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Introduction 

Solid State Physics: definitions 
 What is solid state physics? 

 Why study solid state physics? 

 What is condensed matter physics? 

 Why study condensed matter physics? 

 Solids are of two types  

I. Crystalline solid:  

                           ♦ have definite repetition pattern. 

                           ♦ have periodic arrangement. 

                           ♦ Example 𝑺𝒊𝑶𝟐(quartez) 

 The periodicity of atoms in crystalline solid can be described by a lattice.  

 lattice is a network of points in space lattice. 

II. Amorphous solids: 

                         ♦ have no definite repetition pattern 

                         ♦ characterized by random arrangement of atoms. E.g: 𝑆𝑖𝑂2 (glass). 

 

         



Solid state Physics  

Fig 1:Tree diagram of Solid State Physics 



Periodic array of atoms 
 A serious study of solid state physics (SSP) begin after the discovery of x-ray 

and theoretical calculations of properties of crystals & electrons.  

 Why crystalline solids rather than non crystalline solids?  

          √  The electronic properties of solids are best expressed in crystals.  

          √ The properties of the most important semiconductors depend on the 

 crystalline structure of the host).  

          √ Because electrons have short wavelength components that respond 

 dramatically to the regular periodic atomic order of the specimen.  

 Non crystalline materials, notably glasses, are important for optical 

propagation because light waves have a longer wavelength than electrons and 

see an average over the order, and not the less regular local order itself. 

  

 

 



 A crystal is formed by adding atoms in a constant environment, usually in a 

solution. 

 The first crystal discovered was quartz grown from silicate solution in a slow 

geological process.  

  The crystal form develops as identical building blocks are added 

continuously. 

  The building blocks here are atoms or groups of atoms. 

  The crystal thus, formed is a 3D periodic array of identical building blocks, 

apart from any imperfections and impurities. 

Exercise  

1. Discuss the influence of imperfections and impurities for crystal formations and 

 growth? 

  

 

 

 

 



 The original experimental evidence for the periodicity of the structure rests on 

the discovery by mineralogists that the index numbers that define the 

orientations of the faces of a crystal are exact integers.  

 This evidence was supported by the discovery in 1912 of x-ray diffraction by 

crystals, when Laue developed the theory of x-ray diffraction by a periodic 

array, and his coworkers reported the first experimental observation of x-ray 

diffraction by crystals. 

 X-rays are important for this task b/ce they are waves and have a wavelength 

comparable with the length of a building block of the structure. 

 Such analysis can also be done "With neutron diffraction and with electron 

diffraction, but x-rays are usually the tool of choice. 

  

 



 The result of diffraction is that crystals are built of a periodic array of atoms or 

groups of atoms.  

 With the atomic model of a crystal, physicists could think much further. 

  And the development of quantum theory was of great importance to the birth of 

solid state physics.  

EXERCISE  

1. Explain the difference between crystalline & Amorphous solids. 

2. Explain Amorphous solids and quantum fluids. 

 Amorphous ⟹ Non-crystalline solids 



Symmetry operations 

Four types of symmetry operations 

      ⇨ Translations, 

      ⇨ Reflections 

      ⇨ Rotations & 

      ⇨ Inversion. 

 



 Lattice translation vectors  
 An ideal crystal is constructed by the infinite repetition of identical groups of 

atoms (Fig. 2). 

  A group is called the basis.  

 The set of mathematical points to which this  basis is attached is called the lattice.  

 The lattice in three dimensions may be defined by three translation vectors 𝑎1, 𝑎2, 

and 𝒂𝟑 such that the arrangement of atoms in the crystal looks the same when 

viewed from the point r as when viewed from every point 𝑟′translated by an 

integral multiple of the a's: 

            𝒓′ = r + 𝒖𝟏𝒂𝟏+ 𝒖𝟐𝒂𝟐 +𝒖𝟑𝒂𝟑                                                     (1) 

 where, 𝑢1, 𝑢2, and 𝑢3are integers. 

 The set of points 𝑟′ defined by (1) for all 𝑢1, 𝑢2, 𝑢3 defines the lattice. 

 The lattice is said to be-primitive if any two points from which the atomic 

arrangement looks the same always satisfy (1) with a suitable choice of the 

integers 𝑢1. 

 

 

 

  
 



Primitive translation vectors, 𝒂𝒊  
  There is no cell of smaller volume than primitive cell,  

               𝑽𝟎 = 𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑  

  that can serve as a building block for the crystal structure. 

 

 

 Primitive translation vectors define the crystal axes, which form three adjacent edges of the 

primitive parallelepiped.  

 No primitive axis are often used as crystal axes when they have a simple relation to the 

symmetry of the structure. 

  

 

 

 



Basis and crystal structure  

 A crystal is made by adding a basis to every lattice point. 

 Lattice points themselves are mathematical constructions. 

 Every basis in a given crystal is identical to every other in composition, 

arrangement, and orientation.  

The number of atoms in the basis may be one, or it may be more than one. 

The position of the center of an atom j of the basis relative to the associated 

lattice point is 

           𝐫𝐣 = 𝐱𝐣𝐚𝟏 + 𝐲𝐣𝐚𝟐 + 𝐳𝐣𝐚𝟑                                                              (2) 

We may arrange the origin, which we .have called the associated lattice point, 

so that 0 ≤ 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ≤ 1.  

 

  

 



Primitive lattice cell  

 The parallelepiped defined by primitive axes 𝒂𝟏, 𝒂𝟐 and 𝒂𝟑 is called a primitive cell (Fig. 

3b). (Pag-5). 

 A primitive cell is a type of cell or unit cell .  

 A cell will fill all space by the repetition of suitable crystal translation operations.  

 A primitive cell is a minimum volume cell. 

       Ways of choosing the primitive axes and primitive cell for a given lattice 

The number of atoms in a primitive cell or primitive basis is always the same for a given 

crystal structure. 

There is always one lattice point per primitive cell. 

 If the primitive cell is a parallelepiped with lattice points at each of the eight corners, each 

lattice point is shared among eight cells, so that the total number of lattice points in the cell 

is one: 8×
1

8
 = 1. 

 The volume of a parallelepiped with axes 𝑎1 > 𝑎2, 𝑎3 is; 

              𝑽𝒄 = 𝒂𝟏 ∙ 𝒂𝟐 × 𝒂𝟑                                                                                (3) 

  

 
  

 



 The basis associated with a primitive cell is called a primitive basis.  

 No basis contains fewer atoms than a primitive basis contains. 

 Another way of choosing a primitive cell is known to physicists as a 

Wigner-Seitz cell. 

  

 

 

 

 

                 Fig 4: Wigner Seitz Cell 

Steps for the construction of Wigner Seitz Cell 

  Draw lines to connect a given lattice point to all nearby lattice points 

  At the midpoint and normal to these lines draw new lines or planes 

  The smallest volume enclosed in this way is Wigner- Seitz primitive cell. 

 

 



 
FUNDAMENTAL TYPES OF LATTICES  

  Crystal lattices can be carried or mapped into themselves by the lattice translations, T and 

by various other symmetry operations.  

 A typical symmetry operation is that of rotation about an axis that passes through a lattice 

point. 

 Lattices can be found such that one, two, three, four, and six fold rotation axes carry the 

lattice into itself, corresponding to rotations by 2𝜋, 
2𝜋

2
, 

2𝜋

3
, 

2𝜋

4
, and 

2𝜋

6
 radians and by integral 

multiples of these rotations.  

 The rotation axes are denoted by the symbols 1, 2, 3, 4, and 6.  

 We cannot find a lattice that goes into itself under other rotations, such as by 
2𝜋

7
 radians or 

2𝜋

5
 radians. 

  A single molecule properly designed can have any degree of rotational symmetry, but an 

infinite periodic lattice cannot.  

 A crystal can be formed from molecules that individually have a fivefold rotation axis, 

but we should not expect the lattice to have a fivefold rotation axis.  

 

  

 



By lattice point group we mean the collection of symmetry 

operations which, applied about a lattice point, carry the 

lattice into itself.  

The possible rotations have been listed.  

We can have mirror reflections m about a plane through a 

lattice point. 

  The inversion operation is composed of a rotation of 𝜋 

followed by reflection in a plane normal to the rotation axis; 

the total effect is to replace r by -r.  

 

 



 
Two-Dimensional Lattice Types  

  Oblique lattice is a general lattice that is invariant only under rotation of 𝜋 and 2𝜋 

about any lattice point.  

 But special lattices of the oblique type can be invariant under rotation of 
2𝜋

3
, 

2𝜋

4
, & 

2𝜋

6
, or under mirror reflection. 

  We must impose restrictive conditions on 𝑎1 and 𝑎2 if we want to construct a 

lattice that will be invariant under one or more of these new operations. 

 There are four distinct types of restriction, and each leads to what we may call a 

special lattice type. 

 Thus there are five distinct lattice types in two dimensions, the oblique Lattice and 

the four special lattices shown in Fig. 7. 

  Bravais lattice is the common phrase for a distinct lattice type; we say that there 

are five Bravais lattices in two dimensions.  
 

  

 

  

 

 



2D Bravaise lattice 
 In 2D, there are 5 lattice  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure -7 



Three dimensional lattice types 

 The point symmetry groups in three dimensions require the 14 different lattice types. 

  The general lattice is triclinic, and there are 13 special lattices.  

 These are grouped for convenience into systems classified according to seven types of 

cells, which are triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal, and 

hexagonal.  

 The division into systems is expressed in the table in terms of the axial relations that 

describe the cells. 

 The cells in Fig. 8 are conventional cells: of these only the Sc is a primitive cell. 

 Often a no primitive cell has a more obvious relation with the point symmetry 

operations than has a primitive cell.  

 There are three lattices in the cubic system: the simple cubic (Sc) lattice, 

the body-centered cubic (bee) lattice, and the face-centered cubic (fcc) lattice.  

 



                     3-D lattice types 

Triclinic Monoclinic 

Simple Base-Centered Orthorhombic 



• d Simple 

Body-Centered Hexagonal 

Simple Body-Centered Face-Centered 

Cubic 



System Type Edge - Angle Relations Symmetry 

Triclinic P a  b  c  

     

Ī 

Monoclinic P (b = twofold axis) 

C  

a  b  c  

 =  = 90   

 

2/m 

P (c = two fold axis) 

C 

a  b  c  

   = 90   

Orthorhombic P 

C (or A, B) 

b 

F 

 

a  b  c  

 =  =  = 90 

 

mmm 

Tetragonal P 

b 

a1 = a2  c  

 =  =  = 90 

4/mmm 

Hexagonal R 

P 

a1 = a2  c  

 =  = 90,  = 120 

m 

6/mmm 

Cubic P 

b 

F 

a1 = a2  = a3  

 =  =  = 90 

 

m3m 

     P = Primitive F = Face Centered b = Body Centered C = Centered on opposing faces  

axisCrystalSixThe



Cubic crystal systems  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑺𝒄                    𝑩𝒄𝒄                 𝑭𝒄𝒄 
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              Coordination Number  

 It is equal to the number of nearest neighbor that surrounds each 

atom.   

               ♦ Simple Cubic  - 6 

               ♦ Body Centered Cubic – 8 

               ♦ Face Centered Cubic -  12 



Cubic crystal structures 

           Sc                              Bcc                             Fcc 



Atomic packing factor  
 The packing fraction is the maximum proportion of the available volume that can be filled 

with hard spheres. 

The atomic packing factor is given by  = 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑖𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
 

For simple cubic crystal is given 

                  A.p.f = 1 
𝟒𝝅

𝟑
𝒓𝟑

𝒂𝟑  = 1 

𝟒𝝅

𝟑

𝒂

𝟐

𝟑

𝒂𝟑  = 
𝝅

𝟔
 = 0.524                                                       (4) 

 For body centered cubic  

                 A.p.f = 2 
𝟒𝝅

𝟑
𝒓𝟑

𝒂𝟑  = 2 

𝟒𝝅

𝟑

𝟑

𝟒
𝒂

𝟑

𝒂𝟑  =  
𝟑𝝅

𝟖
 = 0.680                                               (5) 

 For face centered cubic  

                   A.p.f = 4 
𝟒𝝅

𝟑
𝒓𝟑

𝒂𝟑  = 4 

𝟒𝝅

𝟑

𝟐

𝟒
𝒂

𝟑

𝒂𝟑  = 
𝟐𝝅

𝟔
 = 0.740                                              (6) 



 
 

 

 

 

Figure 9 Body-centered cubic lattice,  

             showing a primitive cell.  

 The primitive cell shown is 

 a rhombohedron of edge 
1

2
3a, and 

 the angle between adjacent edges 

                  is 109°28.  

Figure 10 Primitive translation vectors of the body centered cubic lattice; these vectors connect the 

 lattice point at the origin to lattice points at the body centers. The primitive cell is obtained 

 on completing the rhombohedron.  

 In terms of the cube edge a, the primitive translation vectors are 

   𝒂𝟏 = 
𝒂

𝟐
( 𝒙  + 𝒚  - 𝒛  )                                                                                (7a) 

          𝒂𝟐 =  
𝒂

𝟐
(-𝒙  + 𝒚  + 𝒛 )                                                                               (7b) 

          𝒂𝟑 = 
𝒂

𝟐
( 𝒙   - 𝒚  + 𝒛  )                                                                                (7c) 

Here 𝑥 , 𝑦 ,  and 𝑧   are the Cartesian unit vectors.  

 



 The characteristics of the three cubic lattices are summarized in Table 2. 

  A primitive cell of the bee lattice is shown in Fig. 9, and the primitive 

translation vectors are shown in Fig. 10.  

 The primitive translation vectors of the fcc lattice are shown in Fig. 11.  

 Primitive cells contain only one lattice point. 

  However, the conventional bcc cell contains two lattice points, and the fcc 

cell contains four lattice points.  

 



Characteristics of cubic systems  
№ Simple cubic  Body centered  

 
Face centered  

1 Volume of conventional 

cell 

𝒂𝟑 𝒂𝟑 𝒂𝟑 

2 Lattice points per cell             1              2             4 

3 Volume of primitive cell 𝒂𝟑 𝟏

𝟐𝒂𝟑 
𝟏

𝟒𝒂𝟑 

4 Lattice points per cell 𝟏

𝒂𝟑 
𝟐

𝒂𝟑 
𝟒

𝒂𝟑 

5 Coordination number             6              8             12 

6 Nearest neighbor 

distance 

𝒂 𝟑𝒂

𝟐
 = 0.866 

 

𝒂

𝟐
 = 0.707 

7 № of next nearest 

neighbor 

           12               6             6 

8 Next neighbor distance 𝟐𝒂 𝒂             𝒂 

9 Packing fraction  𝟏

𝟔
𝝅 = 0.54 𝟑𝝅

𝟖
 = 0.68 

𝟐

𝟔
𝝅 = 0.74 



The Nearest distance for Sc, Bcc & Fcc 

 For sc the nearest distance is ɑ. 

For bcc the nearest distance is 

          r = 
𝑎

2

2
+

𝑎

2

2
+

𝑎

2

2
= 

3

2
ɑ = 0.866ɑ 

 For Fcc, the nearest distance is 

        r =
𝑎

2

2
+

𝑎

2

2
+ 0 2 = 

2

2
ɑ = 0.707ɑ 



 𝑎1 = 
1

2
 a(𝑥  + 𝑦 )  

 𝑎2 = 
1

2
𝑎(𝑦 + 𝑧 )  

 𝑎3 = 
1

2
a(𝑧  + 𝑥 )  

 

 

The angles between the axes are 60ᵒc.  
 

 

 

 

 The position of a point in a cell is specified by (2) in terms of the atomic coordinates x, y, z.  

 Here each coordinate is a fraction of the axial length 𝑎1 > 𝑎2 > 𝑎3 in the direction of the 

coordinate axis, with the origin taken at one corner of the cell.  

 Thus the coordinates of the body center of a cell are  
1

2

1

2

1

2
 and the face centers include 

1

2
 
1

2
0, 0 

1

2
 
1

2
 and 

1

2
0

1

2
 .  

 In the hexagonal system the primitive cell is a right prism based on a rhombus with an 

included angle of 120°. 

  Figure 12 shows the relationship of the rhombic cell to a hexagonal prism.  

 



 
Index system for crystal planes  

   The orientation of a crystal plane is determined by 3 - points in the plane, 

which are not collinear.  

 If each point lay on a different crystal axis, the plane could be specified 

by giving the coordinates of the points in terms of the lattice constants 𝑎1, 

𝑎2, 𝑎3.  

 However, it turns out to be more useful for structure analysis to specify 

the orientation of a plane by the indices determined by the following rules 

(Fig. 13). 

 Find the intercepts on the axes in terms of the lattice constants 𝑎1, 𝑎2, 𝑎3.  

 The axes may be those of a primitive or non primitive cell.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. This plane intercepts 

the 𝑎1,𝑎2 ,𝑎3 axes at the 3𝑎1,2𝑎2, 2𝑎3. 

The reciprocals of these numbers are 
1

3
, 
1

2
,
1

2
.  

The smallest three integers having the same ratio are 2, 3, 3, and 

 thus, the indices of the plane are (233).  

 

a1

a2

a3

1

2

3

2

2

1

1

 Take the reciprocal of these numbers and then 

reduce to three integers having the same ratio, 

usually the three small integers, the result enclosed 

in parenthesis, 𝒉𝒌𝒍 are the index of the plane. 



 For the plane whose intercepts are 4, l, 2, the reciprocals are 
1

4
, 1, and 

1

2
 . 

 The smallest three integers having the same ratio are (142).  

 For an intercepts at infinity, the corresponding index is zero.  

 The indices of some important planes in a cubic crystal are illustrated by Fig. 14.  

 The indices (hkl) may denote a single plane or a set of parallel planes.  

 If a plane cuts an axis on the negative side of the origin, the corresponding index 

is negative, indicated by placing a minus sign above the index: (h𝑘 l). 

  The cube faces of a cubic crystal are (100), (010), (001), (1 00), (01 0), and 

(001 ). 

 Planes equivalent by symmetry may be denoted by curly brackets (braces) around 

indices; the set of cube faces is {100}. 

 

 



When we speak of the (200) plane we mean a plane parallel to (100) 

but cutting the 𝑎1 axis at 
1

2
a. 

 The indices [uvw] of a direction in a crystal are the set of the 

smallest integers that have the ratio of the components of a vector in 

the desired direction, defined to the axes.  

 The 𝑎1 axis is the [100] direction; the -𝑎2 axis is the [01 0] direction.  

 In cubic crystals the direction [hkl] is perpendicular to a plane (hkl) 

having the same indices, but this is not generally true in other crystal 

systems. 

  

 



 h, k, l are 

Miller indices 

 a, b, c are unit 

cell distances 

  , ,  are 

angles between 

the lattice 

directions. 

 Complexity of 

calculations is 

dependent on the 

symmetry of the 

crystal system. 



Miller Index 

  Miller indices describes the directions & planes. 

 The directions and planes could be in lattice or in crystals. 

                ♡ In 1-D ; there is one index 

                ♡ In 2-D; there are two indices 

                ♡ In 3-D; there are three indices 

  Note: In the case of miller- Bravaise indices for hexagonal a third index 

is added to three redundant index (hkil). 

  Where, i – is the redundant index. 

 The redundant index is added to show the symmetry of the structure. 



 
Simple  Crystal  Structures  

   We focus simple crystal structures such as NaCl, CsCl, HcP, Diamond, & cubic ZnS structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                𝑁𝑎: 

 

                𝐶𝑙; 

 

 

 Fig -16: Models of NaCl. The Na ions are smaller than chlorine ions. (Courtesy of A. N. Holden 
and P. Singer.)  

structureNaCl

 𝑵𝒂: ions form a face-centered cubic 
lattice. 

 𝑪𝒍; ions are located between each two  
neighboring 𝑵𝒂: ions. Or, 

 𝐶𝑙; ions form a face-centered cubic 
lattice 

 𝑵𝒂: ions are located between each two 
neighboring 𝑪𝒍; ions. 
 
 

  Cl:    000;       
1

2

1

2
0,     

1

2
0

1

2
           0

1

2

1

2
 

Na:    
1

2

1

2

1

2
,       0 0 

1

2
;      0 

1

2
 0;           

1

2
 0 0 



NaCl primitive cell 

•                                                                   

 

 

                                                                    Primitive         

        cell 

 



NaCl  
NaCl 

 



 The lattice is face-centered cubic; the basis consists of one 𝑁𝑎: ions and one 𝑐𝑙; 

ion separated  by one-half the body diagonal of a unit cube. 

 There are four units of NaCl in each unit cube, with atoms in the positions.  

 

 

 Each atom has as nearest neighbors six atoms of the opposite kind. 

 Representative crystals having the NaCl arrangement include those in the 

following table.  

 The cube edge a is given in angstrom; 1Å =10;8cm = 10;10𝑚 = 0.1nm.   

(See for PbS) 

 

 

 

Cl:  0 0 0,   
1

2

1

2
0,   

1

2
0

1

2
,  0

1

2
 
1

2
 

Na:  
1

2
 
1

2
 
1

2
,  0 0 

1

2
;   0 

1

2
 0;    

1

2
 0 0 



 
Cesium Chloride Structure  

  The cesium chloride structure is shown in Fig. 18. 

 There is one molecule per primitive cell, with atoms at the corners 000 and 

body centered positions 
1

2

1

2

1

2
 of the simple cubic space lattice. 

 Each atom may be viewed as at the center of a cube of atoms of the 

opposite kind, so that the number of nearest neighbors or coordination 

number is eight.  



CsCl structure 
 
 
 
 
                      
 
 
 
 
 
 
 
 
 
 Fig:18 

 

 Simple cubic lattice 

𝑪𝒔:ions form a cubic lattice 

𝑪𝒍;ions are located at the center of each 

cube 

 Equivalently, we can say that 

𝑪𝒍; ions form a cubic lattice 

𝑪𝒔: ions are located at the center of each cube 

Coordinates: 

         Cs: 000 

         Cl: 
1

2

1

2

1

2
 

 Notice that this is a simple cubic lattice.  

 



Hexagonal close packed structure 

 There are an infinite number of ways of arranging identical spheres in a regular 

array that maximizes the packing fraction (Fig. 19) .  

 One is the face centered cubic structure; another is the hexagonal close-packed 

structure (Fig. 20).  

 The fraction of the total volume occupied by the spheres is 0.74 for both structures. 

 No structure, regular or not, has denser packing.  

⟐ There are an infinite number of ways of arranging identical spheres in a regular 

array that maximizes the packing fraction. 

 



HCP structure 

 

 

 

 

 

 

 

                        Hexagonal close packed structure 

 



HCP unit cell 

 

 

 

 

 

 

 

 Hexagonal close packed structure unit cell 



The Diamond structure 

 The diamond structure is the structure of the semiconductors silicon and 

germanium and is related to the structure of several important semiconductor binary 

compounds. 

  The space lattice of diamond is face-centered cubic.  

 The primitive basis of the diamond structure has two identical atoms at coordinates 000 and 

1

4
,
1

4
,
1

4
 associated with each point of the fcc lattice, as shown in Fig. 22. 

 Because the conventional unit cube of the fcc lattice contains 4 lattice points, it follows that 

the conventional unit cube of the diamond structure contains 2 x 4 = 8 atoms. 

  There is no way to choose a primitive cell such that the basis of diamond contains only one 

atom.  

 



Diamond structure: is non Bravaise lattice 

 The diamond structure allows a center-at-inversion symmetry operation at the 

midpoint of every line between nearest-neighbor atoms.  

 The inversion operation carries an atom at r into an atom at -r.  

 

 

 

 

 

                        

                        

        fig 23. Diamond structure 



Each atom has 4 nearest neighbors and 12 next nearest neighbors. 

The diamond structure is relatively empty: the maximum proportion of the 

available volume which may be filled by hard spheres is only 0.34, which 

is 46 percent of the filling factor for a closest-packed structure such as fcc 

or hcp. 

The diamond structure is an example of the directional covalent bonding 

found in column IV of the periodic table of elements.  

Carbon, silicon, germanium, and tin can crystallize in the diamond 

structure, with lattice constants a = 3.567, 5.430, 5.6.5&, and 6.49 A, 

respectively.  

Here a is the edge of the conventional cubic cell. 

  

 



ZnS cubic structure  
 The cubic ZnS structure does not have inversion symmetry.  

 Examples of the cubic zinc sulfide structure are  

      

     

 

 

 The close equality of the lattice constants of several pairs, notably (AI, 

Ga)P and (AI, Ga)As, makes possible the construction of semiconductor 

hetero-junctions (Chapter 19).  

 

    Crystal           ɑ       Crystal ɑ 

SiC 4.35Å ZnSe 5. 56Å 

ZnS 5.41Å GaAs 5. 56Å 

AlP 5.45Å AlAs 5.66Å 

GaP 5.45Å InSb 6.46Å 



ZnS structure  

 

 

 

 

 

    𝑪𝒐𝒐𝒓𝒅 №:𝒁𝒏𝟐:𝟒 , 𝑺𝟐;:4                      𝒔𝟐; at Fcc 

      Atomic unit cell                             𝒁𝒏𝟐:at ½ Td holes 

    Zn:S= 4:4= 1:1 = ZnS 



Chapter 2 
Wave diffraction & reciprocal lattice vector 

Bragg-law:   

  Diffraction of wave depends on 

                                         ⇨ Crystal structure & 

                                         ⇨ Wavelength 

  An optical wave length such as 5000Å, the superposition of waves scattered by the 

individual atoms of a crystals results in ordinary optical refraction. 

 Diffraction occurs when the wavelength is equal or smaller than the lattice 

constant. 

              λ ≤ 𝑎                                                                                    (1) 

 Bragg presented  a simple explanations of the diffracted beams by the crystals. 

 The Bragg deviations is simple & convincing only because it reproduce correct 

result. 

 



 Elastic scattering is treated b/ce in elastic scattering, energy of the x-ray is 

not changed on reflection. 

 We consider parallel lattice planes spaced ‘d’ apart. 

 The path difference for rays reflected from the adjacent plane is 2dsinθ. 

 The angle, θ – is measured from the plane. 

  Constructive interference occur when the path difference is an integral 

multiple of wave length. 

         2dsinθ = nλ                                                                       (2) 

,provided that λ ≤ 2d. 

 The Bragg law in equ (2) is the consequence of the periodicity of the 

lattice. 

 The Bragg law does not depend on the composition of the basis 

associated with the lattice point. 

 

 



Fourier analysis  

  We have seen that a crystal is invariant under any translations of the form; 

       T = 𝒖𝟏𝒂𝟏 + 𝒖𝟐𝒂𝟐+ 𝒖𝟑𝒂𝟑                                                      (3) 

   Where, 𝑢1, 𝑢2, & 𝑢3 are integers and   𝑎1, 𝑎2,  & 𝑎3 are the crystal axis  

 Any local physical property of crystal such as  

              ♦ Charge concentrations, 

              ♦ Electron number density, & 

              ♦ Magnetic moment density are invariant under translation, T. 

  The most important quantity here is that the electron number density is a 

periodic function of V, with periods; 𝑎1, 𝑎2,  & 𝑎3in the direction of 3- 

crystal axis. 

 



  n 𝑥 + 𝑎  = 𝑛𝑜+  𝑐𝑝𝑐𝑜𝑠
2𝜋𝑝𝑥

𝑎
+ 2𝜋𝑝 + 𝑠𝑝𝑠𝑖𝑛

2𝜋𝑝𝑥

𝑎
+ 2𝜋𝑝  

                     = 𝑛𝑜+  𝑐𝑝𝑐𝑜𝑠
2𝜋𝑝𝑥

𝑎
+ 𝑠𝑝𝑠𝑖𝑛

2𝜋𝑝𝑥

𝑎
  

                     = n 𝑥                                                                               (4)     

  
2𝜋𝑝

𝑎
 - is the point in the reciprocal lattice or Fourier space of the crystal. 

 The reciprocal lattice points describes the allowed terms in the Fourier series. 

 The term is allowed if it is constant with the periodicity of the crystal. 

        n 𝑟 + 𝑇  = n(r) 

 Such periodicity creates an ideal situations for Fourier analysis. 

 The most interesting properties of crystals are directly related to the Fourier 

component of the electron number density. 

 We might expand n(x) in a Fourier’s sine's & cosines series. 

 



 We might expand n(x) in a Fourier series sine's & cosines. 

     n 𝑥 = 𝑛𝑜+  𝑐𝑝𝑐𝑜𝑠
2𝜋𝑝𝑥

𝑎
+ 𝑠𝑝𝑠𝑖𝑛

2𝜋𝑝𝑥

𝑎𝑝>0  

   Where p’s are positive integers and 𝑐𝑝 & 𝑠𝑝 are real constants called the Fourier 

coefficient of expansions. 

 The factor 
2𝜋

𝑎
 in the argument ensures that n(x) has the period 𝑎. 

 Other points in the reciprocal lattice are not allowed in the Fourier expansion of a 

periodic functions. 

 It is convenient to write the series (4) in the compact form as  

         n(x) =  𝑛𝑝𝑒𝑥𝑝
𝑖2𝜋𝑝𝑥

𝑎𝑝                                                                    (5) 

 Where the sum is over all integers, p, positive, negative or zero. The coefficient 𝑛𝑝 are 

complex numbers. 

 

 



 To ensure that n(x) is a real function we require that   

       𝑛;𝑝
∗ = 𝑛𝑝                                                                                                             (6) 

 For the sum of the terms in p and –p to be real, equ(6) must be satisfied. 

 The asterisk in 𝑛𝑝
∗denotes the complex conjugate. 

 ϕ = 
2𝜋𝑝𝑥

𝑎
, the sum in  

  𝑛𝑝 𝑐𝑜𝑠φ + 𝑖𝑠𝑖𝑛φ +𝑛;𝑝 𝑐𝑜𝑠φ − 𝑖𝑠𝑖𝑛φ   = 𝑛𝑝 + 𝑛;𝑝 cosϕ+i 𝑛𝑝 − 𝑛;𝑝 sinϕ  (7) 

Which in turn is equal to the real function. 

    2Re 𝑛𝑝 cosϕ-2Im 𝑛𝑝  sinϕ                                                                                 (8)      

 Here, Re 𝑛𝑝  & Im 𝑛𝑝  denotes the real and imaginary parts of the 𝑛𝑝. 

 In three dimensions, n 𝑥  is extended to n 𝑟 , where r = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 .    

 
 



 We must find a set of vector G such that  

      n(r) =  𝑛𝐺𝑒𝑥𝑝 𝑖𝐺. 𝑟𝐺                                                                           (9) 

 Which is invariant under all crystal translations, T that leave the crystal 

invariant. 

    Exercise  

1. Discuss the difference between direct lattice and reciprocal lattice vectors. 

 

 

 

    

 



Inversion of Fourier series 
 We now that the Fourier coefficient in equ (5) is given by  

            𝒏𝒑 = 
𝟏

𝒂
 𝒅𝒙𝒏 𝒙 𝒆𝒙𝒑

;𝒊𝟐𝝅𝒑𝒙

𝒂

𝒂

𝟎
                                                           (10) 

 By substituting equ(5) in to equation (10) to obtain  

           𝒏𝒑 = 
𝟏

𝒂
 𝒅𝒙𝒏 𝒙 𝒆𝒙𝒑

𝒂

𝟎
𝒊𝟐𝝅 𝒑′ − 𝒑

𝒙

𝒂
                                               (11) 

 If p’≠ 𝑝 the value of the integers is  

       
𝒂

𝒊𝟐𝝅 𝒑′;𝒑
exp 𝒊𝟐𝝅 𝒑′ − 𝒑 − 𝟏 = 0  and exp 𝒊𝟐𝝅  = 1 

 For the term P’ = P, the integrand exp(0) =1 and the value of the integral is 𝑎. So, that  

      𝑛𝑝 =
1

𝑎
𝑛𝑝𝑎 = 𝑛𝑝. 

 Which is an identity so that equ(10) is also an identity. As in (10) the inversion (9) gives  

     𝑛𝐺 =  
1

𝑉𝑐
 𝑑𝑣𝑛 𝑟 𝑒𝑥𝑝 −𝑖𝐺. 𝑟
𝑐𝑒𝑙𝑙

                                                               (12) 

Where 𝑉𝑐 is the volume of the cell of the crystal. 



Reciprocal lattice vectors 
 To describe more about Fourier analysis of the electron concentration, we need to 

find a vector G of the Fourier sum,  𝑛𝐺𝑒𝑥𝑝 𝑖𝐺. 𝑟  as in (9). 

 The powerful tool to describe Fourier analysis is the use of the axis vectors, 𝑏1, 

𝑏2, & 𝑏3 of the reciprocal lattice. 

   

𝑏1 = 2𝜋
𝑎𝑚 𝑥 𝑎𝑛

𝑎𝑙. 𝑎𝑚𝑥 𝑎𝑛

𝑏2 = 2𝜋
𝑎𝑛 𝑥 𝑎𝑙

𝑎𝑙. 𝑎𝑚 𝑥 𝑎𝑛

𝑏3 = 2𝜋
𝑎𝑙 𝑥 𝑎𝑚

𝑎𝑙. 𝑎𝑚 𝑥 𝑎𝑛

                                                                                (13) 

 The factors 2𝛑 are not used by the crystallographer but is convenient in solid state 

physics. 

 𝑎1, 𝑎2 & 𝑎3 are the primitive vectors of the crystal(direct) lattice and 𝑏1, 𝑏2 & 𝑏3 

are the primitive vectors of the reciprocal lattice. 



 Each vectors defined by (13) is orthogonal to two axis vectors of the crystal 

lattice. 

 𝑏1, 𝑏2 & 𝑏3 have the prosperity that  

     𝑏𝑖 . 𝑎𝑗= 2𝜋𝛿𝑖𝑗                                                                                         (14) 

 Where  

             
𝛿𝑖𝑗 = 1, 𝑖𝑓 𝑖 = 𝑗

𝛿𝑖𝑗 = 0, 𝑖𝑓 𝑖 ≠ 𝑗
 

  Points in the reciprocal lattice are mapped by the set of the vectors, G such that 

   G = 𝑣1𝑏1 + 𝑣2𝑏2 + 𝑣3𝑏3                                                                     (15) 

 Where, 𝑣1, 𝑣2 & 𝑣3 are integers 

  The vector G of this form is called the reciprocal lattice. 

  



  In the Fourier series representations, electron number density is invariant under crystal 

translations. 

      T= 𝑢1𝑎1+𝑢2𝑎2+𝑢3𝑎3 

 Thus, the electron number density has the property; 

      n 𝑟 + 𝑇 =  𝑛𝐺𝑒𝑥𝑝 𝑖𝐺. 𝑟 𝑒𝑥𝑝 𝑖𝐺. 𝑇𝐺                                                          (16) 

 But exp 𝑖𝐺. 𝑇  = exp 𝑖2𝜋𝑛  =1 

Since, 

          exp(iG. T) = exp(i(𝑣1𝑏1 + 𝑣2𝑏2 + 𝑣3𝑏3)(𝑢1𝑎1+ 𝑢2𝑎2+ 𝑢3𝑎3) 

                             = exp (𝑖2𝜋)𝑣1𝑢1 + 𝑣2𝑢2 + 𝑣3𝑢3  

                              = exp 𝑖2𝜋𝑛  = 1                                                                     (17) 

 The argument of the exponential has the form 2𝜋I times an integer, n = (𝑣1𝑢1 + 𝑣2𝑢2 +

𝑣3𝑢3) . 

 Thus, by equation (9) we have desired invariance. 

                   n 𝑟 + 𝑇 = n(r) =   𝑛𝐺𝑒𝑥𝑝 𝑖𝐺. 𝑟𝐺  

 

 



  Every crystal structure has two lattice associated with it. 

                         1. Crystal(direct) lattice & 

                         2. Reciprocal lattice. 

 A diffraction pattern of a crystal is a map of the reciprocal lattice of the crystal. 

 A microscopic image if it could be resolved on a fine enough scale is a map of 

crystal structure in  real space. 

 The two lattice are related by the equation (13). 

 When we rotate a crystal, we rotate both the direct lattice & reciprocal lattice. 

 Vectors in the crystal(direct) lattice has a dimension of 𝑙𝑒𝑛𝑔𝑡𝑕 . 

 Vectors in the reciprocal lattice has a dimension of 
1

𝑙𝑒𝑛𝑔𝑡𝑕
. 

 A reciprocal lattice is a lattice in Fourier space associated with the crystal. 



Diffraction conditions  

  Theorem: The set of reciprocal lattice vectors G determines possible x-ray 

diffractions. 

 As shown in fig - 6 diffractions in the phase factors is exp 𝑖 𝑘 − 𝑘′ . 𝑟  

 K & 𝑘’ are the wavevectors of incoming & out going beams of light. 

 

                     

   

                          K                                                               𝑘′ 

          Incident beam                                                            outgoing beam 

                  𝑒𝑖𝐾.𝑟                                                                     𝑒𝑖𝑘′.𝑟 

Fig 6. 

ϕ 



  The difference in the path length of the incident wave k at 

point, O ,r is rsinφ. 

And the difference in phase angle is 
2𝜋𝑟𝑠𝑖𝑛𝜑

λ
 which is equal 

to k.r. 

 For the diffracted wave the difference in phase angle is –k.r. 

 The total difference in phase angle is 𝑘 − 𝑘′ .r 

 The wave scattered from dv at r has the phase factor 

exp 𝑖 𝑘 − 𝑘′ . 𝑟 relative to the wave scattered from the 

volume element at the origin, O. 

 



 

                                 𝐾′                 ∆k =  𝐾′- k 

                                                        𝐾′= k + ∆k 

                                       k 

  Fig 7: Definition of scattering vector ∆k such that k + ∆k  = 𝑘′ 

 In elastic scattering the magnitude satisfies, 𝐾′= k. 

 Furthermore, in Bragg’s scattering from a periodic lattice any allowed ∆k 

must equal some reciprocal lattice vectors, G. 

 We suppose that the amplitude of the wave scattered from the volume 

element is proportional to the local electron concentration, n(r). 

         𝑭 ~ 𝒏 𝒓  

 

 



 The total amplitude of the scattered wave in the direction of k׳ is proportional to integral 

over the crystal of n(r)dv times the phase factor, exp 𝑖 𝑘׳ − 𝑘 . 𝑟 . 

 In other words the amplitude of the electric or magnetic vectors in the scattered  

electromagnetic wave is proportional to the scattering amplitude, F. 

  F   =  𝑑𝑣𝑛 𝑟 𝑒𝑥𝑝 𝑖 𝑘׳ − 𝑘 . 𝑟  

       =  𝑑𝑣𝑛 𝑟 𝑒𝑥𝑝 −𝑖∆𝑘. 𝑟                                                                                          (18) 

Where, k – k׳ = ∆k; or k + ∆k = k׳  

 ∆k measures the change in the wave vector, and called the scattering vector. 

 In order to find the wave vector of the scattered beam , we add, ∆k to k׳. 

 To find the scattering amplitude, we substitute equation (18) in to equ(9). The resulting 

scattering amplitude is; 

       F =   𝑑𝑣𝑛𝐺𝐺 exp 𝑖 𝐺 − ∆𝑘 . 𝑟                                                                             (19) 

 When the scattering amplitude is equal to a particular reciprocal lattice, 

       ∆k = G                                                                                                                      (20) 

 



  The argument of the exponential vanishes and the scattering amplitude reduces to  

           F = VnG                                                                                                (21) 

 It is simple exercise to show that F –is negligibly small when ∆k differs significantly from 

any reciprocal lattice vectors. 

 In elastic scattering of photons its energy ћω is conserved so that the frequency 

         ω = ck(22)                                                                                                      ׳ 

 Of the emergent beam is equal to the frequency of the incident beam. Thus, the magnitude k 

& k׳.  

 Therefore, 𝑘2= 𝑘′2, a result that holds for elastic scattering of electrons and neutrons beams. 

         ∆k = G or  k + G = k׳ 

So that the diffraction condition is obtained from  

         𝑘 + 𝐺 2 = 𝑘2 

         2kG + 𝐺2 = 0                                                                                               (23) 

 This is the central result of the theory of elastic scattering of waves in a periodic lattice. 

 

 



 If G is a reciprocal lattice vectors so is  -G and with this substitutions we can rewrite equation 

(22) as  

             2K.G = 𝐺2                                                                                                        (24)  

  This particular expression is often used as the conditions for diffraction. 

  Equ(23) is another statement of the Bragg’s diffractions conditions. 

 The result of problem 1 is that the spacing 𝑑𝑕𝑘𝑙 between parallel planes that is normal to the 

direction of G = h𝑏1+ k𝑏2+ l𝑏3  is   𝑑𝑕𝑘𝑙 =  
2𝜋

𝐺
 

Thus , the result 2k.G = 𝐺2 might be written as   2
2𝜋

λ
sinθ = 

2𝜋

𝑑ℎ𝑘𝑙
 

         Or       2𝑑𝑕𝑘𝑙sinθ = λ  

Θ is the angle between the incident beam and the crystal planes. 

           2dsinθ = nλ                                                                                                            (25) 

 d - is the spacing between adjacent parallel planes with indices, 
𝑕

𝑛
,  

𝑘

𝑛
,  and  

𝑙

𝑛
. 

 



Brillouin zone  

Brillouin zone: is defined as a Wigner Seitz primitive cell in the reciprocal lattice. 

 It gives a statement of diffraction condition. 

 It describe electron energy band theory & elementary excitations such as photons, 

phonons, Magnons, Plasmon's, etc. 

 It gives vivid geometrical interpretation of diffraction condition 

           2𝐾. 𝐺 = 𝐺2                                                                              (26) 

  are not an essential part of the X-ray diffraction in the analysis of crystal 

structure, but it is part of the analysis of the electronic energy band structure of 

the crystals. 

 A reciprocal space is a space of k’s & G’s so that the diffracted beam is in the 

direction of K-G. 
 



Reciprocal lattice to SC lattice 

 The primitive translation vectors of sc lattice are 

     𝑎1 = 𝑎𝑥  

     𝑎2 = 𝑎𝑦                                                                                                                          (27a) 

     𝑎3 = 𝑎𝑧  

 Here, 𝑥 ,𝑦  & 𝑧  are orthogonal vectors of unit length. The volume of the cell is  𝑣𝑐= 𝑎1. 𝑎2𝑥𝑎3 =

 𝑎3 . 

 The primitive translations vectors of the reciprocal lattice are found 

   𝑏1 =
2𝜋

𝑎
𝑥  

   𝑏2 =
2𝜋

𝑎
𝑦                                                                                                                      (27b) 

  𝑏3 =
2𝜋

𝑎
𝑧  

 Here, a reciprocal lattice is itself a simple cubic lattice with lattice constant 
2𝜋

𝑎
. 



 The boundaries of the FBZ are planes normal to the six 

reciprocal lattice vectors, ±𝑏1, ±𝑏2 & ±𝑏3 at their mid points. 

     ±𝑏1 =  ±
𝜋

𝑎
𝑥  

     ±𝑏2 = ±
𝜋

𝑎
𝑦  ------------------------------------------------- (28) 

     ±𝑏3 = ±
𝜋

𝑎
𝑧  

 The six planes bound a cube of edge 
2𝜋

𝑎
 & a volume of 

2𝜋

𝑎

3
. 

 This cube is the first Brillouin zone of the sc crystal lattice. 

 
 

 



Reciprocal lattice to bcc lattice  
 The primitive translation vectors of the bcc lattice are  

    𝑎1 =
1

2𝑎
−𝑥 + 𝑦 + 𝑧   

   𝑎2 =
1

2𝑎
𝑥 − 𝑦 + 𝑧                                                                                                                  (29) 

    𝑎3 =
1

2𝑎
𝑥 + 𝑦 − 𝑧   

 Where ɑ - is the side of conventional cube and 𝑥 , 𝑦  & 𝑧  are orthogonal unit vectors parallel to the cubic 

edges. The volume of the primitive cell is  

       𝑉𝑐 = 𝑎1. 𝑎2𝑥𝑎3  = 
1

2
𝑎3                                                                                                         (30) 

 The primitive translations of reciprocal lattice are defined by (13). Thus, we have 

    𝑏1 =
2𝜋

𝑎
𝑦 + 𝑧   

   𝑏2 =
2𝜋

𝑎
𝑥 + 𝑧                                                                                                                         (31) 

   𝑏3 =
2𝜋

𝑎
𝑥 + 𝑦   

 

  

  

 



  By comparison with fig -14 (p.37) these are just the 

primitive vectors of an fcc lattice. So that an fcc lattice is the 

reciprocal lattice of the bcc lattice. 

 In general the reciprocal lattice vectors for integral 𝑣1, 𝑣2 & 

𝑣3. 

  G = 𝑣1𝑏1+𝑣2𝑏2+𝑣3𝑏3 

      = 
2𝜋

𝑎
𝑣2 + 𝑣3 𝑥 + 𝑣1 + 𝑣3 𝑦 + 𝑣1 + 𝑣2 𝑧  

The shortest G’s are the 12 vectors whose all choice of sign 

are independent. 



 𝑏1 =
2𝜋

𝑎
± 𝑦   ± 𝑧   

   𝑏2 =
2𝜋

𝑎
±𝑥 ± 𝑧                                                                                                          (33)                                                                                                                                      

   𝑏3 =
2𝜋

𝑎
±𝑥  ± 𝑦   

 One primitive cell of reciprocal lattice is the parallelepiped described by 𝑏1, 𝑏2 & 𝑏3. The volume of 

this cell in the reciprocal lattice is  

          𝑉𝑐 = 𝑏1. 𝑏2𝑥𝑏3  = 2
2𝜋

𝑎

3
                                                                                        (34) 

 The cell contains one reciprocal lattice point because each of the eight corners point is shared eight 

parallelepiped. 

 Each parallelepiped contains one eighth of  each of the eight corners points. 

 An other primitive cell the central (Wigner Seitz cell) of the reciprocal lattice which FBZ. 

 Each cell contains one lattice point at the central point of a cell.  

 This zone for bcc lattice is bounded by the plane normal to 12 vectors of equ(33) at their mid point. 

 The zone is a regular 12-faced solid , a rhombo dodecadron. 

 



Reciprocal lattice to fcc 
 The primitive translation vectors of fcc lattice are  

        𝑎1= 
1

2
𝑎 𝑦 + 𝑧  

        𝑎2= 
1

2
𝑎 𝑥 + 𝑧    ---------------------------------------------------------------------------------- (35) 

        𝑎3 =
1

2
𝑎 𝑥 + 𝑦  

  The volume of the primitive cell is  

       𝑉𝑐 = 𝑎1. 𝑎2𝑥𝑎3  = ¼𝑎3  ------------------------------------------------------------------------ (36) 

 The primitive translation vectors of the lattice reciprocal to the fcc lattice are  

       𝑏1 =
2𝜋

𝑎
−𝑥 + 𝑦 + 𝑧  

       𝑏2 =
2𝜋

𝑎
𝑥 − 𝑦 + 𝑧  ----------------------------------------------------------------------------- (37) 

       𝑏3 =
2𝜋

𝑎
𝑥 + 𝑦 − 𝑧   

 Equation (36) describes the primitive translation vectors of bcc lattice.  

 

 
 

 



 Thus the bcc lattice is reciprocal to fcc lattice. 

 The volume of the primitive cell of reciprocal lattice of fcc lattice is 

      𝑉𝑐 = 4
2𝜋

𝑎

3
= 32

𝜋

𝑎

3
 

  the shortest G’s are the eight lattice vectors 

      G = 
2𝜋

𝑎
±𝑥 ± 𝑦 ± 𝑧                                                                                                (38) 

 The boundaries of the central cell are determined for the most part by eight planes normal to these 

vectors at their mid point. 

 The corner of the octahedral thus, formed are cut by the perpendicular bisector of six other reciprocal 

lattice; 

      
2𝜋

𝑎
±2𝑥   

    
2𝜋

𝑎
±2𝑦                                                                                                                      (39) 

    
2𝜋

𝑎
±2𝑧   

 

 

 

 

 



 The 1st Brillouin zone is the smallest bounded 

volume about the origin. (see fig 15) 

The six planes bound a cube of edge 
4𝜋

𝑎
 & volume 

of 
4𝜋

𝑎

3
.  



 

Chapter 3 

Properties of Ionic crystals  
 

What holds a crystal together?  

  The attractive electrostatic interaction between  the negative charges of the 

electrons and the positive charges of the nuclei is entirely responsible for the 

cohesion of solids. 

  Magnetic forces have only a weak effect on cohesion and gravitational forces are 

negligible. 

 Specialized terms categorize distinctive situations: exchange énergies, vander 

Waals forces, and covalent bonds.  

 The observed differences between the forms of condensed matter are 

caused in the final analysis by differences in the distribution of the 

outermost electrons and the ion cores.     

 



3.1 Cohesive energy 

 The cohesive energy of a crystal is the energy that must be added to the crystal to 

separate its components into neutral free atoms at rest, at infinite separation, with 

the same electronic configuration. 

 Lattice energy the energy that must be added to the crystal to separate its 

component ions into free ions at rest at infinite separation. 

 It is used in the discussion of ionic crystals.  

 The inert gas crystals are weakly bound, with cohesive energies less than a few 

percent of the cohesive energies of the elements in the C, Si, Ge ... column. 

 The alkali metal crystals have intermediate values of the cohesive energy.  

 The transition element metals (in the middle columns) are quite strongly bound. 

 



 The melting temperatures and bulk moduli vary roughly as the cohesive energies. 

         CRYSTALS OF INERT GASES 

  The inert gases form the simplest crystals. 

  The electron distribution is very close to that of the free atoms.  

          Properties at absolute zero  

 The crystals are; 

                ♦ transparent insulators, weakly bound, with 

                ♦ low melting temperatures.  

  ♦ The atoms have very high ionization energies. 

 The outermost electron shells of the atoms are completely filled, and the 

distribution of electron charge in the free atom is spherically symmetric. 

 



Cohesive energy  
 The crystal structures in (Fig. 2) are all cubic close-packed (fcc), except 𝐻𝑒3 and 

𝐻𝑒4. 

 What holds an inert gas crystal together? The electron distribution in the crystal is not 

significantly distorted from the electron distribution around the free atoms because 

not much energy is available to distort the free atom charge distributions.  

 The cohesive energy of an atom in the crystal is only 1% or less of the ionization 

energy of an atomic electron.  

 Part of this distortion gives the Van der Waals interaction. 

              Exercise  

1. What holds an inert gas crystal together?(Van der Waals interaction or 

London interaction). 

2. Explain the nature of crystal structures in 𝐇𝐞𝟑 and 𝐇𝐞𝟒. 

 

 



Van der Waals - London interaction 
 Consider two identical inert gas atoms at a separation R large in comparison with 

the radii of the atoms.  

 What interactions exist between the two neutral atoms? 

 If the charge distributions on the atoms were rigid, the interaction between atoms 

would be zero, because the electrostatic potential of a spherical distribution of 

electronic charge is canceled outside a neutral atom by the electrostatic potential of 

the charge on the nucleus.  

 Then the inert gas atoms could show no cohesion and could not condense. 

 But the atoms induce dipole moments in each other, and the induced 

moments cause an attractive interaction between the atoms.  

                              Exercise 

1. What interactions exist between the two neutral atoms? (ans. attractive 

interactions due to induced dipole moment). 

 



 As a model, we consider two identical linear harmonic oscillators 1 and 2 

Separated by R.  

 Each oscillator bears charges ±e with separations 𝑥1 and 𝑥2 as in fig. 3. 

 The particles oscillate along the x axis.  

 Let 𝑝1  and 𝑝2 denotes the momenta .The force constant is C.  

 Then the Hamiltonian of the unperturbed system is  

       𝑯𝒐 = 
𝒑𝟏

𝟐

𝟐𝒎
 + 

𝟏

𝟐
𝒄𝒙𝟏

𝟐+ 
𝒑𝟐

𝟐

𝟐𝒎
 + 

𝟏

𝟐
𝒄𝒙𝟐

𝟐                                               (3.1) 

 Each uncoupled oscillator is assumed to have a frequency of ω𝑜 of the 

strong optical absorption line or the atom. 

  thus, C = m𝜔𝑜
2 

 Let 𝑯𝟏  be the coulomb interaction of the two oscillators, and the 

internuclear coordinate is R.  

 



                                                                                            (3.2) 

 In the limit, 𝑥1 , 𝑥2 ≪ R, we expand 3.2 in to obtain in lowest 

order,  

   𝐻1 ≅ - 
2𝑒𝑚𝑥𝑙𝑥𝑚

𝑅𝑛                                                          (3.3) 

 The total Hamiltonian with approximate form in (3.3) for 𝐻1 can 

be diagonalized by the normal mode transformations by the 

normal mode transformation. 

           𝑥𝑠= 
1

2
𝑥1 + 𝑥2  

            𝑥𝑎 =
1

2
𝑥1 − 𝑥2                                            (3.4) 

On solving for 𝑥1 and 𝑥2  

 

𝑯𝟏 = 
𝑒𝑚

𝑅
 + 

𝑒𝑚

𝑅:𝑋𝑙;𝑋𝑚
 + 

𝑒𝑚

𝑅:𝑥𝑙
 - 

𝑒𝑚

𝑅; 𝑥𝑚
   



    𝑥1= 
1

2
𝑥𝑠 + 𝑥𝑎 ; 𝑥2= 

1

2
𝑥𝑠 − 𝑥𝑎                                       (3.5) 

 The subscripts s and a denote symmetric and antisymmetric modes of 

motion. 

 The momenta 𝑝1 and 𝑝2 associated with the two modes are 

    𝑝1= 
1

2
𝑝𝑠 + 𝑝𝑎 ; 𝑝2= 

1

2
𝑝𝑠 − 𝑝𝑎                                         (3.6) 

 The total Hamiltonian 𝐻𝑜 and 𝐻1after the transformations (5) and (6) 

is  

  H = 
𝑃𝑠

𝑚

2𝑚
+

1

2
𝐶 − 

2𝑒𝑚

𝑅𝑛 𝑥𝑠
2 + 

𝑃𝑎
𝑚

2𝑚
+

1

2
𝐶 + 

2𝑒𝑚

𝑅𝑛 𝑥𝑎
2            (3.7) 

 The two frequencies of the coupled oscillators are found by 

inspection of (3.7) to be. 

 



The two frequencies of the coupled oscillators are found by 

inspection of (7) to be 

   ω = 𝑐 ± 
2𝑒𝑚

𝑅𝑛 /𝑚
1/2

= 𝜔𝑜[1 ±
1

2

2𝑒𝑚

𝑐𝑅𝑛  - 
1

8

2𝑒𝑚

𝐶𝑅𝑛

2

+ …]                   (3.8) 

 With 𝜔𝑜 given by 
𝐶

𝑚

1 2 

 

 The zero point energy of the system is 
1

2
ℏ 𝜔𝑠 + 𝜔𝑎 ;because of the interactions, 

the sum is reduced from uncoupled value 2. 
𝟏

𝟐
ℏ𝝎𝒐 by  

      ∆𝑈 =  
1

2
ℏ ∆𝜔𝑠 + 𝜔𝑎 = 

1

2
ℏ𝜔𝑜.

1

8

2𝑒𝑚

𝐶𝑅𝑛

2

= 
;𝐴

𝑅𝑛                                         (3.9) 

 This attractive interaction varies as the minus sixth power of the separation of the 

two oscillators.  

 

 

 



 This is called the van der Waals interaction, known also as the London in-

teraction or the induced dipole-dipole interaction.  

It is the principal attractive interaction in crystals of inert gases and also in 

crystals of many organic molecules. 

The interaction is a quantum effect, in the sense that ∆U ~ 0 as ℏ ~ 0. 

Thus, the zero point energy of the system is lowered by the dipole-dipole 

coupling of Eq. (3).  

 The van der Waals interaction does not depend for its existence on any 

overlap of the charge densities of the two atoms.  

 An approximate value of the constant A in (9) for identical atoms is given 

by ℏ𝝎𝒐𝜶
𝟐 where ℏ𝝎𝒐 is the energy of the strongest optical absorption line 

and  𝛼 is the electronic polarizability. 



Repulsive interactions  
As the two atoms are brought together, their charge distributions gradually decrease there 

by changing the electrostatic energy. 

As close separations, the overlap energy is repulsive in large part because of Pauli 

exclusion principle. 

Accordingly, two electrons can not have all their  same quantum numbers equal.  

The Pauli principle prevents multiple occupancy, and electron distributions of atoms with 

closed shells can overlap only if accompanied by the partial promotion of electrons to 

unoccupied high energy states of the atoms.  

Thus the electron overlap increases the total energy of the system and gives a repulsive 

contribution to the interaction.  

Experimental data on the inert gases can be fitted well by an empirical repulsive potential 

of the form 
𝐵

𝑅𝑙𝑚, where B is a positive constant, when used together with a long-range 

attractive potential of the form of (9).  

 



 The constants A and B are empirical parameters determined from independent 

measurements made in the gas phase; the data used include the virial coefficients and the 

viscosity.  

 It is usual to write the total potential energy of two atoms at separation R as 

            U(R)= 4𝜀
𝜍

𝑅

12
−

𝜍

𝑅

6
                                                                           (3.10) 

 The 𝜍 and 𝜀 are the new parameters and are related through,  

        A = 4𝜀𝜍6 and B = 4𝜀𝜍12 

 The potential (3.10) is known as the lennared - Jones potential. 

 The force between the two atoms is given by, 
;𝑑𝑈

𝑑𝑅
.  

 Values of 𝜀 and 𝜍 given in Table 4 can be obtained from gas-phase data, so that calculations 

on properties of the solid do not involve disposable parameters.  

 Other empirical forms for the repulsive interaction are widely used, in particular the 

exponential form λexp(
;𝑅

𝜌
), where p is a measure of the range of the interaction.  

 



Equilibrium lattice constants 

 If we neglect the kinetic energy of the inert gas atoms, the cohesive energy of an inert gas 

crystal is given by summing the Lennard -Jones potential (3.10) over all pairs of atoms in 

the crystal.  

 If there are N atoms in the crystal the total potential energy is 𝑝𝑖𝑗R 

     𝑈𝑡𝑜𝑡 =  ½N(4ε)  
𝜍

𝑝𝑖𝑗𝑅

12
′
𝑗 −  

𝜍

𝑝𝑖𝑗𝑅

6
′
𝑗                                                        (3.11) 

 Where, 𝑝𝑖𝑗R is the distance between the reference atom j & any other atom j expressed in 

terms of the nearest neighbor distance, R. 

 The factor ½ occurs with N compensate twice for counting of each atoms.   

    𝑝𝑖𝑗
;12

= 12.13889′
𝑗  &    𝑝𝑖𝑗

;6
= 14.45392′

𝑗  

 There are 12 nearest neighbor sites in the fcc structures; the series are rapidly converging 

and is closer to 12. 

 The nearest neighbors contribute most of the interaction energy of inert gas crystals.  

 The corresponding sums for the hcp structure are 12.13229 and 14.45489. 

 

   



 The corresponding sums for the hcp structure are 12.13229 and 14.45489. 

  If we take 𝑈𝑡𝑜𝑡 in (11) as the total energy of the crystal, the equilibrium value 𝑅𝑜 is given 

by requiring that 𝑈𝑡𝑜𝑙 be a minimum with respect to variations in the nearest-neighbor 

distance R; 

  
𝑑𝑈𝑡𝑜𝑙

𝑑𝑅
 = 0 = -2N𝜀 12 12.13

𝜍𝑙𝑚

𝑅𝑙𝑛 − 6(14.45)
𝜍6

𝑅7                                                   (3.13) 

      
𝑅𝑜

𝜍
 = 1.09                                                                                                             (3.14) 

, which is the same for all elements with an fcc structure. 

 The observed values of 
𝑅𝑜

𝜍
 using independent determined values are given in table 

 

 

 The slight departure of 
𝑅𝑜

𝜍
 lighter atoms from the universal value 1.09 predicted for inert 

gases can be explained by zero-point quantum effects. 

Ne  Ar Kr Xe 

𝑹𝒐

𝝈
 

1.14 1.11 1.10 1.09 



Cohesive energy cont’  
 The cohesive energy of inert gas crystals at absolute zero and at zero pressure is obtained 

by substituting (12) and (14) in (11): 

    𝑈𝑡𝑜𝑡(𝑅) =-2N𝜀 12.13
𝜍𝑙𝑚

𝑅𝑙𝑛 − (14.45)
𝜍6

𝑅7                                                     (3.15) 

And at R = 𝑅𝑜 

     𝑈𝑡𝑜𝑡(𝑅) = - 2.15(4N𝜀)                                                                                    (3.16) 

,Which is the same for inert gases.  

 This is the calculated cohesive energy when atoms are at rest.  

 Quantum-mechanical corrections act to reduce the binding by 28, 10, 6, and 4 percent of 

Eq. (16) for Ne, Ar, Kr, and Xe, respectively. 

 The heavier the atom, the smaller the quantum correction. 

 We can understand the origin of the quantum correction by consideration of a simple model 

in which an atom is confined by fixed boundaries. 



If the particle has the quantum wavelength λ, where  λ is determined by the 

boundaries, then the particle has kinetic energy 
𝑝𝑚

2𝑚
 with the de Broglie relation p = 

ℏ

λ
 

the connection between the momentum and the wavelength of a particle. 

On this model the quantum zero-point correction to the energy is inversely pro-

portional to the mass.  

One consequence of the quantum kinetic energy is that a crystal of the isotope 𝑁𝑒20 is 

observed to have a larger lattice constant than a crystal of 𝑁𝑒22. 

The higher quantum kinetic energy of the lighter isotope expands the lattice because 

the kinetic energy is reduced by expansion.  

The observed lattice constants (extrapolated to absolute zero from 2.5K) are 

              𝑁𝑒20 = 4.4644Å and 

              𝑁𝑒22 = 4.4559Å  

 



3.2 Ionic bonding  

  Ionic crystals are made up of positive and negative ions.  

  The ionic bond results from the electrostatic interaction of oppositely charged ions.  

 Two common crystal structures found for ionic crystals, the NaCl and the CsCl 

structures. 

 The electronic configurations of all ions of a simple ionic crystal correspond to closed 

electronic shells, as in the inert gas atoms. 

 The electronic configuration of Lithium fluoride is 

             Li: 𝟏𝒔𝟐𝟐𝒔  and F:𝟏𝒔𝟐𝟐𝒔𝟐𝟐𝒑𝟓 

 And the singly charged ions have of lithium fluoride has and electronic configurations 

of  

               𝑳𝒊:: 𝟏𝒔𝟐and 𝑭;:𝟏𝒔𝟐𝟐𝒔𝟐𝟐𝒑𝟔 

 As for helium and neon respectively. 

 Inert gas atoms have closed shells, and the charge distributions are spherically 

symmetric.  

 

 



We expect that the charge distributions on each ion in an ionic crystal will 

have approximately spherical symmetry, with some distortion near the 

region of contact with neighboring atoms.  

This picture is confirmed by x-ray studies of electron distributions (fig 

3.7).  

The distance between a positive ion and the nearest negative ion in 

crystalline NaCl is 𝟐. 𝟖𝟏𝒙𝟏𝟎;𝟖cm, and  

The attractive coulomb part of the potential energy of the two ions by 

themselves is 5.1 eV.  

This value may be compared (Fig. 8) with the experimental value of 7.9 

eV per molecular unit for the lattice energy of crystalline NaCl with 

respect to separated 𝑁𝑎: and 𝐶𝑙; ions. 

 

 



Exercise  

1. Ionic compounds are usually poor conductors of 

electricity. Why?  

  



Electrostatic or Madelung Energy 
 The long-range interaction between ions with charge ±q is the electrostatic 

interaction 
±𝑞𝑚

𝑟
 attractive between ions of opposite charge and repulsive between 

ions of the same charge. 

 The ions arrange themselves in whatever crystal structure gives the strongest 

attractive interaction compatible with the repulsive interaction at short distances 

between ion cores. 

 The repulsive interactions between ions with inert gas configurations are 

similar to those between inert gas atoms. 

 The van der Waals part of the attractive interaction in ionic crystals makes 

a relatively small contribution to the cohesive energy in ionic crystals, of 

the order of 1 or 2%.  

 The main contribution to the binding energy of ionic crystals is 

electrostatic and is called the Madelung energy. 



  If 𝑈𝑖𝑗 is the is the energy between ions i & j we define a sum 𝑈𝑖  w/c 

include all interactions involving, ions, i. 

              𝑈𝑖 =  𝑢𝑖𝑗
′
𝑗                                                                   (3.17) 

  the summation includes all ions except, i = j. 

 𝑈𝑖𝑗  may be written as the sum central field repulsive potential that as the 

form of λexp(
;𝑟

𝜌
), where λ and 𝜌 are empirical parameter.  

 The electrostatic force, 
±𝒒𝟐

𝒓
 . 

 Thus,  

           𝑈𝑖𝑗= λexp(
;𝑟𝑖𝑗

𝜌
)± 

𝒒𝟐

𝒓𝒊𝒋
                                                        (3.18) 

In SI units the coulomb interaction is written as  

      𝐹𝑐= 
±𝑞𝑚

4𝜋𝜀𝑜r
     and  in CGS it is 

±𝒒𝟐

𝒓
 

 

 

 



  The repulsive part describes the fact that ions resist the overlap with the electron 

distributions of neighboring atoms. 

 The strength, λ and range ρ are constants to be determined from the observed 

values of lattice constant & compressibility. 

  we have used exponential form of the empirical repulsive potential instead of 

𝑅;12 for noble gases.  

 The change is made because it may give better representations of the repulsive 

potential. 

 For the ions, we do don’t have gas phase data available to permit the independent 

determinations of λ and ρ. 

 ρ is the measure of the range of repulsive interaction. 

 For r = ρ, the repulsive interaction is reduced to 
𝟏

𝒆
 of the value at r = 0. 

 In the NaCl, the value of 𝑈𝑖 does not depend on whether the reference ion is 

positive or negative. 



 We can neglect the surface effects and write the total lattice energy 𝑈𝑡𝑜𝑡 of crystal composed of N 

molecules or 2N ions. 

           U = NUi 

 Here, N rather than 2N occurs since we count each pairs of interactions or each bond only once. 

  the total lattice energy 𝑈𝑡𝑜𝑡 is defined as the energy required to separate the crystal in to 

individual ions at infinite distance apart. 

 Here, we introduce the quantity, 𝜌𝑖𝑗  such that 𝑟𝑖𝑗= 𝜌𝑖𝑗R 

 Where R is the nearest neighbor separations in the crystal. 

 If we include the repulsive interactions to only nearest neighbors we have, 

  𝑈𝑖𝑗 =  
λ𝑒𝑥𝑝

;𝑅

𝜌
−

𝑞𝑚

𝑅
  𝑓𝑜𝑟 𝑛𝑒𝑎𝑟𝑠𝑡 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟

±1

𝜌𝑖𝑗

𝑞𝑚

𝑅
     𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                                             (3.19) 

      U = NUi = N 𝑧λ𝑒
−𝑅

𝜌 −
𝛼𝑞𝑚

𝑅
                                                                         (3.20)    

Where z is the number of nearest neighbor of any atom. 

 



   The madelung constant,𝛼 is given by  

        𝛼=  
±1

𝜌𝑖𝑗

′
𝑗                                                                                                  (3.21) 

 The sum should include the nearest neighbor separation , z. 

 The madelung constant if of central importance for the theory of ionic crystals. 

 At the equilibrium separation, 
𝑑𝑈𝑡𝑜𝑡

𝑑𝑅
 = 0, so that,  

              
𝑑𝑈𝑡𝑜𝑡

𝑑𝑅
 = 

𝑁𝑧λ

ρ
𝑒𝑥𝑝

;𝑅

𝜌
+ 

𝑁𝛼𝑞𝑚

𝑅𝑚  = 0                                                       (3.22) 

               𝑅𝑜
2exp

;𝑅

𝜌
= 

𝑁𝜌𝛼𝑞𝑚

λ𝑧
                                                                        (3.23) 

 This determines the equilibrium separations, 𝑅𝑜 if the parameters,λ and 𝜌 of repulsive 

interactions are known. 

  Calculations from 3.19 through 3.23 are made in CGS systems.  

 For SI systems 𝑞2 is replaced by 
𝑞𝑚

4𝜋𝜀𝑜
. 

 

 



  The total lattice energy of the crystal of 2N ion at their equilibrium 

separation 𝑅𝑜is written using equations 3.20 and 3.23. 

     𝑈𝑡𝑜𝑡 = −
𝑁𝛼𝑞𝑚

𝑅𝑜
1 −

𝜌

𝑅𝑜
                                                        (3.24) 

  The term −
𝑁𝛼𝑞𝑚

𝑅𝑜
 is the madelung energy. 

 It is approximated that 𝜌 is of the order of 𝑅𝑜 so that the repulsive 

interaction has very short range. 

 

 

 

 Fig-9 line of ions of alternating signs with distance r between ions 

 



Evaluation of Madelung constant, 𝜶 
 The 1st calculation of the coulomb energy constant,𝛼 was made by madelung.  

 It is given by 𝜶 =  
±

𝑝𝑖𝑗

′
𝑗  

 For equation (20) to be constant, 𝛼 should be positive. 

 If we take the reference ion as negative charge, the plus sign we apply to 

positive ions and the minus ions for negative ions. 

 Equivalently, 𝛼 can be defined as 

            
𝛼

𝑅
 =  

±

𝑟𝑗

′
𝑗                                                                             (3.25) 

Where, 𝑟𝑗 is the distance of the jth ion from the reference ion & R is the nearest 

neighbor distance. 



  The value of 𝛼 depends on nearest neighbor distance, R and lattice 

parameter, 𝑎 or in terms of some other relevant length. 

 Taking the negative ion as a reference, letting R the distance between 

the adjacent ion; 

         
𝛼

𝑅
 = 2

1

𝑅
−

1

2𝑅
+

1

3𝑅
−

1

4𝑅
+ ⋯  

        α = 2 1 −
1

2
+

1

3
−

1

4
+ ⋯  

  The factor 2 occur because there are two ions, one to the right and 

other to the left, at equal distance, 𝑟𝑗. 

 Summing this series by expansion,  

    ln 1 + 𝑥 = x−
𝑥𝑚

2
+

𝑥𝑛

3
−

𝑥𝑜

4
+ ⋯ 

 



 Thus, the madelung constant for one - dimensional chain is 

    𝛼 = 2ln2 

 In 3D, the series presents a greater difficulty. 

 Thus, the series doesn’t converge unless the successive terms in 

the series are arranged so that the contributions from positive to 

negative ions cancel in the series. 

       

 

 



3.2 Covalent bonding  
 The covalent bond is the classical electron pair or homopolar bond of organic 

chemistry. 

 It is a strong bond; the bond between the 2- carbon atoms in a diamond. 

  The electrons forming the bond will tends to be partly localized in the region 

between the two atoms joined by bonds. 

 The spins of two electrons in the bond are antiparallel. 

 The covalent bond has a strong directional properties. 

Properties: 

   Formed by a system of continuous covalent bonds 

 Non conductive LATTICES both in the solid and in the molten state  

 Diamond, boron nitride, quartz (𝑆𝑖𝑂2), graphite and silicon carbide (SiC)  

 Their arrangement thus, forms low filling factor, 0.34 compared to 0.78 of hcp. 

 Have 4- NN and tetrahedral angles. 

 



The tetrahedral bond has 4-nearest neighbors where as hcp has 12 nearest 

neighbors. 

The binding of molecular hydrogen is a simple example of covalent 

bonding.  

The strong binding occurs when the spins of two electrons are antiparallel. 

The binding depends on the relative spin orientations.  

However, it doesn’t depends on the strong magnetic dipole force between 

spins.  

But Pauli principle modifies the distributions of charge according to the 

spin orientations. 

This spin dependent coulomb interaction is the exchange integrations. 

 



 

 



     Fractional Ionic character of bonds in binary crystals 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

                         After, J.C Philips, bonds and bands in semiconductors 

 

Crystal Fractional   ionic 

character  

Crystal  Fractional ionic 

character 

Si 0.00 GaAS 0.31 

SiC 0.18 GaSb 0.26 

Ge 0.00 AgCl 0.86 

ZnO 0.62 AgBr 0.85 

ZnS 0.62 AgI 0.77 

ZnSe 0.63 MgO 0.84 

ZnTe 0.61 MgS 0.79 

CdO 0.79 MgSe 0.79 

CdS 0.69 LiF 0.92 

CdSe 0.70 NaCl 0.94 

CdTe 0.67 RbF 0.96 

InP 0.42 

InAs 0.36 

InSb 0.32 



3.4 Metallic bonding  

  Metals are characterized by high electrical conductivity and; a large number of 

electrons in a metals are free to move about.  

 These free electrons are referred as  conduction electrons. 

 The valence electrons of the atom become the conduction electrons. 

 In some metals the interactions of ionic cores with  conduction electrons always 

makes a large contributions to binding energy. 

 The characteristic features of metallic binding; 

            ⟹ Energy of the valence electrons is lower than energy of free atoms. 

 The binding energy of alkali metals crystal is less than alkali metal halides 

crystals.  

 The bond formed by conduction electron is not very strong.  

 



  The interatomic distances are relatively large in the alkali 

metals b/ce the kinetic energy of the conduction electron is 

lower at large interatomic distance. 

This lead to weak binding.  

The strength of a metallic bond depends on three things: 

    i. The number of electrons that become delocalized from the 

 metal. 

    ii. The charge of the cation (metal). 

   iii.  The size of the cation. 



 In general, metallic bonding is due to delocalization of electrons. 

Metals tend to crystallize in relatively closed packed structures, 

hcp, fcc, bcc but not in loosely packed structures such as 

diamond. 

 In the transition metals there is additional binding from inner 

electron shells. 

 

Fig. Hydrogen fluoride, 𝑯𝑭𝟐
;                                   𝐻:                              

   is stabilized by hydrogen bond.  

 Transition metals and metals following these metals have large d- 

electron shells and are characterized by high binding energy.  

  



3.5 Characteristics of Metallic crystals 
 The delocalized electrons are free to move about the metallic lattice.  

 This is sometimes described as "an array of positive ions in a sea of electrons". 

 

 

 

 

 

 

 Each positive center in the diagram represents all the rest of the atom apart from the outer 

electron, but that electron hasn't been lost. 

  It may no longer have an attachment to a particular atom, but those electrons are still there 

in the structure.  



 Metals are generally ductile and malleable.   

 They are conductive and not very hard.   

They are highly symmetric because metallic bonds 

are nondirectional.  



Exercise  

1. Using the Lenard-Jones potential, calculate the ratio of the cohesive 

energies of neon in the bcc and fcc structures. Use the lattice sums for 

bcc structures be molecule as a sphere.  

        𝑝𝑖𝑗
;12′

𝑗  = 9.11418 and  𝑝𝑖𝑗
;6 = 12.2533′

𝑗   

(Ans.  0.958). 

2. Using the values λ and ρ, and madelung constant calculate the 

cohesive energy of KCl in the ZnS structure and compare the value 

calculated for the KCl in the CsCl structure.  

3. Explain how ion core interaction with conduction electron produce a 

 larger binding energy? 

 



Chapter 4 

4.1 Vibrations of crystals 

Vibrations of  crystals with monoatomic basis 

 We consider the elastic vibrations of the crystal with one atom in the primitive cell. 

  We want to find the frequency of an elastic wave in terms of the wave vector that 

describe a wave and in terms of elastic constant. 

 The mathematical solution is simple in [100], [110],and [111] propagation directions in 

cubic crystal. 

 These are the directions of cub edge, face diagonal, & body diagonal. 

 When a wave propagate along one of these directions entire plane of atoms move in a 

phase with displacement either parallel or perpendicular to the direction of wavevector. 



  We can describe with a single coordinate 𝑢𝑠, the displacement of a plane, s from its 

equilibrium positions. 

 The problem is now one dimensional. 

 For each wave vector, there are three modes as a solutions for 𝑢𝑠; one longitudinal 

polarizations & two transverse polarizations fig-2 & 3 respectively.   

 We assume that the elastic response of a crystal is a linear function of force. 

 This is equivalent to the assumption that elastic energy is quadratic function of relative 

displacement of any two points in the crystal.  

 Terms in the energy that are linear in displacement will vanishes in equilibrium. 

♠ Moreover, cubic and higher terms may be neglected for sufficiently small elastic 

deformations. 

♠ we assume that the force on the plane, s caused by the displacement of the plane s +p is 

proportional to the difference , 𝑢𝑠:𝑝- 𝑢𝑠 of their displacement. 



  For brevity, we consider only nearest-neighbor interactions with p= ±1 

 

 

        Fig 4.1 Spring Model 

 Here n = s. The total force on plane s  from s±1 is  

   𝐹𝑠= c 𝑢𝑠:1 − 𝑢𝑠 + c 𝑢𝑠;1 − 𝑢𝑠                               (1) 

 This expression is linear in displacement and is of the form of Hook’s 

law. 

 The constant, c is the force constant between nearest neighbor planes and 

will differ for longitudinal and transverse waves. 

 Here, c is defined for one atom & 𝐹𝑠 is the force on one atom in a plane s. 



  The equation of motion of an atom in the plane s is  

      M
𝑑𝑚𝑢𝑠

𝑑𝑡𝑚  =  c 𝑢𝑠:1 + 𝑢𝑠;1 − 2𝑢𝑠                                                   (2) 

   Where M-is the mass of an atom. 

  We look for solutions with all displacements having the time dependency, 

𝑒 ;𝑖ω𝑡 .  

Then 
𝑑𝑚𝑢𝑠

𝑑𝑡𝑚  = -ω2𝑢𝑠.  

 Equation (2) becomes  

        -𝑀ω2𝑢𝑠= c 𝑢𝑠:1 + 𝑢𝑠;1 − 2𝑢𝑠                                         (3) 

 This is a differential equations and have a solution of travelling wave 

solution of as in (4). 



  From the equations 

      𝑈𝑠±1= 𝑢0exp 𝑖𝑠𝑘𝑎 exp ±𝑖𝑘𝑎                                                                                  (4) 

 where is the spacing between the planes and k is the wave vector. 

 The choice of ɑ- depends on the direction of wave vector k. Using equations (4) and (3)  

   −𝝎𝟐𝒎𝒖exp 𝒊𝒔𝒌𝒂  = Cu 𝒆𝒙𝒑 𝒊 𝒔 + 𝟏 𝒌𝒂 + 𝒆𝒙𝒑 𝒊 𝒔 − 𝟏 𝒌𝒂 − 𝟐𝒆𝒙𝒑 𝒊𝒔𝒌𝒂      (5) 

 We can cancel out uexp(iska) from both sides. 

    𝜔2𝑚 = C 𝑒𝑥𝑝 𝑖𝑘𝑎 + 𝑒𝑥𝑝 −𝑖𝑘𝑎 − 2  

    𝜔2𝑚 = -C 2𝑐𝑜𝑠𝑘𝑎 − 2  

        𝜔2 = 
2𝑐

𝑀
1 − 𝑐𝑜𝑠𝑘𝑎                                                                                                      (6) 

 The boundary of the first Brillouin zone lies in the region, 
±𝜋

𝑎
. 



  We show from (6) that the stop ω versus k is zero at the zone boundary. 

        
𝑑𝜔𝑚

𝑑𝑘
 = 

2𝑐𝑎

𝑀
sinka = 0                                                                    (7) 

  At k = 
±𝜋

𝑎
, for here sinka = sin ±𝜋 =0. 

 The special significance of the phonon wave vector that lie on the zone 

boundary is developed in (11) below. 

 By trigonometric identity with equation (6) may be written as 

     𝜔2= 
4𝑐

𝑀
𝑠𝑖𝑛2 1

2
𝑘𝑎  

     ω = 
4𝑐

𝑀

𝑙

𝑚
𝑠𝑖𝑛

1

2
𝑘𝑎                                                                    (8) 

 



 

 

 

 

 

 

 
 

Fig 4.2 Phonon dispersion relation  



 Fig- 4  a plot of ω versus K.  

 The region of k << 
1

𝑎
 or λ >> ɑ corresponds to the continuum 

approximations. 

 Here ω ~ 𝑘. 

        First Brillouin Zone 

  What range of k is physically significant for elastic waves? 

  From equation (4), the ratio of the displacements of two successive 

planes is given by  

       
𝑢𝑠+𝑙

𝑢𝑠
 = 

𝑢𝑒 𝑖 𝑠+𝑙 𝑘𝑎

𝑢𝑒 𝑖𝑠𝑘𝑎  = 𝑒𝑖𝑘𝑎                                                     (9) 

 The range from -𝜋 to +𝜋 for the plane kɑ covers all independent values 

of the exponential. 



  The range of the independent values of k-is specified by 

         −𝜋 < 𝑘𝑎 <  𝜋 

Or 

          
;𝜋

𝑎
< 𝑘 <  

𝜋

𝑎
 

 The extreme values are 𝑘𝑚𝑎𝑥= ±
𝜋

𝑎
. 

 The values of k- outside Brillouin zone (Fig - 5) merely reproduce lattice motion 

described by values with in the limit of  
±𝜋

𝑎
. 

  We may treat the value of k outside this limits by substituting the integral 

multiple of  
2𝜋

𝑎
 that will give a value inside this limit. 

 Suppose k lies outside the FBZ, but related wave vector, k’ defined  

 K’ = k - 
2𝜋𝑛

𝑎
 lies within the first Brillouin Zone, where n is an integer. 



 The displacement ratio, (10) becomes 

        
𝑢𝑠+𝑙

𝑢𝑠
 = 𝑒 𝑖2𝜋𝑛 𝑒 𝑖(𝑘′𝑎;2𝜋𝑎)  

        
𝑢𝑠+𝑙

𝑢𝑠
 = 𝑒 𝑖𝑘′𝑎  = 𝑒 𝑖𝑘𝑎                                                                                   (10) 

Where,  

         𝑒 𝑖2𝜋𝑛  = 1 

 Thus, the displacement can always be described by wave vector with in the first Brillouin 

zone. 

 We not that the 
2𝜋𝑛

𝑎
 is always  a reciprocal lattice vector because 

2𝜋

𝑎
 is a reciprocal lattice 

vector. 

 Thus, by subtracting an appropriate reciprocal lattice vector from k, we always obtain an 

equivalent wave vector in the FBZ. 

 At the boundaries, 𝐾𝑚𝑎𝑥 = ±
𝜋

𝑎
 of the Brillouin zone , the solution is 𝑢𝑠 = u𝑒𝑖𝑠𝑘𝑎,which does 

not represent travelling wave but a standing wave. 



 At the zone boundaries,  s𝑘𝑚𝑎𝑥ɑ = ±𝑠𝜋, when  

          𝑢𝑠= uexp ±𝑖𝑠𝜋 = u −1 𝑠                                                                     (11) 

 This is a standing waves.  

 Alternate atoms oscillates in opposite phase because 𝑢𝑠= ±1 according to whether s is an 

even integer or an odd one. 

 The wave moves neither to right nor to the left. This condition is equivalent to the Braggs 

– reflections of x-rays, when the Bragg condition is satisfied. 

 A travelling waves can not propagates through the lattice but through the successive 

reflections back and forth, a standing wave is set up. 

 The critical value, 𝑘𝑚𝑎𝑥 = ±
𝜋

𝑎
  found here satisfies the Bragg conditions,  2dsinθ = nλ. 

Where,  θ =  
𝜋

2
,   n = 1, so that λ = 2ɑ. 

                d = ɑ ,   k = 
2𝜋

ɑ
. 

 

 



Standing waves 
 
 
 

 
 
 

 

Figure 3. The wave represented by solid curve conveys 

no information given by the dashed line. Only 

wavelengths longer than 2ɑ are needed to represent the , 

motion.  



 Within X- rays we have n = other integers besides 

unity because the amplitude of the EMW has 

meaning in space between atoms but the 

displacement amplitude of an elastic wave has 

meaning only at the atoms themselves. 

 

 



Group velocity  
 Group velocity is a transmission velocity of a wave packet. 

 It is the derivative of angular frequency,ω as a function of wave vector, k. 

         𝑉𝐠 =
𝑑𝜔

𝑑𝑘
 

         𝑉𝐠 = 𝐠𝑟𝑎𝑑𝜔 𝑘   

         𝑉𝐠 = 𝛻𝑘𝜔 𝑘                                                                            12  

  group velocity is the velocity of the energy in the medium of propagation. 

 With particle dispersion relation, the group velocity is given by  

         𝑉𝐠 = 
𝑐𝑎𝑚

𝑀

𝑙

𝑚
cos𝑙

𝑚
𝑘𝑎                                                                  (13) 

 This is zero at the edge of the zone boundary where, k = 
𝝅

𝒂
. 



 Here, the wave is a standing wave as in equation(11) & expect zero net transmission 

velocity for a standing wave.  

 Now we might consider the long wavelength & short wavelength limit. 

1. Long wave length limit: 

 when ka <<1, we expand, coska = 1- 
1

2
𝑘𝑎 2, so that the dispersion relation (6) 

becomes 

           𝜔2= 
𝐶

𝑀
𝑘2𝑎2  

           𝜔 = 
𝐶

𝑀
kɑ                                                                                                 (14) 

 This shows that angular frequency is directly proportional to the wave vector at long 

wavelength limit. 

 



 According to equation (15), the velocity of sound is independent of 

frequency in long wave length limit. 

 Thus, v = 
ω

𝑘
, exactly in the continuum theory of elastic waves. 

  In the continuum limit, kɑ << 1. 



Force constant from exp’t. 
  In metals, the effective force may be quite long ranged, & are carried from ion to ion through 

the conduction electrons. Interactions have been found between planes of atoms and separated 

by many plans ~20 planes. 

 The range of force may be estimated from the experiment on dispersion relation for ω. 

 The generalization of the dispersion relation in (6) to p - nearest neighbor planes is easily found 

to be  

         𝜔2 = 
2

𝑀
 𝐶𝑝𝑝>0 1 − 𝑐𝑜𝑠𝑝𝑘𝑎                                                              (15a) 

We solve for the interplanar force constants,𝑐𝑝 by multiplying  both sides by cosrkɑ, where r is an 

integer& integrating over the range of independent values of k; 

     M 𝑑𝑘𝜔𝑘
2

+𝜋

𝑎
−𝜋

𝑎

cosrka = 2 𝐶𝑝𝑝>0  𝑑𝑘 1 − 𝑐𝑜𝑠𝑝𝑘𝑎 𝑐𝑜𝑠𝑟𝑘𝑎
+𝜋

𝑎
−𝜋

𝑎

 

                                         = -2𝜋
𝐶𝑟

𝑎
                                                                        (15b) 

 



  The integral vanishes except for p = r. 

 Thus,  

         𝐶𝑝= 
;𝑀𝑎

2𝜋
 𝑑𝜔𝑘

2
𝜋

𝑎
𝜋

𝑎

cospkɑ                                                          (16) 

 Equation (17) gives the force constant at a range, pa for a structure in the 

monoatomic basis. 

 LA & TA branches have a total of 3N modes accounting a total of 3N degree 

of freedom. 

 The remaining (3p - 3)N is accommodated by the optical phonon. 

 We consider a cubic crystal where atoms of masses 𝑀1lie on a set of planes 

and atoms of masses  𝑀2 lie on the interleaved between those set of fig-9. 

 

 



 It is not essential that the masses be d/t but either the force constant or the 

mass may will be different if the two atoms of the basis are in non- 

equivalent sites ɑ in the direction of normal to the lattice plane. 

 We treat waves that propagate in the symmetry direction such that a single 

crystal contains only a single type of atoms.. Such directions are [111] in 

NaCl plane & [100] in CsCl structure. 

 We write the equations of motion under assumption that each plane 

interacts with its nearest neighbor planes. 

 And the force constants are identical between all pairs of nearest neighbor 

planes. 

 

 



Two atoms per primitive basis 

 The phonon dispersion relation shows new features in the crystal with two or more atoms 

per primitive basis. 

 Consider for example: NaCl or diamond structure with atoms in the primitive cell. 

 For the polarization mode in a given propagation direction, the dispersion relation ω vs k, 

develops two types of phonons, namely; 

                   i) the acoustic branch & 

                  ii) optical phonon branch. 

 We have longitudinal acoustic, LA , transverse acoustic, TA, longitudinal optical , LO and 

transverse optical , TO branches. 

 If there are p –atoms in the primitive cell, there are  

                 ⇨ 3p acoustic branch & 

                 ⇨ 3p - 3 optical branches. 

 Thus, germanium (fig 8a) and KBr in (fig 8b) each with two atoms in a primitive cell have 

six branches. 

 



• Thus, germanium (fig 8a) and KBr in (fig 8b) 

each with two atoms in a primitive cell have six 

branches. 

              

Phonon 
branches 

1 Longitudinal 
acoustic 

2 transverse 
optical  

1Longitudin
al optical 

2 transverse 
acoustic  



                            
                                              Optical phonon 

                                                      branch 

 
 
                                 
 
                                          Acoustic phonon 

                                            branch 

 

                                                                                          
𝜋

𝑎
     k → 

   Fig:6b Optical and acoustic branches of phonon dispersion relation for 

 diatomic linear lattice showing limiting  frequency at k = 0 and  

 k = 𝑘𝑚𝑎𝑥 = 
𝜋

𝑎
. 

 The lattice constant is ɑ. 
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Fig 6ɑ: Phonon dispersion relation in [111] direction in 

germanium at 80K. 
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 From fig 8a we notice that  

 Two TA phonon branches are horizontal at the zone boundary position, 

        𝐾𝑚𝑎𝑥= 
2𝜋

𝑎

1

2
,

1

2
,

1

2
 

  The LO and TO branches coincides at k = 0. This is the consequence of the 

critical symmetry of the Ge. 

 The results were obtained with neutron inelastic scattering by G. Nilsson & G. 

Netin. 

 The numerology of the branches follows from the number of the degree of 

freedom. 

 With p-atoms in the primitive cell & N- primitive cell there are PN atoms. 

 Each atom has 3 - degree of freedom one for each of the x, y, & z directions 

making a total of 3PN degree of freedom for the crystals. 

 The number of allowed k- values in a single branch is just N-times for one 

Brillouin zone. 



 thus,  

    

       𝑢𝑠              𝑢𝑠;1  𝑢𝑠;1     𝑢𝑠 

 

                                    𝑢𝑠:1    𝑢𝑠:1 

                               

                                                   

                                                             𝑀1         𝑀2 

 

                                                              a 

 

 Fig-7 A diatomic crystal structure with masses 𝑀1 & 𝑀2 
connected by a force constant c between adjacent planes. The 
displacement of atoms 𝑚1are denoted by 𝑢𝑠;1,  𝑢𝑠 & 𝑢𝑠:1. 



 And the displacement of atoms 𝑀2 is given by 

              𝑢𝑠;1, 𝑢𝑠 &  𝑢𝑠:1. 

 The repeats distance is ɑ in the direction of wave vector K. 

 The atoms are shown in undisturbed positions. 

 LA & TA branches a total of 3N modes there by accounting for 3N degree 

of freedom. 

 The remaining (3p -3) degree of freedom are accommodated by optical 

branches. 

 We treat waves that propagate in a symmetry direction such that a single 

plane contains only a single type of cells. 

 Such directions are [111] for NaCl & [100] for CsCl. 



  We write the equation of motion under assumption that each plane interacts only 

with its nearest neighbor. 

 By referring fig-9 we can write the equation of motion. 

         𝑀1
𝑑𝑚𝑢𝑠

𝑑𝑡𝑚 = c 𝑣𝑠 + 𝑣𝑠;1 − 2𝑢𝑠  

         𝑀1
𝑑𝑚𝑉𝑠

𝑑𝑡𝑚 = 𝑐 𝑢𝑠:1 + 𝑢𝑠 − 2𝑣𝑠                                                      (17) 

 We use the solution of the travelling waves with different amplitude, u and v on 

alternate plane. 

              𝑢𝑠= 𝑢0exp 𝑖𝑠𝑘𝑎 exp −𝑖𝜔𝑡  

              𝑉𝑠= 𝑣𝑜exp 𝑖𝑠𝑘𝑎 exp −𝑖𝜔𝑡                                                     (18) 

 We define ɑ - the distance between nearest identical planes not nearest neighbor 

plane. 

 



 Up on substitution of equation (18) in to equation (17) we obtain 

       −ω2𝑀1u = cv 1 + 𝑒𝑥𝑝 −𝑖𝑘𝑎  - 2cu 

       −ω2𝑀2v = cu 𝑒𝑥𝑝 𝑖𝑘𝑎 + 1  - 2cv 

  The homogenous linear solution equations have a solution only if the 

determinant of the coefficient u & v vanishes. 

       
2𝑐 − 𝑀1𝜔

2      − 𝑐 1 + exp (𝑖𝑘𝑎)

−𝑐 1 + exp (𝑖𝑘𝑎)           2𝑐 − 𝑀2𝜔
2 = 0                               (20) 

This implies 

      𝑀1𝑀2𝜔
4 −2c 𝑀1 + 𝑀2 𝜔2+ 2𝑐2 1 − 𝑐𝑜𝑠𝑘𝑎 = 0                  (21) 

We can solve this equation exactly for 𝜔2; but it is a simple to examine 

equ (18) for the limiting cases. 

 
 



i) If kɑ ≪ 1  &  Kɑ = ±
𝜋

𝑎
 at the zone boundaries.  

  For small ka, we have  Coskɑ = 1- 
1

2
𝑘2𝑎2  and the roots are ; 

          𝜔2 = 2c
1

𝑀𝑙
+

1

𝑀𝑚
                                                                (22)     

equation (23) is for the optical branch 

          𝜔2 = 

𝑙

𝑚
𝑐

𝑀𝑙:𝑀𝑚
𝑘2𝑎2                                                                (23) 

 And equation (23) is for the acoustic branch, provided that the extent of first 

Brillouin zone is 

 ±
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎
, Where ɑ is the repeat distance  in equation (19). 

 

 



At 𝑘𝑚𝑎𝑥 = ±
𝜋

𝑎
, so that the roots are 

        𝜔2 = 
2𝐶

𝑀𝑙
 & 

         𝜔2 =
2𝐶

𝑀𝑚
                                                                                         (24) 

 The dependency of 𝜔 on k is shown in (fig- 4.7, Kittel) for 𝑀1 > 𝑀2. 

 The particle displacement in the transverse acoustic (TA) & transverse optical (TO) branch 

are shown below. 

 For optical branches at k = 0, we find the substitution of (22) in (19). 

        
𝑢

𝑣
 = 

;𝑀𝑚

𝑀𝑙
                                                                                            (25) 

  The atoms vibrate against each other, but their centre of mass is fixed. 

 If this atoms carry opposite charges as in (fig 4.10, Kittel) we may excite the motion of 

this problem.  

 



Exercise  
1. If there are 3 atoms in the primitive cell, then what are the total number of acoustic & optical phonon 

 branches respectively? 

2. Explain the difference between acoustic phonon branch & optical phonon branch. 

 

        

 

 



 
 

Chapter 5 
Phonon heat capacity 

 
 

          

 By heat capacity we mean either heat capacity at constant pressure or heat capacity at 

constant volume. 

 However, heat capacity at constant volume is more fundamental one. 

             𝐶𝑣 =
𝜕𝑈

𝜕𝑇 𝑣
                                                                                      (1) 

Where,  

                  U – is the energy 

                  T – is the temperature. 

                    𝑐𝑣 -is the heat capacity at constant volume 

 The contribution of phonon to the heat capacity of crystals is called lattice heat capacity 

𝐶𝑙𝑎𝑡𝑡. 

 



  The total energy of phonon at a temperature 𝜏 = 𝑘𝐵𝑇 may be written as a sum 

of the energies of all phonon modes, here indexed by the wave vector k, and 

polarization index, p. 

        𝑈𝑙𝑎𝑡=  𝑛𝑛𝑘𝑝𝑘 ћ𝜔𝑘,𝑝                                                        (2) 

Where, 

𝑛𝑘,𝑝  - is the thermal equilibrium occupancy of phonons of wave vector k and 

polarization, p. 

 The form of 𝑛𝑘,𝑝  is given by the Planck distribution function. 

      𝑛  = 
1

𝑒𝑥𝑝
ћ𝜔

𝐾𝐵𝑇
 ; 1

                                                                   (3) 

Here, …  the average of thermal equilibrium. 



Planck distributions 
We consider a set of harmonic oscillators in thermal equilibrium. 

The ratio of number of oscillators in the 𝑛 + 1 𝑡𝑕 quantum state of excitations to the 

number in the 𝑛𝑡𝑕quantum state is given by 

            
𝑁𝑛+𝑙

𝑁𝑛
 = exp

;ћω

τ
                                                                                   (4) 

Where τ = 𝐾𝐵𝑇 

The fraction of the total number of oscillators in the 𝑛𝑡𝑕 quantum state is  

           
𝑁𝑛

 𝑁𝑠
∞
𝑠=𝑘

 = 
𝑒𝑥𝑝

−𝑛ћω

𝜏

 𝑒𝑥𝑝
−𝑠ћω

𝜏
∞
𝑠=𝑘

                                                                             (5) 

We see that the average excitations quantum number of an oscillator is 

             𝑛  = 
 𝑠𝑒𝑥𝑝

−𝑠ћω

τ𝑠

 𝑒𝑥𝑝
−𝑠ћω

τ𝑠

                                                                                 (6) 

 

 



  The summations in 6  are  

       𝑠𝑠 =
1

1;𝑥𝑠                                                    (7) 

         𝑠𝑥𝑠 = 𝑥
𝑑

𝑑𝑥
 𝑥𝑠

𝑠𝑠  = 
𝑥

1;𝑥 𝑚  

Where  

        X = exp
;ћω

τ
 

Thus, we may rewrite (6) as the Planck distributions. 

     𝑛 = 
𝑥

1;𝑥
 = 

1

𝑒𝑥𝑝
ћω

τ
;1

                                       (8) 



Normal mode enumerations  
  The energy of a collections of oscillators of frequency, 𝜔𝑘,𝑝, in thermal equilibrium is 

found in (1) and (2). 

       U =   
ћω𝑘,𝑝

𝑒

ћω𝑘,𝑝
τ

 − 𝑙
𝑝𝑘                                                                              (8) 

 It is usually convenient to replace the summations over k by an integral. 

 Suppose that the crystal has 𝐷𝑝 𝜔 𝑑𝜔 mode of a given polarization, p in the frequency ω 

to ω + dω. Then, the energy is  

         U =   𝑑𝜔𝐷𝑝 𝜔𝑝
ћω

𝑒
ћω
𝜏 ;1

                                                                    (9) 

 The lattice heat capacity is found by differentiating lattice energy with respect to 

temperature. 

 
 



 letting , x = 
ћω

τ
 then  

 𝐶𝑣= 
𝜕𝑈

𝜕𝑇
 = 𝐾𝐵   𝑑𝜔𝐷𝑝 𝜔𝑝

𝑥𝑚𝑒𝑥

𝑒𝑥;1 𝑚                (10) 

The central problem is to find D 𝜔 , the number of 

modes per unit frequency range. 

This function is called the density of modes or more 

often density of states. 

Consider the boundary value problem for vibrations 

of a one dimensional line of length, L carrying N+1 

particles of separations, ɑ. 

 



Density of States  
Consider the boundary value problem for vibrations of a one dimensional line of 

length, L carrying N+1 particles of separations, ɑ.   

                                                                         L 

                                                 0       us 

Fixed                                                                    𝑎                                           fixed 

 

 x = 0       1         2         3        4         5         6        7          8       9      x = 10 

 

Fig 2:  Elastic line of N+1 atoms, with N = 0 for boundary conditions that the end of 

atoms s = 0 and s =10 are fixed.  The particle displacement in the normal modes for either 

longitudinal or transverse displacement are of the form 𝑢𝑠~ sinska. This form is 

automatically zero for atoms at the ends, s = 0 . We choose k - to make the displacement 

zero at the ends, s = 10. 

       K = 0, 
±2𝜋

𝐿
, 

±4𝜋

𝐿
, 

±6𝜋

𝐿
,…

𝑁𝜋

𝑙
. 

 



 
 
          
    

       S = 0     
𝜋

10𝑎
        

2𝜋

10𝑎
       

   3𝜋  

10𝑎
       

4𝜋

10𝑎
       

5𝜋

10𝑎
      

6𝜋

10𝑎
      

 7𝜋

10𝑎
       

8𝜋

10𝑎
      

9𝜋

10𝑎
     

10𝜋

10𝑎
 

𝑾𝒂𝒗𝒆 𝒗𝒆𝒄𝒕𝒐𝒓, 𝒌     → 

Figure 3. The boundary condition sinsKa = 0 for s = 10 can be satisfied by choosing 

values of  S = 0,      
𝜋

10𝑎
 ,  

2𝜋

10𝑎
 ,  

   3𝜋  

10𝑎
 ,

4𝜋

10𝑎
 ,

5𝜋

10𝑎
,   

6𝜋

10𝑎
,  

 7𝜋

10𝑎
 ,

8𝜋

10𝑎
 ,

9𝜋

10𝑎
 where 10a is 

the length L of the line. The present figure is in K space.  

 The dots are not atoms but are the allowed values of K.  

 Of the N + 1 particles on the line, only N – 1 are allowed to move, and their most 

general motion car1 be expressed in terms of the N - 1 allowed values of K.  

 This quantization of K has nothing to do with quantum mechanics but follows 

classically from the boundary conditions that the end atoms be fixed. 



  Suppose that the particle at s = 0 and s = N, at the ends of the line are held fixed. 

 Each normal vibration mode of polarizations ,p has the form of a standing wave where 𝑢𝑠 is the 

displacement of the particle s. 

            𝒖𝒔 = 𝒖𝟎exp −𝝎𝒌,𝒑𝒕 sinskɑ                                                                      (11) 

 𝝎𝑘,𝑝 - is related to the k by the dispersion relation. K is fixed by the end boundary conditions, 

             k =  
𝝅

𝑳
,

𝟐𝝅

𝑳
,

𝟑𝝅

𝑳
, …

𝑵;𝟏 𝝅

𝑳
                                                                            (12) 

 The solution for k = 
𝜋

𝐿
 has the solutions of  

             𝐮𝐬 ~ 𝐬𝐢𝐧
𝐬𝛑ɑ

𝐋
                                                                                               (13) 

And vanishes for s = 0 and s = N as required. 

 The solutions for K =  
𝑁𝜋

𝐿
 = 

𝜋

𝑎
 = 𝐾𝑚𝑎𝑥 has 𝑼𝒔 ~ 𝒔𝒊𝒏𝒔𝝅𝒂. This allows no motion of any atom 

because sins𝜋 vanishes at each atom. 

 There are N-1 allowed independent values of K in (12). This number is equal to the № of 

particles allowed to move. 



 Each allowed value of  K is associated with a standing wave. 

 For the one dimensional line there is one mode for each interval; 

   ∆𝑘 =
𝜋

𝐿
 So, that the number of modes per unit a range of k is        

𝑙

𝜋
, 𝑓𝑜𝑟 𝑘 ≤

𝜋

𝑎

0, 𝑓𝑜𝑟  𝑘 >
𝜋

𝑎

 

  There are three polarizations, p for each value of k. 

 In 2-D two of these are transverse and one is the longitudinal. 

 In three dimensions the polarizations are simple only for a wave vector in certain special 

crystal direction. 

 An other device for enumerating mode is equally valid. We consider the medium as 

unbounded, but requires that the solutions be periodic over large distance, L so that 

U 𝑠𝑎 = U 𝑠𝑎 + 𝐿 . 

 The method of periodic boundary conditions does not change the physics of the problem 

in any essential respect for large system. 



 In the running wave solutions,  

           𝑢𝑠= U 𝑜 𝑒 𝑖 𝑠𝑘𝑎;𝜔𝑘𝑡                                                              (14) 

The allowed values of k are  

            K = 0, 
±2𝜋

𝐿
,
±4𝜋

𝐿
,
±6𝜋

𝐿
, … .

𝑁𝜋

𝐿
 

 This method of enumeration gives the same number of mode (one per mobile atom) as 

in (12). 

 The change in wavevector between successive values of k is, ∆𝑘 =
2𝜋

𝑙
. 

 For periodic boundary conditions, the number of modes per unit range of k is,   
𝐿

2𝜋
 for 

;𝜋

𝑎
≤ 𝑘 ≤

:𝜋

𝑎
 and 0 otherwise. 

 We need to know the D 𝜔  the number of modes per unit frequency range for a given 

polarizations.  

 



Fig:4 For N atoms constrained to slid In a circular ring. 

 The particle oscillate if Connected  by elastic spring. 

  In normal mode the displacement  𝑢𝑠 of the atom s  

will be of the form sin 𝑠𝑘𝑎 or 𝑐𝑜𝑠 𝑠𝑘𝑎  which are  

   independent modes.  

 By the geometrical periodicity of  the ring 

 Boundary condition is 𝑢𝑠:1 = 𝑢𝑠for all s.  

 So, 𝑁𝑘𝑎 must be an integral multiple of 2𝜋. 

 For N= 8, the allowed independent values of k are 0, 
2𝜋

8𝑎
, 
4𝜋

8𝑎
, 

6𝜋

8𝑎
, 

8𝜋

8𝑎
. 

 The value k = 0 & the value k = 
8𝜋

8𝑎
 is meaning less for sine form and have meaning for cosine 

term. 

 The 3-other values of k are allowed for both sine & cosine term. 

 Therefore, the periodic boundary conditions leads one mode of per particles exactly as for two 

fixed end boundary conditions in fig-3. 
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  The number of modes D 𝜔 dω in dω at ω is given in one dimension by 

    D 𝜔 dω = 
𝐿

𝜋

𝑑𝑘

𝑑𝜔
. 𝑑𝜔 

                     = 
𝐿

𝜋

𝑑𝜔
𝑑𝜔

𝑑𝑘 
 

     With,  
𝑑𝜔

𝑑𝑘
 = 𝑣𝐠 

         D(𝜔)dω = 
𝐿𝑑𝜔

𝜋𝑣𝐠
                                                                       (15) 

 𝑉𝐠 - is the group velocity. 

 We can also obtain the group velocity from the dispersion relation. 

 There is a singularity in D 𝜔  when ever the dispersion relation ω 𝑘  is 

horizontal, at 𝑉𝐠= 0. 



The Debye Model 

 From dispersion relation the density of state g 𝜔 obtained by integrating over the 

Brillion zone. 

 The number allowed values are the number of unit cells (N) in the crystals. 

 In the Debye model, define a cutoff 𝜔𝐷 

        N =  g 𝜔 𝑑𝜔
𝜔𝐷

0
                                                                   (16) 

Where, N is the number of unit cells in the crystal, and g(ω) is the density of states in 

one phonon branch. 

 For each mode the density of state is given by  

         g 𝜔  = 
𝑉

2𝜋𝑚

𝜔𝑚

𝑣𝑛  

         N =  
𝑉

2𝜋𝑚

𝜔𝑚

𝑣𝑛 𝑑𝜔
𝜔𝐷

0
 = 

𝑉

6𝜋𝑚

𝜔𝐷
𝑛

𝑣𝑛  

 



Hence, the Debye cutoff frequency is given by 

      𝜔𝐷
3 = 

6𝑁𝜋𝑚

𝑉
𝑣3                                        (17) 

Equivalently the Debye temperature, 𝜃𝐷 is given by  

       𝜃𝐷= 
ℏ𝜔

𝐾𝐵𝑇
                                                 (18) 

 In the Debye model the specific heat capacity is 

given by combining the Debye density of states with 

the Bose-Einstein distribution.  

 



 

 

 

 

 

 

 

 

 
Fig 5. Debye’s 𝑇3 law for Argon  



 The internal energy and the specific heat capacity's are given by  

  U =  
𝑉

2𝜋𝑚𝑣𝑚  𝑑𝜔𝜔2 ℏ𝜔

𝑒

ℏ𝜔
𝐾𝐵𝑇;1;1

𝜔𝐷

0
𝑛<3
𝑖<1                                                          (19) 

with x = 
ℏ𝜔

𝐾𝐵𝑇
 = 

𝜃

𝑇
, ω = 

𝐾𝐵𝑇𝑥

ℏω
,and ω𝐷 = 

𝐾𝐵𝜃𝐷𝑥

ℏω
 

   U = 
3𝑉

2𝜋𝑚𝑣𝑚ℏ
𝐾𝐵𝑇

ℏ

4

 𝑑𝑥
𝑥𝑛

𝑒𝑥;1

𝑥𝐷

0
 

       U  = 9N𝑲𝑩T
𝑻

𝜽

𝟑

 𝒅𝒙
𝒙𝟑

𝒆𝒙;𝟏

𝒙𝑫

𝟎
                                                               (20) 

Hence from table of integration,  𝑑𝑥
𝑥𝑛

𝑒𝑥;1

𝑥𝐷

0
= 

𝜋𝑜

15
 as T~0, 𝑥𝐷~∞ 

         𝐶𝑣= 
𝜕𝑈

𝜕𝑇
 = 

12𝜋𝑜

5
N𝐾𝐵

𝑇

𝜃

3
  

         𝐶𝑣= 234N𝐾𝐵
𝑇

𝜃

3
                                                                                  (21) 

     

 



Einstein Model  
According to Einstein’s Model the heat capacity of oscillator is given by 

            𝐶𝑣 = 
𝜕𝑈

𝜕𝑇 𝑣
= N𝑘𝐵

ℏ𝜔

𝜏

2 𝑒
ℏ𝜔
𝜏

𝑒
ℏ𝜔
𝜏 ;1

𝑚                                                      (22) 

This expresses the Einstein (1907) result for the contribution of N identical oscillators to 

the heat capacity of a solid.  

In three dimensions N is replaced by 3N, there being three modes per oscillator.  

At high temperature limit, 𝐶𝑣 becomes 3𝑁𝐾𝐵, which is known as the Dulong and Petit law.  

At low temperatures (22) decreases as  𝑒
ℏ𝜔

𝜏 , whereas the experimental form of the phonon 

contribution is known to be 𝑇3as accounted for by the Debye model treated above.  

The Einstein model, however, is often used to approximate the optical phonon part of the 

phonon spectrum. 



             Heat capacities for different compounds 
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Fig -7 Heat capacity of silver at (𝜃𝐷= 215K)  
                                                                                                  

 

At low T, Debye’s curve 

drops slowly because long 

wavelength vibration can 

still be excited. 

 



Einstein model: at low temperature, the heat capacity decrease as 

exp
;ћω

τ
. 

 At high temperature, 𝐶𝑣 = 3N𝐾𝐵,the  case of Dulong and Peteit law. 

  Debye Model; at low temperature,  𝐶𝑣= 234N𝐾𝐵
𝑇

𝜃

3
.  

 This means, 𝐶𝑣~𝑇3 and ,𝜃 = 
ћω

𝑘𝐵
 is the characteristic temperature. 

 And at high temperature, 𝐶𝑣 = 3N𝐾𝐵. 

 

 

 



Thermal conductivity  
 The thermal conductivity coefficient , K of solid is defined by 

          𝑗𝑣= -K
𝑑𝑇

𝑑𝑥
                                                                                   (23) 

Where, 𝑗𝑣 is flux of thermal energy or energy transmitted across per unit area per time, 

and  
𝑑𝑇

𝑑𝑥
 is temperature gradient. 

 Thermal energy transfer is random. This random nature of conductivity brings 

temperature gradient. 

 From kinetic theory of gas, the thermal conductivity is given by  

          k = 
1

3
Cvℓ                                                                                      (24) 

Where, C –is specific heat capacity, v – is the average particle velocity, and ℓ is the 

mean free path of the particle.  

 This result was first applied by Debye to describe the thermal conductivity in 

dielectric solids. 

 



Exercise  

1. Most of the time Phonons on a lattice do not carry momentum. 

Why? 

2. Show that the thermal conductivity coefficient, K is given by  

         k = 
𝟏

𝟑
Cvℓ. 

  

        



. 

Good Luck!!! 


