dot, or inner product 

This is a product of two vectors results in a scalar quantity and is defined as follows 
for 3-component vectors: 

𝑎 · 𝑏 =  𝑎1𝑏1  +  𝑎2𝑏2 +  𝑎3𝑏3  . 
Note that 

𝑎 · 𝑎 =  𝑎1
2 + 𝑎2

2 + 𝑎3
2 = |𝑎|2 = 𝑎2

 

The following laws of multiplication follow immediately from the definition: 

a) 𝒂 ·  𝒃 =  𝒃 ·  𝒂 (commutativity) 

b) 𝒂 ·  (𝒃 +  𝒄)  =  𝒂 ·  𝒃 +  𝒂 ·  𝒄 (distributivity with respect to vector addition) 

c) (𝜆𝑎)  · 𝑏 =  𝜆(𝑎 · 𝑏)  =  𝑎 · (𝜆𝑏) scalar multiple of a scalar product of two vectors 

1.2.1. Geometrical interpretation of scalar product 

 
Fig 1.4. (a) Cosine rule. (b) Projection of b onto a. 
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Consider the square magnitude of the vector 𝑎 − 𝑏. By the rules of the scalar product, 
this is 

|𝒂 − 𝒃|𝟐
 = (𝒂 − 𝒃)  ·  (𝒂 − 𝒃) 

  =  𝒂 ·  𝒂 +  𝒃 ·  𝒃 −  𝟐(𝒂 ·  𝒃) 
=  𝒂𝟐 +  𝒃𝟐 −  𝟐(𝒂 ·  𝒃) 

But, by the cosine rule for the triangle OAB (Figure 1.4a), the length 𝐴𝐵2
 is given by 

|𝒂 − 𝒃|𝟐
 =  𝒂𝟐 +  𝒃𝟐 −  𝟐𝒂𝒃 𝒄𝒐𝒔 𝜽 

where θ is the angle between the two vectors. It follows that 

𝒂 ·  𝒃 =  𝒂𝒃 𝒄𝒐𝒔 𝜽, 
which is independent of the co-ordinate system used, and that |𝑎 ·  𝑏|  ≤  𝑎𝑏. 
Conversely, the cosine of the angle between vectors a and b is given by  

𝑐𝑜𝑠 𝜃 =  𝑎 · 𝑏/𝑎𝑏. 
1.2.2. Projection of one vector onto the other 

Another way of describing the scalar product is as the product of the magnitude of one 
vector and the component of the other in the direction of the first, since 𝒃𝒄𝒐𝒔𝜽 is the 
component of b in the direction of a and vice versa (Figure 1.4b)? 
Projection is particularly useful when the second vector is a unit vector —  𝒂 · �̂� is the 
component of a in the direction of 𝑖.̂ 
Notice that if we wanted the vector component of b in the direction of a we 
would write 

(𝑏 ∙ �̂�)�̂� =  
(𝒃 ∙ 𝒂)𝒂

𝑎2
. 

In the particular case 𝒂 · 𝒃 =  𝟎, the angle between the two vectors is a right angle and the 

vectors are said to be mutually orthogonal or perpendicular — neither vector has any 

component in the direction of the other. 

An orthonormal coordinate system is characterized by 𝑖̂ ∙ 𝑖̂ = 𝑗̂ ∙ 𝑗̂ =  �̂� ∙ �̂� = 1; and 

𝑖̂ ∙ 𝑗̂ = 𝑗̂ ∙ �̂�  = �̂� ∙ 𝑖̂ =  0. 

1.2.3. A scalar product is an “inner product” 

So far, we have been writing our vectors as row vectors 𝑎 =  [𝑎1, 𝑎2 , 𝑎3]. This is 

convenient because it takes up less room than writing column vectors 

𝑎 = [

𝑎1

𝑎2

𝑎3

] 

In matrix algebra vectors are more usually defined as column vectors, as in 

[
𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] [

𝑎1
𝑎2
𝑎3

] = [

𝑣1
𝑣2
𝑣3

] 
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and a row vector is written as 𝒂𝑻. Now for most of our work we can be quite relaxed about 

this minor difference, but here let us be fussy. 

Why? Simply to point out at that the scalar product is also the inner product more 

commonly used in linear algebra. Defined as 𝒂𝑻𝒃 when vectors are column vectors as 

𝑎 ·  𝑏 =  𝑎𝑇𝑏 =  [𝑎1, 𝑎2 , 𝑎3
] [

𝑏1

𝑏2

𝑏3

] = 𝑎1𝑏1  +  𝑎2𝑏2 +  𝑎3𝑏3   

Here we treat a n-dimensional column vector as an 𝑛 ×  1 matrix. (Remember that if you 

multiply two matrices 𝑴𝒎 × 𝒏𝑵𝒏 × 𝒑 then M must have the same columns as N has rows 

(here denoted by n) and the result has size (rows × columns) of 𝑚 ×  𝑝. So for n 

dimensional column vectors a and b, 𝒂𝑻 is a 𝟏 ×  𝒏 matrix and b is 𝒏 ×  𝟏 matrix, so the 

product 𝒂𝑻𝑏 is a 1 ×  1 matrix, which is (at last!) a scalar.) 
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1.3. Vector or cross product 

The vector product of two vectors a and b is denoted by a × b and is defined as 

follows 

𝑎 ×  𝑏 =  (𝑎2𝑏3  − 𝑎3𝑏2)𝑖̂  +  (𝑎3𝑏1 −  𝑎1𝑏3)𝑗̂  + (𝑎1𝑏2 −  𝑎2𝑏1)�̂�. 
 

 
Fig. 1.5: The direction cosines are cosines of the angles shown. 

It is MUCH more easily remembered in terms of the (pseudo-)determinant 

𝒂 ×  𝒃 = |
𝑖̂ 𝑗̂ �̂�

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

| 
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where the top row consists of the vectors �̂�, 𝒋̂, �̂� rather than scalars. 
Since a determinant with two equal rows has value zero, it follows that 𝑎 × 𝑎 =  0. 
It is also easily verified that (𝑎 × 𝑏) · 𝑎 =  (𝑎 × 𝑏)  · 𝑏 =  0, so that 𝑎 × 𝑏 is orthogonal 
(perpendicular) to both a and b, as shown in Figure 1.6. 

Note that 𝑖̂ × 𝑗̂ =  �̂�, 𝑗̂ × �̂� =  𝑖̂, 𝑎𝑛𝑑 �̂� × 𝑖̂ =  𝑗̂ 
The magnitude of the vector product can be obtained by showing that 

|𝑎 ×  𝑏|2 +  (𝑎 ·  𝑏)2
 =  𝑎2𝑏2

 

from which it follows that 
|𝑎 ×  𝑏|  =  𝑎𝑏 𝑠𝑖𝑛𝜃 

which is again independent of the co-ordinate system used? This is left as an 
exercise. 
Unlike the scalar product, the vector product does not satisfy commutativity but is in fact 
anti-commutative, in that 𝑎 × 𝑏 =  −𝑏 × 𝑎. Moreover, the vector product does not 
satisfy the associative law of multiplication either since, as we shall see later 
𝒂 ×  (𝒃 ×  𝒄)  ≠ (𝒂 ×  𝒃)  ×  𝒄. 
Since the vector product is known to be orthogonal to both the vectors which form the 
product, it merely remains to specify its sense with respect to these vectors. Assuming 

that the co-ordinate vectors form a right-handed set in the order �̂�, 𝒋̂, �̂� it can be seen that 
the sense of the vector product is also right-handed, i.e. the vector product has the same 
sense as the co-ordinate system used. 

�̂�  ×  𝒋̂  = |
𝑖̂ 𝑗̂ �̂�
1 0 0
0 1 0

| = �̂� 

In practice, figure out the direction from a right-handed screw twisted from the first to 
second vector as shown in Figure 1.6(a). 

 
Figure 1.6: (a)The vector product is orthogonal to both a and b. Twist from first to second and 

move in the direction of a right-handed screw. (b) Area of parallelogram is ab sin θ. 

1.3.1. Geometrical interpretation of vector product 

The magnitude of the vector product (𝒂 × 𝒃) is equal to the area of the parallelogram whose sides are parallel 

to, and have lengths equal to the magnitudes of, the vectors a and b (Figure 1.6b). Its direction is 

perpendicular to the parallelogram 
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2. Multiple Products. Geometry using Vectors 

2.1. Triple and multiple products 
Using mixtures of the pairwise scalar product and vector product, it is possible to derive “triple products” 

between three vectors, and indeed n-products between n vectors. 

There is nothing about these that you cannot work out from the definitions of pairwise scalar and vector 

products already given, but some have interesting geometric interpretations, so it is worth looking at these. 

2.1.1. Scalar triple product 

This is the scalar product of a vector product and a third vector, i.e. 𝒂 ·  (𝒃 ×  𝒄). Using the pseudo-

determinant expression for the vector product, we see that the scalar triple product can be represented as the 

true determinant 

𝒂 ∙ (𝒃 ×  𝒄)  = |

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

| 

You will recall that if you swap a pair of rows of a determinant, its sign changes; hence if you swap two pairs, 
its sign stays the same. 

 
This says that 

(i) 𝑎 ·  (𝑏 ×  𝑐)  =  𝑏 ·  (𝑐 ×  𝑎)  =  𝑐 ·  (𝑎 ×  𝑏) (Called cyclic permutation.) 
(ii) 𝑎 ·  (𝑏 ×  𝑐)  =  −𝑏 ·  (𝑎 ×  𝑐) and so on. (Called anti-cyclic permutation.) 
(iii) The fact that 𝒂 ·  (𝒃 ×  𝒄)  =  (𝒂 ×  𝒃)  ·  𝒄 allows the scalar triple product to be written as [a, b, 

c]. This notation is not very helpful, and we will try to avoid it below. 
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2.1.2. Geometrical interpretation of scalar triple product 
The scalar triple product gives the volume of the parallelepiped whose sides are represented by the vectors a, 

b, and c. We saw earlier that the vector product (a × b) has magnitude equal to the area of the base, and 

direction perpendicular to the base. The component of c in this direction is equal to the height of the 

parallelepiped shown in Figure 2.1(a). 

 
Figure 2.1: (a) Scalar triple product equals volume of parallelepiped. (b) Coplanarity yields zero 

scalar triple product. 

2.1.3. Linearly dependent vectors 
If the scalar triple product of three vectors is zero 

𝑎 ·  (𝑏 ×  𝑐)  =  0 

then the vectors are linearly dependent. That is, one can be expressed as a linear combination of the others. 

For example, 

𝑎 =  𝜆𝑏 +  𝜇𝑐 

where λ and μ are scalar coefficients. 

You can see this immediately in two ways: 

• The determinant would have one row that was a linear combination of the others. You’ll remember 

that by doing row operations, you could reach a row of zeros, and so the determinant is zero. 

• The parallelepiped would have zero volume if squashed flat. In this case all three vectors lie in a plane, 

and so any one is a linear combination of the other two. (Figure 2.1b.) 

2.1.4. Vector triple product 

This is defined as the vector product of a vector with a vector product, 𝑎 × (𝑏 × 𝑐). Now, the vector triple 

product 𝒂 × (𝒃 × 𝒄) must be perpendicular to (𝑏 × 𝑐), which in turn is perpendicular to both b and c. Thus 

𝒂 × (𝒃 × 𝒄) can have no component perpendicular to b and c, and hence must be coplanar with them. It 

follows that the vector triple product must be expressible as a linear combination of b and c: 𝑎 × (𝑏 ×  𝑐)  =
 𝜆𝑏 +  𝜇𝑐 . 
The values of the coefficients can be obtained by multiplying out in component form. Only the first 

component need be evaluated, the others then being obtained by symmetry. That is 

(𝑎 × (𝑏 ×  𝑐))
1

 =  𝑎2(𝑏 ×  𝑐)3  −  𝑎3(𝑏 ×  𝑐)2 

=  𝑎2(𝑏1𝑐2  −  𝑏2𝑐1)  +  𝑎3(𝑏1𝑐3  −  𝑏3𝑐1) 
=  (𝑎2𝑐2  +  𝑎3𝑐3)𝑏1  −  (𝑎2𝑏2  +  𝑎3𝑏3)𝑐1 

=  (𝑎1𝑐1  +  𝑎2𝑐2  +  𝑎3𝑐3)𝑏1 −  (𝑎1𝑏1 + 𝑎2𝑏2  +  𝑎3𝑏3)𝑐1 
=  (𝑎 ·  𝑐)𝑏1  −  (𝑎 ·  𝑏)𝑐1 

The equivalents must be true for the 2nd and 3rd components, so we arrive at the identity 

𝑎 × (𝑏 ×  𝑐)  =  (𝑎 ·  𝑐)𝑏 −  (𝑎 ·  𝑏)𝑐 
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2.1.5. Projection using vector triple product 

An example of the application of this formula is as follows. Suppose v is a vector and we 

want its projection into the 𝑥𝑦 -plane. The component of v in the 𝑧 direction is 𝑣 ∙ �̂�, so 

the projection we seek is 𝒗 − (𝒗 ·  �̂�)�̂�. Writing �̂� ← a, v ← b, �̂�← c, 
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Figure 2.3: The projection of a (3-) vector onto a set of (3) basis vectors is unique. I.e. in   𝑑 = 
𝛼𝑎 +  𝛽𝑏 +  𝛾𝑐, the set {𝛼, 𝛽, 𝛾} is unique. 

 
2.2. Geometry using vectors: lines, planes 
2.2.1. The equation of a line 

The equation of the line passing through the point whose position vector is a and lying in 
the direction of vector b is 

𝑟 =  𝑎 +  𝜆𝑏 

where λ is a scalar parameter. If you make b a unit vector, 𝑟 =  𝑎 + 𝜆�̂� then λ will 

represent metric length. 
For a line defined by two points 𝑎1 and 𝑎2 

𝑟 =  𝑎1  +  𝜆(𝑎2  −  𝑎1) 
or for the unit version 

𝑟 =  𝑎1  + 𝜆
(𝑎2  −  𝑎1)

|𝑎2  −  𝑎1|
 

 
Figure 2.4: Equation of a line. With �̂� a unit vector, 𝜆 is in the length units established by the 
definition of a. 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

16 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

17 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

18 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

19 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

20 
 

 
 

 

 

 

 

 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

21 
 

Matrix Algebra  
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Theorem of Determinants  

Theorem 1:- The value of a determinant remains the same if rows and columns are interchanged. In symbols, 

det (A) = det (𝐴𝑇). 

Theorem 2: - If all elements of any row [or column] are zero except for one element, then the value of the 

determinant is equal to the product of that element by its cofactor. In particular, if all elements of a row [or 

column] are zero the determinant is zero. 

Theorem 3: - An interchange of any two rows [or columns] changes the sign of the determinant. 

Theorem -4. If all elements in any row [or column] are multiplied by a number, the determinant is also 

multiplied by this number. 

Theorem -5. If any two rows [or columns] are the same or proportional, the determinant is zero. 

Theorem -6. If we express the elements of each row [or column] as the sum of two terms, then the 

determinant can be expressed as the sum of two determinants having the same order. 

Theorem -7. If we multiply the elements of any row [or column] by a given number and add to corresponding 

elements of any other row [or column], then the value of the determinant remains the same. 

Theorem -8. If A and B are square matrices of the same order, then 

                     det (AB) = det (A) det (B)                                                                         (11) 
Theorem -9. The sum of the products of the elements of any row [or column] by the cofactors of another row [or 

column] is zero. In symbols, 

 
Theorem -10. Let 𝑣1, 𝑣2, . . . , 𝑣𝑛  represent row vectors [or column vectors] of a square matrix A of order n. Then 

𝑑𝑒𝑡 (𝐴) = 0 if and only if there exist constants [scalars] 𝝀𝟏, 𝝀𝟐, . . . , 𝝀𝒏 not all zero such that 
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INVERSE OF A MATRIX 

 

If for a given square matrix A there exists a matrix B such that 𝑨𝑩 = 𝑰, then B is called an inverse of A and is 

denoted by 𝑨−𝟏. The following theorem is fundamental. 
 

Theorem 11. If A is a non-singular square matrix of order n [i.e. 𝑑𝑒𝑡(𝐴) ≠ 0], then there exists a unique inverse 𝑨−𝟏. 

such that 𝐴𝑨−𝟏
=  𝑨−𝟏

𝐴 = 𝐼  and we can express 𝑨−𝟏,  in the following form 
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THEOREMS ON EIGENVALUES AND EIGENVECTORS 

 

Theorem -12. The eigenvalues of a Hermitian matrix [or symmetric real matrix] are real. The eigenvalues of a 

skew-Hermitian matrix [or skew-symmetric real matrix] are zero or pure imaginary. The eigenvalues of a 

unitary [or real orthogonal matrix] all have absolute value equal to 1. 

 

Theorem -13. The eigenvectors belonging to different eigenvalues of a Hermitian matrix [or symmetric real 

matrix] are orthogonal. 

Theorem -14 [Cayley-Hamilton]. A matrix satisfies its own characteristic equation  

Theorem -15 [Reduction of matrix to diagonal form]. If a non-singular matrix A has distinct eigenvalues 

𝝀𝟏, 𝝀𝟐, 𝝀𝟑, . .. with corresponding eigenvectors written as columns in the matrix 

 

 
i.e. 𝐵−1𝐴𝐵, called the transform of A by B, is a diagonal matrix containing the eigenvalues of A in the main 

diagonal and zeros elsewhere. We say that A has been transformed or reduced to diagonal form. 

 

Theorem -16 [Reduction of quadratic form to canonical form]. Let A be a symmetric real matrix, for 

example, 

 

     
The cross-product terms of this quadratic form can be removed by letting 𝑿 =  𝑩𝑼 where U is the column 

vector with elements 𝒖𝟏, 𝒖𝟐, 𝒖𝟑 and B is an orthogonal matrix which diagonalizes A. The new quadratic form 

in 𝒖𝟏, 𝒖𝟐, 𝒖𝟑 with no cross-product terms is called the canonical form. A generalization can be made to 

Hermitian quadratic forms. 
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OPERATOR INTERPRETATION OF MATRICES 

If A is an n x n matrix, we can think of it as an operator or transformation acting on a column vector X to 

produce AX which is another column vector. With this interpretation equation (21) asks for those vectors X 

which are transformed by A into constant multiples of themselves [or equivalently into vectors which have the 

same direction but possibly different magnitude]. 
If case A is an orthogonal matrix, the transformation is a rotation and explains why the absolute value of all the 

eigenvalues in such case are equal to one [Theorem -12], since an ordinary rotation of a vector would not change its 
magnitude.  

The ideas of transformation are very convenient in giving interpretations to many properties of matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

30 
 

Vector Calculus 

2. Differentiating Vector Functions of a Single Variable 
Your experience of differentiation and integration has extended as far as scalar functions 
of single and multiple variables — functions like 𝑓 (𝑥) and 𝑓 (𝑥, 𝑦 , 𝑡). It should be no 
great surprise that we often wish to differentiate vector functions. For example, suppose 

you were driving along a wiggly road with position 𝑟(𝑡) at time t. Differentiating 𝑟(𝑡) w.r.t 

time should yield your velocity 𝑣(𝑡), and differentiating 𝑣(𝑡) should yield your 
acceleration. Let’s see how to do this. 
 

a. Differentiation of a vector 

The derivative of a vector function a(p) of a single parameter p is 

 
Note that 𝑑𝑎/𝑑𝑝 has a different direction and a different magnitude from a. Likewise, as you might expect, 

the chain rule still applies. If 𝑎 =  𝒂(𝑢) and 𝑢 =  𝑢(𝑡), say: 
𝑑

𝑑𝑡
𝒂 =

𝑑𝒂

𝑑𝑢

𝑑𝑢

𝑑𝑡
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i. Geometrical interpretation of vector derivatives 

Let 𝒓(𝒑) be a position vector tracing a space curve as some parameter p varies. The 

vector 𝜹𝒓 is a secant to the curve, and 𝜹𝒓/𝜹𝒑 lies in the same direction. (See Fig. 3.1.) In 
the limit as 𝛿𝑝 tends to zero 𝜹𝒓/𝜹𝒑 =  𝒅𝒓/𝒅𝒑 becomes a tangent to the space curves. If 
the magnitude of this vector is 1 (i.e. a unit tangent), then  
|𝑑𝑟|  =  𝑑𝑝  so, the parameter 𝑝 is arc-length (metric distance). More generally, however, 
𝑝 will not be arc-length and we will have: 

𝑑𝒓

𝑑𝑝
=

𝑑𝒓

𝑑𝑠

𝑑𝑠

𝑑𝑝
 

So, the direction of the derivative is that of a tangent to the curve, and its magnitude is 
|𝒅𝒔/𝒅𝒑|, the rate of change of arc length w.r.t the parameter. Of course, if that 

parameter p is time, the magnitude |𝒅𝒓/𝒅𝒕| is the speed. 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

32 
 

 
ii. Arc length is a special parameter! 

It might seem that we can be completely relaxed about saying that any old parameter p is 

arc length, but this is not the case. Why not? The reason is that arc length is special is 

that, whatever the parameter p, 

𝑠 = ∫ |
𝑑𝒓

𝑑𝑝
|

𝑝

𝑝0

𝑑𝑝 

Perhaps another way to grasp the significance of this is using Pythagoras’ theorem on a 
short piece of curve: in the limit as 𝑑𝑥 etc. tend to zero, 

𝑑𝑠2
 =  𝑑𝑥2 + 𝑑𝑦2   +  𝑑𝑧2

 . 
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3.5. Rotating systems 
Consider a body which is rotating with constant angular velocity 𝝎 about some axis passing through the 

origin. Assume the origin is fixed, and that we are sitting in a fixed coordinate system 𝑂𝑥𝑦𝑧. 

If 𝜌 is a vector of constant magnitude and constant direction in the rotating system, then its representation r in 

the fixed system must be a function of t. 

𝑟(𝑡)  =  𝑅(𝑡)𝜌 

At any instant as observed in the fixed system 
𝑑𝒓

𝑑𝑡
= �̇�𝜌 + 𝑅�̇� 

but the second term is zero since we assumed 𝜌 to be constant so we have 
𝑑𝒓

𝑑𝑡
= �̇�𝑅𝑇𝒓 

Note that: 

• 𝑑𝑟/𝑑𝑡 will have fixed magnitude; 

• 𝑑𝑟/𝑑𝑡 will always be perpendicular to the axis of rotation; 

• 𝑑𝑟/𝑑𝑡 will vary in direction within those constraints; 

• 𝑟(𝑡) will move in a plane in the fixed system. 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

38 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

39 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

40 
 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

41 
 

 

 
 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

42 
 

3. Line, Surface and Volume Integrals. Curvilinear coordinates. 
In this lecture we introduce line, surface and volume integrals, and consider how these are 

defined in non-Cartesian, curvilinear coordinates 

a. Scalar and vector fields 
When a scalar function 𝒖(𝑟) is determined or defined at each position r in some region, we 

say that 𝒖 is a scalar field in that region. 

Similarly, if a vector function v(r) is defined at each point, then v is a vector field in that 

region. As you will see, in field theory our aim is to derive statements about the bulk 

properties of scalar and vector fields, rather than to deal with individual scalars or vectors. 

Familiar examples of each are shown in figure 4.1. 

In part 1 we worked out the force 𝑭(𝒓) on a charge 𝑸 arising from a number of charges 𝒒𝒊 . 

The electric field is 𝑭/𝑸, so 

𝐸(𝑟) = ∑ 𝐾
𝑞𝑖

|𝑟 − 𝑟𝑖|3
(𝑟 − 𝑟𝑖)

𝑁

𝑖=0

. ( 𝑘 =
1

4𝜋 ∈𝑟∈0
) 

For example; you could work out the velocity field, in plane polar, at any point on 

 
b. Line integrals through fields 

Line integrals are concerned with measuring the integrated interaction with a field as you 

move through it on some defined path. E.g., given a map showing the pollution density field 

in Oxford, you may wish to work out how much pollution you breathe in when cycling from 

college to the Department via different routes. 
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First recall the definition of an integral for a scalar function 𝑓 (𝑥) of a single scalar variable x. 

One assumes a set of n samples 𝑓𝑖 =  𝑓(𝑥𝑖 ) spaced by 𝛿𝑥𝑖 . One forms the limit of the sum 

of the products 𝑓 (𝑥𝑖 )𝛿𝑥𝑖 as the number of samples tends to infinity 

∫ 𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

∑ 𝑓𝑖 

𝑛

𝑖=0

𝛿𝑥𝑖, 𝛿𝑥𝑖 → 0   

For a smooth function, it is irrelevant how the function is subdivided. 

i. Vector line integrals 

In a vector line integral, the path L along which the integral is to be evaluated is split into a 

large number of vector segments 𝛿𝑟𝑖 . Each line segment is then 

 
Figure 4.2: Line integral. In the diagram 𝐹(𝑟) is a vector field, but it could be replaced with scalar 
field 𝑈(𝑟). 

multiplied by the quantity associated with that point in space, the products are then 
summed and the limit taken as the lengths of the segments tend to zero. 
There are three types of integral we have to think about, depending on the nature of the 
product: 
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Physical examples of line integrals 

• The total work done by a force F as it moves a point from A to B along a given path 

C is given by a line integral of type 2 above. If the force acts at point r and the 

instantaneous displacement along curve C is 𝑑𝑟 then the infinitesimal work done is 

𝑑𝑊 =  𝐹. 𝑑𝑟, and so the total work done traversing the path is 

𝑊𝑐 = ∫ 𝐹. 𝑑𝑟 

𝐶 

 

• Ampere’s law relating magnetic field B to linked current can be written as 

∮ 𝐵. 𝑑𝑟 = 𝜇0𝐼 

               where 𝐼 is the current enclosed by (closed) path 𝐶. 

• The force on an element of wire carrying current I, placed in a magnetic field of 

strength B, is 𝑑𝑭 =  𝐼𝑑𝑟 ×  𝑩. So, if a loop this wire C is placed in the field then 

the total force will be an integral of type 3 above:  

𝐹 = 𝐼 ∮ 𝑑𝑟 ×  𝐵
𝑐

  

Note that the expressions above are beautifully compact in vector notation, and are all 
independent of coordinate system. Of course, when evaluating them we need 
to choose a coordinate system: often this is the standard Cartesian coordinate system (as 
in the worked examples below), 
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    4.6. Changing variables: curvilinear coordinates 
Up to now we have been concerned with Cartesian coordinates 𝑥, 𝑦 , 𝑧 with coordinate axes 

𝑖̂, 𝑗̂, �̂�. When performing a line integral in Cartesian coordinates, you write 

𝒓 =  𝒙�̂�  +  𝒚𝒋̂  +  𝒛�̂� and 𝑑𝑟 =  𝑑𝑥𝑖̂  +  𝑑𝑦𝑗̂ +  𝑑𝑧�̂� and can be sure that length scales are 

properly handled because – as we saw in the above Lecture  

|𝑑𝑟|  =  𝑑𝑠2
 =  √𝑑𝑥2 +  𝑑𝑦2   +  𝑑𝑧2 

The reason for using the basis  𝑖̂, 𝑗̂, �̂� rather than any other orthonormal basis set is that 𝑖̂ 
represents a direction in which 𝑥 is increasing while the other two coordinates remain constant 

(and likewise for 𝑗̂ and �̂� with 𝑦 and 𝑧 respectively), simplifying the representation and 

resulting mathematics. Often the symmetry of the problem strongly hints at using another 

coordinate 

system: 

• likely to be plane, cylindrical, or spherical polars, 

• but can be something more exotic 

The general name for any different “𝑢, 𝑣 , 𝑤” coordinate system is a curvilinear coordinate 

system. We will see that the idea hinted at above – of defining a basis set by considering 

directions in which only one coordinate is (instantaneously) increasing – provides the 

appropriate generalization. 

We begin by discussing common special cases: cylindrical polar and spherical polar, and 

conclude with a more general formulation. 

 

4.6.1. Cylindrical polar coordinates 

As shown in figure 4.4 a point in space P having cartesian coordinates 𝑥, 𝑦 , 𝑧 can be 

expressed in terms of cylindrical polar coordinates, 𝑟, 𝜙, 𝑧 as follows: 

𝒓 =  𝒙�̂�  +  𝒚𝒋̂  +  𝒛�̂� 

= 𝑟 𝑐𝑜𝑠𝜙𝑖̂  +  𝑟 𝑠𝑖𝑛 𝜑𝑗̂ +  𝑧 �̂� 

 

Figure 4.4: Cylindrical polar: (a) coordinate definition; (b) “iso” lines in r , φ and z. 
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Figure 4.7: Surface elements in cylindrical polar coordinates 
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Summary  

To summarise  
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Vector Operators: Grad, Div. and Curl 

We introduce three field operators which reveal interesting collective field properties, 
the gradient of a scalar field, 

o the divergence of a vector field, and 
o the curl of a vector field. 

There are two points to get over about each: 

• The mechanics of taking the grad, div or curl, for which you will need to brush up your multivariate 

calculus. 

• The underlying physical meaning — that is, why they are worth bothering about. 

The gradient of a scalar field 

Recall the discussion of temperature distribution throughout a room in the overview, where we wondered how 

a scalar would vary as we moved off in an arbitrary direction. Here we find out how. If 𝑈(𝑥, 𝑦 , 𝑧) is a scalar 

field, ie a scalar function of position 𝑟 =  [𝑥, 𝑦, 𝑧] in 3 dimensions, then its gradient at any point is defined in 

Cartesian coordinates by 

𝑔𝑟𝑎𝑑𝑈 =
𝜕𝑈

𝜕𝑥
𝑖̂ +

𝜕𝑈

𝜕𝑦
𝑗̂ +

𝜕𝑈

𝜕𝑧
�̂� 

It is usual to define the vector operator which is called “del” or “nabla” 

𝛁 = 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
 

Then 
𝑔𝑟𝑎𝑑 𝑈 = 𝛁𝐔 

Note immediately that 𝜵𝑼 is a vector field! 
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Without thinking too carefully about it, we can see that the gradient of a scalar field tends 
to point in the direction of greatest change of the field. Later we will be more precise. 
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The significance of grad  
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The divergence of a vector field 
The divergence computes a scalar quantity from a vector field by differentiation. If 

𝑎(𝑥, 𝑦 , 𝑧) is a vector function of position in 3 dimensions, that is 𝒂 = 𝒂𝟏�̂� + 𝒂𝟐𝒋̂ + 𝒂𝟑�̂� 

then its divergence at any point is defined in Cartesian co-ordinates by 

𝑑𝑖𝑣𝑎 =
𝜕𝑎1

𝜕𝑥
+

𝜕𝑎2

𝜕𝑦
+

𝜕𝑎3

𝜕𝑧
 

We can write this in a simplified notation using a scalar product with the 𝜵 vector 

differential operator: 

𝑑𝑖𝑣𝑎 = (�̂�
𝜕

𝜕𝑥
+ �̂�

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
) ∙ 𝒂 =  𝜵 ∙ 𝒂 

Notice that the divergence of a vector field is a scalar field. 

 

 

The significance of div  

Consider a typical vector field, water flow, and denote it by 𝑎(𝑟). This vector has 
magnitude equal to the mass of water crossing a unit area perpendicular to the direction 
of a per unit time. 
Now take an infinitesimal volume element 𝑑𝑽 and figure out the balance of the flow of a 
in and out of 𝑑𝑽 . 
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To be specific, consider the volume element 𝑑𝑽 =  𝑑𝑥𝑑𝑦𝑑𝑧 in Cartesian coordinates, and 

think first about the face of area 𝑑𝑥𝑑𝑧 perpendicular to the y axis and facing outwards in 

the negative y direction. (That is, the one with surface area 𝑑𝑆 =  −𝑑𝑥𝑑𝑧𝑗̂.) 

 
Figure 5.2: Elemental volume for calculating divergence. 

The component of the vector a normal to this face is 𝒂 ∙ 𝒋̂  =  𝒂𝒚  , and is pointing inwards, 

and so its contribution to the OUTWARD flux from this surface is  

𝒂 ·  𝑑𝑆 =  − 𝑎𝑦 (𝑦 )𝑑𝑧𝑑𝑥  
where 𝑎𝑦 (𝑦 ) means that ay is a function of 𝑦 . (By the way, flux here denotes mass 

per unit time.) 

A similar contribution, but of opposite sign, will arise from the opposite face, but we must 

remember that we have moved along y by an amount 𝑑𝑦 , so that this OUTWARD amount 

is 

𝑎𝑦(𝑦 + 𝑑𝑦)𝑑𝑧𝑑𝑥 = (𝑎𝑦 +
𝜕𝑎𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧 

The total outward amount from these two faces is 
𝜕𝑎𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 =

𝜕𝑎𝑦

𝜕𝑦
𝑑𝑣 

Summing the other faces gives a total outward flux of 

(
𝜕𝑎𝑥

𝜕𝑥
+

𝜕𝑎𝑦

𝜕𝑦
+

𝜕𝑎𝑧

𝜕𝑧
) 𝑑𝑉 = 𝛁 ∙ 𝒂 𝑑𝑉 

So we see that 
The divergence of a vector field represents the flux generation per unit volume at each 

point of the field. (Divergence because it is an efflux not an influx.) 

Interestingly we also saw that the total efflux from the infinitesimal volume was equal to 
the flux integrated over the surface of the volume. 
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The Laplacian: div (𝒈𝒓𝒂𝒅𝑼) of a scalar field 

Recall that 𝑔𝑟𝑎𝑑𝑈 of any scalar field 𝑈 is a vector field. Recall also that we can compute 

the divergence of any vector field. So, we can certainly compute 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑𝑈), even if we 

don’t know what it means yet.  

Here is where the ∇ operator starts to be really handy. 

 
The last expression is used next in solving Laplace’s Equation in partial differential 

equations. For this reason, the operator 𝛻2 is called the “Laplacian” 

𝛻2𝑈 = (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) 𝑈 

Laplace’s equation itself is 

𝛻2𝑈 = 0  
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            The curl of a vector field  

 

 
          The Significance of Curl  

 
Figure 5.3: (a) A rough sketch of the vector field −𝑦𝑖̂ +  𝑥𝑗̂. (b) An element in which to calculate curl. 
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In fact, curl is closely related to the line integral around a loop. 
The circulation of a vector a round any closed curve 𝐶 is defined to be  and the 

curl of the vector field a represents the vorticity, or circulation per unit area, of the field. 

 
NB: Again, this is not a completely rigorous proof as we have not shown that the result is 

independent of the co-ordinate system used.so proof it  

 

Some definitions involving div, curl and grad 

 
• A vector field with zero divergence is said to be solenoidal. 

• A vector field with zero curl is said to be irrotational. 

• A scalar field with zero gradient is said to be, constant. 
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Vector Calculus Expressions and Identities 
In this Topics we look at more complicated identities involving vector operators. The main 
thing to appreciate it that the operators behave both as vectors and as differential 
operators, so that the usual rules of taking the derivative of, say, a product must be 
observed.  why we need vector calculus? 
First, since grad, div and curl describe key aspects of vectors fields, they arise often in 
practice, and so the identities can save you a lot of time and hacking of partial derivatives, 
as we will see when we consider Maxwell’s equation as an example later. 
Secondly, they help to identify other practically important vector operators. 

1. Identity 1: curl grad U = 0 

 
2. Identity 2: div curl a = 0 

 
3. Identity 3: div and curl of 𝑼𝒂 

Suppose that 𝑈(𝑟) is a scalar field and that a(r) is a vector field and we are interested in the 

product 𝑈𝑎. This is a vector field, so we can compute its divergence and curl. For example, 

the density 𝜌(𝑟) of a fluid is a scalar field, and the instantaneous velocity of the fluid 𝑣(𝑟) 

is a vector field, and we are probably interested in mass flow rates for which we will be 

interested in 𝜌(𝑟)𝒗(𝒓). 
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The divergence (a scalar) of the product 𝑈𝑎 is given by: 

 
In a similar way, we can take the curl of the vector field 𝑈𝒂, and the result should 

be a vector field: 

𝜵 × (𝑈𝑎)  =  𝑈𝜵 ×  𝒂 +  (𝜵𝑈) ×  𝒂 . 

4. Identity 4: div of 𝒂 ×  𝒃 

 

5. Identity 5: 𝒄𝒖𝒓𝒍(𝒂 ×  𝒃) 
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6. Definition of the operator [𝒂 ·  𝜵] 
This is a scalar operator, but it can obviously can be applied to a scalar field, resulting in a 
scalar field, or to a vector field resulting in a vector field: 

[𝒂 ·  𝜵] ≡ [𝑎𝑥

𝜕

𝜕𝑥
+ 𝑎𝑦

𝜕

𝜕𝑦
+ 𝑎𝑧

𝜕

𝜕𝑧
] 

7. Identity 6: 𝒄𝑢𝑟𝑙(𝑐𝑢𝑟𝑙𝒂) for you to derive 
The following important identity is stated, and left as an exercise: 

𝑐𝑢𝑟𝑙(𝑐𝑢𝑟𝑙𝑎)  =  𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝒂 −  𝛻2𝒂 
where 

𝛻2𝒂 =  𝛻2𝒂𝒙𝑖̂ +  𝛻2𝒂𝒚𝑗̂ +  𝛻2𝒂𝒛�̂� 
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8. Grad, div, curl and 𝛻2
 in curvilinear co-ordinate systems 

 

 
9. Grad in curvilinear coordinates 

 

 
10. Divergence in curvilinear coordinates 

Expressions can be obtained for the divergence of a vector field in orthogonal curvilinear co-ordinates by 

making use of the flux property. 

We consider an element of volume 𝑑𝑽. If the curvilinear coordinates are orthogonal then the little volume is a 

cuboid (to first order in small quantities) and 

𝑑𝑉 =  ℎ𝑢 ℎ𝑣 ℎ𝑤  𝑑𝑢 𝑑𝑣 𝑑𝑤 

However, it is not quite a cuboid: the area of two opposite faces will differ as the scale parameters are 

functions of u, v and w in general. 
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Figure 6.1: Elemental volume for calculating divergence in orthogonal curvilinear coordinates 

 

So, the net efflux from the two faces in the ˆv direction shown in Figure 6.1 is 
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11. Curl in curvilinear coordinates 
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12. The Laplacian in curvilinear coordinates 

 

13. Grad Div, Curl, 𝜵𝟐
 in cylindrical polars 

 

 

14. Grad Div, Curl, 𝜵𝟐
 in spherical polars 
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Applications of Vector Calculus 
In Lecture under identity we saw one classic example of the application of vector calculus 

to Maxwell’s equation. 

In this lecture we explore a few more examples from fluid mechanics and heat transfer. As 

with Maxwell’s equations, the examples show how vector calculus provides a powerful 

way of representing underlying physics.  

The power come from the fact that div, grad and curl have a significance or meaning which 

is more immediate than a collection of partial derivatives. Vector calculus will, with 

practice, become a convenient shorthand for you. 

• Electricity – Ampere’s Law 

• Fluid Mechanics - The Continuity Equation 

• Thermo: The Heat Conduction Equation 

• Mechanics/Electrostatics - Conservative fields 

• The Inverse Square Law of force 

• Gravitational field due to distributed mass 

• Gravitational field inside body 

• Pressure forces in non-uniform flows 
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a. Electricity – Ampere’s Law 
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b. Fluid Mechanics - The Continuity Equation 
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c. Thermodynamics - The Heat Conduction Equation 

 

Flow of heat is very similar to flow of fluid, and heat flow satisfies a similar continuity equation. The flow is 

characterized by the heat current density q(r) (heat flow per unit area and time), sometimes misleadingly 

called heat flux.  

Assuming that there is no mass flow across the boundary of the control volume and no source of heat inside it, 

the rate of flow of heat out of the control volume by conduction must equal the rate of decrease of internal 

energy (constant volume) or enthalpy (constant pressure) within it. This leads to the equation 
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d. Mechanics - Conservative fields of force 
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e. The Inverse Square Law of force 
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f. Gravitational field due to distributed mass: Poisson’s Equation 
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g. Pressure forces in non-uniform flows 

 
 

 

 

 
 

 

 

 

 

 

 



Lecture Note on Course Phys 2032 by Jifar R. JU CNS Phys.Dept.  

85 
 

 
 

 

 

Complex Variables 

Chapter Three  
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Expressed in another way, (5) is equivalent to the statement that ∫ 𝒇(𝒛)𝒅𝒛 
𝒛𝟐

𝒛𝟏
has a value independent of the 

path joining 𝑧1 and 𝑧2. Such integrals can be evaluated as 𝐹(𝑧𝑧)  −  𝐹(𝑍1) where 𝐹′(𝑧)  =  𝑓(𝑧).  
 

Example 4. Since 𝑓(𝑧)  =  2𝑥 is analytic everywhere, we have for any simple closed curve C 

∮ 2𝑧 𝑑𝑧 = 0  

                        Also       ∫ 2𝑧 𝑑𝑧 = 𝑧2|2i
1+𝑖 

= (1 + 𝑖)2 − (2𝑖)2 = 2𝑖 + 4 
1+𝑖

2𝑖 
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A function can have other types of singularities besides poles. For example,𝑓(𝑧) = √𝑧 has a branch point at z 

= 0. The function 𝑓(𝑧) =
𝑠𝑖𝑛𝑍

𝑧
 has a singularity at 𝑧 =  0. However, due to the fact that lim

𝑧→0

𝑠𝑖𝑛𝑍

𝑧
 is finite, we 

call such a singularity a removable singularity. 
 

LAURENT'S SERIES 
 

If 𝑓(𝑧) has a pole of order 𝑛 at 𝑧 =  𝑎 but is analytic at every other point inside and on a circle C 

with center at 𝒂, then (𝑧 − 𝑎)𝑛 𝑓(𝑧) is analytic at all points inside and on C and has a Taylor series 

about 𝑧 = 𝑎 so that  

𝒇(𝒛) =
𝒂−𝒏

(𝒛 − 𝒂)𝒏 +
𝒂−𝒏+𝟏

(𝒛 − 𝒂)𝒏−𝟏 + ⋯ +
𝒂−𝒏

𝒛 − 𝒂
+ 𝒂𝟎 + 𝒂𝟏(𝒛 − 𝒂) + 𝒂𝟐(𝒛 − 𝒂)𝟐 + ⋯         (𝟗) 

This is called a Laurent series for f(z). The part 𝑎0  +  𝑎1(𝑧 —  𝑎)  +  𝑎2(𝑧 —  𝑎)2 + • • • is 

called the analytic part, while the remainder consisting of inverse powers of z — a is called 

the “principal part”. 
A function which is analytic in a region bounded by two concentric circles having center at 𝑧 = 𝑎 can always 

be expanded into such a Laurent series. 

It is possible to define various types of singularities of a function f(z) from its Laurent series. For example, 

when the principal part of a Laurent series has a finite number of terms and 𝑎−𝑛 ≠ 0 while 𝑎−𝑛−1, 𝑎−𝑛−𝑧 , . .. 
are all zero, then z = a is a pole of order n. If the principal part has infinitely many terms, z = a is called an 

essential singularity or sometimes a pole of infinite order. 
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Theorem 13. If 𝑓(𝑧) is analytic within and on the boundary 𝐶 of a region 𝑅 except at a finite 

number of poles 𝑎, 𝑏, 𝑐, . .. within 𝑅 having residues 𝑎−1, 𝑏−1, 𝑐−1, . .. respectively, then 
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4. Partial Differential Equations (PDEs) 

 
4.1. SOME DEFINITIONS INVOLVING PARTIAL DIFFERENTIAL EQUATIONS 

 

A partial differential equation is an equation containing an unknown function of two or more 

variables and its partial derivatives with respect to these variables. The order of a partial differential 

equation is that of the highest ordered derivative present. 

 
A solution of a partial differential equation is any function which satisfies the equation identically. 

The general solution is a solution which contains a number of arbitrary independent functions equal to the 

order of the equation. 

A particular solution is one which can be obtained from the general solution by particular choice of the 

arbitrary functions. 

 
 

A singular solution is one which cannot be obtained from the general solution by particular choice of the 

arbitrary functions. 

A boundary-value problem involving a partial differential equation seeks all solutions of a partial differential 

equation which satisfy conditions called boundary conditions. Theorems relating to the existence and 

uniqueness of such solutions are called existence and uniqueness theorems. 

 

4.2. LINEAR PARTIAL DIFFERENTIAL EQUATIONS 
 

The general linear partial differential equation of order two in two independent variables has the form 

 
where A, B, ..., G may depend on x and y but not on u. A second order equation with independent variables x 

and y which does not have the form (1) is called nonlinear. 

If 𝐺 =  0 the equation is called homogeneous, while if 𝐺 ≠ 0 it is called non-homogeneous. Generalizations 

to higher order equations are easily made. Because of the nature of the solutions of (1) the equation is often 

classified as elliptic, hyperbolic or parabolic according as 𝐵2 − 4𝐴𝐶 is less than, greater than or equal to zero 

respectively. 
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4.3. SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS 
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METHODS OF SOLVING BOUNDARY-VALUE PROBLEMS 

 
There are many methods by which boundary-value problems involving linear partial differential equations can 

be solved. The following are among the most important. 

 
1. General Solutions. 

In this method we first find the general solution and then that particular solution which satisfies the boundary 

conditions? The following theorems are of fundamental importance. 

Theorem 1: [Superposition principle]. If 𝑢1, 𝑢2, . . . , «„ are solutions of a linear homogeneous partial 

differential equation, then 𝑐1𝑢1 + 𝑐2𝑢2 + • • •  + 𝑐𝑛𝑢𝑛 where 𝑐1, 𝑐2, . . . , 𝑐𝑛 are constants is also a solution. 

Theorem 2. The general solution of a linear non-homogeneous partial differential equation is obtained by 

adding a particular solution of the non-homogeneous equation to the general solution of the homogeneous 

equation. We can sometimes find general solutions by using the methods of ordinary differential equations. 

 

If A, B, ..., F in (1) are constants, then the general solution of the homogeneous equation can be found by 

assuming that "𝑢 =  𝑒𝑎𝑥+𝑏𝑦" where a and b are constants to be determined.  

 
2. Separation of Variables. 

 

In this method it is assumed that a solution can be expressed as a product of unknown functions each of which 

depends on only one of the independent variables. 

The success of the method hinges on being able to write the resulting equation so that one side depends only 

on one variable while the other side depends on the remaining variables so that each side must be a constant. 

By repetition of this the unknown functions can then be determined. Superposition of these solutions can then 

be used to find the actual solution.  

The method often makes use of Fourier series, Fourier integrals, Bessel series and Legendre series. 
3. Laplace Transform Methods. 

In this method the Laplace transform of the partial differential equation and associated boundary conditions are first 

obtained with respect to one of the independent variables. We then solve the resulting equation for the Laplace 
transform of the required solution which is then found by taking the inverse Laplace transform.  
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