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COMPUTER PROBLEMS

The objective of this book is to make the concepts and methods of physical chem-
istry clear and interesting to students who have had a year of calculus and a year
of physics. The underlying theory of chemical phenomena is complicated, and so it
is a challenge to make the most important concepts and methods understandable
to undergraduate students. However, these basic ideas are accessible to students,
and they will find them useful whether they are chemistry majors, biologists, engi-
neers, or earth scientists. The basic theory of chemistry is presented from the view-
point of academic physical chemists, but many applications of physical chemistry
to practical problems are described.

One of the important objectives of a course in physical chemistry is to
learn how to solve numerical problems. The problems in physical chemistry
help emphasize features in the underlying theory, and they illustrate practical
applications.

There are two types of problems: problems that can be solved with a hand-
held calculator and that require a personal computer
with a mathematical application installed. There are two sets of problems of the
first type. The answers to problems in the first set are given in the back of the
textbook, and worked-out solutions to these problems are given in the

. The answers for the second set of problems are
given in the . In the two sets of problems that can be solved
using hand-held calculators, some problems are marked with an icon to indi-
cate that they may be more conveniently solved on a personal computer with a
mathematical program. There are 170 COMPUTER PROBLEMS that require
a personal computer with a mathematical application such as Mathematica ,
MathCad , MATLAB , or MAPLE installed. The recent development of
these mathematical applications makes it possible to undertake problems that
were previously too difficult or too time consuming. This is particularly true for
two- and three-dimensional plots, integration and differentiation of complicated
functions, and solving differential equations. The

provides Mathematica programs and printouts for the COMPUTER
PROBLEMS.

The Mathematica solutions of the 170 COMPUTER PROBLEMS in digi-
tal form are available on the web at http://www.wiley.com/college/silbey. They can
be downloaded into a personal computer with Mathematica installed. Students
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can obtain Mathematica at a reduced price from Wolfram Research, 100 Trade
Center Drive, Champaign, Illinois, 61820-7237. A password is required and will be
available in the along with further information about how to
access the Mathematica solutions in digital form. Emphasis in the COMPUTER
PROBLEMS has been put on problems that do not require complicated program-
ming, but do make it possible for students to explore important topics more deeply.
Suggestions are made as to how to vary parameters and how to apply these pro-
grams to other substances and systems. As an aid to showing how commands are
used, there is an index in the of the major commands used.

Mathematica plots are used in some 60 figures in the textbook. The leg-
ends for these figures indicate the COMPUTER PROBLEM where the program
is given. These programs make it possible for students to explore changes in the
ranges of variables in plots and to make calculations on other substances and sys-
tems.

One of the significant changes in the fourth edition is increased emphasis on
the thermodynamics and kinetics of biochemical reactions, including the dena-
turation of proteins and nucleic acids. In this edition there is more discussion of
the uses of statistical mechanics, nuclear magnetic relaxation, nano science, and
oscillating chemical reactions.

This edition has 32 new problems that can be solved with a hand-held calcula-
tor and 35 new problems that require a computer with a mathematical application.
There are 34 new figures and eight new tables.

Because the number of credits in physical chemistry courses, and therefore the
need for more advanced material, varies at different universities and colleges, more
topics have been included in this edition than can be covered in most courses.

The Appendix provides an alphabetical list of symbols for physical quanti-
ties and their units. The use of nomenclature and units is uniform throughout the
book. SI (Système International d’Unités) units are used because of their advan-
tage as a coherent system of units. That means that when SI units are used with all
of the physical quantities in a calculation, the result comes out in SI units without
having to introduce numerical factors. The underlying unity of science is empha-
sized by the use of seven base units to represent all physical quantities.

as it was then entitled, was written in 1913 by
Frederick Getman, who carried it through 1927 in four editions. The next four
editions were written by Farrington Daniels. In 1955, Robert Alberty joined Far-
rington Daniels. At that time, the name of the book was changed to

and the numbering of the editions was started over. The collaboration
ended in 1972 when Farrington Daniels died. It is remarkable that this textbook
traces its origins back 91 years.

Over the years this book has profited tremendously from the advice of physi-
cal chemists all over the world. Many physical chemists who care how their subject
is presented have written to us with their comments, and we hope that will con-
tinue. We are especially indebted to colleagues at MIT who have reviewed various
sections and given us the benefit of advice. These include Sylvia T. Ceyer, Robert
W. Field, Carl W. Garland, Mario Molina, Keith Nelson, and Irwin Oppenheim.



Robert J. Silbey
Robert A. Alberty

Moungi G. Bawendi
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Cambridge, Massachusetts
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Preface

The following individuals made very useful suggestions as to how to im-
prove this fourth edition: Kenneth G. Brown (Old Dominion University), Thandi
Buthelez (Western Kentucky University), Susan Collins (California State Uni-
versity Northridge), John Gold (East Straudsburg University), Keith J. Stine
(University of Missouri–St. Louis), Ronald J. Terry (Western Illinois University),
and Worth E. Vaughan (University of Wisconsin, Madison). We are also indebted
to reviewers of earlier editions and to people who wrote us about the third edition.

The following individuals made very useful suggestions as to how to improve
the Mathematica solutions to COMPUTER PROBLEMS: Ian Brooks (Wol-
fram Research), Carl W. David (U. Connecticut), Robert N. Goldberg (NIST),
Mark R. Hoffmann (University of North Dakota), Andre Kuzniarek (Wolfram
Research), W. Martin McClain (Wayne State University), Kathryn Tomasson
(University of North Dakota), and Worth E. Vaughan (University of Wisconsin,
Madison).

We are indebted to our editor Deborah Brennan and to Catherine Donovan
and Jennifer Yee at Wiley for their help in the production of the book and the
solutions manual. We are also indebted to Martin Batey for making available the
web site, and to many others at Wiley who were involved in the production of this
fourth edition.
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P A R T

O N E

Thermodynamics deals with the interconversion of various kinds of
energy and the changes in physical properties that are involved.
Thermodynamics is concerned with equilibrium states of matter and
has nothing to do with time. Even so, it is one of the most powerful

tools of physical chemistry; because of its importance, the first part of this book
is devoted to it. The first law of thermodynamics deals with the amount of work
that can be done by a chemical or physical process and the amount of heat
that is absorbed or evolved. On the basis of the first law it is possible to build
up tables of enthalpies of formation that may be used to calculate enthalpy
changes for reactions that have not yet been studied. With information on heat
capacities of reactants and products also available, it is possible to calculate the
heat of a reaction at a temperature where it has not previously been studied.

The second law of thermodynamics deals with the natural direction of
processes and the question of whether a given chemical reaction can occur by
itself. The second law was formulated initially in terms of the efficiencies of
heat engines, but it also leads to the definition of entropy, which is important
in determining the direction of chemical change. The second law provides the
basis for the definition of the equilibrium constant for a chemical reaction.
It provides an answer to the question, “To what extent will this particular
reaction go before equilibrium is reached?” It also provides the basis for
reliable predictions of the effects of temperature, pressure, and concentration
on chemical and physical equilibrium. The third law provides the basis for
calculating equilibrium constants from calorimetric measurements only. This
is an illustration of the way in which thermodynamics interrelates apparently
unrelated measurements on systems at equilibrium.

After discussing the laws of thermodynamics and the various physical
quantities involved, our first applications will be to the quantitative treatment
of chemical equilibria. These methods are then applied to equilibria between
different phases. This provides the basis for the quantitative treatment of
distillation and for the interpretation of phase changes in mixtures of solids.
Then thermodynamics is applied to electrochemical cells and biochemical
reactions.

Thermodynamics
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Physical chemistry is concerned with understanding the quantitative aspects of
chemical phenomena. To introduce physical chemistry we will start with the most
accessible properties of matter—those that can readily be measured in the labora-
tory. The simplest of these are the properties of matter at equilibrium. Thermody-
namics deals with the properties of systems at equilibrium, such as temperature,
pressure, volume, and amounts of species; but it also deals with work done on
a system and heat absorbed by a system, which are not properties of the system
but measures of changes. The amazing thing is that the thermodynamic properties
of systems at equilibrium obey all the rules of calculus and are therefore interre-
lated. The principle involved in defining temperature was not recognized until the
establishment of the first and second laws of thermodynamics, and so it is referred
to as the zeroth law. This leads to a discussion of the thermodynamic properties
of gases and liquids. After discussing the ideal gas, we consider the behavior of
real gases. The thermodynamic properties of a gas or liquid are represented by an
equation of state, such as the virial equation or the van der Waals equation. The
latter has the advantage that it provides a description of the critical region, but
much more complicated equations are required to provide an accurate quantita-
tive description.

Zeroth Law of Thermodynamics
and Equations of State



System Surroundings

Surroundings

System

(a)

(b)

T P V

T
P V

T
P P V T V

4

a

b

23

( ) A system is sepa-
rated from its surroundings by a
boundary, real or idealized. ( ) As
a simplification we can imagine the
system to be separated from the sur-
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tor. Later, in Section 6.7 and Section
8.3 (see Fig. 8.6), we will consider
semipermeable boundaries so that
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matter.
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1.1 STATE OF A SYSTEM

�

Figure 1.1

A thermodynamic system is that part of the physical universe that is under consid-
eration. A system is separated from the rest of the universe by a real or idealized

The part of the universe outside the boundary of the system is referred
to as the as illustrated in Fig. 1.1. The boundary between the system
and its surroundings may have certain real or idealized characteristics. For exam-
ple, the boundary may conduct heat or be a perfect insulator. The boundary may
be rigid or it may be movable so that it can be used to apply a specified pressure.
The boundary may be impermeable to the transfer of matter between the system
and its surroundings, or it may be permeable to a specified species. In other words,
matter and heat may be transferred between system and surroundings, and the
surroundings may do work on the system, or vice versa. If the boundary around
a system prevents interaction of the system with its surroundings, the system is
called an system.

If matter can be transferred from the surroundings to the system, or vice
versa, the system is referred to as an system; otherwise, it is a
system.

When a system is under discussion it must be described precisely. A system is
if its properties are uniform throughout; such a system consists of

a single phase. If a system contains more than one phase, it is A
simple example of a two-phase system is liquid water in equilibrium with ice. Wa-
ter can also exist as a three-phase system: liquid, ice, and vapor, all in equilibrium.

Experience has shown that the macroscopic state of a system at equilibrium
can be specified by the values of a small number of macroscopic variables. These
variables, which include, for example, temperature , pressure , and volume ,
are referred to as or They are called state
variables because they specify the state of a system. Two samples of a substance
that have the same state variables are said to be in the same state. It is remarkable
that the state of a homogeneous system at equilibrium can be specified by so few
variables. When a sufficient number of state variables are specified, all of the other
properties of the system are fixed. It is even more remarkable that these state vari-
ables follow all of the rules of calculus; that is, they can be treated as mathematical
functions that can be differentiated and integrated. Thermodynamics leads to the
definition of additional properties, such as internal energy and entropy, that can
also be used to describe the state of a system, and are themselves state variables.

The thermodynamic state of a specified amount of a pure substance in the
fluid state can be described by specifying properties such as temperature , pres-
sure , and volume . But experience has shown that only two of these three
properties have to be specified when the amount of pure substance is fixed. If
and , or and , or and are specified, all the other thermodynamic prop-
erties (including those that will be introduced later) are fixed and the system is at
equilibrium. More properties have to be specified to describe the thermodynamic
state of a homogeneous mixture of different species.

Note that the description of the microscopic state of a system containing many
molecules requires the specification of a very large number of variables. For ex-
ample, to describe the microscopic state of a system using classical mechanics, we
would have to give the three coordinates and three components of the momentum
of each molecule, plus information about its vibrational and rotational motion.
For one mole of gas molecules, this would mean more than 6 10 numbers. An
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important thing to notice is that we can use a small number of state variables to
describe the equilibrium thermodynamic state of a system that is too complicated
to describe in a microscopic way.

Thermodynamic variables are either intensive or extensive.
are independent of the size of the system; examples are pressure, density,

and temperature. do depend on the size of the system and
double if the system is duplicated and added to itself; examples are volume, mass,
internal energy, and entropy. Note that the ratio of two extensive variables is an in-
tensive variable; density is an example. Thus we can talk about the

which is described by intensive variables, or the
which is described by intensive variables plus at least one extensive vari-

able. The intensive state of the gas helium is described by specifying its pressure
and density. The extensive state of a certain amount of helium is described by
specifying the amount, the pressure, and the density; the extensive state of one
mole of helium might be represented by 1 mol He( ), where and represent
the pressure and density, respectively. We can generalize this by saying that the
intensive state of a pure substance in the fluid state is specified by 1 variables,
where is the number of different kinds of species in the system. The extensive
state is specified by 2 variables, one of which has to be extensive.

In chemistry it is generally more useful to express the size of a system in
terms of the amount of substance it contains, rather than its mass.

If a system contains
molecules, the amount of substance / , where is the Avogadro con-
stant (6 022 10 mol ). The ratio of the volume to the amount of substance
is referred to as the molar volume: / . The volume is expressed in SI
units of m , and the molar volume is expressed in SI units of m mol . We will
use the overbar regularly to indicate molar thermodynamic quantities.

When a system is in a certain state with its properties independent of time
and having no fluxes (e.g., no heat flowing through the system), then the system is
said to be at When a thermodynamic system is at equilibrium its state
is defined entirely by the state variables, and By
history of the system, we mean the previous conditions under which it has existed.

Since the state of a system at equilibrium can be specified by a small number
of state variables, it should be possible to express the value of a variable that has
not been specified as a function of the values of other variables that have been
specified. The simplest example of this is the ideal gas law.
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1.2 THE ZEROTH LAW OF THERMODYNAMICS

Figure 1.2

For some systems, more than two intensive variables must be stated to specify
the state of the system. If there is more than one species, the composition has to be
given. If a liquid system is in the form of small droplets, the surface area has to be
given. If the system is in an electric or magnetic field, this may have an effect on its
properties, and then the electric field strength and magnetic field strength become
state variables. We will generally ignore the effect of the earth’s gravitational field
on a system, although this can be important, as we will see in the special topic at the
end of this chapter. Note that the properties used to describe the state of a system
must be independent; otherwise they are redundant. Independent properties are
separately controllable by the investigator.

The pressure of the atmosphere is measured with a barometer, as shown in
Fig. 1.2 and the pressure of a gaseous system is measured with a closed-end
manometer, as shown in Fig. 1.2

Although we all have a commonsense notion of what temperature is, we must
define it very carefully so that it is a useful concept in thermodynamics. If two
closed systems with fixed volumes are brought together so that they are in ther-
mal contact, changes may take place in the properties of both. Eventually a state
is reached in which there is no further change, and this is the state of

In this state, the two systems have the same temperature. Thus, we can
readily determine whether two systems are at the same temperature by bringing
them into thermal contact and seeing whether observable changes take place in
the properties of either system. If no change occurs, the systems are at the same
temperature.

Now let us consider three systems, A, B, and C, as shown in Fig. 1.3. It is an
experimental fact that if system A is in thermal equilibrium with system C, and
system B is also in thermal equilibrium with system C, then A and B are in thermal
equilibrium with each other. It is not obvious that this should be true, and so this
empirical fact is referred to as the

To see how the zeroth law leads to the definition of a temperature scale, we
need to consider thermal equilibrium between systems A, B, and C in more detail.
Assume that A, B, and C each consist of a certain mass of a different fluid. We
use the word to mean either a gas or a compressible liquid. Our experience
is that if the volume of one of these systems is held constant, its pressure may
vary over a range of values, and if the pressure is held constant, its volume may
vary over a range of values. Thus, the pressure and the volume are independent
thermodynamic variables. Furthermore, suppose that the experience with these
systems is that their intensive states are specified completely when the pressure
and volume are specified. That is, when one of the systems reaches equilibrium
at a certain pressure and volume, all of its macroscopic properties have certain
characteristic values. It is quite remarkable and fortunate that the macroscopic
state of a given mass of fluid of a given composition can be fixed by specifying
only the pressure and the volume.*

If there are further constraints on the system, there will be a smaller num-
ber of independent variables. An example of an additional constraint is thermal
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Figure 1.3

Figure 1.4

equilibrium with another system. Experience shows that if a fluid is in thermal
equilibrium with another system, it has only one independent variable. In other
words, if we set the pressure of system A at a particular value , we find that
there is thermal equilibrium with system C, in a specified state, only at a particular
value of . Thus, system A in thermal equilibrium with system C is characterized
by a independent variable, pressure or volume; one or the other can be set
arbitrarily, but not both. The plot of all the values of and for which there
is equilibrium with system C is called an Figure 1.4 gives this isotherm,
which we label . Since system A is in thermal equilibrium with system C at any

, on the isotherm, we can say that each of the pairs on this isotherm
corresponds with the same temperature .

When heat is added to system C and the experiment is repeated, a different
isotherm is obtained for system A. In Fig. 1.4, the isotherm for the second exper-
iment is labeled . If still more heat is added to system C and the experiment is
repeated again, the isotherm labeled is obtained.

Figure 1.4 illustrates Boyle’s law, which states that constant for a spec-
ified amount of gas at a specified temperature. Experimentally, this is strictly true
only in the limit of zero pressure. Charles and Gay-Lussac found that the volume
of a gas varies linearly with the temperature at specified pressure when the tem-
perature is measured with a mercury in glass thermometer, for example. Since it
would be preferable to have a temperature scale that is independent of the prop-
erties of particular materials like mercury and glass, it is better to say that the ratio
of the product at temperature to at temperature depends only
on the two temperatures:

( ) (1 1)

where is an unspecified function. The simplest thing to do is to take the ratio
of the products to be equal to the ratio of the temperatures, thus defining
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of pressure from 611 to 101 325 Pa lowers the freezing point 0 0075 C, as shown in Example 6.2. Thus,
the ice point is at 273.15 K.
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1.3 THE IDEAL GAS TEMPERATURE SCALE
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Figure 1.5

a temperature scale:

or (1 2)

Here we have introduced a new symbol for the temperature because we have
made a specific assumption about the function . Equations 1.1 and 1.2 are exact
only in the limit of zero pressure, and so is referred to as the ideal gas temper-
ature.

Since, according to equation 1.2, / is a constant for a fixed mass of gas
and since is an extensive property,

/ (1 3)

where is the amount of gas and is referred to as the Equation 1.3
is called the ideal gas An equation of state is a relation between
the thermodynamic properties of a substance at equilibrium.

The ideal gas temperature scale can be defined more carefully by taking the tem-
perature to be proportional to / in the limit of zero pressure. Since
different gases give slightly different scales when the pressure is about one bar
(1 bar 10 pascal 10 Pa 10 N m ), it is necessary to use the limit of
the product as the pressure approaches zero. When this is done, all gases
yield the same temperature scale. We speak of gases under this limiting condition
as Thus, the is defined by

lim ( / ) (1 4)

The proportionality constant is called the gas constant . The unit of thermody-
namic temperature, 1 kelvin or 1 K, is defined as the fraction 1/273.16 of the tem-
perature of the triple point of water.* Thus, the temperature of an equilibrium
system consisting of liquid water, ice, and water vapor is 273.16 K. The tempera-
ture 0 K is called absolute zero. According to the current best measurements, the
freezing point of water at 1 atmosphere (101 325 Pa; see below) is 273.15 K, and
the boiling point at 1 atmosphere is 373.12 K; however, these are experimental
values and may be determined more accurately in the future. The Celsius scale
is formally defined by

/ C /K 273 15 (1 5)

The reason for writing the equation in this way is that temperature on the Kelvin
scale has the unit K, and temperature on the Celsius scale has the unit C, which
need to be divided out before temperatures on the two scales are compared. In
Fig. 1.5, the molar volume of an ideal gas is plotted versus the Celsius temperature

at two pressures.
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Calculate the pressure of the earth’s atmosphere at a point where the barometer reads 76
cm of mercury at 0 C and the acceleration of gravity is 9 806 65 m s . The density of
mercury at 0 C is 13 5951 g cm , or 13 5951 10 kg m .

Pressure is force divided by area :

/

The force exerted by a column of air over an area is equal to the mass of mercury in
a vertical column with a cross section times the acceleration of gravity :

The mass of mercury raised above the flat surface in Fig. 1.2 is so that

Thus, the pressure of the atmosphere is

If , , and are expressed in SI units, the pressure is expressed in pascals. Thus, the
pressure of a standard atmosphere may be expressed in SI units as follows:

1 atm (0 76 m)(13 5951 10 kg m )(9 806 65 m s )

101 325 N m 101 325 Pa 1 013 25 bar

This equality is expressed by the conversion factor 1 013 25 bar atm .
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pressure

Example 1.1

mole
molar mass

Avogadro constant

1.3 The Ideal Gas Temperature Scale
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We will find later that the ideal gas temperature scale is identical with one
based on the second law of thermodynamics, which is independent of the prop-
erties of any particular substance (see Section 3.9). In Chapter 16 the ideal gas
temperature scale will be identified with that which arises in statistical mechanics.

The gas constant can be expressed in various units, but we will emphasize
the use of SI units. The SI unit of ( ) is the pascal, Pa, which is the pres-
sure produced by a force of 1 N on an area of 1 m . In addition to using the prefixes
listed in the back cover of the book to express larger and smaller pressures, it is
convenient to have a unit that is approximately equal to the atmospheric pressure.
This unit is the bar, which is 10 Pa. Earlier the atmosphere, which is defined as
101 325 Pa, had been used as a unit of pressure.

To determine the value of the gas constant we also need the definition of a
mole. A is the amount of substance that has as many atoms or molecules as
0.012 kg (exactly) of C. The of a substance is the mass divided by
the amount of substance , and so its SI unit is kg mol . Molar masses can also be
expressed in g mol , but it is important to remember that in making calculations
in which all other quantities are expressed in SI units, the molar mass must be
expressed in kg mol . The molar mass is related to the molecular mass by

, where is the and is the mass of a single
molecule.

Until 1986 the recommended value of the gas constant was based on measure-
ments of the molar volumes of oxygen and nitrogen at low pressures. The accuracy
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Calculate the value of in cal K mol , L bar K mol , and L atm K mol .
Since the calorie is defined as 4.184 J,

8 314 51 J K mol /4 184 J cal

1 987 22 cal K mol

Since the liter is 10 m and the bar is 10 Pa,

(8 314 51 Pa m K mol )(10 L m )(10 bar Pa )

0 083 145 1 L bar K mol

Since 1 atm is 1 013 25 bar,

(0 083 145 1 L bar K mol )/(1 013 25 bar atm )

0 082 057 8 L atm K mol

Example 1.2

Dalton’s law.
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1.4 IDEAL GAS MIXTURES AND DALTON’S LAW
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of such measurements is limited by problems of sorption of gas on the walls of the
glass vessels used. In 1986 the recommended value* of the gas constant

8 314 51 J K mol (1 6)

was based on measurements of the speed of sound in argon. The equation used
is discussed in Section 17.4. Since pressure is force per unit area, the product of
pressure and volume has the dimensions of force times distance, which is work
or energy. Thus, the gas constant is obtained in joules if pressure and volume are
expressed in pascals and cubic meters; note that 1 J 1 Pa m .

Equation 1.3 applies to a mixture of ideal gases as well as a pure gas, when is
the total amount of gas. Since , then

( ) /

/ /

(1 7)

where is the partial pressure of species 1. Thus, the total pressure of an ideal
gas mixture is equal to the sum of the partial pressures of the individual gases;
this is The partial pressure of a gas in an ideal gas mixture is the pres-
sure that it would exert alone in the total volume at the temperature of the
mixture:

/ (1 8)

A useful form of this equation is obtained by replacing / by /

/ (1 9)
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Total pressure and
partial pressures and of com-
ponents of binary mixtures of gases
as a function of the mole fraction
of the second component at constant
total pressure. Note that 1 .

A mixture of 1 mol of methane and 3 mol of ethane is held at a pressure of 10 bar. What
are the mole fractions and partial pressures of the two gases?

1 mol/4 mol 0 25

(0 25)(10 bar) 2 5 bar

3 mol/4 mol 0 75

(0 75)(10 bar) 7 5 bar

The maximum partial pressure of water vapor in air at equilibrium at a given temperature is
the vapor pressure of water at that temperature. The partial pressure of water vapor
in air is a percentage of the maximum, and that percentage is called the relative humidity.
Suppose the relative humidity of air is 50% at a temperature of 20 C. If the atmospheric
pressure is 1 bar, what is the mole fraction of water in the air? The vapor pressure of water
at 20 C is 2330 Pa. Assuming the gas mixture behaves as an ideal gas, the mole fraction of
H O in the air is given by

/ (0 5)(2330 Pa)/10 Pa 0 0117

�
Example 1.3

Example 1.4

compressibility factor

1.5 Real Gases and the Virial Equation

1.5 REAL GASES AND THE VIRIAL EQUATION
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Figure 1.6

actual

The dimensionless quantity is the mole fraction of species in the mixture, and
it is defined by / . Substituting equation 1.9 in 1.7 yields

1 (1 10)

so that the sum of the mole fractions in a mixture is unity.
Figure 1.6 shows the partial pressures and of two components of a binary

mixture of ideal gases at various mole fractions and at constant total pressure. The
various mixtures are considered at the same total pressure .

The behavior of real gases is more complicated than the behavior of an ideal
gas, as we will see in the next section.

Real gases behave like ideal gases in the limits of low pressures and high tem-
peratures, but they deviate significantly at high pressures and low temperatures.
The / is a convenient measure of the deviation
from ideal gas behavior. Figure 1.7 shows the compressibility factors for N and
O as a function of pressure at 298 K. Ideal gas behavior, indicated by the dashed
line, is included for comparison. As the pressure is reduced to zero, the compress-
ibility factor approaches unity, as expected for an ideal gas. At very high pressures
the compressibility factor is always greater than unity. This can be understood in
terms of the finite size of molecules. At very high pressures the molecules of the
gas are pushed closer together, and the volume of the gas is larger than expected
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equation of state
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Figure 1.7

Figure 1.8

for an ideal gas because a significant fraction of the volume is occupied by the
molecules themselves. At low pressure a gas may have a smaller compressibility
factor than an ideal gas. This is due to intermolecular attractions. The effect of
intermolecular attractions disappears in the limit of zero pressure because the
distance between molecules approaches infinity.

Figure 1.8 shows how the compressibility factor of nitrogen depends on tem-
perature, as well as pressure. As the temperature is reduced, the effect of inter-
molecular attraction at pressures of the magnitude of 100 bar increases because
the molar volume is smaller at lower temperatures and the molecules are closer
together. All gases show a minimum in the plot of compressibility factor ver-
sus pressure if temperature is low enough. Hydrogen and helium, which have very
low boiling points, exhibit this minimum only at temperatures much below 0 C.

A number of equations have been developed to represent – – data for
real gases. Such an equation is called an because it relates state
properties for a substance at equilibrium. Equation 1.3 is the equation of state for
an ideal gas. The first equation of state for real gases that we will discuss is closely
related to the plots in Figs. 1.7 and 1.8, and is called the virial equation.

In 1901 H. Kamerlingh-Onnes proposed an equation of state for real gases,
which expresses the compressibility factor as a power series in 1/ for a pure
gas:

1 (1 11)
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*Statistical mechanics shows that the term / arises from interactions involving two molecules, the
/ term arises from interactions involving three molecules, etc. (Section 16.11).

2

Second and Third Virial Coefficients
at 298.15 K

/10 m mol /10 m mol

H 14 1 350
He 11 8 121
N 4 5 1100
O 16 1 1200
Ar 15 8 1160
CO 8 6 1550

Second virial coefficient . (From K. E. Bett, J. S. Rowlinson, and G. Saville,
. Cambridge, MA: MIT Press, 1975. Reproduced

by permission of The Athlone Press.) (See Computer Problem 1.E.)

Derive the relationships between the virial coefficients in equation 1.11 and the virial co-
efficients in equation 1.12.
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1.5 Real Gases and the Virial Equation
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Table 1.1

Figure 1.9
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The coefficients and are referred to as the second and third virial coefficients,
respectively.* For a particular gas these coefficients depend only on the tempera-
ture and not on the pressure. The word is derived from the Latin word for
force.

The second and third virial coefficients at 298.15 K are given in Table 1.1 for
several gases. The variation of the second virial coefficient with temperature is
illustrated in Fig. 1.9.

For many purposes, it is more convenient to use as an independent variable
and write the virial equation as

1 (1 12)
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The pressures can be eliminated from equation 1.12 by use of equation 1.11 in the
following forms:

(1 13)

2 ( )
(1 14)

Substituting these expressions into equation 1.12 yields

( )
1 (1 15)

When we compare this equation with equation 1.11 we see that

(1 16)

( ) (1 17)

Thus

/ (1 18)

(1 19)
( )

Critical Constants and Boyle Temperatures

/K /bar /L mol /K

Helium-4 5.2 2.27 0.0573 0.301 22.64
Hydrogen 33.2 13.0 0.0650 0.306 110.04
Nitrogen 126.2 34.0 0.0895 0.290 327.22
Oxygen 154.6 50.5 0.0734 0.288 405.88
Chlorine 417 77.0 0.124 0.275
Bromine 584 103.0 0.127 0.269
Carbon dioxide 304.2 73.8 0.094 0.274 714.81
Water 647.1 220.5 0.056 0.230
Ammonia 405.6 113.0 0.0725 0.252 995
Methane 190.6 46.0 0.099 0.287 509.66
Ethane 305.4 48.9 0.148 0.285
Propane 369.8 42.5 0.203 0.281

-Butane 425.2 38.0 0.255 0.274At the Boyle tempera-
Isobutane 408.1 36.5 0.263 0.283ture ( 0), a gas behaves nearly
Ethylene 282.4 50.4 0.129 0.277 624ideally over a range of pressures.
Propylene 365.0 46.3 0.181 0.276The curvature at higher pressures
Benzene 562.1 49.0 0.259 0.272depends on the sign of the third
Cyclohexane 553.4 40.7 0.308 0.272virial coefficient.
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Boyle temperature
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Table 1.2

Figure 1.10
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The second virial coefficient for nitrogen is zero at 54 C, which is consistent
with Fig. 1.8. A real gas may behave like an ideal gas over an extended range
in pressure when the second virial coefficient is zero, as shown in Fig. 1.10. The
temperature at which this occurs is called the . The Boyle
temperatures of a number of gases are given in Table 1.2.
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– – surface for a one-component system that contracts on freezing.
(From K. E. Bett, J. S. Rowlinson, and G. Saville,

. Cambridge, MA: MIT Press, 1975. Reproduced by permission of The Athlone
Press.)

triple point

critical point

– –

P V T1.6 Surface for a One-Component System

1.6 SURFACE FOR A ONE-COMPONENT SYSTEMP V T

Figure 1.11

To discuss more general equations of state, we will now look at the possible values
of , , and for a pure substance. The state of a pure substance is represented
by a point in a Cartesian coordinate system with , , and plotted along the
three axes. Each point on the surface of the three-dimensional model in Fig. 1.11
describes the state of a one-component system that contracts on freezing. We will
not be concerned here with the solid state, but will consider that part of the surface
later (Section 6.2). Projections of this surface on the – and – planes are
shown. There are three two-phase regions on the surface: S G, L G, and S L
(S is solid, G gas, and L liquid). These three surfaces intersect at the t
where vapor, liquid, and solid are in equilibrium.

The projection of the three-dimensional surface on the – plane is shown
to the right of the main diagram in Fig. 1.11. The vapor pressure curve goes from
the triple point t to the c (see Section 1.7). The sublimation pressure
curve goes from the triple point t to absolute zero. The melting curve rises from the
triple point. Most substances contract on freezing, and for them the slope d /d
for the melting line is positive.

At high temperatures the substance is in the gas state, and as the tempera-
ture is raised and the pressure is lowered the surface is more and more closely
represented by the ideal gas equation of state . However, much more
complicated equations are required to describe the rest of the surface that repre-
sents gas and liquid. Before discussing equations that can represent this part of
the surface, we will consider the unusual phenomena that occur near the critical
point. Any realistic equation of state must be able to reproduce this behavior at
least qualitatively.
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Pressure–molar volume relations (e.g., isotherms) in the region of the critical
point. The dashed horizontal lines in the two-phase region are called tie lines. The path
1–2–3–4 shows how a liquid can be converted to a gas without the appearance of a meniscus.
If liquid at point 4 is compressed isothermally, the volume decreases until the two-phase
region is reached. At this point there is a large decrease in volume at constant pressure
(the of the liquid) until all of the gas has condensed to liquid. As the liquid
is compressed, the pressure rises rapidly.

tie line.
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1.7 CRITICAL PHENOMENA

Figure 1.12

vapor pressure

For a pure substance there is a critical point ( ) at the end of the liquid–gas
coexistence curve where the properties of the gas and liquid phases become so
nearly alike that they can no longer be distinguished as separate phases. Thus,
is the highest temperature at which condensation of a gas is possible, and is the
highest pressure at which a liquid will boil when heated.

The critical pressures , volumes , and temperatures of a number of sub-
stances are given in Table 1.2, along with the compressibility factor at the critical
point / , and the Boyle temperature .

Critical phenomena are most easily discussed using the projection of the
three-dimensional surface in Fig. 1.11 on the – plane. Figure 1.12 shows only
the parts of the – plot labeled L, G, and L G. When the state of the system
is represented by a point in the L G region of this plot, the system contains two
phases, one liquid and one gas, in equilibrium with each other. The molar vol-
umes of the liquid and gas can be obtained by drawing a horizontal line parallel
to the axis through the point representing the state of the system and noting
the intersections with the boundary line for the L G region. Such a line, which
connects the state of one phase with the state of another phase with which it is in
equilibrium, is called a Two tie lines are shown in Fig. 1.12. The pressure
in this case is the equilibrium vapor pressure of the liquid. As the temperature is
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1.8 The van der Waals Equation

1.8 THE VAN DER WAALS EQUATION
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raised, the tie line becomes shorter, and the molar volumes of the liquid and gas
approach each other. At the critical point c the tie line vanishes and the distinction
between liquid and gas is lost. At temperatures above the critical temperature,
there is a single fluid phase. Above the critical point a gas may have a very high
density, and it may be characterized as a supercritical fluid.

The isotherm that goes through the critical point has the following two prop-
erties: It is horizontal at the critical point,

0 (1 20)

and it has a point of inflection at the critical point,

0 (1 21)

Figures 1.11 and 1.12 also show how a liquid at point 1 can be converted to
a gas at point 4 without the appearance of an interface between two phases. To
do this, liquid at point 1 is heated at constant volume to point 2, then expanded
at constant temperature to point 3, and finally cooled at constant volume to point
4, where it is a gas. Thus, liquid and vapor phases are really the same in terms of
molecular organization, and so when the densities of these two phases for a sub-
stance become equal, they cannot be distinguished and there is a critical point. On
the other hand, a solid and a liquid have different molecular organizations, and
the two phases do not become identical even if their densities are equal. There-
fore, solid–liquid, solid–gas, and solid–solid equilibrium lines do not have critical
points as do gas–liquid lines.

At the critical point the [ ( / ) ; see
Problem 1.17] becomes infinite because ( / ) 0. If the isothermal com-
pressibility is very large, as it is in the neighborhood of the critical point, very little
work is required to compress the fluid. Therefore, gravity sets up large differences
in density between the top and bottom of the container, as large as 10% in a col-
umn of fluid only a few centimeters high. This makes it difficult to determine
isotherms near the critical point. These large differences, or

in the density can extend over macroscopic distances. The distance may be
as large as the wavelength of visible light or larger. Since fluctuations in density
are accompanied by fluctuations in refractive index, light is strongly scattered, and
this is called

Although the virial equation is very useful, it is important to have approximate
equations of state with only a few parameters. We turn now to the equation that
was introduced by van der Waals in 1877, which is based on plausible reasons that
real gases do not follow the ideal gas law. The ideal gas law can be derived for
point particles that do not interact except in elastic collisions (see Chapter 17,
Kinetic Theory of Gases). The first reason that van der Waals modified the ideal
gas law is that molecules are not point particles. Therefore is replaced by ,
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( / )( )

2
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2

Van der Waals Constants

/L bar /L bar
mol /L mol mol /L mol

H 0.247 6 0.026 61 CH 2.283 0.042 78
He 0.034 57 0.023 70 C H 5.562 0.063 80
N 1.408 0.039 13 C H 8.779 0.084 45
O 1.378 0.031 83 C H ( ) 14.66 0.122 6
Cl 6.579 0.056 22 C H (iso) 13.04 0.114 2
NO 1.358 0.027 89 C H ( ) 19.26 0.146 0
NO 5.354 0.044 24 CO 1.505 0.039 85
H O 5.536 0.030 49 CO 3.640 0.042 67Isotherms calculated

from the van der Waals equation.
The dashed line is the boundary of
the L G region.

van der Waals equation
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Table 1.3

Figure 1.13
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where is the volume per mole that is occupied by the molecules. This leads to

( ) (1 22)

which corresponds to equation 1.12 with / and and higher constants
equal to zero. This equation can represent compressibility factors greater than
unity, but it cannot yield compressibility factors less than unity.

The second reason for modifying the ideal gas law is that gas molecules at-
tract each other and that real gases are therefore more compressible than ideal
gases. The forces that lead to condensation are still referred to as van der Waals
forces, and their origin is discussed in Section 11.10. Van der Waals provided for
intermolecular attraction by adding to the observed pressure in the equation of
state a term / , where is a constant whose value depends on the gas.

The is*

( / )( ) (1 23)

When the molar volume is large, becomes negligible in comparison with ,
/ becomes negligible with respect to , and the van der Waals equation re-

duces to the ideal gas law, .
The van der Waals constants for a few gases are listed in Table 1.3. They

can be calculated from experimental measurements of , , and or from the crit-
ical constants, as shown later in equations 1.32 and 1.33. The van der Waals
equation is very useful because it exhibits phase separation between gas and liquid
phases.

Figure 1.13 shows three isotherms calculated using the van der Waals equa-
tion. At the critical temperature the isotherm has an inflection point at the crit-
ical point. At temperatures below the critical temperature each isotherm passes
through a minimum and a maximum. The locus of these points shown by the
dotted line has been obtained from ( / ) 0. The states within the dot-
ted line have ( / ) 0, that is, the volume increases when the pressure
increases. These states are therefore mechanically unstable and do not exist.
Maxwell showed that states corresponding to the points between and and
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Since we will use series like

1/(1 ) 1

a number of times, it is important to realize that functions can often be expressed as series
by use of the Maclaurin series

d 1 d
( ) (0)

d 2! d

In this case,

(0) 1

d 1 d
and 1

d d(1 )

d d
2(1 ) and 2

d d

� ���

���

�

�

Example 1.6

1.8 The van der Waals Equation
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those between and are metastable, that is, not true equilibrium states. The
dashed line is the boundary of the two-phase region; the part of the isotherm to
the left of represents the liquid and that to the right of , gas. The horizon-
tal line that produces two equal areas ( and ) is referred to as
the Maxwell construction. It connects the thermodynamic properties of the liquid
phase ( ) with the properties of the gas phase ( ) that is in equilibrium with it.

The compressibility factor for a van der Waals gas is given by

1
(1 24)

1 /

At low pressures, / 1 so that we can expand the first term using (1 )
1 .

(1 )

Equation 1.24 then yields the virial equation in terms of volume:

1
1 (1 25)

From this equation we can see that the value of is relatively more important at
low temperatures, and the value of is relatively more important at high temper-
atures. To obtain the virial equation in terms of pressure, we can replace in the
second term by the ideal gas value to obtain, to first order in ,

1
1 (1 26)



Van der Waals constants expressed in terms of critical constants

Critical constants expressed in terms of an der Waals constants
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Derive the expressions for the van der Waals constants in terms of the critical constants for
a gas.

The van der Waals equation may be written

(1 28)

Differentiating with respect to molar volume and evaluating these equations at the critical
point yields

2
0 (1 29)

( )

2 6
0 (1 30)

( )

A third simultaneous equation is obtained by writing equation 1.28 for the critical point:

(1 31)

These three simultaneous equations may be combined to obtain expressions for and in
terms of and or and :

27 9
(1 32)

64 8

(1 33)
8 3

Derive the expressions for the molar volume, temperature, and pressure at the critical point
in terms of the van der Waals constants.

Equation 1.33 shows that

3

Equation 1.32 shows that

8 8
279
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v

but this approximation is not good enough to give the correct coefficient for the
term. At the Boyle temperature the second virial coefficient is zero, and so for

a van der Waals gas

(1 27)

The values of the van der Waals constants may be calculated from the critical
constants for a gas, as shown in the following example.



Calculation of the molar olume using the an der Waals
equation
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Equation 1.33 shows that

8 27

What is the molar volume of ethane at 350 K and 70 bar according to ( ) the ideal gas law
and ( ) the van der Waals equation?

( ) / (0 083 145 L bar K mol )(350 K)/(70 bar)

0 416 L mol

( ) The van der Waals constants are given in Table 1.3.

(0 083 15)(350) 5 562
70

0 06380

This is a cubic equation, but we know it has a single real, positive solution because the
temperature is above the critical temperature. This cubic equation can be solved using a
personal computer with a mathematical application. This yields two complex roots and one
real root, namely 0.2297 L mol (see Computer Problem 1.G).
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1.9 Description of the State of a System without Chemical Reactions

1.9 DESCRIPTION OF THE STATE OF A SYSTEM
WITHOUT CHEMICAL REACTIONS

v v
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We will see later that equations of state are very important in the calculation
of various thermodynamic properties of gases. Therefore, a variety of them have
been developed. To represent the – – properties of a one-component sys-
tem over a wide range of conditions it is necessary to use an equation with many
more parameters. As more parameters are used they lose any simple physical in-
terpretation. The van der Waals equation does not fit the properties of any gas
exactly, but it is very useful because it does have a simple interpretation and the
qualitatively correct behavior.

The van der Waals equation fails in the immediate neighborhood of the crit-
ical point. The coexistence curve (see Fig. 1.12) is not parabolic in the neigh-
borhood of the critical point. The van der Waals equation indicates that near

( ) , but experiments show that the exponent is actually
0.32. Other properties in the neighborhood of the critical point vary with ( )
with exponents that differ from what would be expected from the van der Waals
equation. These exponents are the same for all substances, which shows that the
properties in the neighborhood of the critical point are universal.

In Section 1.1 we observed that the intensive state of a one-phase system can
be described by specifying 1 intensive variables, where is the number of
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It is a good thing that this issue of the number of ariables required to describe
the state of a system has come up before we discuss the laws of thermodynamics
because the conclusions in this section cannot be deri ed from the laws of
thermodynamics. The fact that N ariables are required to describe
the extensi e state of a homogeneous one-phase system at equilibrium is a
generalization of experimental obser ations, and we will consider it to be a
postulate. It is a postulate that has stood the test of time, and we will use it often
in discussing thermodynamic systems.
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v

v
v

v
v

species. The intensive state of a solution containing species A and species B is
completely described by specifying , , and / , and so three intensive vari-
ables are required. Now that we have discussed several systems, it is time to think
about the numbers of intensive variables required to define the thermodynamic
states of these more complicated systems. The number of independent variables
required is represented by , which is referred to as the

Therefore, for a one-phase system without chemical reactions, 1.
As we have seen, if 1, the independent intensive properties can be chosen
to be and . If 1, but the system has two phases at equilibrium, Fig. 1.12
shows that it is sufficient to specify either or , but not both, so that 1.
Thus the intensive state of this system is described completely by saying that two
phases are at equilibrium and specifying or . In defining the ideal gas tem-
perature scale, we saw that water vapor, liquid water, and ice are in equilibrium
at a particular and . Thus the intensive state of this three-phase system is
completely described by saying that three phases are at equilibrium. There are no
independent intensive variables, and so 0.

Earlier we contrasted the thermodynamic description of a system with the
classical description of a system in terms of molecules, and now we can see that
the description of the thermodynamic state of a system is really quite different.
Another interesting aspect of specifying degrees of freedom is that the choice of
variables is not unique, although the number is. For example, the intensive state
of a binary solution can be described by , , and the mole fraction of one of the
species.

The preceding paragraph has discussed the intensive state of a system, but
it is often necessary to describe the extensive state of a system. The number of
variables required to describe the extensive state of a system is given by

, where is the number of different phases, because the amount of each
phase must be specified. For a one-phase system with one species and no reactions,

2 1 3, and so a complete description requires , , and the amount of
the species ( ). For a two-phase system with one species, 1 2 3, and so
it is necessary to specify or and the amounts of the two phases. For a three-
phase system with one species, 0 3 3, and so it is necessary to specify
the amounts of the three phases. For a one-phase binary solution, 3 1 4,
and so it is necessary to specify , , / , and the amount of the solution.
Phase equilibria and chemical equilibria introduce constraints, and we will see in
the next several chapters how these constraints arise and how they are treated
quantitatively in thermodynamics.

2
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partial molar volumes.

1.10 Partial Molar Properties

1.10 PARTIAL MOLAR PROPERTIES
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This chapter has mostly been about pure gases, but we need to be prepared to
consider mixtures of gases and mixtures of liquids. There is an important math-
ematical difference between extensive properties and intensive properties of
mixtures. These properties can be treated as mathematical functions. A function

( ) is said to be homogeneous of degree if

( ) ( ) (1 34)

All extensive properties are homogeneous of degree 1. This is illustrated by the
volume for which

( ) ( ) ( ) (1 35)

where are amounts of substances. That is, if we increase the amounts of
every substance -fold, the total volume increases -fold. All intensive properties
are homogeneous of degree zero. This is illustrated by the temperature for which

( ) ( ) ( ) (1 36)

According to when equation 1.34 applies,

( ) (1 37)

Thus for the volume of a mixture ( 1),

(1 38)

where the subscript indicates that the amounts of all other substances are held
constant when the amount of one of the substances is changed. These derivatives
are referred to as Since we will use such equations a lot,
partial molar properties are indicated by the use of an overbar:

(1 39)

This definition for the partial molar volume can be stated in words by saying that
d is the change in when an infinitesimal amount (d ) of this substance

is added to the solution at constant , , and all other . Alternatively, it can
be said that is the change in when 1 mol of is added to an infinitely large
amount of the solution at constant and .

Note that the partial molar volume depends on the composition of the solu-
tion. When the amount of substance 1 is changed by d , the amount of substance
2 is changed by d , etc., and the volume of the solution is changed by
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The partial molar olume of a gas in an ideal gas mixture

Comment:

V V n V n V n .

V V x V x V x .

V x
i

Calculus is used so much in physical chemistry that we ha e included a section
on calculus in Appendix D for quick reference. Since the properties of a system
depend on a number of ariables, it is important to be clear about which properties
are held constant for a measurement or a process and to use subscripts on partial
deri ati es.
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Calculate the partial molar volume of a gas in an ideal gas mixture.
The volume of an ideal gas mixture is

( )

Using equation 1.39 to find the partial molar volume of gas yields

Thus all of the gases in a mixture of ideal gases have the same partial molar volume. This
is not true for nonideal gases or for liquids.

Column of an ideal
gas of uniform temperature and unit
cross section.
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1.11 SPECIAL TOPIC: BAROMETRIC FORMULA

v

j i

�

v

v

v v

���

���

��

Figure 1.14

d d d d (1 40)

Dividing equation 1.38 by the total number of moles in the solution yields

(1 41)

where is the molar volume of the solution and is the mole fraction of sub-
stance in the solution. In Chapter 6 we will discuss the determination of the
partial molar volume of a species in a solution, and we will also see that in ideal
solutions the partial molar volume of a substance is equal to its molar volume in
the pure liquid.

In applying thermodynamics we generally ignore the effect of the gravitational
field, but it is important to realize that if there is a difference in height there is a
difference in gravitational potential. For example, consider a vertical column of a
gas with a unit cross section and a uniform temperature , as shown in Fig. 1.14.
The pressure at any height is simply equal to the mass of gas above that height
per unit area times the gravitational acceleration . The standard acceleration due
to gravity is defined as 9 806 65 m s . The difference in pressure d between
and d is equal to the mass of the gas between these two levels times and
divided by the area. Thus,

d d (1 42)



Pressure and composition of air at 10 km
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This is our first contact with exponential functions, but there will be many more.
The barometric formula can also be regarded as an example of a Boltzmann
distribution, which will be deri ed in Chapter 16 (Statistical Mechanics). The
temperature determines the way particles distribute themsel es o er arious
energy le els in a system.

P h

P

gMh RT

25

gMh
P P

RT

.
P .

.

.

.
P .

.

.

y . y .

�

�

�

�

�

�

0

2

2

2 2

�

�

�

�

�

� �

0

0

0

/
0

2 2

0

2

12 3 4

O 11

2

3 4

N

O N

Assuming that air is 20% O and 80% N at sea level and that the pressure is 1 bar, what
are the composition and pressure at a height of 10 km, if the atmosphere has a temperature
of 0 C independent of altitude?

exp

For O ,

(9 8 m s )(32 10 kg mol )(10 m)
(0 20 bar)exp

(8 3145 J K mol )(273 K)

0 0503 bar

For N ,

9 8 28 10 10
(0 80)exp

8 3145 273

0 239 bar

The total pressure is 0.289 bar, and 0 173 and 0 827.
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barometric formula.
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1.11 Special Topic: Barometric Formula
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� �where is the density of the gas. If the gas is an ideal gas, then / , where
is the molar mass, so that

d d (1 43)

Separating variables and integrating from 0, where the pressure is , to ,
where the pressure is , yields

d
d (1 44)

ln (1 45)

e (1 46)

This relation is known as the

Figure 1.15 gives the partial pressures of oxygen, nitrogen, and the total pres-
sure as a function of height in feet, assuming the temperature is 273.15 K inde-
pendent of height.
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Partial pressures of oxygen, nitrogen, and the total pressure of the atmo-
sphere as a function of height in feet, assuming the temperature is 273.15 K independent
of height (see Computer Problem 1.H).
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Figure 1.15

The state of a macroscopic system at equilibrium can be specified by the
values of a small number of macroscopic variables. For a system in which
there are no chemical reactions, the intensive state of a one-phase system
can be specified by 1 intensive variables, where is the number of
different species.
According to the zeroth law of thermodynamics, if systems A and B are
individually in thermal equilibrium with system C, then A and B are in
thermal equilibrium with each other.
The ideal gas temperature scale is based on the behavior of gases in the
limit of low pressures. The unit of thermodynamic temperature, the kelvin,
represented by K, is defined as the fraction 1/273.16 of the temperature of
the triple point of water.
The total pressure of a mixture of ideal gases is equal to the sum of the
partial pressures of the gases in the mixture.
The virial equation of state, which expresses the compressibility factor
for a gas in terms of powers of the reciprocal molar volume or of the pres-
sure, is useful for expressing experimental data on a gas provided the pres-
sure is not too high or the gas too close to its critical point.
The van der Waals equation is useful because it exhibits phase separation
between gas and liquid phases, but it does not represent experimental data
exactly.
For a one-phase system without chemical reactions, we have seen that the
number of degrees of freedom is equal to 1. But if the system con-
tains two phases at equilibrium, , and if the system contains three
phases at equilibrium, 1. The number of variables required
to describe the extensive state of a multiphase macroscopic system at equi-
librium is , where is the number of phases.
The volume of a mixture is equal to the sum of the partial molar volumes
of the species it contains each multiplied by the amount of that species.
For an isothermal atmosphere, the pressure decreases exponentially with
the height above the surface of the earth.
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Show how the second virial coefficient of a gas andProblems marked with an icon may be more conve-
its molar mass can be obtained by plotting / versus , whereniently solved on a personal computer with a mathematical pro-

is the density of the gas. Apply this method to the followinggram.
data on ethane at 300 K.The intensive state of an ideal gas can be completely de-

fined by specifying (1) , , (2) , , or (3) , . The extensive /bar 1 10 20
state of an ideal gas can be specified in four ways. What are the /10 g cm 1.2145 13.006 28.235
combinations of properties that can be used to specify the exten-

Calculate the second and third virial coefficients forsive state of an ideal gas? Although these choices are deduced
hydrogen at 0 C from the fact that the molar volumes atfor an ideal gas, they also apply to real gases.
50.7, 101.3, 202.6, and 303.9 bar are 0.4634, 0.2386, 0.1271, and

The ideal gas law also represents the behavior of mixtures 0 090 04 L mol , respectively.
of gases at low pressures. The molar volume of the mixture is
the volume divided by the amount of the mixture. The partial The critical temperature of carbon tetrachloride is
pressure of gas in a mixture is defined as for an ideal gas 283 1 C. The densities in g/cm of the liquid and vapor
mixture, where is its mole fraction and is the total pressure. at different temperatures are as follows:
Ten grams of N is mixed with 5 g of O and held at 25 C at 0.750

/ C 100 150 200 250 270 280bar. ( ) What are the mole fractions of N and O ? ( ) What are
1.4343 1.3215 1.1888 0.9980 0.8666 0.7634the partial pressures of N and O ? ( ) What is the volume of the
0.0103 0.0304 0.0742 0.1754 0.2710 0.3597ideal mixture?

What is the critical molar volume of CCl ? It is found that theA mixture of methane and ethane is contained in a glass
mean of the densities of the liquid and vapor does not varybulb of 500 cm capacity at 25 C. The pressure is 1.25 bar, and
rapidly with temperature and can be represented bythe mass of gas in the bulb is 0.530 g. What is the average molar

mass, and what is the mole fraction of methane?
Nitrogen tetroxide is partially dissociated in the gas phase

2
according to the reaction

where and are constants. The extrapolated value of the av-N O (g) 2NO (g)
erage density at the critical temperature is the critical density.
The molar volume at the critical point is equal to the molarA mass of 1.588 g of N O is placed in a 500-cm glass vessel at
mass divided by the critical density.298 K and dissociates to an equilibrium mixture at 1.0133 bar.

( ) What are the mole fractions of N O and NO ? ( ) What Show that for a gas of rigid spherical molecules, in
percentage of the N O has dissociated? Assume that the gases the van der Waals equation is four times the molecular vol-
are ideal. ume times Avogadro’s constant. If the molecular diameter of

Ne is 0.258 nm (Table 17.4), approximately what value of isAlthough a real gas obeys the ideal gas law in the limit
expected?as 0, not all of the properties of a real gas approach the

values for an ideal gas as 0. The second virial coefficient What is the molar volume of -hexane at 660 K and 91
of an ideal gas is zero, and so d /d 0 at all pressures. But bar according to ( ) the ideal gas law and ( ) the van der Waals
calculate d /d for a real gas as 0. equation? For -hexane, 507 7 K and 30 3 bar.
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Derive the expressions for van der Waals constants and Calculate the pressure due to a mass of 100 kg in the
in terms of the critical temperature and pressure; that is, derive earth’s gravitational field resting on an area of ( ) 100 cm and

equations 1.32 and 1.33 from 1.29–1.31. ( ) 0 01 cm . ( ) What area is required to give a pressure of 1
bar?Calculate the second virial coefficient of methane at 300 K

and 400 K from its van der Waals constants, and compare these A mole of air (80% nitrogen and 20% oxygen by vol-
results with Fig. 1.9. ume) at 298.15 K is brought into contact with liquid water,

which has a vapor pressure of 3168 Pa at this temperature.You want to calculate the molar volume of O at 298.15
( ) What is the volume of the dry air if the pressure is 1 bar?K and 50 bar using the van der Waals equation, but you don’t
( ) What is the final volume of the air saturated with water va-want to solve a cubic equation. Use the first two terms of
por if the total pressure is maintained at 1 bar? ( ) What are theequation 1.26. The van der Waals constants of O are
mole fractions of N , O , and H O in the moist air? Assume the0 138 Pa m mol and 31 8 10 m mol . What is the
gases are ideal.molar volume in L mol ?

Using Fig. 1.9, calculate the compressibility factor forThe isothermal compressibility of a gas is defined in
NH (g) at 400 K and 50 bar.Problem 1.17, and its value for an ideal gas is shown to be 1/ .

Use implicit differentiation of with respect to at constant In this chapter we have considered only pure gases, but
to obtain the expression for the isothermal compressibility of a it is important to make calculations on mixtures as well. This
van der Waals gas. Show that in the limit of infinite volume, the requires information in addition to that for pure gases. Statis-
value for an ideal gas is obtained. tical mechanics shows that the second virial coefficient for an

-component gaseous mixture is given byCalculate the second and third virial coefficients of O
from its van der Waals constants in Table 1.3.

Calculate the critical constants for ethane using the van
der Waals constants in Table 1.3.

The cubic expansion coefficient is defined by
where is mole fraction and and identify components. Both

1 indices run over all components of the mixture. The bimolecular
interactions between and are characterized by , and so

. Use this expression to derive the expression for
and the isothermal compressibility is defined by for a binary mixture in terms of , , , , and .

1 The densities of liquid and vapor methyl ether in
g cm at various temperatures are as follows:

Calculate these quantities for an ideal gas. / C 30 50 70 100 120
What is the equation of state for a liquid for which the co- 0.6455 0.6116 0.5735 0.4950 0.4040

efficient of cubic expansion and the isothermal compressibility 0.0142 0.0241 0.0385 0.0810 0.1465
are constant?

The critical temperature of methyl ether is 299 C. What is theFor a liquid the cubic expansion coefficient is nearly
critical molar volume? (See Problem 1.8.)constant over a narrow range of temperature. Derive the expres-

Use the van der Waals constants for CH in Table 1.3 tosion for the volume as a function of temperature and the limiting
calculate the initial slopes of the plots of the compressibility fac-form for temperatures close to .
tor versus at 300 and 600 K.( ) Calculate ( / ) and ( / ) for a gas that has

A gas follows the van der Waals equation. Derive the rela-the following equation of state:
tion between the third and fourth virial coefficients and the van
der Waals constants.

Using the van der Waals equation, calculate the pressure
exerted by 1 mol of carbon dioxide at 0 C in a volume of ( ) 1.00( ) Show that ( / ) ( / ). These are referred
L and ( ) 0.05 L. ( ) Repeat the calculations at 100 C and 0.05 L.to as mixed partial derivatives.

A mole of -hexane is confined in a volume of 0.500 L atAssuming that the atmosphere is isothermal at 0 C and
600 K. What will be the pressure according to ( ) the ideal gasthat the average molar mass of air is 29 g mol , calculate the
law and ( ) the van der Waals equation? (See Problem 1.10.)atmospheric pressure at 20 000 ft above sea level.

A mole of ethane is contained in a 200-mL cylinder at 373Calculate the pressure and composition of air on the top
K. What is the pressure according to ( ) the ideal gas law andof Mt. Everest, assuming that the atmosphere has a temperature
( ) the van der Waals equation? The van der Waals constantsof 0 C independent of altitude ( 29 141 ft). Assume that air
are given in Table 1.3.at sea level is 20% O and 80% N .
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/K 75 100 125 150 200 250 300 400 500 600 700
/cm mol 274 160 104 71 5 35 2 16 2 4 2 9 16.9 21.3 24
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1

4 2 2
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When pressure is applied to a liquid, its volume decreases. ( ) Plot the pressure of ethane versus its molar volume in
Assuming that the isothermal compressibility the range 0 200 bar and molar volumes up to 0.5 mol L

using the van der Waals equation at 265, 280, 310.671, 350, and
1 400 K, where 310.671 K is the critical temperature calculated

with the van der Waals constants. ( ) Discuss the significance
of the plots and the extent to which they represent reality. ( )

is independent of pressure, derive an expression for the volume
Calculate the molar volumes at 400 K and 150 bar and at

as a function of pressure.
265 K and 20 bar.

Calculate and for a gas for which
This is a follow-up to Computer Problem 1.B on the van

der Waals equation. ( ) Plot the derivative of the pressure with( )
respect to the molar volume for ethane at 265 K. ( ) Plot the

What is the molar volume of N (g) at 500 K and 600 bar derivative at the critical temperature. ( ) Plot the second deriva-
according to ( ) the ideal gas law and ( ) the virial equation? tive of the pressure with respect to the molar volume at the criti-
The virial coefficient of N (g) at 500 K is 0.0169 L mol . cal temperature. In each case, what is the significance of the

What is the mean atmospheric pressure in Denver, Col- maxima and minima?
orado, which is a mile high, assuming an isothermal atmosphere ( ) Express the compressibility factors for N and O at
at 25 C? Air may be taken to be 20% O and 80% N . 298.15 K as a function of pressure using the virial coefficients in

Calculate the pressure and composition of air 100 miles Table 1.1. ( ) Plot these compressibility factors versus from 0
above the surface of the earth assuming that the atmosphere has to 1000 bar.
a temperature of 0 C independent of altitude. The second virial coefficients of N at a series of tempera-

The density / of a mixture of ideal gases A and tures are given by
B is determined and is used to calculate the average molar mass

of the mixture; / . How is the average molar mass
determined in this way related to the molar masses of A and B?

( ) Fit these data to the function
Figure 1.13 shows the Maxwell construction for cal-

culating the vapor pressure of a liquid from its equation of state.
Since this requires an iterative process, a computer is needed,

( ) Plot this function versus temperature. ( ) Calculate theand J. H. Noggle and R. H. Wood have shown how to write
Boyle temperature of molecular nitrogen.a computer program in Mathematica (Wolfram Research, Inc.,

Nitrogen tetroxide (N O ) gas is placed in a 500-cm glassChampaign, IL 61820-7237) to do this. Use this method with the
vessel, and the reaction N O 2NO goes to equilibrium atvan der Waals equation to calculate the vapor pressure of nitro-
25 C. The density of the gas at equilibrium at 1.0133 bar isgen at 120 K.
3.176 g L . Assuming that the gas mixture is ideal, what are
the partial pressures of the two gases at equilibrium?

Calculate the molar volume of ethane at 350 K and 70 bar
using the van der Waals constants in Table 1.3.

Problem 1.7 yields 0 135 L mol and 4 3 Plot the partial pressures of oxygen, nitrogen, and the to-
10 L mol for H (g) at 0 C. Calculate the molar volumes of tal pressure in bars versus height above the surface of the earth
molecular hydrogen at 75 and 150 bar and compare these molar from zero to 50 000 feet assuming that the temperature is con-
volumes with the molar volume of an ideal gas. stant at 273 K.
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Work and Heat
First Law of Thermodynamics and
Internal Energy
Exact and Inexact Differentials
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Various Kinds of Work
Change in State at Constant Volume
Enthalpy and Change of State
at Constant Pressure
Heat Capacities
Joule Thomson Expansion
Adiabatic Processes with Gases
Thermochemistry
Enthalpy of Formation
Calorimetry

–

In this chapter we begin to emphasize processes that take a chemical system from
one state to another. The first law of thermodynamics, which is often referred to as
the law of conservation of energy, leads to the definition of a new thermodynamic
state function, the internal energy . An additional state function, the enthalpy

, is defined in terms of , , and for reasons of convenience.
Thermochemistry, which deals with the heat produced by chemical reactions

and solution processes, is based on the first law. If heat capacities of reactants and
products are known, the heat of a reaction may be calculated at other tempera-
tures once it is known at one temperature.

First Law of Thermodynamics
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*Since this is our first contact with vectors and matrices, we want to note that they are represented
by boldface italic type. They may have units like other physical quantities. Sections D.7 and D.8 of
Appendix D give information about the mathematical properties of vectors and matrices.

We use d rather than d as a reminder that work is not an exact differential (Section 2 .3), and so
the value of its integral depends on the path.

2

2 2

ext

ext

( ) Work is done on a
system by the surroundings. In this
case the stops are pulled out, and
the system is compressed to a new
equilibrium state. ( ) Work is done
on the surroundings by the system.
When the stops are pulled out, the
system expands to a new equilibrium
state.

Force

Work

The convention on
is that it is positive when work is done on the system of interest and negative

when the system does work on the surroundings.

2.1 Work and Heat

2.1 WORK AND HEAT
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Figure 2 .1

Force is a vector quantity; that is, it has direction as well as magnitude. Other
examples of vector quantities are displacement, velocity, acceleration, and electric
field strength. In this book vector quantities are represented by boldface italic
type. The magnitude of the vector is represented with lightface italic type.
is defined by

(2 1)

where is the force that will give a mass an acceleration .
( ) is a scalar quantity defined by

(2 2)

where is the vector force, is the vector length of path, and the dot indicates
a scalar product (i.e., the product is taken of the magnitude of one vector by the
projection of the second vector along the direction of the first). If the force vector
of magnitude and the vector length of magnitude are separated by the angle

, the work is given by cos .*
The SI unit of force is the newton N, which is equal to kg m s . The SI unit

of work is the joule J, which is N m or kg m s . The differential quantity of work
d done by a force operating over a distance d in the direction of the force is

d .
Since pressure is force per unit area, the force on a piston is , where is

the surface area perpendicular to the direction of the motion of the piston. Thus,
the differential quantity of work done by an expanding gas that causes the piston
to move distance d is d . But d d , the increase in gas volume, and
so the differential quantity of pressure–volume work is d .

Work can be positive or negative since work may be done on a system or a
system may do work on its surroundings, as shown in Fig. 2.1.

(As we will see later, a similar
convention is applied to heat ; is positive when heat is transferred from the
surroundings to a system, and is negative when heat is transferred from the sys-
tem to the surroundings.) Thus, the differential of the work done on a system
is given by

d d (2 3)

where is the external or applied pressure.
Work is often conveniently measured by the lifting or falling of masses. The

work required to lift a mass in the earth’s gravitational field, which has an ac-
celeration , is , where is the height through which the mass is lifted.
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The work done by a system in lifting a kilogram 0.1 m is

(1 kg)(9 807 m s )(0 1 m) 0 9807 J

where is the acceleration of gravity. The negative sign indicates that work has
been done by the system.

The total work on a system when there is a finite change in volume is ob-
tained by summing the infinitesimal amounts of work given by equation 2.3:

d (2 4)

To make this calculation of the work for a finite change in state, must have a
definite value at each volume.

If the expansion or compression of a gas is carried out very slowly, the pres-
sure throughout the gas will be uniform and equal to (within an infinitesimal
amount) and the maximum work of expansion (negative) or of compression (pos-
itive) will be obtained, as we will see in Section 2.4. When a process is carried out
in this way, the pressure given by the equation of state can be used in equation 2.4.
Such a process is said to be When the gas is allowed to expand rapidly
or is compressed rapidly, the pressure is not uniform and so such a substitution
cannot be made.

The integral in equation 2.4 is called a because its value depends
on the path. Line integrals are discussed in greater detail in Section 2.3. In the
quasistatic case and the pressure is a function of temperature and vol-
ume, and so equation 2.4 should be written

( ) d (2 5)

In an ordinary definite integral, the integrand is a function of one variable. Later,
in Section 2.4, we will replace with / for an ideal gas and integrate equa-
tion 2.5 at constant temperature, but now we want to take a more general point
of view and consider the two processes in Fig. 2.2. The state of a mole of gas can
be changed from (2 ) to ( 2 ) by an infinite number of quasistatic paths,
but we will consider only the two paths shown. In the upper path, the pressure
is held constant at 2 and the gas is heated until it reaches 2 . Then the vol-
ume is held constant while the gas is cooled until the pressure reaches . For this
path, 2 . In the lower path, the volume is held constant at and the
gas is cooled until it reaches . Then the gas is heated at constant pressure until
it reaches 2 . For this path, . Note that in both cases the work is
the negative of the area under the path. This example shows that depends on
the path.

When work is done on a system that is thermally insulated so that there is
no exchange of heat with the surroundings, the thermodynamic state of the sys-
tem is changed. This type of process is referred to as an Joule
performed experiments in 1840–1849 showing that the change in state of water in
an adiabatic process is independent of the path, that is, whether the work is used
to turn a paddle wheel (Fig. 2.3) or is dissipated by an electrical current flowing
through a resistance or by the friction of rubbing two objects together. Since a
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For the change in state of a mole of gas from (2 ) to ( 2 ), the work
done on the gas depends on the path. By the upper path, 2 . By the lower path,

. For a clockwise cyclic process, 2 . In the cyclic
process, the gas is returned to its initial state, and so 0 . Thus,
and heat is absorbed by the system in the cyclic process.

Joule heated water by
performing work on it, in this case
by rotating a paddle wheel, and
found that the temperature rise de-
pends only on the amount of work
done on the system.

�
� � �
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internal energy

the work done on a closed system in an adiabatic process is equal to
the increase in internal energy of the system.

If the system does work on its surroundings, is
negative and, furthermore, is negative (i.e., the internal energy of the system
decreases) if the process is adiabatic.

2.1 Work and Heat
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Figure 2 .2

Figure 2 .3

given change in state of the water in the calorimeter can be accomplished in differ-
ent ways involving the same amount of work, or by different sequences of steps,
the change in state is independent of the path and is dependent only on the total
amount of work. This makes it possible to express the change in state of a system
in an adiabatic process in terms of the work required, without stating the type of
work or the sequence of steps used. The property of the system whose change is
calculated in this way is called the . Since the internal energy
of a system may be increased by doing work on it, we may calculate the increase
in internal energy from the work done on a system to change it from one state
to another in an adiabatic process:

(in an adiabatic process) (2 6)

In words,
The symbol indicates the value of

the quantity in the final state minus the value of the quantity in the initial state;
, where is the internal energy in the initial state and is the

internal energy in the final state.

Although equation 2.6 provides a way to determine the change in internal
energy of a system, it does not provide a way to determine the absolute magnitude
of the internal energy of the system. However, the internal energy can be fixed
arbitrarily for some given equilibrium state of the system, and equation 2.6 can
be used to determine the internal energy with respect to that reference state.

When equation 2.6 is applied to a system of arbitrary size, the internal energy
is an extensive quantity, but in working problems we will often deal with molar
quantities and express the change in molar internal energy in J mol .
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( ) A system in state 1
is insulated from the heat reservoir.
( ) The system is brought into con-
tact with the heat reservoir through
a heat-conducting wall. ( ) The sys-
tem is then insulated from the heat
reservoir and is found to be in
state 2 .

define

The convention is that a positive value of indicates that heat is absorbed by the
system from its surroundings. A negative value of means that the system gives
up heat to its surroundings.

the heat absorbed by a closed system in a process in which no work is
done is equal to the increase in internal energy of the system.

Chapter 2 First Law of Thermodynamics

2.2 FIRST LAW OF THERMODYNAMICS
AND INTERNAL ENERGY

�
� �

�

�

Figure 2 .4

A given change in state of a system can be accomplished in ways other than
by the performance of work under adiabatic conditions. A change equivalent to
that in the Joule experiment may be obtained by immersing a hot object in the
water. We should not say, however, that the water now has more heat any more
than we would say it has more work after it has been heated with moving paddle
wheels. In other words, heat and work are forms of energy crossing a boundary.
After the experiment, the temperature of the water is higher, and it has a greater
internal energy . Heat is transferred when there is a gradient in temperature, as
shown in Fig. 2.4.

Since the same change in state (as determined by measuring properties such
as temperature, pressure, and volume) may be produced by doing work on the
system or by allowing heat to flow in, the amount of heat may be expressed in
mechanical units. When Joule was doing his experiments the unit of heat was the
calorie, which is the heat required to raise the temperature of a gram of water
1 C, from 14.5 to 15 5 C. Joule was able to determine the mechanical equivalent
of heat, which is now known to be 1 calorie 4.184 kg m s 4.184 J. Now
we find it more convenient to express heat in joules and to the calorie as
4.184 J. A joule of heat is the amount of heat that produces the same change in a
system as a joule of work. The dietary calorie is actually a kilocalorie.

Since heat is an algebraic quantity, it is important to adopt a sign convention.

The change in internal energy produced by the
transfer of heat to a system when no work is done is given by

(no work done) (2 7)

In words,
Or, put another way,

if no work is done, the heat evolved is equal to the decrease in the internal energy
of the system.

It is important to understand that it is the measurement of work in the sur-
roundings that makes it possible to determine the quantity of heat transferred
to a system. In Section 2.5 we will find that there are a number of different kinds
of work, and each of them can be readily measured by measuring the raising or
lowering of weights in the gravitational field of the earth.

Since the internal energy of a system can be changed a given amount by either
heat or work, these quantities are in this sense equivalent. They are both usually
expressed in joules. If both heat and work are added to a system,

(2 8)

For an infinitesimal change in state,

d d d (2 9)
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The statement of the first law of thermodynamics in mathematical form was a
great achie ement, and actually did not occur until after the statement of the
second law. A key idea is that the quantity of work required to produce the same
temperature rise in the system as an unknown quantity of heat can be used as
a measure of the quantity of heat; thus heat is measured in terms of joules, just
like work.
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2.2 First Law of Thermodynamics and Internal Energy
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The d indicates that and are not exact differentials , as discussed in the next
section.

Equations 2.8 and 2.9 are statements of the This
law is the postulate that there exists a property , referred to as the internal en-
ergy, (1) that is a function of the state variables for the system and (2) for which
the change for a process in a closed system may be calculated using equa-
tion 2.8. The first law is not restricted to reversible processes.

This mathematical form of the first law seems obvious to us now, but prior to
1850 it was not obvious at all. Before 1850 the principle of conservation of energy
in mechanical systems was understood, but the role of heat in this principle was
not clear until Joule’s experiments led to equation 2.8.

If is negative, we may say that the system loses energy in heat that is
evolved and work that is done by the system. The first law has nothing to say
about how much heat is evolved and how much work is done except that equation
2.8 is obeyed. In other words, the entire decrease in internal energy could show
up as work ( 0). Another possibility is that even more than this amount of
work would be done and heat would be absorbed ( 0), so that equation 2.8 is
obeyed. Although the first law has nothing to say about the relative amounts of
heat and work, the second law does, as we will see in Chapter 3. Since the internal
energy is a function of the state of a system, there is no change in internal energy
when a system is taken through a series of changes that return it to its state.
This is expressed by setting the equal to zero:

d 0 (2 10)

The circle indicates integration around a cycle, that is, where the initial and final
states are the same. The cyclic integrals of and are not generally equal to zero,
and their values depend on the path followed.

The first law is frequently stated in the form that energy may be transferred in
one form or another, but it cannot be created or destroyed. Thus, the total energy
of an isolated system is constant.

The internal energy of a system is an extensive property (Section 1.1); thus,
if we double a system, the internal energy is doubled. However, the molar internal
energy is an intensive property. We will use for the extensive property and
for the intensive property.

The quantity of heat transferred to an object can be calculated using
, where is the measured quantity of work done on the system. The

change in internal energy in the process can be calculated from the quantity
of work required in an adiabatic process (see Section 2.1).
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Chapter 2 First Law of Thermodynamics

2.3 EXACT AND INEXACT DIFFERENTIALS
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Now that we have established that the internal energy is a state function, we
want to be sure that we know how many variables have to be specified to de-
scribe the state of the system. If the system involves only work, the internal
energy of a mass of a pure substance can be described by a mathematical func-
tion of , , and or , , and ; these functions are represented by ( )
and ( ). We will give the precise form of these functions only for ideal
gases because the functions for real substances are very complicated. The in-
ternal energy of a homogeneous binary mixture can be specified by a function

( ) ( ), or ( ), where is the mole fraction of
substance 1 and is the total amount of material in the system. Thus the descrip-
tion of the state of a homogeneous mixture of species requires 2
variables, one of which must be extensive. The state of a pure substance
is determined by two intensive variables ( and ), and the intensive state of
a homogeneous binary mixture is determined by three intensive variables ( , ,
and ). Thus the intensive state of a homogeneous mixture of species is spec-
ified by 1 independent intensive variables. In Section 5.4 we will discuss the
change in this rule when chemical reactions are involved and are at equilibrium.

The internal energy is a state function, like , because it depends only on the
state of the system. The integral of the differential of a state function along any
arbitrary path is simply the difference between values of the function at two limits.
For example, if a system goes from state to state , we can write

d (2 11)

Since the integral is path independent, the differential of a state function is called
an The quantities and are not state functions. The integrals
of their differentials in going from state to state
Therefore, their differentials are called We will used instead
of d to indicate inexact differentials. In going from state to state the work
done is represented by

d (2 12)

Note that the result of the integration is not written , because the amount
of work done depends on the particular path that is followed between state
and state . For example, when a gas is allowed to expand, the amount of work
obtained may vary from zero (if the gas is allowed to expand into a vacuum) to
a maximum value that is obtained if the expansion is carried out reversibly, as
described in Section 2.4.

If an infinitesimal quantity of heat d is absorbed by a system, and an in-
finitesimal amount of work d is done on the system, the infinitesimal change in
the internal energy is given by

d d d (2 13)
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2.3 Exact and Inexact Differentials
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Figure 2 .5

where the d is used with since d is an differential and d is used with
and because they are differentials. In other words, is a function of
the state of the system, and and for a process depend on the path.

It is interesting to note that the sum of two inexact differentials can be an
exact differential. To illustrate this point further, we consider the path from

to in Fig. 2.5. We may define the path by a curve ( ) connecting
and .

The differential d d is not an exact differential,

d d area I (2 14)

because this area depends on the path between and , as may be seen from
Fig. 2.5.

The differential d d d is an exact differential. Since d d( ),

d

d( ) (2 15)

The reason d d d is an exact differential may be seen from
Fig. 2.5. The integral of d from state to state may be written

d d d area I area II (2 16)

The sum of these areas is independent of the shape of the curve (path) be-
tween and . If d does not depend on the path taken between the points,
then d is said to be an exact differential. Thermodynamic quantities like ,

, , and (all of which will soon be introduced) form exact differentials ,
since their values are dependent on the state variables and not on the path by
which the system got there. There is a simple test to see whether a differential
is exact.

For a system with just two independent degrees of freedom, the total differ-
ential d of a quantity may be determined by the differentials d and d in two
other quantities and . In general,

d ( ) d ( ) d (2 17)

where and are functions of the independent variables and .
To show the test for exactness we now consider a function that has an exact

differential. If has a definite value at each point in the plane, then it must be
a function of and . If ( ), then

d d d (2 18)
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Suppose

d d 3 d

Can be a function of the state of a system (i.e., a function of and )? The partial deriva-
tives of are

3

The mixed partial derivatives of are

3 6

Thus d is not an exact differential, and so cannot be a function of the state of the system.
However, consider the total differential of :

d 2 d 3 d

Can be a function of the state of a system? The partial derivatives of are

2 3
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Comparing equations 2.17 and 2.18, we find

( ) (2 19)

( ) (2 20)

Since the mixed partial derivatives are equal,

(2 21)

then

(2 22)

This equation must be satisfied if d is an exact differential.
This relation is also very useful for obtaining relations between the

derivatives of thermodynamic functions.
To illustrate the use of equation 2.22 let us reconsider the differential d

d . Since and 0, ( / ) 1 and ( / ) 0, so that equa-
tion 2.22 is not satisfied. Therefore, d d is not an exact differential. On the
other hand, d d d is an exact differential: , so that
( / ) 1, ( / ) 1, satisfying equation 2.22.
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The mixed partial derivatives of are
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Since the mixed partial derivatives are equal, d is an exact differential, and so can be
a function of the state of the system. In fact, const.
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2.4 WORK OF COMPRESSION AND EXPANSION
OF A GAS AT CONSTANT TEMPERATURE
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When the differential of a physical quantity is inexact, it may be possible to
use it to define another physical quantity that has an exact differential by mul-
tiplying by an For example, if the differential of the physical
quantity ( ) is given by

d ( ) ( 1) d d (2 23)

d ( ) is an inexact differential because

[ ( 1)]
2 1 (2 24)

( )
1 (2 25)

However, multiplying equation 2.23 by the integrating factor 1/ yields

d 1
d d d (2 26)

The mixed partial derivatives are

( 1/ ) 1
(2 27)

( / ) 1
(2 28)

The function is given by

( ) const. (2 29)
2

Integrating factors are useful for obtaining exact differentials from inexact differ-
entials and in solving first-order differential equations.

Since work done in compressing a gas is positive, we start by considering the com-
pression of a gas using the idealized apparatus shown in
Fig. 2.6. The gas is contained in a rigid cylinder by a frictionless and weightless
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Compression of a gas from to in a single step.

Compression of a gas from to in two, three, and an infinite
number of steps.

Chapter 2 First Law of Thermodynamics

	

� �




Figure 2 .6

Figure 2 .7

piston. The cylinder is immersed in a thermostat at temperature , and the space
above the cylinder is evacuated so that the final pressure is due only to the
mass . The gas is initially confined to volume because the piston is held up by
stops. When the stops are pulled out, the piston falls to the equilibrium position,
and the gas is compressed to volume . The pressure of the gas at the end of the
process is given by

(2 30)

where is the acceleration due to gravity, and is the area of the piston. The
amount of work lost in the surroundings is (Section 2.1), where is the
difference in height, and so the work done on the gas is

( ) (2 31)

Since , the work done on the gas is positive. This is the smallest amount
of work that can be used to compress the gas from to in a single step at con-
stant temperature. The work done is given by the shaded area in the – plot of
Fig. 2.6 . Notice that the pressure used in calculating the work is not the pressure
of the gas but the external pressure determined by the mass , cross-sectional
area , and acceleration of gravity .

However, we can carry out the compression with less work if we do it in two
or more steps, as shown in Fig. 2.7. We can compress the gas in two steps by first
using a mass just large enough to compress the gas to volume ( )/2 in
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Figure 2 .8

the first step, and then using the larger mass for the second step. The work lost
to the surroundings is given by the shaded area in Fig. 2.7 . It is clear that by using
more and more steps we arrive eventually at the diagram in Fig. 2.7 , which shows
that the minimum amount of work is required in the limit of an infinite number
of steps. In this case the pressure is changed by an infinitesimal amount for each
infinitesimal step, and the work is given by the integral of equation 2.3 at constant
temperature.

d d (2 32)

In case it is not necessary to distinguish between the external pressure and the
gas pressure because they differ at most by an infinitesimal amount.

The work done on a gas in an can be determined using the ideal-
ized frictionless piston arrangement shown in Fig. 2.8. The gas is initially confined
to volume because the piston is held by stops. When the stops are pulled out,
the gas expands to volume . The mass is chosen so that / ; in other
words, this is the maximum mass that the gas will raise to this height . The work
gained in the surroundings is , and so the work done on the gas is

( ) (2 33)

This is the negative of the largest amount of work that can be obtained in the
surroundings by the expansion of the gas from to at constant temperature
in a single step. The work done on the gas is given by the negative of the shaded
area in Fig. 2.8 .

More work can be obtained in the surroundings by using two, three, or an
infinite number of steps, as shown in Fig. 2.9. The largest amount of work in the
surroundings and the largest negative work on the gas are obtained in the limit of
an infinite number of steps. The work done on the gas in the limiting case is given
by equation 2.32.

The work obtained in the surroundings in the single-step expansion is clearly
not great enough to compress the gas back to its initial state in a single-step
compression; this is evident from the shaded areas in Figs. 2.8 and 2.6 . (The
subscripts are different in the two figures because we have followed the usual con-
vention of labeling the initial state with a 1 and the final state with a 2.) However,
the work obtained in the surroundings in the infinite-step expansion is exactly the
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Figure 2 .9

amount required to compress the gas back to its initial state by an infinite-step
compression; this is evident from the shaded areas in Figs. 2.9 and 2.7 .

The infinite-step compression described by Fig. 2.7 and the infinite-step
expansion described by Fig. 2.9 are referred to as These
idealized processes at constant temperature are reversible because the energy
accumulated in the surroundings in the expansion is exactly the amount required
to compress the gas back to the initial state. This can also be seen by applying
equation 2.32 to the gas for a complete cycle from to and back
again. (Note that here we are using the same subscripts for the expansion and the
compression.)

d d

d d 0 (reversible) (2 34)

Another important point about reversible processes is that they can be re-
versed at any point in the process by making an infinitesimal change, in this case
in the pressure. Thus, a reversible expansion or compression requires an absence
of friction, a balancing of internal and external pressures, and time to reestab-
lish equilibrium after each infinitesimal step. When these conditions are not met
the process is and the system and its surroundings cannot both be re-
stored to their initial conditions. Remember that these are isothermal processes,
and there is heat flow that we have not talked about.

All real processes are irreversible, yet it is possible to approach reversibility
closely in some real processes. Heat may be transferred nearly reversibly if the
temperature gradient across which it is transferred is made very small. Electrical
charge may be transferred nearly reversibly from a battery if a potentiometer is
used so that the difference in electrical potential is very small. A liquid may be
vaporized nearly reversibly if the external pressure is made only very slightly less
than the equilibrium vapor pressure.

The concept of a reversible process is important because certain thermody-
namic calculations can be made only for reversible processes. For processes in the
chemical industry, the greater the irreversibility, the greater is the loss in capacity
to do work; thus, literally every irreversibility has its cost.
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Two moles of gas at 1 bar and 298 K are compressed at constant temperature by use of a
constant pressure of 5 bar. How much work is done on the gas? If the compression is driven
by a 100-kg mass, how far will the mass fall in the earth’s gravitational field?

( )

1

(2 mol)(8 3145 J K mol )(298 K)(1 5)

19 820 J

(19 820 J)/(100 kg)(9 8 m s )

20 22 m
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Now we consider the work required for a reversible isothermal compression
of a gas and the work that can be obtained from a reversible isothermal expansion.
In a reversible process, the change is accomplished in infinitesimal steps. Such a
reversible process is often spoken of as one that consists of a series of succes-
sive equilibria. Since the gas is at its equilibrium pressure (within an infinitesimal
amount) at each step in the expansion, we may substitute the pressure given by
an equation of state into equation 2.32 and integrate it. If the gas were allowed to
expand rapidly, the pressure and temperature would not be uniform throughout
the volume of the gas, and so such a substitution could not be made. If the expan-
sion is carried out reversibly at constant temperature for an ideal gas, the external
pressure is always given by / . Substituting in equation 2.32, we obtain

d

d ln (2 35)*

since the temperature is constant.
In integration the lower limit always refers to the initial state and the up-

per limit to the final state. If the gas is compressed, the final volume is smaller
and is positive. The positive value means that work is done on the gas. The
isothermal expansion of one mole of an ideal gas by a factor of 10 yields

(1 mol) ln 10 5229 J at 273.15 K.
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One mole of an ideal gas expands from 5 to 1 bar at 298 K. Calculate ( ) for a reversible
expansion and ( ) for an expansion against a constant external pressure of 1 bar.

( ) ln

1 bar
(1 mol)(8 3145 J K mol )(298 K) ln

5 bar

3988 J

( ) ( )

1 1
(1 bar)(1 mol)(8 3145 J K mol )(298 K)

1 bar 5 bar

1982 J

More work is done on the surroundings when the expansion is carried out reversibly.

Idealized experiment
for the determination of the surface
tension of a liquid.
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Figure 2 .10

Since for an ideal gas at constant temperature , the reversible
work is also given by

ln (2 36)

The equation for the maximum work of isothermal expansion of a van der
Waals gas is obtained by using equation 1.28:

d

1 1
ln (2 37)

There are a number of ways that work can be done on a system, or a system can do
work on its surroundings, other than work. If a system has a surface, surface
work may be involved. If the system is a solid, there may be work of elongation.
If the system involves electric charges, there may be work of transport of elec-
tric charge from a phase at one electric potential to a phase at a different electric
potential. If the system is in a gravitational field, there may be work of transport
of mass from one height in the field to another height in the field. If the system
involves electric or magnetic dipoles, there may be work of an electric or mag-
netic field in orienting these dipoles. Here we consider only surface work, work
of elongation, and work of transport of electric charge.

Let us consider the work required to increase the area of a surface. The force
required to increase the area of a liquid film, as illustrated in Fig. 2.10, is

2 (2 38)
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where is the of the liquid and is the length of the movable
bar. The factor 2 is involved because there are two liquid–gas interfaces in this
experiment. The surface tension is force per unit length and is usually expressed
in N m . It is a temperature-dependent quantity in general. The surface tension
of water at 25 C is 71 97 10 N m or 71 97 mN m .* The surface tensions of
liquid metals and molten salts are large in comparison with those of other liquids,
as shown in Table 6.6. The work required to move the bar in Fig. 2.10 to the left
by a distance is

2 (2 39)

where is the change in surface area (2 ). This is the amount of work
done on the liquid system. According to this equation, surface tension is equal
to the ratio of work to change in area, so it can also be expressed in J m . The
differential of surface work is given by

d d (2 40)

Surface tension arises from the fact that the molecules in the surface of a liq-
uid are attracted into the body of the liquid by the molecules in the body. This
inward attraction causes the surface to contract if it can and gives rise to a force in
the plane of the surface. Surface tension is responsible for the formation of spher-
ical droplets , the rise of water in a capillary, and the movement of a liquid through
a porous solid. Solids also have surface tensions, but it is harder to measure them.

Two other forms of work are more familiar, so we do not need to discuss them
in detail. When a piece of rubber is stretched, the differential work done on the
rubber is given by

d d (2 41)

where is the force and d is the differential increase in length. When a small
charge d is moved through an electric potential difference , the work done on
the charge is given by

d d (2 42)

These differential work terms become a part of the first law if surface, elon-
gational, and electrical work are involved:

d d d d d d (2 43)

This is an important equation because it shows how surface tension, surface area,
force, elongation, electric potential, and electric charge come into thermody-
namics.

The variables involved in work form of intensive and ex-
tensive variables, as shown in Table 2.1. If both the intensive variable and the
extensive variable are expressed in SI units (see symbols in Appendix G),
the work is expressed in joules.

In this section and the preceding one we have considered processes in ther-
mostats without saying anything about the quantity of heat flowing into or out
of the gas. Now it is time to talk about the flow of heat that accompanies such
processes.

�
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Some Conjugate Pairs of Thermodynamic Variables

Hydrostatic Pressure, Volume, d
Surface Surface tension, Area, d
Elongation Force, Length, d
Electrical Potential difference, Electric charge, d

( ) A piece of stretched rubber exerts a force of 1 N. How much work has to be done on
the rubber to stretch it one centimeter? ( ) The surface tension of water is 0.072 N/m at
25 C. How much work has to be done to increase the water surface by one square meter?
( ) A mole of electrons is transported across a potential difference of 1 V from the positive
electrode to the negative electrode. How much work is required?

( ) (1 N)(0 01 m) 0 01 J

( ) (0 072 N m )(1 m ) 0 072 J

( ) (1 V)(96 500 coulombs) 96 500 J

v v
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Table 2.1

The quantity of heat can be measured by determining the change in temperature
of a mass of material that absorbs the heat. The heat capacity is defined by the
derivative d /d , butd is an inexact differential because heat is not a state
function. Therefore, the path has to be specified; for example, we may consider
a constant-volume path or a constant-pressure path. First we consider changes in
state at constant volume.

When a system changes from one state to another at constant volume, the
change in internal energy may be calculated from the heat evolved and the
work done on the system by the surroundings. For a chemically inert system of
fixed mass the internal energy may be taken to be a function of any two of ,

, and . It is most convenient to take it as a function of and . Since is a
state function, the differential d is given by

d d d (2 44)

The first term is the change in internal energy due to the temperature change
alone, and the second term is the change in internal energy due to the volume
change alone. Since the differential of the internal energy is given byd d ,
if only pressure–volume work is involved, then

d d d (2 45)
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The heat absorbed
by a substance when it is heated
is equal to the integral of d
from the initial temperature
to the final temperature . If an
amount is heated at constant vol-
ume, , and if an amount

is heated at constant pressure,
.

heat capacity at constant volume

Thus, Joule concluded (incorrectly) that the internal energy of the gas is inde-
pendent of the volume.

2.6 Change in State at Constant Volume




�

� �

� �

� �

� �
�

� �













�

� � �


 














Figure 2 .11

If the change in state of system X takes place at constant volume, it may be rep-
resented by

X( ) X( )

In this case equation 2.45 reduces to

d d (2 46)

Since the change in temperature and the heat transferred are readily measured,
it is convenient to define the as

d
d

(2 47)

This equation may be applied to a system of any size, but frequently we will be
concerned with the intensive thermodynamic quantity , which has the SI units
J K mol . Since the heat capacity at constant volume is readily measured,
equation 2.47 may be integrated to obtain the change in internal energy for a
finite change in temperature at constant volume:

d (2 48)

This is illustrated in Fig. 2.11. Over a small temperature range may be nearly
constant so that

( ) (2 49)

In principle, the quantity ( / ) may be measured in an experiment de-
vised by Joule. Imagine two gas bottles connected with a valve and enclosed in a
thermally isolated container, as shown in Fig. 2.12. The two bottles constitute the
system under consideration. The first bottle is filled with a gas under pressure, and
the second is evacuated. When the valve is opened, gas rushes from the first bottle
into the second. Joule found that there was no discernible change in the temper-
ature once thermal equilibrium had been established, and so d 0. No work is
done in this expansion since 0, and so d 0 and d d d 0.
Since the temperature is constant, equation 2.44 becomes

d d 0 (2 50)

Since d 0,

0 (2 51)

However, this method is not very sensitive because of the
large heat capacity of the gas bottles relative to the gas. Equation 2.51 actually

y
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*In equation 4.112 we will find that for a van der Waals gas

This should not be surprising because van der Waals added / to the pressure to provide for in-
termolecular attractions. The quantity ( / ) is often called the internal pressure. It has the di-
mensions of pressure and is due to intermolecular attractions and repulsions. The internal pressure
changes with the volume because as the volume is increased, the average intermolecular distances
increase and the average intermolecular potential energy changes.

rev rev

irrev irrev

2 1 2 1

Joule’s experiment
in which a gas expands into a vac-
uum. Joule found there was no dis-
cernible change in temperature and Calculate the heat absorbed and the changes in internal energy for the two expansions of
concluded that ( / ) 0. We an ideal gas described in Example 2 .3.
now know that this applies to ideal
gases but not to real gases. ( ) According to Joule’s experiment, 0 for the reversible isothermal expansion

of an ideal gas. Therefore,

0 ( 3988 J)

3988 J

( )

0 ( 1982 J)

1982 J

Thus, more heat is absorbed by the gas in the reversible isothermal expansion.
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2.7 ENTHALPY AND CHANGE OF STATE
AT CONSTANT PRESSURE
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Figure 2 .12
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applies only to an ideal gas. The molecular interpretation of this relation is that
there is no interaction between the molecules of an ideal gas, and so the internal
energy does not change with the distance between molecules. On the other hand,
the internal energy of a real gas depends on the volume at constant temperature,
but the second law of thermodynamics is needed to derive an equation that can
be used to obtain ( / ) experimentally.*

Constant-pressure processes are more common in chemistry than constant-
volume processes because many operations are carried out in open vessels. If
only pressure–volume work is done and the pressure is constant and equal to the
applied pressure, the work done on the system equals , so that equation
2.7 may be written

(2 52)

where is the heat for the isobaric (constant pressure) process. If the initial state
is designated by 1 and the final state by 2, then

( ) (2 53)

�
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the heat absorbed in a process at constant pressure is equal to the change
in enthalpy.

heat capacity at constant pressure

2.7 Enthalpy and Change of State at Constant Pressure
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so that the heat absorbed is given by

( ) ( ) (2 54)

Since the heat absorbed is given by the difference of two quantities that are func-
tions of the state of the system, it is convenient to introduce a new state function,
the , defined by

(2 55)

Equation 2.54 may be written

(2 56)

In words,
For an infinitesimal change at constant pressure

d d (2 57)

where d is an exact differential since the enthalpy is a function of the state of
the system.

When pressure–volume work is the only kind of work (electrical and other
kinds being excluded), it is easy to visualize and ; in a constant-volume
calorimeter (Section 2.13) the evolution of heat is a measure of the decrease in
internal energy , and in a constant-pressure calorimeter the evolution of heat is
a measure of the decrease in enthalpy .

The enthalpy is an extensive property. Therefore, for a homogeneous mix-
ture of species involving only work, the enthalpy can be specified by 2
variables, one of which must be extensive. The intensive state of a homogeneous
mixture of species involving only work can be specified by 1 intensive
variables.

Changes in state at constant pressure are of special interest in the laboratory,
where processes generally take place at constant pressure. For a chemically in-
ert system of fixed mass, it is most convenient to take enthalpy as a function
of temperature and pressure. Since is a state function, the differential d is
given by

d d d (2 58)

If the change in state of a mole of X takes place reversibly at constant pressure, it
may be represented by

X( ) X( ) (2 59)

For such a change equations 2.57 and 2.58 may be combined to obtain

d d (2 60)

Since the change in temperature and the heat transferred are readily mea-
sured, it is convenient to define the as

d
(2 61)

d

y
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The enthalpy H is not entirely new because it is defined in terms of U, P, and V.
From one point of iew, the enthalpy is redundant, and so why is it introduced?
The answer is con enience. Use of H is more con enient in considering
measurements and processes at constant pressure, and U is more con enient in
considering measurements and processes at constant olume. Later, in Section
4.2, we will formalize this process of changing independent ariables by use of
Legendre transforms.
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The effect of temperature on the molar heat capacities of several gases at
constant pressure. Starting with the highest curve at 1200 K, the gases are CH , NH , CO ,
H O, N , and He. (See Computer Problem 2.B.)
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Figure 2 .13

Since the heat capacity at constant pressure is readily measured, this equation may
be integrated to obtain the change in enthalpy for a finite change in temperature
at constant pressure:

d (2 62)

Values of at 25 C for about 200 substances are given in Table C.2, and values
for 298 to 3000 K are given for a smaller number of substances in Table C.3 in
Appendix C. The dependence of on temperature is shown for a number of
gases in Fig. 2.13. In general, the more complex the molecule, the greater is its
molar heat capacity, and the greater the increase with increasing temperature.

Power series in temperature may be used to represent as a function of
temperature:

(2 63)

Parameters for several gases are given in Table 2.2. The change in enthalpy with
temperature at constant pressure is then given by

d d (2 64)
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298

2 1

1000 500 1000 298 500 298
1

1

ext

Molar Heat Capacity at Constant Pressure as a Function of Temperature from
300 to 1800 K:

J K mol 10 J K mol 10 J K mol 10 J K mol

N (g) 28.883 0.157 0 808 2.871
O (g) 25.460 1.519 0 715 1.311
H (g) 29.088 0.192 0 400 0.870
CO(g) 28.142 0.167 0 537 2.221
CO (g) 22.243 5.977 3 499 7.464
H O(g) 32.218 0.192 1 055 3.593
NH (g) 24.619 3.75 0 138 —
CH (g) 19.875 5.021 1 268 11.004

Using data in Table C.3, calculate the change in the molar enthalpy of methane in going
from 500 to 1000 K.

( ) ( )

(38 179 8 200) kJ mol

29 979 kJ mol

(Note that this is not the change in the enthalpy of formation of methane; see Problem
2.29.)
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2.8 Heat Capacities
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Table 2.2

( ) ( ) ( ) (2 65)
2 3

JANAF Thermochemical Tables and Stull, Westrum, and Sinke, in
, give values of for vari-

ous temperatures so that is readily calculated for the substances listed.
The superscript indicates that the substance is in its standard state; standard states
are discussed in Section 2.11.

The relation between heat capacities at constant pressure and constant vol-
ume can be derived using equation 2.45 at constant pressure ( ), where it
can be written as

d d d (2 66)

Dividing by d and setting d /d , we obtain

(2 67)
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The quantity on the right-hand side is positive so that . The two terms
on the right-hand side may be interpreted as follows: ( / ) is the work
produced per unit increase in temperature at constant pressure, and

is the energy per unit temperature required to separate the molecules against
intermolecular attraction.

Equation 2.67 takes on a particularly simple form for an ideal gas because
( / ) 0 and ( / ) / . Thus,

or (2 68)

This relationship may be visualized as follows. When an ideal gas is heated at con-
stant pressure, the work done in pushing back the piston is . For
a 1 K change in temperature, the work done is (1 K), and this is just the extra
energy required to heat an ideal gas 1 K at constant pressure over that required
at constant volume.

We will see later, in equation 4.120, that by use of the second law the differ-
ence between and for any material may be expressed in terms of the cubic
expansion coefficient and the isothermal compressibility (see Problems 1.17
and 1.18). The values of and for liquids and solids are nearly the same.

Thermodynamics does not deal with molecular models, and it is unnecessary
even to discuss molecules in connection with thermodynamics. This is one of the
strengths of thermodynamics, but it is also a weakness because thermodynam-
ics, by itself, does not provide the means for predicting the numerical values of
thermodynamic properties of particular substances. We will see later that kinetic
theory and statistical mechanics do lead to quantitative predictions of thermody-
namic properties.

Kinetic theory (Chapter 17) shows that the molar translational energy of a
monatomic ideal gas is . The translational energy is independent of pres-
sure or molar mass for a monatomic ideal gas so that

(2 69)

According to equation 2.55, the molar enthalpy of a monatomic ideal gas is larger
than the internal energy by (or ), so that

(2 70)

Thus, the translational contributions to the molar heat capacities of monatomic
ideal gases are expected to be

12 472 J K mol (2 71)

20 786 J K mol (2 72)

Tables C.2 and C.3 in Appendix C show that values of for monatomic
gases are constant at 20 786 J K mol independent of temperature, except for
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Figure 2 .14

cases where electrons in the atom can be excited to low-lying levels [see especially
O(g)].

A gas flowing along an insulated pipe through a porous plate that separates two
regions of different constant pressures may be heated up or cooled down. This

is shown in Fig. 2.14, where . To push one mole
of gas through the porous plate, work amounting to has to be done on one
mole of the gas by the piston on the left. Work amounting to is done on the
surroundings by one mole of gas pushing the piston on the right, and so the net
work on the gas is

(2 73)

Since the pipe is insulated, 0, and

(2 74)

or

(2 75)

(2 76)

Thus we see that there is no change in the enthalpy of the gas in a Joule–Thomson
expansion.

The is defined as the derivative of the temper-
ature with respect to pressure in this process:

lim (2 77)

The Joule–Thomson coefficient is zero for an ideal gas, but for real gases ( / )
is positive at low temperatures and negative at high temperatures; that means
that a cooling effect is obtained below the inversion temperature and a heat-
ing effect is obtained above the inversion temperature. Below the inversion
temperature, this effect can be used for refrigeration, but we will not discuss it
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For an ideal gas, the internal energy is a function only of temperature and
so (equation 2.44).
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further. The inversion temperature for nitrogen is 607 K, for hydrogen 204 K, and
for helium 43 K.

In Section 2.4 we discussed the work of compression and expansion of gases in
contact with a heat reservoir. Now we consider the compression and expansion
of gases in isolated systems. No heat is gained or lost by the gas, so the process
is adiabatic and the first law becomes simply d d . If only pressure–volume
work is involved, d d . If the system expands adiabatically, d is pos-
itive and d is negative; thus, if the expansion is opposed by an external pressure

, work is done on the surroundings at the expense of the internal energy. The
relation d d d applies to any adiabatic process, reversible or ir-
reversible, if work is the only kind of work involved. If the external pressure is
zero (adiabatic expansion into a vacuum), no work is done and there is no change
in the internal energy for all gases. If the expansion is opposed by an external
pressure, work is done on the surroundings and the temperature drops as internal
energy is converted to work. Integrating yields

d d

(2 78)

where is the work done on the gas.

d d Thus, when an ideal gas expands adiabatically
against an external pressure, the temperature drop is simply related to the change
in internal energy. If is independent of temperature for an ideal gas in the
temperature range of interest, then

d d

( ) (2 79)

Since 0, then and

d ( ) (2 80)

where the second form applies when is independent of temperature. This re-
lation applies to the adiabatic expansion of an ideal gas with independent of
temperature whether the process is reversible or irreversible. If the gas expands,
the final temperature will be lower than the initial temperature , and the
work done on the gas is negative. If the gas is compressed adiabatically, it will
heat up.
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Figure 2 .15 shows that when one mole of an ideal monatomic gas is allowed to expand adi-
abatically and reversibly from 22 7 L mol at 1 bar and 0 C (at point on the graph) to a
volume of 45 4 L mol (at point ), the pressure drops to 0.315 bar. Confirm this pressure
and calculate the temperature at . How much work is done in the adiabatic expansion?

22 7 L mol
(1 bar) 0 315 bar

45 4 L mol

22 7 L mol
(273 15 K) 172 07 K or 101 08 C

45 4 L mol

d (172 07 K 273 15 K) 1261 J mol
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When an adiabatic expansion is carried out reversibly, the equilibrium pres-
sure is substituted for the external pressure, and so for an ideal gas

d d d

d d
(2 81)

If the heat capacity is independent of temperature, then

d d

ln ln (2 82)

This equation is a good approximation only if the temperature range is small
enough so that does not change very much.

Since , equation 2.82 may be written

(2 83)

where / . By use of the ideal gas law we can obtain the following alter-
native forms of this equation:

(2 84)

(2 85)

Thus, when a gas expands adiabatically to a larger volume and a lower pressure,
the volume is smaller than it would be after an isothermal expansion to the same
final pressure. Plots of pressure versus volume for adiabatic and isothermal ex-
pansions are shown in Fig. 2.15.
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Isothermal and reversible adiabatic expansions of one mole of an ideal
monatomic gas.
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Figure 2 .15

The quantity of heat evolved or absorbed in a chemical reaction or a phase change
can be determined by measuring the temperature change in an adiabatic process.
Since very small temperature changes can be measured, this provides a sensi-
tive method for studying the thermodynamics of chemical reactions and phase
changes. If the temperature rises when a reaction occurs in an isolated system,
then in order to restore that system to its initial temperature, heat must be al-
lowed to flow to the surroundings. Such a reaction is said to be and
the heat is negative. If the temperature falls when a reaction occurs in an iso-
lated system, heat must flow from the surroundings to the system to restore the
system to its initial temperature. Such a reaction is said to be and
the heat is positive.

Since the enthalpy is an extensive property that is a function of the state of
the system, its differential (at constant and ) can be written in terms of the
partial molar enthalpies of the species in the system (see equation 1.37 in Section
1.10):

d d (2 86)

where is the number of species and is the molar enthalpy of species . When
the temperature and the pressure are constant, equation 2.57 yields

d d d (2 87)
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Now let us apply this equation to a system in which a single chemical reaction
occurs.

To connect heat absorbed or evolved with a chemical reaction, it is of course
necessary to know what the chemical change is and to have a measure of its
amount. To discuss the thermodynamics of chemical reactions, we will find it con-
venient to represent chemical reactions in general by

0 B (2 88)

where the are the and the B are the molecular formu-
las for the species involved in the reaction. The stoichiometric numbers, which
are dimensionless, are positive for products and negative for reactants. Thus, ac-
cording to this way of writing a reaction equation, the reaction H O H O
would be written

0 1H O 1H O (2 89)

The reason for using this convention is that it makes it easier to write thermody-
namic equations for chemical reactions.

The amount of reaction that has occurred up to some time is expressed by the
, which is defined by

(2 90)

Here is the amount of substance present initially, and is the amount at
some later time. Since is expressed in moles and is dimensionless, we see that
the extent of reaction is expressed in moles. The concept of extent of reaction is
important because it provides a connection between the amount of reaction and
a particular balanced chemical equation. We will also use the extent of reaction
later in calculating equilibrium compositions.

Equation 2.90 shows that d d , and when we substitute this relation
into equation 2.87, we obtain

d d d (2 91)

Dividing by d gives

d
(2 92)

d

The quantity is the
The reaction enthalpy is the derivative of the enthalpy of the system with

respect to the extent of reaction. This is perhaps easiest to visualize for a very
large system for which we can write / . If one mole of reaction
occurs, 1 mol and (1 mol) . To know what a mole of reaction is,
we must have a balanced chemical equation, since the way an equation is written
is arbitrary with respect to direction and with respect to multiplying or dividing
by an integer. Thus, the enthalpy of reaction for 2H O 2H O is twice that
of the reaction H O H O. To distinguish between the extensive property
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The standard states that are used in chemical thermodynamics are defined as follows:

The standard state of a pure gaseous substance, denoted by g, at a given temperature
is the (hypothetical) ideal gas at 1 bar pressure.
The standard state of a pure liquid substance, denoted by l, at a given temperature is
the pure liquid at 1 bar pressure.
The standard state of a pure crystalline substance at a given temperature is the pure
crystalline substance, denoted by , at 1 bar pressure.
The standard state of a substance in solution is the hypothetical 1 of the substance in
ideal solution of standard state molality (1 mol kg ) at 1 bar pressure, at each tem-
perature. To indicate the standard state of an electrolyte, the NBS Tables of Chemical
Thermodynamic Properties (1982) use two symbols. The thermodynamic properties of
completely dissociated electrolytes in water are designated by ai. The thermodynamic
properties of undissociated molecules in water are designated by ao. The thermody-
namic properties of ions in water are also designated ao to indicate that no further
ionization occurs.

reaction
as written.
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and the change in enthalpy for a specified chemical reaction, we will write
for a reaction. It is evident from equation 2.92 that the reaction enthalpy has

the SI units J mol . Here the mol refers to a mole of reaction for the
An overbar is not used on because the subscript r indicates that

the mol unit is involved.
As a further specification of the states of the reactants and products, we will

usually consider reactions in which the reactants in their standard states are con-
verted to the products in their standard states. When substances are in their stan-
dard states, thermodynamic quantities are labeled with superscript zeros (actually
degree signs). Thus, if reactants and products are in their standard states, equation
2.95 becomes

(2 93)

s

Lavoisier and Laplace recognized in 1780 that the heat absorbed in decom-
posing a compound must be equal to the heat evolved in its formation under
the same conditions. Thus, if the reverse of a chemical reaction is written, the
sign of is changed. Hess pointed out in 1840 that the overall heat of a
chemical reaction at constant pressure is the same, regardless of the interme-
diate steps involved. These principles are both corollaries of the first law of
thermodynamics and are a consequence of the fact that enthalpy is a state func-
tion. This makes it possible to calculate the enthalpy changes for reactions that
cannot be studied directly. For example, it is not practical to measure the heat
evolved when carbon burns to carbon monoxide in a limited amount of oxy-
gen, because the product will be an uncertain mixture of carbon monoxide and
carbon dioxide. However, carbon may be burned completely to carbon dioxide



C(g) + 2O(g)

C(s) + 2O(g)

CO2(g)

C(s) + O2(g)

kJ mol–1
716.68

kJ mol–1
498.34

kJ mol–1
–282.98

kJ mol–1
–393.51

kJ mol–1
1215.02

–110.53 kJ mol–1

CO(g) + O2(g)1 2

H .

H .

H .

H .

CO g H .

H .

H .
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2Enthalpy level diagram for the system C(s) O (g). The differences in level
are standard enthalpy changes at 25 C and 1 bar.
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Figure 2 .16

in an excess of oxygen and the heat of reaction measured. Thus, for graphite
at 25 C,

C(graphite) O (g) CO (g) 393 509 kJ mol

The heat evolved when carbon monoxide burns to carbon dioxide can be readily
measured also:

CO(g) O (g) CO (g) 282 984 kJ mol

Writing these equations in such a way as to obtain the desired reaction, adding,
and canceling, we have

C(graphite) O (g) CO (g) 393 509 kJ mol

CO (g) CO(g) O (g) 282 984 kJ mol

1
C(graphite) O (g) ( ) 110 525 kJ mol

2

In this way an accurate value can be obtained for the heat evolved when graphite
burns to CO.

These data may be represented in the form of an enthalpy level diagram, as
shown in Fig. 2.16. In addition, this diagram shows the enthalpy changes that are
involved in vaporizing graphite to atoms and dissociating oxygen into atoms at
25 C:

C(graphite) C(g) 716 682 kJ mol

O (g) 2O(g) 498 340 kJ mol
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CO (g) 393.509
CO(g) 110.525
C(g) 716.682
O(g) 249.170
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enthalpies of formation

the enthalpy of formation of an
element in its standard state is zero at every temperature.
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Since absolute enthalpies are not known, enthalpies relative to a defined
are used instead. The defined reference state for each substance is made up

of the stoichiometric amounts of the elements in the substance, each in its standard
state and at the temperature under consideration. These “relative” enthalpies of
substances are called and are represented by . Since
the same reference state is used for reactants and products, the same is
obtained as would be obtained with equation 2.93 and absolute enthalpies. Thus,
standard enthalpy changes for reactions may be calculated using enthalpies of
formation as follows:

(2 94)

Note that the enthalpy of formation does not have an overbar because the sub-
script f, for formation, indicates that the mol unit is involved.

The enthalpy of formation of a substance at a given temperature is the change
in enthalpy for the reaction in which one mole of the substance in its standard state
at the given temperature is formed from its elements, each in its standard state at
that temperature. If there is more than one solid form of an element, one must
be selected as a reference. For thermodynamic tables at 25 C the reference form
is usually the most stable form of the element at 25 C, 1 bar pressure. Thus, the
reference form of hydrogen is H (g) instead of H(g), the reference form of carbon
is graphite, and the reference form of sulfur is rhombic sulfur. For thermodynamic
tables that cover a wide range of temperatures, different reference states may be
used in various temperature ranges. In any case,

From reactions given previously we can see how the following enthalpies of
formation at 25 C are obtained:

These enthalpies of formation should be identified in Fig. 2.16. Enthalpies of for-
mation at 25 C for some 200 substances are given in Table C.2. These values
are from the NBS Tables of Chemical Thermodynamic Properties (1982). Table
C.3 gives enthalpies of formation from 0 to 3000 K for a smaller group of sub-
stances from the JANAF Thermochemical Tables (1985).

The values of enthalpies of formation given in these tables come from four
sources: (1) calorimetrically measured enthalpies of reaction, fusion, vaporiza-
tion, sublimation, transition, solution, and dilution; (2) temperature variation of
equilibrium constants (see Section 5.5); (3) spectroscopically determined dissocia-
tion energies (see Section 14.3); (4) calculation from Gibbs energies and entropies
(see the third-law method in Section 3.8).

��



Calculating the standard enthalpy of reaction at constant
temperature
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What are the standard enthalpy changes at 298.15 K and 2000 K for the following reaction?

CO (g) C(graphite) 2CO(g)

Using Table C.3, at 298.15 K,

2 (CO) (CO )

2( 110 527 kJ mol ) ( 393 522 kJ mol )

172 468 kJ mol

At 2000 K,

2( 118 896 kJ mol ) ( 396 784 kJ mol )

158 992 kJ mol
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You may calculate for any reaction for which the reactants and products
are listed in tables, but the reaction will not necessarily occur spontaneously in
the direction written. The question as to whether or not the reaction can occur is
answered by calculations based on the second law of thermodynamics.

So far we have talked mainly about the reaction enthalpy at 298.15 K. To
calculate the standard enthalpy change at some other temperature, given the value
at 298.15 K, it is necessary to have heat capacity data on the reactants and the
products. Since enthalpy is a state function, we can use the paths indicated below
to calculate the standard enthalpy change at any desired temperature.

reactants products

(2 95)

reactants products

d d (2 96)

( ) d

d (2 97)

where

(2 98)



Calculation of the bond energy of molecular hydrogen from the
enthalpy of formation of hydrogen atoms at 298 K
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What is the value of at 0 K for the following reaction?

H (g) 2H(g)

The calculation using (298 K) illustrates the use of from Table C.3:

(298 K) 2(217 999 kJ mol ) 435 998 kJ mol

H (g) 2H(g) 435 998 kJ mol

H (g) 2H(g)

(0 K) (8 467 435 998 12 394) kJ mol

432 071 kJ mol
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reaction heat capacity

Example 2.9
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The does not have an overbar because the subscript
r indicates that the unit mol is involved.

If data are available on the heat capacities of reactants and products in the
form of power series in (see Table 2.2), may be expressed as a function
of as follows:

( ) ( ) (2 99)

where , and so on. Substituting in equation 2.97 gives

[ ( ) ( ) ] d

( 298) ( 298 ) ( 298 )
2 3

( ) ( /2) ( /3) (2 100)

In the last form of this equation the constant terms have been added together
to obtain a hypothetical enthalpy of reaction at 0 K, hypothetical because the
power-series representations of are for a limited temperature range. Within
this temperature range equation 2.100 does represent the standard enthalpy of
reaction as a function of temperature.

The JANAF tables give standard enthalpies of formation at a series of temper-
atures, and so these values may be used directly to calculate enthalpies of reaction.
Some values from the JANAF tables are given in Table C.3.

Some thermodynamic tables give values of to assist in the calcu-
lation of for a chemical reaction or phase transition:

d (2 101)

Depending on the table, for phase transitions in the intervening tempera-
ture range may be added to the right-hand side of the equation.



A B

Insulated cover

Stirrer Thermometer

Dewar flask

R(T2) + Cal(T2)

R(T1) + Cal(T1)

P(T2) + Cal(T2)

P(T1) + Cal(T1)

∆H(T2)

∆H(T1)

∆HR ∆H A
= 0

∆HP

Comment:

The concept of a thermodynamic cycle will be used in many ways. The important
idea is that it may be easier to measure changes in a thermodynamic property,
such as enthalpy, along three sides of a cycle than along the fourth. For example,
it is easier to make calorimetric measurements of enthalpy changes at room
temperature and use heat capacity measurements to calculate the enthalpy change
at a higher temperature than it would be to make the calorimetric
measurement at the higher temperature.

H

.

H H T H .

H H H T .
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Alternatively, this value may be calculated from the enthalpy of formation of H(g) at 0 K
in Table C.3:

(0 K) 2(216 035 kJ mol ) 432 070 kJ mol

This value is often referred to as the H H bond energy. In Chapter 11 we will see how
this value can be calculated theoretically; there this energy is referred to as the dissociation
energy .

Adiabatic calorimeter
operated at constant pressure. A
reaction between solutions A and B
is initiated by rotating the reaction
vessel around the axis indicated.

�

adiabatic calorimeters;
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Figure 2 .17

Heats of reaction are determined using that is, the reaction
or solution process occurs in a container, which is immersed in a weighed quan-
tity of water and is surrounded by insulation or an adiabatic shield that is kept at
the same temperature as the calorimeter so that no heat is gained or lost. A sim-
ple adiabatic calorimeter operated at constant-pressure is illustrated in Fig. 2.17.
Thus, for this adiabatic process is zero. When a certain amount of reactants
R are converted completely to products P in a constant-pressure calorimeter, the
changes in state involved may be represented as follows:

(2 102)

The adiabatic container, thermometer, stirrer, and weighed quantity of water are
represented by Cal. Since the enthalpy is a state function, the enthalpy change for
the actual process may be written two ways:

( ) 0 (2 103)

( ) 0 (2 104)
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Adiabatic bomb calorimeter for carrying out combustions at constant
volume.
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Figure 2 .18

Since the heat capacities of the reactants, products, and calorimeter may be as-
sumed constant over the range to , these equations become

( ) [ (P) (Cal)]( ) (2 105)

( ) [ (R) (Cal)]( ) (2 106)

where these ’s are extensive properties. Thus, the results of the calorimetric ex-
periments can be interpreted to obtain for the conversion of a certain amount
of R to P either at or . The heat capacity term in the first equation can be de-
termined by using a calibrated electric heater coil and measuring with only
products present, and the heat capacity term in the second equation can be deter-
mined with only reactants present. In this expression is a constant current that
flows through resistor for time .

Once has been determined in a calorimetric experiment, for a bal-
anced chemical reaction can be calculated using / .

When a reaction is carried out in a sealed bomb (see Fig. 2.18), no work
is done, and the first law may be written . Thus, the change in internal
energy for the reaction is obtained. When the reaction is carried out at constant
pressure, the first law may be written . Chemists are usually more in-
terested in than because chemical reactions are generally carried out at
constant pressure. If is determined in a bomb calorimeter, the value of
may be calculated using equation 2.55:

(2 107)

where is the sum of stoichiometric numbers of gaseous products and gaseous
reactants. Remember that stoichiometric numbers are positive for products and



Calculating the enthalpy of reaction
from the heat of combustion

Calculating the molar internal energy of combustion
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The combustion of ethanol in a constant-volume calorimeter produces 1364 34 kJ mol
at 25 C. What is the value of for the following combustion reaction?

C H OH(l) 3O (g) 2CO (g) 3H O(l)

1364 34 kJ mol (8 3145 10 kJ K mol )(298 15 K)( 1)

1366 82 kJ mol

This is the quantity of heat that would be evolved at 25 C and a constant pressure of 1 bar.

In an adiabatic bomb calorimeter, the combustion of 0.5173 g of ethanol causes the tem-
perature to rise from 25.0 to 29 289 C. The heat capacity of the bomb, the reactants, and
the other contents of the calorimeter is 3576 J K . What is the molar internal energy of
combustion of ethanol at 25 0 C?

The change in the state can be written

C H OH 3O 2CO 3H O
[ 25 C ] [ 29 289 C ]

other contents other contents

for which 0 (adiabatic) and 0 (constant volume ) so that 0. This change
in state can be written as the sum of

C H OH 3O 2CO 3H O
[ 25 C ] [ 25 C ]

other contents other contents

2CO 3H O 2CO 3H O
[ 25 C ] [ 29 289 C ]

other contents other contents

where 0, so that

or
(3 576 kJ K )(4 289 K)(46 0 g mol )

0 5173 g

1364 kJ mol
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Example 2.11

integral heat of solution
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negative for reactants. In writing equation 2.107 in this way we are ignoring the
volume change due to solid and liquid reactants, because this is negligible in com-
parison with the change in gas volume. We are also assuming that the gases are
ideal.

When a solute is dissolved in a solvent, heat may be absorbed or evolved; in
general, the heat of solution depends on the concentration of the final solution.
The is the enthalpy change for the solution of 1 mol of



Calculating the enthalpy of neutralization
in aqueous solution
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Calculate (298 K) for the following reaction using Table C.2 .

HCl in 100H O NaOH in 100H O NaCl in 200H O H O(l)

(298 K) 406 923 285 830 165 925 469 646

57 182 kJ mol
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solute in mol of solvent. The solution process may be represented by a chemical
equation such as

HCl(g) 5H O(l) HCl in 5H O (298 K) 63 467 kJ mol
(2 108)

at 1 bar pressure, where “HCl in 5H O” represents a solution of 1 mol of HCl in
5 mol of H O. As the amount of water is increased, the integral heats of solution
approach asymptotic values.

The solution of liquid acetic acid in water to form an aqueous solution in
which undissociated acetic acid is in its standard state is represented by

CH CO H(l) CH CO H(ao) (298 K) 1 3 kJ mol (2 109)

where the ao indicates that the ions do not dissociate further.
When a solute is dissolved in a solvent that is chemically quite similar to it

and there are no complications of ionization or solvation, the heat of solution
may be nearly equal to the heat of fusion of the solute. It might be expected
that heat would always be absorbed in overcoming the attraction between the
molecules or ions of the solid solute when the solute is dissolved. Another process
that commonly occurs, however, is a strong interaction with the solvent, referred
to as solvation, which evolves heat. In the case of water the solvation is called
hydration.

The importance of this attraction of the solvent for the solute in the process of
solution is illustrated by the dissolving of sodium chloride in water. In the crystal
lattice of sodium chloride, positive sodium ions and negative chloride ions attract
each other strongly. The energy required to separate them is so great that nonpolar
solvents like benzene and carbon tetrachloride do not dissolve sodium chloride;
but a solvent like water, which has a high dielectric constant and a large dipole
moment, has a strong attraction for the sodium and chloride ions and solvates
them with a large decrease in the energy of the system. When the energy required
to separate the ions from the crystal is about the same as the solvation energy, as
it is for dissolving NaCl in water, for the net process is close to zero. When
NaCl is dissolved in water at 25 C, there is only a small cooling effect; is positive.
When Na SO is dissolved in water at 25 C, there is an evolution of heat because
the energy of hydration of the ions is greater than the energy required to separate
the ions from the crystal.

For dilute solutions it is found that the heat of reaction of strong bases, such
as NaOH and KOH, with strong acids, such as HCl and HNO , is independent
of the nature of the acid or base. This constancy of the heat of neutralization is a
result of the complete ionization of strong acids and bases and the salts formed
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by neutralization. Thus, when a dilute solution of a strong acid is added to a dilute
solution of a strong base, the only chemical reaction is

OH (ao) H (ao) H O(l) (298 K) 55 835 kJ mol

When a dilute solution of a weak acid or base is neutralized, the heat of neutral-
ization is somewhat less because of the absorption of heat in the dissociation of
the weak acid or base.

Since for strong electrolytes in dilute solution the thermal properties of the
ions are essentially independent of the accompanying ions, it is convenient to use
enthalpies of formation of individual ions. The sum of the enthalpies of formation
of H and OH ions may be calculated from

H O(l) H (ao) OH (ao) 55 835 kJ mol

H (g) O (g) H O(l) 285 830 kJ mol

H (g) O (g) H (ao) OH (ao) 229 995 kJ mol

The separate enthalpies of formation of H and OH cannot be calculated, and
so, to construct a table of enthalpies of formation of individual ions, it is necessary
to adopt an arbitrary convention. Enthalpies of formation of aqueous ions in Table
C.2 are based on the convention that 0 for H (ao). In other words, by
convention,

H (g) H (ao) e 0

where e is the electron, which is assigned (e ) 0. This electron is not dis-
solved in water, but is a formal electron required to balance the equation. There-
fore, the enthalpy of formation of OH is given by

H (g) O (g) e OH (ao) 229 995 kJ mol

On the basis of these values for the enthalpies of formation of H and OH , the
enthalpies of formation of other ions of strong electrolytes may be calculated.

From the enthalpy of formation of HCl(ai) it is possible to calculate the en-
thalpy of formation of Cl (ao).

H (g) Cl (g) H (ao) Cl (ao) 167 159 kJ mol

Cl (g) e Cl (ao) 167 159 kJ mol

In thermodynamics work is a signed quantity, and it is positive when work
is done on the system of interest and is negative when the system does work
on the surroundings. The work in a process depends on the path, even when
the process is reversible. The differential of the work is represented by d
as a reminder that work is not an exact differential.
The change in the internal energy of a system in an adiabatic process is
equal to the work done on the system. This provides a way to determine the
difference in internal energy of two states of a system.
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A system can also undergo a specified change in internal energy by absorb-
ing heat or evolving heat . Since the change in internal energy can be ex-
pressed in joules, the quantity of heat can also be expressed in joules.
According to the first law of thermodynamics, (1) there exists a property
that is a function of the state variables of a system and (2) the change in inter-
nal energy for a closed system can be calculated from . However,
the first law by itself does not provide any information as to whether a given
process will proceed in the forward direction or the reverse direction.
The mathematical test for whether a variable is exact or inexact is whether
the mixed partial derivatives are equal or unequal.
When a gas is allowed to expand, the maximum work is obtained when the
process is carried out reversibly, that is, when the process is carried out with
an infinite number of infinitesimal steps.
In addition to pressure–volume work, there is surface work, elongation
work, electric charge displacement, and other kinds of work such as work
of electric and magnetic polarization, which are not discussed here.
The heat capacity at constant volume is defined as the partial derivative of
the internal energy with respect to temperature when the volume is held
constant. The enthalpy is defined by , and the heat capacity
at constant pressure is defined as the partial derivative of the enthalpy with
respect to temperature when the pressure is held constant.
A cooling effect is obtained in the adiabatic expansion of an ideal gas,
and the maximum cooling is obtained when the expansion is carried out
reversibly.
The change in standard enthalpy in a chemical reaction is equal to the
summation of the standard enthalpies of formation of the reacting species,
each multiplied by its stoichiometric number in a specified chemical equa-
tion. If the standard enthalpy of reaction is known at one temperature, its
value at any other temperature can be calculated if the molar heat capac-
ities of the species involved are known throughout the temperature range
involved.
Calorimeters are useful for determining standard enthalpies of formation
of species, but we will see later that these values can also be determined in
other ways.
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( ) The surface tension of water at 25 C is 0.072 N m .Problems marked with an icon may be more conveniently
How much work is required to form a surface 100 m by 100 m?solved on a personal computer with a mathematical program.
( ) The force on a wire is due to a 75-kg person in the earth’sHow high can a person (assume a weight of 70 kg) climb
gravitational field. If the wire stretches 1 m, how much work ison one ounce of chocolate, if the heat of combustion (628 kJ) can
done on the wire? ( ) A gas expands 1 L against a constant ex-be converted completely into work of vertical displacement?
ternal pressure of 1 bar. How much work is done on the gas?

A mole of sodium metal is added to water. How much
Over narrow ranges of temperature and pressure, thework is done on the atmosphere by the subsequent reaction if

differential expression for the volume of a fluid as a functionthe temperature is 25 C?
of temperature and pressure can be integrated to obtain

You want to heat 1 kg of water 10 C, and you have the
following four methods under consideration. The heat capacity e e
of water is 4 184 J K g .

You can heat it with a mechanical eggbeater that is pow- ( and are defined in Section 4.10). Show that is a state
ered by a 1-kg mass on a rope over a pulley. How far does function.
the mass have to descend in the earth’s gravitational field One mole of nitrogen at 25 C and 1 bar is expanded re-
to supply enough work? versibly and isothermally to a pressure of 0.132 bar. ( ) What
You can send 1 A through a 100- resistor. How long will is the value of ? ( ) What is the value of if the nitrogen is
it take? expanded against a constant pressure of 0.132 bar?
You can send the water through a solar collector that has ( ) Derive the equation for the work of reversible isother-
an area of 1 m . How long will it take if the sun’s intensity mal expansion of a van der Waals gas from to . ( )
on the collector is 4 J cm min ? A mole of CH expands reversibly from 1 to 50 L at 25 C.
You can make a charcoal fire. The heat of combustion of Calculate the work in joules assuming (1) the gas is ideal and
graphite is 393 kJ mol . That is, 12 g of graphite will pro- (2) the gas obeys the van der Waals equation. For CH (g),
duce 393 kJ of heat when it is burned to CO (g) at constant 2 283 L bar mol and 0 042 78 L mol .
pressure. How much charcoal will have to burn?

Liquid water is vaporized at 100 C and 1.013 bar. The
Show that the differential d is inexact. heat of vaporization is 40 69 kJ mol . What are the values of

( ) per mole, ( ) per mole, ( ) , and ( ) ?
d d d An ideal gas expands reversibly and isothermally from

10 bar to 1 bar at 298.15 K. What are the values of ( ) per
Thus, the integral d depends on the path. However, we can mole, ( ) per mole, ( ) , and ( ) ? ( ) The ideal gas
define a new function by expands isothermally against a constant pressure of 1 bar. How

much work is done on the gas?1
d d

Calculate (2000 K) (0 K) for H(g).
The heat capacities of a gas may be represented by

which has the property that d is exact. Show that d is exact, so
that

d 0 For N , 28 883 J K mol , 1 57 10 J K
mol , 0 808 10 J K mol , and 2 871 10
J K mol . How much heat is required to heat a mole of NShow that the function ( ) defined by
from 300 to 1000 K?

d ( ) ( 2 ) d d
In a reversible adiabatic expansion of an ideal gas

is inexact. Test to see whether the integrating factor 1/ makes with / independent of temperature, the
it an exact differential. pressure and volume are related by

Show that the function defined by
constant

d ( ) ( ) d d
Show that the work of adiabatic expansion from

is inexact. Test the integrating factor 1/ to see whether it pro- to is
duces an exact differential.

( )/( 1)
What are the partial derivatives ( / ) and ( / )

Check this equation to be sure it gives the sameof the following functions? ( ) , ( ) / , ( )
amount of work as Example 2 .7.ln( ), ( ) ln( / ), and ( ) exp( ).
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Calculate the temperature increase and final pressure of The sum of the three reactions is
helium if a mole is compressed adiabatically and reversibly from

2C(s) 2H O(g) CH (g) CO (g)44.8 L at 0 C to 22.4 L.
A mole of argon is allowed to expand adiabatically and What is at 500 K for each of these reactions? Check that

reversibly from a pressure of 10 bar and 298.15 K to 1 bar. What the sum of the values of the first three reactions is equal
is the final temperature, and how much work is done on the to for the fourth reaction. From the standpoint of heat
argon? balance, would it be better to develop a process to carry out

A tank contains 20 L of compressed nitrogen at 10 bar and the overall reactions in three separate reactors or in a single
25 C. Calculate when the gas is allowed to expand reversibly reactor?
to 1 bar pressure ( ) isothermally and ( ) adiabatically. What is the heat evolved in freezing water at 10 C given

An ideal monatomic gas at 298.15 K and 1 bar is expanded that
in a reversible adiabatic process to a final pressure of bar. Cal- H O(l) H O(s) (273 K) 6004 J mol
culate per mole, per mole, and .

(H O l) 75 3 J K molAn ideal monatomic gas at 1 bar and 300 K is expanded
adiabatically against a constant pressure of bar until the final (H O s) 36 8 J K mol
pressure is bar. What are the values of per mole, per mole, What is the enthalpy change for the vaporization of

, and ? Given: . water at 0 C? This value may be estimated from Table C.2
Derive the equation for calculating the work involved in a by assuming that the heat capacities of H O(l) and H O(g) are

reversible, adiabatic pressure change of one mole of an ideal gas independent of temperature from 0 to 25 C.
so that the work can be calculated from the initial temperature Calculate the standard enthalpy of formation of methane

, initial pressure , and final pressure . at 1000 K from the value at 298.15 K using the data
Calculate for in Table C.3.

For a diatomic molecule the bond energy is equal to theH (g) F (g) 2HF(g)
change in internal energy for the reactionH (g) Cl (g) 2HCl(g)

X (g) 2X(g)H (g) Br (g) 2HBr(g)

at 0 K. Of course, the change in internal energy and the change inH (g) I (g) 2HI(g)
enthalpy are the same at 0 K. Calculate the enthalpy of dissocia-The following reactions might be used to power rockets:
tion of O (g) at 0 K. The enthalpy of formation of O(g) at 298.15
K is 249 173 kJ mol . In the range of 0–298 K the average value(1) H (g) O (g) H O(g)
of the heat of capacity of O (g) is 29.1 J K mol and the av-

(2) CH OH(l) 1 O (g) CO (g) 2H O(g) erage value of the heat capacity of O(g) is 22 .7 J K mol .
What is the value of the bond energy in electron volts? (When(3) H (g) F (g) 2HF(g)
the changes in heat capacities in the range of 0–298 K are

( ) Calculate the enthalpy changes at 25 C for each of these re- taken into account, the enthalpy of dissociation at 0 K is 493.58
actions per kilogram of reactants. ( ) Since the thrust is greater kJ mol .)
when the molar mass of the exhaust gas is lower, divide the heat One gram of liquid benzene is burned in a bomb
per kilogram by the molar mass of the product (or the average calorimeter. The temperature before ignition was 20 826 C,
molar mass in the case of reaction 2) and arrange the above re- and the temperature after the combustion was 25 000 C. This
actions in order of effectiveness on the basis of thrust. was an adiabatic calorimeter. The heat capacity of the bomb,

Calculate for the dissociation the water around it, and the contents of the bomb before the
combustion was 10 000 J K . Calculate for C H (l) atO (g) 2O(g)
298.15 K from these data. Assume that the water produced in

at 0, 298, and 3000 K. In Section 14.3 the enthalpy change for the combustion is in the liquid state and the carbon dioxide
dissociation at 0 K will be found to be equal to the spectroscopic produced in the combustion is in the gas state.
dissociation energy . An aqueous solution of unoxygenated hemoglobin con-

Methane may be produced from coal in a process rep- taining 5 g of protein ( 64 000 g mol ) in 100 cm of
resented by the following steps, where coal is approximated by solution is placed in an insulated vessel. When enough molec-
graphite: ular oxygen is added to the solution to completely saturate

the hemoglobin, the temperature rises 0 031 C. Each mole of2C(s) 2H O(g) 2CO(g) 2H (g)
hemoglobin binds 4 mol of oxygen. What is the enthalpy of

CO(g) H O(g) CO (g) H (g)
reaction per mole of oxygen bound? The heat capacity of the

CO(g) 3H (g) CH (g) H O(g) solution may be assumed to be 4 18 J K cm .

�
�

�

�

� �
�

� �

�
�

�

�

Chapter 2 First Law of Thermodynamics

�

��

��

�

� �

� �

�

�

�

� �

�

�
�

�

�
�

�

�

�

� �
�

�

�
�

�

�

2.17

2 .18

2 .19

2 .27
2 .20

2 .21

2 .28

2 .22

2 .29

2 .23

2 .30

2 .24

2 .31

2 .25

2 .32
2 .26



V

V

c

c

f

P

P P P

71

q U P V C T RT V. .

q
C T R V

T

V

w
a

b

a w
b c U d H

H .
.

a w
H . b q c U d H

w
a

b
U

J.
Chem. Thermodyn a

H b
H c

d

H H

C
T T C T C T C

.
a b.

c

. a
b

x x
a xy x x y y b y

y y

� � � �

� �

� �

� � �

� � �

�

2 4

2 4 2 4 2
1

2

2

2 2

2 2 2 2

2

2 2 2

1
r2 2

2 2 2 2
1

rev1
r

1

1
60

60

60

2 3298 0

1

1

1

13

23

4

3

2 2
2

Calculate the heat of hydration of Na SO (s) from the in- Show that
tegral heats of solution of Na SO (s) and Na SO 10H O(s) in

d d d d d lninfinite amounts of H O, which are 2 34 and 78 87 kJ mol ,
respectively. Enthalpies of hydration cannot be measured di-

is not an exact differential, but
rectly because of the slowness of the phase transition.

dWe want to determine the enthalpy of hydration of CaCl
d ln d ln

to form CaCl 6H O:

is an exact differential.CaCl (s) 6H O(l) CaCl 6H O(s)
Show that the differential d of the molar volume of an

ideal gas is an exact differential.We cannot do this directly for a couple of reasons: (1) reac-
Calculate for a reversible isothermal (298.15 K) expan-tions in the solid state are slow, and (2) there is a series of

sion of a mole of N from 1 to 10 L assuming it is ( ) an ideal gashydrates and so a mixture of different hydrates would prob-
and ( ) a van der Waals gas (see Table 1.3).ably be obtained. We can, however, determine the heats of

solution of CaCl (s) and CaCl 6H O(s) in water at 298 K and An ideal gas at 25 C and 100 bar is allowed to expand
take the difference. The experimental heats of solution are as reversibly and isothermally to 5 bar. Calculate ( ) per mole,
follows: ( ) the heat absorbed per mole, ( ) , and ( ) .

Ammonia gas is condensed at its boiling point at 1.013 25CaCl (s) Aq CaCl (ai) 81 33 kJ mol
bar at 33 4 C by the application of a pressure infinitesimally
greater than 1 bar. To evaporate ammonia at its boiling pointCaCl 6H O(s) Aq CaCl (ai) 6H O(l)
requires the absorption of 23.30 kJ mol . Calculate ( )

15 79 kJ mol per mole, ( ) per mole, ( ) , and ( ) .
What is per mole for a reversible isothermal expansionwhere Aq represents a large amount of water. What is the en-

of ethane from 5 to 10 L mol at 298 K assuming ( ) ethane isthalpy of hydration?
an ideal gas and ( ) it follows the van der Waals equation? (Van

The change in internal energy in the combustion der Waals constants are in Table 1.3.)
of C (s) is 25 968 kJ mol at 298.15 K [Kolesov et al.,

According to Table C.3, how much heat is required to. 1121 (1996)]. ( ) What is the enthalpy
raise the temperature of a mole of oxygen from 298 to 3000 K atof combustion ? ( ) What is the enthalpy of formation
constant pressure?[C (s)]? ( ) What is the enthalpy of vaporization of

C (s) to C(g) per mole of C(g)? ( ) How does this compare From the following data calculate the value of
with the enthalpy of vaporization of graphite and diamond to ( ) for Al O (s).
C(g)?

How much work is done when a person weighing 75 kg /J K
(165 lb) climbs the Washington Monument, 555 ft high? How /K mol
many kilojoules must be supplied to do this muscular work,
assuming that 25% of the energy produced by the oxidation 10 0.009 90 9.69 170 39.94 250 67.01
of food in the body can be converted to muscular mechanical 20 0.076 100 12.84 180 43.79 260 69.76
work? 30 0.263 110 16.32 190 47.53 270 72.37

40 0.691 120 20.06 200 51.14 280 74.84The average person generates about 2500 kcal of heat
50 1.492 130 23.96 210 54.60 290 77.19a day. How many kilowatt-hours of energy is this? If walking
60 2.779 140 27.96 220 57.92 298.16 79.01briskly dissipates energy at 500 W, what fraction of the day’s en-
70 4.582 150 31.98 230 61.10 273.16 73.16ergy does walking one hour represent? How many kilograms
80 6.895 160 35.99 240 64.13of water would have to be evaporated if this were the only

means of heat loss? (The heat of vaporization of water at 35 C
is 2400 J g .) One mole of hydrogen at 25 C and 1 bar is compressed

adiabatically and reversibly into a volume of 5 L. Assuming idealThe surface tension of water is 71 97 10 N m or
gas behavior, calculate ( ) the final temperature, ( ) the final71 97 10 J m at 25 C. Calculate the surface energy in
pressure, and ( ) the work done on the gas.joules of 1 mol of water dispersed as a mist containing droplets

of 1 m (10 cm) in radius. The density of water may be taken One mole of argon at 25 C and 1 bar pressure is al-
as 1 00 g cm . lowed to expand reversibly to a volume of 50 L ( ) isothermally

and ( ) adiabatically. Assuming ideal gas behavior, calculateAre the following expressions exact differentials?
the final pressure in each case and the work done on thed

( ) d d ( ) d gas.
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A mole of monatomic ideal gas at 1 bar and 273.15 K is cess to carry out the overall reaction in two separate reactors or
allowed to expand adiabatically against a constant pressure of in a single reactor?
0.395 bar until equilibrium is reached. ( ) What is the final tem- Calculate the heat of vaporization of water at 25 C. The
perature? ( ) What is the final volume? ( ) How much work is specific heat of water may be taken as 4.18 J K g . The heat
done on the gas in this process? ( ) What is the change in the capacity of water vapor at constant pressure in this temperature
internal energy of the gas in this process? range is 33.5 J K mol , and the heat of vaporization of water

A tank contains 20 L of compressed nitrogen at 10 bar at 100 C is 2258 J g .
and 25 C. Calculate the maximum work that can be obtained Calculate the enthalpy of dissociation of H (g) at
when the gas is allowed to expand reversibly to 1 bar pressure 3000 K using [H(g) 298 15 K] 217 999 kJ mol and
( ) isothermally and ( ) adiabatically. The heat capacity of ni- values in Appendix C.3.
trogen at constant volume can be taken to be 20 8 J K mol Calculate the dissociation energy of CH into atoms at
independent of temperature. 298.15 K using for the dissociation reaction at 0 K and

Compare the enthalpies of combustion of CH (g) to values from Appendix C.3.
CO (g) and H O(g) at 298 and 2000 K. The reaction of heated coal (approximated here by

graphite) with superheated steam absorbs heat. This heat isCH (g) 2O (g) CO (g) 2H O(g)
usually provided by burning some of the coal. Calculate

Compare the enthalpy of combustion of CH (g) to (500 K) for both reactions.
CO (g) and H O(l) at 298 K with the sum of the enthalpies

Ammonia is to be oxidized to NO (g) to make nitric acid.of combustion of graphite and 2H (g), from which CH (g) can,
What temperature will be reached if the only reaction isin principle, be produced.

The enthalpy change for the combustion of toluene to
NH (g) O (g) NO (g) H O(g)H O(l) and CO (g) is 3910.0 kJ mol at 25 C. Calculate the

enthalpy of formation of toluene.
and a stoichiometric amount of oxygen is used?Calculate (298 K) per gram of fuel (exclude oxygen)

In an adiabatic bomb calorimeter, oxidation of 0.4362 g offor
naphthalene (C H ) caused a temperature rise of 1 707 C. The

H (g) O (g) H O(g) final temperature was 298 K. The heat capacity of the calorime-
CH (g) 2O (g) CO (g) 2H O(g) ter and water was 10 290 J K , and the heat capacity of the

products can be neglected. If corrections for the oxidation of theCH OH(l) O (g) CO (g) 2H O(g)
wire and residual nitrogen are neglected, what is the molar inter-

C H (g) 9 O (g) 6CO (g) 7H O(g) nal energy of combustion of naphthalene? What is its enthalpy
A 1:3 mixture of CO and H is passed through a catalyst of formation?

to produce methane at 500 K. The combustion of oxalic acid in a bomb calorimeter
yields 2816 J g at 25 C. Calculate ( ) and ( ) forCO(g) 3H (g) CH (g) H O(g)
the combustion of 1 mol of oxalic acid ( 90 0 g mol ).

How much heat is liberated in producing a mole of methane? A mole of liquid sulfuric acid (98 g) is added to a certain
How does this compare with the heat obtained from burning quantity of water at 25 C, and it is found that the temperature
a mole of methane at this temperature? How does the heat of is 100 C! The NBS Tables of Chemical Thermodynamic Prop-
combustion of CH compare with the heat of combustion of erties yield the following information:
CO 3H ?

Calculate for the dissociation /kJ mol
H (g) 2H(g)

H SO (l) 813 99
at 0, 298, and 3000 K. The value at 0 K is equal to the spectro-

H SO (ai) 909 27scopic dissociation energy .
In principle, methanol can be produced from methane in

The ai indicates this value is for sulfuric acid that is completelytwo steps or one:
ionized in water. What is the enthalpy of solution of sulfuric acidI. CH (g) H O(g) CO(g) 3H (g)
in enough water to completely ionize it? Let’s make some ap-

CO(g) 2H (g) CH OH(g) proximations and estimate the mass of the “certain quantity of
water” in the first line. Assume that the solution has the sameII. CH (g) H O(g) CH OH(g) H (g)
heat capacity as water ( 75 3 J K mol ), independent

What is at 500 K for each of these reactions? From the of temperature, and ignore the mass of the sulfuric acid added.
standpoint of heat balance, would it be better to develop a pro- How much water was used?
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When nitroglycerin explodes, the chemical reaction that Print out the values of at 298.15 K and 1000 K for the
occurs can be assumed to be following gases: N , O , H , CO, CO , H O, NH , and CH .

Compare these values with those in Table C.3 of Appendix C.
C H N O (l) 3CO (g) H O(g) N (g) O (g) Plot for CO , H O, NH , and CH versus temperature

from 298.15 K to 1500 K.
( ) Calculate and for this reaction at 298 K, Calculate (1000 K) (298.15 K) for N and com-
given that the enthalpy of formation of liquid nitroglycerin is pare it with the values in Table C.3.

372 4 kJ mol . ( ) Consider 0.20 mol of nitroglycerin at 25 C
Calculate (1000 K) for the following gas reactions:completely filling a constant-volume cell of 0.030 L. Calculate

the temperature and pressure that would be gener- H O H O
ated by the explosion of the nitroglycerin if the constant-volume

N H NHcell did not burst (or vaporize). You may assume that (1) the ex-
CO 4H CH 2H Oplosion occurs so rapidly that the conditions are adiabatic, (2)

the pressure cell comes to immediate thermal equilibrium with CO 3H CH H O
the products, (3) the products are ideal gases, and (4) the

Plot the molar heat capacities in J K mol at constant
total constant-volume heat capacity of products plus cell has the

pressure for gaseous He, N , H O, CO , NH , and CH from
temperature-independent value of 100 J K .

300 to 1800 K using the parameters in Table 2.2.
Calculate the standard enthalpy of reaction at 298 K and

1000 K for the gas reaction CO 4H CH 2H O.
Calculate the standard enthalpy of formation of CO at

1000 K from the standard enthalpy of formation at 298.15 K and
empirical equations for the heat capacities. The standard molar

In Section 2.8 we have seen that the knowledge of the heat capacities of graphite are given in Table C.3 as a function
temperature dependence of , which can be represented by of temperature. It is convenient to fit these data to a function of
a polynomial in (see Table 2.2), makes it possible to calcu- temperature.
late the change in molar enthalpy with temperature. In Sec-

Calculate the work of reversible isothermal expan-tion 2.13 we have seen that the standard enthalpy of reaction at
sion of a mole of carbon dioxide at 298.15 K from an initial vol-other temperatures can be calculated from (298.15 K) by
ume of 5 L to a final volume of 20 L on the assumption thatintegration of d . It is difficult to make these calculations
carbon dioxide is an ideal gas.with a hand-held calculator, but they can be conveniently made

Calculate the reversible work using the van der Waals con-using a mathematical application that can integrate. By putting
stants for carbon dioxide.in empirical equations for , we can solve the following

Explain the difference.problems:
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(b)

(c)

(d)

2.B
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2.E (a)

(b)

(c)
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The first law of thermodynamics states that when one form of energy is converted
to another, the total energy is conserved. It does not indicate any other restriction
on this process. However, we know that many processes have a natural direction,
and it is with the question of direction that the second law is concerned. For exam-
ple, a gas expands into a vacuum, but the reverse never occurs, although it would
not violate the first law. For a metal bar at uniform temperature to become hot
at one end and cold at the other would not be a violation of the first law, yet we
know this never occurs spontaneously.

The second law of thermodynamics is one of the most important generaliza-
tions in science. It is important in chemistry because it can tell us whether a process
or reaction will occur in the forward or backward direction. The quantity that tells
us whether a chemical reaction or a physical change can occur spontaneously in
an isolated system is the entropy . Entropy is a function of the state of the sys-
tem, as is the internal energy . Thermodynamics does not deal with the rate of
approach to equilibrium, only with the equilibrium state. Some time is required
even for a gas to expand into another container, and for some chemical reactions
the rate of approach to equilibrium is very slow.

The third law of thermodynamics allows us to obtain the absolute value of the
entropy of a substance.

Second and Third Laws
of Thermodynamics
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3.1 ENTROPY AS A STATE FUNCTION
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Historically, the second law of thermodynamics and the concept of entropy arose
from considering the efficiencies of heat engines, but heat engines are quite differ-
ent from chemical systems. Therefore, we are going to introduce the state function
entropy from the more mathematical viewpoint of the preceding two chapters.

To understand the need for a second law of thermodynamics, consider what
the first law of thermodynamics has not provided. According to the first law, en-
ergy is conserved in a process that takes a system from one state to another, but
this provides no information as to whether the process of chemical reaction can
proceed spontaneously or not. Yet we know that processes and chemical reac-
tions proceed spontaneously in one direction and not in the opposite direction.
For example, gases always expand into a vacuum. Heat is always transferred from
a hot body to a cold body. In the presence of a catalyst, molecular hydrogen and
molecular oxygen react to form water. These are referred to as

The reverse processes, can be accomplished
only by performing work on the system. A gas can be compressed to a smaller
volume by use of mechanical work. Heat can be transferred to a hot body from a
cold body by use of a refrigeration device. Water can be electrolyzed to molecular
hydrogen and molecular oxygen by use of electrical work from a battery.

When we see a movie run backward, we often laugh because we know the
event could not happen that way. The first law of thermodynamics does not tell
us the direction in which a process can occur spontaneously. The laws of classi-
cal mechanics and quantum mechanics also do not tell us the direction in which
time increases. When a movie of a collision between two particles is run backward
we don’t laugh, because it looks as reasonable as the movie run in the forward
direction. Indeed, the mechanical equations of motion are invariant under time
reversal. It is useful to be able to predict whether a physical change or a chemical
reaction will go spontaneously in the forward or backward direction, and so the
second law is very important.

To see how a state function can be introduced to identify a spontaneous pro-
cess, let us consider the transfer of heat, which obviously involves the issue of the
temperature. In the preceding chapter we saw that heat is not a state property of a
system, even though it can be expressed in terms of state properties for a specified
process, i.e., along a particular path. For example, the first law shows that when
an ideal gas is heated reversibly,

d d d d d d d d (3 1)

The reversible heat is not a state function because d is an inexact differential
(Section 2.3). This is indicated by the symbol used here, but it can be confirmed
by applying the test of exactness, ( / ) ( / ) , to equation 3.1 written
in the form

d d d (3 2)

Taking the derivative of the coefficient of d with respect to at constant
yields

0 (3 3)
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Show that d / is independent of path, by considering the following changes
in the state of an ideal gas:

( ) ideal gas( ) ideal gas( ) reversible, isothermal

( ) ideal gas( ) ideal gas( ) reversible, adiabatic

( ) ideal gas( ) ideal gas( ) reversible, constant volume

( ) ideal gas( ) ideal gas( ) reversible, constant pressure

( ) ideal gas( ) ideal gas( ) reversible, constant volume

Our first law knowledge is sufficient to calculate d / for each of these changes, and
plots for an ideal gas are given in Fig. 3.1. The value of d / is calculated for each of
these changes in state as follows:

( ) For an ideal gas, the internal energy depends only on the temperature, and so
d 0. Therefore, d d d d / . Thus d / ln( / )

( ) Since the change is adiabatic, d 0 and d / 0, and from the expression
derived in Chapter 2,

( ) Since the volume is constant, 0, and from the first law d d d .
Thus d / d / ln( / ).

Reversible changes in As indicated in Fig. 3.1 , the sum of B and C should equal A for state functions; that is,
the state of an ideal gas. d / d / d / or ln( / ) ln( / ). This is in agreement with
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Figure 3.1

since for an ideal gas is independent of the volume. Taking the derivative of
the coefficient of d with respect to at constant yields

( / )
(3 4)

Since the mixed partial derivatives are not equal, is not a state function.
However, we saw in Section 2.3 that there may be an integrating factor that

will convert an inexact differential to an exact differential. Since the transfer of
heat depends on the temperature, let us try 1/ as an integrating factor. This is
accomplished by multiplying both sides of equation 3.2 by 1/ .

d
d d (3 5)

Applying the test for exactness to d / yields

( / )
0 (3 6)

( / )
0 (3 7)

Since both of these derivatives are equal to zero, d / is the exact differential
of a state function. This proof applies to an ideal gas, but the fact that this is a
general conclusion is shown in Section 3.9 on heat engines.
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the expression for a reversible adiabatic expansion. This confirms that d / is a state
function.

( ) At constant pressure, d / d / , which is equal to d / ln( / ).
Note that since the pressure is the same in the initial and final states, / / .

( ) At constant , d 0, and so from the first law, d / d /
d / ln( / ).

As indicated in Fig. 3.1 , the sum of D and E should equal A for state functions; that is,
d / d / d / or ln( / ) ln( / ) ln( / ) should be

equal to ln( / ). This is true, as indicated in considering .

entropy

This Clausius theorem is the mathematical statement of the second law of ther-
modynamics.

3.2 The Second Law of Thermodynamics
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We have seen that d / is the differential of a state function. Clausius named
this state function the , and so for an infinitesimal change in state

d
d (3 8)

and for a finite change in state,

d
(3 9)

Summing around a closed cycle yields

0 (finite isothermal steps) (3 10)

d
0 (infinitesimal steps) (3 11)

0 (finite isothermal steps) (3 12)

d 0 (infinitesimal steps) (3 13)

We are indebted to Clausius for much more than a name, because in 1854 he
extended these equations to cycles containing irreversible steps by showing that

d
0 (3 14)

The cyclic integral is to be understood in the following way: (a) If
any part of the cyclic process is irreversible (spontaneous), the inequality applies
and the cyclic integral is negative. (b) If the cyclic process is reversible, the equal-
ity applies. (c) It is impossible for the cyclic integral to be greater than zero. Note
that the temperature that appears in the cyclic integral in equation 3.14 is that of
the heat reservoir or surroundings. When the process is reversible, the tempera-
ture of the system is equal to the temperature of the surroundings. Equation 3.14
leads to the following inequality for a noncyclic process:

d
d (3 15)
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Apply the Clausius theorem to the following isothermal irreversible cycle to obtain d
d / .

state 1 state 2 state 1

Since this cycle is irreversible, equation 3.14 yields

d d
0

Since the second step is reversible, d / can be replaced by d , and the limits can be
interchanged, with a change in sign.

d
d 0

Thus,

d
d

We can also write
d

d

Thus, for an infinitesimal irreversible process the change in entropy is greater than the
differential of the heat divided by the temperature.
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If the process is reversible, d d / , and if the process is irreversible, d
d / .

Thus there are two parts of the

There is a state function called the entropy that can be calculated from
d d / .
The change in entropy in any process is given by d d / , where the

applies to a spontaneous process (irreversible process) and the equality
applies to a reversible process. This means that in order to calculate for a
change in state, one use a reversible process.

We can restate the second law by saying that
because for an isolated system,d 0, and

therefore 0 for a spontaneous process. The entropy of an isolated system (in
which the internal energy is constant) can continue to increase as long as sponta-
neous processes occur. When there are no more possible spontaneous processes,
the entropy is at a maximum; for any further infinitesimal process in the system,
d 0. Thus the entropy change tells us whether a process or chemical reaction
can occur spontaneously in an isolated system.

This reasoning can be applied to a system that is not isolated by treating the
system plus its surroundings as an isolated system. When a spontaneous change
occurs in the system of interest, the entropy change d in the system plus the
surroundings is given by

d d d (3 16)
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Change in entropy of an
isolated system with time. The en-
tropy of the system increases sponta-
neously until equilibrium is reached.
Thermodynamics does not deal with
the question of how long it will take
to reach equilibrium.

the increase in entropy indicates the time sequence of a spon-
taneous process.

3.2 The Second Law of Thermodynamics
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Figure 3.2

First, consider a reversible process in which the system gains heat d from the
surroundings. Since the surroundings gain heat equal to , equation 3.16 be-
comes

d
0 d (3 17)

since d 0 for a reversible process in an isolated system. Thus, for a re-
versible process in the system plus surroundings,

d d
d (3 18)

since for a reversible process, the temperature of the system is equal to the tem-
perature of the surroundings.

Second, consider an irreversible process in which the system gains heat d
from its surroundings. In this case, it is convenient to write equation 3.16 as

d d d (3 19)

If the transfer of heat occurs reversibly in the surroundings, the entropy change
in the surroundings is d / and equation 3.19 becomes

d
d (3 20)

since d 0 for a spontaneous change in the total (isolated) system. Equations
3.18 and 3.20 can be combined to obtain

d
d (3 21)

where the inequality applies when the process is irreversible and the equality ap-
plies when the process is reversible. For a finite process,

d
(3 22)

As a spontaneous change occurs in an isolated system, the entropy increases
with time as shown in Fig. 3.2 and eventually levels off. When a process occurs re-
versibly in an isolated system, the entropy does not change. When a spontaneous
process occurs in an isolated system, the entropy increases. The direction of spon-
taneous change in any system is in the direction of increasing the entropy of the
universe, and thus

The entropy is sometimes referred to as the “arrow of time.” The
second law of thermodynamics contrasts with the equations of classical mechanics
and quantum mechanics, which are reversible in time.

Equation 3.21 describes three types of processes:

d d / spontaneous and irreversible process
d d / reversible process
d d / impossible process (3 23)

The simplest place to apply equation 3.21 is to an isolated system, because
d 0. For a finite change the three possibilities are

0 spontaneous and irreversible process
0 reversible process
0 impossible process (3 24)
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Two phases in an
isolated system of constant volume.
The container is surrounded by
insulation.

Is the expansion of an ideal gas into a larger volume thermodynamically spontaneous
in an isolated system? More specifically, consider the expansion of an isolated ideal gas
initially at 298 K into a volume that is twice as large as its initial volume as shown in
Fig. 3.4 .

Remember that Joule found that there is no change in temperature when a dilute
gas is allowed to expand in an isolated system. To determine the change in entropy be-
tween the initial state and the final state, the reversible isothermal expansion described in
Fig. 3.4 can be used. As we have seen earlier, the work per mole done on the gas is

ln 2, so that the heat absorbed by the gas is

ln 2

since 0. Thus, the change in entropy of the gas is

ln 2 5 76 J K mol( ) Irreversible expan-
sion of an ideal gas at 298 K into Since the change in state of the gas for the process described in Fig. 3.4 is the same
twice the initial volume with no heat as that for Fig. 3.4 , 0. Thus, we can conclude that the expansion is spontaneous,
or work. ( ) Reversible isothermal as we knew all along. The reverse of the process described in Fig. 3.4 , that is, the gas
expansion of an ideal gas to twice flowing back spontaneously into the initial volume, is impossible since 0. It is im-
the initial volume at 298 K. In portant to note that this problem has nothing to do with minimizing the energy, which is
( ) the piston must be surrounded constant.
by a heat reservoir.
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Figure 3.3

Figure 3.4

As an illustration of the use of the fact that d 0 for an isolated system,
consider two phases in a system of constant volume that is surrounded by insu-
lation, as shown in Fig. 3.3. Suppose that one phase is at temperature and the
other is at temperature . We can imagine the transfer of an infinitesimal quan-
tity of heat d from phase to phase . The change in the entropy of the system
is given by

d d 1 1
d d (3 25)

If this process occurs spontaneously, d 0, and so this equation shows that
. In other words, heat flows spontaneously to the phase with the lower

temperature. If the two phases are at thermal equilibrium, d 0 and therefore
. Thus the second law has led us to the conclusion that for two phases to

be in equilibrium, they must be at the same temperature.
Since is a state function, we can integrate d between two states of a system.

For the change in state

A(state 1) A(state 2) (3 26)

d
d (3 27)

Thus to determine the change in entropy in a process, we have to integrate along
the path of a process connecting states 1 and 2. The for an irre-
versible process can be calculated if we can devise a reversible path and use it
for the integration in equation 3.27. There is no change in entropy in a reversible
adiabatic process.
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What is the change in the molar entropy of -hexane when it is vaporized at its boiling
point?

-Hexane boils at 68 7 C at 1 013 25 bar, and the molar enthalpy of vaporization is
28 850 J mol at this temperature. If -hexane is vaporized into the saturated vapor at
this temperature, the process is reversible and the molar entropy change is given by

28 850 J mol
84 41 J K mol

341 8 K

The overbars indicate that we are dealing with molar changes.
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We will now consider some simple processes for which entropy changes are readily
calculated. It is especially easy to calculate entropy changes for reversible isother-
mal processes.

The transfer of heat from one body to another at an infinitesimally lower tem-
perature is a reversible change, since the direction of heat flow can be reversed
by an infinitesimal change in the temperature of one of the bodies. For example,
consider the vaporization of a pure liquid into its vapor at the equilibrium vapor
pressure :

liquid( ) vapor( ) (3 28)

Since is constant, the integration of equation 3.18 yields

(3 29)

where represents the heat absorbed in the reversible change. Since the pres-
sure is constant, the reversible heat is equal to the change in enthalpy , so that

(3 30)

This equation may also be used to calculate the entropy of sublimation, the en-
tropy of melting, and the entropy change for a transition between two forms of a
solid.

The molar entropy of a vapor is always greater than that of the liquid with
which it is in equilibrium, and the molar entropy of the liquid is always greater
than that of the solid at the melting point. According to the statistical interpreta-
tion of entropy to be discussed in Section 3.6, in which the entropy is a measure
of the disorder of the system, the molecules of the gas are more disordered than
those of the liquid, and the molecules of the liquid are more disordered than those
of the solid.

Now let us apply the second law to the vaporization of a liquid into its satu-
rated vapor. To apply equations 3.24, we must consider an isolated system. In this
case the liquid and vapor (the system) and the heat reservoir at (the surround-
ings) form an isolated overall system. The total entropy change is given by

(3 31)

y
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When a substance is
heated from to , without a
phase change, the increase in
entropy is given by the indicated
area. If the volume is constant,
is used for ; and if the pressure is
constant, is used.

Oxygen is heated from 300 to 500 K at a constant pressure of 1 bar. What is the increase in
molar entropy?

The coefficients in an empirical equation for the heat capacity at constant pressure as
a function of temperature are given in Table 2.2. Using equation 3.33, we find

d d

ln ( ) ( )
2

500 1
25 503 ln (13 612 10 )(200) (42 553 10 )(500 300 )

300 2

15 41 J K mol

The units have been omitted in this calculation, but you should check that they cancel
properly.
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Since the heat gained by the system is equal to that lost by the surroundings, the
entropy change for the surroundings is the negative of the entropy change for
the system if the vaporization is carried out reversibly; for both the system and
surroundings taken together, the total change of entropy is zero if the transfer
of heat is carried out reversibly. This is in agreement with the second form in
equations 3.24.

Heating and cooling a substance are other examples of processes that can be
carried out reversibly. The change in entropy when a substance is heated or cooled
can be calculated using

d d
d (3 32)

where is for a process at constant pressure and for a process at constant
volume. If the heat capacity is independent of temperature, and the temperature
is changed from to , then

d ln (3 33)

If the heat capacity is a function of temperature, this function can be substi-
tuted into the integral form of equation 3.33, or the entropy change can be ob-
tained from a numerical integration, as shown in Fig. 3.5.

The entropy change is readily calculated for a reversible isothermal expansion
of an ideal gas. Since the internal energy of an ideal gas is independent of vol-
ume at constant temperature (Section 2.6), d d d . For a reversible
isothermal expansion from to ,
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Half a mole of an ideal gas expands isothermally and at 298.15 K from a volume
of 10 L to a volume of 20 L. ( ) What is the change in the entropy of the gas? ( ) How
much work is done on the gas? ( ) What is ? ( ) What is the change in the entropy of
the surroundings? ( ) What is the change in the entropy of the system plus the
surroundings?

( ) ln( / ) (0 5 mol)(8 3145 J K mol ) ln 2 2 88 J K
( ) ln( / )

(0 5 mol)(8 3145 J K mol )(298 15 K) ln 2 859 J
( ) Since the gas is ideal there is no change in its internal energy; 0.

Thus 859 J, and 859 J.
( ) Since heat flows out of the surroundings, it has a decrease in entropy.

859 J/298 15 K 2 88 J K

( ) Since the entropy of the gas increases and the entropy of the surroundings decreases
by the same amount, there is no change in entropy for the system and its surround-
ings. The gas and the surroundings can be considered to be an isolated system. The
process is reversible, and so we expect 0.

Now consider that the expansion in the preceding example occurs by simply
opening a stopcock and allowing the gas to rush into an evacuated bulb of 10-L volume.
( ) What is the change in the entropy of the gas? ( ) How much work is done on the gas?
( ) What is ? ( ) What is the change in the entropy of the surroundings? ( ) What is
the change in the entropy of the system plus the surroundings?
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3.3 Entropy Changes in Reversible Processes
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reversibly

irreversibly

ideal gas( ) ideal gas( ) (3 34)

1
d d

ln

ln (3 35)

where the final form simply comes from the fact that the volume is inversely pro-
portional to pressure at constant temperature.

Equation 3.35 can be applied to the isothermal expansion of a mole of an ideal
gas from its standard pressure to some other pressure :

ln (3 36)

where is the molar entropy in the standard state.
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( ) The change in entropy is the same as above because entropy is a state function.
( ) No work is done in the expansion.
( ) No heat is exchanged with the surroundings.
( ) The entropy of the surroundings does not change.
( ) The entropy of the system plus surroundings increases by 2.88 J K . Since this is

an irreversible process we expect the entropy to increase.

One must find a path to go from the initial state to the final state in order to
calculate the change in entropy; however, since entropy is a state function, the change in
entropy for the path between the same initial and final states is the same.

Then, , where is the constant-volume heat capacity of the sub-
stance. If is not a function of , then .

Then, , where is the constant-pressure heat capacity of the sub-
stance.

Then , where is the heat of vaporization in this case.

Then . Note the position of the and , and the
position of the and . Remember that is positive if the volume increases at con-
stant .

Here, is the total number of moles in the mixture. Then,

where the terms are the mole fractions: and .
Note that since the mole fractions are less than 1, the change in entropy is positive, as
expected for a spontaneous process.
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Specific Cases
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ALCULATION OF FOR VARIOUS CHANGES IN STATE
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(a) Constant heating of one mole of substance

(b) Constant heating of one mole of substance

(c) Phase change at constant and

(d) Ideal gas changes in state at constant

(e) Mixing of ideal systems at constant and

reversible

irreversible

d

substance( ) substance( )

d /
ln( / )

substance( ) substance( )

d /

H O(l 373 K 1 atm) H O(g 373 K 1 atm)

/

ideal gas( ) ideal gas( )

ln( / ) ln( / )

A( ) B( ) mixture( )

( ln ln )

/( ) /( )
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The molar entropy of an ideal gas as a function of and

The change in entropy of a monatomic gas when both and
are changed
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Calculate the change in entropy of an ideal monatomic gas B in changing from to
. What does this indicate about the form of the expression for the molar entropy of

the gas?
A reversible path is

B( ) B( ) B( )

For the first step,

d
ln ln

For the second step,

ln

For the sum of the two steps,

ln ln

since 5/2 .
This indicates that the expression for the molar entropy of an ideal monatomic gas is

of the form

ln ln const

where is the reference temperature, is the reference pressure, and the constant is a
characteristic of the particular gas. In Chapter 16 on statistical mechanics we will see that
for an ideal monatomic gas the constant term is equal to 1 151 693 ln when

1 bar, where is the relative atomic mass of the gas. This equation, which will be
derived from statistical mechanics in Section 16.3, is referred to as the

What is the change in molar entropy of helium in the following process?

1 He(298 K 1 bar) 1 He(100 K 10 bar)

For an ideal monatomic gas, . Using an equation from the preceding
example,

100 10
ln ln

298 1

41 84 J K mol
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Example 3.8

Example 3.9

To obtain the change in entropy in an irreversible process we have to calculate
along a reversible path between the initial state and the final state.

3.4 Entropy Changes in Irreversible Processes

�

� � � �

� � � �


 �


 �

� �

� �

3.4 ENTROPY CHANGES IN IRREVERSIBLE PROCESSES
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Sackur–Tetrode
equation.

We have
already illustrated this in Section 3.2 by the expansion of an isolated ideal gas into
a vacuum.
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When a mole of liquid
water freezes at 10 C, its entropy
changes by 20 54 J K mol ,
corresponding to the increase
in structural order. The entropy
of the reservoir increases by
21 37 J K mol because of the
heat transferred to it. The system
as a whole increases in entropy, as
expected for an irreversible process
in an isolated system.
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Figure 3.6

As a second illustration we will consider the spontaneous (irreversible)
freezing of water below its freezing point (see Fig. 3.6). The freezing of a mole
of supercooled water at 10 C is an irreversible change, but it can be carried
out reversibly by means of the three steps for which the entropy changes are
indicated:

H O(l 0 C) H O(s 0 C)

(3 37)

H O(l 10 C) H O(s 10 C)

For the crystallization of liquid water at 0 C, 6004 J mol . The heat
capacity of water may be taken to be 75 3 J K mol , and that of ice may be
taken to be 36.8 J K mol over this range. Then the total entropy change
of the water when 1 mol of liquid water at 10 C changes to ice at 10 C is
simply the sum of the three entropy changes:

273 ( 6004 J mol )
(75 3 J K mol ) ln

263 273 K

263
(36 8 J K mol ) ln

273

20 54 J K mol (3 38)

The decrease in entropy corresponds to the increase in structural order when wa-
ter freezes.

The statement that the entropy of an isolated system increases in a spon-
taneous process may be illustrated by considering supercooled water at 10 C
in contact with a large heat reservoir at this temperature. The entropy change
for the isolated system upon freezing includes the entropy change of the reser-
voir as well as the entropy change of the water. Since the heat reservoir is large,
the heat evolved by the water on freezing is absorbed by the reservoir with
only an infinitesimal change in temperature. The transfer of heat to a reser-
voir at the same temperature is a reversible process. Since the heat of fusion of
water at 10 C is (263 K) (75 3 J K mol )(10 K) 6004 J mol
(36 8 J K mol )(10 K) 5619 J mol , the entropy change of the reservoir
in the transfer of heat is

(5619 J mol )
21 37 J K mol (3 39)

263 K

The entropy change of the water is 20 54 J K mol , and the total entropy
change of the system water plus reservoir is

(21 37 20 54) J K mol 0 83 J K mol (3 40)

Thus, the total entropy of the isolated system, including water and reservoir, in-
creases, as required by inequality 3.24.
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Mixing of ideal gases.
The partition between mol of gas
1 at and and mol of gas 2 at

and is withdrawn so that the
gases can mix.

What is the entropy of mixing of 1 mol of oxygen with 1 mol of nitrogen at 25 C, assuming Reversible isothermal
that they are ideal gases? mixing of ideal gases 1 and 2 using a

Equation 3.44 becomes membrane permeable only to gas 1
(shown by dashes), a membrane(2 mol)(8 3145 J K mol ) ln ln
permeable to gas 2 (shown by dots),

11 526 J K and an impermeable membrane
You might try other proportions and see what happens. (shown by the solid line).
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entropy of mixing
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3.5 Entropy of Mixing Ideal Gases
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Figure 3.7

Figure 3.8

Figure 3.7 shows that amount of gas 1 at and is separated from amount
of gas 2 at the same pressure and temperature. When the partition is withdrawn
the gases will diffuse into each other at constant temperature and pressure if they
are ideal gases. To calculate the change in entropy in this irreversible process we
need to find a way to carry it out reversibly. This can be done in two steps. First,
we expand each gas isothermally and reversibly to the final volume .
These volumes are not molar volumes, but are actual volumes. When extensive
volumes are used, the ideal gas law is written .

Using equation 3.35, the entropy changes for the two gases are

ln ln ln (3 41)

ln ln ln (3 42)

where is the mole fraction. The is the sum of the en-
tropy changes for the two gases:

ln ln (3 43)

In the second step the expanded gases are mixed reversibly at constant volume.
To see how this might be done we have to imagine two semipermeable membranes,
arranged as shown in Fig. 3.8, one of which (represented by dashes) is permeable
only to gas 1, and the other (represented by dots) is permeable only to gas 2. The
membrane that is permeable to gas 1 and an impermeable membrane, which is sep-
arated from it by volume , are moved at the same infinitesimally slow rate to the
left. As shown by the diagram for the intermediate stage in the reversible mixing
process, the membrane combination has to be moved to the left against a pres-
sure of (to the left of ) plus (to the left of ). But the pressure on the
right-hand side of is also . Therefore, no work is required to move the
membrane in this frictionless device. The internal energies of the two ideal gases
are functions only of (Section 2.6), and so according to the first law no heat is ab-
sorbed by the gas in this step. Consequently, there is no entropy change associated
with the second step, and so equation 3.43 gives the total entropy change for the
isothermal mixing of the two ideal gases.

Equation 3.43 can be generalized to

ln ln (3 44)

Since 1, ln 0, and is always positive. A plot of the entropy of
mixing two ideal gases is shown in Fig. 3.9.
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Plot of the entropy of mixing of two ideal gases to produce one mole of an
ideal mixture. (See Computer Problem 3.C.)

For the mixing of two gases that have the same temperature and pressure, equation 3.43
can be written in the form

ln ln

where and are the volumes of the two gases and . Suppose that two
equal volumes of the same gas are mixed. What is the change in entropy?

If we apply this equation to the mixing of two equal volumes of the same gas, we obtain

( ) ln 2

This answer is wrong because there is no change of state in this process, and so 0.
This is known as the The answer to this paradox was not properly under-
stood until the development of quantum mechanics. According to quantum mechanics, the
molecules of a single species are indistinguishable; therefore, equation 3.44 does not apply.
If two different species have properties that are very nearly the same, they are still different
from a quantum mechanical point of view, and equation 3.44 does apply.

( ) Equilibrium
gaseous system after a hole is
punched in the diaphragm.
( ) Highly improbable state of
the gaseous system after the
hole has been punched.
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Chapter 3 Second and Third Laws of Thermodynamics

3.6 ENTROPY AND STATISTICAL PROBABILITY

Figure 3.9

Gibbs paradox.

Figure 3.10

Using the macroscopic approach of thermodynamics, we have found that the
equilibrium state of an isolated system is that state in which the entropy has its
maximum value. From a microscopic point of view, we might expect that the
equilibrium state of an isolated system would be the state with the maximum sta-
tistical probability. For simple systems we can use the molecular point of view to
calculate the statistical probabilities of different final states. For example, assume
that one mole of an ideal gas is in a container that is connected to a container of
equal volume through a stopcock; this expansion has already been discussed in
Example 3.3. Actually, it is a little easier to think about the reverse process, and so
we will do that. As shown in Fig. 3.10, we will start with an opening between the
two chambers and ask, what is the statistical probability that all of the molecules
will be in the original chamber? The probability that a particular molecule will be
in the original chamber is 1/2. The probability that two particular molecules will
be in the original chamber is (1/2) , and the probability that all the molecules
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will be in the original chamber is (1/2) , where is the number of molecules in
the system. If the system contains a mole of gas molecules, the statistical proba-
bility that all the molecules will be in the original chamber is

(1/2) e (3 45)

Boltzmann postulated that

ln (3 46)

where is ( / ) and is the number of equally probable
microscopic arrangements for the system. This relation can be used to calculate

for the transformation from an initial state with entropy and equally
probable arrangements to a final state with entropy and equally probable
arrangements:

ln( / ) (3 47)

It is often difficult to count the number of equally probable arrangements in the
final state and in the initial state, but the ratio / in this case is equal to the ratio
of the probability that all the molecules are in one chamber to the probability that
they are all in one chamber or the other. The probability that all the molecules
are in the original chamber or the other chamber is, of course, unity. Thus, for
the system in the preceding paragraph, we have already calculated the ratio
of the probabilities that is equal to / . The change in entropy in going from
the state with the gas distributed between the two chambers to the state with
all the molecules in the original chamber is

ln e

(1 381 10 J K )( 4 174 10 )

5 76 J K (3 48)

Since we are considering one mole of an ideal gas, the change in entropy for the
expansion process in Example 3.3 is 5 76 J K mol , in agreement with
the result using Boltzmann’s hypothesis. This confirms that the Boltzmann con-
stant is indeed given by / .

If the gas molecules were all to be found in one chamber after having been
distributed between the two chambers, we would say that the second law had been
violated. We have just seen that the probability that such a thing might happen is
not zero. It is, however, so small that we could never expect to be able to observe
all the molecules in one chamber, even for systems containing much, much less
than one mole of gas. If, however, we considered a system of only two molecules,
then we could find both molecules in one chamber with reasonable probability.
This shows that the laws of thermodynamics are based on the fact that macro-
scopic systems contain very large numbers of molecules.

The equation ln embodies an important concept, but it is not used
very often because it is difficult to calculate . In Chapter 16 on statistical me-
chanics we will use other equations to calculate the entropy.

The collision of two gas molecules is reversible in the sense that the reverse
process can also happen. If, after the molecules are moving away from each other,
we could simply reverse the direction of the velocity vectors, the molecules would
move along the same trajectories in the reverse direction. In short, the movie of
the reverse process is just as reasonable as the movie of the forward process. This is
true for both classical mechanics and quantum mechanics. If molecular collisions
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The entropy of mixing of ideal gases brings up a ery important idea, namely, that
some processes happen spontaneously e en though they do not reduce the energy
of a system. Our experience with mechanics leads us to expect that if something
happens spontaneously, there is necessarily a decrease in energy. Now we know
that is not true, and we can expect to find chemical reactions that occur because of
the contribution of a positi e S .
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are reversible, then why is the expansion of a gas into a vacuum, or the mixing of
two gases, irreversible? If we could take a movie of the expansion of a gas into a
vacuum that would show the locations of all the molecules, we could tell whether
the movie was being run forward or backward. However, if we were to look at
each molecular collision we would find that each followed the laws of mechanics,
and was reversible. If we were to look at the movie being run backward, we would
feel that it was depicting something that could not happen. But why couldn’t it
happen? As a matter of fact, it could, but only if we could give all the molecules
the positions they have at the end of the movie but then reverse their velocity
vectors. If we then looked at the individual collisions, we would find that they
would take all the molecules to the region from which they had expanded. The
reason this does not happen in real life is that it takes an extraordinarily special
set of molecular coordinates and velocities. This set of coordinates and velocity
vectors is so unlikely that thermodynamics says that the reverse process can never
happen.

Since d d / , the entropy is a measure of the flow of heat between a sys-
tem and its environment. When heat is absorbed by the system from its surround-
ings, is positive and the entropy of the system increases. The energy flowing into
the sysem is “dispersed” in the sense that it goes into increasing the energy of var-
ious molecular motions in the system. This concept of the dispersal of energy also
applies to the expansion of an ideal gas into a vacuum. In this case is zero, but
the total energy of the gas is dispersed over a larger volume. Thus entropy is a
measure of the dispersal of energy among the possible microstates of molecules
in a system.

Sometimes entropy is referred to as “disorder,” and a messy desk is referred
to as a state of high entropy. Or shuffling a deck of playing cards is said to result
in an increase in entropy of the cards. But this is misleading from a scientific view-
point because moving macroscopic objects around does not involve an increase in
entropy.* Another source of confusion about entropy comes from the use of this
term in information theory, which was introduced by Shannon in 1948. The quan-
tity entropy in information theory is not the entropy of thermodynamics because
it does not deal with the transfer of heat and the dispersal of energy among the
microstates of a system.

The concept of temperature is necessarily involved in understanding ther-
modynamic entropy because it indicates the thermal environment of the par-
ticles in a system. These particles are involved in the ever-present thermal
motion that makes spontaneous change possible because it is the mechanism
by which molecules can occupy new microstates when the external conditions are
altered.
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Entropy of Sulfur Dioxide

/K /J K mol

0–15 Debye function ( constant ) 1.26
15–197.64 Graphical, solid 84.18

Heat capacity of sul-197.64 Fusion, 7402/197.64 37.45
fur dioxide at a constant pressure197.64–263.08 Graphical, liquid 24.94
of 1 bar at different temperatures.263.08 Vaporization, 24 937/263.08 94.79
[Graph redrawn from W. F.263.08–298.15 From of gas 5.23
Giauque and C. C. Stephenson,

(298 15 K) (0 K) 247.85 1389 (1938).]
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The entropy of a substance at any desired temperature relative to its entropy
at absolute zero may be obtained by integrating d / from absolute zero to
the desired temperature. This requires heat capacity measurements down to the
neighborhood of 0 K as well as enthalpy of transition measurements for all tran-
sitions in this temperature range. Since measurements of cannot be carried
to 0 K, the Debye function (equation 16.104) is used to represent below the
temperature of the lowest measurements.

If data on the enthalpy of fusion at the melting point and the enthalpy of
vaporization at the boiling point are available, the entropy at a temperature
above the boiling point relative to that at 0 K may be calculated from

(s) (l) (g)
d d d

(3 49)

If there are various solid forms with enthalpies of transition between the forms,
the corresponding entropies of transition would have to be included in this sum.

Heat capacity measurements down to these very low temperatures are made
with special calorimeters in which the substance is heated electrically in a care-
fully insulated system and the input of electrical energy and the temperature are
measured accurately.

The attainment of very low temperatures in the laboratory involves succes-
sive application of different methods. Vaporization of liquid helium (b.p. 4.2 K
at 1 bar) at low pressures produces temperatures down to about 0.3 K. Lower
temperatures may be reached by use of adiabatic demagnetization. A paramag-
netic (Section 22.6) salt such as gadolinium sulfate is cooled with liquid helium
in the presence of a strong magnetic field. The salt is thermally isolated from its
surroundings, and the magnetic field is removed. The salt undergoes a reversible
adiabatic process in which the atomic spins become disordered. Since the en-
ergy must come from the crystal lattice, the salt is cooled. Temperatures of about
0.001 K may be reached in this way. Adiabatic demagnetization of nuclear spins
can then be used to obtain temperatures of the order of 10 K.

As an illustration of the determination of the entropy of a substance rela-
tive to its entropy at 0 K, the measured heat capacities for SO are shown as
a function of and of log in Fig. 3.11. Solid SO melts at 197.64 K, and the
heat of fusion is 7402 J mol . Liquid SO vaporizes at 263.08 K at 1 013 25 bar,
and the heat of vaporization is 24 937 J mol . The calculation is summarized in
Table 3.1.
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Figure 3.12

In the early years of the twentieth century T. W. Richards and W. Nernst in-
dependently studied the entropy changes of certain isothermal chemical reac-
tions and found that the change in entropy approached zero as the temperature
was reduced. The entropy change for a chemical reaction cannot be determined
calorimetrically using / because reactions do not occur reversibly.
We will see in Chapter 5 how the entropy change for a chemical reaction may
be determined. In the meantime we can discuss the measurement of the change
in entropy for a phase change for a single substance. As an example we will
consider the phase change

S(rhombic) S(monoclinic) (3 50)

As for chemical reactions, the change in entropy for a phase change approaches
zero as the temperature is reduced to absolute zero.

Figure 3.12 shows the molar entropies of monoclinic and rhombic sulfur
down to absolute zero as determined from

d (3 51)

Rhombic sulfur is the stable form below the transition temperature of 368.5 K.
However, monoclinic sulfur may be supercooled below this temperature, and its
heat capacity may be measured down to the neighborhood of absolute zero.
The entropy change for the phase change (equation 3.50) at the transition
temperature calculated on the assumption that is zero for both forms is
1 09 J K mol . This is in agreement with the entropy change at 368.5 K cal-
culated from the difference in enthalpy of 401 J mol between the two forms
at 368.5 K:

401 J mol
1 09 J K mol

368 5 K

where is the entropy change for the transition per mole. The difference in
enthalpy between the two forms is simply equal to the difference between their
heats of combustion at 368.5 K.

It can be seen from Fig. 3.12 that as 0, 0. It has been found that
0 as 0 for many other isothermal phase transitions and chemical

reactions. In 1905 these observations led Nernst to the conclusion that as tem-
perature approaches 0 K, for all reactions approaches zero.

lim 0 (3 52)

In 1913 Max Planck took this idea one step further, and we will take his state-
ment as the third law of thermodynamics:

We will see later (Chapter 16) that statistical mechanics gives a reason for
picking this value. As the derivation in Section 3.6 suggests, this corresponds
to a single quantum state ( 1) for a perfect crystal at absolute zero. Thus,
according to the third law, of the preceding section can be taken as zero if
the substance has a perfect crystalline form in the neighborhood of absolute zero.
Heat capacity measurements down to temperatures of nearly 0 K are therefore

y y

y y



H S
S

.
.

S R . .

.

R .

93

� � �

�

2

2
11

11
2

2 2

111 1 1 1
mix 2 2 2 2

11
2 2

113
2

1.

2.

3.8 The Third Law of Thermodynamics

� �

��

��

��

��

��

� �
�

� �
�

� �

often said to yield “third-law entropies.” Thus, the calculation of the preceding
section yielded the third-law entropy of SO (g) at 298.15 K.

Third-law entropies can be tested against what we would expect from two
other types of measurements, namely measurements of equilibrium constants
and of spectroscopic data. As we will see in Chapter 5, if the equilibrium constant
for a reaction is measured over a range of temperatures, then both and
can be calculated. This can be compared with the value expected from the
third law if the heat capacities of all reactants and products have been measured
down to the neighborhood of absolute zero.

In Chapter 16, on statistical mechanics, we will see that the entropies of rel-
atively simple gases at any desired temperature may be calculated from molar
masses and certain spectroscopic information. The molar entropy of a gas at a
certain temperature calculated using statistical mechanics may be compared with
the molar entropy obtained from calorimetric measurements, assuming that the
entropy of the pure crystalline substance is zero at absolute zero.

In general the tests of the third law described in the preceding two para-
graphs confirm the third law, but there are some apparent violations. For exam-
ple, the entropy of N O(g) at 298.15 K determined from heat capacity measure-
ments is 5 8 J K mol smaller than that calculated from spectroscopic data.
This indicates an entropy of 5 8 J K mol at absolute zero for crystals of N O.
This is an asymmetric linear molecule, NNO. The residual entropy of the crys-
tal is due to disorder in the arrangement of N O molecules. In solid N O, the
molecules are arranged with random head–tail alignments (such as NNO, ONN,
NNO, NNO, ONN) instead of being perfectly ordered (NNO, NNO, NNO, NNO,
NNO). If the orientation were perfectly random, the crystal might be regarded
as a mixed crystal with equal mole fractions of NNO and ONN. The entropy of
the mixed crystal would then be the entropy change of mixing. Using equation
3.44, which applies to ideal crystals as well as ideal gases, we see that

ln ln 5 76 J K mol (3 53)

Therefore, the statistical mechanical value is taken as the correct entropy, and
this is the value that will be found in tables. Thus the apparent violation of the
third law is understood and can be calculated for ideal crystals.

Another example of an imperfect crystal from the standpoint of the third law
is H O. Crystals of H O have a residual entropy of 3 35 J K mol at 0 K. In
ice, the hydrogen atoms are arranged around each oxygen atom in a tetrahedral
manner. Two of the four atoms are covalently bonded to that oxygen atom, and
two are hydrogen bonded (Section 11.10) to that oxygen atom. Since the ar-
rangements of the two types of hydrogen atoms around the oxygen atoms in
the crystal are random, it may be shown that the entropy of the crystal should
approach ln 3 37 J K mol at absolute zero.

There are two types of randomness in crystals at absolute zero that are not
considered in calculating entropies at absolute zero if these entropies are to be
used only for chemical purposes:

Most crystals are made up of a mixture of isotopic species, but the entropy of
mixing isotopes is ignored because the reactants and products in a reaction
or phase change contain the same mixtures of isotopes.
There is a nuclear spin degeneracy at absolute zero that is ignored because
it exists in both reactants and products.
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There is a corollary to the third law that is very much in the spirit of the
Clausius statement of the second law, since it states an impossibility. According
to this corollary, it is impossible to reduce the temperature of a system to 0 K in
a finite number of steps. This conclusion that absolute zero is unattainable may
be derived from the third law.

The third law is important because it makes possible the calculation of the
equilibrium constant for a chemical reaction purely from calorimetric measure-
ments on the reactants and products. The entropies of a number of substances at
298.15 K are given in Table C.2. The entropies of a smaller number of substances
are given in Table C.3 for 0, 298, 500, 1000, 2000, and 3000 K. These values and
others in the much larger tables from which they have been taken come from
four sources:

Heat capacities and enthalpies as a function of temperature
Statistical mechanical calculations using molecular structure and energy
levels
Temperature variation of equilibrium constants (Section 5.5)
Calculations from enthalpies and Gibbs energies from other sources such as
electromotive force measurements (Section 7.6)

Where the entropies have been determined calorimetrically, corrections have
been made for imperfections of crystals encountered in the neighborhood of ab-
solute zero in the few cases where this occurs and for gas nonideality at 1 bar.
The standard states are, of course, the same as discussed in Section 2.11. The
entropy of H (ao) is arbitrarily assigned the value of zero, and this makes it
possible to calculate entropies of other aqueous ions. Some ions have negative
entropies because of this arbitrary convention.

In comparing standard entropy values from various sources it is important
to be aware of the standard pressure used. The adjustment of standard entropies
from a standard state pressure of 1 atm to 1 bar is discussed in Problem 3.35.

A heat engine is an engine that uses heat to generate mechanical work by car-
rying a “working substance” through a cyclic process. The arrangements for a
Carnot heat engine are shown in Fig. 3.13. The arrows indicate that in one cycle
this engine receives heat from the high-temperature reservoir, rejects heat

to the low-temperature reservoir, and does work on its surroundings. The
absolute value signs are used because the signs of these algebraic quantities are
set by conventions that require in this case that is positive, is negative, and

is negative. In the operation of the Carnot heat engine a working fluid, which
we will refer to as a gas, is taken through a sequence of four steps that return it
to its initial state. The engine itself consists of an idealized cylinder with a piston
that can slide without friction and can do work on the surroundings or have the
surroundings do work on the gas. The temperatures of the two reservoirs are
represented by and .

The cycle for the Carnot heat engine consists of the following four steps,
which are represented in Fig. 3.14:
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1. Reversible isothermal expansion of the gas from state A to state B.

2. Reversible adiabatic expansion of the gas from state B to state C.
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Figure 3.13

Figure 3.14

During this
expansion step, the piston does work on the surroundings, and heat is
absorbed by the gas from the high-temperature reservoir. Note that according
to the convention that is work done on the gas, is negative. To ensure
that the heat transfer is reversible, the temperature of the high-temperature
reservoir is only infinitesimally higher than the temperature of the gas.

For this
step we assume that the piston and cylinder are thermally insulated so that
no heat is gained or lost. The expansion continues until the temperature of
the gas has dropped to . During this expansion step, the piston does work

on the surroundings.
During

this compression step the surroundings do work on the gas, and heat
flows out of the gas to the low-temperature heat reservoir. Note that accord-
ing to the convention that is heat absorbed by the gas, is negative. The
temperature of the low-temperature reservoir is only infinitesimally lower
than the temperature of the gas so that the heat transfer is reversible.

This
step completes the cycle by bringing the gas back to its initial state at tem-
perature . During this compression step, the surroundings do work
on the gas, but no heat is gained or lost.

A first-law analysis of a Carnot cycle can be summarized as follows:

Isothermal expansion,
Adiabatic expansion,
Isothermal compression,
Adiabatic compression,

The change in the internal energy of the gas for the cycle is the sum of
the changes in the four steps, and it is equal to zero because the gas is returned
to its initial state. Thus,

0 ( ) ( )

(3 54)



w
q q

w q q q .

w q q .

q
w

T

q

w q q
.

q q

w

q
.

q

q q

q T
.

q T

q q
.

T T

T .

96

� � �

�

�
� �

�

�

�

�

cy

1 2

cy cy 1 2

cy 1 2

1

2

1

cy 1 2

1 1

cy

2

1

2 2

h h

c c

ch

ch

efficiency

Chapter 3 Second and Third Laws of Thermodynamics

� �
� � � �

� � � � � �

� �
� �

� � � �

�

�

�

�


 


�

�

�

�

�

Thus, the work done by the engine in a cycle is equal to the difference
between the “heat in” and the “heat out” :

(3 55)

(3 56)

The engine absorbs heat from the high-temperature reservoir and does work
on the surroundings so that is negative, but the first law does not tell us the
relative amounts of work and of heat rejected at .

In practice, the low-temperature reservoir of a heat engine is often the at-
mosphere, so that the economic cost of producing work in the surroundings is
mainly that of supplying . The of a heat engine is defined as the
ratio of the work done on the surroundings to the heat input at the higher tem-
perature. Thus, the efficiency is defined by

(3 57)

where the negative sign is required by the fact that is negative and the effi-
ciency is, of course, positive. It is convenient to express the efficiency in terms of
the magnitudes of the heats,

1 (3 58)

because this reminds us that 0 1.
From equation 3.58 it is clear that to improve the efficiency of a Carnot heat

engine one would like to reduce the magnitude of the heat rejected to the cold
reservoir, . But it has been found impossible to reduce to zero.

Kelvin showed that a temperature scale could be set up by taking the tem-
perature of a heat reservoir in a reversible Carnot engine to be proportional to
the heat transferred in a cycle. Thus

(3 59)

where h indicates the hot reservoir and c indicates the cold reservoir, and the
heats are absolute values. This equation can be derived by writing the equation
for the cyclic integral of the entropy for the Carnot cycle. Figure 3.14 shows that
this cyclic integral is given by

0 (3 60)

since there are no changes in entropy in the adiabatic steps. The temperatures in
Fig. 3.14 are based on the ideal gas scale, but since equations 3.59 and 3.60 are
the same, these two scales agree for an ideal gas. The advantage of the Kelvin
definition of the temperature scale, however, is that a reversible Carnot cycle
can be carried out with any fluid and so the definition is not dependent on the
special properties of an ideal gas. Because of his contributions in establishing
the absolute temperature scale, the unit of temperature is named the kelvin. By
taking 273 16 K at the triple point of water, the Kelvin scale becomes iden-
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tical with the ideal gas scale. However, the ideal gas scale is more practi-
cal for laboratory use and is used in establishing secondary standards for
temperature.

Note that when equation 3.59 is used in equation 3.58, we find that the effi-
ciency of a heat engine is given by

1 (3 61)

Thus, high efficiencies are obtained if the ratio / is small; in practice is
generally close to room temperature and so is made as high as possible.

Since the first law provides no information as to whether a process or chem-
ical reaction can proceed spontaneously or not, thermodynamics needs a
state function that can be used for this purpose. We know that when there
is a temperature difference in a system, heat is transferred, but heat is not
a state function. However, the differential heat divided by temperature is
an exact differential, and so d / is the differential of a state function. This
state function is the entropy , and so 0 around a closed cycle,
where is the entropy change in a step.
According to the second part of the second law, the change in entropy in
any process is given by d d / , where the inequality applies to a spon-
taneous process and the equality applies to a reversible process. This means
that the entropy increases in a spontaneous process in an isolated system.
Entropy changes can be determined using reversible processes, like the va-
porization of a liquid, the expansion of a gas, or the heating of a gas, liquid,
or solid. To obtain the change in entropy in an irreversible process, we have
to calculate along a reversible path.
When ideal gases are mixed, there is an entropy of mixing that is always
positive.
The entropy of a system is a measure of the dispersal of energy among the
molecules in microstates. The relation between the entropy of a system and
its microstates will be discussed in Chapter 16, on statistical mechanics.
The entropy of a substance at any desired temperature relative to its entropy
at absolute zero can be obtained by integrating d / from absolute zero
to the desired temperature.
According to the third law of thermodynamics, the entropy of each pure
element or substance in a perfect crystalline form is zero at absolute zero.
Historically the second law was first discovered in considerations of the ef-
ficiencies of heat engines. The maximum efficiency of a heat engine in con-
verting heat to work is given by 1 / , where is the temperature
of the high-temperature reservoir and is the temperature of the low-
temperature reservoir. Kelvin showed that a temperature scale can be set
up by taking the temperature of a heat reservoir in a reversible Carnot en-
gine to be proportional to the heat transferred in a cycle. This has the ad-
vantage over the ideal gas temperature scale introduced in Chapter 1 that
it is independent of the working substance.
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Ammonia (considered to be an ideal gas) initially at 25 CProblems marked with an icon may be more conve-
and 1 bar pressure is heated at constant pressure until the vol-niently solved on a personal computer with a mathematical pro-
ume has trebled. Calculate ( ) per mole, ( ) per mole,gram.
( ) , ( ) , and ( ) . Given: 25 895 32 999Show that ( / ) 0 for an ideal gas, a gas follow-
10 30 46 10 in J K mol .ing /( ), and a van der Waals gas.

Two blocks of the same metal are the same size but are atShow that is not a state function for a gas obeying
different temperatures, and . These blocks of metal arethe equation of state ( ) , but that / is.
brought together and allowed to come to the same tempera-

Show that is not an exact differential for a gas obey- ture. Show that the entropy change is given by
ing the van der Waals equation, but that / is.

An ideal gas initially at undergoes a reversible ( )
lnisothermal expansion to . The same change in state 4

of the gas can be accomplished by allowing it to expand adi-
abatically to and then heating it at constant volume if is constant. How does this equation show that the change
to . Show that the entropy change for the reversible is spontaneous?
isothermal expansion is the same as the sum of the entropy In the reversible isothermal expansion of an ideal gas at
changes in the reversible adiabatic expansion and the re- 300 K from 1 to 10 L, where the gas has an initial pressure
versible heating to . This shows that is indepen- of 20.27 bar, calculate ( ) for the gas and ( ) for all
dent of path and is therefore a state function. systems involved in the expansion.

Water is vaporized reversibly at 100 C and 1 013 25 bar. A mole of oxygen is expanded reversibly from 1 to 0.1
The heat of vaporization is 40 69 kJ mol . ( ) What is the bar at 298 K. What is the change in entropy of the gas, and
value of for the water? ( ) What is the value of for what is the change in entropy for the gas plus the heat reser-
the water plus the heat reservoir at 100 C? voir with which it is in contact?

Assuming that CO is an ideal gas, calculate and Three moles of an ideal gas expand isothermally and re-
for the following process: versibly from 90 to 300 L at 300 K. ( ) Calculate , , ,

and for this system. ( ) Calculate , , per mole, and1 CO (g 298.15 K 1 bar) 1 CO (g 1000 K 1 bar)
per mole. ( ) If the expansion is carried out irreversibly by

allowing the gas to expand into an evacuated container, whatGiven: 26 648 42 262 10 142 4 10 in
are the values of , , per mole, and per mole?J K mol .

( ) A system consists of a mole of ideal gas that under-The temperature of an ideal monatomic gas is increased
goes the following change in state:from 300 to 500 K. What is the change in molar entropy of the

gas ( ) if the volume is held constant and ( ) if the pressure is
1X(g 298 K 10 bar) 1X(g 298 K 1 bar)held constant?

v
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What is the value of if the expansion is reversible? What is Use the microscopic point of view of Section 3.6 to
the value of if the gas expands into a larger evacuated con- show that for the expansion of amount of an ideal gas by a
tainer so that the final pressure is 1 bar? ( ) The same change factor of 2, ln 2. In this expression is an extensive
in state takes place, but we now consider the gas plus the heat property.
reservoir at 298 K to be our system. What is the value of Calculate the change in molar entropy of aluminum that
if the expansion is reversible? What is the value of if the is heated from 600 to 700 C. The melting point of aluminum
gas expands into a larger container so that the final pressure is is 660 C, the heat of fusion is 393 J g , and the heat ca-
1 bar? pacities of the solid and the liquid may be taken as 31.8 and

An ideal gas at 298 K expands isothermally from a pres- 34 4 J K mol , respectively.
sure of 10 bar to 1 bar. What are the values of per mole, Steam is condensed at 100 C, and the water is cooled
per mole, , , and in the following cases? ( ) The ex- to 0 C and frozen to ice. What is the molar entropy change
pansion is reversible. ( ) The expansion is free. ( ) The gas and of the water? Consider that the average specific heat of liquid
its surroundings form an isolated system, and the expansion is water is 4 2 J K g . The enthalpy of vaporization at the
reversible. ( ) The gas and its surroundings form an isolated boiling point and the enthalpy of fusion at the freezing point
system, and the expansion is free. are 2258.1 and 333 5 J g , respectively.

An ideal monatomic gas is heated from 300 to 1000 K
Calculate the molar entropy of carbon disulfide atand the pressure is allowed to rise from 1 to 2 bar. What is the

25 C from the following heat capacity data and the heat ofchange in molar entropy?
fusion, 4389 J mol , at the melting point (161.11 K):

The purest acetic acid is often called glacial acetic acid
because it is purified by fractional freezing at its melting point /K 15.05 20.15 29.76 42.22
of 16 6 C. A flask containing several moles of acetic acid /J K mol 6.90 12.01 20.75 29.16
at 16.6 C is lowered into an ice–water bath briefly. When

/K 57.52 75.54 89.37 99.00it is removed, it is found that exactly 1 mol of acetic acid
/J K mol 35.56 40.04 43.14 45.94has frozen. Given: (CH CO H) 11 45 kJ mol and

(H O) 5 98 kJ mol . ( ) What is the change in en- /K 108.93 119.91 131.54 156.83 161–298
tropy of the acetic acid? ( ) What is the change in entropy /J K mol 48.49 50.50 52.63 56.62 75.48
of the water bath? ( ) Now consider that the water bath and
acetic acid are in the same system. What is the entropy change Ten grams of molecular hydrogen at 1 bar expand to
for the combined system? Is the process reversible or irre- triple the volume ( ) isothermally and reversibly and ( )
versible? Why? adiabatically and reversibly. In each case what are (H ),

In Problem 2.21 one mole of an ideal monatomic gas at (surr), and (H surr)?
1 bar and 300 K was expanded adiabatically against a constant Theoretically, how high could a gallon of gasoline lift an
pressure of bar until the final pressure was bar; a temper- automobile weighing 2800 lb against the force of gravity, if it
ature of 240 K was reached. What is the value of for this is assumed that the cylinder temperature is 2200 K and the
process? exit temperature 1200 K? (Density of gasoline 0.80 g cm ;

1 lb 453.6 g; 1 ft 30.48 cm; 1 L 0.2642 gal; heat ofTen moles of H and two moles of D are mixed at 25 C
combustion of gasoline 46.9 kJ g .)and 1 bar. What is the value of ? Assume ideal gases.

( ) What is the maximum work that can be obtained( ) Write the expression for the entropy of a mixture
from 1000 J of heat supplied to a steam engine with a high-of ideal gases A, B, and C at and using for the mole
temperature reservoir at 100 C if the condenser is at 20 C?fraction of gas . ( ) Now let us carry out the combination of
( ) If the boiler temperature is raised to 150 C by the use ofterms contributing to the entropy of the system in two steps.
superheated steam under pressure, how much more work canFirst, imagine that gases A and C are mixed to form a mixture
be obtained?with mole fractions and within the A–C mixture, but

that B remains unmixed. Write the equation for the entropy of The term used by meteorologists
the system with two terms, one for the moles is the decrease in temperature with height that results from
of the A plus C mixture, which contributes pressure the adiabatic expansion of an air mass as it is pushed up a

, and the other . ( ) Second, imagine that B is mixed mountain by the wind. Similarly, the wind coming down
with mixture I, considered as one species, and show that this the mountain slope warms up. This adiabatic expansion is rep-
equation is the same as that obtained in ( ). resented by

One mole of A at 1 bar and one mole of B at 2 bar are 0
separated by a partition and surrounded by a heat reservoir.

where represents the sea level conditions. The cal-When the partition is withdrawn, how much does the entropy
culation of the entropy change can be carried out in two stepschange?
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(the first at constant pressure, the second at constant temper- Show that the standard molar entropy ( ) for an
ature): ideal gas at 1 bar can be calculated from the standard molar

entropy ( ) at 1 atm using
ln

( ) ( ) ln
ln

0 109 J K mol

We have seen in Section 1.11 that the pressure of the atmo-
The conversion for liquids and solids is negligible. Why?

sphere drops off exponentially if temperature is independent
Argon undergoes the following change in state:of height . ( ) Since , what is the expression

for / ? ( ) If the temperature at the foot of a 14,000-foot 20 bar 300 K 1 bar 200 K
mountain is 25 C, what temperature would you expect at the

What is the change in molar entropy, assuming that argon issummit from this adiabatic lapse rate? For this calculation
an ideal gas?the molar mass of air can be taken to be 29 g mol and

its heat capacity can be taken as 29.1 J K mol . A flask containing several moles of liquid benzene at
its freezing temperature (5 5 C) is placed in thermal con-
tact with an ice–water bath. When the flask is removedWhen an ideal gas is allowed to expand isothermally in
from the ice–water bath, it is found that 1 mol of ben-a piston, 0. Thus, the work done by the sys-
zene has frozen. Given: (C H ) 9 87 kJ mol ,tem on the surroundings is equal to the heat transferred from

(H O) 5 98 kJ mol . ( ) What is the change inthe reservoir to the gas, and the efficiency of turning heat into
entropy of benzene? ( ) What is the change in entropy of thework is 100%. Explain why this is not a violation of the second
water bath? ( ) Considering the flask of benzene and the waterlaw.
bath as an isolated system, what is the change in entropy ofIn Problem 2.50 we found that when an ideal monatomic
the isolated system? Is the process reversible or irreversible?gas at 1 bar and 273.15 K is allowed to expand adiabati-

One mole each of H (g), N (g), and O (g) are mixed atcally against a constant pressure of 0.395 bar until it reaches
25 C. What is ?equilibrium, the final temperature is 207.04 K. What is the

value of for this process? Given: and therefore According to the Debye equation (Section 16.12) the
heat capacity of a solid is proportional to the temperature.
cubed at low temperatures:Compare the entropy difference between 1 mol of liq-

uid water at 25 C and 1 mol of vapor at 100 C and 1 013 25 ( ) (const)
bar. The average specific heat of liquid water may be taken as
4 2 J K g , and the heat of vaporization is 2259 J g . Show that the entropy at a temperature is given by

Calculate the increase in the molar entropy of nitrogen ( )
( )when it is heated from 25 to 1000 C ( ) at constant pressure

3and ( ) at constant volume. Given: 26 9835
5 9622 10 3 377 10 in J K mol . when the Debye equation holds.

Assuming that the heat capacity of water is indepen- Calculate the molar entropy of liquid chlorine at its
dent of temperature, calculate the net change in entropy melting point, 172.12 K, from the following data obtained by
when 1 mol of water at 0 C is mixed with 1 mol of wa- W. F. Giauque and T. M. Powell:
ter at 100 C. Assume that the heat capacity of water is

/K 15 20 25 30 35(4 184 J K g )(18 g mol ) 75 3 J K mol and that
/J K mol 3.72 7.74 12.09 16.69 20.79the heat capacity of the calorimeter is negligible.

In Section 3.3 we derived the expression /K 40 50 60 70 90
/J K mol 23.97 29.25 33.47 36.32 40.63

ln
/K 110 130 150 170 172.12

/J K mol 43.81 47.24 51.04 55.10 m.p.
for the reversible isothermal expansion of an ideal gas. We

The heat of fusion is 6406 J mol . Below 15 K it may be as-ought to derive this same expression by another reversible
sumed that is proportional to .path. Do this by imagining that the gas is first expanded adi-

abatically and reversibly from to . Since the tempera- In running a Carnot cycle backward to produce refrig-
ture falls from to , heat must be added reversibly and at eration, the objective is to remove as much heat from the
constant volume in a second step to restore the temperature cold reservoir as possible for a given amount of work, and so
to .
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the coefficient of performance is defined as

Calculate the standard molar entropies at 1000 K for
the eight gases in Computer Problem 2.A using the empiri-A household refrigerator operates between 35 and 10 C.
cal equations given there for the molar heat capacities as aHow many joules of heat can in principle be removed per
function of temperature and the values of the standard molarkilowatt-hour of work?
entropies at 298.15 K in Table C.2. Compare these calculatedA heat pump is used to heat a home in the winter when
values with values in Table C.3 in Appendix C.the temperature in the ground is 0 C and the temperature of

Plot the standard molar entropy of water vapor versusthe radiator in the house is 35 C. When a Carnot cycle is run
temperature from 300 to 1000 K by use of the empirical equa-backward for this purpose, the objective is to obtain as much
tion for the molar heat capacity of water vapor.heat in the radiator as possible for a given amount of electrical

work. The coefficient of performance for a heat pump is Plot the entropy of mixing of two ideal gases to form a
defined by mole of mixture versus the mole fraction of one of the species.

Investigate the slope of this plot as 1 and as 0.
Plot the molar entropy in J K mol of a monatomic

ideal gas versus pressure from 1 bar to 100 bar and from
What is the minimum amount of electrical work needed to pro- 298.15 K to 500 K, assuming that its molar entropy is zero at
duce a kilowatt-hour of heat? 298.15 K and 1 bar.
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With the definitions of , , and we have completed the set of necessary ther-
modynamic properties. Although the entropy provides a criterion of whether a
change in an isolated system is spontaneous, it does not provide a convenient cri-
terion at constant and or constant and , the usual conditions in the lab-
oratory. We need two additional thermodynamic properties (functions) to make
calculations at constant and or constant and more convenient than they
are with entropy. Fortunately, there is a general way to do this using Legendre
transforms. These two new thermodynamic properties are the Helmholtz energy

and the Gibbs energy . At constant and , spontaneous processes occur
with a decrease in , and at constant and , spontaneous processes occur with
a decrease in .

In order to discuss equilibria in systems with more than two phases and chem-
ical equibrium, we need to introduce the chemical potential of a species. The
chemical potential of a species is the same in all of the phases of a system at equi-
librium. The chemical potential is also the property that determines whether a
species will undergo chemical reaction. There are many relations between the
thermodynamic properties of a system, and the fundamental equations for the

Fundamental Equations
of Thermodynamics
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4.1 Fundamental Equation for the Internal Energy

4.1 FUNDAMENTAL EQUATION FOR THE INTERNAL ENERGY
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various thermodynamic potentials ( , , , and ) are the source of these very
useful relations. In the next four chapters, these fundamental equations will lead
us to the quantitative treatment of chemical equilibrium, phase equilibrium, elec-
trochemical equilibrium, and biochemical equilibrium.

The first law is given in equation 2.9 as

d d d (4 1)

and the second law is given by equation 3.15, which is

d d / (4 2)

where the inequality applies when d is for an irreversible process and the equal
sign applies when d is for a reversible process. If we restrict consideration to
closed systems in which only reversible work is involved,

d d (4 3)

and equation 4.2 becomes

d d / (4 4)

so that the is

d d d (4 5)

Since equation 4.5 involves only state functions, it applies to both reversible and
irreversible processes. We saw in Table 2.1 that and are conjugate variables.
Now we can see that and are also conjugate variables.

In 1876 Gibbs made a very important addition to this equation in order to
discuss phase equilibrium and reaction equilibrium. He introduced the concept
of the of a species and wrote the fundamental equation for

as

d d d d (4 6)

where the additional terms are “chemical work” terms for each species and is
the amount of species . The chemical potential is a measure of the potential a
species has to move from one phase to another or undergo a chemical reaction.
Equation 4.6 shows that if more of species is added to a system at constant
and , there is a contribution d to the internal energy. Note that for a system
in which there are no chemical reactions, and are conjugate variables. If a
system contains different species, equation 4.6 can be written

d d d d (4 7)

This equation shows that is a function of , , and , where is the set
of amounts of species ; this can be represented by ( ). In view of the
importance of the variables , , and in equation 4.7, they are called the

of . Note that the natural variables for the interal energy are
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all extensive. The total differential of can be written in terms of the differentials
of these natural variables.

d d d d (4 8)

Comparison of equation 4.7 with equation 4.8 shows that

(4 9)

(4 10)

(4 11)

where means that species other than are held constant. These three
equations are often referred to as because they give relations
between state properties. Note that the derivatives of extensive properties with
respect to extensive properties are intensive properties. Equations 4.9 to 4.11 are
very important because they show that if of a system can be determined as
a function of its natural variables ( , , and ), all the other thermodynamic
properties of the system—including the chemical potentials of all the species—can
be calculated. In Chapters 1 and 2 we saw that the extensive state of a system can
be described by specifying , , and or , , and , but now we have to
understand that determination of as a function of these variables is not enough
to allow us to calculate all the other thermodynamic properties of the system.

A fundamental equation such as 4.7 leads to relations of another type between
thermodynamic properties, which are referred to as They are
obtained by equating second cross-partial derivatives. We have already used equa-
tions like this in the test for exactness in Section 2.3. The Maxwell equations for
equation 4.7 are

(4 12)

(4 13)

(4 14)

(4 15)

This shows that these properties are related in interesting ways.
The internal energy provides a criterion for whether a process can occur spon-

taneously at constant , , and . If we substitute the second law in the form
d d / and d d d in equation 4.1, we obtain

d d d d (4 16)
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4.2 Definitions of Additional Thermodynamic Potentials Using Legendre Transforms

4.2 DEFINITIONS OF ADDITIONAL THERMODYNAMIC
POTENTIALS USING LEGENDRE TRANSFORMS

� �

� �

� �

�

�

i �

�

�

�

�

Thus if an infinitesimal change takes place in a system of constant entropy, volume,
and ,

(d ) 0 (4 17)

This is the criterion for spontaneous change and equilibrium in the system involv-
ing work and specified amounts of species. At equilibrium, at constant

, , and must be at a minimum.
At constant values of the intensive properties , , and , equation 4.7 can

be integrated to obtain

(4 18)

This equation can also be considered as a consequence of Euler’s theorem (see
Section 1.10).

The equations in this section are not very useful in the laboratory because the
entropy and volume are not easily controlled. Fortunately, however, more useful
thermodynamic properties can be defined, based on the internal energy.

The internal energy and other thermodynamic properties defined starting with
the internal energy are referred to as To define new
thermodynamic potentials, we use the method of Legendre transforms. We have
already seen an example of this with the enthalpy , defined by
(see Section 2.7). We did not emphasize that this is a Legendre transform, but it
is, and now we are going to use two more Legendre transforms to define two ther-
modynamic potentials. A Legendre transform is a linear change in variables that
starts with a mathematical function and defines a new function by subtracting one
or more products of conjugate variables. This is different from the usual change
in variables in that a partial derivative of a thermodynamic potential becomes
an independent variable in the new thermodynamic potential. As explained in
Appendix D.5, no information is lost in this process. Thus a new thermodynamic
potential defined in terms of the internal energy contains all of the information
that is in ( ).*

Now we can make a more complete treatment of the enthalpy than in Sec-
tion 2.7. The total differential of the enthalpy is

d d d d (4 19)

Substituting equation 4.7 for d yields the fundamental equation for the enthalpy
of a system involving pressure–volume work and different species:

d d d d (4 20)
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., 1876–1878; , Vol. 1. New Haven, CT:
Yale University Press, reprinted 1948.

ext

1

�

Helmholtz energy
Gibbs energy

Chapter 4 Fundamental Equations of Thermodynamics

�

� �
� �
� �

i

i

j i

i



















�

�

� �

� �

�

�

�

�

Thus we see that

(4 21)

(4 22)

(4 23)

If can be determined as a function of and the amounts of all the species,
then and can be determined by taking partial derivatives of . Thus
all the thermodynamic properties of a system can in principle be obtained us-
ing , just as all the thermodynamic properties of the system were determined
using in the preceding section. This shows that no information is lost in
making a Legendre transform. Equation 4.20 provides a number of Maxwell
equations.

The enthalpy provides a criterion for whether a process can occur sponta-
neously for a system at constant and . Following the same reasoning we
used to obtain equation 4.17 we obtain

(d ) 0 ( ) (4 24)

This shows that a change can take place spontaneously at constant entropy, pres-
sure, and amounts of species if the enthalpy decreases.

At constant values of , , and , equation 4.20 can be integrated to obtain

(4 25)

Note that using , we can obtain equation 4.18.
The internal energy and the enthalpy do not provide very useful criteria for

spontaneous change because the entropy has to be held constant. This problem is
avoided by the use of Legendre transforms in which the product of conjugate
variables is subtracted from the internal energy and the enthalpy. This introduces
the intensive variable as a natural variable in place of the extensive variable .

The two Legendre transforms that define the and the
are*

(4 26)

(4 27)

The total differential of the Helmholtz energy is given by

d d d d (4 28)
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Table 4.1

Substituting equation 4.7 for d yields the fundamental equation for the Helmholtz
energy:

d d d d (4 29)

Thus the natural variables for are and . Thus we see that

(4 30)

(4 31)

(4 32)

Equation 4.29 also provides a number of Maxwell relations.
The Helmholtz energy provides the criterion for spontaneous change at

specified , , and :

(d ) 0 (4 33)

Thus a change can take place spontaneously at constant temperature, volume, and
amounts of species if the Helmholtz energy decreases (see Table 4.1). Integration
of the fundamental equation for at constant values of the properties and

yields

(4 34)

The Helmholtz energy is less useful in chemistry than the Gibbs energy because
processes and reactions are more often carried out at constant pressure rather
than constant volume.

The total differential of the Gibbs energy is

d d d d d d (4 35)

Substituting equation 4.7 for d yields the fundamental equation for the Gibbs
energy:

d d d d (4 36)

Thus, we see that

(4 37)

(4 38)

(4 39)
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Figure 4.1

If can be determined as a function of its natural variables , , and , then
, , and can be calculated by taking partial derivatives of . Note that the

chemical potential of species is equal to the partial molar Gibbs energy. Thus
equation 4.36 can be written with , where is the

of species . The partial molar volume of a species was introduced in
Section 1.10.

Equations 4.37 and 4.38 tell us something interesting about the dependence
of on and . Since the entropy of a system is always positive, decreases
with increasing temperature at constant pressure. Since is greater for a gas than
for the corresponding solid, the temperature coefficient of the Gibbs energy is
more negative for a gas than for the corresponding solid. Since the volume of a
system is always positive, increases with increasing at constant . Since is
greater for a gas than for the corresponding solid, the pressure coefficient of is
larger for a gas than for the corresponding solid.

Now we are in a position to illustrate the fact that if a thermodynamic po-
tential is known as a function of its natural variables, we can calculate all of the
thermodynamic properties of the system. Suppose that for a system containing
a single species has been determined as a function of temperature and pressure.
The entropy and volume of the system can be calculated from

and (4 40)

Then , , and can be calculated using the equations

(4 41)

(4 42)

(4 43)

This is not possible when is known as a function of and or and .
The Gibbs energy provides a criterion for whether a process can occur sponta-

neously at constant and . Following the same reasoning we used to obtain
equation 4.17, we obtain

(d ) 0 ( ) (4 44)

where the subscript indicates that the amounts of all species are held con-
stant.

This equation provides the
means for discussing phase equilibrium and chemical equilibrium. Figure 4.1 illus-
trates the way changes when a system spontaneously goes from an initial state
to the equilibrium state.

Since the Gibbs energy decreases in an irreversible process at constant and
, it becomes a minimum in the final equilibrium state. We can, however,

a reversible process occurring at equilibrium; for example, we may imagine the
evaporation of an infinitesimal amount of water from the liquid into the vapor
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phase that is saturated with water vapor at constant temperature and pressure.
For such a process, d 0.

These same relations may be applied to finite changes as well as infinitesimal
changes, replacing the d’s by ’s. It must be remembered, however, that sponta-
neous changes always go to the minimum (as in the case of the Gibbs energy at
constant and ) or to the maximum (as in the case of the entropy of an isolated
system).

Integration of the fundamental equation for at constant values of the in-
tensive properties , , and yields

(4 45)

This is a very interesting and important equation because it shows that the Gibbs
energy is made up of a sum of terms with one for each of the species when
the intensive properties for are constant. The corresponding equations for ,

, and when their intensive properties are held constant are given in equa-
tions 4.18, 4.25, and 4.34. The importance of equation 4.45 will be discussed in
Section 4.7.

Equation 4.36 yields the following Maxwell relations:

(4 46)

(4 47)

(4 48)

where is the of species , and is the
of species . There is also a Maxwell equation for each pair of species,

which will be discussed later.
The Gibbs energy has been defined so that we will have a criterion for sponta-

neous change at constant and that will not require us to specifically consider
what is happening in the surroundings, as we did in the derivation in Section 3.2.
For an isolated system consisting of the system of interest and the surroundings
at constant and , the entropy criterion is that must increase for
a spontaneous process. Since the temperature is constant, / , so
that / / must increase in a spontaneous process at con-
stant and , or must decrease. Thus, the Gibbs energy simply provides
a more convenient thermodynamic property than the entropy for the application
of the second law at constant and .

Although these criteria show whether a certain change is irreversible, it does
not necessarily follow that the change will take place with an appreciable speed.
Thus, a mixture of 1 mol of carbon and 1 mol of oxygen at 1 bar pressure and 25 C
has a Gibbs energy greater than that of 1 mol of carbon dioxide at 1 bar and 25 C,
and so it is possible for the carbon and the oxygen to combine to form carbon
dioxide at this constant temperature and pressure. Although carbon may exist for
a very long time in contact with oxygen, the reaction is theoretically possible. The
reverse of a thermodynamically spontaneous change is, of course, a nonsponta-
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neous change. Thus, the decomposition of carbon dioxide to carbon and oxygen
at room temperature, which involves an increase in Gibbs energy, is nonsponta-
neous. It can occur only with the aid of an outside agency.

When work other than work occurs in a system, it contributes a term to
the fundamental equation for the internal energy, as indicated in equation 2.43.
These terms carry forward into the fundamental equation for the Gibbs energy,
so that if, for example, extension work and surface work are involved,

d d d d d d (4 49)

where is the force of extension, is the length, is the surface tension, and
is the surface area. Thus we see that

(4 50)

(4 51)

This opens up the possibility of many more Legendre transforms and Maxwell
equations.

If various kinds of work are involved, the first law is

d d d (4 52)

Using equation 3.21 yields

d d d (4 53)

At constant temperature, this becomes

d( ) d (4 54)

or

(d ) d (4 55)

where is the Helmholtz energy. The symbol actually comes from the
German word for work. Thus, in a reversible process at constant temperature,
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For a reversible process at constant and the change in Gibbs energy is equal
to the non- work done on the system by the surroundings.

4.3 Effect of Temperature on the Gibbs Energy
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the work done on the system is equal to the increase in the Helmholtz energy. In
general, equation 4.54 shows that

. When the system does work on the surroundings
in a real process, the work done on the surroundings (remember that it is negative)
is less than the decrease in the Helmholtz energy of the system.

The Gibbs energy is especially useful when non- work is involved. In this
case the first law can be written

d d d d (4 56)

so that the inequality d d can be written

d d d d (4 57)

The external pressure is represented by . At constant temperature and
constant, this can be written

d( ) d (4 58)

(d ) d (4 59)

Thus, when work is
done on the system, the Gibbs energy increases, and when the system does work
on the surroundings, the Gibbs energy decreases. In general, equation 4.58 shows
that the decrease in is an on the non- work done on the sur-
roundings. When the system does work on the surroundings, the work done (re-
member that it is negative) is less than the decrease in Gibbs energy.

Let us consider inequality 4.59 in more detail by applying it to the charging
and discharging of an electrochemical cell at constant temperature and pressure.
The electrochemical cell is charged by an electrical generator, and we will imagine
a perfect direct-current generator that consumes a known amount of mechanical
work. When the electrochemical cell is charged, the increase in the Gibbs energy
of the cell is less than the electrical work done by the generator on the system
in a real process and is equal to the electrical work in the theoretical limit of a
reversible process.

When the electrochemical cell is discharged by operating an idealized elec-
trical motor that does mechanical work, the Gibbs energy of the cell decreases
and the work done is negative. According to inequality 4.59, the work done by
the electrical motor is more positive than the decrease in in a real process.
Thus, the amount of work done in the surroundings is less than the decrease in
the Gibbs energy of the electrochemical cell, except in the theoretical limit of a
reversible process. This provides a simple interpretation for the change in Gibbs
energy for a system. For a reversible process at constant temperature and pres-
sure, the change in the Gibbs energy for the system is equal to the non- work
done on the system by the surroundings.

For an open system, equation 4.37 shows that ( / ) . Since is a
positive quantity, the Gibbs energy necessarily decreases as the temperature in-
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creases at constant pressure and constant amounts of species. An important equa-
tion is obtained by using this equation to eliminate from :

(4 60)

Since this equation involves both the Gibbs energy and its temperature derivative,
it is more convenient to rearrange it so that only a temperature derivative appears.
This can be accomplished by first differentiating / with respect to temperature
at constant pressure and constant amounts of species:

/ 1
(4 61)

Eliminating from the right-hand side by use of equation 4.60 yields

/
(4 62)

This is referred to as the For a change between state
1 and state 2, this equation can be written

( / )
(4 63)

This equation is very useful because if we can determine for a process or a
reaction as a function of temperature, the enthalpy change for the process or reac-
tion can be calculated without using a calorimeter. It is also useful because if
and are known at one temperature, equation 4.63 can be integrated to calcu-
late at another temperature assuming that is independent of temperature
(see Section 5.5).

The equation ( / ) (equation 4.38) may be integrated to obtain the
value of at another pressure, provided that its value is known at one pressure
and is known as a function of pressure at constant temperature:

d d (4 64)

d (4 65)

This equation always applies, and, as we have noted, the Gibbs energy of a single
substance always increases with the pressure. There are two special cases where
equation 4.65 leads to simple relationships. If the volume is nearly independent
of pressure, as it is for a liquid or solid, then

( ) (4 66)

The Gibbs energy of a gas is more dependent on pressure than that of a liq-
uid. For an ideal gas the dependence of Gibbs energy on pressure is obtained
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(See Computer Problem 4.D.)

Since the molar Gibbs energy of an ideal gas is given by ln( / ), derive
the corresponding expressions for , , , , and .

Using equations 4.38, 4.41, 4.42, 4.37, and 4.43, respectively,

ln

ln

where ( / ) and . Note that the internal energy
and enthalpy of an ideal gas are independent of pressure and volume.

An ideal gas at 27 C expands isothermally and reversibly from 10 to 1 bar against a pressure
that is gradually reduced. Calculate per mole and per mole and each of the thermo-
dynamic quantities , , , , and .

Since the process is carried out isothermally and reversibly,

10
ln ln (8 3145 J K mol )(300 15 K) ln

1

5746 J mol

5746 J mol
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Figure 4.2

by substituting / in equation 4.64:

d d ln (4 67)

ln (4 68)

where is the standard state pressure. The Gibbs energy is like the internal
energy and the enthalpy in that its absolute value is not known, but the Gibbs
energy of a species can be determined with respect to the elements it contains.
Thus equation 4.68 can be written ln( / ). The standard
Gibbs energy has different values at different temperatures. The logarithmic
dependence of the molar Gibbs energy of an ideal gas on the pressure of the gas
is illustrated in Fig. 4.2.

Alternatively, equation 4.65 may be integrated between any two pressures to
obtain

ln (4 69)
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Since the internal energy of an ideal gas is not affected by a change in volume,

0

0 5746 5746 J mol

( ) 0 0 0

and since is constant for an ideal gas at constant temperature,

d

1
ln (8 3145 J K mol )(300 15 K)( 2 3026)

10

5746 J mol

5746 J mol
19 14 J K mol

300 15 K

Also,

0 (5746 J mol )
19 14 J K mol

300 15 K

An ideal gas expands isothermally at 27 C into an evacuated vessel so that the pres-
sure drops from 10 to 1 bar; that is, it expands from a vessel of 2.463 L into a connecting
vessel such that the total volume is 24.63 L. Calculate the change in thermodynamic
quantities.

This process is isothermal, but is not reversible.
0 because the system as a whole is closed and no external work can be done.

0 because the gas is an ideal gas.

0 0 0

, , , , and are the same as in Example 4.2 because the initial and final
states are the same.

The effect on the Gibbs energy of a gas due to changing the pressure is much greater
than the effect on the Gibbs energy of the corresponding liquid because the molar volume
of the gas is much larger. To see how this works for a specific substance, consider the liquid
and gas forms of methanol, for which the standard Gibbs energy of formation and standard
enthalpy of formation at 298.15 K are given in Table C.2. The standard Gibbs energy of for-
mation for liquid CH OH at 298.15 K is 166 27 kJ mol , and that for gaseous CH OH
is 161 96 kJ mol . The density of liquid methanol at 298.15 K is 0 7914 g/cm . ( ) Calcu-
late (CH OH g) at 10 bar at 298.15 K assuming methanol vapor is an ideal gas. (Note
that the superscript has been deleted because the pressure is not the standard pressure
of 1 bar.) ( ) Calculate (CH OH l) at 10 bar at 298.15 K.
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Plots of the Gibbs energies of formation of gaseous and liquid methanol at
various pressures at 298.15 K. Note that the Gibbs energy of formation of the gas increases
with pressure much more rapidly than the Gibbs energy of formation of the liquid. The
curves cross at the vapor pressure of liquid methanol at this temperature. (See Computer
Problem 4.D.)

( ) The effect of pressure on (g) is given by equation 4.68:

ln( / )

161 96 kJ mol (8 3145 10 kJ K mol )(298 15 K) ln 10

156 25 kJ mol

This point is plotted in Fig. 4.3 along with points at lower pressures.
( ) The effect of pressure on (l) is given by equation 4.66:

( )

The molar volume of methanol is

(32 04 g mol )/(0 7914 g cm ) 40 49 cm mol

(40 49 cm mol )(10 m/cm) 40 49 10 m mol

and

166 27 kJ mol (40 49 10 m mol )(9 10 Pa)/(10 J kJ )

166 23 kJ mol

This point is plotted in Fig. 4.3 along with points at lower pressures. Note that the liquid
and gas curves cross at a pressure less than 1 bar. The intersection is at the vapor pres-
sure of methanol at 298.15 K; at this pressure the liquid and gas have the same molar
Gibbs energy of formation . Note that (g) of an ideal gas becomes at zero
pressure.
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The Gibbs energy of a real gas is not given by equation 4.68, which we derived
for an ideal gas. However, G. N. Lewis recognized that it would be convenient to
keep the same form of equation for a real gas. He accomplished this by defining
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the , which is a function of and , using

ln (4 70)

lim 1 (4 71)

The fugacity has the units of pressure. As the pressure approaches zero, the gas
approaches ideal behavior and the fugacity approaches the pressure. The fugacity
is simply a measure of the molar Gibbs energy of a real gas, but it has the following
advantage over the molar Gibbs energy: goes from 0 to , while goes from

to (see Fig. 4.2).
The fugacity of a real gas at a particular temperature and pressure can be cal-

culated if the equation of state (Section 1.5) of the gas is known. As we will see in
the following derivation, it is convenient to use the virial equation of state written
in terms of pressure (equation 1.12). Since ( / ) , the differential Gibbs
energy at constant temperature is d d for a real gas and d d
for an ideal gas. The difference in Gibbs energy between a real gas and an ideal gas
can be integrated from some low pressure to the pressure at which we would
like to know the fugacity:

d( ) ( ) d (4 72)

( ) ( ) ( ) d (4 73)

Now, if we let 0, then , and

( ) ( ) d (4 74)

Introducing equation 4.70 for and equation 4.68 for yields

1
ln ( ) d (4 75)

or

1
exp ( ) d (4 76)

The ratio of the fugacity to the pressure is called the ;
/ . The fugacity coefficient is frequently used as a measure of the nonideality of

a gas in connection with its phase equilibrium or chemical equilibrium properties.
When data are available on a gas, a plot may be prepared of the difference
between its molar volume and the molar volume of an ideal gas versus pressure at
the temperature of interest. The integral of this plot up to the pressure of interest
is then used in equation 4.76 to calculate / . Equation 4.76 may be written
in terms of the compressibility factor . Since / ,

1 1
exp d exp d (4 77)

y y



Expression of the fugacity in terms of irial coefficients

The fugacity of a an der Waals gas

Estimating the fugacity of nitrogen gas at 50 bar and 298 K
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Given the expression for the compressibility factor as a power series in (equation
1.12), what is the expression for the fugacity in terms of the virial coefficients?

Using equation 4.77, we find

ln ( ) d
2

Using the expression for the compressibility factor of a van der Waals gas given in equa-
tion 1.26, what is the expression for fugacity of a van der Waals gas?

As an approximation, terms in and higher in the series expansion are omitted.

1

1
ln d

1
d

exp

Given that the van der Waals constants of nitrogen are 1 408 L bar mol and
0 03913 L mol , estimate the fugacity of nitrogen gas at 50 bar and 298 K.

exp

1 408 50
(50 bar) exp 0 03913

(0 083 145)(298) (0 083 145)(298)

48 2 bar
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Example 4.7

4.5 Fugacity and Activity
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Thus, the fugacity of a gas is readily calculated at some pressure if is known
as a function of pressure up to that particular pressure.

Now we are in a better position to understand the standard state of a gas that
is used for thermodynamic tables, such as Tables C.2 and C.3. The standard state is
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Calculating the acti ity of liquid water at 10 and 100 bar
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Plot of fugacity versus
pressure for a real gas. The dashed
line is for an ideal gas. The standard
state is the pure substance at a
pressure of 1 bar in a hypothetical
state in which it exhibits ideal gas
behavior.

What is the activity of liquid water at 1, 10, and 100 bar at 25 C, assuming that is constant?
At 1 bar,

1

At 10 bar,

( )
exp

(0 018 kg mol )(9 bar)
exp

(0 083 145 L bar K mol )(298 K)

1 007

At 100 bar, 1 075.

�

activity
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4.6 THE SIGNIFICANCE OF THE CHEMICAL POTENTIAL
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Figure 4.4

the pure substance at a pressure of 1 bar in a hypothetical state in which it exhibits
ideal gas behavior as shown in Fig. 4.4. The solid line gives the behavior of a real
gas. As the pressure is reduced, the real gas approaches ideal behavior. This ideal
gas is then compressed to 1 bar along the dashed line as a hypothetical ideal gas.

G. N. Lewis introduced the as a means of dealing with real sub-
stances in the gas, liquid, and solid state. In analogy to equation 4.70, the activity
of a pure substance, or its activity in a mixture, is defined by

ln (4 78)

Thus, the activity is simply a means for expressing the chemical potential of a
species in a mixture. The activity is dimensionless, and 1 in the reference
state for which . For a real gas / , where is the fugacity. For
an ideal gas, / . We will see later in dealing with solutions that it is con-
venient to write the activity as the product of an activity coefficient and a
concentration.

The activity of a pure solid or liquid can be taken as unity if the pressure
is close enough to the standard state pressure so that the effect of pressure on
the chemical potential is negligible. If the effect of pressure is not negligible, the
activity of a solid or liquid can be readily calculated because the molar volume

can be assumed to be constant at all reasonable pressures. For a pure solid or
liquid, equation 4.66 can be written

( ) ( ) ( ) (4 79)

Comparison with equation 4.78 shows that ln ( ) or

(4 80)

Small changes in pressure do not have a significant effect on the activity of a solid
or liquid because of the smallness of the exponent.

The chemical potential of a species was introduced in equation 4.6, and we saw
in equation 4.11 that it is equal to the partial derivative of the internal energy of
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Figure 4.5

a homogeneous mixture with respect to the amount of species in the system at
constant , , and . Later we found in equations 4.23, 4.32, and 4.39 that this
property of a species can be obtained in three other ways:

(4 81)

Since it is impossible to hold constant (except in reversible adiabatic processes)
and since experiments are not often carried out at constant volume, it is this last
definition of the chemical potential that is most often used, and at constant and

the chemical potential can be referred to as the partial molar Gibbs energy;
.

The concept of the chemical potential of a species is extremely important,
and we can see that in considering two phases that are at constant and , as
shown in Fig. 4.5. We have already seen that at equilibrium these phases have
the same temperature (Section 3.2) and the same pressure. The two phases may
contain many species, and we will consider transferring an infinitesimal amount
d of species from phase to phase at constant and . The total differential
of the Gibbs energy for this two-phase system is given by equation 4.36, which
becomes

(d ) ( ) d ( ) d d [ ( ) ( )] (4 82)

For this transfer to occur spontaneously, d 0 and therefore ( ) ( );
in other words, a species diffuses spontaneously from the phase where its chem-
ical potential is higher to the phase where its chemical potential is lower. In this
way the chemical potential is analogous to the electric potential and mechanical
potential. If the phases are in equilibrium (i.e., no spontaneous change can take
place), then there is no change in Gibbs energy in the transfer, d 0, and

( ) ( ) (4 83)

Thus, at equilibrium, the chemical potential of a species is the same in all of the
phases of a system.

We will later see that at equilibrium the chemical potential of a species is the
same in all of the phases in a system, even if the phases are at different pressures,
as in a small liquid droplet in equilibrium with its vapor (Section 6.9) or in an
osmotic pressure experiment (Section 6.7). In the next chapter, we will see that it
is the chemical potentials of the species involved that determine whether they will
undergo a chemical reaction. In Chapter 7 we will see that the chemical potential
of an ion in a multiphase system with phases at different electric potentials is the
same in each phase at equilibrium.

The partial molar entropy and partial molar volume of a species can be cal-
culated from measurements of the chemical potential of the species as a function
of temperature and pressure by use of two Maxwell relations for the fundamental
equation for (see equations 4.47 and 4.48):

(4 84)

(4 85)
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The chemical potential is one of the most important concepts in chemical
thermodynamics. In both chemical reactions and phase changes, the chemical
potential of a species times its differential amount (reacted or transferred)
determines the change in U, H, A, or G, depending on the ariables that are
held constant during the change. Although the chemical potential is a ery general
concept, we will use it most frequently in discussing systems at specified
T and P. The chemical potential of a species is determined by its partial pressure
in an ideal gas mixture and by its concentration in an ideal solution. For real
mixtures, whether gaseous or liquid, the chemical potential of a species is a
much more complicated function of the composition, but we can always think
of it as a simple function of the acti ity a, which was introduced in Section 4.5.
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4.7 ADDITIVITY OF PARTIAL MOLAR PROPERTIES
WITH APPLICATIONS TO IDEAL GASES
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Figure 4.6

As a simple example, consider a mixture of ideal gases. Since the partial molar
volume for a species in an ideal gas is equal to the molar volume of the mixture
(i.e., ),

(4 86)

Dividing both sides by yields

(4 87)

Thus,

d
d (4 88)

Integration yields

ln (4 89)

where is the standard state pressure. The standard state pressure is taken as
10 Pa 1 bar. A similar equation was given earlier (cf. equation 4.68) for a pure
gas. See Fig. 4.6.

We can derive the expression for the partial molar entropy of an ideal gas in
a mixture by using equations 4.84 and 4.89. Substituting equation 4.89 in equa-
tion 4.84 yields

ln (4 90)

The equation for the molar entropy of a pure ideal gas was derived in Exam-
ple 4.1.

Since (equation 4.45), all the other extensive properties
of a one-phase system are also additive. One way of looking at this is that if the
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Take the derivatives of and ( / ) with respect to to obtain
the corresponding equations for the partial molar properties.

This last equation is actually a Maxwell relation from equation 4.36. Note that whereas
and for a system are always positive, and may be negative.
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4.7 Additivity of Partial Molar Properties with Applications to Ideal Gases
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Gibbs energy of a system is known as a function of , , and amounts of species,
the entropy of the system can be calculated by taking the negative temperature
derivative of the Gibbs energy (see equation 4.37):

(4 91)

where is the of species .
Equation 4.38 shows that the volume of a system is equal to the derivative of

the Gibbs energy with respect to pressure. Substituting equation 4.48 in equation
4.38 yields

(4 92)

where , the of species is defined in equation 4.38. The
additivity of the partial molar volumes of a mixture of ideal gases was discussed
in Chapter 1.

Equation 4.61 shows the relation between the Gibbs energy and the enthalpy
for a system. Substituting equation 4.45 in equation 4.62 yields

( / )
(4 93)

where the of species is defined by

(4 94)

There are similar equations for and , which can be obtained from Le-
gendre transforms. These additivity equations are general, but they are most easily
applied to mixtures of ideal gases.

Thermodynamics alone cannot lead to the conclusion that a mixture of ideal
gases will behave as an ideal gas. Nevertheless, it is found that at low pressures
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mixtures of real gases do behave as ideal gases; that is , they behave as if there are
no interactions between the molecules of the gas. Such mixtures are referred to
as mixtures to indicate the additional assumption involved.

The expression for the chemical potential of a species in an ideal gas mixture
is given by equation 4.89, but we will find it convenient to write it as

ln (4 95)

since the partial pressure of any species in an ideal gas mixture is defined by

(4 96)

where is the mole fraction and is the total pressure. We will use to represent
the mole fraction in the gas phase, and to represent the mole fraction in the
liquid phase.

When we substitute equation 4.95 in , we obtain the expression
for the Gibbs energy of an ideal mixture of ideal gases:

ln ln( / )

ln ln( / )

(4 97)

where is the total amount of gas in the system and / is the
molar Gibbs energy of the mixture. This expression for the Gibbs energy of an
ideal gas mixture is written in terms of the natural variables and . Therefore,
we can use equations 4.40–4.43 to derive the expressions for , , , , and for
an ideal gas mixture.

ln ln( / )

ln ln( / )

(4 98)

where / is the molar entropy of the mixture.
The enthalpy of the ideal gas mixture can be calculated from

since we have expressions for both and :

( )

(4 99)

since . Note that the enthalpy of a mixture of ideal gases is inde-
pendent of the pressure. This is a result of the fact that the molecules in a mixture
of ideal gases do not interact with each other.

The volume of an ideal gas mixture is given by

/ (4 100)
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Calculation of changes in thermodynamic properties on mixing
ideal gases
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In Section 3.5 we considered the mixing of two ideal gases that are initially at the same
temperature and pressure but are separated from each other by a partition. Use equations
4.97–4.100 to calculate the changes in Gibbs energy, entropy, enthalpy, and volume when
the partition is withdrawn. Note that the final total pressure is the same as the initial pres-
sure of each gas.

The initial values of these quantities are

ln( / ) ln( / )

( ) ln( / )

ln( / ) ln( / )

( ) ln( / )

/ / ( ) /

The values after mixing are given by equations 4.97–4.100. Therefore the changes upon
pulling out the partition are

( ln ln )

( ln ln )

0

0

Thermodynamic quanti-
ties for the mixing of two ideal gases
to form an ideal mixture. The total
amount of gas is represented by .
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Figure 4.7

where the last form simply comes from the definition of the partial molar volume.
The partial molar volume of each species in the mixture is the same: / ,
as we saw in Section 1.10. Gibbs commented that “every gas is as a vacuum to
every other gas.” These statements apply only to ideal gas mixtures.

Since the mole fractions in a mixture are less than unity, the logarithmic terms
are negative, and 0. This corresponds to the fact that the mixing of gases
is a spontaneous process at constant temperature and pressure. In other words, if
two gases at the same pressure and temperature are brought into contact, they
will spontaneously diffuse into each other until the gas phase is macroscopically
homogeneous.

The Gibbs energy change for mixing two ideal gases is plotted versus the mole
fraction of one of the gases in Fig. 4.7 The greatest Gibbs energy change on
mixing is obtained for . The dependence of the entropy of mixing on
the mole fraction of one of the two gases is shown in Fig. 4.7

When ideal gases are mixed at constant temperature and pressure, no heat is
produced or consumed. This corresponds to the fact that molecules of ideal gases
do not attract or repel each other. Thus, from an energy standpoint, it makes no
difference whether the gases are separated or mixed. The driving force for mixing
arises exclusively from the change in entropy. From the viewpoint of statistical
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mechanics (Chapter 16), the mixed state is found at equilibrium because it is more
probable, as discussed in Section 3.6 for the expansion of a gas.

In making Legendre transforms of the internal energy, we introduced the inten-
sive variables and as natural variables. This process can be continued to in-
troduce the intensive variables by making the

0 (4 101)

It is evident from equation 4.18 that this transformed internal energy is equal
to zero. The differential of is

d d d d d d d 0 (4 102)

Subtracting this from the fundamental equation (4.17) for yields

d d d 0 (4 103)

which is known as the Note that it deals with changes
only of the intensive variables for the system. Because of this relation, the inten-
sive variables for a system are not independent. This is in agreement with the con-
clusion discussed in Section 1.9 that there are 1 independent intensive vari-
ables for a one-phase system. In a multiphase system there is a separate Gibbs–
Duhem equation for each phase.

For a system with two species at constant temperature and pressure that con-
tains 1 mol of material,

d d 0 (4 104)

d (1 ) d 0 (4 105)

where is the mole fraction of component 1 and (1 ) is the mole fraction
of component 2. Thus, when the composition is changed at constant and , the
change in the chemical potential of species 2 is not independent of the change
in the chemical potential of species 1. Later, in Section 6.6, we will use this form
of the Gibbs–Duhem equation to show that if Henry’s law holds for the solute
(species 2), Raoult’s law holds for the solvent (species 1).



Calculation of the change in molar internal energy in the
expansion of propane gas, assuming it is a an der Waals gas
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Propane gas is allowed to expand isothermally from 10 to 30 L. What is the change in molar
internal energy?
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A number of applications have already been made of Maxwell relations, but some
others are of special interest. For the purpose of making calculations about a mole
of a substance, the Maxwell relations from the fundamental equations for , ,

, and can be written

(4 106)

(4 107)

(4 108)

(4 109)

In Section 2.6, we found that ( / ) 0 for an ideal gas. Now we can calculate
this partial derivative for any gas. Dividing the combined first and second law for
a mole of a substance by d and imposing constant temperature yields

(4 110)

Using one of the Maxwell equations (4.108) yields

(4 111)

As an example, this equation can be applied to a van der Waals gas. Dif-
ferentiation of /( ) / with respect to at constant yields
( / ) /( ). Substituting this relation in equation 4.111 yields

(4 112)

Thus, for a van der Waals gas the internal pressure is inversely proportional to the
square of the molar volume.



Calculation of the molar entropy of the isothermal expansion
of a an der Waals gas
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The change in internal energy for a given change in volume at constant temperature
is given by

1
d d

1 1

According to Table 1.3, 8 779 L bar mol , but we need to convert this to SI base
units to calculate in J mol :

(8 779 L bar mol )(10 Pa bar )(10 m L )

0 8779 Pa m mol

1 1

1 1
(0 8779 Pa m mol )

10 10 m mol 30 10 m mol

58 5 J mol

Derive the equation for the molar entropy of isothermal expansion of a van der Waals gas.

1
d d

ln
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Example 4.12

cubic expansion coefficient,

isothermal compressibility,
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In dealing with derivatives of the volume of a fluid with respect to and ,
it is convenient to use for the

1 1
(4 113)

and for the

1 1
(4 114)

For an ideal gas these quantities are 1/ and 1/ . The derivative of
with respect to at constant can be written in terms of and . According to
the cyclic rule (Appendix D.3),

( / )
(4 115)

( / )
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4.9 Special Topic: Additional Applications of Maxwell Relations
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Substituting this in equation 4.111 yields

(4 116)

The dependence of the enthalpy on the pressure can be obtained by dividing
d d d by the differential of the pressure to obtain

(4 117)

Substituting equation 4.109 yields

(4 118)

We found in Section 2.8 that

(4 119)

Inserting ( / ) and using equation 4.116 we obtain

(4 120)

Since it is difficult to measure , its value is generally calculated from mea-
surements of , the molar volume , the cubic expansion coefficient , and the
isothermal compressibility .

The combined first and second law plus the introduction of chemical work
terms by Gibbs yields the fundamental equation for the internal energy. This
equation provides equations of state for , , and , Maxwell equations,
and an integrated equation for .
The internal energy provides a criterion for spontaneous change and equi-
librium when its natural variables , , and are held constant. However,

and are usually not convenient independent variables in the laboratory.
Legendre transforms can be used to define more useful thermodynamic po-
tentials for this purpose. A Legendre transform is the definition of a new
thermodynamic potential by subtracting the product of conjugate variables
from another thermodynamic potential.
The Helmholtz energy is defined by and the Gibbs energy is
defined by . The Helmholtz energy provides the criterion for
spontaneous change at specified , , and amounts of species. The Gibbs
energy provides the criterion for spontaneous change at specified , , and
amounts of species. Since and are convenient independent variables, the
Gibbs energy is widely used as a criterion for phase equilibrium and chemical
equilibrium.
The Gibbs energy decreases in a spontaneous process at constant and ,
and for a reversible process, the change in Gibbs energy is equal to the non-

work that can be done on the surroundings by the system.
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What is the change in molar entropy of liquid benzeneProblems marked with an icon may be more conveniently
at 25 C when the pressure is raised to 1000 bar? The coeffi-solved on a personal computer with a mathematical program.
cient of thermal expansion is 1 237 10 K , the density

One mole of nitrogen gas is allowed to expand from 0.5 to is 0 879 g cm , and the molar mass is 78 11 g mol .
10 L. Calculate the change in molar entropy using ( ) the ideal

Derive the expression for for a gas with the fol-gas law and ( ) the van der Waals equation.
lowing equation of state:

Derive the relation for for a gas that follows the
van der Waals equation. ( / )

Earlier we derived the expression for the entropy of an
What is the difference between the molar heat capacity ofideal gas as a function of and . Now that we have the Maxwell

iron at constant pressure and constant volume at 25 C? Given:relations, derive the expression for d for any fluid.
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4.4

4.1

4.5

4.2

4.3
4.6

The determination of for a process or chemical reaction at a series of tem-
peratures makes it possible to calculate by use of the Gibbs–Helmholtz
equation.
The molar Gibbs energy for an ideal gas depends on its partial pressure, and
the molar Gibbs energy for a nonideal gas depends on its fugacity. The activity
of a real gas is equal to the ratio of its fugacity to the standard pressure.
At equilibrium the chemical potential of a species is the same in all of the
phases of the system.
Since the Gibbs energy of a phase is equal to the sum of the products of
amounts times molar Gibbs energies of species, all the other extensive ther-
modynamic properties of a one-phase system are also additive.
The complete Legendre transform for a system provides a relation between
the differentials of all of the intensive variables for a system, and so the inten-
sive variables for a system are not independent. This remarkable equation is
known as the Gibbs–Duhem equation.
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2
3

2 mix mix

35 1 10 K , 0 52 10 bar , and the density Calculate the change in molar Gibbs energy when
is 7 86 g cm . supercooled water at 3 C freezes at constant and . The

density of ice at 3 C is 0 917 10 kg m , and its vaporIn equation 1.26 we saw that the compressibility factor of
pressure is 475 Pa. The density of supercooled water at 3 Ca van der Waals gas can be written as
is 0 9996 10 kg m , and its vapor pressure is 489 Pa.

1 Calculate the molar Gibbs energy of fusion when su-
1

percooled water at 3 C freezes at constant and . The en-
thalpy of fusion of ice is 6000 J mol at 0 C. The heat capacities
of water and ice in the vicinity of the freezing point are 75.3 and( ) To this degree of approximation, derive the expression
38 J K mol , respectively.for ( / ) for a van der Waals gas. ( ) Calculate

( / ) for CO (g) in J bar mol at 298 K. Given: At 298.15 K and a particular pressure, a real gas has
a fugacity coefficient of 2.00. At this pressure, what is the3 640 L bar mol and 0 042 67 L mol .
difference in the chemical potential of this real gas and anDerive the expression for ( / ) (the internal
ideal gas?pressure) for a gas following the virial equation with

As shown in Example 4.6, the fugacity of a van der Waals1 / .
gas is given by a fairly simple expression if only the second virialIn Section 3.4 we calculated that the enthalpy of freezing
coefficient is used. To this degree of approximation, derive thewater at 10 C is 5619 J mol , and we calculated that the en-
expressions , , , , , and .tropy of freezing water is 20 54 J K mol at 10 C. What

A mole of a van der Waals gas is expanded isothermallyis the Gibbs energy of freezing water at 10 C?
from to . Derive the expressions for the changes in Hel-( ) Integrate the Gibbs–Helmholtz equation to obtain an
moltz energy and internal energy.expression for at temperature in terms of at ,

A one-component system has three natural variables, asassuming that is independent of temperature. ( ) Obtain an
is evident fromexpression for using the more accurate approximation that

( ) , where is an arbitrary reference d d d d
temperature.

When a liquid is compressed its Gibbs energy is increased. We have seen how three additional potentials can be defined
To a first approximation the increase in molar Gibbs energy can by making Legendre transforms and how a complete Legendre
be calculated using ( / ) , assuming a constant molar transform yields the Gibbs–Duhem equation, which in a certain
volume. What is the change in molar Gibbs energy for liquid sense is like a thermodynamic potential but has the value zero.
water when it is compressed to 1000 bar? The total number of thermodynamic potentials for a system with

natural variables is 2 . This is the number of Legendre trans-An ideal gas is allowed to expand reversibly and isother-
forms that can be made taking all possible pairs of conjugatemally (25 C) from a pressure of 1 bar to a pressure of 0.1 bar.
variables, two pairs, three pairs, Since 2 8, there are three( ) What is the change in molar Gibbs energy? ( ) What would
more thermodynamic potentials for this system that can be de-be the change in molar Gibbs energy if the process occurred ir-
fined by Legendre transforms. Write their fundamental equa-reversibly?
tions; let’s call them , , and .The standard entropy of O (g) at 298.15 K and 1 bar is

Using the relation derived in Example 4.6, calculate thelisted in Table C.2 as 205 138 J K mol , and the standard
fugacity of H (g) at 100 bar at 298 K.Gibbs energy of formation is listed as 0 kJ mol . Assuming that

O is an ideal gas, what will be the molar entropy and molar Show that if the compressibility factor is given by
Gibbs energy of formation at 100 bar? 1 / the fugacity is given by e . If is not

very different from unity, e 1 ( 1) so thatHelium is compressed isothermally and reversibly at
. Using this approximation, what is the fugacity of H (g)100 C from a pressure of 2 to 10 bar. Calculate ( ) per mole,

at 50 bar and 298 K using its van der Waals constants?( ) per mole, ( ) , ( ) , ( ) , ( ) , and ( ) ,
assuming that helium is an ideal gas.

Calculate the partial molar volume of zinc chloride
Toluene is vaporized at its boiling point, 111 C. The heat in 1 molal ZnCl solution using the following data:

of vaporization at this temperature is 361 9 J g . For the vapor-
ization of toluene, calculate ( ) per mole, ( ) per mole, ( ) % by weight

, ( ) , ( ) , and ( ) . of ZnCl 2 6 10 14 18
Density/g cm 1.0167 1.0532 1.0891 1.1275 1.1665If the Gibbs energy varies with temperature according to

Calculate and for the formation of a quan-/ / /
tity of air containing 1 mol of gas by mixing nitrogen and oxy-
gen at 298.15 K. Air may be taken to be 80% nitrogen and 20%how will the enthalpy and entropy vary with temperature?
oxygen.Check that these three equations are consistent.
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A mole of gas A is mixed with a mole of gas B at 1 bar The last equation is the Sackur–Tetrode equation, where is
and 298 K. How much work is required to separate these gases the molar entropy at the standard temperature (298.15 K)
to produce a container of each at 1 bar and 298 K? and standard pressure (1 bar). The Gibbs energy ( )

of the ideal monatomic gas can be calculated by using the Leg-The fundamental equation for the enthalpy is given by
endre transformequation 4.20. Show that the fundamental equation for the in-

ternal energy can be obtained by using the inverse Legendre
transform . This is an example of what is meant by

The fundamental equation for the Gibbs energy issaying that there is no loss of information in making a Legendre
transform. d d d d

Derive Show that the correct expressions for , , and are obtained by
using the partial derivatives of indicated by this fundamental
equation.

Show thatIn studying statistical mechanics we will find (see Table
16.1) that for a monatomic ideal gas, the molar Gibbs energy is
given by

ln Earlier we derived the expression for the entropy of an
ideal gas as a function of and . Now that we have the Maxwellwhere numerical constants have been omitted so that only the
relations, derive the expression for d for any fluid.functional dependence on the natural variables of , that is,

The coefficient of thermal expansion of Fe(s) at 25 Cand , is shown. Derive the corresponding equations for , ,
is 355 10 K . What is the change in molar entropy of iron, , and .
when the pressure is raised to 1000 bar? (The density of iron atStatistical mechanics shows that for a monatomic ideal
25 C is 7.86 g cm .)gas, the molar Gibbs energy is given by

Show that and for an ideal gas are independent of
ln ln volume and pressure.

Derive the thermodynamic equation of statewhere the numerical factors have been omitted so that only
the functional dependence on the natural variables, and

( ), is shown. If we want to treat the thermodynamics of an
ideal monatomic gas at specified and without losing any
information, we cannot simply replace with / and use Derive the expression for ( / ) for a gas following

the virial equation5
ln ln

2 ( )

even though this relation is correct. If we want to treat the Assuming that the density of water is independent of pres-
thermodynamics of an ideal monatomic gas at specified sure in the range 1 to 50 bar, what is the change in molar Gibbs
and without losing any information, we have to use the energy of water when the pressure is raised this amount?
following Legendre transform to define the molar Helmholtz An ideal gas is compressed isothermally from 1 to 5 bar
energy : at 100 C. ( ) What is the molar Gibbs energy change? ( ) What

would have been the change in molar Gibbs energy if the com-
pression had been carried out at 0 C?Use the expression for obtained in this way to calculate , ,

At 298 K, for H (g), 130 684 J K ,, and for an ideal monatomic gas as a function of and .
0 kJ mol , and 0 kJ mol . What are the values of theShow that these expressions agree with the expressions obtained
molar entropy, enthalpy of formation, and Gibbs energy of for-in the preceding problem.
mation at 10 bar, assuming that H is an ideal gas?We already know enough about the thermodynamics of

The heat of vaporization of liquid oxygen at 1 013 25 bara monatomic ideal gas to express , , and in terms of the
is 6820 J mol at its boiling point, 183 C, at that pressure. Fornatural variables of , namely , , and .
the reversible vaporization of liquid oxygen, calculate ( ) per

/ mole, ( ) , ( ) , and ( ) .
An ideal gas is expanded isothermally and reversibly at

0 C from 1 to bar. Calculate ( ) per mole, ( ) per mole,
( ) , ( ) , and ( ) for the gas. One mole of an idealln
gas in 22.71 L is allowed to expand irreversibly into an evacu-
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ated vessel such that the final total volume is 227.1 L. Calculate serum albumin containing 15.4 g of protein per liter is 1 0004
( ) per mole, ( ) per mole, ( ) , ( ) , and ( ) 10 kg m at 25 C ( 0 977 07 10 kg m ). Calculate the
for the gas. Calculate ( ) for the system and its surround- apparent specific volume.
ings involved in the reversible isothermal expansion and calcu- A solution of magnesium chloride, MgCl , in water con-
late ( ) for the system and its surroundings involved in an ir- taining 41.24 g L has a density of 1 0311 10 kg m at 20 C.
reversible isothermal expansion in which the gas expands into The density of water at this temperature is 0 998 10 kg m .
an evacuated vessel such that the final total volume is 227.1 L. Calculate ( ) the apparent specific volume (see the equation in

Steam is compressed reversibly to liquid water at the boil- Problem 4.52) and ( ) the apparent molar volume of MgCl in
ing point 100 C. The heat of vaporization of water at 100 C and this solution.
1 013 25 bar is 2258 J g . Calculate per mole and per mole Calculate and for mixing 2 mol of H with 1 mol of
and each of the thermodynamic quantities , , , , O at 25 C under conditions where no chemical reaction occurs.
and . Liquid water can be superheated to 120 C at 1.01325 bar.

An ideal gas at 300 K has an initial pressure of 15 bar and Calculate the changes in entropy, enthalpy, and Gibbs energy
is allowed to expand isothermally to a pressure of 1 bar. Calcu- for the process of superheated water at 120 C and 1.01325 bar
late ( ) the maximum work that can be obtained from the ex- changing to steam at the same temperature and pressure. The
pansion, ( ) , ( ) , ( ) , and ( ) . enthalpy of vaporization is 40.58 kJ mol at 100 C and 1.01325

Calculate the molar entropy changes for the gas plus bar. Given: (H O l) 75 3 J K mol and (H O g)
reservoir in Examples 4.2 and 4.3. (36 0 013 ) J K mol , where is in kelvins.

An ideal gas is compressed reversibly at 100 C from 2 to
10 bar. Calculate , , and . Show that you can get the
same value of in two ways.

Toluene is vaporized at its boiling point (111 C). The
heat of vaporization at this temperature is 361.9 J g . We know a good deal about the thermodynamics of
Calculate , , and . monatomic ideal gases, as we have already seen. Plot ( ) , ( )

What is the change in molar Gibbs energy for the freez- , and ( ) versus temperature from 100 to 500 K and pressure
ing of water at 10 C? The vapor pressure of H O(l 10 C) from 0.1 to 20 bar and discuss the slopes of each of the plots of
is 286.5 Pa, and the vapor pressure of H O(s 10 C) is 260 in the two directions. The necessary equations are
Pa. At 10 C the molar volume of supercooled water is ln( / )
1 80 10 m mol and the molar volume of ice is 2 00 ln( / )
10 m mol . /

At low pressures the compressibility factor for a van der Given the virial equation for N in terms of pressure at
Waals gas is given by 298.15 K, plot the compressibility factor and the fugacity from 0

to 1000 bar versus the pressure.
1 Given the virial coefficients for O at 298.15 K in Table

1.1, plot the compressibility factor and the fugacity of the gas
versus its pressure up to 1000 bar.Derive the expression for for a change in pressure from

Plot the Gibbs energy of formation of an ideal gas relativeto .
to its standard Gibbs energy at 298.15 K from 0 to 10 bar.For a gas that follows the equation of state ( )

The 3D plots of molar entropy and molar volume for a, show that the fugacity is given by
monatomic ideal gas made in Computer Problem 4.A can be
made in another way by usinge

( / )The apparent specific volume of a solute (i.e., volume
contributed to the solution by one kilogram of solute) is equal to ( / )
the volume of the solution minus the volume of pure solvent
it contains divided by the mass of solute: ( ) Plot , ( ) plot , ( ) plot ( / ) , and ( ) plot

( / ) .( )/
( ) Calculate the fugacity of molecular hydrogen at 100

bar and 25 C using the virial coefficients in Table 1.1. ( ) Plot
where is the mass of solute, is the density of the solution, the fugacity of molecular hydrogen from 0 to 1000 bar at
and is the density of the solvent. The density of a solution of 25 C.

v

v

�
� � � �

�

� �
�

� �
� � � �

�

� � � �

� � �
�

� � �

� �
�

� �
� �

�

�

�

� 
 



 


� 
 


 


� �

�

�

�

�

�

�

�
�

� �

�
�

Problems

� �

��

��

�

�

�

��

��

�

� �

� �

�

�

� �

�
�

�

�

�

�

� �
�

�

�

�

4.53

4.44

4.54

4.55
4.45

4.46

4.47

4.48

4.A

4.49

(a)
(b)
(c)

4.50 4.B

4.C

4.D

4.51
4.E

4.52

4.F



5.1
5.2
5.3
5.4

5.5
5.6

5.7

5.8
5.9
5.10
5.11

5
Derivation of the General Equilibrium Expression
Equilibrium Constant Expressions for Gas Reactions
Determination of Equilibrium Constants
Use of Standard Gibbs Energies of Formation
to Calculate Equilibrium Constants
Effect of Temperature on the Equilibrium Constant
Effect of Pressure, Initial Composition, and Inert Gases
on the Equilibrium Composition
Equilibrium Constants for Gas Reactions Written
in Terms of Concentrations
Heterogeneous Reactions
Degrees of Freedom and the Phase Rule
Special Topic: Isomer Group Thermodynamics
Special Topic: Chemical Equations as Matrix Equations

In 1864 Guldberg and Waage showed experimentally that in chemical reactions an
equilibrium is reached that can be approached from either direction. They were
apparently the first to realize that there is a mathematical relation between the
concentrations of reactants and products at equilibrium. In 1877 van’t Hoff sug-
gested that in the equilibrium expression for the hydrolysis of ethyl acetate, the
concentration of each reactant should appear to the first power, corresponding to
the stoichiometric numbers in the balanced chemical equation.

The fundamental equation provides the basis for understanding chemical
equilibrium. The basic equations in terms of the chemical potential are com-
pletely general, but we will emphasize ideal gas reactions because of the simple
relation between the chemical potential of a species and its partial pressure. There
are brief discussions of multireaction equilibria and of gas–solid reactions. Chem-
ical equilibrium in the liquid phase is discussed in later chapters. In discussing
systems at chemical equilibrium, it is important to know how many independent
variables there are; this question is answered by the phase rule, which is derived
in this chapter. The choice of independent variables is somewhat arbitrary, but

Chemical Equilibrium
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This equilibrium condition applies to all chemical equilibria, whether they involve
gases, liquids, solids, or solutions.

reaction Gibbs
energy

5.1 Derivation of the General Equilibrium Expression

5.1 DERIVATION OF THE GENERAL EQUILIBRIUM EXPRESSION
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the number is specified by the phase rule. The measurement of an equilibrium
constant yields the standard reaction Gibbs energy, and the measurement of the
temperature coefficient yields the standard reaction enthalpy.

When discussing chemical equilibrium at a specified temperature and pressure,
we must add terms to the fundamental equation for d (equation 4.5) similar to
those we added in Section 4.1 to get equation 4.16. These terms allow for changes
in the number of moles of all the species in the chemical reaction. This leads to
the fundamental equation for the Gibbs energy for a closed system when chemical
reactions are considered:

d d d d (5 1)

where is the number of species. When chemical reactions are involved, we
have already seen in Section 2.11 that the various d in equation 5.1 are not
independent variables. If there is a single reaction, the amounts of the various
species at any time are given by

(5 2)

where is the initial amount of species , is the stoichiometric number of
the species in the reaction, and is the extent of reaction. Note that the extent
of reaction for a system is expressed in moles. Since d d , substituting this
relation into equation 5.1 yields

d d d d (5 3)

Thus at specified and ,

(5 4)

At chemical equilibrium and constant and has its minimum value; thus,
the derivative in equation 5.4 is zero:

0 (5 5)

It is convenient to refer to the derivative in equation 5.4 as the
and represent it with :

(5 6)
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( ) Gibbs energy as a
function of extent of reaction at
constant and for a reaction in
a single phase that goes nearly to
completion. ( ) Gibbs energy as a
function of for a reaction that does
not go very far toward completion.

Show how equation 5.10 is converted to equation 5.11. For a simple example, the sum is
given by

Sum ln( ) ln( )

The product is given by

ln( ) ln( ) ln( )

This shows that the sum of logarithmic terms is equal to the logarithm of the product given
in equation 5.11.
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equilibrium constant
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Figure 5.1

Therefore, we will use equation 5.4 in the form

(5 7)

The reaction Gibbs energy is the change in Gibbs energy when the extent of reac-
tion changes by 1 mol, as specified by a balanced chemical equation, at specified
partial pressures or concentrations of the species involved.

When a reaction takes place at constant temperature and pressure, the Gibbs
energy decreases, and the reaction continues until the Gibbs energy has reached
a minimum value, as shown by Fig. 5.1. It is of interest to note that the thermo-
dynamic condition for chemical equilibrium (equation 5.5) has the same form as
the reaction to which it applies (equation 2.88), except that molecular formulas
are replaced by the corresponding chemical potentials of the reactant and prod-
uct species. Substituting the expression for the chemical potential of a species at
equilibrium,

ln (5 8)

into equation 5.5 yields

ln (5 9)

The stoichiometric numbers can be put in the exponential position to obtain

ln( ) (5 10)

and the sum of logarithms can be replaced by the logarithm of a product:

ln (5 11)

Since the product of activities at equilibrium in equation 5.11 is so useful, it
is defined as the of the reaction:

(5 12)
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5.1 Derivation of the General Equilibrium Expression
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The equilibrium constant is a dimensionless quantity, but its magnitude depends
on the way the chemical equation is written because of the stoichiometric num-
bers. To interpret an equilibrium constant it is necessary to know the balanced
chemical equation to which it applies and the standard states of the species on
which the activities are based (see Section 4.5).

The quantity in equation 5.11 is equal to , the
and so equation 5.11 can be written

ln (5 13)

This is a very important equation because the equilibrium constant, which can be
determined experimentally, tells us the change in the standard Gibbs energy for
the reaction. Conversely, since can be evaluated by other methods, can
be calculated. Note that since is a function only of , is also a function
only of .

Now we go back to equation 5.7 to see how to calculate the reaction Gibbs en-
ergy under a particular set of conditions when we know the equilibrium con-
stant. If we substitute ln for the chemical potential of a species
in equation 5.7, we obtain

ln ln (5 14)

As we can see from this equation, is the change in Gibbs energy for the re-
action when the activities of reactants and products are all unity. In other words,

is the change in Gibbs energy when separate reactants in
are converted to the separate products in is the

change in the Gibbs energy in a specified reaction when separated reactants at
specified activities are converted to separated products at specified activities. The
product in the last term is much like an equilibrium constant, except that the ac-
tivities of reactants and products can have any values we want. This product of
activities is called the and is represented by :

(5 15)

so that

ln (5 16)

This equation gives the change in Gibbs energy for a specified chemical reaction
when the reactants and products have activities , so it can be used to test for
spontaneity in the forward direction ( 0) or backward direction ( 0).

We can substitute the definition of the Gibbs energy ( ) in equa-
tion 5.6 to obtain

(5 17)
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What is the most general equilibrium constant expression for the following reaction?

3C(graphite) 2H O(g) CH (g) 2CO(g)

If the pressure is not too high, the graphite can be considered to be in its standard state so
that 1. The activities of the gases can be replaced by / or, if the pressure is low
enough, by / .

reaction enthalpy
reaction entropy

Example 5.2

Chapter 5 Chemical Equilibrium
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5.2 EQUILIBRIUM CONSTANT EXPRESSIONS
FOR GAS REACTIONS
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which provides a logical introduction of the , in agreement
with equation 2.93, and the that is given later, in equation
5.42. This equation also applies when the reactants and products are each in their
standard states, so that .

For real gases the activity is given by / , where is the fugacity of the th
species and is the standard state pressure.

In Section 4.5 we saw that the partial molar Gibbs energy, which we can now
refer to as the chemical potential, of a gas is given by

ln (5 18)

This relation can be substituted into equation 5.5 and the same operations carried
out to obtain

(5 19)

This equation is not used very often because of the difficulty in evaluating in a
mixture of gases, but it is the most general expression for the equilibrium constant
of a reaction involving real gases.

For ideal gases, we have seen earlier that

ln (5 20)

Substituting this relation in equation 5.5 and carrying out the operations in Section
5.1 yields

(5 21)



How partial pressures determine whether a reaction goes
forward or backward
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( ) A mixture of CO(g), H (g), and CH OH(g) at 500 K with 10 bar, 1 bar,
and 0 1 bar is passed over a catalyst. Can more methanol be formed? Given:

21 21 kJ mol .

CO(g 10 bar) 2H (g 1 bar) CH OH(g 0.1 bar)

ln
(0.1)

21 21 kJ mol (0.008 314 5 kJ K mol )(500 K) ln
(10)(1)

2 07 kJ mol

Thus, the reaction as written is not spontaneous. ( ) Can the following conversion occur at
500 K?

CO(g 1 bar) 2H (g 10 bar) CH OH(g 0.1 bar)
(0.1)

21.21 kJ mol (0.008 314 5 kJ K mol )(500 K) ln
(1)(10)

7 51 kJ mol

Under these conditions the reaction is thermodynamically spontaneous.
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thermodynamic equilibrium constant

The value of an equilibrium constant cannot be interpreted unless it is ac-
companied by a balanced chemical equation and a specification of the standard
state of each reactant and product.

Example 5.3

5.2 Equilibrium Constant Expressions for Gas Reactions
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This equilibrium constant is also a function only of temperature. For real gases the
right-hand side of equation 5.21 will depend on pressure since in general for real
gases . The term is often used for the
equilibrium constant obtained by use of equation 5.19 or by using equation 5.21 at
low pressure. Calculations of using tables of Gibbs energies of formation yield
thermodynamic equilibrium constants.

The values of the stoichiometric numbers are
arbitrary to the extent that a chemical equation may be multiplied or divided by a
positive or negative integer. In this section we are considering gas reactions, and
so the standard state of each reactant and product is the pure gas at 1 bar in the
ideal gas state. Later, in Section 7.6, we will discuss the standard states of sub-
stances in liquid solution in more detail. In using equations 5.12, 5.19, 5.21, and
similar equations, we will omit the subscript eq.

The equilibrium extent of a chemical reaction in ideal gas mixtures depends
on just three independent variables: (1) pressure, (2) initial composition, and (3)
temperature. We will examine the effects of each of these variables and also the
effect of adding inert gases to the reaction mixture.

To illustrate why gas reactions never go to completion, let us consider a simple
isomerization of ideal gas A to ideal gas B at constant pressure:

A(g) B(g) (5 22)

According to equation 4.47, the Gibbs energy of the reaction mixture at any extent
of reaction is

(5 23)
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5.3 DETERMINATION OF EQUILIBRIUM CONSTANTS
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where is the amount of A and is the amount of B. If the reaction is started
with 1 mol of A, the amounts of A and B at a later time are given in terms of
extent of reaction by

1 (5 24)

(5 25)

Thus,

(1 ) (5 26)

From equation 5.20, the chemical potentials of A and B in the mixture of ideal
gases are given by

ln( / )

ln ln( / )

ln(1 ) ln( / )

ln ln( / )

ln ln( / ) (5 27)

where is the total pressure at equilibrium. Substituting these equations into
equation 5.26,

(1 ) ln( / ) [(1 ) ln(1 ) ln ]

( ) ln( / ) (5 28)

where is the Gibbs energy of mixing (1 ) mol of A with mol of B. Fig-
ure 5.2 gives a plot of versus . The first three terms give the linear function. It
is the mixing term that causes the minimum in the plot of versus extent of reac-
tion . At constant temperature and pressure, the criterion of equilibrium is that
the Gibbs energy is a minimum (see Section 4.2). Thus, starting with A, the Gibbs
energy can decrease along the curve until mol of B have been formed. Starting
with B, the Gibbs energy can decrease until (1 ) mol of A have formed.

Even though B has the lower value of the standard molar Gibbs energy
( ), the system can achieve a lower Gibbs energy by having some A
present at equilibrium with the resulting Gibbs energy of mixing. Generalizing
from this example, we can say that no chemical reaction of gases goes to comple-
tion; nevertheless, it may be very difficult to detect reactants at equilibrium if the
products have a very much lower Gibbs energy.

A surprising feature of Fig. 5.2 is that the slope d /d approaches as
0 and as 1. This can be shown by differentiating equation 5.28 with

respect to and looking at the limits.

If the initial concentrations of the reactants are known and only one reaction oc-
curs, it is necessary to determine the concentration of only one reactant or prod-
uct at equilibrium to be able to calculate the concentrations or pressures of the
others by means of the balanced chemical equation. Chemical methods based on
chemical reaction with one of the reactants or products can be used for such anal-
yses only when the reaction being studied can be stopped at equilibrium, as by a

y y
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�(a) Gibbs energy of the reaction system A(g) B(g) versus the extent of
reaction at constant temperature. (b) Derivative of the Gibbs energy with respect to
extent of reaction, which is zero at the minimum Gibbs energy. (c) Second derivative of
the Gibbs energy with respect to the extent of reaction, which is positive over the whole
range. Note that the second derivative has to be positive for the equilibrium to be stable.
(See Computer Problem 5.N.)
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5.3 Determination of Equilibrium Constants
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Figure 5.2

very sudden chilling to a temperature where the rate of further chemical change is
negligible, or by destruction of a catalyst. Otherwise, the concentrations will shift
during the chemical analysis.

Measurements of physical properties, such as density, pressure, light absorp-
tion, refractive index, electromotive force, and electrical conductivity, are espe-
cially useful for determining the concentrations of reactants at equilibrium since,
for these methods, it is unnecessary to “stop” the reaction.

It is essential to know that equilibrium has been reached before the analysis
of the mixture can be used for calculating the equilibrium constant. The following
criteria for the attainment of equilibrium at constant temperature are useful:

The same value of the equilibrium constant should be obtained when the
equilibrium is approached from either side.
The same value of the equilibrium constant should be obtained when the
initial concentrations of reacting material are varied over a wide range.

The determination of the density of a partially dissociated gas provides one
of the simplest methods for measuring the extent to which the gas is dissociated.
When a gas dissociates, more molecules are produced, and at constant tempera-
ture and pressure the volume increases.

If the equilibrium extent of reaction has been determined, we need the ex-
pression for the equilibrium constant in terms of the equilibrium extent of reac-
tion and the pressure. We will assume that the gases are ideal. The first step is
to express the mole fractions of reactants and products, in terms of the extent of
reaction .
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Figure 5.3

For example, consider the dissociation of an initial amount (N O ) of N O
to NO at a given temperature and pressure. If the equilibrium extent of reac-
tion is , the equilibrium amount of N O is (N O ) and the equilibrium
amount of NO is 2 . However, since the equilibrium composition at a given tem-
perature and pressure is independent of the size of the system, we might as well
divide these expressions by (N O ) and represent the equilibrium amounts by
the dimensionless quantities 1 for N O and 2 for NO . The quantity is a

defined by / (N O ). In working equilib-
rium problems we will leave off the prime to simplify the notation and write 1
rather than 1 mol . The following format is recommended:

N O (g) 2NO ( ) (5.29)
Initial amount 1 0

Equilibrium amount 1 2 Total amount 1
1 2

Equilibrium mole fraction
1 1

( / )
/

[2 /(1 )]( / )
[(1 )/(1 )]( / )
4 /

(5 30)
1

At equilibrium the amount of N O (g) is 1 and the amount of NO (g) is 2 ,
so that the total amount is 1 . The partial pressures of the reactants at equi-
librium are obtained by multiplying their equilibrium mole fractions by the total
pressure . Equation 5.30 gives the relation between the equilibrium constant ,
the equilibrium extent of reaction , and the total pressure . This may be solved
for the equilibrium extent of reaction to obtain

1
(5 31)

[1 (4/ )( / )]

This is the dimensionless extent of reaction obtained by dividing the extent of
reaction by (N O ). Equations 5.30 and 5.31 apply to any dissociation reaction
of the type A(g) 2B(g) (see Fig. 5.3), but not to dissociation reactions of the
type A(g) B(g) C(g). For reactions of the latter type, the factor 4 in equation
5.31 is replaced by 1.



Calculation of the equilibrium constant for a gas reaction from
the equilibrium density

m V mRT M P M

V mRT M P M
M

M y M y V V M M

M M
.

M

.

141

T P

K

RT m
M

P V

.

. .
.

.

P P . .
K .

.

.
.

. .

�

�
�

� � �

�

� �

�

2 4 2 4 2 2

� �

�

� �

� � �

� �
�

2 4 1 1 1
1

2 4

2 2 2

2

N O N O NO NO 1 2 2 1

1 2

2

3

1 1 3

2

1

2 2

2 2

1/2

2 2 3

When nitrogen tetroxide is held in a container at constant and near room temperature
or higher, it rather quickly reaches an equilibrium degree of dissociation. If 1.588 g of nitro-
gen tetroxide gives a total pressure of 1.0133 bar when partially dissociated in a 500 cm
glass vessel at 25 C, what is the extent of reaction? What is the value of ? What is the
extent of reaction at a total pressure of 0.5 bar?

The average molar mass of the gas at equilibrium is given by

(0.083 145 L bar K mol )(298.15 K)(1.588 10 kg)
(1.0133 bar)(0.5 L)

77 70 g mol

92 01 77 70
0 1842

77 70

4 ( / ) (4)(0 1842) (1 0133)
0 143

1 1 (0 1842)

The extent of reaction at 0.5 bar is calculated using equation 5.31:

0 143
0 258

0 143 4(0 5)
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The equilibrium extent of reaction 5.29 is readily determined by measuring
the density of the partially dissociated gas. For example, assume that we start with
a mass of N O (g). The initial volume is / , where is the
molar mass of N O (92.01 g mol ). If the gas is held at a constant pressure and
temperature, the equilibrium volume is given by / , where is
the average molar mass of the partially dissociated gas, which is defined by

. Thus, / / . This ratio is equal to 1/(1 ),
and so

(5 32)

As an example of a more complicated gas reaction, consider that ammonia is
produced by holding an initial mixture containing equal amounts of nitrogen and
hydrogen at constant temperature and high pressure in contact with a catalyst.
Note that reactants are not always added in stoichiometric proportions. In the ac-
tual production of ammonia, hydrogen is, of course, the more expensive reactant.
Again we use the dimensionless extent of reaction:

(5 33)N (g) 3H (g) 2NH (g)

Initial amount 1 1 0

Equilibrium amount 1 1 3 2 Total amount 2 2
1 1 3 2

Equilibrium mole fraction
2 2 2 2 2 2



The total pressure to obtain 10% con ersion of nitrogen
to ammonia

Calculation of the equilibrium constant for the forward reaction
and the re erse reaction
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What total pressure must be used to obtain a 10% conversion of nitrogen to ammonia
at 400 C, assuming an initially equimolar mixture of nitrogen and hydrogen and ideal gas
behavior? The equilibrium constant for the formation of NH (g) according to reaction 5.33
with a standard state pressure of 1 bar is 1 60 10 at 400 C.

We use equation 5.34 to obtain

16(0 10) (0 90)
1 60 10

(0 70) ( / )

51 2

51 2 bar

( ) What is the value of the standard Gibbs energy for reaction 5.33 at 400 C? ( ) What
is the value of the equilibrium constant and the standard reaction Gibbs energy when
reaction 5.33 is divided by 2? ( ) What is the value of the equilibrium constant and the
standard reaction Gibbs energy when reaction 5.33 is reversed?

( ) ln

(8.315 J K mol )(673 K) ln(1.60 10 )

48.91 kJ mol

( ) (1 60 10 ) 0 012 65

ln 0 012 65

24.46 kJ mol

1
( ) 6250

(1 60 10 )

ln 6250

48.91 kJ mol
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Note that when moles of N have been used up, 3 moles of H will have reacted,
and 2 moles of NH will have been formed. Thus, the total amount of reactants
and products at equilibrium is 2 2 . The equilibrium constant is given by

16 (1 )
(5 34)

(1 3 ) ( / )

If the balanced chemical equation is divided by 2, the equilibrium constant for
it will be the square root of as expressed by equation 5.34. If the balanced
chemical equation is reversed, the equilibrium constant for it will be the reciprocal
of in equation 5.34.
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5.4 Use of Standard Gibbs Energies of Formation to Calculate Equilibrium Constants

5.4 USE OF STANDARD GIBBS ENERGIES OF FORMATION TO
CALCULATE EQUILIBRIUM CONSTANTS
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The calculation of the equilibrium composition of a reaction system involving
two or more reactions is more complicated, because the equilibrium composition
is the one that satisfies a set of independent equilibrium constant expressions for
the system and a set of independent conservation equations for components (see
Sections 5.9 and 5.11). This solution of simultaneous nonlinear equations cannot
be obtained analytically, but requires an iterative process in which some kind of
initial guess is improved using the Newton–Raphson process. Computer programs
such as equcalc (see Computer Problem 5.K) have been written to do this, and
Mathematica also provides Solve, which can do this.

There are three ways in which for a reaction may be obtained: (1)
may be calculated from a measured equilibrium constant using equation 5.13, (2)

may be calculated from

(5 35)

using obtained calorimetrically and obtained from the third law
entropies, and (3) for gas reactions may be calculated using statistical
mechanics (Chapter 16) and certain information about molecules obtained from
spectroscopic data. Methods 2 and 3 make it possible to calculate equilibrium
constants of reactions that have never been studied in the laboratory. In method
2 the necessary data are obtained solely from thermal measurements, including
heat capacity measurements down to the neighborhood of absolute zero. The
calculation of equilibrium constants for gas reactions using statistical mechanics
is even more remarkable in that only properties of the individual molecules are
used to calculate equilibrium constants for reactions of ideal gases. For the sim-
plest reactions may be calculated from spectroscopic data; however, for
more complicated reactions, the calculation of requires calorimetric data.

Rather than tabulating values of equilibrium constants of reactions, or of
values calculated using equation 5.13, it is more convenient to tabulate val-

ues of the , which is the standard Gibbs
energy for the formation of a mole of from its elements. The standard Gibbs
energy of formation of is related to the standard enthalpy of formation of and
the standard entropy of by

(5 36)

where is the sum of the standard entropies of the elements in the forma-
tion reaction for species . Since values of are tabulated, the equation for

used in equation 5.14 ( ) can be written as

(5 37)

where the ’s are the stoichiometric numbers from the balanced chemical equa-
tion. The standard Gibbs energies of formation of elements in their reference
states are zero at all temperatures.
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Calculation of the standard Gibbs energy of formation for
H (g)

Use of tables to calculate equilibrium constants

§
H

T S
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S
H
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Data
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The Chemical Thermodynamics of Organic Compounds.
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*D. D. Wagman et al., The NBS Tables of Chemical Thermodynamic Properties,
(suppl. 2) (1982).

†M. W. Chase et al., JANAF Thermochemical Tables, (suppl. 1) (1985).

‡D. R. Stull, E. F. Westrum, and G. C. Sinke,
New York: Wiley, 1969.

R. D. Freeman, 681 (1985).
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Given the following calorimetric information, calculate the standard Gibbs energy of for-
mation of H O(g) at 298.15 K.

/kJ mol /J K mol

H O(g) 241 818 188 825
H (g) 0 130 684
O (g) 0 205 138

The standard Gibbs energy of formation is the standard reaction Gibbs energy for the
following reaction.

H (g) O (g) H O(g)

(H O g) (H O g) (H O g)

241 818 (298 15)[188 825 130 684 (0 5)(205 138)](10 )

228 572 kJ mol

Calculate the equilibrium constants for the following reactions at the indicated
temperature.

( ) 3O (g) 2O (g) at 25 C

( ) CO(g) 2H (g) CH OH(g) at 500 K
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Standard Gibbs energies of formation at 298.15 K and 1 bar are provided for
about 15 000 species in the NBS Tables of Chemical Thermodynamic Properties.*
Some values for those tables are given in Table C.2. Standard Gibbs energies of
formation at temperatures up to 6000 K are given in the JANAF tables.† Some
values from those tables are given in Table C.3. Gibbs energies of formation of
several hundred organic compounds up to 1000 K are given in Stull et al.‡ The
values in the latter table need to be converted to joules, and to a standard state
pressure of 1 bar, before being used with values in the other tables.

Most chemical reactions that occur are exothermic; that is, is nega-
tive. However, some endothermic reactions do occur. Endothermic reactions have
equilibrium constants greater than unity only if is sufficiently positive to
give a negative . In the case of gaseous reactions, this may happen if there
are more molecules on the right-hand side of the chemical equation than the left.
Note that in the limit of high temperature, reactions with positive have equi-
librium constants greater than unity, independent of .

§



Comment:

There are two ways to store information on equilibrium constants and use it
to calculate equilibrium constants of reactions that ha e not been studied. One
way is to tabulate reactions and equilibrium constants and then calculate new
equilibrium constants by adding and subtracting reactions from the tabulation.
When two reactions are added, the equilibrium constant of the new reaction
is equal to the product of the two equilibrium constants. When one reaction is
subtracted from the other, the equilibrium constant of the new reaction is equal
to the ratio of the two equilibrium constants. The other way, which is used in
thermodynamic tables, makes use of equation 5.37 to calculate standard Gibbs
energies of formation for species and tabulate them. This has the ad antage that
although a species can be in ol ed in a large number of reactions, it requires only
one entry in a table. Note that equilibria between different phases can be handled
in the same way.
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( ) Use Table C.2 to obtain

2 (O g) 3 (O g)

2(163 2) 326 4 kJ mol

exp

326 400
exp

(8 3145)(298 15)

6 62 10

( ) Use Table C.3 to obtain

134 27 ( 155 41) 21 14 kJ mol

21 140
exp

(8 3145)(500)

6 19 10
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van’t Hoff equation.

5.5 Effect of Temperature on the Equilibrium Constant
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5.5 EFFECT OF TEMPERATURE ON THE EQUILIBRIUM CONSTANT
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The effect of temperature on chemical equilibrium is determined by , as
shown by the Gibbs–Helmholtz equation 4.63. If ln is substi-
tuted into this equation, we obtain

d( / ) d ln
(5 38)

d d

or

d ln
(5 39)

d

This equation is often called the Note that since is inde-
pendent of for an ideal gas, the left-hand side need not be written as a partial
derivative.



Calculation of the standard enthalpy of reaction and standard
entropy of reaction from the equilibrium as a function of temperature

H T
T

K H T T
.

K RT T

H C C
S

C
G RT K H T S

H S
K .

RT R

K T
H S

P P

P

146

H S

K

T
K . . . . . . . .

.

H R . .

T K

S

S
.

R

S

�

�
� �

� �

� �

� �

�

�

�

� �

r 1

2

r2 2 1

1 1 2

r r r

r

r

r r r

r r

r r

r r

2 2

4

4

14 1
r

1

r

r

11 1 1
r

Calculate and for the reaction

N (g) O (g) 2NO(g)

from the following values of :

/K 1900 2000 2100 2200 2300 2400 2500 2600
/10 2 31 4 08 6 86 11 0 16 9 25 1 36 0 50 3

These data are plotted in Fig. 5.4.
Since the plot is linear, we can use equation 5.41. The slope of the plot is 2 19 10 K

and so
slope ( 2 19 10 K)(8 3145 J K mol )

182 kJ mol

The intercept of Fig. 5.4 at 1/ 0 can be calculated from the experimental value of
at some temperature and the slope. The intercept may be used to calculate the standard
entropy change according to equation 5.41.

3 13

(3.13)(8.3145 J K mol ) 26.0 J K mol
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Thus, for an endothermic reaction the equilibrium constant increases as the
temperature is increased, and for an exothermic reaction the equilibrium constant
decreases as the temperature is increased.

Le Châtelier’s principle,

Example 5.9
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According to when an equilibrium system is per-
turbed, the equilibrium will always be displaced in such a way as to oppose the
applied change. When the temperature of an equilibrium system is raised, this
change cannot be prevented by the system, but what happens is that the equilib-
rium shifts in such a way that more heat is required to heat the reaction mixture
to the higher temperature than would have been required if the mixture were in-
ert. In other words, when the temperature is raised, the equilibrium shifts in the
direction that causes an absorption of heat.

If is independent of temperature, the integral of equation 5.39 from
to yields

( )
ln (5 40)

If is independent of temperature, then is zero. If is zero,
then is also independent of temperature, as shown later in equation 5.46.
Thus, when 0, the temperature dependence of the equilibrium constant
is given by ln , or

ln (5 41)

According to this equation a plot of ln versus 1/ is linear over a temperature
range in which and for the reaction are constant.
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Calculation of standard reaction entropies using tables

S

S
G T

S

S S .

N

i i

N

i i
i

147

K

a

b

c ,

d

a S . . .

.

b S . . .

.

c S . . .

.

d S . .

.

�

�
s

�
�

� �

� �

� �

�

�

�

�

�

� �

�

�

�

�

2

2

r

r

r

r

r
1

s

1
2 2 22

2 2 3

3 2

2 4 2

1
r 2

11

r

11

r

11

r

11

Plot of ln against reciprocal absolute temperature for the reaction N (g)
O (g) 2NO(g). The standard enthalpy of reaction is calculated from the slope of the
straight line. (See Computer Problem 5.B.)

Calculate the standard reaction entropies for the following reactions at 298 K:

( ) H (g) O (g) H O(l)

( ) N (g) 3H (g) 2NH (g)

( ) CaCO (s calcite) CaO(s) CO (g)

( ) N O (g) 2NO (g)

The following reaction entropies are calculated using Table C.2:

( ) 69 91 130 68 (205 14)

163 34 J K mol

( ) 2(192 45) 191 61 3(130 68)

198 75 J K mol

( ) 39 75 213 74 92 9

160 59 J K mol

( ) 2(240 06) 304 29

175 83 J K mol
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standard reaction entropy
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Figure 5.4

The for a reaction B 0 is equal to
the change in entropy when the separated reactants, each in its standard state,
are completely converted to separated products, each in its standard state, at the
specified temperature. can be calculated by taking the partial derivative of

with respect to temperature , as indicated by equation 4.39. The standard
reaction entropy at a particular temperature is given by

(5 42)

where is the number of species involved in the reaction.



The dependence of the equilibrium constant on temperature
when is constant
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Note that since the molar entropies of gases are greater than those of liquids and solids,
the entropy always increases when the reaction produces more moles of gaseous products
than reactants.

When and depend only slightly on , it may be sufficient to assume that
is constant. Derive the expression for ln ( ) when is constant.
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In general, and depend on the temperature because the heat ca-
pacities of the reactants depend on temperature, and we have seen earlier that

( ) (298 15 K) d (5 43)

( ) (298 15 K) d (5 44)

where can be represented by a power series in (see Table 2.2). Since
and ,

( ) (298 15 K) d (5 45)

( ) (298 15 K) d (5 46)

Substituting these relations in ( ) ( ) ( ) yields

( ) (298 15) d d (5 47)

Since ln / ,

(298 15) 1 1
ln ( ) ln (298 15 K) d d

(5 48)

The calculation of ln ( ) in this way is pretty tedious without a computer, but
it can easily be made using a mathematical program that can integrate.

Another way to do this calculation is to use the Gibbs–Helmholtz equation
(see equation 4.62):

d( / )
(5 49)

d

The effect of temperature on an endothermic reaction A(g) 2B(g) is shown
in Fig. 5.5 for three total pressures. As the temperature is increased, the equilib-
rium extent of reaction increases. At a given temperature the extent of reaction
is greater at a lower pressure.
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Extent of reaction versus temperature for an endothermic reaction A(g)
2 ( ) 50 kJ mol at three total pressures. (See Computer Problem 5.I.)

The temperature dependencies of the standard enthalpy of reaction and standard en-
tropy of reaction are given by

( 298 15 K)

ln
298 15 K

Substituting these relations in ln yields

298 15 K
ln 1 ln

298 15 K

At any temperature,

( ) ( ) r ( )

When the standard enthalpy of reaction is independent of temperature because is
independent of temperature, the standard entropy of reaction is also independent of tem-
perature (see equations 5.43 and 5.44). Thus the standard Gibbs energy of a reaction at a
temperature other than 298.15 K can be calculated using

( ) (298 15 K) (298 15 K)

When (298.15) K and (298.15) K are available, the standard entropy of reaction
can be calculated using

(298 15 K) (298 15 K)
(298 15 K)

298 15 K

Substituting this into the expression for ( ) yields

( ) ( /298 15 K) (298 15 K) (1 /298 15 K) (298 15 K)
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Figure 5.5



The effect of pressure on the ammonia synthesis reaction
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In Example 5.5, we saw that when an initially equimolar mixture of nitrogen and hydrogen
is placed in contact with an ammonia catalyst at 400 C and 51.2 bar, there is a 10% conver-
sion to ammonia at equilibrium. What pressure is required to obtain a 15% conversion?

Using the equation for the equilibrium constant, we obtain

16(0 15) (0 85)
1 60 10

(0 65)( / )

83 45

83 45 bar

�

Le Châtelier’s principle

Example 5.13
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5.6 EFFECT OF PRESSURE, INITIAL COMPOSITION, AND INERT
GASES ON THE EQUILIBRIUM COMPOSITION

�

�

� � �

�

� � � � � �

� �

i i

i

i

�

�

� � �
�

�
�

� � �

�

�

�

�

�

� �

� �

�

For an ideal mixture of ideal gases the equilibrium partial pressures of the reac-
tants and products can be expressed in terms of their equilibrium mole fractions

and the total pressure of reactants and products:

(5 50)

In this equation , and is the equilibrium constant written in terms
of mole fractions at a particular total pressure.

The value of is a function only of temperature at a constant total pressure
:

(5 51)

The equilibrium constant written in terms of mole fractions depends on the pres-
sure as well as the temperature, but, as we will see, it is very useful in calculat-
ing the equilibrium extent of reaction because it is written in terms of amounts.
If the amount of gaseous products is equal to the amount of gaseous reactants,
then 0, , and changing the total pressure of reactants does
not affect the equilibrium mole fractions of the reactants and products. If a reac-
tion causes an increase in the number of molecules, then 0, and decreases
as the pressure is increased at constant temperature. Thus, raising the pressure
decreases the equilibrium mole fractions of the products and increases the equi-
librium mole fractions of the reactants; in short, raising the pressure pushes the
reaction backward.

provides a quick way to check conclusions like this
about the effects of changes in independent variables on chemical equilibrium.
According to Le Châtelier, when an independent variable of a system at equilib-
rium is changed, the equilibrium shifts in the direction that tends to reduce the
effect of the change. When pressure is increased, the equilibrium shifts in the di-
rection to reduce the number of molecules.

If a reaction involves only solids and liquids, the effect of pressure on the
equilibrium is small.



The effect of initial composition, pressure, and inert gases on
equilibrium
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According to Le Châtelier’s principle, raising the total pressure will cause the reaction
to shift in the direction of the product NH because there is a decrease in moles of gas in
the forward reaction.

As an illustration of the effect of initial composition, pressure, and the addition of an inert
gas, consider the equilibrium for the production of methanol from CO and H :

CO(g) 2H (g) CH OH(g)

The value of at 500 K is 6 23 10 . ( ) A gas stream containing equimolar amounts of
CO and H is passed over a catalyst at 1 bar. What is the extent of reaction at equilibrium?
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5.6 Effect of Pressure, Initial Composition, and Inert Gases on the Equilibrium Composition
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To discuss the effect of initial composition on the equilibrium composition
for a reaction, we will use the equilibrium constant expressed in terms of mole
fractions. At any time during a reaction the amounts of each reactant and product
may be expressed in terms of the initial amount and the extent of reaction :

1
( ) (5 52)

In this equilibrium expression the amount of gas is represented by

( ) (5 53)

where the initial amount of gaseous reactants and products is represented by
and . Thus, the calculation of the amounts of reactants and products at
equilibrium from the initial composition and the value of simply comes down
to the solution of a polynomial in . The polynomials arising here always have one
positive real root. Quadratic equations are readily solved, and higher-order poly-
nomials can be solved by iterative methods or by using a mathematical application
in a computer.

If an inert gas is added to an equilibrium mixture of gases at constant tem-
perature and volume, there is no effect on the equilibrium. But adding an inert
gas at constant temperature and pressure has the same effect as lowering the
pressure. When inert gases are present, equation 5.52 has to be modified to in-
clude the number of moles of inert gas in the denominator of each mole fraction;
thus becomes . Substituting the modified form of equation
5.52 in equation 5.50 yields

/
( ) (5 54)

If 0, the addition of an inert gas at constant pressure reduces the sum of the
partial pressures of the reactants and products, and the reaction shifts to the left
to compensate for this. Equation 5.54 applies generally to ideal mixtures of ideal
gases, but if the partial pressure of the inert gases is known, this partial pressure
may be subtracted from the total pressure, and equation 5.50 may be used with
equal to the sum of the partial pressures of the reactants and products.
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H CH OH

2 3
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3
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CO H CH OH

2
3

2 2

CO H CH OH

N

f

CO H CH OH

Initial amount 1 1 0
Equilibrium amount 1 1 2 Total amount 2(1 )

1 1 2
Mole fraction

2 2(1 ) 2(1 )

4 (1 )
6 23 10

(1 2 ) 1

Solving this quadratic equation indicates that 0 001 55, so that 0 5000,
0 4992, and 0 0008.

( ) To attain a more complete reaction the pressure is raised to 100 bar and 2 mol of
hydrogen is used per mole of CO. What is the equilibrium extent of reaction?

CO H CH OH

Initial amount 1 2 0
Equilibrium amount 1 2 2 Total amount 3 2

1 2 2
Mole fraction

3 2 3 2 3 2

(3 2 )
6 23 10

(1 )(2 2 ) (100)

Solution of this equation for the extent of reaction by successive approximation yields
0 817, so that, 0 134, 0 268, and 0 598. (You might check that this
gives the right value for the equilibrium constant.)

( ) If the reactant gases contain a mole of nitrogen in addition to 1 mol of CO and 2
mol of hydrogen, what is the equilibrium extent of reaction at 100 bar?

The first two lines of the table in ( ) are unchanged. In the third line, the total number
of moles is now 4 2 .

(4 2 )
6 23 10

(1 )(2 2 ) (100)

Solution of this equation yields 0 735, so that 0 105, 0 210,
0 291, and 0 395. Here the presence of an inert gas reduces the equilibrium conver-
sion to product, but for a reaction for which is positive, addition of an inert gas
will cause the reaction to go further to the right.
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�

5.7 EQUILIBRIUM CONSTANTS FOR GAS REACTIONS WRITTEN
IN TERMS OF CONCENTRATIONS

�

�

�

��
Since thermodynamic tables for gases are based on a standard state pressure
of 1 bar for the ideal gas, the values lead directly to equilibrium con-
stants in terms of pressure (or fugacities). However, in connection with chemi-
cal kinetics it is useful to express equilibrium constants of gas reactions in terms
of concentrations, since rate equations are written in terms of concentrations
(Section 18.2). These two types of equilibrium constants will be represented by

and . To obtain a general expression for the equilibrium constant



A gas equilibrium constant expressed in concentrations
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What is the value of the equilibrium constant for the dissociation of ethane into
methyl radicals at 1000 K?

C H (g) 2CH (g)

2 (CH ) (C H )

2(159 82) 109 55 210 09 kJ mol

exp

( 210 09)
exp

(8 3145 10 )(1000)

1 062 10

([CH ]/ )
[C H ]/

(1 bar)
(1 062 10 )

(1 mol L )(0.083145)(1000 K)

1 278 10

Thus, at equilibrium [CH ] /[C H ] 1.278 10 mol L , where the brackets indi-
cate concentrations in moles per liter.
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equilibrium constant expressed in terms of concentration,

Example 5.15

5.7 Equilibrium Constants for Gas Reactions Written in Terms of Concentrations
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in terms of concentrations for ideal gases, we replace in equation 5.21 with
/ :

(5 55)

To define a dimensionless equilibrium constant in terms of concentration, we
introduce the standard concentration , which represents one mole per liter.
Introducing this standard concentration into each term of equation 5.55 yields

(5 56)

where the

(5 57)

is a function only of temperature for a mixture of ideal gases. If 1 mol L
and 1 bar, then / 24 79 at 298 15 K.



Calculation of reaction properties at high temperatures
assuming is constant
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Calculate , , and for reaction 5.58 at 1000 K using data in ( ) Table 5.1
and ( ) Table C.2 with the assumption that is independent of temperature.

( ) ln (8.3145 J K mol )(1000 K)( 3.00) 24.9 kJ mol

(slope) (8.3145 J K mol )( 2.055 10 K)

171 kJ mol

Pressures of CO (g) in Equilibrium with CaCO (s) and
CaO(s)

/ C 500 600 700 800
/ 9.2 10 2.39 10 2.88 10 0.2217

/ C 897 1000 1100 1200
/ 0.987 3.820 11.35 28.31
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heterogeneous reaction.

can be written without
terms for the pure solids, provided they are present.

Example 5.16
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5.8 HETEROGENEOUS REACTIONS
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A reaction involving more than one phase that does not involve equilibria of a
species between phases is referred to as a Examples are

CaCO (s) CaO(s) CO (g) (5 58)

CH (g) C(s) 2H (g) (5 59)

Depending on the initial conditions, reactions of this type can go to completion,
whereas reactions in a single phase do not go to completion because of the entropy
of mixing (Section 3.5). The equilibrium constant for reaction 5.58 is equal to the
partial pressure of CO gas that is measured at equilibrium when all three phases
are present. If the pressure applied to the system is less than , reaction 5.58 will
go to completion to the right. If the pressure applied to the system is greater than

, reaction 5.58 will go to completion to the left.
Equilibrium constants for reactions like 5.58 and 5.59

The reason for doing this is
that the activities of the pure solid phases are very nearly equal to unity for mod-
erate pressures. If the gases are ideal, then the equilibrium constant expressions
for reactions 5.58 and 5.59 are

(5 60)

(5 61)

These equilibrium constants are independent of the amount of pure solid phase
present. As long as graphite is present, the second reaction behaves like a homo-
geneous reaction in that the reaction does not go to completion because of the
entropy of mixing in the gas phase.

Table 5.1 gives the pressure of CO (g) in equilibrium with CaCO (s) and
CaO(s) at a series of temperatures. The natural logarithm of the equilibrium pres-
sure is plotted versus 1/ in Fig. 5.6. The three phases are at equilibrium only along
the line.

C
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Logarithm of the equilibrium constant for reaction 5.58 as a function of recip-
rocal temperature. The equilibrium partial pressuer of CO (g) is essentially atmospheric
pressure when ln 0. Above the line CaCO (s)+CO (g) are stable, and below the line
CaO(s)+CO (g) are stable. (See Computer Problem 5.L.)

(171 24.9) 10 J mol
1000 K

146 J K mol

( ) According to Table C.2 the values at 298 K are 130.40 kJ mol ,
78.32 kJ mol , and 160.59 J K mol when calcite is the reactant.

(CaO) (CO ) (CaCO )

42.80 37.11 81.88 1.97 J K mol

Using the equations in Example 5.11,

178.32 kJ mol (1.97 10 kJ K mol )(701.85 K)

176.94 kJ mol

160.59 J K mol (1.97 J K mol ) ln(1000/298.15)

158.21 J K mol

176.94 kJ mol (1000 K)(158.21 10 kJ K mol )

18.73 kJ mol
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5.9 Degrees of Freedom and the Phase Rule

5.9 DEGREES OF FREEDOM AND THE PHASE RULE
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Figure 5.6

In Section 1.9 we discussed the fact that for a one-phase system without chemi-
cal reactions, 1 variables have to be specified in order to describe the
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Compo-
nents are the things that are conserved in a chemical reaction system.
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of the system at equilibrium, where is the
and is the number of different kinds of species. For a one-phase sys-

tem involving a single species, 2 so that it is sufficient to specify and , but
other properties could be used. For a two-phase system containing a single species,

1, so only or has to be specified. For a three-phase system containing a
single species, 0, so that no variables have to be specified. We also discussed
the fact that for these systems containing a single species, 2
variables are required to describe the of the system, where is the

Thus the descriptions for the one-phase, two-phase,
and three-phase systems containing a single species each require the specification
of 3 variables since amounts of phases have to be specified. In Section 2.2
these ideas were confirmed in our discussion of the internal energy of a sys-
tem in a certain intensive state or a certain extensive state. In Sections 4.1 and
4.2, we noted that the 2 variables in the fundamental equations are
also involved in the criteria, such as (d ) 0, for spontaneous change and
equilibrium. In Section 4.8 we saw that the Gibbs–Duhem equation for a nonreac-
tion system, which gives a relation between the intensive variables for a phase in
a system, is in agreement with 1 of these variables being independent.

However, when a chemical reaction occurs and is at equilibrium, this pro-
vides a relationship between the chemical potentials of the species involved, and
so the intensive state of the system is described by specifying one fewer inten-
sive variable. For example, to describe the intensive state of a system contain-
ing N , H , and NH at chemical equilibrium, it is necessary to specify only , ,
and (H )/ (N ) or , , and (NH )/ (N ). The choice of independent inten-
sive variables is optional, but the number is not. We can generalize this discussion
by stating that the number of intensive variables that have to be specified to de-
scribe the intensive state of a one-phase system is 1, where is the
number of that are at equilibrium. The reactions
in a set are independent if no reaction in the set can be obtained by adding and
subtracting other reactions in the set. (We will discuss this in more detail in Sec-
tion 5.11.)

In using 1 to count the number of intensive variables for a reaction
system, it is convenient to introduce a new concept, which is component.

An obvious
choice of components are the amounts of atoms of elements, but we will see later,
in Section 5.11, that this is not the only choice; molecules or groups of atoms can
be used as components. We will use to represent the number of components
in a reaction system, and for each of these components there is a conservation
equation. But only an independent set of conservation equations can be used in an
equilibrium calculation, just as only an independent set of chemical reactions
can be used. Thus is the number of independent components that is given by

. The number of intensive variables that have to be specified to de-
scribe the intensive state of a one-phase reaction system is 1. We can look at
it this way: When there are reactions at equilibrium, we do not have to specify the
concentrations of all species because they can be calculated using the equilibrium
constant expressions. The number of intensive variables that have to be specified
to describe the intensive state of a one-phase system is 1 if there are no re-
actions and 1 if there are chemical reactions at equilibrium. The number of
variables required to describe the extensive state of a one-phase reaction system
is 2.
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( ) Oxygen is in equilibrium with ozone: 3O (g) 2O (g). How many intensive variables
have to be specified to describe the intensive state of the system? ( ) The water gas shift
reaction, H O(g) CO(g) H (g) CO (g), is at equilibrium. How many intensive vari-
ables have to be specified to describe the state of the system? Give three possible choices
of intensive variables. ( ) The equilibrium behavior of a system involving the following
two reactions is to be investigated:

H O(g) CO(g) H (g) CO (g)

3H (g) CO(g) CH (g) H O(g)

How many intensive variables have to be specified to describe the state of the system?
Give a possible choice. Someone suggests that the equilibrium calculations be made with
the following two reactions:

H O(g) CO(g) H (g) CO (g)

2H (g) 2CO(g) CH (g) CO (g)

Is that all right?
( ) There is one component; 2 1 1. Therefore, two intensive

variables have to be specified.
( ) There are three components; 4 1 3. Therefore, four inten-

sive variables have to be specified. Three possible choices of intensive variables are , ,
(H O)/ (CO), (H )/ (CO); , , (CO)/ (CO ), (H )/ (CO ); , , (H O)/ (CO),
(H ).

( ) There are three components; 5 2 3. Thus four intensive vari-
ables have to be specified. Note that this is the same as in the preceding example, and so
any of the choices in ( ) can be used. Since the suggested reactions are independent, they
are just as good as the original set for equilibrium calculations.
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5.9 Degrees of Freedom and the Phase Rule
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In 1876, Gibbs derived a general expression for the number of intensive vari-
ables (the number of degrees of freedom) that have to be specified for a multi-
phase system at equilibrium. It is important to emphasize that we are only inter-
ested in describing the intensive state of the system; thus we are not concerned
with the relative amounts of the various phases. The

of a system is the number of intensive variables that must be specified to
describe the state of the system completely.

To derive an expression for , we will consider a system that consists of
phases. If a phase contains components, its composition may be specified by
stating ( 1) mole fractions—one less than the number of components because
the mole fraction of one component can be obtained from 1, where
represents the mole fraction of component . Thus, the total number of concen-
trations to be specified for the whole system is ( 1) for each of the phases or

( 1) concentrations. In general, there are two more intensive variables that
have to be considered, temperature and pressure. Thus,

Number of intensive variables ( 1) 2 (5 62)

Next we consider the number of relationships that must be satisfied for phase
equilibrium. The chemical potential for each component is the same in each
phase , , , and so on, and so for component . There
are phases but only ( 1) equilibrium relationships of the type for
each component. For example, if there are two phases, there is only one equilib-
rium relationship for each component that gives its distribution between the two
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phases. Altogether there are components, each one of which can be involved
in an equilibrium between phases. Thus,

Number of independent equations ( 1) (5 63)

The difference between the number of variables and the number of indepen-
dent equations is the which is referred to as the
number of degrees of freedom:

[ ( 1) 2] ( 1)
or

2 (5 64)

This is the important of Gibbs. The number of degrees of freedom
is equal to the number of intensive variables that can be set arbitrarily. For ex-
ample, for a one-component system 3 . Under conditions where a single
phase is present, 2 and the pressure and temperature can both be set arbi-
trarily. Under conditions where two phases are in equilibrium, 1 and either
the temperature or pressure may be set arbitrarily. Under conditions where three
phases are in equilibrium, 0 and the pressure and temperature are fixed by
the equilibrium. Such a system is said to be and is represented by a point
in a plot of pressure versus temperature.

It can be seen from the phase rule that the greater the number of components
in a system, the greater the number of degrees of freedom. On the other hand,
the greater the number of phases, the smaller is the number of variables such as
temperature, pressure, and mole fraction that must be specified to describe the
system completely.

Equations 5.62 and 5.63 are based on the assumption that pressure and tem-
perature are both variables. If the pressure, for example, is fixed, the phase rule
becomes 1. On the other hand, if the system is affected by both
temperature and pressure and another variable, such as magnetic field strength,
the phase rule becomes 3.

When there are special conditions involved in the specification of the system,
the number of these special constraints must be included in the phase rule to give

2 . An example of a special constraint would be taking the initial
amountsoftworeactants intheratiooftheirstoichiometricnumbers inthereaction.

The number of independent properties required to describe the extensive
state of a system can be readily counted in the fundamental equation for a thermo-
dynamic potential: is the number of differential terms on the right-hand side.
The number of properties required to describe the intensive state of a system
can be readily counted in the Gibbs–Duhem equation for the system: is the
number of differential terms in the Gibbs–Duhem equation. This is illustrated
first by a one-phase system containing one species at a specified and . The
appropriate thermodynamic potential is the Gibbs energy, and the fundamental
equation is

d d d d (5 65)

The differential terms on the right-hand side indicate that the natural variables
are , , and , and so 3. The corresponding Gibbs–Duhem equation is

0 d d d (5 66)

The intensive variables , , and for the system are indicated by the differential
terms, but only two of them are independent according to equation 5.66. Any
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two of the intensive variables can be chosen as degrees of freedom, and
2. This is in agreement with the phase rule, which gives 1 1 2 2. The
relation 2 1 3 is satisfied. The criterion for equilibrium is
(d ) 0.

Now consider a one-phase system at specified and involving the chemical
reaction A B C. The appropriate thermodynamic potential is the Gibbs en-
ergy, and the fundamental equation for the system before equilibrium is reached
is

d d d d d d (5 67)

We now substitute the equilibrium relation into equation 5.67 to
eliminate , yielding

d d d d d (5 68)

where and are the amounts of the A and B
The differential terms on the right-hand side of equation 5.68 indicate

that when the reaction is at equilibrium the natural variables are , , , and
, so that 4 for this one-phase, three-species system involving one reac-

tion. Note that the amounts of components A and B are independent variables
for the system at equilibrium, but the amounts of species , , and are not.
The corresponding Gibbs–Duhem equation is

0 d d d d (5 69)

The intensive variables , , , and for the system are indicated by the differ-
ential terms, but because they are related by equation 5.69 only three of them are
independent, so that 3. This is in agreement with the phase rule, which gives

2 3 1 1 2 3. The relation 3 1 4
is satisfied. The criterion for equilibrium is (d ) 0.

The relationship between and the fundamental equation and the relation-
ship between and the Gibbs–Duhem equations are illustrated by a two-phase
system containing one species at specified and . The appropriate thermody-
namic potential is the Gibbs energy, and the fundamental equation is

d d d d d (5 70)

where the two phases are labeled and . The equilibrium relation (see
Section 4.6) can be substituted in equation 5.70 to obtain

d d d d (5 71)

where and . The differential terms on the right-hand
side indicate that the natural variables are , , and , and so 3. There is a
separate Gibbs–Duhem equation for each phase:

0 d d d (5 72)

0 d d d (5 73)

Since the equilibrium relation indicates that d d , there are only three
intensive variables. Equations 5.72 and 5.73 provide two relationships between
these three intensive variables, and so only one is independent. The independent
variable can be taken to be , , or ; thus 1, as expected from the phase
rule. The relation 1 2 3 is also satisfied. The criterion for equi-
librium is (d ) 0.



Identifying properties to describe the intensi e state of a system
and the extensi e state of a system
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Identify sets of properties to specify the extensive and intensive states of the following
three systems by examining their fundamental equations for the Gibbs energy. In each
case, show that the number of properties required to specify the intensive state is given
by 2 2 and the number of properties required to specify
the extensive state is given by . Also state the criterion for equilibrium and
spontaneous change for each system.

( ) One-phase system containing two species

( ) One-phase system containing A and B, which are in equilibrium with each other

( ) Two-phase system containing two species

( ) The fundamental equation for is

d d d d d

The differential terms on the right-hand side indicate that the natural variables are , ,
, and , and so 4. The corresponding Gibbs–Duhem equation is

0 d d d d

The intensive variables , , , and for the system are indicated by the differential
terms, but only three of them are independent. Any three of them can be chosen, and

3. This agrees with the phase rule, which gives 2 1 2 3. The relation
3 1 4 is satisfied. The criterion for equilibrium is (d ) 0.

( ) The fundamental equation for is

d d d d d

This form of the fundamental equation can be used to derive the equilibrium relation
. Substituting this relation into the fundamental equation for yields

d d d d

where and . The differential terms on the right-hand side
indicate that the natural variables are , , and , and so 3. Note that the amount
of the component ( ) is an independent variable for the system, but and are
not. The corresponding Gibbs–Duhem equation is

0 d d d

The intensive variables , , and for the system are indicated by the differential terms,
but only two of them are independent so that 2. This is in agreement with the phase
rule, which gives 2 1 1 2 2. The relation 2 1 3 is satisfied.
The criterion for equilibrium is (d ) 0, where is the amount of the component.

( ) The fundamental equation for is

d d d d d d d

This fundamental equation can be used to derive the equilibrium relations and
. Substituting these relations into the fundamental equation yields

d d d d d

where and . The differential terms on the right-hand side
indicate that the natural variables can be taken as , , , and , and so 4. There
is a Gibbs–Duhem equation for each phase:

0 d d d d

0 d d d d
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Calculating degrees of freedom
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But the equilibrium relations indicate that d d and d d , so that there
are only four intensive variables remaining. The two Gibbs–Duhem equations provide two
relationships between these four intensive variables, and so only two are independent.
They can be taken to be and . This is in agreement with the phase rule 2 2
2 2. The relation 2 2 4 is satisfied. The criterion for equilibrium is
(d ) 0 or (d ) 0, where and

The reaction CaCO (s) CaO(s) CO (g) is at equilibrium. ( ) How many degrees of
freedom are there when all three phases are present at equilibrium? ( ) How many degrees
of freedom are there when only CaCO (s) and CO (g) are present? (See the introduction
to components early in this section.)

( ) 3 1 2

2 2 3 2 1

Therefore, only the temperature or pressure may be varied independently.

( ) 2 2 2 2

Therefore, both the temperature and pressure may be varied without destroying a phase.
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5.10 SPECIAL TOPIC: ISOMER GROUP THERMODYNAMICS
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There is a special case of chemical equilibrium that is of sufficient importance to
be discussed separately, and that is the chemical equilibrium between isomers.
We have already had an example of isomerism A B in Section 5.2. In Section
5.9, we saw that the number of components is given by , where
is the number of species in the system and is the number of independent re-
actions. If isomers are in equilibrium, there are 1 independent reactions,
and ( 1) 1. Thus when a group of isomers is in equilibrium,
they form a single component, and we can calculate the standard thermodynamic
properties of the isomer group as a whole if we know the standard thermody-
namic properties of the individual isomers. When a system involving isomers is
in chemical equilibrium, the isomer group can be treated as a pseudospecies in a
larger system because the distribution of isomers in an isomer group is a function
of temperature only and is not affected by the presence of other reactants. Thus
an isomer group has a standard Gibbs energy of formation, a standard enthalpy
of formation, a standard entropy, and a standard heat capacity at constant pres-
sure. This greatly simplifies equilibrium calculations on organic mixtures, where
the number of isomers in a homologous series increases approximately exponen-
tially with carbon number.

As an example, consider the three isomers of pentane ( -pentane, isopentane,
and neopentane) in equilibrium with each other. For ideal gases, the equilibrium
constants of the three formation reactions are of the form ( / )/( / )

exp( / ). The equilibrium mole fractions of the three isomers within
the isomer group are given by

exp( / )
(5 74)

exp( / )
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The standard Gibbs energy of an isomer group at equilibrium
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The standard Gibbs energies of formation of the gaseous pentanes at 298.15 K are
as follows: -pentane, 8 33 kJ mol ; isopentane, 13 27 kJ mol ; and neopentane,

17 37 kJ mol . Calculate the standard Gibbs energy of formation of the isomer group
at chemical equilibrium. What are the equilibrium mole fractions of the isomers at this
temperature?

(iso) ln[exp(8 33/ ) exp(13 27/ ) exp(17 37/ )]

17 86 kJ mol

where is in kJ mol .
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standard Gibbs en-
ergy of formation of the isomer group,
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since the partial pressure of molecular hydrogen cancels. We can represent the
denominator by exp[ (iso)/ ], where (iso) is the

and write

exp( / )
exp[ (iso)/ ]

exp [ (iso) ]/ (5 75)

where

(iso) ln exp( / ) (5 76)

The number of isomers in the isomer group is represented by .
Note that the standard Gibbs energy of formation of the isomer group is not

the mole fraction average of , but is actually more negative than the stan-
dard Gibbs energy of formation of the most stable isomer. This is to be expected
because in any equilibrium calculation on a larger system, the equilibrium mole
fraction of the isomer group has to be larger than that of the most stable isomer.
The value of (iso) can also be calculated from the mole fraction average
Gibbs energy of formation plus the entropy of mixing.

The standard enthalpy of formation (iso) of the isomer group is the mole
fraction weighted average of the , and it can be calculated using

(iso) (5 77)

The expressions for (iso) and (iso) are readily derived.*
The fact that species in equilibrium can be treated as a single species in an

equilibrium calculation is illustrated by the fact that H O(l) and H (aq) are
shown as single species in thermodynamic tables. In these cases we do not know
the thermodynamic properties of the various species, which are rapidly intercon-
verted, but we can treat the sum of species as a single species. Another example
is glucose(aq), which is made up of and forms. Later, in treating biochem-
ical reactions, we will see that thermodynamic properties can be calculated for
adenosine triphosphate at a specified pH, although it is made up of several species.



68: 69:

Comment:

When isomers are in equilibrium with one another, the mole fraction of an
isomer within the isomer group is dependent only on the temperature, for ideal
gases. Thus we can calculate a standard Gibbs energy of formation of the isomer
group if we know the standard Gibbs energies of formation of the indi idual
isomers. For ideal gases, the standard enthalpy of formation of the isomer group
is simply a weighted a erage of the arious isomers. If isomers are intercon erted
sufficiently rapidly, we may not be aware of the existence of isomers, so that
the substance is treated as a single species with standard formation properties
determined in the usual way.
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The equilibrium mole fractions are given by

exp[( 17 86 8 33)/ ] 0 021

exp[( 17 86 13 27)/ ] 0 157

exp[( 17 86 17 37)/ ] 0 821
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5.11 SPECIAL TOPIC: CHEMICAL EQUATIONS
AS MATRIX EQUATIONS
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So far, we have considered systems in which there is a single chemical reaction.
However, in many practical applications of chemical thermodynamics a number
of chemical reactions occur simultaneously. The equilibrium composition can be
calculated by using a set of independent chemical reactions that will represent all
possible chemical changes in the system. A set of reactions is independent if no
member of the set may be obtained by adding and subtracting other members of
the set. Different sets of reactions may be chosen to describe a given system, but
the of independent reactions is always the same.

For a simple system, a set of independent reactions can be found by inspec-
tion, but for a more complex system, matrix operations are required. As we saw
in Section 5.9, the number of independent reactions is needed to calculate
the number of components in a system at chemical equilibrium because

, where is the number of species. The determination of the number of
independent reactions and the number of components depends on the fact that
atoms of each element have to be conserved in a chemical reaction.

Chemical equations are really matrix equations, and the recognition of their
mathematical character is especially useful in considering multireaction systems.*
As a first step, consider the following chemical equation:

CO O CO
(5 78)C 1 0 1

O 1 2 2

Molecular formulas can be interpreted as column matrices, as indicated below
the chemical equation. In this case, the top integer of the column matrix gives
the number of carbon atoms, and the bottom integer gives the number of oxygen
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null space
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�atoms. We have been representing a general chemical reaction as 0 ,
and so equation 5.78 can be written as

0 1CO O 1CO (5 79)

When the molecular formulas are replaced by the corresponding column matrices,
we obtain

1 0 1 01 1 (5 80)
1 2 2 0

This is one way to write the conservation equations for carbon and oxygen. Text-
books on linear algebra* show that this equation can be written in the form of a
matrix product.

1
1 0 1 0 (5 81)
1 2 2 0

1

Notice that the stoichiometric numbers in equation 5.79 form a column matrix.
When you multiply a 2 3 matrix times a 3 1 matrix, you obtain a 2 1 matrix
(see Appendix D.8). This equation is a form of the conservation equations for the
two elements involved in this reaction.

We can generalize equation 5.81 by writing it as

(5 82)

where is the is the and
is a This equation can be used to calculate the matrix from the
matrix. The matrix is called the of the matrix. For small matrices
the null space can be calculated by hand, and for larger matrices a computer with
the operations of linear algebra can be used (e.g., Mathematica ). The first step
in calculating the null space by hand is to make a Gaussian reduction of the
matrix to get it into row echelon form, that is, a matrix with an
(see Appendix D.8) on the left. Rows in the matrix can be multiplied by integers
and added or subtracted from other rows to obtain this row echelon form. If we
subtract the first row of the matrix in equation 5.81 from the second row, we
obtain

1 0 1 (5 83)
0 2 1

If we then divide the second row by 2, we obtain

1 0 1
(5 84)

0 1

The rule for calculating the null space is to change the sign of the entries in the

†
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column(s) to the right of the identity matrix and append an appropriate-size unit
matrix below it. This yields

1

(5 85)

1

The rows here are in the order of the columns in the matrix, and so this yields
chemical equation 5.79.

The use of row reduction is important for another reason, namely, that the
rank of the matrix is equal to the number of components (see Section 5.9).

rank (5 86)

Equation 5.84 shows that the rank of the matrix is 2. The number of compo-
nents is often equal to the number of elements, as it is in this case, but there are
important exceptions. The rank of the matrix is equal to the number of inde-
pendent columns, and so this gives us the number of independent reactions for
a system:

rank (5 87)

The rank of the matrix in equation 5.85 is unity, which corresponds to the fact
that there is a single reaction. We have seen earlier (Section 5.9) that

(5 88)

and so

rank rank (5 89)

We can see from our simple example that the Gaussian reduction divides the
species in a system into components and noncomponents, where
is the number of species, that is, the number of columns in the matrix. Thus
the conservation matrix is , and the stoichiometric number matrix is

.
To see how these operations work out for a larger system, let us consider a

reaction system containing CO, H , CO , H O, and CH . The conservation matrix
is

CO H CO H O CH

C 1 0 1 0 1
(5 90)H 0 2 0 2 4

O 1 0 2 1 0

Row reduction yields the following row echelon form:

CO H CO H O CH
CO 1 0 0 1 2

(5 91)H 0 1 0 1 2
CO 0 0 1 1 1
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Note that the components are now taken to be CO, H , and CO . Thus the
matrix is

CO 1 2
H 1 2

(5 92)CO 1 1
H O 1 0
CH 0 1

This corresponds to the chemical equations

H CO H O CO (5 93)

2CO 2H CH CO (5 94)

Equation 5.91 shows that CO, H , and CO become components, and H O
and CH become noncomponents. The fact that the matrix came out this way
indicates that the composition of the system can be expressed in terms of CO,
H , and CO . If we had put other species first, they might have been chosen as
components, but of course the components must contain all of the elements. The
choice of components is somewhat arbitrary, but the number is not.

Equation 5.82 shows that the conservation matrix and the stoichiometric
number matrix are equivalent because the stoichiometric number matrix can be
calculated from the conservation matrix, as we have seen. Equation 5.82 can also
be written as

(5 95)

where the superscript T indicates the transpose (see Appendix D.8). Thus is
the null space of so that we can start with a chemical equation, or a system
of independent chemical equations, and calculate the conservation matrix for the
system. Because of the nature of conservation equations and chemical equations,
neither the matrix nor the matrix is unique. Conservation equations can be
written in various ways that are all equivalent, and a set of independent reactions
for a system can be written in different ways that are all equivalent, even though
we may prefer to see chemical reactions written in a particular way. Any set of
independent reactions for a system can be used to calculate the equilibrium com-
position. However, if we have two matrices, or two matrices, and want to know
whether they are equivalent, we can make a Gaussian reduction to see if they give
the same row echelon form.

Usually the number of components is equal to the number of elements in
the system. However, there are two types of situations where this is not true. If two
elements are always in the same ratio, they can be replaced by a pseudoelement,
and the number of components is smaller than the number of elements. Consider
the isomerization reaction

C H ( -butane) C H (isobutane) (5 96)

The matrix is

4 4 (5 97)
10 10
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Consider a system in which only the following reaction occurs because of the catalyst used:

C H (g) CH (g) C H CH (g) H (g)

Write out the matrix and the matrix, and show that they are compatible. How many
degrees of freedom does this system have, and what is a possible choice of degrees of
freedom?

Note that aromatic rings are conserved as well as C and H. Thus the matrix has
three rows, where the third row is for the aromatic component.

C H CH C H CH H
C 6 1 7 0
H 6 4 8 2
ar 1 0 1 0

This matrix has a rank of 3, and so 3. Thus the number of components is one more
than the number of elements. This matrix can be used to calculate the stoichiometric num-
bers in the chemical equation that occurs. Row reduction yields

C H CH C H CH H
C H 1 0 0 1
CH 0 1 0 1
C H CH 0 0 1 1

The last column indicates the stoichiometric numbers of the four reactants in the order
listed, [ 1, 1, 1, 1], in agreement with the balanced chemical equation. The number
of intensive variables that have to be specified to describe the intensive state of this system
at equilibrium is 2 3 1 2 4, which can be taken to be , , (H)/ (C),
and (ar)/ (C).

A system contains CaO(s), CO (g), and CaCO (s). How many independent reactions are
there?

The system formula matrix is

1 0 1
2 1 3
0 1 1
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which reduces to

1 1 (5 98)
0 0

which has a rank of 1. Thus there is a single component. The intensive state of the
system at equilibrium is specified by giving and . In systems involving ions the
charge balance may be redundant.

The rank of is larger than the number of elements when there are additional
constraints in a reaction system. This does not happen very often in chemistry, but
it is illustrated by the following example.
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if the elements (rows) are in the order C, O, Ca and the species (columns) are in the order
CO , CaO, CaCO . Gaussian elimination yields

1 0 1
0 1 1
0 0 0

This corresponds to the stoichiometric number matrix

1
1
1

which corresponds to the equation

CaO(s) CO (g) CaCO (s)

The number of independent reactions is given by

rank 3 2 1
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The fundamental equation for the Gibbs energy can be used to derive the
expression for the equilibrium constant for a chemical reaction in terms of
the activities of the reactants and shows that ln is equal to the stan-
dard Gibbs energy of reaction . The value of an equilibrium constant
cannot be interpreted unless it is accompanied by a balanced chemical equa-
tion and a specification of the standard state of each reactant and product.
For gas reactions the activity can be expressed in terms of the fugacity (

/ ), but most of our calculations have been made for reactions in mixtures
of ideal gases. Because of the entropy of mixing, a plot of the Gibbs energy
versus extent of reaction always has a minimum at the equilibrium extent of
reaction.
For a mixture of ideal gases in which there is a single reaction, the expression
for the equilibrium constant can always be written in terms of the extent of
reaction and the total pressure. Thus if the equilibrium constant is known,
the equilibrium composition can always be calculated by solving a polyno-
mial equation.
The standard Gibbs energy of reaction is made up of contributions from the
standard enthalpy of reaction and the standard entropy of reaction:

. Therefore, the equilibrium constant for a reaction
can be calculated from calorimetric measurements that can be used to obtain

and third law calorimetric measurements that can be used to obtain
.

Equilibrium constants can be calculated for many reactions for which
and have been tabulated for all the species since and

, where the are stoichiometric numbers.
For an endothermic reaction, the equilibrium constant increases as the tem-
perature is increased, and for an exothermic reaction the equilibrium con-
stant decreases as the temperature is increased.
According to Le Châtelier’s principle, when an independent variable of a
system at equilibrium is changed, the equilibrium shifts in the direction that
tends to reduce the effect of the change.

�



F
N R p N

R p

169

Thermodynamics for Chemical Engineers.

Thermodynamics,
Chemical and Engineering Thermodynamics.

Introduction to Chemical Engineering
Thermodynamics

Chemical Reaction Equilibrium Analysis.

Thermodynamics and Its Applications

K

K .
.a G b G

Kc

K

G

. a b K
c K . a

b

�

� �
� � �

�

� �

�
�

� �

�
�

s s

5 3 2

2 2 3 13
4

r r

2 2

3
2

2 3 2

3 2 3
22

1
2 32

r

1
2 22 4

22 4 2

2

5 2 2

K. E. Bett, J. S. Rowlinson, and G. Saville, Cam-
bridge, MA: MIT Press, 1975.

K. S. Pitzer, 3rd ed. New York: McGraw-Hill, 1995.
S. I. Sandler, Hoboken, NJ: Wiley, 1999.
J. M. Smith, H. C. Van Ness, and M. M. Abbott,

, 5th ed. New York: McGraw-Hill, 1996.
W. R. Smith and R. W. Missen, Hoboken, NJ:

Wiley, 1982.
J. W. Tester and M. Modell, . Upper Saddle River,

NJ: Prentice-Hall, 1997.

librium is 29.33 bar. Assuming that all gases are ideal, calculateProblems marked with an icon may be more conve-
for the only reaction that occurs:niently solved on a personal computer with a mathematical

program. PCl (g) PCl (g) Cl (g)
For the reaction N (g) 3H (g) 2NH (g), 1 60

An evacuated tube containing 5 96 10 mol L of10 at 400 C. Calculate ( ) and ( ) when the pres-
solid iodine is heated to 973 K. The experimentally determinedsures of N and H are maintained at 10 and 30 bar, respec-
pressure is 0.496 bar. Assuming ideal gas behavior, calculatetively, and NH is removed at a partial pressure of 3 bar. ( ) Is
for I (g) 2I(g).the reaction spontaneous under the latter conditions?

Nitrogen trioxide dissociates according to the reaction
A 1:3 mixture of nitrogen and hydrogen was passed

over a catalyst at 450 C. It was found that 2.04% by volume N O (g) NO (g) NO(g)
of ammonia gas was formed when the total pressure was main-

When one mole of N O (g) is held at 25 C and 1 bar total pres-tained at 10.13 bar. Calculate the value of for H (g)
sure until equilibrium is reached, the extent of reaction is 0.30.N (g) NH (g) at this temperature.
What is for this reaction at 25 C?

At 55 C and 1 bar the average molar mass of partially
2HI(g) H (g) I (g)dissociated N O is 61 2 g mol . Calculate ( ) and ( ) for

the reaction N O (g) 2NO (g). ( ) Calculate at 55 C if the at 698.6 K, 1 83 10 . ( ) How many grams of hydrogen
total pressure is reduced to 0.1 bar. iodide will be formed when 10 g of iodine and 0.2 g of hydrogen

A 1-liter reaction vessel containing 0.233 mol of N and are heated to this temperature in a 3-L vessel? ( ) What will be
0.341 mol of PCl is heated to 250 C. The total pressure at equi- the partial pressures of H , I , and HI?
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According to the phase rule, the number of degrees of freedom for a sys-
tem at equilibrium is given by 2, where is the number of
species, is the number of independent reactions, and is the number of
different phases. This is in agreement with the Gibbs–Duhem equation.
When a group of isomers is in equilibrium, they form a single component,
and we can calculate the standard thermodynamic properties of the isomer
group as a whole if we know the standard thermodynamic properties of the
individual isomers.
The conservation of atoms in a system of reactions can be represented in two
ways, by the conservation equations for each element and by an indepen-
dent set of chemical equations. A Gaussian reduction of the conservation
equation yields a set of independent chemical equations.
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Express for the reaction e

(e e )CO(g) 3H (g) CH (g) H O(g)
Calculate the molar Gibbs energy of butane isomers

in terms of the equilibrium extent of reaction when one mole for extents of reaction of 0.2, 0.4, 0.6, and 0.8 for the reaction
of CO is mixed with one mole of hydrogen.

-butane isobutaneWhat are the percentage dissociations of H (g), O (g),
and I (g) at 2000 K and a total pressure of 1 bar? at 1000 K and 1 bar. At 1000 K

To produce more hydrogen from “synthesis gas” (CO
( -butane) 270 kJ mol

H ) the water gas shift reaction is used:
(isobutane) 276 6 kJ mol

CO(g) H O(g) CO (g) H (g)
Make a plot and show that the minimum corresponds to the

Calculate at 1000 K and the equilibrium extent of reaction equilibrium extent of reaction.
starting with an equimolar mixture of CO and H O. In the synthesis of methanol by CO(g) 2H (g)

Calculate the extent of reaction of 1 mol of H O(g) to CH OH(g) at 500 K, calculate the total pressure required for
form H (g) and O (g) at 2000 K and 1 bar. (Since the extent of a 90% conversion to methanol if CO and H are initially in a
reaction is small, the calculation may be simplified by assuming 1:2 ratio. Given: 6 09 10 .
that 1 bar.) At 1273 K and at a total pressure of 30.4 bar the equilib-

At 500 K CH OH, CH , and other hydrocarbons can be rium in the reaction CO (g) C(s) 2CO(g) is such that 17
formed from CO and H . Until recently the main source of the mol % of the gas is CO . ( ) What percentage would be CO if
CO mixture for the synthesis of CH OH was methane: the total pressure were 20.3 bar? ( ) What would be the effect

on the equilibrium of adding N to the reaction mixture in a
CH (g) H O(g) CO(g) 3H (g) closed vessel until the partial pressure of N is 10 bar? ( ) At

what pressure of the reactants will 25% of the gas be CO ?When coal is used as the source, the “synthesis gas” has a dif-
When alkanes are heated up, they lose hydrogen andferent composition:

alkenes are produced. For example,
C(graphite) H O(g) CO(g) H (g)

C H (g) C H (g) H (g)
Suppose we have a catalyst that catalyzes only the formation of 0 36 at 1000 K
CH OH. ( ) What pressure is required to convert 25% of the

If this is the only reaction that occurs when ethane is heated toCO to CH OH at 500 K if the synthesis gas comes from CH ?
1000 K, at what total pressure will ethane be ( ) 10% dissociated( ) If the synthesis gas comes from coal?
and ( ) 90% dissociated to ethylene and hydrogen?Many equilibrium constants in the literature were calcu-

At 2000 C water is 2% dissociated into oxygen andlated with a standard state pressure of 1 atm (1.013 25 bar).
hydrogen at a total pressure of 1 bar. ( ) Calculate forShow that the corresponding equilibrium constant with a stan-
H O(g) H (g) O (g). ( ) Will the extent of reaction in-dard pressure of 1 bar can be calculated using
crease or decrease if the pressure is reduced? ( ) Will the extent

(bar) (atm)(1 013 25) of reaction increase or decrease if argon gas is added, when the
total pressure is held equal to 1 bar? ( ) Will the extent of reac-where the are the stoichiometric numbers of the gaseous
tion change if the pressure is raised by the addition of argon atreactants.
constant volume to the closed system containing partially disso-

Older tables of chemical thermodynamic properties are ciated water vapor? ( ) Will the extent of reaction increase or
based on a standard state pressure of 1 atm. Show that the cor- decrease if oxygen gas is added while holding the total pressure
responding with a standard state pressure of 1 bar can be constant at 1 bar?
calculated using

At 250 C, PCl is 80% dissociated at a pressure of 1.013
bar, and so 1 80. What is the extent of reaction at equilib-(bar)
rium after sufficient nitrogen has been added at constant pres-(atm) (0 1094 10 kJ K mol )
sure to produce a nitrogen partial pressure of 0.9 bar? The total
pressure is maintained at 1 bar.where the are the stoichiometric numbers of the gaseous re-

actants and products in the formation reaction. The following exothermic reaction is at equilibrium at
500 K and 10 bar:Show that the equilibrium mole fractions of -butane and

isobutane are given by CO(g) 2H (g) CH OH(g)

e Assuming that the gases are ideal, what will happen to the
amount of methanol at equilibrium when ( ) the temperature is(e e )
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raised, ( ) the pressure is increased, ( ) an inert gas is pumped What is (298 K) for the following reaction?
in at constant volume, ( ) an inert gas is pumped in at constant

H O(l) H (ao) OH (ao)pressure, and ( ) hydrogen gas is added at constant pressure?
The following reaction is nonspontaneous at room tem- Why is this change negative and not positive?

perature and endothermic:
Mercuric oxide dissociates according to the reaction

2HgO(s) 2Hg(g) O (g). At 420 C the dissociation pressure3C(graphite) 2H O(g) CH (g) 2CO(g)
is 5 16 10 Pa, and at 450 C it is 10 8 10 Pa. Calculate ( )

As the temperature is raised, the equilibrium constant will be- the equilibrium constants and ( ) the enthalpy of dissociation
come equal to unity at some point. Estimate this temperature per mole of HgO.
using data from Table C.3. The decomposition of silver oxide is represented by

The measured density of an equilibrium mixture of N O
2Ag O(s) 4Ag(s) O (g)and NO at 15 C and 1.103 bar is 3 62 g L , and the density at

75 C and 1.013 bar is 1 84 g L . What is the enthalpy change
Using data from Table C.2 and assuming 0, calculateof the reaction N O (g) 2NO (g)?
the temperature at which the equilibrium pressure of O is 0.2Calculate for the reaction in Problem 5.19 at 1000 K
bar. This temperature is of interest because Ag O will decom-and describe what it is equal to.
pose to yield Ag at temperatures above this value if it is in con-
tact with air.The equilibrium constant for the reaction

The dissociation of ammonium carbamate takes place ac-
N (g) 3H (g) 2NH (g) cording to the reaction

is 35.0 at 400 K when partial pressures are expressed in bars. As-
(NH )CO(ONH )(s) 2NH (g) CO (g)sume that the gases are ideal. ( ) What is the equilibrium com-

position and equilibrium volume when 0.25 mol N is mixed with When an excess of ammonium carbamate is placed in a previ-
0.75 mol H at a temperature of 400 K and a pressure of 1 bar? ( ) ously evacuated vessel, the partial pressure generated by NH
What is the equilibrium composition and equilibrium pressure if is twice the partial pressure of the CO , and the partial pressure
this mixture is held at a constant volume of 33.26 L at 400 K? of (NH )CO(ONH ) is negligible in comparison. Show that

Show that to a first approximation the equation of state
of a gas that dimerizes to a small extent is given by 4

27
1

where is the total pressure.
At 1000 K methane at 1 bar is in the presence of hydro-Water vapor is passed over coal (assumed to be pure

gen. In the presence of a sufficiently high partial pressure ofgraphite in this problem) at 1000 K. Assuming that the only
hydrogen, methane does not decompose to form graphite andreaction occurring is the water gas reaction
hydrogen. What is this partial pressure?

C(graphite) H O(g) CO(g) H (g) 2 52
For the reaction

calculate the equilibrium pressures of H O, CO, and H at a
Fe O (s) 3CO(g) 2Fe(s) 3CO (g)total pressure of 1 bar. [Actually, the water gas shift reaction

the following values of are known.CO(g) H O(g) CO (g) H (g)

/ C 250 1000also occurs, but it is considerably more complicated to take this
100 0 0721additional reaction into account.]

What is the equilibrium partial pressure of NO in air at At 1120 C for the reaction 2CO (g) 2CO(g) O (g),
1000 K at a pressure of 1 bar? 1 4 10 bar. What equilibrium partial pressure of O would

have to be supplied to a vessel at 1120 C containing solid Fe ON (g) O (g) NO(g)
just to prevent the formation of Fe?

Starting with the fundamental equation for in the form When a reaction is carried out at constant pressure,
the entropy change can be used as a criterion of equilibriumd d d d
by including a heat reservoir as part of an isolated system

derive equations for calculating , , and from ex- containing the reaction chamber. Show that / is the
perimental data on for a chemical reaction as a function global increase in entropy for the reaction system plus heat
of and . reservoir.

�

� �

�

�

�

� �

� � � ��
�

�

Problems

� � � �

�

�

�

�

�

�
�

�
�

�

� � �

�

�

�

5.31

5.23

5.32

5.33
5.24

5.25

5.26
5.34

5.27

5.355.28

5.36

5.29

5.30 5.37



P

c

c

V

P

c

P

172

K
K

K T P GU RT
T

K J. Chem. Educ.
K T

H G

. . Mathematica

. .

. .

. .

a
b

ac
b ca b C

d

.

G
. .

J. Chem. Educ.

c

aK .
b c

K .

a

b

K .

�

� �

�

� � � � �

� �

�

�

�

�

� � �

�

� �

�

2

C

2

3

3 2 2 2

1 1
f f

4

4 2

4 2

2

2

4 4 2
2 42

3 6 4 84 2 4 2

f
1 1

2 4 2 4

2

2 4 2

2 2 24 2

2

2 2

2 42 4 2

2 4 2
2 2 2 6 62 4 2

2 2 2 2 2
2

2

2

2 2 2 6 6
1 3

3 2 210 8 2 2

The effect of temperature on is given by equation pendent chemical reactions. Perform the matrix multiplication
5.51, and the effect of temperature on is given by to verify .

The reaction A B C is at equilibrium at a specified
ln and . Derive the fundamental equation for in terms of

components by eliminating .

Is it possible for a gas reaction to have increase with increas- The article by C. A. L. Figueiras in
ing temperature, but decrease with increasing ? If so, what 276 (1992) illustrates an interesting problem you can get into
has to be true? in trying to balance a chemical equation. Consider the following

Calculate the partial pressure of CO (g) over reaction without stoichiometric numbers:
CaCO (calcite)—CaO(s) at 500 C using the equation in Ex-

ClO Cl H ClO Cl H Oample 5.11 and data in Table C.2.
The NBS tables contain the following data at 298 K: There are actually an infinite number of ways to balance this

equation. The following steps in unraveling this puzzle can be/kJ mol /kJ mol
carried out using a personal computer with a program such as

CuSO (s) 771 36 661 8 , which can do matrix operations. Write the con-
CuSO H O(s) 1085 83 918 11 servation matrix and determine the number of components.
CuSO 3H O(s) 1684 31 1399 96 How many independent reactions are there for this system of
H O(g) 241 818 228 572 six species? What are the stoichiometric numbers for a set of

independent reactions? These steps show that chemical change( ) What is the equilibrium partial pressure of H O over a
in this system is represented by two chemical reactions, not one.mixture of CuSO (s) and CuSO H O(s) at 25 C? ( ) What

A chemical reaction system contains three species: C His the equilibrium partial pressure of H O over a mixture of
(ethylene), C H (propene), and C H (butene). ( ) Write theCuSO H O(s) and CuSO 3H O(s) at 25 C? ( ) What are

matrix. ( ) Row-reduce the matrix. ( ) How many compo-the answers to ( ) and ( ) if the temperature is 100 C and
nents are there? ( ) Derive a set of independent reactions fromis assumed to be zero?
the matrix.One micromole of CuO(s) and 0 1 mol of Cu(s) are

How many degrees of freedom are there for the followingplaced in a 1-L container at 1000 K. Determine the identity and
systems, and how might they be chosen?quantity of each phase present at equilibrium if of CuO(s)

is 66 66 kJ mol and that of Cu O(s) is 77 94 kJ mol at CuSO 5H O(cr) in equilibrium with CuSO (cr) and
1000 K. [From H. F. Franzen, 146 (1988).] H O(g)

For the heterogeneous reaction N O in equilibrium with NO in the gas phase
CO , CO, H O, and H in chemical equilibrium in the gasCH (g) C(s) 2H (g)

phase
derive the expression for the extent of reaction in terms of the The system described in ( ) made up with stoichiometric
equilibrium constant and the applied pressure, when graphite amounts of CO and H
is in equilibrium with the gas mixture. Is this the same ex-

Graphite is in equilibrium with gaseous H O, CO, CO ,pression (equation 5.31) that was obtained for the reaction
H , and CH . How many degrees of freedom are there?N O (g) 2NO (g)?
What degrees of freedom might be chosen for an equilibriumCalculate the equilibrium extent of the reaction
calculation?N O (g) 2NO (g) at 298.15 K and a total pressure of 1 bar if

A gaseous system contains CO, CO , H , H O, and C Hthe N O (g) is mixed with an equal volume of N (g) before the
in chemical equilibrium. ( ) How many components are there?reaction occurs. As shown by Example 5.4, 0 143. Do you
( ) How many independent reactions? ( ) How many degreesexpect the same equilibrium extent of reaction as in Example
of freedom are there?5.4 If not, do you expect a larger or smaller equilibrium extent

At 500 C, 5 5 for the reactionof reaction?
( ) A system contains CO(g), CO (g), H (g), and CO(g) H O(g) CO (g) H (g)

H O(g). How many chemical reactions are required to de-
If a mixture of 1 mol of CO and 5 mol of H O is passed over ascribe chemical changes in this system? Give an example. ( )
catalyst at this temperature, what will be the equilibrium moleIf solid carbon is present in the system in addition, how many
fraction of H O?independent chemical reactions are there? Give a suitable set.

At 400 C, 79 1 for the reaction
For a closed system containing C H , H , C H ,

NH (g) N (g) H (g)and C H , use Gaussian elimination to obtain a set of inde-
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Show that the fraction of NH dissociated at a total pressure as follows:
is given by

(bar) (atm)1
(bar) (atm)1

(bar) (atm) (0 109 J K mol )and calculate the value of in this equation.
For the reaction N O (g) 2NO (g), at 25 C is 0.143. (bar) (atm) (0 109 10 kJ K mol )

What pressure would be expected if 1 g of liquid N O were
(bar) (atm)(1 013 25)allowed to evaporate into a 1-liter vessel at this temperature?

Assume that N O and NO are ideal gases.
where is the difference between the stoichiometric num-

The dissociation of N O is represented by N O (g) bers of gaseous products and gaseous reactants in the balanced
2NO (g). If the density of the equilibrium gas mixture is chemical equation.
3 174 g L at a total pressure of 1.013 bar at 24 C, what min-

The reactionimum pressure would be required to keep the degree of disso-
ciation of N O below 0.1 at this temperature? 2NOCl(g) 2NO(g) Cl (g)

At 250 C, 1 L of partially dissociated phosphorus pen- comes to equilibrium at 1 bar total pressure and 227 C when
tachloride gas at 1.013 bar weighs 2.690 g. Calculate the extent the partial pressure of the nitrosyl chloride, NOCl, is 0.64 bar.
of reaction and the equilibrium constant. Only NOCl was present initially. ( ) Calculate for this

Derive the analogue of equation 5.34 for the reaction reaction. ( ) At what total pressure will the partial pressure of
N (g) 3H (g) 2NH (g) when stoichiometric amounts of ni- Cl be 0.1 bar?
trogen and hydrogen are used. Acetic acid is produced on a large scale by the carbony-

Hydrogen is produced on a large scale from methane. lation of methanol at about 500 K and 25 bar using a rhodium
Calculate the equilibrium constant for the production of H catalyst. What is under these conditions? ( for acetic
from CH at 1000 K using the reaction CH (g) H O(g) acid gas at 500 K is 335 28 kJ mol .)
CO(g) 3H (g).

Calculate the total pressure that must be applied to a mix-
( ) What is the equilibrium constant for the formation of ture of three parts of hydrogen and one part nitrogen to give a

CH from CO and H at 500 and 1000 K? mixture containing 10% ammonia at equilibrium at 400 C. At
400 C, 1 60 10 for the reaction N (g) 3H (g)CO(g) 3H (g) CH (g) H O(g)
2NH (g).

( ) What is the equilibrium constant for the formation of CH A mixture of one mole of nitrogen and one mole of hy-
from graphite and H O at 500 and 1000 K? drogen is equilibrated over a catalyst for the ammonia reaction

at 500 K and 1 bar. ( ) What are the equilibrium mole fractions2C(graphite) 2H O(g) CH (g) CO (g)
of N , H , and NH ? ( ) The experiment is repeated with 1.2
mol of nitrogen and 1 mol of hydrogen. What is the equilibrium( ) Calculate the extent of dissociation of H (g) at 3000
partial pressure of ammonia? ( ) How do you explain this resultK and 1 bar. A value of 0.072 was obtained experimentally by
in terms of Le Châtelier’s principle?Langmuir. ( ) Calculate the extent of dissociation of O (g) at

3000 K at 1 bar. Assume that the following reaction is in equilibrium at
1000 K:What is for

I (g) 2I(g) 3C(graphite) 2H O(g) CH (g) 2CO(g)

at 1000 K, and what is the degree of dissociation at 1 bar? At (1000 K) 182 kJ mol . ( ) What will be the effect on
0.1 bar? the equilibrium composition of raising the temperature at a to-

tal pressure of 1 bar? ( ) What will be the effect of raising thePropene and cyclopropane are isomers. Their standard
pressure to 5 bar? ( ) What will be the effect of adding nitrogenthermodynamic properties in the gas phase are given in Table
at a constant pressure of 1 bar?C.2. If they were in equilibrium, what would be the standard

Gibbs energy of formation and the standard enthalpy of the When N O is allowed to dissociate into NO at 25 C at
isomer group at 25 C? Show that the same value of the stan- a total pressure of 1 bar, it is 18.5% dissociated at equilibrium,
dard Gibbs energy of formation is obtained by calculating the and so 0 141. ( ) If N is added to the system at constant
mole fraction average Gibbs energy and adding the entropy of volume, will the equilibrium shift? ( ) If the system is allowed
mixing. to expand as N is added at a constant total pressure of 1 bar,

what will be the equilibrium degree of dissociation when the NShow that in going from a standard state pressure of 1 atm
partial pressure is 0.6 bar?to 1 bar, thermodynamic quantities for reactions are corrected
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For the formation of nitric oxide Calculate for the reaction

N (g) O (g) 2NO(g) CH (g) 2O (g) CO (g) 2H O(g)

at 2126 9 C is 2 5 10 . ( ) In an equilibrium mixture con- at 298 and 1000 K.
taining 0.1 bar partial pressure of N and 0.1 bar partial pressure What is for H (g) 2H(g) at 298, 1000, and
of O , what is the partial pressure of NO? ( ) In an equilibrium 3000 K?
mixture of N , O , NO, CO , and other inert gases at 2126 9 C Calculate the entropy changes for the following reactions
and 1 bar total pressure, 80% by volume of the gas is N and at 25 C:
16% O . What is the percentage by volume of NO? ( ) What is

Ag (ao) Cl (ao) AgCl(s)the total partial pressure of inert gases?
HS (ao) H (ao) S (ao)Prove that for 2C C in the presence of other gases

in the gas phase, the equilibrium constant expression From electromotive force measurements it has been
found that for the reaction

H (g) AgCl(s) HCl(aq) Ag(s)( / )

is 62 4 J K mol at 298.15 K. What is the value ofmay be interpreted in two ways:
[Cl (aq)]?The mole fractions are expressed only in terms of C and

C and . The solubility of hydrogen in a molten iron alloy is found
The mole fractions are expressed in terms of all gases to be proportional to the square root of the partial pressure of
present and is the total pressure. hydrogen. How can this be explained?

Is magnetite (Fe O ) or hematite (Fe O ) the more sta-The following data apply to the reaction Br (g)
ble ore thermodynamically at 25 C in contact with air?2Br(g):

An equimolar mixture of CO(g), H (g), and H O(g) at
1000 K is compressed. At what total pressure will solid carbon/K 1123 1172 1223 1273
start to precipitate out if there is chemical equilibrium? (See/10 0.408 1.42 3.32 7.2
Problem 5.28.)

Determine by graphical means the reaction enthalpy at 1200 K. At 50 C the partial pressure of H O(g) over a mixture of
CuSO 3H O(s) and CuSO H O(s) is 4 0 10 Pa and thatThe average molar mass of equilibrium mixtures
over a mixture of CuSO 3H O(s) and CuSO 5H O(s) is 6 3of NO and N O at 1.013 bar total pressure is given in the
10 Pa. Calculate the change in Gibbs energy for the reactionfollowing table at three temperatures:

CuSO 5H O(s) CuSO H O(s) 4H O(g)/ C 25 45 65
/g mol 77.64 66.80 56.51 Calculate ( ) and ( ) for the following reaction

at 20 C:( ) Calculate the degree of dissociation of N O and the equi-
CuSO 4NH (s) CuSO 2NH (s) 2NH (g)librium constant at each of these temperatures. ( ) Plot log

against 1/ and calculate for the dissociation of N O . The equilibrium pressure of NH is 8.26 kPa.
( ) Calculate the equilibrium constant at 35 C. ( ) Calculate

The vapor pressure of water above mixtures of CuClthe degree of dissociation for NO at 35 C when the total pres-
H O(s) and CuCl 2H O(s) is given as a function of tempera-sure is 0.5 bar.
ture in the following table:

For a chemical reaction, ln / / . Derive
the corresponding expressions to calculate , , , / C 17.9 39.8 60.0 80.0
and . /bar 0.0049 0.0250 0.122 0.327

One mole of carbon monoxide is mixed with one mole of
( ) Calculate for the reactionhydrogen and passed over a catalyst for the following reaction:

CuCl 2H O(s) CuCl H O(s) H O(g)CO(g) 2H (g) CH OH(g)

At 500 K and a total pressure of 100 bar, 0.40 mol of CH OH ( ) Calculate for the reaction at 60 C. ( ) Calculate
is found at equilibrium. What is the value of the equilibrium for the reaction at 60 C.
constant expressed in terms of / , where is the refer- The equilibrium constant for the association of benzoic
ence pressure of 1 bar? What is the equilibrium constant ex- acid to a dimer in dilute benzene solutions is as follows at 43 9 C:
pressed in terms of / , where is the reference concentra-

2C H COOH (C H COOH) 2 7 10tion of 1 mol L ? Assume ideal gases.
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Molar concentrations are used in expressing the equilibrium from the following values of the equilibrium constant:
constant. Calculate , and state its meaning.

/K 1900 2000 2100 2200 2300 2400 2500 2600
Superheated steam is passed over coal, represented in /10 2.31 4.08 6.86 11.0 16.9 25.1 36.0 50.3

these calculations by graphite, at 1000 K to produce CO, CO ,
H , and CH . Since there are six species and three element bal- Calculate the equilibrium composition for the reaction
ance equations, there are three independent chemical reactions,

N (g) 3H (g) 2NH (g)which may be written as follows:

at 600 K and 15 bar, starting with two moles of N and one moleC(graphite) H O(g) CO(g) H (g)
of H . The equilibrium constant at 600 K is 0.001 715.3C(graphite) 2H O(g) CH (g) 2CO(g)

Calculate the equilibrium constants for the following four2C(graphite) 2H O(g) CH (g) CO (g)
reactionsat500,1000,and2000KusingTableC.3andmakeatable.

What are the equilibrium constants for these reactions? If the
H (g) 2H(g)

total pressure is raised to 100 bar, one of these reactions will
2HI(g) H (g) I (g)predominate. Neglecting the other two reactions, calculate the

equilibrium mole fractions of the gases present. I (g) 2I(g)
The following molecular species are in equilibrium in the HI(g) H(g) I(g)

gas phase: CH , C H , C H , and C H . How many indepen-
Sufficient data to calculate and for the reac-dent chemical reactions are required to represent all possible

tion 2HI(g) I (g) are given in Table C.3. Calculate the stan-changes in this system? Derive a set of independent reactions.
dard reaction Gibbs energy at 500, 1000, 2000, and 3000 K.Derive equation 5.31 for calculating the extent of reaction
Use these data to calculate the standard reaction enthalpy atfor a gas dissociation reaction of the type
these temperatures by use of the Gibbs–Helmholtz equation,
and compare the values calculated in this way with the valuesA(g) 2B(g)
calculated from Table C.3.

at constant temperature and pressure. Consider the four following gas reactions:
( ) The three pentane isomers are in equilibrium with one

H O H Oanother. How many degrees of freedom does this system have,
and what would you choose as the independent variables? ( ) N H NH
An equilibrium system involves the following two gas reactions: CO 4H CH 2H O

CO 3H CH H O2CH CH CH CH CHCH

This problem continues the use of the empirical dependencies3CH CH 2CH CH CH
of on temperature used in problems in Chapters 2 and

How many degrees of freedom does this system have, and what 3. ( ) Calculate (1000 K) for these reactions. ( ) Calcu-
would you choose as independent variables? late (1000 K) for these reactions. ( ) Use the values of

(1000 K) and (1000 K) for these reactions to calcu-
late (1000 K) for each reaction. ( ) Make a table of the val-
ues calculated in ( )–( ) and discuss the relative importance of

and in determining whether a reaction goes forward
or backward as written.For the reaction A(g) B(g), assume that the standard

Gibbs energy of formation of A is 50 kJ mol and that of Plot the equilibrium extent of the reaction A(g) 2B(g)
B is 45 kJ mol at 298.15 K. ( ) For a reaction starting with as a function of pressure for 0 1, 1, and 10. Equation 5.31
a mole of A at a pressure of 1 bar, plot the Gibbs energy of can be used to calculate the equilibrium extent of reaction.
the mixture versus extent of reaction from zero to unity and Plot the equilibrium extent of reaction for the reaction
identify the approximate extent of reaction at equilibrium. ( ) A(g) 2B(g) versus pressure for reactions with equilibrium
Identify the equilibrium extent of reaction more precisely by constants of 0.1, 1, and 10 by solving for the extent of reaction,
plotting the derivative of the Gibbs energy of the mixture with rather than using the analytic expression for the extent of reac-
respect to extent of reaction. Note that the slope of this plot tion. This method can be used for more complicated reactions.
goes to minus infinity at 0 and positive infinity at 1.

Plot the equilibrium extent of the reaction A(g) 2B(g)
( ) Calculate the equilibrium constant to verify the equilib-

versus temperature at pressures of 0.1, 1, and 10 bar for a reac-
rium extent of reaction.

tion having an equilibrium constant of 0.1 at 298 K and a stan-
Calculate and for the reaction dard enthalpy of reaction of 50 kJ mol that is independent of

temperature.N (g) O (g) 2NO(g)
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Calculate the equilibrium composition of a reaction mix- ( ) Calculate the standard enthalpy of dissociation of cal-
ture containing CO, CO , H , H O, and CH at 1000 K and a cite from the data in Table 5.1 by fitting the data to ln
total pressure of 1 bar. In doing that, also calculate the volume. / . Compare with NBS value at 298.15 K. ( ) Cal-
The mixture initially consists of 2 mol CH and 3 mol H O. There culate the standard Gibbs energy of the reaction at 298.15 K
are two independent reactions, which can be written as using the parameters obtained in ( ).

The standard Gibbs energies of the isomers of the pentanesCH H O CO 3H
at 700 K are as follows:

CO H O CO H
-pentane 193.26 kJ mol

There is another way in which the equilibrium composition 2-methylbutane 190.75
of a multireaction system can be calculated, and that is by use 2,2-dimethylpropane 202.05
of the Newton–Raphson method. This method starts with an

What are the equilibrium mole fractions of the three isomers?estimate of the equilibrium composition and improves it in an
If the gases are ideal, will changing the pressure change thisiterative process. A very efficient program for carrying this out,
distribution?called equcal in Mathematica, has been written by F. Krambeck

of Mobil Research and Development [A. M. Sapre and F. J. The reaction A B, where A and B are ideal gases, is
Krambeck (eds.), , New studied at 298.15 K. The standard chemical potential of A at
York: Van Nostrand Reinhold, 1991]. The input consists of a this temperature is 40 kJ mol and that for B is 37 kJ mol .
conservation matrix, a vector of Gibbs energies of formation ( ) Plot (1 ) versus from 0 to 1. ( ) Plot
at the desired pressure multiplied by ( 1/ ), and a vector of the Gibbs energy of mixing versus . ( ) Plot the sum of ( )
initial amounts of species. Calculate the equilibrium amounts and ( ) versus . ( ) Plot d /d versus . ( ) Plot /
for Computer Problem 5.J using equcalc. versus .

�

�
�

� � �� �
�

� � � �
�

Chapter 5 Chemical Equilibrium

�

� �

�

� �

5.J 5.L

5.M

5.K

5.N



P T

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

phase

6
Phase Diagrams of One-Component Systems
The Clapeyron Equation
The Clausius–Clapeyron Equation
Vapor–Liquid Equilibrium of Binary Liquid Mixtures
Vapor Pressure of Nonideal Mixtures and Henry’s Law
Activity Coefficients
Colligative Properties
Two-Component Systems Consisting of Solid
and Liquid Phases
Special Topic: Effect of Surface Tension
on the Vapor Pressure

A is a part of a system, uniform in chemical composition and physical prop-
erties, that is separated from other homogeneous parts of the system by bound-
ary surfaces. The phase behavior exhibited by pure substances is quite varied
and complicated, but there are powerful generalizations from thermodynamics
that help us to understand these phenomena. The Clapeyron equation expresses
d /d for a two-phase system containing one component at equilibrium in terms
of other thermodynamic quantities.

We have seen earlier that when two phases are at equilibrium they have the
same temperature and pressure, and the chemical potential of each species, which
is in both phases, is the same in each phase. Surface tension is involved in equilib-
rium between phases when there is curvature because the curved interface exerts
a pressure so that the pressure is higher in the phase on the concave side of the
interface.

Two-component, liquid–liquid systems may show very complicated behavior.
The concept of ideal solutions provides a standard against which real solutions
may be compared. Ideal solutions follow Raoult’s law, and so it is convenient to
express the deviations of real solutions from ideality by use of activity coefficients
calculated from deviations from Raoult’s law. Real solutions of nonelectrolytes

Phase Equilibrium
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a b c dPhase diagrams for ( , ) water, ( ) carbon dioxide, and ( ) carbon.

Chapter 6 Phase Equilibrium

6.1 PHASE DIAGRAMS OF ONE-COMPONENT SYSTEMS

Figure 6.1

follow Henry’s law at low concentrations, and activity coefficients can also be cal-
culated from deviations from Henry’s law. Ideal solubility, freezing-point depres-
sion, and osmotic pressure are also discussed in this chapter.

The – – surface for a one-component system was introduced in Section 1.6,
and we saw that it is convenient to use projections onto the – plane and the

– plane. Projections onto the – plane are shown for water, carbon dioxide,
and carbon in Fig. 6.1.

The phase diagram for water at low pressures is given in Fig. 6.1 , and the
phase diagram at high pressures is given in Fig. 6.1 . In Fig. 6.1 , the vapor pres-
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We represent a critical point with a dot in a phase diagram, but in the neighbor-
hood of that dot there are some phenomena, such as the turbidity mentioned
in Section 1.7, that are ery interesting in their own right. We do not ha e the
space to pursue these remarkable phenomena, but we should remember that they
also occur in connection with critical points of mixtures of liquids, which we will
encounter later in this chapter.
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*According to the phase rule, the intensive state of liquid water is characterized by two intensive
variables. It is all right if we pick temperature and pressure. However, there is a problem if we pick
pressure and molar volume since the temperature is not uniquely determined by these variables. In
the case of water, the molar volume has a minimum in the neighborhood of 4 C. The lesson from this
is that we should pick one conjugate variable from each pair, and not two conjugate variables from
the same pair.

�

m mb

m b

( ) Dependence of the
chemical potentials of solid, liq-
uid, and gas phases on temperature
at constant pressure. The dashed
lines in ( ) are for a lower pressure.
The plots should be slightly concave
downward, since entropy increases
with increasing temperature, but
they have been drawn as straight
lines here for simplicity.
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Figure 6.2

sure of water is given as a function of temperature by the line between the liquid
and vapor areas. The dashed extension of this line gives the vapor pressure of su-
percooled water. The curve for the sublimation pressure of ice goes down to zero
at 0 K. At higher pressures, four other crystal forms of ice are formed. Starting at
the triple point, the freezing point of ice I is lowered to 22 C when the pressure
is raised to 2000 bar, but higher pressures lead to other crystal forms of ice for
which d /d is positive, as shown in Fig. 6.1 .

The phase diagram for carbon dioxide in Fig. 6.1 shows the equilibrium be-
tween solid and gas at 1 bar at 78 C. Liquid carbon dioxide is produced only
above 5.1 bar.

The phase diagram for carbon in Fig. 6.1 shows that graphite and diamond
are in equilibrium at room temperature only at pressures above 10 000 bar. Dia-
monds for industrial use are produced at high pressures and temperatures using
catalysts. The details of this phase diagram are not well known because of the
difficulty in obtaining equilibrium.

In Section 5.9, we saw that the number of degrees of freedom for the descrip-
tion of the intensive state of the system is 2 if only pressure–volume
work is involved. For a one-component system, 3 , so more than three
phases cannot be in equilibrium. In the areas of Fig. 6.1, 1, so 2 and
the intensive state of the system is completely described by specifying and .*
Along a line, there are two phases at equilibrium, so the system can be completely
described by specifying either or . At a triple point, three phases are in equi-
librium, so 0. If the temperature or pressure is changed, two phases will dis-
appear because the point representing the system will then lie in the solid, gas, or
liquid area of the phase diagram.

To understand the change from solid to liquid to gas phase when a solid is
heated at constant pressure, we may consider a plot of chemical potential versus
temperature at constant pressure for the various phases, as shown in Fig. 6.2 . The
stable phase is that with the lowest value of the chemical potential.

If two or three phases of a single component have the same chemical potential
at a certain temperature and pressure, they will coexist at equilibrium as at the
melting point , boiling point , or triple point. Below the melting point the
solid has the lowest chemical potential and is therefore the stable phase. Between

and the liquid is the stable phase. It may be seen from Fig. 6.2 that the
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phase transitions are sudden, but there are no indications of drastic change in the
properties of the system as the temperature approaches the transition point.

For a single phase of a pure substance, the chemical potential is a function
of temperature and pressure. Thus, the chemical potential can be represented
as a surface in – – space. There are chemical potential surfaces of this
type for each phase of a substance: gas, liquid, and one or more solid phases.
The surfaces representing any two phases will intersect along a line, and three
surfaces will intersect at a point, called the triple point. The phase diagram
for a one-component system is the projection of these intersections onto the

– plane.
Rather than looking at surfaces in three dimensions, it is more convenient to

consider the chemical potential as a function of temperature at specified pressures,
as in Fig. 6.2 .

The slopes of the lines giving the chemical potentials of solid, liquid, and gas
in Fig. 6.2 are given by (see equation 4.84)

(6 1)

Since the entropy is positive, the slopes are negative, and since , the
slope is more negative for the gas than for the liquid and more negative for the
liquid than for the solid.

At a lower pressure the plots of versus are displaced, as shown in Fig. 6.2 .
The effect of pressure on the chemical potential of a pure substance at constant
temperature is given by (see equation 4.85)

(6 2)

Since the molar volume is always positive, the chemical potential decreases
as the pressure is decreased at constant temperature. Since , , this ef-
fect is much greater for a gas than for a liquid or solid. As shown in Fig. 6.2 ,
reducing the pressure lowers the boiling point and normally lowers the melting
point. The effect on the boiling point is much greater because of the large differ-
ence in the molar volumes of gas and liquid. As a result, the range of temperature
over which the liquid is the stable phase has been reduced. It is evident that at
a sufficiently low pressure the curve for the chemical potential of the gas will in-
tercept the solid curve below the temperature where the solid and liquid have
the same chemical potential. At this low pressure the solid will sublime instead
of melt; that is, it passes directly into the vapor state without going through the
liquid state, as illustrated by dry ice in Fig. 6.1 .

At some particular pressure the solid, liquid, and vapor curves will intersect
at a point; the temperature and pressure at which these three phases coexist is
referred to as the triple point. If a substance can exist in more than one solid
phase, the phase diagram will have more than one triple point, as illustrated in
Fig. 6.1 .

The transitions we discussed in the preceding section are referred to as
because there is a discontinuity in the first derivatives

of the chemical potential. Since ( / ) is different on the two sides of the
transition temperature, the two phases have different entropies, and thus differ-
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6.2 The Clapeyron Equation

6.2 THE CLAPEYRON EQUATION
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Figure 6.3

ent enthalpies. Since ( / ) is different on the two sides, the two phases have
different volumes. The behavior of is more complicated in that d /d is in-
finite when two phases coexist at the transition temperature.

In a there is no discontinuity in the first deriva-
tives of , but discontinuities occur in the second derivatives (curvature) of
the chemical potential. Since ( / ) is the same on two sides of the tran-
sition, there is no discontinuity in the entropy at the transition temperature.
Therefore, there is no heat of transition. There is a discontinuity in because

( / ) , as may be derived readily from equation 4.42. How-
ever, does not become infinite at the critical point as in the case of first-
order transitions. The sudden appearance of superconductivity in certain metals
when they are cooled to low temperatures is an example of such a second-order
transition.

Consider a one-component system with two phases ( and ). At equilibrium,
the pressure, temperature, and chemical potential must be the same in the two
phases. For the chemical potentials,

(6 3)

When the temperature is changed at constant pressure, or the pressure is changed
at constant temperature, one of the phases will disappear. However, if the tem-
perature and pressure are both changed in such a way as to keep the two chemical
potentials equal to each other, the two phases will continue to coexist. The plot of
pressure versus temperature along which the two phases coexist is referred to as
the (see Fig. 6.3). The necessary relation for d /d was derived
by Clapeyron.

For a change of pressure and temperature along the coexistence curve,

d d (6 4)

since the chemical potential is equal to the molar Gibbs energy for a one-
component system, d d d d according to equation 4.36. Thus,

d d d d (6 5)

or

d
(6 6)

d

Although we have considered molar quantities, the quantity unit cancels in this
equation. Thus, and per unit mass can also be used. This equation is
referred to as the and it may be applied to vaporization,
sublimation, fusion, or the transition between two solid phases of a pure sub-
stance. Note that d /d is a total derivative, not a partial derivative; however,
there is a constraint: The two phases remain in equilibrium so that 0. The
molar enthalpies of sublimation, fusion, and vaporization at the triple point are
related by

(6 7)
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What is the change in the boiling point of water at a 100 C per Pa change in atmospheric
pressure?

The molar enthalpy of vaporization is 40 69 kJ mol , the molar volume of liquid water
is 0 019 10 m mol , and the molar volume of steam is 30 199 10 m mol , all
at 100 C and 1.01325 bar:

d (40 690 J mol )
d ( ) (373 15 K)(30 180 10 m mol )

3613 Pa K

Thus, d /d 2 768 10 K Pa .

Calculate the change in pressure required to change the freezing point of water 1 C. At
0 C the heat of fusion of ice is 333 5 J g , the density of water is 0 9998 g cm , and the
density of ice is 0 9168 g cm .

The reciprocals of the densities, 1.0002 and 1.0908, are the volumes in cubic centime-
ters of 1 g. The volume change on freezing ( ) is therefore 9 06 10 m g . For
small changes , , and ( ) are virtually constant, so that

333 5 J g
(273 15 K)( 9 06 10 m g )( )

1 348 10 Pa K

The change in the freezing point of water per bar pressure is

10 Pa bar
0 0075 K bar

1 348 10 Pa K

This shows that an increase in pressure of 1 bar lowers the freezing point 0.0075 K. The
negative sign indicates that an increase in pressure causes a decrease in temperature. The
change in pressure required to change the freezing point of water 1 C is

1
133 bar K

0 0075 K bar

Using the data in Table C.2, determine the vapor pressures of H O(l) and Br (l) at
298.15 K. These vaporization processes may be handled as if they were chemical
reactions.
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since the heat required to vaporize a given amount of the solid is the same whether
this process is carried out directly or by first melting the solid and then vaporizing
the liquid.

Water is unusual in that it expands on freezing, so that and thus d /d
for melting is negative.



Calculation of the pressure to make diamonds from graphite
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vap 298

1

2 2

vap 298

1
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1 16 3 6 3

2

2 1 2 1
1

2 1
2 1

1
5

16 3

9 4

l

g g

vap vap
2

g

vap
2

H O(l) H O(g)

ln

228 572 ( 237 129) 8 557 kJ mol

0 031 69 bar

Br (l) Br (g)

ln

3 110 kJ mol

0 2852 bar

Calculate the equilibrium pressure for the conversion of graphite to diamond at 25 C. The
densities of graphite and diamond may be taken to be 2.25 and 3 51 g cm , respectively,
independent of pressure, in calculating the change of with pressure.

C(graphite) C(diamond)

From Table C.2,

2900 J mol

1 1
12 10 m mol 1 91 10 m mol

3 51 2 25

Since ( / ) ,

d d ( )

0 2900 J mol
10 Pa

1 91 10 m mol

1 52 10 Pa or 1 52 10 bar
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6.3 The Clausius–Clapeyron Equation
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For vaporization and sublimation Clausius showed how the Clapeyron equation
may be simplified by assuming that the vapor obeys the ideal gas law and by ne-
glecting the molar volume of the liquid in comparison with the molar volume
of the gas . Substituting / for , we have

d
(6 8)

d

On rearrangement equation 6.8 becomes

d
d ln d (6 9)
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Vapor Pressures
of Ice and Water

/ C /kPa

40 0.013
30 0.038
20 0.103
10 0.260

0 0.611
10 1.228
20 2.338
30 4.245
40 7.381
60 19.933

100 101.325
140 361.21
180 1001.9

Vapor pressure of water
(FP freezing point, BP boiling
point).

The enthalpy of
vaporization approaches zero as the
temperature approaches the critical
temperature.

�
�
�
�

Chapter 6 Phase Equilibrium

� �

� �

� �

� �

� �

� � � �

�

�

�

�

�

�

�

�

�

�
�

�

�
� � �

� �

�

�

�

�

� �

Table 6.1

Figure 6.4

Figure 6.5

�

where is the standard pressure used. Integrating on the assumption that
is independent of temperature and pressure yields

d ln d (6 10)

ln (6 11)

where is the integration constant. This suggests that a plot of ln( / ) versus
1/ should be linear, and this is borne out by data on both vaporization and sub-
limation, as shown in Fig. 6.4. Vapor pressure data for ice and water are given in
Table 6.1.

Frequently, it is more convenient to use the equation obtained by integrating
between limits, at and at , as follows:

d ln d (6 12)

1 1
ln (6 13)

( )
ln (6 14)

To represent the vapor pressure as a function of temperature over a wide range
of temperature, it is necessary to take the temperature dependence of into
account. Another deficiency in this simple equation is that the vapor has been
assumed to be an ideal gas.

Over narrow ranges of temperatures, the enthalpy of vaporization can be
taken to be a linear function of temperature (see equation 5.43). However, in cal-
culating vapor pressures over a wider range of temperature, we have to recognize
that the enthalpy of vaporization approaches zero as the temperature approaches
the critical temperature, as shown in Fig. 6.5.

The dependence of the heat of vaporization on temperature can be approxi-
mately represented by

(6 15)

Thus equation 6.9 can be written

d 1
d d (6 16)

Integration yields

1
ln ln (6 17)

where is the integration constant. Thus vapor pressures determined experimen-
tally over a range of temperatures can be represented by values of , , , and
determined by curve fitting to minimize the sum of the squares of the deviations
from the experimental values. Since the enthalpy of vaporization is given by

d ln d ln
(6 18)

d d(1/ )
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fus vapfus fus b vap
1 1 1 1 1 1

2

2 6

3

4

2

The boiling points are at 1 atm.

vap

vap

Enthalpies and Entropies of Fusion at the Melting Point and Vaporization at the Boiling
Point

kJ molK J K mol K kJ mol J K mol

N 63.3 0.720 11.37 77.4 5.577 72.1
C H 89.9 2.86 31.81 184.52 14.71 79.7
NH 195.4 5.653 28.93 239.72 23.33 97.3
CCl 250.3 2.5 10.00 349.9 30.0 85.7
H O 273.2 6.01 22.00 373.15 40.66 109.0
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6.4 VAPOR–LIQUID EQUILIBRIUM
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where is the total pressure on the surface of the liquid, the heat of vaporization
as a function of temperature can be obtained by differentiating ln with respect
to or 1/ . The use of these equations is illustrated by Computer Problems 6.C
and 6.D. If the vapor pressures are measured over a range of temperatures up to
near to the critical point, a plot of like Fig. 6.5 can be obtained. However, to
do this successfully requires a more complicated empirical equation than equation
6.15.

A number of enthalpies and entropies of fusion and vaporization are given in
Table 6.2.

In this section, we will discuss only ideal liquid mixtures because their vapor pres-
sures follow simple equations and the basic principles can be easily understood.
First, we will consider partial pressures of the vapors in equilibrium with binary
liquid mixtures. Then we will show that the thermodynamic properties of ideal
solutions are readily calculated from the properties of the pure liquids. For ideal
solutions, boiling point diagrams can also be calculated, and distilling columns can
readily be designed to achieve any desired degree of separation of the two liquids.
Since these systems do not involve chemical reactions, the number of components
is equal to the number of species (see Section 5.9). In the following discussions,
we will use the term rather than since that is customary in
discussing phase equilibria.

The calculation of properties of both ideal and nonideal solutions is based
on the fact that the chemical potential of a species is the same in different phases
when the phases are at equilibrium. When a binary liquid mixture is in equilibrium
with its vapor at a constant temperature, the chemical potential of each compo-
nent is the same in the gas and liquid phases:

(g) (l) (6 19)

Rather than using fugacities for the components in the vapor phase, we will as-
sume the vapor is an ideal gas. Thus, the chemical potential of a component in the
gas phase is given by

(g) (g) ln (6 20)
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system at 60 C. ( ) Partial and total
pressures. ( ) Liquid and vapor
compositions.

�

�

�

�

�

�

the activity of a component of a solution is equal
to the ratio of its partial pressure above the solution to the vapor pressure of the
pure liquid.

Raoult’s law.

ideal solution.
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where is the standard state pressure of 1 bar. The most general way to express
the chemical potential of a component in a liquid mixture is to use the activity,
which was introduced in Section 4.5:

(l) (l) ln (6 21)

Thus, equation 6.20 can be written

(g) ln (l) ln (6 22)

This equation can also be applied to pure liquid, which, of course, has an activity
of unity in the liquid phase:

(g) ln (l) (6 23)

The equilibrium vapor pressure of pure at temperature is . Now we subtract
this equation from equation 6.22 to eliminate the standard chemical potentials of
gas and liquid:

ln ln (6 24)

or

(6 25)

Thus, if the vapor is an ideal gas,

This discussion has been quite general, but so far it has not shown us how
to predict the partial pressure of a component of an actual solution. In 1884
Raoult found that for certain solutions the partial pressure of a component is
equal to the mole fraction of that component times the vapor pressure of the pure
component:

(6 26)

This equation is not exact, but it is so useful that it is referred to as It
is obeyed most closely when the components are quite similar. Mixtures of ben-
zene and toluene obey Raoult’s law, as illustrated by Fig. 6.6. In molecular terms
Raoult’s law is obeyed by pairs of liquids A and B where A–A, A–B, and B–B
interactions are all the same. Since the gas phase has been assumed to be ideal,
Raoult’s law can also be written

(6 27)

where is the mole fraction of in the gas phase.
When equation 6.26 is substituted in equation 6.25, we see that for solutions

with very similar components, the activity of a component is equal to its mole
fraction; thus, for an ideal solution. When this relation is substituted in
equation 6.21, we obtain

(l) (l) ln (6 28)

We take this equation as the definition of an
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given by equation 6.29. ( ) Plot of
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Figure 6.7

By use of Raoult’s law we can calculate the phase diagram for an ideal liquid
mixture. The total vapor pressure of an ideal binary liquid mixture is given by

( ) (6 29)

This equation for the is plotted in Fig. 6.6 and in Fig. 6.7 . At
points in the phase diagram above the bubble point line, the system is in the liquid
state. Suppose the pressure on a specific binary solution of benzene and toluene is
reduced from some high value. When the pressure reaches the bubble point line,
it is equal to the total vapor pressure of the solution given by equation 6.29, and
a further lowering of the pressure will cause bubbles of vapor to form.

The composition of the vapor in equilibrium with a binary solution can readily
be calculated using Raoult’s law. The mole fraction of component 1 in the vapor
is given by

(6 30)
( )

This equation can be solved for to obtain the following expression for the mole
fraction of component 1 in solution that corresponds to a certain mole fraction
in the equilibrium vapor:

(6 31)
( )

Now we can use equation 6.23 to calculate the total pressure that corresponds to
a certain mole fraction of component 1 in the vapor phase. Substituting equation
6.31 in equation 6.27 yields

(6 32)
( )

This equation for the is plotted in Figs. 6.6 and 6.7 . At points
in the phase diagram below the dew point, the system is in the vapor state. Sup-
pose the pressure on a specific binary vapor of benzene and toluene is raised
from some low value. When the pressure reaches the dew point line, it is equal
to that given by equation 6.32, and raising the pressure further causes conden-
sation of the first droplets of liquid. In the region of the phase diagram be-
tween the dew point line and the bubble point line, two phases are present at
equilibrium.

Points on the dew point line and bubble point line at the same pressure rep-
resent the compositions of vapor and liquid phases that are in equilibrium. These
points are connected by a horizontal line referred to as a which is shown
in Fig 6.6 . The overall composition of the two-phase system can range from to
. At the system is all vapor, and at the system is all liquid. If the mole fraction

of toluene in the system is halfway between and , the amount of liquid is equal
to the amount of vapor. If the mole fraction of toluene in the system is , the ratio
of the number of moles of liquid to the amount of vapor is equal to ( )/( ).
This rule, which is readily derived from the conservation of moles, is referred to
as the
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At 60 C the vapor pressures of pure benzene and toluene are 0.513 and 0.185 bar, respec-
tively. What are the equations of the bubble point line and dew point line? For a solution
with 0.60 mole fraction toluene, what are the partial pressures of toluene and benzene, and
what is the mole fraction of toluene in the vapor?

We will consider toluene to be component 1.

( )

0 513 bar (0 328 bar)

( )

0 0949 bar
0 185 bar (0 328 bar)

(0 60)(0 185 bar) 0 111 bar

(0 40)(0 513 bar) 0 205 bar

0 513 bar (0 328 bar)(0 60) 0 316 bar

( )

(0 60)(0 185 bar)
0 513 bar (0 328 bar)(0 60)

0 351

According to the data in the previous example, what are the activities of toluene (compo-
nent 1) and benzene (component 2) in a solution containing 0.600 mole fraction toluene
according to equation 6.25?

0 111 bar
0 600

0 185 bar

0 205 bar
0 400

0 513 bar

Since these are ideal solutions, the activities are equal to the mole fractions.
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Bubble point line:

Dew point line:

Before turning to boiling point diagrams, we consider the thermodynamic
consequences of equation 6.28, which defines an ideal solution. The molar Gibbs
energy of an ideal solution is given by

ln (6 33)
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Benzene (2)–toluene
(1) boiling points: liquid and vapor
compositions. The liquid boils at
the temperature given by the lower
curve.

Vapor Pressures of Toluene (1) and Benzene (2)

C

/bar — 0.508 0.543 0.616 0.698 0.742 0.836 1.013
/bar 1.013 1.285 1.361 1.526 1.705 1.800 2.004 —

Thus, there is
no volume change or heat evolution when liquids are mixed to form ideal solutions
at constant temperature and pressure.
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Table 6.3

Since this equation gives as a function of temperature and pressure, it contains
all of the thermodynamic information about an ideal solution. The molar entropy
of an ideal solution is obtained from ( / ) :

ln (6 34)

The molar enthalpy of an ideal solution is obtained from [ ( / )/ ] :

(6 35)

and the molar volume is obtained from ( / ) :

(6 36)

The first terms in these equations give the thermodynamic properties of the
amounts of pure liquids required to form the mixture. Therefore, the changes in
these thermodynamic properties per mole of solution are given by

ln (6 37)

ln (6 38)

0 (6 39)

0 (6 40)

These are the same equations that were obtained for ideal gas mixtures (Example
4.10), except that these equations are written for 1 mol of mixture.

We have been considering ideal binary liquid mixtures at constant tempera-
ture, and now we will consider them at constant pressure because this is of special
interest in connection with distillation. Phase diagrams at constant pressure are
referred to as The boiling point diagram for benzene–
toluene solutions at 1.013 bar (1 atm) is shown in Fig. 6.8. At points in the phase
diagram above the dew point line, the system is in the vapor state. At points be-
low the bubble point line, the system is in the liquid state. Between the two lines,
two phases are present, and the relative amounts of the two phases are given by
the lever rule. Since benzene and toluene form ideal solutions, this diagram may
be calculated from the information given in Table 6.3 on the vapor pressures of
benzene and toluene at temperatures between their boiling points of 80.1 and
110 6 C, respectively, at 1.013 bar.
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solution that boils at 100 C

F C p
P T

190

x
y

x

P P . .
x .

. .P P

y

x P . .
y

P .

.

a b

Thermodynamics for Chemical Engineers.

� � � � �

� � �

� �

�

1

1

1

2
1

1 2

1

1 1
1

1

2

1 2

What is the mole fraction of toluene in the toluene–benzene solution that boils at 100 C,
and what is the mole fraction of toluene in the vapor?

Equation 6.29 may be solved for :

1 013 bar 1 800 bar
0 744

0 742 bar 1 800 bar

Now that the mole fraction of toluene in the liquid phase is known, its mole fraction in
the vapor phase is readily calculated using equation 6.27:

(0 744)(0 742 bar)
1 013 bar

0 545

These points are labeled and in Fig. 6.8. For nonideal solutions the points have to be
obtained experimentally.

Three-dimensional plot for a two-component liquid and vapor system. The plot
consists of two surfaces (bubble point surface and dew point surface). (From K. E. Bett, J.
S. Rowlinson, and G. Saville, Cambridge, MA:
MIT Press, 1975. Reproduced by permission of The Athlone Press.)
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Figure 6.9

The relationship between the vapor pressure diagram of Fig. 6.6 and the boil-
ing point diagram of Fig. 6.8 is shown in Fig. 6.9. It is possible to plot vapor–liquid
data for a two-component system in a three-dimensional diagram because the
maximum number of degrees of freedom is 2 2 1 2 3.

In the – –composition diagram the states of pairs of phases in equilibrium
with each other define surfaces. These two surfaces come together in the planes
that represent the vapor pressures of the two components as a function of tem-
perature. Note that the vapor pressure curve for component 1 ends at the critical
point c , and the vapor pressure curve for component 2 ends at the critical point
c . The upper and lower surfaces also come together along a critical locus between
c and c made up of the points at which the vapor and liquid phases in equilib-
rium become identical. In Fig. 6.9 the equilibrium pressures and equilibrium mole
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Figure 6.10

fractions of component 1 in the liquid phase form the upper surface. The lower
surface in Fig. 6.9 is made up of points representing the equilibrium pressures and
equilibrium mole fractions of component 1 in the vapor phase .

Between the two surfaces two phases are present at equilibrium, saturated
vapor and saturated liquid. Since there are two phases, the number of degrees of
freedom between the surfaces is 2 2 2 2. If the temperature and pres-
sure are specified, the compositions of the two phases are fixed, and they are given
by the abscissas of the two ends of a horizontal tie line. The relative amounts of
the two phases are not fixed by specifying only temperature and pressure, but the
phase rule is not concerned with the relative amounts of phases. If the tempera-
ture and the composition of the liquid phase are given, the pressure is given by
the ordinate and the composition of the vapor phase is given by the other end of
the horizontal tie line.

When a binary solution is partially vaporized, the component that has the
higher vapor pressure is concentrated in the vapor phase, thus producing a dif-
ference in composition between the liquid and the equilibrium vapor. This vapor
may be condensed, and the vapor obtained by partially vaporizing this condensate
is still further enriched in the more volatile component. In
this process of successive vaporization and condensation is carried out in a frac-
tionating column. Figure 6.8 shows that a solution of 0.75 mole fraction toluene
and 0.25 mole fraction benzene boils at 100 C under 1 atm pressure, as indicated
by point . The equilibrium vapor is richer in the more volatile compound, ben-
zene, and has the composition . This vapor may be condensed by lowering the
temperature along the line . If a small fraction of this condensed liquid is vapor-
ized, the first vapor formed will have the composition corresponding to . This
process of vaporization and condensation may be repeated many times, with the
result that a vapor fraction rich in benzene is obtained.

Each vaporization and condensation represented by the line corre-
sponds to an idealized process in that only a small fraction of the vapor is con-
densed and only a small fraction of the condensate is revaporized. It is more
practical to effect the separation by means of a distillation column, such as a
bubble-cap column illustrated in Fig. 6.10.

Each layer of liquid on the plates of the column is equivalent to the boiling
liquid in a distilling flask, and the liquid on the plate above it is equivalent to the
condenser. The vapor passes upward through the bubble caps, where it is partially
condensed in the liquid and mixed with it. Part of the resulting solution is vapor-
ized in this process and is condensed in the next higher layer, while part of the
liquid overflows and runs down the tube to the next lower plate. In this way there
is a continuous flow of redistilled vapor coming out the top and a continuous flow
of recondensed liquid returning to the boiler at the bottom. To make up for this
loss of material from the distilling column, fresh solution is fed into the column,
usually at the middle. The column is either well insulated or surrounded by a con-
trolled heating jacket so that there will not be too much condensation on the walls.
The whole system reaches a steady state in which the composition of the solution
on each plate remains unchanged as long as the composition of the liquid in the
distilling pot remains unchanged.

A distillation column may alternatively be packed with material that provides
efficient contact between liquid and vapor and occupies only a small volume, so that
there is free space to permit a large throughput of vapor. Helices of glass, spirals of
screen, and different types of packing are used with varying degrees of efficiency.
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AND HENRY’S LAW

�

�

�

���

Figure 6.11

The efficiency of a column is expressed in terms of the equivalent number of
theoretical plates. The number of in a column is equal to the
number of successive infinitesimal vaporizations at equilibrium required to give
the separation that is actually achieved. The number of theoretical plates depends
somewhat on the reflux ratio, the ratio of the rate of return of liquid to the top of
the column to the rate of distilling liquid off. The number of theoretical plates in a
distillation column under actual operating conditions may be obtained by count-
ing the number of equilibrium vaporizations required to achieve the separation
actually obtained with the column.

Suppose that in distilling a solution of benzene and toluene with a certain
distillation column it is found that distillate of composition is obtained when the
composition of the liquid in the boiler is given by , in Fig. 6.8. Such a distillation is
equivalent to three simple vaporizations and condensations, as indicated by steps

, , and . Since the distilling pot itself corresponds to one theoretical
plate, the column has two theoretical plates.

Both negative and positive deviations from Raoult’s law are found. Figure 6.11
shows a system with pronounced negative deviations, and Fig. 6.11 shows a sys-
tem with pronounced positive deviations. Note that in both cases the bubble point
line and dew point line are horizontally tangent to each other at the maximum or
minimum. Systems with a maximum or minimum are referred to as
Note that at the azeotropic composition, the vapor has the same composition as
the liquid. When a system has a minimum in the vapor pressure plot, it will have
a maximum in the boiling point plot, as shown in Fig. 6.12 . When a system has a
maximum in the vapor pressure plot, it has a minimum in the boiling point plot,
as shown in Fig. 6.12 . When a system forms an azeotrope, its components cannot
be separated by simple fractional distillation. For example, in Fig. 6.12 to the left
of the maximum, solutions can be separated into component 2 and the azeotrope
by fractional distillation, but pure component 1 cannot be obtained. Azeotropes
can be “broken” by distilling at another pressure where the system does not form
an azeotrope, or by adding a third component.

Consider a two-phase region in Fig. 6.12 ; the number of degrees of freedom
is given by 2 2 2 2. We have assumed that two intensive properties
may be used to specify the intensive state of the system. However, specifying
and does not uniquely determine the composition in this case, as can be seen
from Fig. 6.12 , which is for fixed pressure. In this case, and or and
should be used rather than and .

Now how can we understand systems with a minimum in the vapor pressure
plot in molecular terms?

The system acetone–chloroform has a minimum in its vapor pressure curve
because of the formation of a weak hydrogen bond between the oxygen of the
acetone and the hydrogen of the chloroform:

Cl CH

Cl C H O C

Cl CH
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Using the Henry’s law constant, calculate the solubility of carbon dioxide in water at 25 C point curve at constant pressure for
in moles per liter (represented by using square brackets) at a partial pressure of CO over a minimum boiling point azeotrope.
the solution of 1 bar. Assume that 1 liter of solution contains practically 1000 g of water.

10 Pa 1000
0 167 10 Pa [CO ]

[CO ] 18 02

Since [CO ] may be considered negligible in comparison with the number of moles of wa-
ter, 1000/18.02,

(10 Pa)(55 5 mol L )
[CO ] 3 32 10 mol L

0 167 10 Pa

Vapor pressure curve
for one component of a binary liquid
mixture at constant temperature.
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Henry’s law.
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6.5 Vapor Pressure of Nonideal Mixtures and Henry’s Law
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Figure 6.12

Figure 6.13

A hydrogen bond is a bond between two molecules, or two parts of one molecule,
that results from the sharing of a proton between two atoms, one of which is usu-
ally fluorine, oxygen, or nitrogen (Section 11.10). Because of hydrogen bonding,
the vapor pressures of both components are less than would be expected if there
were no interaction and the mixture obeyed Raoult’s law.

Positive deviations from Raoult’s law result when A–A and B–B interactions
are stronger than A–B interactions. If these deviations are large enough, immisci-
bility results. When the positive deviations from Raoult’s law are larger than in Fig
6.11 , phase separation occurs. Phase separation occurs when the Gibbs energy
of the two-phase system is lower than that of the homogeneous system.

In all of these phase diagrams Raoult’s law is approached for a component
as its mole fraction approaches unity. As the mole fraction of a component ap-
proaches zero, its partial pressure is given by

(6 41)

which is known as These two statements are illustrated in Fig. 6.13.
Henry’s law results from the circumstance that in sufficiently dilute solutions the
environment of the minor component is constant, and its partial pressure is pro-
portional to its mole fraction. The value of the Henry’s law constant (see equa-
tion 6.41) is obtained by plotting the ratio / versus and extrapolating to

0. Such a plot is shown later in Fig. 6.15.
It is convenient to express the solubilities of gases in liquids by use of Henry’s

law constants. A few gas solubilities at 25 C are summarized in this way in Table
6.4. Up to a pressure of 1 bar Henry’s law holds within 1 to 3% for many slightly
soluble gases.

The solubility of a gas in liquids usually decreases with increasing tempera-
ture, since heat is generally evolved in the solution process. There are numerous
exceptions, however, especially with the solvents liquid ammonia, molten silver,
and many organic liquids. It is a common observation that a glass of cold wa-
ter, when warmed to room temperature, shows the presence of many small air
bubbles.

The solubility of an unreactive gas is due to intermolecular attractive forces
between gas molecules and solvent molecules. There is a good correlation be-
tween the boiling points of gases and their solubilities in solvents at room tem-
perature. Substances with low boiling points (He, H , N , Ne, etc.) have weak
intermolecular attractions and are therefore not very soluble in liquids.
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Henry’s Law
Constants ( /10 Pa)
for Gases at 25 C

H 7.12 0.367
N 8.68 0.239
O 4.40
CO 5.79 0.163
CO 0.167 0.0114
CH 4.19 0.0569
C H 0.135
C H 1.16
C H 3.07

Show that if Henry’s law holds for the solute (component 2), Raoult’s law holds for the
solvent (component 1).

The Gibbs–Duhem equation (4.103) provides a relationship between the differentials
of the chemical potentials of components 1 and 2 at constant temperature and pressure:
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Table 6.4 The solubility of gases in water is usually decreased by the addition of other
solutes, particularly electrolytes. The extent of this “salting out” varies consider-
ably with different salts, but with a given salt the relative decrease in solubility is
nearly the same for different gases. The solubility of liquids in water also shows
this salting out phenomenon.

Henry’s law gives rise to the concept of If the vapor pres-
sure of a solute follows Henry’s law, then in dilute solutions its chemical potential
follows an equation very much like that for an ideal solution (equation 6.28). We
can show that as follows. Substituting Henry’s law into equation 6.20 yields

(l) (g) ln

(g) ln ln

(l) ln (6 42)

where

(l) (g) ln (6 43)

is the chemical potential of solute in its standard state in the liquid. In this stan-
dard state, the solute at 1 has the same properties as in very dilute solutions,
where each molecule is surrounded only by molecules of solvent. This standard
state is useful, even if it is hypothetical.

It is important to understand that dilute real solutions behave in a simple way,
but they are not ideal solutions. For the binary mixture illustrated in Fig. 6.13, the
vapor pressure of component 1 in its standard state for a dilute real solution is
equal to .

�



Comment:

Phase separation in liquid mixtures (i.e., the formation of gas–liquid interfaces
and liquid–liquid interfaces) is of tremendous practical importance, but the
equations required to describe and predict the beha ior of nonideal systems
become rather complicated and require solution by computer. Some of the basic
theory of phase equilibria in liquids is gi en in the References at the end of the
chapter.
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which can be used to derive Raoult’s law. Thus, the range of applicability of Henry’s law
for the solute is identical to the range of applicability of Raoult’s law for the solvent.
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To make quantitative calculations on nonideal solutions, it is convenient to intro-
duce the . Several different activity coefficients can be de-
fined, but we will start with the one based on deviations from Raoult’s law. This is
the one that is normally used when both components are liquids. One way to look
at this is to simply insert an activity coefficient into equation 6.28 for the chemical
potential of an ideal solution:

(l) (l) ln (6 44)

This equation gives the correct chemical potential for a component of a real so-
lution. Another way of looking at this is to say that we have set the activity of a
component equal to :

(6 45)

Since the activity of a component always approaches its mole fraction as ap-
proaches unity, we can see that

1 as 1 (6 46)

If there are positive deviations from Raoult’s law, is greater than unity; and if
there are negative deviations from Raoult’s law, is less than unity.

According to equation 6.25, / , where is the vapor pressure of
component , and according to equation 6.45, , so that we can set these
two expressions equal to each other:

(6 47)

Now we have a way to calculate the activity coefficient of from experimental
data.

(6 48)

y y
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The activity coefficients for ether are those calculated from Raoult’s law.
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Calculate the activity coefficients for ether (1) and acetone (2) in ether–acetone solutions
at 30 C. The experimental data are given in Table 6.5 and are plotted in Fig. 6.14.

At 0.5 mole fraction acetone, the activity coefficients of the two components are given
by

52 1 kPa
1 21

(0 5)(86 1 kPa)

22 4 kPa
1 19

(0 5)(37 7 kPa)

The activity coefficients of both components, calculated in this way at other mole fractions,
are summarized in Table 6.5. It will be noted that as the mole fraction of either compo-
nent approaches unity, its activity coefficient approaches unity, since the vapor pressure
asymptotically approaches that given by Raoult’s law.

Activity Coefficients for Acetone–Ether Solutions at 30 C

/kPa /kPa /kPa /kPa /kPa

0 86.1 86.1 1.0 0 0 . . . 0 (1.000)
0.2 71.3 68.9 1.04 12.0 7.5 1.60 15.7 0.77
0.4 58.7 51.7 1.14 19.7 15.1 1.31 31.4 0.63
0.5 52.1 43.1 1.21 22.4 18.9 1.19 39.2 0.57
0.6 44.3 34.4 1.28 25.3 22.7 1.12 47.0 0.54
0.8 26.9 17.3 1.56 31.3 30.1 1.04 62.7 0.50
1.0 0 0 . . . 37.7 37.7 1.00 78.4 (0.48)
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Table 6.5

	

Thus, the activity coefficient of component is equal to the ratio of the par-
tial pressure of above the solution to the partial pressure of expected from
Raoult’s law. Since, for ideal gases, , this equation can also be written
as

(6 49)

Activity coefficients can also be calculated from deviations from Henry’s law.
In fact, this is necessary when the solute is a gas above its critical temperature.
Activity coefficients of the other component, usually referred to as the solvent,
can continue to be based on its deviations from Raoult’s law.

When Henry’s law is used, the activity coefficient is introduced into equa-
tion 6.42 for the chemical potential of solute in a dilute real solution:

(l) (l) ln (6 50)
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Figure 6.14

If we replace (l) with (g) ln( / ) (equation 6.20), and (l) with
(g) ln( / ) (equation 6.43), we obtain

(6 51)

which is the modified form of Henry’s law. Thus, the activity coefficient based on
Henry’s law is calculated from

(6 52)

Since , this can also be written

(6 53)

This activity coefficient is greater than 1 when there are positive deviations from
Henry’s law, and it is less than 1 when there are negative deviations from Henry’s
law. Note that

1 as 0 (6 54)

because Henry’s law is approached as the concentration of the solute goes to zero.
In molecular terms this means that the standard state for the solute, in which
for the solute is unity, is one in which each molecule of solute has the same inter-
actions that it experiences in very dilute solutions.

To calculate the activity coefficients for acetone based on deviations from
Henry’s law, we have to calculate the Henry’s law constant from the data in Ta-
ble 6.5. This is done by calculating the apparent Henry’s law constant /
versus and extrapolating to 0:

(6 55)

y y
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For dilute real solutions, the solvent is usually treated on the basis of devia-
tions from Raoult’s law and the solute is usually treated on the basis of deviations
from Henry’s law.
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Figure 6.15

The extrapolation of this ratio is illustrated in Fig. 6.15, where values of / are
plotted versus . It is found that the Henry’s law constant at infinite dilution ( )
has a value of 78.4 kPa at 30 C.

If acetone obeyed Henry’s law with this value of the constant over the entire
concentration range, its vapor pressure for a solution with 0.5 mole fraction would
be given by point in Fig. 6.14. The actual partial pressure is given by point .

At 0.5 mole fraction acetone, the activity coefficient of acetone based on de-
viations from Henry’s law is

22 4 kPa
0 572 (6 56)

(0 5)(78 4 kPa)

The activity coefficients of acetone calculated in this way are summarized in Table
6.5. The activity coefficients for the “solvent” ether remain the same as calculated
before on the basis of deviations from Raoult’s law.

Since the activity of a component of a real solution is given by / (equation
6.25), substituting equation 6.52 yields

(6 57)

The relation between the two types of activity coefficients can be obtained by
substituting ,

or (6 58)

For mixtures of two liquids, mole fractions provide a natural way of express-
ing concentrations, but for other types of solutions, other concentration scales are
used. Henry’s law may also be written , where is the molal concen-
tration of (moles per kilogram of solvent), or , where is the molar
concentration of (moles per liter of solution), but we will use only
here.

Although the numerical values of the activity coefficients of acetone depend
on which method is employed, the same result is obtained in any thermodynamic
calculation using these activity coefficients, independent of method or concentra-
tion scale. These thermodynamic calculations involve the comparison of initial
and final states, and the standard reference state cancels out.

Now we return to a consideration of ideal solutions and a group of properties that
are referred to as These properties are freezing point de-
pression, boiling point elevation, osmotic pressure, and the lowering of the vapor
pressure by a nonvolatile solute. The Latin root of the word means to
bind together. The thing that binds these four properties together is that, for ideal
solutions, they all depend on the number of particles. Thus, these properties are
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useful for determining molar masses of solutes. We will consider only two of these
properties, freezing point depression and osmotic pressure.

Suppose we want to determine the molar mass of a solute B in a solvent A by
the depression of the freezing point of A. Assuming that solution is ideal and that
pure crystalline A freezes out of solution, the equation for equilibrium is

(s ) (l )

(l ) ln (6 59)

Thus, at the at which the two phases are in equilibrium,

(s ) (l )
ln

( )
(6 60)

where ( ) is the Gibbs energy of fusion of the solvent at temperature .
Now we make a further assumption that 0; in other words, we assume
that and are independent of temperature in the range near the
freezing point. In that case, the Gibbs energy of fusion at temperature is given
by

( )

1 (6 61)

Substituting this equation into equation 6.60 yields

1 1
ln

(6 62)

If the freezing point depression is small, equation 6.81 can be written as follows:

ln ln(1 ) (6 63)

The logarithmic term may be expanded according to

1 1
ln(1 ) ( 1 1) (6 64)

2 3

For dilute solutions the first term is an adequate approximation so that equation
6.63 may be written

(6 65)

In discussing the depression of the freezing point, the concentration of the
solute is generally given in terms of molal concentration (i.e., moles of solute
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What is the value of the freezing point constant for water? The enthalpy of fusion at 273.15
K is 6 00 kJ mol .

(8 3145 J K mol )(273 15 K) (18 02 10 kg mol )

6000 J mol

1 86 K (mol kg )

According to this value of , 0.1 mol of solute added to 1 kg of water will lower the freezing
point 0.186 K, but the relation holds only for dilute solutions. Even a 1-molal solution is
too concentrated, and the depression is something less than 1.86 K.

Determination of the
molar mass of a high polymer by use
of osmotic pressure.
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Figure 6.16

per kilogram of solvent) rather than the mole fraction. The relation between these
concentrations is

(6 66)
1/

where is the molar mass of the solvent, and the approximation applies to dilute
solutions. The molal concentration has the units mol kg , and 1/ also has
the units mol kg when SI units are used.

Substituting equation 6.66 into equation 6.65 yields

(6 67)

where the is given by

(6 68)

The foregoing relations apply only to dilute solutions. Information about activ-
ity coefficients may be obtained by studying the freezing of more concentrated
solutions.

When a solution is separated from the solvent by
that is permeable to solvent but not to solute, the solvent flows through the mem-
brane into the solution, where the chemical potential of the solvent is lower. This
process is known as osmosis. This flow of solvent through the membrane can be
prevented by applying a sufficiently high pressure to the solution. The

is the pressure difference across the membrane required to prevent
the spontaneous flow of solvent in either direction across the membrane. This is
illustrated in Fig. 6.16.

At equilibrium the chemical potential ( ) of pure solvent at pressure
is equal to the chemical potential of the solvent in the solution at pressure .

( ) ( ) (6 69)

The osmotic pressure that is applied to the solution exactly compensates for the
lowering of the chemical potential of the solvent that is caused by the solute. For
an ideal solution, equation 6.69 may be written

( ) ( ) ln (6 70)
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where ( ) is the chemical potential of the pure solvent at temperature
and pressure . According to equation 4.38,

d d (constant and composition) (6 71)

where is the partial molar volume of the solvent. Thus, the effect on the chem-
ical potential of the solvent of raising the pressure is given by

( ) ( ) d (6 72)

Assuming that is constant, we obtain

( ) ( ) (6 73)

Substituting equation 6.73 into equation 6.70 yields

ln ln(1 ) (6 74)

This equation is, of course, applicable only to ideal solutions, since equation 6.70
has been used in the derivation.

At a sufficiently low mole fraction of the solute, the logarithmic term may
be expanded according to equation 6.64. When only the first term in the series is
retained, equation 6.74 becomes

(6 75)

Since the solution is dilute, /( ) / and / , where
is the volume of the solution, and is the amount of solute, / , where

represents mass of solute and is molar mass. Thus, equation 6.75 may be
written

(6 76)

or

(6 77)

where / is the concentration in mass per unit volume, and is the molar
mass of the solute. This is the approximate equation that van’t Hoff found empir-
ically. It is evident from the approximations introduced why this equation cannot
hold for concentrated solutions.

To represent osmotic pressure data on high polymers over a wider range of
concentration it is necessary to add terms in higher powers of the concentration,
as in the virial equation for gases (Section 1.5):

(6 78)

where is the concentration (mass per volume). Synthetic polymers have a dis-
tribution of molar masses, and in the chapter on macromolecules (Chapter 21) we
will see that in equation 6.78 is the number average molar mass.
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A solution of polystyrene in benzene contains 10 g/L. The equilibrium height of the column
of solution (density 0 88 g cm ) in the osmometer (Fig. 6.16) corrected for capillary rise
is 11.6 cm at 25 C. What is the number average molar mass of the polystyrene, assuming
the solution is ideal?

(0 116 m)(0 88 10 kg m )(9 8 m s )

1000 Pa

(10 g)(8 3145 J K mol )(298 K)
(10 Pa)(10 m )

24 8 10 g mol

Cooling curves and the temperature–concentration phase diagram for the
system bismuth–cadmium at constant pressure. The eutectic point is at .

�

�

�

�

�

Example 6.12

Chapter 6 Phase Equilibrium

6.8 TWO-COMPONENT SYSTEMS CONSISTING OF SOLID
AND LIQUID PHASES
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Figure 6.17

First we will consider systems in which the components are completely miscible in
the liquid state and completely immiscible in the solid state, so that only the pure
solid phases separate out on cooling solutions. Such a phase diagram is illustrated
in Fig. 6.17. When molten bismuth or molten cadmium is cooled, the plot of tem-
perature versus time has a nearly constant slope. At the temperature at which the
solid crystallizes out, however, the cooling curve becomes horizontal if the cooling
is slow enough. The halt in the cooling curve results from the heat evolved when
the liquid solidifies. This is shown by the cooling curves for bismuth (labeled 0%
Cd) and cadmium in Fig. 6.17 at 273 and 323 C, respectively.
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When a is cooled, there is a change in slope of the cooling curve
at the temperature at which one of the components begins to crystallize out. The
change in slope is due to the evolution of heat by the progressive crystallization of
the solid as the solution is cooled and to the change in heat capacity. Such changes
in slope are evident in the cooling curves for 20% cadmium and 80% cadmium.
These curves also show horizontal sections, both at 140 C. At this temperature
both solid cadmium and solid bismuth crystallize out at the same time. The tem-
perature at which this occurs is called a A solution of cad-
mium and bismuth containing 40% cadmium shows a single plateau at 140 C,
and so this is the eutectic composition. The eutectic is not a phase; it is a mixture
of two solid phases and has a fine grain structure.

The temperatures at which new phases appear, as indicated by the cooling
curves, are then transferred to the temperature–composition diagram, as shown
at the right in Fig. 6.17. In the area above there is one liquid phase. For a
two-component system without chemical reaction at constant pressure, the phase
rule is 2 1 3 . Therefore, if there is a single phase, there are two
degrees of freedom, which can be taken as temperature and one mole fraction.
Thus, in the solution region above , temperature and composition may be
varied without changing the number of phases.

Along , bismuth freezes out; along , cadmium freezes out. Thus, in the
area under and down to the eutectic temperature there are two phases: solid
bismuth and a solution having a composition that is determined by the tempera-
ture. Similarly, under and down to the eutectic temperature , two phases are
in equilibrium: solid cadmium and a solution having a composition given by .
In these two regions there is one degree of freedom. Thus, in these regions only
the temperature or the composition of the liquid need be specified. If the temper-
ature is specified, the composition of the liquid can be read off of the curved line.
If the composition of the liquid is given, the equilibrium temperature can be read
off the curved line. Within the two-phase regions there are horizontal tie lines (not
shown), and for any given point in either region the lever rule (Section 6.4) can
be used to calculate the relative amounts of the two phases.

At the eutectic point there are three phases: solid bismuth, solid cadmium,
and liquid solution containing 40% cadmium. Then 3 3 0, so this is an
invariant point. There is only one temperature and one composition of solution
at which these three phases can exist together at equilibrium at a given constant
pressure.

The area below the eutectic temperature is a two-phase area in which solid
bismuth and solid cadmium are present, and 3 2 1. Only the temperature
need be specified to describe the system completely at a given constant pressure.
The ratio of bismuth to cadmium may change, but there is only a mixture of pure
solid bismuth and pure solid cadmium; therefore, there is no need to specify any
concentration.

It is evident from Fig. 6.17 that the addition of cadmium lowers the freezing
point of bismuth along line , and that the addition of bismuth lowers the freez-
ing point of cadmium along line . Alternatively, we may consider that is
the solubility curve for bismuth in liquid cadmium, and is the solubility curve
for cadmium in liquid bismuth. If the solutions are ideal and if the phases that
separate are pure solids, solubilities may be calculated.

Earlier, in Section 6.7, we discussed the determination of the molar mass of
solute B in solvent A in a liquid solution in equilibrium with pure solid A, and
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Six-tenths mol of Mg and 0.40 mol of Zn are heated to 650 C, represented by point in
Fig. 6.18. Describe what happens when this solution is cooled to 200 C, as indicated by
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Thus, the solubility of A is the same in all solvents that
form ideal solutions.

congruently
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Figure 6.18

derived equation 6.62, which gives the mole fraction of the solvent A as a function
of temperature. We can change our point of view and think of A as the solute and
B as the solvent. Thus, the solubility of A in solvent B is given by

1 1
exp (6 79)

The remarkable thing about this equation is that it does not contain any param-
eters for the solvent B.

It is evident that a high melting point and a large enthalpy
of fusion lead to a low solubility. Since the enthalpy of fusion is positive, the ideal
solubility increases as the temperature increases.

The components of a binary system may react to form a solid compound that
exists in equilibrium with liquid over a range of composition. If the formation of a
compound leads to a maximum in the temperature–composition diagram, as illus-
trated by Fig. 6.18 for the zinc–magnesium system, we say there is a

The composition that corresponds to the maximum tempera-
ture is the composition of the compound. On the mole percent scale such maxima
may be achieved at 50%, 33%, 25%, and so on, corresponding to integer ratios of
the components of 1:1, 1:2, 1:3, and so on. Figure 6.18 looks very much like two
phase diagrams of the type we have discussed placed side by side, but there is a
difference. The liquid curve has a horizontal tangent (zero slope) at the melting
point of the congruently melting compound MgZn , while the slope is not zero at
the melting points of the pure components. Thus, additions of small amounts of
zinc and magnesium to the compound will not lower the melting or freezing point.
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the vertical dashed line. (The experiment would have to be done in an inert atmosphere to
prevent oxidation by air.)

At 470 C point is reached and solid MgZn separates from solution. The freezing
point is gradually lowered as the solution becomes richer in Mg. Finally, at 347 C, when the
liquid is 74 mol% in Mg and 26 mol% in Zn, the whole solution freezes, and solid MgZn
and solid Mg come out together. From this temperature down there is no further change
in the phases. At all temperatures below 347 C there are pure solids Mg and MgZn .

Phase diagram for
gold–platinum showing solid
solutions.
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Often pure solid freezes out of a solution, but for some systems a solid solution
freezes out. A continuous series of solid solutions may be formed, as illustrated in
Fig. 6.19 for platinum and gold. The two lines in this diagram give the compositions
of the liquid solutions (upper line) and solid solutions (lower line) that are in
equilibrium with each other. When these diagrams are studied, it is convenient to
remember that the liquid phase is richer in that component of the mixture that
has the lower melting point.

Above the upper line of Fig. 6.19 the two metals exist in liquid solution; below
the lower line the two metals exist in solid solutions. The upper curve is the freez-
ing point curve for the liquid, and the lower one is the melting point curve for the
solid. The space between the two curves represents mixtures of the two: one liquid
solution and one solid solution in equilibrium. For example, a mixture containing
50 mol% gold and 50 mol% platinum, when brought to equilibrium at 1400 C, will
consist of two phases, a solid solution containing 70 mol% platinum and a liquid
solution containing 28 mol% platinum. If the original mixture contained 60 mol%
platinum, there would still be the same two liquid and solid solutions at 1400 C of
the same compositions, 70 and 28 mol%, but there would be a relatively greater
amount of the solid solution that contains 70 mol% platinum.

The fractional crystallization of solid solutions is seriously complicated by the
fact that the attainment of equilibrium is much slower in solid solutions than in
liquid solutions. It takes a considerable length of time, particularly at low temper-
atures, for a change in concentration at the surface to affect the concentration at
a point in the interior of the solid solution.

In view of the use of the freezing point as a criterion of purity, it is important
to note that when solid solutions are formed the freezing point may be by
the presence of the other component.

Figure 6.19 is analogous to the phase diagram for two miscible liquids and
vapor, as shown in Fig. 6.8. For substances forming ideal solid solutions, the phase
diagram may be calculated theoretically. Systems exhibiting nonideal solid solu-
tion behavior may show maxima or minima in their melting curves (analogous to
Fig. 6.12) that have nothing to do with the formation of compounds.

The surface tension was introduced in Section 2.5 in connection with surface
work. The surface tension of a liquid may be measured by a variety of meth-
ods. For example, since the equilibrium shape of liquid surfaces is determined by
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Diethyl ether 20 16.96
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a balance of surface tension and gravitational forces, analysis of drop or bubble
shape may be used to determine surface tension. The rise of liquid in a capillary
or the pull on a thin vertical plate partially immersed in the liquid may be deter-
mined and used to calculate the surface tension quite accurately. Less accurate
values of the surface tension may be obtained from measurements on moving liq-
uid surfaces. These methods include studies of liquid jets, ripples, drop weight,
and the force required to rupture a surface. The surface tensions of some liquids
are given in Table 6.6.

A curved surface of a liquid, or a curved interface between phases, exerts a
pressure so that the pressure is higher in the phase on the concave side of the
interface. This is analogous to the fact that the pressure inside of a rubber balloon
is higher than the atmospheric pressure because of the pressure exerted by the
tension of the rubber. However, the difference between a sheet of rubber and
the surface of a pure substance is that the tension of the sheet of rubber is roughly
proportional to the distance stretched, but the surface tension of a pure substance
is independent of area.

To derive the relation between the radius of curvature of a surface, the pres-
sure difference, and the surface tension, we consider a spherical droplet of a pure
liquid in contact with its vapor in a closed container at temperature , as illus-
trated in Fig. 6.20.

The solid line in Fig. 6.20 shows the equilibrium position of the surface, and
the dashed line shows the effect of an infinitesimal expansion of the droplet. Since
the volume of the system and the temperature are specified, the Helmholtz en-
ergy is the thermodynamic potential to use. Since there are two phases, we
first write the fundamental equations at constant temperature for the two phases
separately:

(d ) d d d (6 80)

(d ) d d (6 81)
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where is the area of the surface of the droplet. In this system, the surface area
is related to the volume of the liquid and to the amount of the liquid, and
so surface area is really not an independent variable. We can eliminate from
equation 6.80 by expressing it in terms of or . In this section we will eliminate

by expressing it in terms of , and later we will learn something different by
expressing it in terms of . The volume of liquid and the area of the spherical
surface are given by

4
and 4 (6 82)

3

so that

d 4 d and d 8 d (6 83)

Thus

2
d d (6 84)

If we insert this in equation 6.80 and add equations 6.80 and 6.81, we obtain the
following fundamental equation for the two-phase system:

2
(d ) ( ) d d (6 85)

where . We have used the relation d d , and the fact that the
chemical potential terms cancel since at equilibrium and d d .
Since the system is at equilibrium, (d ) 0, and

2
(6 86)

Thus the pressure inside the droplet is higher than the pressure of the vapor. When
the radius of curvature is increased to infinity, this pressure difference disappears,
as it must for a planar surface.

Equation 6.86 can be applied to a bubble in a liquid, but to do that we have
to change the sign of the radius of curvature. Thus, for a bubble in a liquid,

2 2
or (6 87)

where is the radius of the bubble. In this case, the pressure in the bubble is higher
than the pressure in the liquid; the way to remember this is that the pressure is
always greater on the concave side of the surface.

Since the liquid inside of a droplet is under pressure, we want to calculate
what this does to the equilibrium vapor pressure. There we expressed in terms
of the volume of the liquid, but now we will express it in terms of the amount of
liquid . The volume of liquid in the droplet is equal to the molar volume of the
liquid times the amount , and so equation 6.84 can be written

d (2/ ) d (2/ ) d (6 88)



A

G
P

G

G n r V n

V r n

n .

V r .

G
.

n

G

G n .

G V r n n .

V r .

n n

RT P P V r .

P r
P

P

RT P P .

RT P P V r .

T,P

i
i T,P, n

T,P

T,P

� �

208

� �

� �

�

� �

�

�

� � �

� � �

�

� � �

� �

�

l l l ll

l ll

l l

l

l ll

ll

v v v

v vl ll

v l ll

vl

lv l

v l

l

�

�

�

�

Kelvin equation.

Chapter 6 Phase Equilibrium

� �
j i

	

	

	

	

	

	

	

	

� �

� �







�

� �

� �

�

�

� � �

�

� �

�

� � �

� � � �

� � �

� �

�

In the preceding discussion we used the fundamental equation for because
we wanted to consider the system at constant volume. Now we will use the fun-
damental equation for because we want to consider the system in Fig. 6.20 at
equilibrium at a specified pressure of the vapor phase. First we write the fun-
damental equations separately for the two phases. The fundamental equation for

for the liquid phase is

(d ) d (2 / ) d

( 2 / ) d

d (6 89)

where the chemical potential of the liquid is given by

2 / (6 90)

and the chemical potential is defined by

(6 91)

as in equation 4.39. A prime has been put on in equation 6.89 so that can
have its usual meaning.

The fundamental equation for for the vapor phase is simply

(d ) d (6 92)

Adding equations 6.89 and 6.92 yields the fundamental equation for the two-phase
system:

(d ) ( 2 / ) d d (6 93)

Since the system is at equilibrium, this differential is equal to zero, and

2 / (6 94)

since d d . The chemical potentials are the same in the two phases, even
though they are at different pressures. Assuming that the vapor is an ideal gas,

ln( / ) 2 / (6 95)

This equation is general, and corresponds to the radius of the droplet. As
the radius increases, the vapor pressure of the droplet approaches the vapor
pressure determined for a flat surface. For a flat surface,

ln( / ) (6 96)

Subtracting equation 6.96 from equation 6.95 yields

ln( / ) 2 / (6 97)

which is referred to as the The Kelvin equation is based on the
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Effect of radius of
curvature of a surface on the vapor
pressure of water at 25 C. (See
Computer Problem 6.H.)

Water vapor is rapidly cooled to 25 C to find the degree of supersaturation required to
nucleate water droplets spontaneously. It is found that the vapor pressure of water must
be four times its equilibrium vapor pressure at 25 C. ( ) Calculate the radius of a stable
water droplet formed at this degree of supersaturation. ( ) How many water molecules are
there in the droplet?

2 2(18 10 m mol )(0 071 97 N m )
( ) 0 75 nm

ln( / ) (8 314 J K mol )(298 K) ln 4

(0 75 10 m) (1 10 kg m )
( ) 59

/ (18 10 kg mol )/(6 022 10 mol )

In view of the assumption that the surface tension is independent of the radius of curvature,
these values must be considered approximations.
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Figure 6.21

assumption that the surface tension is independent of the radius of curvature;
therefore, it is not accurate when the radius of curvature becomes quite small.
Nevertheless, the Kelvin equation is helpful in understanding the nucleation of
condensation and boiling. Figure 6.21 shows the magnitude of the effect on the
vapor pressure of water at 25 C.

We can think of small droplets as having higher vapor pressures than liquids
with planar interfaces because surface molecules are not drawn into the interior
by so many near neighbors. For a vapor to condense in the absence of foreign
surfaces it is necessary for small clusters of molecules to form and to grow and
finally coalesce to form the bulk phase. This does not happen if the pressure of the
vapor is only slightly higher than the equilibrium vapor pressure, because the very
small droplets that are formed first have a higher vapor pressure. However, when
the pressure has been increased sufficiently over the equilibrium value, general
condensation of droplets occurs.*

Since the radius of curvature is a signed quantity, the Kelvin equation can
be used to calculate the vapor pressure of a concave surface as in a bubble in a
liquid by simply changing the sign of one side of the equation. We can think of the
surface of the liquid in a capillary that it wets or in a small bubble as having a lower
vapor pressure than the bulk liquid because molecules in the surface are drawn
into the interior by more near neighbors than in a flat surface. The Kelvin equation
helps us to understand why liquids have a tendency to superheat at their boiling
points. If a small bubble starts to form at the boiling point, equation 6.97 (with
a sign change) is not satisfied, and the bubble will be squeezed out of existence
by the force of surface tension. At a temperature above the boiling point, the
vapor pressure will be higher enough that a bubble of a certain radius will be
thermodynamically stable.
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What is the boiling point of water 2 miles above sea level?Problemsmarkedwithaniconmaybemoreconveniently
Assume that the atmosphere follows the barometric formulasolved on a personal computer with a mathematical program.
(equation 1.46) with 0 0289 kg mol and 300 K. As-The boiling point of hexane at 1 atm is 68 7 C. What is
sume the enthalpy of vaporization of water is 44 0 kJ mol in-the boiling point at 1 bar? Given: The vapor pressure of hexane
dependent of temperature.at 49 6 C is 53.32 kPa.

1.

2.

3.

4.

5.

6.
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6.2

6.1

For a single phase of a pure substance, the chemical potential can be repre-
sented as a surface in – – space. The slope of the surface in the tempera-
ture direction is equal to the negative of the molar entropy. The slope in the
pressure direction is equal to the molar volume. The projection onto the –
plane of the intersections of these surfaces is the phase diagram.
If the temperature and pressure are both changed in such a way as to keep
the chemical potentials of two phases equal to each other, the rate of change
of pressure with temperature is given by the Clapeyron equation. When the
vapor obeys the ideal gas law, the rate of change of pressure gives the enthalpy
of vaporization.
A curved surface of a liquid, or a curved interface between phases, exerts a
pressure so that the pressure is higher in the phase on the concave side of the
interface. As a result, small droplets have higher vapor pressures than flat
surfaces.
For ideal liquid–liquid solutions, the partial pressure of a component is equal
to the mole fraction of that component times the vapor pressure of the
pure component (Raoult’s law). For nonideal solutions, Raoult’s law is ap-
proached for a component as its mole fraction approaches unity. As the mole
fraction of a component in a nonideal solution approaches zero, its partial
pressure becomes proportional to its mole fraction (Henry’s law).
Activity coefficients represent the deviation of the chemical potential of a
component from Raoult’s law or Henry’s law.
The colligative properties freezing point depression, boiling point elevation,
osmotic pressure, and vapor pressure lowering are used to determine molar
masses of solutes. They are useful for this purpose because they all depend
on the concentrations of particles.
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The barometric equation 1.46 and the Clausius– The surface tension of toluene at 20 C is 0.0284 N m ,
Clapeyron equation 6.8 can be used to estimate the boiling and its density at this temperature is 0.866 g cm . What is the
point of a liquid at a higher altitude. Use these equations to de- radius of the largest capillary that will permit the liquid to rise 2
rive a single equation to make this calculation. Use this equation cm?
to solve Problem 6.2. Mercury does not wet a glass surface. Calculate the capil-

Liquid mercury has a density of 13 690 g cm , and solid lary depression if the diameter of the capillary is ( ) 0.1 mm and
mercury has a density of 14 193 g cm , both being measured at ( ) 2 mm. The density of mercury is 13.5 g cm . The surface
the melting point, 38 87 C, at 1 bar pressure. The heat of fu- tension of mercury at 25 C is 0.520 N m .
sion is 9.75 J g . Calculate the melting points of mercury under If the surface tension of a soap solution is 0.05 N m ,
a pressure of ( ) 10 bar and ( ) 3540 bar. The observed melting what is the difference in pressure across the film for ( ) a soap
point under 3540 bar is 19 9 C. bubble of 2 mm in diameter and ( ) a bubble 2 cm in diameter?

From the of Br (g) at 25 C, calculate the vapor From tables giving , , and for H O(l) and
pressure of Br (l). The pure liquid at 1 bar and 25 C is taken H O(g) at 298 K, calculate ( ) the vapor pressure of H O(l) at
as the standard state. 25 C and ( ) the boiling point at 1 atm.

Calculate for the vaporization of water at 0 C using What is the maximum number of phases that can be in
data in Table C.2 and assuming that for the vaporization equilibrium in one-, two-, and three-component systems?
is independent of temperature. Use to calculate the vapor The vapor pressure of water at 25 C is 23.756 mm Hg.
pressure of water at 0 C. What is the vapor pressure of water when it is in a con-

tainer with an air pressure of 100 bar, assuming the dissolvedThe change in Gibbs energy for the conversion of arago-
gases do not affect the vapor pressure? The density of water isnite to calcite at 25 C is 1046 J mol . The density of aragonite
0 997 07 g cm .is 2 93 g cm at 25 C, and the density of calcite is 2 71 g cm .

At what pressure at 25 C would these two forms of CaCO be A binary liquid mixture of A and B is in equilibrium
in equilibrium? with its vapor at constant temperature and pressure. Prove that

(g) (l) and (g) (l) by starting with
-Propyl alcohol has the following vapor pressures:

(g) (l)
/ C 40 60 80 100 and the fact that d 0 when infinitesimal amounts of A and
/kPa 6.69 19.6 50.1 112.3 B are simultaneously transferred from the liquid to the vapor.

Ethanol and methanol form very nearly ideal solutions.
Plot these data so as to obtain a nearly straight line, and calculate

At 20 C, the vapor pressure of ethanol is 5.93 kPa, and that
( ) the enthalpy of vaporization, ( ) the boiling point at 1 bar,

of methanol is 11.83 kPa. ( ) Calculate the mole fractions of
and ( ) the boiling point at 1 atm.

methanol and ethanol in a solution obtained by mixing 100 g
For uranium hexafluoride the vapor pressure (in Pa) for of each. ( ) Calculate the partial pressures and the total vapor

the solid and liquid are given by pressure of the solution. ( ) Calculate the mole fraction of
methanol in the vapor.

ln 29 411 5893 5/
One mole of benzene (component 1) is mixed with two

ln 22 254 3479 9/ moles of toluene (component 2). At 20 , the vapor pressures
of benzene and toluene are 51.3 and 18.5 kPa, respectively.

Calculate the temperature and pressure of the triple point. ( ) As the pressure is reduced, at what pressure will boiling
The heats of vaporization and of fusion of water are begin? ( ) What will be the composition of the first bubble of

2490 J g and 333 5 J g at 0 C. The vapor pressure of wa- vapor?
ter at 0 C is 611 Pa. Calculate the sublimation pressure of ice at The vapor pressures of benzene and toluene have the fol-

15 C, assuming that the enthalpy changes are independent of lowing values in the temperature range between their boiling
temperature. points at 1 bar:

The sublimation pressures of solid Cl are 352 Pa at
/ C 79.4 88 94 100 110.0112 C and 35 Pa at 126 5 C. The vapor pressures of liquid

/bar 1.000 1.285 1.526 1.801Cl are 1590 Pa at 100 C and 7830 Pa at 80 C. Calculate
/bar 0.508 0.616 0.742 1.000( ) , ( ) , ( ) , and ( ) the triple point.

The vapor pressure of solid benzene, C H , is 299 Pa at ( ) Calculate the compositions of the vapor and liquid phases
30 C and 3270 Pa at 0 C, and the vapor pressure of liquid at each temperature and plot the boiling point diagram. ( ) If a

C H is 6170 Pa at 10 C and 15 800 Pa at 30 C. From these solution containing 0.5 mole fraction benzene and 0.5 mole frac-
data, calculate ( ) the triple point of C H and ( ) the enthalpy tion toluene is heated, at what temperature will the first bubble
of fusion of C H . of vapor appear, and what will be its composition?
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2 2
b.p., C 118.1 113.8 107.5 104.4 102.1 100.0
Mol% of acetic acid

In liquid 100 90.0 70.0 50.0 30.0 0
In vapor 100 83.3 57.5 37.4 18.5 0
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At 1.013 bar pressure propane boils at 42 1 C and were carried out in a cylinder provided with a piston so that none
-butane boils at 0 5 C; the following vapor–pressure data are of the vapor could escape?

available:

/ C 31 2 16 3 b.p., C b.p., C
/kPa (propane) 160 0 298 6
/kPa ( -butane) 26 7 53 3 0 0 77.15 0.563 0.507 72.0

0.025 0.070 76.7 0.710 0.600 72.8Assuming that these substances form ideal binary solutions with
0.100 0.164 75.0 0.833 0.735 74.2each other, ( ) calculate the mole fractions of propane at which
0.240 0.295 72.6 0.942 0.880 76.4the solution will boil at 1.013 bar pressure at 31 2 and 16 3 C.
0.360 0.398 71.8 0.982 0.965 77.7( ) Calculate the mole fractions of propane in the equilibrium
0.462 0.462 71.6 1.000 1.000 78.3vapor at these temperatures. ( ) Plot the temperature–mole

fraction diagram at 1.013 bar, using these data, and label the re-
gions. The Henry’s law constants for oxygen and nitrogen in

The following table gives mole percent acetic acid in aque- water at 0 C are 2 54 10 bar and 5 45 10 bar, respectively.
ous solutions and in the equilibrium vapor at the boiling point Calculate the lowering of the freezing point of water by
of the solution at 1.013 bar: dissolved air with 80% N and 20% O by volume at 1 bar

pressure.
Use the Gibbs–Duhem equation to show that if one com-

ponent of a binary liquid solution follows Raoult’s law, the other
component will, too.

Calculate the minimum number of theoretical plates for the col- The following data on ethanol–chloroform solutions at
umn required to produce an initial distillate of 28 mol% acetic 35 C were obtained by G. Scatchard and C. L. Raymond [
acid from a solution of 80 mol% acetic acid. :1278 (1938)]:

If two liquids (1 and 2) are completely immiscible, the
mixture will boil when the sum of the two partial pressures ex- 0 0.2 0.4
ceeds the applied pressure: . In the vapor phase 0.0000 0.1382 0.1864
the ratio of the mole fractions of the two components is equal to Total pressure, kPa 39.345 40.559 38.690
the ratio of their vapor pressures:

0.6 0.8 1.0
0.2554 0.4246 1.0000

Total pressure, kPa 34.387 25.357 13.703

Calculate the activity coefficients of ethanol and chloroformwhere and are the masses of components 1 and 2 in the
based on the deviations from Raoult’s law.vapor phase, and and are their molar masses. The boiling

point of the immiscible liquid system naphthalene–water is 98 C Show that the equations for the bubble point line and dew
under a pressure of 97.7 kPa. The vapor pressure of water at point line for nonideal solutions are given by
98 C is 94.3 kPa. Calculate the weight percent of naphthalene
in the distillate.

A regular binary solution is defined as one for which

ln

ln
A regular binary solution is defined as one for which

Derive , , , and for the mixing of
lnmoles of component 1 with moles of component 2. Assume

that the coefficient is independent of temperature. ln
From the data given in the following table, construct

Derive the expressions for the activity coefficients and ina complete temperature–composition diagram for the system
terms of .ethanol–ethyl acetate for 1.013 bar. A solution containing 0.8

The expressions for the activity coefficients of the com-mole fraction of ethanol, EtOH, is distilled completely at 1.013
ponents of a regular binary solution were derived in the pre-bar. ( ) What is the composition of the first vapor to come off,
ceding problem. Derive the expressions for in terms of theand ( ) what is that of the last drop of liquid to evaporate? ( )
experimentally measured total pressure , the vapor pressuresWhat would be the values of these quantities if the distillation
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of the two components, and the composition of the solution for The NBS Tables of Chemical Thermodynamic Properties
the case in which the deviations from ideality are small. list for I in C H : as 7.1 kJ mol . The indicates that

the standard state for I in C H is on the mole fraction scale.Using the data in Problem 6.75, calculate the activity co-
What is the solubility of I in C H at 298 K on the mole fractionefficients of water (1) and -propanol (2) at 0.20, 0.40, 0.60,
scale? A chemical handbook lists the solubility as 16.46 g I inand 0.80 mole fraction of -propanol, based on deviations from
100 cm of C H . Are these solubilities consistent?Henry’s law and considering water to be the solvent.

The following cooling curves have been found for the sys-If 68.4 g of sucrose ( 342 g mol ) is dissolved in
tem antimony–cadmium:1000 g of water, ( ) what is the vapor pressure at 20 C? ( ) What

is the freezing point? The vapor pressure of water at 20 C is
2.3149 kPa.

The protein human plasma albumin has a molar mass of
69 000 g mol . Calculate the osmotic pressure of a solution of

Construct a phase diagram, assuming that no breaks other thanthis protein containing 2 g per 100 cm at 25 C in ( ) pascals and
these actually occur in any cooling curve. Label the diagram( ) millimeters of water. The experiment is carried out using a
completely and give the formula of any compound formed. Howsalt solution for solvent and a membrane permeable to salt as
many degrees of freedom are there for each area and at each eu-well as water.
tectic point?The following osmotic pressures were measured for

The phase diagram for magnesium–copper at constantsolutions of a sample of polyisobutylene in benzene at 25 C.
pressure shows that two compounds are formed: MgCu , which

/kg m 5 10 15 20 melts at 800 C, and Mg Cu, which melts at 580 C. Copper melts
/Pa 49.5 101 155 211 at 1085 C, and Mg at 648 C. The three eutectics are at 9.4% by

weight Mg (680 C), 34% by weight Mg (560 C), and 65% byCalculate the number average molar mass from the value of /
weight Mg (380 C). Construct the phase diagram. How manyextrapolated to zero concentration of the polymer.
degrees of freedom are there for each area and at each eutectic

Calculate the osmotic pressure of a 1 mol L sucrose so- point?
lution in water from the fact that at 30 C the vapor pressure

The Gibbs–Duhem equation in the form
of the solution is 4.1606 kPa. The vapor pressure of water at
30 C is 4.2429 kPa. The density of pure water at this temperature

d d ( d ) 0(0 995 64 g cm ) may be used to estimate for a dilute solu-
tion. To do this problem, Raoult’s law is introduced into equa-

applies to any molar thermodynamic property in a homoge-tion 6.70.
neous phase. If this applied to , it may be shown that if theCalculate the solubility of -dibromobenzene in benzene
vapor is an ideal gas,at 20 and 40 C assuming that ideal solutions are formed. The

enthalpy of fusion of -dibromobenzene is 13 22 kJ mol at its d ln( ) d ln( )
0 (constant )melting point (86 9 C). d d

Calculate the solubility of naphthalene at 25 C in
Show that this can be rearranged to the coexistence equationany solvent in which it forms an ideal solution. The melting

point of naphthalene is 80 C, and the enthalpy of fusion is d ( )
19 29 kJ mol . The measured solubility of naphthalene in ben-

d (1 )
zene is 0 296.

Thus, if versus is measured, there is no need for measure-The addition of a nonvolatile solute to a solvent increases
ments of .the boiling point above that of the pure solvent. The elevation

of the boiling point is given by For a solution of ethanol and water at 20 C that has
0.2 mole fraction ethanol, the partial molar volume of water
is 17 9 cm mol and the partial molar volume of ethanol
is 55 0 cm mol . What volumes of pure ethanol and wa-
ter are required to make 1 liter of this solution? At 20 C the
density of ethanol is 0 789 g cm and the density of water

where is the boiling point of the pure solvent and is is 0 998 g cm .
its molar mass. The derivation of this equation parallels that of Since the average entropy of vaporization at the standard
equation 6.67 very closely, and so it is not given. What is the boiling point (at 1 atm) is 88 J K mol (see Table 6.2), the
elevation of the boiling point when 0.1 mol of nonvolatile solute vapor pressure of a liquid can be estimated using
is added to 1 kg of water? The enthalpy of vaporization of water

/ 88 J K molat the boiling point is 40 6 kJ mol .
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where is the temperature at the boiling point. This equation is ice, would a 75-kg skater whose skates contact the ice with an
often referred to as Trouton’s rule. Estimate the vapor pressure area of 0 1 cm be able to skate at 3 C?
of benzene at 25 C from the fact that its boiling point is 80.1 C. Calculate the vapor pressure of liquid mercury at 25 C

Calculate the solubility of bismuth in an ideal solution at using data in Table C.2.
150 C and 200 C and compare the results with Fig. 6.17. The Calculate an approximate value for the transition temper-
ethalpy of fusion of bismuth at its melting point (273 C) is is ature for
10.5 kJ mol .

CaCO (calcite) CaCO (aragonite)
The molar volume of a binary solution is given by

using data in Table C.2 and assuming 0.

The vapor pressure of Hg(l) is 0.133 bar at 260 C and
0.533 bar at 330 C. Assume that 0 and that mercuryThis kind of additive equation applies to other thermodynamic
vapor is an ideal gas. What are the values of , ,properties at constant and as well. A convenient way to
and (g) at 25 C? The entropy of Hg(l) is 76 0 J K mol attreat the data on the molar volume or other thermodynamic
25 C.property of a solution is to fit it to a function (for example,

a function of ) and then calculate the molar volumes of The enthalpy of vaporization of toluene is 38 1 kJ mol .
the substances involved by differentiation of the polynomial. Given that the boiling point of toluene at 1 atm is 110 6 C, what
Show that is the boiling point at 1 bar, and what is the change in boiling

point with this change in pressure?
What is the boiling point of water on a mountain where

the barometer reading is 88 kPa? The heat of vaporization of
water may be taken to be 40 67 kJ mol .

The sublimation pressure of solid CO is 133 Pa at(1 )
134 3 C and 2660 Pa at 114 4 C. Calculate the enthalpy of

sublimation.
Derive the Gibbs–Duhem equation for the volume of a Estimate the vapor pressure of ice at the temperature of

binary solution, and show that if the partial molar volume for solid carbon dioxide ( 78 C at 1 bar pressure of CO ), assum-
substance 1 can be determined as a function of , the partial ing that the heat of sublimation is constant. The heat of subli-
molar volume of substance 2 can be calculated by integrating mation of ice is 2 83 kJ g , and the vapor pressure of ice is 611
the relation obtained from the Gibbs–Duhem equation. Pa at 0 C.

Calculate the partial molar volumes of water and glycerol Given the thermodynamic information on H O(l) and
in solutions at 20 C. The molar volumes are given as a function H O(g) in Table C.2, calculate the vapor pressure of water at
of the molar volume of glycerol in the following table: 500 C using the equation in Example 5.11 with and without the

term.

The vapor pressure of toluene is 8.00 kPa at 40 3 C and
2.67 kPa at 18 4 C. Calculate ( ) the heat of vaporization and
( ) the vapor pressure at 25 C.

At 0 C ice absorbs 333 5 J g in melting; water absorbs
2490 J g in vaporizing. ( ) What is the enthalpy of sublima-
tion of ice at this temperature? ( ) At 0 C the vapor pressure
of both ice and water is 611 Pa. What is the rate of change of va-
por pressure with temperature d /d for ice and liquid water
at this temperature? ( ) Estimate the vapor pressure of ice and
of liquid water at 5 C.

According to Trouton’s rule, the entropy of vaporization( ) Fit these data to , where is the mole
of a liquid at its boiling point is 88 J K mol . What is thefraction of glycerol. ( ) Calculate the two partial molar volumes
change in boiling point expected for a liquid with a boiling pointas a function of . ( ) Show that the molar volumes in the table
of ( ) 100 C and ( ) 200 C at 101 325 Pa in going to a referencecan be calculated using the partial molar volumes. ( ) Show that
state of 1 bar?the partial molar volume of water can be calculated by using the

function for the partial molar volume of glycerol and the Gibbs– Calculate for
Duhem equation. (See Problems 6.49 and 6.50.)

H O(g 25 C) H O(l 25 C)
Ice has the unusual property of a melting point that is low-

ered by increasing pressure. If this is the reason we can skate on The vapor pressure of water at 25 C is 3168 Pa.
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4 3

3

b.p., C 78 75 70 70 75 80
Mole fraction of benzene

In liquid 0 0.04 0.21 0.86 0.96 1.00
In vapor 0 0.18 0.42 0.66 0.83 1.00

1

b.p., C 100.0 92.0 89.3 88.1 87.8 88.3 90.5 97.3
Mol% of -propanol

In liquid 0 2.0 6.0 20.0 43.2 60.0 80.0 100.0
6 5 In vapor 0 21.6 35.1 39.2 43.2 49.2 64.1 100.0

6 5

6 5 6 5 6 5

6 5

1
3

An aqueous solution contains NaCl, NaBr, KCl, and KBr. For a solution of -propanol and water, the following
How many components are there in the solution? partial pressures in kPa are measured at 25 C. Draw a com-

plete pressure–composition diagram, including the total pres-How many degrees of freedom do the following systems
sure. What is the composition of the vapor in equilibrium with ahave? ( ) NH Cl(s) is allowed to dissociate to NH (g) and
solution containing 0.5 mole fraction of -propanol?HCl(g) until equilibrium is reached. ( ) A solution of alcohol

exists in equilibrium with its vapor.
The vapor pressure of mercury is 133.3 Pa at 126 2 C.

When mercury is enclosed in a container with an air pressure of
0 3.168 0.00500 bar at 126 2 C, what is the vapor pressure of the mercury?
0.020 3.13 0.67The density of mercury can be taken as 13 6 g cm .
0.050 3.09 1.44Ethylene dibromide and propylene dibromide form very
0.100 3.03 1.76nearly ideal solutions. Plot the partial vapor pressure of ethy-
0.200 2.91 1.81lene dibromide ( 22 9 kPa), the partial vapor pressure
0.400 2.89 1.89of propylene dibromide ( 16 9 kPa), and the total vapor
0.600 2.65 2.07pressure of the solution versus the mole fraction of ethylene
0.800 1.79 2.37dibromide at 80 C. ( ) What will be the composition of the
0.900 1.08 2.59vapor in equilibrium with a solution containing 0.75 mole frac-
0.950 0.56 2.77tion of ethylene dibromide? ( ) What will be the composition
1.000 0.00 2.901of the liquid phase in equilibrium with ethylene dibromide–

propylene dibromide vapor containing 0.50 mole fraction
Plot the following boiling point data for benzene–ethanolof each?

solutions at 1.013 bar and estimate the azeotropic composition.At 25 C the vapor pressures of chloroform and carbon
tetrachloride are 26.54 and 15.27 kPa, respectively. If the liquids
form ideal solutions, ( ) what is the composition of the vapor
in equilibrium with a solution containing 1 mol of each and ( )
what is the total vapor pressure of the mixture?

Benzene and toluene form very nearly ideal solutions. At State the range of mole fractions of benzene for which pure ben-
80 C, the vapor pressures of benzene and toluene are as fol- zene could be obtained by fractional distillation at 1.013 bar.
lows: benzene, 100 4 kPa; toluene, 38 7 kPa. ( ) For The following table gives the mole percent of -propanol
a solution containing 0.5 mole fraction of benzene and 0.5 mole ( 60 1 g mol ) in aqueous solutions and in the vapor at
fraction of toluene, what is the composition of the vapor and the the boiling point of the solution at 1.013 bar pressure:
total vapor pressure at 80 C? ( ) What is the composition of the
liquid phases in equilibrium at 80 C with benzene–toluene va-
por having 0.75 mole fraction benzene?

At 140 C the vapor pressure of pure C H Cl is 1.237 bar
and that of pure C H Br is 0.658 bar. These two liquids form

With the aid of a graph of these data, calculate the mole frac-ideal solutions to a very high degree of approximation. ( ) What
tion of -propanol in the first drop of distillate when the follow-is the mole fraction of C H Cl in a C H Cl–C H Br solution
ing solutions are distilled with a simple distilling flask that givesthat just boils at 140 C at 1 bar? ( ) What is the mole fraction
one theoretical plate: ( ) 87 g of -propanol and 211 g of water;of C H Cl in the vapor produced in ( )? ( ) Suppose this vapor
( ) 50 g of -propanol and 5.02 g of water.is condensed. What is its total vapor pressure at 140 C?

Using the Henry’s law constants in Table 6.4, calculate theAt 100 C benzene has a vapor pressure of 180.9 kPa, and
percentage (by volume) of oxygen and nitrogen in air dissolvedtoluene has a vapor pressure of 74.4 kPa. Assuming that these
in water at 25 C. The air in equilibrium with the water at 1 barsubstances form ideal binary solutions with each other, calculate
pressure may be considered to be 20% oxygen and 80% nitrogenthe composition of the solution that will boil at 1 bar at 100 C
by volume.and the vapor composition.

By use of the data of the following table, which givesThe vapor pressure of the immiscible liquid system
pressures in kPa at 35 2 C for carbon disulfide–acetone solu-diethylaniline–water is 1.013 bar at 99 4 C. The vapor pres-
tions, calculate the activity coefficients based on deviations fromsure of water at that temperature is 99.2 kPa. How many grams
Raoult’s law for acetone and carbon disulfide at 32 5 C for a so-of steam are necessary to distill 100 g of diethylaniline? (See
lution containing 0.6 mole fraction of carbon disulfide.Problem 6.25.)

What are the entropy change and Gibbs energy change 0 0.2 0.4 0.6 0.8 1.0
on mixing to produce a benzene–toluene solution with mole /kPa 0 37.3 50.4 56.7 61.3 68.3

/kPa 45.9 38.7 34.0 30.7 25.3 0fraction benzene at 25 C?
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1

2 4
3

f4 2

4

Ni, wt% 0 10 28 38 60 83 88 100
Inflection in cooling

curve, C — 608 — 770 1050 — — —
Plateau in cooling

curve, C 651 510 510 510 770 1180 1080 1450

23
2

2 3
1 1 2 1 12 2

2 3
2 2 1 2 21 1 sub

1 1 2 2

3
2 1 2 1 1 2 12

vap

2
CH CO H in H O

CH CO H in C H

Using the data of the following table, which gives vapor The following osmotic pressures of polyvinyl ac-
pressures at 35.2 C, calculate the activity coefficients of acetone etate in dioxane were measured by G. V. Browning and J. D.
(2) and chloroform (1) at 35 2 C, based on the deviations from Ferry at 25 C:
Raoult’s law for mole fractions of chloroform of 0.2, 0.4, 0.6, and

/10 g cm 0.292 0.579 0.810 1.1400.8.
/cm of solvent 0.73 1.76 2.73 4.680 0.2 0.4 0.6 0.8 1.00

/kPa 0 4.5 10.9 19.7 30.0 39.1 Calculate the number average molar mass. The density of diox-
/kPa 45.9 36.0 24.4 13.6 5.6 0 ane is 1 035 g cm .

What is the change in Gibbs energy for the transfer of 1 Calculate the solubility of anthracene ( 178 2
mol of acetone from pure liquid acetone to an infinite amount of g mol ) in toluene ( 92 1 g mol ) at 100 C. The en-
a solution of an equimolar mixture of acetone and ether at 303 thalpy of fusion of anthracene is 28 9 kJ mol , and the melting
K? Make the calculation with activity coefficients of acetone in point of anthracene is 217 C. The actual solubility is 0.0592 on
the final solution based on deviations from Raoult’s law ( the mole fraction scale. How do you explain the difference?
1 19 and 37 7 kPa) and based on deviations from Henry’s Calculate the solubility of cadmium in bismuth at 250 C.
law ( 0 572 and 78 3 kPa). The melting point of cadmium is 323 C, and the enthalpy of fu-

The solubility of I (s) in CCl is listed in a chemical hand- sion at the melting point is 6 07 kJ mol .
book as 29.1 g in 100 cm of CCl at 25 C. What is for I The following data are obtained by cooling solutions of
in CCl on the mole fraction scale? magnesium and nickel:

( ) Use the following data to calculate the Henry’s law
constant for the solute chloroform in the solvent acetone at
35.2 C:

0 0.0603 0.1853 0.2910
/kPa 0 1.26 4.25 7.39

It is found that, in addition, cooling solutions between 28% and( ) Using this value of the Henry’s law constant and the data in
38% Ni deposit Mg Ni, whereas solutions containing betweenProblem 6.80, calculate the activity coefficients of CHCl from
38% and 82% Ni deposit MgNi . Plot the phase diagram.deviations from Henry’s law. The activity coefficients for ace-

tone, considered as the solvent, are the same as in Problem 6.80.
Using the data in Problem 6.75, calculate the activity coef-

ficients of water and -propanol at 0.20, 0.40, 0.60, and 0.80 mole
fraction -propanol, based on deviations from Henry’s law and
considering -propanol to be the solvent.

The vapor pressure of ice from –40 C to 0 C is given in
The logarithms of the activity coefficients for a binary so- Table 6.1. Fit these data to the equation

lution may be expressed as power series:
ln / ln

ln
The form of this equation is suggested by the equation in Exam-

ln ple 5.11. Plot this equation as ln versus 1/ . Calculate
as a function of temperature, and calculate its value at each ofUsing the Gibbs–Duhem equation,
the temperatures in Table 6.1.

d ln d ln 0 (fixed )
The vapor pressure of water from 0 to 100 C is given in

Table 6.1. Fit these data to the equationshow that

0 ln / ln

The vapor pressure of a solution containing 13 g of a non- Plot the data as ln versus 1/ . Determine the parameters , ,
volatile solute in 100 g of water at 28 C is 3.6492 kPa. Calculate , and , and test this equation to see how well it represents the
the molar mass of the solute, assuming that the solution is ideal. vapor pressure data. Calculate as a function of tempera-
The vapor pressure of water at this temperature is 3.7417 kPa. ture, and calculate its value at each of the temperatures in Table

In acidic aqueous solutions acetic acid exists in the 6.1. Calculate the standard enthalpy of vaporization at 298.15 K
monomer form, but in nonpolar solvents, such as benzene, it using Table C.2 and compare it with the value calculated with
exists in the form of a dimer. Derive the following expression this empirical equation.
for the distribution coefficient: The vapor pressure of methanol in bars is given in the fol-

lowing table as a function of temperature. Fit these vapor pres-
sures to equation 6.17 using a computer and calculate the heat of
vaporization at each of these temperatures using equation 6.18.
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/ C –44.0 –16.2 5.0 21.2 49.9 64.7
/bar 0.001333 0.01333 0.0533 0.1333 0.533 1.0132

/ C –159.5 –142.9 –129.8 –119.3 –99.7 –88.6
/bar 0.001333 0.01333 0.0533 0.1333 0.533 1.0132

(methanol) 0 0.114 0.197 0.249 0.495 0.692 0.785 0.892 1
Molar volume 0.0181 0.0203 0.0219 0.0230 0.0283 0.0329 0.0352 0.0379 0.0407

3 1

1

vap

ice

Calculate the standard enthalpy of vaporization of methanol us- Calculate the standard and normal boiling points of water
ing Table C.2 and compare it with the value calculated with the using the expression calculated in Computer Problem 6.B for
empirical equation. ln for water. The standard boiling point is at the standard

pressure of 1 bar, and the normal boiling point is at a pressure
of 1 atm (1.013 25 bar).

When pressure is applied to the surface of a liquid, the
vapor pressure of the liquid is increased because molecules are
squeezed out of the liquid into the vapor phase. This pressureThe vapor pressure of ethane in bars is given in the fol-
can be applied by a gas. The following equation for the ratio oflowing table as a function of temperature. Fit these vapor pres-
vapor pressure at the higher pressure to the vapor pressuresures to equation 6.17 using a computer and calculate the heat

in the absence of the pressurizing gas can be calculated usingof vaporization at each of these temperatures using equation
6.18. ln( / ) /

This equation is based on the assumption that the pressurizing
gas is insoluble. Calculate / at 298.15 K and 100 bar
for -octane, which has a density of 0.7036 g mL at this temper-

The molar volumes of solutions of water and methanol at ature.
0 C and 1 bar are as follows: The ratio of the vapor pressure of a liquid droplet is

greater than the vapor pressure of the liquid over a flat sur-
face. Conversely, the ratio of the vapor pressure inside a bub-
ble is smaller than the vapor pressure of the liquid over a
flat surface. ( ) Plot / of water at 25 C versus log of thewhere the molar volumes are in m kmol . ( ) Plot the mo-
droplet, where is the radius in nm. ( ) Plot / of water atlar volumes versus the mole fraction of methanol and fit these
25 C versus log of the bubble, where is the radius in nm. Thedata to a quadratic polynomial. ( ) Calculate the polynomials
surface tension of water at 25 C is 0.071 97 N m .that give the partial molar volumes of water and methanol and

( ) Fit the data in Table 6.1 on the vapor pressure of liquidcalculate the partial molar volumes in each of the nine solu-
water to equation 6.17, and plot ln calculated with this equa-tions. ( ) Show that the molar volumes of the solutions are given
tion between 40 and 180 C. ( ) Fit the data in Table 6.1 on theby the sum of the contributions of the two liquids. ( ) Show
vapor pressure of ice to equation 6.17 without the term, andthat the equation for the partial molar volume of water can be
plot ln calculated with this euqation between 40 and 180calculated using the equation for the partial molar volume of
C. ( ) Superimpose these two plots to see the relation betweenmethanol by use of the Gibbs–Duhem equation for the molar

the vapor pressure of supercooled water and ice below 0 C.volume.
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7
Coulomb’s Law, Electric Field, and Electric Potential
Equilibria Involving Potential Differences
Equation for an Electrochemical Cell
Activity of Electrolytes
Debye–Hückel Theory
Determination of Standard Thermodynamic
Properties of Ions
Standard Electrode Potentials
Determination of pH
Special Topic: Fuel Cells
Special Topic: Membrane Potential

Electrochemical reactions involve electrons that are transferred from a metal to
a species in a solution. The equilibria of electrochemical reactions are important
in galvanic cells, which produce an electric current, and electrolytic cells, which
consume an electric current.

The measurement of the electromotive force of an electrochemical cell over
a range of temperature makes it possible to obtain the thermodynamic quantities
for the reaction that occurs in the cell. The activity coefficients of electrolytes may
also be calculated from these measurements; this is illustrated in this chapter by
the determination of the activity coefficient of hydrochloric acid.

Electrochemical cells are of practical interest in that they offer the means
to convert the Gibbs energy change of a chemical reaction to work without the
second-law losses of heat engines.

An understanding of the conversion of chemical energy to electrical energy
is important for work with batteries, fuel cells, electroplating, corrosion, electro-
refining (e.g., the production of aluminum), and electroanalytical techniques. This
chapter discusses the thermodynamics of such processes.

Electrochemical Equilibrium
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7.1 Coulomb’s Law, Electric Field, and Electric Potential

7.1 COULOMB’S LAW, ELECTRIC FIELD,
AND ELECTRIC POTENTIAL
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Of the four kinds of interactions recognized in physics (strong nuclear interac-
tions, weak interactions, electromagnetic interactions, and gravitation), only elec-
tromagnetic interactions are of importance in chemistry. The most elementary of
these is the attractive or repulsive interaction between two charges, and .
Since the direction of the force is along the line connecting the charges, it is
convenient to write in vector notation:

1
(7 1)

4

where is the distance between charges, is the unit vector in the direction of the
force, is the (8.854 187 817 10 C N m ), and

is the (dielectric constant). The relative permittivities of a
number of gases and liquids are given later in Table 22.1. When the direction of
the force is not being considered, Coulomb’s law may be written in the form

(7 2)
4

The electric field strength at a certain point is defined as the electrical force
per unit charge. The electric field strength is a vector because it has direction as
well as magnitude. If a small test charge is used, the is
equal to the ratio of the force to the charge:

(7 3)

From equation 7.2 the magnitude of the electric field strength in a vacuum due to
charge is given by

(7 4)
4

The electric field strength has the SI units of V m .
The electric field is the negative gradient of the electric potential :

(7 5)

As we can see from Appendix D.7, if the electric potential is a function only of ,

(7 6)

The difference between the electric potential at two points is equal to the
work per unit charge required to move a charge from one point to the other. Thus,
the unit of potential difference is joules per coulomb; this unit is referred to as a
volt (1 V 1 J C ). The choice of zero potential is arbitrary, but it is customary
to define the potential as zero when the particles are at infinite distance. Thus, the

at a point is the work required to bring a unit positive charge
from infinity to the point in question. The electric potential is given by integrating
equation 7.5 using equation 7.4:

d
(7 7)

4 4
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Electric potential as a What is the electric potential on the surface of a sphere 10 cm in diameter if it contains an
function of distance from an electric excess of 10 mol of a monovalent cation?
charge. The charge on the sphere is 10 , where is the Faraday constant (

96 485 C mol ). The potential on the surface can be calculated by assuming that this
charge is located at the center of the sphere. Assuming a relative permittivity of unity,

(10 mol)(96 485 C mol )
4 (8 854 187 10 C N m )(0 05 m)

1 734 10 V

�

�

�

�
�

electroneu-
trality condition,

Example 7.1

The charge number of an ion is the charge in
terms of the proton charge with the sign of the ion. Faraday constant

Chapter 7 Electrochemical Equilibrium

7.2 EQUILIBRIA INVOLVING POTENTIAL DIFFERENCES
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Figure 7.1

Figure 7.1 shows the electric potential as a function of distance from an electric
charge. The electromotive force is the difference in electric potential between two
points and is expressed in volts. In the remainder of this chapter we will use to
represent electromotive force, rather than electric field strength.

As we begin to treat electrolyte solutions we need to remember that there is
an additional constraint on the composition of a phase, and that is the

0 (7 8)

where is the amount of ions of charge in the phase. The charge number
is positive for cations and negative for anions; is the charge on a proton,

1 6022 10 C. For a phase to have a nonzero electric potential , there must
be a small deviation from the electroneutrality condition, but these deviations are
so small that we can neglect them in using equation 7.8.

Since potential differences between phases are much smaller than this, the
deviations from equation 7.8 are much smaller than 10 mol in a volume of

(0 05 m) . Thus, it is a good approximation to say that equation 7.8 is obeyed,
and two phases can have the same chemical composition but different electric
potential.

In discussing the differential form of the first law of thermodynamics, we saw that
when a small charge d is moved through an electric potential difference , the
work done on the charge is given by d d (equation 2.42). This term car-
ries over to the equation for the differential of the Gibbs energy (equation 4.36).
If ions with charge number are transferred, the differential charge d can be
expressed in terms of the differential amount d of ion by

d d (7 9)

where is the Faraday constant.
The is equal

to the product of the Avogadro constant and the proton charge:

(6 022 136 7 10 mol )(1 602 177 33 10 C)

96 485 309 C mol (7 10)
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electric
potential of the phase containing species

transformed Gibbs energy

transformed chemical potential

7.2 Equilibria Involving Potential Differences
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The charge number of an ion is dimensionless, so the differential charge d is
expressed in coulombs.

When we consider a multiphase system with phases at different electric po-
tentials, the electrical work term is of the form , where is the

. In using the fundamental equation, a
species in another phase counts as another species. The electric potentials of
the various phases in a system are not natural variables of the Gibbs energy ,
so if we want to make them natural variables (see Section 4.2), it is necessary to
define a by making the Legendre transform

(7 11)

Substituting (equation 4.45) yields

( ) (7 12)

where the of species is given by

(7 13)

Note that the transformed Gibbs energy is additive in the transformed chemical
potentials , just as the Gibbs energy is additive in the chemical potentials .

For a multiphase system involving electric potential differences between the
phases, both the electric potentials of the phases and the amounts of species

can be taken as independent variables, so the differential of the transformed
Gibbs energy is given by

d d d d (7 14)

Substituting d d d d (equation 4.36) yields the funda-
mental equation for the transformed Gibbs energy:

d d d d d (7 15)

Thus, we can see that the transformed chemical potential of species is defined
by

(7 16)

where . As we can see from the subscript on the partial derivative of , the
transformed chemical potential of an ion depends on the electric potential of
the phase that it is in. At equilibrium, that is not true for the chemical potential ,
which is independent of the type of phase (solid, liquid, or gas) and the pressure
and electric potential of the phase.

To contrast the fundamental equations for and for this multiphase sys-
tem with phases at different electric potentials, we can derive the fundamental
equation for by moving the last two terms of equation 7.14 to the other side
and substituting equation 7.15. This yields

d d d ( ) d

d d d (7 17)
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*This equation is often found in the literature of electrochemistry as ˜ , where ˜ is
referred to as the electrochemical potential. This has two disadvantages. The first is that ˜ is defined
by equation 7.18, which we previously used for . The second is that the used in electrochemistry
is not the chemical potential that has the same value for a species throughout a system at equilibrium.

Electrochemical Nomenclature, 501 (1974).
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where the chemical potential of is defined by the usual

(7 18)

where . The chemical potential of is given by

(7 19)

which is the same as equation 7.13.
We have seen earlier, in Section 6.1, that at equilibrium the

of a species is equal in all of the phases where it is present. Following the same
arguments used in Section 6.1, equation 7.17 can be used to show that when phases

and have different electric potentials, we still have

( ) ( ) (7 20)

as in equation 6.3. This equation will be used in Section 7.10 to derive a relation
for the membrane potential that exists between two solutions at equilibrium if
the membrane separating them is permeable to some ions and impermeable to
others. For a chemical reaction involving species in different phases, equation 7.17
can also be used to derive 0, where . We will use this
equation to derive the equilibrium relation for an electrochemical cell.

Electrochemical cells can be classified as in which chemical reac-
tions occur spontaneously, and in which chemical reactions are
caused by an externally applied potential difference. Galvanic cells of commercial
importance include the Leclanché Zn/MnO cell and the Zn/Ag O cell used, for
example, in watches. Fuel cells, such as the H –O cell used in spacecraft, are gal-
vanic cells in which the oxidizable and reducible fuels are supplied continuously.
Electrolytic cells are used in the commercial production of chlorine and aluminum
and in the electrorefining of copper. The Pb–PbO –H SO storage cell used in au-
tomobile batteries is an electrolytic cell when it is being charged and a galvanic
cell when it is being used as a battery. To connect what happens in the labora-
tory to convention,

The
mnemonic for this is “reduction at the electrode on the right”:

Ox e Red (7 21)

The is the electrode at which a occurs. This electrode is
positive in a galvanic cell because electrons are flowing into it and reacting with an

†
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Use of a potentiometer to measure the potential difference for an electro-
chemical cell with no current flowing. ( ) The cell operates spontaneously with reduction
on the right since . ( ) No current passes through the cell since . ( ) A
nonspontaneous reaction in the cell is driven by the battery in the potentiometer since
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Figure 7.2

oxidized species to form a reduced species, as shown in equation 7.21. The
is the electrode at which an oxidation reaction occurs:

Red Ox e (7 22)

The primes indicate that the reactions at the two electrodes are generally differ-
ent. Ox and Ox can be referred to as oxidants or oxidizing agents. Red and Red
can be referred to as reductants or reducing agents. Note that the reductant is the
electron donor and the oxidant is the electron acceptor.

The difference in potential between the electrodes of a cell can be measured
using a as shown in Fig. 7.2. In a potentiometer a steady current
from a battery flows through a resistor. A sliding contact is used to apply some
fraction of the potential difference across the slide wire to an electrochemical cell.
If the applied potential difference is less than the electromotive force of the gal-
vanic cell, the cell discharges spontaneously as shown in Fig. 7.2

As the potential difference applied to the cell is increased, a point will be
reached at which the current through the cell is zero, as shown in Fig. 7.2 This is
the equilibrium potential difference that we will be primarily concerned with in
this chapter. This is a thermodynamic measurement because the direction of the
current through the cell can be changed by an infinitesimal change in the applied
potential, if the electrode reactions are fast under the conditions in the electro-
chemical cell.

When the applied potential is further increased, as shown in Fig. 7.2 , it drives
the cell reaction in the reverse direction, and the cell is referred to as an elec-
trolytic cell. Now oxidation occurs at the right electrode, and so it is called the
anode. (Note that our rule “reduction at the electrode on the right” applies to a
galvanic cell, not to an electrolytic cell.) The right electrode supplies electrons to
the external circuit according to reaction 7.22. The definitions of anode and cath-
ode in terms of oxidation and reduction are independent of whether a cell is a gal-
vanic cell or an electrolytic cell. The terms and should not be used
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for the electrodes in an electrochemical cell that is at equilibrium, as in
Fig. 7.2

A very wide variety of different types of galvanic cells can be constructed. A
metal electrode can be immersed in a solution containing its ions. An amalgam
(solution of a metal in liquid mercury) electrode can be in contact with a solution
containing ions of the metal. A nonmetal can be used by bubbling gas over a plat-
inum electrode. Or a platinum electrode can simply be in contact with a solution
containing oxidized and reduced forms of other species (for example, Fe and
Fe ).

In considering electrochemical cells it is important to make a clear distinction
between cells without liquid junctions (see Fig. 7.3 ) and cells with liquid junctions
(see Fig. 7.3 ).

Examples are represented by

Pt(s) H (g) HCl( ) AgCl(s) Ag(s) (7 23)

Pt(s) H (g) HCl( ) Cl (g) Pt(s) (7 24)

Hg-Na( ) NaOH( ) Hg-Na( ) (7 25)

The vertical lines represent phase boundaries. Hg-Na( ) is a sodium amal-
gam with mole fraction sodium. Cells of this type can be held at equi-
librium indefinitely, and therefore they can be given exact thermodynamic
treatments. The electromotive force of the cell depends on the electrodes and
the activity of the electrolyte solution.

Examples are represented by
..Zn(s) Zn ( ) . Cu ( ) Cu(s) (7 26)
..Zn(s) Zn ( ) . Zn ( ) Zn(s) (7 27)

....Ag(s) AgCl(s) Cl .. Ag ( ) Ag(s) (7 28)
. ... ..The symbol . represents a junction between two liquids, and .. represents a

salt bridge made up of a concentrated solution of potassium chloride or am-
monium nitrate, in which the anion and cation have nearly equal mobilities
(Section 20.3). It is necessary to use a salt bridge when the solutions in contact
can react with each other, as in cell 7.28. Cells with liquid junctions are never
completely at equilibrium because diffusion always occurs at the liquid junc-
tion and contributes an unknown potential or electromotive force; however,
these contributions are often small compared with experimental errors. Cells
with liquid junctions depend on the activities of ions, and so ionic species are
used in representing the cells.

To obtain the relationship between the electromotive force for a cell and the
chemical potentials or activities of the reactants and products, we will consider
the following cell without a liquid junction:

Pt H (g) HCl( ) AgCl(s) Ag(s) Pt (7 29)

where is the molality. According to the international convention we assume
that a reduction reaction occurs in the right electrode and an oxidation occurs in
the left electrode. These two electrode reactions are

2AgCl(s) 2e (Pt ) 2Ag(s) 2Cl ( ) (7 30)

H (g) 2H ( ) 2e (Pt ) (7 31)
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The sum of these electrode reactions is the cell reaction.

H (g) 2AgCl(s) 2e (Pt ) 2H ( ) 2Cl ( ) 2Ag(s) 2e (Pt )

(7 32)

This reaction can also be written

H (g) 2AgCl(s) 2e (Pt ) 2HCl( ) 2Ag(s) 2e (Pt ) (7 33)

It is convenient to refer to such a reaction as an to dif-
ferentiate it from the

H (g) 2AgCl(s) 2HCl(aq) 2Ag(s) (7 34)

Consider the cell in Fig. 7.3 , in which the electrodes are not connected
electrically (open circuit). Only minute quantities of electric charge have to be
transported into the electrodes to bring the electric potential of the platinum
electrode on the left and the electric potential of the electrode on the right to
their equilibrium values. Although several phases are involved, the equilibrium
relation is 0, which is

2 (HCl aq) 2 (Ag s) 2 (e Pt )
(H g) 2 (AgCl s) 2 (e Pt ) 0 (7.35)

The chemical potentials in this equation are each given by (equa-
tion 7.19), where is the transformed chemical potential of species . Since
HCl, Ag, H , and AgCl are electrically neutral, for each of them, and
we can use the usual symbol . Hydrochloric acid is, of course, dissociated, but
the terms for the hydrogen and chloride ions cancel each other when they
are included. The chemical potential of the electrons in the right electrode is
given by (e Pt ) (e Pt ) , and the chemical potential of the elec-
trons in the left electrode is given by (e Pt ) (e Pt ) . The terms

(e Pt ) and (e Pt ) cancel. This can be understood in the following way. If
two pieces of platinum are in contact and at equilibrium, (e Pt ) (e Pt )
or (e Pt ) (e Pt ) and (e Pt ) (e Pt ) since
the two pieces of platinum are at the same electric potential (i.e., in contact).
Therefore, when two pieces of platinum are in contact, the electrons in the two
pieces have the same chemical potential, but in an electrochemical cell they have
different chemical potentials.

Thus equilibrium relation 7.35 for the galvanic cell on an open circuit becomes

2 (HCl aq) 2 (Ag s) 2 (H g) 2 (AgCl s) 2 0

(7 36)
or

2 ( ) 2 (7 37)

where

(7 38)

is the , which can be measured by use of a potentiometer.

The potential difference of the electrochemical cell depends on ,
, and the molality of the HCl.
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The change in Gibbs energy in chemical reaction 7.34 is represented by

2 (HCl aq) 2 (Ag s) (H g) 2 (AgCl s) (7 39)

Although equation 7.39 applies to a special case, it should be clear that this equa-
tion can be generalized to any galvanic cell by writing it as

(7 40)

where is the absolute value of the
electrons appear with both positive and negative signs

in the electrochemical reaction. is sometimes referred to as the charge number
for a cell reaction and is represented by .

Note that when the right-hand electrode has a more positive potential than
the left-hand electrode, the electromotive force for the cell is positive. If
is positive, for the cell reaction is negative (i.e., the cell reaction is sponta-
neous at constant temperature and pressure). If the right-hand electrode is more
positive, its electrode reaction is a reduction reaction when the cell operates spon-
taneously.

If the schematic representation for a cell is reversed, the electrode reactions
and cell reaction are written in the opposite directions, and the signs of and
are reversed. The cell reaction can be multiplied or divided by a number, and that
is the reason equation 7.40 contains the factor . The electromotive force may
be expressed in terms of the activities of the reactants and products by use of

ln in equation 7.40, to obtain

ln

ln (7 41)

where is the the electromotive force
when the activities of all reactants and products are equal to unity. Equation 7.41
is the and is usually written

ln (7 42)

At 25 C

(8 3145 J K mol )(298 15 K)
ln

(96 485 C mol )

(0 025 69 V)
ln (7 43)

Later we will see in detail how is determined, but for now we can note that it
is the electromotive force of a cell in which all reactants and products are at unit
activities.

If the activities of the reactants and products correspond to those of an equi-
librium mixture, 0, and equation 7.42 becomes

ln or e (7 44)

where is the equilibrium constant for the cell reaction.
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*Activity coefficients may also be given on the molar concentration scale (moles per liter). On the
scale the activity of solute substance is defined by

where is the standard value of the molar concentration (1 mol L ), and

lim 1

The various activity coefficients have different numerical values, but we will use for all of them to
avoid confusion with other symbols. When there is danger of confusing activity coefficients on various
scales, they may be given subscripts as in , , and .
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Three different galvanic cells have standard electromotive forces of 0.01, 0.1, and 1.0
V, respectively, at 25 C. Calculate the equilibrium constants of the reactions that occur in
these cells assuming the charge number for each reaction is unity.

e

For 0 01 V,
(96 485 C mol )(0 01 V)

exp
(8 3145 J K mol )(298 15 K)

1 476

For 0 1 V, 49 0, and for 1 V, 8 02 10 .
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In deriving the Nernst equation, refers to the activity of an electrically neu-
tral reactant such as HCl(aq), and that meaning of will be used in working with
cells without liquid junctions. However, in working with cells with liquid junc-
tions, we will consider that the reactants are ionic species and use to represent
the activity of an ionic species such as H or Cl .

Electrolytes have to be treated in a different way from nonelectrolytes because
they dissociate, but the ions cannot be studied separately because the condition of
electric neutrality applies. In work with electrolyte solutions it is customary to use
the molal scale. The molality is equal to the amount of electrolyte per kilogram
of solvent, which is given by / , where is the amount of electrolyte in

mol of solvent and is the molar mass of the solvent. Thus, the molality has
the units mol kg .

The relation between molality and mole fraction is obtained by dividing nu-
merator and denominator by the total amount in the system to obtain

/ . In dilute solutions the molality of species is approximately / . The
molality has the interesting property, as compared with the mole fraction, that the
addition of a second solute does not change the molality of the first. The molality
also has the advantage that it is not a function of temperature.

Activity coefficients may be given on the molality scale for nonelectrolytes as
well. On the scale the of a solute substance is defined by*

(7 45)
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where is the standard value of the molality (1 mol/kg solvent), and

lim 1 (7 46)

When an infinitesimal quantity of an electrolyte is added to a kilogram of
solvent, the differential change in the Gibbs energy is given by

d d d (7 47)

However, we cannot add cations and anions separately because the solution must
be electrically neutral. If the strong electrolyte is A B , where is the number
of cations and is the number of anions, electroneutrality requires that

(7 48)

Equation 7.47 can be written

d ( ) d

d (7 49)

where

(7 50)

is the chemical potential for the electrolyte, which can be determined experimen-
tally. The chemical potentials of the cation and anion are given by

ln (7 51)

ln (7 52)

where and are the standard state chemical potentials and and are
the activity coefficients of the cation and anion. We will omit the standard values

of the molality in the remainder of this chapter to simplify the notation. When
equations 7.51 and 7.52 are substituted in equation 7.50,

( ) ln (7 53)

To make the argument of the logarithm proportional to the molality of the
electrolyte in the logarithmic term, a and a

are defined as

( ) ( ) (7 54)

( ) (7 55)

where

(7 56)

Then equation 7.53 becomes

ln (7 57)

and the is given by

( )

( ) (7 58)
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The standard chemical potential of the electrolyte is the chemical potential
in a solution of unit activity on the molality scale. It can be determined using devi-
ations from Henry’s law (Section 6.5) and extrapolating to 0 where 1.
This extrapolation is guided by the Debye–Hückel limiting law (Section 7.5).

The mean ionic molality of a 1–1 electrolyte such as NaCl is equal to ,
that of a 2–1 electrolyte such as CaCl is equal to 4 , that of a 2–2 electrolyte
such as CuSO is equal to , and that of a 3–1 electrolyte such as LaCl is equal to
27 , as may be deduced from equation 7.58. The numbers 1, 2, and 3 refer to the
number of charges on the cation and anion. Equation 7.58 shows that (NaCl)

, (CaCl ) 4 , (CuSO ) , and (LaCl ) 27 .

Electrolytes containing ions with multiple charges have greater effects on the ac-
tivity coefficients of ions than electrolytes containing only singly charged ions.
To express electrolyte concentrations in a way that takes this into account, G. N.
Lewis introduced the ionic strength , defined by

( ) (7 59)

where is the charge (signed) of the ion in units of the charge on a proton. The
summation is continued over all the different ionic species in the solution, and
is the molal concentration. The greater effectiveness of ions of higher charge in
reducing the activity coefficient is provided for by multiplying their concentrations
by the square of their charges. According to equation 7.59, the ionic strength of a
1–1 electrolyte is equal to its molality. The ionic strength for a 1–2 electrolyte is
3 , and that for a 2–2 electrolyte is 4 .

The Coulomb forces between ions are of much longer range than van der
Waals forces (Section 11.9), and therefore it is almost impossible to make mea-
surements on electrolyte solutions at sufficiently low concentrations to obtain
dilute solution behavior, in the sense of Henry’s law. At infinite dilution the dis-
tribution of ions in an electrolytic solution can be considered to be completely
random because the ions are too far apart to exert any attraction on each other,
and the activity coefficient of the electrolyte is unity. At higher concentrations,
where the ions are closer together, however, the Coulomb attractive and repulsive
forces become important. Because of this interaction of ions the concentration of
positive ions is higher in the neighborhood of a negative ion, and the concentra-
tion of negative ions is slightly higher in the neighborhood of a positive ion, than
in the bulk solution. Because of the attractive forces between an ion and its sur-
rounding ionic atmosphere, the activity coefficient of the electrolyte is reduced.
This effect is greater for ions of high charge and is greater in solvents of lower
dielectric constant, where the electrostatic interactions are stronger.

Debye and Hückel were able to show that in dilute solutions the activity co-
efficient of an ion species with a charge number of is given by

log (7 60)



Calculation of the Debye–Hückel constant at 298.15 K

Calculation of acti ity coefficients
using the Debye–Hückel equation
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Calculate the value of the coefficient in the Debye–Hückel equation for aqueous solu-
tions at 298.15 K. The relative permittivity of water at this temperature is 78.54. The
value of 1/4 is 0 8988 10 N m C .

1 2 (6 022 10 mol )(997 kg)
2 303 1 000 m

(1 602 10 C) (0 8988 10 N m C )

(78 54)(1 3807 10 J K )(298 15 K)

0 509 kg mol

Since the ionic strength has the units mol kg , the units of and cancel, as they
must, to give a logarithm.

Use the Debye–Hückel theory to calculate , , and , and for 0.001 molal
sodium chloride in water at 25 C.

log

(0 509)(0 001)

0 964
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where is the ionic strength and

1 2
(7 61)

2 303 4

where is the mass of solvent in volume and is the relative permittivity.

Equation 7.60 gives the activity coefficient of a single ion, but the quantity that
is accessible to experimental determination is the mean ionic activity coefficient,
which for the electrolyte A B is given by equation 7.55.

Taking the logarithm of equation 7.55, we have

1
log ( log log ) (7 62)

Substituting equation 7.60 for each activity coefficient, we have

log (7 63)

Introducing , we see that

log (7 64)

The charge number has the sign of the ion, and so we see that the effect of the
ion atmosphere is to lower the activity coefficient of the electrolyte.

�
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log

(0 509)(1)( 1)(0 001)

( ) 0 964

(10 ) (0 964)

9 29 10

Mean ionic activity coefficients for electrolytes with 1 2 3
and 4 as a function of ionic strength according to the extended Debye–Hückel equation.
(See Computer Problem 7.E.)
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Figure 7.4

The Debye–Hückel theory has been of great value in interpreting the proper-
ties of electrolyte solutions. It is a limiting law at low ionic strengths. At high values
of the ionic strength the activity coefficient of an electrolyte usually increases with
increasing ionic strength. Equation 7.64 is in excellent agreement with experiment
up to an ionic strength of about 0.01, but large deviations are encountered even
at this ionic strength if the product of the charge of the highest charged ion of
the salt and the charge of the oppositely charged ion of the electrolyte medium is
greater than about 4.

In working with electrolyte solutions at higher ionic strength, the following
empirical extension is often useful:

log /(1 ) (7 65)

where 1 6 (kg/mol) at 25 C. The dependencies of the mean ionic activity
coefficients of two salts on ionic strength are shown in Fig. 7.4 for the extended
Debye–Hückel equation (i.e., equation 7.65). The Debye–Hückel theory is indis-
pensable in interpreting measurements of electromotive force in electrochemical
cells.

The cell discussed in Section 7.3 may be used to determine the activity coef-
ficient of hydrochloric acid. For this purpose, the cell reaction will be written

H (g) AgCl(s) HCl( ) Ag(s) (7 66)

Since the charge number is equal to unity, the electromotive force, given by
equation 7.42, is

ln (7 67)
( / )
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Determination of the
silver–silver chloride electrode po-
tential by extrapolation of a func-

Calculate the mean ionic activity coefficient of 0 1 mol kg hydrochloric acid at 25 Ction of the potential of the cell Pt
from the fact that the electromotive force of the cell described in this section is 0.3524 V atH (1 bar) HCl( ) AgCl Ag to
25 C.infinite dilution.
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Figure 7.5

assuming that H is an ideal gas. If the pressure of hydrogen is 1 bar and equation
7.58 is introduced, then

2 303
log( )

0 059 16 log( ) (7 68)

The mean ionic activity coefficient of hydrochloric acid is represented by , and
is the molality.

As it stands, equation 7.68 contains two unknown quantities, and .
These may be obtained by determining the electromotive force of this cell over a
range of hydrochloric acid concentrations, including dilute solutions. Rearranging
equation 7.68 and substituting numerical values for 25 C gives

0 1183 log 0 1183 log (7 69)

The exponents in equation 7.68 have been placed in front of the logarithmic
term, giving (2)(0 059 16) 0 1183. Since at infinite dilution 0, 1, and
log 0, it can be seen that when 0 1183 log is plotted against , the
extrapolation of 0 1183 log to 0 will give .

To make a satisfactory extrapolation, use is made of the extended Debye–
Hückel equation to furnish a function that will give a nearly straight line. The
following expression is a useful empirical extension of equation 7.64 for the
mean ionic activity coefficient of a 1–1 electrolyte in dilute aqueous solutions
at 25 C:

log 0 509

where is an empirical constant.
Substituting into equation 7.69 and rearranging terms, we have

0 1183 log 0 0602 (0 1183 ) (7 70)

According to this equation, the left-hand side, which we will designate as ,
will give a straight line when it is plotted against , and the intercept at 0
is .

In Fig. 7.5, is plotted against . The extrapolated value is 0 2224 V
when the straight line is drawn through the points at the lower molalities. This is
the electromotive force that the cell would deliver with the hydrochloric acid at
unit activity.

The value of having been determined, the activity coefficient of hydrochlo-
ric acid at any other concentration may be calculated from the electromotive force
of the cell containing hydrochloric acid at that concentration.
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G. W. C. Kaye and T. H. Laby,
1973. Reprinted by permission of Pearson Educa-

tion, Inc., Upper Saddle River, NJ.

1/2

Mean Ionic Activity Coefficients in Water
at 25 C

/(mol kg ) HCl LiCl NaCl CsCl

0.01 0.905 0.904 0.902 0.899
0.02 0.875 0.873 0.870 0.865
0.05 0.830 0.825 0.820 0.807
0.10 0.796 0.790 0.778 0.756
0.20 0.767 0.757 0.735 0.718
0.40 0.755 0.740 0.693 0.628
1.0 0.809 0.774 0.657 0.544
2.0 1.009 0.921 0.668 0.495
3.0 1.316 1.156 0.714 0.478
4.0 1.762 1.510 0.783 0.473
5.0 2.38 2.02 0.874 0.474

Substituting into equation 7.69, we have

0 3524 0 2224 0 1183 log 0 1183 log 0 1

0 3524 0 2224 0 1183
log 0 0989

0 1183

0 796

Dependence of the mean ionic activity coefficient on for electrolytes
at 25 C.
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In this general manner the activity coefficients of the electrolytes shown in
Table 7.1 and Fig. 7.6 have been determined. It should be noted that at high



Determination of the changes in standard thermodynamic
properties of a reaction using an electromoti e force cell
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2The standard electromotive force of the cell Pt H (g) HCl(ai) AgCl(s) Ag has been
determined from 0 to 90 C by R. G. Bates and V . E. Bower, 283
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53:

concentrations of electrolytes, activity coefficients may be considerably greater
than unity.

The mean ionic activity coefficient for an electrolyte can also be determined
by measuring the vapor pressure of the solvent and using the Gibbs–Duhem
relation. However, electrochemical cells generally provide much more accurate
values of for electrolytes. The same value of the activity coefficient of an
electrolyte is, of course, obtained whether the equilibrium data come from mea-
surements of vapor pressure, freezing point lowering, boiling point elevation,
osmotic pressure, distribution coefficients, equilibrium constants, solubility, or
electromotive force.

The thermodynamic treatment of data from the Pt(s) H (g) HCl( ) AgCl(s)
Ag(s) cell in the preceding section shows how the standard electromotive force for
the cell can be determined. As shown by equation 7.44, the standard electromotive
force of a cell yields the equilibrium constant for the cell reaction since

ln (7 71)

Thus the equilibrium constant for reaction 7.66 is given by

(96 485 C mol )(0 2224 V)
exp (7 72)

(8 3145 J K mol )(298 15 K)

5745

( / )

where hydrogen is assumed to be an ideal gas.
If the standard electromotive force of a cell is measured as a function of tem-

perature, then , , and can be calculated using

(7 73)

(7 74)

(7 75)
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(1954). Their data may be represented by

0 236 59 4 8564 10 3 4205 10 5 869 10
V C C C

Determine , , , and at 25 C for the reaction

H (g) AgCl(s) HCl(ai) Ag(s)

Substituting 25 C yields 0 222 40 V. Thus,

(96 485 C mol )(0 222 40 V)

21 458 kJ mol

(96 485 C mol ) 4 8564 10 2(3 4205 10 )
C

3(5 869 10 )
C

62 297 J K mol

21 458 (298 15)(62 297 10 )

40 032 kJ mol

(96 485 C mol )(298 15 K)

2(3 4205 10 ) 6(5 869 10 )
C

171 4 J K mol

Since the standard thermodynamic properties of H (g), AgCl(s), and Ag(s) are known
from other sources, the standard electromotive forces of this cell over a range of tempera-
tures yields the standard thermodynamic properties of aqueous HCl.

What are the standard thermodynamic properties of HCl( 1) at 25 C?
The properties of H (g), AgCl(s), and Ag(s) at 25 C are given in Table C.2. According

to Example 7.6:

[HCl(ai)] [AgCl(s)]

[HCl(ai)] 21 458 109 789

131 247 kJ mol

[HCl(ai)] [AgCl(s)]
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[HCl(ai)] 40 032 127 068

167 100 kJ mol

[HCl(ai)] [Ag(s)] [AgCl(s)] [H (g)]

[HCl(ai)] 62 297 42 55 96 2 (130 684)

56 7 J K mol

[HCl(ai)] [Ag(s)] [AgCl(s)] [H (g)]

[HCl(ai)] 171 4 25 4 50 8 (28 8)

131 6 J K mol

Plot of the activity of
a solute versus its molality. The
dashed line is for an ideal solution.
The standard state is a hypothetical

1 mol kg solution in which
the solute would have unit activity if
it were ideal.
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Figure 7.7

It is important to understand that these thermodynamic properties apply to
the hypothetical standard state of HCl in water illustrated in Fig. 7.7. They
are the properties that HCl would have in aqueous solution at 1 mol kg if
the interactions of the ions with each other and water were the same as at infinite
dilution. The activity of a 1 molal solution of HCl is less than 1, as shown by the
solid line in Fig. 7.7. Notice that Fig. 7.7 is similar to Fig. 4.4, which was used to
explain the concept of the standard state of a gas.

The NBS Tables of Chemical Thermodynamic Properties (see Table C.2) give
the standard thermodynamic properties of many electrolytes. The standard state
of an electrolyte or ion is indicated by (ai) if the electrolyte is assumed to be com-
pletely ionized (such as NaCl or HCl). For a weak electrolyte (such as acetic acid)
properties are given for both the completely ionized standard state (ai) and for
the un-ionized (not dissociated) standard state. The designation ao is also used
for an ion when no further ionization is considered. For an un-ionized solute in
aqueous solution, the standard state is the ideal solution at unit molality.

Since the thermodynamic properties of completely dissociated electrolytes in
water are made up of sums of contributions of ions, it would be convenient to
have tables of standard thermodynamic properties of ions. However, there is no
way that ions can be studied separately because of the electroneutrality condition.
Nevertheless, if the properties of one ion are set by convention, the properties
of other ions can be calculated. The following convention is used in preparing
thermodynamic tables: (H ) (H ) 0 at each temperature.

For a strong electrolyte the standard Gibbs energy of formation is equal to
the sum of the standard Gibbs energies of formation of the ions, and the stan-
dard enthalpy of formation is equal to the sum of the standard enthalpies of
formation of the ions. Thus for HCl(ai), (HCl) (H ) (Cl )
and (HCl) (H ) (Cl ). Since (H ) (H ) 0,

(HCl) (Cl ) and (HCl) (Cl ), as seen in Table C.2.
The situation is a little more complicated when we come to the entropies of aq-

ueous ions. Since (H ) (H ) 0, it is expected that (H ) 0,
but the convention established a long time ago, and used in current tables, is that

[H (ao)] 0. If we consider the formation reaction for the hydrogen ion,

H (g) H (ao) e (7 76)

we can see that both [H (ao)] 0 and [H (ao)] 0 will be satisfied if
the formal electron is treated as a reactant and assigned (e ) [H (g)]
at each temperature. This formal electron, which is used in balancing half-cell
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Calculate the standard molar entropy of chloride ion in aqueous solution at 298.15 K start-
ing with the Gibbs energy of formation and the enthalpy of formation from Table C.2.

First we calculate the entropy of formation of Cl (ao) using

(Cl ) (Cl ) ( 167 159 131 228) J mol
(Cl )

298 15 K

120 51 J K mol

Then we use the formation reaction

Cl (g) e Cl (ao)

to calculate the entropy of the Cl ion. The conventional value of [H (g)] is used
for (e ).

(Cl ) (Cl ) (Cl ) (e )

223 066 130 684
120 51 (Cl )

2 2

(Cl ) 56 36 J K mol
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reactions, is not an aqueous electron. Treating equation 7.76 as a formation reac-
tion yields

[H (ao)] (H ) (e ) [H (g)]

0 [H (g)] [H (g)] 0 (7 77)

Formation reactions like equation 7.76 can be used to calculate standard Gibbs
energies of formation and standard enthalpies of formation by use of the conven-
tion that (e ) (e ) 0 at each temperature. The reason that this
problem arises with the entropy is that whereas the standard Gibbs energies and
enthalpies of formation of the elements are taken as zero, the entropies of the el-
ements have positive values. (Note that the standard molar entropies of ions can
be negative.)

Table C.2 is very useful for calculating changes in standard thermodynamic
properties and equilibrium constants for chemical reactions involving aqueous
ions at 298.15 K, but it is important to remember that these properties apply
to solutions of zero ionic strength. In order to make calculations at higher ionic
strengths, the extended Debye–Hückel equation can be used to calculate activity
coefficients at low ionic strengths. It is more complicated to calculate the effects
of ionic strength on and . A convenient way to make quantitative cal-
culations of the effects of ionic strength is to consider that , , and
are functions of the ionic strength, in other words, to calculate the values of these
properties that apply at the desired ionic strength.



Calculation of formation properties
of H (ao) and Cl (ao) at 298.15 K
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( ) Calculate and of H (ao) and Cl (ao) at 298.15 K at an ionic strength of
0 10 molal using the extended Debye–Hückel equation. ( ) Calculate and for
the following reaction:

H (g) AgCl(s) H Cl Ag(s)

( ) Calculate ( 0 10 ) for the corresponding galvanic cell. ( ) Calculate (
0 10 ) for the reaction.

( ) For the hydrogen ion, equation 7.79 yields

(H 0 10) 0 2 914 82(0 209 98) 0 612 kJ mol

where

0 209 98 for 0 10
1 1 6

Equation 7.78 yields

(H 0 10) 0 1 4775(0 209 98) 0 310 kJ mol
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Equation 7.60, for the activity coefficient of an ion, can be written as

ln /(1 ) (7 78)

Note that ln is used rather than log. The effect of ionic strength on the standard
Gibbs energy of formation of ion in kJ mol is given by

( ) ( 0) ln

(7 79)( 0) /(1 )

( 0) 2 91482 /(1 )

where the last form applies at 298.15 K when is expressed in kJ mol . The
corresponding equation for the effect of ionic strength on the standard enthalpy
of formation of an ion can be obtained by use of the Gibbs–Helmholtz equation.
This yields

( 0) (d /d ) /(1 )
(7 80)

( 0) 1 4775 /(1 )

where the last form applies at 298.15 K when the is expressed in kJ mol .
The empirical parameter is usually taken to be 1.6 kg mol .

The effects of ionic strength on the Gibbs energy of reaction and the enthalpy
of reaction are given by

( ) ( 0) 2 914 82 /(1 ) (7 81)

( ) ( 0) 1 4775 /(1 ) (7 82)

The effect of ionic strength on the equilibrium constant of a reaction is given by

( ) ( 0) 10 (7 83)



E

m .

a

E . .

E . .

E G F

a E . .

r e

239

G , I . . . .

.

H , I . . . .

.

b G . . . .

H . . . .

G
c E

F

d K

� � �

�

� � �

� � � �

�

� � � �

� �

�

� � �

�

� � � �

� � � �

� � �

� �

�

�

f

1

f

1

1
r

1
r

1
r

1e

1

1 1

1
22

2

1
22

1
22

For the chloride ion,

(Cl 0 10) 131 228 2 914 82(0 209 98)

131 840 kJ mol

(Cl 0 10) 167 159 1 4775(0 209 98)

166 849 kJ mol

( ) 0 612 131 84 0 109 789 22 663 kJ mol

0 310 166 849 0 127 068 39 471 kJ mol

226 63 J mol
( ) 0.234 89 V

964 85 C mol

226 63 J mol
( ) exp 9340

(8.314 51 J K mol )(298.15 K)
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The standard electrode potential is the potential of a cell in which
the hydrogen electrode is on the left and all components of the cell are at unit
activity.

reduction potentials.
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Rather than simply tabulating the standard electromotive forces of many electro-
chemical cells, it is more useful to define standard electrode potentials and
tabulate them.

The standard electrode potential is a signed quantity, and its value for the
cell

H (g) AgCl(s) HCl( ) Ag(s) (7 84)

is 0.2224 V.
Now we adopt the convention that this potential difference is to be attributed

entirely to the electrode reaction in the right-hand electrode; that is, the standard
electrode potential of the standard hydrogen electrode H ( 1) H (1 bar)
Pt is arbitrarily assigned the value zero so that its electrode reaction and standard
electrode potential are given by

H (aq) e H (g) 0 0000 V (7 85)

Thus, the electrode reaction and the standard electrode potential for the Cl
AgCl(s) Ag electrode are

AgCl(s) e Ag(s) Cl (aq) 0 2224 V (7 86)

Notice that these electrode reactions are both written as reduction reactions, and
that standard electrode potentials may be called Thus, elec-
trode potentials are a measure of the tendency of an electrode reaction to occur in
the direction of reduction. Since the formal electron can be treated like a species
in thermodynamic calculations, thermodynamic tables such as Table C.2 can be
used to calculated electrode potentials using / . A brief listing
of electrode potentials is given in Table 7.2. Notice that the fluorine electrode has
the most positive electrode potential; that is, the reaction

F (g) e F ( 1) 2 87 V (7 87)
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All ions are at unit activity (on the molal scale) in water, and all gases are at 1 bar.

See Problem 7.61.

The electrode potential of the normal calomel electrode is 0.2802 V and that of the calomel
electrode containing saturated KCl is 0.2415 V.

The order of writing the ions in the electrolyte solution is immaterial.

Many more standard electrode potentials at 298.15 K are given in S. G. Bratsch,
1 (1989).

2

Standard Electrode Potentials at 25 C

/V

F F (g) Pt 2 87 F (g) e F

Au Au 1 50 Au e Au

Pb PbO Pb 1 455 PbO 2H e Pb H O

Cl Cl (g) Pt 1 3604 Cl (g) e Cl

H O (g) Pt 1 2288 H O (g) e H O

Ag Ag 0 7992 Ag e Ag

Fe Fe Pt 0 771 Fe e Fe

I I (s) Pt 0 5355 I e I

Cu Cu 0 521 Cu e Cu

OH O (g) Pt 0 4009 O (g) H O e OH

Cu Cu 0 3394 Cu e Cu

Cl Hg Cl (s) Hg 0 268 Hg Cl e Hg Cl

Cl AgCl(s) Ag 0 2224 AgCl e Ag Cl

Cu Cu Pt 0 153 Cu e Cu

Br AgBr(s) Ag 0 0732 AgBr e Ag Br

H H (g) Pt 0 0000 H e H (g)

D D (g) Pt 0 0034 D e D (g)

Pb Pb 0 126 Pb e Pb

Sn Sn 0 140 Sn e Sn

Ni Ni 0 250 Ni e Ni

Cd Cd 0 4022 Cd e Cd

Fe Fe 0 440 Fe e Fe

Zn Zn 0 763 Zn e Zn

OH H (g) Pt 0 8279 H O e H (g) OH

Mg Mg 2 37 Mg e Mg

Na Na 2 714 Na e Na

Li Li 3 045 Li e Li
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has the greatest tendency to go to the right of all of the reactions listed. Thus
F (g) has the greatest tendency to pull electrons out of a platinum electrode and
leave it positively charged. The lithium electrode has the most negative standard
electrode potential; that is, the reaction

Li ( 1) e Li(s) 3 045 V (7 88)

has the least tendency to go to the right of all of the reduction reactions listed.
Thus Li ( 1) has the least tendency to pull electrons out of a Li(s) electrode
and leave it positively charged.
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We saw earlier that the electromotive force of a cell is given by
(equation 7.38). We can express the electromotive force of a cell in terms of the
electrode potentials of the right and left electrodes, , and the stan-
dard electromotive force of a cell in terms of the standard electrode potentials
of the right and left electrodes:

(7 89)

The advantage of having a list of standard electrode potentials like Table 7.2 is
that we can calculate the standard electrode potentials of any cell involving the
electrodes listed. By use of the Nernst equation 7.42 we can calculate the elec-
tromotive force of a cell for specified concentrations or partial pressures of
reactants. It is also possible to identify which electrode will be positive and which
will be negative when the cell delivers a current. This table is also a source of
information about equilibrium constants since exp( / ) (equation
7.44).

To use Table 7.2 without making mistakes, it is a good idea to follow some sim-
ple rules. The first rule is that the half-cell reactions that yield the desired reaction
are written down as reductions with their standard electrode potentials (reduction
potentials). For example, consider the cell Pt (H ) HCl( ) (Cl ) Pt. The
half-cell reactions are

Right: Cl (g) 2e 2Cl 1 3604 V (7 90)
Left: 2H 2e H (g) 0 V (7 91)

The two half-cell reactions should be written with the same number of electrons,
but is not affected by . The standard electromotive force for the cell is
obtained by subtracting from (equation 7.89), and the cell reaction is ob-
tained by subtracting the half-cell reaction for the left electrode from the half-cell
reaction for the right electrode.

H (g) Cl (g) 2H 2Cl 2HCl(ai) 1 3604 V (7 92)

If the standard electromotive force is positive, the reaction will spontaneously go
to the right if the reactants are in their standard states, and the right electrode
will be the positive electrode when the cell is operated as a galvanic cell. If the
standard electrode potential is negative, the cell reaction will go spontaneously
to the left, and the right electrode will be the negative electrode when the cell is
operated as a galvanic cell.

The equilibrium constant for reaction 7.92 is given by

2(96 485 C)(1 3604 V)
exp exp

(8 3145 J K mol )(298 15 K)

(HCl) ( )
9 78 10 (7 93)

(H ) (Cl )

The electromotive force for the cell with different partial pressures of the gases
and HCl not in its standard state can be calculated using the Nernst equation:

(HCl) ( )
ln (7 94)

(H ) (Cl )

If the cell has a liquid junction, we write the Nernst equation in terms of ion
species, as shown in the following example.



Calculation of an equilibrium constant from the standard
electromoti e force of a gal anic cell

Calculation of standard electrode potentials using a
thermodynamic table
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Consider the following galvanic cell:
....Zn(s) Zn .. Cu Cu(s)

What are ( ) the cell reaction, ( ) the standard electromotive force, ( ) the equilibrium
constant, and ( ) the equilibrium constant expression?

( ) R Cu 2e Cu(s) 0 339 V
L Zn 2e Zn(s) 0 763 V

Zn(s) Cu Cu(s) Zn 0 337 ( 0 763) 1 102 V
2(96 485)(1 102)

( ) exp 1 80 10
(8 3145)(298 15)

(Zn ) [Zn ] (Zn ) [Zn ]
( )

(Cu ) [Cu ] (Cu ) [Cu ]

where the last form would be obtained if the solutions on the opposite sides of the salt
bridge have the same ionic strength.

Use Table C.2 to calculate the standard electrode potentials for the following three elec-
trodes: Cd Cd Cl Cl (g) Pt Cl AgCl(s) Ag.

Cd (ao) 2e Cd(s)

( 77 612) 77 612 kJ mol

77 612 J mol

2(96 485 C mol )

0 4022 V

Cl (g) 2e 2Cl (ao)

2( 131 228 kJ mol )

2(131 228 J mol )

2(96 485 C mol )

1 360 1 V

AgCl(s) e Ag(s) Cl (ao)

131 228 ( 109 789) 21 439 kJ mol

21 439
0 2222 V

96 485
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In concluding our discussion of equilibrium constants of solution reactions,
there are two more points to mention. The first concerns the convention on re-
actions in dilute solution that involve the solvent as a reactant. In this case the
solvent is usually treated on the mole fraction scale, rather than the molal or
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molar concentration scale used for the other reactants. In this case the equilibrium
constant expression is written

( ) (7 95)

where A is the solvent, is its activity coefficient on the mole fraction scale,
is the activity coefficient of reactant on the molal scale, and is the standard
value of the molality (1 mol kg ). For dilute solutions is close to unity,
and so the equilibrium constant expression is written

(7 96)

which simplifies further if the are close to unity. Although the solvent is left
out of equation 7.96, the Gibbs energy of formation of the solvent must be in-
cluded in calculating for a reaction in liquid solution.

The second point is that some species in aqueous solution may be listed in
thermodynamic tables in more than one way–––versus for example, NH (ao) or
NH OH(ao), CO (ao) versus H CO (ao). In many of these cases we do not know
the extent of hydration because of the difficulty in distinguishing between the
species in solution. The convention in the NBS tables is that

0 for the hydration reactions B(ao) H O B (H O) (ao) of these
species. In dilute solutions, the concentrations of the two forms are proportional to
each other, so equilibrium constant expressions may be written in terms of either
one of the pair.

F (g)
Li(s)

F (g) Li(s) Li (aq) F (aq) 10

The concentrations of hydrogen ions in aqueous solutions range from about
1 mol L in 1 mol L HCl to about 10 mol L in 1 mol L NaOH. Because
of this wide range of concentrations, Sorenson adopted an exponential notation
in 1909. He defined pH as the negative exponent of 10 that gives the hydrogen
ion concentration. Now the pH is defined to be as close as possible to the negative
base 10 logarithm of the hydrogen ion activity:

pH log (7 97)�
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Figure 7.8

Strictly speaking, the activity of a single ion cannot be determined, but pH me-
ters are calibrated with buffers for which the pH has been calculated using the
extended Debye–Hückel equation.

The pH may be measured with a hydrogen electrode connected with a calomel
electrode through a salt bridge:

....Pt H ( ) H ( ) .. Cl Hg Cl Hg

The electromotive force of this cell may be considered to be made up of three
contributions:

0 2802 0 0591 log (7 98)
( / )

where the contribution by the normal calomel electrode is 0.2802 V at 25 C. Al-
though the activities of single ions cannot be determined, equation 7.98 is often
used with the assumption that 0. If 1 bar, then

0 2802 0 0591 log (7 99)

Hydrogen ion activities obtained in this way are of great practical use, even though
they are based on an approximation.

When pH log , equation 7.99 becomes

0 2802 0 0591 pH (7 100)

or

0 2802
pH (7 101)

0 0591

Usually the pH is measured with a glass electrode because this avoids the use
of hydrogen and the possibility of poisoning the platinized platinum surface. A
glass electrode consists of a reversible electrode, such as a calomel or Ag–AgCl
electrode, in a solution of constant pH inside a thin membrane of a special glass.
The thin glass bulb of this electrode is immersed in the solution to be studied along
with a reference calomel electrode to form the cell indicated by

....Ag AgCl Cl H glass membrane solution .. calomel electrode

and by Fig. 7.8. It is found experimentally that the potential of such a glass elec-
trode varies with the activity of hydrogen ions in the same way as the hydrogen
electrode, that is, 0.0591 V per pH unit at 25 C. An ordinary potentiometer can-
not be used to measure the voltage of such a cell because of the high resistance
of the glass membrane, so an electronic voltmeter must be employed. Electronic
devices using the glass electrode have been developed that make it possible to
measure pH values to 0 01 pH unit with an easily portable apparatus. The pH
meter, as it is often called, is calibrated by means of a buffer of known pH before
it is used to measure the pH of an unknown solution.*

The glass electrode has become the most useful electrode for determining the
pH of a solution. It is not affected by oxidizing or reducing agents and is not easily
poisoned. It is especially useful in biochemical investigations.
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The carbon dioxide electrode is another useful clinical tool. This electrode
consists of a glass electrode in contact with a solution of fixed bicarbonate con-
centration that is separated from the sample solution by a polymer membrane per-
meable to CO . When CO diffuses into the bicarbonate solution, it is hydrated
to H CO and then rapidly ionizes to HCO H with a consequent change
in pH.

There are a growing number of ion-selective electrodes that use semiperme-
able membranes to obtain a cell potential that depends on a particular ion.

A fuel cell is a cell that is continuously supplied with an oxidant and a reductant so
that it can deliver a current indefinitely. Fuel cells offer the possibility of achieving
high thermodynamic efficiency in the conversion of Gibbs energy to mechanical
work. Internal combustion engines at best convert only a small part of the fraction
( )/ of the heat of combustion to mechanical work. In this relation, which
comes from the second law of thermodynamics, is the temperature of the gas
during expansion and is the temperature of the exhaust (see Section 3.9).

Fuel cells may be classified according to the temperature range in which they
operate: low temperature (25 to 100 C), medium temperature (100 to 500 C),
high temperature (500 to 1000 C), and very high temperature (above 1000 C).
The advantage of using high temperatures is that catalysts for the various steps
in the process are not so necessary. Polarization of a fuel cell reduces the current.
Polarization is the result of slow reactions or processes such as diffusion in the
cell.

Figure 7.9 indicates the construction of a hydrogen–oxygen fuel cell with a
solid electrolyte, which is an ion-exchange membrane. The membrane is imper-
meable to the reactant gases but is permeable to hydrogen ions, which carry the
current between the electrodes. To facilitate the operation of the cell at 40 to 60 C,
the electrodes are covered with finely divided platinum that functions as a catalyst.
Water is drained out of the cell during operation. Fuel cells of this general type
have been used successfully in the space program and are quite efficient. Their
disadvantages for large-scale commercial application are that hydrogen presents
storage problems, and platinum is an expensive catalyst. Less expensive catalysts
have been found for higher-temperature operation of hydrogen–oxygen fuel cells.

Fuel cells that use hydrocarbons and air have been developed, but their power
per unit weight is too low to make them practical in ordinary automobiles. Better
catalysts are needed.

A hydrogen–oxygen fuel cell may have an acidic or alkaline electrolyte. The
half-cell reactions are

O (g) 2H 2e H O(l) 1 2288 V

2H 2e H (g) 0

H (g) O (g) H O(l) 1 2288 V
or

O (g) H O(l) 2e 2OH 0 4009 V
2H O(l) 2e H (g) 2OH 0 8279 V

H (g) O (g) H O(l) 1 2288 V
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Hydrogen–oxygen fuel cell with an ion-exchange membrane. (From J. O’M.
Bockris and S. Srinivasan, New York: McGraw-Hill.
Copyright 1969 by McGraw-Hill, Inc. Used with permission of McGraw-Hill Book Co.)

Chapter 7 Electrochemical Equilibrium

7.10 SPECIAL TOPIC: MEMBRANE POTENTIAL

� �
�

� � �
�

Figure 7.9

To maximize the power per unit mass of an electrochemical cell, the electronic
and electrolytic resistances of the cell must be minimized. Since fused salts have
lower electrolytic resistances than aqueous solutions, high-temperature electro-
chemical cells are of special interest for practical applications. High temperatures
also allow the use of liquid metal electrodes, which enable higher current densities
than solid electrodes.

If two different electrolyte solutions are separated by a membrane, a potential
difference will be set up between the two solutions if the membrane is permeable
to some ions and impermeable to others. For example, consider two KCl solutions
separated by a membrane permeable to K but impermeable to Cl . If solution
is more concentrated than solution , K ions will diffuse through the membrane
from to . This will cause solution to become positively charged relative to
solution and to have a higher electric potential. Actually, the amount of K
that has to diffuse through the membrane to produce the potential difference is
chemically insignificant, as we have seen in Section 7.1. As K diffuses through the
membrane, the electrical potential difference that is set up across the membrane
retards the diffusion of more K , and eventually an equilibrium is reached.



Calculation of a membrane potential
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The membrane potential for a resting nerve cell is given by 70 mV,
where is the potential internal to the cell and is the potential external to the cell.
Given the fact that the concentration of K inside a resting nerve cell is about 35 times
that outside the cell, what membrane potential is expected?

(8 3145 J K mol )(298 K)
ln 35

96 485 C mol

91 mV

This is perhaps as close as equation 7.106 should be expected to come to the observed
70 mV because the resting nerve cell is not actually at equilibrium.
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membrane potential.

Example 7.12

7.10 Special Topic: Membrane Potential
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At equilibrium, equation 7.20 applies to each ion that can pass through the
membrane, and so insertion of equation 7.19 yields

( ) ( ) ( ) ( ) (7 102)

The transformed chemical potential depends on the activity as the chemical
potential does, so we have

ln (7 103)

Substituting this relation in equation 7.102, we obtain

( ) ln ( ) ( ) ( ) ln ( ) ( ) (7 104)

Since the solvent is the same on both sides of the membrane and the electric po-
tentials have to be the same in the definition of the standard states for the trans-
formed chemical potential of , ( ) ( ), equation 7.102 becomes

ln ( ) ( ) ln ( ) ( ) (7 105)

Thus

( )
( ) ( ) ln (7 106)

( )

where is referred to as the This equation may be written
in terms of molal concentrations if the activity coefficients of ion are nearly the
same in solutions and . The membrane potential may be measured by
placing identical reversible electrodes in solutions and .

While K is concentrated inside a nerve cell, Na is at about a 10-fold higher
concentration outside. The concentration differences for these ions across the cell
membrane are maintained by “pumps” utilizing energy from ATP (Section 8.6)
and under the control of enzymes.

When a nerve impulse starts at one end of a nerve cell, the membrane po-
tential becomes momentarily positive. When this happens, the membrane’s per-
meability to Na momentarily increases and moves toward the equilibrium
value for Na of about 60 mV. This pulse propagates along the nerve cell with a
speed of 10–100 m s . After the peak, the permeability to Na decreases and the
permeability to K temporarily increases so that returns to its resting value
of 70 mV.
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The electric work of transferring a mole of electric charge through a poten-
tial difference is , where is the charge number of the ion and is
the Faraday constant.
In a galvanic cell a chemical reaction occurs spontaneously and produces
an electric potential difference between electrical conductors. In an elec-
trolytic cell, the application of an electric potential difference between the
electrodes produces chemical reactions in the cell.
Cells without liquid junctions can be given exact thermodynamic treatments.
Cells with liquid junctions involve irreversible processes, and so they cannot
be given exact treatments. However, cells with salt bridges are widely used,
and the error due to the liquid junction potential is believed to be small.
The Nernst equation gives the electromotive force of a cell in terms of the
standard electromotive force for the cell reaction and the activities of the
species in the cell reaction. The standard electromotive force is directly re-
lated to the equilibrium constant for the cell reaction.
The activities of single ions cannot be determined, but the mean ionic activ-
ities of a neutral electrolyte can. The Debye–Hückel equation predicts that
the logarithm of the activity coefficient is proportional to the square root of
the ionic strength in dilute solutions.
Measurements of electromotive forces of cells without transference yield
standard Gibbs energies of formation, and measurements at a series of tem-
peratures yield in addition standard enthalpies of formation, standard molar
entropies, and standard molar heat capacities.
Standard electrode potentials (reduction potentials) can be used to calcu-
late electromotive forces of galvanic cells and the equilibrium constants of
reactions occurring in galvanic cells.
A useful application of electromotive force measurements is the determina-
tion of the pH with a glass electrode. Because of the resistance of the glass
membrane an electronic voltmeter has to be used to measure the electro-
motive force.
Fuel cells offer the opportunity to achieve high thermodynamic efficiency
in the conversion of Gibbs energy to mechanical work. Better catalysts may
make fuel cells that use hydrocarbons and air practical.
When different electrolyte solutions are separated by a membrane that is
permeable by some ions and not others, an electric potential is set up be-
tween the two phases. Membrane potentials are involved in the propagation
of nerve impulses.
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is 0.9647 V at 25 C. The temperature coefficient is 1 74Problems marked with an icon may be more conveniently
10 V K . ( ) What is the cell reaction? ( ) What are the val-solved on a personal computer with a mathematical program.
ues of , , and ?How much work is required to bring two protons from an

For the galvanic cellinfinite distance of separation to 0.1 nm? Calculate the answer
in joules using the protonic charge 1 602 10 C. What is the

H (1 bar) HCl(ai) Cl (1 bar)work in kJ mol for a mole of proton pairs?
How much work in kJ mol can in principle be obtained the standard electromotive force at 298.15 K is 1.3604 V, and

when an electron is brought to 0.5 nm from a proton? ( / ) 1 247 10 V K . ( ) For the cell reaction,
A small dry battery of zinc and ammonium chloride what are the values of , , and ? ( ) For Cl (ao),

weighing 85 g will operate continuously through a 4- resistance what are the values of , , and ?
for 450 min before its voltage falls below 0.75 V. The initial volt- In Problem 4.10 two equations were derived for calculat-
age is 1.60, and the effective voltage over the whole life of the ing at another temperature if it is known at one. Compare
battery is taken to be 1.00. Theoretically, how many kilometers the values of (323 K) and calculated with these equa-
above the earth could this battery be raised by the energy deliv- tions for
ered under these conditions?

H O(l) H (ao) OH (ao)( ) The mean ionic activity coefficient of 0.1 molar
HCl(aq) at 25 C is 0.796. What is the activity of HCl in this Calculate for the half-cell OH H Pt at 25 C using
solution? ( ) The mean ionic activity coefficient of 0.1 mo- the value of the ion product for water, which is 1 006 10
lar H SO is 0.265. What is the activity of H SO in this (Section 8.1).
solution?

What are the values of and for the following re-
The solubility of Ag CrO in water is 8 00 10 actions at 298 K from Table C.2?

mol kg at 25 C, and its solubility in 0 04 mol kg NaNO is ( ) Cu(s) Zn (ao) Cu (ao) Zn(s)
8 84 10 mol kg . What is the mean ionic activity coefficient ( ) H (g) Cl (g) 2HCl(ai)
of Ag CrO in 0 04 mol kg NaNO ? ( ) Ca (ao) CO (ao) CaCO (s calcite)

A solution of NaCl has an ionic strength of 0 24 mol kg . ( ) Cl (g) Br (ao) Br (g) Cl (ao)
( ) What is its molality? ( ) What molality of Na SO would ( ) Ag (ao) Fe (ao) Fe (ao) Ag(s)
have the same ionic strength? ( ) What molality of MgSO ?

Derive the equation giving the effect of ionic strength at
Using the limiting law, calculate the mean ionic activity 298 15 K on ( ) of an ionic species and ( ) for a cell

coefficients at 25 C in water of the following electrolytes at reaction according to the extended Debye–Hückel equation.
10 : ( ) NaCl, ( ) CaCl , ( ) LaCl .

From the standard electrode potentials in Table 7.2, what
Estimate the electromotive force of the cell are the standard Gibbs energies of formation at 25 C for

Zn(s) ZnCl (aq, 0.02 mol kg ) AgCl(s) Ag(s) at 25 C Cl (ao), OH (ao), and Na (ao)?
using the Debye–Hückel equation.

According to Table 7.2, what are the equilibrium con-
The cell Pt H (1 bar) HBr( ) AgBr Ag has been stants for the following reactions at 25 C?

studied by H. S. Harned, A. S. Keston, and J. G. Donelson [ ( ) H (ao) Li(s) Li (ao) H (g)
989 (1936)]. The following table gives the

( ) 2H (ao) Pb(s) Pb (ao) H (g)electromotive forces obtained at 25 C:
( ) 3H (ao) Au(s) Au (ao) H (g)

/mol kg 0.01 0.02 0.05 0.10 Use Table C.2 to calculate the standard electrode poten-
/ 0.3127 0.2786 0.2340 0.2005 tial for Cl AgCl(s) Ag at 90 C if 0.

The phase rule for an electrochemical cell is
Calculate ( ) and ( ) the activity coefficient for a 0.10 3. ( ) Why is this so? ( ) Calculate the number of degrees
mol kg solution of hydrogen bromide. of freedom of the following reaction considered as a chemical

Design cells without a liquid junction that could be reaction.
used to determine the activity coefficients of aqueous solu-

H (g) 2AgCl(s) 2HCl(aq) 2Ag(s)tions of ( ) NaOH and ( ) H SO . Give the equations relat-
ing electromotive force to the mean ionic activity coefficient at ( ) Calculate the number of degrees of freedom for the following
25 C. electrochemical reaction.

The electromotive force of the cell H (g) 2AgCl(s) 2e (Pt )

2HCl(ai) 2Ag(s) 2e (Pt )Pb(s) PbSO (s) Na SO 10H O(sat) Hg SO (s) Hg(l)
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The NBS tables have entries for H CO (ao) HCO (ao), When a hydrogen electrode and a normal calomel elec-
and CO (ao), where ao means “not dissociated” and ai trode are immersed in a solution at 25 C, a potential of 0.664
means “completely ionized,” with a note explaining that the V is obtained. Calculate ( ) the pH and ( ) the hydrogen ion
table is based on the convention that for activity.

Calculate the equilibrium constant at 25 C for theA(ao) H O(l) A H O(ao) (a)
reaction

This means that for the reaction 2H D (g) H (g) 2D

CO (ao) H O(l) H CO (ao) (b) from the electrode potential for D D Pt, which is 3 4 mV
at 25 C.the equilibrium constant is taken equal to unity. The reason for

A water electrolysis cell operated at 25 C consumes 25this convention is that in dilute solutions in water it is impossi-
kWh/lb of hydrogen produced. Calculate the cell efficiency usingble to determine the equilibrium constants for these reactions

for the decomposition of water.by varying the concentration of water. Thus the properties for
Calculate at 25 C for fuel cells utilizing the reactionsH CO (ao) apply to the sum H CO (ao) CO (ao), where

these are interpreted as species. ( ) To see how this works, cal- ( ) C H (g) 3 O (g) 2CO (g) 3H O(l)
culate and for carbonic acid at 298 15 K and zero ionic

( ) C H (g) 3O (g) 2CO (g) 2H O(l)strength. ( ) Since the hydration of CO (ao) in the neutral pH
range is slow (half-life about 1 second), it has been possible to Catalysts have not yet been developed to make these fuel cells
determine the equilibrium constant for equation b. possible.

( ) When methane is oxidized completely to CO (g) and[H CO (ao)]
2.6 10 (c) H O(l) at 25 C, how much electrical energy can be produced[CO (ao)]

using a fuel cell, assuming that there are no electrical losses?
Given this information, calculate for H CO (ao): What is the electromotive force of the fuel cell? ( ) When one

mole of methane is oxidized completely in a Carnot engine thatH CO (ao) H HCO (ao) (d)
operates between 500 and 300 K, how much electrical energy
can be produced, assuming that the mechanical energy can be[H ][HCO (ao)]

(e) converted completely to electrical energy?[H CO (ao)]
Calculate the electromotive force of

At 25 C the standard electrode potential for the
Li(l) LiCl(l) Cl (g)Ag Ag electrode is 0.7991 V, and the solubility product for

AgI is 8 2 10 . What is the standard electrode potential for at 900 K for 1 bar. This high-temperature battery is at-
I AgI Ag? tractive because of its high electromotive force and low atomic

masses. Lithium chloride melts at 883 K and lithium at 453.69Using data from Table C.2, calculate the solubility of
K. [The for LiCl(l) at 900 K in JANAF ThermochemicalAgCl(s) in water at 298.15 K. The salt is completely dissociated
Tables is 336 140 kJ mol .]in the aqueous phase.

A membrane permeable only by Na is used to separateCalculate the standard electrode potentials at 25 C for
the following two solutions:the following electrodes using Table C.2: ( ) Li (ao) Li(s), ( )

F (ao) F (g), and ( ) Pb (ao) PbO (s) Pb.
0 10 mol kg NaCl 0 05 mol kg KClUsing Table C.2 calculate the values of , ,

, and at 25 C for the electrode reaction for the 0 05 mol kg NaCl 0 10 mol kg KCl
Na Na electrode.

What is the membrane potential at 25 C, and which solution hasThe standard electrode potentials in the earlier litera-
the highest positive potential?ture are based on a standard state pressure of 1 atm. Show that

Since Table 7.2 does not give [Fe , Fe(s)], calculate itwhen the bar is used as the standard state pressure, standard
from other data in the table.electrode potentials (atm) need to be corrected to (bar)

using In an electrolysis experiment, 0.1575 g of copper is placed
on the cathode from a solution of copper sulfate when a current

(bar) (atm) (0 000 169 V) of 0.400 amperes is passed for 1200 s. ( ) Calculate the value
of the Faraday constant. ( ) Given that the charge on an elec-

where is the increase in the number of gaseous molecules as
tron is 1 602 10 C, calculate the Avogadro constant. [This

the cell reaction (including hydrogen) proceeds as written.
experiment is described by C. A. Seiglie, 668

Calculate for Na (ao) at 298.15 K from ( ) (2003).]
(Na ) and (Na ) and ( ) (Na ).
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What is the electric field strength 0.5 nm from a proton? concentration cell. The voltage of the cell is 0 029 480 V at 20 C
and 0.029 071 V at 30 C. ( ) Which is the negative electrode?Calculate the energy in kJ mol required to separate a
( ) What is the heat of dilution per mole of Tl when Hg is addedpositive and negative charge from 0.3 nm to infinity in ( ) a vac-
at 30 C to change the concentration from 10.02% to 4.93%? ( )uum, ( ) a solvent of dielectric constant 10, and ( ) water at
What is the voltage of the cell at 40 C?25 C, which has a dielectric constant of approximately 80.

What are the values of , , , and atWhat is the expression for the activity of Na SO in terms
298.15 K forof the mean ionic activity coefficient and the molality?

H O(l) H (ao) OH (ao)Give the expressions for the mean ionic activity coeffi-
cients of LiCl, AlCl , and MgSO in terms of the activity of the

calculated from Table C.2? Compare with the value ob-electrolyte and its molality.
tained in Problem 7.57.Determine the ionic strength of each of the following so-

We found in Section 7.5 that 0 2224 V forlutions: ( ) 0 1 mol kg NaCl, ( ) 0 1 mol kg Na C O , ( )
0 1 mol kg CuSO , ( ) a solution containing 0 1 mol kg Pt H HCl AgCl Ag
Na HPO and 0 1 mol kg NaH PO .

at 25 C. Using the value of [Cl (ao)] given in Table C.2,For 0 002 mol kg CaCl at 25 C use the Debye–Hückel
what is the value of [AgCl(s)]?limiting law to calculate the activity coefficients of Ca and

Consider the following cell.Cl . What is the mean ionic activity coefficient for the elec-
trolyte? ....Pt Cu Cu .. Fe Fe PtAccording to Table C.2, what is the value of the equilib-
rium constant for the reaction ( ) What is the cell reaction? ( ) What is the standard electro-

motive force of the cell at 298.15 K? ( ) Calculate for the
H (g) AgCl(s) Ag(s) H (ao) Cl (ao) cell reaction from the standard electromotive force. ( ) Calcu-

late for the cell reaction using the values for the ionsat 25 C and how is it defined?
in Table C.2. ( ) Calculate for the cell reaction using the

Derive the expression for the electromotive force of the values and values in Table C.2.
cell

The electrode potential for the electrode Cl Cl (g) Pt
Pt H (g 1 bar) KH PO ( ) is given by

....Na HPO ( ) .. NaX( ) AgX(s) Ag /V 1 484 867 (3 958 492 10 )( /K)

(2 750 639 10 )( /K)Substitute the equilibrium expression for the second disso-
ciation of phosphoric acid and describe how the thermody- in the range 273–373 K. Calculate , , , , and
namic dissociation constant for that dissociation could be at 298.15 K.
obtained from electromotive force measurements at constant

The standard electrode potential for Cl Cl Pt istemperature.
1.2604 V. Calculate the standard Gibbs energy of formation of

( ) Write the reaction that occurs when the cell Cl (ao).
Given the following electrode potentials at 25 C,Zn ZnCl (0.555 mol kg ) AgCl Ag

Fe e Fe 0 771 Vdelivers current and calculate ( ) , ( ) , and ( ) at
25 C for this reaction. At 25 C, 1 015 V and ( / )

Fe e Fe(s) 0 440 V4 02 10 V K .
The electromotive force of the cell calculate the electrode potential for

Fe e Fe ?Cd CdCl 2 H O sat. solution AgCl Ag

Calculate the solubility of AgCl(s) in water at 298 K fromat 25 C is 0.675 33 V, and the temperature coefficient is 6 5
data in Table C.2.10 V K . Calculate the values of , , and at 25 C

for the reaction Calculate the thermodynamic properties of the following
strong electrolytes from those of the constituent ions at 25 C

Cd(s) 2AgCl(s) 2 H O(l) 2Ag(s) CdCl 2 H O(s) and check that the same values are tabulated in Table C.2 under
the following entries: HCl(ai), NaCl(ai), and NaOH(ai).A thallium amalgam of 4.93% Tl in mercury and another

Calculate the standard electromotive force of the cellamalgam of 10.02% Tl are placed in separate legs of a glass
cell and covered with a solution of thallous sulfate to form a Li LiCl(ai) Cl (g) Pt
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at 25 C using ( ) electrode potentials and ( ) standard Gibbs Ammonia may be used as the anodic reactant in a fuel
energies of formation. cell. The reactions occurring at the electrodes are

Devise a cell for which the cell reaction is NH (g) 3OH (ao) N (g) 3H O(l) 3e

O (g) 2H O(l) 4e 4OH (ao)H O(l) H (ao) OH (ao)

What is the electromotive force of this fuel cell at 25 C?
Calculate at 25 C from electrode potentials. What is the

For a membrane potential of 70 mV for a resting nervevalue of the equilibrium constant at this temperature?
cell, to what ratio of the concentrations of K inside and outside

Devise an electromotive force cell for which the cell would this correspond if there was equilibrium at 25 C?
reaction is

( ) What are the half-cell reactions for the cell....Pt(s) Cu Cu .. Cu Cu(s)? ( ) What is the cell reaction?AgBr(s) Ag Br
( ) What is the standard electromotive force of the cell at 25 C?

Calculate the equilibrium constant (usually called the solubility ( ) What is the value of the equilibrium constant and the equi-
product) for this reaction at 25 C. librium constant expression in general?

Using data in Table 7.2 and the Gibbs energies of forma- In connection with the preceding problem, another in-
tion of Ag(ao) Cl (ao), calculate the solubility of AgCl(s) in vestigator, who is also interested in the copper disproportion-....water at 25 C. ation reaction, studies the cell Cu(s) Cu .. Cu Cu(s). ( )

What are the differences between the standard electrode What are the half-cell reactions? ( ) What is the cell reaction
potentials for a standard state pressure of 1 bar and 1 atm for and the standard electromotive force of the cell at 298.15 K?
the following electrodes at 25 C? ( ) What is the equilibrium constant for the cell reaction? How

does this equilibrium constant compare with that in the pre-(1 atm)
ceding problem?

Cl AgCl(s) Ag 0.2224 V
Cl Cl (g) Pt 1.3604 V

See Problem 7.26.

The value of for the electrode Pt O (g) OH can-
Calculate the values of in equation 7.65 that fit each datanot be measured directly because the electrode is not reversible.

point for the mean ionic activity coefficient of ( ) HCl, ( ) NaCl,Calculate and at 25 C for the electrode reaction
and ( ) CsCl up to 0.40 molal in Table 7.1. Also plot the data as
the base 10 logarithms of the mean ionic activity coefficients ver-O (g) H O e OH (ao)
sus the square root of the ionic strength. ( ) Calculate the per-

from values from Table C.2. cent error in the mean ionic activity coefficients calculated for
Calculate the standard Gibbs energy of formation of HCl, NaCl, and CsCl using equation 7.65 using 1.6 kg mol

NO (ao) from its and values at 25 C using data from at each ionic strength.
Table C.2.

Calculate the values of in equation 7.65 that give theCalculate the standard Gibbs energy of formation of
best fit of the data on the mean ionic activity coefficients of ( )SO (ao) from and values in Table C.2.
CaCl and ( ) LaCl up to 0.05 molal. The values of the mean

A hydrogen–oxygen fuel cell is operated at 25 C and a ionic activity coefficients are given by
total pressure of 5 bar. What is the electromotive force, assuming
the gases are ideal? m/m 0.001 0.005 0.01 0.05

A hydrogen electrode and a normal calomel electrode (CaCl ) 0.888 0.789 0.732 0.584
give an electromotive force of 0.435 V when placed in a certain (LaCl ) 0.790 0.636 0.560 0.388
solution at 25 C. ( ) What is the pH of the solution? ( ) What
is the value of ? In addition, do two things for these two electrolytes: (i) Plot the

experimental data as base 10 logarithms of the mean ionic activ-A mole of H O(l) is electrolyzed at 298 K and 1 bar. ( )
ity coefficients versus the square root of the ionic strength andHow much electrical energy is required if there are no losses
compare the data with the extended Debye–Hückel equationdue to electrical resistance and overvoltage? ( ) The hydrogen
with 1 6 (ii) Calculate the percent errors in the mean ionicand oxygen are then burned at constant pressure to produce one
activity coefficients calculated for CaCl and LaCl using equa-mole of H O(l) at 298 K and 1 bar. How much heat is produced?
tion 7.65 with 1.6 kg mol at each ionic strength.( ) Can this heat be used in a heat engine to produce the amount

of electrical energy that was used to electrolyze the water ini- Calculate the standard electrode potential of ( )
tially? If so, what condition has to be met? Cd Cd, ( ) Cl Cl (g) Pt, and ( ) Cl AgCl(s) Ag(s) at
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0.25 ionic strength using the extended Debye–Hückel equa- coefficients versus the ionic strength up to 0.25 mol kg for
tion. See the values at 0 in Example 7.11. these cases.

Plot ( ) ( ), and ( ) for the reaction In the range 0–100 C the Debye–Hückel coefficient varies
with temperature according to

H (g) AgCl(s) H Cl Ag(s) 1 10708 1 54508 10 5 95584 10
( ) Calculate the temperature dependencies of the ionic

versus the ionic strength from 0 to 0.25 using the extended strength coefficients in the equations for , , and
Debye–Hückel equation. . ( ) Calculate the values of these coefficients at 0 C,

25 C, and 40 C and make a table.
( ) Plot the log (base 10) of the mean ionic activity co-

efficient versus the square root of the ionic strength, up to Calculate and plot versus ionic strength the ionic strength
0.5, at 25 C for 1 2 3 and 4 using the ex- contributions to , , and for ions with charges of
tended Debye–Hückel equation. ( ) Plot the mean ionic activity 1, 2, 3, and 4 up to 0 25 M at 298.15 K.
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The dissociations of weak acids and complex ions are interesting and important
examples of equilibria in aqueous solutions and are frequently involved in bio-
chemical reactions. Two types of equilibrium equations are useful in biochem-
istry, chemical equations and biochemical equations. Biochemical equations are
written in terms of sums of species at a specified pH. The corresponding equi-
librium constant is referred to as an apparent equilibrium constant and is rep-
resented by because it is a function of pH. The thermodynamic properties
calculated from and its temperature coefficient depend on the pH and are
referred to as transformed thermodynamic properties because they are defined
by Legendre transforms of , , and . Since apparent equilibrium constants
are frequently needed in biochemistry at pH 7, it is convenient to make tables of
standard transformed Gibbs energies of formation and standard transformed en-
thalpies of formation of reactants at pH 7. In contrast with the binding properties
of smaller molecules, including myoglobin, the affinity of hemoglobin for oxygen
increases as more oxygen is bound; this is a consequence of structural changes
in the hemoglobin molecule. This chapter closes with discussions of denaturation
equilibria of proteins and DNA.

Thermodynamics of Biochemical
Reactions
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8.1 Exact Treatment of the Dissociation of Weak Acids

8.1 EXACT TREATMENT OF THE DISSOCIATION
OF WEAK ACIDS
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Some acids, such as hydrochloric acid, are believed to be completely dissociated
in water, but others, such as acetic acid, are only partially dissociated and are re-
ferred to as The dissociation of a monoprotic weak acid in water is
represented by

HA H A (8 1)

In water, all ions are hydrated to a greater or lesser extent, and this has a signif-
icant effect on their thermodynamic properties. In water the proton may form a
hydronium ion, H O , or other complex species. A hydronium ion H O may be
hydrated by three water molecules so that H O is formed. Mass spectroscopic
studies show that this is a stable species in the gas phase. Since the state of the
proton in aqueous solution is not exactly known, the symbol H will be used to
represent the hydrated hydrogen ion in aqueous solution.

The is defined by

(8 2)

where is molal concentration (mol kg of solvent) and is the standard mo-
lality (1 mol/kg of solvent). The mean ionic activity coefficient for the dissociated
acid is represented by , and is the activity coefficient for the undissociated
acid. Since the undissociated acid is a nonelectrolyte, its activity coefficient is close
to unity in dilute solutions and may be taken as unity to a good approximation.
Since acid dissociation constants range over many powers of 10, they are often
expressed as p values, where p log .

Table 8.1 gives the p values and other thermodynamic quantities at 25 C for
equilibrium constants expressed in terms of activities. Equilibrium constants for
these acids at zero ionic strength have been determined by use of extrapolations
similar to those described in Section 7.5. From the temperature dependence of
it is possible to calculate , , and for the dissociation.

The weakest acid listed in Table 8.1 is water itself. Its acid dissociation is rep-
resented by

H O H OH (8 3)

Thus, the acid dissociation constant of water, usually referred to as the
is defined by

(8 4)
( )

The activity of water, which can be written in the denominator of this expression,
is taken as unity since it is the solvent. The value of for water at 25 C is 1 007
10 . This is listed in Table 8.1 as a p value. The ion product of water is given
at a series of temperatures in Table C.4. The enthalpy of dissociation of water
is the negative of the enthalpy of neutralization of a strong acid with a strong
base (Section 2.13). Weaker acids than H O are known. For example, the p for
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4

Standard Thermodynamic Quantities for Acid Dissociation at 25 C

p kJ mol kJ mol J K mol J K mol

Water ( ) 13.997 79.868 56 563 78 2 197
Acetic acid 4.756 27.137 0 385 92 5 155
Chloroacetic acid 2.861 16.322 4 845 71 1 167
Butyric acid 4.82 27.506 2 900 102 1 0
Succinic acid, p 4.207 24.016 3 188 69 9 134
Succinic acid, p 5.636 31.188 0 452 109 2 218
Carbonic acid, p 6.352 36.259 9 372 90 4 377
Carbonic acid, p 10.329 58.961 15 075 147 3 272
Phosphoric acid, p 2.148 12.259 7 648 66 9 155
Phosphoric acid, p 7.198 41.099 4 130 123 8 226
Glycerol-2-phosphoric acid, p 1.335 7.615 12 103 66 1 326
Glycerol-2-phosphoric acid, p 6.650 37.945 1 724 133 1 226
Ammonium ion 9.245 52.777 52 216 1 7 0
Methylammonium ion 10.615 60.601 54 760 19 7 33
Dimethylammonium ion 10.765 49.618 49 618 39 7 96
Trimethylammonium ion 9.791 55.890 36 882 63 6 184
Tris(hydroxymethyl)aminomethane 8.076 46.099 45 606 1 3 0
Glycine, p 2.350 13.410 4 837 28 9 134
Glycine, p 9.780 55.815 44 141 39 3 50
Glycylglycine, p 3.148 17.322 3 607 54 0 167
Glycylglycine, p 8.252 47.112 44 350 8 4 42
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methanol is 15.53. Special methods, not described here, are required to study such
weak acids.

The fact that for dissociation for most weak acids is negative is surpris-
ing at first. Gas dissociation reactions have positive entropy changes. However, the
experimental results for acid dissociations in aqueous solution show that there is
a decrease in entropy and, correspondingly, an increase in “order” in the dissocia-
tion. This results from the participation of water molecules in the reaction, which
is not indicated by the balanced equation 8.1. Water molecules, being dipoles, tend
to be oriented in the neighborhood of ions. Thus, the dissociation of an uncharged
acid results in the orientation of a number of water molecules about the ions
formed, and the consequent decrease in overshadows the increase in
resulting from the formation of two particles from one. The effects that lead to a
negative value of tend to oppose dissociation. For a number of weak acids
in Table 8.1 the value of is very small, and so the standard entropy change
largely determines the value of p according to 2 303 p .

There is almost no entropy change in the dissociation of ammonium ion

NH H NH (8 5)

because there is no change in the number or charge of ions in the reaction, so that
the dissociation causes little change in water structure. Water molecules are not
so organized around methylammonium ion as around NH , and therefore, there
is a decrease in entropy on dissociation of the methylammonium ion. The entropy
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8.2 PRACTICAL CALCULATIONS WITH WEAK ACIDS
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decrease on dissociation is even greater for the dimethylammonium and trimethyl-
ammonium ions, suggesting decreasing water organization as methyl substitution
increases.

The data in Table 8.1 can be used to calculate acid dissociation constants at
other temperatures using the equation in Example 5.11, which is based on the
assumption that is independent of temperature.

In previous chapters and in the preceding section, activity coefficients have been
emphasized, but in the remainder of this chaper we will find that it is more con-
venient to write expressions for equilibrium constants in terms of concentrations
and to use thermodynamic properties that are functions of ionic strength, as well as
temperature. In other words, we will use activity coefficients implicitly, rather than
explicitly. The equation for the chemical potential of a species can be written as

ln ln ln (8 6)

where is the molar concentration. In this equation is the standard chemical
potential at the standard state, where the ionic strength is zero. The contribution
of the activity coefficient to the chemical potential of the species is ln ,
where is a function of the ionic strength. However, in studying biochemical
equilibria, the ionic strength is generally under the control of the investigator and
is in the low concentration range, where the extended Debye–Hückel equation
should be a good approximation. When the ionic strength is specified, the terms

and ln can be combined, and equation 8.6 can be written as

ln (8 7)

where is now a function of ionic strength as well as temperature. Note that the
symbol in equations 8.6 and 8.7 has different meanings. Equation 8.7 has the
advantage that expressions for equilibrium constants can be written in terms of
concentrations of species, and so we will use it in the rest of the book. This makes it
possible to treat dilute solutions as ideal solutions even when there are significant
ionic strength effects. For example, the dissociation constant for a weak acid can
be written in terms of concentrations as

[H ][A ]/[HA] (8 8)

It is also useful to write this equation in the form

10 [A ]/[HA] 10 (8 9)

where pH log[H ] and p log . We could use the symbol pH to
distinguish this pH from pH log (H ) determined using a glass electrode.
In this chapter we will use pH to refer to pH , but in making comparisons be-
tween calculations and experimental data, we need to know the difference pH

pH . Since pH log (H )[H ] log (H ) pH , substituting the
extended Debye–Hückel equation yields

pH pH (8 10)
1 1 6
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2

pH pH as a Function
of Ionic Strength and Tem-
perature

/M 10 C 25 C 40 C

0 0 0 0
0.05 0.082 0.084 0.086
0.1 0.105 0.107 0.110
0.15 0.119 0.122 0.125
0.2 0.130 0.133 0.137
0.25 0.138 0.142 0.146

p ’s of Weak Acids at 298.15 K in Dilute Aqueous Solution at
Three Ionic Strengths

0 0 10 0 25

Acetate 4.75 4.54 4.47
Ammonia 9.25 9.25 9.25
ATP 7.60 6.74 6.47
ATP 4.68 4.04 3.83
ADP 7.18 6.54 6.33
ADP 4.36 3.93 3.79
AMP 6.73 6.30 6.16
AMP 3.99 3.78 3.71
Adenosine 3.50 3.50 3.50
HCO 10.30 9.90 9.76
H CO 6.37 6.15 6.08
Glucose 6-phosphate 6.42 5.99 5.85
Phosphate 7.22 6.79 6.65
Pyrophosphate 9.38 8.52 8.25
Pyrophosphate 6.74 6.10 5.89
Succinate 5.64 5.21 5.07
Succinate 4.21 3.99 3.92
Fumarate 4.60 4.17 4.03
Fumarate 3.09 2.88 2.81
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This difference depends on the temperature, but since the temperature depen-
dence of is known, pH pH is given in Table 8.2. These are the adjustments
to be subtracted from pH , obtained with a pH meter, to obtain pH , which is used
in the equations in this chapter. pH is lower than pH because the ion atmosphere
of H reduces its activity. It is also convenient to use pMg log[Mg ].

Table 8.3 gives the p ’s for acid dissociation for some weak acids of interest in
biochemistry at 289.15 K at three ionic strengths. In this table certain low and high
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Titration of acetic acid with a concentrated solution of sodium hydroxide. The
number of moles of NaOH added to a liter of 0.10 M acetic acid is represented by . (See
Computer Problem 8.I.)

Henderson–
Hasselbalch equation.
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Figure 8.1

p ’s have been omitted because they are unimportant in the usually considered
range of pH 5 to 9.

In using acid dissociation constants to discuss buffers, it is convenient to write
equation 8.9 as

[A ]
pH p log (8 11)

[HA]

where p log . This useful equation is often referred to as the
It shows that the apparent p of a weak acid in a particular

electrolyte solution can be calculated from the pH of a solution containing known
concentrations of weak acid [HA] and weak base [A ]. For an aqueous solution
containing NH Cl and NH , the ratio in equation 8.11 would be [NH ]/[NH Cl].
The Henderson–Hasselbalch equation can be used to calculate the ratio of base
and acid forms required to make a buffer of a particular pH. A buffer is most effec-
tive in a range of pH values between p 1 and p 1 because the [base]/[acid]
ratio goes from 0.1 to 10 in this range.

We are now in a position to discuss the titration curve of a weak acid with
a strong base. As shown in Fig. 8.1, the pH of 0.1 molar acetic acid is about
2.9. As a concentrated solution of sodium hydroxide is added, the pH rises
rapidly at first and then moves slowly through the buffering region around pH
4.7 (reaching pH 4.7 when one-half of the acid has been neutralized); it then
rises very rapidly at the equivalence point at pH 8.8. When sodium hydrox-
ide is added beyond the equivalence point, the pH corresponds to that of a
mixture of sodium hydroxide and sodium acetate. The titration curve can be
calculated most easily using the approximation that the electrolyte concentration
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Titration curves for monoprotic acids with p ’s of 4, 5, 6, 7, 8, 9, and 10 at
298.15 K. The number of molds of NaOH added to a liter 0.10 M weak acid is represented
by . (See Computer Problem 8.I.)

You want to prepare 1 liter of an acetate buffer of 0.1 ionic strength and pH 5.0 at 25 C.
How many moles of sodium acetate and acetic acid should you add if the p of acetic acid
at this ionic strength is 4.54?

Example 8.1

Chapter 8 Thermodynamics of Biochemical Reactions
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Figure 8.2

is constant so that an apparent acid dissociation constant for that electrolyte
concentration can be used.

The calculation of the titration curve for acetic acid involves the four un-
knowns [H ], [A ], [HA], and [OH ]. To calculate these unknown concentra-
tions we have two equilibrium expressions,

[H ][A ]
(8 12)

[HA]

[H ][OH ] (8 13)

We also have two conservation equations (conservation of mass and charge),

[acetate] [HA] [A ] (8 14)

[Na ] [H ] [A ] [OH ] (8 15)

where [acetate] is the total concentration of acetate and [Na ] is the concentration
of sodium ions, which is equal to the concentration of sodium hydroxide added up
to that point in the titration. These simultaneous equations can be solved for the
amount of sodium hydroxide that has to be added to a liter (see Problem 8.2).
Figure 8.2 shows the titration curves for 0.10 M monoprotic weak acids with p ’s
of 4, 5, 6, 7, 8, 9, and 10 at 298.15 K. Note that each titration curve starts at a
different pH and that the endpoints are each at a different pH. When weaker
monoprotic acids are titrated, their buffering regions are at higher pH values, as
shown in Fig. 8.2.
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[NaA]
pH p log

[HA]

0 1
5 0 4 54 log

[HA]

[HA] 0 0347 mol L

Thus, you would add 0.1 mol of sodium acetate and 0.0347 mol of acetic acid to prepare a
liter of buffer.
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The values of p are given for a large number of acids in Table C.5. When
the acid is diprotic, p is also given. The dissociation constant for the second
proton is smaller, and so p p .

In discussing H PO we are going to number the p expressions in the op-
posite direction to make a point about the average number of protons bound
at a particular pH. For H PO , the acid dissociation constants at a specified ionic
strength are defined by

[H ][PO ]
HPO H PO (8 16)

[HPO ]

[H ][HPO ]
H PO H HPO (8 17)

[H PO ]

[H ][H PO ]
H PO H H PO (8 18)

[H PO ]

As acid is added to a solution of Na PO , the phosphate ions pick up protons
as indicated by equations 8.16–8.18. At any specified pH, there is an equilibrium
between the various species, and we can talk about the average number of
protons per phosphorus atom in the collection of species. At very high pH, this
number approaches zero, and at very low pH, it approaches 3. The average
number of protons bound can be calculated using , where is
the fraction of the phosphate ions with hydrogen atoms; for example,
[H PO ]/([PO ] [HPO ] [H PO ] [H PO ]). The average number
of protons bound by phosphate is given by

[HPO ] 2[H PO ] 3[H PO ]
(8 19)

[PO ] [HPO ] [H PO ] [H PO ]

Substituting the equilibrium relations in equations 8.16 to 8.18 yields

[H ]/ 2[H ] / 3[H ] /
(8 20)

1 [H ]/ [H ] / [H ] /

The number of protons bound by inorganic phosphate is shown as a function
of pH in Fig. 8.3. This is really a titration curve, but we are focusing on what it
tells us, rather than on the volume of base, or acid, added. At 25 C the successive
dissociation constants are 10 , 6 34 10 , and 7 11 10 .

The way to look at this binding curve is to start at the far right. There phos-
phate is in the form of PO , and the hydrogen ion concentration is, let us say,



2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

3

pH

N
H

K

N
K

N

. K .

P

N

P P P P
N .

P

.

K .

262

�

�

�

�

� � � �

� �

�

�

�

� � �

�

�

�

�

� �

14

3
4

2 12
4 1

3
4

H
2

2 4 4

H 2 4

3 4
3

3 3 4
3

4

H

H

3 2
4 4

2
4

2 2
4 4

2 2
4

MgP
4

2 2
4

Average number of hydrogen ions bound by phosphate at 298.15 K as a func-
tion of pH at zero ionic strength. (See Computer Problem 8.J.)

bind-
ing polynomial

dissociation constant

Chapter 8 Thermodynamics of Biochemical Reactions

�

�

� �

�

� �

�

�

�

� �

�

�

�

�

�

Figure 8.3

10 mol/L. As we increase the concentration of hydrogen ion (decrease the pH),
the PO ion begins to bind protons, and the acid dissociation constant of the
HPO that is formed is about 10 (p 12). As the concentration of hy-
drogen ions is further increased, nearly all of the PO ions become protonated
and we reach the first equivalence point at 1. But as the pH approaches the
p for H PO (about pH 7), the HPO ion begins to bind a second proton.
As the concentration of hydrogen ions is further increased, we reach the second
equivalence point at 2. In more strongly acidic solutions, H PO begins
to bind a third proton to produce H PO , which has an acid dissociation constant
of 7 11 10 (p 2 1). The inorganic phosphate is in the form of H PO only
in strongly acidic solutions. Thus, as PO binds protons, its proton affinity de-
creases. For this example, the successive dissociation constants differ by large fac-
tors, and so this binding curve is very nearly the sum of three titration curves of
monoprotic acids.

The polynomial in the denominator of equation 8.20 is referred to as the
. It is actually a kind of partition function because it gives the

partition of a reactant between the various species that make it up. Note that the
numerator of equation 8.20 is the derivative of the denominator multiplied by
[H ]. The average binding of hydrogen ions is given by

[H ] d d ln d log d log
(8 21)

d[H ] d ln[H ] d log[H ] d pH

This relation has been used to generate the plot in Fig. 8.3.
Because of their negative charges, PO and HPO also bind cations such

as Mg . For example, MgHPO is formed, and its dissociation is represented by

MgHPO Mg HPO (8 22)

The for this complex ion is defined by

[Mg ][HPO ]
(8 23)

[MgHPO ]

Protons and Mg compete in their binding to HPO . Since highly charged
phosphate ions also tend to bind Na and K , acid titrations and binding experi-
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Figure 8.4

ments are often carried out in the presence of cations such as (CH CH ) N ,
where the bulky substituent groups prevent the close approach of the positive
charge to a negatively charged ion. The study of the competition of metal ions and
hydrogen ions is often used to determine dissociation constants for complex ions
since we usually do not have metal ion electrodes that can be used to determine
the concentration of unbound metal ions. In the neutral pH region we can neglect
the H PO concentration and consider a system consisting of Mg , H , HPO ,
H PO , and MgHPO only. The number of additional protons bound by HPO
per mole of phosphate is given by

[H PO ]
[HPO ] [H PO ] [MgHPO ]

[H ]/
(8 24)

1 [H ]/ [Mg ]/

The number of of magnesium ions bound by HPO per mole of phosphate
is given by

[MgHPO ]
[HPO ] [H PO ] [MgHPO ]

[Mg ]/
[Mg ]/ (8 25)

1 [H ]/

Figure 8.4 shows the binding curve for the second proton of phosphate in
the presence and absence of Mg . The shape of the curve is independent of the
concentration of Mg , but the curve is displaced to lower pH values as the con-
centration of Mg is increased. This suggests that equation 8.24 might be written
in the form

[H ]/
(8 26)

1 [H ]/

where the apparent second acid dissociation constant for phosphate is given by

[Mg ]
1 (8 27)

This provides a means for obtaining the value of the dissociation constant
from acid titration curves.
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8.3 THERMODYNAMICS OF ENZYME-CATALYZED REACTIONS
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Figure 8.5

About 4000 enzyme-catalyzed reactions have names recommended by the Inter-
national Union of Biochemistry and Molecular Biology,* but some of the names
apply to classes of reactions, and so the number of reactions is much larger. The
equilibrium constants and other thermodynamic properties of these reactions are
independent of the enzyme and the mechanisms by which the reaction is cat-
alyzed. The thermodynamics of biochemical reactions can be discussed in terms
of species as in the preceding three chapters, but there is a more convenient way
that is used in discussing metabolism. The problem involved in using chemical
reactions is that many of the reactants in enzyme-catalyzed reactions are made
up of multiple species. For example, adenosine triphosphate (ATP), which is the
energy storage reactant shown in Fig. 8.5, is made up of two species, ATP and
HATP , in the range pH 6 to 8. When it is hydrolyzed to adenosine diphosphate
(ADP) and inorganic phosphate (P ) in the neighborhood of pH 7, the following
chemical reactions are involved:



K

K

K

K

G H

z
N j

K .

K

K .

K K
K

K K
K .

K

K K

j

265

� � � � �

� � �

� � �

� � �

� � � �

�
�

� �
�

�

� �
�

�

� �

� �

� �

� �

� �

�

�

� �

�

�

4 3 3 3 2 4
ref2 4

3 4 4 3
ATP

2 3 3 2
ADP

2 3
Pi2 4 4 2 4 4

2 2

ox

ox r r

H

i

i
i2

4

3

3 2 2
4 2 4

4 3

3 2 4
4

ATP ADP

Pi

3 2
ADP Pi4

4
ATP

ref ref

apparent equilib-
rium constant

8.3 Thermodynamics of Enzyme-Catalyzed Reactions

� � � � � �

� � � �

� � � �

� � � �

�

�

�

� � � �

� �

� � �

� �

�

	

	

	

	

� �� �

ATP H O ADP HPO H [ADP ][HPO ][H ]/[ATP ] (8.28)

HATP H ATP [H ][ATP ]/[HATP ] (8.29)

HADP H ADP [H ][ATP ]/[HADP ] (8.30)

H PO H HPO [H ][H PO ]/[HPO ] (8.31)

At lower pH, the acid dissociation of the adenine group has to be taken into
account, and in the presence of Mg and Ca , the dissociation reactions of var-
ious complex ions have to be included in the calculation of the equilibrium com-
position. The equilibrium constants for reactions involving ions are taken to be
functions of the ionic strength, as well as the temperature. Note that the activity
of water in reaction 8.28 has been taken as unity in dilute aqueous solutions.

Calculations can be made on the thermodynamics of reactions in terms of
species if the standard Gibbs energies of formation and standard enthalpies of
formation are known. Table 8.4 gives the basic thermodynamic data at 298.15 K
and zero ionic strength on species in biochemical reactions that will be discussed
later in this chapter. Some of these data come from the NBS and CODATA tables,
and some come from measurements on enzyme-catalyzed reactions. For NAD
and ferredoxin , and are not known all of the way to the elements
involved, so these properties have been assigned zero values by convention, as we
have already seen for H . Some species that are not important in the pH range
5 to 9 have been excluded from Table 8.4. The charge numbers and number

( ) of hydrogen atoms in a species will be used later. The data in Table 8.4 can
be used to calculate the equilibrium constants for reactions 8.28 to 8.31, so the
equilibrium composition of this system of reactions can be calculated in terms of
species.

However, in discussing metabolism it is more convenient to specify the pH
and to write the hydrolysis of ATP to ADP and P (inorganic phosphate) as

[ADP][P ]
ATP H O ADP P (8 32)

[ATP]

where the abbreviations represent sums of species; for example [ATP] [ATP ]
[HATP ]. The equilibrium constant is referred to as an

because it is a function of pH, in addition to temperature and ionic
strength. The expression for the apparent equilibrium constant for reaction 8.32
can be written in terms of the concentrations of species as follows:

([ADP ] [HADP ])(HPO ] [H PO ])
(8 33)

([ATP ] [HATP ])

Multiplying the right-hand side by [ADP ][HPO ]/[ATP ], dividing by the
same quantity, and introducing the acid dissociation constants , , and

yields

[ADP ][HPO ] (1 [H ]/ )(1 [H ]/ )
(8 34)

[ATP ] (1 [H ]/ )

The first factor is close to being the equilibrium constant for a chemical reaction
between species; in fact, it is equal to /[H ], where is the equilibrium
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NAD (nicotinamide adenine dinucleotide, oxidized form) and ferredoxin (a protein)
have been assigned zero values by convention.

The corresponding properties of the species of 131 biochemical reactants are available in R. A.
Alberty, Wiley, Hoboken, NJ, 2003. This material is
used by permission of John Wiley & Sons, Inc. It is also on the Web at http://www.mathsource.com/cgi-
bin/msitem?0211-622 as BasicBiochemData2.
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ref

ref

ADP Piref

ATP

ref

ref

Standard Gibbs Energies of Formation, Standard Enthalpies of Formation,
Charge Numbers, and Numbers of Hydrogen Atoms in Species at 298.15
K and Zero Ionic Strength

kJ/mol kJ/mol ( )

H 0 0 1 1
ATP 2768 10 3619 21 4 12
HADP 2811 48 3612 91 3 23
H ATP 2838 18 3627 91 2 14
ADP 1906 13 2626 54 3 12
HADP 1947 10 2620 94 2 13
H ADP 1971 98 2638 54 1 14
HPO 1096 10 1299 00 2 1
H PO 1137 3 1302 60 1 2
H O 237 19 285 83 0 2
Glucose 6-phosphate 1763 94 2276 44 2 11
Hglucose 6-phosphate 1800 59 2274 64 1 12
Glucose 915 9 1262 19 0 12
NAD 0 0 1 26
NAD 22 65 31 94 2 27
Ferrodoxin 0 — 1 0
Ferrodoxin 38 07 — 0 0
Ethanol 181 64 288 30 0 6
Acetaldehyde 139 00 212 23 0 4
Formate 351 00 425 55 1 1
CO 527 81 677 14 2 0
HCO 568 77 691 99 1 1
H CO 623 11 699 63 0 2
N (g) 0 0 0 0
H (g) 0 0 0 2
NH 26 5 80 29 0 3
NH 79 31 132 51 1 4
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constant for reaction 8.28. is independent of pH, but it depends on , , and
ionic strength , so these variables must be specified. Replacing the first factor in
equation 8.33 with /[H ] yields

(1 [H ]/ )(1 [H ]/ )
(8 35)

[H ] (1 [H ]/ )

Since is independent of pH, this equation gives the pH dependence of the
apparent equilibrium constant for biochemical reaction 8.32. Since 0 15 at
298.15 K and 0 25 M, this equation can be used to calculate the value of
at any pH in the range 5–9.

This approach is very useful for discussing the effect of pH on the appar-
ent equilibrium constants of enzyme-catalyzed reactions, but what is lacking in
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Figure 8.6

the discussion so far is the introduction of other thermodynamic properties. It
might appear that the discussion of other thermodynamic properties of biochem-
ical reactions like reaction 8.32 can be based on the Gibbs energy , but that is
wrong because the criterion for spontaneous change and equilibrium provided by
the Gibbs energy for a reaction system is (d ) 0, where is the set
of amounts of components. The amounts of components are usually taken to be
the amounts of elements involved. The reason cannot be used in discussing re-
action 8.32 is that we specified the pH at equilibrium. The fact that an additional
intensive variable is held constant is emphasized by Fig. 8.6. Biochemical equilib-
rium measurements are not carried out in this way, but the results are interpreted
as if they were. According to this thought experiment, when a biochemical reac-
tion produces hydrogen ions, as reaction 8.32 does in the neutral pH range, they
diffuse into the pH reservoir. When a biochemical reaction consumes hydrogen
ions, they diffuse into the reaction system from the pH reservoir. Thus hydrogen
atoms are not conserved in the reaction vessel.

To see how to introduce the pH as an independent variable, let us review pre-
vious introductions of intensive variables. The criterion for spontaneous change
and equilibrium that was provided by the combined first and second law for a re-
action system is (d ) 0, where is the set of amounts of components.
To introduce the pressure as an independent value, the Legendre transform

was used to define the enthalpy for which (d ) 0. To intro-
duce the intensive property as an independent variable, the Legendre transform

was used to define the Helmholtz energy for which (d ) 0.
To introduce the intensive properties and as independent variables, the Leg-
endre transform was used to define the Gibbs energy for which
(d ) 0.

Now we need the thermodynamic potential that provides the criterion for
spontaneous change and equilibrium at specified , , and (H ). This is ac-
complished by defining the transformed Gibbs energy with the Legendre
transform

(H) (H ) (8 36)

where (H) is the amount of the hydrogen component (that is, the total amount
of hydrogen atoms in the system). (H) and (H ) are conjugate variables
(Section 2.5). This leads to the following criterion for spontaneous change and
equilibrium: (d ) 0, where is the set of components ex-
cluding hydrogen, because hydrogen atoms are not conserved at constant pH.
Derivations based on the fundamental equation for a thermodynamic system are
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8.4 FUNDAMENTAL EQUATION OF THERMODYNAMICS
FOR THE TRANSFORMED GIBBS ENERGY
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usually carried out using the chemical potential, but specifying the pH is equiva-
lent to specifying (H ). In making Legendre transform 8.36, the chemical poten-
tial of one species (H ) is changed from a dependent variable to an independent
variable.

The amount (H) of the hydrogen component is given by the sum of the
amounts of hydrogen atoms in various species in the reaction system:

(H) ( ) (8 37)

In this equation ( ) is the number of hydrogen atoms in species and is the
number of different species in the system. The index number used for species is
, so the index number introduced later for reactants (sums of species) can be .

Substituting equation 8.37 and (equation 4.45) into the Legendre
transform (equation 8.36) yields

( ) (H ) ( ) (H )

(8 38)

where the of species is given by

( ) (H ) (8 39)

This is the effective chemical potential of a species when the chemical potential
of hydrogen ions is (H ). Note that the transformed chemical potential of the
hydrogen ion is equal to zero, so there is one less term in the last summation in
equation 8.38.

Equation 8.38 shows that the transformed Gibbs energy of a system
is additive in the transformed chemical potentials of 1 species, just
as the Gibbs energy is additive in the chemical potentials of species
(see equation 4.45). The roles of (H) and (H ) in the fundamental equation
are interchanged by making use of Legendre transform 8.36, as shown in the
next section.

The fundamental equation of thermodynamics for the Gibbs energy of a one-
phase system is

d d d d (8 40)

as given in equation 4.36. To obtain the fundamental equation for d , we must
first get the contribution for the hydrogen component into a separate term. This
can be done by using equation 8.39 to eliminate from equation 8.40:

d d d d ( ) (H ) d (8 41)
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Equation 8.37 shows that d (H) ( ) d , so equation 8.41 can be written

d d d d (H ) d (H) (8 42)

The differential of the transformed Gibbs energy (equation 8.36) is

d d (H) d (H ) (H ) d (H) (8 43)

Substituting equation 8.42 into this equation yields a form of the fundamental
equation for :

d d d d (H) d (H ) (8 44)

The chemical potential of hydrogen ions is now an independent variable, like ,
, and , instead of the amount of the hydrogen component (equation 8.42).

Since the chemical potential of hydrogen ions (H ) depends on both the
temperature and the concentration of hydrogen ions, it is not a very convenient
variable when the temperature is changed. The hydrogen ion concentration can
be made an independent intensive variable in the fundamental equation for
by use of the expression for the differential of the chemical potential of H :

(H ) (H )
d (H ) d d[H ] (8 45)

[H ]

The first partial derivative in this equation is equal to (H ), where (H )
is the of hydrogen ions. To evaluate the second partial deriva-
tive in equation 8.45, we need to recall that the chemical potential of hydro-
gen ions is given by (H ) (H ) ln[H ]. Since the thermodynamic
properties are taken to be functions of the ionic strength, we do not have to
deal with activity coefficients explicitly. Since d (H )/d[H ] /[H ] and
dpH/d[H ] 1/ ln(10)[H ] , equation 8.45 can be written

d (H ) (H ) d ln(10) dpH (8 46)

Substituting this in equation 8.44 yields

d d d d (H) ln(10) dpH (8 47)

where the of the system at a specified pH is given by

(H) (H ) (8 48)

Note that this has the same form as the Legendre transform and that the
of the system is given by

(H) (H ) (8 49)

When the pH is specified, some of the 1 terms in the summation in equa-
tion 8.47 can be aggregated—for example, ATP and HATP , which are pseu-
doisomers at a specified pH. Isomers have the same atomic compositions, and at
a specified pH pseudoisomers have the same atomic compositions, except for the
number of hydrogen atoms. At a specified pH, these pseudoisomers have the same

�



Deri ation of the expression for the apparent equilbrium
constant for an enzyme–catalyzed reaction
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Use equation 8.50 to derive the expression for the apparent equilibrium constant of a bio-
chemical reaction B 0, where B represents a pseudoisomer group such as ATP.
This follows the steps in the derivation of the expression for the equilibrium constant of a
chemical reaction.

If a single biochemical reaction is catalyzed, the amounts of the pseudoisomer
groups at each stage of the reaction are each given by

( ) (8 51)

where ( ) is the initial amount of reactant (pseudoisomer group ), is the stoichio-
metric number of reactant in the biochemical reaction, and is the apparent extent of the
biochemical reaction. It is necessary to put primes on these quantities to differentiate them
from the stoichiometric numbers and extents of reaction of the underlying chemical
reactions written in terms of species. Substituting d d in equation 8.50 yields

d d d d (H) ln(10) dpH (8 52)

so that

(8 53)

where is referred to as the transformed reaction Gibbs energy. At chemical equilib-
rium, is equal to zero so that

( ) 0 (8 54)

This is the equilibrium condition. In Chapter 5 we saw that the corresponding condition for
a chemical reaction is equation 5.5. The subscript eq is frequently omitted in discussions of
chemical equilibrium.

The expression for the transformed chemical potential of a reactant (pseudoisomer
group) is given by

ln[B ] (8 55)
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transformed chemical potential , and so their terms in equation 8.47 can be re-
placed with d , where is the amount of pseudoisomer group . Thus equa-
tion 8.47 becomes

d d d d (H) ln(10) dpH (8 50)

where is the number of pseudoisomer groups in the system, which may be con-
siderably less than 1. Note that the subscripts have been changed to , which
apply to pseudoisomer groups rather than the species. This is the fundamental
equation for a reaction system at a specified pH. This fundamental equation has
a number of equations of state and Maxwell equations, and leads to a Gibbs–
Duhem equation.
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where is the standard transformed chemical potential of reactant at a specified pH
and ionic strength and B represents the th reactant. Substituting equation 8.55 in equation
8.54 yields

ln[B ]

(8 56)ln([B ] )

ln [B ] ln

where is the product sign. The apparent equilibrium constant is given by

[B ] (8 57)

This confirms that is written in terms of concentrations of pseudoisomer groups and
that there is no term for hydrogen ions.
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Equation 8.56 shows how to calculate the apparent equilibrium constant for a
biochemical reaction when we know the standard transformed chemical poten-
tials of the reactants at the desired temperature, pressure, pH, and ionic strength.
In discussing the calculation of these properties, we will replace standard chemical
potentials with standard Gibbs energies of formation because these are the prop-
erties that have been tabulated for species, as shown in Table 8.4. Thus equation
8.39 can be written

( ) (H ) (8 58)

There is a corresponding equation for the transformed enthalpy of formation of
a species.

( ) (H ) (8 59)

These adjustments for the number of hydrogen atoms in a species also apply to
the standard transformed properties, so that

( )( (H ) ln 10 ) (8 60)

( ) (H ) (8 61)

We have seen earlier (equations 7.79 and 7.80) that the standard Gibbs energy of
formation and the standard enthalpy of formation of a species at 298.15 K can be
adjusted to the desired ionic strength using the extended Debye–Hückel equation:

( ) ( 0) 2 914 82 /(1 ) (8 62)

( ) ( 0) 1 4775 /(1 ) (8 63)

where is the charge number of ion and 1 6 L mol . Substituting
these equations in equations 8.60 and 8.61 yields the following two equations for
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Calculate the standard transformed formation properties of HPO and H PO at
298.15 K, pH 7, and 0 25 M.

For HPO equations 8.64 and 8.65 with values from Table 8.4 yield

(HPO ) 1096 10 7 ln(10) 2 914 82(4 1)(0 25) /[1 1 6(0 25) ]

1058 57 kJ mol

(HPO ) 1299 00 1 4775(4 1)(0 25) /[1 1 6(0 25) ]

1297 77 kJ mol

For H PO equations 8.64 and 8.65 yield

(H PO ) 1137 30 14 ln(10) 2 914 82(1 2)(0 25) /[1 1 6(0 25) ]

1056 58 kJ mol

(H PO ) 1302 60 1 4775(1 2)(0 25) /[1 1 6(0 25) ]

1303 91 kJ mol
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calculating the standard thermodynamic properties of species in kJ mol at
298.15 K:

( 0) ( ) ln(10)pH 2 914 82( ( )) /(1 1 6 )
(8 64)

( 0) 1 4775( ( )) /(1 1 6 ) (8 65)

Now that we have the standard transformed Gibbs energies of formation and
standard transformed enthalpies of formation of HPO and H PO at pH 7
and 0.25 M ionic strength, the question is, What are these properties for inorganic
phosphate P under these conditions? At specified pH these two species are pseu-
doisomers, and so we can use the equation derived earlier (Section 5.10) for cal-
culating the standard Gibbs energy of formation of an isomer group. An equation
of just this form applies to a pseudoisomer group, and it is

(pseudoisomer group) ln exp( / ) (8 66)

The number of pseudoisomers in the pseudoisomer group is represented by .
The equilibrium mole fraction of a pseudoisomer in a pseudoisomer group is
given by

exp [ (pseudoisomer group) ]/ (8 67)

The value of (pseudoisomer group) can be calculated using

(pseudoisomer group) (8 68)
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What are the standard transformed formation properties of inorganic phosphate at 25 C,
pH 7, and 0 25 M?

The standard transformed Gibbs energy of formation is given by equation 8.66.

(P ) ln[exp(1058 57/ ) exp(1056 58/ )]

To avoid exponential overflow with a hand-held calculator, we may have to take one of the
exponential terms out and write

(P ) 1058 57 ln exp[1 exp(1056 58 1058 57)/ ]

1059 49 kJ mol

(HPO ) exp[( 1059 49 1058 57)/ ] 0 6906

(H PO ) exp[( 1059 49 1056 58)/ ] 0 3094

(P ) (0 6906)( 1297 77) (0 3094)( 1303 01)

1299 39 kJ mol
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Since we know the standard transformed formation properties of HPO and
H PO at pH 7 (see Example 8.4), we can calculate the standard transformed
formation properties of P at pH 7.

Values of standard transformed Gibbs energies of formation of reactants for
which species are given in Table 8.4 are listed in Table 8.5 at 298.15 K, 0.25 M ionic
strength, and pH 5, 6, 7, 8, and 9. As with thermodynamic tables for species, the
information in Table 8.5 lies in differences between values, so the number of digits
does not indicate the accuracy of the measurements. An error of 0.01 kJ mol in
a value in Table 8.5 leads to about a 1% error in an equilibrium constant.

Equation 8.56 shows how the apparent equilibrium constant for an
enzyme-catalyzed reaction can be calculated from values, but now we will
use that equation in the form

ln (8 69)

The corresponding equations for and are

(8 70)

and

(8 71)

Note that ( )/ .
Table 8.6 gives the apparent equilibrium constants of six enzyme-catalyzed

reactions at 298.15 K, 0 25 M, and five pH values that have been calculated
using the standard transformed Gibbs energies of formation of the reactants given
in Table 8.5. The first two reactions show that ATP has a much higher potential
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Source: Thermodynamics of Biochemical Reactions
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NAD (nicotinamide adenine dinucleotide, oxidized form) and ferredoxin (a protein) have been as-
signed zero values by convention. CO tot is the sum of the various species of carbon dioxide in aqueous solution.

R. A. Alberty, , Wiley, Hoboken, NJ, 2003. This material is
used by permission of John Wiley & Sons, Inc.
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2
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Standard Transformed Gibbs Energies of Formation in kJ mol of Reactants at 298.15
K, 0.25 M Ionic Strength, and Various pH Values

ATP 2437 46 2363 76 2292 50 2223 44 2154 88
ADP 1569 05 1495 55 1424 70 1355 78 1287 24
P 1079 46 1068 49 1059 49 1052 97 1047 17
H O 178 49 157 07 155 66 144 24 132 83
Glucose 6-phosphate 1449 53 1382 88 1318 92 1255 98 1193 18
Glucose 563 70 495 20 426 71 358 21 289 72
NAD 762 29 910 70 1059 11 1207 51 1355 92
NAD 811 86 965 98 1120 09 1274 21 1428 33
Ferredoxin 0 81 0 81 0 81 0 81 0 81
Ferredoxin 38 07 38 07 38 07 38 07 38 07
Ethanol 5 54 28 71 62 96 97 20 131 45
Acetaldehyde 21 60 1 23 24 06 46 90 69 73
Formate 322 46 316 75 311 04 305 34 299 63
CO tot 564 61 554 49 547 10 541 18 535 80
N (g) 0 00 0 00 0 00 0 00 0 00
H (g) 58 70 70 12 81 53 92 95 104 36
Ammonia 37 28 60 11 82 93 105 64 127 51

Apparent Equilibrium Constants of Six Enzyme-Catalyzed Reactions at 298.15 K, 0.25 M Ionic Strength, and Five pH
Values

ATP H O ADP P 5 1 10 6 6 10 2 1 10 1 6 10 1 5 10
Glucose 6-phosphate H O glucose P 4 5 10 2 6 10 1 1 10 0 8 10 0 8 10
ATP glucose glucose 6-phosphate ADP 1 1 10 2 6 10 1 9 10 1 9 10 1 9 10
NAD ethanol NAD acetaldehyde 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10
NAD formate H O NAD CO tot 2 9 10 5 0 10 2 5 10 2 3 10 2 6 10
N (g) 8 ferredoxin 1 4 10 1 4 10 1 4 10 16 3 4 10

2 ammonia H (g) 8 ferredoxin
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�Table 8.5

Table 8.6
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�

to phosphorylate than glucose 6-phosphate. The third reaction is an example of
coupling, and the apparent equilibrium constant is equal to the ratio of the ap-
parent equilibrium constants of the first two reactions. NADox is often involved
in accepting electrons to produce the oxidized product of a reaction. Since the
oxidation of formate produces carbon dioxide, which is hydrated in aqueous solu-
tion, H O has to appear on the left side of the reaction to balance oxygen atoms.
The reduction of molecular hydrogen to ammonia is the only known biochem-
ical pathway for fixing molecular nitrogen. Note that the apparent equilibrium
constant for this reaction decreases by a factor of 10 per pH unit, and that the
reaction becomes nonspontaneous above pH 8.

�
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At a specified pH, species ha e standard transformed thermodynamic properties
that depend on the pH. The effect of specifying the pH is to make the arious
species of a reactant, such as , beha e like isomers in the sense that their
distribution within the group is dependent only on temperature, and so they are
referred to as pseudoisomers. A pseudoisomer group, such as ATP, has a standard
transformed Gibbs energy of formation G and a standard transformed
enthalpy of formation H at a specified pH that can be used like G and

H to calculate apparent equilibrium constants and standard transformed
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Reaction pH 5 pH 6 pH 7 pH 8 pH 9
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Changes in the Binding of Hydrogen Ions in Six Enzyme-Catalyzed Reactions at 298.15 K, 0.25 M Ionic Strength, and
Five pH Values

ATP H O ADP P 0 04 0 24 0 74 0 96 1 00
Glucose 6-phosphate H O glucose P 0 10 0 40 0 24 0 04 0 00
ATP glucose glucose 6-phosphate ADP 0 14 0 65 0 98 1 00 1 00
NAD ethanol NAD acetaldehyde 1 00 1 00 1 00 1 00 1 00
NAD formate H O NAD CO tot 0 08 0 45 0 89 1 00 1 14
N (g) 8 ferredoxin 2 ammonia H (g) 8 ferredoxin 10 00 10 00 9 99 9 89 9 28
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Table 8.7

In closing this section on biochemical reactions, it is worth noting that the fun-
damental equation for contains a new type of term that is proportional to dpH.
This significantly increases the number of Maxwell equations. Since equation 8.52
can be written as

d d d (H) ln(10) dpH (8 72)

one of the new Maxwell equations is

(H)
ln(10) (8 73)

pH

The partial derivative on the right-hand side is the change in the amount
of the hydrogen component in the system when the biochemical reaction occurs.
This change can be calculated using

1
(8 74)

ln(10) pH

where has been used because its derivative has the same value as for .
This property can be measured by use of a pHstat. For example, when ATP is
hydrolyzed at pH 9, equation 8.74 shows that 1 and in the thought
experiment in Fig 8.6, one mole of H diffuses into the pH reservoir for each
mole of ATP hydrolyzed. Table 8.7 gives as a function of pH for the six
reactions in Table 8.6.

Other properties of biochemical reations that can be calculated are ,
, and . Thermodynamic properties at other temperatures can be calcu-

lated if values are known for species and can be assumed to be independent
of temperature.

ATP



enthalpies of reaction at the specified pH. The new thermodynamic table can be
used like the familiar thermodynamic table for species, but we do not ha e to be
concerned with all of the species.
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8.6 COUPLING OF BIOCHEMICAL REACTIONS
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Two or more biochemical reactions may be combined by an enzyme catalyst.
This effect, which is called makes it possible for a spontaneous reac-
tion (such as the hydrolysis of ATP) to drive a nonspontaneous reaction (such
as the phosphorylation of glucose). Consider a system that contains ATP, ADP,
glucose, glucose 6-phosphate, and inorganic phosphate at 298.15 K, pH 7, pMg 3,
and 0 25 M. If we add the enzymes glucose-6-phosphatase and ATPase, the
organic phosphates will both be almost completely hydrolyzed by the reactions

Glc6P H O glucose P (8 75)

ATP H O ADP P (8 76)

because the glucose-6-phosphatase catalyzes the first reaction and the ATPase
catalyzes the second reaction. The apparent equilibrium constants of these reac-
tions can be calculated by use of Table 8.5. If the initial solution contains 1 mM
ATP and 1 mM Glc6P, the equilibrium solution will contain 2.02 10 mM ATP,
1 mM ADP, 2 mM P , 1 mM glucose, and 9 2 10 mM Glc6P.

However, if the enzyme glucokinase is added to a mixture of these reactants,
the concentration of inorganic phosphate does not change because this enzyme
catalyzes the difference of reactions 8.75 and 8.76:

ATP glucose Glc6P ADP (8 77)

The apparent equilibrium constant of this reaction is the equilibrium constant for
reaction 8.76 divided by the apparent equilibrium constant for reaction 8.82. If
the initial solution contains 1 mM adenosine triphosphate and 1 mM glucose and
no other reactants, the equilibrium solution will contain [ATP] [glucose]
0.014 mM and [ADP] [Glc6P] 0.98 mM. In other words, organic phosphate
is not hydrolyzed, but the phosphate is transferred stoichiometrically from ATP
to glucose. This can be accomplished if the mechanism of the reaction is

ATP E EP ADP (8 78)

EP glucose Glc6P E (8 79)

where E is the enzyme catalyst. According to this mechanism, phosphate is trans-
ferred from ATP to the enzyme and then from the enzyme to glucose. This is
referred to as because equations 8.75 and 8.76 are coupled together by
EP. This is not the only type of mechanism that will do this; in another possible
mechanism, the reactants ATP and glucose are both bound on the enzyme and re-
act with each other according to reaction 8.77 on the surface of the enzyme. The
standard transformed Gibbs energy change for reaction 8.77 is the difference of
the standard transformed Gibbs energies of reactions 8.75 and 8.76 or the sum
of the standard transformed Gibbs energies of reactions 8.78 and 8.79.

Biochemical reactants can be ranked according to their tendency to transfer
phosphate, as shown in Table 8.8. Organic phosphates higher up in the table can



Calculation of the apparent equilibrium constant for a
biochemical reaction that can be considered to be the sum of the two reactions
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Standard Transformed Gibbs Energies of Hydrolysis at
25 C, pH 7, pMg 4, and 0 2 M

kJ mol

Phosphoenolpyruvate H O enol pyruvate P 61 9
Creatine phosphate H O creatine P 43 5
Acetyl phosphate H O acetate P 43 1
CoA-S-phosphate H O CoA-SH P 37 7
ATP H O ADP P 39 7
ADP H O AMP P 36 8
Pyrophosphate (PP) H O 2P 34 3
Arginine phosphate H O arginine P 29 3
Glucose 6-phosphate H O glucose P 12 6
Fructose 1-phosphate H O fructose P 12 6
AMP H O adenosine P 12 6
Glycerol 1-phosphate H O glycerol P 9 2

Determine the equilibrium constant at pH 7, pMg 4, 0 2 M, and 25 C for

creatine phosphate ADP creatine ATP

Since

creatine phosphate H O creatine P 43 5 kJ mol

ADP P ATP H O 39 7 kJ mol

forthegivenreaction, 43 5 39 7 3 8 kJ mol .Using ln ,

[Cr][ATP]
4 6

[CrP][ADP]
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8.6 Coupling of Biochemical Reactions
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Table 8.8
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transfer phosphate to nonphosphorylated substances lower in the table if reac-
tants and products are in their standard states. Similar tables may be constructed
for the transfer of pyrophosphate (pyrophosphoric acid is H P O ) or any other
group. There is an analogy between the transfer of phosphate in these reactions
and the transfer of electrons in reactions studied in electrochemistry or protons
in acid–base equilibria.

In discussing equilibria in multicomponent systems in Chapter 5, we noted
that any independent set of chemical reactions could be used. In biochemistry,
the situation is different because biochemical reactions occur only if the corre-
sponding enzyme is present. Therefore, the number of biochemical reactions in
a pathway may be less than the number of independent reactions between the
reactants.

The biochemical equilibria we have been discussing involve small molecules,
but many biochemical equilibria involve macromolecules such as proteins and
nucleic acids. As an example we will now consider the binding of small molecules
by a protein.
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8.7 BINDING OF OXYGEN BY MYOGLOBIN
AND HEMOGLOBIN
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Figure 8.7

Myoglobin is an oxygen storage protein that is found in muscle tissue in many
species. Its molar mass is 16 000 g mol , and each molecule contains one heme
group and one atom of iron, and binds one molecule of oxygen when it is
saturated.

The shape of the binding curve for myoglobin is exactly what is expected for
the simple reaction

MbO Mb O (8 80)

where Mb represents a molecule of myoglobin. The apparent dissociation con-
stant at a specified pH is defined by

[Mb]
(8 81)

[MbO ]

where is the partial pressure of oxygen in the gas phase. Conservation of myo-
globin requires that

[Mb] [Mb] [MbO ] (8 82)

where [Mb] is the total molar concentration of myoglobin. Combining equations
8.81 and 8.82 yields

[MbO ] /
(8 83)

[Mb] 1 /

where is the fractional saturation. The plot of versus is given in Fig. 8.7.
Hemoglobin is the oxygen transport protein in many species. It has a mo-

lar mass of 64 000 g mol , and each molecule contains four heme groups and
four atoms of iron, and binds four molecules of oxygen when it is saturated.
Hemoglobin may be reversibly dissociated into four molecules of molar mass
16 000 g mol , each of which contains one heme and one atom of iron. These
smaller molecules are of two types, represented by and , and hemoglobin has
the composition . Many enzymes have a similar subunit structure, and they
and hemoglobin have remarkable binding properties, which are a consequence
of this subunit structure.

The oxygen binding properties of myoglobin and hemoglobin are distinctively
different, as shown by Fig. 8.7. Hemoglobin’s -shaped (sigmoid) binding curve
is a great advantage for its physiological function, because the amount of oxygen
bound changes rapidly between the partial pressure of oxygen in the lungs (about
13.3 kPa) and in the tissues (about 2.0 kPa).

The equation for the average number of oxygen molecules bound by
hemoglobin can be expressed in terms of the partial pressure of oxygen and the
successive dissociation constants in the same way that we expressed the number
of protons bound by inorganic phosphate in equation 8.24. To compare the bind-
ing of hemoglobin with myoglobin it is convenient to use the fractional saturation

, which in this case is /4 since four oxygen molecules may be bound:

/ 2 / 3 / 4 /
(8 84)

4[1 / / / / ]
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Equation 8.84 can represent the sigmoid binding curve for hemoglobin but,
remarkably, only if the successive dissociation constants instead of in-
crease. This is contrary to the usual observation that the dissociation constants
for successive ligand molecules increase. You might ask, If some of the binding
sites have higher affinities for oxygen, shouldn’t they be filled first? The answer is
that the binding sites with higher affinity do not have this high affinity until some
oxygen has been bound. This is called cooperativity.

When binding at the middle of the titration curve increases more rapidly with
ligand concentration than can be accounted for by equation 8.83, it is said to
be Cooperativity arises when the binding of the first ligands causes
changes in the structure of the protein that increase the affinities of the remain-
ing sites. The origin of this effect in hemoglobin was quite mysterious until the
structures of oxygenated and deoxygenated hemoglobin were determined by X-
ray diffraction. Myoglobin was the first protein for which the detailed molecular
structure was obtained by X-ray diffraction. When the structure of hemoglobin
was obtained, it was found that each of its four subunits has a three-dimensional
configuration much like that of myoglobin. When oxygen is bound, groups near
the heme shift slightly, and these structural changes affect the configurations of
the four subunits so that the binding properties of the other heme groups are en-
hanced.* The cooperativity of the oxygen binding by hemoglobin is treated quan-
titatively in terms of the Monod–Wyman–Changeux (MWC) concerted mecha-
nism. According to this mechanism, a small fraction of hemoglobin exists in the
quaternary oxy structure that binds oxygen more strongly. When the first oxygen
molecule is bound, it is bound preferentially to this structure. As more oxygen
molecules are bound, the oxy structure is sufficiently stabilized to be the major
structure, and so subsequent binding is strong.

In addition to the positive cooperativity of hemoglobin, there is also negative
cooperativity. For example, some enzymes have identical subunits, but the binding
of the first substrate molecule causes molecular changes that reduce the affinities
of the enzymatic sites in neighboring subunits.

Hemoglobin has another remarkable property that makes it even more effec-
tive in the oxygen transport system. When hemoglobin is oxygenated at pH 7.4,
it produces 0.6 mol of H for each mole of oxygen molecule bound. A corollary
of this so-called Bohr effect is that the affinity of hemoglobin for oxygen depends
on pH. In the neighborhood of pH 7.4, the partial pressure of oxygen required
to half-saturate hemoglobin decreases as the pH is increased. The explanation of
the Bohr effect is that the binding of oxygen affects the acid dissociation constants
of certain acid groups in hemoglobin. This effect is of considerable physiological
importance because in the lungs H , liberated by hemoglobin on oxygenation,
reacts with HCO to make H CO . The carbonic acid then dehydrates and CO
diffuses into the air space of the lungs. If hemoglobin did not dissociate H , the
blood would become alkaline in the lungs as CO was exhaled. In the capillar-
ies this process is reversed; hemoglobin absorbs H as it loses oxygen, and this
converts H CO , produced metabolically, to HCO .
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Suppose that a particular hemoprotein has two oxygen binding sites that are independent.
Express the fractional saturation in terms of ( ) the macroscopic dissociation constants

and and ( ) the microscopic dissociation constants and . ( ) How are and
related to and ?
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Proteins are polymers of amino acids that are covalently linked by peptide bonds

so that a single chain has an amino terminus and a carboxyl terminus. The four
atoms in a peptide bond are in a relatively rigid planar configuration. In naturally
occurring proteins there are about 20 amino acids, some of which have nonpolar
groups and some of which have additional polar groups. The sequence of amino
acids in a chain is referred to as the The
is the local structure that may involve hydrogen bond interactions (Section 11.1)
within a chain or with neighboring chains. An example of secondary structure is
the alpha helix that is shown in right- and left-handed versions in Fig. 8.8. The
helix is held together by hydrogen bonds between a carbonyl oxygen and the
N—H of the fourth residue along the chain. This forms an especially stable struc-
ture with 3.6 residues per turn. In the direction of the axis, there is a residue every
0.15 nm. Hydrogen bonds can also be formed between chains to make parallel or
antiparallel sheets.

The of a protein is the overall conformation of the polypep-
tide chain. In addition to hydrogen bonds and electrostatic interactions, the ter-
tiary structure of a protein is affected by the tendency of hydrophobic groups
to aggregate in the interior of the molecule and the charged groups to be on
the outside. The charged groups interact strongly with water molecules because
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Alpha helix in a polypeptide chain. A left-handed helix is shown on the left
and a right-handed helix is shown on the right. It is primarily the right-handed helix that
exists in proteins.

quaternary structure

cooperative

8.8 Protein Denaturation

Figure 8.8

the dipolar water molecules become oriented in the neighborhood of electric
charges. The hydrocarbon groups prefer an organic environment. The p ’s of acid
groups in proteins may be significantly different from the p ’s of these groups in
small molecules because of the electrostatic and other interactions in the protein
molecule.

Some proteins contain more than one polypeptide chain, and the arrange-
ment of these polypeptide chains is referred to as the of the
protein. For example, hemoglobin contains four polypeptide chains (Section 8.7).

The three-dimensional structure of a protein may be disrupted by chang-
ing the temperature, adding a denaturant such as urea, or making a significant
change in pH. Sometimes these changes are irreversible, and sometimes they are
reversible. Denaturation may involve a very large number of steps, but the tran-
sition from folded to unfolded states may occur over a small change in temper-
ature or denaturant concentration. Such changes are referred to as
because once a small change has occurred, the remaining steps take place rapidly.
The binding of ligands by a protein may also be cooperative, as in the case of
hemoglobin.
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Denaturation of a repressor protein by 3 M urea and temperature at pH 8
in 0.1 M NaCl (G. S. Huang and T. G. Oas, 35, 6173 (1996)). (a) as a
function of temperature. (b) as a function of temperature. (c) as a function of
temperature. Note the change in sign at 10 C. (d) as a function of temperature.
is 4.13 kJ K mol independent of temperature. (See Computer Problem 8.G.)

Structure of a single
strand of DNA.
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Figure 8.9

Figure 8.10

When the transition between native (N) and denatured (D) forms is a two-
state process, it can be represented by the reaction

N D [D]/[N] /(1 ) (8 85)

where is the equilibrium fraction in the denatured form. The fraction denatured
can be determined using circular dichroism, NMR, or calorimetry. The determi-
nation of as a function of temperature makes it possible to calculate ,

, and as functions of temperature. Since the denatured form has a much
higher heat capacity than the native form, it is useful to assume that is in-
dependent of temperature and use the equation in Example 5.11. The data and
analysis in the denaturation of a repressor protein by urea and temperature at pH
8 in 0.1 M NaCl are given in Fig. 8.9. It is especially interesting that the denatu-
ration increases when the temperature is reduced below 10 C, but this is not the
only protein that shows cold denaturation.

Deoxyribonucleic acid (DNA) is a polynucleotide of the four nucleotides with
thymidylic acid (T), deoxyadenylic acid (A), deoxycytidylic acid (C), and de-
oxyguanylic acid (G). The nucleotides have phosphate groups attached to the
5 position of the sugar deoxyribose. The structure of a single strand of DNA is
shown in Fig. 8.10. In this strand, the phosphodiester linkage is through the 5
and 3 positions on the ribose sugars. The convention is that the DNA chain is
written so that the 5 end of the molecule is on the left and the 3 end on the right.
In the double-stranded form of DNA, the two strands form a right-handed heli-
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The Watson-Crick base pairs in double-stranded DNA. The hydrogen bonds
are represented by dotted lines.

denaturation, renaturation.

melting temperature.

8.9 DNA Denaturation

Figure 8.11

cal structure in which the two strands go in opposite directions. In this structure
T is always hydrogen-bonded to A and C is hydrogen-bonded to G. The singly
charged phosphate groups repel each other, but the two strands are held together
by the hydrogen bonding shown in Fig. 8.11 and by the stacking of the nucleotide
bases. The planar bases interact through van der Waals forces, but the stacking of
the bases in an aqueous environment is favored by the hydrophobic effect. DNA
also exists in other forms that are not discussed here.

When DNA is heated or exposed to high pH or certain solvents, the double
strand yields two complementary single strands. The dissociation is referred to as

and the association is referred to as The thermody-
namics and kinetics of these reactions are important for both practical and theo-
retical reasons. The temperature at which the fraction of single strands is 50% is
referred to as the Since the CG hydrogen bonds are stronger
than the AT hydrogen bonds, it might be expected that the melting temperature
would be higher for DNA with more CG bonds, but this is not the case. However,
studies utilizing small single-stranded DNA with known sequences has shown that
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nearest neighbor contributions are important in determining the equilibrium con-
stant for

A A AA (8 86)

where A and A are polynucleotides with the same number of units and AA is
the double-stranded helical structure. If the initial concentrations of A and A are

and the equilibrium concentration of AA is represented by ,

/( ) (8 87)

The fraction of the single-strand form is given by 1 / . Studies of a wide
variety of short segments has made it possible to develop parameters for calcu-
lating , , and for 10 DNA pairs.* To calculate these properties
for a given reaction, these parameters are added with an additional parameter
for double helix initiation. The phenomena involved in very long strands of DNA
are more complicated because of the unwinding that has to take place. Related
structures are encountered in RNA, but there the hydrogen bonding is intra-
molecular.

Thermodynamics ordinarily deals with what we call equilibrium con-
stants. In formulating such equilibrium constant expressions, the existence of iso-
meric forms that are rapidly interconverted is ignored and the sum of their con-
centrations is inserted in the equilibrium constant expression. However, in some
situations it is important to distinguish between isomeric forms and to define

equilibrium constants that involve particular forms. Examples arise in
the acid titration of proteins and of synthetic polymers with acidic groups. Here
we will discuss the simplest possible example, the titration of a dicarboxylic acid,
HO C(CH ) CO H,

The macroscopic dissociation constants of this dibasic acid can be
written as follows:

[H ][A ]
HA H A (8 88)

[HA ]

[H ][HA ]
H A H HA (8 89)

[H A]

We can also look at this dissociation from a microscopic point of view, and repre-
sent the intermediate form by HA if the “right” proton dissociates and by AH
if the “left” proton dissociates. Since the acid groups are identical and indepen-
dent of one another by assumption,

[H ][HA ] [H ][AH ] [H ][A ] [H ][A ]
(8 90)

[HAH] [HAH] [HA ] [AH ]
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where is the microscopic or intrinsic dissociation constant. Thus,

[H ][A ] 1
(8 91)

[HA ] [AH ] 1/ 1/ 2

[H ]([HA ] [AH ])
2 (8 92)

[H A]

so that 4 . The second acid dissociation constant is four times larger than
the first because of this statistical effect.

One way to look at this is to say that when HAH dissociates, the proton
can come off of either end, and so HAH has twice the tendency to dissociate
as the corresponding monoprotic acid, CH (CH ) CO H. Conversely, when the
base form A binds a proton, there are two sites where the proton can be
bound.

In contrast with a dibasic acid with different microscopic equilibria, the titra-
tion curve for a diprotic acid of the type we are discussing looks exactly like that
of a monoprotic acid, except that two moles of base are required to neutralize one
mole of acid. The midpoint of this titration curve yields the

but we would use /2 and 2 for the
The average number of protons bound by this diprotic acid is

[H ]/ 2[H ] / 2[H ]/ 2[H ] /
1 [H ]/ [H ] / 1 2[H ]/ [H ] /

2[H ]/ (1 [H ]/ ) 2[H ]/
(8 93)

(1 [H ]/ ) 1 [H ]/

This result is expected because the acidic groups are identical.
It can be shown* that for a polyprotic acid with independent and equivalent

groups

(8 94)
1

These same considerations apply to the binding of metal ions or to the binding
of oxygen to a type of hemoglobin with four equivalent binding sites. Assuming
that the four oxygen binding sites of hemoglobin are identical yields /4,

2 /3, 3 /2, and 4 .

The fact that the standard entropy of dissociation of most weak acids is neg-
ative shows that there is an increase in “order” in the dissociation; this is
a consequence of the creation of electric charges that become hydrated by
dipolar water molecules.
The calculation of the titration curve for a weak acid involves satisfying the
equilibrium relations (acid dissociation and the ion product for water), con-
servation of mass, and conservation of charge.
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Two types of equilibrium constants are needed in biochemistry. It is neces-
sary to use the usual equilibrium constant expressions in terms of species to
study the details of the chemical changes. But it is also useful to use appar-
ent equilibrium constant expressions in terms of reactants (sums of species)
at a specified pH to discuss the metabolism of reactants such as adenosine
triphoshate (ATP). Apparent equilibrium constants vary with the pH as well
as the temperature and ionic strength.
When the pH is an independent variable like and , the Gibbs energy is
not minimized at equilibrium and it is necessary to use a Legendre transform
to define a transformed Gibbs energy, , that is. This leads to a full set of
standard transformed thermodynamic properties of biochemical reactants,
such as ATP, and a transformed chemical potential .
The fundamental equation for the transformed Gibbs energy for a system at
a specified pH has the same general form as that for the Gibbs energy, but the
amounts deal with reactants (sums of species) such as ATP. Thus biochemical
reactions at specified pH are written in terms of sums of species as in ATP +
H O = ADP + P , which balance all atoms except hydrogen.
Tables can be made of standard transformed thermodynamic properties for
biochemical reactants at a specified pH, and these tables can be used like the
standard thermodynamic properties of species studied earlier.
The binding of a ligand by protein can also be expressed in terms of an apparent
equilibrium constant at a specified pH. The binding of oxygen by hemoglobin
is positively cooperative, which means that successive equilibrium constants
increase, rather than decrease, as more oxygen molecules are bound.
Thermodynamics deals with what we call macroscopic equilibrium constants,
but it is sometimes useful to treat systems with microscopic equilibrium con-
stants. This is illustrated by polyprotic acids with independent and equiva-
lent groups and by the acid dissociations of glycine.
When the denaturation of a protein or a short double helix of DNA is a two-
state process, the standard thermodynamic properties can be calculated from
the temperature dependence of the equilibrium constant measured using cir-
cular dichroism, light absorption, NMR, or calorimetry.
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To illustrate what we mean by a component in a solutionProblems marked with an icon may be more conve-
at a specified pH, consider a very simple system, namely, a mono-niently solved on a personal computer with a mathematical
protic weak acid HA and its salt in aqueous solution. Write theprogram.
fundamental equation for for this system and use the equilib-Show that the slope of the titration curve of a monobasic
rium expression in terms of chemical potentials for the acid disso-acid is given by
ciation to write the fundamental equation in terms of two compo-

d 2 303 [H ] nents, thehydrogencomponentandtheAcomponent.Thecation
of the salt can be omitted from the fundamental equation becausedpH ( [H ])
there are always enough cations for charge balance.

where is the degree of neutralization. Since we began dealing with dilute solutions, we have as-
A liter of 0.10 M solution of a monoprotic weak acid sumed that the chemical potential of a species is given by

is titrated with a sufficiently concentrated NaOH solution that
ln (a)there is not a significant change in volume. Derive the expres-

sion for the amount of NaOH that would have to be added and then later, in equation 8.55, we assumed that the trans-
to reach a specified pH, assuming that the ionic strength can be formed chemical potential of a reactant made up of two
taken as zero. species, for example, HPO H PO , is given by

According to Table C.2, what are the values of ,
, and at 298 K for ln( ) (b)

at a specified pH. This looks reasonable, but it is a good idea toH O(l) H (ao) OH (ao)
write out the mathematical steps. The transformed Gibbs energy

Show that the same value of is obtained from and of a reactant that is made up of two species is given by
by using . Calculate at 298 K.

(c)
For the acid dissociation of acetic acid, is approxi-

The amounts of the two species can be replaced withmately zero at room temperature in H O. For the acidic form of
(P ) and (P ), where (P ) is the amount of inor-aniline, which is approximately as strong an acid as acetic acid,

ganic phosphate and and are the equilibrium mole fractionsis approximately 21 kJ mol . Calculate for each of
of HPO and H PO . Thus equation c can be rewritten asthe following reactions:

(P ) [ ln ln ] (d)
CH CO H H CH CO p 4 75

The last term looks a lot like an entropy of mixing, so we addC H NH H C H NH p 4 63
ln([P ]/ ) and subtract ( ) ln[( )/ ], which

are equal. Show that this leads toHow do you interpret these entropy changes? What compen-
sates for the increase in entropy expected from the increase in

(P ) (P ) ln([P ]/ ) (P ) (P ) (e)number of molecules in the balanced chemical reaction?
Estimate p and p for H PO at 25 C and where

0 1 mol L ionic strength. The values at zero ionic strength
(P ) ln( ln ln ) (f)

are p 2 148 and p 7 198.
This confirms equation b and shows that the standard trans-In a strong acid solution, the amino acid histidine binds
formed chemical potential of a reactant with two species at athree protons. The acid dissociation constants numbered from
specified pH is equal to a mole fraction average transformedthe weakest acid dissociation are 6 92 10 , 1 00 10 , and
chemical potential for the two species plus an entropy of mix-1 51 10 at 25 C. Calculate the concentrations of the four
ing. In making numerical calculations, the standard transformedforms of histidine (His , HisH, HisH , and HisH ) in a
chemical potentials are replaced by standard transformed Gibbs0.1 M solution of histidine at pH 7, assuming that these constants
energies of formation.apply at the ionic strength of the solution.

Write out the equations for calculating the standard trans-The p for the dissociation of CaATP at 25 C in
1 formed Gibbs energy of formation and standard transformed0 2 mol L ( -propyl) NCl is 3.60. The p for HATP

enthalpy of formation of a partially neutralized weak acid (HA)H ATP is 6.95. Calculate the apparent p of this ATP ion-
at a specified pH.ization when ATP is titrated in a solution containing 0 1 mol L

Will 0 01 mol L creatine phosphate react withCaCl . Assume that the Ca concentration is much larger than
0 01 mol L adenosine diphosphate to produce 0 04 mol Ltotal ATP concentrations.
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1creatine and 0 02 mol L adenosine triphosphate at 25 C, If molecules of a ligand A combine with a molecule of
pH 7, pMg 4? What concentration of ATP can be formed if protein to form PA without intermediate steps, derive the rela-
the other reactants are maintained at the indicated concentra- tion between the fractional saturation and the concentration
tions? of A.

The cleavage of fructose 1,6-diphosphate (FDP) to A protein M can bind two molecules of a ligand L, which
dihydroxyacetone phosphate (DHP) and glyceraldehyde 3- is a gas. The macroscopic equilibrium constants, written in terms
phosphate (GAP) is one of a series of reactions most organ- of the partial pressures of the ligand, are defined by
isms use to obtain energy. At 37 C and pH 7, for the re-
action FDP DHP GAP is 23 97 kJ mol . What is in M L ML [ML]/[M]
an erythrocyte in which [FDP] 3 10 mol L , [DHP] ML L ML [ML ]/[ML]
138 10 mol L , and [GAP] 18.5 10 mol L ?

How many grams of ATP have to be hydrolyzed to ADP Assume that the two binding sites are different and that ML can
to lift 100 lb 100 ft if the available Gibbs energy can be con- be distinguished from LM. How are the microscopic dissociation
verted to mechanical work with 100% efficiency? It is assumed constants
that [ATP] [ADP] [P ] 0.01 mol L and that is

39 8 kJ mol at 25 C. M L ML [ML]/[M]
Biochemistry textbooks give 20 1 kJ mol M L LM [LM]/[M]

for the hydrolysis of ethyl acetate at pH 7 and 25 C. Experi-
ML L LML [LML]/[ML]ments in acid solution show that
LM L LML [LML]/[LM]

[CH CH OH][CH CO H]
14 related to the macroscopic dissociation constants and ?[CH CO CH CH ]

How many of the microscopic dissociation constants are inde-
pendent? If there is a relation between them, what is it?where the equilibrium concentrations are in moles per liter.

What is the value of obtained from this equilibrium con- Since it is difficult to determine the values of the four dis-
stant? The p of acetic acid is 4.60 at 25 C. sociation constants in equation 8.84, the empirical Hill equation

Fumarase catalyzes the reaction
1

fumarate H O -malate 1 /

is frequently used to characterize binding of oxygen byAt 25 C and pH 7
hemoglobin. Show that the Hill coefficient may be obtained

[ -malate] by plotting log[ /(1 )] versus log .4 4
[fumarate] Hemoglobin is made up of two alpha chains and two beta

chains, and so it can be represented by ( ) . Hemoglobin disso-What is the value of at pH 4? Given: For fumaric acid
ciates into subunits. The association constant for the reac-10 . For -malic acid 10 .
tion 2 ( ) depends on the partial pressure of molecular
oxygen, but at relatively high concentrations of molecular oxy-Given 49 4 kJ mol for
gen at pH 7 and 21 5 C, 9 47 10 , when molar concen-
trations are used. If a solution is 0.0025 M in hemoglobin, thatATP H O AMP P O 2H
is, ( ) , what are the concentrations of the dimer and tetramer
at equilibrium? What if the hemoglobin solution is 0.000 25M?calculate at pH 7 and 25 C and 0 2 mol L ionic strength.

The pKs that are needed are: for ATP, p 6 95; for ADP,
The percent saturation of a sample of humanp 6 88; for AMP, p 6 45; for pyrophosphoric acid,

hemoglobin was measured at a series of oxygen partial pres-p 8 95 and p 6 11.
sures at 20 C, pH 7.1, 0 3 mol L phosphate buffer, and

Calculate the enthalpy of ionization for H PO 3 10 mol L heme:
H HPO at ( ) 0 and ( ) = 0.25 M, given that

/Pa Percent SaturationCODATA shows

393 4.8/kJ mol
787 20

H 0 1183 45
HPO 1299 0 2510 78
H PO 1302 6 2990 90
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Calculate the values of and in the Hill equation. (See prob- Hoboken, NJ:
lem 8.20.) Wiley 2000). ( ) Calculate the equilibrium constant for this reac-

tion at 298 K and the equilibrium fraction of single strands whenUse the fundamental equations and Gibbs–Duhem equa-
the initial concentrations of the two single strands are 10 M.tions to determine the number of degrees of freedom and
( ) Calculate the equilibrium constant for this reaction at 313number of variables required to define the extensive state of
K and the equilibrium fraction of single strands when the initiala system at constant and and with the reaction A + B = C
concentrations of the two single strands are 10 M.at equilibrium from the following two points of view. ( ) Start

with the fundamental equation for in terms of species and de- What is the ion product of water at 0 C, assuming
rive the form in terms of components to obtain . Then derive is independent of temperature? What is the pH of pure water at
the Gibbs–Duhem equation to obtain . State the criterion for 0 C?
spontaneous change. ( ) Define a transformed Gibbs energy What is the ion product of water at 50 C, assuming that
to introduce as an intensive variable. Use the correspond- is independent of temperature? What is the pH of neu-
ing fundamental equation to obtain and the Gibbs–Duhem trality at this temperature?
equation to obtain . State the criterion for spontaneous At 298.15 K, for H O(l) H (ao) OH (ao),
change. 1 008 10 , and 55 836 kJ mol . Given

that [H O(l)] 69 92 J K mol , what is the value of
The equation for ln when is constant (see Exam-

[OH (ao)]?
ple 5.11) is often used in a different form in treating the equilib-

Using Table C.2, calculate , , and forrium constant for the thermal denaturation of a protein, which
can be represented by N D and [D]/[N]. The reason CH CO H(ao) H (ao) CH CO (ao)
for this is that is generally quite large and nearly indepen-
dent of temperature. The denaturation reaction is often highly and compare the values in Table 8.1 for 298.15 K. Calculate the
cooperative, so that the reaction can be treated in terms of two acid dissociation constant of acetic acid at 298.15 K.
states. Show that What is the composition of a 0.1 M solution of acetic acid

in water at 25 C? In a second step take into account the effect
of ionic strength.( ) ( ) 1 ln

Calculate the p for the acid dissociation

HADP H ADPwhere is the temperature at which 1. This equation
was first derived by W. J. Bectel and J. A. Schellman,

at 298.15 K and 0 25 M.:1858–1877 (1987).
Calculate the chemical equilibrium constant, , andThe transformed Gibbs energy , transformed enthalpy

for the hydrolysis of glucose 6-phosphate:, and transformed entropy of a system are given by

GlcP H O glucose HPO
(H) (H )

at 298.15 K and zero ionic strength. These values will apply in
(H) (H ) the range pH 8 to 10. What will be the effect of increasing the

ionic strength?(H) (H )
An aqueous solution of 0.01 M phosphoric acid is titrated

at 25 C with such a concentrated solution of strong alkali thatShow that .
the solution is not significantly diluted during the titration. Plot
[H PO ], [H PO ], [HPO ], and [PO ] as a functionSolutions of two single-stranded DNAs are mixed and a
of pH.double-stranded DNA is formed:

A protein molecule has two different and independent
sites; one binds A and the other binds B. What are the proba-
bilities of P, PA, PB, and PAB?

At pH 7 and pMg 4 what value of pCa is required to
put half the ATP in the form CaATP ? At 0 2 mol L ionic
strength and 25 C the following constants are known:

Use of the parameters of J. SantaLucia, Jr., H. T. Allawi, and
HATP H ATP p 6 95P. A. Seneviratne [ 3555 (1996)] for 298 K, pH

MgATP Mg ATP p 4 007, and 1 M NaCl yields 20 5 kJ mol and
CaATP Ca ATP p 3 60128 4 kJ mol for this reaction (G. G. Hammes,
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For the weak acid CH[(CH ) CO H] , the carboxyl phosphate in the neighborhood of pH 7 is identical with to p
groups are essentially identical and independent. ( ) If the of orthophosphate.
intrinsic acid dissociation constant is , what are the values of Calculate the chemical equilibrium constant and

, , and ? ( ) At [H ] , what are the relative pro- for the alcohol dehydrogenase reaction
portions of the minus three ion, minus two ion, minus one ion,

CH CHO NADH H CH CH OH NADand uncharged molecules?
In a series of biochemical reactions the product in one re- at 298.15 K and zero ionic strength. Since none of the species

action is a reactant in the next. This has the effect that sponta- have p values in the neutral region, it is simple to calculate the
neous reactions drive nonspontaneous reactions. For example, apparent equilibrium constant at pH 7. What is its value?
reaction 2 follows reaction 1:

[CH CH OH][NAD ]1. -malate fumarate H O G 2 9 kJ mol
[CH CHO][NADH ]2. fumarate ammonia aspartate

15 6 kJ mol
Consider the following system of reactions,

The values are for pH 7 and 37 C, and the state of
ionization of the reactants is ignored. In reaction 1, the activity
of H O is to be taken as 1. If the ammonia concentration is
10 mol L , calculate [aspartate]/[ -malate] at equilibrium.

In the living cell two reactions may be coupled by having
a common intermediate. This is true for the following two reac-
tions, which are enzyme catalyzed:

where the ’s represent equilibrium constants. ( ) Calculate
creatine P creatine phosphate H O the dependence on hydrogen ion concentration of the apparent

46 kJ mol equilibrium constant

([C] [CH])ATP H O ADP P 33 kJ mol
([A] [AH])[B]

The values are for pH 7.5 and 25 C. If in a steady state in a
living cell [ATP] 10 mol L and [ADP] 10 mol L , ( ) What is the relationship between the four equilibrium con-
calculate the steady-state ratio [creatine phosphate]/[creatine]. stants?

From the data of Table 8.8 calculate for Nucleosides associate in aqueous solution to form dimers.
For adenosine (A) at 25 C the equilibrium constant forATP H O AMP PP
2A A is 4.5 when concentrations are expressed in mol L .

What is the maximum concentration of ATP that can be What is the concentration of dimers in a 0 5 mol L solu-
formed enzymatically from acetyl phosphate and ADP each tion of adenosine? (This association is due to the stacking of
at 0 01 mol L , pH 7, and pMg 4 at 25 C, assuming that the bases.)
ambient concentration of acetate is also 0 01 mol L ? Given: The partial pressure of oxygen required to half-saturate

hemoglobin at pH 7.4 is 3.7 kPa. If the partial pressure of oxygenacetylP H O acetate P 43 1 kJ mol
in the alveolar spaces of the lungs is 13.3 kPa, and the partial

ADP P ATP H O 39 8 kJ mol pressure in the capillaries is 5.3 kPa, what percentage of the total
oxygen carrying capacity of hemoglobin is being used if in theThe hydrolysis of adenosine triphosphate (ATP) to
Hill equation is 2.7? (See Problem 8.20.)adenosine diphosphate (ADP) and inorganic phosphate at pH

8 and 25 C When myoglobin is in contact with air, how many parts
per million of CO are required to tie up 10% of the myo-

ATP H O ADP HPO H globin? The partial pressure of oxygen required to half-saturate
myoglobin at 25 C is 3.7 kPa. The partial pressure of CO re-has a standard enthalpy change of 20 5 kJ mol . The standard
quired to half-saturate myoglobin in the absence of oxygen isenthalpy changes of acid dissociation of HATP , HADP ,
0.009 kPa.and H PO are 6 3, 5 6, and 3 6 kJ mol , respectively. Cal-

culate the standard enthalpy change for the reaction

HATP H O HADP H PO

If for the hydrolysis of acetyl phosphate Write a program to calculate and for inor-
(CH CO PO H ) is 43 1 kJ mol at 25 C and pH 7, what ganic phosphate at 298.15 K and pH 7 using data in Exam-
is the value at pH 4? It may be assumed that the p of acetyl ple 8.5. The program should be written to handle any num-
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ber of pseudoisomers so that it can be used for other reac- Hammes,
tants. , Hoboken, NJ: Wiley 2000). ( ) Calculate the equilibrium

constants at a series of temperatures between 273 K and 313
( ) Write a program to calculate the apparent equilib-

K on the assumption that the standard reaction enthalpy is in-
rium constant for ATP H O ADP P at 298.15 K, pH

dependent of temperature. ( ) Calculate the equilibrium con-
7, and ionic strength 0.25 M. The acid dissociation constants

centration of AA at each of these temperatures for initial con-
needed are given in Table 8.3. ( ) Plot versus pH. ( ) Plot

centrations of A and A of 10 M. ( ) Calculate the fraction
versus pH.

of the DNA in the single strand form at each temperature
and plot versus temperature. ( ) According to this plot, whatIt can be shown that the change in binding of hydrogen
is the melting temperature of the double strand? Verify thations in a biochemical reaction at a specified pH is given by the
the equilibrium constant at the melting temperature is given bynegative of the derivative of log with respect to pH at con-

/( ) .stant and . ( ) Use a mathematical program to take the
derivative of log for the hydrolysis of ATP to ADP and in-

The fraction of a repressor protein that is denatured atorganic phosphate with respect to pH from the previous prob-
equilibrium in 3 M urea at pH 8 in 0.1 M NaCl is given by the fol-lem. ( ) Plot the production of H versus pH in the range pH
lowing table [G. S. Huang and T. G. Oas, 61735–9. ( ) Interpret this plot in terms of the predominant chemical
(1996)].reactions at pH 5 and pH 9.

C 5 0 10 21 28 30 32 36 40 42 46( ) Write a program to calculate the apparent equilibrium
0.30 0.20 0.17 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90constant for glucose 6-phosphate + H O glucose P at

298.15 K, pH 7, and ionic strength 0.25 M. The standard Gibbs
These data are especially interesting because they show thatenergies of formation of the species involved at 298.15 K and
when the temperature is reduced below 10 C, the denaturationionic strength 0.25 M are given in the following table:
increases. ( ) Calculate at each temperature and plot it ver-

/kJ mol sus absolute temperature. ( ) Calculate and plot it versus
. ( ) Fit the data in ( ) with equation 8.85, and use this func-Glucose 6-phosphate 1767.18

tion to plot versus temperature. ( ) Calculate usingHglucose 6-phosphate 1801.4
the Gibbs–Duhem equation and plot it versus . ( ) CalculateH O 237.19

using /d and plot it versus . ( ) CalculateGlucose 915.9
using d /d and plot it versus .HPO 1099.34

H PO 1138.11 Since the hydrolysis of a sodium salt of a monoprotic weak
H 0.81 acid produces equal concentrations of HA and OH ,

[OH ] / , where is the molar concentration of the salt. We( ) Plot versus pH. ( ) Plot versus pH.
know that / and [OH ] /10 . Therefore it

It can be shown that the change in binding of hydrogen can be shown that
ions in a biochemical reaction at a specified pH is given by

pH (14 00 p log )the negative of the derivative of log with respect to pH at
constant and . ( ) Use a mathematical program to take

at 298.15 K. Make a table of the pHs of sodium salts of weakthe derivative of log for glucose 6-phosphate + H O
acids with p ’s of 5 to 11 and concentrations of 0.10, 0.01, 0.001,glucose P with respect to pH from the previous problem.
and 0.0001 M at 298.15 K.( ) Plot the production of H versus pH on the range pH 5–

9. ( ) Interpret this plot in terms of the predominant chemical ( ) Plot the titration curve for a liter of 0.10 M acetic acid
reactions. (p 4.756) with concentrated NaOH at 298.15 K on the as-

sumption that the ionic strength can be taken as zero and thatThe reaction of two single strands of DNA to form a dou-
the NaOH solution used is so concentrated that there is not a sig-ble helix AA is represented by
nificant change in volume (see Problem 8.2). ( ) Plot the corre-
sponding titration curves for monoprotic weak acids with p ’sA A AA
of 4, 5, 6, 7, 8, 9, and 10.

The standard reaction Gibbs energy for the reaction in Prob-
Calculate the plot of versus pH for phosphoric acid atlem 8.25 is 20.5 kJ mol , and the standard reaction enthalpy

298.15 K using its binding polynomial.is 128.4 kJ mol at 298 K and pH 7 in 1 M NaCl (G. G.
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The development of quantum mechanics began in the early twentieth
century, when scientists started studying atomic and molecular
phenomena and discovered that Newtonian classical mechanics
and the wave theory of light did not explain the results of their

experiments. Quantum mechanics enables scientists to calculate energy levels
and other properties of atoms and molecules. In this section we will consider
the electronic orbitals of the hydrogen atom in detail and show how these
calculations can be extended to describe atoms with more than one electron.
From these data we are able to understand why properties such as ionization
potential, electron affinity, and atom size, among others, vary in a periodic
manner.

The application of quantum mechanics to molecules made it possible to
understand the nature of the chemical bond. We consider bonding in H and
H in Chapter 11, and then go on to study how to describe bonding in larger
molecules using the methods of quantum chemistry. The energy levels, bond
lengths, and bond angles can be calculated quite accurately for many molecules.
The increasing power of computers has made these calculations more and more
accurate.

In Chapter 12 we discuss the symmetry of molecules in their equilibrium
configurations. Using symmetry ideas can greatly simplify quantum mechanical
calculations and can answer qualitative questions such as whether a molecule
has a dipole moment or not.

Quantum mechanics also provides the basis for understanding the results
of spectroscopic measurements. Spectroscopy is useful for the identification
of molecules and the determination of their concentrations, and is especially
important in physical chemistry because it yields information about molecular
properties. Microwave and infrared spectroscopy yield information about bond
lengths and angles. Infrared and Raman spectroscopy provide information
about vibrational frequencies of molecules. Visible and ultraviolet spectroscopy
provide information on dissociation energies, bond energies, and electronic
excited states.

Quantum Chemistry
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The development of both laser methods and magnetic resonance methods
have revolutionized spectroscopy. The latter has become so important in
chemistry and biology that we discuss it in a separate chapter.

Part Two closes with statistical mechanics, the science that connects the
properties of individual molecules with the thermodynamic properties of bulk
matter, using information obtained from spectroscopic methods. We illustrate
the general methods by calculating equilibrium constants of small molecule
reactions in the ideal gas state. The calculation of the thermodynamic properties
of dense gases, liquids, and solids is more difficult because of the importance of
intermolecular forces. Advances in computation have made these calculations
possible as well.
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The early years of the twentieth century saw a revolution in physics: the birth
of quantum mechanics, which replaces classical mechanics as the description of
motion on an atomic scale. In 1900, Planck showed that the description of the dis-
tribution of energies of electromagnetic radiation in a cavity requires the quan-
tization of energy. This was quickly followed by the application of quantization
to atomic and molecular phenomena. Modern chemistry relies on quantum me-
chanics for the description of most phenomena. In this chapter we consider the
basic concepts of quantum mechanics and apply them to a few simple problems
such as the harmonic oscillator and rigid rotator.

Quantum Theory
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9.1 CLASSICAL MECHANICS FAILED TO DESCRIBE
EXPERIMENTS ON ATOMIC AND MOLECULAR PHENOMENA
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At the end of the nineteenth and beginning of the twentieth century, a number of
experimental observations were made that could not be reconciled or explained
by the laws of classical physics. For example, Planck measured the emission of ra-
diation from a hot mass (called blackbody radiation) and found that it did not fit
the formula derived from classical physics. To derive the correct equation, he had
to assume, in contrast to classical ideas, that radiation of frequency is absorbed
and emitted only in multiples of , where is a universal constant. In another
experiment, it was discovered that the energy of an electron ejected from metals
by the absorption of radiation (the photoelectric effect) depended only on the fre-
quency of the radiation, and not on intensity, again in contrast with classical ideas.
Einstein explained this in 1905 by suggesting that light of frequency consists of
quanta of energy , called . When one photon strikes an electron in the
metal, the electron is ejected with a kinetic energy that is the difference between
the energy of the photon and the minimum energy needed to eject the electron.
In 1911 Rutherford showed that an atom has all its positive charge in a tiny nu-
cleus with the electrons surrounding it, but this could not be understood using
classical physics, which predicted that the electrons would radiate energy and fall
into the nucleus. Bohr in 1913 postulated the existence of stable orbits in atoms
and the quantization of angular momentum. This theory marked the beginning
of quantum mechanics applied to atoms, but was unable to describe atoms with
more than one electron.

The underlying problem that emerged from these and other experiments
was that electromagnetic radiation shows properties that are both wavelike and
particle-like. Experiments showing the interference of light must be explained
with wave theory, whereas phenomena such as the photoelectric effect reveal
particle-like properties. In his 1924 doctoral thesis, de Broglie developed an
equation for the wavelength of a particle by reasoning in analogy with light. In
1926 Schrödinger published the wave equation for atomic and molecular systems,
which is the principal subject of this chapter. In 1927 Heisenberg put forward an
uncertainty principle implying that if the momentum of a particle is known pre-
cisely, the position of that particle is completely unknown. This new mechanics
called challenged classical mechanics, according to which
the position and momentum of a particle can be calculated precisely at all times
from knowledge of the forces on the particle. In the next few paragraphs, we
consider these early ideas and developments in a little more detail before going
on to study the Schrödinger equation.

The distribution of frequencies of electromagnetic radiation from a heated
solid depends on the nature of the solid, but the radiation from a container with a
small window is independent of the solid because the radiation is in equilibrium
with the walls of the container. This radiation is called be-
cause any radiation falling on the small window will be completely absorbed. It
is most convenient to discuss the distribution of frequencies in terms of the

, which is the energy per unit volume of the radiation between
and d . Classical electrodynamic theory indicates that the energy density
should be given by

8
(9 1)
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Figure 9.1

where is the (299 792 458 m s , exactly) and is the
( / 1.380 658 10 J K ). This equation works at very low

frequencies, but it has the fatal flaw that the experimentally determined does
not increase to infinity as the frequency increases, but instead approaches zero
asymptotically at high frequencies. In 1900, Planck derived

8 ( / )
(9 2)

1

by making the radical assumption that the energy of a quantum of radiation (pho-
ton) is given by , where 6 626 075 5 10 J s is now known as

Equation 9.2 is in agreement with experiment. Figure 9.1 shows the en-
ergy density as a function of frequency for three temperatures. More information
about blackbody radiation is given in a Special Topic section at the end of this
chapter.

The wave nature of light is demonstrated by interference phenomena, but
when light is absorbed by a metal, the total energy of a photon is given to a
single electron within the metal. If this quantity of energy is sufficiently large, the
electron may penetrate the potential barrier at the surface of the metal (called
the work function) and still retain some energy as kinetic energy. The kinetic
energy retained by the electron depends on the energy and, therefore, the fre-
quency of the photon that ejected it. The number of electrons ejected depends
on the number of incident photons, and therefore is related to the intensity of the
light.

Since these experiments showed that light has wave and particle aspects, they
raised the question as to whether small particles have wave aspects. Photons,
which have energies given by , are unusual particles in that they have
zero rest mass and travel with the speed of light. However, Einstein suggested
that photons have a relativistic mass given by . Equating these two ex-
pressions for the energy of a photon yields

or (9 3)
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What is the de Broglie wavelength of an electron that has been accelerated through a
potential difference of 100 V?

To use equation 9.4, we need to calculate the momentum after the acceleration process.
We do this by first calculating the energy of the electron. The energy of an electron of mass

moving with a velocity well below the velocity of light is given by

1
2 2

Thus, the momentum is given by

2

The energy of the electron is (1 602 10 C)(100 V) 1 602 10 J. Thus, the
momentum is

(2)(9 109 10 kg)(1 602 10 J)

5 403 10 kg m s

and the wavelength is

6 626 10 J s

5 403 10 kg m s

1 226 10 m 0 1226 nm

Note that this is of the same order of magnitude as the distance between atoms in a
crystal.
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momentum of a photon.
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where is the By analogy, de Broglie (1924) suggested
that the momentum of a particle with finite rest mass is given by

or (9 4)

In this equation is rest mass plus the relativistic correction, but for particles at
low momentum with finite rest mass, the relativistic correction is usually negligible
in comparison with the rest mass. Thus the wavelength associated with a particle
of finite rest mass was expected to be inversely proportional to its momentum. For
macroscopic particles the de Broglie wavelength is so short that it does not lead to
observable phenomena. However, for electrons, neutrons, and other microscopic
particles the wavelengths may be of the order of interatomic distances in solids.

It was recognized that de Broglie’s hypothesis could be tested by scattering a
beam of electrons from a crystalline solid, as a way of getting a grating of suitable
dimensions to match the wavelength of electrons of accessible energies. In 1928
Davisson and Germer obtained a diffraction pattern from electrons impinging
on the face of a nickel crystal that confirmed equation 9.4. This suggested that all
particles have a wavelike property with a wavelength that is inversely proportional
to the momentum.

The total energy of a particle is equal to the sum of its kinetic energy
(1/2) and its potential energy :

1
(9 5)

2 2
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*R. Eisberg and R. Resnick, 2nd ed. New York: Wiley, 1985.

Calculation of the standard deviation is discussed in Section 9.5.

1/2

Superposition of waves
to give ( ) a weakly localized and
( ) a strongly localized wave packet.

complementary.

wave packet
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Figure 9.2

Solving this equation for the momentum and substituting it into equation 9.4
yields

(9 6)
[2 ( )]

This equation shows that the wavelength for a particle with constant energy
will change as it moves into a region with different potential energy. Thus as an
electron with constant energy moves into a region where it has a higher potential
energy , its energy decreases and its associated wavelength increases according
to equation 9.4.

Classical mechanics does not involve any limitations in the accuracy with which
observables may be measured. For example, the position and momentum of a par-
ticle may be simultaneously measured to any desired accuracy. This does require
an interaction of the observer with the system that can disturb the system, but the
disturbance can be made negligible or can be taken into account by suitable calcu-
lations. In 1927 Heisenberg formulated his principle that values of particular pairs
of observables cannot be determined simultaneously with arbitrarily high preci-
sion in quantum mechanics. Examples of pairs of observables that are restricted in
this way are momentum and position, and energy and time; such pairs are referred
to as The quantitative expressions of the Heisenberg uncertainty
principle can be derived by combining the de Broglie relation / and the
Einstein relation with properties of all waves.

The de Broglie wave for a particle is made up of a superposition of an infinitely
large number of waves of the form

( ) sin 2

sin 2 ( ) (9 7)

where is amplitude and is the reciprocal wavelength. We consider one spa-
tial dimension for simplicity. The waves that are added together have infinitesi-
mally different wavelengths. This superposition of waves produces a
as shown in Fig. 9.2. By use of Fourier integral* methods it is possible to show that
for wave motion of any type

1 1
(9 8)

4

1
(9 9)

4

where is the extent of the wave packet in space, is the range in reciprocal
wavelength, is the range in frequency, and is a measure of the time required
for the packet to pass a given point. The ’s in these equations are actually stan-
dard deviations. We can understand equations 9.8 and 9.9 in the following way.
If at a given time the wave packet extends over a short range of values, there is a

†



The uncertainty of elocity and position for an electron
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What is the minimum uncertainty in the velocity of an electron if the uncertainty in its
position is 100 pm?

Example 9.2
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limit to the accuracy with which we can measure the wavelength. If a wave packet
is of short duration, there is a limit to the accuracy with which we can measure the
frequency.

One form of the Heisenberg uncertainty principle may be derived by substi-
tuting the de Broglie relation in equation 9.8. Since 1/ / for motion in the

direction, then

1
(9 10)

4
¯

(9 11)
2

where ¯ /2 ( ¯ is called “ bar”). We can understand this limitation on our
ability to determine the simultaneous position and momentum of an electron in
this way. To determine the position of the electron at least one photon would
have to strike the electron, and the momentum of the electron would inevitably
be altered in the process. This would limit our ability to measure the momentum.
If we use a photon of shorter wavelength to determine the position of the electron
more accurately, the disturbance of the momentum is greater and is greater,
according to relation 9.11. Of course, the same uncertainty applies to and

.
Another form of the Heisenberg uncertainty principle may be derived by sub-

stituting in equation 9.9. This yields

1
(9 12)

4
¯

(9 13)
2

We can understand this limitation on our ability to measure the energy level of
an electron in an atom in the following way. Suppose that excited atoms emit
electromagnetic radiation in going to a lower energy state. If these excited atoms
live a long time, the radiation will be nearly monochromatic and the spectral line
will be sharp. If the excited atoms have a very short half-life, the electromagnetic
radiation will have a wider range in frequencies, in accord with equation 9.13.
Thus, spectral lines have natural widths determined by the lifetime of the excited
state, and they are further broadened by collisions and the Doppler effect. If the
frequency is uncertain by , the energy of the excited atom is uncertain by

.
It is important to realize that the uncertainties in equations 9.11 and 9.13

are not experimental errors that are dependent on the quality of the measur-
ing apparatus, but are inherent in quantum mechanics. Because of this uncer-
tainty the results of quantum mechanical calculations are expressed in terms of
probabilities. The success of a classical mechanical description for macroscopic
systems can be understood from the fact that the de Broglie wavelength of macro-
scopic systems is extremely small (see the problems at the end of the chapter for
examples).
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After de Broglie’s hypothesis that a particle has wavelike properties associated
with it, many physicists attempted to derive the correct wave equation for a parti-
cle. In 1926, Schrödinger and Heisenberg independently developed theories that
looked very different, but were later shown to be equivalent by Dirac, a British
scientist. We will consider only the Schrödinger equation. The general form of this
equation contains time as a variable, but we will be concerned primarily with the
time-independent form because most chemical applications of quantum mechan-
ics need only time-independent states.

Schrödinger’s equation is a postulate of quantum mechanics, to be judged by
its ability to describe experimental results. However, we can give an argument
as to why the form of the equation is plausible by considering the wave equation
for the harmonic motion of a one-dimensional string. If the displacement of the
string at position is represented by the ( ), and the wavelength
of the displacement is , then the classical time-independent wave equation for

( ) is

d ( ) 2
( ) (9 14)

d

This wave equation can be generalized to three dimensions for an isotropic and
uniform medium as

2
( ) ( ) (9 15)

This combination of second partial derivatives is called the and is rep-
resented by (del squared) so that equation 9.15 can be written

2
( ) ( ) (9 16)

Now, to consider a particle wavefunction ( ), we substitute equation 9.6 for
the wavelength of a particle with energy in a region of potential energy
into this equation to obtain

( ) ( ) ( ) ( ) (9 17)
8
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This is the time-independent Schrödinger equation.

probability
complex conjugate

probability density.
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This equation for a quantum mechanical particle of mass can be compared
with the classical equation for a particle:

1
( ) (9 18)

2

Equation 9.17 can be written in the form

( ) ( ) ( ) ( )
8

(9 19)

Comparison of equations 9.18 and 9.19 suggests that the momenta in equa-
tion 9.18 are linked to partial derivatives in equation 9.19 as indicated by

(9 20)
2

We will soon see that this is an important postulate in quantum mechanics. Note
that the wavefunction , like the amplitude of an electromagnetic wave, can be
complex; that is, it may involve i 1 (see Appendix D.9). The interpretation
of was provided by Born, who suggested, based on an analogy to electromag-
netic waves, that the of finding the particle between and d
is given by ( ) ( ) d , where is the of . (The com-
plex conjugate is found by changing i to i everywhere in .) This means that

( ) ( ) is a For any , is both real and nonnegative,
as it must be to have the interpretation of a probability density. For example,
if is a complex number, it can be written as i ; then i and

, which is clearly positive and real.
We often write for . With this interpretation of , the probability of

finding the particle between and is

Probability ( ) ( ) ( ) d (9 21)

and, since the probability of finding the particle anywhere on the axis must
be 1,

( ) ( ) d 1 (9 22)

For this one-dimensional example, the units of are m to ensure that the
probability is a pure number. If we were considering a three-dimensional sys-
tem, then the integral of over three dimensions would be the probability of
finding the particle anywhere in the space, which is 1. Then the wavefunction
would have units m .

t



Calculation of a normalization factor
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Given that the wavefunction for the hydrogen atom in the ground state ( 1) is of
the form e , where is the distance from the nucleus to the electron and
is the Bohr radius, calculate the normalization factor .

The element of volume in spherical polar coordinates is d sin d d d . The
probability that the electron is in volume d is d , and so

1 d e d sin d d

Integral tables or successive integration by parts shows that

2
e d

Therefore,

1 2
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The wavefunctions that are solutions of the time-independent Schrödinger
equation are called An atom or a molecule can
be in any one of the stationary energy states, say, the th, represented by its own
wavefunction with energy .

The wavefunction contains all the information we can have about a particle
in quantum mechanics; methods to find this information will be presented in
Section 9.4. However, for to be a probability density, all the ’s must be “well
behaved,” that is, have certain general properties: (a) They are continuous, (b)
they are finite, (c) they are single-valued, and (d) their integral d over the
entire range of variables is equal to unity. The differential volume is represented
by d .

A wavefunction is said to be if

d 1 (9 23)

Two functions, and , are said to be if

d 0 (9 24)

These relations can be combined by writing

d (9 25)

where is called the which is defined by

0 for
(9 26)

1 for

Wavefunctions that satisfy equation 9.26 are said to be



Applying differential operators to functions
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ˆ ˆ( ) Apply the operator d/d to the function . ( ) Apply the operator d /d
ˆto the function 4 . ( ) Apply the operator ( / ) to the function . ( ) Apply

ˆthe operator i ¯ d/d to the function e ( ) Using the same operator as in
ˆ ˆ ˆ( ), apply the operator ( i ¯ d/d )( i ¯ d/d ) ¯ d /d to the func-

tion e .

dˆ( ) ( ) 2
d

d dˆ( ) (4 ) 4 8 8
dd

ˆ( ) ( ) ( ) 2

dˆ( ) (e ) i ¯ e i ¯e ¯e
d
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Now that we have discussed the wavefunctions that are important in quantum
mechanics, we turn to the other basic quantum mechanical concept, the opera-
tor. An is a mathematical operation that is applied to a function. For
example, / is the operator that indicates that the function is to be differenti-
ated with respect to , and ˆ is the operator that indicates that the function is

ˆ ˆto be multiplied by . We will designate operators with a caret, as in or .
The symbol of the operator is placed to the left of the function to which it is
applied. The operators of quantum mechanics are linear. A has
the following properties:

ˆ ˆ ˆ( ) (9 27)

ˆ ˆ( ) (9 28)

ˆwhere is a number. The simplest operator is the identity operator , for which
ˆ ˆ ˆ ˆ. There is an algebra of linear operators, and we can write

ˆ ˆ ˆor , but operator multiplication is different from the multiplication
of numbers, as we will see.

With this concept of operators, we may now return to the Schrödinger equa-
tion, 9.17, and rewrite it in a slightly different form:

¯
( ) ( ) ( ) (9 29)

2

The quantity in square brackets is called the and is
ˆ ˆdesignated . When an operator, e.g., , operating on a function, e.g., ,

yields a constant, , multiplied by that function,

ˆ (9 30)



The eigenfunctions and eigen alues of a simple operator
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What are the eigenfunctions and eigenvalues of the operator d/d ?

d d ( )
( ) ( ) d ln ( ) ( ) e e e

d ( )

where and are constants. For each different value of there is an eigenfunction
e . Or, to put it another way, the eigenfunction e has the eigenvalue . Note that
can be a complex number.

Example 9.5

1.
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ˆwe say that is an eigenfunction of with eigenvalue . Thus for the Schrö-
ˆdinger equation (9.29), ( ) is the eigenfunction of with eigenvalue .

The name comes from Sir William Hamilton, who developed
an alternative form of classical mechanics involving a function , called the
Hamiltonian function. For a system for which the potential energy is a function
of the coordinates only—a so-called conservative system because this ensures
that the energy is conserved—the Hamiltonian function is equal to the total
energy of the system expressed in terms of coordinates and conjugate momenta.
For a Cartesian coordinate system the conjugate momenta are the compo-
nents of the linear momentum , , and in the , , and directions. The
Hamiltonian form of classical mechanics is most easily transformed to quantum
mechanics.

For a particle of mass moving in one dimension subject to a potential
energy ( ) the classical Hamiltonian function is

( ) (9 31)
2

(Note the absence of a caret over because this is the classical function, not the
quantum mechanical operator.) When we compare this equation with equation
9.29 for the quantum mechanical operator for this system, we see that there is a
resemblance. The process of converting a function for a classical system to the
corresponding operator for the quantum mechanical system is formalized by the
following rules:

Each Cartesian coordinate in the Hamiltonian function is replaced by the
operator multiplication by that coordinate:

ˆ (9 32)

Each Cartesian component of linear momentum in the Hamiltonian
function is replaced by the operator

¯
ˆ i ¯ (9 33)

i

where i 1. The quantity 1/i is equal to i because i( i) 1.

In converting the classical Hamiltonian to the quantum mechanical Hamil-
tonian operator, the potential energy function is not changed because of the first
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of these postulates. In converting the kinetic energy part of the classical Hamil-
tonian we have to calculate the operator for :

¯ ¯ ¯
ˆ ¯ (9 34)

i i i

Replacing in the classical Hamiltonian with this operator and replacing the
potential energy function by “multiply by ( )” yields the Hamiltonian opera-
tor given in equation 9.29.

Each classical observable is associated with a quantum mechanical operator.
The rules given in equations 9.32 and 9.33 are used to convert a classical observ-
able to the quantum operator. Another postulate of quantum mechanics is that
the only possible measured values of an observable are the eigenvalues of the
operator representing that observable.

The correspondence between a number of quantum mechanical observables
and quantum mechanical operators is shown in Table 9.1. We are not ready to
consider some of these observables yet, but in Section 9.6 we will calculate the
energy, the average value of , the average value of , the momentum , and
the average value of for a particle in a one-dimensional box.

It is a postulate of quantum mechanics that the average value of an
ˆobservable corresponding with an operator is given by

ˆ d (9 35)

where is the complex conjugate of . The complex conjugate of a function
is obtained by replacing i by i. Taking the energy of a one-dimensional sys-
tem as an example of an observable, energy eigenvalues are obtained from the
Schrödinger equation

ˆ ( ) ( ) (9 36)

where is an index that labels the different eigenfunctions and eigenvalues. Mul-
tiplying from the left by the complex conjugate of the wavefunction and integrat-
ing over all values of yields

ˆ( ) ( ) d ( ) ( ) d ( ) ( ) d (9 37)

since the wavefunction is normalized.
Note that operators and wavefunctions may be complex; however, eigenval-

ues of quantum mechanical operators must be real because they are the only pos-
sible measured values, and measured values of observables are real. This places
a restriction on possible quantum mechanical operators. Operators that have the
property that they yield real eigenvalues are called A Her-

ˆmitian operator has the following property:

ˆ ˆd ( ) d (9 38)

ˆfor any two well-behaved functions and . ( ) is the complex conjugate of
ˆ ˆ ˆ. Suppose that is an eigenfunction of with eigenvalue , .
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Obser ables Operators

Name Symbol Symbol Operation

x x x
x x x

p p h
x

p p h
x

p h
T T

m m x
V x V x V x

h
E T V x H V x

m x

h
x y z

h h
T T

m m x y z

V x, y, z V x, y, z V x, y, z
h

E T V H V x, y, z
m

yp zp L h y z
z y

zp xp L h z x
x z

xp yp L h x y
y x
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Actually, the rules given here relating the operators to classical observables are only one of the many possible
ways of constructing a set of rules. We call a given set of rules a particular representation (here the coordinate
representation) of quantum mechanics. There is an equally valid representation (called the momentum representa-
tion) in which the operator for ˆ is multiply-by the number and the operator for is ( ¯ /i)( / ). Although
there are cases for which these other representations are useful, we will use only the most common one here, the
coordinate representation.

D. A. McQuarrie, Copyright(1983) University Science Books, Sausalito, CA.

Classical Mechanical Observables and Corresponding Quantum Mechanical Operators

For one-dimensional systems

Position ˆ Multiply by
Position squared ˆ Multiply by

Momentum ˆ i ¯

Momentum squared ˆ ¯

¯ˆKinetic energy
2 2

ˆPotential energy ( ) ( ) Multiply by ( )
¯ˆTotal energy ( ) ( )

2

For three-dimensional systems

Position Multiply by

Momentum i ¯

¯ ¯ˆKinetic energy
2 2

ˆPotential energy ( ) ( ) Multiply by ( )
¯ˆTotal energy ( )

2

ˆAngular momentum i ¯

ˆ i ¯

ˆ i ¯
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9.4 Operators
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Table 9.1

Then

ˆ d (9 39)

ˆ( ) d (9 40)

Thus the Hermitian property (equation 9.38) requires , proving that the
eigenvalues are real.



Proof that the momentum is a Hermitian operator
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Show that the momentum operator ˆ is Hermitian.
Substituting ˆ i ¯ d/d in the left-hand side of equation 9.38 yields

d d d d
i ¯ d i ¯ d i ¯ d i ¯ d

d d d d

where the next to last form is obtained by integrating by parts and using the fact that,
for a well-behaved function, ( ) 0. Thus equation 9.38 is satisfied, and so the mo-
mentum operator ˆ is Hermitian.
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We can also use the Hermitian property (9.38) to prove that the eigenfunc-
tions of a Hermitian operator corresponding to different eigenvalues are

ˆIn equation 9.38 choose to be , the eigenfunction of with eigenvalue
ˆ, and to be , the eigenfunction of with eigenvalue . Then the left-

hand side of equation 9.38 is equal to

ˆ d d d (9 41)

while the right-hand side of equation 9.38 is equal to

ˆ( ) d ( ) d d (9 42)

where we have used the fact we just proved that is real, so that . Sub-
stituting the two results into equation 9.38, we see that if , then d
must be zero:

d 0 if (9 43)

This means that the eigenfunctions of a Hermitian operator are orthogonal to
one another. They can, in addition, always be normalized, and so form an

set of functions with the property

d (9 44)

( is the Kronecker delta defined in equation 9.26).
ˆ ˆThe product of two operators and is formed by first operating on a

ˆ ˆfunction with to produce a new function and then operating on that with .
Thus

ˆ ˆ ˆ ˆ( ) (9 45)
The multiplication of operators is associative.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) (9 46)

However, the multiplication of operators is in general not in other
words, the resulting function may depend on the order in which the operators are

ˆ ˆapplied. For example, if the operators are ˆ and d/d , the application
ˆ ˆ ˆ ˆof the operators and yields

ˆ ˆ ( ) [(d/d ) ( )] ( ) (9 47)
ˆ ˆ ( ) (d/d )[ ( )] ( ) ( ) (9 48)



The operators x and d d x do not commute
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2

ˆ ˆWhat is the commutator for the two operators ˆ and d/d ?
ˆ ˆ ˆ ˆAn arbitrary function ( ) is operated on by and :

ˆ ˆ ( ) ( )

dˆ ˆ ( ) [ ( )] ( ) ( )
d

The application of the commutator to the function ( ) yields

ˆ ˆ ˆ ˆ ˆ ˆ[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )

Therefore, since ( ) was an arbitrary function,

ˆ ˆ[ ] 1

Thus these operators do not commute.
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commutator

ˆExample 9.7 /
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9.5 EXPECTATION VALUES AND SUPERPOSITION
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where the prime indicates the derivative of the function. In this case the oper-
ˆ ˆators and do not commute. In this respect the algebra of operators is like

the algebra of matrices. The of two operators is defined by

ˆ ˆ ˆ ˆ ˆ ˆ[ ] (9 49)

ˆ ˆWhen [ ] 0, the operators are said to commute.

In Section 9.8 we will see that there is a relation between the commutability
of two operators and the maximum precision with which their corresponding
observables can be measured.

As indicated above, the only possible measured values of an observable are the
eigenvalues of the operator representing that observable. In addition, we noted
in equation 9.35 that the average value of an observable when the system is
in the state is d . In most cases, is not an eigenfunction of ,
but it can always be written as a of the eigenfunctions of ,
which we label with eigenvalue ( ),

(9 50)

where the are constants. Since the are orthonormal (equation 9.44) and
has to be normalized, we have

1 d d

d (9 51)



Calculating the a erage energy and standard de iation
of the energy for a particle in a superposition state
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Consider a particle in a quantum state that is the superposition of two eigenfunctions
of energy and , with energy eigenvalues and :

What is the probability of measuring or ? What is the average energy and the
standard deviation in energy?

Since is normalized and and are orthogonal, we have 1. The
probability of measuring is , and the probability of measuring is . The
average energy is given by

ˆ d
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probability density
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The average value of is given by

d d (9 52)

and using equations 9.41 and 9.43,

(9 53)

Thus the average value is the sum of possible measured values ( ) multi-
plied by , a nonnegative number. We interpret as the of
measuring the value of .

We can calculate using equations 9.50 and 9.43. Multiplying by and
integrating, we find

d d (9 54)

Therefore, the probability of measuring the eigenvalue is given by

d (9 55)

Note that the probability amplitude, , may be complex, but the probability
is always real, as it should be. When is an eigenfunction of , say ,

then the probability of measuring is 1 and the probability of measuring any
other eigenvalue is 0. Equation 9.55 can be taken as a basic postulate of quantum
mechanics.

When the observable has a continuous set of eigenvalues (such as the ob-
servable for the position of a particle, for example), the formula for the average
becomes (for a one-dimensional system)

( ) ( ) d ( ) d (9 56)

In this case, we can interpret ( ) as the for the position
variable. The probability that lies between and d is ( ) d ; the
probability that the position lies between and is prob( )

( ) d .
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and the standard deviation, [ ] is found by calculating :

ˆ d

Therefore,

[( ) ( ) ]

Potential for a particle
in a one-dimensional box. The po-
tential becomes infinite for
and 0, and is zero for 0 .
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9.6 Particle in a One-Dimensional Box

� � � � � �

� � � � � �

� � � � � � � �

�

9.6 PARTICLE IN A ONE-DIMENSIONAL BOX

� � � � � �

� � � �

� � � �

� � � � � �

� � � �

� � � �




�

�

�
� � �

� �

�

�

�

�


 


�

� �

"

"

"
"

"

 
 

 
  

Figure 9.3

Now that we can calculate the mean value of an observable , there is an-
other question of considerable interest. That is, what is the spread around the
mean? The spread around the mean is measured by the , which is
defined by

( ) ( ) (9 57)

where is the probability of . The average deviation from the mean is equal to
zero, but by squaring the deviations from the mean we get an inherently positive
quantity that is zero if all the values of are identical, is small if the distribution
of values is narrow, and is large if the distribution of values is broad. The
variance is represented by the symbol because the square root of the variance
is equal to the . The standard deviation is especially useful
for representing the breadth of a distribution because it has the units of .

There is a simple way to calculate the variance that is more readily extended
to continuous distributions. Equation 9.57 may be rearranged as follows:

( 2 )

2

2

(9 58)

In the second line and are taken outside the summations because they
are simply numbers.

The simplest problem to treat in quantum mechanics is that of a particle of
mass constrained to move in a of length . The poten-
tial energy ( ) is taken to be 0 for 0 and infinite outside this region
(Fig. 9.3). We will see that this leads to quantized energy levels.

In the region between 0 and , the Schrödinger equation 9.29 can
be written

¯ d
(9 59)

2 d

or

d 2
(9 60)

d ¯
where

2
¯



Calculating the energy of an electron in a box

. . .

. . .

x A kx B kx .

x a
V V

x x a
x A

x a
ka

ka n n , , .

h n
E n , , .

ma

x x a
a

a

h ma n n

n

n
n

a n

n

n

312

h n
E

ma

n

.
E

. .

.

. .

� �

� �

� � �
�

� �
�

� �

� �

� �

� �

�

�
�

�

�

�

�

�

�

2

2 2

2

2 2

2 2

2

34 2 2

1 31 9 2

18

118 23

13

1

What is the ground-state energy for an electron that is confined to a potential well with
a width of 0.2 nm?

Using the formula for the allowed energies for a particle in a box,

8

we find for the lowest energy ( 1),

(6 626 10 J s) (1)
8(9 109 10 kg)(0 2 10 m)

1 506 10 J

(1 506 10 J)(6 022 10 mol )

(10 J kJ )

907 kJ mol
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The general solution to this equation is

( ) cos sin (9 61)

In the region outside 0 , the only physical solution to the Schrödinger
equation is 0, because only then 0, even for infinite. This im-
plies that the probability of finding the particle outside the box is zero (i.e.,

0 outside the box). To avoid a discontinuity in at 0 and ,
must be zero at those points. To satisfy this condition at 0, must be

equal to zero, since cos 0 1. The condition at can be satisfied only if
sin 0, or

1 2 (9 62)

This forces the quantization

1 2 (9 63)
8

Therefore, a particle constrained to be between 0 and has
energy levels, given by equation 9.63. Notice that as gets large, the energy levels
get closer together. In the limit of a very large box (or a very heavy particle), the
energy levels are so close together that the quantization may be unnoticeable.
In the limit that becomes very large, all energies become allowed (i.e., the
allowed energies get very close together so that any energy is an eigenvalue), so
the perfectly free particle can have any energy.

A particle in a box cannot have zero energy because the lowest energy
/8 is given by equation 9.63 for 1. Although 0 satisfies the

boundary conditions, the corresponding wavefunction is zero everywhere. The
associated with the state 1 is found whenever a particle

is constrained to a finite region; if this were not so the uncertainty principle
would be violated. The next higher energy levels are at four times ( 2) and
nine times ( 3) this energy, as shown in Fig. 9.4. The wavefunctions are
superimposed on this plot, and we can see that the wavelength is equal to 2 / .
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( ) Wavefunction and ( ) probability density function for the lowest
three energy levels for a particle in a box. The plots are placed at vertical heights that
correspond to the energies of the levels. As the number of nodes goes up, the energy goes
up. ( ) The product of wavefunctions and plotted against . (See Computer
Problem 9.A.)
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Figure 9.4

Using equation 9.62 for in the wavefunction yields

( ) sin (9 64)

In order that the square of the wavefunction can be interpreted as a probability,
it is necessary to it so that the probability that the particle lies between

0 and is unity (i.e., the wavefunction is normalized):

( ) ( ) d 1 (9 65)

sin d 1 (9 66)

Since the value of the integral is /2, (2/ ) , and the normalized wave-
function for a particle in a one-dimensional box is

2
sin (9 67)

Figure 9.4 gives the probability densities for a particle in an infinitely
deep box. These are the probabilities per unit distance that the particle will be
found at a given position. The most probable position for a particle in the zero-
point level ( 1) is in the center of the box. Note that the are waves with
wavelength 2 / . This means that is zero at values of equal to an



Calculating the probability of finding a particle
in a small region of space

n
n

n

a

x i j .

x i j .

i j x c

a a n

x

x

n

i

ji

ji

ji

.

.

314

. . n
x

x
a a

x
P . x . x

a a

x a

P . x . . . .
a

� �

�

�

9

9

�

�

�

�

�

9 9

2 2

0 55 10 m
9 9 2
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A particle is in a linear box that is 1 nm in length. What is the probability that a particle
is between 0 45 10 m and 0 55 10 m in the ground state (i.e., 1)?

We have seen that the probability density at point is given by the square of the
wavefunction:

2
sin

Therefore, the total probability of being in the above region is given by

2
(0 45 10 m 0 55 10 m) sin d

Since sin ( / ) 1 in this region, we find

2
(0 45 10 m 0 55 10 m) (0 55 10 0 45 10 ) m 0 2
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integral number of /2. These zeros are called nodes of the wavefunction. In
one-dimensional problems, the more nodes in an eigenfunction, the higher its
eigenvalue of energy. For this problem, the number of nodes is 1.

As the value of the quantum number increases, the probability density os-
cillates more and more. For very high values of there are so many oscillations
we would not expect to observe anything other than a constant value for the
probability density. Classically this is just what we would expect for a particle
in a box, where the probability density is 1/ . This is an example of the

of Bohr, according to which the quantum mechanical pre-
dictions approach the predictions of classical mechanics as the quantum number
approaches infinity.

The wavefunctions have been normalized so that

d 1 if (9 68)

Particle-in-a-box wavefunctions are orthonormal,

d 0 if (9 69)

which can be seen if we plot for as a function of (see Fig. 9.4 ).
We see that the negative contribution to the integral just cancels the positive
contribution.

We can see from Fig. 9.4 that the most probable position for the particle is in
the middle of the box if the system is in the ground state, but it is more likely to be
at /4 and 3 /4 in the first excited state ( 2). Notice that the observable “posi-
tion” is not an eigenvalue of the wavefunctions for a particle in a one-dimensional
box. The operator ˆ does not give an eigenvalue when it operates on the particle-
in-a-box energy eigenfunctions. This means that if we measured the position of
a particle in a box we would get different answers in different trials. If we per-
formed this measurement many times, we would confirm the probability densities

shown in Fig. 9.4. However, there is another type of question that does have a
definite answer. We can ask for the average position of the particle, or its average

coordinate squared, or its average momentum squared.



Calculation of and for a particle
in a one-dimensional box

Calculation of and for a particle
in a one-dimensional box

Standard de iations of and for a particle
in a one-dimensional box
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0

2

2 2 2

0

2 2 2

2

1/2 1/2

0

2 0

2

1/2 2 1/2
2

0

22 2

2

The value of for a particle in any of the eigenstates of a one-dimensional box is

2
sin d

By use of a table of definite integrals we obtain

2

(i.e., the middle of the box) for all values of the principal quantum number , which is
reasonable. The value of in the th eigenstate is

2
sin d

4 2
2 3

Since the operator for momentum in the direction is i ¯ d/d , the value of for a
particle in any of the eigenstates of a one-dimensional box is given by

2 d 2
sin i ¯ sin d

d

2
i ¯ sin cos d

0

where the last result is obtained by using integral tables. Now that we have derived this
result we can observe that the average momentum has to be zero because the particle
in a box cannot continue to travel in one direction. The value of is given by

2 d 2
sin i ¯ sin d

d

¯

What is the standard deviation in for the particle in an eigenstate of a one-dimensional
box? What is the standard deviation in ? How do these results compare with the
Heisenberg uncertainty principle? In this example we will use and for these
standard deviations as we did in Section 9.2.
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Writing the eigenfunctions for a particle in a box
in complex form

x xx
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x a x a
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kx kx

kx kx

kx kx
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h
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2 2 1/2

1/22 2

2 2 1/2

1/2 1/22 2 2 2

2 i / 2 i /

i

i i

i i

i i

Using the results of Example 9.11 we find

( )

4 2
2 3

Using the results of Example 9.12, we find

( )

¯

The product of these standard deviations is

¯ ¯
4 2 4 2

2 3 2 3

The product for a particle in a box is in agreement with the Heisenberg un-
certainty principle since it is always greater than ¯/2. Now we can see what happens to

and when we change the dimensions of the box. As the length of the box is
increased, the standard deviation in increases, and we say the position of the particle
becomes more uncertain. As the length of the box is increased, the standard deviation
in decreases, and we say the momentum becomes more definite.

The general solution for a particle in a box in the 2 level

( ) cos(2 / ) sin(2 / ) (1)

can be written

( ) e e (2)

Since

e cos( ) i sin( )

then

1
cos( ) (e e )

2

1
sin( ) (e e )

2i

Substituting these two relations in the first equation in this example yields

( ) e e
2 2i 2 2i

Taking 2 / yields equation 2 with ( i )/2 and ( i )/2.
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x y z

x, y, z x, y, z x y z .

p x, y, z

p x, y, z x, y, z x, y, z .

x x x x y
y y y z z z z

p x, y, z x y z x, y, z x, y, z x y z

x y z

h
E .

m x y z

x, y, z X x Y y Z z .

yx z
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There are several more things we can learn from the particle in a box by ex-
tending the box to three-dimensions. The particle is confined to a rectangular
parallelepiped with sides of lengths , , and by having an infinite potential
outside the box.

The classical Hamiltonian for a particle that can move in three dimensions
is

(9 70)
2 2 2

The time-independent Schrödinger equation for a single particle of mass
moving in three dimensions is

ˆ ( ) ( ) (9 71)

where the Hamiltonian operator is

¯ˆ ( ) (9 72)
2

and

(9 73)

is referred to as the or del squared. The wavefunction is nor-
malized so that

( ) ( ) d d d 1 (9 74)

If a particle can move in three dimensions, its probability density ( )
is given by

( ) ( ) ( ) (9 75)

The probability that the coordinate is between and d , the coordi-
nate is between and d , and the coordinate is between and d
is ( ) d d d ( ) ( ) d d d . This last expression can be
shortened to d , where d represents the differential element of volume
d d d .

Since the potential within the box is zero, we obtain the following partial
differential equation for the region inside the box:

¯
(9 76)

2

Partial differential equations are solved, where possible, by using the technique
of separation of variables to obtain a set of ordinary differential equations. In
this case we assume that the wavefunction is the product of three functions,
each depending on just one coordinate:

( ) ( ) ( ) ( ) (9 77)



X x Y y Z z

h X x Y y Z z
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m X x x Y y y Z z z
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E E E E .
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E .

m X x x

h Y y
E .

m Y y y

h Z z
E .

m Z z z

n x mE
X x A A x .

a h

n y mE
Y y A A y .

b h

n z mE
Z z A A z .

c h

a b c x y z
n n n E

h n ma

n yn x n z
x, y, z .

abc a b c

nh n n
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x x
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y y
y y

z z
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x y z x
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By substituting this for in equation 9.76 and then dividing by ( ) ( ) ( ),
we obtain

¯ 1 d ( ) 1 d ( ) 1 d ( )
(9 78)

2 ( ) d ( ) d ( ) d

Since the terms on the left-hand side of the equation are each a function of a
different independent variable and thus can be varied independently of one an-
other, each must equal a constant in order that the sum of the three terms equals
a constant for all values of , , and :

(9 79)

This converts the partial differential equation 9.78 into three ordinary differen-
tial equations that can be easily solved:

¯ 1 d ( )
(9 80)

2 ( ) d

¯ 1 d ( )
(9 81)

2 ( ) d

¯ 1 d ( )
(9 82)

2 ( ) d

These equations are just like equation 9.59 and may be solved in the same way
to obtain

2
( ) sin sin (9 83)

¯

2
( ) sin sin (9 84)

¯

2
( ) sin sin (9 85)

¯

where , , and are the lengths of the sides in the , , and directions, respec-
tively; , , and are nonzero integers, called quantum numbers; and

/8 and so on. Thus, there is a quantum number for each coordinate.
When the wavefunction is normalized, we obtain

8
( ) sin sin sin (9 86)

When this eigenfunction is substituted in equation 9.76, we obtain

(9 87)
8

Later, in statistical mechanics (Section 16.3) we will use this equation for the
translational energy of a molecule in a container. The three quantum numbers



The degeneracy of quantum le els at thermal energies
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2

3
A2

3

1/3

2
2

2

111 211 221 311 222 321 322 411 331
Degeneracy 1 3 3 3 1 6 3 3 3

We shall see (in Chapter 16) that the most probable translational energy for an atom
in a gas at temperature is equal to , where / is Boltzmann’s con-
stant. Calculate the degeneracy of the most probable energy level for an argon atom at
300 K and 1 bar pressure, assuming that the atom can be treated as a particle in a three-
dimensional box.

We must find the value of for the most probable energy level at this temperature.
To use equation 9.88 we must find ; we can assume a cubical box. The volume of a gas
at these conditions is approximately 0.022 m , so that the side of the box can be taken
as (0 022) m. We have

3
28

degenerate,

Example 9.15
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v

� �

� �

are independent, and for a given set of three quantum numbers, there is in gen-
eral a unique value for the energy if .

A new feature arises when the sides of the box are equal. If , the
energy levels are given by

( ) (9 88)
8

In contrast with the three-dimensional box with , there may be several
combinations ( ) that yield the same energy. For example, (2,1,1), (1,2,1),
and (1,1,2) have the same energy. These three states of the system (different
wavefunctions) make up a level that we can refer to as the 211 level. Such an
energy level is said to be and the degeneracy is equal to the number
of independent wavefunctions associated with a given energy level. As shown in
the following table, the 111 level is nondegenerate.

Degeneracies arise in quantum mechanics when there is some element of
symmetry. If the symmetry is “broken” by giving the sides of the box different
lengths, the degeneracy is “lifted.” We will see later that the spherical symmetry
of certain atomic states is broken by the application of magnetic or electric fields,
and this lifts some of the degeneracies.

The degeneracy of a translational energy level increases rapidly with energy.
If we define , then ( /8 ) . If we think of the allowed
values of as points along the axis, the allowed values of as points along
the axis, and those of as points along the axis, then can be thought of as
the length of a vector in this three-dimensional space. All such vectors with the
same length have the same energy; that is, they represent degenerate states. For
very large , the number of degenerate states is proportional to the surface area
of the sphere of radius in this space; therefore, the degeneracy is proportional
to . Actually, since the allowed values of , , and are we have
counted states as degenerate that are not degenerate. However, for large
enough , these states will be so close in energy that for practical (experimental)
purposes we can take them to be degenerate.
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f x ,y ,z f x ,y ,z f x ,y ,z .
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H f E f H f E f H f E f .

The particle in a box pro ides an introduction to the beha ior of atoms or
molecules that are constrained to mo e within a finite distance. Electrons within
an atom are constrained to mo e within a small distance, but their beha ior is
different because they are not constrained by walls with high potential
energies. On the other hand, electrons in a long molecule with conjugated double
bonds are confined within this length with pretty abrupt changes in potential
energy at the end (Section 14.7). The equation for the possible energies of atoms
or molecules in a three-dimensional box will be used later in statistical mechanics
to calculate the energy le els of an atom or molecule in a macroscopic container
(Section 16.3).
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Thus, the most probable value of is 2 25 10 and the degeneracy is of the order
6 10 for this level.
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The particle in a three-dimensional box illustrates a general point about the
separability of the Hamiltonian for a system. The Hamiltonian operator for a
particle in a three-dimensional box can be written as the sum of three indepen-
dent terms (i.e., it depends on different independent variables):

ˆ ˆ ˆ ˆ (9 89)

When the Hamiltonian is separable in this way, we can factor the wavefunction
into a product of three wavefunctions, an eigenfunction for each coordinate. This
leads to separation of the eigenvalue problem in three variables into three sepa-
rate equations, each in one variable. The sum of the three eigenvalues obtained
is equal to the eigenvalue for the original problem, and the product of the three
eigenfunctions is equal to the eigenfunction for the original problem.

Another place where separation of variables works is with systems of inde-
pendent particles; by this we mean that there are no interactions between the

ˆ ˆ ˆ ˆparticles. If the particles are independent, , where
ˆ involves only the coordinates of particle . The wavefunction for the system

is separable,

( ) ( ) ( ) (9 90)

Their energy is the sum of independent energies,

(9 91)

and each particle obeys its own Schrödinger equation:

ˆ ˆ ˆ (9 92)
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We have seen earlier (equations 9.45–9.49) that operators are different from the
usual algebraic quantities in that they do not necessarily commute. As an exam-
ple of two operators that do not commute, consider the momentum operator ˆ
and the position operator ˆ . When these two operators act on a wavefunction

( ), the result depends on the order (see Example 9.7):

¯ d ¯ d ( ) ¯
ˆ ˆ ( ) ( ) ( ) (9 93)

i d i d i

¯ d ¯ d ( )
ˆ ˆ ( ) ( ) (9 94)

i d i d

The difference between these two results is
¯ ¯ ˆˆ ˆ ˆ ˆ ( ) ( ) ( ) (9 95)( )
i i

ˆwhere is the identity operator. Thus the commutator (equation 9.49) for these
two operators is given by

¯ ˆˆ ˆ ˆ ˆ [ ˆ ˆ ] (9 96)
i

ˆIn contrast, the kinetic energy operator and the momentum operator ˆ
do commute. When these two operators act on a wavefunction, the same result
is obtained for either ordering of the operators:

¯ d ¯ dˆ ˆ ( ) ( )
2 d i d

¯ d ¯ d ( )
2 d i d

¯ d ( )
(9 97)

i2 d
¯ d ¯ dˆˆ ( ) ( )
i d 2 d

¯ d ¯ d ( )
i d 2 d

¯ d ( )
(9 98)

i2 d

The difference between these two results is

ˆˆ ˆ( ˆ ˆ ) ( ) 0 ( ) (9 99)

ˆwhere 0 is the zero operator. Thus the commutator for these two operators is
given by

ˆˆ ˆ ˆˆ ˆ [ ˆ ] 0 (9 100)
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*C. Cohen-Tannoudjii, B. Diu, and F. Laloë, . Hoboken, NJ: Wiley, 1977.

eq

1

2

ˆ ˆ ˆShow that if all the eigenfunctions of two operators and are the same functions, and
ˆ ˆ ˆcommute with each other. The eigenvalues of and are represented by and and

the eigenfunctions are , so that

ˆ ˆand (a)

ˆ ˆThe eigenfunction of the operator is obtained as follows:

ˆ ˆ ˆ ˆ ˆ ˆ( ) (b)

ˆ ˆThe operator has eigenvalue , as may be seen from

ˆ ˆ ˆ ˆ ˆ ˆ( ) (c)

ˆ ˆSince , and commute with each other.

( ) Mass connected
to a wall by a spring in the absence
of gravity. The equilibrium position
of the mass is 0. ( ) Masses
and connected by a spring.
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9.9 CLASSICAL HARMONIC OSCILLATOR

�

�
Figure 9.5

ˆ ˆIt can be shown* that if operators and do not commute, then the ac-
curacy with which and can be measured is limited by an
uncertainty principle.

The fact that the operators ˆ and ˆ do not commute (and that their commu-
tator is i ¯) tells us that the accuracy with which and can be simultaneously
determined experimentally is limited by the Heisenberg uncertainty principle. In
contrast, there is no limitation on the accuracy of the simultaneous measurement
of kinetic energy and momentum of a particle since they commute. We can
generalize this observation and say that when two operators commute, the cor-
responding observables can be measured to any precision, and when they do not
commute, the corresponding observables cannot be measured simultaneously to
arbitrary precision. We can go further and say that eigenfunctions of one opera-
tor will also be eigenfunctions of another operator that commutes with the first
operator. We will see how these generalizations apply in our consideration of
the harmonic oscillator and the rigid rotor.

To understand the vibrations of molecules we need to understand the quantum
mechanical treatment of a harmonic oscillator, and as background for that we
need to review the classical treatment of a harmonic oscillator. The simplest ex-
ample of a harmonic oscillator is a mass connected to a wall by means of an ide-
alized spring, in the absence of gravity. As shown in Fig. 9.5 , the displacement
of the mass is shown by its coordinate, and the origin of the coordinate system
is taken at the equilibrium position. The mass oscillates about its equilibrium
position, and the motion is said to be if the force due to the spring
is directly proportional to the displacement from its equilibrium position ,
which we can define as the origin of the axis:

(9 101)
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The negative sign comes from the fact that is opposite to the displacement
. The proportionality constant , referred to as a is small for a

weak spring and large for a stiff spring. Since force is expressed by mass times
acceleration, the equation for motion in the direction is

d
0 (9 102)

d

The general solution of this differential equation is (compare with equation 9.61)

( ) sin cos (9 103)

where ( / ) is the in radians per second. If we initially
stretch the spring so that the mass is at position and its velocity is zero, and
then let go, the time course of the motion is represented by

( ) cos (9 104)

The mass oscillates between and with a frequency of radians per second
or /2 cycles per second.

The energy of a harmonic oscillator is equal to the sum of its potential en-
ergy and its kinetic energy. When the mass is at or , the energy is all
potential energy, and as the mass goes through 0, the energy is all kinetic
energy. We can calculate the potential energy from the fact that the force is
the negative derivative of the potential energy

d
(9 105)

d

so that

d constant (9 106)

Since , integration of equation 9.106 yields

(9 107)
2

if we take the potential to be zero when 0. This is the equation for a
parabola. Substituting equation 9.104 yields

cos (9 108)
2

Thus, the potential energy of the harmonic oscillator varies between zero and
/2 during each period of oscillation.
The kinetic energy of the moving mass is

d
(9 109)

d

Using equation 9.104 yields

sin

sin (9 110)



Two masses connected by a spring exhibit harmonic motion
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Show that equation 9.102 also applies to mass connected to mass by a spring, as
shown by Fig. 9.5 .

When two masses are connected with a spring, there are two equations of motion:

d
( ) (a)

d

d
( ) (b)

d

where is the equilibrium length of the spring. Note that the force on is equal and
opposite to the force on , as required by Newton’s law that reaction is equal
and opposite to action.

The oscillatory motion of the idealized diatomic molecule in Fig. 9.5 depends only
on the relative coordinate . The equation of motion in terms of that
coordinate is obtained by dividing equation a by and adding the negative of it to
equation b divided by . This yields

d ( ) 1 1
( ) (c)

d

d 1 1
(d)

d

where . The mass term can be taken equal to the reciprocal of a
defined by

1 1 1
or (e)

so that

d
0 (f)

d

This equation is of the same form as equation 9.102 with replaced by the reduced mass
and being interpreted as the relative coordinate. This change of coordinates reduces
the two-body problem to two one-body problems (one for the center of mass and one
for the relative motion).
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mass

where the second form has been obtained using ( / ) .
The total energy is

sin cos

(9 111)

Thus, the total energy is constant. The potential energy and the kinetic energy
each oscillate between zero and a maximum value of , but the total energy
is conserved. The harmonic oscillator is a conservative system, and it may be
shown that any system for which the force can be expressed as the derivative of
a potential energy is



. . .

k m

k
.

k
.

H p x .

x
x p p h x

h
H x .

x

E h , , , .

k
h

b, c
E h

.

x .

k h

x N H x .

N .

x

x x

x

x

x

325

�

�

�

� �

�

� �

�

� � �

�

�

�

�

�

�

�

2

2

2

1/2

1/2

1/2

2 1 2 2
2

2

2

2 2
2 2 2

2

1
2

1/2

0

1/4
/2

0

1/4
3

/2
1

2 1/2

1/2 /2

1/4

1/2

v

v v v

v v

vibrational quantum number

zero-point energy

9.10 Quantum Mechanical Harmonic Oscillator

9.10 QUANTUM MECHANICAL HARMONIC OSCILLATOR

� �

� �

� �

� �

� �

�

�

�

�

�

�

v v

v

v

�

�

#

#
�

�
� �

�

� # �

� � �
�

# ��

�

� � �
�

�

�
 

�

�
 

�

� �

 �

�

�

Since equation 9.103 shows that ( / ) , we will take the fundamental
vibration frequency for a diatomic molecule to be

(9 112)

or

1
(9 113)

2

To obtain the energy levels for the quantum mechanical harmonic oscillator of
mass we start with the classical Hamiltonian function found from equations
9.102, 9.109, and 9.112,

/2 (9 114)

and convert it to the quantum mechanical Hamiltonian operator by replacing
by ˆ and by ˆ i ¯ d/d to obtain

¯ dˆ 2 ˆ (9 115)
2 d

where we have put 2 . The solution of the Schrödinger equation is too
complicated to discuss here in detail, but when it is solved it is found that there
are well-behaved solutions only if the harmonic oscillator has energies given by

( ) 0 1 2 (9 116)

where is the and (1/2 )( / ) . The en-
ergy levels are equally spaced with a separation of . These levels are shown in
Fig. 9.6 . It is especially important to notice that the energy of the ground
state is not zero, as it is classically, but /2. This is in
accordance with the Heisenberg uncertainty principle, as shown later in Example
9.18.

The wavefunctions for the first two energy levels are given by

e (9 117)

4
e (9 118)

where ( / ¯ ) . The wavefunction for the ground state has the shape of
the Gaussian probability function.

In general, the wavefunctions for the harmonic oscillator are given by

( ) ( ) e (9 119)

1
(9 120)

(2 !)
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( ) Potential energy curve for a classical harmonic oscillator. ( ) Allowed en-
ergy levels and wavefunctions for a quantum mechanical harmonic oscillator. ( ) Prob-
ability density functions for a quantum mechanical harmonic oscillator. (See Computer
Problems 9.B and 9.C.)

Hermite polynomials.
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Figure 9.6

and the ( ) are polynomials called The wavefunc-
tions for the first four levels are plotted in Fig. 9.6 , and the probability densities

are plotted in Fig. 9.6 .
The wavefunctions given above have been normalized. The probability that

the coordinate of the harmonic oscillator is between and d is given by
d . If a large number of identically prepared systems are examined, the frac-

tion having coordinates between and d is equal to this probability. The
are plotted versus for the first four energy levels in

Fig. 9.6 . In the ground state ( 0) the most probable distance occurs at the po-
sition of the minimum in the potential well. This is in distinct contrast with that for
a classical simple harmonic oscillator, which would spend the longest times at the
turning points where the velocity goes to zero. As the quantum number increases,
however, the quantum mechanical probability density function approaches that
for the classical harmonic oscillator. This is an example of Bohr’s “correspondence
principle,” according to which the quantum mechanical result must approach the
classical result in the limit of very large quantum numbers.

It is of special interest to note in Fig. 9.6 that the quantum mechanical os-
cillator has a certain probability of being at a greater distance than is allowed for
the classical harmonic oscillator at the same energy. For the classical oscillator to
be outside the parabolic potential curve, the kinetic energy would have to be neg-
ative (since in that region). In quantum mechanics, a particle can have a
nonzero probability of being in the classically forbidden region. The probability of
being outside the classical turning points given by the parabolic potential energy
curve is 0.16 for the ground state. When a particle passes through a region that is
classically prohibited, the process is called (Section 9.15). Tunneling is
important in determining the rates of chemical reactions involving the transfer of



Harmonic oscillator eigenfunctions
obey the uncertainty principle
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Show that the probability density for the zero-point level of the harmonic oscillator is in
accord with the Heisenberg uncertainty principle.

To calculate the standard deviation for the coordinate using equation 9.58, we
need to calculate and :

d 0

Since the wavefunction is real, . Since is an even function and is an odd
function, the integrand is odd and so this integral is zero.

d

e d

1
2

1 1 ¯
2 2 ( )
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e , H , and H (Section 9.15), especially at low temperatures. Electron tunneling
occurs in the scanning tunneling microscope (STM), which makes possible atomic
resolution of surfaces (see Section 24.6).

The Hermite polynomials, which were known before the development of
quantum mechanics, for the first four levels of the harmonic oscillator are as
follows:

( ) 1 (9 121)

( ) 2 (9 122)

( ) 4 2 (9 123)

( ) 8 12 (9 124)

Where is a dummy variable. A property of these polynomials is that ( ) is an
even function of if is even and odd if is odd. An even function is a function
that satisfies

( ) ( ) (even) (9 125)

and an odd function is a function that satisfies

( ) ( ) (odd) (9 126)

An even function such as or cos is symmetric when reflected across the axis,
and an odd function such as or sin changes sign. Since exp( /2) in the
wavefunctions for the harmonic oscillator is even, the even–odd character of
the wavefunctions is determined by the Hermite polynomials. Thus, the harmonic
oscillator wavefunctions are even when is even and odd when is odd. This
even–odd character makes it easy to evaluate integrals, as shown in the following
example.



The standard de iations of a bond length can be calculated
using harmonic oscillator wa efunctions
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To calculate the standard deviation for the momentum using equation 9.58, we
must calculate and :

d
i ¯ d 0

d

Since is an even function, its derivative is odd. Therefore, the integrand is odd, and the
above integral is zero.

d
¯ d

d

d
e ¯ e d

d

¯ ( )e d

¯ ¯( )
2 2

Using equation 9.58, , and , we obtain

¯
2

which is in accord with the Heisenberg uncertainty principle and shows that, in its ground
state, the harmonic oscillator has the minimum value of allowed by the uncertainty
principle.

( ) Derive the expression for the standard deviation of the bond length of a diatomic
molecule when it is in its ground state. ( ) What percentage of the equilibrium bond
length is this standard deviation for carbon monoxide in its ground state? For C O
˜ 2170 cm and 113 pm.

( ) Since 0 for a harmonic oscillator, the standard deviation or root-mean-
square displacement in the 0 level is given by

¯
(4 )

In considering spectroscopic data it is more convenient to write this equation in terms of
the fundamental vibration frequency in wave numbers ˜ rather than . Make this conver-
sion using

1
2

where is the vibration frequency. Since ˜ ,

(2 ˜ )

this is used to eliminate the force constant from the expression for to obtain

¯
4 ˜
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( ) The reduced mass for C O is given by

(12 10 kg mol )(15 995 10 kg mol )

[(12 15 995) 10 kg mol ](6 022 10 mol )

1 139 10 kg

The standard deviation of the bond length for CO is given by

1 055 10 J s
4 (2 998 10 cm s )(2170 cm )(1 139 10 kg)

3 37 pm

Since the equilibrium bond length is 113 pm, the standard deviation is 2.98% of this aver-
age internuclear separation.

( ) Rotation of a mass
about a fixed point. ( ) Rotation of
a diatomic molecule about its center
of mass.
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Figure 9.7A particle rotating around a fixed axis as shown in Fig. 9.7 has angular momen-
tum and rotational kinetic energy. The kinetic energy of the revolving particle is
given by /2 , but it is more convenient to express the kinetic
energy in terms of the angular velocity . If the particle is rotating about a fixed
point at a radius with a frequency of , the velocity of the particle is given by

2 (9 127)

where the angular velocity d /d is equal to 2 . The frequency has units of
s or Hz. The angular velocity is expressed in radians per second.

The kinetic energy of a particle in circular motion about a fixed point is
usually expressed in terms of the angular velocity or, as we will soon see, in terms
of angular momentum:

(9 128)

The , which is introduced in this equation, is defined by

(9 129)

for the rotation of a classical particle about an axis. In the expression for the rota-
tional kinetic energy, the moment of inertia plays the role that mass plays in the
expression for the kinetic energy of the linear motion, and the angular velocity
plays the role of the linear velocity . This suggests that the

should be defined as

(9 130)

so that the kinetic energy of rotational motion can be expressed in terms of the
angular momentum,

(9 131)
2
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just as translational kinetic energy can be expressed in terms of mass and linear
momentum. If no torque is applied, angular momentum is conserved.

Figure 9.7 shows a model of a rigid diatomic molecule that is an example
of a rigid rotor. The two masses rotate about their center of mass, satisfying the
condition

(9 132)

where is the distance of from the center of mass and is the distance of
from the center of mass. The equilibrium distance between the nuclei is

, so that

and (9 133)

The rotational kinetic energy is

( )

(9 134)

where is the moment of inertia of the diatomic molecule:

(9 135)

Using equation 9.133 to eliminate and , we obtain

(9 136)

where is the reduced mass (cf. Example 9.17):

1 1 1
(9 137)

The rotational kinetic energy of a diatomic molecule may also be written in
terms of the angular momentum ,

(9 138)
2 2

by using equation 9.136. Because there is no potential energy, the classical Hamil-
tonian of a rigid rotor is just the kinetic energy. Applying the correspondence
between the classical kinetic energy and the quantum mechanical Hamiltonian
operator, we obtain (see Table 9.1)

¯ˆ (9 139)
2

for rotational energy, where the Laplacian operator was introduced in equation
9.73. In discussing rotation it is more convenient to use the spherical coordinates
defined in Fig. 9.8. In spherical coordinates the Laplacian operator is

1 1 1
sin (9 140)

sinsin
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Figure 9.8
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Since the two masses of the rigid rotor are at fixed distances from the origin, is
constant and so we can ignore the derivatives with respect to in . Substitution
of equation 9.140 into equation 9.139 yields

¯ 1 1ˆ sin (9 141)
2 sin sin

where . The rigid rotor wavefunction is a function of the two angles
and , and so the eigenvalue problem to be solved is

¯ 1 1
sin ( ) ( ) (9 142)

2 sin sin

This equation is a standard differential equation, whose solutions ( ) are
called The first several spherical harmonics are given in Ta-
ble 9.2. Two quantum numbers, and , arise in the solution of this eigenvalue
equation, and so the wavefunctions are represented by ( ). It is found that

( 1) ¯ˆ ( ) ( ) (9 143)
2

so that the rigid rotor can have only the energies given by

( 1) ¯
0 1 2 (9 144)

2

where is the Note there is no zero-point
energy for rotation. Unlike the harmonic oscillator the uncertainty principle can
be satisfied even when the rotational energy is zero, because that wavefunction
( ) gives equal probability for all and (i.e., maximum uncertainty in those
angles). Note that the possible energies are independent of . The degeneracies
of the rotational levels will be discussed in the next section.

So far we have neglected the fact that the angular momentum is a vector and has
components in the , , and directions. To develop the quantum mechanical
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operators for the angular momentum in the , , and directions, we need to
review the classical expressions for angular momentum in three dimensions. In the
preceding section we saw that the rotational energy of a diatomic molecule may
be expressed in terms of its angular momentum. In the next chapter we will find
that an electron may have angular momentum. We will also find that electrons and
certain nuclei have intrinsic (spin) angular momentum. We will not discuss spin
angular momentum here, but will leave that to Section 10.5. Angular momentum
is a very important property because it is conserved for many systems we will be
interested in.

In classical mechanics the angular momentum of a particle rotating about a
fixed point is represented by a vector in the direction perpendicular to the plane
of the circular motion. If a mass is rotating about a fixed point with linear ve-
locity , the is given by the cross product of the radius
and the linear momentum vector :

(9 145)

The cross product of the two vectors and is a vector of magnitude sin ,
where is the angle between and , having the direction that a right-hand screw
would travel as is rotated to . Thus, the angular momentum vector for the
circular motion shown in Fig. 9.7 points up.

The vectors and may be expressed in terms of their components and unit
vectors , , and pointing along the positive , , and axes:

(9 146)
(9 147)

The cross product of and may conveniently be calculated from a determinant
(see Appendix D.6):

( ) ( ) ( ) (9 148)

Thus, the three components of the classical angular momentum of a particle ro-
tating about a fixed point are

(9 149)

(9 150)

(9 151)

The square of the angular momentum is given by the scalar product of with
itself:

(9 152)

The square of the angular momentum is a scalar (see the vector discussion in
Appendix D.7). If no torque acts on a particle, its angular momentum is con-
stant (conserved). In classical mechanics all possible values of and are
permitted.

The quantum mechanical operators for the angular momentum are obtained
by replacing the quantities in equations 9.149–9.151 with their corresponding
quantum mechanical operators—specifically, ˆ ( i ¯)( / ), and so on.
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ˆ i ¯ (9 153)

ˆ i ¯ (9 154)

ˆ i ¯ (9 155)

The operator for the square of the angular momentum is given by

ˆ ˆ ˆ ˆ ˆ ˆ ˆ (9 156)

It is often more convenient to use the angular momentum operators given in
equations 9.153–9.155 in spherical coordinates , , , which are defined in Fig.
9.8. In these new coordinates,

ˆ i ¯ sin cot cos (9 157)

ˆ i ¯ cos cot sin (9 158)

ˆ i ¯ (9 159)

1 1ˆ ¯ sin (9 160)
sin sin

Note that the terms in that depend on the angle (equation 9.140) are equal to
ˆ(1/ ¯ ) .

ˆ ˆ ˆ ˆ ˆ ˆIt is readily shown that and , and , and and do not com-
ˆ ˆ ˆ ˆmute with each other, but , , and all commute with . Therefore, we

can measure precisely the square of total angular momentum and one, but only
one, of its components. Thus, if the magnitude of the total angular momentum

is measured and is measured, it is not pos-
sible to measure or precisely. That is, the eigenfunction of is also an
eigenfunction of but it is not an eigenfunction of or since neither
nor commutes with . This is an essential difference between classical and
quantum mechanical systems and is in accord with the Heisenberg uncertainty
principle.

ˆ ˆSince and commute, it is possible to construct a function that is an eigen-
function of both operators. In fact, we have already seen these wavefunctions, the
spherical harmonics, in the eigenvalue equation (see equation 9.143) for the en-
ergy of the rigid rotor. Since 2 for the classical rigid rotor, the quantum

ˆ ˆmechanical operator is equal to 2 . Thus, equation 9.143 can be written

ˆ ( ) ( 1) ¯ ( ) 0 1 2 (9 161)

According to this eigenvalue equation, the total angular momentum for a rigid
rotor can only have the values

( 1) ¯ 0 1 2 (9 162)

� �
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( ) Possible orientations
for angular momentum vector for

1. ( ) Since the and com-
ponents of angular momentum are
indeterminant, the vector can be
rotated about the axis to lie
anywhere on the conical surface.

Consider a system that has the wavefunction cos , where is a normalization constant.
What are ( ) the average angular momentum in the direction and ( ) the kinetic
energy of rotation about the axis?

�

angular momentum quantum
number magnetic quantum number.
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Figure 9.9

ˆOperating on the spherical harmonics with ,

ˆ ( ) ¯ ( ) 1 1 (9 163)

yields the following eigenvalues for component of the angular momentum:

¯ 1 1 (9 164)

where the quantum number is referred to as the
and is referred to as the Equations 9.163

and 9.164 will recur a number of times in quantum mechanics. They will appear in
connection with the hydrogen atom, and again in several places in spectroscopy.
Note that the spherical harmonics are eigenfunctions for two different commuting

ˆ ˆoperators, and .
The possible orientations of the angular momentum vector with respect to

a particular direction are shown in Fig. 9.9 for 1 and in Fig. 9.10 for 2.
In the absence of an external electric or magnetic field, the choice of the axis is
entirely arbitrary, but when such a field is applied (either by the experimenter or
by placing the particle in a molecule or a crystal) a unique direction is defined that
becomes the axis of quantization. Since the and components are unknown,

can be described only as being in the surface of a cone, as illustrated in the
figures. The magnitude of the orbital angular momentum is [ ( 1)] ¯ , and
the component in a particular direction is ¯ . Thus, the magnitude
of the angular momentum is greater than its component so that the angular
momentum vector cannot point in the direction of an applied magnetic field or
along a unique axis.

In the absence of an electric or magnetic field, there is a degeneracy of 2 1
since, for an angular momentum , there are 2 1 values of .

In considering the rotational energy levels of molecules, the rotational quan-
tum number is denoted by so that

¯
( 1) (9 165)

2

The square of the total angular momentum is given by

( 1) ¯ 0 1 2 (9 166)

The magnetic quantum number is replaced by so that ¯ .
The energy depends only on the quantum number , but the wavefunction de-

pends on and (see equations 9.161 and 9.163). Since the values of range
from to , the rotational levels are (2 1)-fold degenerate. The degener-
acy corresponds to the different possible orientations of the angular momentum
vector.

� �
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ˆ( ) i ¯

cos i ¯ cos d

cos sin d 0

( ) The operator for the kinetic energy of rotation about the axis is given by

1 ¯ dˆ
2 2 d

ˆNote that cos is an eigenfunction of with eigenvalue ¯ :

d
¯ cos ¯ ( cos )

d

Therefore,

1 ¯ˆ cos cos cos
2 2

and

¯ /2

What are the reduced mass and moment of inertia of H Cl? The equilibrium internuclear
distance is 127.5 pm. What are the values of , , and for the state with 1?
Atomic masses of some isotopes are given inside the back cover.

(1 007 825 10 kg mol )(34 968 85 10 kg mol )
( ) Possible orienta-[(1 007 825 34 968 85) 10 kg mol ](6 022 367 10 mol )

tions for angular momentum
1 626 65 10 kg. vector for 2. ( ) Since the and

components of angular momen-
tum are indeterminant, the vector
can be rotated about the axis to lie(1 626 10 kg)(127 5 10 m)
anywhere on the conical surface.

2 644 10 kg m

( 1) ¯

2(6 626 10 J s)
2

1 491 10 J s

¯ 0 ¯

1 054 10 J s 0 1 054 10 J s

¯
( 1)

2

(6 626 10 J s) (2)

8 (2 644 10 kg m )

4 206 10 J
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Comment:

r

r r
r

We will soon see that angular momentum is one of the most important physical
properties of an electron, atom, or molecule. We ha e seen here that a rotating
molecule has quantized angular momentum. In the next chapter, we will see that
electrons in orbitals in atoms ha e quantized angular momentum. Electrons
and other subatomic particles ha e spin, a property with no classical analogy,
that follows equations such as 9.164 and 9.166. Spin is important in all kinds
of spectroscopy, and it pro ides the basis for nuclear magnetic resonance and
electron spin resonance. Angular momentum is conser ed in many circumstances,
for example, when a photon is absorbed by an atom or molecule and when two
molecules collide.

r, t

, t , t x y z
x y z t

q
h q
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A number of postulates of quantum mechanics have been introduced in this chap-
ter as they have been needed. Now is the time to bring them together.

The state of a quantum mechanical system is completely specified by a wavefunc-
tion ( ) that is a function of the coordinates of the particles and the time. If
time is not a variable, its state is completely specified by a time-independent wave-
function ( ). These wavefunctions are single-valued, continuous, and square
integrable. The wavefunction for a single particle may be interpreted as fol-
lows: ( ) ( ) d d d is the probability that the particle is in the volume
d d d located at at time .

For every observable in classical mechanics there is a linear quantum mechanical
operator. The operator is obtained from the classical mechanical expression for
the observable written in terms of Cartesian coordinates and conjugate momenta
by replacing each coordinate by itself and the conjugate momentum component
by i ¯ / .

The possible measured values of the physical observable are the eigenvalues
of the equation

ˆ (9 167)

ˆwhere is the operator corresponding to the observable.

If the wavefunction of the system is , the probability of measuring the eigenvalue
of observable is d .
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Postulate 5

Postulate 6

9.14 SPECIAL TOPIC: THE TIME-DEPENDENT
¨SCHRODINGER EQUATION

� �

� �


$
$





$
$





 
$
� $ �


 


$

� �

 

 

 
 

The wavefunction of a system changes with time according to

( )ˆ ( ) i ¯ (9 168)

ˆwhere is the Hamiltonian operator for the system.

The wavefunction of a system of electrons must be antisymmetric to the inter-
change of any two electrons. We will not discuss this postulate until the next chap-
ter, but it is given here for completeness. This postulate arises in connection with
spin and is a more fundamental statement of what is called the Pauli exclusion
principle.

It is perhaps worth emphasizing again that we have not derived these postu-
lates; rather, they are to be judged like the laws of classical mechanics or the laws
of thermodynamics on the basis of whether they are in accord with experimental
results.

To describe the evolution of a one-dimensional quantum mechanical system with
time, it is necessary to use the time-dependent Schrödinger equation:

ˆ ( ) i ¯ (9 169)

In general it is difficult to find solutions to the time-dependent Schrödinger equa-
tion. However, it is possible to separate variables for conservative systems, that
is, systems in which the potential energy is a function of distance but not of time.
For a conservative system the time-dependent Schrödinger equation is

¯ ¯
( ) ( ) (9 170)

2 i

Special solutions may be found by writing the wavefunction as a product of a
function of distance and a function of time:

( ) ( ) ( ) (9 171)

Substituting this relation into equation 9.170 and dividing by ( ) ( ) yields

1 ¯ d ¯ 1 d ( )
( ) ( ) (9 172)

( ) 2 d i ( ) d

Since the left-hand side of the equation does not depend on and the right-hand
side of the equation does not depend on , they must each be equal to a constant
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9.15 SPECIAL TOPIC: TUNNELING AND REFLECTION
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that is independent of and . If we take this constant to be equal to , we obtain
the following two differential equations:

¯ d
( ) ( ) (9 173)

2 d

¯ d ( )
( ) (9 174)

i d

The first is the time-independent Schrödinger equation that we have been us-
ing, and we can see that the constant that was introduced is equal to the en-
ergy. The second equation is readily integrated to obtain, with the initial condition

( 0) ( ),

( ) e (9 175)

which oscillates harmonically in time. Thus, the time-dependent wavefunction for
a conservative one-dimensional system in an eigenstate of is

( ) ( ) e (9 176)

This wavefunction is complex, but the probability ( ) ( ) is real:

( ) ( ) [ ( ) e ] [ ( ) e ]

( ) ( ) (9 177)

Thus, for a conservative system the probability density for an eigenstate of is
independent of time, and we refer to the system as being in a stationary state.

When discussing the harmonic oscillator, we saw that the wavefunction can be
nonzero in classically forbidden regions of space. This is a general property asso-
ciated with wave phenomena and hence with quantum mechanics. An important
consequence of this is that there is a finite probability that a particle can pass
through a potential energy barrier in quantum mechanics even though a classical
particle would be unable to do so. This is called tunneling and can be illustrated
by considering the situation in Fig. 9.11 of a particle of energy moving in one
dimension and encountering a barrier whose height is such that .

In the region to the left of the barrier the Schrödinger equation for the particle
is

¯ d
(9 178)

2 d

with the general solution

2
e e (9 179)

¯

The term represents the amplitude of the incoming wave, and the term rep-
resents that of the reflected wave. In the barrier (0 ), the Schrödinger
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Figure 9.12

equation is

¯ d
(9 180)

2 d

with the general solution

2 ( )
e e (9 181)

¯

To the right of the barrier the wavefunction is

e (9 182)

since the particle is incident from the left, so there is no reflected wave here. The
amplitude for tunneling through the barrier is then / , and the probability of
tunneling is then / . By making the wavefunction and its derivative con-
tinuous at the boundaries of the potential step, we can solve for / . For barri-
ers such that 1, is proportional to e which is small but nonzero. In
Fig. 9.12, the probability of a proton tunneling through a barrier of height 1 eV
and width 10 pm is shown.
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9.16 SPECIAL TOPIC: BLACKBODY RADIATION

9.17 SPECIAL TOPIC: SUPERPOSITION OF VIBRATIONAL STATES
AND WAVE PACKETS
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Tunneling processes are important for light particles such as electrons and
protons. They are much less important for heavier particles, since is proportional
to the square root of mass.

Another quantum mechanical phenomenon is the reflection of particles (or
waves) from a barrier even when the energy is higher than the barrier. For parti-
cles incident from the left on the barrier of Fig. 9.11, the probability of transmis-
sion for is also given in Fig. 9.12.

Section 9.1 gave the Planck equation for the energy density ( ) of blackbody
radiation that was based on the assumption that the energy of a photon is given by

,but inviewof the importanceof radiation inchemistry, thisSpecialTopic section
is provided to give more information. Note that we have explicitly indicated the
dependence of on and . A fundamental quantity is the

( ), which is the radiant energy per unit volume (J m ):

8 ( / ) d
( ) ( ) d (9 183)

1

Thus ( ) d is the energy density of radiation in the frequency range to
d , and it has SI units of J m s or J m Hz . The dependence of the

total radiant energy density on temperature was deduced from thermodynamics
by Stefan and Boltzmann,* and can easily be derived from equation 9.183 by a
change in variable, to yield

( ) (9 184)

where 7 56 10 J m K .
The energy density as a function of wavelength can be calculated from the

energy density as a function of frequency by noting that / , so d /d
/ . Therefore,

d 8 1
( ) (9 185)

d e 1
where ( ) has the units J m . Thus ( ) d is the energy density of radia-
tion in the wavelength range to d . The radiant energy density as a function
of wavelength is plotted in Fig. 9.13. By differentiating ( ) with respect to ,
we find

2 898 10 K m (9 186)

which is the known experimentally since the late nine-
teenth century.

There is a striking example of superposition (Section 9.5) that will be needed in the
discussion of femtosecond transition-state spectroscopy in Section 19.10. A fem-



2
1.5

0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.5

–0.5
–5 5 10

x

x

(x)ψ

| (x)ψ

–10

–5 5 10–10

–1
–1.5

–2

|2

(a)

(b)

4321 5 6

ρ λ
/1

0
3

J 
 m

–
4

λ /10–6 m

6

5

4

3

2

1

T = 2000 K

T = 1700 K

T = 1500 K

E
E h t

341

a b
�

15

Radiant energy density as a function of wavelength at 1500, 1700, and 2000
K. (See Computer Problem 9.F.)

( ) Magnitude of the wavefunction and ( ) probability density (at a particular
instant of time) for the superposition of vibrational states for 14 to 22 where the states
are weighted according to a Gaussian distribution (see Computer Problem 9.K).
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Figure 9.13

Figure 9.14

tosecond (fs) is 10 seconds. Consider the photodissociation of molecular iodine
with an ultrashort laser pulse. Pulses with t as short as 3 fs can be produced.
Short pulses have an energy width that is given by the Heisenberg uncertainty
principle: ¯ /2 . This broad energy width of a short pulse might appear to
be a disadvantage, but it is actually an advantage in the study of the transition
state of a reaction because the irradiated molecule is raised to a superposition of
vibrational states coherently (that is, in phase). The fact that a number of levels
are excited coherently is extremely important because this leads to interference
effects. This superposition of vibrational states propagates back and forth in the
parabolic potential well as a The motion of this wave packet can be
observed by use of ultrashort probe pulses, which are slightly delayed from the
initial pulse. Figure 9.14 shows the magnitude of the wavefunction and the square
of the wavefunction (probability density) for a superposition of vibrational states
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Figure 9.15

for 14 to 22, where the states are weighted according to a Gaussian distri-
bution (error function) centered at 18. At this instant in time, the quantum
mechanical oscillator is very much like a particle at the right-hand end of its os-
cillatory motion.

In order to calculate the motion of this particle, we have to use the time-
dependent wavefunction for the system:

( ) ( ) exp( / ¯) (9 187)

where the summation is over a range of vibrational quantum numbers and the
are weighting factors (according to a Gaussian distribution for the case being

discussed). The probability density is given by

( ) ( ) ( ) exp( / ¯) ( ) exp( / ¯)
(9 188)

For the case described in the preceding paragraph, the probability densities at a
series of times are given in Fig. 9.15. Thus as time passes, the probability density
oscillates from the parabolic barrier on the right to the parabolic barrier on the
left and back again like a classical harmonic oscillator. However, when a molecule
is excited with an ultrashort pulse to a potential well that allows dissociation, in
may oscillate only a few times before it dissociates. Probe pulses can even be used
to study what happens on the time scale of the lifetime of a transition state. These
studies provide insights into the factors that determine the rate of a chemical re-
action, as discussed later in Section 19.10.

For classical wave motion, (1/ ) 1/4 and 1/4 , but Heisen-
berg showed that for microscopic systems, ¯ /2 and ¯/2.
The time-independent Schrödinger equation provides a means for calculating
the wavefunction for a quantum mechanical particle, and the probability
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density is given by the product of the wavefunction with its complex
conjugate.
An operator is a mathematical operation that is applied to a function, and
in quantum mechanics there is a linear operator for each classical mechani-
cal observable. When two operators commute, the corresponding variables
can be simultaneously measured to any precision, and when they do not
commute, the corresponding observables cannot be measured to arbitrary
precision.
The average value of a variable (the expectation value) can be calculated by
integrating the product of the complex conjugate of the wavefunction times
the operator for the variable times the wavefunction.
A particle in a box cannot have zero energy, but the correspondence princi-
ple indicates that quantum mechanical predictions approach the predictions
of classical mechanics as the quantum number approaches infinity. For a par-
ticle in a three-dimensional box, many of the energy levels are degenerate.
A quantum mechanical harmonic oscillator also has a zero-point energy of

/2, but in contrast to a particle in a box, the energy levels are equally
spaced.
Although the bond distance of a diatomic molecule in its ground vibrational
level varies, the standard deviation of the internuclear distance is usually a
small percentage of the average internuclear separation.
The rigid rotor wavefunctions are spherical harmonics, and the energy levels
are proportional to ( 1), where is the angular momentum quantum
number, and inversely proportional to the moment of inertia .
The quantum mechanical angular momentum operators for the , , and
directions do not commute with each other, but they each commute with
the operator for the square of the angular momentum. Therefore, we can
measure precisely the square of the total angular momentum and one, but
only one, of its components. The angular momentum in the direction is
equal to the magnetic quantum number times ¯ .
This chapter introduces five postulates of quantum mechanics, and the next
chapter introduces the additional postulate that the wavefunction of a system
of electrons must be antisymmetric to the interchange of any two electrons.
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Problemsmarkedwithaniconmaybemoreconveniently between oxygen molecules in a gas at 1 bar at room temperature.
solved on a personal computer with a mathematical program. What is the de Broglie wavelength of a thermal neutron

A detector is exposed to a monochromatic source of ra- at 300 K?
diation for 40 ms and indicates that the power level is 10 W. Calculate the de Broglie wavelengths of the following:
If 10 photons are incident on the detector in this time, what is A 1-g bullet with velocity 300 m s
the frequency of the radiation? What type of electromagnetic A 10 -g particle with velocity 10 m s
radiation is this? A 10 -g particle with velocity 10 m s

Calculate the energy per photon and the number of pho- An H molecule with energy of at 20 K
tons emitted per second from ( ) a 100-W yellow lightbulb The lifetime of a molecule in a certain electronic state is
( 550 nm) and ( ) a 1-kW microwave source ( 1 cm). 10 s. What is the uncertainty in energy of this state? Give

In the photoelectric effect an electron is emitted from a the answer in J and in J mol .
metal as the result of absorption of a photon of light. Part of the Show that the function 8 e is an eigenfunction of
energy of the photon is required to release the electron from the the operator d/d . What is the eigenvalue?
metal; this energy is called the work function or binding energy.

What are the results of operating on the following func-The kinetic energy of the ejected electron is given by
tions with the operator d/d and d /d : ( ) e , ( ) cos ,
and ( ) e ? Which functions are eigenfunctions of these oper-
ators? What are the corresponding eigenvalues?

where and are the mass and velocity of the electron. For the Show that the operators for the coordinate and for the
100 face of silver metal (see Chapter 23) the velocity of electrons momentum in the direction do not commute. Calculate the
emitted using 200-nm photons is 7 42 10 m s . Calculate the operator representing the commutator of and .
work function of this face in eV. For a particle in a one-dimensional box, the ground-state

Photoelectron spectroscopy utilizes the photoelectron ef- wavefunction is
fect to measure the binding energy of electrons in molecules and

2solids, by measuring the kinetic energy of the emitted electrons sin
and using the relation in Problem 9.3 between kinetic energy,
wavelength, and binding energy. One variant of photoelectron ( ) What is the probability that the particle is in the right-hand
spectroscopy is X-ray photoelectron spectroscopy (XPS). If the half of the box? ( ) What is the probability that the particle is
X-ray wavelength is 0.2 nm, calculate the velocity of electrons in the middle third of the box?
emitted from molecules in which the binding energies are 10,

( ) Calculate the energy levels for 1, 2, and 3 for an
100, and 500 eV.

electron in a potential well of width 0.25 nm with infinite barri-
Electrons are accelerated by a 1000-V potential drop. ( ) ers on either side. The energies should be expressed in kJ mol .

Calculate the de Broglie wavelength. ( ) Calculate the wave- ( ) If an electron makes a transition from 2 to 1, what
length of the X-rays that could be produced when these elec- will be the wavelength of the emitted radiation?
trons strike a solid.

For a helium atom in a one-dimensional box calculate the
An ultraviolet photon ( 58 4 nm) from a helium gas value of the quantum number of the energy level for which the

discharge tube is absorbed by a hydrogen molecule that is at energy is equal to at 25 C ( ) for a box 1 nm long, ( ) for
rest. Since momentum is conserved, what is the velocity of the a box 10 m long, and ( ) for a box 10 m long.
hydrogen molecule after absorbing the photon? What is the

Show that the wavefunctions for a particle in a one di-translational energy of the hydrogen molecule in J mol ?
mensional box are orthogonal using

What is the de Broglie wavelength of an oxygen molecule
sin sin cos( ) cos( )at room temperature? Compare this to the average distance
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Calculate the degeneracies of the first three levels for a deviation of the momentum of the vibrational motion? ( )
particle in a cubical box. Check that the product yields ¯ /2 in accordance with

the Heisenberg uncertainty principle.( ) Calculate for a particle in a linear box for
1, 2, and 3 using the equation in Example 9.13. Compare Use information in Example 9.21 to calculate the fre-

these values with the minimum product of uncertainties from quency and wavenumber of the radiation required to take the
the Heisenberg uncertainty principle. ( ) What is the uncer- H Cl molecule from 1 to 2.
tainty in for a particle in a 0.2-nm box when its quantum num- Use the Schrödinger equation for a rigid rotor in
ber is unity? In a 2-nm box? three dimensions to calculate the rotational energy when the

Calculate the standard deviation for the coordinate of a wavefunction is given by the spherical harmonic . What is
harmonic oscillator at 1. Since 0, it is only necessary the magnitude of the angular momentum?
to calculate . What are the reduced mass and moment of inertia of

Calculate the standard deviation for the momentum of Na Cl? The equilibrium internuclear distance is 236 pm.
a harmonic oscillator at 1. Since 0, it is only neces- What are the values of for the states with 1 and 2?
sary to calculate . ˆ ˆThe commutator of two operators, and , is defined as

Using the results of the two previous problems, calcu- ˆ ˆ ˆ ˆ ˆ ˆ ˆthe operator . Using the definitions of , , and
late and compare it with the Heisenberg uncertainty ˆgiven in equations 9.153–9.155, find the commutator of with
principle. ˆ ˆ ˆand with .

The fundamental vibration frequency of C O is
The C O molecule has an equilibrium bond distance

2169.814 cm . Calculate the force constant.
of 112.8 pm. Calculate ( ) the reduced mass and ( ) the moment

Using data from the previous problem, calculate the fun- of inertia. ( ) Calculate the wavelength of the photon emitted
damental vibration frequency for C O, assuming the force when the molecule makes the transition from 1 to 0
constant is the same. using equation 9.144 for the energy levels.

Calculate the root-mean-square displacement of the nu- ( ) The distribution of wavelengths from a certain star
clei of C O in the 0 state and compare it with the equi- peaks in the visible at 600 nm. Assuming that the distribu-
librium bond length of 112.832 pm. tion obeys the Planck distribution law, use Wien’s displacement

Later, in Table 13.4, we will find that the following law to estimate the temperature of the star. ( ) A metal bar is
molecules have the indicated vibrational frequencies: heated to red heat so that its radiation peaks at 800 nm.

Estimate the temperature of the bar.
Cl (560 cm ) K Cl (281 cm ) ( ) Derive the value of the constant in the Wien dis-

placement law (equation 9.186) in terms of , , and . ( )H (4401 cm )
If, from experiment, the values of and were measured to
be 6 6 10 J s and 3 0 10 m s , and the value of( ) What are the force constants for these molecules if we treat
the constant in the Wien displacement law was measured to bethem as harmonic oscillators? ( ) Assuming that the force con-
2 9 10 K m , find the value of from ( ). Since is mea-stant for Cl is the same as for Cl , predict the fundamental
sured to be 8 3 J K mol , you can also calculate the Avo-vibrational frequency of Cl .
gadro constant.Check the normalization of and for the harmonic

oscillator and show that they are orthogonal.
Substitute the 1 eigenfunction for the harmonic os- Calculate the number of photons emitted in 1 s from a

cillator into the Schrödinger equation for the harmonic oscilla- 100-W red lamp, assuming for simplicity that all the photons
tor, and obtain the expression for the eigenvalue (energy). have an average wavelength of 694 nm. Also, calculate the num-

ber of photons emitted from a ruby laser in a 5-ns pulse withIn the vibrational motion of HI, the iodine atom essen-
0.1 GW power ( 694 nm).tially remains stationary because of its large mass. Assuming

that the hydrogen atom undergoes harmonic motion and that As is often said, quantum mechanics yields classical me-
the force constant is 317 N m , what is the fundamental vi- chanics when 0. What result is obtained classically for
bration frequency ? What is if H is replaced by D? ( ) when 0? Why is this relation unsatisfactory? (

Expand the exponential term in a power series.)What are the expectation values for and for a
quantum mechanical harmonic oscillator in the 1 state? Using the Planck distribution law, equation 9.2, find the
What is the standard deviation ? of maximum emission as a function of temperature.

C O is an example of a stiff diatomic molecule, and it ( ) Using the result of Problem 9.41, find the maximum
has a vibration frequency of 2170 cm . ( ) What is the value of emission frequency at 3000 K and at 10 000 K. ( ) Using the
the force constant ? ( ) What is the value of the standard devi- Wien displacement law, equation 9.186, find the maximum emis-
ation in the internuclear distance? ( ) What is the standard sion wavelength at the same two temperatures.
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Calculate the de Broglie wavelength ( ) of an electron For the three-dimensional harmonic oscillator,
accelerated by a potential of 1000 V and ( ) of a proton accel- (see Problem 9.54), write the formula for the
erated by a potential of 1000 V. energy levels. Give the energies and degeneracies of the first 10

states.Calculate the de Broglie wavelength for thermal neutrons
ˆ ˆat a temperature of 100 C. Using the definitions of and from equations 9.159

and 9.160 show that these two operators commute.What is the momentum of a photon with a wavelength
of 500 nm? If this photon is absorbed by a Cl molecule that Sketch the possible orientation for angular momentum
is at rest, what will be the velocity of the Cl molecule after vectors for .
absorbing the photon? Sketch a figure like Fig. 9.10 for 3.

An atom makes a transition from an excited state with a What is the reduced mass of N O? What is its moment
lifetime of 10 s to the ground state and emits a photon with a of inertia if 115 1 pm? Using equation 9.144, find the en-
wavelength 600 nm. What is the uncertainty in the energy of the ergies of the first three levels of rotational motion.
excited state? What is the percentage uncertainty if the energy Check the normalization and orthogonality of and
is measured from the ground state? , 0, 1, 1, in Table 9.2.

Since a wavefunction may be complex, it may be repre- Given that a particle is restricted to the region
sented by and has a wavefunction proportional to cos( /2 ), nor-

i malize the wavefunction.

where ( 1) . Show that is always real.

( ) Show that the function e is an eigenfunc-
tion of the operator d /d 4 . What is the eigenvalue?
( ) Show that the function e is an eigenfunction of
the operator d/d . What is the eigenvalue?

Derive the expression for the energy of a particle in a
one-dimensional box using the de Broglie formula.

( ) Plot the wavefunctions and probability densities for theCalculate the first three energy levels, in kJ mol , for an
first three levels of an electron in a box 0.1 nm in length. ( ) Testelectron in a potential well 0.5 nm in width with infinitely high
the normalization and orthogonality of these wavefunctions. ( )potential outside.
Calculate the average value of and the average value of for

For a particle in a cubical box calculate (8 / ) for electrons in these energy levels. ( ) Calculate the average value
the first 10 states. What is the degeneracy for each energy of and the average value of . ( ) Check these values against
level? the Heisenberg uncertainty principle.

Assume the form e for the ground-state
( ) Plot the first four wavefunctions for a harmonic oscil-wavefunction of the harmonic oscillator, and substitute this into

lator to see the shapes of the wavefunctions. ( ) Plot the corre-the Schrödinger equation. Find the value of that makes this
sponding probability densities for these four levels.an eigenfunction.

In the wavefunction for the harmonic oscillator, is takenFigure 9.6 shows that the quantum mechanical har-
as unity here because it is needed only to provide units in calcu-monic oscillator can be in regions forbidden to a har-
lations. ( ) Plot normalized wavefunctions and probability den-monic oscillator. ( ) Find an integral expression for the prob-
sities for vibrational quantum numbers of 0 and 1. ( ) Check theability that the particle will be in the classically forbidden
normalization and orthogonality of these two wavefunctions.region for the ground state. ( ) Using tables for Gaussian in-
( ) Plot the wavefunction and probability density for 30.tegrals or error functions (e.g., Abramowitz and Stegun,

, New York: Dover, 1964) or a ( ) Assuming that the C O molecule is a harmonic os-
numerical integration program on a microcomputer, compute cillator with 1 1385 10 kg and 1886 N m , write
the value of the integral in ( ). the expression for the vibrational wavefunction. ( ) Plot the

The expression for the energy levels of a quantum me- wavefunction versus the distance for 0 and 1. ( )
chanical three-dimensional harmonic oscillator is obtained by Calculate the average value of , the average of the square of
expressing the potential energy by , and the standard deviation of the internuclear distance for

0 and 1. Note that the mean internuclear distance is
113 pm.

where , , and are the force constants in the three di- Calculate the probability that a harmonic oscillator is out-
rections. What is the expression for the quantum mechanical side of its classical turning points when the vibrational wave
energy levels, and what is the zero-point energy? number is 4.

v

v v

v v

�

�

� 
 

$

�

�

�

�
 

  

 

 

$

�

�

Chapter 9 Quantum Theory

�

�

�

�

� �

�

9.43 9.55

9.44
9.56

9.45
9.57

9.58
9.46 9.59

9.60

9.47 9.61

9.48

9.49

9.A9.50

9.51

9.52
9.B

9.C9.53

9.D

9.54

9.E

�



p

p

347

a
A A kx tb

a

d x
m kx

t A A
x t

b
V kx

x k k

a
h a

b

x
c b

d , , , , , , , ,

c
x

d
A x, t A kx t i t

k

A x, t A x t A x t

a A x, t A x t
i tb A x, t A t x .

x t ec
tc t

A x A x c

J. Chem. Educ.A x A x

�

� �

�

�
� �

�

�

�

�

� �

� �

�
�

�

�

�

0

2

2 2 2

2 2 2

2

1

0

0 0

0

0

0

12 1
0

Calculate the radiant energy density for a blackbody at The amplitude of traveling wave is given by
1500, 1700, and 2000 K as a function of ( ) wavelength in mi-

cos( )crometers and ( ) frequency in Hz.

Show that this equation for the amplitude satisfies the following( ) The following differential equation is involved in the
partial differential equation and derive the expression for thediscussion of the particle in a box and the harmonic oscillator.
phase velocity .

d 1
Use Mathematica to solve the differential equation and make
some plots of solutions. ( ) Since the potential energy of a clas-
sical harmonic oscillator is given by /2, plot the poten- How is the phase velocity related to and ?
tial energy versus for 1 and 2.

As discussed in the text, when a quantum mechanical har-
Compare the wavefunctions and probability densities for monic oscillator is excited with a very short pulse of radia-

the harmonic oscillator with the classical potential energy func- tion, which necessarily contains a distribution of wavelengths,
tion for the harmonic oscillator. ( ) Calculate the energy levels a number of vibrational levels are excited coherently (that is,
for a harmonic oscillator in units of ¯ for a fundamental vibra- in phase). ( ) Type in the expression for the stationary wave-
tional frequency of 1/2 s . ( ) Assuming that 1, write the function for a single level as a function of the quantum number
expression for the vibrational wavefunction psi in Mathematica. and the bond distance utilizing HermiteH. Plot this func-
( ) Plot the wavefunctions for the first five levels in comparison tion for a couple of levels. ( ) Add up the wavefunctions for
with the classical expression for the potential energy. ( ) Plot 14 15 16 17 18 19 20 21 and 22 with relative contribu-
the probability densities for the first five levels in comparison tions of these wavefunctions to the superposition that corre-
with the classical expression for the potential energy. spond to a Gaussian distribution centered at 18. ( ) Plot

this wavefunction and the probability density function versusThe amplitude for a traveling wave is given by
to show that this wave packet is something like a particle. ( ) In-

( ) cos( ) troduce weighting factors of exp( ) into each of these terms
so that the movement of the wave packet can be calculated. As awhere 2 / and 2 / so that
simplification, the energies of the levels are taken to be propor-( ) cos(2 / 2 / ) cos(2 / )
tional to the vibrational quantum numbers . To construct the
probability density, this wavefunction has to be multiplied with( ) Plot ( )/ versus for constant for 2 m and 4
the corresponding wavefunction with factors of exp( ). Plotm. ( ) Plot ( )/ versus for constant for 0 1 s and
the probability density function versus at 0. ( ) Increase0.2 s. ( ) In general, for wave motion the phase velocity is .

in steps to show that the system can be thought of as a parti-For light the phase velocity is so that at constant ,
cle oscillating back and forth. This behavior makes it possible( ) cos(2 / )
to study the kinetics of ultrafast reactions. [More information
is provided by J. S. Baskin and A. H. Zewail,Plot ( )/ versus for 380 10 s , which is about
78:737 (2001).]the highest frequency the human eye can detect.
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10
The Schrödinger Equation
for Hydrogenlike Atoms
The Spectrum of Hydrogen Atoms
Eigenfunctions and Probability Densities
for Hydrogenlike Atoms
Orbital Angular Momentum of the Hydrogenlike Atom
Electron Spin
Variational Method
Helium Atom
Pauli Exclusion Principle
Hartree–Fock Self-consistent Field Method
The Periodic Table and the Aufbau Principle
Ionization Energy and Electron Affinity
Angular Momentum of Many-Electron Atoms
Atomic Term Symbols
Special Topic: Atomic Spectra and Selection Rules
Special Topic: Atomic Units

This chapter introduces the electronic structure of atoms. The electronic wave-
functions for an atom contain all the information about the electronic proper-
ties of the atom. The wavefunctions for the hydrogen atom and the one-electron
atoms, such as He and Li , can be calculated exactly, but approximate methods
have to be used with atoms having two or more electrons. Fortunately, these ap-
proximate methods can yield quite precise results, but at the cost of complicated
calculations carried out on a computer.

We will find that an additional postulate has to be added to the nonrelativistic
quantum theory discussed in the preceding chapter, namely, the Pauli exclusion
principle.

Atomic Structure
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10.1 The Schrödinger Equation for Hydrogenlike Atoms

¨10.1 THE SCHRODINGER EQUATION
FOR HYDROGENLIKE ATOMS
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We will consider the electronic structure of the hydrogenlike atoms in some
detail because of the importance of the concept of orbitals that this introduces.
The concept of the atomic orbital and the representation of many-electron sys-
tems by products of atomic orbitals will be useful for molecules as well as atoms.
One of the great triumphs of quantum mechanics has been the insight it provides
into the structure of the periodic table and therefore of the periodicity in the phys-
ical and chemical properties of the elements.

Only certain transitions between energy levels can occur in the absorption or
emission of electromagnetic radiation. The rules governing these transitions are
called selection rules, and we will discuss these restrictions on atomic spectra at
the end of this chapter.

We have used the time-independent Schrödinger equation (equation 9.19) to cal-
culate wavefunctions for a particle in a box, a harmonic oscillator, and a rigid
rotor. Now we consider the two-particle system consisting of an electron (charge

) and a nucleus having atomic number and charge , that is, H, He , Li ,
, U , the hydrogenlike atoms. In such an atom, the electron interacts with the

nuclear Coulomb potential, so the potential energy is

( ) (10 1)
4

where is the and is the distance from the nucleus
to the electron. Note that the potential energy of interaction between the two
oppositely charged particles is taken to be zero when they are infinitely far apart
and is increasingly negative as decreases. This means that the force of attraction
between oppositely charged particles increases as gets smaller.

The expressions for the Hamiltonian operator and the Schrödinger equation
can be written in terms of the coordinates of the two particles, but to treat
an isolated hydrogen atom, it is possible to use center-of-mass coordinates and
write the Schrödinger equation for a particle of reduced mass moving around a
fixed center at 0. This Schrödinger equation is

( ) ( )
8 4 ( )

(10 2)

The reduced mass is given by

(10 3)

where is the mass of the electron and is the mass of the nucleus.
Since a hydrogenlike atom is spherically symmetric, it is convenient to use

spherical coordinates and write equation 10.2 as

( ) ( ) (10 4)
8 4
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where

1 1 1
sin (10 5)

sin sin

as we saw earlier in equation 9.140. Note that the potential energy term /
4 has no or dependence, but the wavefunctions are in general functions
of and , which are introduced in the Laplacian operator.

We noted in Section 9.12 that the angle-dependent terms in can be repre-
ˆ ˆsented as ( 1/ ¯ ) (equation 9.160), where is the operator for the square

of the angular momentum. Thus,

ˆ1 1
(10 6)

¯

which, when substituted into the Schrödinger equation 10.4 and multiplied by
2 , gives

ˆ¯ 2 0 (10 7)
4

ˆNotice that the angular dependence of the operator is contained in ,
(Section 9.12). This immediately

suggests that we try to solve equation 10.7 by separation of variables by writing
( ) ( ) ( ), where ( ) is called the hydrogenlike radial wave-

function and satisfies the differential equation

¯ 1 d d ¯ ( 1)
0 (10 8)

2 d d 2 4

A simpler equation can be found by making the substitution ( ) ( )/ .
Then, after multiplying the entire equation by , we find

¯ d ¯ ( 1)
0 (10 9)

2 d 2 4

which looks like the equations we have seen before. Notice that the term propor-
tional to ( 1)/ (called the centrifugal potential) adds to the Coulomb poten-
tial to give an effective potential for 0, as shown in Fig. 10.1. Solutions to this
equation can be found by expanding ( ) in a power series in , and requiring
that the wavefunction vanish as gets large. These functions will represent the

states of the electron in this atom and will have 0. The mathematical
procedure is straightforward but lengthy. It is done carefully in a number of ad-
vanced books (see references at the end of the chapter, e.g., Pauling and Wilson).

The result of this calculation is that can have only certain values given by

(10 10)
2(4 ) ¯

with the principal quantum number 1 2 3 . Note that does not de-
pend on ; however, in solving the equation, it is found that so that for

1 can only be 0, while for 2 can be 0 and 1, and so on. The low-lying
energy levels are shown in Fig. 10.2.
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The lowest curve gives the Coulomb potential energy ( /4 ) for the
hydrogen atom. The highest curve gives the centrifugal potential energy ( ¯ / ) for 1.
The middle curve gives the sum of these potential energies and shows that the minimum
potential energy is at about 0.1 nm. (See Computer Problem 10.G.)

You may want to get more of a feel for the solutions of equation 10.8. A simple procedure is
to guess a solution and see if it works. For example, pick e and find the conditions
to make this a solution of equation 10.9.

1 d d e 1 d 2
( e ) e

d d d

Thus,

¯ 2 ¯ ( 1)
e e 0

2 42

For the terms multiplying 1/ and 1/ to vanish for all , we must have 0 and

¯
4

and then

¯
2 2(4 ) ¯

This is the 1 eigenfunction and energy. Now try it with e !

Electronic energy
levels for the hydrogen atom. The
dashes show the degeneracies of the
levels. There are more states above
those shown, and a continuum exists
at positive energies.
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10.1 The Schrödinger Equation for Hydrogenlike Atoms
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Figure 10.1

Figure 10.2

Note that for a hydrogenlike atom depends on the mass of the nucleus,
since depends on the mass of the nucleus. Since , the reduced mass of
a hydrogenlike atom is very close to the mass of the electron. You should convince
yourself that the difference between and in the hydrogen atom is 0.05%. We
are especially interested in the energies and wavefunctions in the other hydro-
genlike atoms and in molecules with heavier nuclei. Therefore, we will empha-
size here the properties of the hydrogenlike atoms with nuclei of infinite mass (or
fixed nucleus) so that is replaced with . Replacing in equation 10.10 with

yields an expression for , which can be written

(10 11)
2 4



Values of the Bohr radius and the Hartree energy

Two other expressions for Hartree energy
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1 eV is the work done in moving an electron through 1 V and is 1 602 177 33 10 J.�
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Calculate the values of and .

(4 )
52 917 724 9 pm

4

4 359 748 2 10 J 27 211 396 1 eV
4

(Note that the energy of the H atom in its ground state is /2.)

The Hartree energy was introduced in equation 10.13 as

4

It is convenient to express the Hartree energy in other ways. Use the expression for to
express the Hartree energy in two other ways.

Since

¯ (4 ) ¯
and

4

replacing this ratio in the equation for the Hartree energy yields

¯

Eliminating in the definition of the Hartree energy yields

(4 ) ¯
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Bohr radius,

Hartree energy.

Example 10.2

Example 10.3
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where

¯ (4 )
(10 12)

is the which we will find is the most probable distance from the nu-
cleus to the electron in the ground state of a hydrogen atom with a fixed nucleus.
We define

(10 13)
4

which is the potential energy of two electrons separated by a Bohr radius. This
is a natural unit of energy to use in connection with atoms and molecules, and is
called the (Both Bohr and Hartree were atomic physicists of the
early twentieth century.) Thus /2 .
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10.2 The Spectrum of Hydrogen Atoms

10.2 THE SPECTRUM OF HYDROGEN ATOMS
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Figure 10.3

In discussing spectroscopy it is often more convenient to use frequencies or
wave numbers ˜ than wavelengths because they are proportional to energies. The
energies of the various levels of hydrogen atoms are given by equation 10.10. The

˜ of electromagnetic radiation is the reciprocal of the wavelength:
˜ 1/ , so that ˜ / , where is the speed of electromagnetic radiation. The
SI unit of wave numbers is m , but usually cm is used.

The energies can be expressed in wave numbers by dividing by or 2 ¯
˜ ˜since ˜ 2 ¯ ˜ , so that /2 ¯ ˜ . Dividing

equation 10.10 by 2 ¯ yields

˜
4 (4 ) ¯

(10 14)

where the is given by

(10 15)
4 (4 ) ¯

The value of the Rydberg constant depends on the mass of the nucleus of the
hydrogenlike atom. For the hydrogen atom, 1 096 775 856 10 m or
1 096 775 856 10 cm . For a deuterium atom, 1 097 074 275 10 cm .
When the mass of the nucleus is infinite, the reduced mass is equal to the mass
of the electron , and so 1 097 373 153 4 10 cm . The value of the
Rydberg constant can be determined very accurately because spectroscopic fre-
quencies can be measured with high accuracy. The energy levels for the hydro-
gen atom are shown in Fig. 10.3. The lowest state ( 1) is called the
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Hydrogen atom spectra for the Balmer series, Paschen series, and Brackett
series. (See Computer Problem 10.C.)

The ionization energy for a hydrogenlike atom is the energy required to remove the
electron from the atom in its ground state to a position very far from the nucleus, so that

(13 606 eV) . Calculate the ionization energies of H, He , Li , and Be .

(H) 13 606 eV

(He ) 2 13 606 eV 54 424 eV�

state excited states

ionization energy

Example 10.4
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Figure 10.4

. The higher energy states ( 2 3 ) are called . An atom
or molecule in an excited state can relax to a lower state with the emission of
electromagnetic radiation. The energies given at the right in Fig. 10.3 are the wave
numbers for radiation produced when an electron with no initial kinetic energy
falls from an infinite distance into a given orbit, that is, the series limits.

Equation 10.14 shows that when a photon is emitted, the frequency of the
radiation in wave numbers is given by

1 1
˜ (10 16)

As shown in Fig. 10.3, electrons falling from excited levels into the ground state
( 1) produce the lines in the Lyman series, those falling into the first excited
state ( 2) produce the Balmer series, etc. In each series, the line results from
the smallest change in energy in that series. As the quantum number of the higher
state increases, the spectral lines get closer together and converge as .
The spectra for the Balmer, Paschen, and Brackett series are shown together in
Fig. 10.4.

The is the energy required to take the electron in the
ground state to . The energy of a hydrogenlike atom can be expressed in
terms of electron volts by writing equation 10.10 as

(13 605 698 eV) (10 17)

where the Rydberg constant is expressed in electron volts. This shows that
hydrogenlike atoms with larger bind their electrons more strongly. Thus

1 1
(13 605 698 eV) (13 605 698 eV) (10 18)

1

y



The total degeneracy (neglecting electron spin) of a hydrogen
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(Li ) 3 13 606 eV 122 454 eV

(Be ) 4 13 606 eV 217 696 eV

Show that the total degeneracy of the energy levels of the hydrogenlike atom is by
writing out the possible quantum numbers for 1, 2, 3, and 4.

Possible values of quantum numbers , , and are

1s 1 0 0 1 1
2s 2 0 0 1
2p 1 0 1 3 4
3s 3 0 0 1
3p 1 0 1 3
3d 2 0 1 2 5 9
4s 4 0 0 1
4p 1 0 1 3
4d 2 0 1 2 5
4e 3 0 1 2 3 7 16
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Example 10.5

10.2 The Spectrum of Hydrogen Atoms
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��The wavefunctions of hydrogenlike systems have the form ( ) ( ),
indicating that for 1 there are a number of different wavefunctions with the
same energy. For example if 2, we can have 0 (and 0) or 1 (and

1 0 1). In fact, as we saw in Section 9.12, the allowed values of for a
given are

1 1 (10 19)

The value of determines the orbital angular momentum, and determines the
component of angular momentum (equation 9.175). For historical reasons, we

associate letter symbols with the values of :

0 1 2 3

Symbol s p d f (10 20)

In summary, there are three quantum numbers for each eigenfunction of a
hydrogenlike atom which can take on the following values:

1 2 3 (10 21)

0 1 2 1 (10 22)

0 1 2 (10 23)

Therefore, for a given value of , there are degenerate eigenstates.
There is a fourth quantum number that has not been introduced yet: the

spin quantum number for the electron (see Section 10.5). That quantum number
can be or . The energy levels of the hydrogenlike atom do not depend on
, , and , and so the degeneracies of the level for 1, 2, and 3 are 2, 8, and

18, as shown in the following example.
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Inclusion of electron spin in the degeneracy calculation gives a total degeneracy of 2 (see
Section 10.5).

orbital.

radial functions

Chapter 10 Atomic Structure

10.3 EIGENFUNCTIONS AND PROBABILITY DENSITIES
FOR HYDROGENLIKE ATOMS
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The total wavefunction for the hydrogenlike atom is

( ) e ( ) ( ) (10 24)

where 2 / and is a normalization constant given by

2 ( 1)!
(10 25)

2 ( )!

and ( ) is known as an associated Laguerre polynomial. ( ) represents
the spherical harmonics we saw in Section 9.12.

In the next section, it will be convenient to discuss the hydrogenlike wave-
function in the form

( ) ( ) ( ) (10 26)

mentioned earlier.

A wavefunction for a one-electron system is called an For an atomic sys-
tem such as H, it is called an atomic orbital. These wavefunctions for the hydro-
genlike atoms through 3 are given in Table 10.1. It is convenient to write
these equations in terms of the Bohr radius .

To visualize the nature of these functions it is helpful to consider the radial
function and the spherical harmonics separately.

The ( ) for the hydrogenlike atoms depend on the prin-
cipal quantum number , the azimuthal quantum number , and the atomic num-
ber . The normalized radial functions for the hydrogen atom are shown in
Fig. 10.5. The radial function always contains the factor e , where is the
principal quantum number. As is increased, the amplitude of the wavefunction
falls off more rapidly with increasing , indicating that the electron is attracted
more closely to the higher positively charged nuclei. The radial functions have

1 zero values between 0 and . These produce spherical nodal
surfaces in so that the electron density goes to zero at these surfaces. The exis-
tence of nodes is required so that, for example, the 1s and 2s and other orbitals
will be orthogonal (Section 9.4); that is,

d 0 (10 27)

where d represents the element of volume.
Probability densities are more useful for visualizing the electronic structure

of atoms than are wavefunctions. It is obvious from Fig. 10.5 that [ ( )] is a
maximum at the nucleus for s orbitals. However, if we are interested in the prob-
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10.3 Eigenfunctions and Probability Densities for Hydrogenlike Atoms
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ability that the orbital electron is a certain distance from the nucleus, we need an-
other approach. To calculate this probability density we need to take the product
of [ ( )] and the volume of the spherical shell 4 d that has a radius of .
This is the ( ), defined by

( ) ( ) (10 28)

The radial probabilities ( ) for a number of orbitals of the hydrogen atom are
given in Fig. 10.5. For the hydrogen atom in a 1s orbital, the highest radial prob-
ability density occurs at , the Bohr radius. Thus, is the most probable
radius for a 1s hydrogen atom.
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Radial function ( ) and radial probability density 4 ( ) for the hy-
drogen atom. (From D. A. Davies, London: Longman, 1978.)

Find the maximum for the radial probability density ( ) for a hydrogenlike atom in the
1s state, and thereby show that the most probable radial position, i.e., the radius with the
highest radial probability density, is / .
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Use the wavefunction for an electron in a 1s orbital to derive the expression for the average
distance between the electron and the nucleus in a hydrogenlike atom.

The average radius is obtained by multiplying the probability of finding the electron
at by and integrating over all space:

d d sin d d

The angular integration can be done immediately since is independent of and .

4 d

Integral tables show that
!

e d

Thus the value of this integral with 3 is 6/ . Substituting

1
e

where is the atomic number, yields

3
2
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expectation value

Example 10.7

10.3 Eigenfunctions and Probability Densities for Hydrogenlike Atoms
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As the principal quantum number increases, the electron moves out to greater
distances from the nucleus. The average distance for an orbital electron may be
expressed by the :

( ) d (10 29)

1 ( 1)
1 1 (10 30)

2

The expectation value for the radius for a hydrogenlike atom in the 1s state is
3 /2 . The most probable value of and the expectation value of are not equal.

The probability density for the electron in a hydrogenlike atom is given by

( ) ( ) ( ) (10 31)
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*D. T. Cromer, :626 (1968).

Contour surfaces for constant for one-electron atoms. The indicated
signs are those of the wavefunctions. These signs are indicated because they will be of in-
terest later when we discuss molecular orbitals. The probability density is, of course, always
positive.
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Figure 10.6

where ( ) has been written ( ) ( ) and where the symbols on the right
represent the product of the wavefunction with its complex conjugate. The pre-
sentation of electron density as a function of , , and would require four dimen-
sions. One way to do this is to use the density of dots to represent the probability of
finding an electron in a region of space and use stereo plots with a stereo viewer to
see probability densities in three dimensions.* The method used most frequently
is to depict surfaces that enclose some large percentage, say, 90%, of the electron
density. Diagrams of this type are shown in Fig. 10.6. The probability densities in
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10.4 ORBITAL ANGULAR MOMENTUM
OF THE HYDROGENLIKE ATOM
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Fig. 10.6 are all positive because they are squares of the wavefunctions. The signs
indicated are those of the wavefunctions themselves before squaring.

When 0, angular wavefunctions are more difficult to represent because
they are complex, as we have seen in Table 9.2. For example, that table shows that

and are both complex. This problem of representation is solved by using
linear combinations and , which are not complex, to form
p and p orbitals. This is possible because and correspond to the same
energy, and any linear combination of these wavefunctions is also an energy eigen-
function with the same energy. This has been done in writing the wavefunctions
in Table 10.1. For example,

1
( ) sin cos (10 32)

2

1
( ) sin sin (10 33)

2

When 2 can have values of 0 1 and 2, and so there are five d orbitals.
The possible linear combinations give the trigonometric forms in Table 10.1.

The orientations of the p orbitals can be calculated by considering the magni-
tudes and signs of the trigonometric functions at several angles. In the absence of
an electric or magnetic field, electrons in p , p , and p orbitals all have the same
energy; in fact, the energy depends only on the total quantum number . For the
hydrogen atom with quantum number 2 there are four degenerate states, all
having the same energy in the absence of a magnetic or electric field.

The p orbitals do not have to point along the , , and directions. Linear
combinations of , , and may be formed to point in any three mutually per-
pendicular directions. It will be seen in Chapter 11 that the directional character
of certain chemical bonds results from the directed orientation of these and other
orbitals. Note that opposite lobes of p orbitals have opposite signs.

There is another way to visualize the electron density associated with various
atomic orbitals, and that is to use a three-dimensional plot to show the electron
density in a plane through the nucleus. Figure 10.7 shows such plots of the elec-
tron density in the plane for atomic hydrogen in the 1s, 2s, 2p , and 2p orbitals.

There are five independent d orbitals. The 3d orbital has two large regions
of electron density above one axis, by convention the axis, and a small donut-
shaped orbital in the plane. The other four d orbitals have four equivalent lobes
of electron density with two nodal planes separating them. Note that lobes that
are opposite one another in these wavefunctions have the same sign.

One of the deficiencies in the diagrams in Fig. 10.6 for higher wavefunctions
is that the nodal surfaces resulting from the radial functions ( ) are not shown.
Figure 10.5 shows that the number of radial nodes in a hydrogenlike wavefunction
is 1. Figure 10.6 shows that the number of angular nodes (nodal planes) is
. Thus the total number of nodes is 1.

A hydrogenlike atom may have orbital angular momentum, depending on its an-
gular momentum quantum number . As we saw in equation 9.161, the square
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Plots of electron density in the plane for atomic hydrogen in 1s, 2s, 2p ,
and 2p orbitals. (See Computer Problem 10.A.)
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Figure 10.7

of the magnitude of the angular momentum is obtained by operating on the hy-
ˆdrogenlike wavefunction with the operator for the square of the angular mo-

ˆmentum. Since the wavefunction is ( ) ( ) and operates only on and
, we obtain equation 9.161, which was discussed earlier in connection with the

rigid rotor. Thus, the angular momentum of a hydrogenlike atom can only have
the values

( 1) ¯ 0 1 2 (10 34)

as given earlier in equation 9.162.
Operating on the spherical harmonics with the operator for the component

ˆof the angular momentum , as we did in equation 9.163, yields the expression
for the component of the angular momentum in terms of the magnetic quan-
tum number that we have seen before in equations 9.164 and 10.19:

¯ 1 1 (10 35)

The possible orientations of the angular momentum vectors of a hydrogenlike
atom with 1 and 2 are given in Figs. 9.9 and 9.10. In the absence of a
magnetic field, and which also is a kind of
angular momentum, the energy of the hydrogenlike atom is independent of .
However, in the presence of a magnetic field, the energy depends on , or the
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orientation of the angular momentum vector. In fact, the energies of the 2 1
eigenstates with different values of are all different. We say that the magnetic
field has removed the 2 1 degeneracy with respect to . (Actually, the elec-
tron has an intrinsic angular momentum, called spin, in addition to the orbital
angular momentum. For the present discussion, we will ignore the spin and treat
the hydrogen atom as if the only angular momentum is from orbital motion.) The
reason that the degeneracy (see the discussion on degeneracy in Section 9.7) is
removed in a magnetic field is that when an atom has angular momentum , the
atom acts like a small magnet. We say that it has a
given by

(10 36)

where is the of the electron, equal to /2 . The com-
ponent of the dipole moment is then given by

(10 37)
2

or in an eigenstate of with eigenvalue ¯ ,

¯
(10 38)

2

where is called the

¯/2 (10 39)

which is the natural unit of magnetic dipole moment for electronic states.
When a magnetic dipole is placed in a magnetic field oriented along a given

direction, the potential energy is given by the scalar product

(10 40)

where is the Since we are free to choose the direction
any way we like, we can pick it to be along so that the magnitude of

. Then

(10 41)
2

The Hamiltonian operator for the atom in a magnetic field is then found by adding
ˆthis potential to , the Hamiltonian in the absence of the field:

ˆ ˆ ˆ (10 42)
2

When this is applied to the eigenfunctions of a hydrogenlike atom (i.e., the eig-
ˆ ˆenfunctions of ), we find that these functions are eigenfunctions of with

eigenvalues

(10 43)
2(4 ) ¯

with 1 2 ; 0 1 1; and 1 . Therefore, in the
presence of a magnetic field the energy levels have been split into 2 1 levels
(see Fig. 10.8).
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Splitting of the 2p level of the hydrogen atom into three closely spaced lev-
els by a magnetic field, assuming for illustrative purposes that the electron spin is absent.
The spectra for the transition from the 2p to the 1s level are shown in the absence and
presence of a magnetic field. (From D. A. McQuarrie, Mill Valley,
CA: University Science Books, 1983. Reprinted with permission from University Science
Books.)

( ) Calculate the value of the Bohr magneton. ( ) For a hydrogenlike atom with a 3d elec-
tron, what is the value of the orbital angular momentum? When the atom is placed in a
magnetic field of 1 T, what are the relative values of the possible energy levels?

¯ (1 602 177 10 C)(1 054 572 10 J s)
( )

2 2(9 109 390 10 kg)

9 274 01 10 J T

( ) 2(2 1) ¯ 6 ¯

2 ¯ ¯ 0 ¯ 2 ¯

(9 274 10 J T )(1 T)

where 0 1 2.
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Figure 10.8

The splitting of energy levels in a magnetic field can be studied by measuring
the magnetic susceptibility (see Section 22.5), by electron paramagnetic resonance
(EPR, Section 15.9), and by optical spectroscopy in a magnetic field. The splitting
of the spectral lines due to a magnetic field is called the When
the splitting has a contribution due to the intrinsic (spin) magnetic moment of the
electrons, to which we now turn, it is called the anomalous Zeeman effect (for
historical reasons).

Because it is a nonrelativistic equation, the Schrödinger equation, by itself, does
not account for all measurements on atoms and molecules. In 1928, Dirac devel-
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oped the relativistic equation for a one-electron system and showed that it predicts
the existence of electron spin, which Goudsmit and Uhlenbeck had proposed in
1925 to explain the splitting of certain spectroscopic lines. In nonrelativistic quan-
tum theory, electron spin must be treated as an additional postulate. Since the
spin angular momentum of an electron has no analogue in classical mechanics, we
cannot construct spin angular momentum operators by first writing the classical
Hamiltonian. However, it turns out that the treatment of spin angular momentum
is closely analogous to the treatment of orbital angular momentum.

The vector has a magnitude [ (1
)] ¯ , where is the just as the orbital angular momen-

tum has a magnitude [ ( 1)] ¯ , where is the orbital angular
momentum quantum number. However, it is not correct to think of the spin
angular momentum of an electron as being due to a spinning motion of the
electron mass on its axis. Furthermore, the

arbitrarily referred to as the direction, is given
by ¯ , where is the
just as the component of the orbital angular momentum in a particular direction
is given by ¯, where is the quantum number for the component
of the angular momentum. A remarkable fact about electrons is that their spin
quantum number , referred to simply as the has the single value . The
magnitudes of the spin angular momentum and its component are given by

3 1
( 1) ¯ ¯ since (10 44)

2 2

1
¯ (10 45)

2

Although the spin has a single value, the quantum number for the compo-
nent has two possible eigenvalues, . The case where is often referred
to as “spin up,” and is referred to as “spin down.”

We have introduced five new quantities in rapid succession. To keep them
ˆstraight it will help to remember that these quantities and the operators and

ˆ are comparable with quantities introduced for angular momentum. This com-
parison is shown in Table 10.2.

ˆ ˆWhen the operators and are applied to spin functions, they yield eigen-
values. Since the spin eigenfunctions do not involve spatial coordinates, the two
possible spin functions for an electron are represented by and :

ˆ ( 1) ¯ ¯ (10 46)

ˆ ( 1) ¯ ¯ (10 47)

ˆ ¯ (10 48)

ˆ ¯ (10 49)

ˆ ˆAt this level of approximation, the operators and commute with the Hamil-
ˆ ˆ ˆtonian operator , , and so that the magnitude of the spin, the component

of the spin, the energy, the magnitude of the orbital angular momentum, and the
component of the orbital angular momentum can all have simultaneous eigen-

values (see Example 9.16).
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Quantities for Representing Orbital Angular Momentum and Spin
Angular Momentum for a Single Electron

Angular momentum
vector

Magnitude of above ( 1) ¯ ( 1) ¯
Component of angular ¯ ¯

momentum vector in
direction

ˆ ˆOperator for square of
angular momentum

ˆ ˆOperator for component
of angular momentum

Quantum number ( 0 1 2 ) ( )
Quantum number for ( 1 ( )

component 0 1 )
Magnetic dipole

moment vector

Possible orientations
for the spin angular momentum
of the electron in a magnetic field.
The magnitude of the spin angular
momentum is [ ( 1)] ¯ , where

is the spin quantum number. Thus,
( 3/2) ¯ . The component

of the spin angular momentum vec-
tor is ¯ , where the spin quantum
number for the is 1/2.
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Table 10.2

Figure 10.9

The spin eigenfunctions, and , are orthonormal, as indicated by

d d 1 (10 50)

d d 0 (10 51)

where is called the spin variable, which has no classical analogue.
A wavefunction for a hydrogenlike atom must indicate the spin state

of the electron. Since there are two spin functions, there are twice as many wave-
functions for the hydrogen atom as we indicated earlier: and for each of
the previous ’s. Thus, a complete state specification for the hydrogen atom re-
quires the four quantum numbers , , , and . This increases the degeneracy
of the energy levels from to 2 .

The two possible orientations for the spin angular momentum vector for an
electron in a magnetic field are shown in Fig. 10.9. The vector has magnitude
[ (1 )] ¯ . Its component may be ¯ or ¯ . The components and
cannot be determined simultaneously with , since and do not commute
with , just as and do not commute with .

Because of its charge and intrinsic spin angular momentum, an electron has
a magnetic dipole moment . As with orbital angular momentum (equation
10.36), the magnetic moment of an electron is proportional to its spin angular
momentum :

(10 52)
2

where is the which is 2.002 322.
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Figure 10.10

The component of the magnetic moment of the electron in the direction
of the applied magnetic field is

(10 53)
2

where is the component of the spin angular momentum in the direction of the
field. Since is given by ¯ ,

¯
2

(10 54)

The energy of the spin magnetic moment in a magnetic field is (see equation
10.41)

(10 55)

The electron spin has two energy states in a magnetic field: and
. The transition between these two levels is studied in electron

spin resonance.
ˆ ˆThis energy is the eigenvalue of the operator ¯ or ( /2 ) .

When this is added to the Hamiltonian of a hydrogenlike atom in a magnetic field,
equation 10.42, we find that the total Hamiltonian is

ˆ ˆ ˆ ˆ
2 2

ˆ ˆ ˆ( ) (10 56)
2

ˆThe eigenvalues of in a magnetic field are now given by

¯
( ) (10 57)

2(4 ) ¯ 2

In Fig. 10.10, we show the splitting of the 2s and 2p orbital states in a hydrogenlike
system. Since is very close to 2, the state with 1 and and the
state with 1 and are approximately degenerate.
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In general, there is another term in the Hamiltonian that is due to the inter-
action between the spin and orbital parts of the angular momentum and is called
the spin–orbit coupling. When this is important, we must define the total angular
momentum of the atomic system, . We will discuss this briefly at the
end of this chapter (Section 10.12).

Although the Schrödinger equation can be solved for certain simple systems such
as the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen-
like atom, it cannot be solved for many-electron atoms or molecules. It is therefore
necessary to use approximation methods, of which the variational method is one
of the most important because it allows us to calculate an upper bound for the
energy eigenvalue.

The variational method is based on the theorem that if is any normalized,
well-behaved function of the coordinates, then

ˆ d (10 58)

ˆwhere is the correct Hamiltonian and is the true ground-state energy. If
is the ground-state eigenfunction, the equality applies; however, the use of

an approximate wavefunction always yields an energy that is higher than the
ground-state energy. When the true eigenfunction is not known, a

can be devised by adding up functions that each obey the correct
boundary conditions:

(10 59)

This wavefunction is used in equation 10.58, and the constants are varied to obtain
the lowest possible energy for this set of functions by use of the equation

ˆ d
(10 60)

d

The denominator is required to normalize the trial wavefunctions. The best values
of the constants are obtained by solving the simultaneous equations / 0
The use of equation 10.60 with these values of the constants in equation 10.59
will give an energy that is greater than . In principle, as one increases the flex-
ibility of the trial function, one gets closer and closer to the true ground-state
energy.

The variational method will be used in the next section to obtain an approx-
imate energy for the helium atom. In Section 11.3, we will also see how the ap-
proximate energy for the ground state of the hydrogen molecule ion and its first
excited state can be obtained by the variational method.
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A normalized trial variational function that satisfies the boundary conditions that
0 at 0 and is

30
( )

¯ dˆ 0
2 d

30 ¯ dˆ d ( ) ( ) d
2 d

30 ¯ 5
( ) d

4

5
4

The true value is /8

(5/4 ) (1/8)
% error 100 1 3%

(1/8)

This is not a true variational calculation because there is no variable parameter, but
it does provide an illustration that an approximate wavefunction always yields a higher
energy than the true ground-state wavefunction. We will use the variational method in the
next section and in Section 11.3.

Coordinates of the
electrons in the helium atom.
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�� Figure 10.11

The helium atom has two electrons, and the coordinates used in writing the Hamil-
tonian are shown in Fig. 10.11. Since we are interested only in the internal motions
of the electrons with respect to the nucleus in a heliumlike atom, we will ignore the
kinetic energy of the nucleus (i.e., fix the nucleus), so the Hamiltonian operator
may be written

¯ 1ˆ ( ) (10 61)
2 4

where 2. The first term is the kinetic energy operator for the two electrons,
the next two terms represent the potential energy of each of the electrons in
the field of the nucleus, and the last term represents the interelectronic potential
energy.

ˆWhen this Hamiltonian operator is used in the Schrödinger equation
, we can in principle obtain the eigenfunctions and corresponding eigen-

values . The wavefunctions are functions of the coordinates of the two elec-
trons ( ). The interelectronic repulsion term /4 makes it
impossible to obtain an analytic solution of the Schrödinger equation for a he-
liumlike atom; thus, it is necessary to use approximation methods to obtain the
wavefunctions and energies. Fortunately, in the case of heliumlike atoms these
approximation methods yield the wavefunctions and energies to any desired de-
gree of accuracy.

As a first approximation we will ignore the /4 term. This amounts to
treating the electrons as if they do not interact with one another. The Hamiltonian
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operator is then the sum of the Hamiltonian operators for the two independent
particles:

ˆ ˆ ˆ (10 62)

where

¯ˆ (10 63)
2 4

¯ˆ (10 64)
2 4

The approximate wavefunction can be written as the product of the wavefunctions
and for the two independent particles because the Schrödinger equation can

be divided into separate equations for the two electrons:

ˆ (10 65)

ˆ (10 66)

The energy of the whole system is given by the sum of the energies of the two
electrons:

(10 67)

In this approximation the wavefunction of the ground state of the helium
atom is given by the product of the two 1s orbitals:

1 1
e e (10 68)

where 2 for helium. This is generally abbreviated 1s(1)1s(2), where (1)
and (2) refer to electrons 1 and 2. We can now use this approximate wavefunction
as a trial wavefunction.

The trial wavefunction in equation 10.68 can be tested by using it to calculate
the approximate energy of the helium atom with respect to the nucleus and two
electrons infinitely distant from one another. The exact energy for this is the neg-
ative of the experimental energy required to remove the two electrons from the
helium atom, which is 79.0 eV. The approximate wavefunction (equation 10.68)

ˆ ˆis an eigenfunction of with eigenvalue equal to twice the 1s orbital en-
ergy of a helium ion, or 2 ( 2) 8( 13 6) 108 8 eV. The repulsion
energy of the two electrons in the approximate wavefunction (equation 10.68) is
given by

d d (10 69)
4

When this is calculated it is found to have a value of 34.0 eV, so that the total
approximate energy of the helium atom is 74 8 eV, compared with the exact
value of 79 0 eV. Notice that the approximate value is larger than the true value,
as is required by the variational theorem.

The variational method can be used to obtain a more accurate value for the
ground-state energy of the helium atom. The nuclear charge Z in the 1s orbital
wavefunctions of equation 10.68 can be used as a variational parameter, by replac-



Z Z
Z Z

e r
z Z

Z e
E Z .

a

Z E Z
Z

E e
Z .

Z a

Z E .
.

.

.

.

.

.

371

�

�

� �

�

2
0 12

2
2

0 0

2

0 0

min min

1/2

1/2

symmetric

antisymmetric

10.8 Pauli Exclusion Principle

10.8 PAULI EXCLUSION PRINCIPLE

� �

� �

�

�

	 	
	

	

	
	 	

	 	 	
	

	
	

	

	 	




�

�

�
�

�

��

��

��

� �

� � � � � � � �

� �

� �

� �

� � � �

� � � �

ing it with an effective nuclear charge . The rationale for using in equation
10.68 is that each electron “sees” only an effective nuclear charge be-
cause the other electron “screens” the nucleus. If we calculate the average energy
including the interaction term /4 using an approximate wavefunction of
the type 10.68, but with replaced by , we find

( ) 27 (10 70)
8 4

We choose to give the lowest energy by minimizing with respect to .
Differentiating equation 10.70 with respect to , we find

d 27
2 (10 71)

d 8 4

so that 27/16 and 77 5 eV, compared with the exact energy of
79 0 eV. We see from this how well we can do using the variational method

with only one parameter. By adding further parameters and changing the form of
the approximate wavefunction (for example, by adding small amounts of higher
hydrogenlike orbitals, such as 2p, 3p, 3d, etc.), we can get an energy that will ap-
proach closer and closer to one that we can measure.

The wavefunction that we have just discussed for the ground state of the he-
lium atom is incomplete in that it does not include the spin functions ( or )
for the two electrons. We can write the following four spin functions for the two
electrons:

(1) (2) (1) (2) (1) (2) (2) (1) (10 72)

where (1) indicates that electron 1 has the spin function . However, the last two
spin functions cannot be used as they are because they imply that it is possible to
distinguish between the two electrons. Electrons are identical to one another, and
it is not possible to distinguish between them. The wavefunction for the electrons
must reflect this, and since the electrons are in identical orbitals, the spin func-
tions for the two electrons must be written in such a way that they do not distin-
guish between the two electrons. This may be done by writing the spin functions as
follows:

(1) (2) (10 73)

(1) (2) (10 74)

2 [ (1) (2) (2) (1)] (10 75)

2 [ (1) (2) (2) (1)] (10 76)

The first three functions are unchanged when the two electrons are interchanged.
These three functions are therefore with respect to electron inter-
change. The fourth function changes sign when the two electrons are interchanged
and is therefore with respect to electron interchange.



The wa efunction in equation 10.78
is an eigenfunction of total electron spin
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Show that the Slater determinant given in equation 10.78 for the ground state for the helium
ˆ ˆ ˆatom is an eigenfunction of . What is the eigenvalue?

The wavefunction for any system of electrons
must be antisymmetric with respect to the interchange of any two electrons.

Slater determinant

fermions

bosons

Example 10.10
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It is found experimentally that wavefunctions (including both spatial and spin
functions) of electrons must be antisymmetric with respect to the interchange of
any two electrons. This fact was discovered by Pauli in 1926. The Pauli exclusion
principle may be stated as follows:

An-
other way of stating the Pauli principle in a way that is useful in chemistry is to
say that no two electrons in an atom may have the same four quantum numbers

and . In the nonrelativistic quantum mechanics that we are using, the
Pauli principle is an additional postulate.

Since we have described the ground state of the helium atom as 1s(1)1s(2),
which is symmetric, we need to multiply it by an antisymmetric spin function so
that the total wavefunction will be antisymmetric. Thus, the total wavefunction
for the ground state of helium can be approximated as

1s(1)1s(2)2 [ (1) (2) (2) (1)] (10 77)

In 1929 Slater developed a mathematical method for constructing approxi-
mate wavefunctions satisfying the antisymmetry requirement by writing them as
determinants. In a the elements in a given column involve
the same spin orbital, while elements in the same row involve the same elec-
tron. The approximate helium wavefunction (equation 10.77) can be written in the
form

1 1s(1) (1) 1s(1) (1) (10 78)
1s(2) (2) 1s(2) (2)2

The requirement of the Pauli principle that no two electrons in an atom or
molecule have all quantum numbers the same is provided for automatically by
the Slater determinant. If two rows or two columns of a determinant are identical,
the determinant vanishes. Another useful property of a determinant is that the
interchange of two rows or columns changes the sign of the determinant, showing
that the Pauli principle is satisfied automatically by a wavefunction expressed by
a determinant.

The inclusion of spin does not alter the energy calculations of the preceding
section because the Hamiltonian does not include spin. However, spin consider-
ations are essential for the excited states of helium and for the lithium atom, as
we will soon see. This is because of the Pauli principle, not because of explicitly
spin-dependent terms occurring in the Hamiltonian.

Particles with half-integral spin ( ) all require antisymmetric
wavefunctions and are referred to as because they must obey a kind of
statistics called Fermi–Dirac statistics. Particles with integral spin ( 0 1 2 )
all require symmetric wavefunctions and are referred to as because they
follow a different statistical law called Bose–Einstein statistics.

�



Comment:

We speak of the Pauli principle as being a postulate of quantum mechanics,
and that raises questions as to what it takes to make a postulate and where this
particular one comes from. We are going to see in the next se eral sections that
the periodic table has the form it does because of the Pauli principle. If a system
of electrons in an atom could be symmetric with respect to the interchange of any
two electrons, there would be an entirely different set of elements. Since the Pauli
principle cannot be deri ed from a nonrelati istic theory, it must be taken as a
postulate of quantum mechanics.
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We will use the facts that

ˆ ¯

ˆ ¯

The wavefunction is

1s(1)1s(2)2 [ (1) (2) (2) (1)]

ˆ 1s(1)1s(2)2 [ (2) ¯ (1) (2) ¯ (1)]

ˆ 1s(1)1s(2)2 [ (1) ¯ (2) (1) ¯ (2)]

ˆ ˆ ˆ 0

Thus the eigenvalue of the component of the spin is zero.
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We have seen that the wavefunction for the ground state of the helium atom
may be approximated by the product of two 1s hydrogenlike wavefunctions (or-
bitals). We might expect that the wavefunction for the first excited state of helium
may be approximated by the product of 1s and 2s hydrogenlike wavefunctions.
Thus, we will examine 1s(1)2s(2). This spatial wavefunction suffers from the
problem that it is not possible to distinguish between two electrons. The actual
wavefunction for the first excited state should be written in one of the two ways
that do not distinguish between the two electrons:

2 [1s(1)2s(2) 1s(2)2s(1)] (10 79)

2 [1s(1)2s(2) 1s(2)2s(1)] (10 80)

The first function is symmetric and the second is antisymmetric. However, in ei-
ther case the probability density is not altered by interchanging the electrons.
Note that there is no way to make an antisymmetric function from 1s(1)1s(2). The
two excited states represented by and have different energies, and has
the lower energy. The experimental value of the energy for the state approximated
by is 59.2 eV and that for is 58 4 eV.

Now we want to incorporate spin into the spatial wavefunction (10.80) for
the first excited state of the helium atom. Since this spatial wavefunction is anti-
symmetric, it must be multiplied by symmetric spin functions according to the
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Pauli principle. There are three of these. Therefore, the wavefunctions of the first
excited state of helium are

2 [1s(1)2s(2) 1s(2)2s(1)] (1) (2) (10 81)

2 [1s(1)2s(2) 1s(2)2s(1)][ (1) (2) (2) (1)] (10 82)

2 [1s(1)2s(2) 1s(2)2s(1)] (1) (2) (10 83)

Thus, the first excited state of helium is a state because it has a degeneracy
of 3 due to the spin. In the presence of a magnetic field the first excited state is
split into three energy levels. Since the sum of the spin quantum numbers of the
two electrons is 1, this net spin may be oriented in one of three ways in a magnetic
field. The components of the spin angular momentum may be ¯, 0, and ¯,
and so the energy of the atom in a magnetic field may have three values. In the
ground state for helium the electrons are paired, so the resultant electron spin is
zero and the ground state is a singlet.

Since is symmetric, it must be multiplied by an antisymmetric spin function
to obtain an antisymmetric total wavefunction:

2 [1s(1)2s(2) 1s(2)2s(1)][ (1) (2) (2) (1)] (10 84)

The second excited state is a singlet state. Since 0 and the total component
of spin is zero, this state is not split by application of a magnetic field.

The Pauli exclusion principle did not have an effect on our consideration of
the hydrogen atom, and it had only a modest effect on our consideration of the he-
lium atom, where we found the first excited state to be a triplet. But the Pauli prin-
ciple has a major effect on the quantum mechanical treatment of the lithium atom.
Since by the Pauli principle the 1s orbital can accommodate only two electrons,
the third electron must be in a 2s orbital. Following the procedure of forming de-
terminants, this wavefunction for the ground state of Li can be written as a Slater
determinant:

1s(1) (1) 1s(1) (1) 2s(1) (1)1
1s(2) (2) 1s(2) (2) 2s(2) (2)

6 1s(3) (3) 1s(3) (3) 2s(3) (3)
1

[1s(1) (1)1s(2) (2)2s(3) (3) 1s(1) (1)1s(3) (3)2s(2) (2)
6
1s(1) (1)1s(2) (2)2s(3) (3) 1s(1) (1)1s(3) (3)2s(2) (2)

2s(1) (1)1s(2) (2)1s(3) (3) 2s(1) (1)1s(3) (3)1s(2) (2)] (10 85)

In contrast with the determinant for the first excited state of He, this wavefunction
cannot be written as the product of the spatial function and a spin function. The
last column of the determinant could have been written with a instead of an ;
thus, the ground state of the lithium atom is doubly degenerate.

In using equation 10.85 in a variational treatment the nuclear charge Z
may be replaced by in the 1s function and by in the 2s function to al-
low for the fact that the electrons are partially screened from the nuclear charge
of 3 . The variational treatment yields 2 69 1 78 The variational
energy is 201 2 eV, compared with the experimental ground-state energy
of 203 48 eV.

This treatment is approximate in that the determinantal wavefunction is not
an exact solution of the Schrödinger equation containing the interelectronic re-
pulsion terms ( / / / )/4
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For atoms with more electrons, the methods for calculating wavefunctions
that we have illustrated for helium and lithium rapidly become impractical. In
1928 Hartree introduced the self-consistent field (SCF) method. This method
may be used to calculate the ground-state wavefunction and energy for any
atom.

If interelectron repulsion terms in the Schrödinger equation are ignored,
the Schrödinger equation for an -electron atom may be separated into one-
electron hydrogenlike equations. The approximate wavefunction obtained in this
way is the product of one-electron functions that are hydrogenlike wavefunc-
tions (orbitals). Hydrogenlike orbitals use the full nuclear charge Z, but we know
that the outer electrons of an atom are shielded from the nuclear charge by the
inner electrons so that the effective charge is less.

Hartree used a variational function , which is the product of orbitals
that contain parameters to be evaluated by the variational method (e.g., effective
nuclear charges):

( ) ( ) ( ) (10 86)

Each orbital in this variational function is taken to be the product of a radial factor
( ) and a spherical harmonic ( ):

( ) ( ) (10 87)

Hartree’s procedure was to first estimate the form of the orbitals .
Since the wavefunction of the atom is taken as the product of these orbitals, the
Schrödinger equation for the atom may be separated into equations of the
type

¯
( ) (10 88)

2

where is the energy of the orbital for electron . These equations are solved
by successive approximations. The potential energy function ( ) for any one
electron is obtained on the assumption that the electric charge of all of the other
electrons is smeared out to form a spherically symmetric charge cloud. The orbital

of the first electron obtained in this way is used to improve the potential en-
ergy function ( ) for use in the Schrödinger equation for the second electron to
obtain an improved orbital for it. This process is continued for all electrons,
and then the process is started over with electron 1. The calculation of improved
orbitals is continued in this way until there is no further change in the orbitals.
The product of these orbitals gives the Hartree self-consistent field wavefunction
for the atom.

Hartree provided for spin and the Pauli principle by putting no more than
two electrons in each orbital, but his wavefunctions did not involve spin and were
not made to be antisymmetric with respect to the interchange of electrons. In
1930 Fock (and Slater) pointed out that it is necessary to use spin orbitals and
to take linear combinations of antisymmetric products of spin orbitals. A self-
consistent field calculation carried out in this way is referred to as a Hartree–Fock
calculation.
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�
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Radial probability densities for argon calculated by the Hartree–Fock
method. (From R. Eisberg and R. Resnick, Hoboken, NJ Wiley, 1985.)
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Figure 10.12

Figure 10.13

Figure 10.12 shows the radial electron density of argon orbitals calculated by
the Hartree–Fock method. For each value of the principal quantum number ,
the probability density is largely concentrated in a narrow range of radii. The set
of orbitals having the same principal quantum number is referred to as a
and the set of orbitals with the same value and value is referred to as a

Since the orbitals involve the same angular dependence as the hydrogenlike
atomic wavefunctions, the subshells may be referred to as 1s, 2s, 2p, 3s, . . . . Note
that the s orbitals are more likely to be close to the nucleus than the p d
(penetration), so that the s are less shielded from the nucleus than the p d
(see Fig. 10.13).

As the atomic number (nuclear charge) increases, the energies of the inner
orbitals become more negative because of the increased attraction between the
nucleus and the electrons. The p orbitals have higher (less negative) energies than
the s orbitals because p electrons have lower probability densities in the neighbor-
hood of the nucleus and feel the attraction of the nucleus less. At or very near to
the nucleus an s orbital is not shielded by inner electrons; therefore, it has a low
energy (i.e., a large negative potential).

The Hartree–Fock calculated energies for atoms usually agree with experi-
mental values to about 1%. The method provides for the interactions between
electrons in an average way, but it does not provide for their instantaneous in-
teractions. Since electrons tend to stay away from one another, we may speak
of correlation in the positions of electrons at any instant. The
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is the difference between the exact energy and the Hartree–Fock energy. This
energy, which is of the order of an electron volt or more, is large enough to be a
serious problem in the calculation of differences in energies, as, for example, in
calculating enthalpy changes for reaction.

The effects of instantaneous electron interaction may be provided for by in-
cluding excited configurations in a trial wavefunction, using the variational ap-
proach. This method is referred to as configuration interaction. By including more
configurations in the wavefunction used in the variational method, a representa-
tion of the true wavefunction may be approached more closely.

The quantum theory of atoms provides an explanation of the structure of the pe-
riodic table. As we have seen, the electron subshells in atoms may be designated
1s, 2s, 2p, 3s, . . . . According to the Pauli exclusion principle, an s subshell may
contain 2 electrons, a p subshell 6, and a d subshell 10. Thus, the subshells each
contain 2(2 1) electrons.

To find the ground-state of an atom, we add electrons
to the subshells beginning with the lowest energy until we have added the correct
number for that atom. This procedure is called the (building-up)

The electron configurations for the first 36 elements found in this way are
given in Table 10.3. The electron configurations of the other elements are given
in Table C.6. The symbols [He], [Ne], and [Ar] represent the closed-shell electron
configurations of these elements. In Section 10.13 we will consider the significance
of the atomic term symbols given in the fourth column of Table 10.3.

The electron configurations of the elements account for the periodicity of
physical and chemical properties of the elements. The periodic table can be ar-
ranged to show the electron configurations of the elements, as in Fig. 10.14.* This
form of the periodic table makes it clear why the lanthanides (58 to 71) and ac-
tinides (90 to 103) have such similar chemical properties. Table 10.3 gives the or-
bital radii of isolated atoms; this is the radius of the maximum in radial probability
density of the outermost orbital. Within a row of the periodic table, the atomic ra-
dius tends to decrease with increasing atomic number. Within a column in the
periodic table, the atomic radius tends to increase with the atomic number. These
general trends in atomic radius can be understood in terms of two factors that
primarily determine the radius of the outermost orbital. The first factor is that the
larger the principal quantum number, the larger is the radius of the orbital. The
second factor is that increasing the effective nuclear charge reduces the size of the
orbital. As we saw in the preceding section, the effective nuclear charge felt by an
electron is equal to the nuclear charge less any shielding of this charge by inter-
vening orbital electrons. In a given row of the periodic table the principal quantum
number remains constant, but the effective nuclear charge increases so that the
radius of the outermost orbital decreases as the atomic number increases. In a
column in the periodic table the effective nuclear charge remains nearly constant,
but the principal quantum number increases so that the atomic radius increases.
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2
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2 6 1
0
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0
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2 4 3
2

2 5 2
3/2
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0
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1/2

2 1
0

2 2
3/2

2 2 3
2

2 3 4
3/2

5 7
3

2 5 6
5/2

2 6 5
4

2 7 4
9/2

2 8 3
4

10 2
1/2
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0
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J. T. Waber and D. T. Cromer, 4116 (1965).
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Atomic Properties

eV pm

1 H 1s S 13.505 52.9
2 He 1s S 24.580 29.1
3 Li [He]2s S 5.390 158.6
4 Be [He]2s S 9.320 104.0
5 B [He]2s 2p P 8.296 77.6
6 C [He]2s 2p P 11.264 62.0
7 N [He]2s 2p S 14.54 52.1
8 O [He]2s 2p P 13.614 45.0
9 F [He]2s 2p P 17.42 39.6

10 Ne [He]2s 2p S 21.559 35.4
11 Na [Ne]3s S 5.138 171.3
12 Mg [Ne]3s S 7.644 127.9
13 Al [Ne]3s 3p P 5.984 131.2
14 Si [Ne]3s 3p P 8.149 106.8
15 P [Ne]3s 3p S 11.00 91.9
16 S [Ne]3s 3p P 10.357 81.0
17 Cl [Ne]3s 3p P 13.01 72.5
18 Ar [Ne]3s 3p S 15.755 65.9
19 K [Ar]4s S 4.339 216.2
20 Ca [Ar]4s S 6.111 169.0
21 Sc [Ar]4s 3d D 6.56 157.0
22 Ti [Ar]4s 3d F 6.83 147.7
23 V [Ar]4s 3d F 6.74 140.1
24 Cr [Ar]4s3d S 6.76 145.3
25 Mn [Ar]4s 3d S 7.432 127.8
26 Fe [Ar]4s 3d D 7.896 122.7
27 Co [Ar]4s 3d F 7.86 118.1
28 Ni [Ar]4s 3d F 7.633 113.9
29 Cu [Ar]4s3d S 7.723 119.1
30 Zn [Ar]4s 3d S 9.391 106.5
31 Ga [Ar]4s 3d 4p P 6.00 125.4
32 Ge [Ar]4s 3d 4p P 8.13 109.0
33 As [Ar]4s 3d 4p S 10.00 100.1
34 Se [Ar]4s 3d 4p P 9.750 91.8
35 Br [Ar]4s 3d 4p P 11.84 85.1
36 Kr [Ar]4s 3d 4p S 13.996 79.5

ionization energy
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Table 10.3

The is the energy required to remove an electron completely
from a gaseous atom, molecule, or ion. An atom has as many ionization energies
as it has electrons. The first ionization energy corresponds to the reaction

A A e (10 89)

and the second corresponds to the reaction

A A e (10 90)
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No
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La
57

Y
39

Cs Ba
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Rb Sr
37 38

K Ca
19 20

Na Mg
11 12

Li Be
3 4

H He
1 2
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Nd
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N O
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In Sn
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7 8

Re
75

W
74

Ta
73

Hf
72

Cd
48

Ag
47

Pd
46

Rh
45

Ru
44

Tc
43

Mo
42

Nb
41

Zr
40

Sc
21

1s

2s

3s

4s

5s

6s

7s

6p

5f

4f

5d

6d

5p
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Periodic table arranged to show electron configurations of the atoms. The
relative energies of the orbitals are shown by their vertical positions. We can think of the
electrons being fed successively into higher and higher (i.e., less negative) energy orbitals.

10.11 Ionization Energy and Electron Affinity

Figure 10.14

The first ionization energies of the first 36 elements are given in Table 10.3,
and the first ionization energies of the elements up to 89 are plotted in
Fig. 10.15. The most difficult atom to ionize is helium, and the ionization ener-
gies of the other inert gases decrease as the atomic radius increases. The alkali
metals are the easiest atoms to ionize because the outer shell is occupied by a
single electron. In the series lithium, sodium, potassium, rubidium, and cesium,
the ionization energy decreases because of the increase in size of the outer orbital
containing a single electron.

In contrast, the ionization energies of the halogens are almost as great as those
of the inert gases. The electrons in the outer orbital of the halogen atoms are
shielded from the nuclear charge mainly by the electrons in inner orbitals, since
the electrons in the outer orbital are all approximately the same distance from the
nucleus. A direct result of this incomplete shielding of the nuclear charge, as far
as electrons in the outer orbital are concerned, is the fact that the halogen atoms
readily take on an additional electron to form negative ions.

Within a period of the periodic table there is a general increase in ionization
energy, but this increase is not regular. The decrease between beryllium and boron
is due to the fact that boron has a single 2p electron outside the filled 2s orbital.
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Spectrum
Atomic
Number Element I II III IV V VI

C. E. Moore, Vol. 34. Washington, DC: U.S. Government Printing
Office, 1970.

First ionization energies of the elements as a function of atomic number.

Ionization Energies of the First Six Elements in Electron Volts

1 H 13.598

2 He 24.587 54.416

3 Li 5.392 75.638 122.451

4 Be 9.322 18.211 153.893 217.713

5 B 8.298 25.154 37.930 259.368 340.217

6 C 11.260 24.383 47.887 64.492 392.077 489.981

Chapter 10 Atomic Structure

Figure 10.15

Table 10.4

Ionization energies may be determined by irradiating atoms with light of very
short wavelength (Section 14.10). All of the ionization energies of the first six
elements are given in Table 10.4. The successive stages of ionization are indicated
in the headings of the columns. Column I gives the ionization energy of the neutral
atom, column II gives the ionization energy for the singly ionized atoms, and so
on. After the first electron has been removed, it is more difficult to remove the
second, and so on. There is an especially large increase in ionization energy after
all the electrons in the outer shell have been removed; this point for each element
is shown by the stairstep line in Table 10.4.
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The values in parentheses are calculated
values.

eaea

1
1

1 1

2 2

22

22

Electron Affinities
in Electron Volts

H(g) 0.75415 Ne(g) ( 0.30)
He(g) ( 0.22) Na(g) 0.548
Li(g) 0.602 Mg(g) ( 2.4)
Be(g) ( 2.5) Al(g) 0.52
B(g) 0.86 Si(g) 1.24
C(g) 1.27 P(g) 0.77
N(g) 0 S(g) 2.077
O(g) 1.465 Cl(g) 3.614
F(g) 3.39

Schematic diagram
for the addition of angular momen-
tum vectors. Note that the angular
momentum vectors add vectorially
but the components in the direc-
tion add as scalars. (From D. A.
McQuarrie,
Mill Valley, CA: University Science
Books, 1983. Reprinted with per-
mission from University Science
Books.)
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Table 10.5

Figure 10.16

The of an atom is the energy released in the process of
adding an electron. Since the halogen atoms lack a single electron to complete
their outer shell, they have a high affinity for an electron, as illustrated by

347 kJ mol
Cl(g) e Cl (g) (0 K) 347 kJ mol

96 485 kJ mol eV

3 60 eV (10 91)

Thus, the electron affinity of Cl(g) is 3.60 eV. As shown in Table 10.5 some electron
affinities are negative, meaning that the negative ion is unstable with respect to
the atom and an electron.

An atom has total orbital angular momentum and total spin angular momentum
. These properties of an atom or molecule are important because they are

that is, the angular momentum does not change unless an external force
acts on the atom or molecule. A conserved quantity is called a

and the quantum mechanical operator for a conserved quantity commutes
ˆ ˆ ˆ ˆ ˆwith the Hamiltonian operator. Thus , , , and commute with . These

operators yield eigenvalues in the usual way:

ˆ ¯ ( 1) (10 92)

ˆ ¯ (10 93)

ˆ ¯ ( 1) (10 94)

ˆ ¯ (10 95)

The symbols used in this section are summarized in Table 10.6.
The orbital angular momentum and the spin angular momentum of an atom

are each made up of contributions of individual electrons. Since angular momen-
tum is a vector quantity, the contributions of the individual electrons add vec-
torially. Lowercase letters are used to represent angular momenta of individual
electrons, and capital letters are used to represent angular momenta for atoms.
Thus,

(10 96)

This vector addition is represented schematically in Fig. 10.16. Remember that the
orbital angular momentum vectors of the individual electrons and the sum have
only certain orientations with respect to a given direction, which we label the
direction. The component of the total orbital angular momentum of an atom
is the of the components for the individual electrons, as illustrated in
Fig. 10.16.

(10 97)

We saw earlier (Section 9.12) that the component of the angular momentum
of a single electron is directly proportional to the magnetic quantum number :

¯ . When this relation is applied to an atom containing several electrons,



����� ���������� ���������� �����

s

S s

. . .

. . .

L M h z
m h, m

i

M m .

L, , L
L

L

L , , , .

.

z S
z

S s .

i
z

m i S m h.

a

z L

zi i i

L i
i

i

i
i

z

z zi
i

si zi si

. . .
. . .

. . .
. . .

382

Orbital Angular Momentum

Electron Atom

L
z

, , , L , ,
,

z m , , M m
L, , L

� �

� � � � �
� �

� �

�
�

�

�

� � �

�

�

�

i i

zi z zi

i

i i i L i

1 2 1 2

1 2

�
�

� � �

� �
�

The four rows in the second half of the table are in the same order as in the first half of the table.

1 2

1 2 1 2 1 2
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Table 10.6

the magnetic quantum number for the orbital angular momentum of an atom is
capitalized so that ¯ . The components of the orbital angular momenta
of single electrons are represented by ¯ where is the magnetic quan-
tum number for the th electron. When these two relations are substituted in equa-
tion 10.97 we obtain

(10 98)

The magnetic quantum numbers for an atom can range over , depend-
ing on the orientation in a magnetic field. Here is the orbital angular momentum
quantum number for the atom. For an atom containing two electrons, the maxi-
mum value of is obtained when the two orbital angular momenta are lined up,
and the minimum value is obtained when the two orbital angular momenta are op-
posed. When the quantum numbers for the orbital angular momenta of the two
electrons are represented by and , the orbital angular momentum quantum
numbers for the atom can have the values

1 (10 99)

If the atom contains more than two electrons, this relation can be applied
successively.

The total spin angular momentum for a light atom is the vector sum of the
spin angular momenta of the individual electrons:

(10 100)

The component of the total spin angular momentum of an atom is the scalar
sum of the components for the individual electrons:

(10 101)

As shown in equation 10.45, the contribution of the th electron to the total spin
angular momentum in the direction is directly proportional to the quantum
number for the th electron: ¯ The total spin angular momentum
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Table 10.6

in the direction is directly proportional to the spin quantum number for
the component for the whole atom. Thus, equation 10.101 becomes

(10 102)

The value of can range from to , depending on the orientation of
the total spin angular momentum for the atom in a magnetic field. For an atom
containing two electrons, the spin quantum number is a maximum if the spins
are parallel and a minimum if the spins are opposed. If the spin quantum numbers
of the individual electrons are represented by and , the possible values of
are

1 (10 103)

For a two-electron atom, 1 0
The total angular momentum of an atom is the vector sum of all the or-

bital and spin angular momenta of electrons in it. Like other angular mo-
menta is quantized, and its quantum number can take on only integer and
half-integer values. In principle these can range up to the sum of the orbital angu-
lar momentum quantum numbers and spin quantum numbers for the individual
electrons in the atom. We are interested in the total angular momentum quantum
number because states with different angular momenta differ in energy. This is
partly because the electrons repel each other electrostatically, and the strengths
of the repulsions depend on the distribution of electric charge, which we know is
connected with the orbital quantum numbers and . This effect is given the
shorthand name orbital–orbital, or , interaction. In addition, the atomic states
must obey the Pauli exclusion principle, which, because it dictates which orbital
states can be associated with which spin states, indirectly brings in a spin–spin, or

, interaction determined by and In addition to these effects, there is also
a direct spin–orbit, or interaction.

The preceding paragraph describes a rather complicated situation, since the
relative energies of different atomic states depend on the relative strengths of

and interactions of the various electrons. In relatively light atoms (
40), however, it turns out that the interaction is distinctly weaker than the other
two. This means that the electron orbits interact to give the total orbital angular
momentum described in equation 10.96 by . At the same time, the spins interact
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to give a resultant spin angular momentum described in equation 10.100 by .
Then the weaker interaction can be thought of as coupling and to give the
total angular momentum :

(10 104)

The vector precesses in a magnetic field, and the component is given by

(10 105)

The quantum number for the total angular momentum of an atom has values
given by

1 (10 106)

and the total magnetic quantum number is given by

(10 107)

and can range from to This situation is referred to as coupling or
Russell–Saunders coupling.

The electron configurations used in describing the various elements in Table 10.3
are incomplete descriptions of the ground states because they do not fully specify
how the spin and orbital angular momenta add vectorially. In general, several
atomic states with different and quantum numbers are represented by a
single electron configuration. The energies of these states differ. However, atomic
states can be classified according to , , and , and the atomic term symbols used
for this purpose have the form

(10 108)

In a term symbol the total orbital angular momentum quantum number is not
represented by a number, but by a capital letter, just as we represented the angular
momentum quantum number for the electron in a hydrogenlike atom by s, p, d,
f, . . . for 0 1 2 3 :

0 1 2 3 4

Symbol S P D F G

The superscript in the term symbol is the and is referred to as a
singlet, doublet, triplet, . . . for 1, 2, 3, . . . .

In heavy atoms this hierarchy breaks down, and spin–orbit coupling eventu-
ally becomes much stronger than the other two. In this limit a different coupling
scheme ( coupling) is used in which individual electrons acquire total angu-
lar momenta The total angular momentum is then obtained using

. In atoms of intermediate , neither approximation is valid, and the
situation is very complicated, but the eigenfunction of the Hamiltonian is still an

ˆeigenfunction of . Here we will consider only the coupling scheme, which is
of great utility in unraveling the spectroscopy and chemistry of the atoms in the
first two rows of the periodic table.



The atomic term symbol for helium in its ground state

Atomic term symbols for lithium
and boron in their lowest states
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What is the atomic term symbol for helium?
Since the electron configuration is 1s the magnetic quantum numbers of both

electrons are zero; and since the electrons are paired, the quantum number for the
component of the spin is for one electron and for the other, as shown in the

following summary:

0 0 0 0 0

Since 0 and there is only one possible state, the total orbital angular momentum
quantum number for the helium atom must be equal to zero. Similarly, since 0
the total spin angular momentum quantum number for the helium atom must be equal
to zero. Since is equal to zero, the total angular momentum quantum
number for the atom is 0, and the term symbol is S

What are the atomic term symbols for lithium and boron in their lowest states?
Since lithium and boron each have a single electron outside of closed shells, their pos-

sible term symbols are readily identified. Since lithium has a 2s electron with 0, its
magnetic quantum number must also be zero.

0 0

Thus, 0, , and , so the term symbol is S . Boron has a p electron, so
that

0 0

1 1

Thus, 1, , and so there are two possible term symbols, P and P .
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Example 10.11

Example 10.12

10.13 Atomic Term Symbols

The conclusions from the preceding example may be generalized as follows.
Although we have not proved it, closed shells do not contribute orbital or spin
angular momentum to an atom because the individual angular momenta add vec-
torially to zero. Thus, it is the valence electrons that determine the term symbol.
On the basis of the helium example other atoms with only s outside of closed
shells will also have the atomic term symbol S . This is illustrated by Be, Mg, and
Ca in Table 10.3. Since closed shells do not contribute, this is the term symbol for
all the noble gases.

As we have seen from the preceding example, an atom in a given con-
figuration may exist in more than one state. The energies of atoms in levels
corresponding to various terms can be calculated, but this is a demanding and
time-consuming process. Fortunately, some patterns have emerged that usually



Atomic term symbols for a two-electron atom
with the electrons in different s orbitals
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What are the atomic term symbols for a two-electron atom with the electrons in different
s orbitals?

Suppose an atom with s valence electrons is excited to a state with valence elec-
trons s s, where is a higher principal quantum number. Now the electron spins do not
have to be paired and so there are four possible states, which in general will have different
energies:

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

In the first row the spins are parallel, so the component of the spin quantum number
for the atom is 1 and the quantum number for the spin angular momentum is zero.

Since the valence electrons are both s electrons, 0 and 0. For all four possibili-
ties, the quantum number for the orbital angular momentum is zero. Therefore, the
quantum number for the total angular momentum is zero. Since the largest value
of is unity, the total spin quantum number for the atom can have values of 1
and 0.

If 1 and 0, then 1 and the term symbol is S Note that for this case
1 0 1 so that we have a triplet state. If 0 and 0, then 0 and the

term symbol is S a singlet state. As indicated by Hund’s first rule, the triplet state is the
most stable.
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make it possible to identify the lowest energy level for the ground-state configu-
ration of an atom. The German spectroscopist Hund summarized these patterns
with three empirical rules:

The term arising from the ground configuration with the maximum multiplic-
ity (2 1) lies lowest in energy.
For levels with the same multiplicity, the one with the maximum value of
lies lowest in energy.
For levels with the same and , the one with the lowest energy depends on
the extent to which the subshell is filled.

If the subshell is less than half-filled, the state with the smallest value of
is the most stable.

If the subshell is more than half-filled, the state with the largest value of
is the most stable.

Thus, according to rule 3a, the ground state of boron discussed in Example 10.12
is P .

As the number of electrons increases, the number of different ways of assign-
ing them increases. For example, there are 15 ways for carbon with two p electrons.
Details of these assignments are given in more advanced texts.
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Comment:

Atomic term symbols pro ide a compact way to summarize the properties of an
atom in a specific term, and therefore pro ide a name for the term. Atomic states
that ha e the same electron configuration, same energy, same L alue, and same
S alue constitute a term. In the atomic term symbol, the alue of L is gi en by
the code letter (i.e., , , . . . ), and the alue of S is gi en by the left superscript.
The alue of J is gi en by the right subscript. The same basic procedure will be
followed in the next chapter with molecular term symbols.
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An atom with orbital angular momentum and spin angular momentum often has a
term in its Hamiltonian of the form called the spin–orbit coupling term. Since
the total angular momentum commutes with the Hamiltonian, the states
of this atom can be labeled with the eigenvalues of , , , and . Notice that

( ) so that the eigenvalue of is [ ( 1) ( 1)
( 1)]. This can lead to observable energy level splittings. For example, the ex-

cited states of an alkali atom with the outermost electron excited from the s to the next
higher p orbital will have 1 and . This leads to two possible values: and .
Calculate the energy level splitting due to spin–orbit coupling. Low-lying energy

The energy term due to will be levels in alkali atoms.

[ ( 1) 1(1 1) ( 1)] [ ( 1) ]

For the energy term equals ; for it equals 2 , giving a splitting
of 3 .

In Na the observed splitting of the intense yellow fluorescent lines is 17 cm ; thus,
5 7 cm as illustrated in Fig. 10.17.
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We have seen that an atom can exist in a series of states, each of which is identified
by a term symbol. Spectroscopic transitions between these states provide infor-
mation on their energies and quantum numbers. The emission spectra of atoms
may be excited in a gas discharge tube or flame. The absorption spectrum may be
obtained by passing light through a gas of the atoms.

The energy levels of a hydrogenlike atom depend only on the principal quan-
tum number and are given by equation 10.11, which provides an explanation for
the Lyman ( 1), Balmer ( 2), Paschen ( 3), etc. series. However,
not all possible transitions can occur in spectroscopic transitions, because pho-
tons have an intrinsic angular momentum equal to one unit, and angular momen-
tum is conserved. For left-circularly polarized light 1, and for right-circularly
polarized light 1. When a photon is absorbed by an atom, its angular mo-
mentum is transferred to the electrons of the atom. Since angular momentum has
to be conserved in absorption, or emission, we conclude that 1 for the
atom. These plus and minus signs apply in either absorption or emission because
the angular momentum of an electron can increase or decrease during absorption
or emission, as illustrated in Fig. 10.18.
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Conservation of
orbital angular momentum on ab-
sorption of a photon ( ): ( ) the
angular momentum of the atom in-
creases in the absorption process;
( ) the angular momentum of the
atom decreases in the absorption
process. (From P. W. Atkins,

New York:
Oxford University Press, 1983.)

Grotrian diagram for some of the shortest wavelength transitions of hydro-
genlike atoms, where is the Rydberg constant.
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Figure 10.18

Figure 10.19

We will see in Chapter 13 that the most intense spectroscopic transitions
involve the interaction of the electric vector of the radiation with instantaneous
electric dipoles in the atom or molecule. These are called

The spectroscopic transitions that occur for hydrogen atoms or hydrogenlike
atoms are indicated in Fig. 10.19. This diagram, referred to as a Grotrian dia-
gram, shows only lines for which 1. The complete selection rule for electric
dipole transitions of hydrogenlike atoms is

unrestricted 1 1 0 (10 109)

The spectrum of atomic hydrogen has a fine structure that we will not discuss be-
cause it is not important for chemistry. These further small splittings are explained
by quantum electrodynamics.

Electric dipole transitions are due to the oscillating electric field component
of light, and magnetic dipole transitions are due to the oscillating magnetic field
component of light. Magnetic dipole transitions are generally about 10 times
weaker (i.e., less probable) than electric dipole transitions. Selection rules were
initially found experimentally, but they may be derived from the equation for the
electric dipole transition moment that is discussed in Chapter 13.

As we have seen, the states of many-electron atoms depend on the coupling
of angular and spin momenta and can be described in terms of , , and . The
electric dipole selection rules for atoms in general may be expressed in terms of
these quantum numbers:

0 1 except that the transition 0 to 0 does not occur. This
is an extension of the selection rule 1 for the hydrogen atom to tran-
sitions involving any number of electrons.
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Grotrian diagram for the helium atom. [Reproduced from J. M. Hollas,
Fig. 6.17, p. 294. Boston: Butterworth, 1982; by permission

of the publishers, Butterworth & Co. (Publishers) Ltd. .]
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Figure 10.20

For a transition to be dipole allowed, there must be a change in An
even function such as

( ) ( )

is said to have even parity. For an odd function

( ) ( )

the parity is odd. The parity of a many-electron atom is even if is even
and odd if is odd, where the summation extends over all electrons. This
selection rule is summarized by even even, odd odd, even odd.
This selection rule, which is referred to as the Laporte rule, is consistent with

1 when only one electron is promoted from the ground configuration.
0 1 except 0 0.
0. This selection rule results from the fact that the electric component

of the electromagnetic field has no effect on the total spin angular momen-
tum of the electrons in an atom. This is illustrated by the radiative transi-
tions shown by helium (Fig. 10.20). There are no transitions between singlet
states and triplet states. This selection rule gives rise to the phenomenon of

The lowest triplet state of helium cannot emit a photon and

t
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Symbol for
Physical Quantity Unit Value of Unit in SI (1996)
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Atomic Units and SI Equivalents

Length 5.291 772 49 10 m
Mass 9.109 389 7 10 kg
Charge 1.602 177 33 10 C
Angular momentum ¯ 1.054 572 66 10 J s
Energy 4.359 748 2 10 J
Time ¯/ 2.418 884 334 1 10 s
Velocity / ¯ 2.187 691 42 10 m s
Force / 8.238 729 5 10 N
Electric dipole moment 8.478 357 9 10 C m
Magnetic dipole moment ¯ / 1.854 803 08 10 J T
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make a transition to the singlet ground state. The transition to the ground
state can occur in a collision with another molecule, and so triplet helium
has a lifetime that depends on pressure. Metastable atoms play an important
role in photochemistry. This selection rule breaks down for atoms with higher
atomic numbers.

Forbidden transitions (such as 0) may occur, but they usually occur in-
frequently and give weak lines. Their occurrence does not mean that quantum
mechanics is wrong, but rather results from the approximations used in writing
Hamiltonians. Various kinds of higher-order interactions are frequently omitted,
and when they are included, correct (but considerably more complicated) conclu-
sions are reached. When electric or magnetic fields are applied, there are changes
in various energy levels, and further selection rules are involved. The Zeeman ef-
fect is the splitting of lines by the application of a magnetic field. The Stark effect
is the splitting of lines by the application of an electric field.

To make it easier to work with the Schrödinger equation, so-called atomic units
are often used. These units are fundamental constants (and combinations of
fundamental constants) that arise in quantum mechanical calculations and are
conveniently treated like units. Atomic units form a coherent system of units
based on the independent dimensions of length, mass, charge, and angular mo-
mentum. The base unit of length is the Bohr radius, 4 ¯ / . The base
unit of mass is the electron rest mass . The base unit of charge is the elementary
charge . The base unit of angular momentum is ¯ /2 . On the basis of these
four units, it follows that the unit of energy is the hartree /(4 ) ¯ .
The atomic units for time, velocity, force, etc. are readily derived from the basic
four, and these expressions and the best current values in the SI are given in
Table 10.7.

These units are important because the results of calculations in quantum
mechanics are best expressed in atomic units. When this is done, the results of
theoretical calculations can be converted later to SI units using the best val-
ues of ¯ , , and at that time. Since the values of atomic units change with
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time as better experimental determinations are made, they are written in italic
type, rather than roman type like the abbreviations for the meter, kilogram, and
second.

In atomic units the Schrödinger equation for the hydrogenlike atom (see
equation 10.4) is

1
(10 110)

2

Note that the permittivity factor 4 is replaced by unity in these units. The en-
ergy of the hydrogenlike atom is given by

(10 111)
2

The Schrödinger equation for hydrogenlike atoms can be solved exactly, and
so their spectra and ionization energies can be predicted exactly. The spec-
tra consist of series of lines that converge as the variable quantum number
increases.
The total wavefunction for the hydrogenlike atom involves the product of an
associated Laguerre polynomial and a spherical harmonic; three quantum
numbers ( , , and ) are involved.
The radial wavefunction ( ) can be used to calculate the radial probabil-
ity density and the expectation value for the radius of a hydrogenlike atom.
Spherical harmonics can be used to calculate the shapes of the orbitals.
The angular momentum of a hydrogenlike atom is proportional to the
square root of ( 1). The angular momentum in the direction is given
by ¯, where 1 1 . This angular momentum leads
to a splitting of spectral lines in a magnetic field that is referred to as the
Zeeman effect.
Electrons have spin of , so their spin angular momentum is added to
orbital angular momentum to yield the total angular momentum of the
atomic system .
In the variational method, a trial wavefunction is used to calculate an upper
bound for the energy eigenvalue of a system.
The Pauli exclusion principle requires that the wavefunction for any system
of electrons must be antisymmetric with respect to the interchange of any two
electrons. This explains why the first excited state of helium is a triplet state.
The electron configurations of atoms explains the structure of the periodic
table.
Atomic states can be classified by atomic term symbols that summarize ,

, and for an atom.
Not all possible transitions can occur in spectroscopic transitions because
photons have intrinsic angular momentum equal to one unit, and angular
momentum is conserved.

�
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A hydrogenlike atom has a series of spectral lines atProblemsmarkedwithaniconmaybemoreconveniently
26 2445, 19.4404, 17.3578, and 16 4028 nm. What is the nuclearsolved on a personal computer with a mathematical program.
charge on the atom? What is the formula for this spectral seriesUsing data from Table C.3 at 0 K, what is the ionization
(i.e., and in equation 10.16)?energy of H(g)?

Calculate the wavelengths in m of the first three linesH(g) H (g) e
of the Paschen series for atomic hydrogen.

How much energy in eV and kJ mol is required to
Calculate the wavelength of light emitted when an elec-

remove electrons from the following orbitals in an H atom:
tron falls from the 100 orbit to the 99 orbit of the hy-

( ) 3d, ( ) 4f, ( ) 4p, ( ) 6s?
drogen atom. Such species are known as high Rydberg atoms.

Calculate the ground-state ionization potentials for They are detected in astronomy and are more and more studied
He , Li , Be , and C . in the laboratory.

Since H and D have different reduced masses, they also Calculate the Rydberg constant for a hydrogen atom
have slightly different electronic energy levels. Calculate ( ) the and the Rydberg constant for a deuterium atom given the
ionization potentials and ( ) the wavelengths of the first line in value for given in Appendix B.
the Balmer series for these atoms.

Check the normalization of the hydrogen atomic wave-
Since we know the expression for the wavefunction for function .

the hydrogen atom in its ground state, show that
Show that and for the hydrogen atom are

¯ orthogonal.ˆ
2 In a hydrogenlike atom in the 1s state, there is a differ-

ence between the average distance between the electron andand express the ground-state energy in hartrees.
the nucleus and the most probable distance between the elec-A muon is an elementary particle with a negative
tron and the nucleus. ( ) Derive the expression for the averagecharge equal to the charge of the electron and a mass approx-
distance between the electron and the nucleus. ( ) Deriveimately 200 times the electron mass. The muonium atom is
the expression for the most probable distance .formed from a proton and a muon. Calculate the reduced mass,

The spin functions and cannot be expressed in termsthe Rydberg constant, and the formula for the energy levels for
of spherical harmonics, but they can be expressed as columnthis atom. What is the most probable radius of the 1s orbital
matrices:for this atom?

v

�

�

�

 

  

  

� �

Chapter 10 Atomic Structure

� �

� �

REFERENCES

PROBLEMS

�

�

�

10.7

10.1

10.8

10.2
10.9

10.3

10.4 10.10

10.11
10.5

10.12

10.13

10.6

10.14



z

z z
z

z SS

z

Zr a

Zr a

Zr a

393

S

S S
L

S hM M

a b ca n b n c n
d e

a Z
N

Nr

a b

r

a
b

c

n n J. Chem.
Educ.

n
H E H E

H c c E c c
c c

b r
Z

b r

c r

1

1

0

� �

� �

�
�

� �

� � �
� �

� � �

�

� �

�
� �

� � �
�

�

�

�

� �

�

�

� �

�

i

i

1 1
2 2

a b

c

0
5 3

2

A A

B B

2

2

1
1 1 1 2 1 2

1 1 2 2 1 1 1 2 2

1 1 2 2

/2 i
2p

/2 i
2p

/2
2p

Use this information to find the real functions for the 2p orbitals1 0
and that are given in Table 10.1. Given:0 1

The spin operator can be represented by the following Pauli e cos i sin
matrix:

e cos i sin1 1 0ˆ
0 12 For a hydrogenlike atom, what is the magnitude of the

ˆ ˆ orbital angular momentum, and what are the possible values ofShow that and .
for electrons in the 2p and 3d orbitals?The spin parts of the wavefunctions for the first excited

What is the magnitude of the angular momentum forstate of helium are (1) (2), (1) (2) (2) (1),
ˆ electrons in 3s, 3p, and 3d orbitals? How many radial and an-and (1) (2). Since ¯ , what are the values

gular nodes are there for each of these orbitals?for the three wavefunctions?
How many angular, radial, and total nodes are there forWhat are the degeneracies of the following orbitals for

the following hydrogenlike wavefunctions: ( ) 1s, ( ) 2s, ( ) 2p,hydrogenlike atoms: ( ) 1, ( ) 2, and ( ) 3?
( ) 3p, and ( ) 3d?Show that for a 1s orbital of a hydrogenlike atom the

The antisymmetric spin function for two electrons ismost probable distance from proton to electron is / . Find
[ (1) (2) (2) (1)]. Derive the value for the normaliza-the numerical values for C and B .

tion constant .Find the values of for which the hydrogenlike atom
Using equation 10.55, calculate the difference in energy2s and 3s wavefunctions are equal to zero (these are the radial

between the two spin angular momentum states of a hydrogennodes). Compare to Fig. 10.1.
atom in the 1s orbital in a magnetic field of 1 T. What is the wave-What is the average distance from an orbital electron to
length of radiation emitted when the electron spin “flips”? Inthe nucleus for a 2s and 2p electron in ( ) H and ( ) Li ?
what region of the electromagnetic spectrum is this?

Calculate the expectation value of the radius of a 2s
For the wavefunctionorbital and a 2p orbital for a hydrogenlike atom. Is this the result

that you expected?
(1) (2)In the laboratory there is a limit to the number of lines

that can be observed in the spectrum of a hydrogenlike atom (1) (2)
because of pressure broadening. As atoms are excited to higher
quantum numbers their effective radii increase, and because of

show that ( ) the interchange of two columns changes the sign ofcrowding, the excited atoms contact nearby atoms and do not act
the wavefunction, ( ) the interchange of two rows changes theindependently. However, in interstellar space, emissions from
sign of the wavefunction, and ( ) the two electrons cannot havehydrogen atoms at extremely low pressures with very high quan-
the same spin orbital.tum numbers can be detected because of the large volumes per

What are the electron configurations for H , Li , O ,atom. Radio astronomers have detected hydrogen atoms under-
F , Na , and Mg ?going the transition 253 to 252 [D. B. Clark,

454 (1991)]. At what frequency and wavelength was How many electrons can enter the following sets of
this observation made, and what is the expectation value for the atomic orbitals: 1s, 2s, 2p, 3s, 3p, and 3d?
radius of the emitting hydrogen atom?

Calculate the expectation value of the distance between
the nucleus and the electron of a hydrogenlike atom in the 2p Calculate the frequency and the wavelength in nanome-
state using equation 9.35. Show that the same result is obtained ters for the line in the Paschen series of the hydrogen spectrum
using equation 10.30. that is due to a transition from the sixth quantum level to the

It can be shown that a linear combination of two eigen- third.
functions belonging to the same degenerate level is also an There is a Brackett series in the hydrogen spectrum
eigenfunction of the Hamiltonian with the same energy. In terms where 4. Calculate the wavelengths in nm of the first two

ˆ ˆof mathematical formulas, if and , lines of this series.
ˆthen ( ) ( ). The wavefunction Since the outer electron for Li is quite a bit farther out

still needs to be normalized. Equation 10.8 yields than the two 1s electrons, this atom is something like a hydro-
the following expressions for the 2p eigenfunctions: gen atom in the 2s state. The first ionization potential of Li is

5.39 eV. What ionization potential would be expected from thise sin e
simple model of an Li atom? What effective nuclear charge

e sin e seen by the outer electron would give the correct first ionization
potential?e cos
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The first ionization potentials of Na, K, and Rb are Calculate for a 2s electron in a hydrogen atom, given
5.138, 4.341, and 4.166 eV, respectively. Assume that the en-

!ergy level of the outer electron can be represented by a hydro- e d 1 0
genlike formula with an effective nuclear charge and that
the relevant orbitals are 3s, 4s, and 5s, respectively. Calculate Positronium consists of an electron and positron (posi-

for these atoms. tive particle with the same mass as an electron). ( ) Calculate
What is the total electronic energy in hartrees of He, Li, the wavelength of the radiation emitted when the system goes

and Be with respect to the nuclei and free electrons? Ionization from the 2 orbital to the 1 orbital. ( ) Calculate the
potentials are given in Table 10.4. ionization energy.

Why is the ionization energy of boron less than beryllium What are the most probable positions for an electron in
and the ionization energy of oxygen less than nitrogen? a 2p orbital in hydrogen?

The enthalpy of formation of H (g) at 0 K is given as A hydrogen atom is in a cubical box of 100 Å on a side.
143.266 kJ mol in Table C.3. What is the electron affinity of For what value of (for an s state) does the expectation value
H(g)? of the radius equal one-half the box size?

For a carbon atom in the configuration [He]2s 2p the Show that and are orthogonal for the H atom.
following term symbols are all possible: S , P , P , P , and

Using the integrals in Problem 10.50, show that the 2s
D . According to Hund’s rules, which is the most stable state?

and 3s wavefunctions are normalized.
Which of the following transitions are allowed in the

What is the most probable distance for a 1s electron in
electronic spectrum of a hydrogenlike atom: ( ) 2s 1s,

Li ?
( ) 2p 1s, ( ) 3d 1s, and ( ) 3d 3p?

What is the average distance from the electron to the
( ) When a hydrogenlike atom is in a 2s orbital, to which

proton for the 3s, 3p, and 3d states of the hydrogen atom?
orbitals can the atom be excited by the absorption of radiation?

Calculate the splitting in kJ/mol and eV for an H atom in( ) When a hydrogenlike atom is in a 3p orbital, to which or-
the 2p state in a 10-T magnetic field, neglecting the spin as in Fig.bitals can the atom be excited by the absorption of radiation?
10.8 and equation 10.43. Compare with at room temperature.( ) When a hydrogenlike atom is in a 3d orbital, to which or-

What is the magnitude of the angular momentum for thebitals can the atom be excited by the absorption of radiation?
electrons in 4s, 4p, 4d, and 4f orbitals? How many radial andShow that the bound-state eigenfunctions of a hydro-
angular nodes are there for each of these orbitals?genlike atom have the factor exp( / ) by examining the

Show that the following wavefunction for the hydrogenSchrödinger equation for large .
atom is antisymmetric to the interchange of the two electrons:Given that the 1s wavefunction for a hydrogenlike atom

is proportional to exp( / ), calculate the normalization fac- 1s (1) 1s (1)
tor for this wavefunction.

1s (2) 1s (2)
Calculate the ionization potential of a hydrogen atom

In a hydrogen atom, the 2s and 2p orbitals have the samein its ground state from the Rydberg constant for the hydrogen
energy. However, in a boron atom, the 2s orbital has a loweratom.
energy than the 2p. Explain this in terms of the shape of theˆIf we use as a trial function for Hamiltonian , where
orbitals.

( ) Give the electronic configurations for the ground states
of the first 18 electrons in the periodic table.(1 )

The first three ionization energies of scandium (Sc,
and and are the two eigenfunctions with eigenval- atomic number 21) are as follows:
ues and (with ), show that the variational method

Sc Sc e 6 54 eVyields 0.
Sc Sc e 12 8 eVCalculate the classical energy of an electron and proton

separated by 0.0529 nm, relative to the same system at infinite Sc Sc e 24 75 eV
separation. Compare this with the quantum mechanical result

What are the electron configurations of the three ions?for the energy.
For what value of do adjacent energy levels in H have

a separation of at room temperature?
What are the wavelengths of the first lines in the Balmer

series for Li and Li ?
Make three-dimensional plots to show the electron den-What is the expectation value for the radius of a hydro-

sity in the plane for atomic hydrogen in the 1s, 2s, 2p , andgen atom if 50 and 0?
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2p orbitals. Restrict the plots to 0 5 to 0.5 nm and ( ) Combine the spectra to show the experimental spectrum.
0 5 to 0.5 nm.

Plot the angular parts of the wavefunctions for the atomic
The Pauli spin operators for the three directions can be orbitals 2s, 2p , 2p , and 2p using computer software that pro-

represented by matrices: vides spherical harmonics ( ). In order to plot 2p and 2p
the sums and differences of (1 1) and (1 1) must be used0 0 5
as explained in the text.0 5 0

Plot the squares of the angular factors of the atomic or-0 0 5i
bitals 2p , 2p , and 2p in three dimensions and compare them0 5i 0
with Fig. 10.6.0 5 0

0 0 5 Plot the squares of the angular factors 3d , 3d , 3d ,
( ) Calculate the commutator for and . ( ) Calculate the 3d , and 3d atomic orbitals in three dimensions. The an-
sum of squares of the representations of the operators to obtain gular factors are given in Table 10.1. Compare these plots with
the spin matrix . ( ) Show that the square of the operator of Fig. 10.6.
spin angular momentum commutes with the operator for the

Plot the Coulomb potential, the centrifugal potential,component.
and the sum (effective potential) for a hydrogen atom with

( ) Calculate the frequencies (in cm ) for the first 13 1. Locate the minimum in the effective potential by taking the
lines of the Balmer spectrum of hydrogen atoms. Plot the line derivative and plotting it. Why doesn’t the radius for the mini-
spectrum and label the frequency axis. ( ) Do the same for the mum potential correspond to the expectation value for for the
Paschen spectrum. ( ) Do the same for the Brackett spectrum. 1s orbital, which is (3/2) ?
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11
The Born–Oppenheimer Approximation
The Hydrogen Molecule Ion
Calculation of the Energy of the Hydrogen Molecule Ion
Molecular Orbital Description of the Hydrogen Molecule
Electron Configurations of Homonuclear
Diatomic Molecules
Electronic Structure of Polyatomic Molecules:
Valence Bond Method
Hückel Molecular Orbital Theory
Dipole Moments and Ionic Bonding
Intermolecular Forces
Special Topics: Hydrogen Bonds, Hybrid Orbitals,
and Band Theory of Solids

Quantum mechanics has made it possible to understand the nature of chemical
bonding and to predict the structures and properties of simple molecules. Our
ideas about covalent bonds go back to 1916, when Lewis described the sharing
of electron pairs between atoms. The pairs of electrons held jointly by two atoms
were considered to be effective in completing a stable electronic configuration for
each atom. This approach provided only a qualitative picture of chemical bonding.
The first successful quantum mechanical explanation of a chemical bond, specifi-
cally that in molecular hydrogen, was made in 1927 by Heitler and London using
the valence bond method. Since then the molecular orbital method has become
the method of choice, and so it is emphasized in this chapter. Today the electronic
structure, energy levels, bond angles, bond distances, dipole moments, and spec-
tra of simple molecules may be calculated with a high degree of accuracy. For
molecules with more than one electron, approximations have to be introduced.
However, even approximate calculations are very helpful in understanding molec-
ular structure, chemical properties, and molecular spectra.

Molecular Electronic Structure
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Figure 11.1

Born and Oppenheimer pointed out that since nuclei are thousands of times more
massive than electrons, they move much more slowly and can be treated as being
stationary in considering the motions of the electrons in molecules. Thus a simpler
electronic Schrödinger equation can be solved for each fixed internuclear distance

. The molecular vibrations can then be investigated by writing a Schrödinger
equation for the motion of the nuclei in the average potential field produced by
the electrons.

The hydrogen molecule ion H is the simplest molecule, and so we will dis-
cuss it in some detail as an introduction to the treatment of more complicated
molecules. The Schrödinger equation for the hydrogen molecule ion is

ˆ ( ) ( ) (11 1)

where is the vector locating the electron and and are vectors locating the
two protons in a coordinate system. The Hamiltonian for the hydrogen molecule
ion is given by

¯ ¯ˆ ( ) (11 2)
2 2 4 4 4

where is the mass of each nucleus, is the mass of the electron, is the dis-
tance between the electron and the A nucleus, and is the distance between the
electron and the B nucleus, as shown in Fig. 11.1. It is not practical to try to solve an
equation like equation 11.1 directly, so the approximation introduced by Born and
Oppenheimer is used. Since the electron moves much more rapidly than the nu-
clei, the Schrödinger equation for the electronic motion can be studied at a fixed
distance (not a vector) between the nuclei. By using the Born–Oppenheimer
approximation, we assume that the wavefunction for the molecule is given by

( ) ( ) ( ) (11 3)

where ( ) is the wavefunction for nuclear motion. The Schrödinger equa-
tion for electronic motion is then

ˆ ( ) (11 4)

with the Hamiltonian for electronic motion given by

¯ˆ (11 5)
2 4 4 4

containing the electronic kinetic energy, the electrostatic attraction of the elec-
trons to each nucleus, and the nuclear electrostatic repulsion. Notice that the latter
term is a constant since the internuclear distance is fixed. We can solve equation
11.4 for all , giving us the electronic energy ( ) as a function of .

The Born–Oppenheimer approximation shows that the nuclei move in the
potential energy ( ) determined by the electronic motion, so the Schrödinger
equation for nuclear motion becomes

¯
( ) ( ) ( ) ( ) (11 6)

2



0.5

0.2

0.1

x/a0

ψ 1s

–4 –2 20 4 6 8

0.4

0.3

R R

r r R

E

,

, ,

c c .

c
c

c c c

.

c

c c c c .

i

398

a
a

�

� �

�

� � �

� � � �

�

��

n

n A B

2

A B

A B1 2

A B 1

2

1 2

2
A BA B

2 2 2 2
A B A BA A B B

0

0

Magnitudes of the 1s wavefunctions on hydrogen atoms A and B when they
are 3 apart, but not interacting. The abscissa is the distance from atom A along the in-
ternuclear axis in units of . (See Computer Problem 11.F.)

�

� �

� � � �

molecular orbital theory.

LCAO molecular orbital.

Chapter 11 Molecular Electronic Structure

11.2 THE HYDROGEN MOLECULE ION
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Figure 11.2

where is the energy of nuclear motion, which contains contributions for transla-
tional motion, rotational motion, and vibrational motion (as described in Section
13.3). The wavefunction for nuclear motion ( ) is the product of wavefunc-
tions for translational, rotational, and vibrational motions (Section 13.3).

The electronic Schrödinger equation for H (equation 11.4) can be solved exactly,
but the results are complicated. It is more useful to continue the approach we fol-
lowed in Section 10.7 in treating the helium atom, and that is to use a trial wave-
function made up of hydrogenlike atomic orbitals. This approach is referred to
as In this approach, molecular wavefunctions for many-
electron molecules are written in terms of determinants (Section 10.8) involving
single electron wavefunctions (molecular orbitals). Molecular properties calcu-
lated in this way are approximate, but, as we will see later (Section 11.4), the treat-
ment can be improved to any desired degree of accuracy. As trial wavefunctions

( ) for the one-electron hydrogen molecule ion, we will use the linear
combination

1s 1s (11 7)

where 1s and 1s are atomic hydrogen orbitals on protons A and B, and and
are constants. This type of function is referred to as a linear combination of

atomic orbitals or an Since the two nuclei are identical,
. For nuclei that are close, the 1s orbitals overlap as shown in Fig. 11.2.

In order to normalize the molecular orbital with the plus sign, the following
integral must have the value unity:

d 1 (11 8)

where d is the volume element. Substituting the wavefunction yields

1 d (1s 1s )(1s 1s )

d 1s 1s d 1s 1s d 1s 1s d 1s 1s (11 9)
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The first and last integrals are each equal to unity because the 1s orbitals are nor-
malized. Since the 1s wavefunction is real, the second and third integrals are equal.
They are referred to as the Therefore, equation 11.9 can be
written in terms of the overlap integral:

1 2 2 d 1s 1s

(2 2 ) (11 10)

so that 1/[2(1 )] . Thus the normalized wavefunction with a plus sign is
given by

1
(1s 1s ) (11 11)

[2(1 )]

In the same way it can be shown that the normalized wavefunction with a minus
sign is

1
(1s 1s ) (11 12)

[2(1 )]

When a molecule has a center of symmetry, the wavefunction may or may not
change sign when it is inverted through the center of symmetry. If ( )

( ), the wavefunction is said to have and is designated
with a subscript g for (German for even). If ( ) ( ),
the wavefunction is said to have and is designated with a subscript
u for (German for odd). This is the origin of the subscripts on
and .

The overlap integral can be evaluated analytically as a function of the
, but since this is difficult the result is simply given

here:

e 1 (11 13)
3

When 0, the two 1s orbitals overlap completely, and 1. As is in-
creased to infinity, the overlap integral decreases asymptotically to zero. The mag-
nitude of the molecular orbital along the axis through the two nuclei is given
in Fig. 11.3 for 3 . The magnitude of the molecular orbital along the
axis through the two nuclei is given in Fig. 11.3 for 3 . The probability
densities of the electron in the hydrogen molecule ion are given by the squares of
the wavefunctions, as shown for the probability densities along the internuclear
axis in Fig. 11.3 for and in Fig. 11.3 for .The electron density of is large
between the nuclei, which tends to pull them together. This buildup of electron
density between the two nuclei for causes bonding, and so is referred to as
a The electron density of (Fig. 11.3 ) has a nodal
plane between the two nuclei where the electron density is zero. This lessening of
the electron density between the two nuclei works against bonding; hence is
called an
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11.3 CALCULATION OF THE ENERGY
OF THE HYDROGEN MOLECULE ION
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Figure 11.3

Using the molecular orbitals ( or ), we can calculate an upper bound on the
energy of H using the variation principle (Section 10.6) for every value of the
internuclear distance . The variational energy for an orbital 1s

1s is given by

ˆ ˆd [ 1s 1s ] [ 1s 1s ] d
d [ 1s 1s ] d

2 2
2 2

(11 14)

where the following symbols have been used:

ˆ ˆ1s 1s d 1s 1s d (11 15)

ˆ ˆ1s 1s d 1s 1s d (11 16)

1s 1s d 1s 1s d 1 (11 17)

1s 1s d 1s 1s d (11 18)
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11.3 Calculation of the Energy of the Hydrogen Molecule Ion
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The integral is called the because the difference between
and the energy of a single hydrogen atom is just that of the Coulomb inter-

action of nucleus B with an electron centered on nucleus A ( in this
case). Since this interaction is attractive, its contribution to is negative. The
energy of a single hydrogen atom is also negative; thus, is a negative number.
The integral is referred to as the

We have already noted that the overlap integral is a function of the inter-
nuclear distance (see equation 11.13). We have also used a symmetry argument
to show that , but now we are going to treat and as variational
constants to be determined by minimizing the energy (see Section 10.6).

To find the minimum energy, we set the derivatives of with respect to
and equal to zero. To do this it is convenient to write equation 11.14 in the
form

( 2 ) 2 (11 19)

Differentiating this equation with respect to yields

(2 2 ) ( 2 ) 2 2 (11 20)

and differentiating with respect to yields

(2 2 ) ( 2 ) 2 2 (11 21)

Since / and / are equal to zero for the minimum energy, these equa-
tions can be written as

( ) ( ) 0 (11 22)

( ) ( ) 0 (11 23)

There is a nontrivial solution to these equations only if the determinant of the
coefficients is equal to zero:

0 (11 24)

It can be shown that , where is the energy of a
hydrogen atom in the 1s state and is a function of the internuclear distance . It
can also be shown that , where is also a function of . These
functions are given by

1
e 1 (11 25)

e (1 ) (11 26)

When the expressions for , , and are substituted into the secular
equation (11.24), we obtain

( ) ( )

0 (11 27)
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internuclear distances are expressed in terms of . (See Computer Problem 11.B.)

Correlation diagram
for H . Note that the energy of the
antibonding orbital is raised more
than the energy of the bonding
orbital is lowered, as indicated by
equations 11.30 and 11.31.

excited state.
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Figure 11.4

Figure 11.5

This yields two solutions:

(11 28)
1

(11 29)
1

The energy of the hydrogen molecule ion in the bonding orbital rela-
tive to the completely dissociated species H and H is given by

(11 30)
1

The energy of the hydrogen molecule ion in the antibonding orbital rela-
tive to the completely dissociated species H and H is given by

(11 31)
1

These two energies are plotted in Fig. 11.4 versus internuclear distance .
Figure 11.4 shows that for the bonding wavefunction the minimum en-

ergy is at 2 50 132 pm, in comparison with the experimental value
2 00 106 pm. At 132 pm, the binding energy is 0 0648 170

kJ mol , in comparison with the experimental value of 0 102 258 kJ mol .
The antibonding wavefunction leads to repulsion at all internuclear distances.
This is another reason it is called an antibonding orbital. This state is referred to
as an The simple molecular orbital in equation 11.7 does not quan-
titatively explain the bonding in the hydrogen molecule ion, but this wavefunc-
tion can be improved by adding more terms. The next logical step is to add terms
for 2s and 2p orbitals on the two nuclei. In the limit of adding more and more
terms, the results obtained are equal to the exact solution of the Schrödinger
equation.

It is useful to represent the energies of molecular orbitals by use of a correla-
tion diagram, such as Fig. 11.5. Since and are negative and is positive,

is more negative than and is the energy of the more stable molecular or-
bital, as is seen in Fig. 11.4. Since is symmetrical around the internuclear axis,
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it is referred to as a sigma ( ) orbital, and since it is even ( ) and is made up
of two 1s orbitals, it is designated 1s. The less stable orbital is represented by

1s. Note that two atomic orbitals give rise to two molecular orbitals.
To improve the result for the ground state, one uses the following atomic or-

bitals in the plane:

1s e (11 32)

(2p ) e (11 33)
4(2 )

as discussed by Levine.* The substitution of these atomic orbitals in equations
11.11 and 11.12 yields molecular orbitals proportional to (1s) and (2p) in the

plane:

(1s) (e e ) (11 34)

(2p) (e e ) (11 35)
4(2 )

where the plus sign yields the bonding orbital and the minus sign yields the anti-
bonding orbital. Perturbation theory using these wavefunctions leads to a mini-
mum ( ) at 2 01 . At this internuclear distance 1 246/ and 2 965/
when distances are expressed in bohrs. The calculated is 2 73 eV, compared
with the true value of 2 79 eV. The electron densities in the plane for these
molecular orbitals are shown in Fig. 11.6 for the 1s orbitals and in Fig. 11.7 for
the 2p orbitals. In the 1s bonding orbital there is a buildup of electron density
between the nuclei, and in the 2p bonding orbital there is a buildup of electron
density between the lobes of the p orbitals.

We can use the same LCAO procedure to form other molecular orbitals from
the atomic orbitals on the two protons. This is useful only if the molecular or-
bitals that are found have the bonding characteristics of the 1s or 1s orbitals
we have discussed. Two conditions must be met for this to be true: The two atomic
orbitals must have about the same energy, and they must have the same symmetry
properties with respect to rotations about the internuclear axis. If the latter condi-
tion is not satisfied, then the integrals corresponding to and to are zero
for all ; if the former condition is not satisfied, then the integrals correspond-
ing to and will be very different. In either case the coefficients and

will be very different (one approximately 0 and one approximately 1) so that
little or no bonding takes place. It is quite easy to determine whether the overlap
integral is zero by examining the positive and negative parts of the orbitals,
as indicated in Fig. 11.8.

Figure 11.8 shows the situation when two 1s orbitals (or two s orbitals)
are brought together: The orbitals overlap and bonding can occur. Figure 11.8
shows what happens when a p orbital with axis perpendicular to the internuclear
axis is brought up to an s orbital. Here the overlap is zero since the overlap of the
positive lobe of the p orbital with the s orbital is exactly canceled by the overlap
of the negative lobe of the p orbital, and thus no bonding can occur. If two parallel
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(See Computer Problem 11.A.)
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Figure 11.6

p orbitals are brought together, as in Fig. 11.8 , , bonding can occur. The orbitals
formed in the last line of the figure are interesting because they have a nodal plane
(the wavefunction is zero everywhere in the plane) perpendicular to the page and
containing the internuclear axis. Such an orbital is called a orbital. The bonding
orbital changes sign on inversion and so is ungerade ( 2p), while the antibonding
orbital is gerade ( 2p). Note that there is another pair of orbitals, exactly like
these, formed from the 2p orbitals perpendicular to the page. Therefore, the
orbitals are doubly degenerate.

This process of combining hydrogenlike orbitals can be continued to higher
values of the orbital angular momentum quantum number . One-electron molec-
ular orbitals are classified according to the quantum number for the angular
momentum about the internuclear axis. In general, for an electron in a diatomic
molecule the axial angular momentum is given by

¯ (11 36)
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where corresponds to the absolute value for an atom. The value of for a one-
electron orbital for a diatomic molecule is represented by a Greek letter according
to

0 1 2 3

Orbital

This is, of course, analogous to the classification of atomic orbitals as s, p, d, f, . . .
according to 0, 1, 2, 3, . . . .

Excited states of H are formed by exciting the electron to one of the higher
levels, as shown by the potential energy curves in Fig. 11.9. From our analysis of
the molecular orbitals of H , we can now go on to discuss other homonuclear
diatomic molecules. We first must arrange the LCAO-MOs (linear combination
of atomic orbitals–molecular orbitals) that we have discussed in order of increas-
ing energy, so that electrons can be placed in the orbitals, two at a time, to ac-
count for the electronic structures of various diatomic molecules. This is the same
aufbau process that was used with atoms (Section 10.10) and will be discussed in
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Figure 11.8

Section 11.5. The sequence of homonuclear diatomic molecular orbitals is given
approximately in Fig. 11.10. We have to say because the order of
the energy levels depends on the atomic number of the nuclei and the internuclear
distance. As indicated in this diagram, two atomic orbitals combine to form two
molecular orbitals, one with lower energy and the other with higher energy than
the atomic orbitals from which they were formed.
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state of the hydrogen molecule. (From T. Sharp, “Potential Energy Diagram for Molecular
Hydrogen and Its Ions.” In Vol. 2, p. 119. New York: Academic, 1971.)

Schematic diagram for the lowest energy molecular orbitals of homo-
nuclear diatomic molecules.

11.4 Molecular Orbital Description of the Hydrogen Molecule

11.4 MOLECULAR ORBITAL DESCRIPTION
OF THE HYDROGEN MOLECULE
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Figure 11.9

Figure 11.10

Using the Born–Oppenheimer approximation, the electronic Hamiltonian for the
hydrogen molecule may be written

¯ 1 1 1 1 1ˆ ( )
2 4 4

(11 37)
where the coordinates are defined in Fig. 11.11.
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Figure 11.11

When the electronic Hamiltonian for the hydrogen molecule is used in equa-
tion 11.4, an exact solution cannot be obtained because of the 1/ term, just as in
the atomic case. This is the reason that the LCAO-MO method is used to obtain
an approximate solution. According to the LCAO-MO approach, molecular hy-
drogen is formed by putting two electrons with opposite spin in the 1s orbital.
That is, we assume that each electron can be assigned to an orbital and that the
electronic wavefunction for the molecule is the product of the two wavefunctions
for the two electrons:

(1) (2) (11 38)

where and designate the different orbitals and 1 and 2 designate the two elec-
trons. According to the Pauli principle (Section 10.8), two electrons with opposite
spin can be assigned to a given spatial orbital, and so as a first approximation we
will assume that in the ground state of the hydrogen molecule the two electrons
are placed in the 1 orbital developed for H . Thus, the electronic configuration
of H will be described as (1 ) , just as we described the electronic configuration
of He as (1s) .

The wavefunction for electron 1 in the 1 molecular orbital given in equation
11.11 is represented by

1
1 (1) [1s (1) 1s (1)] (11 39)

[2(1 )]

In discussing the helium atom (Section 10.7) we found that the wavefunction sat-
isfying the antisymmetry requirement is given by a Slater determinant. The same
considerations apply here, and so the approximate wavefunction for the ground
state of the hydrogen molecule is given by the following Slater determinant (re-
member that and are electron spin wavefunctions):

1 1 (1) (1) 1 (1) (1)[(1 ) ] (11 40)
1 (2) (2) 1 (2) (2)2

This yields the following wavefunction for a hydrogen molecule in its ground state:

[(1 ) ] [1 (1)1 (2) (1) (2) 1 (1)1 (2) (1) (2)](1/2)

[1s (1) 1s (1)][1s (2) 1s (2)](1/2) [ (1) (2) (1) (2)]
2(1 )

(11 41)

The approximate energy of the hydrogen molecule is obtained by calcu-
lating the expectation value of the Hamiltonian (equation 11.37) using this
wavefunction.

ˆ[(1 ) ] [(1 ) ] d (11 42)

This integration leads to a rather complicated equation for , which we will simply
write as

2 integrals (11 43)
4

The first term is the electronic energy of two hydrogen atoms at infinite distance.
The second term is the energy of electrostatic repulsion of the two nuclei, and
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the last term is a series of integrals for the interactions of various charge distri-
butions with one another.* These integrals can be evaluated at a series of inter-
nuclear distances to obtain the molecular potential energy curve. The minimum
is at 84 pm, and the calculated dissociation energy is 255 kJ mol . The
experimental values are 74.1 pm and 458 kJ mol .

Although simple molecular orbital theory does account for a large propor-
tion of the binding energy of the hydrogen molecule, it has to be extended
to yield accurate results. A detailed description of the improvements that are
possible is beyond the scope of this book, but the general directions can be
indicated.

We can see one deficiency in the approximate wavefunction by multiplying
out the spatial part of equation 11.41 to obtain

1s (1)1s (2) 1s (1)1s (2) 1s (1)1s (2) 1s (1)1s (2)

The first term and last term correspond to forms of the hydrogen molecule
with ionic bonding, namely, H H and H H , so this molecular orbital
wavefunction describes a state at that is 50% H and H and 50% H H,
which is clearly not correct. This problem can be reduced by introducing variable
coefficients and in

( ) ( ) (11 44)

where

1s (1)1s (2) 1s (2)1s (1) (11 45)

1s (1)1s (2) 1s (1)1s (2) (11 46)

Using the variational method, the values of and can be determined at each
value of . Since equation 11.44 yields 74 9 pm (experimental 74.1 pm) and

386 kJ mol (experimental 458 kJ mol ), the inclusion of one variational
parameter leads to considerable improvement.

Further improvements can be obtained by increasing the number of atomic
orbitals used, that is, enlarging the basis set—for example, by adding 2s and 2p
orbitals, and thereby introducing more variational parameters. The evaluation
of parameters can be done in a systematic way by using the Hartree–Fock self-
consistent field method (Section 10.9) that is used to obtain atomic orbitals. Equa-
tions of the form

ˆ (11 47)

ˆwhere is the effective one-electron Hamiltonian, is the molecular orbital
for the th electron, and is the orbital energy for the th electron, are solved by
the iterative methods described in Section 10.9 for atoms to obtain self-consistent
molecular orbitals. These Hartree–Fock wavefunctions do not adequately corre-
late the motion of electrons with unlike spins, and further improvements can be
obtained by using a wavefunction that is a linear combination of functions repre-
senting different electronic configurations of the molecule. For example, the dou-
bly excited configuration (1 ) may be added to the molecular orbital because it
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Figure 11.12

has the same symmetry. By using 100-term wavefunctions, Kolos and Wolniewicz*
have obtained 36 117 8 cm in comparison with the observed value of
36 117 3 1 0 cm . Their theoretical value of the internuclear distance of H
is 74.140 pm, compared with the experimental value from spectroscopic measure-
ments of 74.139 pm.

The hydrogen molecule has a large number of excited electronic states. The
potential energy curves for some of the lowest are shown in Fig. 11.12. The states
of the H molecule (or any diatomic molecule) are given by molecular term
symbols, analogous to the atomic term symbols of Section 10.13. In diatomic
molecules the orbital angular momenta of the electrons couple to give a resul-
tant orbital angular momentum , and the electron spin momenta combine to
give a resultant spin angular momentum . The component of the orbital angular
momentum along the axis of the molecule is given by

(11 48)

†



Σh

Ωh

L S

Λh

�

. . .

. . .

m m
M

S S

.

m m M
S

L
S

I N

L h
S h

h

i i

L

S

L

411

L
S

High Resolution Spectroscopy,

� �

�

�

�

� � � �
�

� � �

�

�2 1

1 2

1

Orbital angular
momentum and spin angular mo-
mentum for a diatomic molecule
when the spin–orbit coupling is
weak, as in Hund’s case (a).
[Reproduced from J. M. Hollas,

Fig.
6.31, p. 316. Boston: Butterworth,
1982; by permission of the publish-
ers, Butterworth & Co. (Publishers)
Ltd. .]

11.5 Electron Configurations of Homonuclear Diatomic Molecules
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where 0 for a orbital, 1 for a orbital, and so on. The quan-
tum number is defined as the absolute value of and is represented by the
following code letters:

0 1 2 3

Symbol

in analogy to atomic term symbols. The multiplicity of a state of a diatomic
molecule is given by 2 1, where is the sum of the spins of the electrons in
the molecule. The term symbol of a molecule is represented by

(11 49)

For the hydrogen molecule in the ground state, there are two electrons in
orbitals and so 0, 0, and 0. Since 0, the molecule is in a

state. Since the spins of the electrons are opposed, 0, and the molecular
term symbol is (a singlet sigma state).

For terms a superscript of plus or minus is added according to the behavior
of the wavefunction on reflection in the plane containing the internuclear axis. A
plus sign indicates that the wavefunction is invariant under this operation, and a
negative sign indicates the wavefunction changes sign on reflection in this plane. If
a diatomic molecule has a center of symmetry, a right subscript of g or u is attached
to the term symbol to denote the parity of the orbital. As we have seen before
(Section 11.3), the parity of an orbital is determined by observing the inversion
symmetry. When a point on an orbital is inverted an equal distance through the
center of the molecule, the orbital is gerade if it has the same sign at the two
points. The parity of a multielectron molecule is obtained by noting g or u for
every orbital and forming products using g g g, g u u, and u u g.

There are four kinds of angular momenta in a diatomic molecule, of which we
have discussed two: the electronic orbital angular momentum and the electronic
spin angular momentum . The other two are the nuclear spin angular momen-
tum , which we will not consider, and the angular momentum of the rotational
motion of the nuclear framework. These angular momenta are coupled by small
terms in the Hamiltonian. For low-mass diatomic molecules, the spin–orbit cou-
pling is weak [called Hund’s case (a) in the molecular spectroscopist’s jargon], and
the result of the coupling is illustrated in Fig. 11.13. The components of ( ¯)
and ( ¯) along the internuclear axis are added to form a total angular momen-
tum component along that axis labeled ¯ . is given by . These quantum
numbers will come up again when we discuss selection rules in molecular spec-
troscopy.

As mentioned in Section 11.3, the order in which molecular orbitals of homonu-
clear diatomic molecules are filled depends on the nuclear charge and the in-
ternuclear distance. The variation in the sequence in energies is similar to that
encountered with the relative energies of atomic orbitals of the elements, which
depend on atomic number. To derive the possible sequences from the lowest en-
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ergy up, it is useful to introduce a second way of bridging the gap between atomic
and molecular systems. In addition to the separated atoms approach, there is the

approach. In this approach, the molecule is thought of first as the
atom obtained from coalescing all the nuclei in the molecule. The united atom
for H is He, and the united atom for N is Si. The electronic structure of the
molecule is obtained by thinking about the changes in orbitals that occur when
the nucleus of the united atom is pulled apart to form the nuclei of the molecule
at their equilibrium distances. In the in Fig. 11.14, the pos-
sible energy levels of the united atom for a homonuclear diatomic molecule are
given on the left and the sum of the energies of the two separated atoms are given
on the right. An important principle for correlation diagrams is the noncrossing
rule, which states that the lines for the energies of molecular orbitals with the
same symmetry cannot cross. Symmetry in this context refers to whether the or-
bital is or whether it is g or u. The orbitals are connected in the order of
increasing energy. The molecular orbitals coming out of the united atoms are des-
ignated 1 2 2 and the resulting molecular orbitals are designated
1 1 2 , . . . . The reason for dropping the s, p, d, . . . in the latter is that differ-
ent angular momentum quantum numbers may be involved in the united atoms
and separated atoms approaches; for example, 2p correlates with 1s.

The electronic structures of successive homonuclear diatomic molecules may
be obtained from the correlation diagram by use of the aufbau principle; that is,
electrons are added to orbitals in pairs, in order of increasing energy. Notice that
the order of orbital energies varies with . Two electrons may be placed in a
level and four in a or level (since ¯ , making these doubly degen-
erate orbitals). The electron configurations of the ground states of homonuclear
diatomic molecules from the first row of the periodic table are given in Table 11.1.
In molecules with many electrons, the inner electrons tend to be concentrated
around the nuclei and take little part in forming bonds. The fact that a configura-
tion is listed does not mean that the molecule is stable. Orbitals that tend to build
up electron density between the atoms are referred to as The
bonding orbitals are 1 2 1 3 , . . . . Orbitals with nodal planes between
the nuclei are (Section 11.3). Thus, 1 2 1 , and 3 are
antibonding orbitals. Notice that the orbitals of homonuclear diatomic molecules
come in pairs, one bonding and one antibonding. The bonding energy of an elec-
tron in a bonding orbital is usually slightly less than the antibonding energy of an
electron in an antibonding orbital.

It is useful to define a that is roughly proportional to the strength
of bonding. The bond order is equal to the number of bonding pairs of electrons
minus the number of antibonding pairs. Bond orders of 1, 2, and 3 correspond
with what are usually called single, double, and triple bonds.

We now discuss, one by one, the homonuclear diatomic molecules of the first
row elements.

The third electron in the molecular ion He is in an antibonding orbital, but
there is net bonding because there are two electrons in bonding orbitals. This ion
is observed in electric arcs.

�
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molecules indicated. (From R. S. Berry, S. A. Rice, and J. Ross, Oxford
University Press, 2000.)
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He
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Figure 11.14

According to simple molecular orbital theory, in He a pair of electrons would
occupy the 1 orbital and a pair would occupy the 1 orbital. Since both the
bonding and antibonding orbitals are filled, there is no decrease in energy as com-
pared with two isolated helium atoms, and a stable He molecule is not formed.
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/pm eV kJ mol

H 1 (1 ) 106.0 2.793 269.483
H 2 (1 ) 1 74.12 4.7483 458.135
He 3 (1 ) (1 ) 108.0 2.5 238
He 4 (1 ) (1 ) 0 — — —
Li 6 [He ](2 ) 1 267.3 1.14 110.0
Be 8 [He ](2 ) (2 ) 0 — — —
B 10 [Be ](1 ) 1 158.9 3.0 290
C 12 [Be ](1 ) 2 124.2 6.36 613.8
N 13 [Be ](1 ) (3 ) 2 111.6 8.86 854.8
N 14 [Be ](1 ) (3 ) 3 109.4 9.902 955.42
O 15 [N ](1 ) 2 112.27 6.77 653.1
O 16 [N ](1 ) 2 120.74 5.213 502.9
F 18 [N ](1 ) 1 143.5 1.34 118.8
Ne 20 [N ](1 ) (3 ) 0 — — —
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The additional pair of electrons in Li beyond those for He go into the 2 orbital.
Thus, there is a single bond between the two nuclei. The vapor of lithium metal is
primarily monatomic because the Li bond is quite weak and a high temperature
is needed to vaporize the metal.

The additional pair of electrons in Be beyond Li goes into the 2 antibonding
orbital. Thus, as in the case of He , there is no net stabilization as compared with
isolated Be atoms.

According to Fig. 11.14 the additional pair of electrons in B beyond Be go into
the 1 orbital. A single bond is formed, and the diatomic molecule is reasonably
stable. Spectroscopic measurements show that its ground state is a triplet, so that
the outer two electrons are in different 1 orbitals. If there are several orbitals
with the same energy, the electrons spread themselves among several orbitals.
Since there are two unpaired electrons, the ground state is a triplet.

The additional two electrons in C beyond B fill the two half-vacant 1 bonding
orbitals. Thus, C has four electrons in bonding orbitals that are not compensated
by electrons in corresponding antibonding orbitals. Since C has a bond order of 2,
compared with 1 for B , we would expect C to have tighter binding and a smaller
internuclear distance than B .
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Although C exists in high-temperature gases rich in carbon, other species
(C C ) also exist, and carbon forms networks in the solid state (diamond and
graphite) rather than condensing as C . In addition, molecular species such as C
and C have been found to be stable. Both of these phenomena are due to the
fact that the energies of the 1 and 3 are so close that the molecule C is easily
raised into the excited configuration (1 ) (3 ). The unpaired electrons in this
molecule can form bonds with further carbon atoms and thereby compensate for
the energy of excitation.

The additional pair of electrons in N beyond C fills the 3 bonding orbital. Thus,
N has a singlet ground state and a triple bond. Because of this strong bonding to
form diatomic molecules, N is a very stable molecule with a short internuclear
distance. The first excited state of N is 6.2 eV above the ground state.

Note from Fig. 11.14 that the order of the 1 and 3 orbitals changes as we
go from N to O .

According to simple molecular orbital theory, the additional pair of electrons in
O beyond N go into the 1 orbitals. Since there are two degenerate 1 orbitals,
the two electrons can go into either the same or different orbitals. If they go into
the same orbital, a singlet state is formed, and if they go into different orbitals, a
triplet state is formed. As in the case of atoms, where Hund’s rule predicts that
the triplet state has the lower energy, in O the electrons go into different orbitals
and have parallel spins. Therefore, in the ground state O has a spin of one and
is paramagnetic (Section 22.6). This prediction was one of the early triumphs of
MO theory.

The additional two electrons in F beyond O fill the 1 orbitals so that the
ground state is a singlet. Since the electron pairs in two 1 antibonding orbitals
approximately cancel the bonding due to two electron pairs in the bonding or-
bitals, the bonding is weaker than in O , and the internuclear distance is greater.

The 3 orbital would be filled in Ne , and so the antibonding effects cancel the
bonding effects; no stable molecule is formed.

Correlation diagrams can be constructed for heteronuclear diatomic mole-
cules, but they have to take account of the fact that the energy levels in the two
atoms may be quite different. For atomic orbitals in two atoms to be involved in
bonding, they must have the same properties and energies that are not
too different. The electrons in heteronuclear diatomic molecules tend to localize
more around one nucleus than the other, so that the molecule tends to have a
dipole moment (Section 11.8). In the extreme case, ionic molecules (Section 11.9)
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are formed. The difference in affinity of different atoms in a molecule for electrons
is discussed in terms of electronegativity (Section 11.8).

The electronic structure of polyatomic molecules can also be described by the
LCAO-MO method, but now the electronic energy will depend on many internu-
clear distances and angles. Therefore, finding the equilibrium geometry by min-
imizing the energy (calculated with the variational method) with respect to all
these coordinates is a difficult and time-consuming process. Such calculations are
becoming more routine as more powerful computers become available. The ac-
curacy of the calculation depends on the number of atomic orbitals used. When
a large number of atomic orbitals or basis set is used, the internuclear distances
and bond angles of small molecules (fewer than 6 atoms) can be calculated as
accurately as they can be measured (distances to a few pm and bond angles to a
degree or two). Today, the ground-state energies are often calculated accurately
enough to be used in thermodynamic calculations.

Since chemical bond energies are the difference between large numbers (of
the order of the energy of a 1s orbital in the hydrogen atom, or 1300 kJ mol ),
one must calculate these large numbers to very high accuracy to obtain chemical
accuracy in the difference. It is therefore important to have simple ways of think-
ing about chemical bonding and molecular structure that, although not accurate,
give a qualitative picture with little numerical work. One such method, introduced
by Heitler and London for H just after the advent of quantum mechanics, is called
the valence bond method. We present a qualitative picture of this method in this
section.

The valence bond method is based on the idea that a chemical bond is formed
when there is good overlap between the atomic orbitals of the participating atoms.
When the idea of is added to this, a rationalization of the bond
angles in simple molecules is found. Hybrid orbitals are linear combinations of
atomic orbitals on a single atom with definite angular relationships among them.
We will illustrate these ideas by examining the molecules BeH , BH , CH , NH ,
and H O.

The H–Be–H bond angle is 180 . The ground-state electron configuration of
the beryllium atom is 1s 2s . To represent the directionality of the BeH bonds
and the fact that they are equivalent, two hybrid orbitals of Be are formed by
taking a linear combination of the 2s orbital and one of the 2p orbitals. Energy is
required to excite a 2s electron to a 2p orbital, but more than enough energy for
this is obtained when a stable chemical compound with two bonds is formed. The
two sp orbitals formed in this way are

2 (2s 2p ) (11 50)

2 (2s 2p ) (11 51)

where these orbitals have been normalized in the usual way. There are two of these
hybrid orbitals because two beryllium atomic orbitals have been used. When an s
orbital is hybridized with a p orbital, it must be remembered that the p orbital
is positive on one side of the nucleus and negative on the other. The node in the
radial function for the 2s orbital, inside of which the orbital is negative and outside
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Figure 11.15

Figure 11.16

of which it is positive, may be neglected since the nodal surface is quite close
to the nucleus and the contribution of this region to bonding is small. In
the amplitudes tend to cancel on one side of the nucleus and add on the other as
shown in Fig. 11.15. The orbital is equivalent but points in the opposite direc-
tion. The lobes of these orbitals extend much farther along the axis than the 2s
and 2p orbitals, and so they provide more overlap with the 1s orbitals of the two
hydrogen atoms in BeH .

The two Be–H bonds are described by combining the 1s and 1s orbitals
for the two protons with these hybrid orbitals to obtain the following two bond
orbitals:

1s (11 52)

1s (11 53)

According to valence bond theory BeH is stabilized by the overlap of the two
beryllium sp orbitals and the two hydrogen 1s orbitals. The 1s electrons of beryl-
lium are not involved.

The three B–H bonds in BH lie in a plane with H–B–H angles of 120 . The
boron atom has the configuration 1s 2s 2p. The following three hybrid orbitals of
boron are constructed to account for three equivalent bonds in BH :

1 2
2s 2p (11 54)

33

1 1 1
2s 2p 2p (11 55)

3 6 2

1 1 1
2s 2p 2p (11 56)

3 6 2

These wavefunctions have been normalized and are orthogonal. By substituting
the expressions for the angular parts of the p and p orbitals, it is readily shown
that the sp orbitals lie in a plane with lobes pointed in directions separated by
120 , as shown in Fig. 11.16.

Carbon atoms have the electron configuration 1s 2s 2p , and the outer four
valence electrons may be used to form sp hybrid orbitals:

1
(2s 2p 2p 2p ) (11 57)

4

1
(2s 2p 2p 2p ) (11 58)

4

1
(2s 2p 2p 2p ) (11 59)

4

1
(2s 2p 2p 2p ) (11 60)

4

These orthonormal orbitals point in the directions shown in Fig. 11.17, in
agreement with the tetrahedral structure of CH and with the geometries of
the alkanes. These four electrons in can form bonds with
hydrogen or other elements. For other elements, further hybridization schemes
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Figure 11.18

involving d orbitals can be used to account for bipyramidal structures (coordina-
tion number 5) and octahedral structures (coordination number 6).

When we come to NH , we must introduce the idea of electrons. We
use the 2s 2p 2p 2p configuration on N to form four sp hybrids just as in carbon.
Now we must put two valence electrons of N in one of these orbitals, leaving three
available to bond to the hydrogens. This leads to a tetrahedral structure of NH
(bond angle 109 ) with one apex of the tetrahedron containing a lone electron
pair, as shown in Fig. 11.18 . (The experimentally observed bond angle is 107 .)
These lone-pair electrons are available for bonding to, for example, a proton, H ,
to form NH .

The water molecule can be treated in much the same manner, except that we
now have two lone pairs, as shown in Fig. 11.18 . This predicts that the bond angle
in H O is the tetrahedral angle 109 instead of the experimentally observed 104 .
The small difference can be accounted for by adding more terms to the wavefunc-
tion. The lone pairs of H O are available to bond to other atoms. In particular, the
interaction between hydrogen atoms on other water molecules and the lone pairs
gives rise to the hydrogen bond (see Section 11.10) and the unusual properties
of H O.

As the speed of computer calculations and the size of computer memories
have increased, it has become possible to make useful quantum mechanical cal-
culations on larger and larger molecules. This is done by expressing molecular or-
bitals as linear combinations of atomic orbitals and then determining coefficients
in the linear combinations by a self-consistent field calculation (LCAO-MO-SCF).
The application of the Hartree–Fock self-consistent field method (Section 10.9) to
the calculation of molecular properties was developed by Roothaan in the 1950s
and is referred to as the Hartree–Fock-Roothaan method. When this method is
applied to larger and larger molecules, integrals in the resulting secular determi-
nant become very difficult to evaluate. More recently, computer programs have
been written for these calculations using Gaussian functions, rather than Slater
orbitals. The 1s Slater orbital (STO) and Gaussian function (GF) in each of these
basis sets is

( ) e (11 61)

2
( ) e (11 62)
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Show that the product of a one-dimensional Gaussian function centered at

e

and one centered at

e

is a Gaussian function centered at

The product of these Gaussian functions is

exp[ ( ) ( ) ]

exp[ 2 2 ]

Now we want to rearrange this equation so as to find a term in ( ) .

exp[ ( )]exp ( ) 2

exp ( )

exp[ ( )]exp ( )[ 2 ] exp[( ) ]

( )
exp exp[ ( )( ) ]

Thus this product is a Gaussian function centered at . This derivation can be extended
to the three-dimensional Gaussian functions that are involved in molecules.
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where and are orbital exponents. These two functions have different shapes,
but the desired shape of the Slater orbital can be approximated by representing
the 1s orbital by a sum of Gaussian functions such as equation 11.62.

(11 63)

The reason Gaussian functions are used is that all integrals (e.g., overlap integrals)
that arise theoretically can be calculated analytically, rather than numerically.

Programs for use on computers have been developed by Pople and co-
workers,* and John Pople was awarded the Nobel Prize in chemistry for 1998.

Molecules with extensive bonding systems, such as benzene, are not described
very well by valence bond theory because the electrons are often not localized in
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Figure 11.19

a single bond. Their electronic structure can be described in a simple but approx-
imate molecular orbital method developed by Hückel in 1930. The two types of
bonds involved in these molecules are illustrated in Fig. 11.19 for ethylene (C H ).
Ethylene is a planar molecule, and the bonds between the carbon and hydrogen
atoms in the plane are sp hybrid orbitals of carbon and 1s orbitals of hydrogen.
This forms the shown in Fig. 11.19 . The 2p orbitals of the
carbon atoms that are not involved in the framework overlap sideways, forming
the system, as shown in Fig. 11.19 . This simple picture explains the bond angles
in ethylene and its planar structure.

Hückel molecular orbital theory assumes that the electrons, which are re-
sponsible for the special properties of conjugated and aromatic hydrocarbons, do
not interact with one another, and so the many-electron wavefunction is just a
product of one-electron molecular orbitals. The molecular orbital of the delocal-
ized orbital of ethylene is represented by

(11 64)

where and are the 2p orbitals of the two carbon atoms. The corresponding
secular determinant is

0 (11 65)

ˆwhere d and d .
In Hückel molecular orbital theory, the secular equation is simplified by mak-

ing the following assumptions:

Overlap integrals are set equal to zero unless , when 1.
All the diagonal elements in the secular equation are assumed to be the same;
thus, the Coulomb integrals are all set equal to .
The resonance integrals are set equal to zero, except for those on neigh-
boring atoms, which are set equal to .

With these assumptions the secular equation for the electrons in ethylene
becomes

0 (11 66)

In Hückel theory, the Coulomb integral and the resonance integral are re-
garded as empirical parameters to be evaluated from experimental data on the
molecule. Thus, in Hückel theory it is unnecessary to specify the Hamiltonian
operator.

Equation 11.66 is readily solved for the energy by using the quadratic formula
to obtain . Thus, there are bonding and antibonding orbitals, as shown
in Fig. 11.20. The resonance integral is negative, and so the energy of the lowest
level is . The bonding orbital is occupied by an electron pair, and so the
electronic energy of ethylene is 2 2 .

The wavefunctions for the bonding and antibonding orbitals are obtained by
going back to the pair of linear algebraic equations that gave rise to the secular
equation:

( ) 0 (11 67)

( ) 0 (11 68)
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Substituting in either equation yields so that the wavefunction
for the bonding orbital is

2 ( ) (11 69)

The bonding orbital is shown in Fig. 11.20 alongside the energy level. Substituting
into equation 11.67 or 11.68 yields , so that the wavefunction

for the antibonding orbital is

2 ( ) (11 70)

The antibonding orbital is also shown in Fig. 11.20. Notice the resemblance to the
LCAO orbitals of H (Section 11.3).

The Hückel theory gives us an estimate of the excitation energy to the first
excited state of ethylene; it is evident from Fig. 11.20 that this excitation energy
is 2 . This figure provides the opportunity to introduce some nomenclature that
will be useful later. The is referred to as HOMO,
and the is referred to as LUMO.

The electronic energy of planar 1,3-butadiene (CH CHCH CH ) is
readily calculated using Hückel theory. The secular determinantal equation is

0 0
0

0 (11 71)
0
0 0

If is factored from each column and ( )/ is replaced by , we obtain

1 0 0
1 1 0 0 (11 72)
0 1 1
0 0 1
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or 3 1 0, so that 0 618 1 618. Thus, for 1,3-butadiene there
are four possible energy levels, two bonding and two antibonding, as shown in
Fig. 11.21:

1 618

0 618

0 618

1 618 (11 73)

The four electrons occupy the two bonding orbitals so that the electronic
energy is

2( 1 618 ) 2( 0 618 )

4 4 472 (11 74)

The lowest excitation energy is 1 236 .
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*The derivation of these wavefunctions is given in I. N. Levine, 5th ed., Upper
Saddle River, NJ: Prentice-Hall, 1999.
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The 2 orbital of butadiene is the HOMO, a bonding orbital, and the 3
orbital is the LUMO, an antibonding orbital.

The four Hückel molecular orbitals for 1,3-butadiene are*

0 372 0 602 0 602 0 372
0 602 0 372 0 372 0 602
0 602 0 372 0 372 0 602
0 372 0 602 0 602 0 372 (11 75)

These four molecular orbitals are indicated in Fig. 11.21. Notice that the orbitals
extend the entire length of the molecule. (For the calculation of these coefficients,
see Computer Problem 11.C.)

The Hückel secular determinant for benzene is

0 0 0
0 0 0

0 0 0 0 (11 76)
0 0 0
0 0 0

0 0 0

The six roots are

2

2 (11 77)

Since benzene has six electrons, pairs of electrons go in the three lowest energy
orbitals (those with plus signs in ). Thus the electronic energy in benzene is

2( 2 ) 4( )

6 8 (11 78)

The equations for the six Hückel molecular orbitals for benzene are not given
here, but the corresponding electron densities are shown in Fig. 11.22. Note that
the electronic energy in C H is more negative than three times the value in
C H , indicating that C H does not contain three double bonds. The difference
is called the delocalization energy.

The Hückel theory is an example of a semiempirical molecular orbital
method. We have used a simple Hamiltonian (neglecting many terms) to find
the orbitals and their energies. We now can use experimental quantities to fit
and for ethylene. We then use the values to make predictions for butadiene,
benzene, and so on. This method does not give quantitative results, but it does
provide us with qualitative insights about larger systems for which the more com-
putationally intensive methods are too costly or time-consuming, and it gives us
insight into the excited electronic states of conjugated electron molecules.
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Calculate the Hückel molecular orbital energies of the planar radical (i.e., one nonpaired
electron) CH CHCH .
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The orbital corresponding to is called a nonbonding orbital since its energy is unchanged
from the atomic value , which is the 2p atomic orbital energy in this system.
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11.8 DIPOLE MOMENTS AND IONIC BONDING
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These ideas can be applied to conjugated polymeric molecules of indefinite
length.

The electric dipole moment of a neutral molecule containing charges is de-
fined by

(11 79)

where is the position vector of . The dipole moment is a vector because it
points in a certain direction, but we will often use the magnitude of the vector.
For two equal but opposite charges the magnitude of the dipole moment is given
by , where is the distance between the charges. The dipole moment has
the SI units C m, where C is the coulomb and m is the meter.*

�
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Calculate the dipole moment of NaCl in the gas phase assuming equal and opposite charges
equal to the proton charge. The equilibrium internuclear distance is 236 pm.

(1 602 10 C)(236 10 m) 38 10 C m
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Example 11.3

electric dipole moment operator,

ionic bond
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The dipole moment of a homonuclear diatomic molecule is zero because the
electrons are shared equally by the two atoms. In general, a heteronuclear di-
atomic molecule will have a dipole moment, as expected from the difference in
electronegativities. For a neutral molecule, the expectation value of the dipole
moment in the th electronic state is given by

ˆ d (11 80)

where ˆ is the as given above by replacing
ˆby .
The determination of dipole moments and some uses are discussed in Chapter

22, along with magnetic dipole moments.
When atoms with nearly the same electronegativity form bonds, the molecu-

lar orbitals are spread more or less evenly over the two atoms, and covalent bonds
are formed. When atoms have somewhat different electronegativities, the bond-
ing electrons are not evenly shared, but are drawn toward the more electroneg-
ative atom. When the electronegativities are quite different, an electron moves
completely to the more electronegative atom and an is formed.

The interaction energy ( ) of the atoms in an ionic bond can be calculated
using Coulomb’s law (equation 10.1). As two ions approach each other closely
because of Coulomb attraction, an equilibrium position is reached at some point
because of repulsive forces that balance the attraction. The short-range repul-
sion energy increases very rapidly when the charge clouds of the two ions begin
to overlap. The repulsion energy may be represented by an empirical expression
such as exp( ). Thus, the potential energy of a diatomic molecule is
approximately

( ) e (11 81)
4

where the energy is measured with respect to the separated ions. Further effects
may be taken into account; for example, the electric field of each ion polarizes
(Section 22.2) the electron cloud of the other ion and produces a further energy
of attraction. However, the short-range repulsion energy and polarization energy
are so small and close to that the Coulomb attractive term alone gives a good
approximation to the dissociation energy of an ionic molecule.

Equation 11.81 applies to dissociation into separated ions. However, the
ground state of the dissociated system consists of atoms rather than ions. The
dissociation energy into atoms is given by

(MX M X) (MX M X ) (M) (X)

where (MX M X ) is the dissociation energy into ions, (M) is the ion-
ization energy of metal atom, and (X) is the electron affinity of the nonmetal
atom. Since the lowest ionization potentials are greater than the highest electron

y y

y
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The dissociation energy of NaCl(g) into atoms is 4.29 eV. What is the dissociation energy
into ions, and how does this compare with what would be expected from Coulomb’s law?
The equilibrium internuclear distance in the gaseous NaCl molecule is 0.2361 nm.

(NaCl Na Cl ) (NaCl Na Cl) (Na) (Cl)

4 29 5 14 3 61 5 82 eV

If only the Coulomb term is used, then

(NaCl Na Cl )
4

(1 602 10 C)
4 (8 854 10 C N m )(0 2361 10 m)

9 770 10 J

1 602 10 J eV

6 10 eV

Thus, the Coulomb term accounts for the observed dissociation energy within 0.3 eV.

The energy of interaction of two nitrogen molecules as a function of distance
according to the Lennard-Jones potential. As is customary, the energy is divided by the
Boltzmann constant so that the ordinate is in kelvins. (See Computer Problem 11.H.)
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Figure 11.23

affinities, (MX M X) is smaller than (MX M X ). What hap-
pens when MX dissociates to M X is that at some large internuclear distance
the system can decrease its energy by moving the electron from X to M .

When two neutral molecules come close to one another, the various interactions
between the electrons and nuclei of one molecule and the electrons and nuclei of
the other produce a potential energy of interaction. At very small distances, the
molecules repel each other strongly. At certain intermediate distances, the poten-
tial energy of interaction is negative; the molecules attract each other, but usually
weakly. At very large distances, the potential energy approaches zero. Thus, if we
plot the interaction energy versus intermolecular distance, we obtain curves such
as Fig. 11.23.
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Attractive Forces
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The long-range attractive interactions between neutral molecules are called
and include a number of terms, all arising from the electrostatic

interactions. For example, if the two molecules have permanent dipole moments
(Section 11.8), then at fixed angles with respect to one another the dipole–dipole
interaction between molecules varies as , where is the intermolecular dis-
tance. In the gas or liquid phase, molecules will have random orientations, so the
thermal average over the angular part of the interaction causes the first nonzero
term in the interaction to be

2 1
( ) (11 82)

3 4

where and are the permanent dipole moments of the two molecules, is
the temperature, and dd means dipole–dipole. Notice that the interaction is nega-
tive (attractive) since there is a preference in the thermal (statistical mechanical)
averaging for the molecules to orient in such a way as to attract each other and
lower their mutual energy. As the temperature increases, this tendency is less im-
portant, so the attraction decreases.

Another term in the attractive potential energy arises from the
between molecules. If molecule A has a dipole mo-

ment , this creates an electric field that polarizes the charges on molecule
B, creating an induced dipole moment of magnitude , where is called
the polarizability of molecule B. The dipole–induced dipole attractive energy is
given by

( ) (11 83)
(4 )

Notice that it also varies as .
There is a third term varying as that was explained by London in 1930

and is sometimes called the or It occurs even when
the molecules have no permanent dipole moment, and it can be visualized as the
interaction between the fluctuating charge distribution on molecule A with that of
molecule B. The rules of quantum mechanics say that even though molecule A has
no permanent dipole moment, the average value of the square of the dipole mo-
ment operator is not zero. Therefore, we can say that at any instant the molecule
has a dipole moment that polarizes molecule B (and vice versa), leading to a
potential varying as . The exact form is complicated, but a good approxi-
mation is

3 1
( ) (11 84)

2 (4 )

where and are approximately equal to the energies of the first electronic
transitions of these molecules, and are their polarizabilities, and disp means
dispersion.

These three terms add to give the total attractive energy between molecules
A and B. In most cases, this energy is on the order of 2 10 eV at a distance
of 0.5 nm. Of course, the larger the dipole moments or the polarizabilities, the
stronger is the attraction.



Lennard-Jones interaction potential
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The intermolecular potential energy when atoms and molecules approach
each other is so important that more time could be spent on this topic. More
complicated equations for intermolecular potential energies are used because
the twelfth-power dependence in the Lennard-Jones potential is arbitrary. Pair
potentials can also be used to calculate molecule–molecule potentials by using
the sum of atom–atom potentials. Calculations of this type are used in predicting
minimum energy geometries of interacting macromolecules. Examples are the
binding of an inhibitor by an enzyme and the folding of a peptide chain to form a
globular protein.
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Note that the depth of the potential well
has been expressed as a temperature by di-
viding the energy by the Boltzmann con-
stant .
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Lennard-Jones
Potential Parameters

/K
/

Ar 120 341
Xe 221 410
H 37 293
N 95.1 370
O 118 358
Cl 256 440
CO 197 430
CH 148 382
C H 243 860

By differentiation of the expression for the Lennard-Jones potential, show that the distance
at the minimum where d /d 0 is 2 . Substituting this relationship into

equation 11.85, show that the Lennard-Jones potential may also conveniently be given by

2

Differentiating equation 11.85 and setting the derivative equal to zero, we obtain

d 12 6
4 0

d

If we represent the value of at the minimum by , then

2

Substituting this in equation 11.85 yields the desired expression for .
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Table 11.2

At small distances, the molecules repel strongly, so when this force is added to the
attractive forces we have discussed, we obtain the total intermolecular potential
energy. To represent this as a simple function of , we can take the repulsion to be
proportional to or , where and have to be fit empirically. One very
useful empirical function is named for J. E. Lennard-Jones and is given by

4 (11 85)

In this “6–12” potential, the twelfth-power dependence for the repulsive energy is
chosen for convenience and because it is a reasonable fit to the data. The minimum
in this potential is at (2) , where . Note that 0 at , so
the energy rises very steeply for small (see Fig. 11.23). The values of and can
be found by fitting experimental data on the second virial coefficient, gas viscosity,
and molecular beam scattering cross sections. Typical values for the parameters
and for interactions between like atoms or molecules are given in Table 11.2.
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11.10 SPECIAL TOPICS: HYDROGEN BONDS, HYBRID
ORBITALS, AND BAND THEORY OF SOLIDS
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Figure 11.24

A number of unusual structures such as HF and formic acid dimer in the gas
phase (see Fig. 11.24) are evidence for the formation of hydrogen bonds. The un-
usually high acid dissociation constant of salicylic acid, as compared with the meta
and para isomers, is also evidence for a hydrogen bond. A hydrogen bond results
when a proton may be shared between two electronegative atoms, such as F, O, or
N, that are the right distance apart. The proton of the hydrogen bond is attracted
by the high concentration of negative charge in the vicinity of these electronega-
tive atoms. Fluorine forms very strong hydrogen bonds; oxygen, weaker ones; and
nitrogen, still weaker ones. The unusual properties of water are due to a large ex-
tent to the formation of hydrogen bonds involving the four lone-pair electrons on
oxygen. In ice there is a tetrahedral arrangement, with each oxygen atom bonded
to four hydrogen atoms. Hydrogen bonds are formed along the axis of each lone
pair in ice, and their existence in liquid water is responsible for the high boiling
point of water as compared with the boiling points of hydrides of other elements in
the same column of the periodic table (H S, 62 C; H Se, 42 C; H Te, 4 C).
When water is vaporized, these hydrogen bonds are broken, but in formic and
acetic acids the hydrogen bonds are strong enough for dimers of the type illus-
trated in Fig. 11.24 to exist in the vapor. Hydrogen bonds between N and O are
responsible for the stability of the helix formed by polypeptides and found in
protein molecules.

We want to construct a hybrid orbital (made up of 2p , 2p , 2p , and 2s orbitals)
that points in a particular direction in space. To take a simple example, we will
construct two equivalent orbitals in the plane, one pointing along a line making
an angle with the axis and the other pointing along a line making an angle
with the axis. Since they are in the plane, we need only consider the 2p , 2p ,
and 2s orbitals. First we form linear combinations of the p orbitals that point in
the specified directions:

(cos ) (sin ) (cos ) (sin )

Notice that these orbitals are not orthogonal unless 2 90:

d cos sin cos 2 (11 86)

We can now form linear combinations of , , and that are orthogonal
by using the following relation (note that the coefficients are equal so that the
orbitals are equivalent):

To find and , and are normalized and made orthogonal:

Normalization: 1 (11 87)

Orthogonality: cos 2 0 (11 88)
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Figure 11.26

Thus,

cos 2
(11 89)

cos 2 1

1
(11 90)

1 cos 2

In Fig. 11.25, (the 2s contribution) and (the 2p contribution) are plotted
versus 2 . (Note that 2 90. Why?) A third orbital orthogonal to these two can
be constructed that points along the negative axis:

with 1 for normalization and cos for orthogonality.
After squaring the last expression and using the results for and , we find

1 cos 2
(11 91)

1 cos 2

2 cos 2
(11 92)

cos 2 1

These are plotted in Fig. 11.26. Note that is equivalent to and (i.e.,
) only when 2 120. For this value of , , , and are the sp

hybrid orbitals of equations 11.54–11.56.

In Chapter 23 we will consider three-dimensional solids, but now we can consider
the quantum theory of one-dimensional solids. In considering diatomic molecules
in Fig. 11.8, we saw how combining of the 1s orbitals of the two atoms gives rise to
two molecular orbitals. When more atoms are added in a line to form molecules
with 3, 4, . . . , atoms, there are molecular orbitals, as shown in Fig. 11.27. When

is large, we can think of a continuous of energy levels, although the band
is really made up of discrete levels. The lowest level in the s band is fully bonding
(i.e., the coefficients in the combination all have the same sign), and the high-
est level in the s band is fully antibonding (i.e., the coefficients alternate in sign).
Above the band of s levels, there is a band of p levels, etc., as shown in Fig. 11.28.
In general there is a between bands, but sometimes the bands overlap.

In considering the electronic structure of a one-dimensional solid here, we
will only consider the situation at 0 K so that we can avoid the effects of
thermal excitation of electrons. Let us assume that the atoms have enough elec-
trons to fill the orbitals in the s band (2 electrons per orbital), but only half-fill the
p band. In this case electrons in the HOMO level of the p band have essentially
the same energy as those in the LUMO level of the p band, and thus electrons
can easily be excited. In this case, this hypothetical one-dimensional solid may be
a conductor. Metallic conductors, semiconductors, and insulators and the effects
of temperature are discussed in Chapter 23.
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Formation of a band of very closely spaced energy levels as atoms overlap
s levels in a one-dimensional solid.

Formation of an s band and a p band in a one-dimensional solid. The lowest
level in the s band is fully bonding, and the highest level in the s band is fully antibond-
ing. This also applies to the p band. There is a gap between the s band and the p band in
the solid that is smaller than the difference in the energies of the s level and the p level
in the isolated atoms.
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Figure 11.27

Figure 11.28
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Since nuclei are thousands of times more massive than electrons, they move
more slowly and can be treated as being stationary in considering the motions
of electrons in molecules. Therefore, the Hamiltonian for electronic motion
takes internuclear distances as independent variables.
The Schrödinger equation for the hydrogen molecule ion can be solved
exactly, but it is not discussed in this chapter because it is complicated. In-
stead, molecular orbitals are discussed because molecular orbitals formed
as linear combinations of atomic orbitals (LCAO) are used with larger
molecules.
The equation for the variation energy of the hydrogen molecule ion contains
two constants and leads to two linear equations in these constants. This leads
to a secular equation that can be solved for the energy of the ground state
and the energy of the excited state.
One-electron molecular orbitals are labeled , , , according to the an-
gular momentum quantum number 0 1 2 in analogy with atomic
term symbols.
In diatomic molecules, the orbital angular momenta of the electrons couple to
give a resultant orbital angular momentum , and the electron spin momenta
combine to give a resultant spin angular momentum . The absolute value of

is designated by , which can have values of 0 1 2 .
The configurations with the different are represented by the term symbols

, , , in analogy with atomic term symbols.
The electron configurations of first-row diatomic molecules help us to un-
derstand their wide-ranging properties. Hybrid orbitals are very useful for
understanding bond angles.
Hückel molecular orbital theory provides a qualitative understanding of en-
ergy levels and spectra of molecules with conjugated double bonds.
Molecules attract each other at short distances by dipole–dipole interaction,
by dipole–induced dipole interaction, and by the dispersion force that occurs
even when the molecules have no permanent dipole moments. The empirical
Lennard-Jones 6–12 potential is often used as an intermolecular potential
function.
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Problems marked with an icon may be more conve- Bond order for a diatomic molecule can be defined by
niently solved on a personal computer with a mathematical ( ), where is the number of electrons in bonding
program. molecular orbitals and is the number of electrons in antibond-

ing orbitals. Calculate the bond orders of H , N , N , and O .Given that the equilibrium distance in H is 106 pm and
that of H is 74.1 pm, calculate the internuclear repulsion energy Discuss the electronic structure of the methyl radical and
in both cases at . Using (H ) 2 79 eV and (H ) the location of the unpaired electron.
4 78 eV, calculate at for both. How many electrons are involved in and bonding

Given the equilibrium dissociation energy for N in orbitals in the following molecules: ( ) ethylene, ( ) ethane, ( )
Table 11.1 and the fundamental vibration frequency 2331 cm , butadiene, and ( ) benzene?
calculate the spectroscopic dissociation energy in kJ mol . The heat of hydrogenation of cyclohexene is

Derive the values of the normalization constants given 121 kJ mol , and the heat of hydrogenation of benzene is
in equations 11.11 and 11.12. 209 kJ mol . What is the reduction in the energy due to the

formation of the bond system in benzene?Plot and versus distance along the internuclear axis
for H in the ground state without worrying about normaliza- Consider the Hückel molecular orbitals for buta-
tion ( 106 pm). diene given in equation 11.75. Each is an atomic p orbital

on carbon atom , so there is a nodal plane in the plane forThe overlap integral for the H molecule can be eval-
each molecular orbital. There are other nodes in these orbitalsuated as
as we move from atom 1 to atom 4 since the orbitals change
sign. How many nodes are there for , , , and ? Where1 e

3 are they? Compare with Fig. 11.21.
In Hückel theory, the contribution to the electronic en-Plot this as a function of / . At what value of is it a maxi-

ergy of a single bond (see the discussion regarding ethylene inmum? At what value of is it a minimum? What is the value of
Section 11.7) is 2 . For butadiene the contribution for two con-at the equilibrium separation, 106 pm?
jugated bonds is 4 472 , while for benzene (three conjugatedExpress the four valence bond wavefunctions for H as
bonds) it is 8 . What is the extra stabilization in butadiene andSlater determinants.
benzene due to the conjugation (in terms of )? Using the data

Show that the hybrid orbitals for tetravalent carbon of Problem 11.14, calculate the value of for benzene and pre-
given by equations 11.57 to 11.60 are orthogonal. dict the value of the extra stabilization for butadiene.

Using the hydrogenlike orbitals of Table 10.1, write out The delocalization energy of a conjugated molecule is
the sp orbitals of equations 11.54–11.56. For , write the the electron energy minus the electron energy for the cor-
wavefunction as a function of for 0 (along the positive responding amount of ethylene. Calculate the delocalization en-
axis), 90 (in the plane), and 180 (along the nega- ergies of 1,3-butadiene and benzene.
tive axis).

The Lennard-Jones parameters for nitrogen areShow that the orbital has been normalized.
/ 95 1 K and 0 37 pm. Plot the potential energy (ex-The solutions of equation 11.24 were given in Section

pressed as / in K) for the interaction of two molecules of ni-11.3. Actually solve the secular determinant to obtain these val-
trogen.ues. For H the secular determinant can be written more sim-

ply as For Ne the parameters of the Lennard-Jones 6–12
potential are / 35 6 K and 275 pm. Plot in J mol0
versus and calculate the distance where d /d 0.
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For KF(g) the dissociation constant is 5.18 eV, and In the cyclobutadiene molecule (see Problem 11.27), we
the dipole moment is 28 7 10 C m. Estimate these val- can allow the bonds to become unequal by making one pair of
ues assuming that the bonding is entirely ionic. The ionization opposite resonance integrals equal to and the other pair equal
potential of K(g) is 4.34 eV, and the electron affinity of F(g) to . This corresponds to unequal bond lengths. Write the sec-
is 3.40 eV. The equilibrium internuclear distance in KF(g) is ular determinant for this case and solve it as a function of / .
0.217 nm. Consider the Hückel model description of buta-

The equilibrium internuclear distance for NaCl(g) is diene given in Section 11.7. What is the electronic configu-
236.1 pm. What dipole moment is expected? The actual value ration of the positive ion? Of the negative ion? In electron
is 3 003 10 C m. How do you explain the difference? paramagnetic resonance spectroscopy (EPR), only the unpaired

spin densities are probed. For these two ions, what are the un-Calculate the dipole moment that HCl would have if it
paired electron densities on each carbon atom (i.e., the squareconsisted of a proton and a chloride ion (considered to be a point
of the coefficients in equation 11.75)?charge) separated by 127 pm (the internuclear distance obtained

from the infrared spectrum). The experimental value is 3 44 lthoughNaCl isanexampleof ionicbonding, itdissociates
10 C m. How do you explain the difference? into atoms. The potential curve as a function of (for larger

than the equilibrium distance) can be approximated by a purelyThe equilibrium distances in HCl, HBr, and HI are 127,
electrostatic attraction, /(4 ), until at some this141, and 161 pm, respectively. Given the dipole moments in Ta-
curve crosses the potential curve for the neutral atoms. Assumeble 22.2, find the effective fractional charges on the H and X ions.
that the potential curve for the neutral atoms is independent ofIs this in accord with the order of the electronegativities of the

and compute the value of at the crossing in terms of the ion-halogens?
ization potential of Na and the electron affinity of Cl. Given thatShow that the dipole moment defined by equation 11.79

(Na) 5 14 eV and (Cl) 3 60 eV, compute this .is independent of the location of the arbitrary origin if the net
Assume that the part of the Lennard-Jones poten-charge on the molecule is zero.

tial for Ar is given by the dispersion force term, equation 11.84.
If the polarizability ( ) of Ar is 1 85 10 J C m, find theThe first excited states of He are formed by exciting
approximate energy of the first electronic excitation using thean electron from the antibonding 1 molecular orbital to the
Lennard-Jones parameters in Table 11.2.bonding 2 orbital. Write the electron configuration. What are

the possible spin states? What is the bond order? Are the elec- Calculate the spectroscopic dissociation energy of O
tronic states g or u? from the data in Tables 11.1 and 13.4 and compare it with the

ˆ ˆ dissociation energy for ideal gas O at absolute zero.Show that if , ( ) ( ) , where
ˆis a constant. Thus if is an eigenfunction of , the eigenvalue Show that the hybrid orbitals and (equations

is . 11.50 and 11.51) are normalized and orthogonal.
Cyclobutadiene, C H , is a four-carbon atom ring. Write Show that the hybrid orbitals and are or-

the secular equation similar to equation 11.71 for the molec- thogonal and normalized.
ular orbitals of this planar molecule. Find the energies of the or- Calculate the lattice energy, which is the dissociation
bitals. Predict the total electronic energy of this compound. Is energy of NaCl(s) into gaseous ions. Given: [Na (g)
there extra electron stabilization (as in butadiene or benzene) 298 K] 609 358 kJ mol ; [Cl (g) 298 K] 233 13 kJ
in this molecule? mol .

An approximate description of the electrons in con- The dipole moments of CH Cl, CH Br, and CH I are
jugated polyene, CH CH(CH CH)CH CH , is the free given in Table 22.2. Explain the relative magnitudes of these mo-
electron molecular orbital model. In this model, the electrons ments in terms of the electronegativity.
are assumed to be noninteracting and to be in a one-dimensional

The Lennard-Jones parameters for argon arebox of length equal to one less than the number of carbons
/ 122 K and 0 34 nm. Plot the potential energy (ex-multiplied by the C–C distance of 150 pm. For butadiene and

pressed as / in K) for the interaction of two molecules ofhexatriene, what are the electron configurations of the ground
argon.and first excited states in terms of particle-in-a-box eigenfunc-

tions (see Section 9.7)? What is the excitation energy from the For methane the parameters for the Lennard-Jones 6–
ground to the first excited state? What is the wavelength of this 12 potential are / 148 K and 0 382 nm. Plot in
transition? kJ mol versus and calculate .

Using Fig. 11.14, give the electronic configurations and
bondordersforthegroundstatesofLi ,Be ,B ,andN found
byremovinganelectronfromthehighestfilledmolecularorbital.

Make three-dimensional plots to show the electron den-In H , what percentage is the equilibrium bond energy
sity in the plane for the hydrogen molecule ion H . Theof the total electron energy?
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parameters from a variational treatment (I. N. Levine, Calculate the energy eigenvalues and eigenvectors for
5th ed., Upper Saddle River, NJ: Prentice-Hall, 1999, 1,3-butadiene using the Hückel method.

pp.389–390)are 2 01bohrs, 1 246bohr ,and 2.965 Calculate the energy eigenvalues and eigenvectors for
bohr . Restrict the plots to 0 1 to 0 1 and 0 1 to 0 1. benzene using the Hückel method. (See Computer Problem

11.C.)A trial wavefunction for the hydrogen molecule ion is

Solve the Hückel secular equation for 1,3-butadiene and1s 1s
write the equations for the four energy levels.

Plot the 1s and 1s wavefunctions with a separation ofThe energies in units of hartrees corresponding to these two
3 between the protons in the hydrogen molecule ion.wavefunctions can be calculated using

Plot the following normalized molecular orbitals of the
hydrogen molecule ion with a separation of 3 between the pro-

1 tons in the hydrogen molecule ion.

1
(1s 1s )1

2(1 )
where

1
(1s 1s )

2(1 )e 1 (overlap integral)
3

( ) Plot the Lennard-Jones potential for the interaction1
of two nitrogen molecules versus the distance between thee 1 (Coulomb integral)
molecules. When the energy is expressed as an equivalent tem-
perature, / 98 1 K and 0 37 nm. ( ) Calculate thee (1 ) (exchange integral)
value of at the minimum by setting the derivative of the po-
tential equal to zero. ( ) Calculate the value of at which thewhere is the distance between the protons in units of . Plot
potential energy is equal to zero., , , , and versus .
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Symmetry Elements and Symmetry Operations
The Rotation Operation and the Symmetry Axis
The Reflection Operation and the Symmetry Plane
The Inversion Operation and the Center of
Symmetry
Rotation-Reflection and the Improper Axis
Identification of Point Groups of Molecules
What Symmetry Tells Us about Dipole Moments
and Optical Activity
Special Topic: Matrix Representations
Special Topic: Character Tables

Ideas about symmetry are of great importance in connection with both theoretical
and experimental studies of molecular structure. The basic principles of symmetry
are applied in quantum mechanics, spectroscopy, and structural determinations by
X-ray, neutron, and electron diffraction. Nature exhibits a great deal of symmetry,
and this is especially evident when we examine molecules in their equilibrium
configurations. By equilibrium configuration we refer to that with the atoms fixed
in their mean positions.

In this chapter we confine our attention to isolated molecules and ions. The
symmetry of an isolated molecule or ion is unaffected by molecules of solvent or
adjacent molecules in a solid. When symmetry is present, certain calculations are
simplified if the symmetry is taken into account. Aspects of symmetry also deter-
mine whether a molecule can be optically active or whether it may have a dipole
moment. In this chapter we will see how symmetry may be treated quantitatively
using group theory. Modern treatments of rotational, vibrational, and electronic
spectroscopy of molecules all make extensive use of group theory.

Symmetry
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Symmetry Element Operations

Center of symmetry Projection through the
(or inversion center of symmetry to
center) an equal distance on the

other side from the center
Proper rotation axis Counterclockwise rotation

about the axis by 2 /
(or 360 / ), where is an
integer

Symmetry plane Reflection across the plane
of symmetry

Improper rotation Counterclockwise rotation
axis (also referred about the axis by 2 /
to as a rotation– followed by reflection in a
reflection axis or plane perpendicular to the
alternating axis) axis (i.e., the combined

operation of a rotation
followed by reflection
across a mirror plane)

Identity element The operation that leaves
the system unchanged

�

�

"
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symmetry element

symmetry operations

point group symmetry.

Chapter 12 Symmetry

12.1 SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS

"

"

Table 12.1

�

A is an imaginary geometrical entity such as a line, a plane,
or a point. The symmetry elements are , , , , and , which are defined in
Table 12.1. For each symmetry element there are that move
a molecule about a symmetry element so that the orientation and position of the
molecule before and after the operation are indistinguishable. In other words, a
symmetry operation brings every atom to an equivalent point or back to the iden-
tical point. The symbols for the symmetry operations are the same as those for the
symmetry elements, but in the literature operations are given a caret like quantum
mechanical operators because they can be applied to wavefunctions. The opera-
tions are referred to as rotation (sometimes called proper rotation) ( ), reflec-
tion ( ), inversion ( ), rotation–reflection (sometimes called improper rotation)
( ), and identity ( ). Every molecule or ion has the identity operation . This
operation leaves an object unchanged. This operation is often the result of carry-
ing out an operation successively the number of times it takes to return the object
to its initial position.

The symmetry of an object can be described by listing all the symmetry oper-
ations it possesses. The number of operations can be as few as one (the identity),
or as many as infinity. All the corresponding symmetry elements for an object pass
through a common point at the center of the object. Therefore, the symmetry of
isolated molecules and ions is referred to as In Section 12.8
we will discuss the conditions under which a collection of symmetry operations
form a mathematical group. Symmetry operators often yield eigenvalues when
they operate on wavefunctions. They may or may not commute with each other
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Successive clockwise rotations of a planar MX molecule about an axis
perpendicular to the plane of the molecule (X X X X ). (With permission
from R. L. Carter, Wiley, Hoboken, NJ, 1998.)
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12.2 The Rotation Operation and the Symmetry Axis

12.2 THE ROTATION OPERATION AND THE SYMMETRY AXIS
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Figure 12.1

and with other quantum mechanical operators. Remember, operators commute
of the result of their successive applications is independent of the order in which
they are applied.

In the next four sections we will consider the various symmetry operations,
starting with rotations.

The operation of rotation is designated by , where rotation about an axis by
2 / radians (360 / ) brings the object back to an equivalent position. The value
of is referred to as the of the rotation. The corresponding element is re-
ferred to as an -fold rotation axis. Figure 12.1 shows the effects of successive
fourfold clockwise rotations about an axis perpendicular to the plane of a planar
MX molecule. The four identical X atoms have been labeled X , X , X , and
X so that we can see the results of each operation. Notice that carrying out two
successive rotations about the same axis, which may be designated , , has
the same effect as a rotation. After a third rotation, the molecule is in a
new equivalent configuration, which could also be obtained by a single fourfold
counterclockwise rotation ( ). This is generalized by writing

. Also note , which can be generalized to . A axis is
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How many distinct operations (i.e., operations that cannot be represented in any other
way) are implied by a axis?

Thus, two operations ( and ) are characteristic only of a axis.

principal axis

Example 12.1

mirror plane.

6
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12.3 THE REFLECTION OPERATION AND THE SYMMETRY PLANE
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Figure 12.2

associated with three unique symmetry operations: , , and .
is not unique because it is equal to .
The and axes are referred to as being collinear. These two axes are not

the only rotational axes of MX . There are four other axes in the plane of the
molecule, as shown by Fig. 12.2. Note the single prime and double primes in these
symbols. Only two notations are needed for the four axes because the two be-
long to the same class and the two axes belong to a separate class. In listing
the complete set of symmetry operations for a molecule, operations of the same
class are designated by a single symbol preceded by the number of equivalent op-
erations in the class. Thus for the planar MX molecule, the rotational operations
are 2 , , 2 , and 2 . The of rotation is the axis with the
highest , so is the principal axis of rotation for planar MX .

The operation of reflection is represented by the lowercase sigma ( ), and the
corresponding element is referred to as a When there is a mirror
plane, the molecule is bisected by the mirror plane, which means that for any
point a distance along a normal to the mirror plane, there will be an equivalent
point at a distance . Figure 12.3 shows the five mirror planes of MX . The first
mirror plane, (horizontal mirror plane), is perpendicular to the principal axis
of rotation. The centers of the atoms lie in the mirror plane, but if the atoms have a
directional property perpendicular to the plane (like p orbitals), the operation
transforms the property into the negative of itself. The planes (vertical mirror
planes) go through three atoms, and the planes (dihedral mirror planes) go only
through M. The mirror planes all go through a point at the center of the molecule.
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The inversion operation on the octahedral molecule MX6. (With permission
from R. L. Carter, Wiley, Hoboken, NJ, 1998.)
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12.4 The Inversion Operation and the Center of Symmetry

12.4 THE INVERSION OPERATION AND THE CENTER
OF SYMMETRY
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Figure 12.3

Fig. 12.4

Note that performing two successive reflections about the same plane brings the
molecule back to its original (identical) configuration, so that . Thus a
reflection in a mirror plane is considered to be a single operation. Planar MX has

, , and .

The operation of inversion is relative to the central point in the molecule through
which all the symmetry elements pass. There is an inversion operation and ele-
ment if for every point in the molecule ( ) there is an equivalent point at
coordinates ( ). The central point (0, 0, 0) is referred to as a

Molecules that have inversion symmetry are referred to as being
Since performing the inversion operation twice in succession brings

every point back to itself, . MX is centrosymmetric, but a more gen-
eral example is octahedral MX . The effect of the inversion operation on MX is
shown in Fig. 12.4.
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Show the effects of , (the axis of rotation is ), (the symmetry plane is ), and
(the symmetry plane is ) on a point represented by the column vector ( ).

" "

improper axis.

Example 12.2
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12.5 ROTATION-REFLECTION AND THE IMPROPER AXIS
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Figure 12.5

Rotation–reflection is a compound operation that consists of a proper rotation
followed by a reflection in a plane perpendicular to the axis of rotation. This axis
is referred to as an The compound operation is given the symbol

, where refers to the initial rotation by 2( / radians (360 / ). The two parts
of may be the and that the molecule has in its own right. For example,
planar MX has and , and so it also has . However, it is not necessary for
a molecule to have and in order to have . For example, the tetrahedral
molecule MX has an improper rotation, although it does not have either the
or operation. This is illustrated in Fig. 12.5. By carrying out a second successive
S4 operation to extend this figure, it can be shown that two operations are
equivalent to the operation: . Carrying out two more operations
shows that . There are only two operations ( and ) because

and .
In discussing symmetry operations, it is convenient to orient the molecules in

a right-hand Cartesian coordinate system. The thumb, index, and middle fingers of
the right hand are pointed in three mutually perpendicular directions, and these
are taken as the , , and directions, respectively. The center of mass of the
molecule under consideration is located at the origin of the Cartesian coordinate
system, and its principal axis is aligned with the axis.
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A given molecule can have a number of symmetry operations. The symmetry op-
erations that do apply to a given molecule in its equilibrium configuration form a
mathematical group. In order for a collection of operations to form a they
must satisfy four requirements.

The operation that corresponds to the successive operation of two members
of the group must be a member of the group. This also applies to the square
of an operation.
The identity operation must be a member of the group.
The operations must be associative, that is, ( ) ( ). They do not
have to be commutative. Thus it is possible that .
Each operation must have a unique inverse, that is, .
The is that which returns the object to its original po-
sition.

The groups of operations for molecules were developed by Schoenflies
and are referred to as because one point in the molecules is left
unchanged by any operation; this point is not necessarily occupied by a nucleus.
It is useful to classify molecules according to their point groups, so there is a
system of Schoenflies symbols for characterizing molecules. For example, H O
belongs to the group.

The H O molecule has the operations , , and , and, of course, it has the
operation . To make sure that these operations form a group, consider the mul-
tiplications in Table 12.2. All of the multiplications yield operations in the group,
as required. Note that the operation of reflection in one vertical symmetry plane
( ) followed by the operation of reflection in the other vertical symmetry plane
( ) is equivalent to a twofold rotation; that is, . Similarly, the succes-
sive operations of followed by yield the same result as the operation
(i.e., ). It happens that for this particular point group each of the oper-
ations is its own inverse; thus , and . For
operations in certain other point groups, this is not the case (e.g., ).
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The various types of point groups are defined below and are illustrated in
Table 12.3. All molecules belong to one of the following point groups.

Molecules with no symmetry other than the identity are in point group . An
example is CHBrClF.

Point group is the group for molecules that only have a reflection plane . An
example is CH ClF.

Molecules, such as 1,2-dibromo-1,2-dichloroethane, that have only a center of
symmetry belong to point group .

Molecules possessing only an -fold axis of rotation belong to a point group.

Molecules with an -fold axis of rotation and vertical mirror planes (which are
necessarily colinear with the -fold axis) belong in one of the point groups.

Molecules with an -fold axis and a plane of symmetry perpendicular to this axis
belong to one of the point groups. Such a plane is referred to as a horizontal
mirror plane. The point group necessarily involves a center of symmetry as
well.

Molecules with a axis and a axis perpendicular to this axis are in the
point group.
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Table 12.3

Molecules with a axis, a perpendicular axis, and a dihedral mirror plane are
in the point group. The dihedral mirror plane is colinear with the principal
axis and bisects the two perpendicular axes.

As you may have guessed already, molecules in the point group have a hori-
zontal mirror plane, that is, one perpendicular to the principal axis.

To be in one of the point groups a molecule has to have an -fold improper
rotation axis.

Linear molecules are either or . Heteronuclear molecules, such as CO, are
because the molecular axis is an -fold axis, and they have an infinite number

of vertical mirror planes. Homonuclear diatomic molecules or polyatomics such
as acetylene are because the molecular axis is -fold, and there is an infi-
nite number of perpendicular axes since the molecule is symmetrical. Tetra-
hedral molecules are . The point group has all of the symmetry of a cube.
Octahedral molecules, such as SF , are . Molecules with the symmetry of an
icosahedron or dodecahedron are , and atoms with spherical symmetry are .

Buckminsterfullerene,* is an example of I symmetry. The regular icosahe-
dron and dodecahedron also belong to this point group. These molecules have the
following symmetry operations: , 12 , 12 , 20 , and 15 , , 12 , 12 ,
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Flow chart for systematically determining the point group of a molecule. (With
permission from R. L. Carter, Wiley, Hoboken,
NJ, 1998.)
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Figure 12.6

81:

Fig. 12.7

20 , 15 . The number of symmetry operations 120 is the largest likely to be
encountered, except for and , for which . The , , and axes
of are shown in Fig. 12.6.

It is important to be able to identify the point group of a molecule so that
group theory can be utilized in various applications to chemistry. Fortunately, it
is not necessary to identify all the symmetry operations of a molecule to identify
its point group. The most efficient way to proceed is to look for key symmetry
elements in a prescribed sequence. This sequence is illustrated by the flow chart
in Fig 12.7. To use this flow chart look sequentially for the symmetries indicated by
the perpendicular lines. Then follow the right or left branch according to whether
the particular kind of symmetry is present (“Yes”) or absent (“No”). The special
groups are discussed in the previous paragraph. If a molecule is not in one of these
“special groups,” look for a principal axis of rotation. If there is no axis of rotation,
the molecule must belong to one of the low-symmetry nonrotational groups ,
or . If a molecule has one or more rotational axes, it is necessary to identify the
principal axis of rotation.

The presence of symmetry in a molecule can be used to determine when certain
molecular properties will be zero. For example, certain symmetry groups preclude
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These discussions of the symmetry of molecules ha e added a new class of
operators to the operators of quantum mechanics. The operators we encountered
earlier operated on molecular wa efunctions. Symmetry operators operate on
points in molecules, but they are related to the operators of quantum mechanics.
Thus questions of commutability and noncommutability between these two
types of operators arise. Unfortunately, we cannot follow up on this (but see
the ad anced textbooks in the reference list); it is important to know that the
Hamiltonian operator for a molecule must be in ariant under (commute with) all
the symmetry operations of the molecule.
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the possibility of a dipole moment or optical activity. We consider these two ex-
amples in this section.

The (Section 11.8) is a vector quantity that is not affected
either in direction or in magnitude by any symmetry operation of the molecule.
Therefore, the dipole moment vector must be contained in each of the symmetry
elements. Consequently, molecules that possess dipole moments belong only to
the point groups , , and . The presence or absence of a dipole moment
therefore tells something about the symmetry of a molecule. For example, carbon
dioxide and water might have structures corresponding to a symmetrical linear
molecule, to an unsymmetrical linear molecule, or to a bent molecule. The dipole
moments recorded in Table 22.2 show that carbon dioxide in its ground electronic
state has zero moment; therefore, the molecule must be symmetrical and linear.
If it were unsymmetrical or bent, there would have been a permanent dipole mo-
ment. On the other hand, water in its ground electronic state has a pronounced
dipole moment and cannot have the symmetrical linear structure. A molecule with
a center of symmetry cannot have a dipole moment.

If a molecule and its mirror image cannot be superimposed, it is potentially
Since a rotation followed by a reflection always converts a right-

handed object to a left-handed object, an axis guarantees that a molecule can-
not exist in separate left- and right-handed forms.

All rotation axes ( ), including a mirror plane ( ) and
center of symmetry ( ), convert a right-handed object into a left-handed
object (i.e., produce a mirror image of the original object), whereas all
rotation axes ( ) leave a right-handed object unchanged in this respect. Hence,
only molecules that have no improper symmetry elements can be optically active.

In a molecule in which internal rotation can take place (e.g., ethane or H O )
it is possible to have optically active conformations, but in a gas or solution
these conformers are so rapidly interconverted that optical isomers cannot be
resolved.

We have seen several examples of products of operations in connection with
Table 12.2. These products and the effects of these operations on a point in a
molecule can be given an actual algebraic significance by writing the symme-
try operations as matrices (see Appendix D.8). For example, the effect of the
inversion operation is to convert the point with coordinates , , and to
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point , , and , as shown in Fig. 12.4. The new coordinates are given by the
equations

0 0 (12 1)

0 0 (12 2)

0 0 (12 3)

These relations are expressed in matrix notation by

1 0 0
(12 4)0 1 0

0 0 1

Thus, the transformation matrix of is

1 0 0
( ) (12 5)0 1 0

0 0 1

The identity operation and the other three operations of the point group are
represented by

1 0 0
( ) (12 6)0 1 0

0 0 1

1 0 0
( ) (12 7)0 1 0

0 0 1

1 0 0
( ) (12 8)0 1 0

0 0 1

1 0 0
( ) (12 9)0 1 0

0 0 1

( ) is the identity matrix (see Appendix D).
When these matrices are multiplied by each other the results are the same as

when the operations are multiplied by each other, as shown in Table 12.2. There-
fore, these matrices are referred to as of their respective opera-
tions in the point group. The group multiplication table can be reproduced
by matrix multiplications of the matrix representatives. The set of four matrices
is referred to as a of the point group.

In Section 11.2, we used symmetry to classify wavefunctions of the hydro-
gen molecule ion. If ( ) ( ), the wavefunction has even
parity and is designated with the subscript g for . Now we observe that

( ) ( ), so that the eigenvalue is 1. For an odd-parity wave-
function, the eigenvalue is 1 and the wavefunction is designated by subscript
u for . A symmetry operation that applies to a molecule will commute
with the electronic Hamiltonian operator, and the electronic wavefunction is an
eigenfunction of this symmetry operation. The effect of the operations of the
point group on the p orbital are shown in Fig. 12.8.
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Effects of operations of the group on the p orbital.

Multiply the transformation matrix for by the transformation matrix for and identify
the operation that corresponds with the product. See Appendix D.

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

Thus, the product yields the transformation matrix for so that

as shown in Table 12.2.
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Figure 12.8

Although we found this representation by considering the effect of the op-
erations on a point in three-dimensional space, the notion of a representation
is more general. Any set of numbers of matrices that have the same multiplica-
tion table as the operations in the group form a representation of the group.
There are an infinite number of such representations of a group, but there
are a finite number that are, in a mathematical sense, more fundamental than
the others. These are called representations. The representation we
found for the point group (equations 12.6–12.9) is not irreducible. It is, in
fact, reducible to three different irreducible representations because the matri-
ces are diagonal. In this case the diagonal elements themselves form an irre-



The multiplication table of the representation is the same as
that of the group

Matrix representation of a rotation
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Show that the representation given in equation 12.16 has the same multiplication table as
the operations in the group (Table 12.2).

From the multiplication table of the ’s of equation 12.16:

( ) ( ) ( ) ( )

( ) 1 1 1 1
( ) 1 1 1 1
( ) 1 1 1 1
( ) 1 1 1 1

If we compare these numbers with those we would obtain by replacing the operations in
Table 12.2 by the ’s of equation 12.10, we see that they are identical.

To examine the effect of rotation in the plane, we rotate about the axis by an angle .
Then the and coordinates of a point change in the following way:

cos sin cos sin
sin cos sin cos
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ducible representation. For example, if we take the elements of 12.6–12.9
we have

( ) 1 ( ) 1 ( ) 1 ( ) 1 (12 10)

The elements give us

( ) 1 ( ) 1 ( ) 1 ( ) 1 (12 11)

and the elements

( ) 1 ( ) 1 ( ) 1 ( ) 1 (12 12)

These are representations because their multiplication table is identical to that of
the group operations themselves. Another representation is

( ) 1 ( ) 1 ( ) 1 ( ) 1 (12 13)

These turn out to be all the irreducible representations of .

In the case of the group, as for all commutative groups, all the irreducible
representations are one-dimensional (i.e., numbers). Many groups have higher-
dimensional irreducible representations (e.g., , ), and then the matrices in
the representation have that dimension.
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using matrix multiplication. This can be seen in Fig. 12.9 and using some simple trigonom-
etry by the following argument. The initial coordinates can be written as cos ,

sin . A rotation by brings these to

cos( ) cos cos sin sin
sin( ) cos sin sin cos

proving the formula above. What are the matrices representing operations and ?
The operation implies 120 and implies 240 . Thus, the matrices for

these are

1 3 1 3
2 2 2 2

3 1 3 1Effect of a rotation
about the axis on the coordinates 2 2 2 2
of a point in the plane.

Note that when the matrix for is squared, the matrix for results, as it should. Finally,
we note that since the component of a point does not change for a rotation about the
axis, we can write the matrices in three-dimensional notation; for example,

1 3
0

2 2
3 1

0
2 2
0 0 1

Character Table for the Group

( ) ( )

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Figure 12.9

Table 12.4

	

Often we do not work with the matrix representations of a group themselves, but
with the of the representation, which is defined as the sum of the diagonal
elements(trace)ofthematrixrepresentation.Forone-dimensionalrepresentations,
then, the character and the representation are identical. The character table for the

group is given in Table 12.4. On the left is the label of the irreducible represen-
tation ( ) and on the right are examples of functions of , , and that
transformliketheserepresentationsundertheoperationsofthe group.Forexam-
ple, consider the function . Operating on with the elements of the group gives

(1) (12 14)
( 1) (12 15)

(1) (12 16)

( 1) (12 17)

By comparing this with Table 12.4, we see that can be labeled .



Symmetry properties of the operations of C
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Verify the symmetry properties of all the functions on the right-hand side of Table 12.4.
Consider the functions and . Under the operation of , they transform in the

following way:

(1) (1)

( 1) (1)

( 1) (1)

( 1) (1)

so that transforms like and like . Composite functions such as can be found
from the transformations of and alone, so that, for example,

( ) ( 1)( 1)
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Symmetry operations may also be applied to wavefunctions, and thus wave-
functions can be classified by their symmetry properties. For example, consider
the effects of the operators of the group on p orbitals. The effect of the
operation on a p orbital is illustrated in Fig. 12.8 . This is summarized by

p 1p (12 18)

where 1 indicates sign reversal. Now what are the effects of the reflection oper-
ations ( ) and ( )? As shown in Fig. 12.8 , reflection in the plane has no
effect, and so

( )p 1p (12 19)

As shown in Fig. 12.8 , reflection in the plane causes a sign change so that

( )p 1p (12 20)

The identity operation has no effect, so the number that represents this opera-
tion is 1. Thus, the p orbital can be labeled in the point group.

Now consider the effects of the operators of the group on a p orbital.

p 1p (12 21)
p 1p (12 22)

( )p 1p (12 23)

( )p 1p (12 24)

Therefore, p can be labeled in the group.
The importance of symmetry (or group theory) to chemical problems lies in

the fact that if the symmetry of a molecule is that of a given point group, then
the wavefunctions must transform like one of the irreducible representations of
that group. Thus, the electronic wavefunctions for H O (in its equilibrium
geometry) can be labeled , , , or as in Table 12.4.

Furthermore, various operations, such as the Hamiltonian or the dipole mo-
ment operation, also transform like particular irreducible representations of
the point group. From the transformation properties (i.e., symmetry labels) of
the wavefunctions and operations, we can derive rules that tell us when certain
integrals involving those operations equal zero. For example, the probability



�

Symmetry operations applied to molecular wa efunctions

�

�

.

x y z

C
A z B y

zyx
A

y
zy A

C
C C

S

i

i

x y z

i

x

n

n

n

Five Key Ideas in Chapter 12

454

a i
b i

a i

b i

�
�

�

� �

�

�

f

f

2v

f1 2

v2

2
1

2 2

g g2

u u2

s v

So far we have applied symmetry operations to points and atomic wavefunctions, but we
can also apply them to molecular wavefunctions. ( ) Apply the inversion operation to
H in its ground state. What is the eigenvalue? ( ) Apply the inversion operation to H
in its first excited state. What is the eigenvalue?

( ) For ground-state H , 1s (1) 1s because the molecule is symmetrical about
its center. The eigenvalue is 1.

( ) For H in the first excited state, 1s ( 1) 1s because the wavefunction has
the opposite sign on the other side of the center of the molecule. The eigenvalue is 1.
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amplitude that a molecule in electronic eigenstate will absorb a photon and
end up in state depends on the integral

d (12 25)

(see Section 14.1). The vector operator has three components, , , , which
transform like , , and in the molecular symmetry group. The above integral will
be zero unless the integrand is unchanged when any of the symmetry operations
of the group is applied to it. Suppose the molecule belongs to the group and
transforms like (or ) and transforms like (or ). Then the component of
the integral with will vanish because the integrand will then transform as
( ) and therefore will change sign under (see Table 12.4). On the other hand,
the component of the integral will not necessarily vanish because the integrand
then transforms as or , which is unchanged when any operation is applied
to it.

Finding out which integrals vanish for symmetry reasons greatly decreases
the amount of work we have to do in solving problems, and it yields general rules
(selection rules) for spectroscopy and other areas of physical chemistry. Such
chemical applications are the subject of many of the books listed at the end of
the chapter. The programmed introduction to chemical applications by Vincent
is especially recommended.

The symmetry of a molecule can be described in terms of five types of sym-
metry elements and the corresponding operations. The symmetry operations
operate on molecules and on their wavefunctions.
The operations for a molecule are associative, but they do not have to be
commutative.
Molecules that possess dipole moments belong only to the point groups ,

, and .
An axis guarantees that a molecule cannot exist in separate left- and right-
handed forms.
Matrices provide representations of point groups; that is, matrices can be de-
vised that have the same properties as the various symmetry operations.
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For problems 12.1–12.14, list the Schoenflies symbol and sym- CHClBr(CH )
metry elements for each molecule.

H S

PCl
IF

-[CrBr (H O) ] (ignore the H’s)

C H (cyclohexane)

-CH ClCH Cl

B H

C H Br (1,3,5-tribromobenzene)

C H (naphthalene)
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C H (spiropentane) Consider the three distinct isomers of dichlorobenzene.
To which symmetry group does each belong? Which can have a
dipole moment?

There are 10 distinct isomers of dichloronaphthalene,
C H Cl . Two of them do not have a dipole moment. List these
two and find the symmetry group to which each belongs.

Some of the excited electronic states of acetylene are cis-
bent and some are trans-bent. What is the symmetry group of

C H S (thiophene) these structures? (Cis-bent means that the hydrogens bend to-
ward one another, while trans-bent means they bend away from
one another.)

For the molecules in problems 12.25–12.39, give the Schoenflies
symbol and symmetry elements.

C H
C H Cl ( -dichlorobenzene)

HCOOH (formic acid)

-CFClBrCFClBr

UO F
The symmetry elements for the staggered form of ethane

are given in Table 12.3, and it is in the point group. What are
the elements for the eclipsed form of ethane (this is the sterically
hindered form), and what is the point group?

Construct the operation multiplication table for the
point group .

C H (phenanthrene)List the operations associated with the elements and
their equivalents, if any. How many distinct operations are pro-
duced?

Consider the three distinct isomers of dichloroethylene,
C H Cl . To which symmetry group does each belong? Which
can have a permanent dipole moment?

The first excited singlet state of ethylene is twisted so that
Fe(CN)the two hydrogens and carbon on one side are in a plane perpen-

dicular to the plane containing the other three atoms. To which
symmetry group does it belong? Does it have a dipole moment?

Which of the molecules in Problems 12.1–12.14 can have
a permanent dipole moment?

Which of the molecules in Problems 12.1–12.14 can be
optically active?

Chapter 12 Symmetry
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C

C
C E

C

C

C C C C E

Mathematica

x, y, z
z
, ,
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3 4

10 16
3 2

6 2 2 2
4 3 2

3v
3

6 3 6 5 3

3
2
3

3

2v

v v2 2 2 2v v

3

(HNBCl) Ni(CO)

C H (adamantane)
H CCH Br

C H O Cl (2,5-dichloroquinone)
Pt(Br) (NH ) [tetrabromodiammineplatinum(IV)]

(ignore the H’s)

HOCl

Construct the operation multiplication table for the
point group .

(HNBH)
In some of the excited states of benzene, the molecule is

“stretched” so that the hexagon is elongated. What is the sym-
metry group of the molecule in such a state?

What is the symmetry group of HD? Can it have a dipole
moment?

C H (C H ) (1,3,5-triphenylbenzene)
Show that the matrix product of the operation and the

operation is equal to the identity operation . A matrix for
the operation is given in Example 12.5.

The multiplication table for the group is given in Ta-
ble 12.2, and the application of these operations to the water
molecule is discussed in connection with this table. Since matri-
ces for these operations are given in equations 12.6–12.9, verify
that , , and , where these sym-
bols refer to operations.

Use to show the shapes of a tetrahedron, an
CH Cl (methyl chloride) octahedron, a dodecahedron, an icosohedron, and a bucky ball.

The following matrix transforms a point ( ) through
a cunterclocksise rotation about the axis through an angle :

Apply this matrix to a point at (1 1 1) for the angles 0, /4,
/2, 3 /4, 3 /2, and 2 .
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13
The Basic Ideas of Spectroscopy
Einstein Coefficients and Selection Rules
Schrödinger Equation for Nuclear Motion
Rotational Spectra of Diatomic Molecules
Rotational Spectra of Polyatomic Molecules
Vibrational Spectra of Diatomic Molecules
Vibration–Rotation Spectra of Diatomic Molecules
Vibrational Spectra of Polyatomic Molecules
Raman Spectra
Special Topic: Fourier Transform Infrared
Spectroscopy

Molecular spectroscopy is a powerful tool for learning about molecular structure
and molecular energy levels. The study of rotational spectra gives us information
about moments of inertia, interatomic distances, and angles. Vibrational spectra
yield fundamental vibrational frequencies and force constants. Electronic spectra
yield electronic energy levels and dissociation energies.

The types of spectroscopic transitions that can occur are limited by selection
rules. As in the case of atoms, the principal interactions of molecules with electro-
magnetic radiation are of the electric dipole type, and so we will concentrate on
them. Magnetic dipole transitions are about 10 times weaker than electric dipole
transitions, and electric quadrupole transitions are about 10 times weaker. Al-
though the selection rules limit the radiative transitions that can occur, molecular
collisions can cause many additional kinds of transitions. Because of molecular
collisions the populations of the various molecular energy levels are in thermal
equilibrium.

Rotational and Vibrational Spectroscopy



Calculation of the energy of light

E E

h hc E E .

E E
E E

Source:

459

Wa elength Wa e Number Frequency, Photon Energy, Molar Energy,
in Vacuo, in Vacuo, h N h

�

�

0 A

9 1 15

6 1 18

3 1 21

3 1 21

3 1 21

3 1 21

1 21

1 24

1 24

1 24

IR, infrared; UV, ultraviolet. The abbreviations for powers of 10 are given inside the back cover of the book. IUPAC Report,
“Names, Symbols, Definitions, and Units for Quantities in Optical Spectroscopy,” 1984.

1 2

1 2

1 1

1 2

1 2

Regions of the Electromagnetic Spectrum

˜

rays 10 pm 10 cm 30.0 EHz 19.9 10 J 12.0 GJ/mol
X-rays 10 nm 10 cm 30.0 PHz 19.9 10 J 12.0 MJ/mol
Vacuum UV 200 nm 50.0 10 cm 1.50 PHz 993 10 J 598 kJ/mol
Near UV 380 nm 26.3 10 cm 789 THz 523 10 J 315 kJ/mol
Visible 780 nm 12.8 10 cm 384 THz 255 10 J 153 kJ/mol
Near IR 2.5 m 4.00 10 cm 120 THz 79.5 10 J 47.9 kJ/mol
Mid IR 50 m 200 cm 6.00 THz 3.98 10 J 2.40 kJ/mol
Far IR 1 mm 10 cm 300 GHz 199 10 J 120 J/mol
Microwaves 100 mm 0.1 cm 3.00 GHz 1.99 10 J 12.0 J/mol
Radio waves 1000 mm 0.01 cm 300 MHz 0.199 10 J 1.2 J/mol

Calculate the energy in joules per quantum, electron volts, and joules per mole of photons
of wavelength 300 nm.

v v

�
�

� �
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� � �
� �

�
�
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wave numbers

Example 13.1

13.1 The Basic Ideas of Spectroscopy

13.1 THE BASIC IDEAS OF SPECTROSCOPY
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When an isolated molecule undergoes a transition from one quantum eigenstate
with energy to another with energy , energy is conserved by the emission or
absorption of a photon. The frequency of the photon is related to the difference
in energies of the two states by Bohr’s relation,

˜ (13 1)

where we have used the symbol ˜ ( 1/ ) introduced in Chapter 9 for the transi-
tion energy in (SI unit m , but usually cm is used). The wave
number ˜ is the number of waves per unit length. If , the process is pho-
ton emission; if , the process is photon absorption. The frequency range
of photons, or the electromagnetic spectrum, is classified into different regions ac-
cording to custom and experimental methods as outlined in Table 13.1. By mea-
suring the frequency of the photon, we can learn about the eigenstates of the
molecule being studied. This is called molecular spectroscopy.

The frequency of the photon in the absorption or emission process often tells
us the kinds of molecular transitions that are involved. In the radio-frequency
region (very low energy), transitions between nuclear spin states can occur
(see Chapter 15). In the microwave region, transitions between electron spin
states in molecules with unpaired electrons (Chapter 15) and, in addition, transi-
tions between rotational states can take place. In the infrared region, transitions
between vibrational states take place (with and without transitions between rota-
tional states). In the visible and ultraviolet regions, the transitions occur between
electronic states (accompanied by vibrational and rotational changes). Finally, in
the far ultraviolet and X-ray regions, transitions occur that can ionize or dissociate
molecules.



E E E E .

E E E

h E E E E E E .

E E E E E E .

N

.

E E

N
B N .

t

B
B N

N
N t N t

i

460

hc .
h .

. . .

N h . .

� � �

� � �

�

�

�

� � �

� �

� �

34 8 1
19

9

19 19 1

1 123 19
A

r v e

r v e

r r v v e e

r r v v e e

3

3

1 2 12

1
12 12 1

abs

12
1 3

12 1

1

1 2

(6 62 10 J s)(3 10 m s )
6 62 10 J

(300 10 m)

(6 62 10 J)/(1 602 10 J eV ) 4 13 eV

(6 02 10 mol )(6 62 10 J) 398 kJ mol
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radiant energy density

spectral radiant energy density as a function of frequency

rate of absorption

Einstein coefficient for stimulated absorption.

Chapter 13 Rotational and Vibrational Spectroscopy

13.2 EINSTEIN COEFFICIENTS AND SELECTION RULES
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We shall see that the energy eigenvalues of a molecule can be written as

(13 2)

where is the rotational energy, the vibrational energy, and the electronic
energy. When the molecule undergoes a transition to another state with the emis-
sion or absorption of a single photon of frequency , then

( ) ( ) ( ) (13 3)

The primes refer to the state of higher energy and the double primes to the state
of lower energy.

The classification of the various regions of the electromagnetic spectrum by
the type of transition given above is possible because, in general,

(13 4)

That is, electronic energy level differences are much greater than vibrational en-
ergy level differences, which are much greater than rotational energy level dif-
ferences. Electronic transitions are often in the visible and ultraviolet part of the
spectrum; vibrational transitions are in the infrared, and rotational transitions are
in the far infrared and microwave regions.

The spectrum of a molecule consists of a series of lines at the frequencies corre-
sponding to all the possible transitions. Let us consider the transition from state
1 to state 2. The strength or intensity of a spectral line depends on the number of
molecules per unit volume that were in the initial state (the population density
of that state) and the probability that the transition will take place. Einstein pos-
tulated that the rate of absorption of photons is proportional to the density of the
electromagnetic radiation with the right frequency. The is
the radiant energy per unit volume, so it is expressed in J m . (See Section 9.16.)
The is the measure
of the radiant energy of a particular frequency; it is given by

d /d (13 5)

Thus, is expressed in J s m . The energy density at the frequency required to ex-
cite atoms or molecules from to is represented by ( ). Thus Einstein’s pos-
tulate about the of photons is summarized by the rate equation

d
( ) (13 6)

d

where is the The SI unit for
is m kg . (Note that can be taken as dimensionless or expressed in m .)

There is a minus sign because decreases when electromagnetic radiation is
absorbed. Note that d /d d /d .
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Definition of Einstein
coefficients.

rate of
spontaneous emission

Einstein coefficient for spontaneous emission.

rate of stimulated emission

Einstein coefficient for stimulated emission.

laser,

Boltzmann distribution

13.2 Einstein Coefficients and Selection Rules
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Figure 13.1

Excited atoms or molecules do not remain in excited states indefinitely, and
Einstein postulated two processes for their return to the initial state, namely, spon-
taneous emission and stimulated emission, as illustrated in Fig. 13.1. The

is given by (here is the population density of state 2)

d
(13 7)

d

where is the The SI unit for
is s . The rate of spontaneous emission is independent of the radiation density,
and the radiation is emitted in random directions with random phases.

Stimulated emission is quite different in that its rate is proportional to ( ),
and the electromagnetic wave that is produced adds in phase and direction (i.e.,
coherently) to the stimulating wave. The is indicated
by the rate equation

d
( ) (13 8)

d

where is the The interesting
feature in stimulated emission is that it amplifies the radiation density. Accord-
ing to equation 13.8, incident light with frequency causes more radiation to
be produced with exactly the same frequency and direction as long as there are
molecules in state 2. As we will discuss later in more detail, this is the basis for
a which is the acronym for “light amplification by stimulated emission of
radiation.”

Equations 13.6–13.8 have been written for the three separate processes, but
of course all three can occur in a system at the same time so that the whole rate
equation is

d d
( ) ( ) (13 9)

d d

This rate equation leads to several interesting conclusions. The first is that the
three Einstein coefficients are related to each other. This can be seen by consider-
ing the equilibrium situation in which d /d d /d 0. When the system
is in equilibrium, equation 13.9 can be solved for the equilibrium spectral radiant
energy density ( ) to obtain

( ) (13 10)
( / )

When the system is in equilibrium, the ratio / is given by the Boltzmann
distribution (Section 16.1). When is the energy of the higher level and is the
energy of the lower level, the shows that

e (13 11)

Since is positive, most of the atoms or molecules will be in the lower
energy level at thermal equilibrium. If the system is exposed to electromagnetic
radiation with frequency , where , the equilibrium distribution
can be written as

exp( / ) (13 12)
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Planck’s blackbody distribution law

This means that irradiation of a two-level system can never
put more atoms or molecules in the higher level than in the lower level.

population inversion.

transition dipole moment

quantum mechanical dipole moment operator
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Replacing / in equation 13.10 with the Boltzmann distribution yields

( ) (13 13)
e

This equation must be in agreement with
(equation 9.2),

8 ( / )
( ) (13 14)

1

because they both apply to a system at equilibrium. Comparison of equation 13.13
with equation 13.14 indicates that

(13 15)

and
8

(13 16)

Thus a measurement of any one of the three Einstein coefficients yields all three.
The second conclusion from equation 13.9 is that the time course of the irradi-

ation can be calculated. Since , these symbols can be replaced by , and
since there is no , can be replaced by . can be replaced by ,
where , and equation 13.9 can be integrated (see Problem 13.4)
to obtain

( )
1 exp [ 2 ( )] (13 17)

2 ( )

At 0, there are no excited atoms or molecules. But if the radiation density is
held constant, / rises to an asymptotic value of ( )/[ 2 ( )].
The interesting thing about this asymptotic value is that it is necessarily less than
1/2 because 0.

This may
be a surprise, but the significance of the conclusion is that laser action cannot be
achieved with a two-level system. In order to obtain laser action, stimulated emis-
sion must be greater than the rate of absorption so that amplification of radiation
of a particular frequency is obtained. This requires that

( ) ( ) (13 18)

Since , laser action can be obtained only when . This situa-
tion is referred to as a The way population inversion can be
achieved is discussed in the next chapter.

Quantum mechanics provides the means to calculate (and ) between
states and in terms of the transition dipole moment. (and ) is pro-
portional to the square of the , defined by

d (13 19)

where is the for the molecule:

(13 20)

where the sum is over all the electrons and nuclei of the molecule, is the charge,
and is the position of the th charged particle. To understand how the transition
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moment enters, we can think of the molecule interacting with the electric field of
the radiation because of a transient or fluctuating dipole moment given by equa-
tion 13.19.

From equation 13.19, we see that if the transition dipole moment vanishes
(usually because of symmetry), the spectral line has no intensity. The rules gov-
erning the nonvanishing of are called and these allow us to
make sense out of observed molecular spectra.

If the transition moment from state to state is nonzero and there is enough
population in the initial state, then the spectral line will be seen in the spectrum.
The quantum mechanical derivation of the relationship between the Einstein co-
efficients and the transition probability is too advanced for this book;* however,
the final results are given here. When the ground state and excited states have
degeneracies of and , the Einstein coefficient is given by

16
(13 21)

3

This equation indicates that the rate of spontaneous emission, , increases
rapidly with frequency; as a matter of fact, this rate is negligible in the microwave
and infrared regions, and so only absorption spectra are measured. In the visible
and ultraviolet regions spontaneous emission is significant, and both emission and
absorption spectra are measured. The Einstein coefficient is given by

2
(13 22)

3

If the rate of spontaneous emission is negligible, the net rate of absorption is
given by

rate ( ˜ ) ( ˜ ) ( ) ( ˜ ) (13 23)

This shows that if the populations of the two states are equal, there will be no net
absorption of radiation.

We can also think of as a measure of the lifetime of state 2. Consider
molecules in (excited) state 2 with no radiation field present (and so no stimulated
emission). The molecules will make a transition to state 1, emitting a photon fre-
quency ˜ , with a probability . Every time this occurs, decreases. After
a time , the number of molecules per unit volume in state 2 is given by

( ) (0) e (0) e (13 24)

where we have defined the . Actually, if a molecule in state 2 can
also make transitions to states 3, 4, . . . (with photons of frequency ˜ ˜ ),
then the is given by

1
(13 25)

If other decay processes besides radiative transitions are possible (such as non-
radiative transitions) we must add those rates to equation 13.25 to get the total
decay rate (inverse lifetime).
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The radiative lifetime of a hydrogen atom in its first excited level (2p) is 1 6 10 s. What
is the magnitude of the electronic transition moment for this transition? The degener-
acy of the 2p level is 3. [ ˜ (2 46 10 s )/(2 998 10 m s ) 8 21 10 m ]

3

16 ˜

(3)(6 626 10 J s)(8 854 10 C N m )(3)
16 (8 21 10 m ) (1 6 10 s)

10 9 10 C m

A dipole moment of this magnitude corresponds to a distance from the proton to the elec-
tron of

10 9 10 C m
1 6 10 C

68 1 pm

This transition dipole moment can be visualized as the movement of an electron
68 1 pm/52 9 pm 1 29 Bohr radii.
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Example 13.2

electronic Hamiltonian
Hamiltonian for nuclear motion

vibra-
tional
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We saw in Chapter 11 that the Schrödinger equation for a molecule can be treated
in the Born–Oppenheimer approximation so that the is
that for fixed nuclei, while the contains the ki-
netic energy operator of the nuclei and the electronic energy (as a function of the
nuclear coordinates) as the potential energy operator:

¯ˆ ( ) (13 26)
2

In the absence of external fields (such as magnetic or electric fields), the potential
energy term ( ) can depend only on the relative positions of the nuclei, not on
where the molecule is placed or on the orientation of the molecule in space.

The kinetic energy operator consists of the kinetic energy of the center of
mass (leading to the translational energy of the molecule), the kinetic energy as-
sociated with rotational motion, and the kinetic energy of the vibrational motion.
Thus, to a very good approximation, we may write

(13 27)

where the translational and rotational Hamiltonians contain only kinetic energy
terms, while the vibrational Hamiltonian contains ( ), the potential energy de-
pending on the internuclear distances. These internuclear distances are the

coordinates of the molecule.
If the Hamiltonian is the sum of three terms, one for each kind of motion,

then the wavefunction can be written as a product of wavefunctions:

(13 28)
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The Schrödinger equations for the three terms are
ˆ (13 29)

ˆ (13 30)
ˆ (13 31)

The translational wavefunction is that for a free particle (or particle in a very large
box) with a mass equal to the mass of the molecule. The translational eigenvalues
are very closely spaced and cannot be probed in molecular spectroscopy, so we
will neglect them in our discussions.

To understand the number of coordinates required to describe a polyatomic
molecule, consider the following. The total number of coordinates needed to de-
scribe the locations of the atoms in a molecule is 3 . However, to describe
the internal motions in a molecule, we are not interested in its location in space,
and so the three coordinates required to specify the position of the center of mass
of the molecule can be subtracted, leaving 3 3 coordinates. To describe the
rotational motions of a molecule, we are interested in its orientation in a coordi-
nate system. The orientation of a diatomic or linear molecule with respect to a
coordinate system requires two angles, so this leaves 3 5 coordinates to de-
scribe the internal motions. The orientation of a nonlinear polyatomic molecule
with respect to a coordinate system requires three angles, so this leaves 3 6
coordinates to describe the internal motions. These 3 5 or 3 6 internal
motions are referred to as

ˆTo sum up, for a diatomic molecule, depends only on two angles, and
ˆ(see equation 9.153); depends only on , the internuclear separation. For

ˆpolyatomic molecules, is more complex, depending on 3 6 coordinates
for nonlinear molecules and 3 5 coordinates for linear molecules. We will now
turn to a description of the rotational and vibrational eigenstates of both diatomic
and polyatomic molecules.

To a first approximation the rotational spectrum of a diatomic molecule may be
understood in terms of the Schrödinger equation for rotational motion of the rigid
rotor (equation 9.142). The wavefunctions are the spherical harmonics ( ),
and there are two quantum numbers and for molecular rotation. The energy
eigenvalues are given by

¯
( 1) 0 1 2

2
0 (13 32)

where is the moment of inertia (Section 9.11). Since the energy does not depend
on , the rotational levels are (2 1)-fold degenerate.

In spectroscopy it is standard to express the energies of various levels in wave
numbersbydividing by andreferringtothesevaluesas Termvalues
areusuallygivenincm ,buttheSIunitforatermvalueism .Atildewillbeusedto

˜indicatethewavenumbers incm .Rotational termvaluesarerepresentedby ( )
/ , so that the rotational term values for a diatomic molecule are given by

( 1)˜ ˜( ) ( 1) (13 33)
8
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Figure 13.2

where the is written

˜ (13 34)
8

where is the speed of light, 2.998 10 cm s . The rotational energy levels for
a rigid diatomic molecule are given in Fig. 13.2 in terms of the rotational constant.

According to the Born–Oppenheimer approximation (Section 11.1), the
wavefunction for a molecule in the electronic state , the vibrational state ,
and having a particular set of rotational quantum numbers can be written as
a product . The transition moment for an electric dipole transition from
a rotational state to a rotational state of the same electronic state is
therefore given by

d d d (13 35)

where is the dipole moment operator. Note that only the rotational function
has changed in the transition. The permanent dipole moment of a molecule
in this electronic state is equal to the expectation value of the operator over
the wavefunction for the electronic state:

ˆ d (13 36)

Thus, equation 13.35 becomes

d d (13 37)
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The integral over the vibrational coordinate yields the permanent dipole moment
in that particular vibrational state. For simplicity, we will write it as , so that the
final result for the integral is

d (13 38)

A molecule has a rotational spectrum only if this integral is nonzero.

This is expected from the fact that a rotating dipole produces
an oscillating electric field that can interact with the oscillating field of a light
wave. A homonuclear diatomic molecule such as H or O does not have a dipole
moment, so it does not show a pure rotational spectrum. Heteronuclear diatomic
molecules do have dipole moments, so they do have rotational spectra. Polyatomic
molecules are discussed in the next section. To find the specific selection rules we
need to find the conditions on the quantum numbers that make the integral in
equation 13.38 nonzero. For a linear molecule it can be shown that the transition
moment is nonzero for

1 0 1

This selection rule may be understood in the same way as that for atoms (Section
10.14). Since a photon has one unit of angular momentum, and angular momen-
tum must be conserved in emission or absorption, the angular momentum of a
molecule must change by a compensating amount.

The frequencies ˜ of the absorption lines due to 1 are given by the
difference between rotational term values (equation 13.33):

˜ ˜˜ ( 1) ( )
˜[( 1)( 2) ( 1)] 0 1 2

˜2 ( 1) (13 39)

As shown in Fig. 13.2, the frequencies of the successive lines in the rotational spec-
˜ ˜ ˜trum are given by 2 4 6 . . . . Thus, there is a series of equally spaced lines
˜with separations of 2 . A separate series of lines is found for each isotopically dif-

ferent species of a given molecule, because the moments of inertia of isotopically
substituted molecules are different.

We have been talking about diatomic molecules as if they are rigid rotors,
but of course they are not. As the rotational motion increases, the chemical bond
stretches due to centrifugal forces, the moment of inertia increases, and, conse-
quently, the rotational energy levels come closer together. This may be taken into
account by adding a term to equation 13.33:

˜ ˜ ˜( ) ( 1) ( 1) (13 40)

˜The quantity is the in wave numbers. When cen-
trifugal distortion is taken into account, the frequencies ˜ of the absorption lines
due to 1 are given by

˜ ˜˜ ( 1) ( )
˜ ˜2 ( 1) 4 ( 1) 0 1 2 (13 41)

y

y
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In early measurements of the pure rotational spectrum of H Cl, Czerny found that the
wave numbers of absorption lines are given by

˜ (20 794 cm )( 1) (0 000 164 cm )( 1)

where is the quantum number of the lower state. What is the internuclear distance in
H Cl? What is the value of the centrifugal distortion constant?

˜From equation 13.41, 10 397 cm . Since

˜
8 8

we have

˜8

6 626 10 J s
8 (2 998 10 cm s )(1 626 68 10 kg)(10 397 cm )

129 pm

(The reduced mass of H Cl is given in Example 9.21.) The centrifugal distortion constant
is given by

˜ (0 000 164 cm ) 4 1 10 cm
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The moment of inertia of a diatomic molecule also depends on its vibra-
tional state because of the anharmonicity of vibrational motion. Since molecules
are generally in their ground vibrational state at room temperature, we do not
have to take this into account in considering pure rotational spectra; however, we
will have to take it into account by an extension of equation 13.41 in discussing
vibration–rotation spectra.

We have discussed the selection rules that determine the transitions that can
give rise to absorption or emission, but we already noted that there is another fac-
tor that determines the observed intensities, namely, the population of the initial
state given by the Boltzmann distribution (equations 13.11 and 16.2). The fraction

of the molecules in the th energy state is given by

e e
(13 42)

e

where is the denominator. If the energy of a state is large compared with , the
probability of finding a molecule in that state at equilibrium will be small. Because
of degeneracy (Section 9.7), many states of a molecule may have the same energy,
and these degenerate states make up the energy When energy levels are
used, the Boltzmann distribution can be written

e
(13 43)

e
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where is the degeneracy (Section 9.7) of the th level. As discussed earlier, the
component of the angular momentum in a particular direction is equal to ¯ ,
where may have values of ( 1) 0 , where is the rotational
quantum number. Thus, there are in all 2 1 different possible states with quan-
tum number . In the absence of an external electric or magnetic field the energies
are identical for these various sublevels, and so the th energy level is said to have
a degeneracy of 2 1. The rotational energy in the absence of an external elec-
tric or magnetic field, ignoring in equation 13.41, is given by ( 1)
so that, using equation 13.42, the fraction of molecules in the th rotational level
is given by

(2 1) e
(13 44)

According to this equation, the number of molecules in level increases with
at low values, goes through a maximum, and then, because of the exponential
term, decreases as is further increased. The lines in the spectrum at the bottom of
Fig. 13.2 have been labeled with the rotational quantum number of the upper of
the two states involved. The intensities of the lines are proportional to the popu-
lations in the lower state involved in the transition.

For molecules with larger moments of inertia , the rotational energies
are smaller, in fact, small compared with . The quantum numbers may be-
come quite large before e becomes appreciably different from unity. For
small quantum numbers populations are proportional to the degeneracies, since
e 1 for .

There is a complication in rotational spectroscopy that we will not be able
to discuss. The statistics of nuclear spin affect the number of degenerate states at
each level, and therefore the intensities of the rotational lines. The use of the
Boltzmann distribution alone is an oversimplification.*

Although homonuclear diatomic molecules do not have permanent electric
dipole moments and do not exhibit pure rotational spectra, they do show rota-
tional Raman spectra (Section 13.9), and their electronic and vibrational spectra
show rotational fine structure.

For the treatment of its pure rotational spectrum we may consider a polyatomic
molecule to be a rigid framework with fixed bond lengths and angles equal to their
mean values. For a polyatomic molecule the about a particular
axis that passes through the center of mass of the molecule is simply the sum of
the moments due to the various nuclei about that axis:

(13 45)

where is the perpendicular distance of the nucleus mass from the axis.
The rotation of a polyatomic molecule can be described in terms of moments

of inertia taken relative to three mutually perpendicular axes. The moment about
the axis is

( ) (13 46)



c

Z(c)

X(a)

Y(b)

b

a

I I

I I m x y .

I I I

I I I

I I

x y

xy yx i i i
i

470

� �

a cb

a cb

1/2

Momental ellipsoid with symmetry axes a, b, and c. The a, b, and c axes are
fixed with respect to the molecule and rotate with it.

products of inertia

principal axes,
principal moments of

inertia

spherical symmetric
prolate

oblate
asymmetric

Chapter 13 Rotational and Vibrational Spectroscopy

�

�
� �

� �

Figure 13.3

and and are defined similarly. In addition, there are three
that are defined like

(13 47)

For any rigid molecule it is possible to choose a set of perpendicular axes that
pass through the center of mass such that all products of inertia vanish. These
three Cartesian axes, which are illustrated in Fig. 13.3, are called the
and the moments of inertia about these axes are called the

, , and . The axes are designated by a, b, and c and are fixed with
respect to the molecule and rotate with it. The principal moments of inertia about
these axes are always labeled so that . The principal axes can often
be assigned by inspecting the symmetry of the molecule. The momental ellipsoid
is constructed as follows. Lines are drawn from the center of mass of the molecule
in various directions with length proportional to ( ) , where is the moment
of inertia about that line as an axis. Any symmetry operation of a molecule must
apply to its momental ellipsoid.

The principal moments of inertia are used to classify molecules, as shown in
Table 13.2. If all three principal moments of inertia are equal, the molecule is a

top. If two principal moments are equal, the molecule is a
top. A molecule is a top (cigar shaped) if the two larger moments are
equal. The molecule is an top (discus shaped) if the two smaller moments
are equal. The molecule is an top if all three principal moments are
unequal.

The quantum mechanical Hamiltonian operator for the rotational motion of
polyatomic molecules is found by first writing the classical mechanical energy in
terms of angular momentum operators. Since we know how to convert classical
angular momentum to its quantum mechanical form, we can then find the quan-
tum Hamiltonian and solve the Schrödinger equation. The last part turns out to
be straightforward for all the cases except the asymmetric top. We will not discuss
the latter.

In classical mechanics the rotational energy of a rotor with one degree of
freedom is
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Spherical Top

#
#

#

# # #

#

#

#

#

Table 13.2

( )
(13 48)

2 2

where is the angular velocity in radians per second, is the moment of inertia,
and is the angular momentum. For an object that can rotate in three dimensions
the classical expression for the rotational kinetic energy is

(13 49)

Since we will want to convert this to a quantum mechanical expression, it is more
convenient to express it in terms of the angular momentum , where

represents a direction,

(13 50)
2 2 2

in which the components of the total angular momentum about the three principal
axes are given by

(13 51)

(13 52)

(13 53)

The total angular momentum is given by

(13 54)

The expressions for the energies of spherical tops, linear molecules, and sym-
metric tops are as follows.

For a spherical top, , the momental ellipsoid is a sphere, and
equation 13.48 becomes

( )
(13 55)

2 2

where the second form has been obtained by introducing equation 13.54.
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The quantum mechanical expression for the rotational energy is obtained by
substituting the quantum mechanical expression for the eigenvalue of the square
of the angular momentum, ( 1) ¯ :

( 1) ¯
0 1 2 (13 56)

2

However, spherical top molecules cannot have dipole moments for symmetry rea-
sons. Only molecules belonging to point groups , , and can possess dipole
moments. Therefore, spherical top molecules do not have pure rotational spec-
tra. They do, however, have vibrational and electronic spectra with rotational fine
structure. The moment of inertia for a symmetrical tetrahedral molecule, such as
CH , is

(13 57)

where is the bond length and is the mass of each of the four atoms arranged
in a tetrahedral manner.

For a linear molecule, and 0. Thus, must be 0, and equation
13.48 becomes

(13 58)
2 2

For a linear polyatomic molecule the equation for the rotational term ( ) is the
same as that given earlier for a diatomic molecule.

Examples of symmetric top molecules are NH , CH Cl, and the molecule shown
later in Example 13.4. For these molecules , but is different. We will
use for the moment of inertia parallel to the axis ( ) and for the moment
perpendicular to the axis ( and ). Thus, the classical energy of rotation is

(13 59)
2 2

This can be written in terms of the magnitude of the angular momentum
as follows:

1 1 1
( )

2 2 2

1 1 1
(13 60)

2 2 2

The quantum mechanical expression for the energy is obtained by substitut-
ing ( 1) ¯ (as we saw in connection with equation 9.162) and

¯ (as we saw in connection with equation 9.164). This latter substitution comes
from the fact that in quantum mechanics the component of angular momentum
about any axis is restricted to the values of ¯ , where 0 1 :

1 1 1
( 1) ¯ ¯ (13 61)

2 2 2
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Figure 13.4

where 0 1 2 and 0 1 2 . This equation is generally used
in the form

˜ ˜ ˜( 1) ( ) (13 62)

where

¯ ¯˜ ˜and (13 63)
4 4

The quantum number determines the component of the angular momentum
along the axis of the symmetric top; this is the angular momentum of rotation
about the symmetry axis. When 0 there is no rotation about the symmetry
axis, and the rotation is about the axis perpendicular to the symmetry axis, that is,
end-over-end rotation. When has its maximum value ( or ), most of the
molecular rotation is about the symmetry axis (see Fig. 13.4).

The specific selection rules for rotational spectra of symmetric top molecules
are 1 and 0. The reason there cannot be a change in quantum
number is that the dipole vector of the molecule is oriented along the principal
axis. The electromagnetic field of radiation can affect the rotation of the dipole,
but it cannot affect the rotation of the molecule about its principal axis because
there is no dipole moment perpendicular to the principal axis.

The pure rotational spectroscopy of molecules has enabled the most pre-
cise evaluations of bond lengths and bond angles. The spectrum of a polyatomic
molecule gives at most three principal moments of inertia; since usually more than
three bond lengths and angles are involved, isotopically different molecules must
be studied, and it must be assumed that isotopically different molecules have the
same set of bond lengths and bond angles. In effect, a number of simultaneous
equations are solved for the internuclear distances and angles.
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Figure 13.5

These spectra are in the microwave region. Microwave radiation is produced
by special electronic oscillators called klystrons. Monochromatic radiation is pro-
duced, and the frequency may be varied continuously over wide ranges. The usual
experimental arrangement is shown in Fig. 13.5. Microwave radiation is transmit-
ted down in a waveguide that contains the gas being studied. The intensity of the
radiation at the other end of the waveguide is measured by use of a crystal diode
detector and amplifier. The oscillator frequency is swept over a range, and the
transmitted intensity is presented on an oscilloscope or a recorder as a function
of frequency.

According to the Heisenberg uncertainty principle, the accuracy with which
an energy level may be determined is inversely proportional to the time the
molecule is in this level. Hence, to obtain sharp rotational lines of a gas, the
pressure must be maintained sufficiently low so that the average time between
collisions is long compared with the period of a rotation. Usually it is neces-
sary to determine microwave spectra at pressures below 10 Pa to reduce the
line-broadening effects of collisions.

The lines in the microwave spectrum are split if the molecules being studied
are in an electric field. This so-called Stark effect is due to the interaction of the
dipole moment of the gaseous molecule and the electric field. Since the splitting
is proportional to the permanent dipole moment, the magnitude of the dipole
moment may be derived from the spectrum.
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Figure 13.6

The harmonic oscillator was discussed in Sections 9.9 and 9.10, but in Chapter
12 we saw that the potential energy curves of diatomic molecules are not exactly
parabolic. However, as shown in Fig. 13.6, the potential energy curve for a di-
atomic molecule is approximately parabolic in the vicinity of the equilibrium in-
ternuclear distance . The potential energies indicated by the dashed line are
given by the parabola

( ) ( ) (13 64)

where is the We have seen this earlier as equation 9.107.
It is difficult to solve the Schrödinger equation for the exact form of ( ),

but we can expand ( ) in a about the equilibrium separation :

d 1 d
( ) ( ) ( ) ( )

d 2 d

1 d
( ) (13 65)

3! d

The first term is simply a constant, the electronic energy at the equilibrium ge-
ometry, and the second term is zero since d /d is zero at the minimum of the
potential energy curve. The third term is given by equation 13.64. If all higher
terms are neglected as giving small corrections, then we have approximated the
exact ( ) by a harmonic potential, and we can solve the resulting Schrödinger
equation. In Section 9.10, we discussed the solutions of the Schrödinger equa-
tion for the simple harmonic oscillator. There we saw that the energy levels are
given by

( ) 0 1 2 (13 66)

where (1/2 )( / ) and is the red mass of the diatomic molecule (see
Section 9.11). It is standard in spectroscopy to give the energy in terms of wave
numbers, so we divide by :

˜ ( ) ˜ ( ) (13 67)
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˜where ( ) is referred to as the for the th vibrational
level. The tilde indicates that wave numbers (cm ) are used. In this approxima-
tion the energy levels are equally spaced. This is not a bad approximation for the
lowest vibrational states of a diatomic molecule. For these levels, the neglect of
higher terms in equation 13.65 is justified because the amplitude of vibrational
motion is small.

The vibrational frequencies for many diatomics are of the order of 1000 cm ,
with higher values for molecules with hydrogen atoms or strong bonds, and lower
values for molecules with heavy atoms or weak bonds.

Not all diatomic molecules have an infrared (vibrational) absorption spec-
trum. To determine which transitions are possible in a vibrational spectrum, we
must use equation 13.35 for the electric dipole transition moment. Since the dipole
moment for a diatomic molecule, which is given by equation 13.37, depends on
the internuclear distance, we expand this dipole moment in a Taylor series about

:

1
( ) ( ) (13 68)

2

For a molecule in a given electronic state, the transition dipole moment for a vi-
brational transition is given by

d d ( ) d

1
( ) d (13 69)

2

The first term is equal to zero because the vibrational wavefunctions for different
are orthogonal. The second term is nonzero if the dipole moment depends on

the internuclear distance .

Homonuclear diatomic molecules, such as H and N , have zero dipole mo-
ment for all bond lengths and therefore do not show vibrational spectra. In gen-
eral, heteronuclear diatomic molecules do have dipole moments that depend on
internuclear distance, so they exhibit vibrational spectra.

The integral in the second term of equation 13.69 vanishes unless
1 for harmonic oscillator wavefunctions. According to this specific selec-

tion rule, a harmonic oscillator would have a single vibrational absorption or
emission frequency. In general, we would expect the second and higher deriva-
tives of the dipole moment with respect to internuclear distance to be small;
after all, if the dipole moment were due to fixed charges a variable distance
apart, then ( / ) and higher derivatives would be equal to zero. Although
these higher derivatives are small, they do give rise to overtone transitions with

2 3 , with rapidly diminishing intensities.
These can be seen in the vibrational absorption spectrum of HCl represented

schematically in Fig. 13.7. The strongest absorption band is at 3 46 m; there is a
much weaker band at 1 76 m and a very much weaker one at 1 198 m. These
are the overtone transitions 0 to 2, and 0 to 3. The vibrational
energy levels of Cl are shown in Fig. 13.8.
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“Stick” representation of the vibrational absorption spectrum of H Cl. The
relative intensities of the lines fall off five times as fast as indicated.

The potential energy curve for Cl calculated with the Morse potential
(equation 13.82) with every fifth vibrational level from 0 to 40. (See Computer
Problem 13.B.)

v v

13.6 Vibrational Spectra of Diatomic Molecules

�

�

�

�

�

�
�

�

�
�

�

�
�

�

� �

�

�

�

�

�
�

� �

v




�

�

�

Figure 13.7

Figure 13.8

For a harmonic oscillator, equation 13.42 indicates that the fraction of the
molecules in the th energy level is given by (note that the levels are
nondegenerate)

e

e

e
(13 70)

e

The denominator is a geometric series with 1 for which the sum is given by

1
(13 71)

1

so that

1
e (13 72)

1 e

Thus, the fraction of the molecules in the th vibrational state is given by

(1 e ) e (13 73)



Populations of ibrational states for different temperatures

Calculation of ibrational absorption frequencies
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*The anharmonicity constants are tabulated as ˜ and ˜ because early in the history of spec-
troscopy equation 13.74 was written ( ) [( ) ( ) ( ) ].
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What fractions of H Cl molecules are in the 0 1 2 and 3 states at ( ) 1000 K and ( )
2000 K?

These fractions are given by equation 13.73 where, using Table 13.4,

˜ (6 626 10 J s)(2 998 10 cm s )(2990 95 cm )

1 381 10 J K

4302 K

so that

(1 e ) e

( ) At 1000 K,

1 e 0 9865

0 9865 e 0 0133

0 9865 e 0 0018

0 9865 e 0 000002

( ) At 2000 K,

1 e 0 8836

0 8836 e 0 1028

0 8836 e 0 0120

0 8836 e 0 0014

Calculate the vibrational frequencies in wave numbers for the fundamental absorption
band of H Cl and the first four overtones for ( ) the harmonic oscillator approximation
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At room temperature this relation predicts that the ratio of the population
of H Cl in 1 to that in 0 is 8 9 10 . Therefore, the molecules with

1 and higher do not contribute to the spectrum.

Figure 13.6 shows that equation 13.67 is not sufficient to represent the energy
levels of a diatomic molecule; if equation 13.67 did apply, the overtones would be
at integral multiples of the fundamental. When the Schrödinger equation is solved
for equation 13.65 truncated after the cubic term, it is found that the energy levels
are given by an equation of the form

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( ) (13 74)

where ˜ is the vibrational wave number, and are anharmonicity constants,*
and 0 1 2 When the third term in equation 13.74 can be ignored, the
frequencies ˜ of absorption lines due to 1 are given by

˜ ˜˜ ( 1) ( ) ˜ 2 ˜ ( 1) (13 75)
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and ( ) the anharmonic oscillator approximation. The spectroscopic constants are given in
Table 13.4.

( ) For the harmonic oscillator approximation, the frequencies in wave numbers are
given by ˜ , where is the vibrational quantum number in the higher level in 0
1 2 3 .

( ) For the anharmonic oscillator approximation, the frequencies in wave numbers
are given by ˜ ˜ ( 1) where 1 2 3 . Since ˜ 2990 95 cm and
˜ 52 819 cm , the frequencies are given by the following table:

upper level) 1 2 3 4 5
Harmonic 2990.95 5981.9 8972.85 11 963.8 14 954.7
Anharmonic 2885.31 5664.99 8339.02 10 907.4 13 370.2

See Fig. 13.7 and Computer Problem 13.I.
The potential energy

of a diatomic molecule as a func-
tion of the internuclear distance.
Only the 0 vibrational level is
shown. The dissociation energy that
we are primarily concerned with in
this chapter is the spectroscopic
dissociation energy .

Potential energy curves for the ground electronic states of H and H with
the zero-point vibrational levels shown.

v v v

v v v v
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equilibrium dissociation energy

spectroscopic dissociation energy
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Figure 13.9

Figure 13.10

In Chapter 11 we dealt with the measured
fromtheminimuminthepotentialenergycurve.Butnowwewillbedealingwiththe

measured from the zeroth vibrational level.
The relationship between these two dissociation energies is shown in Fig. 13.9.

The potential energy curves for H and H are shown in Fig. 13.10 along
with their respective spectroscopic dissociation energies, (H ) and (H ).
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This spectroscopic dissociation energy of H is in agreement
with 432 074 kJ mol calculated from Table C.3.

*G. Herzberg, 123 (1972).
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Dissociation Energies for H (g) and
H (g) and Ionization Potentials for
H (g) and H(g)

eV cm kJ mol

H
2.650 79 21 380 255.760
2.793 22 527 269.481

H
4.477 97 36 117 432.055
4.748 3 38 297 458.135

(H ) 15.425 9 124 417 1488.361
(H) 13.598 396 109 677 6 1312.035

equilibrium dissociation energy
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Table 13.3

� �

The ionization energy (H ) for hydrogen is the energy required to remove an
electron to an infinite distance from H , and it has been measured accurately:

H (g) H (g) e (H ) 15 4259 eV (13 76)

Thus, the zero-point levels of H and H are separated by 15.4259 eV, as shown
in Fig. 13.10. The potential energy curves for H and H at infinite internuclear
distance are separated by the ionization potential of a hydrogen atom in its ground
state. The ionization potential calculated in Example 10.4 can be corrected for the
finite mass of the nucleus:

H(g) H (g) e (H) 13 598 396 eV (13 77)

As can be seen from Fig. 13.10,

(H ) (H ) (H ) (H) (13 78)

It is very difficult to measure the spectroscopic dissociation energy of H di-
rectly, so equation 13.78 is used to calculate (H ).* The values of these disso-
ciation energies and ionization energies are shown in Table 13.3 in eV, cm , and
kJ mol .

The vibrational parameters for a number of diatomic molecules are given in
Table 13.4. According to equation 13.74 the energy of the ground state of a di-
atomic molecule is given by

˜ ˜ ˜˜ (0) (13 79)
2 4 8

Thus, the is given by

˜ ˜ ˜˜ ˜ (13 80)
2 4 8

For H H, the values of ˜ , ˜ , and ˜ are 4401.21, 121.33, and 0 813 cm .
Therefore, the zero-point energy is (0) 4401 21/2 121 33/4 0 813/8
2170 cm . This is the value used in Chapter 11. Note, however, that H does not
have an infrared spectrum, so these values are determined by other means.

�
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The Morse potential for H Cl
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Calculate the parameters in the equation for the Morse potential of H Cl and plot the
potential energy curve.

The spectroscopic properties are given in Table 13.4. Since various units are used in
this table, it is convenient to make the calculation in SI units. The reduced mass in kilograms
is given by

(1 007 825)(34 968 852)(1 660 540 10 )
1 626 65 10 kg

1 007 825 34 968 852
�

��

Morse potential

Example 13.7 35
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The observed absorption frequencies for 0 to 1 2 3 are given
by

˜ ˜˜ ( ) (0) ˜ ˜ ( 1) (13 81)

The Taylor series in equation 13.65 represents only the potential energy of a
diatomic molecule in the neighborhood of the minimum. What is really needed is
a potential energy function for the whole range of values. The
is a simple function that provides an approximate potential energy as a function
of internuclear distance in terms of the equilibrium dissociation energy and
other spectroscopic properties:

( ) 1 exp[ ( )] (13 82)

When the potential energy approaches the equilibrium dissociation en-
ergy, and the potential energy is zero at . The Schrödinger equation can
be solved for the Morse potential, and the corresponding term value expression
is

¯ 1 ¯ 1˜ ( ) (13 83)
2 4 2

By comparing this equation with equation 13.74, we find that

¯
˜ (13 84)

¯
˜ (13 85)

4

Equations 13.84 and 13.85 provide two expressions for the parameter . That indi-
cates that the physical properties in the expressions for are not all independent.
When the two expressions are set equal, the following relation is obtained:

˜
(13 86)

4

Since actual potential energy curves differ from the Morse equation, this is not an
exact relation, but it is useful when the dissociation energy of an excited molecule,
for example, is not known.
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Plot of the potential energy of H Cl versus internuclear distance according
to the Morse equation. The actual potential energy curve has a slightly different shape.
(See Computer Problem 13.H.)

The equilibrium dissociation energy in m is given by

4 434 eV
˜ /2 ˜ /4

1 239 842 4 10 eV/m

4 434 eV 299 095 m 5281 9 m
2 41 239 842 4 10 eV/m

3 724 49 10 m

The parameter in the Morse equation is given by

˜
¯

(1 626 65 10 kg)(2 997 925 10 m s )
299 095 m

(1 054 57 10 J s)(3 724 49 10 m )

1 867 97 10 m

The plot of the potential energy as a function of internuclear distance is given in Fig. 13.11.
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Figure 13.11

At high resolution, each of the absorptions in the vibrational spectrum in Fig. 13.7
is found to have a complicated structure that results from simultaneous changes
in rotational energy. Because of this structure, molecular spectra are often re-
ferred to as The fundamental vibration band for HCl ( 0 1)
is shown in Fig. 13.12.

When a molecule in a state with vibrational quantum number and rotational
quantum number makes a spectral transition to another state, the vibrational
quantum number changes to 1 (according to the harmonic oscillator selection
rules), and the rotational quantum number can change to 1 or remain the
same. The possible transitions are shown in Fig. 13.13. The transitions with

1 give rise to lines in the branch of the spectrum, and the transitions with
1 give rise to lines in the branch of the spectrum. The intensities of

the lines in these branches reflect the thermal populations of the initial rotational
states. The branch, when it occurs, consists of lines corresponding to 0.
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Tables of Wa enumbers for the Calibration of Infrared
Spectrometers,

�
35 37

Fundamental vibrational band for HCl ( 0 1). The double peaks are
due to the presence of H Cl (75% abundance) and H Cl (25% abundance). (Reprinted
with permission from A. R. H. Cole,

2nd ed. Copyright 1977, Pergamon Press on behalf of IUPAC.)

Vibrational and rotational energy levels for a diatomic molecule and the
transitions observed in the vibration–rotation spectrum when the transition between
and is allowed. In the spectrum shown at the bottom, the relative heights of the spectral
lines indicate relative intensities of absorption.
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Generally, these transitions are forbidden, except for molecules such as NO, which
have orbital angular momentum about their axes.

The energies of the levels in Fig. 13.13 are given to the accuracy we need here
by the equation

˜ ˜( )/ ( ) ( )

˜˜ ( ) ˜ ( ) ( 1) (13 87)

which expresses the energy of a level as the sum of the first two terms of the vibra-
tional term value (equation 13.74) and the first term of the rotational term value

˜(equation 13.40). Now it is necessary to put a subscript on since the rotational
˜constant depends on the vibrational quantum number . Since is inversely pro-

portional to the moment of inertia , it varies as , where is the equilibrium
internuclear distance. varies with the vibrational state. in 1 is slightly
larger than in 0; therefore, .

The dependence of the rotational constant on the vibrational quantum num-
ber is generally represented by

˜ ˜ ˜ ( ) (13 88)

where is the
Now let us consider a vibrational transition from 0 to 1. A molecule

with 0 can have various values, and in going to 1, the value of can go
to 1 or 1 because the selection rule is 1. In the vibrational ground
state, equation 13.87 indicates that the energy is given by

˜ ˜( 0 ) ˜ /2 ˜ /4 ( 1) (13 89)

˜where is the rotational constant when 0. When the molecule absorbs a
photon and 1 and 1, the energy of the upper state is given by

˜ ˜( 1 1) ˜ 1 5 ˜ 1 5 ( 1)( 2) (13 90)

˜where is the rotational constant when 1. These transitions lead to the
branch of the vibration–rotation spectrum, and the absorption frequencies are
given by

˜ ˜˜ ( 1 1) ( 0 )
˜ ˜ (13 91)˜ ( 1)( 2) ( 1)
˜ ˜ ˜ ˜ ˜˜ 2 (3 ) ( )

where

˜ ˜ 2 ˜ (13 92)

is the center of the vibration–rotation band where there is no absorption because
0 is forbidden. If , then these frequencies are equally spaced.

When the molecule absorbs a photon and 1 and 1, the energy
of the upper state is given by

˜ ˜( 1 1) ˜ 1 5 ˜ 1 5 ( 1) (13 93)

y y

y y
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Calculate the relative populations of the first five rotational levels of the ground vibrational
state of H Cl at 300 K.

˜According to equation 13.88 and Table 13.4, 10 5934 cm (0 3072 cm )(0
) 10 4398 cm for 0. We have

(2 1) e

where is the number of molecules in the 0 state (i.e., we are assuming the Boltz-
mann distribution, equation 13.42). First we need to calculate the following factor:

˜ (6 626 10 J s)(2 998 10 m s )(10 44 cm )(10 cm m )

(1 3806 10 J K )(300 K)

5 007 10

For 1

3 e

2 71

The relative populations for 0, 1, 2, 3, 4, 5 are 1.00, 2.71, 3.70, 3.84, 3.31, and 2.45, in
excellent agreement with Fig. 13.12.
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13.8 VIBRATIONAL SPECTRA OF POLYATOMIC MOLECULES

� �

�

�

� � � �

��

�

� �

v v� �

� �

� �




�
�

�

�

�

�

�

These transitions lead to the branch of the vibration–rotation spectrum, and
the absorption frequencies are given by

˜ ˜˜ ( 1 1) ( 0 )
˜ ˜ (13 94)˜ ( 1) ( 1)
˜ ˜ ˜ ˜˜ ( ) ( )

˜ ˜If , these frequencies are again equally spaced; however, since ,
the spacing between lines in the branch decreases with increasing , and the
spacing in the branch increases with increasing . These features are evident in
the fundamental infrared absorption spectrum for HCl shown in Fig. 13.12.

Table 13.4 gives the vibrational and rotational constants for a number of di-
atomic molecules and several of their electronic excited states. The electronic en-

˜ergy relative to the ground state is represented by .

In Section 13.3, we saw that 3 5 coordinates are required to describe the inter-
nal motions of a diatomic or linear molecule and 3 6 coordinates are required
for a nonlinear polyatomic molecule. The different types of vibrational motion
that are possible can be described in terms of which
are described below. For a diatomic molecule, 3 5 1, and so there is a single
degree of vibrational freedom and a single normal mode. For a linear triatomic
molecule, such as CO , 3 5 4, and so there are four normal modes. This
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( ) Normal modes of vibration of the symmetrical linear triatomic molecule
CO . ( ) Normal modes of vibration of the nonlinear triatomic molecule H O. The vectors
representing the magnitudes of the oxygen vibrations have been increased relative to those
of hydrogen.
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Figure 13.14

means that there are four types of vibrational motion. Figure 13.14 provides a
schematic representation of four types of vibrational motion for a symmetrical
linear triatomic molecule and gives the vibrational frequencies in wave numbers
for CO . For a nonlinear triatomic molecule, such as H O, 3 6 3, and so
there are three normal modes (Fig. 13.14 ). NH , CH , and N O have 6, 9, and
12 normal modes of vibration.

To see what normal modes of vibration are, we first consider the vibration of
polyatomic molecules from a classical mechanical viewpoint. The kinetic energy

of a polyatomic molecule is given by

1 d d d
(13 95)

2 d d d

This equation can be simplified by introducing mass-weighted Cartesian displace-
ment coordinates .

( ) ( ) ( )

( ) ( ) (13 96)
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where and so on are the values of the coordinates at the equilibrium geometry
of the molecule. Since these are independent of time, the kinetic energy becomes

1 d
(13 97)

2 d

Since the potential energy is a function of the coordinates , it is also a
function of the mass-weighted coordinates. We will use a Taylor series expansion
about the equilibrium position as we did in equation 13.65, this time for a function
of several variables:

1
(13 98)

2

Since is the potential energy at the equilibrium configuration, it is a constant
which we can set equal to zero, and the terms in ( / ) are all equal to zero
because the potential energy is a minimum at the equilibrium configuration by
definition. If we neglect terms higher than quadratic, equation 13.98 can be written

1
(13 99)

2

so that the total energy is given by

1 d 1
(13 100)

2 d 2

where is the second derivative of with respect to and evaluated at
the equilibrium configuration. The problem in using this expression is with the
cross terms. Fortunately, it is possible to make a linear transformation of the mass-
weighted coordinates to new coordinates such that the quadratic term does
not contain cross terms:

1 d 1
(13 101)

2 d 2

We have used the fact that translational and rotational motion have only kinetic
energy so that there are 3 6 vibrational coordinates for a nonlinear molecule
and 3 5 for a linear molecule. These 3 6 or 3 5 coordinates are referred
to as and the corresponding 3 6 or 3 5 vibrations are
referred to as

In a normal mode of vibration, the nuclei move in phase (i.e., the nuclei
pass through the extremes of their motion simultaneously). The motions of the
nuclei in a normal mode are such that the center of mass does not move, and
the molecule as a whole does not rotate. This means that different atoms move
different distances. Each normal mode has a characteristic vibration frequency.
Sometimes several modes have identical vibration frequencies and are referred
to as degenerate modes. It can be shown that any vibrational motion of a poly-
atomic molecule can be expressed as a linear combination of normal modes of
vibrations.
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The gross selection rule is still that the displacements
of a normal mode must cause a change in dipole moment in order to be spectro-
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Turning now to the quantum mechanical treatment of a molecule, the vibra-
tional Hamiltonian obtained from equation 13.101 is simply a sum of terms, one
for each coordinate:

ˆ ˆ (13 102)

This indicates that the vibrational wavefunctions for the molecule can be written
as the product of harmonic oscillator wavefunctions, one for each coordinate .
We have seen in equation 9.116 that the eigenvalues for the harmonic oscillator
are given by ( ) ˜ so that the total vibrational energy of a polyatomic
molecule is

( ) ˜ (13 103)

The frequency of a normal mode depends both on the force constant for the
mode and on the reduced mass for the mode: 2 ( / ) .

The four normal modes of CO are shown in Fig. 13.14 . The first normal
mode is a symmetrical stretching vibration in which the carbon atom remains
fixed. The third normal mode is an asymmetrical stretching vibration. The other
two normal modes are orthogonal bending vibrations. The lower vibration fre-
quency for the bending vibrations indicates that it is generally easier to bend a
molecule than to stretch it. Figure 13.14 shows the three normal modes of vibra-
tion of H O. As indicated in the diagrams, the displacements of various atoms in
a normal mode are not equal, but depend on the masses and force constants.

For a polyatomic molecule, some normal modes of vibration are spectroscop-
ically active and some are not.

Of the four normal-mode vibrations for CO the symmetric stretch is not ac-
tive in the infrared, but the other vibrations are. Since CO is linear and symmetri-
cal in its equilibrium state, it does not have a dipole moment, and the symmetrical
stretching vibration does not create one. The asymmetric stretch and bending vi-
brations produce a changing dipole moment. The three normal modes of H O are
all active in the infrared because the magnitude of the dipole moment changes in
each type of vibration.

The specific selection rule for vibrational spectroscopy is that 1 in the
harmonic oscillator approximation. In addition, combination bands are formed in
which two or more vibrational modes change simultaneously.

The frequencies, in cm , of the strongest bands for H O vapor are sum-
marized in Table 13.5. The weaker bands in the spectrum are the overtones and
combinations shown in the table. As shown in Table 13.5, the vibrations are not
harmonic, and so the overtones are not exact multiples, and the combinations are
not exact sums.

One of the vibrational motions of a polyatomic molecule may be an internal
rotation. If there is an appreciable potential energy barrier for an internal rotation
about some bond, there will be an oscillation about the mean position. For exam-
ple, in ethylene, CH CH , there is a large potential energy barrier for internal
rotation, so that there are only small oscillations about the C C bond. In some
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cases, such as in CH CH , the potential energy barrier is small enough that the
internal rotation is said to be “free” at room temperature.

The vibrational spectra of polyatomic molecules are very useful for identifica-
tion and serve also as criteria of purity. For such practical applications the infrared
spectra for a large number of compounds have been cataloged and are used like
fingerprints. Groups of atoms within the molecule have quite characteristic ab-
sorption bands. The wavelengths at which a certain group absorbs vary slightly,
depending on the structure of the rest of the molecule.

The infrared spectrum of a molecule may be considered to be made up of
several regions.

Hydrogen stretching vibrations, 3700–2500 cm . These vibrations occur at
high frequencies because of the low mass of the hydrogen atom. If an OH
group is not involved in hydrogen bonding (Section 11.10), it usually has a
frequency in the vicinity of 3600–3700 cm . Hydrogen bonding causes this
frequency to drop by 300–1000 cm or more. The NH absorption falls in
the 3300- to 3400-cm range, and the CH absorption falls in the 2850- to
3000-cm range. For SiH, PH, and SH, it is approximately 2200, 2400, and
2500 cm .
Triple-bond region, 2500–2000 cm . Triple bonds have high frequencies be-
cause of the large force constants. The C C group usually causes absorption
between 2050 and 2300 cm , but this absorption may be weak or absent be-
cause of the symmetry of the molecule. The C N group absorbs near 2200–
2300 cm .
Double-bond region, 2000–1600 cm . Absorption bands of substituted aro-
matic compounds fall in the range 2000–1600 cm and are a good indicator
of the position of the substitution. Carbonyl groups, C O, of ketones, alde-
hydes, acids, amides, and carbonates usually show strong absorption in the
vicinity of 1700 cm . Olefins, C C, may show absorption in the vicin-
ity of 1650 cm . The bending of the C N H bond also occurs in this
region.
Single-bond stretch and bend region, 500–1700 cm . The region 500–
1700 cm is not diagnostic for particular functional groups, but it is a useful
“fingerprint” region, since it shows differences between similar molecules.
Organic compounds usually show peaks in the region between 1300 and
1475 cm because of the bending motions of bonds to hydrogen. Out-of-
plane bending motions of olefinic and aromatic CH groups usually occur
between 700 and 1000 cm .



Comment:

Applying the selection rule that a normal mode will ha e a ibrational spectrum
only if the dipole moment changes in the ibration may be difficult for the normal
modes of a polyatomic molecule. Fortunately, that information is in the character
table for the symmetry group. An example of a character table was gi en at the
end of the preceding chapter (see Table 12.4). That character table for C shows
that for any molecule in this symmetry group some of the ibrational modes will
be infrared acti e. Water is an example, as shown by Fig. 13.14b.

E
E

h E h E .

h E E h hc .
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When a sample is irradiated with monochromatic light, the incident radiation may
be absorbed, may stimulate emission, or may be scattered. A part of the scattered
radiation is referred to as the It is found that some photons
lose energy in scattering from a molecule in the sample and emerge with a lower
frequency; these photons produce what are referred to as in the spec-
trum of the scattered radiation. A smaller fraction of the scattered photons gains
energy in striking a molecule in the sample and emerges with a higher frequency;
these photons produce what are referred to as in the spectrum of
the scattered radiation. Only a very small fraction (usually less than 1 part in 10 )
of the incident radiation is scattered, and the frequency shifts may be quite small;
since lasers can produce very intense radiation that is highly monochromatic, they
are used as the radiation source.

The interpretation of Raman spectra is based on the conservation of energy,
which requires that when a photon of frequency is scattered by a molecule in
a quantum state with energy and the outgoing photon has a frequency , the
molecule ends up in quantum state f with energy :

(13 104)

or

( ) ˜ (13 105)

where the shift in frequency is labeled and the shift in wave number is labeled
˜ . Notice that Raman spectroscopy is different from absorption or emission

spectroscopy in that the light need not coincide with a quantized energy
difference in the molecule. Therefore, any frequency of light can be used. Since
many final states are possible, of both higher and lower energy than the initial
state, many Raman spectral lines can be observed. A typical experimental appa-
ratus is shown in Fig. 13.15.

The frequency shifts seen in Raman experiments correspond to vibrational
or rotational energy differences, so this kind of spectroscopy gives us information
on the vibrational and rotational states of molecules.

The Raman effect arises from the induced polarization of scattering molecules
that is caused by the electric vector of the electromagnetic radiation. Some as-
pects of the Raman effect can be understood classically. First we will consider
an isotropic molecule, that is, one that has the same optical properties in all
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Figure 13.15

directions (CH is an example). A dipole moment is induced in the molecule
by an electric field :

or (13 106)

where is the The polarizability has units of dipole moment divided
by electric field strength, that is, C m/V m C m /J. For an isotropic molecule
the vectors and point in the same direction, and the polarizability is a scalar.
The polarizability of a molecule that is rotating or vibrating is not constant, but
varies with some frequency (for example, a vibration or rotation frequency)
according to

( ) cos 2 (13 107)

where is the equilibrium polarizability and is its maximum variation. Since
the electric field of the impinging electromagnetic radiation varies with time ac-
cording to

cos 2 (13 108)

the induced dipole moment of the molecule is given by

[ ( ) cos 2 ] cos 2

cos 2 ( ) [cos 2 ( ) cos 2 ( ) ]

(13 109)

where the last form has been obtained using the relation cos cos [cos(
) cos( )]. The three terms in this equation provide the classical explana-

tion for Rayleigh scattering ( ), anti-Stokes lines ( ), and Stokes lines
( ), respectively. However, the classical treatment incorrectly implies that
the Stokes and anti-Stokes lines will occur with equal intensity. The anti-Stokes
lines are, of course, weaker because they depend on the populations of excited
levels.

In order for a molecular motion to be Raman active, the polarizability must
change when that motion occurs (that is, 0).
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Figure 13.16

The polarizability of both homonuclear and heteronuclear
diatomic molecules changes as the distance between nuclei changes because this
alters the electronic structure. The polarizability of an atom or a spherical ro-
tor (Section 13.5) does not change in a rotation; indeed, we cannot even talk
about the rotation of an atom. Thus, spherical rotors do not have a rotational
Raman effect. All other molecules are anisotropically polarizable; that means
that the polarization is dependent on the orientation of the molecule in the
electric field.

When a molecule is anisotropic, the application of an electric field in a
particular direction induces a moment in a different direction. In this case is
a tensor, and the induced dipole moment is given by

(13 110)

which is expressed by the following matrix equation (see Appendix D.8):

(13 111)

This is equivalent to the following set of algebraic equations:

(13 112)

(13 113)

(13 114)

Thus, each component ( ) of the induced dipole moment can depend
on each component ( ) of the electric field . Only six of the nine coeffi-
cients of the polarizability are independent, since it can be shown that ,

, and .
The quantum mechanical theory for the selection rules for the Raman effect is

more complicated than for pure rotational and vibrational spectra because Raman
scattering is a kind of two-photon process: The incident photon is absorbed and
the leaving photon is emitted by the molecule in a single quantum process.

The specific selection rules for rotational Raman transitions are as follows for
linear and symmetric top molecules:

Linear molecules 0 2
Symmetric top 0 2 0 when 0

molecules 0 1 2 0 when 0

where is the component of the angular momentum along the principal sym-
metry axis. The 0 applies in vibration–rotation transitions. The fact that

2 for linear molecules is a result of the fact that the polarizability of
a molecule returns to its initial value twice in a 360 revolution, as shown in
Fig. 13.16. The 0 is a result of the fact that the dipole of a symmetric top
molecule is along the principal axis, so there cannot be a component of the dipole
moment perpendicular to this axis.

The frequencies of the Stokes lines ( 2) in the rotational Raman spec-
trum of a linear molecule are given by

˜ ˜˜ ( 1) ( 1) (13 115)
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2Pure rotational Raman spectrum of CO . The abscissa gives the quantum
numbers for the lower quantum state. The intense peak at 488 nm is due to elastic scatter-
ing. (From B. P. Straughan and S. Walker, Vol. 2. London: Chapman & Hall,
1976.)
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Figure 13.17

where is the initial quantum number. Substituting 2,

˜˜ [( 2)( 3) ( 1)]

˜2 (2 3) (13 116)

These lines appear at lower frequencies than the exciting line and are referred
to as the branch. The relative intensities of these lines are determined by the
populations of the initial states, as we have discussed for the vibration–rotation
spectra in the infrared.

The frequencies of the anti-Stokes lines ( 2) in the rotational Raman
spectrum are given by

˜˜ 2 (2 1) where 2 (13 117)

The lines appear at higher frequencies and are referred to as the branch. In
addition, there is a branch for 0. The , , and branches correspond
to the , , and branches of infrared spectroscopy.

The pure rotational Raman spectrum of CO is shown in Fig. 13.17. Notice the
large number of initially populated rotational states, since the rotational splitting
is small compared with .

As noted above, for a molecule to have a vibrational Raman spectrum it is
necessary for the polarizability to change as the molecule vibrates. The polariz-
abilities of both homonuclear and heteronuclear diatomic molecules change as
the molecule vibrates, so both types of molecules have vibrational Raman spectra
in contrast to infrared vibrational spectra. The specific selection rule for the vi-
brational Raman effect is 1. The vibrational transitions are accompanied
by rotational Raman transitions with the specific selection rules 0 2, as
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Theoretical rotation–vibration Raman spectrum of a linear molecule. The
effects of nuclear spin statistics have been omitted from this illustration. (From W. A. Guil-
lory, Boston: Allyn & Bacon, 1977.
Used by permission.)

mutual exclusion rule
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Figure 13.18

before. The vibrational Raman spectra of homonuclear diatomic molecules are
of special interest because they yield force constants and rotational constants that
are not available from infrared absorption spectroscopy.

Figure 13.18 shows the theoretical rotation–vibration Raman spectrum for
1 0 1 and 2 0 1 for a linear molecule. It is assumed that there

is a small population in the first excited vibrational state. The center series of lines
is the rotational Raman spectrum of the molecule. Since homonuclear diatomic
molecules give spectra of this type, Raman spectroscopy provides the possibility,
not available in microwave or infrared spectroscopy, of determining their inter-
nuclear distances and force constants.

For a polyatomic molecule, some normal modes will be Raman active and
some will not, depending on what happens to the polarizability ellipsoid when the
generalized coordinate for the normal mode has changed. This is most easily seen
for a linear symmetric molecule, such as CO , in which the principal axes of
the polarizability ellipsoid are coincident with the symmetry axes of the molecule.
In these molecules, only the symmetrical stretching normal mode is Raman active.
This particular mode is not active in the infrared (Section 13.8). According to the

for molecules with a center of symmetry, fundamental tran-
sitions that are active in the infrared are forbidden in the Raman scattering, and
vice versa. However, there are some vibrations that are forbidden in both spectra.
The torsional vibration of ethylene is neither infrared nor Raman active; this is
the vibration in which ethylene is twisted out of its planar equilibrium structure.
Benzene has thirty normal modes of vibration, and eight of them are totally inac-
tive in both infrared and Raman; these are referred to as spectroscopically dark
vibrations.
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Figure 13.19

Figure 13.20

The symmetry group of the molecule can be used to determine whether a par-
ticular vibration is Raman active or infrared active. Those normal modes whose
symmetry is the same as the functions , , or will be infrared active, while those
whose symmetry is the same as , , or will be Raman active (see Chapter 12).

The intensity of Raman scattering is very much increased when the exciting
frequency coincides with an electronic absorption frequency (see Section 14.5);
this is called

The sensitivity of infrared absorption measurements can be greatly increased
by using a method involving Fourier transforms. A Michelson interferometer is
built into the spectrometer, along with a dedicated computer. The construction of
the Michelson interferometer is shown in Fig. 13.19. The infrared radiation that
has been transmitted by the sample, designated as the source S, is split into two
rays by B, which is usually a very thin film of germanium supported on a potas-
sium bromide substrate. The beam splitter transmits half of the infrared radiation
from the sample and reflects half toward a movable mirror M . The transmitted
ray is reflected from a stationary mirror M . When the two rays reach the de-
tector D, there is interference because of the path difference . If the radiation
from the sample is monochromatic, the intensity measured at the detector ( )
is given by

( ) ( ˜ )(1 cos 2 ˜ ) (13 118)

where ( ˜ ) is the intensity of the beam from the sample. The dependence of in-
tensity on path difference is shown in Fig. 13.20. The path difference is changed
by moving mirror M . If the radiation transmitted by the sample is polychromatic,
equation 13.118 is replaced by a summation or integral:

( ) ( ˜ )(1 cos 2 ˜ ) d ˜ (13 119)

This intensity can be measured at a series of path differences by moving M con-
tinuously. The plot of ( ) versus shows beats, as illustrated by Fig. 13.21 for ra-
diation containing two frequencies. Much more complicated signals as a function
of path difference are obtained from actual infrared spectra. These measurements
can be used to calculate ( ˜ ) by use of a Fourier transformation, which gives

1
( ˜ ) ( ) (0) cos 2 ˜ d (13 120)

2

where (0) is the intensity for zero path difference. This integration is carried out
by the dedicated computer in the spectrometer, and the spectrum ( ˜ ) is plot-
ted out. To a first approximation, the resolution is inversely proportional to the
distance moved by mirror M , but there are problems with making this distance
greater than about 5 cm, which gives a resolution of about 0 1 cm .
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I( ) versus when radiation from the source contains two frequencies.� �
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13.10 Special Topic: Fourier Transform Infrared Spectroscopy

� �

Figure 13.21

The advantage of a Fourier transform spectrometer is that it makes use of
the radiation at all wave numbers from the source for all of the time of record-
ing. Fourier transforms are also used in nuclear magnetic resonance spectroscopy
(Section 15.10) and in determining the structures of crystals by X-ray diffraction
(Section 23.6).

The electromagnetic spectrum is divided into regions by the modes of de-
tection, but these regions are also characterized by the ranges of photon
energy they involve. The absorption of a photon leads to different types
of energetic changes in molecules in different regions of the spectrum.
Consideration of the equations for Einstein’s stimulated absorption,
spontaneous emission, and stimulated emission shows that irradiation
of a two-level system can never put more atoms or molecules in the
higher level than in the lower level.
The Hamiltonian of a molecule can, to a good approximation, be sep-
arated into translational, vibrational, and rotational contributions. When
this is satisfactory, the wavefunction can be written as the product of trans-
lational, vibrational, and rotational wavefunctions.
The rotational lines for a rigid diatomic molecule are equally spaced, and
the spacing yields the moment of inertia. To have a rotational spectrum,
a molecule must have a permanent dipole moment.
Diatomic molecules are not harmonic oscillators, and the deviation from
equal spacing of vibrational lines yields anharmonicity constants. To
have a vibrational spectrum, a molecule must have a dipole moment that
changes with internuclear distance.
Vibration–rotation spectra yield vibration–rotation coupling constants.
Vibrational spectra of polyatomic molecules with atoms can be de-
scribed in terms of 3 5 coordinates for linear molecules and 3 6
coordinates for nonlinear molecules. There is a Hamiltonian for each of
these normal modes of vibration.
When light is scattered by molecules, part of the scattered light emerges
with lower frequency (Stokes lines) and a smaller part emerges with a
higher frequency (anti-Stokes lines). The incident light need not coincide
with a quantized energy difference in the molecule. Laser light sources
are used because of their brightness.
In order for a vibrational mode to be Raman active, the polarizability
must change as the molecule vibrates, and for a rotation to be Raman
active, the polarizability must change as the molecule rotates.
Spectroscopic measurements yield properties of gas molecules that have
many scientific and practical applications.
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Problemsmarkedwithaniconmaybemoreconveniently Calculate the frequency in wave numbers and the wave-
solved on a personal computer with a mathematical program. length in cm of the first rotational transition ( 0 1) for

D Cl.Since the energy of a molecular quantum state is divided
by in the Boltzmann distribution, it is of interest to calculate The pure rotational spectrum of C O has transitions
the temperature at which is equal to the energy of photons of at 3.863 and 7.725 cm . Calculate the internuclear distance in
different wavelengths. Calculate the temperature at which is C O. Predict the positions, in cm , of the next two lines.
equal to the energy of photons of wavelength 10 cm, 10 cm, Assume the bond distances in C O, C O, and
10 cm, and 10 cm. C O are the same as in C O. Calculate the position, in

Most chemical reactions require activation energies cm , of the first rotational transitions in these four molecules.
ranging between 40 and 400 kJ mol . What are the equivalents (Use the information in Problem 13.9.)
of 40 and 400 kJ mol in terms of ( ) nm, ( ) wave numbers, The far-infrared spectrum of HI consists of a series of
and ( ) electron volts? equally spaced lines with ˜ 12 8 cm . What is ( ) the mo-

( ) What vibrational frequency in wave numbers corre- ment of inertia and ( ) the internuclear distance?
sponds to a thermal energy of at 25 C? ( ) What is the wave- For H Cl calculate the relative populations of rota-
length of this radiation? tional levels, / , for the first three levels at 300 K and

Show that equation 13.17 is a solution of equation 13.9 by 1000 K.
differentiating equation 13.17 and substituting it into equation Using equation 13.44, show that for the maximally
13.9. populated level is given by

Calculate the reduced mass and the moment of inertia
of D Cl, given that 127 5 pm. 1

The H O H bond angle for H O is 104 5 , and the 2 2
H O bond length is 95.72 pm. What is the moment of inertia

Using the result of Problem 13.13, find the nearestof H O about its C axis?
at room temperature for H Cl and C O. ( ) What is the ratioSome of the following gas molecules have pure micro-
of the population at that to the population at 0? ( ) Whatwave absorption spectra and some do not: N , HBr, CCl ,
is the energy of that relative to 0 in units of ?CH CH , CH CH OH, H O, CO , O . What is the gross

The moment of inertia of O C O is 7 167selection rule for rotational spectra, and which molecules
10 kg m . ( ) Calculate the CO bond length, ,satisfy it?
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in CO . ( ) Assuming that isotopic substitution does not alter ( ) What fraction of H (g) molecules are in the
, calculate the moments of inertia of (1) O C O and (2) 1 state at room temperature? ( ) What fractions of Br (g)

O C O. molecules are in the 1, 2, and 3 states at room tempera-
tures?Derive the expression for the moment of inertia of a

symmetrical tetrahedral molecule such as CH in terms of the The first three lines in the branch of the fundamen-
bond length and the masses of the four tetrahedral atoms. The tal vibration–rotation band of H Cl have the following fre-
easiest way to derive the expression is to consider an axis along quencies in cm : 2906.25 (0), 2925 78 (1), 2944 89 (2), where
one CH bond. Show that the same result is obtained if the axis is the numbers in parentheses are the values for the initial level.
taken perpendicular to the plane defined by one group of three What are the values of ˜ , and ?
atoms HCH. In Table 13.3, for H is given as 4.7483 eV or

˜ ˜What are the values of and (from equation 13.62) 458.135 kJ mol . Given the vibrational parameters for H in
for the symmetric top NH if 4 41 10 kg m and Table 13.4, calculate the value you would expect for for
2 81 10 kg m ? What is the wavelength of the 0 to H(g) at 0 K.
1 transition? What are the wavelengths of the 1 to 2 Calculate the wavelengths in ( ) wave numbers and ( )
transitions (remember the selection rules, 1, 0, micrometers of the center two lines in the vibration spectrum of
and find all allowed transitions)? HBr for the fundamental vibration. The necessary data are to be

Consider a linear triatomic molecule, ABC. Find the cen- found in Table 13.4.
ter of mass (which by symmetry lies on the molecular axis). Show How many normal modes of vibration are there for ( )
that the moment of inertia is given by SO (bent), ( ) H O (bent), ( ) HC CH (linear), and ( )

C H ?1
[ ( ) ]

List the numbers of translational, rotational, and vibra-
tional degrees of freedom for ( ) Ne, ( ) N , ( ) CO , and ( )where is the AB bond distance, is the BC bond dis-
CH O.tance, are the masses of the atoms, and .

Show that if and , then 2 . Acetylene is a symmetrical linear molecule. It has
seven normal modes of vibration, two of which are doubly de-The fundamental vibration frequency of H Cl is 8 967
generate. These normal modes may be represented as follows:10 s and that of D Cl is 6 428 10 s . What would the

separation be between infrared absorption lines of H Cl and
H HC C H C C HH Cl on one hand and those of D Cl and D Cl on the other,

if the force constants of the bonds are assumed to be the same
˜ 3374 cm ˜ 612 cmin each pair?

Find the force constants of the halogens I , Br , and H HC C H C C H
Cl using the data of Table 13.4. Is the order of these the same

as the order of the bond energies? ˜ 1974 cm ˜ 729 cm
Given the following fundamental frequencies of vibra-

H C HCtion, calculate for the reaction
˜ 3287 cm

H Cl( 0) D ( 0) D Cl( 0) H D( 0)
( ) Which are the doubly degenerate vibrations? ( ) Which vi-

H Cl: 2989 cm H D: 3817 cm brations are infrared active? ( ) Which vibrations are Raman
active?D Cl: 2144 cm D D: 3119 cm

Calculate the wave number and wavelength of the pure
fundamental ( 0 1) vibrational transitions for ( ) C OIf the fundamental vibration frequency of H is
and ( ) K Cl using data in Table 13.4.4401.21 cm , compute the fundamental vibration frequency

of D and H D assuming the same force constants. If ( ) Consider the four normal modes of vibration of a
for H is 4.4781 eV, what is for D and H D? Neglect linear molecule AB from the standpoint of changing dipole
anharmonicities. moment and changing polarizability. Which vibrational modes

are infrared active, and which are Raman active? (Note the ex-Using the values for ˜ and ˜ ˜ in Table 13.4 for H Cl,
clusion rule.) ( ) Consider the three normal modes of a nonlin-estimate the dissociation energy assuming the Morse potential
ear molecule AB . Which vibrational modes are infrared active,is applicable.
and which are Raman active?Apply the Taylor expansion to the potential energy given

˜ Calculate the fraction of Cl molecules ( ˜ 559 7by the Morse equation ( ) 1 exp[ ( )] to
cm ) in the 0 1 2 3 vibrational states at 1000 K.show that the force constant is given by 2 .
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When CCl is irradiated with the 435.8-nm mercury line, Show that for large the frequency of radiation ab-
Raman lines are obtained at 439.9, 441.8, 444.6, and 450.7 nm. sorbed in exciting a rotational transition is approximately equal
Calculate the Raman frequencies of CCl (expressed in wave to the classical frequency of rotation of the molecule in its initial
numbers). Also calculate the wavelengths (expressed in m) in or final state.
the infrared at which absorption might be expected. For the rotational Raman effect, what are the displace-

The first several Raman frequencies of N are 19.908, ments of the successive Stokes lines in terms of the rotational
27.857, 35.812, 43.762, 51.721, and 59 662 cm . These lines are constant ? Is the answer the same for the anti-Stokes lines?
due to pure rotational transitions with 1, 2, 3, 4, 5, and 6. Show that the moments of inertia of a regular hexagonal
The spacing between the lines is 4 . What is the internuclear molecule made up of six identical atoms of mass are given by
distance?

6 and 3What Raman shifts are expected for the first four Stokes
lines for CO ? where is the bond distance.

Some of the following gas molecules have a pure ro- What are the frequencies of the first three lines in the
tational Raman spectrum and some do not: N , HBr, CCl , rotational spectrum of O C S given that the O C distance
CH CH , CH CH OH, H O, CO , O . What is the gross is 116.47 pm, the C S distance is 155.76 pm, and the molecule
selection rule for pure rotational Raman spectra, and which is linear. Atomic masses of isotopes are given inside the back
molecules satisfy it? cover. The moment of inertia of a linear molecule ABC is given

in Problem 13.18.
What are the rotational frequencies for the first three ro-

tational lines in O C S, assuming the same bond lengths asCalculate the factors for converting between eV and
in Problem 13.51?cm and between eV and kJ mol

Ammonia is a symmetric top withEnergies in electron volts (eV) may be expressed in
terms of temperature by use of the relation e , where is 2 8003 10 kg m
the difference in potential in V. What temperature corresponds

4 4300 10 kg mto 1 V? 100 V? 1000 V? What is the electron volt equivalent of
room temperature?

Calculate the characteristic rotational temperatures where
The internuclear distance in CO is 112.82 pm. Calculate

( ) the reduced mass and ( ) the moment of inertia.
Calculate the frequencies in cm and the wavelengths 8

in m for the pure rotational lines in the spectrum of H Cl cor-
Using the Morse potential expression, equation 13.82,responding to the following changes in rotational quantum num-

estimate for HBr, HCl, and HI from the data in Table 13.4.ber: 0 1, 1 2, 2 3, and 8 9.
Calculate the values of for HCl, HBr, and HI usingAssuming that the internuclear distance is 74.2 pm for

the data of Table 13.4 and equation 13.80 (neglect ).( ) H , ( ) HD, ( ) HT, and ( ) D , calculate the moments of
inertia of these molecules. From the data of Table 13.4, calculate the vibrational

force constants of HCl, HBr, and HI. Are these in the same or-Calculate the energy difference in cm and kJ mol
der as the dissociation energies?between the 0 and 1 rotational levels of OH, using the

data of Table 13.4. Assuming that OD has the same internuclear Using the Boltzmann distribution (equation 16.17), cal-
distance as OH, calculate the energy difference between 0 culate the ratio of the population of the first vibrational ex-
and 1 in OD. cited state to the population of the ground state for H Cl ( ˜

2990 cm ) and I ( ˜ 213 cm ) at 300 K.In the pure rotational spectrum of C O, the lines are
separated by 3 8626 cm . What is the internuclear distance in Use the Morse potential to estimate the equilibrium dis-
the molecule? sociation energy for Br using ˜ and ˜ from Table 13.4.

Consider the molecular radicals CH and CH. Cal- The wave numbers of the first several lines in the
culate their moments of inertia using from Table 13.4 and branch of the fundamental ( 0 1) vibrational band for
assuming is the same in both. Using the results of Problem H Cl have the following frequencies in cm : 2101.60 (0),
13.13, find the value of closest to at room temperature, 2111.94 (1), 2122.05 (2), where the numbers in parentheses
and compute the difference in energy between this state and the are the values for the initial level. What are the values of

˜ ˜ ˜next higher energy state. , and ? How does the internuclear distance com-
pare with that for H Cl?The separation of the pure rotation lines in the spectrum

of CO is 3 86 cm . Calculate the equilibrium internuclear sep- Gaseous HBr has an absorption band centered at about
aration. 2645 cm consisting of a series of lines approximately equally
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spaced with an interval of 16 9 cm . For gaseous DBr estimate ( ) Calculate the energies (in cm ) of the rotational
the frequency in wave numbers of the band center and the inter- levels of H Cl for 0 to 15, taking into account the
val between lines. centrifugal distortion ( 4 4 10 cm ). ( ) Calculate the

frequencies of absorption due to 1 transitions in cm .Some of the following gas molecules have infrared ab-
( ) Calculate the fractions of the molecules in each of thesesorption spectra and some do not: N , HBr, CCl , CH CH ,
15 levels using equation 13.43 at 300 K and plot versus fre-CH CH OH, H O, CO , O . What is the gross selection rule
quencies of absorption in wave numbers (cm ). ( ) Calculatefor vibrational spectra, and which molecules satisfy it?
the fractions of the molecules in each of these 15 levels usingList the numbers of translational, rotational, and vibra-
equation 13.43 at 500 K and plot these fractions on the sametional degrees of freedom of Cl , H O, and C H .
graph.

List the numbers of translational, rotational, and vibra-
Calculate the frequencies of lines in the vibration–tional degrees of freedom of NNO (a linear molecule) and NH .

rotation spectrum of HCl for 0 to 1, including theThe rotational Raman spectrum of hydrogen gas is mea-
dependence of the rotational constant on the vibrational quan-sured using a 488-nm laser. Stokes lines are observed at 355,
tum number. Energies can be expressed in cm . Plot the line588, 815, and 1033 cm . Since these transitions are of the type
spectra for 0 to 2 and 0 to 10. Make further2, it may be shown that the wave numbers of these lines

˜plots to show the effect of a larger ˜ , a larger , and a largerare given by
˜ .

˜˜ 4 ( )
( ) Given the spectroscopic constants for H Cl in

Table 13.4, calculate the energy levels (in cm ) forwhere is the rotational quantum number of the initial state
˜ 0 1 2 3 and 4 in the vibrational states 0 and 1. ( )(0, 1, 2, and 3, respectively, for the above lines) and is given

Calculate the frequencies (in cm ) of the first two lines inby equation 13.34. What is ? [L. C. Hoskins,
the branch of 0 1 and the first two lines of the642 (1977).]
branch of the absorption spectrum. Compare your calculationsThe rotational Raman spectrum of nitrogen gas shows
with Fig. 13.12.Raman shifts of 19, 27, 34, 53, . . . cm , corresponding to rota-

tional quantum numbers of the initial state of 1 2 3 4 . The observed vibrational frequencies for an anharmonic
Since the spacing is 4 ignoring centrifugal distortion, what is oscillator are given by

? [L. C. Hoskins, 568 (1975).]
˜ ˜˜ ( ) (0) ˜ ˜ ( 1)Calculate (298 K) for the reaction

Calculate the fundamental vibration frequency ˜ and the an-H D 2HD
harmonicity constant for H Cl, for which the frequencies for

assuming that the force constant is the same for all three the 0 transitions are 2885.9, 5668.0, 8347.0, 10 923.1, and
molecules. 13 396.5 cm for 1, 2, 3, 4, and 5.

Plot the Morse potential for the chlorine molecule and
the parabolic curve ( ) /2 with a force constant
that corresponds to that for the Morse potential at the minimum
of the potential energy plot.

Plot the Morse potentials for molecular hydrogen in the Plot the Morse potential for H Cl using the parameters
ground state and the first excited state (see Table 13.4 for pa- calculated in Example 13.7 and the fact that 0 1275 nm.
rameters), and put the plots on the same graph so that they can

Calculate the vibrational frequencies in wave numbers forbe compared with Fig. 11.12.
the fundamental absorption band of H Cl and the first four

Plot the Morse potential for molecular chlorine in the overtones for ( ) the harmonic oscillator approximation and ( )
ground state (see Table 13.4 for parameters) and put in lines for the anharmonic oscillator. The spectroscopic constants are given
every fifth vibrational level from 0 to 40. in Table 13.4.
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14
Electronic Energy Levels and Selection Rules
Electronic Absorption Spectra of Diatomic Molecules
and the Franck–Condon Principle
Determination of Dissociation Energies
Spectrophotometers and the Beer–Lambert Law
Oscillator Strength
Electronic Spectra of Polyatomic Molecules
Conjugated Molecules: Free-Electron Model
Fluorescence and Phosphorescence
Lasers
Photoelectron Spectroscopy
Special Topic: Optical Activity and Optical Rotation

14.1 ELECTRONIC ENERGY LEVELS AND SELECTION RULES

Transitions between electronic levels of molecules lead to absorption and emis-
sion in the visible and ultraviolet parts of the spectrum. For some molecules the
energy required to change electronic structure is so great that absorption occurs
only in the high-energy vacuum ultraviolet parts of the spectrum. Electronic spec-
tra contain many lines because electronic excitation is accompanied by change in
vibrational and rotational states as well. When the lines can be resolved, electronic
spectra are a rich source of information about molecular properties. At higher
pressures in the gas phase the lines are so closely spaced that continuous absorp-
tion is obtained. The phenomena of fluorescence and phosphorescence involve
electronic changes. Electronic spectra of molecules provide a means for learning
about excited electronic states that are involved in photochemical reactions.

The development of lasers has revolutionized many areas of spectroscopy be-
cause of the extraordinary properties of laser radiation.

In discussing H in Chapter 11, we formed one-electron molecular orbitals from
atomic orbitals and then used these to describe the electronic states of the H

Electronic Spectroscopy of Molecules
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molecule by putting the electrons into these orbitals in various ways. This provided
us with an introduction to molecular term symbols that designate the symmetry,
multiplicity, and angular momentum properties of the electronic state.

is the excitation of electrons from low-energy orbitals to higher-
energy orbitals by the absorption of light. Since the energies required to do this
are generally much larger than vibrational and rotational energies, this form of
spectroscopy uses light in the visible, ultraviolet, and even shorter-wavelength
parts of the spectrum. In addition, vibrational and rotational energy changes al-
most always occur during an electronic transition, complicating the spectrum. The
analysis of such spectra can give us information about dissociation energies, bond
lengths, force constants, and potential energy curves.

We will begin by studying the electronic spectra of diatomic molecules,
which are the most developed and best understood. In the gas phase at low
pressure, the vast majority of diatomic molecules are in the ground electronic
state and mainly in the lowest vibrational state. However, there is usually a broad
distribution of rotational levels (since the rotational energy spacings are small
compared with ). When light is absorbed by these molecules, the electronic
energy level is changed, the vibrational level may change, and the rotational
level will change. The selection rules for vibrational level changes are not as
stringent as in infrared (pure vibration–rotation) spectroscopy; therefore, there
are many absorption lines in the electronic spectrum. At low pressures these are
narrow, and we can often analyze the spectrum completely. At high pressures,
collisions between molecules reduce the lifetimes of the initial and final states,
thereby broadening the absorption spectra. In solution, collisions produce a
spectrum that appears smooth and continuous, obscuring the very large number
of lines making up the spectrum.

To analyze the spectra of diatomic molecules, we need to know the electric
dipole selection rules just as we did for atoms (Section 10.14). For atoms, we saw
that the levels were labeled by the angular momentum quantum numbers , ,
and . In diatomic molecules, we have to consider in addition the angular mo-
menta due to molecular rotation and due to nuclear spins. The selection rules for
diatomic molecules become complicated and depend on the way the angular mo-
menta are coupled in the molecule. The most common situation (especially for
diatomics made up of light atoms in the first several rows of the periodic table) is
called Hund’s case (a). For this case the are as follows.

0 1. is the component of orbital angular momentum along the
axis; it can have values 0 1 2 . Since electronic states are designated ,

, , , , corresponding to 0 1 2 3 4 , we see that – , – ,
and – transitions are allowed, but – and – are not.

0. Thus, as in atomic spectra, singlet–singlet and triplet–triplet transi-
tions may occur, but singlet–triplet transitions are forbidden. This rule breaks
down in molecules with nuclei with large atomic numbers.

0. The quantum number in a molecule is analogous to in an atom
and can take the values 1 . This quantum number, which de-
termines the multiplicity (2 1) of a state, is reported as a presuperscript
in a molecular term symbol.

0 1. The total angular momentum ¯ along the internuclear axis,
which is given by , is sometimes reported as a postsubscript in the
molecular term symbol.



a a

y

y

y

Electric dipole transitions in O and NO

Reaction energies from spectroscopic transitions

504

,

a

b

a

E .

E .

E .
b

E .

E .

E .

�

� � �

� � �

� � �

� � �

� �

� � �

� � �

� �

� � �

�

�

�

v

2 2

2

3 3
2 g u

2 2

2 2 2

3 4 2 3
2 g

1 3 2 4
2 g

3 3 3
2 g

4 3 2

1

1 4 4
2 g

3 4 2

1

For O and NO, list possible electric dipole transitions from the ground state to excited
states of these molecules that are shown.

O X B (Schumann–Runge bands)

NO X A

X B C

According to Fig. 14.1, what are the changes in internal energy for the following reactions?

( ) O (X ) N( S) NO(X ) O( P)

( ) N (X ) O( P) NO(X ) N( S)

Reaction ( ) is the sum of the reactions

O (X ) O( P) O( P) 5 0 eV

N( S) O( P) NO(X ) 6 5 eV

so that 1 5 eV 145 kJ mol .
Reaction ( ) is the sum of the reactions

N (X ) N( S) N( S) 9 5 eV

O( P) N( S) NO(X ) 6 5 eV

so that 3 0 eV 290 kJ mol .
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Example 14.2
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– and – transitions are allowed, but – are not. These post-
superscripts refer to whether the wavefunction for the electronic state is sym-
metric ( ) or antisymmetric ( ) to reflection across any plane.
g u, g g, u u. Thus, the only allowed transitions are those involving
a change in parity.

Forbidden transitions may occur, but they generally occur at rates several or-
ders of magnitude slower than allowed transitions. The fact that so-called forbid-
den transitions do occur is not an indication that quantum mechanics is wrong,
but that the approximations in the calculations are not satisfied for the real sys-
tem. The treatment of a simpler model is often useful, even though the results are
approximate.

To illustrate these selection rules we will consider some electronic transitions
of the molecules N , O , and NO. Potential energy diagrams for the ground states
and several of the excited electronic states of these molecules and their cations
are given in Fig. 14.1. The molecular term symbols for these states are given, and
the atomic term symbols are given for the dissociated atoms.

In addition to the term symbol, electronic states of molecules are also given
letter symbols. The ground electronic state is labeled X, and excited states of the
same multiplicity are labeled A, B, C, . . . in order of increasing energy. Excited
states of different multiplicity are labeled with lowercase letters a, b, c, . . . .

Before we can discuss these transitions we have to discuss the manner in
which they occur.

t
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2 2Potential energy diagrams for N , O , and NO and their cations. (From F. R.
Gilmore, RAND Corporation Memorandum R-4034-PR, June 1964.)

14.2 Electronic Absorption Spectra of Diatomic Molecules and the Franck–Condon Principle

14.2 ELECTRONIC ABSORPTION SPECTRA OF DIATOMIC
MOLECULES AND THE FRANCK–CONDON PRINCIPLE

Figure 14.1

In the preceding chapter we discussed the vibrational spectra of diatomic mol-
ecules; we now consider vibrational contributions to the electronic spectra of di-
atomic molecules. As a simplification we will ignore the rotational changes that
also accompany changes in electronic states because they involve smaller energy
changes. When a diatomic molecule in its ground vibrational state absorbs a pho-
ton that raises it to an excited electronic state, the transitions are represented by
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Figure 14.1

Fig. 14.2, where the vibrational quantum number in the excited state is indicated
by a single prime and the vibrational quantum number in the ground electronic
state by a double prime. Note that the absorption frequencies for these transi-
tions increase to a If higher vibrational levels in the ground
electronic state are significantly populated, there will be other series, but we will
concentrate on the transitions that start with the ground vibrational state of the
ground electronic state.

˜The sum of the electronic and vibrational energies of a diatomic molecule
in one of the vibrational levels of the higher electronic state is given by (where we
have allowed for anharmonicity)

˜ ˜ ˜ ( ) ˜ ( )

˜ ˜ ( ) ˜ [( ) ] (14 1)
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Figure 14.1

where ˜ is the electronic energy in wave numbers at the minimum of the elec-
tronic potential energy curve, ˜ is the vibrational frequency of the excited state
in wave numbers, and is the vibrational quantum number of the excited state.
When absorption of a photon takes place, a diatomic molecule usually begins in
its ground state ( 0) because this (the zero-point level) is generally the only

˜level populated at normal temperatures. The energy of the diatomic molecule
in the zero-point level of the lowest electronic state is given by

˜ ˜˜ ˜ (14 2)
2 4
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Franck and Condon
recognized that the electronic transition occurs faster than the nuclei can adjust
to their new equilibrium position,

transition moment

Franck–Condon over-
lap integral
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Figure 14.2

The observed frequencies ˜ in the electronic absorption spectrum are a function
of the vibrational quantum numbers of the excited state and are given by

˜ ˜˜ ˜ ˜ ˜ ( 1) (14 3)

where ˜ is the frequency in wave numbers of the 0 0 vibronic transition:

˜ ˜ ˜ ˜˜˜ (14 4)
2 4 2 4

˜The difference in energies of the minima of the two electronic potential energy
curves is given by

˜ ˜ ˜ (14 5)

The series of transitions is referred to as a progression. The electronic absorption
spectrum of a diatomic molecule has a characteristic shape since as in equation
14.3 increases, the separation between lines decreases. Consequently, the progres-
sion converges to a limit.

Now that we have the transition energies, we will consider the strength of
the transitions due to absorption of a photon. Consider a diatomic molecule in its
lowest electronic and vibrational state, in which the most probable internuclear
separation is the equilibrium separation. The excited electronic state does
in general, have the same equilibrium internuclear distance.

so the most probable position for the nuclei
in the excited state immediately after excitation is still the -state equilib-
rium position. Thus, an electronic transition can be represented, approximately,
by a vertical line, as shown in Fig. 14.3. The vibrational wavefunctions of the
upper electronic state will be (approximately) harmonic oscillator-like functions
(see Section 9.9), so that the largest overlap of probabilities (for the ground-
and excited-state vibrations) will occur for vibrational states with quantum
numbers greater than 0. This can be seen mathematically from the transition
dipole moment. In Chapter 13, we saw that the for a spectro-
scopic transition is given by

d d d (14 6)

where and are the electronic wavefunctions of ground and excited states, re-
spectively; and are the vibrational wavefunctions of initial and final states;
and and are the corresponding rotational wavefunctions. We can do the
integration over electronic coordinates first, obtaining . This is nonzero for
allowed electronic transitions, and can often be taken to be approximately inde-
pendent of vibrational coordinates (Condon approximation), so that

d d

d (14 7)

The integral of the vibrational wavefunctions is called a
. The intensity of a transition is proportional to the square of

the transition moment, and therefore to . This leads to the fact that the

y
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Potential energy curves and absorption spectra for three electronic transi-
tions. ( ) The minimum in the potential energy curve in the excited state coincides with
that in the ground state; this is not the usual situation. ( ) The minimum in the potential
energy curve in the excited state is at a larger internuclear distance than in the ground state;
this is the usual situation. ( ) The absorption may raise the excited state to a higher energy
than its dissociation energy so that the absorption is continuous.

conver-
gence limit.

14.2 Electronic Absorption Spectra of Diatomic Molecules and the Franck–Condon Principle
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Figure 14.3

absorption probability is largest into that vibrational state of the excited electronic
states whose probability is largest directly above the equilibrium internuclear dis-
tance. In the three cases illustrated in Fig. 14.3, the potential energy curve for the
excited electronic state lies directly above the ground state in ( ) and is displaced
to larger internuclear separations in ( ) and ( ). In Fig. 14.3 , the Franck–Condon
overlap is largest between 0 and 0. In Fig. 14.3 , the overlap is largest
between 0 and 2, so that the line is most intense. Note that this Franck–
Condon overlap is greatest because the vibrational wavefunctions for 1 tend
to pile up at the classical turning points (i.e., the potential walls), as shown in
Fig. 14.4. There will be intensity in other transitions as well, since the overlap for
these is not zero.

In Fig. 14.3 there is a significant probability of excitation to an energy above
the dissociation energy of the excited molecule. Since all energies above this en-
ergy are allowed eigenvalues, continuous absorption occurs. The borderline be-
tween absorption lines and continuous absorption is referred to as the

It, of course, gives the difference in energy between the vibrational
ground state of the lower electronic state and the dissociation products of the up-
per electronic state. Cases ( ) and ( ) are more often encountered than case ( )
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Franck–Condon principle. In an electronic transition, the overlap of the
ground vibrational wavefunction in the lower electronic state and the various vibrational
wavefunctions in the upper electronic state is greatest for the vibrational level whose
classical turning point is at the equilibrium separation in the lower state.
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Figure 14.4

because the bonding is generally weaker in the excited electronic state. Since the
bonding is weaker, the equilibrium internuclear distance is greater in the excited
state.

The determination of dissociation energies of diatomic molecules from vibra-
tional spectra was referred to in Section 13.8. However, it is virtually impossible
to obtain accurate values in this way because of the generally long extrapolation
involved.

If the onset between discrete lines and the continuum in Fig. 14.3 is sharp,
the dissociation energies and of the ground state and the excited state can
be determined quite accurately, as shown in Fig. 14.5. This figure shows that

˜ ˜ ˜ (14 8)

where ˜ is the wave number of the onset of the continuum in the progression
and where the dissociation energies are expressed in wave numbers. If the states of
the atoms produced in the dissociation of the ground state and in the dissociation
of the excited state are known, ˜ is known, and can be calculated from
˜ .

If the wave number of the 0–0 band can be obtained from the vibrational
spectrum, the dissociation energy for the excited state can be calculated from
˜ using equation 14.8. The dissociation energies relative to the minima in the
potential energy curves are given by

˜ ˜ ˜
(14 9)

2 4 8

as may be seen from equation 13.80.
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Predissociation can
result when two potential curves
cross in this way.
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predissociation

The intensity of a beam of light is defined
as the energy per unit area per unit time.

transmittance.
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14.4 SPECTROPHOTOMETERS AND THE BEER–LAMBERT LAW

	Figure 14.5

Figure 14.6

If the potential energy curve for a diatomic molecule is crossed by the curve
for a repulsive excited state, as shown in Fig. 14.6, a region of diffuseness is found
in the spectrum. When the internuclear distance and energy of the molecule in the
ground state are near the crossing point, there is a probability that the molecule
will transfer from curve to curve and dissociate. This has the effect of
broadening the vibrational and rotational levels in this region of the spectrum.
This effect is referred to as because the molecule with the potential
energy curve can dissociate at a lower energy when the repulsive curve
crosses it.

In considering rotational and vibrational spectra we were concerned primarily
with the frequencies of the lines and secondarily with their relative intensities.
However, in considering electronic spectra we will be increasingly concerned with
the intensity of absorption or emission. The intensity of absorption at a particular
wavelength can be determined by passing a monochromatic beam of light through
a sample of known thickness and concentration and measuring the intensity of
the transmitted light relative to the intensity that would be transmitted in the
absence of the absorbing substance.

The construction of a spectrophotometer is indicated schematically in
Fig. 14.7. The principal parts are the source of electromagnetic radiation, the
monochromator, the cell compartment, the photoelectric detector, and a de-
vice for indicating the output from the detector (electric meter, potentiometer,
or recording potentiometer). The cell compartment contains an optical absorp-
tion cell filled with the solution to be studied and another absorption cell filled
with a reference solution, usually pure solvent. The ratio of the intensity of
transmitted light for the solution to the intensity for the solvent is called the
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Figure 14.7

The transmittance / can be determined at different wavelengths, and the
absorption spectrum can be mapped. With some spectrophotometers such a plot
is recorded automatically. The positions and intensities of the absorption bands
and lines serve for identification and for criteria of purity; the transmittance serves
for quantitative analysis of the concentration of material present.

Lambert developed the equation for the attenuation of a light beam as a func-
tion of the thickness of a homogeneous medium. Beer developed the equation for
the effect of concentration. The Beer–Lambert law may be derived as follows.

The probability that a photon will be absorbed is usually directly proportional
to the concentration of absorbing molecules and to the thickness of the sample for
a very thin sample. This probability is expressed mathematically by the equation

d
d (14 10)

where is the intensity of light of a particular wavelength, that is, energy per unit
area per unit time; d is the change in light intensity produced by absorption in
a thin layer of thickness d and concentration ; and is the

Distance is measured through the cell in the direction of
the beam of light that is being absorbed. The concentration is usually expressed
in mol L .

The intensity of a beam of light after passing through length of solution is
related to the incident intensity by equation 14.12, which is obtained by inte-
grating equation 14.10 between the limits when 0 and when :

d
d (14 11)

ln 2 303 log (14 12)

Since it is convenient to use logarithms to the base 10, the Beer–Lambert law is
used in the form

log (14 13)

where the quantity log( / ) is referred to as the , and is referred
to as the or molar absorptivity. It can be seen from
equation 14.13 that the absorbance is directly proportional to the concentration
and to the path length . The proportionality constant is characteristic of the sol-
ute and depends on the wavelength of the light, the solvent, and the temperature.
Since the molar absorption coefficient depends on wavelength, the absorbance

is wavelength dependent, and so if the radiation is not monochromatic, the
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The percentage transmittance of an aqueous solution of disodium fumarate at 250 nm and
25 C is 19.2% for a 5 10 mol L solution in a 1-cm cell. ( ) Calculate the absorbance

and the molar absorption coefficient . ( ) What will be the percentage transmittance of
a 1 75 10 mol L solution in a 10-cm cell?

100
( ) log log 0 717

19 2

0 717
1 43 10 L mol cm

(1 cm)(5 10 mol L )
Electronic absorption

spectra of benzene and -xylene( ) log (1 43 10 L mol cm )(10 cm)(1 75 10 mol L ) 0.251
in solution.

100
1 782 and 56 1%

An aqueous solution of A and B has an absorbance of 0.800 at and 0 500 at . At
the molar absorption coefficient of A is 1 5 10 L mol cm , and the molar

absorption coefficient of B is 4 0 10 L mol cm . At the molar absorption co-
efficient of A is 3 0 10 L mol cm , and the molar absorption coefficient of B is
2 0 10 L mol cm . What is the composition of the solution?

When the concentrations are expressed in mM, the two equations are:

0 800 1 5 4 0

0 500 3 0 2 0

There are several ways to solve simultaneous linear equations. In this case the first equation
can be multiplied by 0 500 and the second can be multiplied by 0 800, and the difference

�

�

�
�

� �

�
�

�
�

�

�

� �
�

�

Example 14.3

Example 14.4

14.4 Spectrophotometers and the Beer–Lambert Law

��

� �

� �
��

� � � �

� �

� �

� �

� �

�

���� �

� �

Figure 14.8

Beer–Lambert law in the form of equation 14.13 may not be obeyed. In addition,
the Beer–Lambert law may not be obeyed for a substance that associates or disso-
ciates in solution since will change with concentration because of the changing
ratio of concentrations of absorbing species.

Figure 14.8 shows the absorption spectra of benzene and -xylene.*

For mixtures of independently absorbing substances the absorbance is given
by

log ( ) (14 14)

where , , . . . are the concentrations of the substances having molar absorption
coefficients of , , . . . . A mixture of components may be analyzed by mea-
suring at wavelengths at which the molar absorption coefficients are known
for each substance, provided that these coefficients are sufficiently different. The
concentrations of the several substances may then be obtained by solving the
simultaneous linear equations.
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between the two equations taken. This gives a relation between and that can be
substituted into the above equations to obtain 0 044 mM and 0 183 mM. If
you have a personal computer with a mathematical program, there are easier ways to solve
even large systems (see Computer Problem 14.C).

The molar absorbancy index of a solute is 44 000 L mol cm . What is the absorption
cross section ?

Comparison of equations 14.15 and 14.17 yields

2 303

Since is the number of molecules per m and is the amount per liter,

(10 L m )

Since is in meters and is in centimeters,

(10 cm m )

so that

2 303 (10 cm m )

(10 L m )

�
"

�
"

�
"

absorption cross section.
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When a sample is irradiated continuously at low intensity, its absorption coef-
ficient remains constant in the absence of chemical reaction, and this indicates that
excited molecules are continuously deactivated so that they do not accumulate.
Usually the excitation energy is simply degraded to thermal energy in molecu-
lar collisions, but a chemical reaction may occur and change the composition and
absorption spectrum of the sample (cf. Chapter 19). An excited molecule may
also emit a quantum of radiation. Such emission is referred to as fluorescence or
phosphorescence, depending on the difference in excited- and ground-state spin
multiplicities (Section 14.8).

The Beer–Lambert law may be written in alternative ways. In a given situation
one form may be more convenient to use than another. We will use all of the
following forms:

10 (14 15)

e (14 16)

e (14 17)

In the first equation, is expressed in mol L and is expressed in cm, so that
has the units L mol cm , as we have seen. In the second equation we will

express in SI base units so that is in mol m , is in m, and is in m mol .
In the third equation, is in m and is in m. Since has the units m it is
referred to as the Although has the units of area; it is
not to be interpreted literally as the area of an absorbing molecule.
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1 323 3

20 2

max

band

1 2

max 1/2

max 1/2
band

14 5 1
max

1
max1/2

1 1 1
1/2

13 4 1
max

1 1

1 1

max 1/2

1 1 1

8 1 2

5

If 44 000 L mol cm , then

2 303(44 000 L mol cm )(10 cm m )

(6 022 10 mol )(10 L m )

1 7 10 m

The maximum value of an observed absorbancy index is 44 000 L mol cm at 30 000
cm . If the width of the band at half-maximum is 5000 cm , what is the value of the
integrated absorption coefficient?

Assuming that the band is Gaussian,

d ˜ 1 06 ˜

1 06(44 000 L mol cm )(5000 cm )

2 33 10 L mol cm
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Example 14.6

The oscillator strength is
the ratio of the strength of a transition to the strength of a transition for an elec-
tron oscillating harmonically in three dimensions.

14.5 Oscillator Strength
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Since an electronic absorption band contains many lines that may not be re-
solved, the intensity is not as accurately measured by the maximum absorption
(as represented by the maximum absorption coefficient ) as by the integral
over the entire band. The integrated absorption coefficient is defined by

d ˜ (14 18)

Thus, it has the units L mol cm .
If the absorption band is Gaussian in shape, then the integrated intensity can

be related to the molar absorbancy index and the width ˜ at half the max-
imum absorbancy index:

d ˜ 1 06 ˜ (14 19)

For relatively strong absorptions of molecules 10 to 10 L mol cm ,
and ˜ is of the order of 1000 to 5000 cm . For weak absorptions
10 L mol cm , and ˜ is of the order of 100 cm . Extremely weak (for-
bidden) absorptions may have of the order of 10 to 10 L mol cm .

The concept of oscillator strength was developed to provide a theoretical ref-
erence for the intensity of a spectroscopic transition.

The oscillator strength for an
actual transition may be calculated from the measured integrated absorption coef-
ficient of the absorption band. Allowed electric dipole transitions yield oscillator
strengths of approximately unity. Forbidden transitions have oscillator strengths
much less than unity. Singlet–triplet transitions typically have oscillator strengths
of the order of 10 .
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Show that the oscillator strength is given by the following equation when the integrated
absorption coefficient (equation 14.18) is expressed in L mol cm :

(4 32 10 L mol cm ) d ˜

To convert d , expressed in SI base units, to d ˜ , expressed in SI base units, we
need to multiply by 2 303 , where is the velocity of light. However, since is usually
expressed in L mol cm , we need to multiply d ˜ by 10 cm L to obtain the value
in cm mol . To complete the conversion to SI base units a further factor 10 m cm is
required. Therefore,

4
2 303(10 cm L )(10 m cm ) d ˜
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The integrated absorption coefficient is given by

8
d (14 20)

3 (4 )

where is the transition dipole moment given by equation 13.19 and is the
average frequency for the absorption band. In this equation we are using an inte-
grated absorption coefficient expressed in terms of in m mol and frequency
rather than d ˜ . It is more convenient to do derivations with quantities in SI
base units and convert later, as we will.

The square of the transition moment for the three-dimensional harmonic
oscillator for the transition from the ground state to the first excited state is
given by

3
(14 21)

8

We define the oscillator strength of a transition with transition moment as

(14 22)

Thus 1 for an electronic three-dimensional harmonic oscillator. Substituting
from equation 14.20 for and from equation 14.21 for , we find

4
d (14 23)

This is the experimentally measured oscillator strength. To calculate the oscilla-
tor strength, which is dimensionless, all the quantities on the right-hand side of
equation 14.23 need to be expressed in SI base units. However, the integrated
absorption coefficient is more often given in L mol cm , as we have seen in
Example 14.6, and so some conversion factors must be included in equation 14.23
in order to calculate the oscillator strength from the integrated absorption coeffi-
cient expressed in its usual units. If a single electron can undergo more than one
transition, the sum of the oscillator strengths for all the transitions arising from
any one level to all other levels is unity:

1 (14 24)
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What is the oscillator strength of the solute of Example 14.6?

(4 32 10 L mol cm ) d ˜

(4 32 10 L mol cm )(2 33 10 L mol cm )

1 01

HOMO-1, HOMO,
and LUMO orbitals of formalde-
hyde. (From J. M. Hollas,

Wiley & Sons Ltd.
Reproduced with permission, 1996.)
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Figure 14.9

There is a relationship between the integrated absorption coefficient and the
radiative lifetime for a transition. This relationship goes back to the relation be-
tween and (equation 13.16) since 1/ for a single transition. Rather
than giving the derivation here, we will simply refer to the fact that for the solute
described in Example 14.8, the theoretical radiative lifetime is 1 7 10 s. The ra-
diative lifetime is inversely proportional to the integrated absorption coefficient,
and so for the conditions in Example 14.8, a maximum molar absorption coeffi-
cient that was tenfold smaller would yield a relaxation time tenfold larger.

The absorption spectra of polyatomic molecules lie mainly in the visible and ul-
traviolet regions, involving excitation of electrons from the higher-energy filled
orbitals to the lower-energy unfilled orbitals of the molecule. In many unsaturated
organic molecules and in inorganic transition metal complexes, the difference in
energy between occupied and unoccupied orbitals is small enough that the ab-
sorption of light occurs in the visible. The absorption spectra of saturated organic
molecules (e.g., C H ) lie in the vacuum ultraviolet, since it takes a large amount
of energy to promote an electron from an occupied orbital (in a single bond) to
an unoccupied orbital.

In discussing ethylene in terms of the Hückel molecular orbital theory in Sec-
tion 11.7, we saw that ultraviolet light can be absorbed if it provides enough energy
to raise an electron from the 1 bonding orbital to the antibonding orbital. This
is referred to as a transition, and for ethylene it occurs at a wavelength of
about 180 nm. We also saw that the excitation energy required for 1,3-butadiene
is lower. In the next section, we will see that this trend continues.

In organic compounds with oxygen, nitrogen, or halogen atoms, there are of-
ten filled molecular orbitals usually associated with the lone pairs.
Since these do not participate in the bonding, they may lie relatively high in en-
ergy. Excitation of an electron from such an orbital to an unfilled (antibonding)

orbital leads to absorption in the ultraviolet and visible regions. Thus, groups
such as C O, N N , and N O that cause such absorption at wavelengths
longer than 180 nm are called These groups have characteristic ab-
sorption wavelengths. This is illustrated by the ultraviolet absorption of formalde-
hyde, for which the ground-state configuration is . . . (1b ) (2b ) . The nature of
these orbitals is indicated by Fig. 14.9. The lowest energy excitation is provided
by taking an electron from the 2b orbital (a nonbonding orbital represented by

) and promoting it to the 2b orbital (a orbital) to give the excited-state con-
figuration . . . (1b ) (2b ) (2b ) . This is referred to as a transition, and it
occurs at a wavelength of 290 nm.
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*In conjugated molecules double and single bonds alternate in the classical structure.

The d orbital states
in an octahedral complex and the
meaning of d d transitions.

Vibrational motion or distortion in an octahedral complex that leads to the
destruction of the center of symmetry, thereby making d d transitions allowed.
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Figure 14.10

Figure 14.11

Transitions of the type are blue-shifted, that is, shifted to a shorter
wavelength, in a hydrogen-bonding solvent such as ethanol. Such a solvent forms
a weak bond with the orbital and the 1s orbital of the hydrogen atom of the OH
group of the solvent. This hydrogen bonding lowers the energy of the orbital
and increases the energy of the excitation, shifting it to the blue.

Other types of polyatomic molecules that have strong absorptions in the vis-
ible are transition metal complexes. These are known for their beautiful colors,
which arise because of these electronic transitions. Here the low-lying unfilled or-
bitals are atomic d orbitals from the transition metal. The presence of the ligands
splits the five d orbitals into two groups at different energies in octahedral or tetra-
hedral complexes, as shown in Fig. 14.10. Electrons in orbitals on the ligands can
then be excited into an unfilled d orbital on the metal, giving a charge transfer
transition that is usually very intense. In addition, electrons can be excited from
one set of d orbitals to the other, also giving rise to absorption in the visible. These
latter transitions are weaker than the charge transfer bands because d d tran-
sitions are forbidden unless some perturbation occurs, such as a distortion of the
octahedron (as shown in Fig. 14.11) to a lower symmetry with no inversion center
of symmetry.

For molecules with conjugated systems of double bonds [i.e., R(CH CH) R ], it
is found that the electronic absorption bands shift to longer wavelengths as the
number of conjugated double bonds is increased.* Approximate quantitative cal-
culations of the absorption frequencies may be made on the basis of the free-
electron model for the electrons of these molecules. The energy for the lowest
electronic transition is that required to raise an electron from the highest filled
level to the lowest unfilled level. In a system of conjugated double bonds each
carbon atom has three bonds that lie in a plane, and each bond involves one
outer electron of that carbon atom. Above and below this plane are the orbital
systems.
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Absorption frequency for a conjugated molecule
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Calculate the lowest absorption frequency for octatetraene (C H ), which contains a se-
ries of four conjugated double bonds. The length of the bond system is about 0.95 nm.

( 1) (6 62 10 J s)(9)(10 m cm )
˜

8 8(3 10 m s )(9 109 10 kg)(0 95 10 m)

30 200 cm

The observed absorption band is at 33 100 cm .
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Each carbon atom contributes one electron to this system, but these elec-
trons are free to move the entire length of the series of orbitals and are not
localized at a given carbon atom. In the free-electron model it is assumed that
the system is a region of uniform potential and that the potential energy rises
sharply to infinity at the ends of the system (i.e., a square-well potential). Thus,
the energy levels available to the electrons would be expected to be those
calculated for the particle in a one-dimensional box (Section 9.6):

(14 25)
8

The length of the box is usually taken to be the length of the chain between
terminal carbon atoms plus a bond length or two.

The electrons (one for each carbon atom) are assigned to orbitals so that
there are two (one with spin and the other with spin ) in each level, starting
with the lowest. For a completely conjugated hydrocarbon the number of elec-
trons is even, and the quantum number of the highest filled level will be /2,
where is the number of electrons (the number of carbon atoms involved). In
absorption an electron from the highest filled level is excited to the next higher
level with quantum number /2 1. The difference in energy of these two
levels is

( ) 1 ( 1)
8 8 2 2 8

(14 26)
The absorption frequency in wave numbers is given by

( 1)
˜ (14 27)

8

For linear molecules, the size of the system is proportional to , so the absorp-
tion frequency will vary as 1/ for large .

In the radiation is emitted during a transition between electronic
states of the same spin or multiplicity, whereas in the radiation
is emitted in a transition between electronic states of different multiplicities, for
example, between a triplet and a singlet state. Since the latter are (approximately)
forbidden, the rate is low and therefore the lifetime of the lowest triplet state of
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Figure 14.12

a molecule (with singlet ground state) is long (10 to 100 s). On the other hand,
the lifetime of excited singlet states is usually between 10 and 10 s.

When a ground-state ( ) molecule is excited to the first excited singlet state,
(see Fig. 14.12), a number of processes can occur. Since the molecule is gen-

erally in an excited vibrational state, collisions with other molecules in the gas or
solution can remove vibrational energy from the excited molecule in a process
called vibrational relaxation. Thus, the excited molecule ends up in the lowest vi-
brational state of . Now, when the excited molecule radiates (fluoresces), the
frequency is lower than that of the exciting radiation, as shown in Fig. 14.12.

Before a molecule can fluoresce, other processes can occur. The molecule can
chemically react, as discussed in Chapter 19, or the molecule can lose its energy in
a collision with another molecule, and it may make a transition to another excited
electronic state. Such a nonradiative transition from one singlet state to another
singlet state, or more generally between states of the same multiplicity, is called

while nonradiative transitions between states of different mul-
tiplicities is called Intersystem crossing can occur where the
potential energy curves for the states of different multiplicity cross. Since an elec-
tron spin flip is required, there must be a mechanism by which this can occur.
This is provided by spin–orbit coupling, the interaction of the spin and the orbital
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Figure 14.13

angular momentum of an electron. Intersystem crossing is significantly slower
(10 to 10 ) than internal conversion. Various factors influence the rates of non-
radiative transitions, including the difference in energies between the two elec-
tronic states involved.

If intersystem crossing occurs, the molecule can undergo further vibrational
relaxation, as shown in Fig. 14.13, finally ending up in the lowest vibrational state
of the excited triplet ( ). The molecule can now undergo collisional loss of en-
ergy, or it can emit a photon in phosphorescence. Triplet-state molecules are es-
pecially likely to be involved in a chemical reaction because of their high energy
and long lifetime.

The energy of a triplet state is usually lower than the energy of the excited
singlet state with the same molecular orbital occupancy because in a triplet state
the electrons having the same spin tend to avoid each other (because of the Pauli
principle) by staying in different regions. Since the electrons are farther apart,
there is a decrease in electronic repulsion and the energy of the molecule is lower.
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Figure 14.15

Consequently, phosphorescence usually occurs at a lower frequency than fluores-
cence, as shown in Fig. 14.14. This figure shows that the fluorescence spectrum
has an approximate “mirror image” relationship to the absorption spectrum, if
the spacings of the vibrational levels in the and states are similar.

The transition from the 0 vibrational level of the upper electronic state
to the 0 vibrational level of the lower electronic state is called the 0–0 band.
The small difference in the 0–0 bands for absorption and fluorescence is due to
the difference in the solvation of the initial and final states in the two cases. As
shown in Fig. 14.15, the excited state does not become equilibrated with the sol-
vent in the absorption process, and the ground state does not become equili-
brated with the solvent in the fluorescence process. As indicated in the diagram,
the 0–0 fluorescence transition will be of lower energy than the 0–0 absorption
transition.

The preceding discussion referred to a single excited singlet state and a single
excited triplet state, but a molecule will have many singlets and triplets (and higher
multiplicities). The higher excited states tend to relax by various processes very
quickly (10 –10 s) to the lowest excited singlet or triplet, and so can be probed
only by using ultrafast spectroscopic techniques.
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Another de elopment is laser-induced fluorescence (LIF). In this type of
experiment a frequency-tunable laser with a narrow line is directed at a gaseous
sample and the frequency is slowly changed. When the laser frequency
corresponds to an allowed molecular transition, excited states are formed and
fluoresce. The fluorescence intensity is measured during the scanning process and
is interpreted in terms of transitions from the initial ibration–rotation state of the
molecule being irradiated.
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The transition

NO( ) NO( )

satisfies the selection rules for absorption. The excited state can fluoresce back to the
ground state. The energy required for a vertical transition is 6.0 eV, which is equivalent
to (6.0 eV)(8066 cm eV ) 48 10 cm or 2.08 10 cm or 208 nm.

Multilevel lasing
schemes. ( , ) Three-level systems
and ( , ) four-level systems repre-
sented in different ways. [From W.
F. Coleman, 441
(1982).]
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59:

Normally a beam of light loses intensity as it passes through an absorbing mate-
rial. However, if molecules are present in an excited state, stimulated emission
(Section 13.2) can occur, and the light beam can gain intensity. A laser achieves
this condition and produces an intense and coherent beam. By coherent we mean
that the light waves are in phase. The name comes from

When a two-state system is irradiated, the rate of change in the population of
state 2 is equal to the difference between the rate of absorption and the rate of
emission (Fig. 13.1):

d
( ˜ ) ( ˜ )

d

( ˜ )( ) (14 28)

where the subscripts have been left off of the ’s because of equation 13.15. Let
us consider the case in which spontaneous emission is negligible so that we can
ignore the last term in equation 14.28. We can see that as long as there
will be absorption. However, as irradiation is continued will approach , and
the rate of absorption of radiation will decrease to zero. The system will now be
transparent because the net absorption of light of frequency ˜ is zero, and the
transition is said to be If somehow , a situation known as

then d /d will be negative, which means that the number of
emitted photons increases, and the intensity of radiation in the direction of the
incident radiation will increase. In other words, there will be amplification. It is
this amplification that creates the coherent beam of a laser.

Laser action requires a population inversion, but we have seen that we cannot
get a population inversion by irradiating a two-level system. However, population
inversion can be obtained in multilevel systems such as those in Fig. 14.16. In
Fig. 14.16 the system is raised to level by the absorption of radiation (pump)
and then undergoes a rapid nonradiative transition to level . If the system can
be pumped hard enough so that , then laser action can be obtained on

.y
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Figure 14.17

Figure 14.16 shows a more suitable system because laser action depends on
. This population inversion is readily achieved because is essentially

zero initially and will remain so if the nonradiative process is fast. A
number of lasers depend on four-level systems such as that in Fig. 14.16 , . Here
the lasing action occurs between two levels, neither of which is involved in the
pumping process.

Usually a laser cavity has mirrors at each end to increase the radiation density
that stimulates emission. In Fig. 14.17 the two ends of the ruby rod are mirrors.
The silver mirror at the back end is nearly 100% reflecting, and the silver mirror
at the front end has a reflectivity that is less than 100%. The gain of the system
is the amount of amplification, usually per round-trip through the cavity, for a
given population inversion. For a given system some minimum gain is required
to overcome the optical losses in the cavity and the energy emission of the laser.
Figure 14.17 shows the construction of a ruby laser that is powered by a flashlamp.
The output beam is emitted through the partially silvered end of the ruby crystal.

The length of the resonant cavity created by the two mirrors is critical.
Standing waves are formed in the cavity so that there is an integral number of
waves in the cavity. The electric field of the standing wave in the cavity is zero
at the surface of the two mirrors. Since 2 / , where is an integer, the fre-
quency of the standing waves is given by

(14 29)
2

where is the velocity of light.
Lasers may be operated in a (cw) mode or a To

operate in cw mode a laser has to be pumped steadily by irradiation with a light
source or by electrical discharge at a rate sufficient to supply the emergent laser
radiation and overcome any losses. In the pulse mode the laser is excited with a
pulsed electric discharge or pulsed lamp, and some kind of shutter is used to con-
trol the release of energy stored in the laser so that an intense pulse is obtained.
The shutter may be mechanical or electro-optical, but the simplest method at vis-
ible wavelengths is to use a saturable dye. A cell containing a dye solution with a
peak absorption at the laser wavelength is located in the laser cavity. Laser action
cannot start until the gain exceeds the loss in the dye plus other losses. However,
there is some laser action in the cavity, and if this can build up to a high enough
value, then the dye begins to bleach because of saturation (equation 14.28), and
the radiation density builds up rapidly. The time between pulses is determined by
the concentration of the dye.

y
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A widely used solid-state laser is made of Y Al O (yttrium aluminum garnet, commonly
referred to as YAG) in which some of the Y ions are replaced by Nd . This laser is
generally pumped with a xenon-filled flashlamp. A particular YAG laser yields 10 pulses
per second at 1064 nm. Each pulse is 20 ns long and has an energy of 350 mJ. What are the
peak and average powers? How many photons are produced per pulse and per minute?

The peak power is 0 35 J/20 10 s 17 5 MW. The average power is (0.35 J)
(10 s ) 3.5 W. The energy per photon is / (6 626 10 J s)(2 998 10 m s )/
(1064 10 m) 1 867 10 J. The number of photons per pulse is (0.35 J)/(1.867
10 ) 1 875 10 . The number of photons per minute is (1 875 10 )(10)
(60 min ) 1 125 10 min .
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The initiation of pulses is often called switching because the factor is a
measure of the energy stored to the energy discharged per cycle. Lasers have large

values. Various types of shutters can be used in a laser cavity so that lasing does
not occur while the population inversion is building. Then the shutter is opened,
and a large fraction of the energy stored is dumped in a single pulse.

Gas lasers are generally pumped by passage of an electric current. The ions
and electrons that are produced are accelerated, and the electrons cause excita-
tion by collisions with the molecules of the gas. The first gas laser was the He–Ne
laser, which can oscillate at three wavelengths, 3 39 m, 1 15 m, and

0 633 m (the most widely used). The helium energy levels are involved in
the pumping process, and the laser action occurs between energy levels of Ne.

Some gas lasers use transitions between vibration–rotation levels of a mole-
cule. The CO laser (which also contains N and He) utilizes transitions between
two vibrational levels. This laser is one of the most powerful, and it can be oper-
ated at 1 MW continuously. It is also one of the most efficient: 15 to 20% of the
electrical power put into the electrical discharge is converted to laser radiation.

Figure 14.18 shows the lowest vibrational levels for CO and N . Since CO
has three modes of vibration, the vibrational level may be described by giving
the quantum number for each vibrational mode. The level is designated by giving
the quantum numbers for (1) symmetric stretching mode, (2) bending mode, and
(3) asymmetric stretching mode in that order. Thus, the state is specified by , ,

. Since the bending mode is doubly degenerate, a bending vibration consists of
a combination of the orthogonal bending vibrations. The superscript 0 or 1 on
indicates whether the angular momentum about the axis of the molecule is 0 (
0) or ¯ ( 1). Thus, 01 0 represents the level with one quantum in the bending
vibration with an angular momentum of unity, and 02 0 represents the level with
two quanta in the bending vibration with an angular momentum of zero. The 00 1
level is populated by collisions of electrons with ground-state (00 0) molecules
and by resonant energy transfer from N molecules. Laser action is produced by
the transition between the 00 1 and 10 0 levels ( 10 6 m). It is also possible to
obtain laser action between the 00 1 and 02 0 levels ( 9 6 m). The transitions
shown in Fig. 14.18 with wavy lines are radiationless transitions that occur rapidly.
In this description we have neglected the rotational fine structure.

Some gas lasers may be tuned to several discrete frequencies using a grat-
ing or other device that rejects unwanted frequencies from the laser cavity, but
dye lasers can provide a continuous range of wavelengths over approximately
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Figure 14.18

40–50 nm. The active medium is a fluorescent organic molecule, and the solution
of the dye is pumped with another laser or flashlamp. The optical cavity can be
tuned over much of the fluorescence spectrum of the dye. By using a number of
dyes, it is possible to cover the whole range from 300 to 1000 nm.

In chemical lasers the population inversion is produced by an exothermic
chemical reaction. For example, a laser may be produced by mixing hydrogen and
fluorine. The following reactions produce HF in higher vibrational levels:

F H HF H (14 30)

H F HF F (14 31)

The first reaction is exothermic by 132 kJ mol . Therefore, HF may represent
molecules in the 3, 2, or 1 vibrational state. The second reaction is exothermic
by 410 kJ mol , so that HF produced may be in a vibrational level as high as

10. However, the second reaction is not very efficient for pumping the HF
laser. Laser action takes place between several vibrational levels. The reaction of
hydrogen with fluorine takes place very slowly unless atomic fluorine is provided.
Atomic fluorine can be provided by adding SF and dissociating it by electrical
means:

SF e SF F e (14 32)

Lasers are important in chemistry because they can be used to initiate photo-
chemical reactions, and the short pulses permit the study of very fast reactions.
Lasers have also revolutionized Raman spectroscopy because exposures are
greatly reduced, and even weak lines may be detected in experiments of short
duration. A laser may be used to selectively photodissociate one isotopic species
of a molecule, owing to the extreme monochromaticity associated with the laser
beam. The dissociated or ionized molecules may be allowed to react with another
substance so that the isotopes may be separated by a chemical method.
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y
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Solid-state and gas lasers ha e a small tuning range, but dye lasers can be tuned
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excited molecules. A diffraction grating is used to ary the wa elength. By use of a
series of different dyes, the range from the near infrared to the near ultra iolet can
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Processes occurring in ( ) ultraviolet photoelectron spectroscopy (UPS) and
( ) X-ray photoelectron spectroscopy (XPS).
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Figure 14.19

Photoelectron spectroscopy involves the ejection of electrons from atoms or
molecules by radiation with monochromatic ultraviolet or X-ray photons and the
interpretation of the spectra in terms of orbital energies. The ejected electrons
are called The photoionization process is represented by

M M e (14 33)

where molecule M is generally in its ground electronic and vibrational state. The
molecule is ionized; some of the energy of the photon may be used to raise the
resulting ion to a higher vibrational level or excited electronic level, and the re-
maining energy is converted to kinetic energy of the photoelectron. The kinetic
energy of the emitted electron is given by

(M) (M ) (14 34)

where (M ) (M) is the ionization energy. (M) is the energy of M in
its initial electronic and vibrational state (usually the ground state), and (M ) is
the energy of the ion in the electronic and vibrational state in which it is produced.
Thus, measurement of the kinetic energy of electrons emitted gives information
about the different electronic and vibrational states of M .

Figure 14.19 shows the process for ultraviolet photoelectron spectroscopy
(UPS); the electron is emitted from a valence orbital. When X-ray photons are
used, the electron can be emitted from a core orbital, as indicated in Fig. 14.19 ,
and we speak of X-ray photoelectron spectroscopy (XPS). We will see later, in
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Figure 14.21

Chapter 24, that UPS and XPS can also be used to determine the surface elec-
tronic structure of a solid.

The most commonly used source of ultraviolet photons is a helium gas dis-
charge tube; the most intense line has a wavelength of 58.4 nm and an energy of
21.22 eV. The kinetic energy of emitted electrons may be measured with a focusing
deflection analyzer, utilizing either magnetic or electrostatic fields.

Figure 14.20 shows the photoelectron spectrum of H . The count of electrons
per second is plotted versus the ionization energy (M ) (M), which
is calculated from . The most energetic electrons emitted by the sam-
ple (line labeled 0) come from the production of hydrogen molecule ions in their
ground state:

H ( 0) H ( 0) e (14 35)

The energy difference (M ) (M) for the 0 0 transition is 21 22
5 77 15 45 eV, which is the adiabatic ionization potential for the hydrogen
molecule (cf. Section 13.6). The other lines in the spectrum result when H is
produced in higher vibrational states. Since the minimum of the potential en-
ergy curve for H is at a somewhat larger internuclear distance than for H (Fig.
14.21), the Franck–Condon principle leads us to expect that the 0–0 transition will
not be the most probable. The energy difference for the strongest band (in this
case 0 2) is referred to as the vertical ionization potential; this ionization
potential is 21 22 5 24 15 98 eV.

The photoelectron spectra of molecules with more electrons are, of course,
considerably more complicated and yield information about the dissociation of
inner electrons as well as valence electrons. Photoelectron spectroscopy offers
the most direct method for determining the ionization potentials and provides a
great deal of information about molecular electronic structure.

y

y
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Figure 14.22

Figure 14.22 gives the UPS spectrum of H O, which can be interpreted in
terms of the ground molecular orbital configuration . . . (2a ) (1b ) (3a ) (1b ) .
Removal of an electron from the 1b orbital shows short progressions for the
symmetric stretching and the angle bending vibrations. Removal of an electron
from 3a leads to a linear configuration and a long progression of the bending
vibration. The third band system is more complex and will not be discussed here.

are those that exist as two nonsuperimposable structures that
are mirror images. The stereoisomers of chiral molecules are referred to as

These molecules are The term refers to the
rotation of the plane of plane-polarized light when it passes through a substance or
solution. One enantiomer will rotate light in one direction, while the other enan-
tiomer will rotate light in the opposite direction. A closely related phenomenon
is the formation of elliptically polarized light from plane-polarized light produced
by an optically active medium in the vicinity of its absorption bands. These effects
can be understood in terms of the differences in refractive index and absorbancy
index for left- and right-circularly polarized light.
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Variation of refractive index and molar absorption coefficient in the
neighborhood of a single absorption line of an optically active substance, as measured with
left- and right-circularly polarized light. The difference curves are referred to as the rotary
dispersion curve ( ) and the circular dichroism spectrum ( ). [From J. G. Foss,

592 (1963).]
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Figure 14.23

40:

is light in which the electric vector rotates as the
light beam advances. If the electric vector rotates clockwise as observed facing
the light source, the light is said to be right-hand circularly polarized light. If it
rotates counterclockwise, it is left-hand circularly polarized light. When left- and
right-circularly polarized beams of equal intensity are combined, they yield plane-
polarized light. In plane-polarized light the electric vector remains in a plane. A
separated beam of circularly polarized light may be obtained by passing plane-
polarized light through a quarter wave plate oriented at 45 to the direction of
the electric vector of the polarized light. Since the quarter wave plate may be
inclined to the right or the left, either right- or left-circularly polarized light may
be obtained in this way.*

Figure 14.23 gives the variation of refractive index (dispersion curve) and the
variation of the absorption coefficient (absorption curve) for an optically active
material measured with left- and right-circularly polarized light. The difference in
refractive index for the two components is referred to as
and the difference in absorption is referred to as The difference
curves are shown in the lower part of Fig. 14.23. The plot of versus is referred
to as the rotatory dispersion curve, and the plot of versus is referred to as the
circular dichroism spectrum. When an absorption band causes the effects shown
in Fig. 14.23, the whole phenomenon is referred to as a Cotton effect. In contrast
with ordinary dispersion, a strong absorption band may or may not produce a
large effect on the rotatory dispersion, and a weak absorption band may produce
a large effect on the rotatory dispersion.
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*In the past it has been customary to express in g cm and in decimeters. Thus, most values of
[ ] in the literature are given in deg dm cm g . In the SI system it is preferable to express in
kg m and in meters so that [ ] is expressed in deg m kg .
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14.11 Special Topic: Optical Activity and Optical Rotation
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Optically active substances can be divided into two classes: one in which opti-
cal activity is found only in the crystal form (for example, quartz) and one in which
it is found in the gaseous, liquid, and certain nonsymmetric crystalline states of
the pure substance or in solutions. Optical activity arises in the former group due
to the right- or left-hand spiral structure in the crystal and disappears when this
structure is melted. Substances in the latter category are optically active because
of the asymmetry of the molecule itself. For a molecule whose mirror image is
not superimposable on itself, left- and right-circularly polarized light have differ-
ent refractive indices and correspondingly different absorption coefficients. This
may happen for any molecule having only proper rotation elements of symmetry
(Chapter 12). A molecule possessing any improper rotation axis ( ), a mirror
plane, or a center of symmetry cannot be optically active.

The rotation of plane-polarized light is measured with a polarimeter that con-
sists of a light source, linear polarizer, sample, and analyzer (another linear polar-
izer). The rotation of the plane of polarization by the sample is measured by ro-
tating the analyzer. If a substance rotates the plane of polarized light to the right,
or clockwise, as viewed looking toward the light source, it is said to be dextro-
rotatory, and the rotation is given a positive sign. If the rotation is counterclock-
wise, the substance is levorotatory, and the rotation is given a negative sign. The
magnitude of the rotation is directly proportional to the length of the sample
and the concentration of the optically active molecules, so it is convenient to
calculate a [ ] that is defined by

[ ] (14 36)*

where is the path length and is the concentration in mass per unit volume. For
a pure substance, equals the density of the pure substance. The specific rotation
varies with the wavelength, temperature, and solvent, so these variables must be
specified.

The reason for the rotation of the plane of polarization may be understood by
thinking of plane-polarized light as being formed by equal contributions of left-
and right-circularly polarized light. When this light enters a medium in which the
refractive indices and are different, then the speed of propagation of light
in this medium is different for the left- and right-circularly polarized components.
Thus, one moves ahead of the other, and they are now out of phase with one
another. Since they are equal in amplitude, this produces a rotation of the net
electric field vector, as shown in Fig. 14.24 , . The magnitude of this rotation is
linearly related to the path length of the light in the medium.

If the medium has greater absorption for left- over right-circularly polarized
light, then (neglecting the effect of the rotation of the plane polarization) linearly
polarized light will become elliptically polarized in an optically active medium.
We can understand this by once again thinking of plane-polarized light as being
composed of equal components of left- and right-polarized beams. If the absorp-
tion is greater for left polarization, that beam will be diminished in intensity rela-
tive to the right polarization. The net result is elliptic polarization of the resultant
light, as shown in Fig. 14.24 . If both effects are present, the axes of the elliptically
polarized light are rotated.
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Circular birefringence and circular dichroism. ( ) Representation of plane-
polarized light as the sum of two components of circularly polarized light rotating in op-
posite directions. ( ) Rotation of plane-polarized light by an angle due to different
velocities of propagation of left- and right-circularly polarized light. ( ) Production of el-
liptically polarized light from plane-polarized light by different absorption coefficients for
left- and right-circularly polarized light. ( ) Effects on plane-polarized light of differences
in both refractive indices and absorption coefficients for the two circularly polarized com-
ponents. In ( ) and ( ) the emerging beam is elliptically polarized.
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optical rotatory dispersion

1.

Chapter 14 Electronic Spectroscopy of Molecules

Figure 14.24

The effects are wavelength dependent, because the closer the light beam is to
an absorption, the more pronounced the effect can become. The change in optical
rotation with wavelength is called (ORD). The mea-
surements of the rotatory dispersion and circular dichroism can be used to deter-
mine the structure, configuration, and conformation of complex optically active
molecules (such as proteins, synthetic polypeptides, and steroids).

In electronic spectra of molecules, as in atomic spectra, singlet–singlet
and triplet–triplet transitions may occur, but singlet–triplet transitions are
forbidden.
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Electronic absorption spectra of diatomic molecules generally start from the
zeroth vibrational level of the ground electronic state and show progressions
that have a convergence limit at the high-frequency end.
The intensities of lines in the vibronic spectrum are determined by Franck–
Condon overlap integrals.
The Beer–Lambert law shows that the absorbance, log( / ), is directly pro-
portional to the concentration and the length of the optical path; thus, the
intensity of a light beam in an absorbing medium decreases exponentially.
The absorption spectra of molecules with conjugated double bonds can be
accounted for semiquantitatively by using the energy levels of an electron
in a one-dimensional box the length of the conjugated system.
Fluorescence follows absorption when vibrational relaxation in the excited
electronic state is followed by a singlet–singlet transition to the ground
electronic state. Phosphorescence, which is generally slower, occurs when
there is intersystem crossing to a triplet state, followed by a transition to the
ground electronic state.
Laser action requires a three-level system as a minimum because a popula-
tion inversion has to be created by irradiation or the passage of an electric
current. Light emission is the result of stimulated emission, and as a conse-
quence the laser beam is monochromatic and coherent. Lasers are also used
to make very short pulses.
In photoelectron spectroscopy, irradiation of a gas by high-energy photons
results in the emission of electrons with various kinetic energies, and deter-
mination of the spectrum of these energies provides information about the
electronic energy levels in the molecule irradiated.
Enantiomers of chiral molecules rotate polarized light in opposite direc-
tions. When circularly polarized light is used, there is a difference in refrac-
tive index (circular birefringence) and a difference in absorption (circular
dichroism).
The effect of wavelength on the absorption of circularly polarized light (op-
tical rotatory dispersion) can be used to determine the structure, config-
uration, and conformation of complex optically active molecules such as
proteins, synthetic polypeptides, and steroids.
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Problems marked with an icon may be more convenient- The following absorption data are obtained for solutions
ly solved on a personal computer with a mathematical program. of oxyhemoglobin in pH 7 buffer at 575 nm in a 1-cm cell:

The spectroscopic dissociation energy of H (g) into
g/cm 3 10 5 10 10 10ground-state hydrogen atoms is 4.4763 eV. What is the spectro-
Transmission % 53 5 35 1 12 3scopic dissociation energy of H (g) into one ground-state H and

one H atom in the 2p state? If H is dissociated with photons of The molar mass of hemoglobin is 64 0 kg mol . ( ) Is Beer’s law
energy 15 eV, what is the velocity of the H atoms coming off in obeyed? What is the molar absorption coefficient? ( ) Calculate
the 1s and 2p states? the percent transmission for a solution containing 10 g cm .

According to the hypothesis of Franck, the molecules of The protein metmyoglobin and imidazole form
the halogens dissociate into one normal atom and one excited a complex in solution. The molar absorption coefficients in
atom. The wavelength of the convergence limit in the spectrum L mol cm of the metmyoglobin (Mb) and the complex (C)
of iodine is 499.5 nm. ( ) What is the energy of dissociation in are as follows:
kJ mol of iodine into one normal and one excited atom? ( )
The thermochemical value of the heat of dissociation of I into /nm 500 630
ground-state atoms can be found in Table C.3. Calculate the en- /10 L mol cm 9 42 6 88
ergy of the excited state of I that is formed from the spectro- /10 L mol cm 9 42 1 30
scopic dissociation in kJ mol and eV.

An equilibrium mixture in a cell of 1-cm path length has an ab-The ultraviolet absorption of O includes a series of
sorbance of 0.435 at 500 nm and 0.121 at 630 nm. What are thelines (the Schumann–Runge bands) due to transitions from the
concentrations of metmyoglobin and complex?ground state to the excited electronic state , which are

The absorption spectrum for benzene in Fig. 14.8 showsshown in Fig. 14.1. These lines converge to 175.9 nm, which cor-
maxima at about 180, 200, and 250 nm. Estimate the integratedresponds to dissociation to one O atom in its ground state P
absorption coefficients using and ˜ and assuming thatand one O atom in an excited state D. What is for O ? How
the width at half-maximum is 5000 cm in each case. What aredoes this compare with the enthalpy of formation at 0 K? Given:
the three oscillator strengths? (See Example 14.7.)The D state of O is 1.970 eV above the ground state P.

Relatively strong absorption bands have 10 –The spectroscopic dissociation energy of I is 1.542 38
10 L mol cm and ˜ of the order 1000–5000 cm , whileeV according to Table 13.4. What wavelength of light would you
weak absorption bands have 10 L mol cm and ˜use to dissociate ground-state molecules to ground-state atoms
of the order 100 cm . Assuming that the absorption lines areif you wanted the atoms to fly away with velocities of 10 m s ?
Gaussian, compute the integrated absorption coefficient and theA solution of dye containing 0 1 mol L transmits 80%
oscillator strengths for these bands.of the light at 435.6 nm in a glass cell 1 cm thick. ( ) What

The measured oscillator strength of a transition can bepercentage of light will be absorbed by a solution containing
used to compute the transition moment, , by combining2 mol L in a cell 1 cm thick? ( ) What concentration will
equations 14.20 and 14.23 to findbe required to absorb 50% of the light? ( ) What percentage

3of the light will be transmitted by a solution of the dye con-
taining 0 1 mol L in a cell 5 cm thick? ( ) What thickness 8
should the cell be to absorb 90% of the light with solution of this

For strong transitions (for which 1), moderately weak tran-concentration?
sitions ( 10 ), and weak transitions ( 10 ), calcu-Derive equation 14.19 for the integrated intensity of
late and / , assuming a transition energy ofa Gaussian absorption line. A Gaussian line has the form
25 000 cm .e , where ˜ is the frequency at the intensity

In Chapter 11, the Hückel molecular orbital modelmaximum . [ Relate to the width of the line at
was introduced to describe the electronic states of conjugatedhalf-maximum intensity and use the integral e d
molecules. In this chapter, the free-electron model (FEMO)

( / ) .] was introduced for the same systems. Consider the butadiene
According to equation 14.19, the integrated absorption molecule in both descriptions. The Hückel model (equation

coefficient ( ˜ ) d ˜ is equal to 1 06 ˜ when the absorp- 11.75) gives the energies and wavefunctions for four orbitals,
tion band is Gaussian in shape. The quantity ˜ is the width while the FEMO model gives an infinite number of orbitals.
of the band when ( ˜ ) /2. For such a band, the Naperian Consider the lowest four in the FEMO model. Do they have
absorption coefficient ( ˜ ) is given by the same number of nodes as the Hückel orbitals? Is there

any way of choosing and in the Hückel model or in the( ˜ ) exp[ ( ˜ ˜ ) ]
FEMO model to make the predictions for the energies of all
four orbitals agree? Suppose we are content to make the lowestDerive equation 14.19.
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electronic absorption energy agree in both models; what is the The dissociation energies of HCl(g), H (g), and Cl (g)
formula for in terms of ? into normal atoms have been determined spectroscopically and

are 4.431, 4.476, and 2.476 eV, respectively. Calculate the en-The lifetimes of vibrationally excited states of molecules
thalpy of formation of HCl(g) at 0 K in kJ mol from theseof a liquid are limited by the collision rates in the liquid. If one
data.in 10 collisions deactivates a vibrationally excited state, what is

the broadening of vibrational lines if a molecule undergoes 10 The limit of continuous absorption for Br gas occurs at
collisions per second? 19 750 cm . The dissociation that occurs is

Calculate the line width for ( ) an electronic excited Br (ground) Br(ground) Br(excited)
state with a lifetime of 10 s and ( ) a rotational state with a

The transition of a ground bromine atom to an excited one cor-lifetime of 10 s. In each case express the line width in cm and
responds to a wave number of 3685 cm :MHz.

A laser is powered by a 100-W flashlamp that produces Br(ground) Br(excited)
pulses with a repetition rate of 100 Hz. If the efficiency of the

Calculate the energy increase for the processlaser is 1%, how many photons will there be in a laser pulse with
a wavelength of 500 nm? Br (ground) 2Br(ground)

What is the width of the frequency distribution for a
in ( ) cm and ( ) electron volts.

10-fs pulse and for a 100-fs pulse from a laser?
( ) Calculate the energy levels for 1 and 2 for

A laser operating at 700 nm produces 20 fs pulses with
an electron in a potential well of width 0.5 nm with infinite bar-

a repetition rate of 100 MHz. The average radiant power of the
riers on either side. The energies should be expressed in J and

laser is 1 W. ( ) What is the radiant power in each pulse? ( )
kJ mol . ( ) If an electron makes a transition from 2 to

How many photons are there in a pulse? ( ) How many photons
1, what will be the wavelength of the radiation emitted?

are emitted by the laser in 1 s?
The Schumann–Runge bands of O are due to absorp-

A laser powered by a 100-W light source produces pho-
tion from the ground state ( ) to the B excited state.

tons with 1000-nm wavelength at a repetition rate of 10 Hz. The
From Fig. 14.1, estimate the longest wavelength for this tran-

actual number of photons emitted per pulse is 10 . What is the
sition from the lowest vibrational state of ground-state O .

efficiency of converting energy from the light source to laser
When a 1.9-cm absorption cell was used, the trans-output?

mittance of 436-nm light by bromine in carbon tetrachloride
The first ionization potentials of Ar, Kr, and Xe are

solution was found to be as follows:
15.755, 13.966, and 12.130 eV, respectively. Calculate the veloc-
ity of the emitted electrons when photons from a He discharge /mol L 0 005 46 0 003 50 0 002 10
lamp with 58 43 nm are used to record the photoelectron / 0 010 0 050 0 160
spectrum of these gases.

/mol L 0 001 25 0 000 66A sample of oxygen gas is irradiated with Mg ra-
/ 0 343 0 570diation of 0.99 nm (1253.6 eV). A strong emission of electrons

with velocities of 1 57 10 m s is found. What is the binding Calculate the molar absorption coefficient. What percentage of
energy of these electrons? the incident light would be transmitted by 2 cm of solution con-

taining 1 55 10 mol L bromine in carbon tetrachloride?The photoelectron spectrum of molecules shows that
similar atoms in different chemical environments have slightly The absorption band of a certain molecule in solution
different core orbital binding energies. For example, the 1s bind- has a Gaussian shape with maximum molar absorption coeffi-
ing energy of carbon in CH is 290 eV, while it is 293 eV in cient of 2 10 L mol cm and a full width at half-maximum
CH F. ( ) Explain this shift on the basis of the electronegativ- of 4000 cm . ( ) What is the integrated absorption coefficient
ity difference between carbon and fluorine. ( ) In the molecule for this band? ( ) What is the oscillator strength for this
F CCOOCH CH , predict the order of the carbon 1s binding transition?
energies in the four carbon atoms. The absorption coefficient for a solid is defined by

When - -mannose ([ ] 29 3 ) is dissolved in e , where is the thickness of the sample. The absorp-
water, the optical rotation decreases as - -mannose is formed tion coefficients for NaCl and KBr at a wavelength of 28 m are
until at equilibrium [ ] 14 2 . This process is referred 14 and 0 25 cm . Calculate the percentage of this infrared ra-

diation transmitted by 0.5 cm thicknesses of these crystals.to as mutarotation. As expected, when - -mannose ([ ]
17 0 ) is dissolved in water, the optical rotation increases until Commercial chlorine from electrolysis contains small

[ ] 14 2 is obtained. Calculate the percentage of the amounts of chlorinated organic impurities. The concentrations
form in the equilibrium mixture. of impurities may be calculated from infrared absorption spectra
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of liquid Cl . Calculate the concentration of CHCl in g mL The ionization potential of an atom may be determined
in a sample of liquid Cl if the transmittance at ˜ 1216 cm by exposing it to high-energy monochromatic radiation and
is 45% for a 5-cm cell. At this wavelength liquid Cl does not measuring the speed of ejected electrons. When krypton is irra-
absorb, and the absorption coefficient for CHCl dissolved in diated with 58.4 nm light from a helium discharge lamp, ejected
liquid Cl is 900 80 cm (g cm ) . electrons have a velocity of 1 59 10 m s . What is the ion-

ization potential?
To test the validity of Beer’s law in the determi-

The most prominent line in the photoelectron spectrumnation of vitamin A, solutions of known concentrations were
of H is due to the transitionprepared and treated by a standard procedure with antimony

trichloride in chloroform to produce a blue color. The percent H ( 0) H ( 2) e
transmission of the incident filtered light for each concentration,

If helium resonance radiation with an energy of 21.22 eV is used,
expressed in g mL , was as follows:

what will be the electron kinetic energy, assuming that H is a
harmonic oscillator with a fundamental vibration frequency ofConcentration, g mL 1.0 2.0 3.0 4.0 5.0
2297 cm ? The 0–0 ionization potential is 15.45 V.Transmission, % 66.8 44.7 29.2 19.9 13.3

When - -glucose ([ ] 112 2 ) is dissolved in wa-
ter, the optical rotation decreases as - -glucose is formed untilPlot these data so as to test Beer’s law. A solution, when treated
at equilibrium [ ] 52 7 . As expected, when - -glucosein the standard manner with antimony trichloride, transmitted
([ ] 18 7 ) is dissolved in water, the optical rotation in-35% of the incident light in the same cell. What was the concen-
creases until [ ] 52 7 is obtained. Calculate the percent-tration of vitamin A in the solution?
age of the form in the equilibrium mixture.The protein metmyoglobin and the azide ion (N )

form a complex. The molar absorption coefficients of the met-
myoglobin (Mb) and of the complex (C) in a buffer are as
follows:

Rhodopsin (see Section 19.11) has a system of four con-
nm 10 L mol cm 10 L mol cm

jugated double bonds, so we can think of it as having the struc-
ture H(CH CH) H. Since each of the eight carbon atoms con-490 0.850 0.744
tributes one electron to the bond that extends the length of the540 0.586 1.028
molecule, the 1, 2, 3, and 4 levels in the free-electron model
are filled, and absorption of a photon excites an electron fromAn equilibrium mixture in a 1-cm cell gave an absorbance of
the 4 level to the 5 level. Assuming that the molecule0.656 at 490 nm and 0.716 at 540 nm. ( ) What are the concen-
is linear and that a C C bond contributes 135 pm, a C C bondtrations of metmyoglobin and complex? ( ) Since the total azide
contributes 154 pm, and a CH bond at each end contributes 77concentration is 1 048 10 mol L , what is the equilibrium
pm, calculate the wavelength of maximum absorption.constant for the following reaction?

( ) Calculate the first several lines in the electronicMb N C
˜absorption spectrum of C O, for which 6 508 043

An acid–base indicator is a weak acid (Section 8.1) for 10 cm ˜ 1514 10 cm ˜ 2169 81 cm ˜
which the acidic and basic forms have different absorption spec- 17 40 cm , and ˜ 13 29 cm . ( ) Make a plot of ˜
tra and at least one of the forms absorbs strongly. For phenol- versus the vibrational quantum number of the excited state
phthalein, the basic form absorbs strongly and the acidic form that goes to quantum numbers high enough to show that a
absorbs so weakly that this absorption can be neglected. Plot convergence limit is reached.
the apparent molar absorbancy index versus pH for an indica-
tor such as phenolphthalein, for which the acidic form does not A solution of A and B has an absorbance of 0.800 at
absorb. and 0.500 at in a 1-cm cell. At the molar absorption coef-

ficient of A is 1 5 10 L mol cm and the molar absorptionAcetone dissolved in water has a maximum absorption
coefficient of B is 4 0 10 L mol cm . At the molar ab-coefficient of 20 L mol cm at 38 000 cm , and the width
sorption coefficient of A is 3 0 10 L mol cm and the mo-of the absorption at half-maximum is about 8000 cm . What
lar absorption coefficient of B is 2 0 10 L mol cm . Whatare the values of the integrated absorption coefficient and the
is the composition of the solution?oscillator strength?
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Nuclear Magnetism and Nuclear Magnetic
Resonance
Energy Levels in Nuclear Magnetic Resonance
Fourier Transform NMR Spectrometer
The Chemical Shift
Internuclear Spin–Spin Coupling
Spin–Spin Splitting in AX and AB Systems
Nuclear Magnetic Relaxation
Two-Dimensional NMR
Electron Spin Resonance
Special Topic: Fourier Transforms

Magnetic resonance spectroscopy differs from most other kinds of spectroscopy
in that a magnetic field is used to provide the energy level separations probed by
the radiation. For magnetic fields that can be routinely produced in the labora-
tory, the transitions between energy levels for nuclear magnetic dipoles occur in
the radio-frequency range, and the transitions between energy levels for unpaired
electron spins occur in the microwave range. Nuclear magnetic resonance (NMR)
and electron paramagnetic resonance (EPR) yield such valuable structural infor-
mation that they have become indispensable in chemistry.

Different methods for studying nuclear magnetic resonance were developed
independently by Purcell and Bloch in 1946. Until about 1980 only continuous-
wave (cw) NMR spectrometers were used in chemistry. Now Fourier transform
spectrometers are used because of their greater sensitivity and the introduction
of two-dimensional experiments. This has opened up the whole periodic table to
NMR spectroscopy.

Magnetic Resonance Spectroscopy
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7 1 1
N

11
2

2

37
2
113
2

14

115
2
517
2
119
2
323
2
131
2
333
2

12 16

22

1/2

2

1
2

1
2

1
2

14

s

Magnetic Properties of Selected Nuclei

/10 T s 1 T MHz

H 99.99 5.585 26.7519 42.5759

D 0.01 1 0.857 4.1066 6.53566

Li 92.5 2.171 10.3975 16.546

C 1.11 1.405 6.7283 10.7054

N 99.6 1 0.403 1.9338 3.0756

N 0.4 0.567 2.712 4.3142

O 0.04 0.757 3.6279 5.772

F 100 5.257 25.181 40.0541

Na 100 1.478 7.08013 11.262

P 100 2.2634 10.841 17.238

S 0.74 0.4289 2.054 3.266

� �

� �

�

nuclear spin quantum number

total spin angular momentum
component of nuclear spin

Chapter 15 Magnetic Resonance Spectroscopy

15.1 NUCLEAR MAGNETISM
AND NUCLEAR MAGNETIC RESONANCE

� �

� � �

�

�

Table 15.1

� �

The nuclei of certain isotopes of elements have nuclear spin because they are
made up of protons and neutrons, each of which has spin angular momentum
of ¯/2. The spins of all the nucleons add, just like electron spins. In a nucleus
with an even number of protons and an even number of neutrons, all spins are
paired and the total is equal to zero. Examples
are C and O. The nuclear spin quantum number can be integral or half-
integral, as shown in Table 15.1.

For a nucleus, the is represented by , the spin
quantum number by , and the by . Since is an

ˆangular momentum just like for electrons, the eigenvalue of is ( 1) ¯ and
the magnitude of is given by

[ ( 1)] ¯ (15 1)

Similarly, the eigenvalues of are ¯ where

1 1 (15 2)

so there are 2 1 values of , each associated with an eigenstate of and .
In the absence of a magnetic field these states have the same energy, but in the
presence of a magnetic field a nucleus with spin has 2 1 equally spaced energy
levels. A proton has spin , and so in the presence of a magnetic field it has two
states, a state of low energy aligned with the field ( ) and a state of high
energy opposed to the field ( ). The nucleus of a nitrogen atom in its most
abundant isotope, N, has three possible orientations in a magnetic field because

1, and so 1 0 1.
As we saw earlier in discussing electron spin in connection with spectroscopy,

spin gives rise to a magnetic dipole moment vector .
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What is the value of the nuclear magneton?

¯ (1 602 177 3 10 C)(1 054 573 10 J s)
2 2(1 672 623 1 10 kg)

5 050 787 10 J T
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nuclear magnetic moment
nuclear factor

Example 15.1

15.1 Nuclear Magnetism and Nuclear Magnetic Resonance
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In equation 10.52 it was stated that the magnetic dipole moment vector
for electron spin is given by

(15 3)
2

where is the electron factor (2 002 322), is the mass of the electron, and
is the angular momentum vector for electron spin. We also saw that the com-

ponent of the magnetic moment due to electron spin is proportional to the
magnitude of the spin angular momentum vector in the direction of the magnetic
field; ¯ , so the relation is given by

(15 4)
2

where is the Bohr magneton defined in equation 10.39 and is the quantum
number for the component of spin.

The equations for the and its component
are similar except that the factor becomes the , the mass
of the electron is replaced by the mass of the proton , the Bohr magneton is
replaced by the nuclear magneton , the spin quantum number for the
component of the spin is replaced with the spin quantum number for the

component of the nuclear spin, and the sign is changed:

/ ¯ (15 5)
2

Since can be positive or negative, and and are either parallel or antipar-
allel, we can write this equation in terms of the magnitudes of the two vectors
as

/ ¯ (15 6)
2

The component for the nuclear magnetic dipole moment is given by an equation
similar to equation 15.5 since ¯ :

(15 7)
2

The basic unit of nuclear magnetism, the nuclear magneton , is defined by

¯
(15 8)

2
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*Strictly speaking, the magnetic field strength is represented by , and the magnetic flux density is
represented by . It is the magnetic flux density that determines the magnetic force on a moving
charged particle; it is often referred to simply as the magnetic field, as it is in this chapter.

1
e pN B1836

N N

1/2 1/2
N N

N N

The nuclear magneton is of the Bohr magneton ( / / ). This tells
us that nuclear spin levels have much smaller splittings than electron spin levels when a
magnetic field is applied.
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15.2 ENERGY LEVELS IN NUCLEAR MAGNETIC RESONANCE
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Usually nuclear magnetic moments are discussed in terms of their
, rather than in terms of nuclear factors. The magnetogyric ratio

was introduced in equation 10.36 as the ratio of the magnetic moment vector to
the angular momentum vector. For nuclear magnetic moments,

or (15 9)

The magnetogyric ratio is important because we will see that the frequency of
the radiation absorbed or emitted in a nuclear magnetic transition is proportional
to the magnetogyric ratio. Equation 15.5 indicates that the magnetogyric ratio is
given by

/ ¯ (15 10)

Substituting equations 15.1 and 15.10 into equation 15.9 yields

[ ( 1)] ¯[ ( 1)] (15 11)

Thus the magnetic moment of a nucleus in a magnetic field depends on its mag-
netogyric ratio and its nuclear spin quantum number . The magnetic moment in
the direction of the magnetic field is given by

¯ (15 12)

In the absence of a magnetic field,* the energy of an isolated nucleus is indepen-
dent of the quantum number . As mentioned earlier in discussing the energy
of a hydrogenlike atom in a magnetic field , the energy is given by

(15 13)

where is the magnetic dipole moment in the direction of the field and is the
magnitude of the field (see equations 10.40 and 10.41). Because of equation 15.9,
this equation can be written

(15 14)

Since the potential energy is the only energy involved, the spin Hamiltonian op-
erator for an isolated nucleus is given by

ˆ ˆ (15 15)

ˆwhere is the operator for the component of the angular momentum. The
Schrödinger equation shows what happens when the spin Hamiltonian operates
on a spin function :

ˆ ˆ (15 16)
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The energy of a mole of hydrogen atoms aligned with a magnetic field (
, lower plot) and opposed to a magnetic field ( , upper plot). (See Computer

Problem 15.A.)

The NMR frequency for hydrogen atoms as a function of the strength of the
magnetic field. (See Computer Problem 15.B.)
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15.2 Energy Levels in Nuclear Magnetic Resonance
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Figure 15.1

Figure 15.2

The spin functions are also eigenfunctions of the operator for the component
of the angular momentum:

ˆ ¯ (15 17)

where 1 . Thus the possible energies of a magnetic dipole in
a magnetic field are given by

¯ (15 18)

When this is applied to protons, which can have or , the dependence
of energy on magnetic field strength is shown in Fig. 15.1. The energy difference
and the corresponding frequency are given by

( ) ( ) ¯ ( ) ¯ /2 ¯

(15 19)

Thus

(15 20)
2

This is referred to as the The larger the value of , the easier
it is to observe a nucleus in NMR. Since absorption at this frequency is deter-
mined by use of resonance methods, this is known as
(NMR) spectroscopy. The Larmor frequencies for protons are given in Fig. 15.2
as a function of the magnetic field strength, and Larmor frequencies for a number
of nuclei at 1 T magnetic field are included in Table 15.1.
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At a certain magnetic field strength the frequency of radiation that is absorbed by a sample
containing protons is 220 MHz. What is the magnetic field strength?

2 2 (220 10 )
5 1671

26 7519 10 T s

( ) A freely precessing nucleus in a magnetic field . ( ) Precession of low-
energy nuclei in a magnetic field . [From J. W. Akitt and B. E. Mann,
Taylor and Francis Books Ltd. (Nelson Thornes), London, 2000.]
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Figure 15.3

Since these transitions take place between magnetic states, they are induced
by the oscillating magnetic field of radiation rather than the oscillating electric
field, and are called For magnetic field strengths that
are practical for use in nuclear magnetic resonance, the frequencies for various
nuclei are in the range of 1000 MHz to a few kilohertz. To achieve resonance, ei-
ther the frequency of the electromagnetic radiation or the magnetic field strength
can be adjusted.

If we consider a single nuclear spin in a classical picture, its magnetic mo-
ment can be considered to be rotating around the field direction , as shown
in Fig. 15.3 . The magnetic moment of the nucleus does not line up with the field
but precesses about it at an angle ,

cos (15 21)
[ ( 1)]

as shown in Fig. 15.3 . The angular velocity around the cone is . The frequency
of complete rotations is the Larmor frequency, 2/ . For an assembly of spin
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What is the ratio of the number of proton spins in the lower state to the number in the
higher state in a magnetic field of 1 T at room temperature?

(5 585)(5 05 10 J T )(1 T)
1 1

(1 38 10 J K )(298 K)

1 6 86 10

Notice that the exponent, / , is indeed very small, so the expansion in equation
15.22 is justified.
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thermal equilibration
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15.2 Energy Levels in Nuclear Magnetic Resonance
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nuclei, there are two precession cones, one for nuclei with and one for
. These cones point in opposite directions, but Fig. 15.3 shows only the

lower energy ( ) nuclei in the sample. The vectors all rotate with
the same frequency and are distributed evenly over the conical surface so that

0. The vectors, however, add to give a net magnetization along
the axis (the direction of ).

In discussing transitions induced by electromagnetic radiation in Section 13.2,
we pointed out that the radiation induces emission from higher to lower levels
as well as absorption from lower to higher levels. This occurs in NMR as well.
Since spontaneous emission is extremely small and can be neglected for NMR,
the processes of absorption and stimulated emission are the only ones that are
relevant. The rate of absorption is proportional to the number of nuclei in the
lower state, while the rate of stimulated emission is proportional to the population
(number) of nuclei in the upper state. Since the proportionality constant is the
same for both these processes (see Sections 13.2 and 14.9), we see that the net
loss of energy from the electromagnetic field is proportional to the in
populations between the lower and upper levels. Let be the population in the
upper state and be the population in the lower state in Fig. 15.1. At thermal
equilibrium, these populations obey the Boltzmann equation (see Eq. 13.11)

e e 1 (15 22)

where we have expanded the exponential term since at temperatures above a few
kelvins for any nucleus, the exponent is very small.

If the intensity of the radiation field is increased, the rate of absorption and
stimulated emission may become higher than the rate of so
that the populations of the two levels can become equal, leading to saturation,
that is, zero net absorption.

To detect a nuclear resonance, the system (with field in the direction) is
perturbed by applying a sinusoidally oscillating magnetic field in the plane
with frequency /2 . This oscillating magnetic field stimulates both absorption
and emission of energy by the spin system, leading to a net absorption of energy.
The oscillating field is produced by passing a radio-frequency alternating current
through the Helmholtz double coils on either side of the sample. As indicated in
Fig. 15.4, the field produces a magnetization in the system in the direction
due to the nuclear spins. In addition, the nuclear spins will about
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When a rotating magnetic field with the same angular velocity as the nuclei
is applied, the nuclei tend to precess around . This causes the rotating cone to tip. [From
J. W. Akitt and B. E. Mann, Taylor and Francis Books Ltd. (Nelson
Thornes), London, 2000.] , , and are laboratory coordinates.

(a) The system before the pulse. (b) When a 90 pulse is applied along the
axis the nuclear magnetism is rotated until it lies along the axis. [From J. W. Akitt and B.
E. Mann, Taylor and Francis Books Ltd. (Nelson Thornes), London,

2000.]
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Figure 15.4

Figure 15.5

, which is rotating with the Larmor frequency in the plane. This causes the
cone of vectors to tip and contribute a rotating vector in the plane.

To follow changes in the magnetization in the plane, it is convenient to
use a rotating coordinate system (frame) in which the and axes rotate
around the axis at the Larmor frequency. In Fig. 15.5, and are measured
in the rotating frame, and the vector is now stationary. A sufficiently long or
powerful along the axis will turn the magnetization so that it lies along
the axis. is oriented along the axis, but in the lab frame it creates a signal
that can be picked up by the Helmholtz coils. This is a description of a so-called
90 pulse. The signal that is picked up is referred to as a signal.

So far we have assumed that the pulse is monochromatic, but if it is a short
pulse, it covers a band of frequencies, and all the nuclei with precession frequen-
cies within this band are excited by the pulse. The effectiveness of varies as
sin( )/ , where is the frequency, as shown in Fig 15.6. This figure shows that
the nuclei within 1/4PW Hz of the spectrometer frequency are almost equally
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The effectiveness of a pulse of length PW versus frequency. The effectiveness
is essentially constant in the range 1/4PW. [From J. W. Akitt and B. E. Mann,

Taylor and Francis Books Ltd. (Nelson Thornes), London, 2000.]
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15.3 Fourier Transform NMR Spectrometer

15.3 FOURIER TRANSFORM NMR SPECTROMETER

�

Figure 15.6

affected, but that there are null points at /PW where the nuclei are not excited.
For the nuclei with Larmor frequencies in the central region of the pulse, the mag-
netization in the laboratory frame, , precesses around with the Larmor fre-
quency. After the pulse has terminated, this rotating magnetization continues and
induces a signal in the Helmholtz coils that can be detected without interference
from . As the system returns to equilibrium, the signal diminishes to zero,
usually within less than 10 s.

The FT NMR spectrometer involves a strong, highly stable magnet, a pulse gen-
erator, receiver, and computer, as shown in Fig. 15.7. The sample is surrounded
by transmitter/receiver coils (Helmholtz coils). The magnetic field, which is along
the axis, is created by a superconducting cylindrical solenoid whose windings are
made of a niobium–tin alloy that is a superconductor at the temperature of liquid
helium (4.2 K). This can provide a persistent magnetic field of 12 T or greater.
The liquid helium dewar is thermally isolated, by means of a vacuum chamber,
from an outer dewar containing liquid nitrogen (77 K). After a superconducting
magnet has been energized, no additional electric current is needed, but it does
need to be kept cold.

In a FT NMR spectrometer, a short powerful pulse is applied to the sam-
ple, centered at the Larmor frequency of the nuclear spin under study. As ex-
plained above, this pulse excites all the nuclear spins so that there is a rotating
magnetization in the plane. After the pulse, the magnetization relaxes back to
equilibrium. The signal is amplified and compared with the input pulse to obtain
the time-dependent output signal (the free induction decay, or FID) as shown in
Fig. 15.8.

A FID is a plot of signal versus time, and it is NMR in the “time domain.”
Since recording a FID takes a very short time, this process is repeated many times,
and signal averaging is used to obtain a more accurate FID. Spectra are more read-
ily interpreted as absorption as a function of frequency, and such spectra are in
the “frequency domain.” These two types of spectra are interconvertible through
the Fourier transform, which we discuss in more detail in Section 15.10. A com-
puter in the FT NMR spectrometer is used to calculate the Fourier transform of
the FID signal. As the simplest possible example, Fig. 15.8 shows the relation be-
tween the time domain and the frequency domain for a single-resonance signal.
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Comment:

We ha e seen that certain isotopes of a ery large number of elements can be
detected by NMR. Howe er, some magnetic nuclei gi e stronger signals than
others. It can be shown that the strength of the signal (recepti ity) is proportional
to the natural isotopic abundance times the cube of the magnetogyric ratio. This
shows that the nuclei that gi e the strongest signals are , , and . Howe er,
the sensiti ities of Fourier transform NMR spectrometers are great enough that a
wide ariety of nuclei can be used.
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Fourier transform NMR spectrometer. The radio-frequency pulse tips the
nuclei in the sample by 90 provided their frequency lies within the bandwidth of the pulse.
The nuclear output frequency will be close to the input frequency and the difference

is obtained at the output of the phase sensitive detector. The time-dependent output
(FID) that is shown is Fourier transformed to obtain a plot of intensity versus frequency.
[From J. W. Akitt and B. E. Mann, Taylor and Francis Books Ltd.
(Nelson Thornes), London, 2000.]
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15.4 THE CHEMICAL SHIFT
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Figure 15.7

For now, we will simply assume that the frequency domain plot can be obtained
and will discuss the significance of NMR spectra.

H F P

A single isotope gives rise to a single nuclear magnetic resonance, and this would
not be of much interest in chemistry except for the fact that the magnetic field
at the nucleus is not equal to the applied magnetic field. The magnetic field that
the nuclear spin feels is the vector sum of the applied field and the field due to
the other nuclear spins and the electron spins in the molecule. In the liquid state,
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( ) Free induction decay (FID) for hydrogen atoms with a Larmor frequency
of 20 s after a 90 pulse. The relaxation time is 0.10 s. ( ) Fourier transform of the
FID. This is the NMR spectrum and shows the frequency of 20 s and a peak width that
corresponds with the relaxation time (see Computer Problems 15.C and 15.D). See
Section 15.7 for a discussion of the relaxation time .
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molecules rotate rapidly and randomly, so direct nuclear magnetic fields fluctuate
and average to zero. However, a diamagnetic screening effect is produced by the
orbital electrons in a molecule. The origin of this screening effect is illustrated in
Fig. 15.9. When a molecule is placed in a magnetic field, the field induces motion of
orbital electrons that set up an additional magnetic field normally in opposition to
the applied field. The nature of this magnetic field is indicated by the dashed lines
in the figure. The magnetic field at the nucleus is less than the applied field. The
nucleus of interest is said to be by electrons. This (and other) shielding
effects can be taken into account by writing , where is the
externally applied field, so that equation 15.20 becomes

(1 ) (15 23)
2

where is the for nucleus .
It is important to note that the shielding constant depends on the local

electronic or chemical structure around the nucleus. The shielding constant is
less than 10 for protons and less than about 10 for most other nuclei. Since
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Figure 15.9

the magnitude of the shielding depends on the orientation of the molecule with
respect to the applied field, is actually a second-rank tensor. However, for a
liquid or a gas the directional part of averages out so that it may be treated as
a scalar. Since it is difficult to measure the magnetic field strength at a nucleus
accurately, it is not practical to measure , but it is possible to determine relative
values by using the same nuclei in a For H, C, and Si,
the reference compound is tetramethylsilane (TMS), (CH ) Si.

The frequency for H, for example, in the reference compound is given by

(1 ) (15 24)
2

The difference in frequency for a H nucleus in a certain position in molecule
and in the reference compound is obtained by subtracting equation 15.24 from
equation 15.23 to obtain

( ) (15 25)
2

This equation is then divided by equation 15.24 to obtain, to very high accuracy,

( ) 10 (15 26)

where is called the Note that we have used 1 1. In other
words, the chemical shift is the difference in shielding constants expressed in
parts per million (ppm). The chemical shift can be calculated from the difference
frequency between the chosen nuclei and the reference, expressed in Hz, divided
by the spectrometer frequency, expressed in MHz.

NMR spectra are conventionally arranged so that the frequency increases to
the left. This means that the chemical shifts increase to the left. Since it is con-
venient to have chemical shifts for most organic compounds be positive, tetra-
methylsilane was chosen as a reference because it has a low Larmor frequency.
Tetramethylsilane has a larger shielding constant for H than most organic sub-
stances because the electron density around H is higher in TMS than in most
organic compounds. Since frequency increases to the left in an NMR spectrum,
we can also think of the magnetic field strength at the nuclei as increasing to the
right. Thus chemical shifts for protons are calculated using

10 (15 27)
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Terminology used in discussing proton chemical shifts. (From J. W. Akitt,
3rd ed. The Netherlands: Kluwer, 1992.)

Chemical Shifts of H
in Hydrocarbons

/ppm

CH R 0.5 to 0.5
RCH R 0.8 to 1.9
C CCH R 1.9 to 2.9
C CCHR 1.9 to 3.7
C CH 3.9 to 8.0
C CH 1.3 to 3.1
Ar-H 6.5 to 9.0
HCO R 7.8 to 8.8
RCHO 9.0 to 11.0

Magnetic flux density produced by electron circulation in the orbitals of
the benzene ring. At the protons, the induced field is in the same direction as the applied
field.
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15.4 The Chemical Shift
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Figure 15.10

Table 15.2

Figure 15.11

where is the spectrometer frequency and for a line with respect to TMS is
taken as positive for an absorption at a frequency higher than TMS and as negative
for a frequency lower than TMS. Figure 15.10 summarizes some of the terminol-
ogy that is used in discussing H chemical shifts.

Chemical shifts for protons in various molecules, expressed as values, are
given in Table 15.2. Note that the protons of benzene are not shielded very much,
and therefore resonate at lower magnetic field strengths than methyl protons.

The reason protons of benzene resonate at lower fields can be seen in
Fig. 15.11. When a benzene ring is oriented perpendicular to the magnetic field,
the circulation of electrons in the orbitals induces a field that is in the same
direction as the applied field at the protons. Therefore, aromatic protons res-
onate at a lower applied field than they otherwise would. This effect is reduced
by molecular tumbling because when the benzene ring is oriented parallel to the
field, there is no such effect.

Proton chemical shifts in organic compounds can be correlated with the elec-
tronegativities of neighboring groups, types of carbon bonding, and hydrogen
bonding. In

H C X

the chemical shift for the proton depends on the electronegativity of X. The
greater the electronegativity of X, the more it will draw electrons away from H.
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The more electrons are drawn away, the lower the magnetic field required for
resonance, and the larger the value. The electronegativities of the halogens
are F Cl Br I, and the proton chemical shifts for protons in the methyl
halides are CH F CH Cl CH Br CH I.

The protons of metal hydrides have negative chemical shifts on the scale;
that is, they are more highly shielded than the protons of TMS.

The chemical shifts for other nuclei are larger than for protons because they
are surrounded by a larger number of electrons. For C the chemical shifts, mea-
sured with respect to TMS, range from 200 ppm for

O

R C R

to approximately zero for methyl groups. Chemical shifts for N and N, mea-
sured with respect to NH , range up to about 800 ppm. Phosphorus chemical shifts,
measured with respect to P O , range from about 100 to 200 ppm.

So far we have not taken account of the fact that neighboring magnetic dipoles
in a sample interact with each other. This affects the magnetic
field at the positions of nuclei being observed. Nuclear dipoles can interact directly
through space, and this is important in solid-state NMR
spectroscopy. But in high-resolution spectroscopy of solutions in low-viscosity liq-
uids, this coupling is averaged to zero by molecular motions. In this section, we
are concerned with that takes place through bonds in
a single molecule. This coupling via bonding electrons is called the Fermi contact
interaction.

The usual presentation of a proton resonance spectrum is illustrated in
Fig. 15.12. The multiplets arise from spin–spin splitting and provide informa-
tion in addition to that arising from the chemical shift . The coupling pattern
and the coupling constants provide information on connections between groups
and make it possible to deduce the structure of a molecule. In Fig. 15.12, the
CH resonance is split into three lines because of coupling to the neighboring
CH group. The spins of the protons in the neighboring CH group can be ar-
ranged in three ways as shown in Fig. 15.13. The CH resonance is split into four
resonances because the spins of the protons in the neighboring CH group can
be arranged in four different ways as shown in Fig. 15.13. In the absence of a
nearby group containing protons, a CH group would give a single absorption
line because these two protons do not split each other. The protons in CH are
said to be isochronous and magnetically equivalent. The reason they give a single
resonance line is clarified in the next section using quantum mechanics.

There is a simple rule for splitting in groups of nuclei: A neighboring
group with equivalent nuclei split a resonance into 1 lines. The relative
intensities of the lines are given by the binomial coefficients of (1 1) or by
Pascal’s triangle (see Example 15.4).

The intervals between lines in a multiplet are equal, and this interval in cycles
per second is referred to as the . In contrast to the separation
between the absorptions of different groups on the frequency scale, the coupling
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The 400 MHz H NMR spectrum of CH CH Br in CDCl . The CH res-
onance at about 1 7 and the CH resonance at about 3 4 are also shown in ex-
panded form. (From J. W. Akitt and B. E. Mann, Taylor and Francis
Books Ltd. (Nelson Thornes), London, 2000.)

Splitting patterns with spin nuclei resulting for ( ) one neighboring spin,
( ) two neighboring spins, and ( ) three neighboring spins.

Proton Spin–Spin Coupling Constants of H

/Hz /Hz

20 to 6 12 to 9

5.5 to 7.5 6 to 9
0 5 to 4

0 to 2.5

7 to 10 ax, ax 9 to 14
ax, eq 2 to 4
eq, eq 2 5 to 4

�

� �

15.5 Internuclear Spin–Spin Coupling

Figure 15.12

Figure 15.13

Table 15.3

constant is independent of the magnetic field strength. Note that chemical shifts
are measured from the center of a multiplet. Molecular structure is of critical im-
portance in determining the values of coupling constants, and that means that they
are of great interest to chemists. Table 15.3 gives some values for proton spin–spin
coupling constants, which indicates how they lead to structural information about
organic molecules. When various conformations of a molecule are rapidly inter-
converted, the equivalence of nuclei should be determined on an average basis,
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Calculate the coefficients of the binomial expansion for the first several numbers of
protons in a molecule.

For small numbers this can be done by hand, but for larger numbers, it is convenient
to use a computer with a mathematical program (see Computer Problem 15.I).

0 proton 1
1 proton 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Example 15.4

first-order spectrum
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Pascal’s triangle:

rather than for one of the conformers. If the ethanol molecule CH CH OH were
perfectly rigid, the methyl protons would not be equivalent. However, because
of rapid rotation about the C–C bond, the electronic environments of the three
protons are magnetically equivalent.

The number of lines in a multiplet is referred to as the multiplicity , and in
general

2 1 (15 28)

where is the number of equivalent neighbor nuclei and is the nuclear spin.
For nuclei with , this yields the 1 rule.

An important point to note is that within a group of equivalent nuclei
(e.g., the protons of CH ), each nucleus does not split the resonances of the
others; the group of equivalent nuclei resonates as one collective system. Of
course, the intensity of the resonance line is proportional to the number of nu-
clei in the group.

We will see in the next section that the 1 rule for protons is an approxi-
mation, but we will also see that this is an approximation that gets better as the
magnetic field strength is increased.

Since the previous treatment is qualitative, we now turn to quantum mechanics
for a complete treatment of spin–spin splitting. As a simplification, we will con-
sider two spin nuclei, and so we can refer to them as two protons in different
environments. First, we will consider AX systems, where this NMR notation in-
dicates that . In other words, nuclei A and X have sufficiently
different shielding constants that the spin–spin splitting is small in com-
parison with the difference in chemical shifts. Then we will consider AB systems,
where . The spectrum of an AX system with spin–spin splitting is
referred to as the of a two-spin system, and that is what was
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discussed in the preceding section without equations. The spectrum of an AB
system is referred to as the of a two-spin system. The
quantum mechanical treatment of a first-order spectrum is based on first-order
perturbation theory, and the treatment of a second-order spectrum requires a
variational treatment (Section 10.6).

In the absence of spin–spin coupling, the Hamiltonian operator for a two-
spin system (see equation 15.15) is given by

ˆ ˆ ˆ(1 ) (1 ) (15 29)

This Hamiltonian leads to a two-line spectrum where one line is at the Larmor
frequency for nucleus 1 and the other is at the Larmor frequency for nucleus 2.

When there is spin–spin interaction between A and X, the classical Hamil-
tonian for the system involves a term proportional to , the dot product of
the two magnetic dipole moments and . In quantum mechanics, these two

ˆmagnetic dipole moments are replaced by the corresponding spin operators
ˆand for the two magnetic dipoles. Therefore, the Hamiltonian operator for

the coupled two-spin system is

ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) (15 30)
¯

where is the spin–spin coupling constant. The factor / ¯ ensures that the
coupling constant has the unit s .

This two-spin system has four possible wavefunctions:

(1) (2)

(1) (2)
(15 31)

(1) (2)

(1) (2)

First-order perturbation theory can be used to show that the energies of the four
energy levels for the AX system are given by

1 (15 32)
2 4

( ) (15 33)
2 4

( ) (15 34)
2 4

1 (15 35)
2 4

where /2 . The energy levels for an AX system are shown in Fig. 15.14.
The only transitions that are allowed are 1 2 1 3 2 4, and 3 4 be-
cause the selection rule requires that only one type of nucleus at a time can

y y y y
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Four energy levels of an AX system according to first order perturbation
theory.

NMR spectrum of a molecule with two interacting hydrogen atoms. Note
that the splitting is independent of the magnetic field strength.

second-order treatment,
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Figure 15.14

Figure 15.15

undergo a transition. As shown in Problem 15.18, the frequencies for these four
transitions are given by

(1 2) (1 ) (15 36)
2

(1 3) (1 ) (15 37)
2

(2 4) (1 ) (15 38)
2

(3 4) (1 ) (15 39)
2

The spectrum for an AX system is shown in Fig. 15.15 for two spectrometer fre-
quencies. The spin–spin splitting is independent of the spectrometer frequency.
This spectrum illustrates the 1 rule since the neighboring spin splits the line
for a proton into each doublet.

Now we turn to a consideration of the spectrum of an AB system, that is,
one where . This case cannot be treated by perturbation theory
because the perturbation is not small. The second-order treatment of the system
with two spins requires a variational calculation (Section 10.6). This is done by
using a linear combination of the four basic wavefunctions.

(15 40)

This is referred to as a but actually it is exact in this
case because equation 15.40 represents all the possible spin functions for two
hydrogen atoms. The expansion of the 4 4 secular determinant (Section 11.7)
yields the following four energy levels.

y

y

y

y
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Figure 15.16

1 (15 41)
2 4

[ ( ) ] (15 42)
2 4

[ ( ) ] (15 43)
2 4

1 (15 44)
2 4

where /2 . The equations for and are the same as for the AX
system. These energy levels and the allowed transitions are shown in Fig. 15.16.

The frequencies of the four lines in the AB spectrum are given by

Frequency Intensity

1 ( 1)
(1 2) [ ( ) ] (15 45)

2 2 ( 1)

1
(1 3) [ ( ) ] 1 (15 46)

2 2

1 ( 1)
(2 4) [ ( ) ] (15 47)

2 2 ( 1)

1
(3 4) [ ( ) ] 1 (15 48)

2 2

where

( )
and ( ) (15 49)

( )

A term ( /2)(2 ) has been omitted from each frequency because here we
are interested only in relative frequencies. Note that the intensities of the four
lines are not the same, as they were in the AX spectrum in Fig. 15.15. The spectra
of AB systems are plotted in Fig. 15.17 for various ratios of ( )/ and
constant . As the magnetic field strength or the chemical shift is increased, the
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In other words, there is no spin–spin splitting between
chemically equi alent protons.
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Spectra for an AB system with two spin nuclei for several values of the
ratio / . The coupling constant is kept at 10 Hz, and the chemical shift separations are
200, 100, 50, 10, and 0 Hz.
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Figure 15.17

spectrum approaches the AX spectrum of Fig. 15.15. In the limit as the chem-
ical shift decreases, there is a single line. This shows that for an AA system,
where the two protons have the same chemical shift, the protons do not split
each other’s resonance.

For systems with larger numbers of protons, the second-order spectrum can
be very complicated, but computer programs are available for the calculation of
the second-order spectrum of systems with more protons. Figure 15.17 illustrates
the advantage of achieving higher and higher magnetic field strengths: As the
magnetic field strength increases, the NMR spectrum approaches the first-order
spectrum.

In this section we discuss the time-dependent NMR signals and FID in more
detail. When a system at equilibrium is perturbed by a short pulse, its relaxation
back to equilibrium usually follows the exponential equation

( ) ( ) exp( / ) (15 50)
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The relaxation after a 180 pulse yields . After the pulse, the spin system
returns to equilibrium by decaying to zero, and then increasing again in the direction.
This involves an exchange of energy between the spins and their environment. [From J.
W. Akitt and B. E. Mann, Taylor and Francis Books Ltd. (Nelson
Thornes), London, 2000.]
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Figure 15.18

where is the relaxation time. As described in Section 15.2, an assembly of
nuclear spins in a magnetic field has two populations: one oriented in the

direction of the field and the other opposed to the field with a small excess num-
ber in the lower energy state. These excess nuclei precess around the direction
of the field with a net magnetization . with no detectable transverse magne-
tization in the plane (Fig. 15.3). We now consider two perturbations on this
system: a 180 pulse and a 90 pulse.

The effect of a 180 pulse is to swing the magnetization to the opposite di-
rection, as shown in Fig. 15.18. Note that after the pulse the spin system has
more energy than before the pulse. This magnetization then decays with a relax-
ation time , which is referred to as the time because it
involves an exchange of energy between the spins and their environment. It is
also referred to as a longitudinal relaxation time because it all takes place in the
direction of the magnetic field.

The effect of a 90 pulse (Fig. 15.5) is to swing the magnetization to the di-
rection of the axis, as shown in Fig. 15.19. This figure utilizes the rotating frame
introduced in Fig. 15.4. Although the magnetization is shown in the direction,
the Larmor frequency of each spin differs slightly from its companions, so the

magnetization starts to lose coherence and therefore decreases in magnitude
with relaxation time , which is referred to as the (or
transverse relaxation time) because it involves an exchange of energy within the
spin system. Figure 15.19 also shows the longitudinal relaxation time (growth of

) that occurs on the time scale of . Usually so that determines
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The relaxation after a 90 pulse yields . After the pulse, the magnetization
is shown in the direction, as would be seen if the observer were rotating in the same
direction at the Larmor frequency. There is a spreading out of the nuclear frequencies that
reduces . [From J. W. Akitt and B. E. Mann, Taylor and Francis
Books Ltd. (Nelson Thornes), London, 2000.]
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Figure 15.19

the line width of the signal. Because of the relaxation, the component of
the magnetization (which gives rise to the free induction decay (FID)) obeys the
equation

( ) (0) cos(2 ) e (15 51)

where (0) is the transverse magnetization immediately after the pulse, and
is the Larmor frequency. If the sample contains several spins with different

relaxation times, the equation for the FID is simply a sum of terms:

( ) cos(2 ) exp( / ) (15 52)

where is the amplitude. Figure 15.20 shows the FID for a system with two spins
with 40 s , 80 s , 0 10 s, 0 30 s, 0 50, and 1
and the Fourier transform ( ) of the FID. The lines have different widths at
half-height because they have different relaxation times . The positions
of the peaks are determined by their Larmor frequencies, and their line widths
are determined by their respective ’s.

The line shapes are Lorentzian, which means that the intensities ( ) de-
pend on frequency according to

( ) (15 53)
1 (2 ) ( )
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( ) FID for a system with two spins with 40 s , 80 s ,
0 10 s, 0 30 s, 0 50, and 1. ( ) The Fourier transform ( ) of the FID.
(See Computer Problem 15.G.)

Plot the Lorentzian function for absorption line shape for 20 s and 0 10 s,
and check that the width at half-maximum is given by 1/ .

The plot of equation 15.53 for these values is given in Fig. 15.21. Note that the width
at half-maximum height is given by

1 1
3 2 s

(3 14)(0 10 s)

(See Computer Problem 15.H.)

Plot of the Lorentzian function (equation 15.55) for absorption line shape
for 20 s and 0 10 s. (See Computer Problem 15.H.)
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Figure 15.20

Figure 15.21

It can be shown that for this (Lorentzian) absorption line, the width at half-
maximum intensity is given by 1/ . The observed line widths are gener-
ally wider than that due to the true for the spin because of inhomogeneities
in the strength of the magnetic field throughout the sample volume. There are
now NMR methods that eliminate the effect of field inhomogeneity by a clever
technique of reversing the transverse magnetization after a short time; these are
so-called techniques.
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Pulse sequence for a COSY NMR experiment. The 90 pulse is followed by
a time period that is varied. The second 90 pulse produces a FID that is Fourier trans-
formed. (From J. H. Nelson, 2003 . Reprinted
by permission of Pearson Education, Inc., Upper Saddle River, NJ.)
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Figure 15.22

The NMR spectrum of a molecule A X in which the two types of nuclei are
spin-coupled can be simplified by decoupling the spins in X. This is accomplished
by applying a second strong radio-frequency field at the Larmor frequency
of X. The X nuclei precess around , and if this precession is fast enough their
effective magnetization at the coupled A nucleus averages to zero. Nucleus A
is then said to be decoupled from X. In this manner, a decoupled spectrum for
a complicated molecule may be much easier to interpret.

The usefulness of NMR in determining the structures of complicated mole-
cules, including proteins, has been greatly increased by the development of pulse
sequences. Many of these experiments can be described by the sequence: Relax-
ation Preparation Evolution Mixing Acquisition. During the relax-
ation period, the nuclear spins are allowed to return to their equilibrium distri-
bution. During the preparation period, the spins of the nuclei are subjected to
a (possibly complicated) radio-frequency pulse. The system evolves under the
influence of the magnetic field during the evolution period. It may be neces-
sary to apply a 180 pulse in the mixing period, and more than one pulse may
be applied. Then the FID signal is acquired. This is the description of a one-
dimensional NMR experiment. A second time dimension can be introduced by
varying the time after one of the pulses. This makes it possible to collect a series
of FIDs, each at a different time. After Fourier transforming in both time vari-
ables, this is referred to as two-dimensional NMR spectroscopy. These one- and
two-dimensional experiments provide information on the connectivity between
nuclei of a molecule, and therefore its structure. Coupling between groups gener-
ally decreases with the number of intervening bonds, but coupling over as many
as five bonds has been detected.

In one-dimensional NMR the ordinate gives the intensity of the resonance and
the abscissa gives the frequencies. In two-dimensional NMR both the ordinate
and abscissa give frequencies. The intensities of the lines are indicated by con-
tour lines, as in a topographic map. The acronym COSY (for

) is used when the nuclei that are studied are all the of the same type,
and the term HETCOSY is used when two different types of nuclei are involved
such as H/ C. The pulse sequence for a COSY experiment is shown in Fig.
15.22. The two 90 pulses are separated by a time period that is varied. Figure
15.23 gives a schematic representation of a COSY spectrum for an AX system.

y y y y
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Two-dimensional proton NMR spectra can be used to determine the three-
dimensional structures of small protein molecules in solution. This method
complements the determination of structures of protein molecules in crystals by use
of X-ray diffraction (Chapter 23). In a crystal the configurations of side chains on
the external surface of the protein are affected by neighboring protein molecules. In
solution these effects are missing, and so the three-dimensional structure is slightly
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Schematic representation of a COSY spectrum for an AX spin system. The
spectra along the ordinate and abscissa were obtained in a separate experiment. The 1D
spectrum for AX also appears on the diagonal. (From J. H. Nelson,

2003 . Reprinted by permission of Pearson Education, Inc., Upper
Saddle River, NJ, 2003.)

magic-angle spinning

15.8 Two-Dimensional NMR
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Figure 15.23

This pulse sequence introduces extra peaks off the diagonal for the protons that
are spin coupled and none for those that are not. These extra peaks are referred
to as cross peaks. If A and X were not coupled, the cross peaks would be absent.

The COSY experiment is equivalent to carrying out simultaneously a series
of decoupling experiments at each multiplet in a system to find the part of a
spectrum where a perturbation has occurred. COSY spectra are very useful for
identifying the connectivity in complicated molecules. NMR spectra can be ex-
tended to more dimensions and many other pulse sequences. This has made it
possible to determine amino acid sequences and folding in protein molecules in
aqueous solution.

Another method of interest is called (MAS), which
can average out the dipole–dipole spin interactions in solids. We have already
pointed out that such interactions broaden the NMR spectrum in solids (and in
large molecules whose rotation is slow). The dipole–dipole interaction depends
on the angle that the spins make with (conventionally, the axis). By spin-
ning the sample quickly at the angle 54 74 with respect to (i.e., the angle at
which 1 3 cos 0), the dipole–dipole interaction averages to zero. The prob-
lem is that the frequency at which the sample is spun must be greater than the
width of the spectrum due to dipole–dipole interactions. This requires spinning at
4–5 kHz. Once the dipolar spin coupling is removed from solid samples, only the
chemical shift remains.
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15.9 ELECTRON SPIN RESONANCE
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Figure 15.24

The basic equations for electron spin resonance (ESR) follow the same pattern
as for nuclear magnetic resonance. The relation between the magnetic dipole
moment for the electron and its spin angular momentum vector is given
in equation 15.3. The expression for the magnetic energy of an electron in a
magnetic field is

(15 54)

where is the factor for the electron (2.002 322 for a free electron), is the
Bohr magneton (Section 10.4), and is the quantum number for the compo-
nent of the electron spin. This equation was derived earlier in the discussion of
the effect of electron spin on optical spectra (see equation 10.55).

The two energy levels of a single electron in a magnetic field are shown in
Fig. 15.24. Because of the negative charge of the electron, the magnetic moment

of an electron is in the direction opposite to its spin angular momentum, and
the electron spin quantum number is in the lower level, in contrast to the
situation with nuclei. For a transition from to ,

(15 55)

In a molecule an unpaired electron is shielded to a greater or lesser extent
by its environment in the radical. Thus equation 15.55 becomes

(1 ) (15 56)

where is the shielding constant. This equation is usually written

(15 57)

where the dimensionless factor (1 ) is used to define the position of
an ESR absorption.

Substances that show ESR spectra include free radicals, odd-electron mole-
cules, triplet states of organic molecules, and paramagnetic transition metal ions
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Calculate the magnetic flux density required to give a precessional frequency of 9500
MHz for a free electron.

(6 6262 10 J s)(9500 10 s )
0 3390 T

(2 0023)(9 2741 10 J T )
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hyperfine splitting constant.

15.9 Electron Spin Resonance
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and their complexes. Any paramagnetic substance can be studied, but as we have
seen, most substances are not paramagnetic because electron spins are usually
paired.

An electron resonance experiment is similar to an NMR experiment, but
since for the electron is about 10 -fold larger than for nuclei, the frequen-
cies required fall in the microwave range instead of the radio-frequency range
when magnetic fields of convenient laboratory strength are used. Usually a fre-
quency of about 10 GHz ( 3 cm) is used with a magnetic field of 0.3 to 0.4 T.

ESR spectroscopy has been very useful in determining the structure of or-
ganic and inorganic free radicals. Free radicals may be produced chemically,
photochemically, or by use of high-energy radiation. If a radical has a very
short life, a flow system or continuous radiation may have to be used to main-
tain a sufficiently high concentration for detection. Actually, a concentration
of only about 10 mol L is required to obtain a spectrum under favorable
conditions.

A molecule in a triplet state has a total electron spin of 1 ( 1). In this
case there are three sublevels that have spin angular momentum about a cho-
sen axis of 1, 0, or 1. A triplet molecule has an even number of electrons, two
of them unpaired, while a radical with spin has an odd number of electrons.
For a molecule to have a triplet state, the unpaired electrons must interact; a
molecule with two unpaired electrons a great distance apart is a diradical, not a
triplet.

The splitting of lines in the ESR spectrum provides information of chemical
interest. This splitting arises from the fact that unpaired electrons feel the effect
of the applied magnetic field and the magnetic field produced by nuclei

that have spin (see Table 15.1). In ESR this splitting of lines is called
hyperfine splitting instead of spin–spin splitting, as it is in NMR.

The simplest example of hyperfine splitting is the ESR spectrum of atomic
hydrogen, which consists of two lines: The absorption due to the unpaired elec-
tron is split into a doublet by the spin of the proton. The splitting is caused by
the magnetic field due to the magnetic moment of the proton. The field experi-
enced by the unpaired electron is the sum of the applied magnetic field and the
magnetic field of the proton. Since the proton can take on two orientations with
respect to the applied field, the local field at the electron is /2,
where is referred to as the The general relation
that applies to all nuclei with spin is

(15 58)

where is the quantum number for the component of the nuclear angular
momentum.
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15.10 SPECIAL TOPIC: FOURIER TRANSFORMS
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If several magnetic nuclei are present in the same radical, each contributes
to the splitting with different hyperfine splitting constants. For two nuclei,

(15 59)

A periodic phenomenon can be considered in the frequency domain or the time
domain. It is possible to go back and forth between these domains by use of
Fourier transforms. If the periodic phenomenon in the time domain is repre-
sented by ( ), the corresponding function ( ) in the (circular) frequency do-
main is given by the Fourier equation

( ) ( )e d (15 60)

where i ( 1) . This Fourier transform can be viewed as mapping a function
( ) in space into another function ( ) in frequency space. When the data

on ( ) are made up of a list of length of equally spaced values , the Fourier
transform is given by

1
exp[ 2 ( 1)( 1)/ ] (15 61)

The Fourier transform of the FID is made up of complex numbers; that is, they
each consist of a real part and an imaginary part. The real part is the absorption
mode signal, and that is the form of the spectrum that we are familiar with. But
the imaginary part may also be useful, and it is referred to as the dispersion
mode signal.

When the function of frequency ( ) is known (that is, the spectrum), the
function of time ( ) can be calculated using the inverse Fourier transform:

1
( ) ( )e d (15 62)

2

When the data on ( ) are made up of equally spaced values , the inverse
Fourier transform is given by

1
exp[2 ( 1)( 1)/ ] (15 63)

These operations can be carried out with mathematical programs for personal
computers.

Since many nuclei have spin, the transitions between energy levels in a
magnetic field can be detected at a frequency equal to their Larmor fre-
quency at that magnetic field strength.
Most NMR spectrometers are based on irradiation of a sample by a 90
pulse, recording the free induction decay (FID), and converting it to an
absorption spectrum using a Fourier transform.
The Larmor frequency for a given nucleus in a molecule depends on its
electronic environment, so its chemical shift provides information about
this environment.
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to give an NMR transition frequency for hydrogen equal toProblems marked with an icon may be more convenient-
these frequencies.ly solved on a personal computer with a mathematical program.

For the frequencies of Problem 15.1, calculate the cor-
NMR spectrometers usually have fixed frequencies be- responding energies in kJ mol and compare these with

tween 60 and 750 MHz. Calculate the magnetic fields needed at 300 K.

4.

5.

6.

7.

8.

9.

10.

Problems

REFERENCES

PROBLEMS

�
15.2

15.1

The absorption line for a particular nucleus is split into a multiplet by
neighboring spins, and the number of peaks in the multiplet and the spin–
spin coupling constant provide further information about structure.
The first-order NMR spectrum follows the 1 rule for multiplets, and
it can be treated quantitatively by first-order perturbation theory, which
shows that the spin–spin coupling is independent of magnetic field strength.
The actual spectrum (second-order spectrum), which is more complicated,
can be treated by the variational method, which is exact; this treatment
shows that the actual spectrum approaches the first-order spectrum as the
magnetic field strength is increased.
When a spin is perturbed by a pulse of electromagnetic radiation, the lon-
gitudinal magnetization decays with a relaxation time (spin–lattice re-
laxation time), and the transverse magnetization decays with a relaxation
time (spin–spin relaxation time), which determines peak width.
A Fourier transform converts a free induction decay (FID) to a spectrum
(a plot of intensity of absorption versus frequency) in which the peak po-
sitions yield the Larmor frequencies and the widths of peaks at half-height
yield the spin–spin relaxation times.
Two-dimensional NMR gives further information about interactions with
neighboring spins and can be used, for example, to determine the sequence
of amino acids in a protein.
Electron spin resonance of molecules with unpaired electrons yields infor-
mation on coupling between the electron spin and the spins on neighboring
nuclei.
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( ) What are the energy levels for a Na nucleus in a The proton resonance pattern of 2,3-dibromothio-
magnetic field of 2 T? ( ) What is the absorption frequency? phene shows an AB-type spectrum with lines at 405.22, 410.85,

425.07, and 430.84 Hz measured from tetramethylsilane at 1.41The magnetogyric ratio for a nucleus is defined by
T [K. F. Kuhlmann and C. L. Braun, 750¯
(1969)]. ( ) What is the coupling constant ? ( ) What is the

What is the value of for H? difference in the chemical shifts of the A and B hydrogens?
What is the difference in fractional populations of C ( ) At what frequencies would the lines be found at 2 T? Use

spins between the upper and lower states in a magnetic field the results of Section 15.6.
of 2 T at room temperature?

Derive the equations for the frequencies for an
In a magnetic field of 2 T, what fraction of the protons AX system from the equations for the energy levels and plot

have their spin lined up with the field at room temperature? the line spectrum for ( ) 50 s and 5 0 s .
It is now possible to do NMR experiments at very low Calculate the relative frequencies and relative intensi-

temperatures. Calculate the ratio of the number of protons in ties for an AB system in which ( ) 10 s and
the upper spin state to that in the lower spin state in a magnetic 5 0 s
field of 2 T at 1 and 10 mK.

Verify the equation
( ) What is the value of the magnetogyric ratio for the

proton? ( ) What is the Larmor frequency for the proton at
¯10 T? 2

Calculate the magnetic fields required for resonance at
300 MHz for ( ) P and ( ) S. for the energy corresponding to (1) (2) for a molecule

Using information from Tables 15.2 and 15.3, containing two hydrogen atoms that do not interact.
sketch the spectrum you would expect for ethyl acetate Show that for a Lorentzian absorption line, the width
(CH CO CH CH ). at half-maximum intensity is given by 1/ .

Chemical shifts are expressed in ppm, but they can At room temperature the chemical shift of cyclohexane
also be expressed in Hz. What magnetic fields are necessary to protons is an average of the chemical shifts of the axial and
produce frequency shifts of 100 and 500 Hz for protons with a equatorial protons. Explain.

1?
The two lines in the proton magnetic resonance spec-

What is the separation of the CH and CH proton res- trum for the two methyl groups connected to nitrogen in
onances in ethanol at ( ) 60 MHz and ( ) 300 MHz? (See Ta- -dimethylacetamide coalesce when the temperature is
ble 15.2.) raised. What is the rate constant for the cis–trans isomeriza-

At a magnetic field of 1.41 T, the frequency separation tion when the multiplet structure is just lost at 331 K? The
between protons in benzene and protons in tetramethylsilane difference in chemical shifts between the two peaks is 10.85 Hz.
is 436.2 Hz. What is the chemical shift? Calculate the transition (Larmor) frequency of a free

Equation 15.26 indicates that the chemical shift mea- electron in a 3-T field. What energy in cm does this corre-
sured with respect to a reference is a million times greater than spond to?
the difference in shielding constants for the reference and Line separations in ESR may be expressed in G or
the group of interest. Since the reference is arbitrary, we can MHz. Show how the conversion factor 1 T 2 80 10 MHz
also apply this equation to the difference between two groups. is obtained.
In the ethanol molecule, the chemical shift is 1.17 ppm for the

What is the magnitude of the magnetic moment of theprotons in CH and 3.59 ppm for the protons in CH . ( ) What
proton?is the difference in shielding constants for these two types of

Using data from Table 15.1, calculate the magnetic fieldprotons? ( ) What is the difference in the magnetic field at the
strengths at which ( ) C and ( ) F will have splittings cor-protons in CH and CH when the applied field is 1 T and
responding to 5 MHz.( ) 2 T?

With superconducting magnets, it is possible to reach( ) Using equation 15.26, show that
magnetic fields of 12 T. At this field strength, what is the

10 ( ) splitting between spin levels for protons in MHz and cm ?
What is the frequency for proton resonance at a mag-where and are the resonance frequencies for protons in

netic field strength of 10 T?groups 1 and 2. ( ) What is the difference in resonance fre-
quencies for protons in CH and CH at 60 MHz? Calculate the magnetic field strength necessary for

resonance at 200 MHz for F and C.Sketch the proton resonance spectrum of D CHCOCD
(deuteroacetone containing a little hydrogen). Indicate the rel- A sample containing protons and fluorines ( F) is
ative intensities of the lines. placed in a magnetic field of 1 T at 25 C. Calculate the dif-
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ference in the fraction of spins lined up parallel to the field ( ) oscillates and damps down to zero at . The Fourier
and those antiparallel for both nuclei. transform of ( ) is a plot of the corresponding spectrum ( )

versus frequency. The position of the peak depends on the Lar-Sketch the proton resonance spectrum for a compound,
mor frequency , and the width of the peak corresponds to therepresented by AMX, with three protons with rather differ-
transverse relaxation time . A plot of ( ) versus is said toent chemical shifts ( 100, 200, and 700
be in the time domain, and a plot of ( ) versus is saidHz). The three protons are coupled with 9, 7,
to be in the frequency domain. Both are useful. A spectrumand 3 Hz.
can be converted to a plot of ( ) versus with an inverseDescribe the proton and deuteron NMR spectra of HD,
Fourier transform. When a system involves more than one typeneglecting the quadrupole magnetic moment of the deuteron.
of spin, ( ) is made up of a sum of terms of this type, each

On the basis of the spin–spin coupling constants in Ta- with its own amplitude, frequency, and transverse relaxation
ble 15.3, describe the spectrum expected for time. As shown in Fig. 15.5, the width of a spectral line at half

the peak height is given by 1/ . Perform the follow-
ing calculations to show the relation between the FID and the
spectrum for several simple cases:

( ) There is one spin with 20 s and 0 10 s.

( ) There is one spin with 40 s and 0 10 s.

( ) There are two spins with 40 s , 80 s ,
0 10 s, and 0 10 s.

The protons are labeled to assist with labeling the spectrum.
( ) Write a program to calculate the free induction de-Are the protons in 1 1-difluoroethylene and 1 1-

cay (FID) for a system involving one spin with 20 s anddifluoroallene magnetically equivalent or chemically equiv-
0 10 s. ( ) Plot the FID for 0 to 0 50 s. ( ) Makealent? The only spin nuclei are fluorine and hydrogen.

a Fourier transform of this FID to obtain the NMR spectrum
and plot the intensity ( ) from 0 to 64 s .

This problem is like Computer Problem 15.C, part ( ),
except that the transverse relaxation time is longer. ( ) Calcu-
late the free induction decay (FID) for a system involving one
spin with 40 s and 0 30 s. ( ) Plot the FID for

0 to 0 50 s. ( ) Make a Fourier transform of this FID
to obtain the NMR spectrum and plot the intensity ( ) fromCalculate the resonance frequency for electrons at

0 to 64 s . Is the spectrum broader or narrower?0.33 T.
Why?

( ) Write a program to calculate the free induction de-
cay (FID) for a system involving two spins with 0 50,

1, 40 s , 80 s , 0 10 s, and
0 10 s. ( ) Plot the FID for 0 to 0 50 s. ( ) Make a
Fourier transform of this FID to obtain the NMR spectrumPlot the energy for a system containing 1 mol of hydro-
and plot the intensity ( ) from 0 to 128 s .gen atoms ( ) aligned with the magnetic field and ( ) opposed

to the magnetic field up to 25 T. ( ) Write a program to calculate the free induction de-
cay (FID) for a system involving two spins with 0 50,Plot the frequency in MHz versus magnetic field

1, 40 s , 80 s , 0 10 s, andstrength up to 25 T for NMR with hydrogen atoms. This is
0 30 s. ( ) Plot the FID for 0 to 0 50 s. ( ) Make aessentially the range available with commercial spectrometers.
Fourier transform of this FID to obtain the NMR spectrum

When a system involves a single type of spin, the in- and plot the intensity ( ) from 0 to 128 s .
tensity of magnetization after a 90 pulse is a function of time

Plot the Lorentzian line shape for absorption whenthat we will represent by ( ). This signal, which is referred to
/2 20 s and ( ) 0 10 s and ( ) 0 30 s.as the free induction decay (FID), has the form

Calculate Pascal’s triangle for up to 10 protons.( ) cos(2 ) exp( / )

Plot the energy levels of an electron in a magnetic fieldwhere is the amplitude, is the Larmor frequency, and
in J/mol up to 1.0 T. (Compare with Fig. 15.1.)is the transverse relaxation time for the spin. The signal
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16
The Boltzmann Distribution
Single-Molecule Partition Function for an Ideal Gas
Translational Contributions to the Thermodynamic
Properties of Ideal Gases
Vibrational Contributions to the Thermodynamic
Properties of Ideal Gases
Rotational Contributions to the Thermodynamic
Properties of Ideal Gases
Electronic Contributions to the Thermodynamic
Properties of Ideal Gases
Thermodynamic Properties of Ideal Gases
Direct Calculation of Equilibrium Constants for
Reactions of Ideal Gases
Equipartition
Ensembles
Nonideal Gases
Heat Capacities of Solids
Special Topic: Fluctuations of Thermodynamic
Quantities

The equilibrium properties of matter may be considered from two points of view:
the macroscopic and the microscopic. Thermodynamics is a macroscopic view that
describes the behavior of large numbers of molecules in terms of pressure, volume,
composition, and exchanges of heat and work. The quantitative relationships be-
tween various measured properties are not based on any model of the microscopic
structure of matter.

On the other hand, quantum mechanics provides a microscopic descrip-
tion for the structure and interactions of molecules. Ideally, we would like to be
able to predict the thermodynamic behavior of substances using our knowledge
about individual molecules obtained from spectroscopic measurements and from
theoretical calculations of wavefunctions.

Statistical Mechanics
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Statistical mechanics provides the needed bridge between microscopic me-
chanics (classical and quantum) and macroscopic thermodynamics. The classical
aspects of the science were developed during the latter part of the nineteenth
century by Boltzmann in Austria, Maxwell in England, and Gibbs in the United
States. From their work, we can now calculate the thermodynamic properties for
ideal gases from information on single molecules. The molecular information re-
quired includes vibrational frequencies, moments of inertia, and energies of disso-
ciation. For simple molecules the values of thermodynamic properties so obtained
are often more accurate than the ones measured directly. For more complicated
systems, especially those involving the strong interactions between molecules, the
use of statistical mechanics is much more difficult and is the subject of current
research. Statistical mechanics also helps us to understand the properties of real
gases, solids, polymers, and biomacromolecules.

Statistical mechanics provides insight into the laws of thermodynamics, and
through it we will see heat, work, temperature, irreversible processes, and state
functions in a new light.

We want to apply our knowledge of quantum mechanics to a macroscopic system,
i.e., a system consisting of large numbers of molecules, but we cannot expect to be
able to deal with all details of the mechanical motions and electronic excitations
of such a system. As a consequence, it is necessary to use averages over dynamic
states, the calculations of which are referred to as statistical mechanics. We have
already dealt with averages over dynamic states when we used the Boltzmann
distribution in equation 13.13 on Einstein coefficients, equation 13.70 on vibra-
tional spectroscopy, and equation 15.22 on NMR. The barometric equation 1.46
is also an example of a Boltzmann distribution. In the next chapter we will find
that the Maxwell velocity distribution is another example of the Boltzmann dis-
tribution. According to the Boltzmann distribution, if the energy associated with
some state of a macroscopic system is , then the probability of occurrence of that
state is proportional to exp( / ), where is the Boltzmann constant (1.38

10 J K ). In statistical mechanics, we will regularly use rather than ,
but we will use the usual symbols for thermodynamic properties. Remember that

, where is the Avogadro constant. Widom (
Cambridge University Press, 2002) has emphasized the usefulness of the Boltz-
mann distribution in introducing statistical mechanics.

This exponential dependence is a consequence of the product law for proba-
bilities of independent events. When the simultaneous occurrence of two events
is viewed as a single event, the energy associated with the single event is ,
and the probability of the single event is the product of the separate probabili-
ties. Notice that the exponential function is the unique function with the property

( ) ( ) ( ). The probability of the simultaneous occurrence of the
two events viewed as a single event is proportional to

(16 1)
If the energy of a macroscopic system in a particular microscopic state is ,

then according to the Boltzmann distribution, the probability of a microscopic
state with energy is given by

e
(16 2)

e
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In this formula, the sum is over all possible microscopic states of the system. For a
given energy , there may be a very large number of microscopic states with that
energy. The summation in the denominator is required to normalize so that

1 (16 3)

We will use equation 16.2 in the form

e
(16 4)

where is the for the system:

e (16 5)

This partition function is the key to statistical mechanics because it can be used to
calculate all the thermodynamic properties of the system. We will illustrate this
first for the internal energy .

The internal energy was introduced by the first law as the sum of all the ki-
netic and potential energies of all the molecules that make up the system. Now we
are going to consider a macroscopic system in contact with a heat reservoir. The
energy of such a system can fluctuate, but these fluctuations are minute compared
with the total energy. Therefore, the thermodynamic energy of a system at fixed
temperature can be identified with the mean energy calculated as

e
(16 6)

where the are all the possible energy levels of the system. From our earlier
discussion of the internal energy, we know that it can be considered a function of

, , , , , where numbers of molecules of species are used rather than the
corresponding amounts , , .

There is another way to relate the internal energy to the canonical partition
function that is based on the observation that the numerator of equation 16.6 is
related to a derivative of ln exp( / ) ln . From d ln /d 1/ and
the chain rule for differentiation, we can see that

ln e ln
( )

(1/ ) (1/ )

(16 7)

This expression for the internal energy in terms of the canonical partition function
can be compared with the Gibbs–Helmholtz equation for the internal energy

in terms of the Helmholtz energy (see equation 4.62).

( / )
(16 8)

(1/ )

Comparison of equations 16.7 and 16.8 suggests that

ln (16 9)

Strictly speaking, there could be an additional term of the form ( ) in equation
16.9, but later calculations show that this term is not necessary.
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Using equation 16.9 for and equation 16.6 for , we can find a new equation for the
entropy. Remember that , so

e
ln

Since ln e , we can rewrite the first term to find

e
(ln e ) ln

We can then multiply the second term by e / 1 and combine the terms to get

e
ln

Using equation 16.4, we have

ln

This is called the Gibbs equation for entropy. Note that if we are considering an
system, then the energy is fixed. Therefore, all the possible microscopic states have the
same energy and the same probability 1/ , where is the number of microscopic
states with energy . Substituting into the Gibbs equation, we find

ln (for an isolated system)

This equation was first written down by Boltzmann.
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As we have seen earlier, in Chapter 4, if we know a thermodynamic potential
for a system as a function of its natural variables, all the other thermodynamic
properties of the system can be calculated by taking derivatives with respect to
the natural variables. Thus if the Helmholtz energy of a system can be obtained
from statistical mechanics as a function of , , and , the entropy, pressure,
and chemical potentials can be calculated by use of

(16 10)

(16 11)

(16 12)

When , , , and have been calculated in this way, , , and can be
calculated from their definitions. This is the sequence of calculations we now want
to make for ideal gases.

We can use equation 16.5 to calculate the partition function for a system
of independent molecules, such as an ideal gas. First, we must specify the states
of the system and their energies . In a system containing molecules, we will
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let represent all of the quantum numbers (translational, vibrational, rotational,
and electronic) of molecule number 1. In order to specify a microscopic state of
the whole system, it is necessary to specify the state of each molecule, that is, ,

, , . The energy of that state would then be the sum of the energies of the
individual molecules: , each in its specified state. The sum
in equation 16.5 over the states of the whole system would then be the product
of the summations for the individual molecules:

e (16 13)

Since the exponential of a sum is the product of exponentials, equation 16.13 can
be written as

e e e (16 14)

where each term is for a single molecule. Note that the sums are equal, and we
call each sum the :

e (16 15)

where the summation is over all possible states of a single molecule. Therefore,
equation 16.14 can be written as

(16 16)

This equation is correct only if the molecules are distinguishable so that we can
differentiate between cases such as (a) molecule 1 in state , molecule 2 in state

and (b) molecule 1 in state , molecule 2 in state . This would be true if the
molecules are localized in space, but not if they are moving around as in a gas or
a liquid.

If the molecules are indistinguishable, as in an ideal gas, then we have over-
counted the number of possible macroscopic states; for example, we have counted
the two cases mentioned above as two states instead of one. For indistinguishable
molecules, we have to correct equation 16.16 by dividing by the number of distinct
ways of arranging distinguishable molecules into a microscopic state, or !.

The number of ways of arranging molecules into a macroscopic state is !
only if the number of microscopic states is large compared with . Fortunately,
this is the case for an ideal gas (except at very low temperature) because of the
large number of translational energy states (see Example 9.15). In order to treat
the general case correctly, we have to consider the symmetry of the wave functions.
This leads to corrections to the Boltzmann distribution known as the Fermi–Dirac
and Einstein–Bose distributions (Section 16.11).

Therefore, the partition function for a system of identical noninteracting
molecules is

(16 17 )

/ ! (16 17 )

depending on whether the molecules are distinguishable or indistinguishable.
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If we have a mixture of noninteracting molecules, of type 1, of type 2,
, the partition function for the mixture is

(16 17 )

(16 17 )
! !

Let us consider a single-species ideal gas and derive the thermodynamic func-
tions of the system.

1
(16 18)

!
Equation 16.9 shows how the Helmholtz energy for an ideal gas containing a single
species can be calculated.

ln ln ln ln ! (16 19)
!

Fortunately, ! and ln ! can be represented in a simple way if is a large number.
According to

ln ! ln or ! e (16 20)

If you try this out with some small numbers, you will see that the approxima-
tion becomes better and better as increases. We will be dealing with such large
numbers (on the order of 10 ) that we will not have to worry about the fact that
this is only an approximation.

Thus equation 16.19 can be written
e

ln ln ln (16 21)

The entropy, pressure, and chemical potential of the ideal gas can be calculated
by using equations 16.10 to 16.12.

e ln
ln (16 22)

ln
(16 23)

ln (16 24)

The expressions for , , and can be obtained from their definitions.

ln
(16 25)

ln
1 (16 26)

ln (16 27)

This shows that all of the thermodynamic properties of an ideal gas can be calcu-
lated from its single-molecule partition function. In this chapter, the expression
for the Gibbs energy in terms of will be especially useful.



Comment:

The canonical partition function plays a fundamental role in statistical mechanics.
It is a number that depends on the temperature and that can be used to calculate
the arious thermodynamic properties of an ideal gas. This limitation arises
from the fact that the deri ation of the equation for the molecular partition
function is based on a system of particles with negligible interactions. It is also
based on the assumption that the occupation numbers are considerably smaller
than the degeneracy. This is the so-called Boltzmann limit of the Bose–Einstein
and Fermi–Dirac distributions. This chapter is primarily concerned with the
calculation of the thermodynamic properties of ideal gases, but Section 16.11 goes
beyond this to gases with intermolecular interactions.
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16.2 SINGLE-MOLECULE PARTITION FUNCTION
FOR AN IDEAL GAS
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An independent particle can have several different types of energy. An atom can
have translational energy, electronic energy, and nuclear energy. A molecule can
have, in addition, vibrational energy and rotational energy. As a first approxima-
tion these various kinds of energy can be considered to be independent. In that
case the energy of a particle is given by

(16 28)

where the subscripts t, v, r, e, and n indicate translational, vibrational, rotational,
electronic, and nuclear energy. Since transitions in nuclear energy levels are not
involved in chemical reactions, we will simply ignore nuclear energies in this treat-
ment. If the various modes of motion can be treated as independent, the degener-
acy of an energy level is equal to the product of the degeneracies for the various
modes, and the molecular partition function can be written as

exp

exp exp

exp exp (16 29)

which is a sum of products. A sum of independent products can always be rewrit-
ten as a product of sums. This is illustrated by (1 2)(3 4) 21 and the sum of
all possible products, which is 3 4 6 8 21. Thus, the preceding equation
can be rewritten as

exp exp

exp exp (16 30)
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Consider a molecule that has only two translational energy levels and two vibrational en-
ergy levels. Assume that the translational partition function is given by

e e

Assume that the vibrational partition function is given by

e e

Show that the molecular partition function can be written as a sum of products, that is, in
the form of equation 16.29.

Equation 16.31 for the molecular partition function is

Example 16.2
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which is a product of sums. For molecules this equation applies only to the ground
electronic state because higher electronic states have different vibrational frequen-
cies, different moments of inertia, and, of course, different electronic energies.

Since each of the sums in equation 16.30 has the form of a partition function,
the partition function of a molecule in its ground state can be written as

(16 31)

where

exp etc. (16 32)

Therefore, the canonical partition function for an ideal gas is given by

( )
(16 33)

!

Since the Helmholtz energy is proportional to the logarithm of , it is made up
of a sum of terms for these types of energy:

e
ln ln ln ln ln

(16 34)

where

e
ln ln A ln ln

(16 35)

Associating ! with the translational contribution has the advantage of
making the Helmholtz energy of an ideal monatomic gas without electronic
excitation. In addition, since is proportional to (see the next section), /
depends only on the molar volume and is therefore an intensive quantity. The
separate calculation of vibrational, rotational, and electronic contributions is a
useful approximation, but for more accurate calculations it is necessary to take
into account the interactions between these types of energy, which were discussed
earlier.
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Substituting the expressions given above and multiplying yields

( e )( e ) ( e )( e )

( e )( e ) ( e )( e )

This is the sum of products that corresponds to equation 16.29.

translational partition function

thermal wave-
length

Chapter 16 Statistical Mechanics

16.3 TRANSLATIONAL CONTRIBUTIONS TO THE
THERMODYNAMIC PROPERTIES OF IDEAL GASES
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In Chapter 9 we saw that a particle in a cubic box of volume can have only
certain energies specified by the quantum numbers , , and . Using equa-
tion 9.88 in equation 16.15 yields the molecular partition function for translational
motion:

( )
exp (16 36)

8

Replacing the sum of products with a product of sums yields

exp exp exp
8 8 8

(16 37)exp
8

To evaluate this sum, we note that for macroscopic containers the exponent is very
small, unless is very small. Since the successive terms in the summation differ
by only small amounts, we may replace the summation by integration, considering
the quantum number as a continuous variable that is not restricted to integer
values:

(2 )
e d (16 38)

The value of the definite integral involved here is given in Table 17.1. Thus, the
is given by

(2 ) 2
(16 39)

Note that the translational partition function for a molecule is proportional
to the volume in which it moves. Thus, the translational partition function is
an extensive variable. The quantity ( /2 ) is called the

and is represented by . Thus, the expression for in equation 16.39 can be
written

(16 40)



Translational partition function for a hydrogen atom
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What is the molecular partition function for translational motion of a hydrogen atom at
3000 K in a volume of 0 2494 m ? (This is the molar volume of an ideal gas at this temper-
ature and 1 bar pressure.) What is the thermal wavelength?

Using equation 16.39,

2 (1.0080 10 kg mol )(1.3807 10 J K )(3000 K)
(0.2494 m )

(6.022 10 mol )(6.626 10 J s)

7 791 10

Note that the molecular partition function is a dimensionless quantity and may be inter-
preted approximately as the number of energy levels accessible to the single hydrogen atom
in this volume. To calculate , we rearrange equation 16.40 to obtain

0 2494 m
3 175 10 m

7 791 10

Note that the thermal wavelength is much smaller than the length of the side of the con-
tainer, as required by the derivation of equation 16.39.
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The condition for the applicability of Boltzmann statistics is that the thermal
wavelength must be small compared with the mean distance between molecules.

The single-molecule partition function in equation 16.39 applies to a mon-
atomic ideal gas with no internal degrees of freedom. Substituting equation 16.39
in equation 16.18 yields

1 2
(16 41)

!

The Helmholtz energy of the monatomic ideal gas is obtained by substituting this
in equation 16.9 or by using equation 16.35.

2 2 e
ln ln ! ln

(16 42)

Now that we have the Helmholtz energy for a monatomic ideal gas without
electronic excitation as a function of its natural variables , , and , we can
calculate , , and for an ideal monatomic gas by using equations 16.10 to
16.12.

2 e
ln (16 43)

(16 44)

2
ln (16 45)



Thermodynamic properties as functions of temperature and
pressure

The Sackur–Tetrode equation
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What are the expressions for the translational contributions , , , and for ideal
gases as functions of temperature and pressure?

The following equations are obtained by substituting / into equations
16.35, 16.43, 16.45, and 16.48:

2 e
ln (16 50)

2 e
ln (16 51)

2
ln (16 52)

2
ln (16 53)

Express equation 16.51 in a convenient form for calculating the molar entropy of an ideal
monatomic gas, which does not have electronic excitation, at temperature in kelvins and
pressure in bars.

To do this we express the mass of the atom by , where is the relative atomic
weight and is the atomic mass constant [ ( C)/12]. We express the pressure in equa-
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Knowledge of the translational contributions , , , and for an ideal gas
makes it possible to calculate the translational contributions to , , , and

.

(3/2) (16 46)

(5/2) (16 47)

2
ln (16 48)

3
(16 49)

2

We now have equations to calculate all the thermodynamic properties of an
ideal monatomic gas without electronic excitation at specified and or and

. If the pressure is equal to the standard state pressure , the standard proper-
ties are obtained. Remember that the pressure must be expressed in pascals if SI
units are used. In Chapter 2, we referred to the fact that for an ideal monatomic
gas, , , , and . In Chapter 3 we referred
to the Sackur–Tetrode equation for the molar entropy of an ideal monatomic gas.
We have now seen how statistical mechanics explains the form of this equation
(and more).
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Translational contributions for oxygen atoms
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11

15 5 1
t 2 2

1

Molar entropy of O(g) from 298 K to 1000 K and 1 bar to 100 bar using
the Sackur–Tetrode equation, which does not include the contribution from the electronic
energy. (See Computer Problem 16.K.)

tion 16.51 by ( / ) , where is the standard state pressure, and the temperature in
equation 16.51 by ( /K)K, where is 1 K. This leads to

5 2 3 5
ln ln ln ln

2 2 2 K

3 5
1 151 693 ln ln ln

2 2 K

This is a convenient form of the for calculating at and .

What are the translational contributions to , , , and for O(g) at 298.15 K?

(15 9994)(1 660 540 2 10 kg)

2 656 77 10 kg

( ) (8 314 51 J K mol )

20 786 J K mol

(8 314 51 J K mol )(298 15 K)

6 197 kJ mol
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Figure 16.1

Sackur–Tetrode equation

Figure 16.1 shows a three-dimensional plot of the molar entropy of O(g) over
a range of temperature and pressure. The values shown are smaller than those in
Table C.3 because the Sackur–Tetrode equation does not include the contribution
from the electronic energy. (See Computer Problem 16.K.)

The methods used in deriving these equations become inapplicable as 0.
As 0 the thermal wavelength becomes so large that the wavefunctions of the
particles overlap significantly, and the Boltzmann distribution cannot be used.

y

y
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3/23/2 126 23

2 34 2

123
6

25

11 6
t

11

3/2
t

t 2A A

11 6

1

2

113/2

13/2

11
t

11
t

1
t

1
t

t t

t

f ft

2 2 (2 656 77 10 kg)(1 380 658 10 J K )(298 15 K)
(6 626 075 5 10 J s)

(1 380 658 10 J K )(298 15 K)
2 548 789 10

10 N m

(8 314 51 J K mol )(2 5 ln 2 548 789 10 )

143 435 J K mol

Equation 16.53 shows that

2
ln ln

(8 314 51 J K mol )(298 15 K) ln 2 548 789 10

36 568 kJ mol

What are the translational contributions to , , , and for O (g) at 298.15 K?
The translational contributions to and are the same as for O(g), or any other

ideal monatomic gas. Since the mass of the molecule is twice that of the atom, the trans-
lational entropy is larger by ln 2 8 645 J K mol , and the translational Gibbs
energy is more negative by ln 2 2 577 kJ mol . Thus, at 298.15 K

( ) 20 786 J K mol

152 080 J K mol

6 197 kJ mol

39 145 kJ mol

The values of ( ) and are slightly less than and in Table C.2 because of addi-
tional contributions due to rotation, vibration, and electronic excitation. The values of
and cannot be compared with and in Table C.2 because of the difference
in reference states, and there are also rotational, vibrational, and electronic contributions.
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16.4 VIBRATIONAL CONTRIBUTIONS TO THE
THERMODYNAMIC PROPERTIES OF IDEAL GASES
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The vibrational levels of diatomic molecules have been discussed in Section 13.6
on spectroscopy. If there is excitation to very high vibrational levels, the anhar-
monicity has to be taken into account in calculating the partition function, but
for many purposes, it is sufficient to use the harmonic oscillator approximation
because only lower levels are occupied. In calculating the partition function, vi-
brational energy is usually measured from the ground state ( 0) rather than
from the bottom of the potential energy curve. This simplifies the equations be-
cause the ( /2, where is the vibration frequency) does not
appear.
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16.4 Vibrational Contributions to the Thermodynamic Properties of Ideal Gases
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First we will consider a diatomic molecule at lower vibrational quantum num-
bers, where it is effectively a harmonic oscillator. The energies with respect to the
ground state are given by with 0 1 2 The single-molecule partition
function for a harmonic oscillator is given by

e 1 (16 54)

where exp( / ) When 1, the infinite series can be replaced with

1
1 (16 55)

1

Thus if exp( / ) 1, the single-molecule partition function is given by

1 1
(16 56)

1 exp( / ) 1 exp( / )

where the is equal to / . The charac-
teristic temperature of a vibration is the temperature at which the energy of
vibration is equal to . The vibrational partition function for a normal mode is
generally not much greater than unity, except at high temperatures, since the vi-
brational frequencies of simple molecules are usually large compared with .

The vibrational contribution to the Helmholtz energy is given by

ln (16 57)

Substituting equation 16.56 yields

ln [1 exp( / )] (16 58)

The vibrational contributions to the entropy, pressure, and chemical potential are
given by equations 16.59 to 16.61:

/
ln(1 exp( / ) (16 59)

exp( / ) 1

0 (16 60)

ln[1 exp( / )] (16 61)

The vibrational contributions to the other thermodynamic properties can be ob-
tained by use of partial derivatives and definitions, as shown for the translational
contributions. These contributions are shown later in Table 16.1.

When a molecule has several normal modes of vibration, is the product of
the vibrational partition functions for the various normal modes, as shown by

(16 62)

Therefore, the vibrational contributions to a thermodynamic property are the sum
of contributions from each normal mode. For polyatomic molecules, there are
3 5 normal modes of vibration for linear molecules and 3 6 normal modes
for nonlinear molecules, as we have seen in Section 13.8.
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As a simplification, the temperature dependence of the electronic partition function has been neglected.

2
1

34 8 1 5 1

v 123
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1 1

v 2273 73/298 15 2

11

11 2273 73/298 15
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11

1 1
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1

Contributions to Molar Thermodynamic Properties of Ideal Gases

3 3
0

2 exp( / ) 1 2

5 3
0

2 exp( / ) 1 2

3 ( / ) exp( / ) 3
1 0

2 [exp( / ) 1] 2

5 ( / ) exp( / ) 3
1 0

2 [exp( / ) 1] 2

/
[exp( / ) 1]2 5 ( / ) 3

ln ln 1 ln ln
2 2

ln 1 exp

2 ( / )
ln ln 1 exp ln ln ln

2 ( / )
ln ln 1 exp ln ln ln

What are the vibrational contributions to , , , and for O (g) at 298.15 K? The
vibrational frequency is 1580 246 cm .

˜ (6 626 076 10 J s)(2 997 925 10 m s )(1 580 246 10 m )

1 380 658 10 J K

2273 73 K

2273 73 e
( ) (8 314 51 J K mol )

298 15 (e 1)

0 236 J K mol

(2273 73)/(298 15)
(8 314 51 J K mol ) ln(1 e )

(e 1)

0 035 J K mol

(2273 73/298 15)
(8 314 51 J K mol )(298 15 K)

e 1

0 009 kJ mol
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( 1) /8
r

0

( 1) /8
r

0

2

2
2

2

2

2

2 2

r 2 2
r0

r

2

r 2

(8 314 51 J K mol )(298 15 K) ln(1 e )

0 001 kJ mol

The small value of the vibrational contribution to at 298.15 K indicates that O (g)
has very little vibrational energy at this temperature. The classical vibrational heat capac-
ity is 8 314 51 J K mol (Section 16.9), and this value of ( ) is approached at
3000 K.
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16.5 ROTATIONAL CONTRIBUTIONS TO THE
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The expression for the rotational energy of a rigid diatomic molecule was derived
in Section 13.4:

( 1)
(16 63)

8

Here is the rotational quantum number, and is the moment of inertia of the
diatomic molecule. Although the rotational energy depends only on , the state
of a rigid rotor is specified by the quantum number and an additional quantum
number , where can have integral values between and . Thus, there
are 2 1 values of for each value of ; in other words, the rotational levels
are (2 1)-fold degenerate. The rotational partition function is thus

(2 1) e (16 64)

For molecules with large moments of inertia, the energy levels are so close to-
gether that the summation may be replaced by an integration when is reason-
ably high (above 10 to 100 K):

(2 1) e d (16 65)

Since (2 1) d is the differential of ( 1) , this equation is integrated
by substituting

( ) (16 66)
8

so that

d (2 1) d (16 67)
8

Thus equation 16.65 can be written

8 8
e d (16 68)

where is the defined by

(16 69)
8
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Characteristic rotational temperature for hydrogen molecules

Rotational contributions for oxygen molecules
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*The behavior of H , D , and T at low temperatures is complicated by the quantum mechanical
symmetry requirements applicable to molecules containing identical nuclei. Since the proton has spin

, the wavefunction for H must be antisymmetric to exchange of the nuclei. The wavefunctions for
electronic and vibrational motion are both symmetric. Therefore, either the rotational or nuclear spin
wavefunction must be antisymmetric. The rotational wavefunction for a symmetric rotor is symmetric
with respect to inversion of the coordinates for even values of the rotational quantum number , and
antisymmetric for odd values of . Therefore, for even values of the nuclear wavefunction must be
antisymmetric, and these levels have a degeneracy of 1. For odd values of the nuclear wavefunction
must be symmetric, and these levels have a degeneracy of 3. Thus, H is a mixture of two molecular
species. Hydrogen with a symmetric nuclear wavefunction and odd is called Hydro-
gen with an antisymmetric nuclear wavefunction and even is called The rotational
partition function for the equilibrium mixture is

( 1) ( 1)
(2 1) exp 3 (2 1) exp

If hydrogen is prepared at room temperature or higher, where the ortho–para ratio is 3, it will retain
this composition at lower temperatures if no catalyst (such as activated charcoal) is present, even
though this is a nonequilibrium composition. If a catalyst is present, equilibrium results and a different
plot of versus is obtained at low temperatures.

2

r
r

r 2

48 2

2 34 2

r 2 2 48 2 23 1

r
r

2
246

2

What is the characteristic rotational temperature for H (g)? What is the value of the
molecular partition function for rotation at 3000 K? The moment of inertia is 4 6052
10 kg m .

(6 626 08 10 J s)
87 544 K

8 8 (4 6052 10 kg m )(1 380 66 10 J K )

3000 K
17 134

(2)(87 544 K)

What are the rotational contributions to , , , and for O (g) at 298.15 K? The
moment of inertia for O (g) is 1 9373 10 kg m .
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even odd

The calculation of the rotational partition function for a homonuclear di-
atomic molecule (such as Cl ) has to take into account the fact that rotation by
180 interchanges two equivalent nuclei. Since the new orientation is indistin-
guishable from the first, we have to divide by 2 so that the indistinguishable ori-
entations are counted only once. For a heteronuclear diatomic molecule (such as
HCl), a 180 rotation produces a distinguishable orientation. The effect of symme-
try is taken into account by introducing a that has the value
2 for a homonuclear molecule and the value 1 for a heteronuclear molecule. In
general, then,

(16 70)

The rotational contributions for diatomic molecules obtained by substituting
equation 16.70 into the expressions for the various thermodynamic properties are
given later in Table 16.1.
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*D. McQuarrie, p. 136. Sausalito, CA: University Science Books, 2000.
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2
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(6 626 08 10 J s)
2 079 K

8 8 (1 9373 10 kg m )(1 380 66 10 J K )

( ) 8 314 51 J K mol

e (2 7183)(298 15 K)
ln (8 314 51 J K mol ) ln

(2)(2 079 K)

43 838 J K mol

(8 314 51 J K mol )(298 15 K) 2 479 kJ mol

298 15 K
ln (8 314 51 J K mol )(298 15 K) ln

2 2 079 K

10 591 kJ mol
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The rotational contributions for diatomic molecules can also be used for lin-
ear polyatomic molecules such as CO , C H , N O, and HCN. The symmetry
number is 2 for symmetrical linear molecules such as CO and C H , and it is
1 for nonsymmetrical linear molecules such as N O and HCN.

A linear molecule with a small moment of inertia has a small rotational
partition function and a small rotational contribution to and . Molecules
with larger moments of inertia have larger rotational contributions to and .
The reason for this is that when the moment of inertia is large, the rotational
energy levels are close together and more states are populated.

For polyatomic molecules in general the calculation of rotational contribu-
tions has to take into account the fact that the molecule may have three different
moments of inertia. As shown in Section 13.5, the three moments of inertia for
a spherical top molecule, such as CH , are equal: . Two moments
are equal for a symmetric top: for a prolate top such as CH Cl, and

for an oblate top such as C H . For an asymmetric top, such as H O,
the three moments of inertia are all different.

At temperatures well above the characteristic rotational temperatures, it
may be shown* that the rotational partition function for a nonlinear polyatomic
molecule is given by

(16 71)

where the characteristic rotational temperatures are given by

(16 72)
8

(16 73)
8

(16 74)
8
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11

r 4

1

For H O(g), 5 7658 10 kg m and 2. What is the value of the rota-
tional partition function for H O(g), and what are the rotational contributions to , ,

, and at 3000 K?

1 (6 626 076 10 J s)
8 8 (1 380 661 10 J K )

1
1 133 05 10 K

5 7658 10 kg m

3000
1368 0

2 1 133 05 10

( ) (8 314 51 J K mol ) 12 472 J K mol

1 3000 3
(8 314 51 J K mol ) ln

2 21 133 05 10

72 511 J K mol

(8 314 51 J K mol )(3000 K) 37 415 kJ mol

3000
(8 314 51 J K mol )(3000 K) ln

2 1 133 05 10

180 118 kJ mol
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16.6 ELECTRONIC CONTRIBUTIONS TO THE
THERMODYNAMIC PROPERTIES OF IDEAL GASES
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and is the symmetry number. The symmetry number of a molecule is equal to
the number of distinct proper rotational operations plus the identity operation
(see Chapter 12). For H O, 2. For NH , 3. For ethylene, 4. For
CH , 12. For C H , 12. Each freely rotating methyl group in a molecule
contributes a factor of 3 to the symmetry number.

The rotational contributions for nonlinear polyatomic molecules are given
later in Table 16.1.

Nonlinear polyatomic molecules have three degrees of rotational freedom
rather than the two for linear molecules; therefore, the rotational contribution to

is 3 /2, and the enthalpy is 3 /2 relative to the hypothetical ideal gas at
absolute zero, as suggested by the principle of equipartition.

The electronic state of an atom or of a diatomic molecule is represented by three
quantum numbers:

An orbital quantum number for an atom or for a diatomic molecule that
can have the values 0, 1, 2, . . . .
A spin quantum number that determines the multiplicity (2 1) of the
state.
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*S. J. Strickler [ 364 (1966)] discusses the fact that the electronic partition function
for the hydrogen atom at 25 C calculated from

e

is infinite. In this equation is the degeneracy, and is the energy of the orbital with quantum number
, which is proportional to . This is contrary to experience, since it would require the population of

the ground state to be zero. The problem is that there are an infinite number of terms in the partition
function with energy less than 13.60 eV. The paradox is resolved by considering the size of the orbital
of a hydrogen atom for a very large quantum number . For a finite container the maximum is finite,
and the value of is not detectably different from unity. In fact, the cutoff probably comes from
neighboring molecules that limit the radius of a hydrogen atom to about ( / ) .
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e

e
e

e

e1 e2
e 0 1 2

1

1

34 8 1 4 1

e1 23 1

e2

227 6/298 15 325 9/298 15
e

What are the electronic contributions to and for O(g) at 298.15 K to the degree of
completeness we have used here? The degeneracy in the ground state is 5, the first excited
state has an energy of 158 2 cm with respect to the ground state and has a degeneracy of
3, and the second excited state has an energy of 226 5 cm with no degeneracy.

˜ (6 626 076 10 J s)(2 997 925 10 m s )(1 582 10 m )
1 380 658 10 J K

227 6 K

325 9 K

5 3 e e 6 7335

n

�

� � �
�

�

�

�

3.

for the ground electronic state.
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16.6 Electronic Contributions to the Thermodynamic Properties of Ideal Gases
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A total angular momentum quantum number for an atom or for a di-
atomic molecule.

The characteristic temperature for an electronic transition is defined by

(16 75)

where is the energy of the excited electronic energy level relative to the ground
state. If energies are measured with respect to the electronic ground state, the
electronic molecular partition function for an atom or molecule is given by

exp exp (16 76)

where the degeneracy is given by

2 1 or 2 1 (16 77)

However, for a molecule, only the thermodynamic properties of the ground state
can be calculated by combining the first term of equation 16.76 with the partition
functions for vibration and rotation For the excited
electronic levels represented by the second and third terms in equation 16.76, the
vibrational frequencies and rotational frequencies are different from those in the
ground state. Often excited electronic states of molecules have very much higher
energies, so they affect the calculations of thermodynamic properties only at very
high temperatures.

�
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Electronic contributions for oxygen molecules
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1
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1 11 1
e

1 1 13
e

1

ln (8 314 51 J K mol ) ln 6 7335 15 853 J K mol

(298 15 K)(15 853 J K mol ) 4 727 kJ mol

What are the electronic contributions to , , , and for O (g) at 298.15 K?
The electronic ground state is a triplet, and the spectroscopic dissociation energy is
491 888 kJ mol . The energy of the first excited electronic state is so high that it does not
have to be considered.

( ) 0

491 888 kJ mol

(8 314 51 J K mol ) ln 3 9 134 J K mol

491 888 kJ mol (8 314 51 10 kJ K mol )(298 15 K) ln 3

494 611 kJ mol
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16.7 THERMODYNAMIC PROPERTIES OF IDEAL GASES
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In calculating the electronic partition function for a diatomic molecule, it is
convenient to measure energy with respect to the atoms in an ideal gas state at
absolute zero. When this is done the calculated thermodynamic properties of the
molecule are relative to its constituent atoms in their ground states. On this basis
the energy of the electronic ground state of the molecule is , where is the
spectroscopic dissociation energy (Section 13.2). Equation 16.76 may therefore
be written as

e (16 78)

when is low enough that the second and higher terms can be neglected.
The contributions to ( ) , , , and for a molecule are therefore

( ) 0 (16 79)

(16 80)

ln (16 81)

ln (16 82)

The formulas for calculating the molar thermodynamic properties of ideal gases
are summarized in Table 16.1 on page 582.

Now that we have shown how to calculate the translational, rotational,
vibrational, and electronic contributions to the thermodynamic properties, we
can obtain the properties by summing up the contributions, as shown, for exam-
ple, in equation 16.34.



Molar thermodynamic properties for oxygen atoms

Molar thermodynamic properties for oxygen molecules
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What are the values of , , , and for O(g) at 298.15 K?
Atoms have only translational and electronic contributions, and therefore we sum the

contributions calculated in Examples 16.6 and 16.12:

( ) ( ) 20 786 J K mol since ( ) is taken here as zero

(143 435 15 853) J K mol 159 288 J K mol

6 197 kJ mol since is taken here as zero

( 36 568 4 727) kJ mol 41 295 kJ mol

The values of and are in pretty good agreement with Table C.2, but the values of
and need to be adjusted to the proper reference state.

What are the values of , , , and for O (g) at 298.15 K?
These values are obtained by adding the translational, vibrational, rotational, and elec-

tronic contributions calculated in Examples 16.7, 16.8. 16.10, and 16.13.

( ) ( ) ( ) ( )

(20 786 0 236 8 314 0) J K mol

29 336 J K mol

(152 080 0 035 43 838 9 134) J K mol

205.088 J K mol

(6 197 0 009 2 479 491 888) kJ mol

483 203 kJ mol

( 39 145 0 001 10 591 494 611) kJ mol

544 349 kJ mol

The values of and are in pretty good agreement with Table C.2, but the values of
and need to be adjusted to the proper reference state, as shown later.
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Example 16.14

Example 16.15

16.7 Thermodynamic Properties of Ideal Gases
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Since the value of calculated here for O (g) is in good agreement with
the value in Table C.2 (29 355 J K mol ), the electronic contribution that we
ignored is small at this temperature. The value of is also in good agreement
with the value in Table C.2 (205 138 J K mol ). The values of and
calculated here cannot be compared with and because of the dif-
ference in reference states, but we will calculate and for O(g) in
Example 16.16.

Molecular parameters of a number of gases are given in Table 16.2. The disso-
ciation energies are with respect to the constituent atoms in the ground state.
For diatomic molecules these dissociation energies have been obtained from spec-
tra. For polyatomic molecules the values of have been obtained from thermo-
chemical measurements and theoretical calculations of heat capacities of gases. In
Table 16.2 values of greater than 10 000 K are not given.



14Source: J. Phys. Chem. Ref. Data
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M. Chase et al., JANAF Thermochemical Tables. (1985), Supplement 1.

The values of for nonlinear polyatomic molecules are values of .

The values in parentheses are degeneracies. Otherwise, the levels have a degeneracy of unity.

NO is a bent molecule with a bond angle of 134 15 .	�

Molecular Parameters of Gases

/g mol /kJ mol /K /K /K

H 1.008 0 0 2
C 12.001 0 1 23.6(3)

62.6(5)
N 14.007 0 4
O 15.994 0 5 228.1(3)

325.9
Cl 35.453 0 4 1 269.53(2)
I 126.904 5 0 4 10 939.3(2)
H 2.016 432.073 2 87.547 6338.2 1
N 28.013 4 941.4 2 2.875 05 3392.01 1
O 31.998 8 491.888 2 2.079 2273.64 3
Cl 70.906 239.216 2 0.345 6 807.3 1
I 253.82 148.81 2 0.053 76 308.65 1
HCl 36.465 427.772 1 15.234 4 4301.38 1
HI 127.918 294.67 1 9.369 3322.24 1
CO 28.010 55 1070.11 1 2.777 1 3121.48 1
NO 30.008 627.7 1 2.452 0 2738.87 2 174.2(2)
CO 44.009 95 1596.23 2 0.561 67 960.10(2) 1

1932.09
3380.14

NO 46.008 928.3 2 4.243 01 1088.9 2
1953.6
2396.3

H O 18.016 917.773 2 11 331.5 2294.27 1
5261.71
5403.78

NH 17.036 1 1157.77 3 1 876.0 1367 1
2341(2)
4800
4955(2)

CH 16.043 1640.57 12 435.6 1957(3) 1
2207.1(2)
4196.2
4343.3(3)

N O 92.016 1909.82 4 6.5793 10 72 1
374
554
619
691
971

1079
1184
1814
1975
2460
2515
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Reaction properties for O (g) = O(g)
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3
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What are the values of , , , and for O (g) O(g) calculated sta-
tistically mechanically, and what is the equilibrium constant at 298.15 K?

Using values calculated in Examples 16.14 and 16.15,

20 786 (29 336) 6 118 J K mol

159 288 (205 088) 56 744 J K mol

6 197 ( 483 203) 247 799 kJ mol

41 295 ( 544 349) 230 880 kJ mol

/
e e 3 55 10

( / )

The values of and should be equal to and for O(g). The small
differences from Table C.2 are due to the neglect of higher-order terms.
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16.8 Direct Calculation of Equilibrium Constants for Reactions of Ideal Gases

16.8 DIRECT CALCULATION OF EQUILIBRIUM CONSTANTS FOR
REACTIONS OF IDEAL GASES
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The values of and calculated with equations given in this chapter may
be compared with the values from the JANAF Thermochemical Tables (Table
C.2), which are more accurate because they take more effects into account (e.g.,
deviations from the rigid rotor–harmonic oscillator approximation). For many
simple molecules, spectroscopic measurements have yielded the values of the an-
harmonicity constant , the centrifugal distortion constant , and the rotation–
vibration coupling constant .

The values of and are with respect to ideal gases of the constituent
atoms at absolute zero. However, they can be used to calculate and
for chemical reactions because and for reactants and products have all
been calculated for the same reference state.

Table 16.3 gives , , , and for two endothermic reactions
and two exothermic reactions, calculated with the molecular parameters in Table
16.2.

The reaction for the formation of NH from its elements is an example of a
reaction that is thermodynamically spontaneous at room temperature, but does
not occur at an appreciable rate. As the temperature is raised to increase the rate
of formation of NH , the equilibrium constant becomes less favorable. Therefore,
it has been important to find catalysts for N (g) H (g) NH (g) so that the
reaction can be carried out at lower temperatures.

The reaction forming methane from carbon monoxide is another reaction that
is spontaneous at low temperatures, but it has such a low rate that higher temper-
atures and a catalyst must be used to obtain a reasonable yield.

The equilibrium constant can be calculated from thermodynamic properties
calculated from spectroscopic properties, as we have seen above, but it is con-
venient to express the equilibrium constant directly in terms of the partition
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Changes in Standard Thermodynamic Properties for Chemical Reactions of Gases

/K J K mol J K mol kJ mol kJ mol

O (g) O(g)

298.15 6 118 56 744 247 799 230 880 3 55 10
500.00 5 305 60 551 248 961 218 685 1 43 10

1000.00 3 487 64 321 251 095 186 774 1 75 10
2000.00 2 499 66 755 253 950 120 441 7 16 10
3000.00 2 272 67 862 256 314 52 728 1 21 10

N (g) O (g) NO(g)

298.15 0 052 10 638 88 942 85 770 9 41 10
500.00 0 096 11 346 88 922 83 249 2 01 10

1000.00 0 136 11 994 88 942 76 948 9 56 10
2000.00 0 102 12 426 89 075 64 223 2 10 10
3000.00 0 055 12 574 89 151 51 429 1 27 10

N (g) H (g) NH (g)

298.15 22 729 98 497 46 195 16 763 8 65 10
500.00 16 977 108 930 50 218 4 357 3 50 10

1000.00 5 165 116 749 55 516 61 451 6 17 10
2000.00 4 347 116 620 54 785 178 893 2 13 10
3000.00 6 648 114 328 49 054 294 584 7 43 10

CO(g) 3H (g) CH (g) H O(g)

298.15 47 608 213 781 206 788 143 048 1 15 10
500.00 36 260 235 941 215 340 97 369 1 49 10

1000.00 9 704 252 178 226 280 25 899 4 44 10
2000.00 9 773 251 154 223 691 278 618 5 29 10
3000.00 13 941 246 219 211 383 527 276 6 59 10
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function for the gaseous species involved. To do that we will use the fact that
exp( / ) and that, for indistinguishable molecules,

ln( / ) (equation 16.27) for species . Replacing in this equation
with and dividing by yields the molar Gibbs energy:

ln (16 83)

This is the molar Gibbs energy of species with respect to the ground state of
species . In making statistical mechanical calculations on chemical reactions it
is necessary to use the molar Gibbs energies of the reactants and products with
respect to the same ground state for all species involved in the reaction. In thermo-
dynamic tables the standard properties are with respect to the elements in their
specified reference states, but in statistical mechanical calculations on gas reac-
tions it is more convenient to use the gaseous atoms in their ground states as the
reference states. This means that the electronic contribution to the molecular par-
tition function for an atom in its ground state is , the degeneracy of the
ground state of the atom. The electronic contribution to the molecular partition
function for a molecule is e , where is the spectroscopic disso-
ciation energy of the molecule, that is, the energy of dissociation of the molecule
in its ground state to atoms in their ground states. Since dissociation energies are
often tabulated in kJ mol , this relation can also be written e .
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Electronic energy levels (labeled 0, 1, 2, . . . ) of molecules and that contain
the same atoms, where (0) is the negative of the dissociation energy ( ).

Show that the molar Gibbs energy of species is increased by (0) when the reference
state is changed from the ground state of the species to the ground states of the atoms
involved.

The energies of electronic states in a species contribute to the electronic partition func-
tion . For example, equation 16.76 can be written

exp

If we want to express the energies of all of the molecules in a chemical reaction on the
basis of the atoms they contain, as shown in Fig. 16.2, we have to add the energy (0) of
the ground state of with respect to the atoms in their ground states. Thus the equation
becomes

(0) (0)
exp exp

This is equivalent to multiplying each term by exp[ (0)/ ]. Note that (0) is the
negative of the dissociation energy of the species from its ground state. Multiplying in
equation 16.83 by exp[ (0)/ ] yields

exp[ (0)/ ]
ln

ln exp[ (0)/ ] ln

(0) ln
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16.8 Direct Calculation of Equilibrium Constants for Reactions of Ideal Gases
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Figure 16.2

Now we want to rearrange equation 16.83 for the molar Gibbs energy to the
form

ln (16 84)



Calculation of the equilibrium constant for H (g) = 2H(g)
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Calculate the equilibrium constant for the dissociation of molecular hydrogen to atoms
at 1000 K, assuming the gases are ideal and using the harmonic oscillator–rigid rotor
approximation.

[ (H)/ ]
H (g) 2H(g)

(H )/

The molecular parameters are given in Table 16.2.
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so that we can calculate and use it in calculating the equilibrium constant
using ln . When gases are ideal, ( / ) , and so
equation 16.83 can be written

ln (16 85)

In order to be able to take out a term in / , both the numerator and denomi-
nator are multiplied by . Then this equation can be rearranged to

ln ln (16 86)

which shows that the standard molar Gibbs energy of species is given by

ln ln ln (16 87)

Substituting equation 16.87 into the equation for the equilibrium constant yields

(16 88)

where 10 Pa. Note that the equilibrium constant is dimensionless.
Since the equilibrium constant for a reaction of ideal gases can be calculated

using / for the reacting species, it is useful to review these expressions for
monatomic and diatomic gases. For a monatomic gas,

2
(16 89)

where is the mass of the atom and is the degeneracy of its ground electronic
state. For a diatomic gas,

2 1
exp (16 90)

1 exp( / )

where is the symmetry number, is the characteristic rotational temperature,
is the characteristic vibrational temperature, and is the spectroscopic dis-

sociation energy. When it is convenient to express in kJ mol , the last term
becomes exp( / ), where is in kJ K mol . We have assumed that only
the ground electronic state need be considered.
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The mass of a hydrogen atom 1 007 825 10 kg mol / 1 673 53
10 kg and the degeneracy of the ground electronic state is 2, so that

2

2 (1 673 53 10 kg)(1 3807 10 J K )(1000 K)
2 1 203 10 m

(6 626 10 J s)

The symmetry number for molecular hydrogen is 2, the characteristic rotational
temperature is 87.547 K, the characteristic vibrational temperature is 6338.3 K, the
degeneracy (H ) of the ground state is unity, and the spectroscopic dissociation energy

(from the ground state molecule to atoms in their ground states) is 432.073 kJ mol ,
so that

2
1 701 10 m

1000 K
5 771

2(87 547 K)

1 1
1 002

6338 3 K1 exp( / )
1 exp

1000 K

432 073 kJ mol
exp 2 exp 3 703 10

(8 314 51 10 kJ K mol )(1000 K)

so that

2 1
exp 3 604 10 m

1 exp( / )

(1 3807 10 J K )(1000 K)
1 381 10 m

10 Pa

Equation 16.88 shows that the equilibrium constant is given by

( / ) (1 381 10 m )(1 203 10 m )
5 54 10

/ (3 604 10 m )

The value calculated in Chapter 5 using the JANAF tables is 5 16 10 , which is more
accurate because further vibrational and rotational terms have been taken into account.

This is an example of a problem that is much easier to solve using a computer with a
mathematical program. This makes it easier to check the input and calculate at a series
of temperatures. Also, parts of the program can be used to calculate partition functions
for other molecules. This is illustrated in the using Mathematica. (See
Computer Problems 16.G–16.J.)
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The equilibrium constants in Table 16.4 calculated from equations 16.88–
16.90 using Mathematica given in the are compared with values
calculated using JANAF tables in Chapter 5. The JANAF tables are more accurate
because they are not based on the harmonic oscillator–rigid rotor approximation.
Deviations from this approximation are more serious at higher temperatures.

The equilibrium constant for a gas reaction can be calculated from spectro-
scopic information only for diatomic molecules or small polyatomic molecules for



Comment:

K

In the de elopment of large rockets in the 1950s, se ere difficulties were en-
countered in performance calculations on propellant systems. Thermodynamic
data were needed at temperatures higher than can ordinarily be reached in
the laboratory, and so statistical mechanics was used to calculate the standard
thermodynamic properties up to 6000 K. The JANAF (Joint Army, Na y, Air
Force) tables were started, and the current edition was produced in 1985. The
JANAF tables list the properties of about 1800 substances. Excerpts from
these tables are gi en in Table C.3.
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41 18 6
2

41 18 6

11 3
2

11 3

27 11 3

27 11 1

3 2 2
2 2

3 2 2
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3 3
t 2 2

Equilibrium Constants Calculated Using Equations 16.88 to 16.90 and Using the JANAF
Tables

K

500 1000 2000

H (g) 2(H)g 16.G 5 30 10 5 54 10 2 89 10

5.D 4 84 10 5 16 10 2 65 10

I (g) = 2I(g) 16.H 3 32 10 3 21 10 37.6

5.D 3 24 10 3 08 10 34.4

HI(g) = H(g) +I(g) 16.I 5 58 10 2 41 10 2 84 10

5.D 3 50 10 2 33 10 6 05 10

2HI(g) = H (g) + I (g) 16.J 7 28 10 3 25 10 7 40 10

5.D 7 80 10 3 44 10 7 99 10
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which dissociation energies may be determined spectroscopically. For larger poly-
atomic molecules the statistical mechanical calculation of requires enthalpy
of formation data determined by chemical methods, since it is not practical to
determine dissociation energies for these larger molecules from spectroscopic
measurements.

According to the classical principle of equipartition, each squared term in the
classical energy expression for a gas molecule contributes /2 to the molar heat
capacity at constant volume. This principle is not exact because the heat capacity
decreases with decreasing temperature (quantum mechanics explains why), but
the classical calculation does give the limit that the heat capacity approaches
at high temperature. Statistical mechanics shows why this is so, and it yields
the temperature range over which each contribution increases to its classical
value.

The full translational contribution is obtained for a gas at very low tempera-
tures. Table 16.5 shows that and , independent of the mass
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Contributions to / for Ideal Gases at High Temperatures

Monatomic 0 0

Diatomic 1 1

Linear polyatomic 3 5 1

Nonlinear polyatomic 3 6
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a

vv v

v

# #

Table 16.5

or structure of a molecule of an ideal gas. In classical mechanics the translational
energy of a gas molecule is given by

(16 91)
2 2 2

This suggests that each quadratic term in the classical energy expression con-
tributes /2 to and /2 to . This is in agreement with the fact that, for
monatomic gases, at pressures where they behave as ideal gases and at
temperatures low enough that there is negligible electronic excitation.

In Section 16.7 we saw that each normal mode of vibration of a poly-
atomic molecule contributes to the internal energy and to in the
high-temperature limit. For a one-dimensional harmonic oscillator, classical me-
chanics yields

(16 92)
2 2

Thus, we see again that each squared term contributes /2 to the molar heat ca-
pacity in the limit as the temperature is increased.

Well above the characteristic rotational temperature, the contribution of ro-
tation to the molar heat capacity of a diatomic molecule or a linear polyatomic
molecule is . The classical expression for the rotational energy of a diatomic or
linear polyatomic molecule is

(16 93)
2 2

Since there are two squared energy terms, each contributes /2 to the molar heat
capacity at constant volume. There is one more term for a nonlinear polyatomic
molecule, and so the contribution of rotation to the molar heat capacity is , as
expected.

The high-temperature contributions to the molar heat capacities at constant
volume are summarized in Table 16.5.

We began our study of statistical mechanics by assuming the Boltzmann distribu-
tion for a macroscopic system at temperature , volume , and number of par-
ticles . There is a different approach, invented by Gibbs, that provides a more
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Canonical ensemble of systems each having the same and . The canonical
ensemble contains systems, isolated from one another after having been in contact with
a heat reservoir at temperature T.

-

ensemble method.

microcanonical ensemble
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Figure 16.3

general way of thinking about statistical mechanics, called the
An ensemble is an imaginary collection of a large number of isolated systems hav-
ing certain macroscopic properties in common that we average over to obtain the
thermodynamic properties of a system. A is a collection
of systems having the same number of particles, the same volume, and the same
energy ( ), that contains all possible microstates of the system. Averaging
over these systems gives the thermodynamic properties.

A is made up of a very large number of systems, each of
which contains particles in volume . The ensemble is prepared by putting sys-
tems in contact with a heat reservoir at temperature , and then removing them to
form the ensemble. The systems in the ensemble are isolated from each other, as
illustrated in Fig. 16.3. Thus, all the systems in the canonical ensemble are charac-
terized by the same fixed and values. The ensemble of systems is also isolated,
and contains systems, which are replicas of the system of interest. The total iso-
lated ensemble contains particles, and has a volume of and a fixed energy

. The energy of a system can have any possible value less than . The average
energy of a system is calculated using , where is the probability
that a system has energy . This is the ensemble that leads to the Boltzmann
distribution of Section 16.1.

The distribution of systems between the various possible amounts of energy
is described by

of the systems have energy

of the systems have energy
...

of the systems have energy
...

Other types of ensembles are also useful. The ensemble that yields the Gibbs
energy most directly is the isothermal–isobaric ensemble with partition function

( ). In a grand canonical ensemble, the systems in the ensemble have con-
stant , , and . The systems in the ensemble have the same chemical potential
because they are each placed in contact with a reservoir of particles through a
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semipermeable membrane before being added to the grand canonical ensemble.
The number of particles in a system fluctuates, but can be calculated.

In earlier sections of this chapter we have ignored intermolecular interactions and
have therefore obtained thermodynamic properties of ideal gases. To calculate
thermodynamic properties of nonideal gases it is necessary to take into account
the potential energy of intermolecular interactions. This cannot be done by us-
ing the molecular partition function. For nonideal gases it is necessary to use the
canonical ensemble partition function, which is discussed in the preceding section.
Using the canonical ensemble, it is possible to show that the second virial coeffi-
cient ( ) (Section 1.5) is related to the potential energy of interaction ( ) of
two molecules (Section 11.9) by

( ) 2 [1 e ] d (16 94)

The second virial coefficient depends on pairwise interactions, and the third virial
coefficient depends on interactions between triplets of molecules. For gas
the potential energy ( ) of interaction is zero and so ( ) 0. We will apply
equation 16.94 to the calculation of the second virial coefficient of a gas made up
of hard spheres and a gas obeying the Lennard-Jones potential.

The simplest type of potential energy of interaction of two molecules is that due
to short-range repulsive interactions. If molecules can be represented by hard
spheres, their potential energy of interaction is given by

( ) for 0 (16 95)

( ) 0 for (16 96)

Therefore,

( ) 2 d 2 (1 1) d

2
2 4 (16 97)

3 3

Since the radius of the hard-sphere molecule is half the distance of closest ap-
proach, the volume of a hard-sphere molecule is equal to ( /2) .
Thus, ( ) is equal to four times the volume of a mole of hard-sphere molecules.
Alternatively, we can point out that ( ) for a gas of hard spheres is one-half the
volume excluded to the center of one hard sphere of diameter by another of
diameter .
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Using the Lennard-Jones parameters for argon in Table 11.2, estimate the second virial
coefficient at 300 and 1000 K using Fig. 16.4. Compare these values with values calculated
from Fig. 1.9. From Table 11.2, 0 341 nm and / 120 K.

At 300 K, 300 K/120 K 2 50. From Fig. 16.4, ( ) 0 31.

2
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2
(6 02 10 mol )(0 341 10 m) ( 0 31)

3

( 1 55 10 m mol )(10 cm m )

15 5 cm mol

Reduced second virial coefficient for the Lennard-Jones potential as a
function of reduced temperature . (From J. O. Hirschfelder, C. F. Curtiss, and R. B.
Bird, Hoboken, NJ: Wiley, 1954.)
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Lennard-Jones Potential
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Figure 16.4

Equation 16.94 for ( ) with the Lennard-Jones potential (Section 11.9) must
be evaluated numerically. In using this equation it is convenient to express the
result in terms of reduced variables so that it may be readily applied to gases
with different Lennard-Jones parameters. In making the numerical integration,
distance is expressed as a multiple of the Lennard-Jones , and the temperature is
expressed in terms of a reduced temperature / , where is the depth of
the potential well. The results of the numerical integration are shown in Fig. 16.4,
which gives the reduced second virial coefficient ( ) ( )/ , where is
the hard-sphere second virial coefficient ( 2 /3). At low temperatures
the second virial coefficient reflects the attractive interactions between molecules,
and at high temperatures it reflects the repulsive interactions.
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Figure 1.9 indicates that 20 cm mol . At 1000 K, 1000 K/120 K 833.
From Fig. 16.4, 0 4.
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It is important to be able to calculate the equation of state for a nonideal gas
from molecular parameters because, once this has been done, other thermody-
namic properties may be calculated using the equation of state.

Figure 16.4 is an example of the law of corresponding states. To derive this
particular form it was assumed that the intermolecular interactions are spherically
symmetric. This is obviously not the case for some molecules, but the law can be
extended.

The law of corresponding states provides a means for estimating Lennard-
Jones parameters. Since the reduced temperature of the critical point cal-
culated from / for a number of gases is approximately 1.3, the interaction
energy can be estimated from the critical temperature using / /1 3.
Since the reduced molecular volume at the critical point / is approxi-
mately 2.7 for a number of gases, the distance parameter may be estimated
from ( /2 7 ) .

Even for ideal gases, equation 16.18 for becomes seriously in error when
the number of levels is not much greater that the number of molecules because
of multiple occupancy of levels. In this case it is necessary to distinguish between
bosons and fermions. have integer spin (0, 1, 2, ) and are not restricted
in their occupancy of states. have half-integer spin (1/2, 3/2, ) and are
subject to the Pauli principle (Section 10.8). Protons, neutrons, and electrons are
fermions. He atoms are bosons. Thus electrons in metals and He atoms at low
temperatures do not follow the Boltzmann distribution.

To simplify the calculation of the heat capacity of a monatomic solid, we can imag-
ine that each atom oscillates about its equilibrium lattice point with a small am-
plitude. As mentioned in Section 16.9, according to classical theory each mole of
atoms would contribute for each of its three vibrational degrees of freedom, so
that the molar heat capacity at constant volume would be 3 25 J K mol .
This is observed at high enough temperatures for all atomic solids. However, clas-
sical theory was not able to explain the decrease of to zero as absolute zero is
approached.

To calculate thermodynamic properties at a particular temperature for a
crystal made up of atoms, we can regard the crystal as one gigantic molecule
with 3 6 internal degrees of freedom. For an atomic crystal these degrees of
freedom all correspond to lattice (center-of-mass) vibrations, but for a molecular
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crystal there are some internal degrees of freedom that correspond to rotations,
internal vibrations, or torsions. In principle, we can imagine a normal mode anal-
ysis being carried out on any crystal.

In Einstein’s first statistical mechanical calculation of the heat capacity of an
idealized monatomic crystal in 1907, he assumed that all the vibrational frequen-
cies of the solid have one frequency that we will represent by . Thus, according
to Table 16.1, the molar heat capacity at constant volume is given by 3 terms of
the type indicated there:

3 ( / ) exp( / )
(16 98)

[exp( / ) 1]

where / is the This theoretical result was of
great importance because it explained why the heat capacity decreased from the
classical result (3 ) at high temperatures to zero as 0. It also helped explain
why rises more slowly with increasing temperature for diamond and graphite
than for silver and copper. High values of correspond to crystals where the
force constant (equation 9.101) is large and/or the reduced mass is small. How-
ever, the Einstein theory predicted too rapid a decrease in heat capacity in the
neighborhood of absolute zero.

In 1912 Debye introduced the idea of a spectrum of vibrational frequencies
for an atomic crystal and was thereby able to derive an expression for the heat
capacity that more accurately represented the experimental data at very low tem-
peratures. The theory of sound waves in a continuous medium shows that the
probability density (the number of modes between and d ) ( ) for vibra-
tions is proportional to the square of the frequency:

12
( ) d d (16 99)

where is the average speed of the sound waves and is the volume. The
low-frequency vibrations in an atomic crystal have wavelengths that extend over
hundreds or thousands of atoms. These vibrations are nearly independent of the
atomic-scale structure involved and are characteristic of a continuous medium
with given elastic constants. The form of the distribution function used by Debye
is shown in Fig. 16.5. He used the probability density given in equation 16.99 up
to a frequency , chosen so that the total number of frequencies would be 3 :

( ) d 3 (16 100)

The / corresponds to a minimum wavelength of the
order of the interatomic distance in the crystal. According to the theory of elas-
ticity of an isotropic medium (same properties in each direction), two different
velocities of sound have to be taken into account: the longitudinal velocity and
the transverse velocity with two polarization directions perpendicular to the di-
rection of propagation. Since these two velocities of sound are different, equation
16.99 becomes

1 2
( ) d 4 (16 101)

y
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When this expression is substituted in equation 16.100 and the integration is car-
ried out, we can use the resulting expression to derive

9
( ) (16 102)

The expression for the energy of the Debye crystal can be derived using this ex-
pression, and the resulting expression for the heat capacity of a crystal is

e
9 d (16 103)

(e 1)

where the / and is a dimensionless variable
equal to / . As the temperature approaches absolute zero, this equation re-
duces to

12
(16 104)

5

which represents the experimental results rather well for many atomic crystals. If
a crystal is anisotropic—for example, if it has strong interactions in a plane like
graphite does—the low-temperature behavior is more complicated.

The Debye equation is an example of a law of corresponding states (Section
16.11). It indicates that the heat capacities of all atomic solids should lie on the
same curve when is plotted versus / . Actually, there are various kinds
of deviations from the Debye law because the actual frequency spectrum is more
complicated than that shown in Fig. 16.5.

Given the Boltzmann form for the probability of a particular microstate, equation
16.4, we can infer that the macroscopic properties of a macroscopic system have
fluctuations, i.e., that the macroscopic property has a range of values. For example,
we can calculate the mean square deviation of the energy, as we did in Chapter 9
for quantum mechanical properties.

Using equation 16.4, the mean square energy at constant volume is given by

1 1
e (16 105)

(1/ )

and the square of the mean energy is given by

1 1
e (16 106)

(1/ )

From these two equations we find the mean square deviation in the energy, , to
be

1 1
(16 107)

(1/ ) (1/ )
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For the case of one mole of an ideal gas, / !, where is given by equation
16.39 and is Avogadro’s constant. Substituting, we find

1
( 1)

(1/ ) (1/ ) (1/ )

(1/ ) (1/ )
(16 108)

Substituting for from equation 16.39, we have

2
( ) (16 109)

3

The root-mean-square deviation of the energy is then proportional to .
Since is so large, this seems to be a huge deviation, but compared with the
average energy itself, which is proportional to , it is quite small: / .
From this we see that fluctuations are normally quite small and can be neglected
when is very large. In certain circumstances, however, fluctuations can become
observable even in macroscopic systems. For example, at the critical point, the
density or concentration fluctuations can become large enough to be seen in light
scattering (see Chapter 21).

The Boltzmann distribution gives the distribution of molecules over energy
levels, and it introduces the canonical partition function that is the link
between the properties of individual molecules in an ideal gas and its macro-
scopic properties.
The Helmholtz energy for an ideal gas is given by ln , which is
a function of the natural variables ( ) of . Therefore, all the
thermodynamic properties of an ideal gas can be calculated from .
The canonical ensemble partition function for an ideal gas is related to
the single-molecule partition function by / !.
As a first approximation, the translational, vibrational, rotational, and elec-
tronic energies of gas molecules can be considered to be independent, and
this leads to the conclusion that the one-molecule partition function for a gas
molecule is equal to the product of the partition functions for these various
types of energy.
The translational partition function can be expressed in terms of a thermal
wavelength, and the condition for the applicability of Boltzmann statistics
is that the thermal wavelength is small compared with the mean distance
between molecules.
The vibrational, rotational, and electronic contributions to the single-
molecule partition function can be calculated from molecular properties
calculated from spectroscopic measurements. The thermodynamic proper-
ties for the electronic ground state are readily calculated, but calculations
for excited electronic states are more complicated because excited states
have different vibrational and rotational properties.
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Use the relation between pressure and the molecularProblemsmarkedwithaniconmaybemoreconveniently
partition function to derive the equation of state of an idealsolved on a personal computer with a mathematical program.
gas starting with equation 16.39 for .

Using the Boltzmann distribution, calculate the ratio of Derive the expression for the translational partition func-
populations at 25 C of energy levels separated by ( ) 1000 cm tion for a molecule that is moving along a line, rather than in
and ( ) 10 kJ mol . three-dimensional space. This is of interest in connection with

transition-state theory (Section 19.4).Calculate the ratio of populations at 25 C of energy levels
separated by ( ) 1 eV and ( ) 10 eV. ( ) Calculate the ratios at Show that the same expression is obtained for the chem-
1000 C. ical potential from (equation 16.21) as from (equation

16.27) for an ideal gas.Starting with the definition of the molecular partition
function (equation 16.32) and , derive equation What is the ratio of the thermal wavelength to the length
16.25 for . of one side of the container for ( ) a hydrogen atom in a cube

1 nm on a side at 2 K and ( ) an oxygen molecule in 0 25 m atShow that the energy of a system of independent
300 K?protons in a magnetic field is ¯ /2 in the limit as 0

and is equal to 0 in the limit as . (See equation 15.18.) Calculate the translational partition function for H (g) at
How do you interpret these results? 1000 K and 1 bar.
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16.2
16.7

16.3
16.8

16.4

16.9

Equilibrium constants for gas reactions can be calculated from the molec-
ular partition functions for the reactants and products. This has been es-
pecially useful for reactions at high temperatures, as in rocket propellant
systems.
According to the classical principle of equipartition, each squared term in
the classical expression for the energy of a gas molecule contributes /2 to
the molar heat capacity at constant volume.
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What are the translational partition functions of hydro- Calculate the symmetry numbers of methane (CH )
gen atoms and hydrogen molecules at 500 K in a volume of and ethylene (C H ) by adding up the number of distinct
4 157 10 m ? (This is the molar volume of an ideal gas at property rotational operations in Table 12.3 plus the identity
this temperature and a pressure of 1 bar.) operation.

Calculate the molar entropy of gaseous H atoms at 1000 ( ) Calculate the symmetry number for the ethane struc-
K and ( ) 1 bar and ( ) 1000 bar. ture shown in Table 12.3. This is the symmetry number of the

rigid structure. ( ) Since there is essentially free rotation aboutCalculate the molar entropy of neon at 25 C and 1 bar.
the C C bond, there are three equivalent positions of the sec-Write out the summation
ond CH group with respect to the first. What is the symmetry
number of a freely rotating ethane molecule?

What are the electronic contributions to and for
I(g) at 298.15 K and 3000 K?

and show that the summation can also be written as What is the electronic partition function for C(g) at
1000 K, according to the data of Table 16.2? What are the rela-
tive populations of these levels?

Calculate the electronic contribution to the standard
molar entropy and standard molar Gibbs energy of C(g) atWrite out the summation
1000 K, to the degree of completeness we have used here.

Calculate the molar entropies of H(g) and N(g) at 25 C
and 1 bar. The degeneracies of the ground states are 2 and 4,
respectively. Compare these values with those in Table C.2.

and show that the summation can also be written as A molecule has a ground state and two excited electronic
energy levels, all of which are nondegenerate: 0, 1
10 J, and 3 10 J. What fraction of each level is
occupied at 298 and 1000 K?

The ground state of Cl(g) is fourfold degenerate. The firstDerive the expression for the vibrational contribution to
excited state is 875 4 cm higher in energy and is twofold de-the internal energy
generate. What is the value of the electronic partition function
at 25 C? At 1000 K?

e 1
What is the partition function for oxygen atoms at 1000 K

according to the data in Table 16.2? What are the relative pop-where / . What is the limit of the vibrational contribu-
ulations of these levels at equilibrium?tion to the internal energy at high temperature?

Derive the expression for the electronic internal en-By use of series expansions show that the vibrational
ergy of an atom or molecule. What is the electronic en-contribution to for a diatomic molecule approaches as
ergy per mole for a chlorine atom at 298 K and 1000 K?.
(See Problem 16.29.)According to Fig. 13.14, the normal-mode vibrational

Calculate the fraction of hydrogen atoms that at equilib-frequencies of H O are 3657, 1595, and 3756 cm . What
rium at 1000 C would have 2.is the value of the vibrational partition function of H O at

2000 K? A quantum mechanical system has two energy levels,
and . Derive equations for the probability that the systemWhat are the rotational contributions to , , , and
will be in state 1 and the probability that the system will be infor NH (g) at 25 C?
state 2. What are these probabilities at /K 0 and ? WhatWhat fraction of HCl molecules is in the state 2,
are the values of and at ?7 at 500 C? The characteristic vibrational and rotational

Calculate for NH (g) at 1000 K. The characteristic vi-temperatures are given in Table 16.2.
brational temperatures for the six normal modes are given inCalculate the translational partition functions for H, H ,
Table 16.2.and H at 1000 K and 1 bar. What are the rotational partition

Calculate the molar entropy of nitrogen gas at 25 C andfunctions of H and H (linear) at 1000 K? The internuclear dis-
1 bar pressure. The equilibrium separation of atoms is 109.5 pm,tances in H are 94 pm.
and the vibrational wave number is 2330 7 cm .What are the symmetry numbers of the following or-

Calculate for CO at 1000 K. Compare the actual con-ganic molecules, assuming free rotation of methyl groups:
tributions to from the various normal modes with the classi-( ) ethane, ( ) propane, ( ) 2-methylpropane, and ( ) 2,2-
cal expectations.dimethylpropane?
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Calculate the equilibrium constant for the isotope ex- Since the Helmholtz energy of an ideal gas is given by
change reaction D H H DH at 25 C. Assume that the ln( e/ ), all the other thermodynamic properties can be
equilibrium distance and force constants of H and DH are the calculated if can be expressed as a function of ,
same. , and . Derive these relations, which are given in equations

16.22 to 16.27.Calculate the equilibrium constant at 25 C for the reac-
tion H D 2HD. It may be assumed that the equilibrium Consider a molecule that has two energy levels sepa-
distance and force constant are the same for all three molec- rated by , where the ground state has a degeneracy of 2
ular species, so that the additional vibrational frequencies re- and the excited state has a degeneracy of 3. ( ) What is the
quired may be calculated from 2 ( / ) . Because of the expression for the partition function at temperature ? ( )
zero-point vibration, for this reaction is given by What are the fractional populations of the two states at tem-

perature ? ( ) What is the internal energy per particle at
(2 ) temperature ?

The energies of the 2 and 1 orbitals of the hy-
Express the equilibrium constant for the reaction H

drogen atom are 27 420 and 109 678 cm , respectively. What
I 2HI in terms of molecular properties.

are the relative populations in these levels at ( ) 25 C and
The classical limits of heat capacities of molecules of ideal ( ) 2000 C?

gases are readily calculated using the principle of equipartition.
A helium atom is in a volume of 10 m . What are the

Calculate / and / for Ar, O , CO , and CH and com-
values of its translational partition function at 298, 1000, and

pare / with the values in Table C.3 at 3000 K. 5000 K?
Considering H O to be a rigid nonlinear molecule, what

The thermal wavelength defined in connection with equa-
value of for the gas would be expected classically? If vibra-

tion 16.40 is a little different from the de Broglie wavelength. ( )
tion is taken into account, what value is expected? Compare

What is the de Broglie wavelength for hydrogen atoms at 3000
these values of with the actual values at 298 and 3000 K in

K, using the root-mean-square average momentum as ? ( )
Table C.3.

How does it compare with the thermal wavelength calculated in
Show how ( ln / ) leads to . Example 16.3 ( ) How does this thermal wavelength compare
Show that the statistical mechanical expressions for with the mean distance between hydrogen atoms in a gas of hy-

, , and of a monatomic gas without electronic drogen atoms at 3000 K and 1 bar?
excitation are consistent with . Calculate and for argon ( 39 948 g mol ) at

The average energy and average square of the energy of 25 C and 1 bar.
a macroscopic system are given by Calculate the molar entropy of helium in the ideal gas

state at 25 C and 1 bar pressure.ee
and Compare the translational partition function of I(g) at

1000 K and 1 bar with that for H(g) calculated in Problem 16.16.
Show that the square of the standard deviation of the energy is ( ) Calculate the thermal wavelength for an O mole-
given by cule at 1 K and 298 K. For Boltzmann statistics to be appli-

cable, the thermal wavelength must be small compared with
the mean distance between molecules. ( ) Calculate the mean
distance between gas molecules at 1 bar at these temperatures

Calculate / for a monatomic ideal gas for which assuming each molecule is in the center of a cube. ( ) Are Boltz-
and . What do you think of the chances of mann statistics applicable at both temperatures?

observing a fluctuation in the energy of a macroscopic system?
What are the most probable populations of the first sev-

The canonical ensemble partition function for a mix- eral vibrational levels of O (g) at 1000 K? The characteristic vi-
ture of two monatomic ideal gases is given by brational temperature is 2274 K.

What are the characteristic vibrational temperatures for
oscillators with frequencies of 10 s (radio waves), 10 s! !
(far infrared), 10 s (near ultraviolet), and 10 s (X-rays)?

Show that What are the rotational contributions to and of
CH at 298.15 K?

( )
What are the symmetry numbers of the following or-

ganic compounds, assuming free rotation of methyl groups:and
( ) ethylene, ( ) 1-methylethylene, ( ) 1,1-dimethylethylene,

( ) ( ) 1,1,2-trimethylethylene, and ( ) 1,1,2,2-tetramethylethylene?
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( ) The water molecule belongs to the point group, and for H (g) at 3000 K.
which includes the symmetry elements and . What is the What are the values of , , , and for
symmetry number of a water molecule? H (g) 2H(g) at 3000 K calculated in the preceding two prob-

Calculate the ratio of the number of HBr molecules in lems? What is the value of ? What is the degree of dissociation
state 2, 5 to the number in state 1, 2 at at 1 bar?
1000 K. Assume that all of the molecules are in their electronic Calculate the values of in Table 16.2 from data in Table
ground states. ( 3700 K 12 1 K.) C.3 for H (g), O (g), Cl (g), HCl(g), and CO(g).

Show that at high temperatures, / ˜ . Derive the statistical mechanical expression for the equi-
Calculate the temperature at which 10% of the molecules librium constant for the reaction

in a system will be in the first excited electronic state if this state
A (g) B (g) 2AB(g)is 400 kJ mol above the ground state.

( ) In Problem 16.28, what is the electronic energy of the where A and B are isotopes. The contribution of the vibra-
molecule at 298 and 1000 K? ( ) Since the internal energy is tional partition function may be ignored because it is so close to
given in terms of the molecular partition function by unity.

Tabulate the translational, vibrational, and rotationalln
contributions to / for H, H , H O, and NH in the ideal
gas state that are expected classically. Calculate the classical lim-
its for and compare them with the values in Table C.3 atcalculate the electronic energy of the molecule at 298 and
3000 K.1000 K using this equation.

Starting with ( ln / ) , show thatA molecule exists in singlet and triplet forms with the sin-
glet having the higher energy by 4 11 10 J per molecule. The

esinglet level has a degeneracy of 1, and the triplet level has a de-
egeneracy of 3. ( ) Ignoring higher levels, what is the electronic

partition function? ( ) What is the ratio of the concentration of
triplets to singlet molecules at 298 K?

What fraction of hydrogen atoms have 2 at room
temperature according to the Boltzmann distribution? At
3000 K? Consider a molecule that has two nondegenerate energy

levels separated by . ( ) Plot the partition function versus / .The Sackur–Tetrode equation
( ) Plot the fractional populations of the two states versus / .

( ) ln ln ( ) Plot the ratio of the internal energy to the energy if all the
molecules were in the excited state versus / .

seems to predict that when 0. Explain why this
Calculate thefractionalpopulationsof O gasmolecules

is not in conflict with the third law.
in vibrational levels up to 6 at ( ) 1000 K and ( ) 2000 K.

For actual calculation of the molar entropy of a
Calculate the molecular partition function for transla-monatomic gas, the Sackur–Tetrode equation may be written

tional motion of a hydrogen atom at 300 K in a volume of 0.2494in the form
m . Calculate the thermal wavelength.

3 5
ln ln ln Plot the molar heat capacity at constant pressure of2 2 K

N (g) versus from 298.15 to 2000 K. The rigid rotor–
harmonic oscillator approximation can be used. Plot values fromShow that for 1 bar, / 1 151 693.
Table C.3 on the same graph. What do you think is responsibleCalculate for hydrogen gas at 298.15 and 2000 K. This
for the differences?calculation is discussed in some detail by C. Marzzacco and M.

Waldman, 444 (1973). Calculate the relative fractions / of C O
molecules in rotational levels up to 20 at 300 and 500Calculate the molar entropy for chlorine gas at 25 C and
K. The rotational constant is 2.7771 K.1 bar pressure.

Calculate the statistical mechanical values of , , , Calculate the relative fractions / of H Cl
and for H(g) at 3000 K. molecules in rotational levels up to 20 at 300 and 1000

K. The rotational constant is 15.2344 K.Calculate the statistical mechanical values of , , ,

v v
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Calculate the equilibrium constant for the reaction oscillator–rigid rotor approximation. Compare these results
H (g) = 2H(g) at 500, 1000, and 2000 K using the harmonic with values calculated using Table C.3.
oscillator–rigid rotor approximation. Compare these results

Calculate the equilibrium constant for the reactionwith values calculated using Table C.3.
2HI(g) = H (g) I (g) at 500, 1000, and 2000 K using the

Calculate the equilibrium constant for the reaction I (g) harmonic oscillator–rigid rotor approximation. Compare these
= 2I(g) at 500, 1000, and 2000 K using the harmonic oscillator– results with values calculated using Table C.3.
rigid rotor approximation. Compare these results with values

( ) Make a three-dimensional plot of the molar entropycalculated using Table C.3 in Computer Problem 5.D.
of O(g) from 298 to 1000 K and 1 to 100 bar using the Sackur–

Calculate the equilibrium constant for the reaction HI(g) Tetrode equation. ( ) Make a two-dimensional plot of the molar
= H(g) + I(g) at 500, 1000, and 2000 K using the harmonic entropy at 1 bar for 298 to 1000 K.
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K
inetic theory introduces the calculation of the rates of certain
processes by use of a simple model of atoms and molecules in the
gas phase. The probabilities of molecular speeds and the values of
average speeds depend on the molecular mass and temperature for

noninteracting gas molecules. The frequency of collisions and the transport
properties (viscosity, diffusion, and heat conduction) for gases of rigid spherical
molecules can be calculated. However, the behavior of real gases is more
complicated, again because of intermolecular interactions.

The prediction of rates of chemical reactions is much more difficult, so
we will first consider the experimental aspects of gas reactions and the use of
this information to obtain mechanisms of reactions. Then we turn to chemical
dynamics to learn about the role of the transition state and to photochemistry to
learn about the various processes that can occur after a molecule has absorbed a
photon.

The last chapter in this part of the book deals with the kinetics of reactions
in the liquid state. The study of viscosity, diffusion, and electrical transport of
ions provides information that is useful in understanding the rates of reactions
in liquids. Relaxation methods are useful for studying very fast reactions in
the liquid phase, and the theory of diffusion-controlled reactions yields an
upper limit for the rate constants of bimolecular reactions. This will help us to
better understand the acid–base catalysis, enzyme catalysis, and the rates of
electrochemical reactions.

Kinetics
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17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

17
Probability Density for Molecular Speeds of Gas Molecules
Velocity Distribution in One Direction
Maxwell Distribution of Speeds
Types of Average Speeds
Pressure of an Ideal Gas
Collisions with a Surface and Effusion
Collisions of Hard-Sphere Molecules
Effects of Molecular Interactions on Collisions
Special Topic: Transport Phenomena in Gases
Special Topic: Calculation of Transport Coefficients

17.1 PROBABILITY DENSITY FOR MOLECULAR
SPEEDS OF GAS MOLECULES

The kinetic theory of gases is concerned with the properties of idealized models
of molecules. We will calculate the distribution of molecular speeds, the pressure
of an ideal gas, and the rate of collision with a surface assuming point molecules.
Then we will calculate the rates of molecular collisions and the mean free path
assuming that the molecules are tiny hard spheres. These calculations will help us
interpret the rates of chemical reactions. This simple model can also be used to
calculate rates of mixing of gases by diffusion, the rate of conduction of heat, and
viscosity.

In beginning our consideration of elementary kinetic theory, we will assume that
molecules are represented by points in space that move in straight lines. In other
words, the molecules are assumed not to have volume or cross-sectional area, and
they are assumed to move in straight lines because they do not interact with each
other except in collisions.

Kinetic Theory of Gases
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Velocity vector of a particle in velocity space. The length of the vector
that represents the speed and direction of a particle can be calculated from the components

, , and by use of the Pythagorean theorem, given in equation 17.3.
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Earlier we used the position vector to specify the position of a particle in
three-dimensional space in terms of the unit vectors , , and in the direction of
the , , and axes:

(17 1)

Taking the derivative of with respect to time yields the for that
particle:

(17 2)

where d /d . Since the velocity of a gas molecule is represented by a vector,
the velocity has a magnitude and a direction. The velocity vector for a molecule
can be plotted in velocity space as shown in Fig. 17.1. The component velocities,

, , and , of a molecule have signs, but we are often more interested in the
magnitude of the velocity vector than its direction. The magnitude of the
velocity vector is referred to as the of the particle. As shown by Fig. 17.1,
the speed can be calculated from the components of the velocity vector by using
the Pythagorean theorem:

( ) (17 3)

This quantity is also referred to as the absolute value of the velocity vector.
At a given instant, the velocity vectors for molecules in a gas can be repre-

sented by points at the ends of the vectors, as shown in Fig. 17.2. To describe the
distribution of velocities in three dimensions, we represent the probability of find-
ing a molecule with a velocity in the range to d , to d , and to

d by ( ) d d d , where d d d is the infinitesimal volume
in velocity space. This element of volume is illustrated in Fig. 17.3. Thus the

( ) is the probability per unit volume at a point in velocity
space. The probability for all of velocity space is unity:

( ) d d d 1 (17 4)
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Points representing the heads of velocity vectors for the molecules in a plane.
Note that very few molecules have very high speeds, that is, large absolute values of the
velocity vector, and that the distribution is isotropic, that is, the same in each direction.
(See Computer Problem 17.G.)

The volume element in
velocity space is infinitesimal in size,
and it has the density of points at the
end of a specific velocity vector .

17.2 Velocity Distribution in One Direction

17.2 VELOCITY DISTRIBUTION IN ONE DIRECTION
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Alternatively, this equation can be written

( ) d 1 (17 5)

where is the velocity vector.
The probability density ( ) ( ) is called a joint probability den-

sity because three things have to occur: The component velocities must be in the
range to d , to d , and to d . In the case of a gas, the three
velocity components are independent. Therefore, the probability density for the
velocity vector is the product of the probability densities in the three directions:

( ) ( ) ( ) ( ) ( ) (17 6)

The probability density in the direction is represented by ( ), and ( ) d
is the probability that a molecule has a velocity in the direction between and

d .

The energy of a molecule of mass moving in the direction with velocity is
/2, and so the Boltzmann distribution (equation 16.2) indicates that the prob-

ability density ( ) that a molecule has velocity is given by

( ) const e (17 7)
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Definite Integrals Occurring in the Kinetic Theory of Gases

Integral 0 1 2 3 4 5

1 1 1 1 3 1
exp( )

2 2 4 2 8

1 3
exp( ) 0 0 0

2 4

Probability density for the velocity of oxygen molecules in an arbitrarily cho-
sen direction at 100, 300, 500, and 1000 K. (See Computer Problem 17.C.)
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The value of the integration constant can be determined by integrating from
to :

( ) d 1 const e d (17 8)

Using an integral from Table 17.1 shows that the constant in equation 17.8 is equal
to ( /2 ) , so that the of molecular veloc-
ities is given by

( ) e (17 9)
2

This probability density has the form of the Gaussian error function (Appendix
D.7), as shown in Fig. 17.4. The most probable velocity in the direction is zero
because of the form of equation 17.9. This can be shown by integrating the velocity
in the direction times its probability over all values of :

( ) d 0 (17 10)

This integral is readily evaluated by noting that ( ) is symmetrical and is an
odd function. When the temperature is raised or the mass of the particle is de-
creased, the distribution becomes broader, but the area under the curve remains
constant because ( ) is normalized.
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Calculate the probability density for of O molecules at 300 K at 0, 300, and 600 m s .
At 300 m s ,

( ) exp
2 2

0 032 kg mol (0 032 kg mol )(300 m s )
exp

2 (8 3145 J K mol )(300 K) 2(8 3145 J K mol )(300 K)

8 022 10 s m

The probability densities at 0 and 600 m s are 1 429 10 s m and 1 419 10 s m ,
in agreement with Fig. 17.4.

Using the distribution function for velocities in the direction, show that

The average is the integral of multiplied by the distribution function:

( ) d

e d
2

Using the value of the definite integral given in Table 17.1,

2 2( /2 )

v

v
v

v

v

v v v v

v v

v

�

�

�

� �

�

�

�

�

�

average
kinetic energy in the direction

Example 17.1

Example 17.2

17.3 Maxwell Distribution of Speeds

� �

� �

� �

�

�

� �

� �

� �

� � � �
� �

17.3 MAXWELL DISTRIBUTION OF SPEEDS

� �

v v

x

�

�

� � �

� �� �

� �

� � � � �

�

��

�
�

��

v

v
v

�

Equation 17.8 can be used to obtain the following expression for the
(see Example 17.2):

(17 11)

Of course, similar expressions apply to the and directions. This is an example
of the principle of equipartition of energy (Section 16.9).

Since no direction in space is favored, the same result is obtained for ( ) and
( ). Thus, the probability density in three dimensions is obtained by substituting
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equation 17.9 and the corresponding equations for ( ) and ( ) in equation
17.6:

( ) exp ( ) (17 12)
2 2

However, usually we are more interested in the distribution of speeds than in the
distribution of component velocities. The of a molecule is related to its
component velocities by equation 17.3. The speed is represented by the distance
in velocity space of a point from the origin in Fig. 17.1. Therefore, the probability

( ) d that a molecule has a speed between and d is given by the probable
number of points in a spherical shell of thickness d , as shown in Fig. 17.5 . The
required integration is most conveniently carried out by converting to spherical
coordinates, which are shown in Fig. 17.5 , using

sin cos (17 13)

sin sin (17 14)

cos (17 15)

The differential volume element d d d can be written in spherical coordi-
nates as

d d d d sin d d (17 16)

The probability ( ) d can now be found by integration of ( )
d d d over the angles and :

( ) d d d ( ) sin d (17 17)

Substituting equation 17.12 into this expression and using equation 17.3, we find

( ) d 4 exp d (17 18)
2 2

Thus, the probability density ( ), for the of speeds, is

( ) 4 exp (17 19)
2 2

As a result, the probability density at a speed of 0 is zero. The probability density
increases with the speed up to a maximum and then declines.

A plot of ( ) versus the molecular speed is shown in Fig. 17.6 for oxygen
at 100, 300, 500, and 1000 K. The probability that a molecule has a speed between
any two values is given by the area under the curve between these two values of
the speed. The plot of ( ) versus is approximately quadratic near the origin.
At higher speeds the probability decreases toward zero because the exponential
term decreases much more rapidly than increases. Thus, very few molecules
have very high or very low speeds. The fraction of the molecules having speeds
greater than 10 times the most probable speed (defined in the next section) is
9 10 at any temperature. The Avogadro constant times this fraction is so
much less than 1 that we can say that no molecule has a velocity this high.
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Notice that the maximum of ( ) moves to higher as the temperature is
raised. The speed at the maximum is the most probable speed, for which we will
soon derive a formula. Notice also that the width of the curve becomes larger as
increases (and, since the area under the curve is always unity, the maximum gets
lower). Thus, as increases or decreases, the most probable speed increases
and so do the numbers of molecules at high speeds.

Sometimes it is more useful to know the probability density as a function of
molecular translational energy than in terms of the probability density for molecu-
lar speed. The probability ( ) d that the molecular energy is in the range to
d can be calculated from the probability of molecular speeds ( ) d (equation
17.18) as follows. Since the kinetic energy of a molecule is given by /2,
the speed is given by (2 / ) and the differential of the speed is given by
d d /(2 ) . Substituting these relations into equation 17.18 to change the
variable from to yields

2 d
( ) d 4 e

2 (2 )
2

e d (17 20)
( )

Note that the probability that a molecule has a certain translational energy is in-
dependent of its mass. Equation 17.20 can be used to calculate the average kinetic
energy of an ideal gas molecule:

2
( ) d e d

( )

2 3
3 ( ) (17 21)

2 2( )

as obtained earlier in Section 16.9.
Figure 17.7 shows the probability density ( ) as a function of the transla-

tional energy of an ideal gas molecule at 300 K.
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Since there is a distribution of molecular speeds, there are different measures of
the average speed. We will discuss the most probable speed , the mean speed

, and the root-mean-square speed .
The is the speed at the maximum of ( ). Setting

d /d equal to zero, we find

d ( )
e 8 4 0 (17 22)

d 2

or

2 2
(17 23)

The is calculated as the average of using the probability
distribution ( ):

( ) d (17 24)

Substituting equation 17.19 and performing the integration with the help of Table
17.1, we find

4 exp d (17 25)
2

8 8
(17 26)

The last speed we consider is the which is defined as the
square root of :

( ) d (17 27)



kT RT
.

m M

.

T M

V
.

V
P

V S P

PV

V V
.

P P

P RT
.

M

RT
.

M

S

S

Heat and Thermodynamics.

621

Gas

� �

�

�

�

� �

�

�

2 1/2 1 1 1
mp

2

2

2

4

*M. Zemansky and R. Dittman, New York: McGraw-Hill, 1981.

1/2 1/2
2 1/2

2 1/2
mp

1/2

s

2
s

2
s

1/2

s

5
s mp3

Various Types of Average Speeds
of Gas Molecules at 298 K

/m s /m s /m s

H 1920 1769 1568
O 482 444 394
CO 411 379 336
CH 681 627 556

v v v

speed of sound

17.4 Types of Average Speeds

� � � �

� �

� � � �

� � � �

� �

� �

� �

�

v

v v v

v

v

v

v

v v

� �

�








�




�

�

�

� �

�

�

�

Table 17.2

� � �

Substituting equation 17.19 and using Table 17.1 again, we find

3 3
(17 28)

From these three calculations, we can see that at any temperature,

(17 29)

Each of these measures of the probability distribution is proportional to ( / ) ,
so that each increases with temperature and decreases with molar mass. Lighter
molecules therefore move faster than heavier molecules on average, as shown in
Table 17.2.

The in a gas is, not surprisingly, also about the same magnitude
as the average speeds. It can be shown* that sound waves in a gas are longitudinal
contractions and rarefactions that are adiabatic and reversible, and that travel at
the speed given by the thermodynamic quantity:

(17 30)

Here is the volume, is the entropy, is the pressure, and is the density
of the gas. Since for an ideal gas undergoing a reversible adiabatic expansion or
contraction, constant (see equation 2.85), we have

(17 31)

Substituting this into equation 17.30 and using the ideal gas law, we find that

(17 32)

Thus,

(17 33)

For monatomic gases , so that is just smaller than . For real gases, the
velocity of sound depends slightly on pressure.
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Calculate the most probable speed , the mean speed , and the root-mean-square
speed for hydrogen molecules at 0 C.

2 (2)(8 3145 J K mol )(273 15 K)

(2 016 10 kg mol )

1 50 10 m s

8 (8)(8 3145 J K mol )(273 15 K)

(3 1416)(2 016 10 kg mol )

1 69 10 m s

3 3(8 3145 J K mol )(273 15 K)

2 016 10 kg mol

1 84 10 m s

The root-mean-square speed of a hydrogen molecule at 0 C is 6620 km h , but at
ordinary pressures a molecule travels only an exceedingly short distance before colliding
with another molecule and changing direction.
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In discussing spectroscopy, we have always tacitly assumed that the emitting
atom or molecule is at rest, but since atoms and molecules in a gas are in motion
there is a Doppler broadening of spectral lines. If the frequency that would be
emitted if the atom or molecule were at rest is , then the frequency measured
by a stationary observer is given by the following approximation at molecular
velocities considerably less than the velocity of light:

1 (17 34)

where is the velocity with which the emitting atom or molecule is moving to-
ward the observer and is the speed of light. At temperature the spectral line
will be spread out by the Maxwell distribution by the emitting species. Equation
17.34 indicates that the velocity in the direction is given by ( )/ ,
so the distribution of molecular velocities given by equation 17.7 is proportional
to

e e (17 35)

The equation for a Gaussian distribution of frequencies about can be written

( ) d (2 ) e d (17 36)

The standard deviation for the frequency distribution is given by

(17 37)
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Figure 17.9

For sodium atoms, 5 10 Hz, and the molar mass is 0.022 99 kg mol .
Computer Problem 17.E shows that when the temperature is 500 K, the standard
deviation for the frequency distribution due to Doppler broadening is 708.7 Hz.

The pressure of an ideal gas can be calculated by assuming that the walls of the
container are flat, and that the collisions of the molecules with the walls are elastic.
That means that the molecules do not lose kinetic energy in their collisions with
the walls. The collisions with a flat wall are specular; that means that the angle
of incidence is equal to the angle of reflection, as shown in Fig. 17.8. This figure
shows that when a molecule collides with the wall in the plane, and are
not changed, but the sign of is reversed. Thus, is not changed by
a collision with the wall.

The pressure is the average force per unit area that the wall must exert on
the molecules to hold them at constant volume. The average force in the
direction is equal to the time rate of change in the momentum in the direction
of the molecules that strike the wall:

d d( )
(17 38)

d d

Consider the molecules striking area of the plane, as shown in Fig. 17.9. Since
the momenta in the and directions do not change, the change in momentum
of the molecule is that in the direction, namely, 2 , where 0 prior
to collision with the wall. In a time d , a molecule with will hit the surface if
that molecule is within a volume d of the surface ( 0). Since we assume
that the molecules are randomly distributed throughout the volume of the gas, the
probable number of molecules having a velocity in the range of to d and
within the necessary distance to hit the surface in time d is

( ) d d (17 39)

The factor in parentheses is the volume in which molecules will hit the surface in a
time d divided by the total volume. This is the probability of finding the molecule
in the correct volume to hit the surface for a random spatial distribution. To find
the force on the surface exerted by the gas, we must multiply expression 17.39 by
the negative of the momentum change of the molecules or 2 , divide by d , and
integrate over all positive . Therefore, the average force in the direction is

d (2 ) ( ) (17 40)

or, by substituting for ( ),

2 d e
2

2
2 d e

2

(17 41)
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17.6 COLLISIONS WITH A SURFACE AND EFFUSION
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The pressure is the force per unit area; therefore,

(17 42)

which is the ideal gas equation of state.

In studying the reaction of a gas with a solid it is necessary to calculate the number
of gas molecules that hit the plane surface per unit time. In addition, it is often
necessary to compute the rate at which molecules pass through a small opening
into an evacuated vessel (effusion). For small holes the rate is small enough
to upset the equilibrium speed distribution in the bulk gas. In addition, the mean
free path is assumed to be large compared with the diameter of the hole, so that
collisions in the neighborhood of the hole can be neglected.

In the preceding section, we saw that the number of collisions with a wall of
area in time d is given by ( ) d ( d / ), where is the number of
molecules in volume . It is convenient to discuss the number of collisions with a
wall or the number of molecules passing through a small opening in terms of the

, which is the number of particles striking the wall or passing through an
imaginary surface per unit area per unit time. Thus the flux is given by

( / ) ( ) d ( ) d (17 43)

where is the number density ( / ). The use of an integral in Table 17.1 yields

(17 44)
2

The use of the expression for the mean velocity (equation 17.26) leads to a simple
equation for the flux:

(17 45)
4

Since we are assuming that the gas is ideal, the number density may be
eliminated from equation 17.44 by use of the ideal gas law . Thus,

(17 46)
(2 )
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The vapor pressure of solid beryllium was measured by R. B. Holden, R. Speiser, and H. L.
Johnston [ 3897 (1948)] using a Knudsen cell. The effusion hole was
0.318 cm in diameter, and they found a mass loss of 9.54 mg in 60.1 min at a temperature
of 1457 K. What is the vapor pressure?

(9 54 10 kg)(6 022 10 mol )

(9 012 10 kg mol )(60 60 1 s) (0 159 10 m)

2 23 10 m s

(2 )

(2 23 10 m s )

2 (9 012 10 kg mol )(1 381 10 J K )(1457 K)

(6 022 10 mol )

0 968 Pa 0 968 10 bar
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17.6 Collisions with a Surface and Effusion
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For a pure substance, the measurement of the rate of escape through a small
hole can be used to calculate the pressure. This is the basis of the Knudsen method
for measuring the vapor pressure of a solid or a liquid. The solid or liquid is placed
in a container with a small hole. This container is placed in an evacuated chamber,
and the loss in mass of the container and sample is measured after time . If
the area of the hole is , the flux is given by

(17 47)

A sufficiently large surface area of the solid or liquid must be exposed to main-
tain the saturation vapor pressure. These simple equations cannot be used if
the gaseous sample has molecules with several different masses. For example,
the vapor in equilibrium with graphite at high temperatures contains

It was not possible to obtain a precise value for for the reaction
C(graphite) C(g) until the composition of the vapor at a series of tempera-
tures had been obtained by mass spectrometry.

Since the flux is inversely proportional to the square root of the mass, effusion
through a porous barrier can be used to separate different isotopic species of gas
molecules.
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Collisions of hard-sphere molecules. If molecules of type 2 are stationary,
a molecule of type 1 will collide in unit time with all molecules of type 2 that have their
centers in a cylinder of volume .v�
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Figure 17.10

Figure 17.11

The interactions of molecules in the gas phase are very complicated because of
the shape of the intermolecular potential (Section 11.9). In this section we will use
a very simple molecular model—the This is equivalent to assuming
that the intermolecular potential is zero at distances between centers greater than

( ), where and are the diameters of the two molecules. The potential
energy is infinite at shorter distances, as illustrated in Fig. 17.10. Thus, hard-sphere
molecules 1 and 2 do not interact unless the distance between their centers is

( ), and then they bounce like idealized billiard balls.
As shown in Fig. 17.11 hard spherical molecules collide with each other if their

centers come within distance equal to their diameters if the molecules are alike,
or distance ( ) if they are different. The distance is called the

Let us consider collisions of molecules of type 1 with molecules of type 2. If
molecules of type 2 are stationary, a molecule of type 1 will collide in unit time
with all molecules of type 2 that have their centers in a cylinder of volume .
According to this simple calculation a molecule of type 1 would undergo



�v1�

�v2�

�v12�

z

z d f f .

z

f f

z d f .

f .
kT

m m m m
z

kT
z d d .

d

kT
.

kT
m m

.

kT

627

�

�

�

�

� �

�

� �

� �

2
12

� �

2

12 12

2
12 2 1 2 12 1 212

12
1

1 2

CM1 2 1

2
12 2 12 12 1212

3/2
2 /2

12 12

1 2 1 2

12

1/2
2 2

12 2 2 1212 12

3
2

1
12 12

1

12
1/2

12

2
12

1 2
12

2 2
1 2

2 2 2
12 1 2

v

The mean relative
speed of molecules 1 and 2
can be calculated from a right tri-
angle involving the mean speeds of
molecules of types 1 and 2. Accord-
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collisions per unit time, where is the number of type 2 molecules per unit vol-
ume. However, molecules of type 2 are not stationary, so we need to use the rela-
tive speed in calculating the rate of collisions of a molecule of type 1 with
molecules of type 2. Thus,

( ) ( ) d d (17 48)

where we are averaging over the product of distribution functions for each
molecule. The quantity is referred to as the of molecules
of type 1 with molecules of type 2 because it has the unit s .

Note that the product ( ) ( ) contains the sum of kinetic energies of par-
ticle 1 and particle 2 in the exponential term. We have already seen (Section 9.9)
that we can convert from the sum of kinetic energies of particle 1 and particle 2
to the kinetic energy of the center of mass plus the relative kinetic energy. In ad-
dition, the volume element d d becomes the volume element d d . The
integral over the velocity of the center of mass yields unity; after the integrations
over angles have been done, we have

( ) d (17 49)

where

( ) 4 e (17 50)
2

and is the reduced mass equal to /( ). The integration in equation
17.49 can now be done using Table 17.1 to obtain the collision frequency of
molecules of type 1 with molecules of type 2:

8
(17 51)

Since the density of molecules of type 2 has the SI unit m , the collision diam-
eter has the unit m, the mean relative speed has the units m s , and the
collision frequency has the unit s .

Equation 17.51 introduces a new type of molecular speed, the
:

8
(17 52)

Let us take a minute to consider why it has the form it does. If we square both
sides of equation 17.52 and introduce the definition of the reduced mass , we
obtain

8 1 1

(17 53)

As shown by Fig. 17.12, we can use the Pythagorean theorem to interpret the mean
relative speed in terms of the mean speeds of molecules 1 and 2. Molecules 1 and
2 can collide with each other with any angle between 0 and 180 between their
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What is the mean relative speed of hydrogen molecules with respect to oxygen molecules
(or oxygen molecules with respect to hydrogen molecules) at 298 K?

The molecular masses are

2 016 10 kg mol

6 022 10 mol

3 348 10 kg

32 000 10 kg mol

6 022 10 mol

5 314 10 kg

[(3 348 10 kg) (5 314 10 kg) ]

3 150 10 kg

8

8(1 381 10 J K )(298 K)
(3 150 10 kg)

1824 m s

Note that the mean relative speed is closer to the mean speed of molecular hydrogen
(1920 m s ) than to that of molecular oxygen (482 m s ).
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collision density,

Chapter 17 Kinetic Theory of Gases

� � � �

� �

� � � � � � � � � �

� �

� �

� �

� �

� �

v

��

�

�

��

�

�

� � � � �

�

��

�

�

� �

�

�
v v v v v

v

v

v

v

v

��

�� �

�

� � �

� �

� �

paths, but equation 17.53 shows that the average collision is at 90 . For collisions
of identical particles, 2 , so that 2 2 .

If the molecule of type 1 is moving through molecules of type 1 rather than
molecules of type 2, equation 17.51 becomes

2 (17 54)

since (8 / ) becomes 2 because 1/ 1/ 1/ 2/ . The collision
frequency is the rate of collisions of molecules of type 1 with molecules of
type 1.

In connection with chemical kinetics, we will also be interested in the num-
ber of collisions per unit time per unit volume. This quantity is referred to as the

and it is represented by . To calculate the number of collisions
of molecules of type 1 with molecules of type 2 per unit time per unit volume of
gas , we simply multiply by the number density , so that

(17 55)

If we are interested in the number of collisions of molecules of type 1 with other
molecules of type 1 per unit time per unit volume of gas , equation 17.55 re-
duces to

2 (17 56)
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Collision Frequencies and Collision Densi-
ties for Four Gases at 298 K

/s /mol L s

1 bar 10 bar 1 bar 10 bar

H 14 13 10 14 13 10 2 85 10 2 85 10
O 6 24 10 6 24 10 1 26 10 1 26 10
CO 8 81 10 8 81 10 1 58 10 1 58 10
CH 11 60 10 11 60 10 2 08 10 2 08 10

For molecular oxygen at 25 C, calculate the collision frequency and the collision density
at a pressure of 1 bar.
The collision diameter of oxygen is 0.361 nm or 3 61 10 m, as determined in a

manner to be described shortly (Section 17.10):

8 (8)(8 3145 J K mol )(298 K)
444 m s

(32 10 kg mol )

The number density is given by

(1 bar)(6 022 10 mol )(10 L m )
2 43 10 m

(0 083 145 L bar K mol )(298 K)

The collision frequency is given by

2

(1 414)(2 43 10 m ) (3 61 10 m) (444 m s )

6 24 10 s

The collision density is given by

1
2

(0 707)(2 43 10 m ) (3 61 10 m) (444 m s )

(7 58 10 m s )(10 m L )
7.58 10 m s

6 022 10 mol

1 26 10 mol L s
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where a divisor of 2 has been introduced so that each collision is not counted
twice, and has been replaced by 2 by means of the reduced mass of
like particles. The collision density is readily expressed in mol m s simply by
dividing by the Avogadro constant.

The collision density is of interest because it sets an upper limit on the rate
with which two gas molecules can react (see Section 19.1). Actual chemical re-
action rates are usually much smaller than the collision rates, indicating that not
every collision leads to reaction.

Collision frequencies and collision densities for four gases are given in
Table 17.3 at 25 C. The collision densities are expressed in mol L s because
it is easier to think about chemical reactions in these units.



Relation between collision frequencies and collision densities

Calculating the mean free path

.
z d

d

P kT

kT
.

d P

630

z
z Z

Z
z Z z Z

Z z

Z z

a b

a .

d

. . . .

. .

� �

�

�

�

�

�

�

� �

�

12

11 12

11

12 12 11 11

12 1 12

1

11 11

1/2 2
11

1/2 2

25 3

1/2 2

25 3 10 2 1 8

8 10

Above we have explicit expressions for the collision frequency between molecules of
type 1 and type 2, between molecules of the same type, collision density between
molecules of type 1 and type 2, and between molecules of the same type. What are the
relations between and and between and ?

Comparing the equations in the text, we see that

so that the number of collisions per unit volume per unit time between molecules of types
1 and 2 is equal to the density of molecules of type 1 times the frequency of collisions
between molecules of types 1 and 2. Comparing equations in the text, we also see that

/2

so that the number of collisions per unit volume per unit time between molecules of the
same type is equal to the density of the molecules times the collision frequency, divided
by 2 to avoid double counting.

For oxygen at 25 C the collision diameter is 0.361 nm. What are the mean free paths in
meters and molecular diameters at ( ) 1 bar pressure and ( ) 0.1 Pa pressure?

( ) From Example 17.7, 2 43 10 m at 1 bar, and using equation 17.57,

1
2

[(1 414)(2 43 10 m ) (3 61 10 m) ] 7 11 10 m

and

(7 11 10 m)/(3 61 10 m) 197 molecular diameters
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The mean free path is the average distance traveled between collisions. Al-
though it is not a directly measurable quantity, it is a very useful concept, as we
shall see. It can be computed by dividing the average distance traveled per unit
time by the collision frequency. For a molecule moving through like molecules,

1
(17 57)

2

Assuming that the collision diameter is independent of temperature, the
temperature and pressure dependence of the mean free path may be obtained by
substituting the ideal gas law in the form / :

(17 58)
2

Thus, at constant temperature, the mean free path is inversely proportional to the
pressure.



Comment:

The discussion in this section and the preceding section marks the first time we
ha e considered the rates of processes. Thus these two sections begin to lay the
foundations for considerations of chemical kinetics. In these discussions it has
been necessary to assume that molecules are rigid spheres, but we know from
quantum mechanics and the experimental e idence for intermolecular potentials
that they are not. Because of these intermolecular interactions it is actually hard
to define a collision, and in more complete discussions it is necessary to use
scattering theory.
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At pressures so low that the mean free path becomes comparable with the di-
mensions of the containing vessel, the flow properties of the gas become markedly
different from those at higher pressures.

Collisions between gas molecules are more complicated than indicated in the pre-
ceding sections because of intermolecular attractive and repulsive forces. In con-
nection with the discussion of the (Section 11.9), we saw
that as molecules approach each other there is first intermolecular attraction and
then, at shorter distances, repulsion. This is shown by the paths of two colliding
molecules illustrated in Fig. 17.13. This figure has been drawn so that the center
of mass of the two molecules is stationary and the motion is confined to the plane
of the paper. The numbers 1, 2, 3, . . . indicate the successive positions of the two
molecules. As the molecules approach, they first attract each other so that their
paths are drawn together. As the molecules approach each other more closely,
they repel each other, and their paths begin to diverge. After the interaction, the
paths of the molecules make an angle with the directions of the initial paths.

The initial parameters of the collision are the relative kinetic energy ( )
and the . The impact parameter is the minimum distance at
which the molecules would pass each other if there were no molecular interac-
tions. If is large, the angle of deflection will be small.

The trajectories for collisions at various values of the impact parameters and
for two values of the kinetic energy of approach are shown in Fig. 17.14. In this
figure one of the molecules approaches from the top of the diagrams with vari-
ous values of the impact parameter , and the other molecule approaches from
below in a symmetrical fashion. In Fig. 17.14 the low-energy collisions lead to a
very complicated pattern. For large values of the impact parameter the molecules
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Collision of two spherically symmetrical molecules with an impact param-
eter . The diagram is drawn so that the center of gravity of the system does not shift
during the collision. The angle of deflection is . (From W. Kauzmann,

1966. Benjamin/Cummings, Menlo Park, CA.
Reprinted with permission.)

*

Chapter 17 Kinetic Theory of Gases

17.9 SPECIAL TOPIC: TRANSPORT PHENOMENA IN GASES

�

*

Figure 17.13

attract each other along the whole trajectory, and the deflection is negative by
definition (although it is not possible experimentally to distinguish positive from
negative deflections). As the value of the impact parameter decreases, the deflec-
tion becomes more and more negative, as shown in the diagram, until the repulsive
force begins to be felt. As the impact parameter is further reduced, the repulsive
force becomes dominant, and there are large positive deflections. For a head-on
collision ( 0) the deflection is 180 . In Fig. 17.14 the high-energy collisions
give results that are close to, but not identical with, what would be expected for
collisions of rigid spheres. The scattering angle can be calculated from the pa-
rameters for the molecular interaction, the impact parameter, and the relative
kinetic energy of the two molecules. However, this calculation cannot be made
analytically, and so we will not pursue it here.

When collisions of molecules interacting according to a Lennard-Jones po-
tential are considered classically, we encounter the rather unsatisfactory situa-
tion that the cross section is infinite; notice in Fig. 17.14 that even “collisions”
with large impact parameters have some deflection. This problem is resolved
by quantum mechanics, but we will not be able to go into quantum mechanical
scattering theory, which shows that the cross section is similar in size to the hard-
sphere result, but is energy dependent.

If a gas is not uniform with respect to composition, temperature, and velocity,
transport processes occur until the gas does become uniform. The transport



(a) (b)

�

i z
c z

c
J D .

z

D J
J

c z D
c z

c z z

a

i

i
iz

iz

iz

i

i

i

633

a

b
Thermal Properties of Matter, Vol. 1, Kinetic Theory of Gases,

�

2 1 4

2 1

Collision trajectories for a pair of molecules interacting by a Lennard-Jones
6–12 potential. The center of gravity is stationary at the center of the circle, which has a di-
ameter equal to the Lennard-Jones constant . ( ) Trajectories for molecules that approach
at energies equal to 0.1 , where is the depth of the potential well in the Lennard-Jones
potential. ( ) Trajectories for molecules that approach at energies equal to 50 . (From
W. Kauzmann, 1966.
Benjamin/Cummings, Menlo Park, CA. Reprinted with permission.)
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of matter in the absence of bulk flow is referred to as The transport
of heat from regions of high temperature to regions of lower temperature without
convection is referred to as conduction, and the transfer of momentum
from a region of higher velocity to a region of lower velocity gives rise to the
phenomenon of flow. In each case the rate of flow is proportional to the
rate of change of some property with distance, a so-called gradient.

The flux of component in the direction due to diffusion is proportional to
the concentration gradient d /d , according to Fick’s law:

d
(17 59)

d

The proportionality constant is the . The flux is ex-
pressed in terms of quantity per unit area per unit time. If SI units are used,
has the units mol m s , d /d has the units of mol m , and has the units of
m s . The negative sign comes from the fact that if increases in the positive
direction, d /d is positive, but the flux is in the negative direction because the
flow is in the direction of lower concentrations.

The diffusion coefficient for the diffusion of one gas into another may be de-
termined by use of a cell such as that shown schematically in Fig. 17.15 . The
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Schematic diagrams of apparatus for measurements of irreversible proper-
ties. ( ) In the measurement of the diffusion coefficient , the sliding separator is with-
drawn so that a substance in chamber A can diffuse into B. ( ) In the measurement of the
thermal conductivity , the rate of heat transfer from an axial hot wire is measured. ( ) In
the measurement of the viscosity of a gas, the outer cylinder is rotated and the torsion
on the inner cylinder is determined from the twist in the suspension wire.

�
-

thermal conductivity.

Viscosity

viscosity

Chapter 17 Kinetic Theory of Gases

� � �

� � �

� �

� �

v

v

v v
v

�

�

�

�
�

-

-

-

Figure 17.15

heavier gas is placed in chamber A and the lighter in chamber B. The sliding par-
tition is withdrawn for a definite interval of time. From the average composition
of one chamber or the other, after a time interval, may be calculated.

The transport of heat is due to a gradient in temperature. Thus, the flux of
energy in the direction due to the temperature gradient in that direction is
given by

d
(17 60)

d

where the proportionality constant is the When has
the units of J m s and d /d has the units of K m , has the units of
J m s K . The negative sign in equation 17.60 indicates that if d /d is pos-
itive, the flow of heat is in the negative direction, which is the direction toward
lower temperature.

The determination of the thermal conductivity by the hot-wire method is il-
lustrated schematically in Fig. 17.15 . The outer cylinder is kept at a constant tem-
perature by a controlled bath. The tube is filled with the gas under investigation,
and the fine wire at the axis of the tube is heated electrically. When a steady state
is achieved, the temperature of the wire is measured by determining its electrical
resistance. The thermal conductivity is calculated from the temperature of wire
and wall, the heat dissipation, and the dimensions of the apparatus.

Thermal diffusion is the flux of material due to a temperature gradient of
d /d . The fact that the thermal diffusion coefficients depend on mass makes it
possible to separate isotopes by use of this effect.

is a measure of the resistance that a fluid offers to an applied shear-
ing force. Consider what happens to the fluid between parallel planes, illustrated
in Fig. 17.16, when the top plane is moved in the direction at a constant speed
relative to the bottom plane while a constant distance between the planes (coor-
dinate ) is maintained. The planes are considered to be very large, so that edge ef-
fects may be ignored. The layer of fluid immediately adjacent to the moving plane
moves with the velocity of this plane. The layer next to the stationary plane is sta-
tionary; in between the velocity usually changes linearly with distance, as shown.
The velocity gradient (i.e., the rate of change of velocity with respect to distance
measured to the direction of flow) is represented by d /d . The

is defined by the equation

d
(17 61)

d

Here is the force per unit area required to move one plane relative to the other.
The negative sign comes from the fact that if is in the direction, the veloc-
ity decreases in successive layers away from the moving plane and d /d is
negative. If has the units of kg m s /m and d /d has the units of m s /m,
then the viscosity has the units of kg m s . The SI unit of viscosity is the
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Figure 17.16

Figure 17.17

pascal-second. Since 1 N 1 kg m s , 1 Pa s 1 kg m s . A fluid has a
viscosity of 1 Pa s if a force of 1 N is required to move a plane of 1 m at a velocity
of 1 m s with respect to a plane surface a meter away and parallel with it.

Although the viscosity is conveniently defined in terms of this hypothetical
experiment, it is easier to measure it by determining the rate of flow through a
tube, the torque on a disk that is rotated in the fluid, or other experimental ar-
rangement. In the experimental arrangement illustrated in Fig. 17.15 , the outer
cylinder is rotated at a constant velocity by an electric motor. The inner coaxial
cylinder is suspended on a torsion wire. A torque is transmitted to the inner cylin-
der by the fluid, and this torque is calculated from the angular twist of the torsion
wire.

To calculate the transport coefficients introduced in the last section ( , , and
), even for hard-sphere molecules, we would need to consider how the Maxwell–

Boltzmann distribution is disturbed by a gradient of concentration, temperature,
or velocity. This calculation, which is too advanced for this book, can be found in
some of the references listed at the end of the chapter (e.g., Hirschfelder et al.).

In spite of this, we can get a good qualitative understanding by a highly sim-
plified discussion. Consider the diffusion of molecules in a concentration gradient
in the direction. Imagine that we are at 0 and we construct planes parallel
to the plane at , where is the mean free path (see Fig. 17.17). We
choose planes at the mean free path because molecules from more distant points
will, on average, have suffered collisions before reaching 0. Now let us cal-
culate the flux of particles (see Section 17.6) across 0 due to the molecules
above ( 0) and below ( 0). The flux across 0 from above is

d
(17 62)

4

where is the number density of particles in the plane at 0. We have used
equation 17.45, and the density of particles at is given by the term in
brackets. Similarly, the flux across 0 due to the molecules below 0 is

d
(17 63)

4

The net flux of particles across the plane 0 is then

1 d
(17 64)

2 d

This equation can be compared with equation 17.59 to obtain

1 1
(17 65)

2

where the subscript a indicates “approximate.”
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Molecular Diameter, d/

Gas From From
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*B. L. Earl, 147 (1989).

1/2

2

1/2

a 2
A A

1/2

2
A

1/2

a 2

1/2

2

Viscosity and Thermal Conductivity of Gases at 273.2 K and 1 bar and
Calculated Molecular Diameters

nm

10 kg m s 10 J K m s

He 1.85 14.3 0.218 0.218
Ne 2.97 4.60 0.258 0.258
Ar 2.11 1.63 0.364 0.365
H 0.845 16.7 0.272 0.269
O 1.92 2.42 0.360 0.358
CO 1.36 1.48 0.464 0.458
CH 1.03 3.04 0.414 0.405
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The exact theoretical expression for the diffusion coefficient of hard spheres
is

3 1
(17 66)

8

so that our highly simplified model yields a good qualitative result.
A similar simplified model for thermal conductivity of hard spheres yields the

approximate value

1 2 1
(17 67)

3 3

The exact expression for hard spheres is

25 1
(17 68)

32

Finally, the approximate model for the viscosity of hard spheres yields

1 2
(17 69)

3 3

whereas the exact expression for hard spheres is

5
(17 70)

16

Note that although the approximate theory yields results that are too low,
the dependences on , , and agree with the exact theory. The exact expres-
sions can be used to calculate molecular diameters from experimental transport
coefficients. Note that this does not imply that real molecules are hard spheres; in
fact, we are forcing a model on the experiment. Nevertheless, the results in Table
17.4 show that a consistent set of molecular diameters results from this analysis
of the data.

The equations discussed above as exact are first approximations, and higher
approximations lead to coefficients in the equations for , , and that cannot
be expressed in terms of and integers.* The expressions above are adequate for
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1/2123 26

26 9 2

5 1 1
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2 2

12 12

Calculate the viscosity of molecular oxygen at 273.2 K and 1 bar. The molecular diameter
is 0.360 nm.

Using the exact equation for hard spheres, we find

32 00 10 kg mol
5 314 10 kg

6 022 10 mol

5
16

5 (1 381 10 J K )(273 2 K) 5 314 10 kg
16 (5 314 10 kg) (0 360 10 m)

1 926 10 kg m s

R. B. Bird, W. E. Steward, and E. N. Lightfoot, . Hoboken, NJ: Wiley,
2001.

S. Chapman and T. G. Cowling, 3rd ed.
New York: Cambridge University Press, 1970.

C. E. Hecht, New York: Freeman, 1990.
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the calculation of collision diameters, but more accurate values of the coefficients
are known.

The probability density ( ) is the joint probability that the compo-
nent velocities are in the range to d , to d , and to
d , and therefore it is the product of the probability densities ( ), ( ),
and ( ) in the three directions.
The Boltzmann distribution indicates that the probability density for a com-
ponent velocity is proportional to the exponential of /2 , and the av-
erage energy in that direction is equal to /2.
The probability density for the Maxwell distribution of speeds is proportional
to exp( /2 ), and so it goes through a maximum at the most prob-
able speed. It is important to distinguish between the most probable speed,
the mean speed, the root-mean-square speed, and the speed of sound.
The flux of molecules through a small opening is proportional to the pressure,
and so measurements of flux can yield the vapor pressure of a solid.
Calculations of collision frequencies and collision densities are of in-
terest in connection with the interpretation of the rates of gas reactions.
For ideal gases, the rates of irreversible processes can also be calculated using
kinetic theory; these include the diffusion coefficient , the thermal conduc-
tivity , and the viscosity .
Since all of these calculations are concerned with ideal gases of hard spherical
molecules, they are necessarily only approximate for real gases, but they are
the predecessors of more advanced calculations.
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Problems marked with an icon may be more conve- given in Table C.2 and .
niently solved on a personal computer with a mathematical pro-

( ) Calculate the collision frequency for a nitrogengram.
molecule in nitrogen at 1 bar pressure and 25 C. ( ) What is
the collision density? What is the effect on the collision densityIf the diameter of a gas molecule is 0.4 nm and each is
( ) of doubling the absolute temperature at constant pressureimagined to be in a separate cube, what is the length of the side
and ( ) of doubling the pressure at constant temperature?of the cube in molecular diameters at 0 C and pressures of ( )

1 bar and ( ) 1 Pa? ( ) Calculate the mean free path for hydrogen gas (
0 247 nm) at 1 bar and 0.1 Pa at 25 C. ( ) Repeat the calculation

Plot the probability density ( ) of molecular for chlorine gas ( 0 496 nm).
speeds versus speed for oxygen at 25 C.

The pressure in interplanetary space is estimated to be
What is the ratio of the probability that gas molecules of the order of 10 Pa. Calculate ( ) the average number of

have two times the mean speed to the probability that they have molecules per cubic centimeter, ( ) the collision frequency, and
the mean speed? ( ) the mean free path in miles. Assume that only hydrogen

atoms are present and that the temperature is 1000 K. Assume( ) Use equation 17.21 to calculate the average value of
that 0 2 nm.for a molecule of an ideal gas. ( ) Calculate the standard

deviation of the molecular energy from ( ) and from equa- Calculate the collision frequency and the collision
tion 9.58. ( ) Calculate the ratio of the standard deviation of the density for molecular chlorine at 25 C and 1 bar. The colli-
translational energy to the average translational energy. sion diameter is 0 544 10 m.

Calculate the mean speed and the root-mean-square A gas mixture contains H at 0.666 bar and O at 0.333
speed for the following set of molecules: 10 molecules mov- bar at 25 C. ( ) What is the collision frequency of a hydro-
ing 5 10 m s , 20 molecules moving 10 10 m s , and gen molecule with an oxygen molecule? ( ) What is the col-
5 molecules moving 15 10 m s . lision frequency of an oxygen molecule with a hydrogen

molecule? ( ) What is the collision density between hy-Calculate the most probable, mean, and root-mean-
drogen molecules and oxygen molecules in mol L s ? Thesquare speeds for oxygen molecules at 25 C.
collision diameters of H and O are 0.272 nm and 0.360 nm,The mean speed of H at 298 K is 1769 m s . What is
respectively.the mean speed of a hydrogen molecule relative to another hy-

For O (g), 0 361 nm, 2 079 K,drogen molecule? How do you rationalize your calculation?
2273 64 K, and 31 9988 g mol . At 1 bar and 25 C what

What fraction of oxygen molecules at 300 K have veloc- is the average time between collisions? How many vibrational
ities ( ) between 400 and 410 m s and ( ) between 800 and oscillations will have occurred during this time?
810 m s ? You can assume that is independent of in each

( ) How many molecules of H strike the wall per unitof these intervals.
area per unit time at 1 bar at 298 K? 1000 K? ( ) How many

The standard deviation of a distribution is given by molecules of O strike the wall per unit area per unit time at
1 bar at 298 K? 1000 K?[ ]

In Section 17.6, we derived the expression for the flux
What is the standard deviation of the distribution of speeds of of gas molecules through a surface in terms of velocities
hydrogen molecules at 298.15 K? of molecules in the direction perpendicular to the surface. The

derivation can be made in a more general way by consideringDerive equations for and for any monatomic gas
that the molecules can approach the surface with velocity atfrom kinetic theory.
angles and in the system of spherical coordinates. In thisCalculate the velocity of sound in nitrogen gas at 25 C.
case, the differential of the flux is given by(See Section 17.4.)

Calculate the speed of sound at 25 C in ( ) H O(g) and d ( ) d cos sin d d
( ) CO (g). The molar heat capacities at constant pressure are 4
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2

1

1 1

Integrate this equation to obtain the flux . In the text, we derive by using the ideal gas
law. Show that the same result may be obtained by averagingA Knudsen cell containing crystalline benzoic acid
over the Maxwell speed distribution to obtain the kinetic energy( 122 g mol ) is carefully weighed and placed in an evac-
of an average molecule.uated chamber thermostated at 70 C for 1 h. The circular hole

through which effusion occurs is 0.60 mm in diameter. Calculate
( ) dthe sublimation pressure of benzoic acid at 70 C in Pa from the

fact that the weight loss is 56.7 mg.
What is the ratio of the number of molecules havingR. B. Holden, R. Speiser, and H. L. Johnston [

twice the most probable speed to the number having the most3897 (1948)] found the rate of loss of weight of a
probable speed?Knudsen effusion cell containing finely divided beryllium to be

19 8 10 g cm s at 1320 K and 1210 10 g cm s Suppose that a gas contains 10 molecules having an in-
at 1537 K. Calculate for this temperature range. stantaneous speed of 2 10 m s , 30 molecules with a speed

of 4 10 m s , and 15 molecules with a speed of 6 10 m s .A 5-mL container with a hole 10 m in diameter is filled
Calculate , , and .with hydrogen. This container is placed in an evacuated chamber

Calculate the root-mean-square speed of oxygen mol-at 0 C. How long will it take for 90% of the hydrogen to effuse
ecules having a kinetic energy of 10 kJ mol . At what temper-out?
ature would this be the root-mean-square speed?The vapor pressure of naphthalene ( 128 16 g

What is the root-mean-square speed of a hexanemol ) is 17.7 Pa at 30 C. Calculate the weight loss in a period
molecule at 0 C?of 2 h of a Knudsen cell filled with naphthalene and having a

round hole 0.50 mm in diameter. Calculate the velocity of sound in ( ) He and ( ) N at
25 C.Atoms and molecules can escape from the uppermost

The speed of sound in argon at the triple point of waterlayer of the earth’s atmosphere only if they have the escape ve-
(273.16 K) has been measured at a series of low pressures andlocity. The minimum escape velocity is the velocity in the direc-
extrapolated to zero pressure to obtaintion perpendicular to the surface of the earth. ( ) Show that the

minimum escape velocity is given by
94 756 75 m s

2 What is the value of the gas constant if the molar mass of
argon is 39 947 753 g mol and ?

What is the average time between collisions of an oxygen
where is the mass of the earth, is the radius of the molecule in oxygen at 298 K and ( ) 1 bar, ( ) 10 bar, and ( )
earth (radius of the uppermost layer of the atmosphere), and 10 bar? ( 0 36 10 m.)
is the gravitational constant, which is defined by

What is the mean free path of nitrogen at 1 bar and
25 C? What is the average time between collisions?

( ) Oxygen ( 0 361 nm) is contained in a vessel at
250 Pa pressure and 25 C. Calculate ( ) the number of colli-
sions between molecules per second per cubic meter and ( ) theGiven: 6 67 10 J m kg , 5 98 10 kg,
mean free path.and 6 36 10 m. An atom or molecule with mass

can escape if its kinetic energy is equal and opposite to the po- For O at 10 bar at 25 C, ( ) what is the collision fre-
tential energy between the atom or molecule and the earth. ( ) quency ? ( ) What is the collision density ? ( ) What is
Calculate the escape velocity of an atom or molecule. the average time between collisions of a single molecule?

An equal number of moles of H and Cl are mixed and
The viscosity of helium is 1 88 10 Pa s at 0 C.

held at 298 K and a total pressure of 1 bar. ( ) Calculate the
Calculate ( ) the collision diameter and ( ) the diffusion coeffi-

collision frequencies and , where hydrogen is component
cient at 1 bar.

1 and chlorine is component 2. ( ) Calculate the collision density
What is the self-diffusion coefficient of radioactive CO . Given: 0 272 nm and 0 544 nm.

in ordinary CO at 1 bar and 25 C? The collision diameter is Ultrahigh vacuum is defined as about 10 Pa. What is
0.40 nm. the mean free path and average number of collisions per second

The probability ( ) that the molecular translational en- for a single O molecule ( 0 361 nm) at this pressure and
ergy is in the range d is given by equation 17.20. Use this 25 C?
equation to calculate the most probable translational energy. Calculate the number of collisions per square centimeter

per second of oxygen molecules with a wall at a pressure of 1 barWhat is the speed of a molecule with 100 m s ,
and 25 C.200 m s , and 300 m s ?
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Large vacuum chambers have been built for testing Plot the probability density for the velocity of oxygen
space vehicles at 10 Pa. Calculate ( ) the mean free path of molecules in an arbitrary direction at 100, 300, 500, and 1000 K.
nitrogen ( 0 375 nm) at this pressure and ( ) the number

Calculate the probability density of various speeds for
of molecular impacts per square meter of wall per second at

molecular oxygen at 100, 300, 500, and 1000 K
25 C.

A sodium atom emits a frequency of 5 10 MHz fromThe vapor pressure of water at 25 C is 3160 Pa. ( )
an emission cell at 500 K. ( ) What is the standard deviation ofIf every water molecule that strikes the surface of liquid wa-
the spectral line due to Doppler broadening? ( ) Plot the shapeter sticks, what is the rate of evaporation of molecules from
of the spectral lines at 500 and 1000 K.a square centimeter of surface? ( ) Using this result, find the

rate of evaporation in g cm min of water into perfectly ( ) Calculate the probability density for molecular energy
dry air. of a molecule of ideal gas at 100, 300, and 500 K. Note that the

probability density is independent of the molar mass. ( ) Calcu-A substance of 200 g mol has a vapor pressure
late the average energies of an ideal gas molecule at these tem-of 10 Pa at 25 C. What mass of the substance will effuse from
peratures. If it bothers you that the energy at the maximum ofa Knudsen cell in 2 h through a hole 0.1 cm in diameter?
the probability density for molecular energy differs from the av-
erage energy, see B. A. Morrow and D. F. Tessler,

:193 (1982).

Plot points at the ends of random vectors with a normal
distribution in a plane.Plot the probability density for the molecular speed of

nitrogen molecules at 200, 500, and 800 K.
Plot the most probable speed, the mean speed, and the

root-mean-square speed of ideal gas molecules in m s atPlot the probability density of the component of the
273.15 K versus molar mass in g mo1 .velocity of nitrogen molecules at 200, 500, and 800 K.
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18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

18.9
18.10
18.11
18.12

18
Rate of Reaction
Order of Reaction
Reversible First-Order Reactions
Consecutive First-Order Reactions
Microscopic Reversibility and Detailed Balance
Effect of Temperature
Mechanisms of Chemical Reactions
Relation between Rate Constants for the Forward
and Backward Reactions
Bimolecular Reactions
Unimolecular and Trimolecular Reactions
Unbranched Chain Reactions
Branched Chain Reactions

So far this book has emphasized thermodynamics and equilibrium states, but now
we move on to a more difficult subject: the rates of chemical reactions. You have
a substance, or several substances, in the gas or liquid phase under a certain set of
conditions, and you find that when you add another substance, add a catalyst, ir-
radiate the system, or change the temperature or pressure, chemical changes take
place in the system. From a purely experimental point of view there is a question
as to how rapidly these changes take place and how their rates depend on inde-
pendent variables such as concentrations of reactants and catalysts, temperature,
and pressure. Sometimes it is found that the changes in concentrations with time
follow rather simple mathematical relations all the way to equilibrium. However,
chemists are not satisfied with simply representing experimental results, but want
to understand what is going on in molecular terms. Even when there is a plau-
sible mechanism for the chemical changes that occur, there is the question as to
why the steps in the mechanism have the rates they do and how the time course
of reaction could have been predicted in advance. Thus chemical kinetics is a

Experimental Kinetics
and Gas Reactions
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Chapter 18 Experimental Kinetics and Gas Reactions

18.1 RATE OF REACTION
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challenging field, and we have delayed its consideration until thermodynamics,
quantum mechanics, statistical mechanics, and kinetic theory can all be applied to
its elucidation.

In discussing the rate of a reaction, the first thing to be clear about is its stoi-
chiometry because the rates of consumption of reactants and rates of production
of products are in the ratios of their stoichiometric numbers. As we have seen, a
chemical reaction can be represented by

0 B (18 1)

where is the stoichiometric number of reactant B . The extent of reaction
(Section 2.11) is the same for each reactant and product, and ,
where is the initial amount of reactant . Taking the time derivative of
yields

d d
(18 2)

d d

The quantity d /d is called the By convention the
is defined in terms of the rate of change of the concentration of a reactant

or product so that

1 d 1 d 1 d[B ]
(18 3)

d d d

Therefore, the rate of the reaction

A 2B X (18 4)

is

1 d[A] 1 d[B] d[X]
(18 5)

1 d 2 d d

This has the advantage that the same rate of reaction is obtained, no matter
which reactant or product is studied. However, the rate of reaction does depend
on how the stoichiometric equation is written; in discussing kinetics, stoichiomet-
ric equations with fractional stoichiometric numbers are avoided, even though
they are permissible in thermodynamics.

If the reaction goes in the forward direction, the rate of reaction is positive.
If the reaction goes in the backward direction, the rate of reaction is negative. If
the reaction is at equilibrium, the rate of reaction is zero.

We will generally be concerned with reactions occurring at constant volume,
but that is not always the case. If the volume changes during the reaction, equation
18.3 can be written

1 d([B ] ) 1 d[B ] [B ] d
(18 6)

d d d
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The reaction H Br 2HBr is carried out in a 0.250-L reaction vessel. The change in the
amount of Br in 0.01 s is 0 001 mol. ( ) What is the rate of conversion d /d ? ( ) What
is the rate of reaction ? ( ) What are the values of d[H ]/d , d[Br ]/d , and d[HBr]/d ?

d 0.001 mol
( ) 0.1 mol s

d 0.01 s

1 d 0 1 mol s
( ) 0 40 mol L s

d 0 25 L

d[H ]
( ) 0 40 mol L s

d

d[Br ]
0 40 mol L s

d

d[HBr]
0 80 mol L s

d

In discussing the rate of a chemical reaction, it is important to know how the stoichio-
metric equation is written because the rate may depend on that. Show that different rates
are obtained when the reaction is written as

2A B 2C

and

A B C

According to the first stoichiometric equation,

1 d[A] d[B] 1 d[C]
2 d d 2 d

According to the second stoichiometric equation,

1 d[A] d[B] d[C]
2

1 d d d

This problem is largely avoided by not using fractional stoichiometric numbers in stoichio-
metric equations used to interpret rates of reactions.
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The rates of chemical reactions are obtained from measurements of concen-
tration as a function of time. Chemical analytical methods may be used when the
reaction can be stopped suddenly. This may be done by rapid cooling for high-
temperature reactions, or by catalyst inactivation for a catalyzed reaction.

are especially useful for determining the rate of a chemical reac-
tion because they offer the possibility of continuous measurement of the extent
of reaction. A wide variety of physical methods have been used, but spectroscopic
methods are the most generally useful. Although the focus in chemical kinetics is
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on rates, we will often use integrated rate equations so that concentrations mea-
sured at various times can be used directly in the quantitative representation of
kinetic data, as shown in the next section.

An important characteristic of any measurement method is its response time.
The measuring device obviously must respond more rapidly than the concentra-
tion is changing. Pulsed lasers have opened many opportunities for studying very
fast reactions. Reactions occurring in picoseconds (10 s) may be studied in this
way. Special mixing methods have been developed for studying very fast reactions;
their use for solution reactions is discussed in Section 20.6.

To study certain gas reactions at high temperatures it is necessary to heat the
gas to the higher temperature very quickly because the reaction occurs rapidly.
This may be accomplished by means of a in which a shock wave is
used to heat the gas suddenly. The tube is divided into two sections separated by
a diaphragm that can be ruptured. The gas to be studied is placed on one side of the
diaphragm, and a driver gas at higher pressure on the other. When the diaphragm
is ruptured, a shock wave passes through the reacting gas, heating it suddenly to a
higher temperature. In some reactions the extent of reaction may be determined
as a function of time after passage of the shock wave by measuring the absorption
of a beam of light passing perpendicularly across the tube.

Photochemical reactions may be initiated rapidly by a light pulse from a flash
lamp or a laser. In the method, a reaction vessel is exposed to a
very-high-intensity flash of visible or ultraviolet radiation. The flash dissociates
and excites molecules in the sample, and the concentrations of these species are
then determined over a period of time using subsequent flashes at a much lower
intensity.

At constant temperature the rate of reaction depends on the concentrations of
reactants and products; it may also depend on catalysts and inhibitors, but we will
neglect that for now. For example, if reaction 18.4 goes essentially to completion
to the right, the rate of reaction may be experimentally found to be

[A] [B] (18 7)

In this is the (or rate coefficient), and and are
independent of concentration and time. Note that and are the stoichio-
metric numbers in the balanced chemical equation, but have to be obtained from
rate experiments. The exponent is referred to as the of the reaction with
respect to reactant A. The order is not necessarily an integer. When the rate law
has this general form, the sum of the orders for the reactants is referred to as the

of the reaction. In this case, the overall order is .
Rates of reaction are often discussed as if the reactions go to completion to

the right. In many cases this is a good approximation, but if the equilibrium con-
stant for the reaction is of the order of unity, it is not. If a reaction does not go to
completion, the rate law is of the form , where is the rate of the for-
ward reaction and is the rate of the backward reaction. Determination of the
initial rate (see Fig. 18.3 later) yields the rate equation for . The rate equation for

can be obtained by studying the backward reaction. At chemical equilibrium,
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the net rate is equal to zero, and the equilibrium expression obtained from
should be in agreement with thermodynamics.

The rate equation for a reaction is frequently more complicated than equation
18.7. For example, the rate of reaction may have additional terms such as 1 [A]
in the denominator when the mechanism is complicated. Also, the rate of reaction
may be affected by products, even if the reaction goes essentially to completion.
The concentration of a catalyst or inhibitor may also have to be included in the
rate law. If a reaction can go by two paths, for example, a catalyzed path and an
uncatalyzed path, the rate equation will consist of two additive terms, one for each
path (see Section 20.7).

When rate laws are simple they can be integrated to give the concentration of
a reactant as a function of time. We will derive integrated forms for first-order re-
actions, second-order reactions, zero-order reactions, and higher-order reactions
for certain special cases. All of the equations derived in this section apply only at
constant temperature and volume for reactions that go to completion.

The rate equation for a A products,

d[A]
[A] (18 8)

d

may be integrated after it is written in the form

d[A]
d (18 9)

[A]

If the concentration of A is [A] at and [A] at , then

d[A]
d

[A]

[A]
ln ( ) (18 10)

[A]

An especially useful form of this equation is obtained if is taken to be zero and
the initial concentration is represented by [A] :

[A]
ln (18 11)

[A]

or

[A] [A] e (18 12)

ln[A] ln[A] (18 13)

The last form indicates that the rate constant may be calculated from a plot of
ln[A] versus ; the slope of the line in such a plot is . The rate constant for a
first-order reaction has units of reciprocal time.

For a first-order reaction A products,

1 d[A]
[A] (18 14)

d

y

y
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Figure 18.1

so that

d[A]
[A] [A] (18 15)

d

where .
It is evident from equation 18.10 that to determine the rate constant for a first-

order reaction it is necessary only to determine the of the concentrations at
two times. Physical quantities proportional to concentration may be substituted
for concentrations in these equations, since the proportionality constants cancel.

The of a reaction is the time required for half of the reactant to
disappear. For the first-order reaction A products, equation 18.11 leads to

1 1 0 693 0 693
ln or (18 16)

1/2

For the first-order reaction A products, equation 18.15 leads to
0 693/ 0 693/ . For a first-order reaction the half-life is independent of
the initial concentration. Thus, 50% of the substance remains after one half-life,
25% remains after two half-lives, 12.5% after three, and so on (see Fig. 18.1).

The for a first-order reaction is equal to the reciprocal of
the first-order rate constant: 1/ . Thus, equation 18.12 may be written

[A] [A] e (18 17)

A reaction is if the rate is proportional to the square of the con-
centration of one reactant or is proportional to the product of the concentrations
of two reactants. If the rate is proportional to the square of the concentration of
A in the reaction A products, the rate law

d[A]
[A] (18 18)

d

may be integrated after arranging it in the form

d[A]
d (18 19)

[A]

If the concentration is [A] at 0 and [A] at time , integration yields

1 1
(18 20)

[A] [A]

Thus, a plot of 1/[A] versus is linear for such a second-order reaction, and the
slope is equal to the second-order rate constant. This integrated rate equation
also applies if the rate is given by [A][B], the stoichiometry is represented by
A B products, and A and B are initially at the same concentration. As may
be seen from equation 18.20, the half-life for such a second-order reaction is
given by

1
(18 21)

[A]

Thus, the half-life is inversely proportional to the initial concentration (see Fig.
18.2).
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y

y



t1/2

t

t1/2

1

0 1

[A]

2 3 4 5

y

a

k .
a t

akt .

t .
ak

k a b

k .
a t b t

b a

kt .
b a

kt .

t

k .
t

k

k

kt .

647

t
k

� �

�

�

�

� � �

�

�

�

�

�
�

�

2

0

1/2
0

0 0

0 1/2

0 0

0 0

0

0 0 0

0

0 0 0

1

1 1

1 1 3

13 1

3 1

0

For a second-order
reaction A B products, with
[A] [B] , the half-life is inversely
proportional to [A] ; that is,
1/ [A] . Thus, when [A] is reduced
by a factor of 2, the half-life doubles.

zero order

18.2 Order of Reaction

�

�

� �

� � �

� �

�

v

v

�

�

� �

�

�

�

�

Figure 18.2

If the reaction A products is second order, then

1 d[A]
[A] (18 22)

d

so that equation 18.20 becomes

1 1
(18 23)

[A] [A]

The half-life for this reaction is given by

1
(18 24)

[A]

A different integrated rate law for a second-order reaction is obtained if the
rate is given by [A][B] and the stoichiometry is given by A B products.
The rate constant is defined by

1 d[A] 1 d[B]
[A][B] (18 25)

d d

If the initial reactants are not in stoichiometric proportions (i.e., [A] [B] ),
then the integrated rate equation is

1 [A][B]
ln (18 26)

[A] [B] [A] [B]

If the stoichiometric numbers of A and B are unity, equation 18.26 becomes

1 [A][B]
ln (18 27)

[A] [B] [A] [B]

Thus, for a second-order reaction in which the initial reactants are not in stoichio-
metric proportions, a plot of ln([A]/[B]) versus is linear.

The rate constant for a second-order reaction has the units (concentration)
s . If the concentrations are expressed in mol L , the second-order rate constant
has the units L mol s . If concentrations are expressed in mol m , the second-
order rate constant has the units m mol s . If concentrations are expressed
in molecules per cubic centimeter, the second-order rate constant has the units
cm s .

A reaction is if the rate is independent of the concentration of the
reactant:

d[A]
(18 28)

d

This can occur if the rate is limited by the concentration of a catalyst; in this case
may be proportional to the concentration of the catalyst. This can also occur

in a photochemical reaction if the rate is determined by the light intensity; in this
case may be proportional to the light intensity. Integration of equation 18.28
yields

[A] [A] (18 29)

y

y
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Figure 18.3

The zero-order rate constant has the units mol L s , or m s when concen-
trations are expressed in molecules per cubic meter.

The rate equation for a reaction A products may also be integrated if it is
of the form [A] , where 2 3, . . . . All of these rate equations yield

1 1
( 1) (18 30)

[A] [A]

In Section 18.11 we will see that the rate of reaction of H with Br is proportional
to [Br ] in the absence of HBr and proportional to [Br ] if sufficient HBr is
added initially. The rate of the formation of phosgene (COCl ) from CO and Cl
is given by [Cl ] [CO].

The first objective in studying the kinetics of a chemical reaction is to deter-
mine the rate equation. As pointed out earlier, the rate equation for a reaction
A 2B X may be of the form [A] [B] , but it may be more compli-
cated (see Sections 18.3 and 18.4). In particular, the concentration of the product
X may also occur in the rate equation for the forward reaction. To avoid this com-
plication, it is desirable to determine the that is, the rate at
the initial concentrations of the reactants in the absence of product.

Figure 18.3 shows the concentrations of A at various times determined for
the reaction

A X (18 31)

by use of a physical method, such as light absorption. To determine the initial
rate at each of the four initial concentrations, the rates may be estimated from
successive experimental points using / and extrapolated to 0. However,
it is better to fit the concentration of a product to the power series [X]
using the method of least squares. If data on only the first 10% of reaction are
used, two terms are sufficient for most analyses.* Linear regression may be used
if the equation is written [X]/ . The parameter is the initial (forward)
velocity of equation 18.31. Then a plot of ln versus ln[A] may be used to
calculate the order with respect to A, as shown in Fig. 18.3 . The advantage of
this method is that it avoids complications due to products.

In determining initial velocities it is advantageous to use high concentrations
of all the reactants but one, so that only one concentration changes significantly
during the kinetics experiment. Under these conditions the reaction will have the
order for the reactant at the lowest concentration. This is referred to as the

If the reaction is first order with respect to the substance at low con-
centration the overall reaction under these conditions is said to be pseudo–first
order. The pseudo–first-order rate constant is directly proportional to the con-
centration of the reactant at the higher concentration if the rate is also first order
with respect to that substance:

[A][B] ( [B] )[A] [A] (18 32)

since [B] [A] .
The concentration of A is plotted versus time for zero-, half-, first-, and

second-order reactions in Fig 18.4 . In each case the initial concentration was

y
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1 mol L , and the volume was constant. The rate constant was adjusted so that
the half-life in each case was 1 min. It is apparent that the change in concentration
with time is not very different for these different orders during the first part of the
reaction. Thus, if a reaction is followed only during the first half-life, it takes very
accurate analytical data to determine the order. After longer times the differences
are greater, and the plots shown in Fig. 18.4 can be used to distinguish the order
and to determine the value of the rate constant.

The study of initial rates may not reveal the full rate law. For example, in
Sections 18.7 and 18.11, we will see that products may be inhibitory. The effect of
a product on the reaction rate may be determined by adding it initially. A reaction
is said to be autocatalytic if a product of the reaction causes it to go faster.
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18.3 REVERSIBLE FIRST-ORDER REACTIONS
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So far we have considered reactions that go essentially to completion. Now we
will consider first-order reactions that do not go to completion, parallel first-order
reactions, and consecutive first-order reactions.

When we consider a system in which both the forward and backward reactions are
important, the net rate of reaction can generally be expressed as the difference
between the rate in the forward direction and that in the backward direction. As
a simple example we will consider the reversible reaction

A B (18 33)

The rate law for this reversible* reaction is

d[A]
[A] [B] (18 34)

d

If initially only A is present, then [B] [A] [A], and

d[A]
[A] ([A] [A]) [A] ( )[A]

d

( ) [A] [A] ( )([A] [A] )

(18 35)

where the expression for [A] is obtained as follows:

[B] [A] [A]
(18 36)

[A] [A]

where is the equilibrium constant for reaction 18.33. This equation can be
solved for [A] :

[A] [A] (18 37)

The expression for the equilibrium constant in terms of the forward and backward
rate constants can be used to eliminate from equation 18.34:

d[A]
[A] [B]

d

[A](1 [B]/[A] ) (18 38)

Thus, we can see that the reaction has an initial rate of [A] and that it slows
down as B accumulates. When [B]/[A] , the reaction is at equilibrium and the
rate is zero. Similar equations can be derived for more complicated mechanisms.



[A]0
C

on
ce

nt
ra

ti
on [A]0 [A]eq+

2

[B]eq

2

0.693
k1 + k2

0.50
0

1.0

[A]eq

[B]eq

t/s

k k t .

k k t .

. k k
k k

k k
k k

k k
.

k k k

k
.

k k

.

t

k k t

k k t

k k

651

k k

� �

� �

�
�

� �
�

�

�
�

0

1 2

1 2

1 2

� �

�

�

0
1 1

1 2

[A]

1 2
eq[A] 0

eq0
1 2

eq

1 2

eq 1 2

1 2

1 2

2 0 1 ( )

1 2 2

0

1 0 ( )

1 2

1 2 3

Reversible first-order reaction starting with A at concentration [A] . The val-
ues of the rate constants are 3 s and 1 s .

18.4 Consecutive First-Order Reactions

18.4 CONSECUTIVE FIRST-ORDER REACTIONS

� �

� �

� �

� �

�

�

�
�

�

�

� �

�

�

Figure 18.5

Integrating equation 18.35 yields

d[A]
( ) d (18 39)

[A] [A]

[A] [A]
ln ( ) (18 40)

[A] [A]

For such a reaction the concentrations of A and B as functions of time are illus-
trated in Fig. 18.5. The concentrations of A and B will be halfway to their equilib-
rium values in a time of 0 693/( ).

Thus, a plot of ln([A] [A] ) versus time is linear, and ( ) may be
calculated from the slope. It should be especially noted that the rate of approach
to equilibrium in this reaction is determined by the sum of the rate constants of the
forward and reverse reactions, not by the rate constant for the forward reaction.
Since the ratio / may be calculated from the equilibrium concentrations by
use of equation 18.36, the values of and may be obtained.

For some purposes it is more convenient to have equations for [A] and [B] in
exponential form. Equation 18.40 may be written as

[A]
[A] 1 e (18 41)

Since [B] [A] [A],

[A]
[B] 1 e (18 42)

Two consecutive irreversible first-order reactions can be represented by

A A A (18 43)

To determine the way in which the concentrations of the substances in such a
mechanism depend on time, the rate equations are first written down for each
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substance. It is then necessary to obtain the solution of these simultaneous differ-
ential equations. For the foregoing reactions the rate equations are as follows:

d[A ]
[A ] (18 44)

d

d[A ]
[A ] [A ] (18 45)

d

d[A ]
[A ] (18 46)

d

It will be assumed that, at 0, [A ] [A ] , [A ] 0, and [A ] 0. The
rate equation for A is readily integrated to obtain

[A ] [A ] e (18 47)

Substitution of this expression into equation 18.45 yields

d[A ]
[A ] e [A ] (18 48)

d

which may be integrated to obtain

[A ]
[A ] (e e ) (18 49)

Because of conservation of the number of moles, [A ] [A ] [A ] [A ]
at any time, so the concentration of A is given by

1
[A ] [A ] [A ] [A ] [A ] 1 ( e e ) (18 50)

Figure 18.6 shows the concentrations of A A and A as a function of time
when 1 s and 1 5 and 25 s . In Fig. 18.6 note the induction
period in the appearance of A ; it is not formed initially because A has to be
formed first. As is increased, this induction period becomes less important.
Also note that as becomes larger than , less A is formed and that after
the induction period, d[A ]/d 0. This is the basis for the

that is often useful in deriving rate equations for systems of reactions.
When , this approximation can be used to treat the kinetics of the system
of reactions in equation 18.43. In the steady state, the rate of change of [A ] is
zero, so that

d[A ]
[A ] [A ] 0 (18 51)

d

The concentration of A in the steady state is given by [A ] ( / )[A ], and
since [A ] is given by

[A ] [A ] e (18 52)

the steady-state concentration of A is given by

[A ] [A ] e (18 53)
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Figure 18.6

The steady-state concentration of A is given by

[A ] [A ] [A ] [A ] [A ] 1 1 e (18 54)

This agrees with equation 18.50 when the term e is neglected. Thus as be-
comes larger and larger with respect to , the behavior of this system approaches
that of A A , as can be seen from Fig. 18.6.

Since all reactions are reversible to some extent, it is more realistic to consider

A A A (18 55)

y
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Figure 18.7

Figure 18.7 shows the concentrations of these three reactants as a function of
time when all the rate constants are 1 s ; in Fig. 18.7 3 s , and in Fig.
18.7 9 s . When all the rate constants are the same there is an induction
period in the formation of A , but as is increased there is less of an induction
period and A shows a sustained steady state. As reaction systems become more
complicated, it becomes impractical to derive general equations, such as equa-



A B
k1

C
k2

Parallel reactions

37: 52:

k k t

k k t

k k t

k k t

k k t

Phys. Re . J. Chem. Educ.

655

k k k k
t

k k
t

k
k k

t k k k

k
k k

k k k

k
k k

k k

1 2

1 2

1 2

1 2

1 2

� � � �

�

� �

� �
�

� � �

�
�

�

�

�
�

�

�

�

�

�

*L. Onsager, 405 (1931); B. H. Mahan, 299 (1975).

1 2 1 2

( )
0

( )
1 1 0

1 0 ( )

1 2

1 0 1 2

1 0 ( )

1 2

1 1 2

0 0

2 0 ( )

1 2

1 2

Derive equations for the concentrations of B and C as functions of time as they are pro-
duced in the parallel reactions

The rate equation for A is

d[A]
[A] [A] ( )[A]

d

Thus, the disappearance of A will be first order, and on the basis of the earlier discussion
of first-order reactions we can write

[A] [A] e

The rate equation for B is

d[B]
[A] [A] e

d

Integration yields

[A]
[B] e constant

( )

If [B] 0 at 0, the constant is [A] /( ) and

[A]
[B] [1 e ]

( )

Thus, the fraction of A that is converted to B at infinite time is /( ). At any time
the sum of [A], [B], and [C] must be equal to the total concentration of A at the beginning,
[A] . Consequently, if [C] 0, then

[A]
[C] [1 e ]

( )

It is apparent from these equations that the ratio of the concentrations of B and C is always
given by / , which is referred to as the
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branching ratio.

tions 18.47, 18.49, and 18.50, but concentrations of reactants can be calculated by
solving the system of rate equations with a computer. When a system involves a
wide range of rate constants, special computer methods are needed: When con-
centrations change rapidly, small steps are required in numerical integration, but
when the concentrations change slowly, larger steps can be used. Sets of differen-
tial equations of this type are said to be “stiff,” in analogy with the equations for
the vibration of a stiff rod.

The principle of microscopic reversibility is a consequence of the invariance of the
equations of classical mechanics when time is reversed. Consider a particle that
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Figure 18.8

52:

moves under the action of a force that is a function of position only. The particle
moves from position (0) at 0 to ( ) at time , as shown in Fig. 18.8 . The
initial velocity of the particle is (0), and its velocity at is ( ). Now suppose that
at time we could instantaneously reverse all of the components of the velocity

( ) and allow the particle to move for another time period . The particle would
retrace its path to its initial position (0), but the velocity components would be
reversed. As shown in Fig. 18.8 , the reversed trajectory can be thought of as
beginning at a time and evolving as time goes forward to 0. A system
is said to be invariant under time reversal if the equation is invariant under the
following transformation:

(18 56)( ) ( )

( ) ( )

Quantum mechanics is also time-reversal invariant. The principle of microscopic
reversibility illustrated here for a classical particle can be extended to transition
probabilities and cross reactions.

Starting with the principle of microscopic reversibility, it can be shown that,
for an elementary reaction (Section 18.7), the ratio of the forward and backward
rate constants is equal to the equilibrium constant obtained from statistical me-
chanics. For an elementary reaction

A B C D (18 57)

at equilibrium,

[C] [D]
(18 58)

[A] [B]

so that

[A] [B] [C] [D] (18 59)

Thus, for an elementary reaction at equilibrium, the rate of the forward reaction is
equal to the rate of the backward reaction. This is an example of what is referred to
as the In a system with many reactions this principle
applies to each reaction individually.

As an application of this principle, consider the suggestion that the isomers
A, B, and C can be interconverted by the following mechanism:

(18 60)

Although this mechanism at first sight appears reasonable, no actual process fol-
lows this mechanism because it violates the principle of detailed balance. Accord-
ing to this principle, at equilibrium the forward rate of step is equal to the
backward rate of that step. The mechanism has to be written as

(18 61)
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[B]
(18 62)

[A]

[C]
(18 63)

[B]

[A]
(18 64)

[C]

Multiplying the left sides of equations 18.62, 18.63, and 18.64 yields unity, so that

1 (18 65)

and the six rate constants of mechanism 18.61 are not independent.

The dependence of rate constants on temperature over a limited range can usually
be represented by an empirical equation proposed by Arrhenius in 1889:

e (18 66)

where is the and is the The pre-
exponential factor has the same units as the rate constant. Equation 18.66 may
be written in logarithmic form:

ln ln (18 67)

According to this equation, a straight line should be obtained when the logarithm
of the rate constant is plotted against the reciprocal of the absolute temperature.
This is often called an Arrhenius plot. Differentiating equation 18.67 with respect
to temperature yields

d ln
(18 68)

d

This equation may be regarded as the definition of the activation energy. When
this equation is integrated we obtain

ln (18 69)
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The rate constants for the first-order gas reaction N O 2NO O are as follows:

/K 273 298 308 318 328 338
/10 s 0.0787 3.46 13.5 49.8 150 487

What are the values of the activation energy and the pre-exponential factor?
The plot of ln versus 1/ is given in Fig. 18.9. The plot of the points was fit by the

least squares method, which yielded a slope of 12 375 K and an intercept of 31.27. There-
fore, the activation energy (12 375 K )(8 314 J K mol ) 103 10 J mol .
The pre-exponential factor is given by exp(31 27) 3 96 10 s . Thus, equation 18.66
becomes

103 10 J mol
(3 96 10 s )exp

(8 3145 J K mol )
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Figure 18.9

It should be realized that for any given pre-exponential factor there is a fairly
narrow range of activation energies that will give reaction rates in the range mea-
surable by conventional techniques, that is, with half-lives from 1 min to 10 days.
For example, if 10 s and the temperature is 298 K, reactions with activa-
tion energies less than about 80 kJ mol will be too fast to study with ordinary
methods, and reactions with activation energies greater than about 100 kJ mol
will be too slow.

The Arrhenius plots for some reactions are curved, so the activation energy is
a function of temperature. As we will see in the next chapter there are theoretical
reasons for expecting for some reactions to vary with temperature according to

e (18 70)

When is known, may be calculated from the slope of a plot of ln( / ) ver-
sus 1/ . If is not provided by a theory, it is difficult to determine its value exper-
imentally because the exponential dependence on 1/ is usually much stronger
than the temperature dependence of .

Some reactions actually proceed more slowly at higher temperatures. For
them the activation energy is negative, but for such reactions other equations may
be more suitable in representing the rate constant as a function of temperature.
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For a reaction that follows equation 18.70, what are the Arrhenius parameters at temper-
ature ?

The Arrhenius activation energy is defined by equation 18.68, so it may be obtained
as follows:

ln ln ln

d ln
d

Thus, is a hypothetical activation energy at absolute zero. Substitution of this relation
in equation 18.70 yields

e e (18 71)

Thus, the pre-exponential factor at temperature is equal to ( ) e . When the Ar-
rhenius plot is curved and is calculated at two temperatures, and can be calculated.
Then the factor can be calculated from the rate constant at either temperature.
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Many reactions that follow simple rate laws such as we have been discussing actu-
ally occur through a series of steps. These steps are called reactions be-
cause they cannot be broken down further into simpler chemical reactions. How-
ever, when we look at elementary reactions in more detail in Sections 18.9 and
18.10, we will see that they may involve identifiable steps. The sequence
of elementary reactions that add up to give the overall reaction is called the

of the reaction. A mechanism is a hypothesis about the elementary steps
through which chemical change occurs. Sometimes the elementary steps can be
studied in isolation. However, the evidence for a mechanism is often indirect, and
there is always the possibility that a different mechanism is also in accord with
all the facts about the kinetics of the reaction and is in better accord with other
knowledge about the reactants and intermediates involved. A valid mechanism
must of course explain the rate law of the backward reaction as well as the for-
ward reaction.

Often it is possible to devise several mechanisms that are consistent with an
experimentally determined rate law. Sometimes these mechanisms can be distin-
guished by use of nonkinetic data. For example, optical and mass spectroscopy
may be used to detect intermediates. Isotopically labeled reactants can be used to
trace the paths of atoms in a reaction.

In discussing elementary reactions we refer to their The molec-
ularity is the number of reactant molecules in an elementary step. Thus, ele-
mentary reactions are referred to as and
depending on whether one, two, or three molecules are involved as reactants. In
contrast to what we said earlier about the lack of relationships between the stoi-
chiometric equation and reaction order, the rate law of an elementary step can
be obtained directly from its chemical equation. A unimolecular reaction is first
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order, a bimolecular reaction is second order, and a trimolecular reaction is third
order. Most elementary reactions are unimolecular or bimolecular. Trimolecular
reactions are uncommon and, as we will see later, really involve two bimolecular
steps.

The mechanism of a reaction leads directly to a set of differential equations
that completely describes the kinetic behavior of that mechanism. A differential
equation may be written for each molecular species in the mechanism by writ-
ing positive terms for each reaction by which the species is formed and negative
terms for each reaction in which the species disappears. However, these differen-
tial equations are not all independent. There are conservation equations that must
also be satisfied, and so the number of independent rate equations is reduced by
this number. The concentrations of various species as functions of time may be
obtained by solving the boundary value problem; for a mechanism with a num-
ber of steps this can only be done numerically using a computer. This of course
requires numerical values for all the rate constants. However, there are two ap-
proximation methods that yield expressions for the rate of the overall reaction
in terms of the concentrations of the various reactants and products and the rate
constants. These methods are the steady-state method and the rapid equilibrium
method.

The is based on the fact that the concentrations of in-
termediates may not change much during a reaction after an initial buildup. (See
Section 18.4.) Therefore, rate equations are written for intermediates, and these
rates are set equal to zero. This yields a set of algebraic equations that can be
solved for the concentrations of intermediates. These equations can then be used
to eliminate these concentrations from the rate equations for the formation of
product. As we will see, this provides the relations between the experimentally
determined rate parameters and the rate constants for the elementary steps in
the mechanism.

A reaction A B may go through an unstable intermediate I; thus, there
are two elementary reactions as represented by the following mechanism:

[B]
A I B (18 72)

[A]

Since [A] [I] [B] [A] if we start with A, there are only two independent
rate equations, and they can be written as

d[I]
[A] [B] ( )[I] (18 73)

d

d[B]
[I] [B] (18 74)

d

If I is an unstable intermediate, its concentration rises to a low value that remains
rather constant after an initial increase. For this reaction, the steady-state approx-
imation is d[I]/d 0. By use of this approximation, [I] can be eliminated from
equation 18.74 to obtain

d[B] [A] [B]
d

[A] [B] (18 75)
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Thus, the reaction behaves like a reversible first-order reaction (Section 18.3) with
/( ) and /( ). Note that / .

The Arrhenius plots for and will probably be curved since they are each a
composite of three rate constants.

If the reaction A B goes to completion because 0 and, in addi-
tion, , the unstable intermediate will essentially be in equilibrium with
A and

d[B]
[A]

d

[A] [A] (18 76)

where / .
As an example of these ideas, consider the decomposition of ozone, which is

represented by the reaction 2O 3O . Thus, the reaction rate is defined by

1 d[O ] 1 d[O ]
(18 77)

2 d 3 d

The rate law for this decomposition in the presence of relatively high concentra-
tions of a chemically inert gas M is

[O ] [M]
(18 78)*

[O ][M] [O ]

Thus,

d[O ] 2 [O ] [M]
(18 79)

d [O ][M] [O ]

This and other information has led to the following mechanism:

1 O M O O M (18 80)

2 O O 2O (18 81)

Overall reaction: 2O 3O (18 82)

Two independent rate equations for this mechanism are 18.83 and 18.84; we do
not have to write a separate equation for O since at constant volume 3[O ]
2[O ] [O] constant:

d[O]
[O ][M] [O ][O][M] [O][O ] (18 83)

d

d[O ]
[O ][M] [O ][O][M] [O][O ] (18 84)

d
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Since oxygen atoms are not produced in the overall reaction and since their con-
centration is always low, it is a good approximation to set d[O]/d 0. Thus, in
the steady state

[O ][M]
[O] (18 85)

[O ][M] [O ]

This relation may be substituted into equation 18.84 for the decomposition of O
to obtain

d[O ] 2 [O ] [M]
(18 86)

d [O ][M] [O ]

This rate equation is in accord with the empirical rate equation (18.78). Early
in the reaction starting with pure ozone [O ][M] [O ], and this rate equa-
tion reduces to

d[O ]
2 [O ][M] (18 87)

d

Under these conditions the and two molecules of
O are decomposed each time step 1 occurs because the oxygen atom produced
causes the destruction of a second molecule of O . On the other hand, if the

that is, [O ][M] [O ], then

d[O ] 2 [O ]
(18 88)

d [O ]

where / is the equilibrium constant for the first step. Oxygen (O ) in-
hibits the forward reaction because it reduces the concentration of oxygen atoms
in equilibrium with O and O (step 1). [Note that an incorrect rate equation
is obtained by starting with the assumption that reaction 1 remains in equilib-
rium because this step, as well as the second step, destroys O ; D. C. Tardy and
E. D. Cater, 109 (1983).] This reaction is discussed again in
the next chapter, on photochemistry, because ozone is formed in the upper atmo-
sphere by a photochemical reaction. The photochemical formation of ozone and
the various reactions by which it can be converted to oxygen are extremely im-
portant because ozone in the upper atmosphere shields the surface of the earth
from harmful ultraviolet radiation that would otherwise be transmitted through
the atmosphere.

In discussing the principle of detailed balance (Section 18.5) we referred to the
fact that at equilibrium the forward rate of each step is equal to the backward
rate of that step. For elementary reactions this leads to a relationship between
the rate constants for the forward and backward reactions that is not necessarily
obeyed for the overall reaction.
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For an elementary reaction there is an exact correspondence between the
chemical equation and the rate equation. For the elementary reaction

AB A B (18 89)

the complete rate equation is

d[AB]
[AB] [A][B] (18 90)

d

At equilibrium, d[AB]/d 0 and so

[A] [B]
(18 91)

[AB]

It is easy to say that the ratio of rate constants is equal to the equilibrium con-
stant , as we did earlier in Sections 18.3 and 18.4, but here we have to be
careful because has been defined (Section 5.7) as a dimensionless quantity.
In general,

( ) [B ] (18 92)

For reaction 18.89,

[A] [B]
(18 93)

[AB]

In general,

( ) (18 94)

For AB A B,

[A] [B]
(18 95)

[AB]

Here, as elsewhere in this chapter, we assume that the gas mixtures and solutions
are ideal.

Thus, if the rate constant for the forward reaction is known, the rate constant
for the backward reaction can be calculated using the equilibrium constant for
the elementary reaction. Since rate equations are generally written in terms of
concentrations, it is necessary to use for a gas reaction. The value of can be
calculated using

(18 96)

which was derived in Section 5.7. Standard Gibbs energies of formation of gases
may be used to calculate , and equation 18.96 may then be used to calculate .
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The rate constant for the elementary reaction

C H 2CH

is 1 57 10 s at 1000 K. What is the rate constant for the backward reaction at this
temperature? For CH (g), 159 74 kJ mol at 1000 K.

Using the value of for C H at 1000 K from Table C.3 yields 1 083 10 .
Using equation 18.96,

(1 mol L )(0.083 145 L bar K mol )(1000 K)
1 083 10

(1 bar)

([CH ]/ )
1 302 10

[C H ]/

Now we can use equation 18.94:

( )

Since 1,

1 57 10 s
(1 302 10 )(1 mol L )

1 21 10 L mol s

Suppose a reaction A B, with equilibrium constant [B] /[A] , goes to the right
by an uncatalyzed pathway with rate [A] and by a proton-catalyzed pathway with a rate

[H ][A]. Thus, the rate law for the forward reaction involves the sum of two terms:

( [H ])[A] [A]

What is the corresponding rate law for the backward reaction, and how are the rate con-
stants related to and ?

The rate constants and for the forward and backward reactions are related by

[B] [H ]
[A]

Thus

[H ]

where

0f/
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If a rate equation has a sum of terms for the forward reaction, indicating
multiple paths, the principle of detailed balancing requires that term for the
forward reaction be balanced by a thermodynamically appropriate term for the
backward reaction at equilibrium.
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S. W. Benson, Hoboken, NJ: Wiley, 1976.

b Hb0b
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110 5 11 5 1

The rate law for the backward reaction is

( [H ])[B]

Activation Energies for Exothermic Bimolecular Reactions

/kJ mol

Molecule molecule Two closed shells 80–200
Radical molecule One closed shell/one open shell 0–60
Radical radical Two open shells 0

v

18.9 Bimolecular Reactions

�

18.9 BIMOLECULAR REACTIONS

�

�

� �

Table 18.1

�

Now we need to take a closer look at elementary reactions. The most common
type of reaction is bimolecular.

When two uncharged, nonpolar molecules approach each other at the short dis-
tances required for chemical reaction, the predominant force is a strong repulsion,
as we have seen in connection with the Lennard-Jones intermolecular potential
(Section 11.9). If these molecules can react, the activation energy is a measure
of the energy required to deform the electron clouds of the reactants so that the
reaction can occur. When two molecules with closed electronic shells react, the ac-
tivation energy is generally found to be in the range 80–200 kJ mol . As a result,
such reactions are rare because there are frequently other reaction paths involving
free radicals that are faster, and are therefore the ones by which reaction occurs.

When one of the reactants is a radical, the activation energy is generally in the
range 0–60 kJ mol , as indicated in Table 18.1. By the term we refer to
molecules with at least one orbital vacancy in their valence shells and to atoms, ex-
cept for the rare gases. Since reactions of radicals with closed-shell molecules are
faster than reactions of closed-shell molecules with each other, many reactions
observed in the gas phase involve radicals. The reactions of radicals with each
other are generally even faster because they have activation energies of about
zero, as indicated in Table 18.1. In fact, the activation energies for the recombina-
tion of radicals may be negative so that the reaction goes more slowly at a higher
temperature.

A common type of bimolecular reaction is a metathesis reaction involving
an atom or a radical. The enthalpy change for such a reaction may be posi-
tive or negative, depending on whether the newly formed bond has a higher
or lower dissociation energy than the bond broken. The Arrhenius parameters
for some bimolecular reactions are given in Table 18.2. The pre-exponential
factors for metathesis reactions involving atoms are all in the range of about
10 –10 L mol s , but the activation energies differ appreciably. The pre-
exponential factors for metathesis reactions not involving atoms are smaller, as
are those for association reactions of radicals. The activation energies of associa-
tion reactions of radicals are all about zero. We will see in the next chapter that
the pre-exponential factors of such reactions can be estimated quite well using
collision theory for rigid spherical molecules.
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Arrhenius Parameters for Bimolecular Reactions

log
L mol s kJ mol

Metathesis reactions involving atoms

Br H HBr H 10.8 76.2
I H HI H 11.4 143
Cl H HCl H 10.9 23.0
O O 2O 10.5 23.9
O NO O NO 10.3 4.2
O H OH H 10.5 42.7
N O NO O 9.3 26.4
N NO N O 10.2 0
O OH O H 10.3 0

Metathesis reactions not involving atoms

CH C H CH C H 8.5 45.2
2C H C H C H 9.6 0
C H CH C H CH 8.6 46.4

Association reactions of radicals

2CH C H 10.5 0
2C H C H 10.4 0
CH NO CH NO 8.8 0

collision complex.

Chapter 18 Experimental Kinetics and Gas Reactions
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Table 18.2
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Some bimolecular reactions are more complex than simple two-body reac-
tions. In some cases the bimolecular rate constant depends on the pressure, and
this is an indication that the reaction leads to a A collision com-
plex is a weakly bound molecule that survives for a time that is longer than the
characteristic periods of its vibrations and rotations. If a weakly bound molecule
is formed the reaction may be written

A B AB products (18 97)

When a weakly bound intermediate is formed, the reaction is no longer really a
bimolecular reaction, but the dividing line is not sharp. If the pressure is suffi-
ciently low so that the unimolecular dissociation of AB is in the falloff region (see
the next section), the overall reaction will approach third order, and may appear
to be a trimolecular reaction. Under these conditions the distinction between bi-
molecular and trimolecular becomes less meaningful. The reaction

ClO NO ClONO Cl NO (18 98)

is an example of such a reaction. Its rate constant is given by (6 2 10 cm
s ) exp(294 K/ ). A further example of the complications that may be encoun-
tered when a reaction is studied in detail is the reaction

HO HO H O O (18 99)

This reaction goes by two paths: one is a bimolecular path with a negative acti-
vation energy, and the other is a trimolecular reaction that also has a negative
activation energy.
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A weak complex AB is formed in the reaction

A B AB C

Assuming that , derive the rate equation for the formation of C.
Since the first step remains in equilibrium, the rate equation is

d[C]
[AB]

d

Equation 18.94 yields

( ) /

where

[AB]
[A][B]

Thus

[AB]
[A][B]

Using this equation to eliminate [AB] from the rate equation yields

d[C]
[A][B] ( / )[A][B]

d

��

Example 18.8

18.10 Unimolecular and Trimolecular Reactions

18.10 UNIMOLECULAR AND TRIMOLECULAR REACTIONS

i

�

�

�

�

�� �

�

�

If the molecule formed in an association reaction of radicals has enough
bonds, the energy of the exothermic reaction can be absorbed by various molecu-
lar vibrations, without causing dissociation. When this is the situation the forward
reaction is bimolecular and the backward reaction is unimolecular. However,
when we go from radicals to atoms the energized product of the association
reaction has to be deactivated by collision or it will dissociate.

It may appear unusual to discuss unimolecular reactions and trimolecular reac-
tions together, but these two types of reactions are related through the forward
and backward reactions in association reactions. Unimolecular reactions are ei-
ther isomerizations or dissociations, as illustrated by

CH NC CH CN (18 100)

C H 2CH (18 101)

The reverse of reaction 18.101 is an association reaction. Since unimolecular reac-
tions have more complicated kinetics than bimolecular reactions, the kinetics of
association reactions, such as the reverse of equation 18.101, involve the same
complications. First, we will discuss the forward reactions of reactions such as

y

y
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3Apparent first-order rate constants for the isomerization of CH NC at
503.5 K. The curve shows the results of the RRKM (Rice, Ramsberger, Kassel, and Mar-
cus) theory. At high pressure the first-order rate constant is independent of pressure and is
designated as . As the pressure is reduced, the rate constant decreases and is said to be in
the falloff region. [Reprinted with permission from F. W. Schneider and B. S. Rabinovitch,

4215 (1962). Copyright 1962 American Chemical Society.]

falloff region
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Figure 18.10

84:

18.100 and 18.101, and second, we will discuss the reverse of a reaction such
as 18.101. The following discussion applies only when reactants and products
are polyatomic so that there are many vibrational modes. The recombination of
atoms to make diatomic molecules is discussed at the end of this section.

Isomerizations and dissociations in the gas phase are first order at pressures of
1 bar and higher, but they become second order at lower pressures. Both of these
observations are puzzling. Why should an isolated molecule in a gas suddenly iso-
merize or dissociate? Why should the reaction become second order when the
pressure is lowered? The apparent rate constant for a unimolecular reaction
A products is defined by

d[A]
[A] (18 102)

d

Figure 18.10 shows how varies with pressure from the isomerization of methyl
isocyanide to methyl cyanide (reaction 18.100). The kinetics are said to be in the

when the pressure is lowered below about 1 bar. Unimolecular reac-
tions generally have large activation energies, as shown in Table 18.3. This raises
another interesting question: How is this large activation energy supplied?

y
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I. W. M. Smith, Boston: Butterworths,
1980, Fig. 4.2, page 116, by permission of the publishers, Butterworth and Co. (Publishers) Ltd, .

*In the next chapter we will discuss A molecules in the transition state, which are represented by A .
The symbol A indicates that A is in the middle of the process of chemical change. Excited molecules
A are not in the process of chemical change, but are simply A molecules with additional internal
energy.

2

3

Arrhenius Parameters for Unimolecular Gas Reactions at
Atmospheric Pressure ( )

log
s KkJ mol

Isomerizations
CH NC CH CN 13.6 160.5 470–530
cyclo C H CH CH CH 15.45 274 700–800

Dissociation to stable molecules
C H Cl C H HCl 14.6 254 670–770
cyclo C H 2C H 15.6 262 690–740

Dissociation to free radicals
C H 2CH 16.0 360 820–1000
HNO OH NO 15.3 205 890–1200

�

�

�

�

�

�

�

excited molecule
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Table 18.3

�

��

A first approximation of the answers to these questions was provided by Lin-
demann in 1922. He pointed out that when a molecule is excited to a higher energy
state by a bimolecular collision, there is a time lag before decomposition or iso-
merization. During this time lag the may lose its extra energy
in a second bimolecular collision. Since such reactions are usually studied by di-
luting the reacting gas A with an excess of inert gas M, the excitation step and
de-excitation step usually involve collisions of A and M, as indicated in the fol-
lowing mechanism:

A M A M (18 103)

A M A M (18 104)

A B C (18 105)

Here A is an A molecule with enough vibrational energy to isomerize or decom-
pose.* In other words, part of the kinetic energy of a bimolecular collision has
been used to raise an A molecule to a higher vibrational level. Although A has
enough energy to react, it does not do so immediately because the energy has to
become distributed within the molecule in such a way that the reaction can occur.
Any collision can raise A to a higher vibrational level; thus, M in this mechanism
might be another A molecule, or a product molecule, or a molecule of the added
inert gas. If A collides with another molecule before it undergoes a unimolecu-
lar reaction, it will almost certainly lose its high level of vibrational energy. This
possibility is represented by the step with rate constant . The other possibility
is that A undergoes a unimolecular reaction with rate constant .

Only molecules with three or more atoms undergo unimolecular reactions. A
diatomic molecule cannot dissociate in this way because it has a single mode of
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vibrational freedom. If this mode is excited by an amount equal to the dissociation
energy, the molecule dissociates in about 10 s.

Since A is never present at a very high concentration, we can use the steady-
state approximation to obtain an expression for the rate of reaction in terms of
[A] and [M]:

d[A ]
[A][M] ( [M] )[A ] 0 (18 106)

d

In the steady state, the rate of disappearance of A is equal to the rate of appear-
ance of B (or C) so that d[a]/d [A ]. Solving equation 18.106 for [A ]
yields

d[A] [A][M]
[A] (18 107)

d [M]

so that the unimolecular rate constant is given by

[M]
(18 108)

[M]

Rate equation 18.107 has two limiting forms:

In the high-pressure limit, [M] so that

d[A]
[A] [A] (18 109)

d

Thus, at high pressures the reaction is first order, as observed. The first-order
rate constant at high pressures is referred to as , which is equal to / ,
and the values of the pre-exponential factor and are given in Table
18.3.
In the low-pressure limit, [M] so that

d[A]
[A][M] (18 110)

d
Under these conditions all A isomerize or dissociate, so the rate of reaction
is determined by the number of collisions of A with M that are sufficiently en-
ergetic. At very low pressures the reaction is found to be second order when
the partial pressure of M is changed. However, in a single kinetic experiment
[M] is held constant and the reaction is pseudo–first order. In a unimolecular
dissociation, [M] increases during the experiment, but since the products are
less efficient in energizing A, [M] remains approximately constant, and the
reaction is again pseudo–first order.

Equation 18.108 provides a qualitative description of the change from first
order at high pressures to second order at low pressures, but it is not satisfactory
quantitatively because it predicts a steeper falloff in than is actually observed.
The RRKM (Rice, Ramsberger, Kassel, and Marcus) theory has been developed
to deal with this, but that will be left to more advanced books.

Now we introduce by considering a reaction like 18.101
and the reverse reaction. To discuss this, we introduce a mechanism that activates
the dimer A by collision with an inert atom (or molecule) M:

A M A M (18 111)
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A 2A (18 112)

The assumption that A is in a steady state yields

d[A ]
[A ][M] [A] ( [M] )[A ] 0 (18 113)

d

so that the steady-state concentration of excited molecules is given by

[A ][M] [A]
[A ] (18 114)

[M]

Substituting this in

d[A ]
[A ][M] [A ][M] (18 115)

d

yields

d[A ] [A ][M] [M][A]
(18 116)

d [M] [M]

This shows that the rate of change in the concentration of dimer molecules is equal
to the difference between the rate of the forward reaction

[A ][M]
forward rate (18 117)

[M]

and the rate of the backward reaction

[M][A]
backward rate (18 118)

[M]

As we found in equation 18.108, the rate of the forward reaction at high [M] is
first order, ( / )[A ], and at low [M] is second order, [A ][M]. In contrast,
the rate of the backward reaction at high [M] is second order, [A] , and at low
[M] is third order, ( / )[M][A] .

The direction in which the reaction will go depends on the equilibrium con-
stant expression

[A]
(18 119)

[A ]

This derivation shows that the reverse of a dissociation reaction (in this case,
2A A ) is necessarily trimolecular at low concentrations. Since this is so, we
have to conclude that equation 18.116 provides a qualitative description of the
change from second order at high pressures to third order at low pressures for an
association reaction. However, equation 18.116 is not satisfactory quantitatively,
and the RRKM theory is required for a quantitative description.

Note that the mechanisms discussed here (18.103 to 18.105 and 18.111 to
18.112) are different from other mechanisms discussed in this chapter because
energy transfer processes are included, even though they occur in any system.
They are written out here to help us understand the formation and deactivation
of excited molecules.
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Rate Constants for Trimolecular Reactions

log
L mol s/K

H H M H M 300 10.0 (H )
1072 9.5 (H )

O O M O M 300 8.9 (O )
2000 7.4 (Ar)

I I M I M 300 9.3 (Ne)
300 10.8 ( -C H )

O O M O M 380 8.1 (O )
O NO M NO M 300 10.46 (O )
H NO M HNO M 300 10.17 (H )
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Table 18.4
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Two molecules can combine in a bimolecular reaction in the gas phase to form
a dimer, as in reaction 18.112, because the energy released by bond formation
can go into vibrational degrees of freedom. However, two atoms cannot combine
in a bimolecular reaction in the gas phase to form a diatomic molecule because
the energy release due to bond formation causes the molecule to dissociate. The
reaction can occur if a third atom or molecule is involved and carries away the
energy produced. Atom recombination reactions are third order in the gas phase,
and so the elementary reactions are represented by

2A M A M (18 120)

A B M AB M (18 121)
The corresponding rate equations are

d[A ]
[A] [M] (18 122)

d

d[AB]
[A][B][M] (18 123)

d
The values of the trimolecular rate constants for the recombination of atoms in
Table 18.4 show that they are all about 10 L mol s at 300 K and about a
power of 10 smaller at 2000 K. This corresponds to an activation energy of about

6 kJ mol , but the data on trimolecular rate constants are actually better rep-
resented by (const)/ than by the Arrhenius equation. As indicated in Table
18.4, various third bodies M have different efficiencies in trimolecular reactions.
As shown by several entries at the bottom of the table, reactions of atoms with
diatomic molecules may be trimolecular.

There is another way of looking at trimolecular reactions that avoids nearly
simultaneous three-body collisions and also provides an explanation of the neg-
ative activation energies. If the third body M is a polyatomic molecule capable
of forming a complex with one of the recombining atoms, the mechanism can be
written as

A M AM (18 124)

AM A A M (18 125)

y

y
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The complex AM can dissociate with rate constant to regenerate A and M, or
it can react with an A molecule with rate constant to form A . The steady-state
rate equation is

d[A ] [A] [M]
(18 126)

d [A]

If the intermediate is very short-lived, [A], and equation 18.126
becomes

d[A ]
( / ) [A] [M] (18 127)

d

Since

( )

where

[AM]
(18 128)

[A][M]

equation 18.126 can be written

d[A ]
( / ) [A] [M] (18 129)

d

If follows the Arrhenius equation with activation energy , the activation en-
ergy for the trimolecular reaction is given by

d ln d ln
(18 130)

d d

If the first step is exothermic and the activation energy for the second step is not
too high, the activation energy for the trimolecular reaction can be negative.

If the combination of an atom with another atom or diatomic molecule is
trimolecular, the reverse reaction is bimolecular, and the Arrhenius equation for
the reverse reaction may be calculated using (Section 18.8). If the activation
energy for the combination of two atoms is negative, the activation energy for the
dissociation of the diatomic molecule is than the dissociation energy for the
diatomic molecule.
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18.11 UNBRANCHED CHAIN REACTIONS

�

As discussed in Section 18.9, reactions of molecules with closed shells generally
have high activation energies even when the change in Gibbs energy for the over-
all reaction is favorable. Faster reaction paths are frequently provided by radical–
molecule reactions. As a consequence, many chemical reactions occur through a
sequence of elementary reactions involving radicals. These may be nonchain re-
actions, or they may be chain reactions. Since a radical has an unpaired electron,
its reaction with a molecule having paired electrons gives rise to another radical.
In this way the reactive center is maintained and can give rise to a

We may ask why such a reaction ever stops. Sometimes, as a matter of fact,
the chain reaction does not stop until all the material is consumed. At other times,
however, the chain is broken when one of the radicals reacts at the wall of the con-
taining vessel or with another radical to form a spin-paired molecule. The length
of the chain (i.e., the number of molecules reacting per molecule activated) is de-
termined by the relative rates of the chain-propagating and the chain-breaking
reactions.

Mechanisms involving radicals may be and
Branched chain reactions produce explosions if they are highly exothermic;

they are discussed in Section 18.12. The rate parameters for several types of ele-
mentary radical reactions are given in Table 18.2. Although the rate constants for
radical fission reactions may have very large pre-exponential factors, they may be
slow, except at very high temperatures, because of high activation energies. The
activation energy of a radical fission reaction may be lower when rearrangement
to a molecular product compensates for some of the energy required to break a
bond.

As an example, let us consider the pyrolysis of ethane to ethylene:

C H C H H (18 131)

At temperatures of 700 to 900 K and pressures above about 0.2 bar, this reac-
tion is first order in its early stages. Later in the reaction methane and propylene
are formed, but we will consider only the early stages. There are various kinds of
evidence that the reaction has the following mechanism:

Initiation C H 2CH (18 132)

Chain transfer CH C H CH C H (18 133)

Propagation C H C H H (18 134)

H C H H C H (18 135)

Termination H C H C H (18 136)

To the extent that reaction 18.133 occurs, the net chemical change is not given by
equation 18.131.

The rate of reaction of ethane is

d[C H ]
( [CH ] [H])[C H ] (18 137)

d
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The rate of formation of ethane in the last step is ignored because termination
occurs only after long chains producing the products. In the steady state the rates
of change of the concentrations of the radicals may be taken equal to zero:

d[CH ]
2 [C H ] [CH ][C H ] 0 (18 138)

d

d[C H ]
( [CH ] [H])[C H ] ( [H])[C H ] 0 (18 139)

d

d[H]
[C H ] [H][C H ] [H][C H ] 0 (18 140)

d

The steady-state concentrations of the free radicals CH , C H , and H may be
obtained from these three simultaneous equations. We find

2
[CH ] (18 141)

2 [H]
[C H ] [C H ] (18 142)

[H]

2 (2 ) 16
[H] (18 143)

4

In general, we can expect that is small so that

[H] (18 144)

Substituting equations 18.141 and 18.144 in equation 18.137 yields the rate of re-
action of ethane

d[C H ]
3 [C H ] (18 145)

d

so that the reaction is first order in spite of its complicated mechanism.
According to this mechanism the termination reaction involves two different

kinds of radicals colliding with each other. Other possibilities exist; for example,
H radicals may collide with each other in the presence of a third body (Section
18.10). Depending on the orders of the initiation and termination reactions, the
overall order of a pyrolysis reaction may be 0 1 , or 2.*

If a propagation step in a chain reaction produces two or more radicals from one,
there is a possibility of a rapid increase in rate and, for an exothermic reaction, an
explosion. The reaction of hydrogen with oxygen can be explosive above about
700 K. The ranges of temperature and pressure within which there are sponta-
neous thermal explosions are shown in Fig. 18.11. For example, at about 550 C
stoichiometric hydrogen–oxygen mixtures react very slowly at pressures below
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Figure 18.11

10 bar. As the pressure is increased, the reaction rate increases slowly, but at
a pressure of about 10 bar, depending on the volume of the vessel, there is a
sudden explosion. On the other hand, if the gases are at a considerably higher
pressure, the rate is again quite low. Hinshelwood found that if hydrogen at 0.26
bar and oxygen at 0.13 bar are placed in a 300-cm quartz vessel at 550 C, the rate
of reaction is quite slow and becomes slower if the pressure is further reduced
to 0.20 bar. If the pressure is reduced to 0.19 bar, however, an explosion occurs.
Finally, as the total pressure is increased above the explosion zone, the reaction
rate increases until it becomes so fast that the reaction mixture may be said to
explode. The fact that the exact limits depend on the vessel surface and the vessel
diameter indicates that radical chains may be terminated by reaction at the wall.
If the vessel surface is coated with potassium chloride, radicals disappear when
they strike the wall; if the vessel surface is coated with boric oxide, radicals are
not destroyed so rapidly by collisions with the wall.

The first explosion limit can be understood in terms of the following
mechanism:

Initiation H O 2OH (18 146)

Propagation OH H H O H (18 147)

Branching H O OH O (18 148)

O H OH H (18 149)

Termination H wall (18 150)

The propagation reaction is exothermic and fast. The third and fourth reactions
are called branching reactions because two radicals are formed from one. If the
rate of branching is greater than the rate of termination, the number of radicals
increases exponentially with time, and an explosion results. Reaction 18.150 is
endothermic and slow below 700 K. The conditions of the first explosion limit are
governed by the relative rates for branching 2 [H][O ] and termination [H].
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As the concentration of oxygen is increased, the rate of branching becomes
greater than the rate of termination and an explosion occurs.

To explain the second limit, above which there is no explosion, it is neces-
sary to invoke a new termination step to prevent the exponential increase in the
number of radicals. For a new termination step to become more important as the
pressure is increased, the new step must be higher order than the branching re-
action. Thus, to explain the second limit, the following reaction must be added to
the previous reactions:

Termination H O M HO M (18 151)

In a stoichiometric mixture of oxygen and hydrogen, M may be hydrogen or oxy-
gen, but these two gases have different efficiencies in this reaction. The HO
radical is relatively unreactive and does not produce another radical before it is
quenched on the wall.

The third explosion limit results from the fact that the following reaction di-
minishes termination:

Propagation HO H H O OH (18 152)

The rate of a reaction does depend on how the stoichiometric equation is
written, so fractional stoichiometric numbers are avoided, even though they
are permissible in thermodynamics.
The order of a reaction has to be determined experimentally since it cannot
be deduced from the stoichiometric equation. The overall order is the sum
of the orders with respect to the various reactants. The order with respect
to a particular reactant can be determined by using high concentrations of
all of the other reactants.
For irreversible reactions with simple orders the rate equations can be in-
tegrated, but for some reactions the rate laws are more complicated. The
rate law for a simple reversible first-order reaction can be integrated, and
the concentrations of the reactants can be expressed in terms of exp[ (

) ].
The rate equations for consecutive irreversible reactions can be integrated.
When the reactions are reversible, the expressions for the concentrations
become much more complicated, and it becomes convenient to use a com-
puter to integrate the rate equations. Under certain conditions the steady-
state approximation can be used in deriving rate equations.
According to the principle of detailed balance, at equilibrium the forward
rate for each step of a mechanism is equal to the backward rate of that step.
The Arrhenius equation is often useful for representing the dependence of
a rate constant on temperature, but for some reactions more complicated
equations have to be used.
Many chemical reactions are described by a mechanism, which is a series
of steps of elementary reactions, that cannot be broken down into simpler
chemical reactions. Elementary reactions are unimolecular, bimolecular,
and trimolecular. Various steps in a mechanism do not necessarily all run at
the same rate in the steady state, so it is necessary to use the stoichiometric
numbers of the steps.
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in a 2-L reaction vessel, it is found that d[O ]/d 1 5Problems marked with an icon may be more conve-
10 mol L s . ( ) What is the rate of reaction ? ( ) What isniently solved on a personal computer with a mathematical
the rate of conversion d /d ? ( ) What is the value of d[O ]/d ?program.

The decomposition of N ONitrogen pentoxide (N O ) gas decomposes according
to the reaction 2N O 4NO O

2N O 4NO O is studied by measuring the concentration of oxygen as a func-
tion of time, and it is found thatAt 328 K, the rate of reaction under certain conditions is

0 75 10 mol L s . Assuming that none of the interme- d[O ]
(1 5 10 s )[N O ]diates have appreciable concentrations, what are the values of d

d[N O ]/d d[N ]/d , and d[O ]/d ?
at constant temperature and pressure. Under these conditionsIn studying the decomposition of ozone
the reaction goes to completion to the right. What is the half-

2O (g) 3O (g) life of the reaction under these conditions?

v

v
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8.

9.

10.
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18.318.1

18.2

There is a relationship between the rate constants for the forward and back-
ward reactions and the equilibrium constant. When the equilibrium constant
is known, the rate law for the reverse reaction can be calculated from the
rate law for the forward reaction.
At an earlier time unimolecular gas reactions were puzzling because they
were not second order and because their first-order rate constants were pres-
sure dependent.
Chain reactions may have complicated rate laws and show surprising effects,
such as explosion limits for branched chain reactions.
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40

half-life of 1 27 10 years, how many disintegrations per secondThe following data were obtained on the rate of hy-
are there in a gram of KCl?drolysis of 17% sucrose in 0 099 mol L HCl aqueous solution

at 35 C: The decomposition of HI to H I at 508 C has a half-
life of 135 min when the initial pressure of HI is 0.1 atm and

/min 9.82 59.60 93.18 13.5 min when the pressure is 1 atm. ( ) Show that this proves
Sucrose remaining,% 96.5 80.3 71.0 that the reaction is second order. ( ) What is the value of the

rate constant in L mol s ? ( ) What is the value of the rate
/min 142.9 294.8 589.4 constant in bar s ? ( ) What is the value of the rate constant

Sucrose remaining,% 59.1 32.8 11.1 in cm s ?
What is the order of the reaction with respect to sucrose, and The reaction between propionaldehyde and hy-
what is the value of the rate constant ? drocyanic acid has been studied at 25 C. In a certain aqueous

solution at 25 C the concentrations at various times were asMethyl acetate is hydrolyzed in approximately
follows:1 mol L HCl at 25 C. Aliquots of equal volume are removed

at intervals and titrated with a solution of NaOH. Calculate the /min 2.78 5.33 8.17
first-order rate constant from the following volumes of NaOH [HCN]/mol L 0.0990 0.0906 0.0830
required to neutralize the aliquot: [C H CHO]/mol L 0.0566 0.0482 0.0406

/s 339 1242 2745 4546 /min 15.13 19.80
/cm 26.34 27.80 29.70 31.81 39.81 [HCN]/mol L 0.0706 0.0653 0.0424

[C H CHO]/mol L 0.0282 0.0229 0.0000Prove that in a first-order reaction, where d /d ,
the average life, that is, the average life expectancy of the What is the order of the reaction, and what is the value of the
molecules, is equal to 1/ . rate constant ?

The hydrolysis of 1-chloro-1-methylcycloundecane Hydrogen peroxide reacts with thiosulfate ion in
in 80% ethanol has been studied at 25 C. The extent of hydrol- slightly acidic solution as follows:
ysis was measured by titrating the acid formed after measured

H O 2S O 2H 2H O S Ointervals of time with a solution of NaOH. The data are as fol-
lows on the volumes of NaOH required.

This reaction rate is independent of the hydrogen ion concen-
/h 0 1.0 3.0 tration in the pH range 4 to 6. The following data were ob-

/cm 0.035 0.295 0.715 tained at 25 C and pH 5.0. Initial concentrations: [H O ]
0.036 mol L ; [S O ] 0.020 40 mol L .

/h 5.0 9.0 12
/min 16 36 43 52/cm 1.055 1.505 1.725 2.197

[S O ]/10 mol L 10.30 5.18 4.16 3.13
( ) What is the order of the reaction? ( ) What is the value
of the rate constant? ( ) What fraction of the 1-chloro-1- ( ) What is the order of the reaction? ( ) What is the rate
methylcycloundecane will be left unhydrolyzed after 8 h? constant?

The following values of percent transmission are ob- The reaction A B is th order (where
tained with a spectrophotometer at a series of times during the 2 3 ) and goes to completion to the right. Derive the expres-
decomposition of a substance absorbing light at a particular sion for the half-life in terms of , , and [A] .
wavelength. Calculate , , and assuming the reaction is first A gas reaction 2A B is second order in A and goes to
order. completion in a reaction vessel of constant volume and temper-

Percent Transmission ature with a half-life of 1 h. If the initial pressure of A is 1 bar,
what are the partial pressures of A and B, and what is the total

5 min 14.1 pressure at 1 h, at 2 h, and at equilibrium?
10 min 57.1 The rate constant for the reaction

100.0

I I Ar I ArBeer’s law: log 100/ , where percent transmission,
absorbancy index, cell thickness, and concentra-

tion. is 0.59 10 cm mol s at 293 K. What is the half-life of I
if [I] 2 10 mol L and [Ar] 5 10 mol L ?Since radioactive decay is a first-order process, the de-

cay rate for a particular nuclide is commonly given as the half- A solution of A is mixed with an equal volume of a solu-
life. Given that potassium contains 0.0118% K, which has a tion of B containing the same number of moles, and the reaction
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A B C occurs. At the end of 1 h, A is 75% reacted. How Suppose the transformation of A to B occurs by both
much of A will be left unreacted at the end of 2 h if the reaction a reversible first-order reaction and a reversible second-order
is ( ) first order in A and zero in B, ( ) first order in both A and reaction involving hydrogen ion:
B, and ( ) zero order in both A and B?

A B A H B HShow that for a first-order reaction R P the concen-
tration of product can be represented as a function of time by

What is the relationship between these four rate constants?
[P]

Use the rapid equilibrium approximation to derive the
and express , , and in terms of [R] and . rate law for the mechanism

For a reaction A X, the following concentra- A B
tions of A were found in a single kinetics experiment:

[A]/mol L 1.000 0.952 0.909 0.870 0.833 0.800 HA HB
/h 0 0.05 0.10 0.15 0.20 0.25

What is the rate of this reaction at [A] 1.000 mol L ? The acid dissociation reactions are rapid in comparison with the
The following table gives kinetic data for the following isomerization reactions.

reaction at 25 C: Suppose that

OCl I OI Cl
A B C

[OCl ] [I ] [OH ] d[IO ]/d
and you are interested in isolating the largest possible amount

mol L mol L mol L 10 mol L s of B. Given the values of and , derive an equation for the
time that the concentration of B goes through a maximum. Now0.0017 0.0017 1.00 1.75
consider two cases: ( ) A reacts more rapidly than B and ( ) A0.0034 0.0017 1.00 3.50
reacts less rapidly than B. For a given value of , in which case0.0017 0.0034 1.00 3.50
would you wait the longer time for B to go through its maximum?0.0017 0.0017 0.5 3.50

The hydrolysis of
What is the rate law for the reaction, and what is the value of the
rate constant?

For a reversible first-order reaction

A B

in 80% ethanol follows the first-order rate equation. The values
10 s and [B] /[A] 4. If [A] 0 01 mol L of the specific reaction rate constants are as follows:

and [B] 0, what will be the concentration of B after 30 s?
/ C 0 25 35 45The first three steps in the decay of U are
/s 1 06 10 3 19 10 9 86 10 2 92 10

U Th Pa U ( ) Plot log against 1/ . ( ) Calculate the activation energy.
( ) Calculate the pre-exponential factor.

If a first-order reaction has an activation energy of 104If we start with pure U, what fraction will be Th after 10,
600 J mol and a pre-exponential factor of 5 10 s , at20, 40, and 80 days?
what temperature will the reaction have a half-life of ( ) 1 minEquation 18.27 for a second-order reaction becomes in-
and ( ) 30 days?determinant when [A] [B] , but the text states that when the

Isopropenyl allyl ether in the vapor state isomerizes toinitial concentrations of A and B in a reaction A B X are
allyl acetone according to a first-order rate equation. The fol-equal,
lowing equation gives the influence of temperature on the rate

1 1 1 1 constant (in s ):and
[A] [A] [B] [B]

5 4 10 e
Show that this is correct by using l’Hôpital’s rule. According to
l’Hôpital’s rule, if a function of a variable is indeterminant as where the activation energy is expressed in J mol . At

0 because the function becomes 0/0, then the limit can be 150 C, how long will it take to build up a partial pressure of
found by taking the limit of the derivative of the numerator di- 0.395 bar of allyl acetone, starting with 1 bar of isopropenyl
vided by the derivative of the denominator. allyl ether?
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The pre-exponential factor for the trimolecular reaction ( ) Assuming a steady state for the chlorine atom concentration,
show that the empirical first-order rate constant can be identi-

2NO O 2NO fied with 2 . ( ) The following data were obtained at 180 C. In
a single experiment the reaction is first order, and the empiricalis 10 cm mol s . What is the value in L mol s and in
rate constant is represented by . Show that the reaction is sec-cm s ?
ond order at these low gas pressures and calculate the second-

A reaction A B C D follows the mechanism order rate constant.

A B AB AB C D /10 mol cm 5 10 15 20
in which the first step remains essentially in equilibrium. Show /10 s 1.7 3.4 5.2 6.9
that the dependence of rate on temperature is given by

The reaction
e

2SO O 2SO
where is the enthalpy change for the first reaction.

is catalyzed by the mechanismConsider the following mechanism:

2NO O 2NOA B C C D

NO SO NO SO( ) Derive the rate law using the steady-state approximation to
eliminate the concentration of C. ( ) Assuming that ,
express the pre-exponential factor and for the apparent To obtain the overall reaction from this mechanism, the second
second-order rate constant in terms of , , and and , step has to be taken twice, and so the stoichiometric number

, and for the three steps. of the second step is said to be 2. The equilibrium constant
For the two parallel reactions A B and A C, for an overall reaction is related to the rate constants for the

show that the activation energy for the disappearance of A is individual steps and by
given in terms of activation energies and for the two paths
by

where is the stoichiometric number of the th step and
Set up the rate expressions for the following mechanism: is the number of steps. Verify this relation for the above

mechanism.
A B B C D What is the rate constant for the following reaction at

500 K?

If the concentration of B is small compared with the concen- H HCl Cl H
trations of A, C, and D, the steady-state approximation may be

The data required appear in Table 18.2 and Table C.3.used to derive the rate law. Show that this reaction may follow
For the gas reactionthe first-order equation at high pressures and the second-order

equation at low pressures.
O O M O MA dimerization 2A A is found to be first order, with

a half-life of 666 s. This somewhat surprising result is explained
where M O , the rate constant is given byby postulating the following mechanism:

(6 0 10 L mol s ) eA A* A* A A

where . ( ) What is the value for the rate constant ? where the activation energy is in kJ mol . Calculate the val-
( ) If the initial concentration of A is 0.05 M, how much time is ues of the parameters in the Arrhenius equation for the reverse
required to reach [A] 0 0125 M? reaction assuming and are independent of tempera-

ture.
The reaction NO Cl NO Cl is first order

( ) Write the steady-state equations for A and B in re-and appears to follow the mechanism
action 18.61. ( ) Use these rate equatons to derive the equilib-
rium expressions for [B]/[A] and [C]/[A] by use of the principle

NO Cl NO Cl NO Cl Cl NO Cl of detailed balance, which requires that .
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The mechanism of the pyrolysis of acetaldehyde at ( ) Prove that this reaction is first order. ( ) Calculate the
520 C and 0.2 bar is half-life.

A gas reaction A 2B is first order in A and goes to
CH CHO CH CHO completion in a reaction vessel of constant volume and temper-

ature with a half-life of 10 min. If the initial pressure of A isCH CH CHO CH CH CO
1 bar, what are the partial pressures of A and B at 10 min, at
20 min, and at equilibrium?CH CO CO CH

Modern carbon is radioactive because C is produced
CH CH C H by cosmic rays by the reaction N(n p) C. This is the physi-

cists’ way of indicating that a neutron goes into the N nucleus
What is the rate law for the reaction of acetaldehyde, using the and a proton comes out. This nuclide of carbon has a half-life
usual assumptions? (As a simplification further reactions of the of 5720 years. Carbon recently incorporated into growing plants
radical CHO have been omitted and its rate equation may be has a specific activity of 16 disintegrations per minute per gram.
ignored.) ( ) What percentage of the carbon in growing plants is C?

For the reaction ( ) How many grams of modern carbon does it take to provide
0.05 microcuries of C? A curie is 3 7 10 nuclear transfor-H (g) Br (g) 2HBr(g)
mations per second.

Living trees incorporate C( 5720 y) into theirspectroscopic measurements show that d[Br ]/d 1 2
wood because there is C in CO due to cosmic rays and the10 mol L s . ( ) What is the rate of reaction ? ( ) What
nuclear reaction N(n p) C. When a tree dies, this radioactiv-is the value of d[HBr]/d ? ( ) What is the rate of conversion
ity of the wood slowly disappears. An archeological sample ofd /d if the reaction occurs in a 3-L vessel? ( ) What amount
wood has 42% of the C found in living trees. Assuming theof HBr is produced per second in the 3-L vessel under these
level of cosmic rays has been constant, what is the age of theconditions?
archeological sample?Under certain conditions, it is found that ammonia is

The reaction 2NO O 2NO is third order andformed from its elements at a rate of 0 10 mol L s .
d[NO ]/d [NO] [O ]. The rate constant has a value of

N (g) 3H (g) 2NH (g) 7 1 10 L mol s at 25 C. Air blown through a certain hot
chamber and cooled quickly at 25 C and 1 bar contains 1% by

( ) What is the rate of reaction ? ( ) What is the value of volume of nitric oxide, NO, and 20% of oxygen. How long will
d[N ]/d ? ( ) What is the value of d[H ]/d ? it take for 90% of this NO to be converted to nitrogen dioxide,

The rate of the gas reaction H Br 2HBr doubles NO (or N O )?
when the concentration of hydrogen is doubled, and it increases The second-order rate constant for an alkaline hydrol-
by a factor of 1.4 when the concentration of bromine is doubled. ysis of ethyl formate in 85% ethanol (aqueous) at 29 86 C
What is the order with respect to hydrogen, the order with re- is 4 53 L mol s . ( ) If the reactants are both present at
spect to bromine, and the overall order? 0 001 mol L , what will be the half-life of the reaction? ( ) If

The half-life of a first-order chemical reaction A B is the concentration of one of the reactants is doubled and that of
10 min. What percentage of A remains after 1 h? the other is cut in half, how long will it take for one-half the re-

actant present at the lower concentration to react?A reaction is carried out with 1-cyclohexenyl allyl mal-
onitrile at 135 7 C. Calculate the first-order rate constant from The reaction
the data on the first 5 min and the second 5 min.

CH CH NO OH H O CH CHNO
/min 0 5 10

is second order, and at 0 C is 39 1 mol min . An aque-% reaction 19.8 34.2 46.7
ous solution is 0.004 molar in nitroethane and 0.005 molar in

The reaction NaOH. How long will it take for 90% of the nitroethane to
react?SO Cl SO Cl

The second-order rate constant for the reaction of ClO
is first order with a rate constant of 2 2 10 s at 320 C. and NO is 6 2 10 cm s . What is its value in L mol s ?
What percentage of SO Cl is decomposed after being heated

A solution of ethyl acetate and sodium hydroxide was
at 320 C for 2 h?

prepared that contained (at 0) 5 10 mol L ethyl
The kinetics of the hydrolysis of an ester is studied by acetate and 8 10 mol L sodium hydroxide. After 400 s

titrating the acid produced. A sample is withdrawn and titrated at 25 C a 25-mL aliquot was found to neutralize 33.3 mL of
with alkali. The volumes required at various times are 5 10 mol L hydrochloric acid. ( ) Calculate the rate con-

stant for this second-order reaction. ( ) At what time would you/min 0 27 60
expect 20.0 mL of hydrochloric acid to be required?/mL 0 18.1 26.0 29.7
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2
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A dimer is formed in the solution reaction 2A A . Although the thermal decomposition of ethyl bromide
The rate law is [A] , where 0 015 M s . What is is complex, the overall rate is first order, and the rate constant
the half-life of A when [A] 0 05 M? is given by the expression (3 8 10 s ) e ,

where the activation energy is in J mol . Estimate the tem-In the preceding dimerization problem, how much time
perature at which ( ) ethyl bromide decomposes at the rateis required for [A] to reach a concentration of 0.0125 M?
of 1% per second and ( ) the decomposition is 70% completeThe rate constant for a second-order reaction is
in 1 h.10 L mol s . What is the rate constant in cm s ?

Given that the first-order rate constant for the overallDerive the integrated rate equation for a reaction of or-
decomposition of N O is (4 3 10 s ) e , cal-der . Derive the expression for the half-life of such a reaction.
culate ( ) the half-life at 10 C and ( ) the time required for

The gas-phase formation of phosgene, CO Cl 90% reaction at 50 C. The activation energy is in J mol .
COCl , is order with respect to CO. Derive the integrated rate

Suppose that a substance X decomposes into A and B in
equation for a -order reaction. Derive the expression for the parallel paths with rate constants given by
half-life.

Equal molar quantities of A and B are added to a liter of (10 s ) e (10 s ) e
a suitable solvent. At the end of 500 s one-half of A has reacted
according to the reaction A B C. How much of A will be where the activation energies are given in J mol . ( ) At what
reacted at the end of 800 s if the reaction is ( ) zero order with temperature will the two products be formed at the same rate?
respect to both A and B, ( ) first order with respect to A and ( ) At what temperature will A be formed 0.1 times as fast as
zero order with respect to B, and ( ) first order with respect to B? ( ) State a generalization concerning the effect of tempera-
both A and B? ture on the relative rates of reactions with different activation

For the reaction A B products, equation 18.27 ap- energies.
plies. Show that when [B] [A] , For the reaction

[A] O NO M NO Mln [B]
[A]

6 10 L mol s and 3 10
This is referred to as a pseudo–first-order reaction. L mol s . Calculate the parameters in the Arrhenius

When an optically active substance is isomerized, the op- equation.
tical rotation decreases from that of the original isomer to zero ( ) The viscosity of water changes about 2% per degree
in a first-order manner. In a given case the half-time for this pro- at room temperature. What is the activation energy for this pro-
cess is found to be 10 min. Calculate the rate constant for the cess? ( ) The activation energy for a reaction is 62 8 kJ mol .
conversion of one isomer to another. Calculate / .

The equations for [A ] and [A ] in Section 18.4 give an The reaction 2NO O 2NO is third order. Assum-
indeterminate result if . Rederive the equations, giving ing that a small amount of NO exists in rapid reversible equi-
[A ] and [A ] as functions of time for the special case that librium with NO and O and that the rate-determining step is

the slow bimolecular reaction NO NO 2NO , derive the
A A A rate equation for this mechanism.

The apparent activation energy for the recombination of
For the reaction 2A B C the rate law for the forward iodine atoms in argon is 5 9 kJ mol . This negative tempera-

reaction is ture coefficient may result from the following mechanism:
d[A]

[A] [IM]d I M IM IM I I M
[I][M]

Give two possible rate laws for the backward reaction.

Assuming that the first step remains at equilibrium, derive theThe following rate constants were obtained for the
rate equation that includes both the forward and backwardfirst-order decomposition of acetone dicarboxylic acid in aque-
reacnl tions. Show that the backward reaction is bimolecular andous solution:
that the equilibrium constant expression for the dissociation of
iodine is independent of the concentration of the third body./ C 0 20 40 60

/10 s 2.46 47.5 576 5480 Derive the steady-state rate equation for the following
mechanism for a trimolecular reaction:

( ) Calculate the energy of activation. ( ) Calculate the pre-
exponential factor . ( ) What is the half-life of this reaction A A A A M A M
at 80 C?
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Show that the interconversion of ortho- and parahydro- Two consecutive reversible first-order reactions are rep-
gen will be order, as obtained experimentally in the range 600 resented by
to 750 C, if the rate-determining step is that between atoms and
molecules of hydrogen: A A A

H para-H ortho-H H Use a mathematical application for solving differential equa-
tions to calculate the concentrations of A A andA as a func-
tion of time. Assume that initially A is at unit concentrationwhere the arrows represent the directions of the nuclear spins
and treat three cases: ( ) 1 s ; ( )(cf. Section 15.1).

1 s 3 s ; ( ) 1 s
What are the Arrhenius parameters for the following el- 9 s .

ementary reaction?
A reaction A B C D is reversible and has an equi-

H HCl Cl H librium constant equal to 2. ( ) If the initial concentrations of A
and B are 1 and 0.5 mol L , respectively, plot the four concen-The data required are found in Table 18.2 and Table C.3.
trations as a function of time, assuming the rate constant for theThe Arrhenius parameters for the reaction
forward reaction is 1 L mol s . ( ) To confirm the equilib-
rium concentrations of C and D, calculate these concentrationsCl H HCl H
using the equilibrium constant expression.

are given in Table 18.2. What is the rate constant for the reverse
In the case of a reaction like that in the preceding prob-reaction at 1000 K? The thermodynamic parameters for these

lem, there may be a question as to whether there is an interme-substances are given in Table C.3.
diate X:Ozone is decomposed by the catalytic chain

NO O NO O NO O NO O A B X C D
What is the steady-state rate law for the formation of O ?

The formation of phosgene by the reaction
For the indicated values of the rate constants, explore the effects

CO Cl COCl of intermediate X on the plots of concentration versus time.
appears to follow the mechanism The simplest example of an autocatalytic reaction is A

B 2B. Assuming that the rate constant is unity and that
Cl 2Cl [A] 1, plot [A] and [B] versus time and explore the effect

of varying the initial concentration of B from 0.01 to 0.2. Note
that [B] levels off at [A] [B] .Cl CO COCl

Calculate the activation energy and the pre-exponential
COCl Cl COCl Cl factor for the gas reaction

Assuming that the intermediates Cl and COCl are in a steady N O 2NO O
state, what is the rate law for this reaction?

/K 273 298 308 318 328 338
10 /s 0.0787 3.46 13.5 49.8 150 487

( ) Calculate the activation energy and the pre-
Two consecutive first-order reactions are represented by exponential factor for the hydrolysis of 2-chlorooctane. ( )

Calculate at 50 C.
A A A

/ C 0 25 35 45for which we have seen the general solution in equations 18.47–
/s 1 06 10 3 19 10 9 86 10 2 92 1018.50. Use a mathematical application for solving differential

equations to calculate the concentrations of A A andA as
( ) Plot versus [M] according to the Linde-a function of time without using equations 18.47–18.50. As-

mann equation with 1 3, and 1. ( ) Plotsume that initially A is at unit concentration and treat three
log ( / ) versus log ( ), where the pressure is expressedcases: ( ) 1 s ; ( ) 1 s 5 s
in pascals. Compare this plot with Fig. 18.10.3 s ; (c) k 1 s k 25 s .
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For the monomolecular triangle reaction (see equations d[B]
[A] [A] [A]18.60 and 18.61), calculate concentrations as a function of time d

for the following three cases and discuss the results in terms of
Assume that for the first step exp( / ), andthe principle of detailed balance. ( ) The rate constants in mech-

at 298 K and 20 kJ mol . Plot ln versus 1/ foranism 18.60 are all unity. ( ) The rate constants in mechanism
0, 10, 20, and 30 kJ mol .18.61 are all unity. ( ) The rate constants in mechanism 18.61 are

all unity except for 1 1. The initial concentration of A can
Sometimes Arrhenius plots are curved and can be repre-

be taken as 1 M.
sented by

Assume that a reaction goes through an interme- e
diate I, but that .

( ) Plot log versus 1/ for 2, 1, 0, 1, 2 when 10
and 10 kJ mol . Use the temperature range 300 K to 1000
K. ( ) Calculate the activation energies at temperatures 333,
500, and 1000 K and for 2, 1, 0, 1, 2 and make a table.Under these conditions, the first step remains at equilibrium.
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19
Simple Collision Theory of Bimolecular Reactions
Potential Energy Surfaces
Theoretical Calculation of a Rate Constant
Transition-State Theory
Molecular Beam Experiments
Principles of Photochemistry
Rates of Intramolecular Processes and Intermolecular
Energy Transfer
Photochemical Reactions and Their Quantum Yields
The Ozone Layer in the Stratosphere
Femtosecond Transition-State Spectroscopy
Special Topic: Applications of Photochemistry

The preceding chapter was concerned with macroscopic kinetics; this one is con-
cerned with microscopic kinetics, that is, elementary reactions at the molecular
level. The calculation of rate constants from properties of individual atoms and
molecules is challenging because reactions occur as a result of collisions with a va-
riety of energies, angles of approach, and states of reactants and products. Simple
collision theory of bimolecular reaction is based on consideration of collisions of
rigid spherical molecules. To go further and take electronic structure into account,
it is necessary to use the concept of the potential energy surface for a reaction.

Transition-state theory attempts to simplify the problem by making a “dy-
namic bottleneck assumption.” Transition-state theory is not exact, but is based
on a series of approximations. However, it has been useful since its inception in
1935.

Since the absorption of light produces excited states of atoms and molecules,
photochemistry is really the study of the chemistry of excited states. As pointed
out in Section 13.1, electromagnetic radiation in the visible and ultraviolet is gen-
erally required to produce chemical reactions because changes in electronic en-
ergy levels are required. More recently it has been found that the absorption of
many infrared photons from a high-intensity laser can also cause reaction.

Chemical Dynamics and Photochemistry



Calculation of the rate constant for the reaction
of two small radicals
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*Throughout this chapter we will write the Boltzmann constant as to distinguish it from the rate
constant .
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Calculate the bimolecular rate constant at 298 K for the reaction of two different “average”
small radicals with a reduced mass of 30 10 kg mol / 4 98 10 kg and a
collision diameter of 500 pm.
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Example 19.1

19.1 Simple Collision Theory of Bimolecular Reactions

19.1 SIMPLE COLLISION THEORY
OF BIMOLECULAR REACTIONS
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As we saw in the preceding chapter, many reactions of atoms or radicals with
small molecules in the gas phase have pre-exponential factors in the range
10 –10 L mol s . Since bimolecular reactions of small radicals have zero
activation energies, their actual rate constants may be in this range. If the acti-
vation energy is zero, we might expect molecules to react on their first collision
so that the bimolecular rate constant can be estimated from the collision density

between molecules of type 1 and type 2, as calculated for rigid spheres. The
collision density , given by equation 17.55, is the number of collisions between
molecules of type 1 and type 2 per unit volume per unit time.

If reaction occurs with each collision, we can obtain the reaction rate in moles
of collisions between molecules of type 1 and type 2 per unit volume per unit time
by dividing by the Avogadro constant to obtain

d[B ]
(19 1)

d

In discussing chemical kinetics, concentrations are used rather than number den-
sities, so we need to replace the number densities by using

[B ] (19 2)

Substituting this and the expression for the mean relative velocity yields

d[B ] 8
[B ][B ]

d

[B ][B ] (19 3)

where the second-order rate constant is given by

8
(19 4)

When SI units are used, has the units of m mol s and has to be multiplied
by 10 L m to obtain the value in the usual units L mol s . If B and B are
identical, a factor of 2 must be included on the right-hand side of equation 19.4.
Equation 19.4 is only approximate even for bimolecular reactions that occur on
the first collision because molecules are not hard spheres that interact only when
they touch.
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Using equation 19.4, we find

8(1.38 10 J K )(298 K)
(6 022 10 mol )(3 14)(500 10 m)

(3.14)(4.98 10 kg)

2 17 10 m mol s

(2.17 10 m mol s )(10 L m )

2.17 10 L mol s

Collision of two spherical molecules with impact parameter and relative ve-
locity . Note that cos / and sin / . [With permission from P. L. Hous-
ton, McGraw-Hill, New York (2001).]
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Figure 19.1

In equation 19.4, the area is referred to as the collision cross section, but
we should really use the ( ), which is a function of the
relative energy of the collision. Then the rate constant, which is also a function
of the relative energy of collision, is given by

( ) ( ) (19 5)

where is the relative magnitude of the velocity of the reactants (same as the
mean relative speed in Fig. 17.12). Now we have to think about what is meant
by the relative energy of collision . If the spherical molecules collide head on,
the relative energy of collision is equal to , where is the reduced mass of
the system. However, if the molecules barely touch when they pass (that is, the
impact parameter is only slightly less than ), the relative energy of collision
is essentially zero. Figure 19.1 can be used to obtain the energy along the line of
centers of the two molecules, , where is the collision velocity along
the line of centers.

The figure shows that the velocity along the line of centers is cos ,
where is the angle indicated in the figure. Note that the right side of the figure
shows that sin / , where is the distance along the line of centers
when the spheres touch. Thus the energy along the line of centers is given by

1 1
cos (19 6)

2 2
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Figure 19.2

Since sin cos 1,

1
(1 sin ) 1 (19 7)

2

Further steps in the derivation are based on the simplifying approximation that
the probability of reaction is unity when and zero otherwise. Houston*
shows that equation 19.7 yields a reaction cross section given by

( ) 1 (19 8)

provided and ( ) 0 if . The dependence of ( ) on is given
in Fig. 19.2.

Given the functional form for the reaction energy, the value of the reaction
cross section has to be obtained by an integration over impact parameters , and
the value of ( ) has to be obtained by averaging over the Boltzmann energy
distribution. These steps, which are described in detail by Houston, lead to

( ) exp (19 9)

where the average relative velocity is (8 / ) and is the minimum
collision energy along the line of centers. The coefficient of the exponential term
is simply the rate constant for hard-sphere collisions. The Boltzmann factor is the
fraction of collisions that provide energy greater than . Note that equation 19.9
differs from the Arrhenius equation because of the factor in , but that effect
of temperature is not very significant in comparison with the exponential depen-
dence on 1/ .

According to collision theory, a collision that is sufficiently energetic to supply
the activation energy may still fail to produce a reaction if the colliding molecules
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19.2 POTENTIAL ENERGY SURFACES
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are not oriented in such a way that they can react with each other. This can be cor-
rected by introducing a steric factor into equation 19.9. However, this is really not
very useful because there is no simple theory for calculating its value. Since there
are also very drastic assumptions underlying equation 19.9, we cannot expect it to
yield very accurate results. For example, it ignores the changes in electronic struc-
ture that occur in any chemical reaction, and how these changes influence the
reaction cross section. To correct this we must look at chemical reactions from
the viewpoint of quantum mechanics.

Kinetic theory is helpful in that it tells us about molecular collisions, but it does
not deal with the changes that take place on a molecular level when reactants are
converted to products. When two molecules are very close to each other, they
cannot be considered separately because their wavefunctions overlap. Thus, from
the time the reactant molecules are close to each other until the products are
well separated, the system is a kind of This supermolecule is dif-
ferent from an ordinary molecule because it is in the process of change, but it
is a molecule in the sense that its energy and electron distribution can be calcu-
lated for each nuclear configuration by use of quantum mechanics. According to
the Born–Oppenheimer approximation (Section 11.1), the electrons move much
more rapidly than the nuclei, so the molecular electronic energy and wavefunc-
tion can be calculated for a given nuclear configuration by use of the electronic
Schrödinger equation. This approximation was used earlier to calculate the elec-
tronic potential energy function so that the Schrödinger equation could be used
to obtain molecular vibrational energy levels.

If a reaction involves nuclei, there are 3 nuclear coordinates, but the
group of nuclei has three translational coordinates of the center of mass and two
or three rotational coordinates (about the center of mass) that do not affect the
potential energy. Thus, the potential energy is a function of 3 5 nuclear co-
ordinates if the nuclei are constrained to a straight line and 3 6 nuclear coor-
dinates in general. For the simplest type of reaction,

A BC AB C (19 10)

where A, B, and C are atoms, three coordinates are required. It is not possible to
plot the potential energy as a function of three coordinates, but if the angle of
approach of A to BC is fixed, the potential energy of the system can be plotted
as a function of and , where is intermolecular distance. Such a plot is
shown in Fig. 19.3. If is rather large, as on the left face of the diagram, the
potential energy is essentially that of the BC molecule. Similarly, the right face
gives the potential energy of AB. Thus, Fig. 19.3 omits two monotonous valleys
to the left and right that extend indefinite distances. Initially, the distance is
very large. As A approaches BC, the lowest-energy path is given by the dashed
line from reactants R to products P. This dashed line gives the minimum energy
path, which is sometimes referred to as the reaction coordinate. We will soon see
that the configuration of the system does not actually move along the reaction
coordinate in the reaction, but the reaction coordinate does help us visualize the
surface. The highest point along the reaction coordinate is a saddle point. At the

the potential energy is a maximum along the reaction coordinate,

y



Potential
energy

RBC
RAB

Minimum
energy
path

PD
R

A
–B

B
–C

y

R

.

691

� �

�

� �

AB

A B C A B C

Potential energy surface for the reaction A BC AB C with the nuclei
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transition state.

19.2 Potential Energy Surfaces
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Figure 19.3

but it is a minimum in the direction perpendicular to the reaction coordinate. The
reaction system at this point is said to be in the In Fig. 19.3, D is a
high plateau giving the potential energy of three atoms well separated from each
other.

As a first simple example, consider what happens when A approaches a nonvi-
brating BC molecule along the internuclear axis. The point representing the con-
figuration of the system moves along the minimum energy path, the dashed line
in Fig. 19.3. As decreases, kinetic energy is converted to potential energy as
the point representing the system of three nuclei moves up the valley from the
left. If there is initially enough kinetic energy for the system to go over the saddle
point, AB and C are formed and gain energy as the system goes down the valley
to the right. If the kinetic energy is too low, the system returns down the valley to
the left, and we would say that the reactants bounced off each other.

Figure 19.3 applies only when the nuclei are constrained to a line, and the po-
tential energy surface will be different if there is a different angle of approach.
The quantum mechanical calculation of an accurate potential surface for a reac-
tion such as 19.10 is a difficult process, and surfaces have been calculated only for
a few reactions.

A great deal of attention has been focused on the reaction of a hydrogen atom
with a hydrogen molecule:

H H H H H H (19 11)

The potential energy surface for this reaction for 180 is described by means
of the contour diagram in Fig. 19.4. This surface has been calculated using ab

y
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The force on a particular nucleus is given
by the gradient in the potential energy.
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19.3 THEORETICAL CALCULATION OF A RATE CONSTANT
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Figure 19.4

40:

initio methods with configuration interaction (as discussed in Section 11.4),
and the error at any point on the surface is believed to be less than 0.03 eV
(2 9 kJ mol ). As H approaches H H , along the minimum energy path, the
potential energy of the system increases until the saddle point is reached at

. At this point 93 pm, and the potential energy of the system
is 0.37 eV (42 kJ mol ), the highest along the dashed line. Since the saddle
point is 0.37 eV higher than the potential of H and H H at an infinite dis-
tance, this energy must be supplied from relative kinetic energy or vibrational
energy in order for the reaction to occur. In the upper right-hand corner of
Fig. 19.4, there is a high plateau with energy of 432 kJ mol . This is the energy of
three hydrogen atoms infinitely far apart, with respect to separated reactants or
products.

Once the potential energy curve has been obtained for various approach angles
, the probability of a reaction for certain initial conditions (relative kinetic en-

ergy, vibrational energy, and ) can, in principle, be calculated using the time-
dependent Schrödinger equation. However, this is a very difficult calculation, and
so classical mechanics is ordinarily used.

For example, the component of the force
on nucleus in the direction is given by (see Section 9.9)

(19 12)
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where is the potential energy and is the coordinate of the nucleus. At
each instant the system is represented by a point on the surface, and

is integrated numerically to obtain the coordinates of the system as
a function of time. Calculations can also be made when H H initially has vibra-
tional motion, and as an approximation this is also treated classically. Rotational
energy is not important in these calculations. These trajectory calculations yield
a reaction probability of 0 for certain initial conditions and of 1 for others. Fig-
ure 19.5 shows the results of two calculations of this type for collinear collisions.
In Fig. 19.5 the H H molecule is vibrating and H approaches with a cer-
tain initial velocity, but reaction does not occur. Note that in this nonreactive,
inelastic collision, translational energy is converted to vibrational energy in
H H . In Fig. 19.5 reaction does occur.

To calculate a rate constant in this way, it is necessary to make a very large
number of trajectory calculations with initial states chosen to give a statistically
representative sample of possible initial states at the chosen temperature. The
initial conditions can be chosen by a Monte Carlo procedure to ensure that
the distribution of each initial parameter approaches the correct distribution as
the number of calculated trajectories increases. The relative kinetic energies of
H and H H are given by the Boltzmann equation. All angles of approach
have to be included, but most reactive collisions for reaction 19.11 occur at angles
near 180 .

To see how a rate constant can be calculated from a series of trajectory
calculations, we need to consider the reaction probability ( ), often referred
to as the opacity function, and the way it is used to calculate a reaction cross
section ( ). The ( ) is simply the fraction of the total
number of trajectories at a selected reactant relative velocity and impact param-
eter (Section 17.8) that result in reaction. The reaction probability ( ) for the
H H reaction for a relative velocity of 1 17 10 cm s is shown in Fig. 19.6
as a function of the impact parameter . The reaction probability is greatest
for an impact parameter of zero, and it decreases to zero at some finite impact
parameter.

The contribution to the reaction cross section ( ) of collisions with an im-
pact parameter is 2 ( ) d , and so the cross section is given by

( ) 2 ( ) d (19 13)

When a chemical reaction occurs in bulk, molecules collide at all possible
relative velocities, and so the rate constant ( ) at temperature is made up
of a sum of terms for all possible relative velocities, with each weighted by the
fraction of collisions with that relative velocity:

( ) ( ) ( )

( ) ( ) (19 14)

or

( ) ( ) ( ) d (19 15)

where ( ) is the Maxwell–Boltzmann distribution for relative velocity at
temperature . In 1965 Karplus, Porter, and Sharma* calculated a very large
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Figure 19.6

number of trajectories for the H H reaction and found that their results could
be expressed by the following Arrhenius equation:

31 000 J mol
(4 3 10 mol cm s ) exp (19 16)

(8 3145 J K mol )

This result is in pretty good agreement with experimental results obtained by
studying the reaction

D H DH H (19 17)
or

H para-H ortho-H H (19 18)

and with the value calculated using transition-state theory, which we will discuss
in the next section. The transition-state rate constant over the same range of tem-
perature is given by

34 440 J mol
(7 4 10 mol cm s ) exp (19 19)

(8 3145 J K mol )

Classical calculations have been made on a number of simple reactions, and
the general conclusion is that classical calculations can provide an adequate de-
scription of the collision dynamics for some purposes. There are quantum mechan-
ical effects in reaction kinetics, and penetration into classically forbidden regions
(“tunneling”) may be important, especially at lower temperatures.

The biggest difficulty in the quantum mechanical calculation of a reaction rate
is calculating the potential energy surface with sufficient accuracy. The shape of
this surface is extremely important in determining the role of the vibrational en-
ergy of a reactant in affecting the likelihood of reaction.

The potential energy diagram is symmetrical for the reaction H H H
H H H , but this is not true in general. The shape of the potential energy sur-
face determines whether translational motion or vibrational motion will be most
effective in causing reaction. Note that the reaction begins at the right-hand side
of each diagram in Fig. 19.7 and proceeds from right to left. It is useful to dis-
tinguish between potential energy surfaces with early barriers and late barriers.
Figure 19.7 shows a potential energy surface with an and a reactant
with sufficient translational energy to cross the saddle point into the trough for
products. The energy released as the system passes down from the saddle point
results in vibrational energy for the products. Figure 19.7 shows a potential en-
ergy surface with an early barrier and a reactant with vibrational energy. Even
though the total energy may be the same as in ( ), the reactant may be reflected
back from the barrier. Thus we conclude that an early barrier favors a reactant
with translational energy and produces vibrationally excited products.

Figure 19.7 shows a potential energy surface with a and a re-
actant with vibrational energy. The molecule may bounce off of the wall of the
valley it is in and cross the saddle point into the reactant valley, where it does not
have much vibrational energy. Figure 19.7 shows that if the reactant does not
have vibrational energy, it may bounce back into the reactant valley. Thus a late
barrier favors a reactant with vibrational energy and produces a product with less
vibrational energy. Note that a potential energy surface that has an early barrier
in one direction has a late barrier in the other direction.
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( ) A potential energy surface with an early barrier and a reactant with suf-
ficient translational energy to cross the saddle point. ( ) A potential energy surface with
an early barrier and a vibrationally excited reactant. ( ) A potential energy surface with a
late barrier and a vibrationally excited reactant. ( ) A potential energy surface with a late
barrier and a reactant that has sufficient translational energy to reach the saddle point, but
does not.
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Figure 19.7
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Potential energy diagram showing the relationship between the height of
the barrier in the potential energy surface and the activation energy . [Reproduced
from I. W. M. Smith, 1980, Figure 4.2,
p. 116, by permission of the publishers, Butterworth & Co. (Publishers) Ltd. .]
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19.4 TRANSITION-STATE THEORY

v

Figure 19.8

Transition-state theory was developed before much was known about potential
energy surfaces, and it, in effect, bypasses the problem of the dynamics of a re-
active collision. Nevertheless, it is very useful because quantitative calculations
can be made with estimated properties of the transition state for a reaction.
The development of transition-state theory goes back to Eyring and Evans and
Polanyi* in 1935. The basis of transition-state theory is that it is possible to define
a surface in coordinate space and to calculate the flux of trajectories that pass
through this surface from the reactant side to the product side

This flux is identified as the reactive flux. If the potential energy barrier is
high, there is no difficulty in locating this surface; it is placed at the top of the en-
ergy barrier perpendicular to the reaction coordinate. In addition, transition-state
theory is based on the Born–Oppenheimer approximation and the assumption
that molecules are distributed among their states according to the Boltzmann
distribution.

To derive an expression for the rate constant, we will focus our attention on
what happens at the top of the potential energy barrier shown in Fig. 19.8 for the
reaction

A B C (19 20)

The dashed lines show the quantum mechanical zero point energies for reactants,
products, and the at the top of the potential energy barrier. The
rate of this elementary gas reaction is given by

[A][B] (19 21)

According to transition-state theory the reaction proceeds through an activated
complex C that produces C at a rate [C ]. It is important to remember that C
is not an intermediate compound in the reaction, but rather is a structure that is
in the process of change in the direction of the products. The rate of reaction can
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be expressed in two ways, [A][B] [C ], so the second-order rate constant
is given by

[C ]
(19 22)

[A][B]

The concentration terms look like the expression for the equilibrium constant
of the reaction A B C , so transition-state theory assumes this is a rapid
equilibrium and replaces the concentration terms in equation 19.22 with

[C ]
(19 23)

[A][B]

where the standard state concentration is required because the equilibrium
constant is dimensionless. Thus equation 19.22 can be written

(19 24)

This shows that if we can derive expressions for and theoretically, we can
predict the rate of reaction 19.20.

We are going to use statistical mechanics to calculate for the gas reaction
A B C , but first we must make a purely thermodynamic adjustment from
a dimensionless (obtained from statistical mechanics) to a dimensionless
(required for equation 19.24):

(19 25)

where is the standard state pressure. This adjustment was discussed in Section
5.7. For the reaction under consideration, 1, so this adjustment is given
by

(19 26)

Both and are dimensionless. Substituting equation 19.26 in equation 19.24
yields

(19 27)

The calculation of is simple because C is going through the transition state
and becoming C. C may have vibrations that are perpendicular to the reaction
coordinate, and they have normal frequencies because their potential functions
have the usual parabolic shape. However, the motion of C in the direction of the
reaction coordinate has an inverted potential curve since the transition state is at
a Therefore, this motion represents advancement along the reaction
coordinate through the transition state. Thus the reaction rate is proportional to
the inverse time (or “frequency” ) spent at the transition state. We replace
with to obtain

(19 28)
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Sometimes a transmission coefficient is included in this equation to allow for the
possibility that some of the activated complexes may return to reactants instead of
going on to C. However, because it is difficult to calculate , we will assume that
it has a value of unity so that the rate constant , which is calculated by transition-
state theory, is a maximum value for the reaction.

Statistical mechanics can be used to calculate the equilibrium constant for the
formation of C . If this were an ordinary gas reaction, equation 16.88 shows that
this equilibrium constant would have the value

(C )/
e (19 29)

[ (A)/ ][ (B)/ ]

where the change in energy at absolute zero is (C ) (A) (B). In
writing equation 19.29, we have assumed that A B C is an ordinary reac-
tion, but it is not because the activated complex C is falling apart. The partition
function for the motion of C along the reaction coordinate can be written as if
the motion were a vibration with frequency :

1
(19 30)

1 e

This frequency is lower than the frequencies of the other vibrations because the
potential energy curve is relatively flat near the transition state. Since / is
small, e 1 , so the denominator of equation 19.30 is close to / . Thus

(19 31)

Therefore, we write the partition function for C as ( / ) (C ), where
(C ) is the partition function for C , omitting the partition function for the vi-

bration along the reaction coordinate. Making this substitution in equation 19.29
and substituting equation 19.29 in equation 19.28 yields

(C )/
e (19 32)

[ (A)/ ][ (B)/ ]

Note that the frequency of passage over the potential energy barrier has can-
celed. The last three terms in equation 19.32 are the equilibrium constant for
the formation of the activated complex from the reactants, omitting the partition
function for the vibration along the reaction coordinate. Thus equation 19.32 can
be written

(19 33)

where

(C )/
e (19 34)

[ (A)/ ][ (B)/ ]
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CH H CH H 2 10 1 10
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We have derived equation 19.33 for a bimolecular reaction, but it can be general-
ized to

(19 35)

where is the
For a unimolecular reaction, the translational partition functions for the acti-

vated complex and the reactant cancel, so the unimolecular rate constant is given
by

(C )
e (19 36)

(A)

where the subscript int indicates that only the internal coordinates are involved.
This yields a rate constant in s , as it must. This is the rate constant in the
high-pressure limit (see Section 18.10), where there are enough collisions to
maintain the Boltzmann distribution of A . However, in the falloff region the
rate of formation of vibrationally excited A molecules is too slow to main-
tain the Boltzmann distribution. To calculate rate constants in the falloff re-
gion it is necessary to calculate the rate constant for the activation process and
its reverse.

The classical theory for unimolecular reactions was developed by Rice, Rams-
berger, and Kassel. This theory has been improved in several aspects by Marcus,
and it is now referred to as the RRKM theory. Since phenomena in the falloff
region are quite complicated, we will not be able to discuss them here.

The pre-exponential factors for a number of bimolecular reactions are
given in Table 19.1. The pre-exponential factors may be compared with
10 –10 cm mol s calculated from simple collision theory (Section 19.1).
The last column of Table 19.1 gives pre-exponential factors calculated from
transition-state theory using frequencies and geometrical parameters
for the activated complex.

The calculation of the internal partition function for the transition state is
a problem because in general we do not know the structure of the transition state.
However, various hypotheses about the structure of the transition state may be
made, or the structure can be calculated by ab initio methods.
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Calculation of the pre-exponential factor for the rate constant
of the reaction of a hydrogen atom with a hydrogen molecule
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Using transition-state theory, calculate the pre-exponential factor for the rate constant for
the reaction

H H H H

at 500 K. Assume a linear activated complex with the nuclei each separated by 0 94
10 m. The vibrational partition functions may be ignored because their values are so
close to unity. (The experimental value is 5 4 10 cm mol s .)

According to equation 19.35, the pre-exponential factor is given by

( / )( / )

where , , and . Since / and /
cancel,

/
( / )

The internal partition function for the transition state is the rotational partition func-
tion for a symmetrical and linear arrangement of three hydrogen atoms. Since the central
hydrogen atom is on the axis of rotation, it does not contribute to the moment of inertia:

(1.0078 10 kg mol ) (1.88 10 m)
(2.0156 10 kg mol )(6.022 10 mol )

2 96 10 kg m

The internal partition function for the transition state is therefore given by

8 8 (2 96 10 kg m )(1 381 10 J K )(500 K)
18 4

2 2(6 626 10 J s)

The translational partition function for the relative motion of the reactants is given by

(2 )

[2 (1 116 10 kg)(1 381 10 J K )(500 K)]
(6 626 10 J s)

1 157 10 m

where is the reduced mass of a hydrogen atom and a hydrogen molecule.
The rotational partition function for H at 3000 K was calculated in Example 16.9 to

be 17.13. At 500 K the rotational partition function is

500
17 13 2 86

3000

Thus, the pre-exponential factor is

(8.3145 J K mol )(500 K)(18.4)
(6.626 10 J s)(1.157 10 m )(2.86)

3 49 10 m mol s
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19.4 Transition-State Theory
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Comment:

Transition-state theory has been ery useful in predicting the rates of chemical
reactions, but it does depend on experimental data on ibrational frequencies
and internuclear distances. The theory has been most useful for small molecules.
In some cases the rate calculations are complicated by tunneling through the
potential energy barrier.

A B
C

A B
D A

B
A B

scattering
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Converting to units used in the statement of the problem,

(3.49 10 m mol s )(100 cm m ) 3.49 10 cm mol s

which is about two-thirds of the experimental value of 5 4 10 cm mol s .
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19.5 MOLECULAR BEAM EXPERIMENTS
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In gas kinetics experiments reactant molecules approach each other on trajecto-
ries with random angles and impact parameters and with relative energies that
range around those having the highest probabilities at the reaction temperature.
Colliding molecules may also have different amounts of vibrational, rotational,
and electronic energies. Reaction rate constants are averages over these various
angles of approach, relative energies, and the like.

In the 1960s it became possible to study the dynamics of elementary reactions
by the use of crossed molecular beams. This makes it possible to control the ener-
gies of reacting atoms and molecules, to study the effect of molecular orientation,
and to detect reaction intermediates and study their decay dynamics. This is done
by measuring the velocity and angular distributions of the products. This has led to
the discovery of bound states that tell more about the potential energy surface for
a reaction. For example, in the reaction F CH I IF CH , it was found that
CH IF was formed. Thus the use of crossed beams helps bridge the gap between
the basic laws of mechanics and chemical reactions.

To obtain a microscopic view of a bimolecular gas reaction, crossed beams
can be used in which reactant molecules are in known quantum states, and the
quantum states of product molecules are identified. In the simplest type of appa-
ratus, illustrated schematically in Fig. 19.9, and are sources of beams of the
two reactants that collide in region . These collisions occur in a chamber evacu-
ated with a high-speed pump so that the only collisions are between the molecules
from and . Product molecules and scattered reactant molecules are detected
at . The effect of changing the angle of approach may be studied by moving or

, and the effect of the relative velocity of the reactants may be studied by use of
velocity selectors on the beams as they leave and . Sometimes the molecules in
molecular beams are put in selected electronic, vibrational, and rotational states
so that the effects of these quantum numbers on the observed cross sections can
be determined. The term includes three types of phenomena:

Elastic scattering, in which there are no changes in rotational, vibrational, or
electronic quantum numbers in the collision
Inelastic scattering, in which there are changes in quantum numbers, but no
reaction
Reactive scattering, in which new products are formed

y
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Schematic diagram for a molecular beam apparatus for studying the reaction
of molecules from source with molecules from source . Products are detected at .

19.5 Molecular Beam Experiments
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Figure 19.9

To study the effects of the quantum numbers of molecules in colliding beams,
the molecules must be prepared in a certain state, and there must not be collisions
in the beams that would change these quantum numbers. Molecules can be put
into desired vibrational and rotational states by laser excitation. Molecules with
dipole moments can be oriented in an inhomogeneous electric field so that the
effects of molecular orientation in collision can be studied:

Na Cl NaCl Cl

This reaction and some similar reactions have quite large cross sections (10 pm ),
which indicates that reaction occurs at distances of the order of 500 pm. The
sodium atom loses an electron to the chlorine at a distance of this magnitude so
that an ionic intermediate is formed:

Na Cl (Na Cl Cl) NaCl Cl

This is referred to as a “harpooning” mechanism because the electron from the
sodium atom can be thought of as a harpoon, and the sodium and chlorine ions
formed can be thought of as being drawn together by electrostatic attraction.

In experiments with molecular beams, it may be useful to use a supersonic
beam source to obtain reactant molecules with very high velocities. The super-
sonic molecular beam is generated by allowing a high-pressure, dilute mixture of
the reactant of interest in an inert carrier gas to escape into the vacuum chamber
through a pinhole. The reactant molecules in the beam move more rapidly than
the speed of sound (see equation 17.33), and it can be shown that the peak speed
of reactant molecules in the beam is approximated by

2
(19 37)

1

y

y y
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Chapter 19 Chemical Dynamics and Photochemistry

19.6 PRINCIPLES OF PHOTOCHEMISTRY
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where / for the carrier gas, is the molar mass of the carrier gas, and
is the temperature of the source chamber. It can also be shown t40hat the reactant
molecules have a narrower velocity distribution than the Maxwell–Boltzmann
distribution.

In studying the electronic spectroscopy of molecules we have seen how the ab-
sorption of a photon by a molecule can raise it to a higher energy level, which
may have a minimum in the potential energy curve, or may not. According to the
Franck–Condon principle (Section 14.2), the internuclear distance in the molecule
is not initially changed by the absorption, and the electric dipole transition mo-
ment (Section 13.2) is proportional to the overlap integral of the initial and final
vibrational states. In general, selection rules are obeyed, but we must remember
that the actual system may be more complicated than the ones for which the se-
lection rules were developed. We will soon see that the selection rule 0
(Section 14.2), which prohibits transition between states of different multiplici-
ties (i.e., singlet–triplet), is quite important in photochemistry. When a molecule
absorbs a photon it may lose energy through fluorescence or phosphorescence,
but now we will be interested in the fact that chemical reactions may ensue. As
pointed out in Section 13.1, electromagnetic radiation in the visible and ultra-
violet is generally required to produce chemical reactions because changes in
electronic energy levels are required. More recently it has been found that the
absorption of many infrared photons from a high-intensity laser can also cause
reaction.

The of photochemistry, which was stated by Grotthus in 1817
and Draper in 1843, is that only light that is absorbed can produce photochemical
change. The which was proposed by Stark and Einstein from
1908 to 1912, is that a molecule absorbs a single quantum of light in becoming
excited:

A A (19 38)

Thus, a mole of photons can excite a mole of molecules. If the electromagnetic
radiation is extremely intense, as in a laser beam, two photons may be absorbed
essentially simultaneously:

A 2 A (19 39)

In discussing the intensity of light in connection with the Beer–Lambert law
(Section 14.4), we used to represent the intensity of light of a particular wave-
length in terms of energy per unit area per unit time. Because of the two principles
in the preceding paragraph, we will find it convenient in discussing photochem-
istry to use to represent the by a system, expressed as
the amount of photons per unit volume per unit time, where, of course, the amount
is expressed in moles. A mole of photons is a convenient unit in photochemistry,
and it is frequently referred to as an The intensity is calculated from
the radiant energy of a specific wavelength absorbed per unit volume per unit time
by dividing by .

y

y
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Monochromatic radiation at 400 nm, produced by a laser, is completely absorbed by a
reaction mixture with a volume of 0.5 L. If the intensity of the radiation is 50 W, what
amount of photons is absorbed in 10 min? What is the value of ?

(50 J s )(600 s)(400 10 m)
(6 022 10 mol )(6 626 10 J s)(2 998 10 m s )

0 100 mol 0 100 einstein

0 100 mol
3 33 10 mol L s

(10 min)(60 s min )(0 5 L)
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Example 19.3

quantum yield

intensity of
light absorbed

19.6 Principles of Photochemistry
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If the gas or solution strongly absorbs the light, the reaction will occur only
near the surface where the light enters. If the gas or solution is weakly absorbing,
reaction will occur throughout the volume, but only a fraction of the light will be
absorbed (see Problem 19.9).

The rate of a photochemical reaction is proportional to the intensity of light
absorbed , and the proportionality constant is the . Thus for the
reaction

A 2B C (19 40)

the rate of reaction is given by

d[A] 1 d[B] d[C]
(19 41)

d 2 d d

so that the quantum yield for a reaction is independent of the reactant studied.
Thus the quantum yield is equal to the reaction rate divided by the

:

(19 42)

From a molecular point of view, the quantum yield is the ratio of the number
of molecules undergoing some sort of change divided by the number of photons
absorbed:

molecules changed in a particular way
(19 43)

photons absorbed

The quantum yield is also useful for expressing the rate of fluorescence and phos-
phorescence emission, as we will see later. When a photon is absorbed a number
of things can happen to the energy, so the quantum yield may be less than unity.

The quantum yield for fluorescence or phosphorescence is necessarily less
than unity, and usually much less. The quantum yield for a chemical reaction, how-
ever, may be a very large number if the absorption of light produces a radical that
starts a chain reaction of a thermodynamically spontaneous reaction. The quan-
tum yield for the first step of a chemical reaction, the so-called primary process,
is equal to unity or less.

An electronically excited state of a molecule has a different electron distri-
bution and nuclear configuration than the ground state. An electronically excited
state of a molecule may be converted spontaneously to more possible products
than the ground state because of the additional energy it has.



Calculation of the quantum yield for the photobromination
of cinnamic acid

Calculation of the steady-state concentration of chlorine atoms
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In the photobromination of cinnamic acid, radiation at 435.8 nm with an intensity of 1 4
10 J s was 80.1% absorbed in a liter of solution during an exposure of 1105 s. The con-
centration of Br decreased by 7 5 10 mol L during this period. What is the quantum
yield?

(6.02 10 mol )(6.62 10 J s)(3 10 m s )
(435.8 10 m)

2.74 10 J mol

(1.4 10 J s )(0.801)
4.09 10 mol L s

(2.74 10 J mol )(1 L)

7.5 10 mol L
6.79 10 mol L s

1105 s

6.79 10 mol L s
16.6

4.09 10 mol L s

A photochemical reaction may reach a steady state because the products undergo chemi-
cal changes. For example, the photochemical dissociation of molecular chlorine reaches a
steady state as a result of the recombination of atoms.

Cl 2Cl

Derive the equation for the steady-state concentration of chlorine atoms.
The rate equation is

d[Cl ] 1 d[Cl]
[Cl]

d 2 d

Note that each term in this equation has the units mol L s . In the steady state

[Cl]
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19.7 RATES OF INTRAMOLECULAR PROCESSES
AND INTERMOLECULAR ENERGY TRANSFER
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Before considering chemical reactions we must consider the physical pro-
cesses that result from the absorption of electromagnetic radiation. The energy
absorbed may produce electronically excited molecules that can react chemically,
but often the energy is rapidly dissipated as heat.

The electronic excitation of a molecule was discussed in Chapter 14, and in Section
14.8 we saw that the excitation energy may be dissipated by internal conversion
(IC), intersystem crossing (ISC), fluorescence (F), or phosphorescence (P). An
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19.7 Rates of Intramolecular Processes and Intermolecular Energy Transfer
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Figure 19.10

important characteristic of each of these processes is the
before it undergoes the process. In this chapter we will empha-

size the rate constant , that is, the reciprocal of the lifetime , because we will
be comparing the rates of these physical processes with the rates of chemical re-
actions. The approximate first-order rate constants for the various intramolecular
processes are summarized in Fig. 19.10. Since the absorbing molecule is usually in
a singlet ground state , it is excited to a singlet excited state; this may be higher
than state , but we will assume that excitation is to for simplicity.

When a substance is illuminated with constant intensity, a steady state is
reached in which the rates of formation of intermediates are equal to their rates
of disappearance. If the absorbed intensity is expressed in moles of photons
absorbed per unit volume per unit time, the steady-state concentration of is
given by

[ ] [ ] [ ] (19 44)

which may be written

[ ] (19 45)

The steady-state rate equation for is (assuming is populated by ICS from
)

[ ] [ ] [ ] (19 46)

Solving for [ ] yields

[ ]
[ ] (19 47)

Substituting equation 19.44 yields

[ ] (19 48)
( )( )

The rate constant for fluorescence is equal to the Einstein probability
for spontaneous emission (Section 13.2) if there is a single lower state and

excitation energy is not lost in various radiationless processes. We saw earlier
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R. B. Cundall and A. Gilbert, London: Nelson,
1970.
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IC F ISC 1

IC F ISC

F

F IC1 1

F ISC 1

F
F F 0

IC F ISC

F0

Fluorescence Lifetimes and Quantum Yields of
Some Molecules in Solution at 25 C

/ns /ns

Benzene Hexane 26 0.070 370
Naphthalene Hexane 106 0.380 280
Anthracene Benzene 4 0.240 17
Chlorophyll Methanol 6.9 0.280 25
Chlorophyll Methanol 5.9 0.080 74
Eosin Water 4.7 0.150 31
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Table 19.2

(Section 14.5) that the radiative lifetime 1/ is equal to 1/ , and is ap-
proximately inversely proportional to the molar absorbancy index :

10 L mol cm s
(19 49)

In other words, states that are populated readily are also depopulated readily.
A strongly absorbing compound with 10 L mol cm would be expected
to have a natural radiative lifetime of about 10 s, and a weakly absorbing com-
pound with 10 L mol cm would be expected to have a natural radiative
lifetime of about 10 s.

The observed lifetime of an excited singlet state is less than the radiative
lifetime because there are other deactivation processes. According to Fig. 19.10,
the rate of decay of is given by

d[ ]
( )[ ] (19 50)

d

so that the singlet lifetime is given by

1
(19 51)

according to equation 18.17.
The singlet lifetime may be measured in the laboratory by observing the

decay of the intensity of the fluorescence after a short ( ) pulse of excitation
because the intensity of fluorescence is proportional to the excited state concen-
tration. The singlet lifetimes for some organic molecules in solution at room tem-
perature are given in Table 19.2.

The quantum yield for fluorescence is equal to the ratio of fluorescence
[ ] to the total rate of deactivation of the state, which is given by (

)[ ]. Thus,

/ (19 52)

This is the quantum yield for fluorescence in the absence of any quenching or
chemical reaction. It is evident that the singlet lifetime is given by

(19 53)
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This quenching process is referred to as electronic energy transfer.
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Thus, measurement of the singlet lifetime and the quantum yield for fluores-
cence makes it possible to calculate the radiative lifetime . The radiative life-
times for several molecules calculated in this way are given in Table 19.2. The
quantum yield for internal conversion and the quantum yield for intersystem
crossing are given by

(19 54)

(19 55)

Thus,

1 (19 56)

Returning to Fig. 19.10, we can see that if the rate constant for the
intersystem crossing to is fast enough, will be present at an appre-
ciable concentration. If this happens, it is very significant for photochemistry,
since triplet state molecules may have long lifetimes compared with singlet
state molecules, and therefore have a higher probability of undergoing chemical
reaction.

For the state of Fig. 19.10 the phosphorescence lifetime will be

1
(19 57)

and the quantum yield for phosphorescence is given by

rate of phosphorescence emission [ ]
rate of absorption of radiation

(19 58)
( )( )

where the second form has been obtained by substituting the expression for the
steady-state value of [ ] given in equation 19.47 and equation 19.43.

Excited molecules may undergo several different types of reactions. Gener-
ally chemical reaction of one excited molecule with another molecule is accom-
panied by deactivation of the excited molecule, and the excited state is said to be
quenched. Quenching an excited molecule (donor D) with a second molecule (ac-
ceptor A) may result in the electronic excitation of A with concomitant deactiva-
tion of D. Since
minute traces of impurities (quenchers) can rapidly deactivate excited molecules,
substances and solvents used in photochemical studies must be carefully purified.
For example, molecular oxygen reacts rapidly with excited molecules ( 10 –
10 L mol s ), and it is therefore often important to deoxygenate the solutions
under study.

We will represent quenchers by Q. The quenching of phosphorescence pro-
vides a means of determining the rate constant for the reaction of the triplet state
molecules and the quencher. The steady-state concentration of triplet molecules
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Stern–Volmer equation.
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19.8 PHOTOCHEMICAL REACTIONS AND
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in the absence of a quencher is given by equation 19.47. In the presence of a
quencher this equation becomes

[ ]
[ ] (19 59)

[Q]

because of the additional pathway for reaction of the triplet state molecules
with the quencher. The quantum yield for phosphorescence in the absence of a
quencher is given by equation 19.58 and will be represented by in this section.
If the steady-state concentration of in the presence of a quencher is given by
equation 19.59, the ratio of the quantum yields in the absence and presence of
the quencher is given by

[Q]

1 [Q] (19 60)

where , the phosphorescence lifetime, is defined by equation 19.57. The ratio
of the intensity of phosphorescence in the absence of quencher to the intensity

of phosphorescence in the presence of quencher is proportional to the ratio of
the quantum yields, so the preceding equation may be written

1 [Q] (19 61)

This equation is referred to as the
Electronic energy transfer processes may be classified as radiative transfer,

short-range transfer, or long-range resonance transfer. In radiative transfer the
donor D emits radiation which is absorbed by the acceptor A:

D D (19 62)

A A (19 63)

Short-range energy transfer can occur if the distance between donor and ac-
ceptor molecules approaches the collision diameter. A collision is not necessarily
required, since the energy transfer can occur at distances slightly greater than the
collision diameter.

In long-range energy transfer the donor and acceptor molecules are separated
by a distance much greater than the collision diameter. The efficiency of the en-
ergy transfer depends on the extent of the overlap of the emission spectrum of the
donor and the absorption spectrum of the acceptor. The energy transfer is not ef-
ficient unless the decay process D D and the excitation process A A are
allowed electronic transitions. Under favorable circumstances energy transfer can
occur over distances of 5 to 10 nm with rate constants of 10 –10 L mol s .

When an excited species undergoes a chemical reaction, we can add another step
to the simplified mechanism that we have been discussing. If the excited species
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y y
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Quantum Yields in Photochemical Reactions at 25 C

nm

1. 2HI H I 300 –280 2
2. C H (C H ) 360 0–1
3. CH CHO CO CH ( C H H ) 310 0.5

253.7 1
4. (CH ) CO CO C H ( CH ) 330 0.2
5. H C O ( UO ) CO CO H O( UO ) 430 –250 0.5–0.6
6. Cl H 2HCl 400 10
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Table 19.3

(here assumed to be ) reacts with reactant R with a bimolecular rate constant
, it may be possible to evaluate the rate constant:

R stable products [ ][R] (19 64)

In the steady state

[ ] (19 65)
( [R])( )

The quantum yield for the production of stable products is

[ ][R]
(19 66)

Substituting equation 19.65 and rearranging yields

1
1 (19 67)

[R]

Even for this simplified mechanism there are so many rate constants to be deter-
mined before can be obtained that this is not generally practical, so in further
discussions, we will emphasize quantum yields. Note that from equation 19.43
the quantum yield can be determined by measuring the number of quanta ab-
sorbed and the number of molecules reacted. This requires no knowledge of rate
constants.

To determine a quantum yield it is necessary to measure the intensity of the
light. This may be done by use of a thermopile, which is a series of thermocou-
ples with one set of junctions blackened to absorb all the radiation, which is then
converted to heat. The other set of junctions is protected from radiation.

The amount of radiation may also be measured with a chemical
in which the amount of chemical change is determined. The yield of the photo-
chemical reaction in the actinometer was determined originally by use of a ther-
mopile. The quantum yields of a few photochemical reactions are summarized in
Table 19.3.

Reaction 1 in Table 19.3 has the same value of from 280 to 300 nm, at
low pressures and high pressures, in the liquid state or in solution in hexane.
The primary process HI H I is followed by the reactions H HI
H I and I I I , thus giving two molecules of HI decomposed for each pho-
ton absorbed. Reaction 2, the dimerization of anthracene, has a quantum yield

y
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of unity initially, but the reverse thermal reaction can occur as the product
accumulates.

Reaction 3 in Table 19.3 is interesting because at 300 C has a value of more
than 300, indicating that the free radicals that are first produced by the absorp-
tion of light are able to propagate a chain reaction at the higher temperatures.
At room temperature the reactions involved in the chain do not go fast enough
to be detected. The products given in parentheses are present also but in small
amounts.

The experimental determination of the quantum yield constitutes an excel-
lent method for detecting (Section 18.11). If several molecules of
products are formed for each photon of light absorbed, the reaction is obviously a
chain reaction in which the products of the reaction are able to promote reaction
of other molecules.

Reaction 4 in Table 19.3 is an example of the fact that the absorption of light
in a particular bond does not necessarily cause the rupture of that bond. Acetone,
like other aliphatic ketones, absorbs ultraviolet light at about 280 nm. The C O
bond, which we designate as the chromophore, is very strong and does not break
to give atomic oxygen. Instead, the absorption energy leads to the cleavage of an
adjacent C C bond that is weaker; thus,

(19 68)

giving a methyl radical and an acetyl radical. The acetyl radical can then decar-
bonylate, giving CO and CH , or it can react with CH to give back acetone. The
methyl radicals can couple to form ethane.

Reaction 5 in Table 19.3 illustrates a photosensitized reaction. The photode-
composition of oxalic acid, sensitized by uranyl ion, is so reproducible that it is
suitable for use as a chemical actinometer. In the uranyl oxalate actinometer the
light is absorbed by the colored uranyl ion, and the energy is transferred to the
colorless oxalic acid, which then decomposes. The uranyl ion remains unchanged
and can be used indefinitely as a sensitizer. The fact that the molar absorption
coefficient of uranyl ion is increased by the addition of colorless oxalic acid indi-
cates the formation of a complex. The formation of a chemical complex is often
necessary for photosensitization.

Reaction 6 in Table 19.3 is the best-known example of a chain reaction.
About 10 molecules react for each quantum absorbed. The molecules of hydro-
gen chloride formed undergo further reaction with the hydrogen and chlorine
atoms produced (Section 18.11). The measurement of the number of molecules
per photon gives a measure of the average number of molecules involved in the
chain. Initiation of the reaction with a flash of light can result in an explosively
fast reaction.

The formation of ozone in the stratosphere is an example of a photochemical
stationary state. The ozone formed in this way is important because it absorbs
ultraviolet radiation that would otherwise cause damage to life at the surface of
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the earth. A simplified mechanism for the formation and destruction of ozone in
the stratosphere is the following:

O 2O (19 69)

O O M O M (19 70)

O O O (19 71)

O O 2O (19 72)

where the ’s are photodissociation constants defined below. The photolysis reac-
tion in the first step occurs only at wavelengths less than 242 nm. Ozone is formed
in the three-body reaction in step 2. The protective role of ozone is due to the third
step, in which radiation in the 190- to 300-nm range dissociates ozone. The fourth
step is a slow reaction. The recombination of oxygen atoms with a third body to
form O is very slow in the stratosphere and can be neglected. If the absorption
of solar radiation in the first and third steps is steady, the concentration of ozone
rises to a steady level that can be calculated as follows. The rate of change of ozone
concentration is given by

d[O ]
[O][O ][M] [O ] [O][O ] (19 73)

d

where is the for ozone. The photodissociation
coefficient is the probability of dissociation of a molecule per second by light ab-
sorption. This coefficient is calculated using

d ˜ (19 74)

where is the quantum yield of dissociation of the molecule at wave number ˜ ,
is the intensity of sunlight in quanta per unit area per unit time per wave number,
and is the absorption cross section of the molecule at wave number ˜ . Thus,
has SI units of m s , and has SI units of s .

The rate of change in the concentration of oxygen atoms is assumed to be
zero in the steady state since they are present at very low concentrations:

d[O]
2 [O ] [O][O ][M] [O ] [O][O ] 0 (19 75)

d

Adding equations 19.73 and 19.75 yields

d[O ]
2 [O ] 2 [O][O ] (19 76)

d

From experimental measurements it is known that [O ] [O ] and
[O][O ][M] [O][O ], so equation 19.75 becomes

[O ] [O][O ][M] (19 77)

Substituting this for [O] in equation 19.76 yields

d[O ] 2 [O ]
2 [O ] (19 78)

d [O ][M]
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The destruction of ozone by chlorine atoms in the stratosphere has become a
serious issue because of the “ozone hole” in the Antarctic region, which can be
sur eyed by satellite. This has led to international controls on the manufacture of
CFCl and CF Cl . Se eral cycles of the type of 19.81 are in ol ed, and there has
been intense interest in quantitati e calculations of the lifetimes of arious
chlorofluorocarbons in the stratosphere. The Nobel Prize in chemistry for 1995
was awarded to Paul Crutzen, Mario J. Molina, and F. Sherwood Rowland for
their research on this topic.
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Therefore, the steady-state concentration of O is given by

[O ] [O ] [M]/ (19 79)

Since increases with altitude and [O ] decreases with altitude, there is a
maximum steady-state concentration in the stratosphere at an altitude of about
20 km.

In the late 1960s it was found that nitrogen oxides can catalyze reaction 19.72:

NO O NO O

NO O NO O

O O 2O (19 80)

In the mid-1970s it was discovered that chlorine atoms from the photolysis of chlo-
rofluorocarbons (CFCl CFCl Cl and CF Cl CF Cl Cl) at
the level of the ozone layer can also catalyze the decomposition of ozone:

Cl O ClO O

ClO O Cl O

O O 2O (19 81)

In a chemical reaction a molecule is in the transition state for only about
10 femtoseconds (10 s, yet with modern spectroscopic methods it is possible
to study dynamic processes that occur this rapidly. In Section 9.14 we saw how
the irradiation of molecular iodine by an ultrashort laser pulse, referred to as a
pump pulse, can produce a coherent (that is, in-phase) superposition of vibra-
tional states. This showed how the wavefunctions for the coherent superposition
interfere constructively and destructively to give a resultant wave packet that has
a large amplitude only in a limited part of the classical region at a given time. Af-
ter the pump pulse, this wave packet oscillates back and forward in the parabolic
potential energy well much like a classical particle. Under some conditions, the
particle may oscillate back and forth a number of times and then dissociate to
iodine atoms. Under other conditions, the dissociation may occur immediately.
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( ) Potential versus internuclear distance for ABC ( ), A BC ( ),
and A BC ( ). ( ) Optical absorption as a function of time in femtoseconds after a
pulse at . In the upper plot the absorption is for a probe pulse with wavelength that is
absorbed by the completely dissociated products ( ). In the lower plot the absorption
is for a probe pulse that is absorbed by [A BC] with a particular internuclear dis-
tance. [Reprinted with permission from A. H. Zewail, 1645 (1988). Copyright

1988 American Association for the Advancement of Science.]
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Figure 19.11

242,

Since this phenomenon cannot be observed with a single molecule, it is important
to understand that all the iodine molecules in the sample have very nearly the
same internuclear distance before the pulse because in the ground state, the high-
est probability density is at this distance. Therefore, the wave packets are launched
from the same internuclear distance for the entire sample of molecules. Thus a
single-molecule trajectory is observed.

Probe pulses are then used to study the details of what happens. These probe
pulses can be used to follow the particle-like oscillations and the decreases in in-
tensity of the wave packet signal that indicate chemical reaction. Since the wave-
length distribution in the probe pulse can be altered by the experimenter, the
formation of product atoms or molecules can also be studied on a femtosecond
scale.

Consider a photolysis reaction in which the excited molecule ABC goes
through a transition state [A BC] and dissociates into products. Note that
[A BC] is different from an unstable intermediate in a reaction because it is
in the process of flying apart:

ABC [A BC] A BC (19 82)

The potential energy curves for the molecule ABC( ), for the first dissocia-
tive state ( ) yielding A BC, and the second dissociative state ( ) yielding
A BC are given in Fig. 19.11. The potential energy curves for A BC and
A BC do not have minima, and therefore lead to immediate dissociation. An
initial pulse (the “pump” pulse), represented by , is absorbed at 0 by the
ABC molecule at an internuclear distance close to the potential energy minimum.

y y
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The absorption of a photon by a molecule involves “instantaneous” vertical transi-
tion of the molecule from the ground-state potential energy to an excited-state
potential energy . For there to be appreciable absorption, the wavelength of the
pump pulse must satisfy the relation ( ) ( ) / , where is the in-
ternuclear distance at the potential minimum. Classically the ABC molecules dis-
sociate along , with as . After a time delay , the gas is irradiated
with a probe pulse with wavelength .

In the simplest type of experiment, the wavelength of the probe pulse is
tuned to the absorption wavelength of one of the free fragments. If the probe
pulse follows the initial pulse closely in time, the absorption is negligible initially,
as shown by the upper plot of optical absorption in Fig. 19.11 . The absorp-
tion of the probe pulse becomes substantial only when the fragments achieve
large internuclear distance and are no longer interacting. The buildup of the sig-
nal from the pulse to half of its maximum takes about 200 fs, as shown by
Fig. 19.11 .

The molecules in transition from the initial excited state can be detected
by tuning away from . In this second type of experiment, the probe pulse,
which is sent at time , will be absorbed significantly only if the transient-state
configuration at time is such that ( ) ( ) / , where is the
internuclear distance at . The lower absorption plot in Fig. 19.11 shows
that the probe pulse is absorbed when the transition state has the internu-
clear distance and that the absorption of subsequently falls as the internu-
clear distance increases and separated products are finally formed, after about
300 fs.

One particular reaction studied by Zewail and co-workers was

ICN [I CN] I CN (19 83)

Thus, it is possible to measure absorption spectra of [I CN] at various times,
and distances, as it flies apart. Since the recoil velocity of the fragments is about
1 km s , the distance spanned in 100 fs is 100 pm. Zewail received the Nobel
Prize in chemistry in 1999.

This method cannot be used directly for bimolecular reactions such as A
BC AB C because the bimolecular collisions occur at random times and
cannot be controlled. However, it can be done for a class of bimolecular reactions
in which a van der Waals “precursor molecule” contains the potential reagent
molecules in close proximity. The van der Waals complex IH OCO was formed
in a free jet expansion in an excess of helium carrier gas. A femtosecond pulse
was used to dissociate the HI in the van der Waals complex. This caused a hot H
atom to be ejected in the direction of the nearest-neighbor O atom in CO , thus
initiating the reaction

H OCO [HOCO] OH CO (19 84)

By use of a probe pulse suitable for the detection of OH, it was possible to mea-
sure the lifetime of the [HOCO] collision complex. The lifetime depends on the
translational energy, and is shorter at higher collision energies.

The range of applications of transition-state time domain spectroscopy has
enlarged since 1988. Reactions studied include dissociation of NaI, isomeriza-
tion of stilbene, and the exchange reaction Br I , among many others. In some
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y y
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y y
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Femtosecond dynamics of barrier reaction. ( ) Experimental observation of
the vibrational (femtosecond) and rotational (picosecond) motions for the barrier (saddle-
point transition state) descent, [IHgI] HgI(vib rot) I. The vibrational coherence
in the reaction trajectories (oscillations) is observed in both parallel (squares) and per-
pendicular (circles) polarizations of femtosecond transition-state spectra (FTS). The rota-
tional orientation (solid line) can be seen in the decay of FTS (parallel) and buildup of FTS
(perpendicular) as the HgI rotates during bond breakage ( ). [Reprinted with permission
from J. C. Polanyi and A. H. Zewail, 119–132 (1995). Copyright 1995
American Chemical Society.]
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Figure 19.12

28,

of these examples, the vibrational and rotational motions are evident in the ob-
served signal as a function of time. For example, in Fig. 19.12, the reaction of
the excited transition-state complex [IHgI] is monitored by femtosecond laser
pulses polarized either parallel or perpendicular to the initial laser pulse. Thus, it
is now possible, in an increasing number of cases, to view bond breaking or for-
mation in real time and study molecular dynamics in the region of the transition
state.
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Given that the energy change for reaction 19.88 is 477 kJ mol and that the energy input
between 400 and 700 nm at the earth’s surface is equivalent to that at 575 nm, what is the
theoretical maximum energy efficiency of photosynthesis by white light?

(6 02 10 mol )(6 62 10 J s)(3 10 m s )
(575 10 m)(10 J kJ )

208 kJ mol

477 kJ mol
Efficiency 0 29

(8)(208 kJ mol )

The efficiency calculated on the basis of total solar radiation at the earth’s surface that a
plant could actually absorb leads to a maximum efficiency during the peak growing season
of 0.066. Efficiencies of 0.032 have been achieved with corn.
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In CO and H O are converted to the glucose moiety as starch.
The overall process can be represented by

CO H O (CH O) O (19 85)

where (CH O) represents one-sixth of a glucose moiety. Photosynthesis is car-
ried out by plants, algae, and certain kinds of bacteria that have chloroplasts. The
chloroplasts contain chlorophyll , chlorophyll , carotenes, electron carriers, and
enzymes, and they have internal membranes that keep reactants separated. The
first step in photosynthesis is the absorption of light by a chlorophyll molecule.
Chlorophylls and contain networks of alternating single and double bonds
and have strong absorption bands in the visible part of the spectrum, with molar
absorbancy indices greater than 10 L mol cm . The energy of the absorbed
photon is transferred from one chlorophyll molecule to another until it reaches a
site called a reaction center. Experiments show that about eight photons of visible
light have to be absorbed per O liberated.

In -retinal is converted to -retinal, as shown in Fig. 19.13. -
Retinal forms a complex with the protein opsin, which is referred to as rhodop-
sin. The binding of -retinal to the protein changes its light absorption so that
the peak absorption is at about 500 nm, which nicely matches sunlight. This is
an example of absorption by a conjugated system, as discussed in Section 11.7.
When a photon is absorbed by rhodopsin, the change in the configuration of reti-
nal weakens its binding by opsin, and the complex dissociates. The conversion of

-retinal back to -retinal is catalyzed by the enzyme retinal isomerase. Thus,
the absorption of a single photon can trigger a nerve response.

Since bimolecular reactions of small radicals have zero activation ener-
gies, we might expect them to react on each collision. However, their rate
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Figure 19.13

constants are only approximately equal to the collision frequencies of hard
spheres because molecules interact with each other over short distances and
are not hard spheres.
When two molecules are very close to each other, they cannot be considered
separately because their wavefunctions overlap. Molecules close to each
other can be considered as being on a potential energy surface that gives
the energy for given coordinates of the nuclei.
The highest point along the reaction coordinate is a saddle point, and in the
neighborhood of this point the reaction system is said to be in the transition
state. Classical calculations of large numbers of trajectories on a potential
surface can yield pre-exponential factors and activation energies in pretty
good agreement with experiment for simple systems.
Transition-state theory applies ideas of statistical mechanics to obtain esti-
mates of rate constants for more complicated reactions.
The first principle of photochemistry is that only light that is absorbed can
produce photochemical change. The second principle is that a molecule ab-
sorbs a single quantum of light in becoming excited, but with the intense
radiation of lasers, successive photons can be absorbed.
An excited molecule can lose its additional energy in radiationless processes
or in fluorescence or phosphorescence. Fluorescence can occur from various
vibrational levels of a singlet excited state, but a molecule has to undergo
intersystem crossing to a triplet state before phosphorescence occurs.
Thequantumyield forfluorescence in theabsenceofanyquenchingorchemi-
cal reaction is equal to the ratio of the singlet lifetime to the radiative lifetime.
The expression for the quantum yield for phosphorescence is much more
complicated because it depends on the rate constant for intersystem crossing.
An excited molecule can also undergo chemical reaction or transfer its
excess energy to a quencher. Short-range energy transfer can occur if the
molecules are close, but a collision is not necessarily required. Long-range
energy transfer can occur at much greater distance when the emission spec-
trum of the donor overlaps the absorption of the acceptor.
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Use the pre-exponential factor 3 10 cm mol is 1 0 10 L mol s independent of temperature. Calcu-
s for the reaction Br H HBr H to calculate the reaction late the rate constant expected from collision theory at 298 K.
cross section and collision diameter for this reaction at 400 K. The fact that the rate constant is greater than would be expected

from collision theory is explained by the harpoon mechanism.( ) Calculate the second-order rate constant for colli-
According to this mechanism an electron jumps from K to Brsions of dimethyl ether molecules with each other at 777 K. It
when these two molecules come within a certain distance that isis assumed that the molecules are spherical and have a radius of
greater than the collision diameter , which is 400 pm.0.25 nm. If every collision were effective in producing decom-

position, what would be the half-life of the reaction ( ) at 1 bar A certain photochemical reaction requires an excitation
pressure and ( ) at a pressure of 0.13 Pa? energy of 126 kJ mol . To what values does this correspond in

the following units: ( ) frequency of light, ( ) wave number, ( )Show that transition-state theory yields the simple colli-
wavelength in nanometers, and ( ) electron volts?sion theory result when it is applied to the reaction of two rigid

spherical molecules. How many moles of photons does a laser with an inten-
sity of 0.1 W at 560 nm produce in one hour?The rate constant for the elementary reaction

A sample of gaseous acetone is irradiated with mono-K Br KBr Br

v

v

v

� �

9.

10.

Chapter 19 Chemical Dynamics and Photochemistry

REFERENCES

PROBLEMS

�

� � �

�

�

�

19.1

19.2

19.5

19.3

19.6
19.4

19.7

The formation of ozone in the stratosphere is an example of a photochemical
stationary state. The conversion of ozone to molecular oxygen is catalyzed
by nitrogen oxides and by chlorine atoms from the photolysis of chlorofluo-
rocarbons.
The development of dye lasers capable of delivering pulses as short as 6
10 s have made it possible to observe the transition region of a chemical
reaction.
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chromatic light having a wavelength of 313 nm. Light of this For 900 s, light of 426 nm was passed into a carbon tetra-
wavelength decomposes the acetone according to the equation chloride solution containing bromine and cinnamic acid. The

average power absorbed was 19 2 10 J s . Some of the
(CH ) CO C H CO bromine reacted to give cinnamic acid dibromide, and in this

experiment the total bromine content decreased by 3 83 10The reaction cell used has a volume of 59 cm . The acetone va-
molecules. ( ) What was the quantum yield? ( ) State whetherpor absorbs 91.5% of the incident energy. During the experi-
or not a chain reaction was involved.ment the following data are obtained:

The following calculations are made on a uranyl oxalate
Temperature of reaction 56 7 C actinometer, on the assumption that the energy of all wave-

lengths between 254 and 435 nm is completely absorbed. TheInitial pressure 102 16 kPa
actinometer contains 20 cm of 0 05 mol L oxalic acid, which

Final pressure 104 42 kPa also is 0 01 mol L with respect to uranyl sulfate. After 2 h of
Time of radiation 7 h exposure to ultraviolet light, the solution required 34 cm of

potassium permanganate, KMnO , solution to titrate the unde-Incident energy 48 1 10 J s
composed oxalic acid. The same volume, 20 cm , of unillumi-
nated solution required 40 cm of the KMnO solution. If theWhat is the quantum yield?
average energy of the quanta in this range may be taken as cor-A 100-cm vessel containing hydrogen and chlorine was
responding to a wavelength of 350 nm, how many joules wereirradiated with light of 400 nm. Measurements with a thermopile
absorbed per second in this experiment? ( 0 57.)showed that 11 10 J of light energy was absorbed by the

A solution of a dye is irradiated with 400 nm light tochlorine per second. During an irradiation of 1 min the partial
produce a steady concentration of triplet state molecules. Ifpressure of chlorine, as determined by the absorption of light
the triplet state yield is 0.9 and the triplet state lifetime isand the application of Beer’s law, decreased from 27.3 to 20.8
20 10 s, what light intensity, expressed in watts, is requiredkPa (corrected to 0 C). What is the quantum yield?
to maintain a steady triplet concentration of 5 10 mol LShow that if a solute follows the Beer–Lambert law, the
in a liter of solution? Assume that all of the light is absorbed.intensity of absorbed radiation in moles of photons per unit

The photochemical chlorination of chloroform,volume per second is given by

CHCl Cl CCl HCl
(1 e )

is believed to proceed by the following mechanism:

where is the length of the cell in the direction of the incident
Cl 2Clmonochromatic radiation and is in energy per unit area per

unit time.
Cl CHCl CCl HCl

When CH I molecules in the vapor state absorb 253.7
CCl Cl CCl Clnm light, they dissociate into methyl radicals and iodine atoms.

The energy required to rupture the C I bond is 209 kJ mol .
2CCl Cl 2CClWhat are the velocities of the iodine atom and the methyl rad-

ical, assuming all of the excess energy goes into translational Derive the steady-state rate law for the production of carbon
motion? tetrachloride.

The phosphorescence of butyrophenone in acetonitrile The mechanism for quenching fluorescence is
is quenched by 1,3-pentadiene (P). The following quantum
yields were measured at 25 C: A A

A Q A Q[P]/10 mol L 0 1.0 2.0
/ 1 0.61 0.43 A A /[A ]

where is the amount of exciting radiation absorbed per literAssuming that the quenching reaction is diffusion controlled
of solution per second, is the rate constant for quenching,and the rate constant has a value of 10 L mol s , what is
is the rate constant for fluorescence, and is the amount of fluo-the lifetime of the triplet state?
rescence radiation per liter per second. Assuming a steady stateBiacetyl triplets have a quantum yield of 0.25 for phos-
is reached, derive the equation for the intensity of fluorescencephorescence and a measured lifetime of the triplet state of
radiation as a function of [Q]. Describe how the data should10 s. If its phosphorescence is quenched by a compound Q
be plotted to determine the rate constant for quenching .with a diffusion-controlled rate (10 L mol s ), what con-

When a solution of anthracene in benzene is exposedcentration of Q is required to cut the phosphorescence yield in
to ultraviolet light, anthracene molecules are excited and formhalf? (See Section 20.5.)
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dimers with unexcited anthracene molecules. If the excited an- 0.092 and 0.145 nm, respectively, and the vibrational partition
thracene molecules fluoresce before they react with unexcited functions may be taken as unity. The experimental value from
anthracene molecules to form dimers, they do not undergo Table 18.2 is 10 L mol s .
dimerization. In concentrated solutions of anthracene, the quan- Kinetic theory shows that the rate constant for a bi-
tum yield for the formation of dimers is high, but in dilute molecular gas reaction would be given by equation 19.9 for
solutions it is low because the excitation is lost in fluorescence. spherical molecules. Calculate the expression for the activation
Formulate a mechanism to represent these facts, and derive the energy.
quantum yield as a function of the concentration of anthracene. The equilibrium constant for the following reaction of
It is useful to assume that the excited anthracene molecules are ideal gases at a certain temperature
in a steady state.

A B CProfessor Mario Molina (MIT) made an important con-
tribution to the understanding of the role of chlorine atoms in

is 100 when the standard state pressure is 1 bar. What is thethe stratosphere by suggesting that the decomposition of ozone
value of the equilibrium constant when the standard stateis catalyzed by the reactions
pressure is 1 Pa? Derive a general expression for making this
calculation.2ClO M ClOOCl M

A solution absorbs 300 nm radiation at the rate of 1 W.
ClOOCl Cl ClOO What does this correspond to in amount of photons absorbed

ClOO M Cl O M per second?
Cl O ClO O What intensities of light in J s are required to produce

10 mol s at ( ) 700 nm and ( ) 300 nm? ( , ) What are
these powers in watts? ( : 1 J s 1 W.)The steps in this mechanism add up to 2O 3O ,

but what is the stoichiometric number of the last step, if the Discuss the economic possibilities of using photochem-
stoichiometric numbers of the first three steps are taken as ical reactions to produce valuable products with electricity at
unity? 5 cents per kilowatt-hour. Assume that 5% of the electric en-

ergy consumed by a quartz–mercury vapor lamp goes into light,Sunlight between 290 and 313 nm can produce sunburn
and 30% of this is photochemically effective. ( ) How much(erythema) in 30 min. The intensity of radiation between these
will it cost to produce 1 lb (453.6 g) of an organic compoundwavelengths in summer and at 45 latitude is about 50 W cm .
having a molar mass of 100 g mol , if the average effectiveAssuming that one photon produces chemical change in one
wavelength is assumed to be 400 nm and the reaction has amolecule, how many molecules in a square centimeter of human
quantum yield of 0.8 molecule per photon? ( ) How much willskin must be photochemically affected to produce evidence of
it cost if the reaction involves a chain reaction with a quantumsunburn?
yield of 100?

The pre-exponential factor for the reaction The quantum yield is 1 for the photolysis of gaseous
HI to H I by light of 253.7 nm wavelength. Calculate theH I 2HI
amount of HI that will be decomposed if 300 J of light of this
wavelength is absorbed.is 10 L mol s , and the activation energy is 165 kJ mol in

the range 300 to 500 C. If the collision diameter is 320 pm, what In the stratosphere molecular oxygen absorbs solar ra-
value of the pre-exponential factor is expected from collision diation in the 185–220 nm wavelength region:
theory at 600 K, and what is the value of the steric factor ? (At

O O Ohigher temperatures this reaction goes by the unbranched chain
mechanism described in Section 18.11.) If the absorption cross section is 1 1 10 cm , what thickness

Estimate the pre-exponential factor for the reaction of a layer of O at 298 K and 1 bar is required to absorb half of
the radiation?

2CH C H
The quantum yield for the photolysis of acetone

using collision theory. The molecular diameter of CH obtained (CH ) CO C H CO
from gas viscosity measurements at 0 C is 0.414 nm (Table 17.4).

at 300 nm is 0.2. How many moles per second of CO are formedThe experimental value of in Table 18.2 is 10 L mol s .
if the intensity of the 300-nm radiation absorbed is 10 J s ?Estimate the pre-exponential factor in the neighborhood

The fluorescence quantum yield for benzene at 25 C isof 500 K for the reaction
0.070. The lifetime of the excited state is 26 nm. What is the ra-

Cl H HCl H diative lifetime ?
If the lifetime of a triplet is 1 s and the bimolecularassuming the activated complex is linear. The H H and H Cl

rate constant for the quenching of the triplet by O isbond distances in the activated complex may be assumed to be
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10 L mol s , what concentration of O in a solution will re- (382 g mol ), how many grams of vitamin D per day are neces-
duce the intensity of fluorescence to 10%? sary to prevent rickets in a rat? It is assumed that the quantum

yield is unity.A cold high-voltage mercury lamp is to be used for a cer-
tain photochemical reaction that responds to ultraviolet light Given that the intensity of solar radiation is 4.2
of 253.7 nm. The chemical analysis of the product is sensitive J cm min , how much carbon has to be burned to obtain the
to only 10 mol. The lamp consumes 150 W and converts 5% same amount of heat as the solar radiation on 1 m in an 8-h
of the electric energy into radiation, of which 80% is at 253.7 day?
nm. The amount of the light that gets into the monochroma- Given that solar radiation at noon at a certain place on
tor and passes out the exit slit is only 5% of the total radiation the earth’s surface is 4 2 J cm min , what is the maximum
of the lamp. Fifty percent of this 253.7 nm radiation from the power output in W m ?
monochromator is absorbed in the reacting system. The quan- If a good agricultural crop yields about 2 tons acre of
tum yield is 0.4 molecule of product per quantum of light ab- dry organic material per year with a heat of combustion of about
sorbed. How long an exposure must be given in this experiment 16 7 kJ g , what fraction of a year’s solar energy is stored in an
if it is desired to measure the photochemical change with an ac- agricultural crop if the solar energy is about 4184 J min ft
curacy of 1%? and the sun shines about 500 min day on the average? One

The quantum yield is unity for the dissociation of ace- acre 43 560 ft and 1 ton 907 000 g.
tone vapor using 254-nm radiation at 150 C. How long will
it take to dissociate 10 mol using a 100-W laser producing
254-nm radiation?

A uranyl oxalate actinometer is exposed to light of wave-
length 390 nm for 1980 s, and it is found that 24.6 cm of In molecular beam experiments, reactant molecules can
0 004 30 mol L potassium permanganate is required to titrate be accelerated to supersonic velocities by allowing a dilute mix-
an aliquot of the uranyl oxalate solution after illumination, in ture of the reactant in an inert carrier gas to expand through
comparison with 41 8 cm before illumination. Using the known a pinhole into a vacuum. ( ) Use equation 19.37 to calculate
quantum yield of 0.57, calculate the number of joules absorbed the peak velocity of ethane molecules in a carrier gas of helium
per second. The chemical reaction for the titration is that expands from a source chamber at 298.15 K. ( ) Calculate

the temperature at which ethane molecules have this root-mean-
2MnO 5H C O 6H 2Mn 10CO 8H O square velocity.

A photochemical reaction of biological importance is The simplest equation that gives a saddle-shaped sur-
the production of vitamin D, which prevents rickets and brings face is . Plot this surface in three dimensions and
about the normal deposition of calcium in growing bones. Steen- think about the path that a vibrating molecule would take across
bock found that rickets could be prevented by subjecting the it with the minimum energy. Consider different angles of
food as well as the patient to ultraviolet light below 310 nm. approach.
When ergosterol is irradiated with ultraviolet light below 310

Plot the ratio of the reaction cross section ( ) to the col-nm, vitamin D is produced. When irradiated ergosterol was in-
lision cross section as a function of the ratio of the collisioncluded in a diet otherwise devoid of vitamin D, it was found
energy to the minimum energy along the line of centers tothat absorbed radiant energy of about 7 5 10 J was nec-
cause reaction.essary to prevent rickets in a rat when fed over a period of 2

weeks. The light used has a wavelength of 265 nm. ( ) How If the average energy of a probe photon in a femtosecond
many quanta are necessary to give 7 5 10 J? ( ) If vitamin D transition-state experiment is 5362 cm , what is the average
has a molar mass of the same order of magnitude as ergosterol speed of the wave packet in the dissociation of NaI?v
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Viscosity of a Liquid
Diffusion
Mobility of an Ion
Encounter Pairs and Solvent Cage
Diffusion-Controlled Reactions in Liquids
Relaxation Time for a One-Step Reaction
Acid and Base Catalysis
Primary Kinetic Salt Effect
Rates of Electron Transfer Reactions
Enzyme Catalysis
Oscillating Chemical Reactions

When chemical reactions occur in solution, the dynamics are different than for
gas-phase reactions, for which kinetic theory has been so useful. We can learn
about the motion of molecules in a liquid by studying rate processes—viscosity,
diffusion, and electrical conductivity. These processes can be treated by
transition-state theory, but here we will emphasize their phenomenological as-
pects and their relation to the kinetics of reactions in solution. Measurements of
viscosity and diffusion provide a means for learning about the rates with which
reactants can come together in solution. For ions there is an additional possibility
of studying their motion in a solution that is subjected to an electric field. The
interpretation of rates in the liquid phase is necessarily more complicated from a
molecular viewpoint because of the much greater interaction between molecules.
However, bimolecular reactions in solutions cannot occur more rapidly than the
reactant molecules can diffuse together, and this rate may be calculated from
measured diffusion coefficients of the reactants.

Acids and bases catalyze many reactions, and we will discuss two types of
mechanisms for acid catalysis. Enzymes catalyze the reactions in living things and
provide the mechanisms by which rates of these reactions are controlled. These
reactions provide interesting examples of solution kinetics.

Kinetics in the Liquid Phase
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20.1 Viscosity of a Liquid
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Viscosity was defined in the discussion of the kinetic theory of gases in Section
17.9. This definition applies to laminar flow, that is, flow in which one layer (lam-
ina) slides smoothly relative to another. When this flow velocity is great enough,
turbulence develops. The viscosity of a liquid may be measured by a number of
methods, including the determination of the rate of flow through a capillary, the
rate of settling of a sphere in a liquid, and the force required to turn one of two
concentric cylinders at a certain angular velocity (Fig. 17.15 ).

When a force is applied to a particle in solution—as in an electric field, if the
particle is charged, or in a centrifugal field—the particle will be accelerated. As
the velocity of the particle increases, it experiences an increasing frictional force.
For low velocities the frictional force is given by , where is the velocity and

is the of the particle. When the velocity is sufficiently high
for the frictional force to be equal to the applied force,

(20 1)

and the particle will move with constant velocity.
The frictional coefficient is of interest because it provides some information

about the size and shape of the particle. For spherical particles Stokes showed that
for nonturbulent flow,

6 (20 2)

where is the viscosity and is the radius of the spherical particle. The frictional
coefficients of prolate and oblate ellipsoids and long rods may be expressed in
terms of the radius of a sphere of equal volume and a factor depending on the
ratio of the major axis to the minor axis.

The of a liquid may be determined by measuring the rate of settling
of a sphere of known density. The force causing the sphere to settle in the fluid
is equal to its effective mass times the acceleration of gravity; the effective mass
is the mass of the sphere minus the mass of the fluid it displaces. If the sphere
has a density and the density of the medium is , the force causing motion is

( ) , where is the acceleration of gravity (9.807 m s ). When the rate
of settling of the sphere in the liquid is constant, the retarding force is equal to the
force due to gravity, and so

4 d
( ) 6 (20 3)

3 d

d 2 ( )
(20 4)

d 9

Thus, by measuring the velocity d /d of settling of a sphere of known and
in a liquid of known density , the viscosity may be obtained. This method is
especially valuable for solutions of high viscosity, such as concentrated solutions
of high polymers. Conversely, a determination of the rate of settling of colloidal
particles of known density in a liquid of known viscosity provides a means for
determining the effective particle radius.

The viscosity can be determined by passing a liquid through a capillary tube
and making use of the

(20 5)
8
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Viscosity of Water in Pa s (kg m s )

/ C ( 10 )/Pa s

0 1.786 5
10 1.303 7
20 1.001 9
25 0.890 9
40 0.654 0
60 0.467 4
80 0.355 4

100 0.282 9
125 0.220
150 0.183
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20.2 DIFFUSION
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Table 20.1

�

where is the time required for volume of liquid to flow through a capillary tube
of length and radius under an applied pressure . The viscosities of most liquids
decrease with increasing temperature. According to the “hole theory,” there are
vacancies in a liquid, and molecules are continually moving into these vacancies
so that the vacancies move around. This process permits flow but requires energy
because a molecule must surmount an activation barrier to move into a vacancy.

The viscosity of water at a series of temperatures is given in Table 20.1. The
variation of the viscosity with temperature may be represented quite well by

1
e (20 6)

where is the activation energy for the 1/ .
The viscosity of a liquid increases as the pressure is increased because the

number of holes is reduced, and it is therefore more difficult for molecules to
move around each other.

In contrast with liquids, the viscosity of a gas increases as the temperature
increases. The viscosity of an ideal gas is independent of pressure (Sections 17.9
and 17.10).

Fick’s first law of diffusion was introduced in Section 17.9 as an illustration that
a flux is proportional to the gradient of something, in this case the concentration.
In this section we want to emphasize that diffusion occurs as a result of a gradient
in the chemical potential . If the chemical potential for a species is uniform in a
system, there is no driving force for diffusion.

A force , equal to the negative gradient of the chemical potential, causes a
substance to move from a region where its chemical potential is high to a region
where it is low. For an ideal solution ln , and so the force causing
diffusion in the direction in an ideal solution is given by

d d
(20 7)

d d



J(x + x) A t

x

 δ

x + x δ

δ

J (x) A t δ

f

RT c
f .

N c x

RT c
c .

N f x

c
J D .

x

J D

RT
D .

N f

f r

RT
D .

N r

J

x
A

x x

727

A

�

�

�

�

�

�

A

A

A

A

Cell of uniform cross section in which there is transport by diffusion, sedi-
mentation, or electrical migration.

Fick’s first law
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20.2 Diffusion

v

v

v

�

�

�

�

�-

�-

Figure 20.1

The force opposing the diffusion of a molecule or ion is the frictional coefficient
times the velocity . Setting these forces on a molecule or ion equal to each other
yields

d
(20 8)

d

or

d
(20 9)

d

This corresponds to (equation 17.59):

d
(20 10)

d

where is the flux and is the Thus, the diffusion coefficient
for ideal solutions is given by

(20 11)

which shows that the diffusion coefficient is inversely proportional to the frictional
coefficient. This relation was first derived by Einstein.

In the preceding section we saw that 6 for spherical particles, so the
diffusion coefficient for a spherical particle is given by

(20 12)
6

In the next chapter (Section 21.5) we will see that this relation can be used to
determine the molar mass of a protein molecule that is nearly spherical.

In studying transport processes the flux is seldom measured directly. What is
measured is the change in concentration with time at various points. The continu-
ity equation is the expression of the fact that, since mass is conserved, the change
in concentration in a region is due to the difference between the flows into and
out of the region. To relate the flux to the change in concentration, consider the
situation illustrated in Fig. 20.1. Flow of solute is occurring in the direction in a
cell of uniform cross section . We want to calculate the change in concentration
in a thin slab of thickness . The quantity of material crossing the plane at in
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Thus erf(0) 0 and erf( ) 1. Since the error function cannot be expressed in closed form, a table
is given in Appendix D.2.
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time is ( ) , whereas the quantity leaving through the plane at in
the same time is ( ) , which may be written

( ) (20 13)

The net gain in the quantity of material between these hypothetical planes may be
expressed in terms of the change of concentration in the volume or in terms
of the difference between these two quantities of material transported:

(20 14)

In the limit, as the distances and times are made smaller,

(20 15)

This is referred to as the It relates the change in concen-
tration at a given value of in the cell to the rate of change of flux with distance.

Fick’s first law (equation 20.10) is substituted in the equation of continuity
(equation 20.15) to obtain Fick’s second law:

(20 16)

If the diffusion coefficient is independent of the concentration and therefore
of distance, then

(20 17)

which is known as
Diffusion coefficients in solution are usually measured by first forming a sharp

boundary between a solution and the solvent, as shown in Fig. 20.2. At a later time
the boundary is diffuse.

To derive the expression for concentration as a function of distance and time
for the experiment illustrated in Fig. 20.2, equation 20.17 is integrated with the
following boundary conditions: When 0, for 0, and 0 for

0; and when 0, approaches as approaches and approaches 0 as
approaches . The result is

2
1 e d (20 18)

2

where the second term in the parentheses is referred to as the *
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Diffusion of sucrose from an initially homogeneous aqueous solution of con-
centration to the left of 0 into water at 25 C. The concentration of sucrose relative
to its concentration in the homogeneous solution is given for 0, 1, 4, 9, 16, and 25 hours.
In the actual experiment, is the vertical axis. (See Computer Problem 20.B.)
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Figure 20.2

The concentration of sucrose diffusing in water from an initially sharp bound-
ary at 25 C at various times is shown in Fig. 20.2.

The derivative of equation 20.18 with respect to distance is given by

e (20 19)
2

This bell-shaped curve is referred to as a The concentration gra-
dient curves for the diffusion of sucrose in water are given in Fig. 20.3.

The square of the standard deviation of the experimental bell-shaped
curve is

( / ) d
(20 20)

( / ) d

Substituting equation 20.19,

e d
2 (20 21)

e d

where the last form is obtained by using the values of the definite integrals (see
Table 17.1). Since the of a Gaussian curve is the half-width
at the inflection point, and the inflection points are at a height of 0.606 of the
maximum ordinate, is readily obtained from the experimental curve, and
may be calculated using equation 20.21. The diffusion coefficients of a number of
protein molecules are given in Table 21.3.
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Concentration gradient curves for the diffusion of sucrose from an initially
homogeneous aqueous solution to the left of 0. The plots are for 1, 4, 9, 16, and
25 hours. Note that the standard deviations are increasing linearly with the square root
of time. (See Computer Problem 20.B.)

( ) The diffusion coefficient of sucrose in water at 25 C is 5 1 10 m s . What is
the standard deviation of an initially sharp boundary (see Fig. 20.2) after 1 h? After 24 h?
( ) The diffusion coefficient of hemoglobin in water at 25 C is 6 9 10 m s . What
is the standard deviation of an initially sharp boundary after 1 h? After 24 h?

( ) After 1 h,

(2 )

[2(5.1 10 m s )(1 h)(60 min h )(60 s min )]

0.00192 m 1.92 mm

After 24 h,

(1 92 mm)24 11 8 mm

( ) After 1 h,

[2(6.9 10 m s )(1 h)(60 min h )(60 s min )]

0.705 mm

After 24 h,

(0.705 mm)24 3.45 mm
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20.3 MOBILITY OF AN ION
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Figure 20.3

A solution containing ions conducts an electric current because the ions move
under the influence of an electric field. To measure the electric resistance of a
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solution containing ions, the solution is placed in a cell with two electrodes that
have a coating of platinum black, and an alternating current is used. When an
alternating current is used, the electrolysis that occurs when the current passes in
one direction is reversed when the current passes in the other direction, and the
formation of a nonconducting gas film is prevented.

The of a uniform conductor is directly proportional to
its length and inversely proportional to its cross-sectional area :

(20 22)

where the proportionality constant is called the and the proportional-
ity constant 1/ is called the In the SI system the electric
conductivity has the units m , where the ohm is represented by . Since
the potential difference between two points on a uniform conductor in which a
current is flowing is , the unit of electric potential difference , the volt
V, is equal to the product of the unit of electric current, the ampere A, and the
unit of resistance, the ohm : 1 V (1 A)(1 ).

Electric conductivities range from 10 m for a metallic conductor at
room temperature to 10 m for an insulator such as SiO . The electric
conductivity of an electrolyte solution is made up of contributions from each of
the types of ions present.

The of an ion is its drift velocity in the direction of the
electric field, divided by the electric field strength :

d /d
(20 23)

(Strictly speaking, the electric field strength is a vector and should be represented
by , but here we will write equations in terms of the magnitude of the electric
field strength, which is a scalar.) The drift velocity of an ion is the average velocity
in the direction of the field. Because of Brownian motion, an ion undergoes ran-
dom displacements so that it does not move in a straight line over macroscopic
distances. The electric field strength is the negative gradient of the electric po-
tential . When the electric potential varies only in the direction, then

d
(20 24)

d

For a uniform conductor the difference in the potential per unit distance may be
calculated using Ohm’s law. For a conductor of unit cross section the difference
in potential between two points is equal to the current density / , where is the
current and the area, multiplied by the resistivity 1/ :

(20 25)

Since the electric field strength is expressed in V m in the SI system, the electric
mobility has the units m V s .

The drift velocities of ions can be determined in various ways, and the electric
mobilities of a number of small ions at infinite dilution in water at 25 C are given
in Table 20.2.
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Electric Mobilities at 25 C in Water at Infinite Dilution

/10 m V s /10 m V s

H 36.25 OH 20.64
Li 4.01 F 5.74
Na 5.192 Cl 7.913
K 7.617 NO 7.406
NH 7.62 ClO 6.70
N(CH ) 4.66 CH CO 4.24
Mg 5.50 C H CO 3.36
Ca 6.17 SO 8.29
Pb 7.20 CO 7.18

H O H O H O H O H H O H O H O H O H

H H H H H H H H

( ) ( )
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The remarkably high electric mobility of the hydrogen ion is due to the
fact that a proton may be transferred along a series of hydrogen-bonded water
molecules by rearrangement of the hydrogen bonds (Section 11.10). In the fol-
lowing representation ( ) shows the initial bonding in a group of oriented water
molecules and ( ) shows the final bonding:

The net effect is rapid long-range proton mobility even though no single proton
moves a long distance in a short time. For another hydrogen ion to be transferred
to the right through this group of water molecules, molecular rotations must occur
to produce again a favorable orientation for charge transfer.

This model for hydrogen ion mobility helps us to understand the remark-
able fact that hydrogen ions move about 50 times more rapidly through ice than
through liquid water. In ice each oxygen atom is surrounded by four oxygen atoms
at a distance of 276 pm in a tetrahedral arrangement. Each hydrogen is near the
line through the centers of the oxygen atoms and is about 100 pm from one oxy-
gen and 176 pm from the other. Hydrogen ions may be conducted rapidly through
this structure by the above mechanism when the water molecules are oriented cor-
rectly. A similar mechanism can be written for the transfer of hydroxyl ions in the
opposite direction.

The separation of different macromolecular ions (such as proteins and nucleic
acids) according to their electric mobilities is referred to as

The electric conductivity of an electrolyte solution is the sum of the contri-
butions of all the ionic species in the electrolyte. The electric current contributed
by an ion depends on its charge number as well as on its electric mobility.

If the ions of type have a concentration moles per unit volume, and all
move with a velocity in a field of 1 V/m, the transport of electric charge through
a plane perpendicular to the direction of motion is , where is the Fara-
day constant. Thus, for the solution as a whole, the electric conductivity is given
by

(20 26)



Using conducti ity to calculate ion concentrations

Conducti ity and transport of ions in water
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The electric conductivity of pure water is 5 5 10 m at 25 C. What is the value
of the ion product [H ][OH ]?

The concentrations of hydrogen and hydroxyl ions are, of course, equal and may be
calculated using equation 20.26 and the values of the limiting ion mobilities in Table 20.2.

( )

5 5 10 m
( ) (96 485 C mol )(5.689 10 m V s )

1 00 10 mol m 1.00 10 mol L

Thus, (1 00 10 ) 1 00 10 at 25 C.

( ) What is the electrical conductivity of a solution of 0 01 mol L sodium chloride in water
at 25 C, assuming that the electric mobilities of the ions are not significantly different than
at infinite dilution? ( ) Suppose a milliampere is passed through a 1-cm cube of solution
between opposite faces. How far will the sodium and chloride ions move in 10 min?

( ) Using equation 20.26,

(96 485 C mol )(0.01 mol L )(10 L m )[(5.192 7.913) 10 m V s ]

0 1264 C s m V 0 1264 m

0 001 A
( )

(0 01 m) (0 1264 m )

79 11 V m

For Na ,

(79.11 V m )(5.192 10 m V s )(10 min)(60 s min )

2 46 mm

For Cl ,

(79.11 V m )(7.913 10 m V s )(10 min)(60 s min )

3 75 mm
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The second form gives the conductivity of a solution of a single electrolyte of
concentration with ions of type .

Mobilities increase with the temperature, and the temperature coefficients are
very nearly the same for all ions in a given solvent and are approximately equal
to the temperature coefficient of the viscosity; for water this is 2% per degree in
the neighborhood of 25 C.

We have seen that in a gas, molecules may move many, many molecular diameters
between collisions (Section 17.7). In a liquid, however, a molecule cannot move

�
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Figure 20.4

very far before it collides with a neighbor. This gives rise to the concept that a
reactant molecule in a liquid is surrounded by a solvent As a result, a given
molecule has many collisions with its immediate neighbors before it moves to a
new cage. This concept can be applied to two reactant molecules, say, A and B. If
they do diffuse together, they will be surrounded by a solvent cage that will tend
to keep them together until one or the other escapes from the cage. Therefore,
collisions between reactant molecules will have a very different time sequence in
a liquid than in a gas.

In a gas the collision frequency is independent of time, but in a liquid the
collisions occur in groups, as shown in Fig. 20.4. The groups of collisions are re-
ferred to as At room temperature, an encounter may involve 10 to
10 collisions. If there is a significant probability that A and B will react when
they collide, it is evident that there is a high probability that they will react during
an encounter. When this is true, the rate of the reaction will be controlled by the
rate with which A and B can diffuse together to form an encounter pair. Reaction
under these conditions is said to be

We can distinguish between two types of bimolecular reactions in solution by
consideration of the following simple mechanism:

A B AB products (20 27)

where AB is the encounter pair. By use of the steady-state approximation (Sec-
tion 18.7) it is readily shown that

d[A]
[A][B] (20 28)

d

If , the reaction rate is determined by the rate [A][B], which is the
rate of reactants diffusing together, and we refer to such a reaction as a

In a diffusion-controlled reaction, reactant molecules within
the same solvent cage collide enough times that reaction is highly likely before
they can diffuse away from each other. For aqueous solutions it has been esti-
mated that the cage lifetime for a pair of noninteracting molecules is of the order
10 to 10 s, during which time they may undergo 10 to 10 collisions with
each other.

If , the reaction rate is

d[A]
[A][B] (20 29)

d

where / is the equilibrium constant of the formation of the en-
counter pair. This is an because the reaction is
largely determined by the activation energy for .



Rate constant for a diffusion-controlled reaction
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A typical diffusion coefficient for a small molecule in aqueous solution at 25 C is 5
10 m s . If the reaction radius is 0.4 nm, what value is expected for the second-order
rate constant for a diffusion-controlled reaction of neutral molecules?
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second-order rate constant

electrostatic factor
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The maximum rate with which reactants can diffuse together in liquids may be
calculated using the macroscopic theory of diffusion and experimentally deter-
mined diffusion coefficients of the reactants. The elementary theory of diffusion-
controlled reactions was developed in 1917 by Smoluchowski in connection with
his theoretical study of the coagulation of colloidal gold.

The diffusion coefficient is defined in terms of Fick’s first law, which is given
in Sections 17.9 and 20.2. The diffusion coefficients of low-molar-mass solutes in
aqueous solution at 25 C are of the order of 10 m s . Experimental methods
for determining diffusion coefficients in dilute aqueous solutions are discussed in
Section 20.2. The diffusion coefficients for ions may be calculated from their ionic
mobilities (Section 20.3).

Smoluchowski considered spherical particles with radii and that could
be considered to react when they diffused within a distance of
each other. We may imagine one reactant molecule stationary and serving as a
sink. Since the concentration is zero at distance , a spherically symmetrical
concentration gradient is set up. The flux through this concentration gradient is
calculated and is expressed as a for association by

4 ( ) (20 30)

where and are the diffusion coefficients of the reactants and is an elec-
trostatic factor. The is different from unity if the reactants
are ions. It is larger than unity if the reactants have opposite charges and attract
each other, and it is smaller than unity if the reactants have the same charge and
repel each other. One ion can be visualized as moving in the electric field created
by the other ion.

Because of the electrostatic factor , the effective reaction radius (
) is substantially increased for the reaction of oppositely charged ions and

substantially decreased for the reaction of two ions with the same sign. If the ionic
strength is so low that ion atmospheres may be neglected, is given by

exp 1 (20 31)
4 4

where the charges on the ions are and , is the relative permittivity, and
is the permittivity of free space. More details on the derivation of the equations

for diffusion-controlled reactions are given by Hammes.*
The temperature coefficients for diffusion-controlled reactions in water are

small because they correspond to the temperature coefficient of the viscosity of
liquid water ( 17 4 kJ mol at 25 C).



Calculation of the electrostatic factor

An example of a diffusion-controlled reaction

.

.

k k

k k

736

k N D D R

f R

z z e
.

kTR

f . .

f . .

J. Am. Chem. Soc.
.

,

,
k k k k ,

t

k k
,

k K

k , k
t

1 2

1 2

� � �

� �

�

� �

� �

� �

�

� � � �

�
�

�

�

� �

23 1 8 2 1 9
a A 1 2 12

7 3 1 1 7 3 1 1 3 3

10 1 1

12

r

2 19 2 9 2 2
1 2

23 1 90 12

3 58 1
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4 ( ) 4 (6.022 10 mol )(10 m s )(0.4 10 m)

3.0 10 m mol s (3.0 10 m mol s )(10 L m )

3.0 10 L mol s

What is the electrostatic factor in water at 25 C if the reaction radius is 0.2 nm for
opposite unit charges? For like unit charges? The relative permittivity of water is 78.3.

For opposite charges,

( 1)(1)(1.602 10 C) (8.988 10 N C m )
3 58

4 78.3(1.3807 10 J K )(298.15 K)(0.2 10 m)

3 58[e 1] 3 68

Thus, a diffusion-controlled reaction is expected to be 3.68 times faster in this case than for
uncharged particles. For ions of the same charge,

3 58[e 1] 0 103

Thus, a diffusion-controlled reaction is expected to be 0.103 times as fast for single charged
particles with the same sign as for neutral particles.

The renaturation of DNA (see Section 8.9) involves the formation of AT and GC hydrogen
bonds. This type of reaction can be studied in a simple model system using organic deriva-
tives or uracil and adenine in an organic solvent. The formation of a hydrogen-bonded
dimer between 1-cyclohexyluracil and 9-ethyladenine has been studied by G. G. Hammes
and A. C. Park [ 956 (1969)]. The second-order rate constant at 30 C
was found to be 2 8 10 M s . This reaction can be interpreted in terms of a two-step
rection in which the reactants form a dimer that is not hydrogen bonded and then form
hydrogen bonds.

A B A B A B

Assuming that the non–hydrogen-bonded complex is in a steady state, derive the
expression for the steady-state rate and discuss the interpretation of the experimental
second-order rate constant.

Since the complex is in a steady state,

d[A B]
[A][B] [A B] ( )[A B] 0

d

so that in the steady state,

[A][B] [A B]
[A B]

The rate of formation of the hydrogen-bonded dimer is given by

d[A B]
[A B] [A B]

d
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Substituting the steady-state concentration of the non-hydrogen-bonded complex yields

d[A B]
[A][B] [A B]

d

where

and

If the reaction is diffusion controlled , so we would expect , where is
the diffusion-controlled rate constant; thus the experimental rate constant is expected
to be of the order of .
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If a reaction occurs so rapidly that appreciable reaction occurs during the pro-
cess of mixing the reactants conventionally, a flow method may be used. An early
example was the study of the reaction of hemoglobin and oxygen.* A hemoglobin
solution was forced into one arm of a -mixer and a solution of oxygen in a buffer
into the other. In this way it is possible to mix liquids in about 10 s. In the
stopped-flow method, reagents are forced into the mixer, the flow is brought to a
sudden stop, and observations are made of the extent of reaction. In the contin-
uous flow method the solutions are mixed and forced down the tube at a steady
rate; the extent of reaction is constant at any given distance down the tube, but it
increases with distance from the mixing chamber.

Some reactions occur in much less than 10 s, so their kinetics may not be
studied by mixing methods. The time range has been extended down to about
10 s by the use of developed by M. Eigen and co-workers
in Göttingen, Germany. A solution in equilibrium is perturbed by rapidly chang-
ing one of the independent variables (usually temperature or pressure) on which
the equilibrium depends. The change of the system to the new equilibrium is then
followed by use of a rapidly responding physical method, for example, light ab-
sorption or electrical conductivity.

Equilibria may be shifted by changing the temperature (if 0) or by
changing the pressure (if 0). A solution may be heated in a microsecond by
use of a pulsed laser or by discharging a large electrical capacitor through a special
conductivity cell containing the sample. Equilibria may also be shifted by reducing
the pressure suddenly by allowing high-pressure gas to escape through a rupture
disk. Figure 20.5 is a schematic diagram of a temperature-jump apparatus in which
an increase in temperature in a small volume of solution is produced by passing
a large current for about 1 s. If there is a single reaction and if the displacement
from equilibrium is small, the return to equilibrium at the new, higher temperature
is represented by

e (20 32)

†
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The rates of chemical reactions range from those that are too slow to measure
in the laboratory to processes that correspond to the time for an atom to mo e a
fraction of a bond length. It is con enient to think about reaction rates in terms of
relaxation times. Very different experimental methods ha e to be used to measure
relaxation times o er this broad range. The de elopment of flow methods made it
possible to measure relaxation times of solution reactions down to milliseconds.
The de elopment of pulse methods extended this down to nanoseconds ,
and the de elopment of lasers with ery short pulses made it possible to work
down to picoseconds . More recently, the experimental range has been
extended to femtoseconds (see, for example, Section 19.10).
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Figure 20.5

where is the relaxation time (equation 18.17) and is the difference of the
concentration of one of the reactants from its equilibrium value at 0. If
several reactions are involved in the return to equilibrium, is expressed by a
sum of exponential terms with different relaxation times.

(10 s)

(10 s)
(10 s)

To derive the relationship between the relaxation time and the rate constants
for a one-step reaction, consider the reaction

A B C (20 33)

for which the rate equation is

d[C]
[A][B] [C] (20 34)

d

At equilibrium

0 [A] [B] [C] (20 35)

Equation 20.34 may be written in terms of the difference [C] from the final
equilibrium concentrations by introducing

[A] [A] [C] (20 36)

[B] [B] [C] (20 37)

[C] [C] [C] (20 38)

The fact that the differences from equilibrium are the same for the three reac-
tants, except for sign, comes from the stoichiometry of reaction 20.33. Substituting
equations 20.36 to 20.38 into equation 20.34 yields

d [C]
([A] [C])([B] [C]) ([C] [C]) (20 39)

d

If the displacement from equilibrium [C] is small,

d [C] [C]
([A] [B] ) [C] (20 40)

d
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When a sample of pure water in a small conductivity cell is heated suddenly with a pulse
of microwave radiation, equilibrium in the water dissociation reaction does not exist at the
new higher temperature until additional dissociation occurs. It is found that the relaxation
time for the return to equilibrium at 25 C is 36 s. Calculate and .

H OH H O

1
([H ] [OH ])

[H ][OH ] 10
1 8 10

55 5[H O]

Eliminating , we have

1 1
36 10 s

( [H ] [OH ]) [ (1 8 10 ) (2 10 )]

1 4 10 L mol s

(1.8 10 mol L )(1.4 10 L mol s ) 2.5 10 s
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20.6 Relaxation Time for a One-Step Reaction
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where equation 20.35 has been used and the term in ( [C]) has been neglected
because [C] is small. Thus, the rate of approach to equilibrium is proportional
to the displacement from equilibrium [C]. It is customary to use the relaxation
time (equation 20.32) to characterize the rate of return to equilibrium. From
equation 20.40 we see that for this example

([A] [B] ) (20 41)

Thus, and may be obtained as slope and intercept of a plot of versus
[A] [B] .

The relaxation time for the formation of a dimer

2A A (20 42)

is given by

1
(20 43)

4 [A]

If the return to equilibrium involves two steps, there will be two independent
rate equations. If the reactions are both near equilibrium, these equations may
be linearized, and the two linear differential equations will yield two relaxation
times. The return to equilibrium will then be given by the sum of two exponen-
tial terms. In general, the number of exponential terms is equal to the number of
independent reactions.*
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The rate constants for the forward and backward reactions are related to the
equilibrium constant by

(20 44)

Taking the temperature derivative of ln yields

d ln d ln d ln
(20 45)

d d d

Substituting the Arrhenius equation (equation 18.66) yields

(20 46)

For solution reactions the difference between the internal energy and the enthalpy
is usually negligible, so this relationship between the activation energies of the
forward and backward reactions and the enthalpy of reaction is useful.

The fact that rates of ionic reactions are altered by changing the ionic strength
indicates that perhaps rate equations should be written in terms of activities rather
than concentrations. Since a complete rate equation has to yield the expression
for the equilibrium constant, rate equations for reactions in which activity coeffi-
cients may deviate significantly from unity should be written in terms of activities.
However, the general practice is to include the effect of ionic strength in the rate
constant, as described later in Section 20.8.

Acids and bases catalyze many reactions. Suppose the rate of disappearance of
a substance S (often called the substrate in a catalytic reaction) is first order in
S: d[S]/d [S]. The first-order rate constant for the reaction in a buffer
solution may be a linear function of [H ], [OH ] [HA], and [A ], where HA is
the weak acid in the buffer and A is the corresponding conjugate base:

[H ] [OH ] [HA] [A ] (20 47)

In this expression is the first-order constant for the uncatalyzed reaction. The
so-called catalytic coefficients , , , and may be evaluated from ex-
periments with different concentrations of these species. If only the term [H ]
is important, the reaction is said to be subject to If
the term [HA] is important, the reaction is said to be subject to

and if the term [A ] is important, the reaction is said to be subject
to

By considering two types of catalytic mechanisms, we can see how different
types of terms arise in equation 20.47. In the first mechanism a proton is trans-
ferred from an acid AH to the substrate S, and then the acid form of the substrate
reacts with a water molecule to form the product P:

S AH SH A

SH H O P H O

H O A AH H O (20 48)
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The net reaction is S P. Assuming that SH is in a steady state, then

d[SH ]
0 [S][AH ] ( [A] )[SH ] (20 49)*

d

The rate of appearance of product is given by

d[P] [S][AH ]
[SH ] (20 50)

d [A]

where the second form is obtained by solving equation 20.49 for [SH ]. If
[A], then

d[P]
[S][AH ] (20 51)

d

and the reaction is said to be general acid catalyzed. However, if [A],
then

d[P] [S][AH ]
[S][H ] (20 52)

d [A]

where the second form is obtained by inserting [A][H ]/[AH ]. In this case
the reaction is specifically hydrogen ion catalyzed.

In the second mechanism the acid form of the substrate reacts with a base A
instead of a water molecule:

S AH SH A SH A P AH (20 53)

The steady-state treatment of this mechanism leads to

d[P] [S][AH ]
[SH ][A] (20 54)

d

which is an example of general acid catalysis.
For mechanisms of the type of 20.48 and 20.53 we might expect a relation-

ship between the rate constant for the acid-catalyzed reaction or for the
base-catalyzed reaction to depend on the strength of the acid or base. Indeed,
Brønsted found that the rate constant for acid catalysis or for base catalysis
is proportional to the ionization constant for the acid or for the base raised
to some power:

(20 55)

(20 56)

The exponents and are positive and have values between 0 and 1. The con-
stants , , , and apply to a single reaction at a particular temperature
catalyzed by different acids and bases. In the Brønsted equation (equations 20.55
and 20.56), low values of and indicate a low sensitivity of the catalytic constant
to the strength of the catalyzing acid or base.
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Brønsted and Bjerrum investigated the effect of electrolyte concentration on the
rate constants of a number of reactions involving ions in aqueous solutions and
obtained an unexpected result. We can show that the result they found can be
derived from transition-state theory and the Debye–Hückel theory. The rate con-
stant for reactions of the type

A B products (20 57)

is defined by

d[A]
[A][B] (20 58)

d

Brønsted and Bjerrum found that the rate constant varied with ionic strength
according to

10 (20 59)

in the region of low ionic strength where the Debye–Hückel theory is obeyed. In
equation 20.59, is the Debye–Hückel constant (0.509 kg mol at 25 C),
is the rate constant at zero ionic strength, and and are the charges on ions
A and B, with signs. The magnitude of the effect is indicated by Fig. 20.6.

According to (Section 19.4), the rate of a reaction is
given by

[C ] (20 60)

y
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The rate constant of a reaction

A B products

is measured at 0.001 ionic strength and at 0.01 ionic strength at 25 C in water. What is the
expected ratio of the rate constants?

To derive a general relation, consider

A B products

log log 2 (0 509)(0 001)

log log 2 (0 509)(0 01)

Therefore,

log 2 (0 509)(0 001 0 01 )

2(1)( 2)(0 509)(0 001 0 01 )
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�

�

�
�

�

�

�

�

�

�

v

�

�

� �

�

� �

� �

�

� � � �

� �

�

� � �

where C is the activated complex. We assume that C is in equilibrium with
the reactants, as, for example, in A B C with equilibrium constant
expression

[C ]
(20 61)

[A][B]

Eliminating [C ] between equations 20.60 and 20.61 yields

[A][B]
[A][B] (20 62)

where the experimental rate constant is given by

(20 63)

It is of interest to use the symbol for the experimental rate constant at zero
ionic strength; it is given by .

At low ionic strengths, the activity coefficients of the ions are given by

log (20 64)

We do not know much about the structure of the activated complex C , but we
do know that its charge is . When equation 20.63 is written in logarithmic
form, and equation 20.64 is used, we obtain

log log log log log

log [ ( ) ]

log 2 (20 65)

If the reacting ions are oppositely charged, raising the ionic strength reduces the
effective rate constant because the ions are shielded from each other to a greater
extent.
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Energy dependence as a function of the reaction coordinate for the electron
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20.9 RATES OF ELECTRON TRANSFER REACTIONS
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Figure 20.7

The transfer of an electron from donor D to an acceptor A in liquid solution can
be represented by

D A (DA) (D A ) D A (20 66)

where (DA) and (D A ) are the contact pair before and after the electron
is transferred. The following discussion of a theory by Marcus* applies when
(DA) (D A ) is the slow step in the reaction. When the electron is on the
donor molecule its energy is represented by the parabolic plot on the left in Fig.
20.7, and when the electron is on the acceptor molecule its energy is represented
by the parabolic curve on the right. These are plots for solvated molecules be-
cause the solvent molecules have to be taken into account since their orientations
change with the changes in electric charge. The abscissa for this plot is the reac-
tion coordinate (see Section 19.4). The change in Gibbs energy for the reaction

is negative, so the reaction will occur under these circumstances; but we

y



En
er

gy (a) (b)

(c)

Reaction coordinate

(d)

k

E G
k kT h .

E kT

E

G E
k G

G

m

ET

m

m

m

m

Chemical Kinetics and Reaction Dy-
namics

745

E
G

Chemical Kinetics and Reaction
Dynamics

�
�

*The derivation of this equation is described in P. L. Houston,
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Donor and acceptor parabolas with the same reorganization energy , but
increasing going from A to D. Note that the activation energy is large in A, smaller
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Figure 20.8

are interested in the rate of electron transfer , which is given by

( )
( / ) exp (20 67)

4

The energy , called reorganization energy, is the energy needed to reorga-
nize the configuration of the acceptor and its surrounding solvent molecules into
that of the donor and its surroundings, when back transfer of the electron is not
allowed.*

Figure 20.8 shows the intersecting donor and acceptor parabolas for increas-
ingly negative values of but the same value of . Equation 20.67 shows
that increases with , so we might expect that the rate of electron transfer
would increase in going from A to D in the figure. The activation energy decreases
in going from A to C, which reinforces the change in , but the activation en-
ergy increases in going from C to D. This rather counterintuitive prediction of
Marcus’s equation has been confirmed by several researchers.

The most amazing catalysts are the enzymes, which catalyze the multitudinous
reactions in living organisms and also provide the means for controlling reaction
rates so that the rates of various steps in a series of reactions are compatible.
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are proteins, copolymers of amino acids with specific amino acid se-
quences and definite three-dimensional structures. Proteins provide various func-
tional groups at the catalytic site that can interact with a substrate molecule and
thereby catalyze a reaction. Some enzymes catalyze a single reaction. An example
is fumarase, which catalyzes the hydration of fumarate to -malate:

(20 68)

The reactants in an enzyme reaction are generally referred to as substrates. This
reaction may be represented by S P, since the concentration of water is con-
stant. Other enzymes catalyze a class of reactions of a given type such as ester
hydrolysis. Some enzymes require particular metal ions or coenzymes to operate.

Since enzymes are very effective catalysts, they are usually used in labora-
tory experiments at concentrations much lower than the concentration of the
substrate. Generally, the reaction rate that is measured in the laboratory is
a steady-state rate. In studies of enzyme kinetics it is advantageous to use ini-
tial steady-state rates because the product may be inhibitory.

The initial rate of an enzyme-catalyzed reaction of the type S P is gen-
erally found to be directly proportional to the enzyme concentration. When the
substrate concentration is varied, the initial rate is first order with respect to sub-
strate at low [S] and zero order at high [S]. In 1913 pointed
out that these observations can be explained with the mechanism

E S X E P (20 69)

where X is an E–S complex. Since [E] [X] [E] and [S] [P] [S] , there
are two independent rate equations for this mechanism. These can be taken to be

d[X]
[E][S] ( )[X] (20 70)

d

d[P]
[X] (20 71)

d

These two rate equations cannot be solved to obtain analytic expressions for [E],
[S], [X], and [P] as functions of time, but these concentrations may be calculated
by use of a computer for specific values of the three rate constants.

Since enzymatic reactions are generally studied with enzyme concentrations
(strictly speaking, molar concentrations of enzymatic sites) much lower than the
concentrations of substrates, it is a good approximation to assume that the en-
zymatic reaction is in a steady state in which d[X]/d 0. By introducing the
equation for the conservation of enzyme, [E] [E] [X], in equation 20.70, we
obtain

[E] [S]
[X] (20 72)

[S]
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Substituting this expression in equation 20.71 yields

d[P] [E]
(20 73)

d 1 ( )/ [S]

This steady-state rate equation for the overall reaction is frequently written

[E]
(20 74)

1 /[S]

where is the in this case , and is the
in this case ( )/ .

The initial steady-state velocity is plotted as a function of the substrate con-
centration in Fig. 20.9 . At low substrate concentrations the reaction is first order
with respect to substrate; however, as the substrate concentration is increased,
the velocity asymptotically approaches a maximum of [E] . The quantity
is called the turnover number because it is the number of product molecules pro-
duced per enzyme molecule (strictly, per catalytic site) per second. The turnover
number is about 10 s for catalase, which catalyzes the decomposition of H O
to H O O , and about 100 s for chymotrypsin, which catalyzes the hydro-
lysis of a number of esters and amides. It is evident from equation 20.74 that
is equal to the concentration of substrate required to give one-half the maximum
velocity.

To obtain the best values of and , it is useful to be able to plot the
kinetic data as a straight line. There are three ways that this can be done, but since
it is desirable to show the full accessible range of experiments along both axes,
the Eadie–Hofstee plot is best. This method uses the Michaelis–Menten equation
(20.74) written in the following form:

(20 75)
[E] [S] [E]

As shown in Fig. 20.9 , the Michaelis constant can be obtained from the slope, and
the turnover number can be obtained directly from the intercept on the abscissa.

The reversibility of the overall reaction can be provided for by including the
reverse reaction for the second step:

E S X E P (20 76)

The rate equations for this mechanism are

d[X]
[E][S] ( )[X] [E][P] (20 77)

d

d[P]
[X] [E][P] (20 78)

d

Substituting [E] [E] [X] in equation 20.77 and assuming that d[X]/d 0
make it possible to solve equation 20.77 for [X]. When this expression and the ex-
pression for the conservation of enzymatic sites are substituted in equation 20.78,
it is found that the steady-state rate is given by

d[P] [S][E] [P][E]
(20 79)

d [S] [P]
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At 25 C and pH 8 the turnover numbers and Michaelis constants for the fumarase reaction
fumarate H O -malate are

0 20 10 s 0 60 10 s

7 0 10 mol L 100 10 mol L

What are the values of and and the equilibrium constant [P] /[S] ?

0 80 10 s
1 14 10 L mol s

7 0 10 mol L

0 80 10 s
8 0 10 L mol s

100 10 mol L

[P]
[S]

4 8
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It is convenient to rearrange this rate equation by introducing expressions for the
Michaelis constants for the substrate and product:

to obtain

d[P] ( / )[S] ( / )[P]
[E]

d 1 [S]/ [P]/

[E] (1 [P]/[S] )
(20 80)

1 /[S] [P]/ [S]

Thus, the equilibrium constant for the overall reaction is given by

[P]
(20 81)

[S]

Equation 20.79 gives the steady-state velocity for any mixture of substrate and
product. It reduces to equation 20.73 if product is not added initially and the re-
action goes essentially to completion. The addition of product has two effects: The
[P] term in the numerator of equation 20.79 results from the reverse reaction, and
the [P] term in the denominator is due to product inhibition. It is evident from
equation 20.81 that the four rate constants in the mechanism are not indepen-
dent; they are related through the equilibrium constant.

Compounds that are structurally related to the substrate or product often
combine with the catalytic site of the enzyme and cause that is, the
enzyme-catalyzed reaction is slowed down by the inhibitor. Since the substrate
and the inhibitor compete for the same site, the effect of the inhibitor may be
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reduced by raising the substrate concentration. This type of inhibition, called com-
petitive inhibition, may be represented by the mechanism

[E][I]
E S ES E P E I EI (20 82)

[EI]

where I is the inhibitor. The steady-state rate law is

(20 83)
1 ( /[S])(1 [I]/ )

where is the dissociation constant of EI into E and I and [E] .
Substances that bind to the enzyme, although not at the active site, may not

interfere with the binding of the substrate at the active site but may alter and
. Such inhibitors are referred to as noncompetitive. The binding of substances

that are not directly involved in an enzymatic reaction can also increase the reac-
tion rate, and such substances are called

The way in which and depend on pH, salt concentration, coenzyme con-
centration, and so on, gives further information about the enzymatic mechanism.
In general, an enzymatic reaction has an optimum pH; the maximum velocity
decreases as the pH is raised or lowered from the optimum pH. In the neutral pH
range the effects are generally reversible, but proteins are irreversibly denatured
at extreme pH values. Reversible effects of pH on may be attributable to the
ionization of the enzyme–substrate complex. If the enzyme–substrate complex ex-
ists in three states with different numbers of protons, and if only the intermedi-
ate form breaks down to give product, the expression for the effect of pH on the
maximum velocity may be derived from

ES

(20 84)HES enzyme product

H ES

where and are acid dissociation constants, and is the rate constant
for the rate-determining step. Since

[E] [ES] [HES] [H ES]

[H ]
[HES] 1 (20 85)

[H ]

then

[E]
[HES]

1 [H ]/ /[H ]

[E] (20 86)

where is the given by

(20 87)
1 [H ]/ /[H ]
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Plot of / versus pH according to equation 20.87 for an enzyme with
10 and 10 10 10 10 and 10 . (See Computer Problem 20.D.)

In discussing the thermodynamics of biochemical reactions (Section 8.3) we found it con-
venient to use apparent equilibrium constants that are a function of pH. These apparent
equilibrium constants are equal to the ratio of the apparent rate constants for the forward
and backward reactions. As a simple example, consider the interconversion

A B (1)

where the symbols A and B represent sums of concentrations of species that are in rapid
equilibrium by acid–base reactions. The apparent rate constants defined by the rate equa-
tion for reaction 1

d[A]
[A] [B] (2)

d

are functions of pH. It is evident that the apparent equilibrium constant is given by

[B]
(3)

[A]

�
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Figure 20.10

Thus in discussing the kinetics of reactions involving reactants that are weak acids,
there may be advantages in using apparent rate constants that are functions of
[H ]. If mechanism 20.84 is correct, then a plot of versus pH is a symmetrical
bell-shaped curve, as illustrated in Fig. 20.10.

Since a protein has many dissociable acid groups, it is perhaps surprising that
the experimental results are sometimes represented by an equation like 20.84.
There is a simple explanation of why two acid groups in the catalytic site might
have the total effect on the kinetics that is represented by equation 20.86. If the
catalytic function involves both an acidic function and a basic function, we would
expect H ES to be inactive because the basic site is occupied by a proton and ES
to be inactive because it cannot donate a proton to the substrate. Only HES can
yield product because it has one group that can donate a proton and another that
can accept a proton.
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If HA and HB are monoprotic weak acids, the mechanism might be

A B

(4)

HA HB

where and are the rate constants for the interconversion of specific species. If the
acid dissociations are equilibrated much more rapidly than the interconversion of the two
anions, derive the expressions for the dependence of and on [H ] and show that they
are consistent with the dependence of on [H ].

Since the acid and base forms of the reactants are in rapid equilibrium, we cannot
write the rate equation for d[A ]/d , but we can write the rate equation for mechanism
4 as

d[A]
[A ] [B ] (5)

d

since there is only one path for the reaction. Since the species of A are in equilibrium,

[A]
[A ] (6)

1 [H ]/

and since the species of B are in equilibrium,

[B]
[B ] (7)

1 [H ]/

When equations 6 and 7 are substituted into equation 5, we obtain

d[A] [A] [B]
(8)

d 1 [H ]/ 1 [H ]/

When we compare equation 8 with equation 2, it is clear that

(9)
1 [H ]/

and

(10)
1 [H ]/

When equations 9 and 10 are substituted into equation 3, we find that the apparent equi-
librium constant is given by

(1 [H ]/ ) (1 [H ]/ )
(11)

(1 [H ]/ ) (1 [H ]/ )

where / . This derivation gives the same dependence of the apparent equilibrium
constant on pH that we would have derived with thermodynamics in Chapter 8.
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Mechanisms like the ones we have been discussing can give a variety of com-
plicated effects; that is, the rate law may have a very complicated form. In general,
however, the steady-state rate is somewhere between zero order and first order in
substrate concentration. However, there are some enzymes for which the steady-
state rate varies with a higher power of the substrate concentration. In other
words, curves analogous to the sigmoid oxygen-binding curve for hemoglobin



Comment:

More than 3500 enzymes are known, and they catalyze a ery wide ariety of
reactions. In addition, there are RNA (ribonucleic acid) enzymes, catalytic
antibodies, and synthetic enzymes (sometimes called ribozymes, abzymes, and
synzymes, respecti ely) that follow many of the same principles. Some enzymes
are ery efficient catalysts and operate at diffusion-controlled rates. In contrast
with the usual laboratory catalysts, they ha e the additional important feature
that their catalytic acti ity is affected by other small molecules in the cell, which
are also bound by the protein. In addition, enzymes may aggregate with other
enzymes so that intermediates are not lost by diffusion into the medium before the
next catalytic step.
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(Section 8.6) are obtained. This has been found to be especially true of enzymes of
importance in the regulation of metabolic pathways. These cooperative effects are
encountered with multisite enzymes, not single-site enzymes, because the cooper-
ative effect involves an increased affinity of a second site for a substrate when a
first site is occupied. As in the case of hemoglobin, this interaction involves a struc-
tural change. According to the Monod–Wyman–Changeux model,* the multisite
enzyme can exist in at least two states. In each of the two states the conformations
of all the subunits are assumed to be the same. The binding of substrate shifts the
equilibrium toward one or the other of these two states. If the effector drives
the equilibrium in the direction that produces an enhanced rate of reaction, the
effector is called an activator. If it causes a reduction in rate, it is called an in-
hibitor. As we have seen in the case of hemoglobin, the effect is multiplied by the
fact that one effector molecule affects several catalytic sites on the molecule.
The fact that enzymatic activities may be affected by various substances present
in the cell provides a mechanism for the control of the rates of reactions in living
things so that metabolic intermediates do not accumulate.

So far we have always described the approach to equilibrium in terms of a mono-
tonic decrease in reactants and increase in products, but this is not necessarily
the case. Some reactions involve autocatalysis, that is, catalysis by a product of
the reaction. The simplest reaction system that exhibits oscillatory behavior was
described by Lotka in 1925.

A X (20 88)

X Y 2Y (20 89)

Y P (20 90)

Reactant A is continuously supplied to the system so that its concentration is al-
ways [A(0)]. The second reaction is autocatalytic because twice as much Y is pro-
duced as is consumed. The rate equations for the system have the following form:

d[X]
[A(0)] [X][Y] (20 91)

d
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Concentration as a function of time for the three reactants in the reaction
system defined by reactions 20.88, 20.89, and 20.90 for a constant concentration of A of
1 M. The initial concentrations are [X] 0.2 M, [Y] 0.1 M, and [P] 0 M. The rate
constants are 0 3 s , 0 6 M s , and 0 8 s . The concentration of X
is given by the top curve in ( ), and the concentration of Y is given by the lower curve in
( ). The concentration of P is given in ( ). (See Computer Problem 20.G.)

Oscillation in [Br ] and [Ce ] in reaction 20.94 catalyzed by cerium ion.
Note that Br , Ce , and Ce are not reactants or products in net reaction. [Reprinted
with permission from R. J. Field, E. Körös, and R. M. Noyes, 8649
(1972). Copyright 1972 American Chemical Society.]
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Figure 20.11

Figure 20.12

94:

d[Y]
[X][Y] [Y] (20 92)

d

d[P]
[Y] (20 93)

d

For a particular set of rate constants and initial concentrations of X and Y, the
concentrations of the three reactants change with time as shown in Fig. 20.11.

The best-known chemical oscillator is the Belousov-Zhabotinskii reaction:

2H 2BrO 3CH (CO H) 2BrCH(CO H) 3CO 4H O (20 94)

When this reaction is catalyzed with Ce , the concentration of the intermediate
Br and the ratio [Ce ]/[Ce ] oscillate as shown in Fig. 20.12. The catalyzed
reaction involves about 18 steps and 21 different chemical species.

The underlying theory of oscillating reactions is becoming better understood
and is of interest in connection with oscillations observed in biological systems.
Chemical systems that produce oscillating reactions can also form spatial struc-
tures in initially homogeneous systems.
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The frictional coefficient of a particle in a liquid is of interest because it
provides information about the size and shape of the particle. The force re-
quired to move a particle in a liquid is given by the product of the velocity
of the particle and its frictional coefficient.
Diffusion in a liquid is a consequence of the gradient of the chemical poten-
tial. The flux is proportional to the concentration gradient, and the propor-
tionality constant is the diffusion coefficient.
When a single solute diffuses from an initially sharp boundary between so-
lution and solvent, the concentration profile at a later time can be calculated
using the error function. The concentration gradient at a later time is given
by a Gaussian curve.
The mobility of an ion in an electric field is equal to its velocity divided
by the potential gradient. The electric conductivity of an electrolyte so-
lution is the sum of the contributions of all of the ionic species in the
electrolyte.
The patterns of collisions between reactants in a liquid and a gas are very
different because reactant molecules are surrounded by a solvent cage. In
a diffusion-controlled reaction, reactant molecules within the same solvent
cage collide enough times that reaction is highly likely before they can dif-
fuse away from each other.
Very fast reactions can be studied by perturbing a solution that is at equilib-
rium with a very rapid change in temperature or pressure, and then following
the relaxation back to equilibrium spectroscopically. The relaxation is first
order, but rate constants for bimolecular reactions can be determined.
The rate constant for the reaction of H with OH is faster than would be
expected for a diffusion-controlled reaction because the proton undergoes
quantum mechanical tunneling to the hydroxyl ion once it is close.
The rate constant for a reaction between ions at low ionic strength depends
on the ionic strength in the way expected from the Debye–Hückel theory.
We know the charge of the activated complex, even though we do not know
its structure.
Rates of electron transfer reactions may increase and then decrease with the
change in the Gibbs energy of the reaction.
Enzyme-catalyzed reactions involve intermediates (enzyme–substrate com-
plexes), so that they approach maximum velocities as substrate concentra-
tions are increased. Since all reactions are reversible, the kinetic constants
for the forward and backward reactions are related to the apparent equilib-
rium constant for the reaction that is catalyzed.
For certain complicated reactions, the concentrations of intermediates may
oscillate rather than simply going through maxima and then leveling off to
the equilibrium value.
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tivity of the solution? ( ) This dilute solution is placed in a glassA steel ball ( 7 86 g cm ) 0.2 cm in diameter falls
tube of 4 cm diameter provided with electrodes filling the tube10 cm through a viscous liquid ( 1 50 g cm ) in 25 s. What
and placed 20 cm apart. How much current will flow if the po-is the viscosity at this temperature?
tential drop between the electrodes is 80 V?Estimate the rate of sedimentation of water droplets of

1 m diameter in air at 20 C. The viscosity of air at this temper- It is desired to use a conductance apparatus to measure
ature is 1 808 10 Pa s. the concentration of dilute solutions of sodium chloride. If the

electrodes in the cell are each 1 cm in area and are 0.2 cmThe viscosity of mercury is 1 661 10 Pa s at 0 C and
apart, calculate the resistance that will be obtained for 1, 10, and1 476 10 Pa s at 35 C. What is the activation energy, and
100 ppm NaCl at 25 C.what viscosity is expected at 50 C?

Derive the expression for log for the reaction AThe viscosity of a liquid can be determined by measur-
B C products as a function of ionic strength.ing the falling velocity of a sphere of known density in the liq-

uid. The force of gravity on the sphere is given by the apparent Derive the expression for the relaxation times for the
mass of the sphere (its mass minus the mass of liquid displaced) following two reactions:
times the acceleration of gravity, 9 807 m s . The retard-

( ) A Bing force is given by the frictional coefficient of the sphere times
the velocity of fall. Derive the equation for the velocity of fall.

( ) A B C DHow fast does a bubble of air rise in water at 25 C if its
Show that if A and B can be represented by spheres ofdiameter is 1 mm?

the same radius that react when they touch, the second-orderA sharp boundary is formed between a dilute aqueous
rate constant is given bysolution of sucrose and water at 25 C. After 5 h the standard

deviation of the concentration gradient is 0.434 cm. ( ) What is 8 10
L mol sthe diffusion coefficient for sucrose under these conditions? ( ) 3

What will be the standard deviation after 10 h?
where is in J K mol . To obtain this result the diffusion( ) Calculate the time required for the half-width of a
coefficient is expressed in terms of the radius of a spherical par-freely diffusing boundary of dilute potassium chloride in water
ticle by use of equation 20.12. For water at 25 C, 8 91to become 0.5 cm at 25 C ( 1 99 10 m s ). ( ) Cal-
10 kg m s . Calculate at 25 C.culate the corresponding time for serum albumin ( 6 15

10 m s ). What is the reaction radius for the reaction
The standard deviation of a freely diffusing boundary

H OH H Obetween dilute salt solution and water at 25 C is 3.8 mm after
1 h. What is the diffusion coefficient of the salt in water? What

at 25 C, given that the diffusion coefficients of H and OH atwill the standard deviation be after 2 h?
this temperature are 9 1 10 m s and 5 2 10 m s ?

Using a table of the probability integral, calculate
For acetic acid in dilute aqueous solution at 25 C,enough points on a plot of versus (like Fig. 20.2) to draw in

1 73 10 and the relaxation time is 8 5 10 s for a 0.1 Mthe smooth curve for diffusion of 0 1 mol L sucrose into water
solution. Calculate and inat 25 C after 4 h and 29 83 min ( 5 23 10 m s ).

Calculate the conductivity of 0 001 mol L HCl at CH CO H CH CO H
25 C. The limiting ion mobilities may be used for this prob-
lem. Derive the relation between the relaxation time and

One hundred grams of sodium chloride are dissolved in the rate constants for the reaction A B C D, which is
10 000 L of water at 25 C, giving a solution that may be regarded

subjected to a small displacement from equilibrium.in these calculations as infinitely dilute. ( ) What is the conduc-
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Derive the relation between the relaxation time and The mutarotation of glucose is first order in glucose con-
the rate constants for the mechanism centration and is catalyzed by acids (A) and bases (B). The first-

order rate constant may be expressed by an equation of the type
that is encountered in reactions with parallel paths:A B

[H ] [A] [B]

where is the first-order rate constant in the absence of acids
A B and bases other than water. The following data were obtained

by J. N. Brønsted and E. A. Guggenheim [
2554 (1927)] at 18 C in a medium containing 0.02 mol Lwhich is subjected to a small displacement from equilibrium.

sodium acetate and various concentrations of acetic acid:It is assumed that the equilibria, A A , [A ]/[A], and
B B , [B ]/[B], are adjusted very rapidly so that these

[CH CO H]/mol L 0.020 0.105 0.199
steps remain in equilibrium.

/10 min 1.36 1.40 1.46
Calculate the first-order rate constants for the dissocia-

Calculate and . The term involving is negligible undertion of the following weak acids: acetic acid, acid form of imida-
these conditions.zole C N H , and NH . The corresponding acid dissociation

The rate of a reaction between oppositely charged ionsconstants are 1 75 10 , 1 2 10 , and 5 71 10 , respec-
is measured at an ionic strength of 0 01 mol L . How will thetively. The second-order rate constants for the formation of the
rate be affected if the ionic strength is raised to 0 05 mol L ifacid forms from a proton plus the base are 4 5 10 , 1 5 10 ,
the reaction is ( ) A B or ( ) A B ?and 4 3 10 L mol s , respectively.

Suppose that an enzyme has a turnover number ofThe hydrolysis of pyrophosphate (P O ) at pH 7 at
10 min and a molar mass of 60 000 g mol . How many moles25 C by the enzyme pyrophosphatase occurs with an apparent
of substrate can be turned over per hour per gram of enzyme iffirst-order rate constant of 0 001 s . The reaction is first-
the substrate concentration is twice the Michaelis constant? Itorder because the concentration of pyrophosphate is much lower
is assumed that the substrate concentration is maintained con-than the Michaelis constant. Calculate the apparent first-order
stant by a preceding enzymatic reaction and that products dorate constant at pH 6 and pH 8 assuming that the mechanism is
not accumulate and inhibit the reaction.

The kinetics of the fumarase reaction

fumarate H O -malate

is studied at 25 C using a 0.01 ionic strength buffer of pH 7.
The rate of the reaction is obtained using a recording ultravi-
olet spectrometer to measure the fumarate concentration [F].
The following rates of the forward reaction are obtained using a
fumarase concentration of 5 10 mol L :

[F]/10 mol L /10 mol L s

2 2.2
40 5.9and that the acid dissociations are fast compared with the hy-

drolysis. The reaction goes so far to the right that we do not have The following rates of the reverse reaction are obtained using a
to be concerned with the reverse reaction. fumarase concentration of 5 10 mol L :

The solution reaction
[M]/10 mol L /10 mol L s

I OCl OI Cl

5 1.3is believed to go by the mechanism
100 3.6

OCl H O HOCl OH (fast) ( ) Calculate the Michaelis constants and turnover numbers
for the two substrates. In practice many more concentrations

I HOCl HOI Cl (slow) would be studied. ( ) Calculate the four rate constants in the
mechanism

E F EX E MHOI OH H O OI (fast)

Derive the rate equation for the forward rate of this reaction where E represents the catalytic site. There are four catalytic
that shows the effect of the concentration of OH . sites per fumarase molecule. ( ) Calculate for the reaction
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catalyzed. The concentration of H O is omitted in the expres- For the reaction
sion for the equilibrium constant because its concentration

CO ( H O) H COcannot be varied in dilute aqueous solutions.
Derive the steady-state rate equation for the mechanism

where the parentheses indicate that H O is not included in the
equilibrium constant expression or in the rate equation, the fol-E S X E P E I EI
lowing data were obtained: 4730 J mol and

33 5 J K mol . At 25 C, 0 0375 s , and at 0 C,
for the case where [S] [E] and [I] [E] .

0 0021 s . Assuming that and are indepen-
The following initial velocities were determined spec- dent of temperature in this range, ( ) calculate the equilibrium

trophotometrically for solutions of sodium succinate to which a constant and values at 25 C and 0 C, and ( ) calculate the
constant amount of succinoxidase was added. The velocities are activation energies for the forward and backward reactions.
given as the change in absorbancy at 250 nm in 10 s. Calculate

Calculate the time necessary for a quartz particle 10 m
, , and for malonate.

in diameter to sediment 50 cm in distilled water at 25 C. The
density of quartz is 2 6 g cm . The coefficient of viscosity of10
water is 8 91 10 kg m s .10 s

How long will it take a spherical air bubble 0.5 mm in
[Succinate] No 15 10 mol L diameter to rise 10 cm through water at 25 C?

10 mol L Inhibitor Malonate Using data in Table 20.1 and equation 20.6, estimate the
activation energy for water molecules to move into a vacancy at10.0 16.7 14.9
25 C.2.0 14.2 10.0

A sharp boundary is formed between a solution of1.0 11.3 7.7
hemoglobin in a buffer and the buffer solution at 25 C. After0.5 8.8 4.9
10 h the half-width of the concentration gradient curve at the0.33 7.1 —
inflection point is 0.226 cm. What is the diffusion coefficient of

In the Eadie–Hofstee method for determining and hemoglobin under these conditions?
for an enzymatic reaction, /[E] [S] is plotted versus /[E] .

A sharp boundary is formed between a dilute bufferedHow are the kinetic parameters obtained from this plot?
solution of hemoglobin ( 6 9 10 m s ) and the

The maximum initial velocities ( [E] ) for an
buffer at 20 C. What is the half-width of the boundary after

enzymatic reaction are determined at a series of pH values:
1 and 4 h?

pH 6.0 6.4 7.0 7.5 8.0 8.5 9.0
Since varies as 2 , the gradient curve has a certain11 30 74 129 147 108 53

width after time , and it will be twice as wide after time 4 and
Calculate the values of the parameters , , and in three times as wide after time 9 . Sketch / versus for su-

crose in water at 25 C after 1, 4, and 9 h for 0 1 mol L .
Given: 4 65 10 m s .1 [H ]/ /[H ]

For an electrolyte such as HCl it can be shown that the
See problem 20.31. diffusion coefficient in a dilute solution in water is given by

Use equation 20.86 to show that

2(1 2( / ) )
( )1 [H ]/ /[H ]

where and are the electric mobilities of the two ions. Whatwhere is the maximum initial velocity in the plot of ver-
is the diffusion coefficient of dilute HCl in water at 25 C? Thesus pH. Further show that
electric mobilities are given in Table 20.2.

[H ] [H ] Using a table of the normal probability function, calcu-
late enough points on a plot of d /d versus (like Fig. 20.3) towhere [H ] is the hydrogen ion concentration at which
draw in the smooth curve for diffusion of 0 01 mol L sucrose/ on the acidic side of the plot and [H ] is the
into water at 25 C after 3 h.hydrogen ion concentration at which / on the ba-

Calculate the conductivity at 25 C of a solution contain-sic side of the plot. Further show that the value of can be
ing 0 001 mol L hydrochloric acid and 0 005 mol L sodiumcalculated using
chloride. The limiting ionic mobilities at infinite dilution may be

[H ] [H ] 4([H ] [H ] ) used to obtain a sufficiently good approximation.
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Estimate the conductivity at 25 C of water that contains reactions at 25 C.
70 ppm by weight of magnesium sulfate.

H Production OH Production
It may be shown that the diffusion coefficient at infinite

HOAc H OAc OAc H O HOAc OHdilution of an electrolyte with two univalent ions is given by
ImH H Im Im H O ImH OH

2 NH H NH NH H O NH OH
( )

where HOAc is acetic acid and Im is imidazole (C N H ). The
where and are the limiting values of the mobilities of the reverse reactions given above may all be assumed to be diffu-
two ions. What is the diffusion coefficient of potassium chloride sion controlled with 10 L mol s . Acid dissociation
in water at 25 C? constants at 25 C are

A study of conductivities at high electric field strengths HOAc 1 75 10
reveals that the conductivity increases slightly with increasing

ImH 1 2 10electric field strength. A microsecond pulse at 10 V m may
NH 5 71 10be used. Approximately how far will a sodium ion move during

such a pulse at room temperature? Which conjugate acid–base pair can play both H and OH
The diffusion coefficient of an ion is related to its ionic production roles about equally effectively?

mobility by The mutarotation of glucose is catalyzed by acids and
bases and is first order in the concentration of glucose. When
perchloric acid is used as a catalyst, the concentration of hy-
drogen ions may be taken to be equal to the concentration of
perchloric acid, and the catalysis by perchlorate ion may beThe ionic mobilities of H and OH are 3 63 10 m V s
ignored since it is such a weak base. The following first-orderand 2 06 10 m V s at 25 C. What is the rate constant
constants were obtained at 18 C:for the following reaction?

[HClO ]/mol L 0.0010 0.0048 0.0099H OH H O
/10 min 1.25 1.38 1.53

The reaction radius is 0.75 nm, because once the proton is this
[HClO ]/mol L 0.0192 0.0300 0.0400close the reaction can proceed very rapidly by quantum mechan-

/10 min 1.90 2.15 2.59ical tunneling. The electrostatic factor is 1.70.
Pure solutions of the and chains of hemoglobin / Calculate the values of the constants in the equation

can be prepared. Assuming that and exist only as monomers [H ].
in these solutions, and that they react on the first collision, esti- The initial rate of oxidation of sodium succinate to
mate the half-life for the reaction form sodium fumarate by dissolved oxygen in the presence

of the enzyme succinoxidase may be represented by equation
20.74. Calculate , [E] , and from the following data:

in water at 25 C. The viscosity of water at this temperature is
[S]/10 mol L 10 2 1 0.5 0.338 95 10 kgm s .Calculate thehalf-life ifequalvolumesof

/10 mol L s 1.17 0.99 0.79 0.62 0.5010 molL solutionsof and aremixed.(SeeProblem20.15.)
For the fumarase reactionDerive the relation between the relaxation time and

the rate constants for the reaction fumarate H O -malate

at pH 7, 25 C, and 0.01 ionic strength, the Michaelis–Menten
A B

parameters have the following values:

(1.3 10 s )[E] (0.8 10 s )[E]which is subjected to a small displacement from equilibrium.
An imidazole buffer of pH 7 containing 0 05 mol L 4 10 mol L 10 10 mol L

imidazole has a relaxation time of 2 9 10 s at 25 C. What
where [E] is the molar concentration of the enzyme, which hasare the values of the rate constants for the following reactions?
four catalytic sites per molecule. Calculate ( ) the four rate con-
stants in the mechanismC N H H C N H

E F EX E M
The p for imidazole at this temperature is 7.21.

Calculate the first-order rate constants for the following and ( ) for the overall reaction.

v

v

�

�

�

�
�

� � � �
� �

� � ��

�
� �

� �

� �
�

�

!

Chapter 20 Kinetics in the Liquid Phase

�

� � �

�

�

� �

�

�
�

�

�

� � � �

� � �

�
�

��

�

��

� �
� � �

� � �
� �

� �

� � � � �

�

	

� �

� �

�
�

�

�

�

�

20.42

20.43

20.44

20.45

20.50

20.46

20.51

20.5220.47

20.48

20.49

�



. .. .. .: :. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
! !

Computer Problems

k k

k k

k k

k

K K

k

k

. .
k

. .

759

b
c x

. a c c
K .

c
b

V c x
K

K K
, , ,

K
K

V

.
f

R a b

K

k . , k . k .

a

b

V K J. Chem. Educ.

k k . k .

a
b)

. a c c
c J. Chem. Educ.

1 2

1 2

1 2

1

EH EHS

1

2

8 3

3
3 6

� � � �

�

�

� �

�

� �

� � �
� �

�

�

� �

� � �

� �

�

7 2 1eq 0
2

eq 0

3 1
F 0

16
F

L
4

a b
5 6 7 8 9

6 1
M

M
LM

6

3 1

3 1

3 1 3 1

12

1

I

1 1 1 1
1 2 3

S S

1 14 10 0 20 10
L

0 60 10 8 0 10

1
1 1 1 11 1 1 2 3

4 8

6 2 1
0

0

At 25 C and pH 7.8, the following values are obtained at 1, 4, 9, 16, and 25 hours. ( ) Plot the concentration gradient
for the Michaelis constant and maximum initial velocity for the d /d versus distance at these times.
forward reaction catalyzed by fumarase:

The diffusion coefficient of hemoglobin at 25 C in dilute
[M] aqueous solution is 6 9 10 cm s . ( ) Plot the ratio /

F H O M 4 4
of sucrose, where is the initial concentration, versus distance[F]
at 1, 4, 9, 16, and 25 hours. ( ) Plot the concentration gradient

(0.8 10 s )[E] d /d versus distance at these times.
7 10 mol L

As described in equations 20.84 to 20.87, the rate of
an enzyme-catalyzed reaction may go through a maximum aswhere the enzyme concentration is in moles of enzyme per liter.
the pH is varied. Plot the apparent rate constant divided byThe enzyme has four catalytic sites per molecule. In some exper-
the rate constant for the rate-determining step versus pH foriments -malate was added and was found to be inhibitory with
an enzyme–substrate complex that has 10 anda constant
10 10 10 10 , and 10 .

100 10 mol L
Calculate the Michaelis constant and maximum ve-

Calculate the values of the four rate constants in the mechanism locity for fumarase when -malate is the substrate using the
Eadie–Hofstee method and make a plot to show how well the

E F EX E M Michaelis equation fits the data.

[M]/10 M 0.1 0.333 1.0 3.33 10 33.3 100where E represents an enzymatic site.
1.9 4.2 6.1 6.5 7.2 7.4 6.9The Michaelis constant for succinate being oxidized by

succinoxidase is 0 5 10 mol L , and the competitive inhi-
Plot the electrostatic factor for the second-order ratebition constant for malonate is 10 10 mol L . In an ex-

constant at 25 C in water for the reaction of two ions as a func-periment with 10 mol L succinate and 15 10 mol L
tion of when there are ( ) opposite unit charges and ( ) likemalonate, what is the percent inhibition?
unit charges.Show how to plot rate data on an enzymatic reaction that

is inhibited competitively by an inhibitor I at [I] to obtain the SolvethesimultaneousrateequationsfortheLotkamech-
value of by using an Eadie–Hofstee plot. anism for an autocatalytic reaction described in Section 20.11.

Derive the steady-state rate equation for the mechanism Assume that the concentration of A is held at 1 M and the rate
constants are 0 3 s 0 6 M s , and 0 8 s .

E S ES E P The initial concentrations of W, Y, and P are to be taken as 0.2 M,
0.1 M, and 0 M, respectively. ( ) Plot the concentrations of X, Y,
and P at short times and discuss why the plots have these shapes.
( ) Plot the concentrations of X, Y, and P at longer times and dis-EH EHS
cuss what happens. [The Mathematica programs for making these

Sketch the shape of the plots of and versus pH. plots are given in Ferreira et al., 861 (1999).]

The Lotka–Volterra mechanism for an autocatalytic re-
action gives more striking results than the Lokta mechanism.

A X 2XIn Example 20.9 the following four rate constants were
deduced from steady-state rate measurements at 25 C and pH 8:

X Y 2Y

E fumarate X E -malate Y P

AssumethattheconcentrationofAisheldat1Mandtheratecon-where the unimolecular rate constants are in s and the bimolec-
stants are 1 s , 1 7 M s , and 1 6 s . Theular constants are in mol L s . Plot the concentrations of the
initial concentrations of W, Y, and P are to be taken as 0.2 M, 0.1four reactants when the initial concentrations of fumarate and
M, and 0 M respectively. ( ) Plot the concentrations of X, Y, and Pfree enzymatic sites, [E], are 10 M and 10 M, respectively.
at short times. ( Plot the concentration product P as a function

The diffusion coefficient of sucrose at 25 C in dilute of time. Try varying the rate constants and initial concentrations
aqueous solution is 5 1 10 cm s . ( ) Plot the ratio / , to see what happens. [Mathematica programs for making these
where is the initial concentration of sucrose, versus distance plots are given in Ferreira et al., 861 (1999).]
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he second and third parts of the book were primarily concerned with
the properties and dynamics of small molecules. Now we turn our
attention to macromolecules, electric and magnetic properties of
molecules, solid-state chemistry, and surface dynamics.

The chapter on macromolecules is concerned with high polymers, proteins,
nucleic acids, and other macromolecules that have molar masses ranging
from about 10 to 10 g mol , or higher. These substances form viscous
solutions, so measurements of viscosity provide information about the size
and shape of these molecules in solution. More information can be obtained
from measurements of diffusion, ultracentrifugation, and light scattering.

We have seen that the electric and magnetic fields involved in electromagnetic
radiation are responsible for interactions that provide so much information
about molecules from spectroscopy. But now we explore the effects of these
fields on bulk properties. The effects of electric and magnetic fields are treated
in similar ways, but there are significant differences.

Structural information about solids is primarily obtained by use of X-ray
diffraction. This process is simplified by the recognition of the various types of
symmetry that the internal structure of a crystal may have. Since the location
of individual atoms is obtained, this is a powerful method for determining
interatomic distances and angles.

The last chapter is concerned with the equilibrium and dynamics of processes
that occur at the interface between a solid and a gas. When a molecule strikes a
solid surface, it may rebound elastically or inelastically, or it may be adsorbed.
An adsorbed molecule may dissociate on the surface or react with other species
on the surface, or it may desorb from the surface. The catalysis of reactions by
the surfaces of solids is of tremendous practical importance. The development
of a number of “surface-sensitive” experimental methods, such as low-energy
electron diffraction, electron emission from surfaces, and scanning tunneling
microscopy, have made it possible to learn about processes at the interface.

Macroscopic and Microscopic
Structures
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macromolecule

21.1
21.2
21.3
21.4
21.5

Synthetic high polymers

21
Size and Shape of Macromolecules
Osmotic Pressure of Polymer Solutions
Spatial Configuration of Polymer Chains
Molar Mass Distributions of Step-Growth Polymers
Determination of Molar Masses Using Viscosity,
Sedimentation, and Light Scattering

21.1 SIZE AND SHAPE OF MACROMOLECULES

Although macromolecules (or polymers), both naturally occurring and man-
made, play an immensely important role in our lives, the study of these systems
is a relatively new activity. In fact, it was not until the 1920s that scientists
became convinced that macromolecules could exist, based largely on the work of
Staudinger in Germany and Carothers in the United States. Now it is
commonplace to say that life is basically the biochemistry of macromolecules,
and that the major part of the chemical industry is devoted to the production of
macromolecules.

The term covers a very wide range of types from synthetic high
polymers, which exist in solution in chains of variable length, to proteins, which
have a unique structure and are folded in a unique way. Nevertheless, there are
certain methods and concepts that apply quite generally to macromolecules; these
are the principal subjects of this chapter.

consist of long chains of atoms held together by cova-
lent bonds. Such a chain is formed through the process of polymerization, in which
monomer molecules chemically react to form linear chains, branched chains, or
three-dimensional networks (see Fig. 21.1). The properties of polymers depend on
both their chemical structure and their physical structure. Thus, plastics are usu-
ally linear or branched polymers that can be melted at reasonable temperatures
and formed into various shapes, while rubbers are lightly cross-linked networks.
These cross-links give rubbers their elastic properties.

Macromolecules
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21.2 OSMOTIC PRESSURE OF POLYMER SOLUTIONS
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Figure 21.1

In discussing osmotic pressure in Section 6.7, it was pointed out that osmotic
pressure measurements yield the number average molar mass. In discussing syn-
thetic high polymers, it will be useful to distinguish between two types of average
molar mass because the polymer almost always contains molecules with different
masses—in other words, the polymer is polydisperse. The

is defined by

(21 1)

where is the number of polymer molecules with molar mass and is the
amount of polymer with molar mass . The is
defined by

(21 2)

where is the mass of polymer molecules with molar mass . If the
sample contains molecules of a single mass, the average molar mass is equal to the
mass average molar mass; in a sample with dispersity, however, they are different,
so the ratio / is a measure of the dispersity of the sample. The mass average
molar mass can be determined by use of light scattering, as described in a later
section.

The size and dispersity of most synthetic macromolecules make the determi-
nation of their structure a very difficult task. In most cases, it is impossible to form
a single crystal, so that X-ray diffraction methods are not useful. For certain sys-
tems (such as the nucleic acids and the proteins myoglobin and cytochrome )
single crystals are formed and the structure can be determined by X-ray methods.
Even if single crystals can be formed, we are often more interested in the struc-
ture of the macromolecule in solution than in the crystalline state, and it is always
difficult to know whether the structure is affected by crystallinity. Recently, NMR
methods have been devised to determine the structure of some proteins. A num-
ber of methods have been devised to study the size and shape of macromolecules;
they give less detailed information than X-ray diffraction or NMR, but they are
less time-consuming and more easily applicable to most polymers. In the follow-
ing, we discuss the measurements of osmotic pressure, viscosity, sedimentation,
and light scattering.

In Section 6.7, on colligative properties, we introduced the of
a solution. The osmotic pressure is related to the concentration (mass per unit
volume) of the polymer in solution by

( ) (21 3)

where the first term is the ideal solution result and the succeeding terms are the
corrections due to nonideality. This equation is the result for a monodisperse
polymer in solution. As we have already indicated, most polymer solutions are
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Osmotic pressures were measured for two dilute solutions of a sample of nitrocellulose in
methanol at 25 C. Use the following experimental values of / to calculate the number
average molar mass and the second virial coefficient ( ).

/g cm 2 5 10 7 0 10
( / )/mol kg 0 0102 0 0145

These concentrations can be expressed in SI base units by multiplying them by (10 kg g )
(10 cm m ) .

The two data points allow us to write equation 21.7 in two ways.

1 ( )(2 5 kg m )
0 0102 mol kg

1 ( )(7 0 kg m )
0 0145 mol kg

Solving these equations simultaneously yields

98 1 kg mol

( ) 9 2 m mol

�

� �
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21.2 Osmotic Pressure of Polymer Solutions
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polydisperse, so equation 21.3 must be changed. The term / in equation 21.3
is proportional to the number of polymer molecules ,

(21 4)

where is Avogadro’s constant and is the volume of the solution. For a poly-
disperse solution, is given by

( ) (21 5)

where is the total number of molecules. The concentration of a solution of a
polydisperse polymer is given by

(21 6)

and therefore

( ) (21 7)

By taking the limit of / as 0, we can find the number average molar mass
of the polymer. The expansion of in powers of concentration is called a virial

expansion just as in the equation of state of gases (Section 1.5).

In discussing osmotic pressure measurements and some other properties, it is
useful to introduce the concepts of “good” and “poor” solvents. In a good solvent,
each solute molecule is surrounded by a shell of solvent molecules, and this shell

y
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Pair interaction potential for two monomers in a poor solvent ( ) and in a
good solvent ( ). The potential ( ) is also representative for a van der Waals gas. (From
G. R. Strobl, , New York: Springer, 1997.)

theta temperature,

Chapter 21 Macromolecules
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Figure 21.2

has to be destroyed when two solute molecules approach each other. This means
that the potential energy of interaction is repulsive at all distances between sol-
ute molecules, as shown in Fig. 21.2 . In a poor solvent, there is preference for
solute–solute contacts. This means that solute molecules attract each other as they
approach and repel each other at short distances for the same reason that real gas
molecules repel each other at very short distances. This type of potential energy
curve is shown in Fig. 21.2 .

Thus the interactions of polymer molecules with other polymer molecules and
interactions between parts of a single molecule are like the interactions between
gas molecules discussed in connection with the van der Waals equation and the
explanation of the Boyle temperature. At high temperatures, the repulsive inter-
actions predominate (the good solvent effect), and the second virial coefficient is
positive. At low temperatures, the attractive interactions predominate (poor sol-
vent effect), and the second virial coefficient is negative. At some intermediate
temperature, the second virial coefficient is equal to zero, which means that the
plot of / versus is horizontal at low concentrations. In polymer solutions this
temperature is referred to as the and the solvent at this tem-
perature is referred to as a theta solvent. These effects are illustrated in Fig. 21.3.
Number average molar masses of polymers are often determined in theta sol-
vents because / is nearly independent of over a range of low concentrations.
Note that the theta temperature is analogous to the Boyle temperature for gases
(Section 1.5). When the temperature is lowered below the theta temperature, the
attractive forces between parts of a polymer molecule may become large enough
that the solution becomes turbid because of the aggregation.

These changes in the average configuration of a polymer molecule in solution
can be confirmed by any method that yields the root-mean-square end-to-end
distance (Section 21.3). Thus, the contribution of the polymer to the viscosity of a
solution is greater above the theta temperature than below the theta temperature.

The solvent can play an important role in determining the size of a poly-
mer. For example, in a good solvent the polymer–solvent interaction results in
a swelling of the polymer. The Gibbs energy is lowered significantly by this. In a
poor solvent, the polymer lowers its Gibbs energy by having less contact with the
solvent (contracting), and its complete solution may be impossible.
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�Figure 21.3

In solutions of proteins or other colloidal electrolytes it is necessary to distin-
guish between the which would be obtained with a mem-
brane impermeable to both salt and protein, and the
which is obtained with a membrane permeable to salt ions but not to protein. The
latter type of membrane is always used when it is desired to obtain the molar mass
of the protein or other colloidal electrolyte.

For colloidal electrolytes in solutions with low concentrations of electrolytes,
the measured osmotic pressure is greater than that expected for the colloidal ions
alone. This is a result of the fact that, although the salt ions may pass through the
membrane, they will not be distributed equally at equilibrium. Donnan showed
that because of the high molar mass ion on one side of the membrane, the con-
centration of the small ion of the same sign as the macro-ion is lower on that side
of the membrane than in the salt solution, and that this is compensated by an in-
creased concentration of the small ion of opposite charge. The Donnan effect may
be reduced by increasing the salt concentration and, if possible, adjusting the pH
to the pH where the net charge of the colloidal electrolyte is zero.

Polymers are differentiated at the molecular level from other substances by their
long chains of covalently bonded atoms. The useful mechanical properties of
polymers are a consequence of the special attributes of these long chains. Since
chains can have many spatial configurations, statistical mechanics is required
to obtain a quantitative understanding of these molecular properties. The bond
lengths and bond angles in polymer chains are the same as in substances of lower
molecular mass within the limits of experimental measurements. Even with these
restrictions on bond angles, however, the number of possible configurations of a
chain several thousand bonds in length is prodigious. In solution the conforma-
tion of a particular chain undergoes continual change due to thermal agitation.

In this section we are interested in the average distance between ends of a
chain containing a certain number of bonds. To make this calculation we will first
consider an idealized model of the simplest possible kind. We will assume that
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the chain has links of length and that the direction in space of any link with
respect to the preceding link is entirely random. This
is an oversimplification because (1) angles of successive bonds in real molecules
are limited to certain angles and (2) real chains cannot double back on them-
selves or occupy space filled with another part of the chain. This is known as
the excluded volume effect. The mathematical treatment of this simple model in-
volves an idea that is encountered in other areas of physical science, the idea of
random walk. The simplest example of random walk is Brownian motion in one
dimension.

Let us consider a walker who starts at the origin and takes a step of length
along a line to the right or left at successive intervals of time with equal probability
( ). If the number of steps is large, it is readily shown* that the probability

( ) d that the walker is at a distance to d from the origin is given by

1
( ) d e d (21 8)

(2 )

where is the length of each step. Figure 21.4 shows the probability density for a
random walker along a line after 100, 1000, and 10 000 steps. If the steps are not
the same length, equation 21.8 becomes

1
( ) d d (21 9)

(2 )

where is the average of the square of the step length. This equation may be
used to obtain one component of the displacement after steps in random walk
in three dimensions with a constant step length of . The probability ( ) d that
there is a displacement in the range to d after steps of length in three
dimensions is obtained by replacing by and by cos , where is the angle
between the random walk vector and the axis. The angle may take on all values
with equal probabilities, and hence in equation 21.9 is given by cos /3:

3
( ) d e d (21 10)

2
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Figure 21.5

The probability ( ) d d d that the coordinates after a random walk
of steps are between and d , and d , and and d is given by
the product of three probabilities of the type given by equation 21.10:

3
( ) d d d e d d d (21 11)

2

This equation shows that the most probable coordinates after a random walk
process are 0, 0, and 0. However, we are more interested in an-
other question, namely, what is the root-mean-square value of the end-to-end dis-
tance after a three-dimensional random walk? Equation 21.11 can be converted
to spherical coordinates to obtain

3
( )4 d 4 e d (21 12)

2

by use of . The is obtained
from

( )4 d (21 13)

so that the root-mean-square end-to-end distance for a is

( ) (21 14)

Thus, a very simple result has been obtained. For a freely jointed linear polymer
with a fully extended length of , the root-mean-square end-to-end distance is
proportional to and, therefore, to the square root of the molar mass. Thus
quadrupling the molar mass simply doubles ( ) .

When a computer is used to calculate by having a random number genera-
tor calculate the orientation of each successive bond, a different value of will be
obtained each time. Equation 21.14 gives the average result for ( ) for a large
number of these calculations, and equation 21.18 gives the distribution of values
of found in these calculations.

The freely jointed chain model discussed in the preceding three paragraphs is
not a model for any real polymer because the bond angle , shown in Fig. 21.5, is
determined by the structure of the monomer. In the idealized chain shown in the
figure, C , C , and C define a plane. Atom C can occur any place on the circle
that is the base of the cone described by rotation of bond 3. For polymethylene,

is the tetrahedral angle 109 28 . When is constant and varies randomly, the
model is referred to as the For this model, it can be
shown* that for long chains

1 cos
(21 15)

1 cos

For polymethylene 109 28 cos , and so 2 .
Equation 21.15 illustrates the general conclusion that the root-mean-square

end-to-end length is proportional to the square root of the number of bonds or
links it contains, even if there are restrictions on the bond angles.
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Illustrate the difference in the predictions of the root-mean-square end-to-end distance
using the freely jointed chain model and the freely rotating chain model by considering a
polymethylene chain with 10 g mol . The length of a carbon–carbon bond is 155
pm. The number of units in the chain is (10 g mol )/(14 g mol ) 7 14 10 .

For the freely jointed chain model,

( ) (7 14 10 ) (155 pm) 13 1 nm

For the freely rotating chain model,

( ) (2 ) (2 7 14 10 ) (155 pm) 18 5 nm

The length of the chain is (7 14 10 )(155 pm) 1107 nm.

Conformations of
-butane.
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Figure 21.6

So far in this discussion we have assumed that there is free rotation around
each bond; that is, angle in Fig. 21.5 can have any value. However, this rota-
tion is not free because there is a potential energy associated with such internal
rotation.

The simplest example of the restrictions on bond rotations is provided by
-butane. The three conformations with the lowest energies are shown in Fig.

21.6, and the corresponding potential energy curve is shown in Fig. 21.7. The
eclipsed form ( 180 ) is not shown because it has a high energy relative to
the other three forms. The gauche minima lie about 2.1 kJ mol above the en-
ergy of the trans conformation. The gauche forms are each about half as probable
as the trans form; e When the potential energy of internal rotation in
a singly bonded carbon chain is taken into account, equation 21.15 becomes

1 cos 1 cos
(21 16)

1 cos 1 cos

where

cos e d
cos (21 17)

e d

where ( ) is the potential energy of internal rotation given in Fig. 21.7.
Note that in both equations 21.15 and 21.16, is still of the form . Thus,

the effect of restricting the bond angle and the free rotation about bonds is to
increase the “effective bond length” . Therefore, the form of equation 21.16 is
not affected by bringing in these restrictions. These theoretical results are of great
importance for an understanding of rubberlike elasticity and of hydrodynamic and
thermodynamic properties of dilute polymer solutions.

In the model of a polymer we have considered, there are no interactions be-
tween different segments of the polymer. In a real polymer in solution, however,
there will be interactions, of which the most important is the excluded volume
interaction, which is due to the finite size of the segments. Even parts of the chain
that are far apart can produce this effect (see Fig. 21.8). The real
interactions in polymers are very complicated; however, as far as the long length
scale properties such as end-to-end distance are concerned, the of the
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interaction are not important. Flory worked out a simple form of the theory
including excluded volume, which gave as the root-mean-square end-to-end
distance

(21 18)

instead of . Thus, the excluded volume interactions tend to swell
the chain from the ideal random chain. Since the intersegment interactions that
give rise to the excluded volume effect are mediated by the solvent in which the
polymer is dissolved, the form of and the probability distribution function for

depend on solvent. In a good solvent, the polymer is surrounded by solvent
molecules and is therefore swollen. In a poor solvent, the polymer prefers its own
segment–segment interactions to the segment–solvent interactions, so the poly-
mer tends to be small. In between these limiting cases, there is a point (the theta
point) where the interactions are more or less equal, and the excluded volume
effects are negligible.

There is another measure of the physical size of a chain molecule, and that is
the . The square of the radius of gyration of a chain
molecule in a particular configuration is calculated by summing the squares of the
distances from each residue to the chain’s center of mass and averaging by
dividing by the number of residues:

(21 19)

To obtain the radius of gyration, the average of is calculated for all of the
possible configurations; this yields , which it turns out is directly proportional
to the mean-square end-to-end distance :

(21 20)
6

Thus, substituting the expression for (equation 21.14) and taking the square
root yields

(21 21)
6
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21.4 MOLAR MASS DISTRIBUTIONS
OF STEP-GROWTH POLYMERS
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The radius of gyration gives a better idea of the physical size of the chain molecule
than the root-mean-square end-to-end distance.

Synthetic high polymers are produced by the reaction of monomer molecules to
produce linear or branched chain molecules. Polymerization reactions can be clas-
sified according to the mechanism of the reaction. There are basically two types
of polymerization reactions: and

Their kinetics are quite different. In step-growth polymerization the
chains grow in a slow, stepwise manner. In free-radical polymerization individual
chains grow rapidly to their final length.

In step-growth polymerization, a linear polymer is produced by the stepwise
condensation or addition of the reactive groups in bifunctional monomers. Com-
mon functional groups for this type of polymerization are OH, CO H, and

NH . For example, a polyester can be formed by the reaction of diacids with
dialcohols via a polycondensation reaction:

HOOC R COOH HO R OH H [ O R O R ] OHC C

O O
(2 1)H O (21 22)

Alternatively, a polyester can be formed by polymerization of a hydroxy acid:

HO R COOH H [ O R ] OH ( 1)H O (21 23)C

O

In the production of polyesters or polyamides, the reactions are reversible, so
that water must be removed as the reaction progresses. In the production of
polyurethanes there is no elimination of a small molecule. Two molecules react to
form a dimer. The dimer then reacts with another monomer to form a trimer, and
so on. Therefore, the average molar mass of the product increases as the reaction
proceeds.

During a step-growth polymerization the average molar mass or degree of
polymerization increases steadily. The

is equal to the average number of monomer units in the polymer molecules.
If the initial number of monomer molecules in the reaction mixture is and the
number present at time is , all the rest are in polymer molecules, so that the
extent of of reaction is

1 (21 24)

The degree of polymerization is

1
(21 25)

1
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y
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where the second form has been obtained by use of equation 21.24. For the av-
erage number of monomer units in the polymer molecules to be 100, it is evident
that the extent of reaction will have to be equal to 0.99.

Now we are going to consider the polymerization of a hydroxy acid HO R
COOH, which is represented as AB. The number of monomer units in a given
chain is called the It is therefore equal to / , where

is the molar mass of the chain and the molar mass of the monomer.
To calculate the molar mass distribution in solution, we consider the

of forming a chain of size . This probability must be equal to the probability
of having 1 elementary steps. Since the probability of having any one step is
proportional to the fraction of monomers reacted, then must be proportional
to :

(21 26)

To find , we note that the sum of over all must equal 1, since the sum of all
probabilities is unity:

1 (1 ) (21 27)
1

Therefore, 1 . This makes sense since then the probability of finding a
chain with zero bonds, that is, a monomer, is just 1 , the probability of finding
an unreacted monomer. We therefore find that the probability of finding a chain
of length (or equivalently the mole fraction of chains of length ) is

(1 ) (21 28)

We can now calculate the number and mass average molar masses. The number
average molar mass is given by

(1 ) (21 29)

The sum 1 2 3 (1 ) , so that

(21 30)
1

We can calculate the mass average molar mass by noting that

( )
(21 31)

from the definition of (see equation 21.2). Equivalently, we can consider the
probabilities defined on the basis of mass rather than number:

(1 ) (21 32)

Then the preceding definition of mass average molar mass follows directly. From
this, we find

1
(21 33)

1
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for extents of reaction of 0.95, 0.96, 0.97, 0.98, and 0.99. Note that the extent of reaction
must be very close to unity to obtain the high polymer. (See Computer Problem 21.C.)
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since

(1 )(1 ) (21 34)

The number and mass fractions or probabilities for different values of are
plotted in Fig. 21.9. Note that the mass fractions go through a maximum while
the number fractions do not. These results have been confirmed by experiments
in which polymer samples are fractionated (by solubility methods) into narrow
ranges of polymer size and the various fractions analyzed.

If we multiply by we have the probability of finding a chain of mass
in the solution. Therefore, the graph of the probability density for molar

mass , ( ), is the same as the graph for versus (Fig. 21.9 ), and is shown
in Fig. 21.10. It can be shown that for close to 1, the maximum of the curve
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For the condensation polymerization of HO CH CH CO H, calculate the mole frac-
tions and weight fractions of polymers with 10, 20, 30, and 40 monomer units when
the fraction of monomers reacted is 0.95. Also calculate the number average molar mass
and mass average molar mass of this polymer.

(1 ) (0 05)0 95

(1 ) (0 05)

10 20 30 40
3 16 10 1 89 10 1 13 10 6 76 10
1 57 10 1 89 10 1 69 10 1 35 10

78 g/mol
1560 g/mol

1 0 05

1 1 95
78 g/mol 3042 g/mol

1 0 05

Plot of the weight fraction versus the molar mass for a step-growth
polymer with 100 g/mol and extent of reaction 0 99. The first vertical line is the
number average molar mass and the second vertical line is the mass average molar mass.
(See Computer Problem 21E.)
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( ) occurs for . From the definitions of and , it is clear that
. The equal sign can occur only if there is only one size of polymer in

the sample (monodisperse), so that the ratio is a good measure of the
polydispersity of the sample. From above, we see that

1 (21 35)

We have already seen that must be close to 1 for the high polymer to be formed,
so that for such systems is twice .
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21.5 DETERMINATION OF MOLAR MASSES USING VISCOSITY,
SEDIMENTATION, AND LIGHT SCATTERING
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This discussion has been concerned with linear condensation polymers that
arise from bifunctional polymers. When the monomer is trifunctional, polymer
that is branched and cross-linked can be obtained. This introduces the possibility
of forming an infinite network. This process is referred to as gelation, and the
point of transition from a soluble polymer to an insoluble polymer is referred to
as the gel point.

Polymers can also be formed from unsaturated organic compounds by free
radical chain reactions. These polymerizations can be initiated with organic per-
oxides, azo compounds, or ultraviolet light or X-rays. When polymer is formed
in a chain reaction, the growing chain bears an unpaired electron, and the elec-
tron is transferred to the new chain end in each addition step. This is very differ-
ent from the condensation polymer polymerization described above because the
chains grow to their final lengths very quickly. Chain growth is terminated by re-
action of the free radical of another chain to form either one or two molecules of
polymer.

The determination of the number average molar mass of a polymer was discussed
in Section 21.2, but now we will discuss three other methods for determining mo-
lar masses of macromolecules. A suspension of particles or a solution of macro-
molecules has a viscosity (Section 20.1) that is higher than the viscosity of
the solvent. Einstein showed in 1906 that the viscosity of a dilute suspension of
spheres is given by

5 5
1 or 1 (21 36)

2 2

where is the volume fraction occupied by the spheres. The ratio / is re-
ferred to as the and / 1 is referred to as the

although neither of these quantities is a viscosity. It is of interest to
note that the viscosity is independent of the size of the spherical particles. How-
ever, the coefficient of increases with the axial ratio for prolate and oblate ellip-
soids of revolution. The volume for a polymer in solution may be written as ,
where is the concentration of the polymer in mass per unit volume and is the
partial specific volume of the polymer. The partial specific volume is equal to
the partial molar volume (Section 1.10) divided by the molar mass. Thus we
might expect that equation 21.36 for nonspherical particles might be written as

/ (const) . The limit of / as approaches zero is referred to as the
[ ]:

lim [ ] (21 37)

Intrinsic viscosities give strong indications of the axial ratios of molecules in
solution. For a spherical, unhydrated protein with 0 75 cm g , we would
expect [ ] 1 9 cm g . As shown in Table 21.1, the intrinsic viscosity of ri-
bonuclease is not very much greater than this value. Bushy stunt virus is very
nearly spherical, even though it has a molar mass of 1 07 10 g mol . The elon-
gated molecules of fibrinogen provide the structure for blood clots, and the even
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Intrinsic Viscosities of Macromolecules in Water at
25 C

/g mol [ ]/cm g

Ribonuclease 13 683 2.3
Bovine serum albumin 66 500 3.7
Bushy stunt virus 10 700 000 3.4
Fibrinogen 330 000 27
Tobacco mosaic virus 40 000 000 37
Myosin 493 000 217
DNA 6 000 000 5000

-
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more elongated molecules of myosin are the contractile part of muscle. The very
high intrinsic viscosity of double-stranded deoxyribonucleic acid (DNA) shows
that the molecules are very long and thin. High-molar-mass DNA may be de-
graded (reduced in molar mass) by the shear gradients encountered in pipetting
solutions. To measure the viscosities of DNA solutions at very low shear, it has
been necessary to use rotating cylinder, or Couette, viscometers.

In Section 21.3 we found that the root-mean-square end-to-end distance of a
linear polymer in a theta solvent is proportional to the square root of its molar
mass. On the basis of this result we can derive the form of the relation between
the intrinsic viscosity and the molar mass.

The polymer molecule in solution may be visualized as a spherical cloud
of segments, with the cloud getting thinner as we go out from the center. The
size of this spherical cloud is measured by the root-mean-square end-to-end
distance ( ) . As an approximation of the spherical cloud, we may replace it
with a rigid sphere with a radius proportional to ( ) and a volume propor-
tional to ( ) . Since the intrinsic viscosity of a sphere is proportional to the
volume per unit mass of the macromolecule, the intrinsic viscosity of a random
coil is expected to be proportional to ( ) / , where is the relative molar
mass defined by / , where is the mass of a molecule and ( C)/12
is the atomic mass constant. The reason for using the dimensionless relative
molar mass here is that this avoids units when is raised to various
powers.

Since ( ) is proportional to the number of segments in the chain (see equa-
tion 21.14), or to , the intrinsic viscosity of a random coil is expected to be
proportional to :

[ ] (21 38)

This is exactly what is found for polystyrene in cyclohexane at 34 5 C. In general,
the intrinsic viscosity is related to the relative molar mass of the polymer by the
Mark–Houwink equation, which is

[ ] (21 39)

where is an empirical constant that usually has a value in the range 0.5 to 0.8.
The higher values of are obtained in good solvents where the polymer chain
is more extended than a random coil. The values of and for a number of
polymer–solvent systems are shown in Table 21.2.



Viscosity of DNA solutions

Comment:

K a

The properties of solutions of small DNA molecules can be determined, as
indicated by Table 21.1 where the intrinsic iscosity is gi en for a DNA molecule
with molar mass . Howe er, DNA molecules can be much bigger.
Electron microscopy measurements show that the DNA molecule from a single
human chromosome is about long and has a molar mass of the order of

. Such long molecules are broken by the shear stresses of pipetting
and iscosity determinations.
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Parameters in [ ] for Polymer–Solvent Systems

/ C /10 cm g

Natural rubber Toluene 25 5.0 0.67
Polymethyl methacrylate Acetone 25 0.75 0.70

Chloroform 25 0.48 0.80
Methyl ethyl ketone 25 0.68 0.72

Polystyrene Benzene 20 1.23 0.72
Methyl ethyl ketone 20–40 3.82 0.58
Toluene 20–30 1.05 0.72

Polyvinyl alcohol Water 25 30.0 0.50

Given that the intrinsic viscosity of a sample of DNA ( 6 10 g mol ) is 5 0
10 cm g , approximately what concentration of DNA in water would have a relative
viscosity of 1.1?

( / ) 1 0 1
5 0 10 cm g

2 0 10 g cm 2 0 10 g L

Since the molar mass of DNA per nm measured along the axis of the helix is 1920 g mol ,
the length of a molecule of DNA with 6 10 g mol is 3100 nm or 3.1 m.
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Since and have to be determined experimentally, this is a secondary
method for the determination of the average molar mass of a high polymer. In
the case of a heterogeneous polymer the molar mass determined using viscosity
measurements is closer to a mass average molar mass than a number average mo-
lar mass (Section 21.1).

6 10 g mol

4 cm
10 g mol

In Section 20.1 we saw that the radius of a spherical particle can be de-
termined by measuring the velocity with which it settles in a liquid by use
of 6 , where is equal to the ratio of the force on the particle to its
velocity.
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Dissolved molecules tend to sediment in the earth’s gravitational field or to
float upward, depending on their density relative to that of the solvent, but this
tendency is counteracted by the random translational motion of the molecules.
However, sufficiently powerful have been built to cause even
molecules as small as sucrose to sediment at measurable rates. Svedberg* was
the leader in the development of ultracentrifuges, which he defined as centrifuges
adapted for quantitative measurements of convection-free and vibration-free sed-
imentation. There are two distinct types of ultracentrifuge experiments: (1) those
where the velocity of sedimentation of a component of the solution is measured
(sedimentation velocity) and (2) those where the redistribution of molecules is
determined at equilibrium (sedimentation equilibrium).

The acceleration of a centrifugal field is equal to , where is the angu-
lar velocity of the centrifuge in radians per second (i.e., 2 times the number of
revolutions per second) and is the distance from the axis of rotation. Ultracen-
trifuges in which is about 6 cm are commonly operated at 60 000 rpm or 1000
rps, and so the acceleration is

(2 1000 s ) (0 06 m) 2 36 10 m s (21 40)

Since the acceleration of the earth’s gravitational field is 9.80 m s , the accelera-
tion is 240 000 times greater than in the earth’s field.

When a solution containing a polymer is in a cell in an ultracentrifuge, the
movement of molecules away from the axis of the centrifuge produces a boundary
in the cell that moves away from the axis of rotation if the molecules are denser
than the solvent. The direction of “sedimentation” depends on the sign of the
Archimedes factor (1 ), where is the density of the solvent. For a complex
mixture, such as blood plasma, there will be several boundaries corresponding to
different protein molecules.

The ratio of the velocity to the centrifugal acceleration is called the
:

1 d
(21 41)

d

Since has the units s , the sedimentation coefficient has the unit seconds. The
sedimentation coefficients of proteins fall in the range 10 s to 200 10 s,
and the unit 10 s is called a

In a centrifugal field a solute molecule is accelerated until the frictional force
resisting its motion is equal to the acceleration of the centrifugal field times the
effective mass (1 ), where is the mass of the molecule. The frictional force
is the product of the velocity d /d and the frictional coefficient (Section 20.1).
Thus, when the steady-state velocity d /d is reached,

d (1 )
(1 ) (21 42)

d

where is the molar mass.
Substituting equation 21.42 into equation 21.41 yields

(1 )
(21 43)
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Physical Constants of Proteins at 20 C in Water

/10 s /10 m s /cm g /g mol

Beef insulin 1.7 15.0 0.72 12 000
Lactalbumin 1.9 10.6 0.75 17 400
Myoglobin 2.06 12.4 0.749 16 000
Ovalbumin 3.6 7.8 0.75 44 000
Serum albumin 4.3 6.15 0.735 64 000
Hemoglobin 4.6 6.9 0.749 64 400
Serum globulin 7.1 4.0 0.75 167 000
Urease 18.6 3.4 0.73 490 000
Tobacco mosaic virus 185.0 0.53 0.72 40 000 000

Using the data of Table 21.3, what is the molar mass of hemoglobin? The density of water
at 20 C is 0 9982 10 kg m .

(1 )

(8 31 J K mol )(293 K)(4 6 10 s)
(6 9 10 m s )[1 (0 749 10 m kg )(0 9982 10 kg m )]

64 4 kg mol

64 400 g mol
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The sedimentation coefficient by itself cannot be used to determine the molar
mass of the sedimenting component unless the molecules are spherical. If the
molecules are spherical, 6 , and equation 21.43 may be used to calculate
the molar mass. Since the velocity of sedimentation is so low that there is no ap-
preciable orientation of the molecules, the frictional coefficient involved in sed-
imentation is taken to be the same as that involved in diffusion. Introduction of
equation 20.11 into equation 21.43 yields

(21 44)
(1 )

To calculate the molar mass from measured values of and , it is necessary to
correct sedimentation and diffusion coefficients to the same temperature, usually
20 C, and if and depend appreciably on concentration, to zero concentration.
Equation 21.44 has probably been the most widely used in the calculation of molar
masses of proteins, and the wide range of molar masses that can be obtained by
this method is indicated by Table 21.3.

For spherical macromolecules or colloidal particles, the particle radius and
molar mass may be calculated from the experimental value of the diffusion
coefficient by using equation 20.12. The molar mass of a spherical particle is
given by

4
(21 45)

3
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where is the specific volume (that is, the reciprocal of the density). If equation
21.45 is substituted in equation 20.12, we obtain

4
(21 46)

6 3

For spherical particles, then, the diffusion coefficient is inversely proportional to
the cube root of the molar mass. Of course, if the particles or molecules are not
spherical, the value of the molar mass calculated from equation 21.46 will not be
correct. This equation, however, does give the maximum molar mass that is con-
sistent with a given and . For a nonspherical particle the frictional coefficient
is larger than 6 and the molar mass is smaller than that calculated from equa-
tion 21.46.

Light scattering can also be used to measure the size of polymer molecules
in solution. When the oscillating electromagnetic field of light impinges on a
molecule, the molecule is polarized by the electric field vector and at the fre-
quency of the light. This causes an oscillating dipole to be set up in the molecule,
which then acts to radiate a new electromagnetic field. Since the field of a dipole
radiates in all directions, we can say that the incident light has been scattered
by the molecule. The theory of light scattering was developed by Rayleigh, who
then explained the blue color of the sky and the red color at sunset as being due
to the preferential scattering of blue light by the molecules and particles of the
atmosphere.

If every molecule scatters light, then it might seem as if all liquids and solids
would scatter light powerfully. However, if the concentration of molecules is the
same everywhere in the system, then the summation of the scattered electromag-
netic fields from all the molecules gives zero intensity except in the forward di-
rection. Thus, as Rayleigh showed, it is the in the concentration that
give rise to fluctuations in the refractive index of the system, which then cause net
scattering of light. This is why liquids at the critical point scatter light and become
cloudy: at this point the concentration fluctuations are very large, and thus so are
the refractive index fluctuations.

We can use classical electromagnetic theory to calculate the scattering of light
from a single molecule. An oscillating dipole in the molecule produces an oscil-
lating electric field at a distance and angle with respect to the polarization of
the dipole (see Fig. 21.11).

A straightforward experiment is to measure the transmitted intensity of a
light beam through a polymer solution. If there is little absorption of light, the
loss of intensity is due to scattering. The total scattered intensity is the integral of

over all angles, so that the transmitted intensity is given by

e (21 47)

where is the and is the thickness of the cell in the direction of the
incident beam. This is of the form of Beer’s law for light absorption (Section 14.4).
It can be shown that the turbidity is proportional to the molar mass of the polymer
and proportional to its concentration:

32 (d /d )
(21 48)

3
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Figure 21.11

where

32 (d /d )
(21 49)

3

and is the refractive index of the solvent, d /d is the rate of change of the
refractive index of the solution with increasing concentration, and is the wave-
length of the light that is scattered. Since the turbidity is proportional to the
molar mass of the polymer, this method is more useful as the molar mass increases,
in contrast with osmotic pressure, which is inversely proportional to molar mass.

If one of the dimensions of the polymer is comparable to or greater than the
wavelength of light, then there will be interference of the scattered waves from
different parts of the same molecule. It is found that large molecules tend to scat-
ter more light in the forward direction, and so the angular dependence of light
scattering can also be used to obtain information about polymer shape.

Synthetic polymers and the naturally occurring polymers from living organ-
isms (proteins, nucleic acids, and polysaccharides) pose tremendous chal-
lenges to understanding their structures and the relation between structure
and function.
The osmotic pressure provides a way to determine number average molar
mass. The theta temperature of a polymer–solvent system is the analogue of
the Boyle temperature of nonideal gases.
The spatial configurations of chains of synthetic high polymers can be dis-
cussed in terms of the freely jointed chain model or the freely rotating chain
model. These calculations lead to mean-square end-to-end distances and radii
of gyration.
The mechanisms and product distributions of step-growth polymerization
and free-radical polymerization are very different. In step-growth polymer-
ization, high molecular masses are obtained only in the last several percent
of reaction. In free-radical polymerization, the chains grow rapidly until the
free radical of a growing chain reacts with the free radical of another chain.
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Problems marked with an icon may be more conve- average number of monomer units in the polymer molecules,
niently solved on a personal computer with a mathematical pro- ( ) the probability that a given molecule will have the number
gram. of residues given by this value, and ( ) the weight fraction having

this particular number of monomer units.A polymer solution contains 250 molecules of molar
mass 75 000 g mol , 500 molecules of molar mass 100 000 g A hydroxy acid HO (CH ) CO H is polymerized,
mol , and 250 molecules of molar mass 125 000 g mol . and it is found that the product has a number average molar
Calculate , and the ratio / (the polydispersity). mass of 20 000 g mol . ( ) What is the extent of reaction ?

( ) What is the degree of polymerization ? ( ) What is thePlot the probability density ( ) for random walk
mass average molar mass?in three dimensions after 1000 steps with a step length of unity.

A general polymerization reaction in the liquid phaseIndicate the root-mean-square end-to-end distance on this plot.
can be writtenIn polyethene H(CH CH ) H the bond length is

10.15 nm. What is the root-mean-square end-to-end distance for a
molecule with universal joints with a molar mass of 10 g mol ?
Taking into account the fact that carbon forms tetrahedral

The values of and have been determined for somebonds, what is ( ) ?
polymerization reactions. This makes it possible to calculateDerive the expression for the mean separation for the

, and some values at 25 C are shown in the followingends of a freely jointed chain of bonds of length . See the
table:definite integrals in Table 17.1 or Appendix D.3.

Derive the expression for the root-mean-square separa- Monomer
kJ mol J K mol kJ moltion for the ends of a freely jointed chain of bonds

of length . See the definite integrals in Table 17.1 or Appendix
Styrene 69.9 104 38.5D.3.

-Methylstyrene 35.2 104 4.2
For a condensation polymerization of a hydroxy acid in Tetrafluoroethylene 154.8 112 121

which 99% of the acid groups are used up, calculate ( ) the
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21.4
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21.6

The intrinsic viscosity of a high polymer solution increases with some frac-
tional power of the relative molar mass, where that fraction is in the range
0.5 to 0.8. The intrinsic viscosity of DNA is extremely high.
Sedimentation constants determined with an ultracentrifuge and diffusion
constants can be used to calculate molar masses of proteins from the smallest
to the largest molecules.
Measurements of light scattering from a solution can be used to determine
molar masses of macromolecules because fluctuations in local concentration
give rise to fluctuations in refractive index. The intensity of light scattered is
proportional to the molar mass.
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If we assume that and are independent of tem- ( ) Integrate equation 21.41 to obtain as a function of
perature, we can calculate the temperature at which the equi- , , , and . ( ) In an ultracentrifuge experiment, the sed-
librium constant for the polymerization reaction is unity. At imenting boundary of a protein is 5.949 cm from the axis at
this temperature, depolymerization occurs, and that temper- and 6.731 cm from the axis at 70 minutes. If the speed of
ature is called the ceiling temperature. Calculate the ceil- the rotor is 50 400 rpm, what is the sedimentation coefficient of
ing temperatures of these three polymers, and interpret these the protein?
temperatures. A sample of polymer contains 0.50 mole fraction with

Show that the intrinsic viscosity can also be defined by molar mass 100 000 g mol and 0.50 mole fraction with molar
mass 200 000 g mol . Calculate ( ) and ( ) .

1 Calculate ( ) number average and ( ) mass average mo-[ ] lim ln
lar masses for the following mixture of high polymer fractions:
1 g of 20 kg mol , 2 g of 50 kg mol , and 0.5 g of

[ ln(1 ) if 1.] 100 kg mol .
Human blood plasma contains approximately 40 g ofThe relative viscosities of a series of solutions of a

albumin ( 69 000 g mol ) and 20 g of globulin (sample of polystyrene in toluene were determined with an Ost-
160 000 g mol ) per liter. Calculate the colloid osmotic pres-wald viscometer at 25 C:
sure at 37 C, ignoring the Donnan effect.

For a condensation polymerization of a hydroxy acid in/10 g cm 0.249 0.499 0.999 1.998
which 95% of the acid groups are used up, calculate ( ) the/ 1.355 1.782 2.879 6.090
average number of monomer units in the polymer molecules,

The ratio / was plotted against and extrapolated to zero ( ) the probability that a molecule chosen at random will have
concentration to obtain the intrinsic viscosity. If the constants in this number of residues, and ( ) the weight fraction having this
equation 21.65 are 3 7 10 and 0 62 for this poly- particular number of monomer units.
mer, when concentrations are expressed in g/cm , calculate the

For the polymer described in Problem 21.21, calculate
molar mass.

the number average and mass average molar mass.
At 34 C the intrinsic viscosity of a sample of polystyrene

In the condensation polymerization of a hydroxy acidin toluene is 84 cm g . The empirical relation between the in-
with a residue mass of 200, it is found that 99% of the acid groupstrinsic viscosity of polystyrene in toluene and molar mass is
are used up. Calculate ( ) the number average molar mass and
( ) the mass average molar mass.[ ] 1 15 10

The relation between and [ ] for double-stranded lin-What is the molar mass of this sample?
ear DNA is 0 665 ln 1 987 log([ ] 500) when [ ] is ex-

Given that the intrinsic viscosity of myosin is 217 cm pressed in cm g . What is the molar mass of DNA that has an
g , approximately what concentration of myosin in water intrinsic viscosity of 5000 cm g ?
would have a relative viscosity of 1.5?

A sample of polystyrene was dissolved in toluene,
The sedimentation coefficient of myoglobin at 20 C is and the following flow times in an Ostwald viscometer at 25 C

2 06 10 s. What molar mass would it have if the molecules were obtained for different concentrations:
were spherical? Given: 0 749 10 m kg , 0 9982
10 kg m , and 0 001 005 Pa s.

/10 g cm 0 0.1 0.3 0.6 0.9
The sedimentation and diffusion coefficients for hemo- /s 86.0 99.5 132 194 301

globin corrected to 20 C in water are 4 41 10 s and 6 3
10 m s , respectively. If 0 749 cm g and

If the constants in equation 21.65 are 3 7 10 and
0 998 g cm at this temperature, calculate the molar mass of 0 62 for this polymer, calculate the molar mass.
the protein. If there is 1 mol of iron per 17 000 g of protein, how

Given that the viscosity of a suspension of spheres ismany atoms of iron are there per hemoglobin molecule?
given by

Given the diffusion coefficient for sucrose at 20 C in wa-
ter ( 45 4 10 m s ), calculate its sedimentation co- 1
efficient. The partial specific volume is 0 630 cm g .

where is the viscosity of the solvent and is the volume frac-A beam of sodium D light (589 nm) is passed through 100
tion of the spheres, calculate the intrinsic viscosity of a solutioncm of an aqueous solution of sucrose containing 10 g sucrose per
of a spherical protein molecule with a partial specific volume100 cm . Calculate / , where is the intensity that would have
of 0 75 cm g . Assume that the molecules are not hydrated.been obtained with pure water, given that 342 30 g mol
Note that the intrinsic viscosity is independent of the radius ofand d /d 0 15 g cm for sucrose. The refractive index of
the spheres.water at 20 C is 1.333 for the sodium D line.
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When a solution of a protein is in a cell in the rotor of The diffusion coefficient of myoglobin is 12 4
an ultracentrifuge that is run for a long time, an equilibrium is 10 m s at 20 C, and the viscosity of water is 0 001 005 Pa s.
finally reached in which the concentration at the bottom ( ) The partial specific volume is 0 749 cm g . What is the molar
of the cell is higher than the concentration at the top of the mass, assuming the protein is not hydrated and is spherical?
cell ( ) because of the difference in centrifugal potential (note A solution of a high polymer in benzene has a concen-

). Thermodynamics shows that at equilibrium tration of 1 g/100 cm and a refractive index for the sodium D
line (589 nm) of 1.5021. The refractive index of benzene under

(1 ) ( ) these conditions is 1.5011. The turbidity is 2 10 cm .ln
2 What is the molar mass of the polymer? What is / for a 10-cm

cell?
where is the angular velocity in radians per second. An experi-
ment is to be carried out with myoglobin ( 16 000 g mol )
in an ultracentrifuge operating at 15 000 rpm. The bottom of the
cell is 6.93 cm from the axis of rotation, and the meniscus is 6.67 ( ) Plot the probability density ( ) that a random
cm from the axis of rotation. What ratio of concentrations is walker along a line is at the distance to d from the ori-
expected at 20 C if the partial specific volume of the protein gin after 100 steps, 1000 steps, and 10 000 steps. Assume that the
is 0 75 10 m kg and the density of the solvent is step length is 1 m ( ) Check that the standard deviation in

1 00 10 kg m ? each case is given by .
Calculate the sedimentation coefficient of tobacco mo-

For polyethylene, H(CH CH ) H, ( ) calculate the root-saic virus from the fact that the boundary moves with a velocity
mean-square end-to-end distance for a freely jointed chain and aof 0 454 cm h in an ultracentrifuge at a speed of 10 000 rpm at
freely rotatingchain formolarmassesof10 10 ,and10 g mola distance of 6.5 cm from the axis of the centrifuge rotor.
and make a table. ( ) Calculate the radius of gyration forThe sedimentation coefficient of gamma-globulin at
a freely jointed chain and a freely rotating chain for molar20 C is 7 1 10 s. Calculate how far the protein boundary
masses of 10 10 , and 10 g mol and make a table. The bondwill sediment in h if the speed of the centrifuge is 60 000 rpm
length is 0.15 nm, and there are tetrahedral bond angles (109 ).and the initial boundary is 6.50 cm from the axis of rotation.

Using data from Table 21.3, calculate the molar mass of ( ) Plot the mole fraction distribution of condensation
serum albumin. polymer versus chain length for extents of reaction from 0.95

to 0.99. ( ) Plot the weight fraction distribution of condensationThe diffusion coefficient for serum globulin at 20 C
polymer versus chain length for extents of reaction from 0.95in a dilute aqueous salt solution is 4 0 10 m s . If
to 0.99.the molecules are assumed to be spherical, calculate their

molar mass. Given: 0 001 005 Pa s at 20 C and
Plot the viscosity data in Problem 21.10 as (1/ ) ln( / )0 75 cm g for the protein.

to see whether the same intrinsic viscosity is obtained as in Prob-
The diffusion coefficient of hemoglobin at 20 C is lem 21.10.

6 9 10 m s . Assuming its molecules are spherical, what
is the molar mass? Given: 0 749 10 m kg and A hydroxy acid with 100 g/mol is polymerized to

0 001 005 J m s. the point that 99% of the monomers have reacted. ( ) Plot the
weight fraction versus the chain size . ( ) Plot the weightThe diffusion coefficient of a certain virus having spher-
fraction versus the molar mass of the polymer. ( ) Calcu-ical particles is 0 50 10 m s at 0 C in a solution with a
late the number average molar mass and the mass average mo-viscosity of 0 001 80 Pa s. Calculate the molar mass of this virus,
lar mass, and indicate them on the plot in ( ).assuming that the density of the virus is 1 g cm .
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22.1 POLARIZATION OF A DIELECTRIC
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Much of our knowledge of molecular systems has been obtained by studying the
ways in which they respond to electric and magnetic fields, especially their re-
sponse to electromagnetic radiation in spectroscopic experiments. Dipole mo-
ments were defined in connection with molecular electronic structure in Section
11.8. We have also considered electric dipole moments in connection with transi-
tion moments (Section 13.2), intermolecular interactions (Section 11.9), and the
Raman effect (Section 13.9). Nuclear magnetic moments have been discussed in
connection with nuclear magnetic resonance. We have completed our discussions
of spectroscopy, but now we will be concerned with electric and magnetic proper-
ties of bulk matter. Electric dipole moments are involved in dielectric and optical
properties of bulk matter, and magnetic dipole moments are involved in diamag-
netism, paramagnetism, and ferromagnetism. Liquids with dipolar molecules are
called polar solvents. Polar properties are especially important for the ability of
a solvent to dissolve electrolytes. In a solution of an electrolyte in a polar solvent
the ions are surrounded by dipolar solvent molecules oriented around ions. The
energy of this interaction makes the solution more stable.

The capacitance of a capacitor is the ratio of the charge on the conducting
plates to the potential difference between the plates:

(22 1)

Electric and Magnetic Properties
of Molecules
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Figure 22.1

Here we will consider only parallel-plate capacitors, such as that shown in Fig.
22.1. If the capacitor has vacuum between the plates, the capacitance is given
by

(22 2)

where is the area of a plate, is the distance between plates, and is the
[ 1/ 8 854 187 817 10 C N m (exactly),

where 4 10 N A (exact) is called the permeability of vacuum]. If
a nonconductor (dielectric) is inserted between the plates, the capacitance is in-
creased. To understand why the capacitance is increased, we need to consider the
polarization of the dielectric that is illustrated in Fig. 22.1.

When a dielectric is placed in an electric field, the electrons in the molecules
are pulled toward the positive plate and the positively charged nuclei are pulled
toward the negative plate. The charges remain bound in their atoms or molecules,
but the center of negative charge in a molecule is shifted with respect to the center
of positive charge. The dielectric remains electrically neutral in the bulk because
the positive and negative charges remain bound, but this displacement produces
a layer of negative charges on the surface of the dielectric close to the positive
plate and a layer of positive charges on the surface close to the negative plate, as
shown in Fig. 22.1. These surface charges reduce the electric field strength within
the dielectric because they produce an electric field in the opposite direction from
that of the capacitor plates.

The dielectric in a capacitor is said to be polarized by the application of the
electric field, and the of the dielectric is defined as the vector sum
of dipole moments of individual molecules per unit volume ( / ).
The polarization is a vector pointing in the direction of the dipoles, but we
will simply use its magnitude . To have a simple model of the dielectric, we will
assume that each molecule has a charge that is separated from a charge by
a distance at a particular electric field strength so that each of the molecules
per unit volume contributes a dipole moment of . Thus the magnitude of the
polarization is given by

(22 3)

The dipole moment per unit volume is equal to the surface charge per unit area
, which we will refer to as the surface charge density on the dielectric:
.
We want to calculate the capacitance of the capacitor with a dielectric be-

tween the plates. The charge density on the plates is represented by because
these charges can move through the wires connected to the plates; this charge den-
sity is unchanged by inserting the dielectric. When a dielectric is placed between
the plates, Gauss’s law shows that the electric field strength in the dielectric is
given by

(22 4)

If there were no polarization, the electric field would be / . Since is equal
to the polarization, this equation can be written

(22 5)
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(1 atm) 0 C 20 C

Hydrogen 1 000 272 Hexane 1.874
Argon 1 000 545 Cyclohexane 2.023
Air (CO free) 1 000 567 Carbon tetrachloride 2.238
Carbon monoxide 1 000 70 Benzene 2.283
Methyl chloride 1 000 94 Toluene 2.387
Methane 1 000 944 Chlorobenzene 5.708
Carbon dioxide 1 000 985 Acetic acid 6.15
Ethane 1 001 50 Ammonia 15.5
Hydrogen iodide 1 002 34 Acetone 21.4
Hydrogen chloride 1 004 6 Methanol 33.6
Ammonia 1 007 2 Nitrobenzene 35.74
Water (steam at 110 C) 1 012 6 Water 80.37
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The polarization is produced by the electric field, and so we cannot use this equa-
tion to calculate the electric field unless we know how depends on . At elec-
tric fields that are not too high, the polarization is proportional to the electric field
strength, and this proportionality can be written

(22 6)

where is the of the dielectric. The susceptibility of vac-
uum is zero. Substituting equation 22.6 in 22.5 yields

(22 7)
(1 )

Thus the electric field strength in the dielectric is reduced by a factor of 1/(1 )
by the charge on the surface of the dielectric.

Now we can calculate the capacitance of a capacitor filled with a dielectric
because the potential difference between the plates is given by the product of
the electric field strength and the distance between the plates.

(22 8)
(1 )

Substituting this into the expression / (equation 22.1) for the ca-
pacitance yields

(1 )
(22 9)

where 1 is the (dielectric constant). Comparison of
this equation with equation 22.2 shows that the relative permittivity is equal to the
ratio of the capacitance of the capacitor filled with dielectric to the capacitance

with vacuum between the plates:

(22 10)

The relative permittivities of a number of substances are given in Table 22.1.
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Since the polarization is given by (equation 22.6),

1 (22 11)

and measurements of the relative permittivity yield information on the polariza-
tion of the dielectric. There are two kinds of polarization,
and All molecules undergo distortion polarization when
they are placed in an electric field, and those with dipole moments become par-
tially oriented in an electric field in addition if they are free to rotate, as they are in
gases and liquids. First we will discuss distortion polarization and then orientation
polarization.

Dipole moments can be induced in all substances by application of an electric
field. If the electric field strength is not too high, the dipole moment due to the
distortion polarization is given by

(22 12)

where is the molecular In general, the polarizability is a matrix,
and we have seen this matrix in equation 13.111. Equation 22.12 provides for the
fact that the dipole moment vector is not necessarily parallel to the electric field
strength vector. If and the off-diagonal components are equal to
zero, the induced dipole moment is parallel to the electric field vector, and the sub-
stance is said to be Since the dipole moment has units C m, and the elec-
tric field strength has units of V m J C m , the polarizability has the units
C m J . Values of the mean electric polarizability, that is, ( )/3,
are given for a number of molecules in the gas phase in Table 22.2 in the next sec-
tion. Mean polarizabilities tend to be approximately proportional to molecular
volumes.*

The polarization of a macroscopic sample is the number of molecules per unit
volume ( / ) multiplied by the dipole moment :

(22 13)

Note that this is a relation between a bulk (macroscopic) property ( ) and a
molecular property ( ).

In the absence of an electric field, the individual molecular dipoles point in ran-
dom directions, and so the net dipole moment per unit volume is zero. When an
electric field is applied, the dipoles tend to line up and produce a net electric po-
larization. If all the dipoles were to line up, a very large polarization would be

�
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Figure 22.2

obtained. Because of thermal motion, the orientation is only partial, as illustrated
in Fig. 22.2. Statistical mechanics can be used to calculate the polarization as a
function of temperature. The energy of a dipole in an electric field is given by

cos (22 14)

where is the angle between and . At equilibrium the relative number
of molecules with potential energy is proportional to the Boltzmann factor
exp( / ). The number of molecules ( ) per unit solid angle at , , is
given by

( ) e (22 15)

When the exponent is small, this can be approximated with

cos
( ) 1 (22 16)

Each molecule contributes a term cos to the net dipole moment in the di-
rection of the electric field. Multiplying cos by ( ) and integrating over the
angular distribution shows that the polarization due to orientation of dipoles is
given by

(22 17)
3

The magnitude of the polarization of a dielectric in an electric field is given by the
sum of the distortion polarization (equation 22.13) and the orientation polariza-
tion (equation 22.17):

(22 18)
3

where is the average local electric field. The average local field is not the same
as the applied field because the molecular dipoles also produce a field. If the con-
centration of polar molecules is low, it can be shown that ( 2)/3. Sub-
stituting this expression for in equation 22.18 and eliminating the polarization
between equations 22.11 and 22.18 yields

1
(22 19)

2 3 3

Replacing / with / , where is the molar mass of the substance studied
and is the density, yields

1
(22 20)

2 3 3

where is the Note that this connects the macroscopic prop-
erty to the molecular properties and . The molar polarization has the units
of a molar volume (m mol ). Measurement of the molar polarization at a se-
ries of temperatures makes it possible to determine the polarizability and the
dipole moment . A plot of the molar polarization of fluorobenzene versus 1/
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Dependence of the molar polarization of fluorobenzene on temperature. (See
Computer Problem 22.A.)

Dipole Moments and Polarizabilities of
Gaseous Molecules

(1 atm) /10 C m /10 C m J

Ar 0 1.85
He 0 0.22
N 0 1.97
H 0 0.911
CH 0 2.89
C H 0 11.6
CCl 0 11.7
CO 0 2.93
CO 0.390 2.20
HF 6.37 0.57
HCl 3.60 2.93
HBr 2.67 4.01
HI 1.40 6.06
CHCl 3.37 9.46
CH Cl 5.24 7.57
CH Cl 6.24 5.04
CH OH 5.70 3.59
H O 6.17 1.65
NH 4.90 2.47
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Figure 22.3

Table 22.2
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is given in Fig. 22.3. The intercept yields the value of the molecular polarizability
1 146 10 C m J . The slope yields the dipole moment 5 26 10

C m. Dipole moments of molecules are often expressed in terms of debye units,
represented by D, which are equal to 3 336 10 C m. Thus the dipole moment of
fluorobenzene is 1.57 D. The dipole moments and polarizabilities of some gaseous
molecules are given in Table 22.2.
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Given the polarizability and dipole moment of HCl(g) in Table 22.2, calculate the relative
permittivity at 1 atm and 273 K.

The relation between these quantities is given by equation 22.19. If we treat HCl(g)
as an ideal gas,

Thus equation 22.19 can be written as

1 1
2 3 3

First we will calculate the factor

1 (6 022 10 mol )(1 013 10 N m )
3 (8 3145 J K mol )(273 K)(3)(8 854 10 C N m )

1 0119 10 C m J

The contribution of the dipole moment is

(3 60 10 C m)
3 3(1 381 10 J K )(273 K)

1 146 10 C m J

Adding the contribution from the polarizability gives

1
(1 0119 10 C m J)(0 293 1 146) 10 C m J

2

1 456 10

Thus

1 2(1 456 10 )
1 0041

1 1 456 10

Table 22.1 gives a value of 1.0046 for the relative permittivity of HCl(g) under these
conditions.
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22.4 REFRACTIVE INDEX
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The is the ratio of the speed of light in a vacuum to the speed
of light in a medium. Electromagnetic theory shows that the speed of light in a

vacuum is given by

1
(22 21)

( )

This is the relation between the permittivity of vacuum and the permeability of
vacuum . The permeability of vacuum is given exactly by

4 10 N A (22 22)
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When light travels through a medium, its speed is given by

1
(22 23)

( )

where is the and is the (see Section
22.5). Using equation 22.21 to eliminate shows that the refractive index is
given by

( ) (22 24)

If the relative permeability is taken as unity, which is a pretty good approxima-
tion for all materials that are not ferromagnetic, we see that

(22 25)

The refractive index depends on the relative permittivity because the electro-
magnetic wave induces polarization or orients electric dipoles and these dipoles
interact with electromagnetic radiation. Optical properties and the dielectric
properties of bulk matter can be treated together, and both can be interpreted in
terms of molecular properties.

At optical frequencies, equation 22.19 becomes

1
(22 26)

2 3

because there is not enough time in a cycle to reorient permanent dipoles. Substi-
tuting equation 22.25 yields

1
(22 27)

2 3

Thus the refractive index provides information on the polarizability .
Since both the refractive index and the polarizability depend on frequency, we

want to consider that briefly. First, let us consider a molecule without a permanent
dipole. It can be shown that in the absence of damping, the polarizability varies
with frequency according to 1/( ), where is a transition frequency of the
molecule and is the frequency of the electromagnetic radiation. This leads to
the frequency dependence of the refractive index that is shown in Fig. 22.4. As
approaches from lower frequencies, the refractive index increases to . As
the frequency increases above , the refractive index increases from to unity.
However, because of radiative damping of the transition moment, the dashed line
is followed. This is the behavior of at infrared frequencies and above.

Second, we consider a molecule with a permanent dipole moment, where ori-
entation polarization is important. Since it takes time to orient a physical dipole,
the radiation from the dipole is delayed and the refractive index is increased. Con-
sequently, the relative permittivity at low frequency (where there is time to
orient the dipoles) is greater than at high frequency where there is not enough
time in a cycle. At low frequency, the dependence of the relative permittivity on
frequency can be represented by

(22 28)
1 i



n

1
ω

ω 0

15

10

5

0
–2 –1 0 1 2 3

ωτ

.

.

.

.

794

�

�

� �
�

�
�

� �

0

h l
1/2

r

r

l h
h 2 2

l h
2 2

l h

l h

Frequency dependence of the refractive index for a harmonic oscillator of fre-
quency . Since the oscillation is damped, the refractive index actually follows the dashed
line.

Frequency dependence of the real part (upper curve) and the imaginary
part (lower curve) of the relative permittivity for a process with a single relaxation time

. This plot is for 15 and 5. (See Computer Problem 22.B.)
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Figure 22.4

Figure 22.5

where is the relative permittivity at high frequencies and is the relative per-
mittivity at low frequencies, i ( 1) , and is the relaxation time for the ori-
entation of a dipole. The relative permittivity is complex and can be written

i (22 29)

where the real part is given by

(22 30)
1

and the imaginary part is given by

( )
(22 31)

1

You can verify this by substituting these relations in equation 22.29 to obtain equa-
tion 22.28. The frequency dependencies of and are shown in Fig. 22.5. The
real part changes from the value to in the region where 0 1 to 10.
There is a corresponding change in the refractive index, and this curve is called
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Figure 22.6

a The imaginary part has significant values only in the range
0 1 to 10, and it is a measure of the loss of useful energy into heat. This

bell-shaped plot is called an
These ideas are also illustrated by Fig. 22.6, which shows the variation of rel-

ative permittivity with frequency for a typical polar substance. As the frequency
is increased, the relative permittivity decreases in several steps. As we pointed
out above, in the optical region the frequency is so high that permanent dipoles
are not oriented and the refractive index varies with frequency as expected from
Fig. 22.4. At low frequencies, all the terms on the right-hand side of equation 22.18
contribute and the value of is approximately constant, equal to ( in
equation 22.28), the zero-frequency value. As the frequency is increased above
the radio-frequency range, the relative permittivity decreases and the orientation
polarization eventually becomes negligible because there is insufficient time for
molecular orientation to occur. At these frequencies, reaches a plateau equal to

( in equation 22.28), the high frequency value. The relative permittivity
shows dispersion in the neighborhood of absorption lines in the infrared, visible,
and ultraviolet.

The treatment of the magnetization of a sample of matter by a magnetic field is
similar to the polarization of a dielectric by an electric field, but there are some
very significant differences. As we saw in the case of nuclear magnetic resonance,
the principal measure of the effect of a magnetic field is the magnetic flux density

, which we will refer to as the (In older literature, a different
quantity is referred to as the magnetic field, but we will not need to use that
symbol.) Since magnetic fields are produced by electric currents, it is possible
to connect the strength of the field of any magnet, including a single magnetic
dipole, with basic mechanical and electrical units. The SI* unit of a magnetic field
is the (T), which is defined as T N A m kg s A , where A is
the ampere.

In discussing quantum mechanics, we have used for the
but in the following discussion of bulk magnetic properties, we

will use to avoid using the same symbol as for the electric dipole moment. The

�
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magnitude of the magnetic dipole moment of a flat coil enclosing an area and
carrying a current is . Thus the units of the magnetic dipole moment

are A m . Magnetic dipole moments are more commonly expressed in J T ,
which can be readily shown to be the same as A m by the use of the units of the
tesla given above. The direction of the vector is perpendicular to the plane of
the flat coil pointing in the same sense as the linear motion of a right-hand screw
turned in the same direction as the current.

Magnetic dipole moments of atoms and molecules were discussed in Sec-
tion 10.4 on the orbital angular momentum of the hydrogenlike atom and Section
10.5 on electron spin. Then we discussed nuclear magnetic moments in connec-
tion with NMR spectroscopy. In this chapter, we will be concerned with magnetic
properties of matter in bulk. In a sample containing permanent magnetic dipole
moments, thermal motion generally leads to random orientations so that the net
magnetic moment of the sample is zero. However, if the sample is placed in a mag-
netic field, the magnetic dipoles tend to line up with the field, and this increases
the magnetic field in the medium. The sample is said to be magnetized, and the

is defined as the vector sum of the dipoles in the sample per unit
volume ( / ); the magnetization has the SI units A m .

Magnetic moments can also be induced by the field. In the case illustrated in
Fig. 22.7, the applied field and the field due to the magnetization add to
give a net field :

(22 32)

Here is the applied magnetic field and is the
(4 10 N A exactly). The magnetic field is expressed in teslas (T
N A m ), and so has the same units.

For magnetic fields that are not too large, the magnetization is proportional
to the applied magnetic field, so

(22 33)

where is the which is dimensionless. The relative per-
meability of vacuum is unity, and the relative permeabilities are close to unity
for everything except for ferromagnetic and ferrimagnetic substances. Combin-
ing equations 22.32 and 22.33 yields

(1 ) (22 34)

The is defined by

(22 35)

Note that 1 , so is dimensionless. Equation 22.34 is analogous to
equation 22.6 for electric polarization. In considering dielectric materials, we em-
phasized the relative permittivity rather than the electric susceptibility , but
in considering magnetic materials, magnetic susceptibility is used more often
than the relative permeability . The magnetic susceptibility of a sample can be
determined by measuring the force exerted on the sample by an inhomogeneous
magnetic field* or by using a number of other methods.
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Magnetic Susceptibilities and Molar Magnetic Susceptibilities
of Paramagnetic Substances at 293 K and 1 bar

kg mol kg m m mol

O 1 9 10 32 0 10 1 32 4 6 10
NO 0 8 10 30 0 10 1 23 2 0 10
Chromium 3 3 10 52 0 10 7 2 10 0 24 10
Tungsten 6 8 10 183 9 10 19 3 10 0 065 10
CuSO 5H O 1 76 10 249 7 10 2 28 10 1 93 10
MnSO 4H O 1 71 10 223 1 10 2 11 10 18 1 10
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Paramagnetism results from the orientation of permanent magnetic dipoles in
a substance. These permanent magnetic dipoles are due to the spins of un-
paired electrons or to the angular momentum of electrons in orbitals of atoms or
molecules. Electrons in orbitals with 1 2 3 have angular momentum and
therefore produce a magnetic dipole moment. In most substances the magnetic
effects of electron spin and electron orbital motions cancel because electrons are
paired in filled shells. Many rare earth and transition metal ions are paramag-
netic because they have unpaired electrons. Free radicals have an odd number of
electrons and are therefore paramagnetic. For a solid to be paramagnetic, it is nec-
essary that the individual magnetic moments have some degree of isolation; that
is, they must be only weakly interacting. As we saw in studying molecular elec-
tronic structure, the magnetic moment of a molecule also includes contributions
from Nuclei with magnetic moments produce a para-
magnetic effect about a million times smaller than that due to orbital electrons
and unpaired electrons.

In the absence of an applied magnetic field, the magnetic dipoles have random
orientations, so the magnetization is zero. When a magnetic field is applied, the
magnetic dipoles tend to line up, but this is opposed to some extent by thermal
motions. Since the magnetic field in the sample is larger than the applied field,
the magnetic susceptibility is positive. The magnetic susceptibilities of some
common paramagnetic substances are given in Table 22.3. A paramagnetic sample
is attracted into the stronger part of an inhomogeneous magnetic field. The fact
that molecular oxygen is paramagnetic may be a surprise, but the fact that it has
a spin of one in its ground electronic state was mentioned in Section 11.5.

Since thermal motion tends to disturb the alignment of magnetic dipoles, the
magnetization of a paramagnetic material decreases with increasing tempera-
ture, obeying Curie’s law,

(22 36)

where is a constant. This applies at low magnetic field strengths. As the applied
magnetic field is increased, the magnetization saturates because when all of the
dipoles are parallel, has its maximum value ( / ) , where is the number
of magnetic dipoles in volume .



The units of magnetic susceptibility

The total spin quantum number of CuSO 5 H O
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Show that equation 22.39 yields the correct units for the magnetic susceptibility.
Since has the units N A , / has the units m , has the units J T , has

the units J K , has the units K, and the tesla T has the units N A m ,

(N A )(m )(J T )
1

(J K )(K)

so that the magnetic susceptibility is dimensionless.

The magnetic susceptibility of CuSO 5H O is 1 76 10 at 293 K. Calculate the apparent
total spin quantum number . Given: The molar mass of CuSO 5H O is 249 68 g mol
and its density is 2 284 g cm .

Equation 22.39 can be rearranged to the form

3
( 1)
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The calculation of the contribution of the orientation of magnetic dipoles in
a magnetic field to the magnetization is similar to the calculation of the contri-
bution of the orientation of electric dipoles in an electric field to the polarization

(see equation 22.17), so that the classical result for the magnitude of the
magnetization is

(22 37)
3

where is the number of magnetic dipoles and is the volume. This equation is
correct only if / 1. For paramagnetic materials, the magnetic moment
depends on the spin quantum number (see Table 10.2), and quantum mechanics
shows that equation 22.37 is replaced by

( 1)
(22 38)

3

where is the total spin quantum number, is the factor for a free elec-
tron (2.002 322), and is the Bohr magneton. This result is the explanation of
Curie’s law and provides a means for calculating the total spin quantum number

from measurements of the magnetic susceptibility , which is given by equa-
tion 22.35,

( 1)
(22 39)*

3
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� �
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where is the number of molecules per unit volume. The number of molecules per unit
volume is

(6 022 10 mol )(2 284 g cm )(10 cm m )

249 68 g mol

5 51 10 m

The factor 3 / is given by

3(1 381 10 J K )(293 K)
9 66 10 m A

4 10 N A

The factor is

(2 002) (9 274 10 J T ) 3 45 10 J T

Thus

(9 66 10 m A )(1 76 10 )
( 1) 0 895

(5 51 10 m )(3 45 10 J T )

The solution to the quadratic equation is

1 [1 4(0 895)]
0 570

2

This suggests one unpaired spin that would contribute . The spin calculated using equation
22.39 will not be a multiple of when orbital angular momentum is nonzero.

The molar magnetic susceptibility of O (g) is 4 6 10 m mol at 293 K and 1 bar. What
is the total spin quantum number for molecular oxygen?
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In discussing paramagnetic susceptibility in terms of spins, there are advan-
tages in defining and using a molar magnetic susceptibility , which is a prop-
erty of a mole of a substance. For solids and liquids, the number of magnetic
dipoles in a system is given by / , where is the mass of substance
and is the molar mass. Substituting this in equation 22.39 yields

( 1)
(22 40)

3

Since / (density), the is defined by

( 1)
(22 41)

3

For a gas, / / / , and so the molar magnetic susceptibility is
given by

( 1)
(22 42)

3

where the second expression for the molar magnetic susceptibility applies to an
ideal gas. Thus for solids, liquids, and gases, the molar magnetic susceptibility for
paramagnets is the Avogadro constant times the contribution of a single molecule.
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Equation 22.42 can be written

3
( 1)

Since 3 / 9 66 10 m A and 3 45 10 J T from the preceding
example,

9 66 10 m A
( 1) (4 6 10 m mol )

(6 02 10 mol )(3 45 10 J T )

2 14

The solution to the quadratic equation 2 14 0 is

1 [1 4(2 14)]
1 05

2

This is just what we expect from the discussion of the electronic structure of molecular
oxygen, which has two unpaired electrons. The left-hand superscript of the molecular term
symbol for O in Table 11.1 indicates that 2 1 3, so 1. This shows how the
molecular property of spin shows up in a bulk property.

Magnetic Suscepti-
bilities of Diamag-
netic Substances at
293 K and 1 bar

He 1 1 10
H 2 2 10
N 6 8 10
Mercury 3 3 10
Copper 9 7 10
Ethyl alcohol 1 3 10
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Diamagnetism is the result of the induction of magnetic moments by a magnetic
field. Even atoms with closed shells show diamagnetism. The magnetic suscep-
tibility of a paramagnetic substance has a diamagnetic contribution, but the
paramagnetic effect is usually considerably larger. Orbiting electrons can be
considered as current loops, and when a magnetic field is applied the motion
of the electrons must change in such a way that the induced magnetic field opposes
the applied field. Since the induced magnetic moments oppose the applied field,
diamagnetic substances have negative magnetic susceptibilities, as illustrated in
Table 22.4. Since the induced magnetic dipoles oppose the field, a diamagnetic
sample experiences a force away from the increasing magnetic field. This is the
opposite of the effect of an inhomogeneous field on a paramagnetic sample.

The magnetic field in a ferromagnetic substance may be up to 10 times the applied
magnetic field. Ferromagnetic substances, like paramagnetic substances, have per-
manent magnetic dipole moments, but they are distinguished by the fact that there
is a strong interaction between the magnetic moments that keeps them aligned
even after the magnetic field has been removed. Familiar ferromagnetic elements
are iron, cobalt, and nickel, but many compounds and oxides can also be ferro-
magnetic. Chromium is not ferromagnetic at room temperature, but chromium
oxide (CrO ) is ferromagnetic and is used in magnetic recording media. When the
temperature of a ferromagnetic substance is raised, the susceptibility decreases;
the temperature at which the ferromagnetic property is lost is called the

The Curie temperature of iron is 770 C, and iron is paramagnetic
above this temperature.

The strong interaction (called exchange interaction) between spins in a fer-
romagnetic substance leads to ordering and minimization of the various energies
involved and results in within a crystal in which the magnetic
moments are nearly perfectly aligned.
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where is the angle between the vectors. Show that when theProblems marked with an icon may be more conve-
dipole moments of the groups are equal,niently solved on a personal computer with a mathematical pro-

gram.
2 cos( /2)

If a molecule has two groups with dipole moments
and , the square of the dipole moment of the molecule is given Given: There is a trigonometric identity cos 2 2 cos 1.
by Calculate the SI units of the electric susceptibility

2 cos from its definition in equation 22.6.
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Problems
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22.1

22.2

When a dielectric is placed in an electric field, it becomes polarized both by
distortion of the electron clouds and by the orientation of electric dipoles.
The molar polarization is therefore made up of two terms, and they can be
determined separately by studying the effect of temperature because there is
less orientation of dipoles at high temperatures.
At low frequencies there is time for electric dipoles to become oriented in an
oscillating electric field, and the relative permittivity is high. As the frequency
of the electromagnetic radiation is increased, there is not enough time to ori-
ent the dipoles in a cycle and the relative permittivity decreases. The relative
permittivity is complex; the plot of the real part is the dispersion curve, and
the plot of the imaginary part is the absorption curve.
When a sample is placed in a magnetic field, the magnetic dipoles tend to line
up with the field. Paramagnetism results from the orientation of permanent
magnetic dipoles of the substance. Diamagnetism is the result of the induction
of magnetic moments by the magnetic field; even atoms with closed shells
show diamagnetism.
Measurements of magnetic susceptibilities provide the means for determin-
ing the total spin quantum number for a substance.
In ferromagnetic substances, there is a strong interaction between the mag-
netic moments that keeps them aligned even after the magnetic field has been
removed. This interaction results in magnetic domains in small regions in a
crystal. In antiferromagnetic substances, the magnetic moments of nearest
neighbors are opposed.



Computer Problems

802

. .

S
. a a S

.

P T
.

S

T
P

.

a
b

m

3 1
m

� �
�

� �

30

4
40 1 2 2 3

00
mag 2

4

6

m8 3 1

4

2

2

2

l h

B

The relative permittivity of HI(g) at 1 atm and 273 K netic field of 10 T. At what temperature will its magnetic energy
is 1 002 34. Given that its dipole moment is 1 40 10 C m, be equal to its mean translational kinetic energy?
calculate its polarizability. The left superscript of the atomic term symbol for molec-

Given that the mean electric polarizability of CH is ular oxygen (Table 11.1) shows that 2 1 3, so that the total
2 90 10 J C m , express in units of , where is spin quantum number 1. Calculate the magnetic suscepti-
the Bohr radius. Compare the volume with the volume cor- bility of O (g) at 200 K and 1000 K at 1 bar.
responding to the molecular diameter of CH obtained from ki-
netic theory (0.414 nm in Table 17.4).

The magnetic susceptibility of molecular oxygen at 1 bar
and 300 K is 1 9 10 . What does this tell us about the spin of
an oxygen molecule?

Calculate the dipole moment of fluorobenzene, using a
Given that the molar magnetic susceptibility of plot of versus 1/ , from the following molar polarizations

NO(g) is 2 0 10 m mol at 293 K and 1 bar, calculate the for gaseous samples.
total spin quantum number .

/K 343.6 371.4 414.1 453.2 507.0Use the molar magnetic susceptibility of MnSO
/cm mol 69.9 66.8 62.5 59.3 55.84H O to calculate the total spin quantum number at 293 K.

The relative permittivity of H (g) at 273 K and 1 atm Plot the frequency dependence of the real part and the
is 1 000 272. Calculate the polarizability of H (g) under these imaginary part of the relative permittivity for a process with a
conditions. single relaxation time with 15 and 5, as shown in Fig.

Show that the SI units are the same on the two sides of 22.5. ( ) Do this by using equation 22.29 with equations 22.30
equation 22.20. and 22.31. ( ) Do this using equation 22.28. Obtaining the same

result in two ways will confirm these different ways of expressingA gaseous paramagnetic atom with a magnetic dipole
the relative permittivity.moment equal to the Bohr magneton is placed in a mag-
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23
Classification of Crystal Structures
Designation of Crystal Planes
Diffraction Methods
Cubic Lattices
Ion Radii and Atom Radii
Scattering of X-Rays from a Unit Cell
Binding Forces and Packing in Crystals
Structure of Liquids
Liquid Crystals
Theoretical Treatment of the Electron Distribution
in Solids
Special Topic: Superconductivity
Special Topic: Quantum Confined Semiconductor
Structures

In this chapter we first consider crystal geometry, then X-ray diffraction and the
structure of specific crystals, and finally synthetic high polymers. The ideas of
point-group symmetry developed in Chapter 12 are basic to the understanding
of crystals, but the introduction of translations produces new kinds of symmetry
and requires space groups (Section 23.3) rather than point groups.

In 1912 Laue suggested that the wavelength of X-rays might be about the
same as the distance between atoms in a crystal, so that a crystal could serve
as a diffraction grating for X-rays. This experiment was carried out by Frederick
and Knipping, who observed the expected diffraction. Almost immediately after-
ward, W. L. Bragg (1913) improved on the Laue experiment, mainly by substitut-
ing monochromatic for polychromatic radiation and by providing a more physical
interpretation to the Laue theory of the scattering experiment. Bragg also deter-
mined the structures of a number of simple crystals, including those of NaCl, CsCl,

Solid-State Chemistry
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23.1 CLASSIFICATION OF CRYSTAL STRUCTURES
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Figure 23.1

Figure 23.2

and ZnS. Since that time, single-crystal X-ray diffraction has developed into the
most powerful method known for obtaining the atomic arrangement in the solid
state. Since the 1950s, with the advent of high-speed computers capable of han-
dling X-ray data, it has been possible to determine the structures of compounds
as complex as proteins.

The chapter ends with special topics on superconductivity and quantum con-
fined semiconductor structures.

A crystal may be described as a three-dimensional pattern in which a structural
motif is repeated in such a way that the environment of every motif is the same
throughout the crystal. The motif may be an atom or a molecule, or it may be a
group of atoms or a group of molecules.

A linear pattern may be described by saying that there is a set of parallel
motifs at the end of a vector and its multiples. These vectors are given by

(23 1)

where is an integer. An example of a linear pattern is shown in Fig. 23.1 . The lin-
ear pattern formed in this way can be repeated in a second direction represented
by the vector to form a two-dimensional pattern in which every structural pat-
tern has the same environment as every other, as shown in Fig. 23.1 . Finally, the
whole two-dimensional pattern can be repeated in a third direction to produce
a translationally ordered pattern in three dimensions, as shown in Fig. 23.1 . The
three vectors , , and are called primitive vectors of the crystal. The

is repeated at the end of every vector of the form

where are integers (23 2)

For many purposes it is convenient to concentrate on the geometry of the repeti-
tion and replace the structural pattern by a point, as shown in Fig. 23.1 , to obtain
a The lattice may be generated from a single starting point by the infinite
repetition of a set of fundamental translations that characterize the lattice. Any
three noncoplanar vectors , , and describe a lattice, but a given lattice can be
described by an infinite number of sets of three vectors. This is illustrated in two
dimensions in Fig. 23.2. The vector together with any one of the vectors may
be chosen to generate the pattern.

The space occupied by a lattice may be divided into The repetition
of a cell (with everything in it) in three dimensions generates the entire pattern
of a crystal. A given lattice can be blocked out in cells in different ways, as shown
in Fig. 23.3. If the corners of the cells include all of the lattice points in the crys-
tal, the cell is called a Primitive cells have one lattice point
per cell because each of the corner lattice points is shared by eight cells. A lattice
can also be blocked out in cells that do not include all lattice points as corners.
This is illustrated by one of the cells in Fig. 23.3. Such cells, referred to as

are useful in simplifying the geometry of crystals for which the primi-
tive unit cell is oblique, but the multiple unit cell has two or more edges that are
at 90 .
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Figure 23.3

Figure 23.4

The classification of crystals is based on their rather than on the
dimensions of their unit cells. It is not satisfactory to use the equality of all edges,
for example, because they may become unequal when the temperature changes.
The use of symmetry avoids this difficulty because, if two directions in a crystal are
equivalent by symmetry, they will necessarily have the same thermal expansion
coefficient. The recognition of the types of symmetry we discussed in Chapter 12
reduces the number of coordinates of atoms that have to be specified to describe
the structure of a unit cell because of the relationship between the coordinates of
symmetry-related atoms.

We saw in Chapter 12 that a molecule can have various types of rotational
symmetry. For a molecule with -fold symmetry, rotation through an angle of
360 / brings it into an equivalent position, and a molecule may have 1, 2,
3, . . . , . However, in contrast with individual molecules, crystals and crystal lat-
tices can only have 1, 2, 3, 4, or 6. This statement can be proved by use of Fig.
23.4. The lattice shown in this figure has an axis of -fold symmetry perpendicu-
lar to the page. The lattice points , , , and are separated by distance .
Because of the assumed symmetry, rotation of the lattice about any lattice point
through an angle 360 / will produce a lattice indistinguishable from the
original. Therefore, clockwise rotation by about and counterclockwise rota-
tion by about requires that there be lattice points at and . Since the
line is parallel to , and must be separated by an integer multiple
of represented by . Thus,

2 cos cos
2



N m

International Tables for X-Ray Crystallography, Vol. 1 Sym-
metry Groups.

806

Crystal Schoenflies Hermann–Mauguin
System Symbol Symbol

C
C
C
C m
C m
D
C mm
D mmm
C
S
C m
D
C mm
D m
D mmm
C
C
D
C m
D m
C
C
C m
D
C mm
D m
D mmm
T
T m
O
T m
O m m

�

1

i

2

s

2h

2

2v

2h

4

4

4h

4

4v

2d

4h

3

3i

3

3v

3d

6

3h

6h

6

6v

3h

6h

h

d

h

*N. F. M. Henry and K. Lonsdale (eds.), ,
Birmingham, UK: Kynoch, 1952.

Crystallographic Point Groups

Triclinic 1
1̄

Monoclinic 2

2/
Orthorhombic 222

2

Tetragonal 4
4̄
4/
422
4
4̄2
4/

Trigonal 3
3̄
32
3
3̄

Hexagonal 6
6̄
6/
622
6
6̄ 2
6/

Cubic 23
3

432
4̄3

3

the rotational symmetry of the
lattice can be only one-, two-, three-, four-, or sixfold.

crystallographic point groups.

Hermann–Mauguin symbols
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Table 23.1

where 1. The only values of that satisfy this equation are 0 , 60 ,
90 , 120 , 180 , 240 , and 360 , which means that

As a result of this restriction on rotational symmetry, all crystals can be classi-
fied as belonging to one of only 32 The Schoenflies
symbols of these 32 crystallographic point groups are shown in Table 23.1, where
they are divided into seven crystal systems. The seven crystal systems can also be
described in terms of unit cell axes and angles (see Fig. 23.5), but the classification
according to symmetry elements is more fundamental.

The symmetries of the 32 crystallographic point groups can also be rep-
resented by the * in Table 23.1. Crystallographers



P I C F R

Triclinic

a ≠ b ≠ c
α β γ≠ ≠

Monoclinic

a ≠ b ≠ c
γ     α β=≠ = 90°

Orthorhombic

a ≠ b ≠ c
α     β γ== = 90°

Tetragonal

a = b ≠ c
α     β γ== = 90°

Trigonal

Cubic

Hexagonal
a = b = c

a = b = c

a = b ≠ c or
a = b

α     β γ==

α     β = 90°=α     β     γ90° = 120°= = ≠

α     β     γ = 90°= =

γ = 120°

n
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The 14 space lattices (often called Bravais lattices) and the seven crystal sys-
tems. P refers to primitive, I to body centered, C to end centered, F to face centered, and
R to rhombohedral.
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Figure 23.5

prefer the Hermann–Mauguin symbols because they can be extended to include
translational symmetry, as we will soon see. Rotation axes are represented by a
number; for example, a fourfold rotation axis is represented by 4. Crystallogra-
phers use rotary–inversion axes, while spectroscopists use rotary–reflection axes.
In a rotary inversion, a rotation by 360 / is followed by inversion through the
center of symmetry. Rotary–inversion axes are represented by a number with an
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*G. L. Breneman, 216 (1987).
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Space groups

Chapter 23 Solid-State Chemistry

23.2 DESIGNATION OF CRYSTAL PLANES
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overbar; for example, a fourfold rotary–inversion axis is represented by 4. An
inversion center is just a onefold rotary–inversion axis, or 1. A mirror plane is
represented by the letter . Each component of a symbol refers to a different
direction; for example, 4/ indicates that there is a mirror plane perpendicular
to a fourfold rotation axis. If we label axes , , , the symbol 2 indicates
that mirror planes are perpendicular to and , and a twofold rotation axis is
parallel to . In Chapter 12 a decision tree was given for assigning Schoenflies
symbols; a similar decision tree for assigning Hermann–Mauguin symbols to the
32 crystallographic point groups is given by Breneman.*

In addition to the primitive (P) unit cells we have been talking about, unit
cells can also have lattice points that are (I), (F), or

(C), and still have the same crystallographic point group symmetry.
This leads to the 14 Bravais lattices shown in Fig. 23.5.

To complete the classification of crystal structures, we must consider transla-
tional symmetry. The lattice translations discussed earlier also satisfy our defini-
tion of symmetry operations since the translation of the whole crystal in this way
leads to an identical configuration. The Hermann–Mauguin system uses two other
types of symmetry elements that result from combining the motions of rotations
or reflections with the translational symmetry of the lattice. The operation corre-
sponding to for which the symbol is , where and are integers, is
a rotation of 360 / followed by a translation of / in the direction of the axis.
For example, a 3 screw axis involves rotation by 120 followed by translation by
one-third of a unit cell parallel to the axis. A 3 screw axis implies a rotation of
120 and a translation of two-thirds. The possible screw axes are 2 , 3 , 3 , 4 , 4 ,
4 , 6 , 6 , 6 , 6 , and 6 .

The operation corresponding to a is a reflection in a plane followed
by a translation. If the glide is parallel to the axis, the symbol for the glide plane
is simply and the operation is reflection in the plane and translation by /2.
There are diagonal and other glides that we will not go into.

are groups whose elements include the point symmetry ele-
ments, the translations, and screw axes and glide planes. There are 230 space
groups, and all possible crystal structures fall into one of these space groups. The
symbol for a space group always starts with P, I, C, F, or R to indicate the type of
Bravais lattice (see Fig. 23.5).

The fact that there are 230 ways in which these symmetry operations may be
combined in the three-dimensional patterns of crystals was derived independently
by three men: Federow, a Russian crystallographer, in 1890; Schoenflies, a Ger-
man mathematician, in 1891; and Barlow, a British amateur, in 1895. The actual
determination of space groups of crystals did not become possible until diffraction
techniques allowed the determination of the internal symmetry of crystals. Knowl-
edge of the space group of a crystal simplifies the determination of the structure
because only the asymmetric portion of the unit cell needs to be studied; the rest
of the contents may be obtained from symmetry operations.

The position of an atom in a unit cell is designated by giving its coordinates as
fractions of the unit cell edges . The point at ( ) is located by



a b c

, , xa a
yb b zc c

, , , , , , , ,

l x ,y ,z x ,y ,z

l x x a y y b z z c

x x y y ab y y z z bc

z z x x ca .

l a x x y y z z .

V abc .

V abc

c
c

a b c
a a h

b b k c c l hkl

a

b
c

809

� � �

� �

�

� � �

� �

�

*The indices are often called “Miller indices” because this designation, invented by Whewell in 1825
and Grossman in 1829, was popularized by Miller’s textbook of crystallography in 1829. They showed
that faces of crystals could be designated by three integers, although nothing was then known about
the internal structures of crystals.
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starting at the origin (0 0 0) and moving a distance along the axis, then a
distance parallel to the axis, and finally a distance parallel to the axis.
For example, the for the lattice points of a face-centered
cubic structure are 0 0 0; 0; 0 ; and 0 . The remaining lattice points
may be obtained by adding unity to each of these coordinates. In expressing the
locations of atoms in a unit cell the set of coordinates (000) stands for the lo-
cations of all eight corners, that is, (100), (111), (101), (110), (001), (011), (010),
and (000). In a crystal a lattice point is not necessarily occupied by an atom or
molecule, but it does represent a collection of atoms that is repeated in three
dimensions.

The distance between the points and is

[( ) ( ) ( )

2( )( ) cos 2( )( ) cos

2( )( ) cos ] (23 3)

where the angles are defined in Fig. 23.3. For a cubic crystal this equation simpli-
fies to

[( ) ( ) ( ) ] (23 4)

The volume of a unit cell is given by

(1 cos cos cos 2 cos cos cos ) (23 5)

If the unit cell is cubic, orthorhombic, or tetragonal, this equation reduces to
.

The planes through the lattice points of crystals are important because they
represent possible crystal faces and because they help us to understand X-ray
diffraction phenomena. Figure 23.6 shows the lattice points in one plane of a crys-
tal. The axis is taken as perpendicular to the page. Various sets of planes that
are parallel to the axis are indicated in the figure. Actually, there is an infinite
number of such sets of planes.

The orientation of a set of planes of a crystal lattice may be specified by means
of the intercepts of one of the planes on the three axes , , and of the unit cell.
Suppose that a plane intercepts the axis at / , measured from the origin, the

axis at / , and the axis at / . *
The indices of a set of planes through a lattice may be obtained by counting the
number of planes crossed in moving one lattice space in the , , and directions,
respectively. For the set of planes in the lower left-hand corner of Fig. 23.6, two
planes are crossed in going one lattice distance in the direction of the axis and
one plane is crossed in going one lattice direction horizontally in the direction of
the axis, whereas no plane would be crossed in going one lattice distance into
the paper, since the planes are parallel to the axis. Thus, this set of planes is
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Figure 23.6

designated by the indices 210. The indices of the set of planes in the upper right-
hand corner are 110. The overbar indicates that if a particular plane is intercepted
by going in the positive direction along , it is necessary to go in the negative
direction along in order to intercept the same plane. This representation for the
exterior faces of a crystal and for the internal planes within the crystal will specify
the orientation but not the spatial position of a plane. The faces of crystals are
usually planes with high densities of atoms or molecules, and so they are planes
with low indices.

The perpendicular distance between adjacent planes of a set is given by

[ sin sin sin

2 (cos cos cos ) 2 (cos cos cos )

2 (cos cos cos )] (23 6)

where is the unit cell volume given by equation 23.5. For the special case that
the unit cell axes are mutually perpendicular (i.e., for orthorhombic, tetragonal,
and cubic unit cells),

1
(23 7)

Some of the planes through cubic lattices are shown in Fig. 23.7 with their
Miller indices.

In a cubic crystal , so equation 23.7 for the perpendicular distance
between adjacent planes of a set may be written

(23 8)

where is the length of the side of the unit cell. The perpendicular distances be-
tween adjacent planes in a cubic crystal are obtained by substituting 0, 1, 2, 3, . . .
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(a) Two unit cells of primitive cubic lattice
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(b) Two unit cells of face-centered cubic lattice
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(c) Two unit cells of body-centered cubic lattice

h k l a
a a

hkl

d ABC
LMN

LMN
ABC LMN

FS SG n .

811

� �

1/2

Planes through cubic lattices.

Bragg equation,

23.3 Diffraction Methods

23.3 DIFFRACTION METHODS

�

�

Figure 23.7

for , , and in this equation. The distance between 100 planes is , and the dis-
tance between 200 planes is /2. The distance between 111 planes is /3 , and the
distance between 222 planes is half as great. Diffraction methods make it possible
to determine the distances between planes of atoms, and so the length of the side
of a unit cell can be obtained indirectly by use of equation 23.7.

In a crystal it is the electrons that scatter X-rays. Bragg pointed out that it is con-
venient to consider that the X-rays are “reflected” from a stack of planes in the
crystal. For a given stack of planes ( ) the reflected monochromatic radiation
occurs only at certain angles that are determined by the wavelength of the X-
rays and the perpendicular distance between adjacent planes. The relationship
between these three variables is the which may be derived by
referring to Fig. 23.8. The horizontal lines represent planes in the crystal sepa-
rated by the distance . The plane is perpendicular to the incident beam of
parallel monochromatic X-rays, and the plane is perpendicular to the re-
flected beam. As the angle of incidence is changed, a reflection will be obtained
only when the waves are in phase at plane , that is, when the difference in
distance between planes and , measured along rays reflected from dif-
ferent planes, is a whole-number multiple of the wavelength. This occurs when

(23 9)
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At what angles will X rays of wavelength 1 542 10 m be reflected by planes
separated by 3 5 10 m? What is an alternative interpretation of these reflections?
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Figure 23.8

Since sin / / ,

2 sin (23 10)

This is the Bragg equation, is called the Bragg angle, and is the order of a
Bragg reflection.

This important equation gives the relationship of the distance between planes
in a crystal and the angle at which the reflected radiation has a maximum intensity
for a given wavelength ; that is, all the scattered X-ray waves are in phase. If
is longer than 2 , there is no solution for and no diffraction. Thus, light waves
pass through crystals without being diffracted by the planes of scattering centers. If

, the X-rays are diffracted through inconveniently small angles. The Bragg
equation does not indicate the intensities of the various diffracted beams. The in-
tensities depend on the nature and arrangement of the atoms within each unit cell.

The reflection corresponding to 1 for a given family of planes is called the
first-order reflection, the reflection corresponding to 2 is the second-order
reflection, and so on. Each successive order exhibits a larger Bragg angle. In dis-
cussing X-ray reflections it is customary to set 1 in equation 23.10 and con-
sider that the second-order reflection is from a parallel stack of planes separated
by half the lattice distance, and so on. Equation 23.10 may be written

2 sin 2 sin (23 11)

where is the perpendicular distance between adjacent planes having the
indices . The planes are parallel to the planes, and the per-
pendicular interplanar distance is / .

To determine the angles at which X-rays are diffracted, an oriented single
crystal may be rotated in an X-ray beam and the intensity of X-rays at the reflec-
tion angle determined with a counter. Various types of X-ray cameras have been
developed in which the photographic film is moved as the crystal is rotated.
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For 1,

(1 542 10 m)
sin

2(3 5 10 m)

12 73

For 2, 26 14 , and for 3, 41 37 . These reflections can also be
interpreted as being due to first-order reflections from (100), (200), and (300)
planes, which have interplanar spacings of of 3 5 10 m, 1 75 10 m, and
1 17 10 m.

What is the wavelength of neutrons moving in a particular direction if they are in thermal
equilibrium with their surroundings at 25 C?

The kinetic energy of the neutrons moving in a particular direction can be expressed in
terms of their temperature /2 (because of equipartition) or in terms of their momentum

/2 , where is the momentum and is the mass of a neutron:

2 2

( )

The de Broglie wavelength is given by

( )
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thermal neutrons
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Neutrons can also be diffracted from the planes in a crystal. The
(Section 9.1) of thermal neutrons is 252 pm at room tem-

perature. An essentially monochromatic beam may be obtained by diffraction
from a crystal monochromator that selects a small band of wavelengths from the
beam of from a nuclear reactor. The diffraction of neutrons
from a crystal is different from that of X-rays because neutrons are scattered
primarily by the nuclei in the crystal, while the X-rays are scattered by electrons.
This means that neutron diffraction, in contrast to X-ray diffraction, is espe-
cially useful for accurately locating hydrogen atoms in a crystalline structure. For
example, in a compound such as uranium hydride, X-ray diffraction can be
utilized to determine the uranium coordinates, and neutron diffraction the hydro-
gen coordinates. Hydrogen atoms scatter X-rays weakly because they have only
one electron.

Since neutrons possess a magnetic moment by virtue of having a spin of ,
there is an additional scattering if the compound contains paramagnetic atoms
or ions with unpaired electrons. Thus, neutron diffraction has been widely uti-
lized to investigate structures of magnetic materials such as MnO and Fe O
in order to determine the arrangement of the atomic magnetic moments in
the solids.
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Thus, at 25 C,

6 626 10 J s
[(1.6749 10 kg)(1.38 10 J K )(298 K)]

252 pm

For a primitive cubic crystal with 3 10 m, what are the smallest diffraction angles
for ( ) 100, ( ) 110, and ( ) 111 planes for 1 50 10 m?

( )
sin sin

2 2

1 5 10 m
( ) sin

6 10 m

15 48

(1 5 10 m)2
( ) sin

6 10 m

20 70
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primitive cubic lattice

face-centered cubic lattice,

body-centered cubic lattice,

Example 23.3
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The three types of cubic lattices are illustrated in Fig. 23.7. The smallest angles of
incidence of X-ray diffraction for a given type of crystal are for the planes that
are the farthest apart. For the the 100 planes are the far-
thest apart, and the 110 planes and 111 planes are closer together. The distances
between planes can be calculated with equation 23.8, and they are , (2) ,

(3) , (4) , (5) , (6) , (8) , and so on. Note that (7) is miss-
ing because 7 cannot be obtained from , where , , and are inte-
gers. The primitive cubic lattice has one lattice point per unit cell because the eight
lattice points at the corners are each shared with eight other unit cells.

In the there are lattice points at the center of each
face of the unit cell in addition to the lattice points at the corners. Figure 23.7
shows that the planes that are the farthest apart are the 111 planes. It can be shown
that the reflections from a face-centered cubic lattice have Miller indices that are
all odd or all even; this statement also applies to face-centered lattices in other
crystal systems. Thus only reflections 111, 200, 220, 311, 222, 400, 331, 420, etc.,
are found. The distances between planes in decreasing order are (3) , (4) ,

(8) , (11) , (12) , (16) , (19) , (20) , and so on. The eight
face-centered lattice points are shared with adjoining unit cells, so there are 1
3 4 lattice points per unit cell.

In the there is a lattice point in the middle of the
unit cell, and so there are two lattice points per unit cell. It can be shown that
for body-centered cubic lattices, the reflections for which the sum
is odd are not observed. Accordingly, the distances between planes are (2) ,

(4) , (6) , (8) , and so on. It can be seen that the various types of cubic
crystals may be distinguished by their diffraction patterns, since the patterns are
qualitatively different.
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Using X-ray scattering and density to compute the number of
ions in a unit cell
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Unit cell of sodium chloride. Notice that the chloride ions form a face-
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The density of sodium chloride at 25 C is 2163 10 kg m . When X rays from a palladium
target having a wavelength of 58.1 pm are used, the 200 reflection of sodium chloride occurs
at an angle of 5 91 . How many sodium and chloride ions are there in a unit cell?
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Figure 23.9

Sodium chloride forms an interpenetrating face-centered cubic lattice as
shown in Fig. 23.9. Eight of the chloride ions are at the corners of the cube, so
they are each shared with eight other unit cells. Six of the chloride ions are in the
faces of the cube, so they are each shared with another unit cell. Thus this unit
cell contains 8/8 + 6/2 = 4 chloride ions. One sodium ion is at the center of the
unit cell, and 12 sodium ions are on edges where they are each shared with four
other unit cells. Thus this unit cell contains 1 + 12/4 = 4 sodium ions. Note that
each ion is surrounded by six nearest neighbors with opposite charges.

For cubic crystals, the length of the side of the unit cell can be obtained from
equation 23.8. This length must, of course, be consistent with the density of the
crystal and the number of molecules per unit cell. The mass of the contents of
a unit cell is / , where is the number of molecules of molar mass in a
unit cell. Thus, the density for a perfect crystal is

(23 12)

where is the volume of the unit cell.
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The diamond structure
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According to Bragg’s law,

58 1 pm
282 pm

2 sin 2 sin 5.9

Equation 23.8 yields 564 pm. Using equation 23.12, we find

(58 443 10 kg mol )
2 163 10 kg m

(6 022 14 10 mol )(564 10 m)

3 999

Thus, as expected, the unit cell contains four sodium ions and four chloride ions.

Potassium crystallizes with a body-centered cubic lattice and has a density of 0 856
10 kg m . What is the length of the side of the unit cell , and what is the distance
between (200), (110), and (222) planes? What is the closest distance between atoms, and
what is the potassium atom radius ?

2(39 098 10 kg mol )
0 856 10 kg m

(6 022 137 10 mol )

533 3 10 m 533.3 pm

Using equation 23.8, we obtain

For (200) planes, 533 3/ 4 266 7 pm

For (110) planes, 533 3/ 2 377 1 pm

For (222) planes, 533 3/ 12 154 0 pm

(2 ) 2 461 9 pm 231 0 pm
2 2 2

Calculate the C C bond distance in diamond and the C C C angle.
Using equation 23.4 for the points 000 and ,

[( ) ( ) ( ) ]

(356 7 pm)( ) 154 5 pm
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Diamond has a face-centered cubic lattice with atoms at 000 and asso-
ciated with each lattice point. This structure is represented in two different ways
in Fig. 23.10. Since there are two atoms per lattice point, there are eight atoms
per unit cell. The unit cell distance for diamond is 356 7 pm. Silicon, germanium,
and gray tin also have this structure with unit cell distances of 543.1, 565.7, and
649 1 pm.
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which is the C C distance. The distance between a carbon atom at a corner of the unit
cell and one at a face-centered position is given by

356 7 pm 356 7 pm
2 2

2
(356 7 pm)

2

2 (356 7 pm)
sin

4(356.7 pm)

54 736

The C C C bond angle is 2 or 109 472 , which is referred to as the tetrahedral angle.

Two representations
of the diamond structure. ( ) Space
model showing tetrahedral bonds.
( ) Projection showing fractional
coordinates. It is instructive to draw
lines showing the bonds in this pro-
jection.
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23.5 Ion Radii and Atom Radii
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Figure 23.10

The value of the Avogadro constant can be calculated from the den-
sity of a crystal, the relative atomic mass, and the unit cell length. To be useful
for this purpose, a crystal must be free of defects. Very accurate values of these
quantities for silicon have been measured at the National Institute for Standards
and Technology.* The value of the Avogadro constant determined in this way
[6.022 097 6(63) 10 mol ] is tied to measurements of other fundamental
constants through a least-squares adjustment to obtain the best values given in
Appendix B.

There is a condition on the ratio of ion radii that must be satisfied for an
ionic substance MX to have the NaCl structure. Since the ions are in contact along
a cell edge,

2( ) (23 13)

In addition, ions cannot overlap along the diagonal of the face of the unit cell.
Therefore,

(4 ) 2 (23 14)

(4 ) 2 (23 15)

Thus,

2 2 and 2 2 (23 16)

Using equation 23.13,

2( ) 2 2 (23 17)

2 1 0 414 (23 18)

Atom and ion radii for a number of elements are summarized in Table 23.2.
It is seen that in each column of the periodic table the ionic radius increases
with the principal quantum number of the valence orbital electrons. The radius



Source: Crystallography and Crystal Defects.
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Atomic Atom Ion
Number Element Structure Radius/ Ion Radius/a b

2

2

2

4

2

2

3

2

4

4

b.c.c., body-centered cubic; c.p.h., close-packed hexagonal; f.c.c., face-centered cubic.
The radius of an ion depends on the number of neighboring ions of opposite sign, or, in other words,

the coordination number. The values in the table apply to an ion with a coordination number of 6.
In structures where the coordination number is 4 the radius should be decreased by about 7%; with
coordination number 8 the radius should be increased by 3%, and with coordination number 12 the
radius should be increased by 6%.

A. Kelly and G. W. Groves, Reading, MA: Addison-
Wesley, 1970.

Crystal Structure Data

pm pm

3 Li b.c.c. 152 Li 60
4 Be c.p.h. 112 Be 31
6 C Cubic 77

(diamond)
8 O O 140
9 F F 136

11 Na b.c.c. 186 Na 95
12 Mg c.p.h. 161 Mg 65
14 Si Cubic 118 Si 41

(diamond)
17 Cl Cl 181
19 K b.c.c. 232 K 133
20 Ca f.c.c. 197 Ca 99
26 Fe b.c.c. 124 Fe 80

Fe 64
29 Cu f.c.c. 128 Cu 96
30 Zn c.p.h. 133 Zn 74
32 Ge Cubic 128 Ge 53

(diamond)
35 Br Br 195
37 Rb b.c.c. 245 Rb 148
53 I Orthorhombic 136 I 216
55 Cs b.c.c. 263 Cs 169
78 Pt f.c.c. 139 Pt 65

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Chapter 23 Solid-State Chemistry

a

b

Table 23.2
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of an ion is nearly the same in different crystals because the repulsive force in-
creases very sharply as the internuclear distance becomes smaller than a certain
value.

It has been found that the distance between two kinds of atoms connected by
a covalent bond of a given type (single, double, etc.) is nearly the same in different
molecules. The distance between two atoms is taken to be equal to the sum of the
bond radii of the two atoms. Since the C C bond distance is 154 pm in many com-
pounds, the radius for a carbon single bond is taken to be 77 pm. Since the C C
distance in acetylene is 120 pm, the radius for a carbon triple bond is taken to be
60 pm. By consideration of the bond distances in many compounds it has been
possible to build up tables of bond radii, such as Table 23.3, which are useful in
predicting the structures of molecules. It must be realized, however, that the
effective radius of an atom depends in part also on its environment and on
the nature of the bonds in the molecule under consideration.



Comment:

The determination of the density of a crystal, the relati e atomic masses of the
atoms, the isotopic abundance, and the size of the unit cell has pro ed to be one
of the most accurate ways to determine the alue of the A ogadro constant.
These quantities ha e been determined ery accurately for silicon crystals
at the National Institute of Standards and Technology by Deslattes and co-
workers. Silicon has been found to be the most suitable for this purpose because
crystals can be grown with ery few defects. The alue of the A ogadro constant
determined in this way has been tied to measurements of other fundamental
constants through least squares adjustment to obtain the alue .

that is recommended in Appendix B.
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Source: The Nature of the Chemical Bond.
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L. Pauling, Ithaca, NY: Cornell University Press, 1960, which
should be consulted for details concerning the source and constancy of these radii.
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Covalent Radii for Atoms in pm

H C N O F

Single-bond radius 30 77.2 70 66 64
Double-bond radius 66.7 60 56
Triple-bond radius 60.3

Si P S Cl

Single-bond radius 117 110 104 99
Double-bond radius 107 100 94 89
Triple-bond radius 100 93 87

Ge As Se Br

Single-bond radius 122 121 117 114
Double-bond radius 112 111 107 104

Sn Sb Te I

Single-bond radius 140 141 137 133
Double-bond radius 130 131 127 123

23.6 Scattering of X-Rays from a Unit Cell

23.6 SCATTERING OF X-RAYS FROM A UNIT CELL
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Table 23.3

6 022 136 7
10 mol

X-rays are scattered by electrons, and the greater the electron density, ( ), the
greater the scattering. Heavy atoms scatter X-rays to a greater extent because
they have higher electron densities in their vicinity. Note that the electron density
of an atom is spherically symmetric. The scattering factor for an atom depends
on the electron distribution ( ) in the atom and on the angle of scattering.
Specifically, the scattering factor is given by

sin
4 ( ) d (23 19)

where (4 / ) sin , where is the Bragg angle. The scattered intensity is
greatest in the forward direction, for which 0. The atomic scattering factor
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*Since occurs in the numerator and the denominator of the integrand, at 0 the ratio (sin )/
is replaced by its limit when 0. When 0, (sin )/ in equation 23.19 becomes unity since
sin for small angles.

2

0

2

2

2

i

i2 ( )

2

1
8

1 2 i(0) 2 i( ) 2 i( ) 2 i( ) 2 i( ) 2 i( ) 2 i( ) 2 i( )
8

Atomic scattering fac-
tors for Fe and Ca. Note that as
the Bragg angle goes to zero, be-
comes equal to the number of elec-
trons. [From D. E. Sands,

New York:
Dover Publications, Inc., 1993.]

Derive the structure factor for a primitive cubic unit cell of identical atoms. The relative
coordinates of the lattice points are given by (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1),
(0,1,1), and (1,1,1).

Since these atoms are each shared with eight other unit cells, the sum in equation 23.24
should be multiplied by so that it applies to one atom.

( )
[e e e e e e e e ]

y

fractional coordinates

phase difference

structure factor
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Figure 23.11

in the forward direction is equal to the number of electrons in the atom or ion. In
the forward direction, 0 and 0, and so equation 23.19 becomes*

4 ( ) d (23 20)

The integration of the electron density times the spherical shell 4 d yields
the total number of electrons in the atom. Figure 23.11 shows plots of the atomic
scattering factors for Fe and Ca.

We can discuss the scattering of X-rays from a crystal by considering a single
unit cell because when the scattering from two atoms in a unit cell is in phase for
certain Miller indices, it will be in phase with scattering from corresponding atoms
in the other unit cells in the crystal. Consider a unit cell containing atoms, or
ions, with , , and . The path difference associated
with waves of wavelength scattered by atom can be shown to be given by

( ) (23 21)

where , , and are Miller indices. The corresponding (angular
measure) is given by

2
2 ( ) (23 22)

Reflections from two atoms reinforce if the phase difference is an integer times 2
and interfere destructively if the phase difference is an odd integer times (180 ).

For a unit cell the amplitude of the scattering of X-rays is referred to as the
( ), which is made up of additive contributions from all

of the atoms or ions in the unit cell:

( ) e (23 23)

Substituting equation 23.22 in equation 23.23 yields

( ) e (23 24)

The intensity ( ) of the ( ) reflection is proportional to the square of the
amplitude; that is, ( ) ( ) .

( )

�

�

� �
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Since e cos 2 i sin 2 1,

( ) [1 1 1 1 1 1 1 1 ]

This shows that there will be reflections for a primitive unit cell for all integer values of ,
, and .

Electron density as a function of distance in a one-dimensional crystal
with repeat distance .
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23.6 Scattering of X-Rays from a Unit Cell
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Figure 23.12

According to Fourier’s theorem, a continuous, single-valued periodic func-
tion can be represented by a series composed of sine and cosine terms. This
theorem can be applied to the electron density ( ) in a crystal, but as a sim-
plification, we will first consider a one-dimensional crystal. The electron density

( ) in a one-dimensional crystal with a repeat distance is shown in Fig. 23.12:

1 2 2
( ) cos sin (23 25)

Since

2
cos (e e )/2 (23 26)

2
sin (e e )/2i (23 27)

equation 23.25 can be written

1
( ) ( ) e (23 28)

Be sure not to confuse the fractional coordinate of atom in equation 23.24
with the distance measured in the one-dimensional crystal. Fourier showed that
when an equation has the form of equation 23.28, the function ( ) can be ob-
tained from the following integration (Fourier transform). The Fourier transform
of equation 23.28 is

( ) ( ) e d (23 29)

Equations 23.28 and 23.29 are said to be Fourier transforms of each other. If ( )
is known for all values of , we can calculate ( ). This is the situation when we
discussed a unit cell of known structure. If ( ) is known from /2 to /2,
we can calculate ( ).
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Which reflections will be absent in the diffraction pattern for a body-centered cubic unit
cell?

phase problem.
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Equation 23.28 can be generalized to three dimensions, where it becomes

1
( ) ( ) exp[ 2 i( )] (23 30)

where is the volume of the unit cell. Alternatively, the electron density can be
written as

1
( ) ( ) e e (23 31)

where ( ) is the phase difference (see equation 23.22).
Since the structure factor ( ) is a complex function, this equation appears

to imply that the electron density is a complex function, but the electron density
( ) is a real function. If chemical bonding effects are neglected, ( ) is

the linear superposition of spherical electron densities of the individual atoms. It
can be shown that this function can be written

1
( ) ( ) cos[2 ( ) ( )] (23 32)

The summations over , , and go from to , but in practice the electron
density can be represented quite well with a finite number of terms. Higher reso-
lution is obtained by including more reflections (i.e., terms). Equation 23.32 shows
that it is necessary to know the phases in order to calculate the electron densities.

The Fourier transform of equation 23.30 can be written

( ) ( ) e d d d (23 33)

where the volume has been ignored. This is known as the Fourier transform of the
function ( ). If we knew ( ) at every point in a unit cell, we could cal-
culate ( ) by use of this equation. The actual situation in determining a crystal
structure is that ( ) is known from the intensities of the X-ray reflections, but
there is no information on the phase because film and other radiation detectors
measure only energy. Phase information is needed to calculate the positions of the
atoms. This is the Various methods for coping with this problem
are discussed at the end of this section.

To illustrate the usefulness of the structure factor, let us consider its depen-
dence on the reflection indices for several lattices. In primitive lattices with
atoms at the lattice sites, , , and are zero, so ( ) . Thus, the struc-
ture factor ( ) has the same value for all values of , , and , and there will
be reflections for all integer values of , , and .



The structure factor expression

F hkl I hkl
hkl

I hkl F hkl .

I hkl F hkl
x, y, z

F hkl F hkl F hkl

F hkl A hkl B hkl .

F hkl A hkl B hkl A hkl B hkl

A hkl B hkl .

h k l

h k l

h k l

h k l h k

h l k l

h k h l k l

h k h l k l

823

x y z
x y z

F hkl f f

f

f

F hkl f

h k l F hkl f h k l

h k l

F hkl f f

f f

f

f

h k l F hkl f

� �

� �

� �

� � �
� � �

� �

� �

�

� �

� � � � �

� �

� �

� � � �

� � � �

�

� � � �

� �

� �

� � � �

� � � �

� � �

� � �

1
8

1
2

2 i(0 0 0) 2 i( /2 /2 /2)

i ( )

i

1 1 1 1
2 2 2 2

1 1
2 2

2 i( 0 0 0) 2 i( /2 /2 0)

2 i( /2 0 /2) 2 i(0 /2 /2)

i( ) i( ) i( )

2

2

2

2

2 2

The eight corner atoms are each only th in the unit cell, and their contribution is
equivalent to one atom at 0. The atom at the center of the unit cell is at

, so the structure factor is given by

( ) e e

[1 e ]

where is the atomic scattering factor. Since e 1,

( ) [1 ( 1) ]

If is even, then ( ) 2 , but if is odd, the reflection will be absent.
Thus, the reflections (100), (111), (210), (300), . . . will be absent.

What is the structure factor expression for a face-centered cubic lattice? Derive a rule for
absences in reflections in terms of the values of , , .

The four atoms in the unit cell may be assigned the positions (000), ( 0), ( 0 ), and
(0 ):

( ) e e

e e

[1 e e e ]

[1 ( 1) ( 1) ( 1) ]

If , , are all even or all odd, then ( ) 4 and there are reflections. If one is even
and the other two are odd, or the reverse, the reflections are absent. This is illustrated by
the powder pattern for NaCl.
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These examples show that the structure factors contain all the information
about all the atoms in a unit cell. For a known structure they may be used to
calculate the electron density throughout the unit cell using equation 23.32. But
the X-ray diffractionist faces a much more difficult problem. The structure factors

( ) are related to the intensities ( ) of radiation reflected from the planes
( ) by

( ) ( ) (23 34)

Measurements of the densities of spots on photographic film or of counts recorded
by a Geiger counter for each reflection may be subjected to routine corrections
to obtain ( ) values. Thus, a set of ( ) values may be obtained. Un-
fortunately, what is needed to calculate ( ) using equation 23.32 are val-
ues of ( ) instead of ( ) . Since ( ) is a complex number, we can
write

( ) ( ) i ( ) (23 35)

so that

( ) [ ( ) i ( )][ ( ) i ( )]

[ ( )] [ ( )] (23 36)
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A hkl B hkl
x, y, z

In 1985 Hauptman and Karle recei ed the Nobel Prize for their de elopment
of a direct method for determining phases. For unit cells that are not too
large, they showed that use of prior structural knowledge makes it possible to
determine the positions of the atoms from the scattered intensities alone.
Howe er, this method can be used only for unit cells containing up to about 100
atoms.

Principles of
Physical Biochemistry,
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*More detailed information is provided by K. E. van Holde, W. C. Johnson, and P. S. Ho,
Upper Saddle River, NJ: Prentice-Hall, 1998.

phase problem.

isomorphous replacement

Ionic crystals
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23.7 BINDING FORCES AND PACKING IN CRYSTALS
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Since values of ( ) and ( ) are not obtained directly, indirect methods
must be used to obtain these quantities and the electron density ( ). This is
another statement of the Fortunately, the number of parameters
needed to describe a crystal structure is far smaller than the number of reflections,
so that the problem is greatly overdetermined. Several methods are used to get
around the phase problem. If heavy atoms are present in the unit cell, they may by
themselves determine enough phases so that a Fourier map of the electron density
may reveal the position of some of the lighter atoms.

The method of is especially useful in determining
the three-dimensional structure of protein molecules in crystals. X-ray diffraction
data are determined on the protein crystal, and these are called the native data.
Then a heavy atom that is bound at specific locations is introduced into the crystal,
and the X-ray diffraction data determined on this altered but isomorphous crys-
tal are referred to as the heavy atom data. A difference data set is obtained by
subtraction. The difference data are used to determine the positions and phases
of the heavy atoms in the unit cell. The phases determined in this way are used to
solve for the structure of the protein.*

X-ray analyses of thousands of crystal structures have led to detailed knowl-
edge of the geometrical properties of different groups of atoms, including well-
established values of bond lengths and angles. Modern crystallographic analyses
using data-collecting diffractometers and high-speed computers have made it pos-
sible to determine the molecular structure of proteins. X-ray diffraction data were
used in the determination of the structure of deoxyribonucleic acid, and this led
to an understanding of the hydrogen bonding that makes that structure stable.

In certain cases X-ray diffraction may be used to determine the absolute
configuration of an optically active substance. In 1951 Bijvoet, Peerdeman, and
van Bommel studied sodium rubidium ( )-tartaric acid by X-ray diffraction
and found that the absolute configuration was the one arbitrarily chosen from the
two possible enantiomorphic structures by Fischer 60 years earlier.

A number of different types of binding forces are involved in holding crystals
together. The physical properties of a crystal are very dependent on the type of
bonding.

are held together by the strong coulomb attractions of the
oppositely charged ions. The lattice energy determined from heat of formation
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Covalent crystals,

Molecular crystals

Hydrogen-bonded

Metallic bonds
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and heat of vaporization measurements agrees with that calculated on the as-
sumption that the units of the crystal are ions held together by electrostatic
forces.

In ionic crystals there is no fixed directed force of attraction. Although the
ionic crystals are strong, they are likely to be brittle. They have very little elas-
ticity and cannot be easily bent or worked. The melting points of ionic crystals
are generally high (NaCl, 800 C; KCl, 790 C). In ionic crystals some of the atoms
may be held together by covalent bonds to form ions having definite positions and
orientations in the crystal lattice. For example, in calcium carbonate a carbonate
ion does not “belong” to a given calcium ion, but three particular oxygen atoms
are bonded to a given carbon atom.

which are held together by covalent bonds in three dimen-
sions, are strong and hard and have high melting points. Diamond is an example
of this type of crystal.

The great difference between graphite and diamond can be understood in
terms of the crystal lattice. Graphite has hexagonal networks in sheets like ben-
zene rings. The distance between atoms in the plane is 142 pm, but the distance
between these atomic layer planes is 335 pm. In two directions, then, the carbon
atoms are tightly held as in the diamond, but in the third direction the force of at-
traction is much less. As a result, one layer can slip over another. The crystals are
flaky, and yet the material is not wholly disintegrated by a shearing action. This
planar structure is part of the explanation of the lubricating action of graphite, but
this action also depends on absorbed gases, and the coefficient of friction is much
higher in a vacuum.

Covalently bonded crystals are insulators because the bonding orbitals are
fully occupied. They become conductors only if electrons are excited to unoc-
cupied levels. Thus, they become photoconductors when they are irradiated at a
wavelength sufficiently short to raise electrons to excited levels.

are held together by van der Waals forces (Section 11.9).
Examples are provided by crystals of neutral organic compounds and rare gases.
Since van der Waals forces are weak, such molecular crystals have low melting
points and low cohesive strengths.

crystals are held together by the sharing of protons be-
tween electronegative atoms. Hydrogen bonds are involved in many organic
and inorganic crystals and in the structure of ice and water. They are compar-
atively weak bonds, but they play an extremely important role in determining
the atomic arrangement in hydrogen-bonded substances such as proteins and
polynucleotides.

exist only between large aggregates of atoms. This type of
bonding gives metals their characteristic properties: opacity, luster, malleability,
and conductivity of electricity and heat. Metallic bonding is due to the outer, or
valence, electrons. The overlapping of the wavefunctions for the valence electrons
in metals results in orbitals that extend over the entire crystal. The electrons pass
throughout the volume of the crystal, and for certain purposes, we may consider
that there is an electron gas—except that we will see that it is fundamentally dif-
ferent from other gases.

There is a gradual transition between metallic and nonmetallic properties.
Atoms with fewer and more loosely held electrons form metals with the most
prominent metallic properties. Examples are sodium, copper, and gold. As the
number of valence electrons increases and they are held more tightly, there is a
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Figure 23.13

Figure 23.14

transition to covalent properties. The close-packed structures are often found in
metals because the binding energy per unit volume is maximized.

When the bonding of atoms is not highly directional, it is often found that
the lowest energy structure is that in which each atom is surrounded by the great-
est possible number of neighbors. It is therefore of interest to consider the ways
in which uniform spheres can be stacked to form close-packed structures. When
spheres are packed in a plane, they arrange themselves so that each sphere is sur-
rounded hexagonally by six others. When the second layer is formed by placing
spheres in the hollows on top of the first layer, it is evident that all of the hollows
in the first layer are not occupied, as may be seen from Fig. 23.13. When a third
layer is added, there is a choice as to whether the spheres in this layer are stacked
so that they are not above the spheres in the first layer, as in Fig. 23.13 or are, as
in Fig. 23.13 . If the spheres in the third layer are not directly above the spheres
in the first layer, as shown in Fig. 23.13 the structure has cubic symmetry and
the cubic unit cell is face centered. The fact that is really face-
centered cubic may be seen from Fig. 23.14. Since this is a close-packed structure,
it is of interest to calculate the fraction of the volume occupied by spheres. Since
the length of the diagonal of the face of a unit cell is 2 , the radii of the spheres
that just touch are given by ( 2/4) . Since there are four spheres per unit cell, the
fraction of the volume occupied by spheres is

4( )[( 2/4) ]
0 7405 (23 37)

In cubic close packing each sphere has 12 nearest neighbors: 6 within its own
layer, 3 in the layer above, and 3 in the layer below. Metals and rare gases often
form cubic close-packed structures.

If the spheres in the third layer are placed over the spheres in the first layer, as
shown in Fig. 23.13 and the spheres in the fourth layer are placed over those in
the second layer, and so on, the unit cell is hexagonal and the packing is referred
to as As in the case of cubic close packing, each sphere
has 12 nearest neighbors, and the fraction of the volume occupied by spheres is
again 0.7405. The coordinates of the atoms in the unit cell are (000) and ( ).
There are two atoms in the unit cell.

The unit cell dimensions in terms of the radius of a sphere are 2 ,
4 2 / 3, and / 2 2/ 3 1 633. A number of metals have hexagonal

close-packed structures, but / usually deviates a little from the ideal ratio of
1.633. This indicates that the atoms are not exactly spherical in shape.

The layers of hexagonal close packing may be described as ABABAB .
The layers of cubic close packing may be described as ABCABC .

Hexagonal close packing and cubic close packing are the only two ways of
close-packing identical spheres so that the environment of each sphere is identi-
cal to the environment of all the other spheres, but there are other ways of close-
packing spheres so that the environment of each sphere is not identical, for exam-
ple, ABCABABCAB . In principle, there are an infinite number of these other
ways.

In a number of crystal structures containing two types of atoms, one type of
atoms forms a close-packed structure and the other type occupies interstices be-
tween the close-packed spheres. There are two types of interstices between close-
packed spheres: tetrahedral sites and octahedral sites. When one sphere rests on
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three others, the centers of the four spheres lie at the apices of a regular tetrahe-
dron, and the space at the center of this tetrahedron is called a tetrahedral site.
Since in any close-packed structure each sphere is in contact with three spheres in
the layer below it and three spheres in the layer above it, there are two tetrahedral
sites per sphere. Thus, if X atoms form a close-packed structure, and Y atoms are
small enough to fit in the tetrahedral sites, this might be a convenient structure for
a compound XY . Half of the sites would be occupied in a compound XY. For the
smaller sphere to occupy a tetrahedral site without disturbing the closest-packed
lattice, the radius of the smaller spheres should be no greater than 0.225 of that of
the larger spheres.

The other type of interstitial site in a close-packed structure is the octahedral
site that is surrounded by six spheres whose centers lie at the apices of a regular
octahedron. There is one octahedral site for every sphere in a close-packed struc-
ture so that a compound of the type XY can be accommodated. For Y atoms to fit
into octahedral sites, their radii must be less than 0.414 of the radii of the larger
spheres.

Although the majority of metallic elements crystallize with hexagonal close
packing or cubic close packing, some crystallize with the body-centered
cubic arrangement, which is not a close-packed structure. In this structure, which
is illustrated in Fig. 23.15, each atom has eight nearest neighbors and six other
next-nearest neighbors slightly farther away at the body-centered positions of
neighboring cells. By use of the Pythagorean theorem it is readily shown that the
distance from the body-centered point to one of the corners of the cubic unit cell
is ( 3/2) . If the structure is made up of spheres that touch, they must have a
radius of ( 3/4) . The fraction of the volume of the unit cell (and hence of the
entire crystal) occupied by spheres is

2( )[( 3/4) ]
0 6802 (23 38)

The alkali metals and tungsten crystallize in a body-centered cubic structure.
The characteristics of cubic lattices for spheres are summarized in Table 23.4.

It is very rare to find spheres packed in a simple cubic lattice.
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Figure 23.16

In a perfect crystal the atoms, ions, or molecules occur at definite distances from
any individual atom, ion, or molecule that is taken as the origin of a coordinate
system. In a gas the molecules have random positions at a given time. Liquids are
intermediate between crystals and gases in that the molecules are not arranged
in a definite lattice, but there is some local order. By a detailed analysis of the
intensity of the scattered X-rays, it is possible to calculate the distribution of atoms
or molecules in a liquid.

When X-rays are scattered by an amorphous phase the intensity ( ) of scat-
tered radiation is a function only of the scattering angle , which is defined as the
angle between scattered and incident directions. (Note that this angle is twice the
Bragg angle used earlier.) The intensity tends to fall off as increases. It may be
shown that the intensity is given by

sin
( ) ( ) d (23 39)

where

4
sin

2

and ( ) d is the probability of finding a particle between and d , be-
ing measured from one particle at the origin. For a uniform medium ( ) would
be proportional to 4 , and so it is convenient to introduce a

( ) defined by

( ) 4 ( ) (23 40)

where is the number density for the medium. If the medium were continuous and
homogeneous, the pair correlation function ( ) would be constant. As shown
in Fig. 23.16, the pair correlation function for a liquid is zero for small values of

, has a maximum at the most probable nearest-neighbor distance, has diminish-
ing maxima that correspond to second-nearest-neighbor distance, and so on. The
first maximum in Fig. 23.16 is due to the 8 or 12 nearest neighbors that surround
each molecule. The pair correlation function ( ) is essentially zero at distances
less than one molecular diameter because of the strong short-range intermolecu-
lar repulsions (Section 11.9). The existence of a shell of nearest neighbors means
that there will be a relatively high probability of finding molecules one molecu-
lar diameter away, as well as two, three, and four molecular diameters removed.
Since the liquid has no long-range order, ( ) is essentially constant after a few



Nematic

Cholesteric

Smectic

nematic

cholesteric

g

g C .

g
g a

829

�

�

1/2

Structures of liquid
crystals.

nematic

cholesteric

smectic,

23.10 Theoretical Treatment of the Electron Distribution in Solids

23.9 LIQUID CRYSTALS

23.10 THEORETICAL TREATMENT OF THE ELECTRON
DISTRIBUTION IN SOLIDS

�

�

� �

� � �
� �

�

Figure 23.17

molecular diameters. As the temperature of the liquid is raised, the maxima and
the minima in the pair correlation function become less pronounced.

In certain liquids new phases, which are intermediate between liquid and solid
phases, appear on cooling. These phases often have a translucent or cloudy ap-
pearance and are called liquid crystals.

In a liquid of asymmetric molecules the molecular axes are arranged at ran-
dom, but in liquid crystals there is some kind of alignment. As shown in Fig. 23.17,
there are three types of liquid crystals. In liquid crystals the long axes of
the molecules are aligned parallel to each other, but the molecules are not ar-
ranged in layers. The word was coined from the Greek root for thread
to describe the appearance of this particular type of liquid crystal under a micro-
scope. Nematic liquid crystals have a translucent appearance because they scatter
light strongly.

In liquid crystals the molecular axes are aligned, and the molecules
are arranged in layers in which the orientation of the axes shifts in a regular way
in going from one layer to the next, as shown in Fig. 23.17. The distance mea-
sured perpendicular to the layers through which the direction of alignments shifts
360 is of the order of the wavelength of visible light. As a result of the strong
Bragg reflection of light, cholesteric liquid crystals have vivid iridescent colors.
The pitch of the spiral and the reflected color depends sensitively on the tempera-
ture, and so these liquid crystals have been used to measure skin and other surface
temperatures. The name comes from the fact that many derivatives of
cholesterol (but not cholesterol itself) form this type of liquid crystal.

The third type of liquid crystals, are formed by certain molecules
with chemically dissimilar parts. The chemically similar parts attract each other,
and there is a tendency to form layers as well as to have the molecules aligned in
one direction, as illustrated in Fig. 23.17. Smectic phases are soaplike in feel and
structure and may have some relationships with cell membranes.

The high electrical conductivity of metals is a result of the ease with which elec-
trons in the metal can move under the influence of a static or low-frequency
electric field. In the free-electron model of a metal each valence electron is
treated as a particle in a three-dimensional box the size of the metal crystal. In
this oversimplified theory the energy levels of the electron are given by equation
9.63 for a particle in a box. For each eigenstate there are actually two possible
states of the electron, corresponding to the two values of the spin. It can be shown
that the density-of-state function ( ) is given by

( ) (23 41)

The number of one-electron states with energy between and d is given by
( ) d .

The density of states ( ) is shown as a function of energy in Fig. 23.18 . As
electrons are added at 0 K, the energy levels are filled up to some maximum energy
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Figure 23.18

Figure 23.19

determined by the number of electrons. This is indicated by the shading in the
figure. This maximum energy is called the The Fermi energy is
the chemical potential of the electrons and determines their tendency to move
at an interface. It is sometimes convenient to present the same information by
plotting ( )/ versus , as shown in Fig. 23.18 . In contrast to gas molecules,
where Maxwell–Boltzmann statistics allow any number of particles to have ex-
actly the same energy, electrons follow Fermi–Dirac statistics, which means that
only one particle is allowed in each state of the system. At a temperature above
absolute zero the number of occupied states (per unit volume) in the energy range

to d is given by d( / ):

d ( ) ( ) d (23 42)

where ( ) is the Fermi–Dirac distribution function,

1
( ) (23 43)

e 1

The quantity is constant at any given temperature. The value of can be ob-
tained by integrating equation 23.42 over all energies since this integration must
yield the number of electrons per unit volume. Since ( ) when ,
the quantity is equal to the energy at which ( ) has half its maximum value.
At 0 K, ( 0) 1 for energies less than the Fermi energy , and ( 0) 0
for energies greater than the Fermi energy . As 0, . It is a good
approximation to take at other temperatures provided that
( 5 eV for most metals). Combining the preceding two equations and using
this approximation yield

d
d (23 44)

e 1

Figure 23.19 shows the distribution of electron energies at temperatures
and where 0 . At room temperature the distribution of electron en-
ergies differs only slightly from that at 0 K for 5 eV. A small fraction of the
electrons have energies greater than the Fermi energy , and they leave behind
holes (unoccupied states) at . The excited electrons and holes both con-
tribute to the electrical conductivity.

Figure 23.19 provides the explanation for the very small contribution of elec-
trons to the heat capacity for a metal. When the temperature of a metal is raised
a small amount, only a small fraction of the electrons have their energies raised.
Since the energies of most electrons are not affected by raising the temperature,
the electronic heat capacity is negligible compared with the vibrational heat ca-
pacity 3 predicted by the Einstein and Debye theories (Section 16.12).

The free electron theory of metals is only an approximation. The electronic
states of solids (metals, insulators, and semiconductors) can be studied by more
exact quantum mechanical methods.

In 1911, Kamerlingh Onnes, a Dutch physicist at the University of Leiden, dis-
covered that the resistivity of mercury suddenly drops to zero as the temperature is

y y
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lowered below 4.2 K (see Fig. 23.20). The same phenomenon occurs (at different
characteristic temperatures) for many other metals, alloys, and compounds. We
describe this by saying that at a critical temperature the sample undergoes a
phase transition from a normal to a superconducting state. In addition to zero
resistivity, superconductors have unusual magnetic properties. When a sample in
a weak magnetic field is cooled through , the magnetic flux originally in the
sample is ejected. This is called the On the other hand, a super-
conducting state can be destroyed by a strong enough magnetic field (called the
critical field ). The thermodynamic properties of superconductors are also in-
teresting. For example, the entropy of a superconductor decreases considerably
on cooling, indicating that the superconducting state is more ordered than the nor-
mal state. Detailed studies suggest that the superconducting state consists of two
kinds of electrons: “ordered” pairs and “normal” electrons. As the temperature
decreases, the number of ordered pairs increases. The temperature dependence
of the populations suggests that the normal electrons are in energy states sepa-
rated from the energy states of the ordered pairs by a gap , which is on the order
of 3–5 .

The critical temperature has been found to vary with isotopic substitution,
suggesting that the motion of atoms is intimately connected with superconductiv-
ity. The first successful theory of superconductivity was given by Bardeen, Cooper,
and Schrieffer in 1957 and is called the BCS theory after these physicists. The
theory suggests that the attractive interaction between the electrons and the lat-
tice of metal ions can be large enough that it overcomes the repulsion between
electrons, leading to pairing of electrons (with opposite spins). These pairs then
interact very weakly with lattice vibrations and so experience no friction (or scat-
tering) as they move through the sample. The BCS theory explained the energy
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gap, the thermodynamic properties, and many of the electromagnetic properties,
and it also gave a formula for in terms of parameters in the Hamiltonian of the
system.

The usefulness of superconducting materials for practical purposes is de-
creased because of the very low temperatures at which most materials become
superconducting. Until 1986, the highest known was about 23 K. In that
year, Bednorz and Müller, at the IBM lab in Zurich, discovered that an ox-
ide of La, Ba, and Cu became superconducting at about 30 K. The next year
another oxide was discovered to be superconducting at 90 K, above the boil-
ing point of liquid N (77 K), which is a plentiful and inexpensive refrigerant.
Suddenly, the possibility of using superconductors at reasonable temperatures
became real.

The most studied of the so-called high- superconductors is YBa Cu O
( 0 1). The nonstoichiometry seems to be necessary for superconductivity.
The solid-state structure of this compound is in the perovskite family (Fig. 23.21).
The nonstoichiometry means that there are oxygen vacancies in the lattice, which
undoubtedly play a role in the properties of the material. Speculation has focused
on the sheets and chains of Cu and O atoms in the structure as being necessary
for the superconducting state. Through 2003, no agreement had been reached on
whether these new materials require a new theoretical model or whether they are
examples of a BCS-type theory.
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One class of solid-state material that has had tremendous impact in the last 50
years is the semiconductor. The modern world of computing was born when
Bardeen, Brattain, and Shockley developed the first transistor in 1947 at Bell
Laboratories in Murray Hill, New Jersey. Semiconductors have a ground-state
electronic structure that consists of an energy band filled with electrons, called the

an energy band with no electrons in it, called the
and an denoted by , that separates the valence and conduction
bands. An electron near the bottom of the conduction band is well approximated
as a free particle with an effective mass . This mass is generally much smaller
than that of an electron in free space. As a result, the wavelength of an electron in
a semiconductor can be many nanometers. The absence of an electron
in the valence band is called a The hole behaves as if it were a positively
charged particle with its own effective mass , also generally smaller than that
of an electron in free space. Defining the zero of energy at the top of the valence
band, the energy of an electron near the bottom of the conduction band and
the energy of a hole near the top of the valence band are well approximated as

¯¯
and (23 45)

2 2

where and are the wave vectors for the electron and hole.
The energy of a photon absorbed by the semiconductor to promote an elec-

tron from the valence band to the conduction band, leaving a hole behind, is

¯
(23 46)

2

giving rise to an absorption spectrum that consists of a continuum starting at the
band gap energy.

The development of sophisticated semiconductor growth technologies in the
1970s led to the emergence of classes of semiconductor structures that have one
or more dimensions restricted to the nanometer length scale, smaller than the
wavelength of the electron in the semiconductor. These are called

structures where the motion of conduction band electrons or valence band
holes is best described quantum mechanically. Structures known as
confine the electron and hole in one dimension. Quantum wells consist of a semi-
conductor layer that is only 10 nm thick surrounded by a semiconductor or an
insulator that has a band gap larger than that in the layer, as illustrated schemat-
ically in Fig. 23.22 . The electron is confined to a one-dimensional box with finite
potential walls in one direction, while it is free in the other two directions. This
leads to a set of discrete, particle-in-a-box electronic states in the small dimen-
sion, illustrated in Fig. 23.23, and a continuum in the plane of the layer. The opti-
cal absorption spectrum consists of a staircase structure, compared with the bulk
continuum, shown schematically in Fig. 23.22 , with an absorption onset that is at
a higher energy than the band gap, and where each step corresponds to accessing a
new discrete transition in the small direction. The onset of the first step in the ab-
sorption spectrum of a quantum well is size dependent, scaling as the inverse of
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Figure 23.24

the thickness of the well. The flat part of the step corresponds to increasing the
kinetic energy of the electron and hole in the other two directions, where they be-
have as free particles. The optical and electronic effects that result from quantum
confinement in a quantum well are directly responsible for the creation of opto-
electronic devices that have become ubiquitous, including new and efficient lasers
that are widely used in sophisticated telecommunications optical networks as well
as in inexpensive consumer electronics, photodetectors, electro-optic modulators,
and a slew of other technologically important devices.

Increasing the confinement to two directions leads to and con-
finement in all three directions results in with structures schemat-
ically rendered in Fig. 23.22 . The staircase pattern of the quantum well absorp-
tion spectrum becomes a sawtooth pattern for the quantum wire, and then a set
of sharp, discrete absorption features for the idealized quantum dot, as illustrated
in Fig. 23.22 . The quantum dot absorption features correspond to transitions be-
tween discrete, three-dimensional particle-in-a-box states of the electron and the
hole, both confined to the same nanometer-size box. These discrete transitions are
reminiscent of atomic spectra and have resulted in quantum dots also being called

There have been many approaches to the fabrication of quantum dot struc-
tures, ranging from sophisticated growth methods that use expensive semicon-
ductor fabrication facilities, to simple solution-based chemical methods. One
chemical approach is the nucleation and growth of nanometer-size crystals of
semiconductors in solution. These consist of a small inorganic core
that is generally 10 nm in its smallest dimension, surrounded by a shell of organic
groups that are loosely bound to the core and that regulate its growth and stabilize
the nanocrystals in solvents. This structure is illustrated in Fig. 23.24. Solutions
of nanocrystal quantum dots look like solutions of organic dye molecules. The
nanocrystals are well approximated electronically as quantum dots with a spher-
ical shape. Their electronic structure can be idealized using a three-dimensional
spherical quantum mechanical box with wavefunctions that are like those of
atomic orbitals. The lowest energy transition of a spherical nanocrystal with ra-
dius within the spherical particle-in-a-spherical-box model corresponds to a
photon with energy
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This transition results in a state with the electron and hole fully delocalized inside
the nanocrystal in the equivalent of 1s atomic orbitals. The energy of this low-
est transition is strongly sensitive to the size of the nanocrystal, scaling as 1/ .
Although chemically synthesized quantum dots do not have the infinitely sharp
absorption spectra idealized in Fig. 23.22 , partly due to imperfect samples and
finite size distributions, the strong size dependence of the lowest transition and
“artificial atom” absorption bands are clearly observed as shown in Fig. 23.25.
Nanocrystal quantum dots can also exhibit high-quantum-efficiency fluorescence
from the recombination of the lowest-energy electron and hole. The strong size
dependence of this fluorescence is such that a semiconductor such as CdSe that
has a band gap in the red portion of the visible spectrum can have its fluores-
cence tuned with size throughout the visible spectrum with vials of nanocrystal
quantum dots fluorescing in a rainbow of colors, from the blue edge of the visible
spectrum for particles with 1 nm to the red edge of the visible spectrum for
particles with 4 nm. This size-dependent fluorescence presents an appealing
demonstration of the quantum mechanical particle-in-a-box model, and a direct
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example of some of the new properties that emerge when materials have dimen-
sions in the nanometer size range. This size-dependent fluorescence has also led
to the initially unexpected commercial application of nanocrystal quantum dots
as fluorescent markers in biological systems.

The space occupied by a crystal lattice can be divided into unit cells. The
repetition of the unit cell in three dimensions generates the entire pattern
of the crystal.
The classification of crystals is based on their symmetry, rather than the di-
mensions of their unit cells. In contrast with individual molecules, crystals
can have rotational symmetry of only one-, two-, three-, four-, or six-fold.
As a result of this restriction, all crystals can be classified in one of 32 crys-
tallographic point groups.
The planes through lattice points are important because they represent pos-
sible crystal faces and because they help us understand X-ray diffraction
phenomena. There is an infinite number of sets of planes in a crystal, and
they are referred to by their Miller indices.
The Bragg equation gives the angles at which reflection occurs from a stack
of planes. The reflections can be referred to as first-order, second-order,
reflections, or the perpendicular interplanar distance can be taken to be / ,
where is the order of the reflection, in which case the Miller indices are
multiplied by .
One of the most accurate measurements of the Avogadro constant is based
on the determination of the density, relative atomic mass, and unit cell length
for silicon.
The phase problem complicates the determination of crystal structures by
X-ray diffraction because the intensities of reflections give only the absolute
value of the structure factor from which the electron density function can
be calculated. One of the ways for getting around this problem, which has
been very useful in determining the structures of proteins, is isomorphous
replacement.
When the bonding of atoms in crystals is not highly directional, it is often
found that the lowest-energy structure is that in which each atom is sur-
rounded by the greatest number of possible neighbors. Hexagonal close
packing and cubic close packing (face-centered cubic) are the only two ways
of close-packing identical spheres so that the environment of each sphere is
identical to that of the others, but there is an infinite number of other ways
of close-packing where the environment of each sphere is not identical.
The free electron model of metals can explain many properties, including
the low-temperature specific heat.
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centered cubic crystals like the other alkali halides. The lengthProblems marked with an icon may be more conve-
of the side of the unit cell of CsCl is 412.1 pm. ( ) What is theniently solved on a personal computer with a mathematical pro-
density? ( ) Calculate the ion radius of Cs , assuming thatgram.
the ions touch along a diagonal through the unit cell and thatWhat is the equation for the distances between 110
the ion radius of Cl is 181 pm.planes for a crystal with mutually perpendicular axes?

Deslattes et al. [ 463 (1974)] foundCalculate the angles at which the first-, second-, and
the following values for a single crystal of very pure silicon atthird-order reflections are obtained from planes 500 pm apart,
25 C: 2 328 992 g cm , 543 1066 pm. Silicon has ausing X-rays with a wavelength of 100 pm.
face-centered cubic lattice like diamond. The atomic mass is

Calculate the structure factor for a cubic unit cell of AB
28 085 41 g mol . What value of Avogadro’s constant is ob-

in which the B atoms occupy the body-centered position. Which
tained from these values?

reflections will be strong and which weak?
Insulin forms crystals of the orthorhombic type with

The crystal unit cell of magnesium oxide is a cube 420
unit-cell dimensions of 13 0 7 48 3 09 nm. If the density of

pm on an edge. The structure is interpenetrating face centered.
the crystal is 1 315 g cm and there are six insulin molecules

What is the density of crystalline MgO?
per unit cell, what is the molar mass of the protein insulin?

Platinum forms face-centered cubic crystals. If the radius
Molybdenum forms body-centered cubic crystals, and at

of a platinum atom is 139 pm, what is the length of the side of
20 C, the density is 10 3 g cm . Calculate the distance between

the unit cell? What is the density of the crystal?
the centers of the nearest molybdenum atoms.

Tungsten forms body-centered cubic crystals. From the
Silicon has a face-centered cubic structure with twofact that the density of tungsten is 19 3 g cm , calculate ( ) the

atoms per lattice point, just like diamond. At 25 C,length of the side of this unit cell and ( ) , , and .
543 1 pm. What is the density of silicon?

( ) Metallic iron at 20 C is studied by the Bragg
The common form of ice has a tetrahedral structure withmethod, in which the crystal is oriented so that a reflection

protons located on the lines between oxygen atoms. A given pro-is obtained from the planes parallel to the sides of the cubic
ton is closer to one oxygen atom than the other and is said to be-crystal, then from planes cutting diagonally through opposite
long to the closer oxygen atom. How many different orientationsedges, and finally from planes cutting diagonally through op-
of a water molecule in space are possible in this lattice?posite corners. Reflections are first obtained at 11 36 ,

The diamond has a face-centered cubic crystal lattice,8 3 , and 20 26 , respectively. What type of cubic lattice does
and there are eight atoms in a unit cell. Its density is 3 51 g cm .iron have at 20 C? ( ) Metallic iron also forms cubic crys-
Calculate the first six angles at which reflections would be ob-tals at 1100 C, but the reflections determined as described
tained using an X-ray beam of wavelength 7.12 pm.in ( ) occur at 9 8 , 12 57 , and 7 55 , respectively.

Derive the structure factor for a body-centered cubicWhat type of cubic lattice does iron have at 1100 C? ( ) The
unit cell of identical atoms. The relative coordinates of the lat-density of iron at 20 C is 7 86 g cm . What is the length
tice points are given by (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),of the side of the unit cell at 20 C? ( ) What is the wave-
(1,0,1), (0,1,1), (1,1,1), and ( , , ).length of the X-rays used? ( ) What is the density of iron at

1100 C? Calculate the ratio of the radii of small and large spheres
Cesium chloride, bromide, and iodide form interpene- for which the small spheres will just fit into octahedral sites in a

trating simple cubic crystals instead of interpenetrating face- close-packed structure of the large spheres.
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A close-packed structure of uniform spheres has a cubic Cobalt has a hexagonal close-packed structure with
unit cell with a side of 800 pm. What is the radius of the spherical 250 7 pm. What is its density?
molecule? Aluminum forms face-centered cubic crystals, and the

Titanium forms hexagonal close-packed crystals. Given length of the side of the unit cell is 405 pm at 25 C. Calculate
the atomic radius of 146 pm, what are the unit cell dimensions, ( ) the density of aluminum at this temperature and ( ) the dis-
and what is the density of the crystals? tances between (200), (220), and (111) planes.

What neutron energy in electron volts is required for a From the fact that the length of the side of a unit cell
wavelength of 100 pm? for lithium is 351 pm, calculate the atomic radius of Li. Lithium

forms body-centered cubic crystals.The only metal that crystallizes in a primitive cubic lat-
tice is polonium, which has a unit cell side of 334.5 pm. What are Platinum forms face-centered cubic crystals, and the
the perpendicular distances between planes with indices (110), length of the side of the unit cell is 393 pm. What is the num-
(111), (210), and (211)? ber of atoms per cm of surface on the (100), (110), and (111)

planes?Calculate the highest-order diffraction line that can be
observed for the 100 planes of NaCl using an X-ray tube with a If spherical molecules of 500 pm radius are packed in
copper target ( 154 pm). cubic close packing and in body-centered cubic crystals, what are

the lengths of the side of the cubic unit cells in the two cases?For a C lattice (Fig. 23.5), what is the expression for
the structure factor? Derive the rule for absent reflections. What is the de Broglie wavelength of thermal neutrons

at 200 C?The density of platinum is 21 45 g cm at 20 C. Given
the fact that the crystal is face-centered cubic, calculate the Metallic sodium forms a body-centered cubic unit cell
length of the side of the unit cell. with 424 pm. What is the sodium atom radius?

A substance forms face-centered cubic crystals. Its den-
sity is 1 984 g cm , and the length of the edge of the unit is 630
pm. Calculate the molar mass.

Potassium bromide has a face-centered cubic lattice, and Calculate the angles for the first-order Bragg reflections
the edge of the unit cell is 654 pm. What is the density of the for 100, 110, and 111 planes of an orthorhombic unit cell with
crystal? 488 2 pm, 665 7 pm, and 831 6 pm. The wave-

Calculate the density of a diamond from the fact that it length of the monochromatic X-rays is 154.433 pm.
has a face-centered cubic structure with two atoms per lattice

Copper forms face-centered cubic crystals with a 361.6-point and a unit cell edge of 356.7 pm.
pm unit cell at 25 C. Calculate the first five Bragg angles ob-Tantalum crystallizes with a body-centered cubic lattice.
tained with 154.05-pm X-rays.Its density is 17 00 g cm . ( ) How many atoms of tantalum

are there in a unit cell? ( ) What is the length of a unit cell? Calculate the Fourier transform of the function
( ) What is the distance between (200) planes? ( ) What is the sin 2 2 sin 2 , where = 30 s and = 20 s .
distance between (110) planes? ( ) What is the distance between ( ) Plot the function in the time domain over a period of one
(222) planes? second. ( ) Plot the corresponding spectrum in the frequency

Iron crystallizes in body-centered cubic packing at room domain.
temperature. Since the density is 7 88 g cm at 25 C, what is

Calculate the angles for the first 11 first-order Bragg re-the length of the side of the unit cell at this temperature? What
flections for a face-centered cubic crystal with / 0 289.is the radius of an iron atom in this crystalline form?
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Physisorption and Chemisorption
Langmuir Adsorption Isotherm
Use of Adsorption Measurements
to Determine Surface Area
Low-Energy Electron Diffraction (LEED)
Electron Emission from Surfaces
Scanning Tunneling Microscopy (STM) and
Atomic Force Microscopy (AFM)
Theory of Surface Reactions
Heterogeneous Catalysis
Special Topic: Surface Reconstruction

24.1 PHYSISORPTION AND CHEMISORPTION

Previous chapters have been largely concerned with the properties of matter un-
der conditions where surface effects are negligible. Now we shall consider the
equilibrium and dynamics of processes that occur at the interface between a solid
and a gas. When a molecule strikes a solid surface, it may rebound elastically or
inelastically, undergo a reaction, or be adsorbed. If it is adsorbed, it may diffuse
around on the surface, remain fixed, or dissolve in the bulk phase, but we will con-
centrate on the processes that occur on the surface. An adsorbed molecule may
dissociate on the surface or react with another molecule on the surface. If a chemi-
cal reaction occurs on the surface, the products may desorb into the gas phase. The
use of solid surfaces as catalysts in chemical technology is of tremendous practical
importance.

In the preceding chapter, we have seen that a crystal can have a number of faces
with different Miller indices. Faces with low Miller indices and high densities of
atoms or molecules are more likely to be observed because in general they are
more stable than surfaces with high Miller indices. The various faces of a crystal

Surface Dynamics
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Figure 24.1

have different properties because of their different structures. In Section 24.9, we
will see that the surface of even a pure atomic solid can be more complicated than
the flat surfaces illustrated in Chapter 23, where the positions of surface atoms are
simple extensions of the bulk structure. Even simple surfaces may have of
the types shown in Fig. 24.1. These defects have different adsorptive and catalytic
properties. As a simplification we will largely ignore defects.

When a molecule approaches a surface, it encounters a net attractive potential
that is similar to the potential between two molecules (Section 11.9) and arises for
the same reasons. However, a gas molecule near a surface is attracted by many
closely spaced surface atoms. The adsorption of a molecule on a solid surface is
always an exothermic process. If we represent the gas molecule, the adsorbate, by
A and the adsorption site on the surface by S, the process of can be
represented as a chemical reaction:

A S AS 0 (24 1)

In Section 24.7 we will see that this process may involve more than one step,
but here we simply want to establish the definition of the enthalpy of adsorption

.
The surface of an atomic solid has about 10 atoms per square centimeter of

surface. If we assume that one molecule adsorbs on each atom of the solid surface,
then there are 10 sites on which molecules can adsorb. When one molecule is
adsorbed on each site, the surface is said to be covered with a monolayer. Kinetic
theory makes it possible to calculate the maximum rate at which surface sites can
be occupied by gas molecules. In Section 17.6 we saw that the of molecules
of an ideal gas through a hole is given by

(24 2)
(2 )

The same equation applies to collisions with a surface, and when SI units are used,
is the number of molecules striking the surface per square meter per second. If

every molecule striking a clean surface is adsorbed and exactly one gas molecule
is adsorbed per surface site, this equation provides the means for calculating the
time for a surface to become covered with a monolayer when it is exposed to a
gas with molar mass at a specific temperature and pressure.
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How many molecules of oxygen strike 1 cm of surface in 1 s when the pressure is 10 torr
and the temperature is 298 K? [1 torr atm ( atm)(1.013 25 10 Pa atm )
133.3 Pa.]

Using equation 24.2,

(133 3 10 Pa)(6 022 10 mol )
[2 (32 10 kg mol )(8 3145 J K mol )(298 K)]

(3.60 10 m s )(0.01 m cm )

3.60 10 cm s

For a surface with 10 sites per cm , the exposure of a clean surface to oxygen at 10
torr for 1 s is sufficient to form 36% of a monolayer, if every molecule sticks. To express
the exposure of a surface to a gas that is adsorbed, surface scientists have developed the
unit 10 torr s, which is called the Thus, exposure of the surface to 1 langmuir
of oxygen results in 36% of a monolayer of adsorbed O at 298 K.
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By use of calculations of this type it is readily shown that to keep a surface
clean even for a few minutes, it is necessary to evacuate the chamber contain-
ing the sample surface to a pressure less than 10 torr. Thus, surfaces that we
encounter daily are always covered with adsorbed molecules. To study surfaces,
special vacuum chambers are used; the term is used to refer to
pressures less than 5 10 torr. By directing a molecular beam (Section 19.5)
on crystallographically distinct surfaces, it is possible to determine the rate of fill-
ing surface sites as a function of beam energy and angle.

It is convenient to distinguish between and
The forces causing physical adsorption are of the same type as those that

cause the condensation of a gas to form a liquid and are generally referred to as
van der Waals forces. The heat evolved in a physisorption process is of the order
of magnitude of the heat evolved in the process of condensing the gas, and the
amount adsorbed may correspond to several monolayers at a high pressure. The
extent of physisorption is smaller at higher temperatures.

Chemisorption involves the formation of chemical bonds. However, it is usu-
ally not possible to make a sharp distinction between these two kinds of adsorp-
tion, except to say that the enthalpy change in chemisorption is much larger than
for physical adsorption, lying in the range 40 to 200 kJ mol .

Physical adsorption and chemisorption may often be distinguished by the
rates at which these processes occur. Equilibrium in physical adsorption is gen-
erally achieved rapidly and is readily reversible. Physical adsorption is reversed
by lowering the pressure of the gas or raising the temperature of the surface.
Chemisorption, on the other hand, may not occur at an appreciable rate at low
temperatures if the chemisorption reaction has an activation energy (Section
18.6). In this case, the rate of chemisorption increases rapidly as the temperature
is raised. In chemisorption the bonding may be so tight that the original species
may not desorb. For example, heating a graphite surface after adsorbing atomic
oxygen results in desorption of carbon monoxide.

In the following section, we consider a very simple model for adsorption pre-
sented by Langmuir.
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Figure 24.2

The simplest equation for adsorption under equilibrium conditions was derived
by Langmuir using kinetic theory. He considered a surface with a specific number
of binding sites that are identical and can each adsorb one molecule. Thus, the
uptake is limited to a If a uniform surface has equivalent sites and

are occupied, the is defined by / . Langmuir also
assumed that binding at a site has no influence on the properties of neighboring
sites; this means that the enthalpy of adsorption is independent of coverage.

To derive the expression for the Langmuir adsorption isotherm, we will set
the rate of adsorption equal to the rate of desorption; in other words, the equilib-
rium is assumed to be dynamic. The rate of adsorption is taken to be equal to the
product of the rate of collisions of molecules of molar mass with the surface,
the fraction of the sites that are not covered (1 ), the ,
and the fraction exp( / ) of the molecules with the

. As the molecule approaches the surface it usually encounters a
potential barrier with a height that has to be overcome before the molecule
can be adsorbed. The sticking coefficient is the fraction of the molecules with
energy in excess of the activation energy that actually stick. Thus,

rate of adsorption (1 ) exp (24 3)
(2 )

This equation for the rate of adsorption of molecules on a surface is based on
the simple view of the potential for the interaction between a molecule and the
surface that is shown in Fig. 24.2; more details are given in Section 24.7.

For an adsorbed molecule to be desorbed, it has to overcome a
, as shown in Fig. 24.2. The rate of desorption is taken to be equal to the

product of the specific rate constant for desorption , the fraction of the sites
that are occupied, and the fraction of the molecules with the activation energy

for desorption. Thus,

rate of desorption exp (24 4)

At equilibrium, the rate of adsorption is equal to the rate of desorption, so the
pressure and surface coverage are related by

(2 )
exp (24 5)

(1 )

where is the ( ). The enthalpy of adsorp-
tion is negative, so . The Langmuir adsorption isotherm can be written
as

or (24 6)
(1 ) 1

where the constant is given by

exp( / )
(24 7)

(2 )
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Use the Langmuir method to derive expressions for the fractions and of a surface
covered by adsorbed molecules A and B, assuming that the molecules compete for the
same sites.

The Langmuir equation for pure A can be written

(1 ) (a)

where the Langmuir constant is written as the ratio of a rate constant for adsorption
and rate constant for desorption: / . Similarly, for pure B,

(1 ) (b)

When gases A and B are both present, these equations become

(1 ) (c)

(1 ) (d)
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Figure 24.3

The enthalpy of adsorption introduced in equation 24.1 and appearing in the
Langmuir adsorption isotherm (equation 24.5) can be determined from measure-
ments of equilibrium pressures at two or more temperatures and at the same
surface coverage . Adsorption isotherms following the Langmuir equation are
shown for two temperatures in Fig. 24.3. If we write equation 24.5 for the equilib-
rium pressures at and , and ignore the dependence in comparison with
the exponential dependence involving , we can readily derive

( )( )
ln (24 8)

Note that this is very nearly the Clausius–Clapeyron equation (Section 6.3), but
the enthalpy of adsorption has the opposite sign from the enthalpy of vaporiza-
tion; applies to the process liquid vapor, while applies to the
process A S AS (equation 24.1).

y

y



Dissociati e adsorption

Comment:

The plot of adsorption ersus pressure of a gas that does not dissociate on the
surface has the same shape as a plot of equilibrium extent of reaction for a
reaction A g B g C g ersus the partial pressure of B or as a plot of
binding of oxygen by myoglobin ersus the partial pressure of molecular oxygen
(Fig. 8.7). Thus the underlying phenomena are ery much the same, and standard
thermodynamic properties can be calculated in each case.
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The ratio of these equations is

(e)

Solving this equation for and substituting in equation c yields

( / )
(f)

1 ( / ) ( / ) 1

Similarly, for B,

( / )
(g)

1 ( / ) ( / ) 1

If a molecule dissociates on being adsorbed, the process is referred to as dissociative ad-
sorption. Derive the Langmuir adsorption isotherm for dissociative adsorption.

When dissociation occurs on the surface, two sites are required, so the probabil-
ity of sticking is proportional to the pressure and to the availability of adjacent sites,

(1 ) . The probability of desorption is proportional to the probability that adjacent
sites are occupied, , since recombination has to take place on the surface prior to de-
sorption. At equilibrium,

(1 )

1

1

where ( / ) .
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24.3 Use of Adsorption Measurements to Determine Surface Area

24.3 USE OF ADSORPTION MEASUREMENTS
TO DETERMINE SURFACE AREA

v

v

v
v

v

v v
�

( ) ( ) ( )

The adsorption of a gas by a solid can be determined by admitting known quanti-
ties of a gas into a chamber and measuring the volume and pressure of the gas at
equilibrium. If a monolayer is formed, the fractional surface coverage is equal
to the ratio of the volume of the gas adsorbed to the volume required to form
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Shapes of adsorption isotherms obtained when multilayer adsorption of a gas
occurs. These curves were calculated using the BET theory (equation 24.10) with various
values of the constant . (See Computer Problem 24.A.)
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Figure 24.4

a monolayer, that is, / , where the volumes are at the same temperature
and pressure. Thus, equation 24.6 can be written

(24 9)
1 1/

If the experimental data follow the Langmuir equation, the parameters and
can be determined from the slope and intercept of the plot of 1/ versus 1/ ,

which is linear if equation 24.9 is followed. In general, however, there are devia-
tions from the Langmuir equation, especially at higher pressures. If the gas being
adsorbed is below its critical point, it is customary to plot the amount adsorbed
per gram of adsorbent versus / , where is the vapor pressure of the bulk liq-
uid adsorbate at the temperature of the experiment. Figure 24.4 shows the shapes
of plots of the ratio of the volume of gas adsorbed (under standard conditions)
to the volume required to form a monolayer versus the pressure, specifically

/ . These curves have been calculated using the BET theory, which has an ad-
justable constant , but, before discussing this theory, we need to reconsider the
assumptions of the Langmuir theory.

The derivation of the Langmuir adsorption isotherm involves five implicit as-
sumptions: (1) the gas is ideal, (2) the adsorbed gas is confined to a monolayer,
(3) the of each binding site is the same, (4) there is no lateral interaction
between adsorbate molecules, and (5) the adsorbed gas molecules stay at the po-
sition where they first collide with the surface. Although the first assumption is
good at low pressure, it is not valid if the pressure approaches the critical pres-
sure. The second assumption fails when there is adsorption on top of the mono-
layer. The third assumption is poor when is different for different kinds of
binding sites. The nonuniversality of the fourth assumption was first shown exper-
imentally when it was found that, in certain cases, the enthalpy of adsorption may
increase with the amount adsorbed. This effect is caused by lateral attractions
between adsorbed molecules. The fifth assumption is incorrect because there is
much evidence that certain adsorbed molecules can be mobile. In spite of these
problems, the Langmuir adsorption isotherm is very useful for many systems at
low pressures where only monolayer adsorption is involved.
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We now return to the increase in physical adsorption beyond that required
to form a monolayer, which is observed at high pressures. This is referred to as

and Brunauer, Emmett, and Teller (BET) developed a
theory for it. They assumed that the surface possesses uniform, localized sites
and that adsorption on one site does not affect adsorption on neighboring sites,
just as in the Langmuir theory. It is further assumed that molecules can be ad-
sorbed in second, third, . . . , and th layers, with the surface area available for
the th layer equal to the coverage of the ( 1)th layer. The energy of adsorp-
tion of the first layer is , and the energy of adsorption in succeeding layers is
assumed to be , the energy of liquefaction of the gas. By use of these assump-
tions it is possible to derive the following equation for the ratio of the volume

of gas adsorbed (under standard conditions) to the volume required to form a
monolayer:

(24 10)
(1 )[1 ( 1) ]

where is the vapor pressure of the bulk liquid. This equation can be written in
the form

1 ( 1)
(24 11)

(1 )

and so it is possible to determine the parameters and from a plot of / (1 )
versus . The value of , the volume of gas required to form a monolayer, is of
considerable interest because it makes it possible to calculate the surface area
of a porous solid. The surface area occupied by a single molecule of adsorbate
on the surface can be estimated from the density of the liquefied adsorbate. For
example, the area occupied by a nitrogen molecule at 195 C is estimated to
be 16 2 10 m on the assumption that the molecules are spherical and that
they are close-packed in the liquid. Thus, from the value of obtained from the
BET theory, if multilayer adsorption is involved, the surface area of the adsorbent
can be calculated. The surface areas of porous solids can be as large as several
hundred square meters per gram of solid.

Many advances in surface science have been made using methods that are surface
sensitive; that is, they are sensitive only to the outermost atomic layers of the
bulk solid. These methods, which are discussed in this section and the next, largely
employ Electrons with energies in the range of 10 to 250 eV
are sensitive to the surface because they have a low mean free path in solids. They
penetrate the surface about 0.5 to 2 nm, which is about one to four atomic layers.
Figure 24.5 shows the mean free path of an electron in a solid as a function of its
energy. The mean free path for electrons of a given energy is nearly independent of
the atomic weight of the element making up the solid, so this curve is often called
the “universal curve.” The curve also shows us that in the emission of electrons
with energies in the range 10 to 250 eV from solids, the electrons must originate



0.19 nm

0.115 nm

0.132 nm

Pd Pd

0

C

Electron gun

Screen

Crystal manipulator

Grids

Insulator

A
B
C

Sample

Holder

View port θ

e

Electrical feed-through

d
d

.
.

848

Chem. Re .

Pure Appl. Chem.

�

�

1/2

Schematic diagram of an LEED apparatus. [From D. G. Castner and G. A.
Somorjai, 233 (1979). Copyright 1979 American Chemical Society.]

Structural model for
CO adsorbed on palladium (100).
The shaded circles in the top view
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from the top few atomic layers. Therefore, the electron spectroscopies discussed
in the next section, which depend on emission from the solid, also provide infor-
mation on the surface layer, rather than bulk properties.

When a surface is bombarded with electrons, the electrons may be scattered
elastically (that is, no energy is lost) or inelastically. Electrons scattered elasti-
cally will be diffracted if their de Broglie wavelength is small enough.

(LEED) therefore provides a means for studying the atomic
geometry of a surface. In an LEED apparatus electrons are accelerated in an
electron gun and strike the surface normally, as shown in Fig. 24.6. The surface
backscatters a portion of the electrons. The grids in front of the screen are used
to remove the inelastically backscattered electrons, while the elastically backscat-
tered electrons are postaccelerated onto the phosphorescent screen for viewing
the diffraction pattern. The presence of sharp diffraction spots indicates that the
surface is ordered on an atomic scale.

It is evident from the Bragg equation (Section 23.3) that for there to be dif-
fraction, the de Broglie wavelength of the electrons must be less than 2 , where

is the distance between atomic planes. The of electrons
accelerated through a potential difference is given by

1 504 V
/nm (24 12)

As in X-ray diffraction from crystals, the angles at which X-rays are scattered give
information about the symmetry and type of surface unit cell, but intensity mea-
surements are required to obtain atomic coordinates. For some crystals the surface
structure is quite different from that of the bulk crystal (Section 24.9). LEED can
also be used to determine the structure and order of an adsorbed layer. For ex-
ample, the structural model for CO adsorbed on palladium (100), as determined
by LEED, is shown in Fig. 24.7. The CO is bound at an interstitial site with the
carbon atom down; this is referred to as a bridge-bonded site.
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Derive equation 24.12 and calculate the minimum accelerating potential required to obtain
electron diffraction from a crystal with an interplanar spacing of 0.1227 nm. The de Broglie
wavelength must therefore be less than 0.2454 nm.

From Example 9.1, the momentum of an electron with energy is given by

(2 )

or

2

Since the energy of an electron that has been accelerated through a potential difference
is , the de Broglie wavelength is given by

2

1 504 10 V m

which is equation 24.12. For the crystal considered, the minimum accelerating potential is
therefore

1 504 10 V m
24 97 V

(0 2454 10 m)
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When photons are used to eject electrons, the technique is called
(PES). When these photons are in the ultraviolet region, the

abbreviation UPS is used, and when the photons are in the X-ray region, the
abbreviation XPS is used. We have already discussed the use of ultraviolet pho-
toelectron spectroscopy (UPS) of gas molecules in Section 14.10; this is the most
direct method for determining the ionization potential of a molecule, and it
provides additional information about molecular electronic structure. The kinetic
energy of the ejected electron is given by

(24 13)

where is the the energy required to remove an elec-
tron from the molecule in its ground vibrational and rotational state to produce a
molecular ion in its ground vibrational and rotational state. Since the ionization
process may leave the molecular ion in an excited vibrational or rotational state,
the vibrational energy and rotational energy above the ground state must
also be subtracted from the energy of the incident photon.

Photons with energies in the ultraviolet range eject electrons from the valence
orbitals of an adsorbed molecule or the valence electron bands of a solid, as shown
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( ) In ultraviolet photoelectron spectroscopy (UPS), the energies of electrons
ejected from the valence band are determined. ( ) In X-ray photoelectron spectroscopy
(XPS), the energies of electrons ejected from core levels are determined.

X-ray photoelectron spectroscopy

Auger electron spectroscopy
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Figure 24.8

in Fig. 24.8 . Photons at these energies do not provide enough energy to eject
electrons from atom cores.

UPS experiments are usually carried out with the He I line (21.2 eV) or the He
II line (40.8 eV). Ultraviolet photon spectroscopy of a molecule physisorbed on a
solid is a superposition of the ultraviolet photon spectrum of the valence band of
the solid and the gas-phase molecular orbitals of the adsorbed molecule. Since the
energy spread of the valence band of a solid is about 10 eV, the electrons ejected
from the solid have energies spread over a similar range. The ultraviolet photon
spectrum of the physisorbed molecule is quite similar to that of the corresponding
gas molecule because the interaction with the surface is weak. Chemisorption,
however, affects valence orbitals of the molecule and the valence band of the solid,
and so the spectrum is complicated and reflects the type of bonding between the
molecule and the surface. Important structural and chemical bonding information
about chemisorbed species can be obtained from UPS.

In (XPS) core electrons are ejected from
the metal and from adsorbed molecules, as illustrated in Fig. 24.8 . The usual
sources of X-rays are Mg (1253.6 eV) or Al (1486.6 eV). Since the ener-
gies of atomic core levels are characteristic of each element, XPS can be used to
obtain an elemental analysis of the surface. This type of spectroscopy is referred
to as ESCA (electron spectroscopy for chemical analysis) because the relative
amounts of elements in a sample can be determined. The ionization potential of
an atomic core level depends to some extent on the chemical environment of the
atom, so that information can also be obtained about the type of bonding between
the adsorbate and the surface.

When a surface is irradiated with soft X-rays, the Auger effect may occur,
and the energies of the secondary electrons can be determined. This effect, which
can also be produced by bombarding with high-energy electrons, is the basis of
another type of surface spectroscopy referred to as
(AES). In AES, an electron is ejected by an X-ray photon, as in XPS, but the
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Emission of an Auger
electron with an energy equal to the
difference in energy levels L and
L . ( ) An electron in the K level
is ejected by an X-ray photon. ( )
An electron falls from the L level
to the K level, and as a consequence,
an electron is ejected from the L
level.

Schematic illustration of ( ) the scanning tunneling and ( ) the atomic force
microscope. A localized probe is used to scan the surface and collect data on the tunnel-
ing current in the STM and the deflection of a cantilever-type spring in the AFM. [From
J. Frommer, 1298 (1992), with permission.]
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emission of the secondary electrons is analyzed, rather than the primary electrons.
When a core electron is ejected by absorption of an X-ray photon (or high-energy
electron), as shown in Fig. 24.9 , an electron from a higher energy level may drop
into the core vacancy. The energy liberated in this way can lead to the emission
of a second, or Auger, electron, as illustrated in Fig. 24.9 . The energies of the
Auger electrons are characteristic of the core levels, so information about the
atoms present and their bonding is obtained. Note that the energy of the Auger
electron is independent of the energy of the exciting radiation. Auger electron
spectroscopy is often used to measure the coverage of adsorbed species and to
check the cleanliness of a surface. AES can be studied using the same electron
optics and collector as used in an LEED experiment.

The 1986 Nobel Prize in physics was given in part to G. Binnig and H. Rohrer for
their development of the scanning tunneling microscope (STM), which makes it
possible to “see” a single molecule adsorbed on a surface. A very sharp metal tip
is moved over the surface of an electrical conductor at a height of about 500 pm,
as shown in Fig. 24.10 . The tip is so close to the surface that there is an overlap of
the wavefunctions of the atoms of the tip and those of the surface. If a potential
difference is applied between the tip and the surface, quantum mechanical tun-
neling (Section 9.15) permits a current to flow through the gap. The potential of
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2AFM image and crystal packing of tetracene. The scanned area is 3 3 nm
of the cleavage plane. The unit cell parameters measured on the surface of the crystal are
marked on the image to show that they correspond to those of the bulk. [From J. Frommer,

1298 (1992), with permission.]
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the tip with respect to the surface is held constant with a feedback system that
regulates piezoelectric tubes to control the vertical motion of the tip so that the
tunneling current is kept constant. The image of the topography of the surface that
is obtained in this way can reveal single atoms because of the extremely narrow
stream of tunneling electrons, which is spatially confined between a few atoms on
the tip and a few atoms in the sample.

The atomic force microscope (AFM) measures interactions between the
scanned tip and the surface. In contrast with STM, the AFM does not require an
electrically conductive surface. The interactions between the tip and the surface
may be van der Waals, electrostatic, or magnetic. The AFM image is a map of
the forces detected over each point on the surface. Forces in the range 10 to
10 N are measured with a probing tip attached to a cantilever-type spring, as
illustrated in Fig. 24.10 . The AFM image of a freshly cleaved surface of tetracene
is shown in Fig. 24.11. Tetracene is made up of four benzene rings fused in a line.
The AFM image makes it possible to distinguish between the two translationally
nonequivalent molecules that make up the tetracene unit cell, which is shown
in the figure. The AFM probe “sees” different surface orientations for the two
tetracene molecules; their broad, flat systems are not parallel to one another,
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Schematic diagrams
of an adsorbate–substrate com-
plex for three different ground-
state configurations: ( ) dissocia-
tive chemisorption, ( ) molecular
physisorption, and ( ) molecular
chemisorption. [From A. Zangwill,

Cambridge, UK:
Cambridge University Press, 1988.]

dissociative chemisorption.

precursor state.

24.8 Heterogeneous Catalysis
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24.8 HETEROGENEOUS CATALYSIS

Figure 24.12

and the molecules are tilted in such a way that their short axes present two differ-
ent angles to the scanned cleavage plane.

According to the Langmuir theory, a molecule is either bound to the surface or
not. However, it is found experimentally that a molecule may initially be bound
in a precursor state, which is much like a physisorbed state, and then later makes
a transition to a chemisorbed state. Figure 24.12 gives schematic diagrams of the
potential energy as a function of distance perpendicular to the surface for three
cases. In Fig. 24.12 an AB molecule is physisorbed on the surface but rapidly
passes over the low potential barrier to dissociate to form a state in which atoms
are chemisorbed; this is called If atoms existed in the
gas phase, rather than AB molecules, the potential energy of the system would
be given by the dot–dash line. The continuation of the potential energy curve for
physisorbed AB molecules is shown as a dashed line. In Fig. 24.12 the poten-
tial barrier between physisorbed AB molecules and chemisorbed atoms is much
higher, so that only physisorption occurs at low temperatures. At higher tem-
peratures, AB molecules pass over the barrier, spontaneously dissociate, and the
atoms are chemisorbed. In this case, the physisorbed state is a In
Fig. 24.12 a very low potential barrier separates the physisorbed state from a
state of molecular chemisorption.

Since encounters of gaseous species with a solid surface can be considered to
be a chemical reaction, the concepts developed earlier for the dynamics of chemi-
cal reactions in the gas phase can be used. Figure 24.13, which shows potentials for
two types of surface reaction, is useful for thinking about the dynamics of surface
reactions. If the incident particle has a very high kinetic energy, it will probably
scatter back into the gas phase, as shown in Fig. 24.13 . If the incident particle
has less energy, it can lose some energy to the surface and become trapped in an
adsorption well, as also shown in Fig. 24.13 . If there is a barrier to adsorption, in-
cident particles with low energy cannot be bound, but particles with high energies
can be, as shown in Fig. 24.13 .

Reactions that occur in a single phase are referred to as homogeneous reactions,
and reactions that occur on a surface are referred to as heterogeneous reactions.
The chemistry of a reaction on a surface is quite different from the chemistry in
a gas or liquid phase, and many reactions can be carried out at lower temper-
atures in this way. Solid-state catalysts are used in many large-scale processes in
the chemical industry. The production of NH from H and N is catalyzed by iron
promoted with Al O and K. The oxidation of NH to NO in the production of
HNO is catalyzed by Pt-Rh. Enormous quantities of solid catalysts are used in the
petroleum industry for “cracking,” which is necessary to produce gasoline from
petroleum, and for “reforming,” which causes the rearrangement of the molecular
structures and raises the octane rating of gasoline. To facilitate the regeneration
of these catalysts, they may be circulated as fine particles in the gas stream.
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Schematic one-
dimensional view of the approach of
a gas particle to a solid surface: ( )
simple adsorption well and ( ) well
with a barrier to adsorption. [From
J. C. Tully, 461 (1981).]

Relative specific activities for various metals as catalysts for the reaction
H C H 2CH . [From J. H. Sinfelt, 147 (1974).]v
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Figure 24.13
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Figure 24.14
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The development of catalysts is especially important for slow exothermic
reactions. A reaction of this type is N 3H 2NH , which is the basis for
the Haber process for the manufacture of ammonia. Although the equilibrium
constant may be favorable at room temperature, the rate may be so low that the
reaction cannot be used practically. When the temperature is raised, the rate is
increased, but at high temperatures the equilibrium constant may be unfavorable,
as is readily surmised from Le Châtelier’s principle.

The catalyst that is actually used in producing ammonia is a porous structure
consisting of small Fe particles (doped with partially reduced adsorbed K O) in-
terspersed with Al O . The purpose of the K O is to further enhance the catalytic
activity of the Fe particles.

Substances that enhance the activity of catalysts are called and
substances that inhibit catalytic activity are called Since only a fraction
of the surface of the catalyst may be involved, it is easy to see how relatively small
amounts of promoters and poisons may be effective. In the manufacture of sul-
furic acid, the presence of a very minute amount of arsenic completely destroys
the catalytic activity of the platinum catalyst by forming platinum arsenide at the
surface.

The effectiveness of various metals as catalysts for a particular reaction often
varies in a regular way with the position of the metal in the periodic table. For
example, Fig. 24.14 shows the relative specific activities of rhenium, osmium, irid-
ium, and platinum for the reaction H C H 2CH . These metals have atomic
numbers 75, 76, 77, and 78. There are several possible explanations as to why cat-
alytic activity might go through a maximum in this way. For example, significantly
exothermic adsorption may be required for a significant amount of adsorption.
On the other hand, if the metal binds the adsorbate too strongly, it may not be an
effective catalyst.

The catalysis of a reaction by a surface involves several steps: (1) diffusion
of reactants to the surface; (2) adsorption, usually chemisorption, on the surface;
(3) reaction on the surface; (4) desorption of products; and (5) diffusion of prod-
ucts away from the surface. If the third step is the slowest, the adsorption of var-
ious reactants and products will be in equilibrium. When this is the situation the
Langmuir equation (equation 24.6) is often useful in deriving the rate equation
for the surface-catalyzed reaction, as shown in the following paragraph.

First, let us consider a reaction with a single reactant and a single product:

A P (24 14)y
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If the reaction on the surface is rate determining, the rate of the surface-catalyzed
reaction is expected to be proportional to the surface area of the catalyst and
the fraction of the surface covered by reactant:

d
(24 15)

d

where is the number of moles of reactant in the system. If both reactant and
product are adsorbed on the surface, the fraction of the surface occupied by A is
given by

(24 16)
1

according to the Langmuir adsorption isotherm, as shown in Example 24.2. In this
case the rate of the heterogeneous reaction is given by

d
(24 17)

d 1

According to this rate equation the reaction will slow down as the product P ac-
cumulates because it competes with reactant A for the catalytic sites. When initial
rates are studied for a reaction following this rate law, it is found that the rate in-
creases linearly with at low pressures and approaches a limiting value of
as is increased.

Second, let us consider a reaction with two reactants and two products that
are adsorbed on the same type of site:

A B P Q (24 18)

The reaction rate is assumed to be proportional to the surface area and to the
product of the fractions of the sites occupied by the two reactants:

d
(24 19)

d

If all of the reactants and products are adsorbed, then

(24 20)
1

(24 21)
1

so that the reaction rate is

d
(24 22)

d (1 )

According to this rate equation, if all partial pressures except are held constant
and is increased, the rate will pass through a maximum.

y
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Third, let us consider a reaction with two reactants that are adsorbed on dif-
ferent types of sites. Reactant A may be adsorbed on one type of site and reactant
B may be adsorbed on another type of site. In the case of a metal oxide catalyst,
one reactant might interact with the metal ions and the other reactant might inter-
act with the oxide ions. If the reaction rate is proportional to the surface area and
the product of the fraction of sites of type 1 occupied by A and the fraction

of sites of type 2 occupied by B, then

d
d

(24 23)
(1 )(1 )

where the possible binding of product has been omitted. In contrast with rate
equation 24.22, the rate in this case does not pass through a maximum when
is increased at constant .

Many additional types of rate equations for heterogeneous reactions may be
derived. The possibility that a reactant dissociates on the surface may also have
to be included. It is important to have the right rate equation in designing an
industrial process.

When a crystalline solid is cleaved to expose a fresh surface, some “dangling”
bonds are formed, and this may lead to a reconstruction of the surface. For ex-
ample, when a diamond is cleaved, one hybrid orbital of each carbon atom dan-
gles into the vacuum. Each such orbital is half-occupied. These dangling bonds
cause an adjustment of the positions of the atoms in the surface in which some
atoms may rise above the surface plane and other atoms sink below the surface
plane. Surface atoms may also be displaced horizontally. As the positions of sur-
face atoms change to the geometrical configuration with the lowest Gibbs energy,
energy gained by local bond formation is balanced by the work of elastic distor-
tion. Furthermore, this type of surface reconstruction may also occur when atoms
or molecules are adsorbed on the surface.

Arrangements of surface atoms can be described by the two-dimensional ana-
logue of equation 23.2, namely,

(24 24)

where and are integers. The 14 Bravais lattices of three-dimensional struc-
tures are replaced by the five types of two-dimensional nets of equivalent lattice
points that are shown in Fig. 24.15. The nomenclature for surface structures in-
volves a comparison of the basis vectors ( and ) of the surface lattice with the
corresponding substrate lattice vectors ( and ). The substrate lattice is defined
as that plane parallel to the surface below which the three-dimensional (bulk) pe-
riodicity is found. The relation between the surface lattice and the substrate lattice
is expressed by the ratios of the lengths of the basis vectors / and /
and the angle of rotation between the two lattices. The nomenclature for surface
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The five types of two-dimensional Bravais lattices: ( ) square,
90 ; ( ) primitive rectangular, 90 ; ( ) centered rectangular,
90 ; ( ) hexagonal, 60 ; ( ) oblique, 90 . [From G. Ertl and
J. Küppers, 2nd ed. Weinheim: VCH, Verlag
Chemie, 1985.]

Examples for overlayer structures: ( ) 2 2; ( ) (2 2); ( ) 3 3 30 .
[From G. Ertl and J. Küppers, 2nd ed. Wein-
heim: VCH, Verlag Chemie, 1985.]
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Figure 24.15

Figure 24.16

lattices is illustrated in Fig. 24.16. The atoms in the surface lattice in Fig. 24.16
are twice as far apart as in the substrate structure in two dimensions; the angle of
rotation is omitted because it is zero. In the overlayer structure in Fig. 24.16 the
designation (2 2) indicates that the unit cell of the surface structure is centered.
In Fig. 24.16 the ratios are 3, and the surface lattice is rotated 30 with respect
to the substrate.

The surfaces of crystals do not necessarily resemble the surfaces that would
correspond to a simple termination of the bulk structure. For example, the 110 sur-
face of platinum is shown in Fig. 24.17 . This reconstructed surface (labeled 1 2)
has a missing row because it is a more stable structure than the simply terminated
bulk surface (labeled 1 1). However, when CO is bound by this reconstructed
surface, it becomes less stable than the 1 1 surface with CO adsorbed. As CO is
added to the surface, the 1 2 to 1 1 transformation takes place as soon as the
CO coverage exceeds about 0.2.
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( ) The 110 surface of Pt that would correspond to a simple termination of
the bulk structure (1 1). ( ) Actual 110 surface of Pt that is energetically more stable
(1 2). [Reprinted with permission from G. Ertl, 1750 (1991). Copy-
right 1991 American Association for the Advancement of Science.]
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254:

It is usually possible to make a clear distinction between physical adsorp-
tion ( 10 to 40 kJ mol ) and chemisorption ( 40 to

200 kJ mol ) because chemisorption has a significant activation energy
for desorption, in other words, a slower rate.

Langmuir derived an adsorption isotherm on the assumptions that (a) the
rate of adsorption is proportional to the flux of gas molecules, the fraction
of vacant sites, a sticking coefficient, and an exponential dependence on 1/
and (b) the rate of desorption is proportional to the fraction of occupied sites
and a different exponential dependence on 1/ .

The BET theory takes into account the possibility of multilayer adsorption
and makes it possible to determine the volume of gas required to form a
monolayer, so that the surface area of the adsorbant can be calculated.

Low-energy electron diffraction (LEED) is based on the use of accelerated
electrons with de Broglie wavelengths less than twice the interplanar spac-
ing in the crystal to obtain information about the symmetry and type of the
surface unit cell.

Photoelectron spectroscopy (PES), X-ray photoelectron spectroscopy (XPS),
and Auger electron spectroscopy (AES) provide information about the iden-
tity and bonding of surface atoms.

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM)
make it possible to “see” the structure of a surface.

The effectiveness of different metals as catalysts of a particular reaction often
depends in a regular way on the position of the metal in the periodic table
because significant exothermic adsorption may be required for a significant
amount of adsorption, but if the metal binds the adsorbate too strongly, it
may not be an effective catalyst.

When a crystalline solid is cleaved to expose a fresh surface, some “dangling”
bonds are formed, and this may lead to a reconstruction of the surface in
which surface atoms are displaced. Surface reconstruction may also occur
when atoms are adsorbed on the surface.
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Problems marked with an icon may be more conve- (reduced to 0 C and 1 bar) adsorbed per gram of active carbon
niently solved on a personal computer with a mathematical pro- at 0 C at a series of pressures:
gram.

/Pa 524 1731 3058 4534 7497
In an ultrahigh vacuum chamber ( 5 10 torr), /cm g 0.987 3.04 5.08 7.04 10.31

how many molecules strike 1 cm of surface in one second at 298
Plot the data according to the Langmuir isotherm, and deter-K if ( ) the gas is helium and ( ) the gas is mercury vapor?
mine the constants.A readily oxidized metal surface with 10 metal atoms

According to Problem 24.7, the Langmuir constant forper square centimeter is exposed to molecular oxygen at 10 Pa
the adsorption of molecular nitrogen on active carbon at 0 Cat 298 K. How long will it take to completely oxidize the surface
is 4 8 10 Pa . What pressures of molecular nitro-if the oxide formed is MO?
gen are required to cover 10%, 50%, and 90% of the surface at

In Problem 17.19, we found that at 1 bar and 298 K,
0 C?

1 074 10 molecules of molecular hydrogen strike a surface
According to Problem 17.43, the rate with which oxy-per square meter per second. When the 100 plane of metallic

gen molecules strike a surface at 1 bar and 25 C is 2 69copper is exposed to molecular hydrogen under these condi-
10 cm s . If the oxygen molecules are striking a platinumtions, what is the rate of collisions with atoms of copper? Copper
surface, what are the frequencies of collisions per atom on theforms face-centered cubic crystals with the length of the side of
(100), (110), and (111) planes? (See Problem 23.32.)the unit cell equal to 361 pm.

One gram of activated charcoal has a surface area ofFor the adsorption of nitrogen molecules on a certain
1000 m . If complete surface coverage is assumed, as a limitingsample of carbon, the pressure required to half-saturate the sur-
case, how much ammonia, at 25 C and 1 bar, could be adsorbedface at 298 K is 2 10 Pa. If the enthalpy of adsorption is
on the surface of 45 g of activated charcoal? The diameter of10 kJ mol and the sticking coefficient is unity, what is the
the NH molecule is 3 10 m, and it is assumed that therate constant of desorption ?
molecules just touch each other in a plane so that four adjacent

The pressures of nitrogen required for adsorption of spheres have their centers at the corners of a square.
1.0 cm g (25 C, 1.013 bar) of gas on graphitized carbon black

Calculate the surface area of a catalyst that adsorbs
are 24 Pa at 77.5 K and 290 Pa at 90.1 K. Calculate the enthalpy

10 cm of nitrogen (calculated at 1.013 bar and 0 C) per gram
of adsorption at this fraction of surface coverage.

in order to form a monolayer. The adsorption is measured at
A mixture of A and B is adsorbed on a solid for which the 195 C, and the effective area occupied by a nitrogen molecule

adsorption isotherm follows the Langmuir equation. If the mole on the surface is 16 2 10 m at this temperature.
fractions in the gas at equilibrium are and , what is the

The de Broglie wavelength of an electron that has been
equation for the adsorption isotherm in terms of total pressure?

accelerated through a potential difference of is given by
What is the expression for the mole fraction of A in the adsorbed
gas in terms of , , , and ?

2The following table gives the volume of nitrogen
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Derive this equation and verify that it is correct to write equa- Show that the SI units of the diffusion coefficient for sur-
tion 24.12. face diffusion are m s , the same as for three-dimensional dif-

fusion.In LEED experiments, acceleration voltages of 10 to
200 V are generally used. ( ) Calculate the energies of elec- The volume of nitrogen gas (measured at 1.013 bar
trons accelerated by these voltages in kJ mol . ( ) Calculate the and 0 C) required to form a complete monolayer on a sam-
wavelengths of electrons accelerated by these voltages in nm. ple silica gel is 129 cm g of gel. Calculate the surface area

per gram of the gel if each nitrogen molecule occupies 16 2What volume of oxygen, measured at 25 C and 1 bar, is
10 m .required to form an oxide film on 1 m of a metal with atoms

The diameter of the hydrogen molecule is about 0.27in a square array 0.1 nm apart? Assume that one oxygen atom
nm. If an adsorbent has a surface of 850 m cm , what vol-combines with each metal atom.
ume of H (measured at 25 C and 1 bar) could be adsorbed byThe following table gives data on the adsorption of ben-
100 mL of the adsorbent? It may be assumed that the adsorbedzene by graphitized carbon black (P-33) at two surface cover-
molecules just touch in a plane and are arranged so that fourages and two temperatures:
adjacent spheres have their centers at the corners of a square.

(cm g at 25 C, 1 bar) 0.2 0.4
/C (Pa)

0 13 27
35.0 80 170

According to the BET theory, plot / , where is the
Calculate the enthalpy of adsorption at each coverage. volume of gas required to form a monolayer, versus / , where
(S. Ross and J. P. Oliver, p. 238. New is the saturation vapor pressure of the gas. Show the effect
York: Wiley-Interscience, 1964.) of changing the constant from 0.10 to 200.

The adsorption of ammonia on charcoal is studied at 30
Suppose that at 298.15 K, the adsorption isotherm for aand 80 C. It is found that the pressure required to adsorb a cer-

gas on a solid is given bytain amount of NH per gram of charcoal is 14.1 kPa at 30 C
and 74.6 kPa at 80 C. Calculate the enthalpy of adsorption. /(1 )

Hydrogen is dissociatively adsorbed on a metal, and the
where is the fractional coverage of the surface, (298 15 K)pressure required to obtain half of the saturation coverage of
3 bar, and 20 kJ mol . Plot versus at 298.15 Kthe surface is 10 Pa. ( ) What pressure will be required to reach
and 350 K.0 75? ( ) What pressure would have been required if the

adsorption were not dissociative? Plot the fractional coverage of a surface for dissociative
A fresh metal surface with 10 atoms per square cen- adsorption with 1 and for Langmuir adsorption with 1.

timeter is prepared. This surface is exposed to oxygen at 10 Superimpose these plots so that the differences will be clearer.
Pa. If every oxygen molecule that strikes the surface reacts so

Plot the de Broglie wavelength in nanometers as a func-that there is one oxygen atom per metal atom in the surface,
tion of the accelerating potential difference in volts from 0 tohow long will it take for half of the surface to become oxidized
100 volts. Check that the result in Example 24.4 is confirmed.at 25 C?
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Quantities, Units, and Symbols in Physical
Chemistry.

Symbol Name Symbol
Physical for of for
Quantity Quantity Unit SI Unit Definition

l

m

t

I

�

a a

7

Note that symbols for quantities are always printed in italic type, and symbols for units are always printed in roman type.

I. Mills, T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu,
Oxford, UK: Blackwell Scientific, 1993.

Length meter m The meter is the length of the path traveled
by light in vacuum during a time interval of
1/299 792 458 of a second.

Mass kilogram kg The kilogram is equal to the mass of the
international prototype of the kilogram.

Time second s The second is the duration of 9 192 631 770
periods of the radiation corresponding to
the transition between the two hyperfine
levels of the ground state of the cesium-133
atom.

Electric current ampere A The ampere is that constant current which,
if maintained in two straight parallel
conductors of infinite length, of negligible
cross section, and placed 1 meter apart in
a vacuum, would produce between these
conductors a force equal to 2 10 newtons
per meter of length.

�

�

A

a

The measurement of any physical quantity consists of a comparison with a stan-
dard amount of that quantity, which is referred to as a unit. Thus, the statement
of a physical measurement consists of two parts: (1) a number that represents
the number of times the unit has to be used to give the physical quantity and
(2) the unit itself. The SI system of units is founded on the seven base units listed
in the following table. (SI stands for Système International d’Unités.) This partic-
ular system was defined and given official status by the 11th Conférence Générale
des Poids et Mesures in 1960.

Physical Quantities and Units
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Symbol Name Symbol
Physical for of for
Quantity Quantity Unit SI Unit Definition
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Thermodynamic kelvin K The kelvin is the fraction 1/273 16 of
temperature the thermodynamic temperature of

the triple point of water.
Amount of mole mol The mole is the amount of substance

substance of a system that contains as many
elementary entities as there are
atoms in 0.012 kilogram of carbon-12.
When the mole is used, the elementary
entities must be specified and may
be atoms, molecules, ions, electrons,
other particles, or specified groups of
such particles.

Luminous candela cd The candela is the luminous intensity,
intensity in a given direction, of a source that

emits monochromatic radiation of
frequency 540 10 hertz and has a
radiant intensity in that direction of

watt per steradian.

Force newton N kg m s
Work, energy, heat joule J N m ( kg m s )
Power, radiant flux watt W J s
Pressure pascal Pa N m
Electric charge coulomb C A s
Electric potential volt V kg m s A ( J A s J C )
Electric resistance ohm kg m s A ( V A )
Electric capacitance farad F A s V ( m kg s A )
Frequency hertz Hz s (cycles per second)
Magnetic flux density tesla T kg s A ( N A m )

�

�
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In addition, there are two supplementary units: For plane angle, the supple-
mentary SI unit is the radian, with the symbol rad; for solid angle, the supple-
mentary SI unit is the steradian, with the symbol sr. In 1980 the International
Committee of Weights and Measures decided to interpret the class of supplemen-
tal units as dimensionless derived units. Although the coherent unit for both quan-
tities is the number 1, it is convenient to use the special names radian and steradian
instead of the number 1 in many practical cases.

The value of a physical quantity is equal to the product of a numerical value
and a unit. Physical quantity numerical value unit.

All quantities may be expressed in SI units or in terms of derived units ob-
tained algebraically by multiplication and division. Some derived units have their
own special symbols. For example, the joule, which is the unit of work in the SI,
is defined in terms of base units by kg m s and is represented by the special
symbol J. The principal derived units used in physical chemistry are given in the
following table.
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Physical Quantity Name of Unit Symbol Equi alent in SI Units
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Length angstrom Å 10 m (10 nm)
Energy electron volt eV 1 602 177 33 10 J

wave number cm 1 986 447 10 J
calorie (thermochemical) cal 4.184 J
erg 10 J

Force dyne 10 N
Pressure bar bar 10 N m

atmosphere atm 101.325 kN m
torr 133.322 N m

Electric charge esu 3 334 10 C
Dipole moment debye (10 esu cm) 3 334 10 C m
Magnetic flux gauss G 10 T

density

v
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It is important to be able to convert from other systems of units to SI units.
Some of the conversion factors are as follows:

In an equation relating physical quantities, the symbols represent numbers
and associated units. If units are chosen arbitrarily, additional numerical factors
may appear in equations relating different physical quantities. In practice it is
more convenient to choose a system of units so that the equations between physi-
cal quantities have exactly the same form as the corresponding equations between
pure numbers. A system of units that has this property is said to be coherent.
The SI system is coherent. This means that if all quantities in a calculation are
expressed in SI base units, the result will be expressed in SI base units without
including any numerical factors. It is, however, a good habit to check a calculation
to see that units cancel to yield the correct units for the final result.

A physical quantity may be converted from one unit to another by multiplying
by a conversion factor. To find a conversion factor, it is necessary to express one
unit in terms of another. For example, one calorie is equal to 4.184 joules; that
is, 1 cal 4 184 J. Dividing both sides of the equation by 1 cal yields 1 4 184
J cal . To convert the change in enthalpy of a reaction from calories to joules,
simply multiply the change in enthalpy in calories by 4.184 J cal ; note that this
is equivalent to multiplying by 1. A number of useful energy conversion factors
are listed inside the back cover, and some frequently used conversion factors are
given inside the front cover.

The following examples illustrate the procedure for calculating conversion
factors in more complicated cases. The first step is to write down the equation
relating the quantities of interest. The conversion factor for converting energies
in J mol to wave numbers in cm is based on the following equation:

˜

The ratio of wave numbers in cm to energy in J mol is given by

˜
( )

[(6 022 136 7 10 mol ) (6 626 075 5 10 J s)

(2 997 924 58 10 m s )]
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8 359 346 mol J m

(8 359 346 mol J m )(0 01 m cm )

8 359 346 10 (J mol ) cm

The conversion factor for converting energies in J mol to electron volts is
based on the following equation:

The potential in volts required to accelerate an electron to a given energy divided
by that energy is

( ) 1/ [(6 022 136 7 10 mol )(1 602 177 33 10 C)]

1 036 427 10 V (J mol )

since V J C .
Finally, since is an energy and the combination / is frequently found

in statistical mechanical calculations, it is sometimes convenient to express ener-
gies in terms of temperature by dividing a molecular energy by the Boltzmann
constant . This makes it possible to write exp( / ) as exp( / ), which is
convenient both for making calculations and in thinking about the magnitude of
an exponential term in an equation. If an energy is known in J mol , the con-
version to kelvins is based on the following equation:

The ratio of the temperature in kelvins to energy in J mol is given by

( )

[(6 022 136 7 10 mol )(1 380 658 10 J K )]

0 120 271 7 K (J mol )
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Quantity Symbol Value Units

g .
c

.
c
.

h .
h h .

e .
eh m .

eh m .
m e h c R .

h m e a .
e a E .

m .
m .
m .
m .
N .
m .

m m
F .
R .

.

.

.
R N k .

a,b

2

1

7 2
0

7 2

2 2 1 2
0 0

12 2 1 2

34

34

19

24 1
e B

27 1
p N

4 3 1
e 0

2 2 10
0 e 0

2 18
0 0 h

31
e

27
p

27
n

27
d

23 1
A

27
u

12
u

1

1 1

1 1

1 1

1 1

23 1
A

�

�

�

E. R. Cohen and B. N. Taylor, The 1986 CODATA Recommended Values of the Fundamental Phys-
ical Constants. :1795 (1988).

Digits in parentheses are the one-standard-deviation uncertainty in the last digits of the given value.

More recent values of physical constants are available on the Web site of the National Institute of
Standards and Technology (http://physics.nist.gov/constants).

Acceleration due to gravity 9 806 65 (exact) m s
Speed of light in vacuum 299 792 458 (exact) m s
Permeability of vacuum 4 10 (exact) N A

12 566 370 614 10 N A
Permittivity of vacuum 1/ (exact) C N m

8 854 187 817 10 C N m
Planck constant 6 626 075 5(40) 10 J s

/2 ¯ 1 054 572 66(63) 10 J s
Elementary charge 1 602 177 33(49) 10 C
Bohr magneton, ¯ /2 9 274 015 4(31) 10 J T
Nuclear magneton, ¯ /2 5 050 786 6(17) 10 J T
Rydberg constant, /8 10 973 731 534(13) m
Bohr radius, / 0 529 177 249(24) 10 m
Hartree energy, /4 4 359 748 2(26) 10 J
Electron mass 9 109 389 7(54) 10 kg
Proton mass 1 672 623 1(10) 10 kg
Neutron mass 1 674 928 6(10) 10 kg
Deuteron mass 3 343 586 0(20) 10 kg
Avogadro constant 6 022 136 7(36) 10 mol
Atomic mass constant, 1 660 540 2(10) 10 kg

(1/12) ( C)
Faraday constant 96 485 309(29) C mol
Gas constant 8 314 510(70) J K mol

0 083 145 1 L bar K mol
1 987 216 cal K mol
0 082 057 8 L atm K mol

Boltzmann constant, / 1 380 658(12) 10 J K
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H G S C

Substance

a

P

r

f f

1 1 1 1 1 1

2

3

2

2

2

2 2

�

( )
The values in Table C.2 are from The NBS Tables of Chemical Thermodynamic Properties (1982).

The standard state pressure is 1 bar (0.1 MPa). The compounds are in the order of elements used in
these tables. For the elements represented in Table C.2, this order is O, H, He, F, Cl, Br, I, S, N, P, C,
Pb, Al, Zn, Cd, Hg, Cu, Ag, Fe, Ti, Mg, Ca, Li, Na, K, Rb, and Cs. The standard state for a strong
electrolyte in aqueous solution is the ideal solution at unit mean molality (unit activity). The thermo-
dynamic properties of the completely dissociated electrolyte are designated by ai. The thermodynamic
properties of undissociated molecules in water are designated by ao. The properties of organic sub-
stances with more than two carbon atoms are from D. R. Stull, E. F. Westrum, and G. C. Sinke,

(Hoboken, NJ: Wiley, 1969). The NBS Tables of
Chemical Thermodynamic Properties have been published as a supplement to Volume II (1982) of the

and may be ordered from the American Chemical
Society, 1155 Sixteenth St., NW, Washington, DC 20036. The conversion to the new standard state
pressure is described by R. D. Freeman, 681 (1985).

( )

Table 20.2 Electric Mobilities at 25 C in Water at Infinite Dilution
Table 21.1 Intrinsic Viscosities of Macromolecules in Water at 25 C
Table 21.2 Parameters in [ ] for Polymer–Solvent Systems
Table 21.3 Physical Constants of Proteins at 20 C in Water
Table 22.1 Relative Permittivities of Gases and Liquids
Table 22.2 Dipole Moments and Polarizabilities of Gaseous Molecules
Table 22.3 Magnetic Susceptibilities and Molar Magnetic Susceptibilities of

Paramagnetic Substances at 293 K and 1 bar
Table 22.4 Magnetic Susceptibilities of Diamagnetic Substances at 293 K and 1 bar
Table 23.1 Crystallographic Point Groups
Table 23.2 Crystal Structure Data
Table 23.3 Covalent Radii for Atoms in pm
Table 23.4 Characteristics of Cubic Lattices

Chemical Thermodynamic Properties at 298.15 K and 1 bar

kJ mol kJ mol J K mol J K mol

O(g) 249.170 231.731 161.055 21.912
O (g) 0 0 205.138 29.355
O (g) 142.7 163.2 238.93 39.20
H(g) 217.965 203.247 114.713 20.784
H (g) 1536.202
H (ao) 0 0 0 0
H (g) 0 0 130.684 28.824
OH(g) 38.95 34.23 183.745 29.886
OH (ao) 229.994 157.244 10.75 148.5
H O(l) 285.830 237.129 69.91 75.291
H O(g) 241.818 228.572 188.825 33.577
H O (l) 187.78 120.35 109.6 89.1
He(g) 0 0 126.150 20.786
Ne(g) 0 0 146.328 20.786
Ar(g) 0 0 154.843 20.786
Kr(g) 0 0 164.082 20.786
Xe(g) 0 0 169.683 20.786
F(g) 78.99 61.91 158.754 22.744
F (ao) 332.63 278.79 13.8 106.7
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H G S C

Substance

Pf f

1 1 1 1 1 1

2

2

4

2

2

2

2

2

2

2
2

2

3
2

4

2

2 4

2 4

2

2

3

2

2 4

2 4

3

3

4

3

3

4

( )

( )

kJ mol kJ mol J K mol J K mol

F (g) 0 0 202.78 31.30
HF(g) 271.1 273.2 173.779 29.133
Cl(g) 121.679 105.680 165.198 21.840
Cl (ao) 167.159 131.228 56.5 136.4
Cl (g) 0 0 223.066 33.907
ClO (ao) 129.33 8.52 182.0
HCl(g) 92.307 95.299 186.908 29.12
HCl(ai) 167.159 131.228 56.5 136.4
HCl in 100H O 165.925
HCl in 200H O 166.272
Br(g) 111.884 82.396 175.022 20.786
Br (ao) 121.55 103.96 82.4 141.8
Br (l) 0 0 152.231 75.689
Br (g) 30.907 3.110 245.463 36.02
HBr(g) 36.40 53.45 198.695 29.142
I(g) 106.838 70.250 180.791 20.786
I (ao) 55.19 51.57 111.3 142.3
I (cr) 0 0 116.135 54.438
I (g) 62.438 19.317 260.69 36.90
HI(g) 26.48 1.70 206.594 29.158
S(rhombic) 0 0 31.80 22.64
S(monoclinic) 0.33 0.1 32.6 23.6
S(g) 278.805 238.250 167.821 23.673
S (g) 128.37 79.30 228.18 32.47
S (ao) 33.1 85.8 14.6
SO (g) 296.830 300.194 248.22 39.87
SO (g) 395.72 371.06 256.76 50.67
SO (ao) 909.27 744.53 2.01 293
HS (ai) 17.6 12.08 62.8
H S(g) 20.63 33.56 205.79 34.23
H SO (l) 813.989 690.003 156.904 138.91
H SO (ai) 909.27 744.53 20.1 293
N(g) 472.704 455.563 153.298 20.786
N (g) 0 0 191.61 29.125
NO(g) 90.25 86.57 210.761 29.844
NO (g) 33.18 51.31 240.06 37.20
NO (ao) 205.0 108.74 146.4 86.6
N O(g) 82.05 104.20 219.85 38.45
N O (l) 19.50 97.54 209.2 142.7
N O (g) 9.16 97.89 304.29 77.28
NH (g) 46.11 16.45 192.45 35.06
NH (ao) 80.29 26.50 111.3
NH (ao) 132.51 79.31 113.4 79.9
HNO (l) 174.10 80.71 155.60 109.87
HNO (ai) 207.36 111.25 146.4 86.6
NH OH(ao) 366.121 263.65 181.2
P(s, white) 0 0 41.09 23.840
P(g) 314.64 278.25 163.193 20.786
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H G S C

Substance

cis
trans

Pf f

1 1 1 1 1 1

2

4

3

5

2

2

2
2

3

2

3

4

2 2

2 4

2 6

3

2

2 3

3

3

3 2

2 4

3

3 2

3 2

2 5

2 5

3 2

3 6

3 6

3 8

4 8

4 8

4 8

4 10

4 10

6 6

6 12

6 14

7 8

8 8

8 10

8 18

( )

( )

kJ mol kJ mol J K mol J K mol

P (g) 144.3 103.7 218.129 32.05
P (g) 58.91 24.44 279.98 67.15
PCl (g) 287.0 267.8 311.78 71.84
PCl (g) 374.9 305.0 364.58 112.8
C(graphite) 0 0 5.74 8.527
C(diamond) 1.895 2.900 2.377 6.113
C(g) 716.682 671.257 158.096 20.838
C (g) 0 0.0330 144.960 29.196
CO(g) 110.525 137.168 197.674 29.142
CO (g) 393.509 394.359 213.74 37.11
CO (ao) 413.80 385.98 117.6
CO (ao) 677.14 527.81 56.9
CH(g) 595.8
CH (g) 392.0
CH (g) 138.9
CH (g) 74.81 50.72 186.264 35.309
C H (g) 226.73 209.20 200.94 43.93
C H (g) 52.26 68.15 219.56 43.56
C H (g) 84.68 32.82 229.60 52.63
HCO (ao) 691.99 586.77 91.2
HCHO(g) 117 113 218.77 35.40
HCO H(l) 424.72 361.35 128.95 99.04
H CO (ao) 699.65 623.08 187.4
CH OH(l) 238.66 166.27 126.8 81.6
CH OH(g) 200.66 161.96 239.81 43.89
CH CO (ao) 486.01 369.31 86.6 6.3
C H O(l, ethylene oxide) 77.82 11.76 153.85 87.95
CH CHO(l) 192.30 128.12 160.2
CH CO H(l) 484.5 389.9 159.8 124.3
CH CO H(ao) 485.76 396.46 178.7
C H OH(l) 277.69 174.78 160.7 111.46
C H OH(g) 235.10 168.49 282.70 65.44
(CH ) O(g) 184.05 112.59 266.38 64.39
C H (g, propene) 20.42 62.78 267.05 63.89
C H (g, cyclopropane) 53.30 104.45 237.55 55.94
C H (g, propane) 103.89 23.38 270.02 73.51
C H (g, 1-butene) 0.13 71.39 305.71 85.65
C H (g, 2-butene, ) 6.99 65.95 300.94 78.91
C H (g, 2-butene, ) 11.17 63.06 296.59 87.82
C H (g, butane) 126.15 17.03 310.23 97.45
C H (g, isobutane) 134.52 20.76 294.75 96.82
C H (g) 82.93 129.72 269.31 81.67
C H (g, cyclohexane) 123.14 31.91 298.35 106.27
C H (g, hexane) 167.19 0.07 388.51 143.09
C H (g, toluene) 50.00 122.10 320.77 103.64
C H (g, styrene) 147.22 213.89 345.21 122.09
C H (g, ethylbenzene) 29.79 130.70 360.56 128.41
C H (g, octane) 208.45 16.64 466.84 188.87
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Substance

Pf f

1 1 1 1 1 1

2

2

2

2

2

2 3

3

2

2

8
4 23

2

2 2

2

2

2

3

2 3

3 4

2

2
2

2

3

2

( )

( )

kJ mol kJ mol J K mol J K mol

Si(s) 0 0 18.83 20.00
SiO (s, alpha) 910.94 856.64 41.84 44.43
Sn(s, white) 0 0 51.55 26.99
Sn (ao) 8.8 27.2 17
SnO(s) 285.8 256.9 56.5 44.31
SnO (s) 580.7 519.6 52.3 52.59
Pb(s) 0 0 64.81 26.44
Pb (ao) 1.7 24.43 10.5
PbO(s, yellow) 217.32 187.89 68.70 45.77
PbO (s) 277.4 217.33 68.6 64.64
Al(s) 0 0 28.33 24.35
Al(g) 326.4 285.7 164.54 21.38
Al O (s, alpha) 1675.7 1582.3 50.92 79.04
AlCl (s) 704.2 628.8 110.67 91.84
Zn(s) 0 0 41.63 25.40
Zn (ao) 153.89 147.06 112.1 46
ZnO(s) 348.28 318.30 43.64 40.25
Cd(s, gamma) 0 0 51.76 25.98
Cd (ao) 75.90 77.612 73.2
CdO(s) 258.2 228.4 54.8 43.43
CdSO H O(s) 1729.4 1465.141 229.630 213.26
Hg(l) 0 0 76.02 27.983
Hg(g) 61.317 31.820 174.96 20.786
Hg (ao) 171.1 164.40 32.2
HgO(s, red) 90.83 58.539 70.29 44.06
Hg Cl (s) 265.22 210.745 192.5 102
Cu(s) 0 0 33.150 24.435
Cu (ao) 71.67 49.98 40.6
Cu (ao) 64.77 65.49 99.6
Ag(s) 0 0 42.55 25.351
Ag (ao) 105.579 77.107 72.68 21.8
Ag O(s) 31.05 11.20 121.3 65.86
AgCl(s) 127.068 109.789 96.2 50.79
Fe(s) 0 0 27.28 25.10
Fe (ao) 89.1 78.90 137.7
Fe (ao) 48.5 4.7 315.9
Fe O (s, hematite) 824.2 742.2 87.40 103.85
Fe O (s, magnetite) 1118.4 1015.4 146.4 143.43
Ti(s) 0 0 30.63 25.02
TiO (s) 939.7 884.5 49.92 55.48
U(s) 0 0 50.21 27.665
UO (s) 1084.9 1031.7 77.03 63.60
UO (ao) 1019.6 953.5 97.5
UO (s, gamma) 1223.8 1145.9 96.11 81.67
Mg(s) 0 0 32.68 24.89
Mg(g) 147.70 113.10 148.650 20.786
Mg (ao) 466.85 454.8 138.1
MgO(s) 601.70 569.43 26.94 37.15
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H G S C

Substance

C S H H H G

T

P

P T

4

f f

1 1 1 1 1 1

2

2

2

3

3

2

2

2

2

2

2

2

2

f f298

1 1 1 1 1 1 1

( )

M. Chase et al., JANAF Thermochemical Tables, 3rd ed., Supplements
1 and 2 (1985). The values on hydrocarbons, other than CH , are from D. R. Stull, E. F. Westrum, and
G. C. Sinke, Hoboken, NJ: Wiley, 1969.

( )

kJ mol kJ mol J K mol J K mol

MgCl (ao) 801.15 717.1 25.1
Ca(s) 0 0 41.42 25.31
Ca(g) 178.2 144.3 154.884 20.786
Ca (ao) 542.83 553.58 53.1
CaO(s) 635.09 604.03 39.75 42.80
CaCl (ai) 877.13 816.01 59.8
CaCO (calcite) 1206.92 1128.79 92.9 81.88
CaCO (aragonite) 1207.13 1127.75 88.7 81.25
Li(s) 0 0 29.12 24.77
Li (ao) 278.49 293.31 13.4 68.6
Na(s) 0 0 51.21 28.24
Na (ao) 240.12 261.905 59.0 46.4
NaOH(s) 425.609 379.494 64.455 59.54
NaOH(ai) 470.114 419.150 48.1 102.1
NaOH in 100H O 469.646
NaOH in 200H O 469.608
NaCl(s) 411.153 384.138 72.13 50.50
NaCl(ai) 407.27 393.133 115.5 90.0
NaCl in 100H O 407.066
NaCl in 200H O 406.923
K(s) 0 0 64.18 29.58
K (ao) 252.38 283.27 102.5 21.8
KOH(s) 424.764 379.08 78.9 64.9
KOH(ai) 482.37 440.50 91.6 126.8
KOH in 100H O 481.637
KOH in 200H O 481.742
KCl(s) 436.747 409.14 82.59 51.30
KCl(ai) 419.53 414.49 159.0 114.6
KCl in 100H O 419.320
KCl in 200H O 419.191
Rb(s) 0 0 76.78 10.148
Rb (ao) 251.17 283.98 121.50
Cs(s) 0 0 85.23 32.17
Cs (ao) 258.28 292.02 133.05 10.5

Chemical Thermodynamic Properties at Several Temperatures and 1 bar

/K J K mol J K mol kJ mol kJ mol kJ mol

C (graphite)

0 0.000 0.000 1.051 0.000 0.000
298 8.517 5.740 0.000 0.000 0.000
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875

continued

C S H H H G

T

n

P T f f298

1 1 1 1 1 1 1

4

2

2 4

2 6

4 10

( )

( )

/K J K mol J K mol kJ mol kJ mol kJ mol

500 14.623 11.662 2.365 0.000 0.000
1000 21.610 24.457 11.795 0.000 0.000
2000 24.094 40.771 35.525 0.000 0.000
3000 26.611 51.253 61.427 0.000 0.000

C(g)
0 0.000 0.000 6.536 711.185 711.185

298 20.838 158.100 0.000 716.670 671.244
500 20.804 168.863 4.202 718.507 639.906

1000 20.791 183.278 14.600 719.475 560.654
2000 20.952 197.713 35.433 716.577 402.694
3000 21.621 206.322 56.689 711.932 246.723

CH (g)

0 0.000 0.000 10.024 66.911 66.911
298 35.639 186.251 0.000 74.873 50.768
500 46.342 207.014 8.200 80.802 32.741

1000 71.795 247.549 38.179 89.849 19.492
2000 94.399 305.853 123.592 92.709 130.802
3000 101.389 345.690 222.076 91.705 242.332

CO(g)

0 0.000 0.000 8.671 113.805 113.805
298 29.142 197.653 0.000 110.527 137.163
500 29.794 212.831 5.931 110.003 155.414

1000 33.183 234.538 21.690 111.983 200.275
2000 36.250 258.714 56.744 118.896 286.034
3000 37.217 273.605 93.504 127.457 367.816

CO (g)

0 0.000 0.000 9.364 393.151 393.151
298 37.129 213.795 0.000 393.522 394.389
500 44.627 234.901 8.305 393.666 394.939

1000 54.308 269.299 33.397 394.623 395.886
2000 60.350 309.293 91.439 396.784 396.333
3000 62.229 334.169 152.852 400.111 395.461

C H (g)

0 0.000 0.000 10.518 60.986 60.986
298 43.886 219.330 0.000 52.467 68.421
500 63.477 246.215 10.668 46.641 80.933

1000 93.899 300.408 50.665 38.183 119.122

C H (g)

298 52.63 229.60 0.00 84.68 32.86
500 78.07 262.91 13.22 93.89 4.96

1000 122.72 332.28 64.56 105.77 109.55

C H (g, -butane)

298 97.45 310.23 0.00 126.15 17.02
500 147.86 372.90 24.94 140.21 61.10

1000 226.86 502.86 120.96 155.85 270.31
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876

continued

C S H H H G

T

P T f f298

1 1 1 1 1 1 1

6 6

3

2

( )

( )

/K J K mol J K mol kJ mol kJ mol kJ mol

C H (g)

298 81.67 269.31 0.00 82.93 129.73
500 137.24 325.42 22.43 73.39 164.29

1000 209.87 446.71 112.01 62.01 260.76

CH OH(g)

298 43.89 239.81 0.00 201.17 162.46
500 59.50 266.13 10.42 207.94 134.27

1000 89.45 317.59 48.41 217.28 56.16

Cl(g)

0 0.000 0.000 6.272 119.621 119.621
298 21.838 165.189 0.000 121.302 105.306
500 22.744 176.752 4.522 122.272 94.203

1000 22.233 192.430 15.815 124.334 65.288
2000 21.341 207.505 37.512 127.058 5.081
3000 21.063 216.096 58.690 128.649 56.297

HCl(g)

0 0.000 0.000 8.640 92.127 92.127
298 29.136 186.901 0.000 92.312 95.300
500 29.304 201.989 5.892 92.913 97.166

1000 31.628 222.903 21.046 94.388 100.799
2000 35.600 246.246 54.953 95.590 106.631
3000 37.243 261.033 91.478 96.547 111.968

Cl (g)

0 0.000 0.000 9.180 0.000 0.000
298 33.949 223.079 0.000 0.000 0.000
500 36.064 241.228 7.104 0.000 0.000

1000 37.438 266.764 25.565 0.000 0.000
2000 38.428 293.033 63.512 0.000 0.000
3000 40.075 308.894 102.686 0.000 0.000

H(g)

0 0.000 0.000 6.197 216.035 216.035
298 20.786 114.716 0.000 217.999 203.278
500 20.786 125.463 4.196 219.254 192.957

1000 20.786 139.871 14.589 222.248 165.485
2000 20.786 154.278 35.375 226.898 106.760
3000 20.786 162.706 56.161 229.790 46.007

H (g)

0 0.000 0.000 6.197 1528.085
298 20.786 108.946 0.000 1536.246 1516.990
500 20.786 119.693 4.196 1541.697 1502.422

1000 20.786 134.101 14.589 1555.084 1457.958
2000 20.786 148.509 35.375 1580.520 1350.840
3000 20.786 156.937 56.161 1604.198 1230.818
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877

continued

C S H H H G

T

P T f f298

1 1 1 1 1 1 1

2

2

2

( )

( )

/K J K mol J K mol kJ mol kJ mol kJ mol

H (g)

0 0.000 0.000 6.197 143.266
298 20.786 108.960 0.000 139.032 132.282
500 20.786 119.707 4.196 136.091 128.535

1000 20.786 134.114 14.589 128.692 123.819
2000 20.786 148.522 32.375 112.557 125.012
3000 20.786 156.950 56.161 94.662 135.055

HI(g)

0 0.000 0.000 8.656 28.535 28.535
298 29.156 206.589 0.000 26.359 1.560
500 29.736 221.760 5.928 5.622 10.088

1000 33.135 243.404 21.641 6.754 14.006
2000 36.623 267.680 56.863 7.589 21.009
3000 37.918 282.805 94.210 10.489 27.114

H (g)

0 0.000 0.000 8.467 0.000 0.000
298 28.836 130.680 0.000 0.000 0.000
500 29.260 145.737 5.883 0.000 0.000

1000 30.205 166.216 20.680 0.000 0.000
2000 34.280 188.418 52.951 0.000 0.000
3000 37.087 202.891 88.740 0.000 0.000

H O(g)

0 0.000 0.000 9.904 238.921 238.921
298 33.590 188.834 0.000 241.826 228.582
500 35.226 206.534 6.925 243.826 219.051

1000 41.268 232.738 26.000 247.857 192.590
2000 51.180 264.769 72.790 251.575 135.528
3000 55.748 286.504 126.549 253.024 77.163

I(g)

0 0.000 0.000 6.197 107.164 107.164
298 20.786 180.786 0.000 106.762 70.174
500 20.786 191.533 4.196 75.990 50.203

1000 20.795 205.942 14.589 76.937 24.039
2000 21.308 220.461 35.566 77.992 29.410
3000 22.191 229.274 57.332 77.406 82.995

I (g)

0 0.000 0.000 10.116 65.504 65.504
298 36.887 260.685 0.000 62.421 19.325
500 37.464 279.920 7.515 0.000 0.000

1000 38.081 306.087 26.407 0.000 0.000
2000 42.748 332.521 66.250 0.000 0.000
3000 44.897 351.615 110.955 0.000 0.000
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878

continued

C S H H H G

T

P T f f298

1 1 1 1 1 1 1

2

2

2 4

3

( )

( )

/K J K mol J K mol kJ mol kJ mol kJ mol

N(g)

0 0.000 0.000 6.197 470.820 470.820
298 20.786 153.300 0.000 472.683 455.540
500 20.786 164.047 4.196 473.923 443.584

1000 20.786 178.454 14.589 476.540 412.171
2000 20.790 192.863 35.375 479.990 346.339
3000 20.963 201.311 56.218 482.543 278.946

NO(g)

0 0.000 0.000 9.192 89.775 89.775
298 29.845 210.758 0.000 90.291 86.606
500 30.486 226.263 6.059 90.352 84.079

1000 33.987 248.536 22.229 90.437 77.775
2000 36.647 273.128 57.859 90.494 65.060
3000 37.466 288.165 94.973 89.899 52.439

NO (g)

0 0.000 0.000 10.186 35.927 35.927
298 36.974 240.034 0.000 33.095 51.258
500 43.206 260.638 8.099 32.154 63.867

1000 52.166 293.889 32.344 32.005 95.779
2000 56.441 331.788 87.259 33.111 159.106
3000 57.394 354.889 144.267 32.992 222.058

N (g)

0 0.000 0.000 8.670 0.000 0.000
298 29.124 191.609 0.000 0.000 0.000
500 29.580 206.739 5.911 0.000 0.000

1000 32.697 228.170 21.463 0.000 0.000
2000 35.971 252.074 56.137 0.000 0.000
3000 37.030 266.891 92.715 0.000 0.000

N O (g)

0 0.000 0.000 16.398 18.718 18.718
298 77.256 304.376 0.000 9.079 97.787
500 97.204 349.446 17.769 8.769 158.109

1000 119.208 425.106 72.978 15.189 305.410
2000 129.030 511.743 198.518 33.110 588.764
3000 131.200 564.555 328.840 49.178 862.983

NH (g)

0 0.000 0.000 10.045 38.907 38.907
298 35.652 192.774 0.000 45.898 16.367
500 42.048 212.659 7.819 49.857 4.800

1000 56.491 246.486 32.637 55.013 61.910
2000 72.833 291.525 98.561 54.833 179.447
3000 78.902 322.409 174.933 50.433 295.689
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continued

C S H H H G

T

K K

P T f f298

1 1 1 1 1 1 1

2

14 14
w w

( )

/K J K mol J K mol kJ mol kJ mol kJ mol

O(g)

0 0.000 0.000 6.725 246.790 246.790
298 21.911 161.058 0.000 249.173 231.736
500 21.257 172.197 4.343 250.474 219.549

1000 20.915 186.790 14.860 252.682 187.681
2000 20.826 201.247 35.713 255.299 121.552
3000 20.937 209.704 56.574 256.741 54.327

O (g)

0 0.000 0.000 6.571 105.814 105.814
298 21.692 157.790 0.000 101.846 91.638
500 21.184 168.860 4.318 98.926 85.532

1000 20.899 183.426 14.817 90.723 75.219
2000 20.816 197.878 35.661 72.545 66.619
3000 20.800 206.314 56.467 53.146 67.810

O (g)

0 0.000 0.000 8.683 0.000 0.000
298 29.376 205.147 0.000 0.000 0.000
500 31.091 220.693 6.084 0.000 0.000

1000 34.870 243.578 22.703 0.000 0.000
2000 37.741 268.748 59.175 0.000 0.000
3000 39.884 284.466 98.013 0.000 0.000

e (g)

0 0.000 0.000 6.197 0.000 0.000
298 20.786 20.979 0.000 0.000 0.000
500 20.786 31.725 4.196 0.000 0.000

1000 20.786 46.133 14.584 0.000 0.000
2000 20.786 60.541 35.375 0.000 0.000
3000 20.786 68.969 56.161 0.000 0.000

Ion Product of Water at a
Series of Temperatures

C 10 C 10

0 0.114 35 2.09
5 0.185 40 2.92

10 0.292 45 4.02
15 0.450 50 5.47
20 0.681 55 7.20
25 1.006 60 9.61
30 1.47
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m
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K K

Acid K K

p

1

1 2

4

These values are for a standard state of 1 mol
kg and apply at zero ionic strength.�

�

1 2p and p for Acids in Water at
25 C

p p

Oxalic 1.271 4.266
Phosphoric 2.148 7.198
Glycine (protonated) 2.350 9.780

-Aminobenzoic 2.45 4.85
Malonic 2.855 5.606
Chloroacetic 2.865
Tartaric 3.033 4.366
Citric 3.128 4.761
2,6-Dinitrophenol 3.72
Formic 3.739
Glycolic 3.831
Lactic 3.860
2,4-Dinitrophenol 4.09
Benzoic 4.201
Succinic 4.207 5.638
Anilinium ion 4.60
Acetic 4.756
Propionic 4.874
Carbonic 6.352 10.329
Triethanolammonium ion 7.762
Tris(hydroxymethyl)- 8.075

methylammonium ion
Hydrogen cyanide 9.216
NH 9.245
Phenol 9.998

�
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First
Ground-State Ionization Orbital

Z Atom Configuration Term Symbol Energy, Radius,

2
1/2

2 1
0

2 2
3/2

2 2 3
2

4 6
1/2

5 7
3

2 5 6
5/2

7 5
5

8 4
9/2

10 1
0

10 2
1/2

2 10 1
0

2 10 2
1/2

2 10 2 3
0

2 10 3 4
3/2

2 10 4 3
2

2 10 5 2
3/2

2 10 6 1
0

2
1/2

2 1
0

2 2
3/2

2 3
5

2 3 4
9/2

2 4 5
4

2 5 6
5/2

2 6 7
0

2 7 8
7/2

2 7 9
2

2 9 6
15/2

2 10 5
8

2 11 4
15/2

2 12 3
6

2 13 2
7/2

2 14 1
0

2 14 2
3/2

2 14 2 3
2

2 14 3 4
3/2

2 14 4 5
0

2 14 5 6
5/2

2 14 6 5
4

2 14 7 4
9/2

14 9 3
3

14 10 2
1/2

2 14 10 1
0

( )

This table is a continuation of Table 10.3. From J. T. Waber and D. T. Cromer, :4116
(1965).

Atomic Properties

eV pm

37 Rb [Kr]5s S 4.176 228.7
38 Sr [Kr]5s S 5.692 183.6
39 Y [Kr]5s 4d D 6.6 169.3
40 Zr [Kr]5s 4d F 6.95 159.3
41 Nb [Kr]5s4d D 6.77 158.9
42 Mo [Kr]5s4d S 7.18 152.0
43 Tc [Kr]5s 4d S — 139.1
44 Ru [Kr]5s4d F 7.5 141.0
45 Rh [Kr]5s4d F 7.7 136.4
46 Pd [Kr]4d S 8.33 56.7
47 Ag [Kr]5s4d S 7.574 128.6
48 Cd [Kr]5s 4d S 8.991 118.4
49 In [Kr]5s 4d 5p P 5.785 138.2
50 Sn [Kr]5s 4d 5p P 7.332 124.0
51 Sb [Kr]5s 4d 5p S 8.64 119.3
52 Te [Kr]5s 4d 5p P 9.01 111.1
53 I [Kr]5s 4d 5p P 10.44 104.4
54 Xe [Kr]5s 4d 5p S 12.127 98.6
55 Cs [Xe]6s S 3.893 251.8
56 Ba [Xe]6s S 5.210 206.0
57 La [Xe]6s 5d D 5.61 191.5
58 Ce [Xe](6s 4f5d) ( H ) 6.91 197.8
59 Pr [Xe](6s 4f ) ( I ) 5.76 194.2
60 Nd [Xe]6s 4f I 6.31 191.2
61 Pm [Xe](6s 4f ) ( H ) — 188.2
62 Sm [Xe]6s 4f F 5.6 185.4
63 Eu [Xe]6s 4f S 5.67 182.6
64 Gd [Xe]6s 4f 5d D 6.16 171.3
65 Tb [Xe](6s 4f ) ( H ) 6.74 177.5
66 Dy [Xe](6s 4f ) ( I ) 6.82 175.0
67 Ho [Xe](6s 4f ) ( I ) — 172.7
68 Er [Xe](6s 4f ) ( H ) — 170.3
69 Tm [Xe]6s 4f F — 168.1
70 Yb [Xe]6s 4f S 6.2 165.8
71 Lu [Xe]6s 4f 5d D 5.0 155.3
72 Hf [Xe]6s 4f 5d F 5.5 147.6
73 Ta [Xe]6s 4f 5d F 7.88 141.3
74 W [Xe]6s 4f 5d D 7.98 136.0
75 Re [Xe]6s 4f 5d S 7.87 131.0
76 Os [Xe]6s 4f 5d D 8.7 126.6
77 Ir [Xe]6s 4f 5d F 9.2 122.7
78 Pt [Xe]6s4f 5d D 8.96 122.1
79 Au [Xe]6s4f 5d S 9.223 118.7
80 Hg [Xe]6s 4f 5d S 10.434 112.6

Tables of Physical Chemical Data
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continued

First
Ground-State Ionization Orbital

Z Atom Configuration Term Symbol Energy, Radius,

2 14 10 2
1/2

2 14 10 2 3
0

2 14 10 3 4
3/2

2 14 10 4 3
2

2 14 10 5 2
3/2

2 14 10 6 1
0

2
1/2

2 1
0

2 2
3/2

2 2 3
2

2 2 4
11/12

2 3 5
6

2 4 6
11/12

2 6 7
0

2 7 8
7/2

2 7 9
2

2 9 6
15/2

2 10 5
8

2 11 4
15/2

2 12 3
6

2 13 2
7/2

2 14 1
0

2 14 2
3/2

( )

eV pm

81 Tl [Xe]6s 4f 5d 6p P 6.106 131.9
82 Pb [Xe]6s 4f 5d 6p P 7.415 121.5
83 Bi [Xe]6s 4f 5d 6p S 7.287 129.5
84 Po [Xe]6s 4f 5d 6p P 8.43 121.2
85 At [Xe](6s 4f 5d 6p ) ( P ) — 114.6
86 Rn [Xe]6s 4f 5d 6p S 10.746 109.0
87 Fr [Rn](7s) ( S ) — 244.7
88 Ra [Rn]7s S 5.277 204.2
89 Ac [Rn]7s 6d D 6.9 189.5
90 Th [Rn]7s 6d F — 178.8
91 Pa [Rn](7s 5f 6d) ( K ) — 180.4
92 U [Rn]7s 5f 6d L 4 177.5
93 Np [Rn](7s 5f 6d) ( L ) — 174.1
94 Pu [Rn](7s 5f ) ( F ) — 178.4
95 Am [Rn](7s 5f ) ( S ) — 175.7
96 Cm [Rn](7s 5f 6d) ( D ) — 165.7
97 Bk [Rn](7s 5f ) ( H ) — 162.6
98 Cf [Rn](7s 5f ) ( I ) — 159.8
99 Es [Rn](7s 5f ) ( I ) — 157.6

100 Fm [Rn](7s 5f ) ( H ) — 155.7
101 Md [Rn](7s 5f ) ( F ) — 152.7
102 No [Rn](7s 5f ) ( S ) — 158.1
103 Lr [Rn](7s 5f 6d) ( D ) — —

Appendix C: Tables of Physical Chemical Data
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E

Molecule Bond Length/ Bond Angle/

2

2

2

2

2

2

2

2

2

3

2

2

3

4

2 2

2 4

2 6

: G. W. C. Kaye and T. H. Laby, ,
1973 . Reprinted with permission of Pearson Education, Inc., Upper Saddle
River, NJ.

iIonization Energies of Atoms and Ions in eV

H 13.597 Ne 21.56 K 31.71
He 24.587 Ne 41.08 Ca 6.11
He 54.42 Ne 63.45 Ca 11.87
Li 5.39 Na 5.14 Sc 6.54
Li 75.60 Na 47.30 Ti 6.82
Be 9.32 Mg 7.65 V 6.74
B 8.30 Mg 15.04 Cr 6.77
C 11.26 Al 5.99 Mn 7.43
C 24.38 Al 18.83 Fe 7.87
C 47.88 Si 8.15 Fe 16.18
N 14.53 P 10.49 Fe 30.65
N 29.60 S 10.36 Co 7.86
N 47.44 S 23.41 Co 17.06
O 13.62 Cl 12.97 Co 33.59
O 35.12 Ar 15.75 Ni 7.64
O 54.9 Ar 27.63 Ni 18.15
F 17.42 K 4.34 Ni 35.20

Bond Lengths and Angles in Polyatomic Molecules

pm

CO C O 115.98 O C O 180
SO S O 143.21 O S O 119.5
SO S O 143 O S O 120
H O O H 95.8 H O H 104.45
H S S H 134.55 H S H 93.3
NH N H 100.8 H N H 107.3
CH C H 109.3 H C H 109.5
C H C H 109.3 H C H 180

C C 120.3
C H C H 108.4 H C H 115.5

C C 133.2
C H C H 109.3 H C H 109.75

C C 153.4

�

�

� � �

� �

�

� �

� �

�

�

� � �

�

�

� � �

�

Tables of Physical Chemical Data

Table C.7

Table C.8

�



x
x

x

xy x y

x y x y

x y x

x
x

x

x x . x

x

y

x

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
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ln

log

D
Logarithms and Exponentials
Series
Calculus
Spherical Coordinates
Legendre Transforms
Determinants
Vectors
Matrices
Complex Numbers
Mathematical Calculations with Personal Computers

D.1 LOGARITHMS AND EXPONENTIALS

�

The natural logarithm of a number is the power to which e 2.718281 . . . must
be raised to yield . This definition and the properties of natural logarithms are
summarized by

e

ln( ) ln ln

ln( / ) ln ln

ln ln

The base 10 logarithm of a number is the power to which 10 must be raised
to yield .

10

ln ln(10) log 2 303 log

Mathematical Relations
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a a a

a a

f

f f
f x f x x

x x

x x
x x x

x x
x x

x x
x x

x x x
x x x

x x x x x

x x x x x

x x x x x

x x x
x x

x n
n n

n n n n n
x nx x x x

x
x x

f f
f x f x x x x x x

x x

m n m n

m n m n

m n mn

x x

x

n

n

x x
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Exponential functions have the following properties:

/

( )

It is often of interest to see the form of an equation when one of the quantities
becomes indefinitely small or indefinitely large. Since most functions we deal with
can be expressed by infinite series, the series expression can be used with higher-
order terms omitted. The series expression for a function can be calculated with
the Maclaurin series:

d 1 d
( ) (0)

d 2! d

The following infinite series are examples of Maclaurin series:

sin [all ]
3! 5!

cos 1 [all ]
2! 4!

e 1 [all ]
2! 3!

ln(1 ) [ 1]
2 3 4

(1 ) 1 [ 1]

(1 ) 1 [ 1]

(1 ) 1 2 3 4 [ 1]

(1 ) 1 [ 1]
2 8 16

The series (1 ) is referred to as the binomial series. If is an integer, the
series terminates after ( 1) terms, but when is not an integer, the series is
infinite:

( 1) ( 1)( 2)
(1 ) 1 [ 1]

2! 3!

A Maclaurin series is an expansion about the point 0. A Taylor series is
an expansion about . The Taylor series is

d 1 d
( ) ( ) ( ) ( )

d 2! d
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Some basic derivatives are

d d
d d

d e d
e

d d

d ln 1
d

d sin
cos

d

d cos
sin

d

d [ ( )] d d
(chain rule)

d d d

1 (cyclic rule)

d( / ) (d /d ) (d /d )
d

Some basic indefinite integrals are

1
d ( 1)

1

1
e d e

d
ln

ln d ln

2 2
e d e

Some basic definite integrals are

1
e d

!
e d ( 1 0)



(r,  ,  )θ φ

φ

r cos

r

x

y

z

θ

r sinθ

θ

. . .

. . .

. . .

x
b

n
x x n , , ,

b

n a t a t
z z at n , , ,

a n

nx x nx x n , , ,

mx nx x mx nx x m n

x
r r

x y z
r

x r . .

y r . .

z r . .

bx

n bx
n n

n n
n az at

n
t
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Figure D.4.1

1
e d

2

1 3 (2 1)
e d ( 1 2 3 )

2

!
e d e 1 ( 0 1 2 )

2! !

sin d cos d ( 1 2 3 )
4

sin sin d cos cos d 0 ( )

Also see Table 17.1 for definite integrals.

The choice of a coordinate system is a matter of convenience. When a system has
some kind of a natural center, as in the case of an atom, spherical coordinates
are convenient, as indicated by Fig. D.4.1. The angle is the declination from the
north pole, so 0 . Since there is not a natural zero value for , the angle
around the equator is measured from the axis, as indicated in the figure, and
0 2 . Since is the distance from the origin, 0 .

The Cartesian coordinates , , and are related to the spherical coordinates
, , and by

sin cos (D 4 1)

sin sin (D 4 2)

cos (D 4 3)
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Figure D.4.2

It is readily shown that the spherical coordinates are related to the Cartesian co-
ordinates by

( ) (D 4 4)

cos (D 4 5)
( )

tan (D 4 6)

Figure D.4.2 shows that the differential volume element in spherical coordi-
nates is

d ( sin d ) ( d ) d sin d d d (D 4 7)

It also shows that in spherical coordinates the differential area is given by

d sin d d (D 4 8)

The volume of a sphere of radius is given by

4
d sin d d (2)(2 ) (D 4 9)

3 3

The surface area of a sphere of radius is given by

sin d d (2)(2 ) 4 (D 4 10)

We can integrate a function ( ) over the full range of these coordinates by
use of

d sin d d ( ) (D 4 11)

An example of this type of integral is the orthogonality relation of atomic wave-
functions.
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Figure D.5.1

The variables in a function can be changed by simply substituting an expression for
a variable in terms of a new variable. For example, the thermodynamic tempera-
ture in an equation can be replaced using 273 15 to obtain the equation
written in terms of the Celsius temperature . Another way to change variables
involves defining a new property that depends on a derivative of the original func-
tion, rather than a new variable such as in this example. This method, which is
especially useful in thermodynamics, is referred to as a

Consider a function ( ) that is differentiable for all ; this function is plotted
in Fig. D.5.1. The total differential of is given by

d
d d ( ) d (D 5 1)

d

where the function ( ) is the slope ( ) of ( ) at every value of . The ob-
jective of the Legendre transform is to find a function ( ) of the new variable

( ) that is equivalent to ( ). By equivalent we mean that ( ) and ( )
contain the same information; in short, ( ) can be calculated from ( ), and

( ) can be calculated from ( ). The new function ( ) can be obtained by use
of Fig. D.5.1. The value of at any point along ( ) is the slope ( ). It is evident
from the figure that the equation for the tangent ( ) at any point along the
curve is

( ) ( ) ( )( ) (D 5 2)

The intersection of the tangent with the vertical axis is given by

( ) ( ) ( ) (D 5 3)

The value of function depends on and, for a general ,

( ) (D 5 4)

The new function is referred to as the Legendre transform of , and this equation
shows that is obtained from by subtracting , which is ( ). This process
can be generalized to functions of two or more variables.

In Chapter 4 we found that the internal energy is a function of and .
However, and may not be experimentally convenient variables. The following
Legendre transform was used to define the Gibbs energy :

(D 5 5)

As shown in Chapter 4, the Gibbs energy is a function of and , which are
convenient independent variables for work in the laboratory.

A determinant is a square array of numbers. Its value is defined as a certain sum
of products of subsets of the elements. If the determinant has rows and columns,
each term in the sum will have factors in it. For a determinant of order 2,



a b c
b c a c a b

a b ca b c
b c a c a b

a b c

a b c a b c a b c a b c a b c a b c

a x a y a z c

a x a y a z c

a x a y a z c

x y z

a a a
D a a a

a a a

c a a
x c a a

D c a a

a c a
y a c a

D a c a

a a c
z a a c

D a a c

c c c
x y z

890

� �

� � �

� � �

� � �

� � �

�

�

�

�

� � �
� � �

1 1 1
2 2 2 2 2 2

1 1 12 2 2
3 3 3 3 3 3

3 3 3

1 2 3 2 3 1 3 1 2 3 2 1 2 1 3 1 3 2

11 12 13 1

21 22 23 2

31 32 33 3

11 12 13

21 22 23

31 32 33

1 12 13

2 22 23

3 32 33

11 1 13

21 2 23

31 3 33

11 12 1

21 22 2

31 32 3

1 2 3

Cramer’s
rule.

Appendix D: Mathematical Relations

� �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� �

� �� �� �� �� �� �

� �� �� �� �� �� �
� �� �� �� �� �� �
� �� �� �� �� �� �

�

� � �

The value of a large determinant may be obtained by expanding by minors. For a
determinant of order 3,

Determinants of higher order are defined by an analogous row (or column)
expansion.

Simultaneous linear equations can be solved using determinants. For exam-
ple, consider the set

The determinant of the coefficients of , , and is

It can be shown that

1

1

1

Note that the numerators of these equations are obtained by replacing the column
in the denominator that is associated with the unknown quantity with the coeffi-
cients on the right-hand side of the simultaneous equations. This way of writing
the solution of a set of simultaneous linear equations is referred to as

If 0, the equations are said to be homogeneous. If the
equations are homogeneous, there is a trivial solution 0. There
is a nontrivial solution only if the determinant in the denominator is equal to
zero. Section 11.3, on the hydrogen molecule ion, shows that the LCAO method
yields two homogeneous equations, and so multiplying out the determinant of
coefficients yields a quadratic equation in the energy. The two solutions of the
quadratic equation yield the energies of the bonding molecular orbital and the
antibonding molecular orbital. Section 11.7 shows that there are four homoge-
neous equations for 1,3-butadiene, so multiplying out the determinant yields the
energies of two bonding and two antibonding Hückel molecular orbitals.
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A vector quantity has direction as well as magnitude. A vector in a Cartesian
coordinate system can be represented by

(D 7 1)

where , , and are vectors of unit length that point along the , , and axes
of the coordinate system. The coordinate systems in this book are right-handed;
this means that if you move the fingers of your right hand from to , your thumb
points along . The quantities , and are referred to as components of

; they can be positive or negative. It follows from the Pythagorean theorem that
the length of is given by

( ) (D 7 2)

When vectors are added, their components in the three directions add sep-
arately. For example, if and 2 3 , the sum of the two
vectors is 2 3 2 . The addition of vectors is illustrated in Fig. 10.16.

There are two ways to form the product of two vectors: scalar product and
vector product. The scalar product yields a number (a scalar), and the vector
product yields a vector. The of and is defined by

cos (D 7 3)

where is the angle between and . This is often referred to as the dot
product. The scalar product is commutative because . Equation
D.7.3 can be used to show that 1 1 cos 0 1 and

1 1 cos 90 0. When and
are expressed in terms of components and these equations are used, it can be

shown that

(D 7 4)

There are examples of scalar products in Sections 2.1 and 15.2.
The vector product of and is defined by

sin (D 7 5)

where is the angle between and and is a unit vector perpendicular to
the plane formed by and . The direction of is given by the right-hand rule:
If the fingers of your right hand move from to , then is in the direction of
your thumb. This is often referred to as the cross product. The cross product is not
commutative because . Equation D.7.5 can be used to show that

1 1 sin 0 0 1 1 sin 90
, and . When and are expressed

in terms of components and these equations are used, it can be shown that

( ) ( ) ( ) (D 7 6)

This equation can be conveniently expressed as a determinant:

(D 7 7)

There are examples of cross products in Section 9.12.
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The following operator can be used in different ways:

(D 7 8)

1. If a function is a function of , , and , then (gradient of or “grad ”)
is a vector:

(D 7 9)

2. The scalar product of with a vector yields the divergence (“div”) of that
vector:

(D 7 10)

3. The vector product of with a vector yields the curl of the vector:

curl (D 7 11)

The operator (the Laplacian) is given in Cartesian coordinates as

(D 7 12)

In spherical coordinates, the Laplacian operator is

1 1 1
sin (D 7 13)

sinsin

A matrix is an array of numbers. If a matrix has rows and columns it may be
represented by

...

The sum of two matrices is defined by

where for every and .
The product of a scalar and a matrix is defined by

where for every and .
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The product of two matrices is similar to the scalar product of two vectors. If
is the product , then

where is the number of columns in . If is to be multiplied by , it must have
as many rows as has columns. For example,

Matrix multiplication is not commutative, as illustrated by

2 1 1 4 2 1 1 0 2 4 1 2 2 10
3 2 0 2 3 1 2 0 3 4 2 2 3 8

1 4 2 1 1 2 4 3 1 1 4 2 14 7
0 2 3 2 0 2 2 3 0 1 2 2 6 4

Simultaneous linear equations may be solved by use of matrices. For example,
the set

may be written in matrix notation as

or

The inverse of a matrix has the property

where is the identity matrix:

1 0 0
0 1 0
...
0 0 1

If we multiply both sides of by , we obtain

Thus, the solution of the simultaneous equations is obtained by multiplying
by the inverse of . Small matrices may be inverted by hand using Gauss elimina-
tion, and large matrices may be inverted with a computer to obtain the solution
of the simultaneous linear equations.
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D.9 COMPLEX NUMBERS
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If , is the null space of . The null space can be calculated by
hand for a small matrix or by use of a computer. Correspondingly, ,
where the superscript T indicates the transpose. The transpose of a matrix
has columns that are taken directly from the rows of ; thus it can be constructed
without any calculations. Thus, is the null space of .

A complex number can be written i , where i ( 1) is the imagi-
nary unit and and are real numbers. is referred to as the real part of , and

is referred to as the imaginary part of . It is convenient to write Re( )
and Im( ). Complex numbers arise naturally in solving certain quadratic
equations.

Two complex numbers can be summed by adding the real parts and the imag-
inary parts separately:

( ) i( ) (D 9 1)

They can be subtracted as well:

( ) i( ) (D 9 2)

When complex numbers are multiplied, the two quantities are multiplied as bino-
mials and i is replaced by 1 to obtain

( ) i( ) (D 9 3)

To divide complex numbers, it is convenient to introduce the complex conju-
gate . The is obtained by changing i to i. The complex
conjugate of i is i . The product of a complex number and
its complex conjugate is a real number. For example,

( i )( i ) i (D 9 4)

The square root of this quantity is referred to as the of and is
represented by .

( ) ( ) (D 9 5)

The ratio of two complex numbers can be written as a complex number by
multiplying numerator and denominator by the complex conjugate of the denom-
inator. For example, to find the expression for (1 2i)/(2 3i), multiply the
numerator and denominator by (2 3i) to obtain

(8 i) 8 1
i (D 9 6)

(4 9) 13 13

A complex number can be represented as a point in a plot of Im( ) versus
Re( ), as shown in Fig. D.9.1. The plane of this figure is referred to as the complex
plane. The vector from the origin to a point in the complex plane makes an
angle with the axis; this angle is referred to as the phase angle. The vector is
represented by , and its magnitude is represented by . It is useful to be able to
write complex numbers in their polar forms. Figure D.9.1 shows that

cos and sin (D 9 7)
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The Mathematica Book,

Mathematica Computer Programs for Physical Chemistry.

Physical Chemistry Using Mathematica.

� �

� �

�

�

�

� �

�

i

i

i

i2 / i2 /

i2 / i2 /

S. Wolfram, 4th ed. New York: Cambridge University Press, 1999.

W. H. Cropper, New York:
Springer, 1998.

J. H. Noggle, New York: HarperCollins, 1996.

�

�

Euler’s formula:

D.10 Mathematical Calculations with Personal Computers

D.10 MATHEMATICAL CALCULATIONS
WITH PERSONAL COMPUTERS

� �

�

�

�

�

�

�

� �

� ��

� �

� �

�

�

Therefore,

(cos i sin ) (D 9 8)

The series expansions of e , cos , and sin (see Appendix D.2) can be used to
derive

e cos i sin (D 9 9)

If we substitute this into equation D.9.8, we obtain

e (D 9 10)

for which the complex conjugate is

e (D 9 11)

Taking the square root of the product yields the absolute value of , which is
equal to

(D 9 12)

Two relations that are useful in connection with Fourier transforms (Section
15.8) are

2
cos (e e )/2 (D 9 13)

2
sin (e e )/2i (D 9 14)

The use of mathematical applications in personal computers is producing a
revolutionary change in solving physical chemical problems. These applica-
tions include Mathematica, MathCad, MATLAB, and MAPLE. The existence
of these applications has made it possible to include more difficult problems
in this edition as Computer Problems. The complete solutions of these prob-
lems in Mathematica are provided in the Solutions Manual and on the web
at http://wiley.com/college/silbey. These programs not only make it possible to
solve the particular problems, but they also make it possible to make similar
calculations over different ranges of temperature, pressure, wavelength, etc.,
and to substitute the properties of other substances without one’s being an
expert Mathematica programmer. The primary reference on Mathematica is

There are two books on solving physical chemistry problems using Mathematica:

http://wiley.com/college/silbey
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Getting Started with Mathe-
matica.

The Mathematica
Primer.

Computing with Mathematica.
The Student’s Introduction to Mathematica

C.-K. Cheung, G. E. Keough, C. Landraitis, and R. H. Gross,
Hoboken, NJ: Wiley, 1998.

K. R. Coombes, B. R. Hunt, R. L. Lipsman, J. E. Osborn, and G. J. Stuck,
New York: Cambridge University Press, 1998.

H. F. W. Höft and M. H. Höft, San Diego: Academic, 1998.
B. F. Torrence and E. A. Torrence, . New York:

Cambridge University Press, 1999.

Appendix D: Mathematical Relations

Several books have been written to help new users of Mathematica get started.
These include
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#

A Alpha
B Beta

Gamma
Delta

E Epsilon
Z Zeta
H Eta

Theta
I Iota
K Kappa

Lambda
M Mu
N Nu

Xi
O Omicron

Pi
P Rho

Sigma
T Tau

Upsilon
Phi

X Chi
Psi
Omega

Greek Alphabet



Fundamental Physical Constants

International System of Units (SI)

Con ersion Factors for Energy Equi alents

NIST Chemistry WebBook

Thermodynamics of Enzyme-Catalyzed Reactions

Ground Le els and Ionization Energies for the Neutral Atoms

NIST X-Ray Photoelectron Spectroscopy Database

F
v v

v

The National Institute of Standards and Technology (NIST) provides several
kinds of useful information on the Web:

http://physics.nist.gov/cuu/Constants/

http://physics.nist.gov/cuu/Units/index.html

http://physics.nist.gov/cuu/Constants/energy.html

http://webbook.nist.gov/chemistry/

http://wwwbmed.nist.gov:8080/enzyme.html

http://physics.nist.gov/PhysRefData/IonEnergy/ionEnergy.html

http://srdata.nist.gov/xps

Useful Information on the Web

http://www.bmed.nist.gov:8080/enzyme.html
http://physics.nist.gov/cuu/Constants/
http://physics.nist.gov/cuu/Units/index.html
http://physics.nist.gov/cuu/Constants/energy.html
http://webbook.nist.gov/chemistry/
http://physics.nist.gov/PhysRefData/IonEnergy/ionEnergy.html
http://srdata.nist.gov/xps
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A
F

F

Quantities, Units, and Symbols in Physical Chemistry.

Symbol Name Symbol for SI Unit

a
a
a
a
A
A

A
A
A
A

A
A

b
b

a

n

vap f r

2

6 2

0

2

1/2 1/2

1

3 1 1

2
s

1
12

3 1

( )

The number in parentheses is the section number where the quantity is defined. For thermodynamic
quantities a superscript degree sign indicates that the quantity has the value for the standard state.
A superscript * is used to designate the molar thermodynamic quantity for a pure substance. Molar
thermodynamic quantities and partial molar thermodynamic quantities are indicated by an overbar.
The overbar is not used in delta quantities such as , , and . Concentrations are rep-
resented by use of square brackets. Quantum mechanical operators are indicated by a circumflex, as

ˆin (Section 9.4). Quantities with tildes over them are in wave number units. The SI unit for an op-
erator is the same as for the physical quantity the operator represents. The expectation value of is
represented by . Vectors and matrices are represented by boldface italic symbols; the correspond-
ing magnitudes are italicized and are not included here. A 1 in the symbol column indicates that the
physical quantity does not have SI units.

*Recommendations of the International Union of Pure and Applied Chemistry are given in I. Mills,
T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu,
Oxford, UK: Blackwell Scientific, 1993.

� � �

acceleration vector (2.1) m s
activity (4.5) 1
hyperfine splitting constant (15.9) T
van der Waals’ constant (1.8) m Pa mol
Bohr radius (10.1) m
absorbance (14.4) 1
area (1.3) m
conservation matrix (5.11) 1
Debye–Hückel constant (7.5) kg mol
Helmholtz energy (4.2) J
partial molar Helmholtz energy (4.4) J mol
pre-exponential factor in the Arrhenius (mol m ) s

equation (18.6)
area of a surface (2.5) m
Einstein probability of spontaneous s

emission (13.2)
van der Waals constant (1.8) m mol
impact parameter (17.8) m

G

� � �

a

A

a

� �

�

�

�

�

� � �

�

�

Symbols for Physical Quantities
and Their SI Units*
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Symbol Name Symbol for SI Unit

b

B

B

B
B T
B

B

c
c
c
C
C
C
C
C

C T
C
C

C

d
d
D
D
D

D
D

e

E

E
E
E
E

E
E

n

P

P

V

V

P

hkl

max

1/2 1/2

2 1

2 1

1

3 1

1
21

1
12

3

1

3

1 1

1

1 1

6 2

1

1 1

1 1
r

12

1

2 1

e

0

1

1

1
a

1
ads

1
des

�

�

� �

( )

distance along line of centers when m
molecules are in contact (19.1)

empirical constant in extended Debye– kg mol
Hückel equation (7.5)

magnetic field strength (magnetic flux T kg s A
density) (10.4)

magnitude of magnetic field strength T kg s A
(magnetic flux density) (10.4)

rotational constant (13.4) m
( ) second virial coefficient (1.5) m mol

Einstein probability of stimulated m kg
emission (13.2)

Einstein probability of stimulated m kg
absorption (13.2)

molar concentration (5.1) mol m
speed of light in a vacuum (9.1) m s
standard concentration (5.7) mol m
capacitance (22.1) F C V A s V
number of components (5.9) 1
rotation element and operation (12.1) 1
heat capacity at constant pressure (2.7) J K
molar heat capacity at constant J K mol

pressure (2.8)
( ) third virial coefficient (1.5) m mol

heat capacity at constant volume (2.6) J K
molar heat capacity at constant volume J K mol

(2.6)
reaction heat capacity at constant J K mol

pressure (2.12)
collision diameter (17.7) m
interplanar spacing (23.2) m

˜ centrifugal distortion constant (13.4) m
diffusion coefficient (17.9) m s
minimum number of variables to 1

describe the extensive state of a
system (1.9)

equilibrium dissociation energy (13.6) J
spectroscopic dissociation energy J

(dissociation energy from ground
state) (13.6)

charge of a proton (10.1) C
electric field strength (7.1) V m
electromotive force (potential difference V

for a cell) (7.3)
energy of a particle (9.3) J

˜ energy in wave numbers (10.1) m
identity element or operator (12.1) 1
activation energy in the Arrhenius J mol

equation (18.6)
activation energy for adsorption (24.2) J mol
activation energy for desorption (24.2) J mol

�
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B

E

� �

� �

�

�

�

�

�

�

�

� �

�

� �

�

�

� �

� �

�

�

�

�

�

�

�

�

�
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Symbol Name Symbol for SI Unit

E
E
E
E
E
f

f
f
f
f
f i

f x

f , ,
F
F
F hkl
F J

J
F

F
g
g g
g
g
g g
g g
G
G

i
G

G
G

G
i

G

G
G
G
G

i
h
h
h h h
h

i

i

x

x y z

i

i

i

i

i

i

e
1

ea

h

i

2

1

1

3 3

1

1

1

1

2

e

N

1

1

1

1
f

1
r

1
mix

1
r

1
r

1
f

( )

electron kinetic energy (24.5) J
electron affinity (10.11) J mol
Hartree energy (10.1) J
ionization energy (10.2) J
standard electrode potential (7.7) V
electrostatic factor (20.5) 1
force vector (2.1) kg m s
frictional coefficient (20.1) kg s
fugacity (4.5) Pa
oscillator strength (14.5) 1
atomic scattering factor (23.6) 1
fraction of molecules in the th energy 1

state (13.4)
( ) probability density for velocity in the s m

direction (17.1)
( ) probability density for velocity (17.1) s m

Faraday constant (7.1) C mol
number of degrees of freedom (1.9) 1

( ) structure factor (23.6) 1
˜ ( ) rotational term value for quantum m

number (13.4)
( ) speed distribution function (Maxwell) s m

(17.3)
( ) energy distribution function (17.3) J

acceleration of gravity (1.3) m s
electron factor (10.5) 1
degeneracy (10.2) 1
orbital in Hartree–Fock method (10.9) 1
nuclear factor (15.1) 1
dimensionless factor (15.9) 1
Gibbs energy (4.2) J
molar or partial molar Gibbs energy of J mol

species (4.2)
˜ ( ) vibrational term value for a diatomic m

molecule (13.6)
transformed Gibbs energy (7.2) J
Gibbs energy for the formation of the J mol

activated complex (19.4)
standard Gibbs energy of formation of J mol

species (5.4)
standard transformed reaction Gibbs J mol

energy (8.5)
Gibbs energy of mixing (4.7) J mol
reaction Gibbs energy (5.1) J mol
standard reaction Gibbs energy (5.1) J mol
standard transformed Gibbs energy of J mol

formation of species (8.5)
height (1.11) m
Planck’s constant (9.1) J s

¯ /2 (“ bar”) (9.2) J s
radial factor in orbital (10.9) 1

v

v v v

v

v

�

�

�

�
�
�
�

�

�

Symbols for Physical Quantities and Their SI Units

f

‡

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
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Symbol Name Symbol for SI Unit

H
H
H
H
H
H i
H
H H
H x
H

H
H
H

i
H
H

H
i

I
I
I
I
I

I

I z

I I
I z

I z
J
J

J
J

J
J i z
J z

k
k
k
k
k

i

ij

T

i

z

xy yz

z

z

N

iz

z

n

AA

AB
1

1
298

1
ads

1
f

1
f

1
r

1
r

1
vap

2 1

1

2

3 1
a

2

2

1

1

2 1

2 1

1

1 2

3 1 1

1
cat

1
d

�

�

( )

enthalpy (2.7) J
classical Hamiltonian function (9.4) J

ˆ Hamiltonian operator (9.4) J
Coulomb integral (11.3) J
resonance integral (11.3) J
molar enthalpy of species (2.11) J mol
Hamiltonian matrix elements (11.7) J
molar enthalpy increment (2.12) J mol

( ) Hermite polynomials (9.10) 1
transformed enthalpy (8.3) J
enthalpy of adsorption (24.1) J mol
standard enthalpy of formation (2.12) J mol
standard transformed enthalpy of J mol

formation of reactant (8.5)
reaction enthalpy (2.11) J mol
standard transformed enthalpy of J mol

reaction (8.5)
enthalpy of vaporization (6.3) J mol
center of symmetry or inversion center 1

(12.1)
adiabatic ionization potential (24.5) V
intensity of transmitted light (14.4) J m s
ionic strength (7.5) mol kg
moment of inertia (9.11) kg m
nuclear spin quantum number (15.1) 1
total spin angular momentum of a J s

nucleus (15.1)
intensity of electromagnetic radiation mol m s

absorbed (19.6)
ˆ operator for the component of J s

angular momentum in NMR (15.2)
product of inertia (13.5) kg m
moment of inertia about the axis kg m

(13.5)
component of nuclear spin (15.1) J s

photodissociation coefficient (19.9) s
quantum number of the total angular 1

momentum of an atom (10.12)
rotational quantum number (9.12) 1
spin–spin coupling constant (15.5) s
total angular momentum vector for an J s

atom (10.5)
flux of particles (17.6) m s
flux of in the direction (17.9) mol m s

component of the total angular J s
momentum of an atom (10.12)

Boltzmann constant (3.6) J K
force constant (9.9) N m kg s
rate constant (18.2) (mol m ) s
turnover number (20.10) s
rate constant for desorption (24.2) s

�

�
�
�

�
�

�

v
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I

J

�

�

�

�

�

�

�

�

� �

�

� �

�

�
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Symbol Name Symbol for SI Unit

k
k

k

K

K
K

a

K
K
K

c c
K
K i
K

K
K

P P
K

K
K , K

K

K

i

x

z
i

L

L

L
q

L

m
m
m

�

�

�

c

i

P

i

c

x y

i

x

zi

q

1

1

1

a

b

1
f

3
I

3
M

w

2 2 2

2

1

( )

conditional rate constant (20.8) s
apparent rate constant at specified pH varies

(20.10)
rate constant for the activated complex s

crossing the barrier (19.4)
constant in Langmuir adsorption Pa

isotherm (24.2)
equilibrium constant (5.1) 1
quantum number of the component of 1

angular momentum along the axis
of a symmetric molecule (13.5)

acid dissociation constant (8.1) 1
base dissociation constant (8.1) 1
equilibrium constant expressed in terms 1

of / (5.7)
freezing point constant (6.7) K kg mol
Henry’s law constant of species (6.5) Pa
inhibition constant for an enzymatic mol m

reaction (20.10)
Michaelis constant (20.10) mol m
equilibrium constant expressed in terms 1

of / , when needed to distinguish
from (5.7)

ion product for water (8.1) 1
equilibrium constants in terms of mole 1

fractions (5.6)
apparent equilibrium constant at 1

specified pH (8.3)
equilibrium constant for the formation 1

of a transition state (19.4)
angular momentum quantum number 1

(9.11)
angular momentum vector of electron J s

in an atom (10.12)
angular momentum in the direction J s

(9.4)
component of the angular momentum J s
of electron in an atom (10.12)

angular momentum (9.11) J s
angular momentum vector for an atom J s

(9.12)
length (2.1) m
vector length (2.1) m

ˆ operator for the angular momentum in J s
the direction (9.4)

ˆ operator for the square of the angular J s
momentum (9.12)

magnetic dipole moment vector (22.5) A m
magnetic quantum number (9.12) 1
mass (1.3) kg
molality (7.4) mol kg

Symbols for Physical Quantities and Their SI Units

L

L

m

‡

‡

�

�

�

�

�

�

�
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Symbol Name Symbol for SI Unit

m
m z

i
m z

m
m
m z

m z
i

m
m
m

M

M

M z

M z

M
M
M
M z

n
n
n

n
n
n
n
N
N
N
N
N
N

i

I

s

si

z

J

L

S

c

e

N

p

u
1

1

1

1

1
m

1
n

r

1
A

H

Mg

( )

rest mass of electron (10.1) kg
quantum number for component of 1

the orbital angular momentum of
electron in an atom (10.12)

quantum number for component of 1
nuclear spin (15.1)

mass of nucleus (10.1) kg
mass of proton (15.1) kg
spin quantum number for the 1

component of the spin angular
momentum (10.5)

quantum number for the component 1
of the spin of electron in an atom
(10.12)

atomic mass constant (16.3) kg
standard molality (7.4) mol kg
mean ionic molality (7.4) mol kg
magnetization (magnetic dipole A m

moment per unit volume) (22.5)
magnetic quantum number for a 1

molecule (11.4)
molar mass (1.3) kg mol
magnetization in the direction of the T

field (15.2)
quantum number for component of 1

total angular momentum for an atom
(10.12)

quantum number for component of 1
the orbital angular momentum of an
atom (10.12)

mass average molar mass (21.1) kg mol
number average molar mass (21.1) kg mol
relative molar mass (21.5) 1
quantum number for component of 1

the spin angular momentum of an
atom (10.12)

amount of substance (1.3) mol
order of a reaction (18.2) 1
order of reflection in the Bragg 1

equation (23.3)
principal quantum number (9.6) 1
refractive index (21.5) 1
amount of pseudoisomer group (8.3) mol

(H) amount of hydrogen component (8.3) mol
number of particles (1.1) 1
number of species (4.1) 1
number of pseudoisomer groups (8.3) 1
Avogadro constant (1.1) mol
average number of protons bound (8.2) 1
average number of magnesium ions 1

bound (8.2)

Appendix G: Symbols for Physical Quantities and Their SI Units

M

M

�

�
�

�

�

�

�

�

	

	

�



y

�

�

�

continued

905

Symbol Name Symbol for SI Unit

N i
i

N

p
p

a
K K

p r

P
P
P
P
P i
P i
P
q
q
q̂
Q

Q
Q
Q i
r
r

r i

r

r

R
R
R

R
R m
R

R r

R̂

n

q

i

i

m

i

i

n

n

H

s

1

1

H

3

1

2

c

3 1

2 1/2

1 1

1

1
nuc

e

3/2

( )

( ) number of hydrogen atoms bound by 1
species (8.5)

number of different species in system 1
(1.1)

momentum of a particle (9.1) kg m s
number of phases (5.9) 1
relative momentum of a particle kg m s

(9.12)
pH log (7.8) 1
p log (8.2) 1

( ) radial probability density (10.3) m
ˆ linear momentum operator (9.4) kg m s

dielectric polarization (22.1) C m
pressure (1.3) Pa
probability (19.1) 1
standard state pressure (5.7) Pa
critical pressure (1.7) Pa
partial pressure of (1.4) Pa
equilibrium vapor pressure of (6.4) Pa
molar polarization (22.3) m mol
heat absorbed by a system (2.1) J
molecular partition function (16.1) 1
coordinate operator (9.4) m
canonical ensemble partition function 1

(16.10)
electric charge (2.5) C
reaction quotient (5.1) 1
charge on the th ion (11.7) C
radius of curvature (6.3) m
resistivity (20.3) m
vector distance (7.1) m
unit vector in a particular direction m

(7.1)
mole fraction of within an isomer 1

group (5.10)
expectation value for radius in an atom m

(10.3)

( ) root-mean-square end-to-end distance m
(21.3)

electric resistance (20.3)
gas constant (1.2) J K mol
number of independent reactions (5.9) 1
position of a nucleus in a coordinate m

system (11.1)
Rydberg constant (10.2) m
Rydberg constant for (10.2) m
equilibrium internuclear distance in a m

diatomic molecule (13.6)
( ) hydrogenlike radial wavefunction m

(10.3)
transformation operator (12.9) 1

�
�

�

�

�

�
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� �

p

p
P

r
r̂

R

�

�

�

�

�

�

�

� �

�

�
�

�

�
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Symbol Name Symbol for SI Unit

R
s

s
i

i
s

i
s z

i

s
S
S

S
S

S

S
S i

S
S
S z

S z

S
S
S

S
S
S

t
T
T
T
T
T x

T
T
T
u
U

G

i

i

i

zi

i

n

z

z

x

2 1/2

1

2

AB
1 1

vv

1

2
0
2

1 1
mix

1 1
r

1 1
r

1/2

B

c

1

2

2 1 1

( )

	

radius of gyration (21.3) m
electron spin quantum number (generally 1

referred to as the spin) (10.5)
quantum number of spin angular 1

momentum of electron in an atom
(10.12)

spin angular momentum vector for J s
electron in an atom (10.12)

stoichiometric number for elementary 1
step in a mechanism (18.7)
component of the spin angular J s
momentum of electron in an atom
(10.12)

sticking coefficient (24.2) 1
entropy (3.2) J K
quantum number of spin angular 1

momentum of an atom (10.12)
reaction cross section (19.1) m
sedimentation coefficient (21.5) s
spin angular momentum vector (10.5) J s

ˆ spin angular momentum operator J s
(10.5)

overlap integral (11.2) 1
molar or partial molar entropy of J K mol

(3.3)
improper rotation axis or operator (12.1) 1
Franck–Condon overlap integral (14.2) 1

component of the spin angular J s
momentum (10.5)

ˆ operator for the component of the J s
spin angular momentum (10.5)

transformed entropy (8.3) J K
surface area of catalyst (24.8) m

ˆ square of operator of spin angular 1
momentum (10.5)

entropy of mixing (3.5) J K mol
reaction entropy (3.8) J K mol
standard transformed reaction entropy J K mol

(8.5)
half-life for a reaction (18.2) s
kinetic energy (9.4) J
thermodynamic temperature (1.3) K
Boyle temperature (1.5) K
critical temperature (1.7) K

ˆ operator for the kinetic energy in the J
direction (9.4)

spin–lattice relaxation time (15.7) s
transverse relaxation time (15.7) s
reference temperature (3.3) K
electric mobility (20.3) m V s
internal energy (2.1) J

�
�
�

�
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s

S
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Symbol Name Symbol for SI Unit

U
i

U

V
V
V
V
V

i
V
V

w
W x, y, z x, y, z

x i
x
x x

X

y i
Y
Y ,
z i
z

z

Z

Z
Z
Z

Z

i

i

i

i

i

m

i

1

t
3 1

3 1

1

1

1
mp

1
s

1

1
12
2 1/2 1

3

3 1

3 1
c

3 1

3 1

3 1
S

n

1
11

1
12

3 1
11

3 1
12

1

2 2 1

( )

molar or partial molar internal energy J mol
of (2.8)

translational energy (2.8) J
rate of reaction (18.1) mol m s
specific volume (21.5) m kg
magnitude of velocity of a particle m s

(17.1)
velocity vector (17.1) m s
vibrational quantum number (9.10) 1
most probable speed (17.4) m s
speed of sound (17.4) m s
mean speed (17.4) m s
mean relative speed (17.7) m s
root-mean-square speed (17.4) m s
potential energy (9.1) J
volume (1.1) m
molar volume (1.1) m mol
critical molar volume (1.7) m mol
molar volume or partial molar volume m mol

of (1.10)
molar volume of a pure substance (6.9) m mol
maximum rate of enzyme-catalyzed mol m mol

reaction (20.10)
work done on a system (2.1) J

( ) probability of coordinates and 1
after random walk (21.3)

mole fraction of in liquid phase (6.4) 1
ˆ operator for position (9.4) m

expectation value for (9.5) m
number average degree of polymerization 1

(21.4)
mole fraction of in a gas (1.4) 1
fractional saturation of binding (8.7) 1

( ) spherical harmonic (9.11) 1
charge number of ion (signed) (7.1) 1
collision frequency for like molecules s

(17.7)
collision frequency for unlike molecules s

(17.7)
atomic number or proton number 1

(10.1)
compressibility factor (1.5) 1
effective nuclear charge (10.7) 1
collision density for like molecules m s

(17.7)
collision density for unlike molecules m s

(17.7)
Coulomb integral (11.7) J
cubic expansion coefficient (4.9) K
optical rotation (14.11) deg
molecular polarizability (13.9) C m J

v
v
v

v
v
v
v
v
v

� �

�
�
�
�

�

Symbols for Physical Quantities and Their SI Units

� �
� �
� �

� �

v

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

� �

� �

�
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Symbol Name Symbol for SI Unit

C C

i

i

E
t
x

P V

i

i

ij

2 2 1

1
e

2 1

2 1 1

1

1

2 1

r

1
r

2 1 2
0

F
1

k
1

0

1 1

sp
2 1

D

e

E

�

( )

molecular polarizability matrix (13.9) C m J
spin function for an electron (spin up 1

function) (10.5)
vibration–rotation coupling constant m

(13.7)
[ ] specific rotation (14.11) deg m kg

resonance integral (11.7) J
spin function for an electron (spin 1

down function) (10.5)
magnetogyric ratio (10.4) A m J s
ratio of to (2.10) 1
surface tension (2.5) N m
activity coefficient of based on 1

deviations from Raoult’s law (6.6)
activity coefficient of based on 1

deviations from Henry’s law (6.6)
mean ionic activity coefficient (7.4) 1
chemical shift in NMR (15.4) 1
path difference (23.6) m
Kronecker delta (9.3) 1
uncertainty in energy (9.2) J
uncertainty in time (9.2) s
extent of wave packet in space (9.2) m
range in frequency (9.2) s
efficiency (3.9) 1
energy of a particle (10.9) J
molar absorption coefficient (14.4) m mol
parameter in Lennard-Jones equation J

(11.9)
relative permittivity (dielectric constant) 1

(7.1)
relative energy of collision (19.1) J mol
permittivity of vacuum (7.1) C N m
Fermi energy (23.10) J
energy along line of centers (19.1) J mol
minimum energy along line of centers J mol

for reaction (19.1)
energy barrier at absolute zero (19.4) K
number of subsystems in a canonical 1

ensemble (16.10)
viscosity (17.9) kg m s Pa s
specific viscosity (21.5) 1

[ ] intrinsic viscosity (21.5) m kg
surface coverage (24.2) 1
theta temperature (21.2) K
Debye temperature for a monatomic K

crystal (16.12)
characteristic electronic temperature K

(16.6)
Einstein temperature for a monatomic K

crystal (16.12)

�
�
�
�

�

�
�
�

�

�

�

�

�
�
�

�
�
�
�

�

�
�
�
�

�
�
�
�
�

�

�
�
�
�
�

�
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�

�

�

� �
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Symbol Name Symbol for SI Unit

i
i

z

z

i

i

i

nm

s

z

z

i

r

v

1 1

1

2 1

1 1 1

1
D

1 2

1 2
B

1

1

1
JT

1
N

r
2

2

2
s

1 2

2
0

1

1

1

�

�

�

�

( )

characteristic rotational temperature K
(16.5)

characteristic vibrational temperature K
(16.4)

electric conductivity (20.3) m
isothermal compressibility (1.7) Pa
naperian molar absorption coefficient m mol

(14.4)
reciprocal wavelength (9.2) m
thermal conductivity (17.9) J m s K
mean free path (17.7) m
quantum number for angular momentum 1

around the internuclear axis (11.3)
wavelength (9.1) m
Debye wavelength (16.12) s
quantum number for electronic angular 1

momentum along molecular axis
(11.4)

thermal wavelength (16.3) m
electric dipole moment (11.8) C m
magnetic dipole moment (10.4) J T A m
magnitude of dipole moment (11.8) C m
reduced mass (9.9) kg

ˆ quantum mechanical dipole moment C m
operator (13.2)

Bohr magneton (10.4) J T A m
chemical potential of (4.1) J mol
transformed chemical potential of J mol

(8.3)
Joule–Thomson coefficient (2.9) K Pa
nuclear magneton (15.1) J T
transition dipole moment (13.2) C m
relative permeability (22.4) 1
magnetic dipole moment vector for spin A m

angular momentum (10.5)
magnetic dipole moment vector for A m

angular momentum (10.5)
component of the magnetic dipole A m
moment for an electron (15.1)

magnetic dipole moment in the J T A m
direction (15.1)

permeability of vacuum (22.1) N A
(1) reference chemical potential for solute J mol

in a dilute real solution (6.6)
frequency (9.1) s
stoichiometric number matrix (5.11) 1
sum of stoichiometric numbers for a 1

reaction (5.7)
˜ wave number (13.1) m

number of ions in an electrolyte 1
molecule ( ) (7.4)

�

�

�

(

(

�
�
�

�
�
�
�

�
�

�
�

�
�
�

�
�

�

�

�

�
�

�

�

�
�

� �
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Symbol Name Symbol for SI Unit

i

x , y

i

T
, T

x

i

i

i

x

x

e

1
R

1
e e e e

3

3

3

4

3

2

r

g

1

1

el

mag

( )

stoichiometric number of the electron 1
in an electrochemical reaction (7.3)

stoichiometric number for reactant 1
(positive for products, negative for
reactants) (2.11)

apparent stoichiometric number (8.3) 1
˜ Raman frequency (13.9) m
˜ ˜ anharmonicity constants (13.6) m

extent of reaction (2.11) mol
apparent extent of reaction (8.3) mol
dimensionless extent of reaction (5.3) 1
probability of forming a chain of size 1

(21.4)
osmotic pressure (6.7) Pa
number density (17.7) m
density (1.1) kg m

( ) total radiant energy density (9.16) J m
( ) energy density as a function of wavelength J m

(9.16)
energy density in a cavity as a function J m s

of frequency (9.1)
absorption cross section (14.4) m

( ) reaction cross section as a function of m
relative energy of collision (19.1)

parameter in Lennard-Jones equation m
(11.9)

shielding constant (15.4) 1
standard deviation (9.5) varies
symmetry number (16.5) 1
symmetry plane or reflection operator 1

(12.1)
molecular orbital (11.4)
standard deviation in (9.5) m
standard deviation of Doppler broadening s

(17.4)
variance (9.5) varies
magnetic quantum number for spin 1

angular momentum of a molecule
(11.4)

lifetime (13.2) s
relaxation time (18.2) s
turbidity (21.5) m
electric potential difference (2.5) V
electric potential (7.2) V
fugacity coefficient (4.5) 1
phase difference in scattering (23.6) deg
quantum yield (19.6) 1
volume fraction (21.5) 1
membrane potential (7.10) V
electric susceptibility (22.1) 1
magnetic susceptibility (22.5) 1

�

)

�

�

�

�
�
� �
�
�
�
�

�
�
�
� �

�

"
" �

"

"
"
"
"

"
"
"
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Symbol Name Symbol for SI Unit

, t

,
3 1

mag m
3/2

3/2

3/2
e

3/2
n

3/2

1

molar magnetic susceptibility (22.6) m mol
wavefunction in three dimensions (9.3) m
complex conjugate of (9.3) m
electronic wavefunction (11.1) m
nuclear motion wavefunction (11.1) m

( ) time-dependent wavefunction (9.14) m
angular frequency (2 ) (9.9) rad s
number of microstates in a macrostate 1

(3.6)
quantum number for the total angular 1

momentum along the internuclear
axis of a diatomic molecule (14.1)

$

�

�

*
 
  
 
 

# ��

�

Symbols for Physical Quantities and Their SI Units

r

�

�

�

�

�

�

�



T V

x y
xy xy

P, V, T P, n, T P, V, n V, n, T

a b c

a b

B .

B M .

b d N

a b

. . . .

B . C .

V . T . P .

T, P.

V K T P .

V V T T , V V T T .

a P V nRT V nb , P T nR V nb
b P V T nR V nb , P T V nR V nb

y . y .

w .

a b c d

M y N x y

a y x b y x y c x y d x y e y x

� �

�

� �

� � �

� �

�

� � �

� �
� �

� �

�

� �

1

3 1 1

1

3 1

3 3 1
A

1 1

1 1 1

1

1

5 3 1 9 6 2

1
c c c

0 0 0 0
2

2 2 2 2

2 2

1 1

2

2

(1) ; (2) ; (3) ; (4) .
( ) 0.696, 0.304; ( ) 0.522 bar, 0.228 bar; ( ) 17.00 L.
21.0 g mol ; 0.643.
( ) 0.6884, 0.3116; ( ) 18.49%.

183 cm mol , 30 07 g mol .
0.014 L mol .
276 cm mol .

2 /3, 21.7 cm mol .
( ) 0.603 L mol ; ( ) 0.39 L mol .

0 048 L mol , 0 026 L mol ; Fig. 1.9 yields 0 040 L mol and 0 020 L
mol .
0.4719 L mol .

2 38 10 m mol , 1 01 10 m mol .
0 1914 L mol , 310 671 K, 50 609 bar.

1/ 1/
exp( ) exp( )
exp[ ( )] [1 ( )]

( ) ( / ) /( ) ( / ) /( );
( ) ( / ) /( ) /( ) /( ) .
0.472 bar.
0.333 bar, (O ) 0 177, (N ) 0 823.

914 m.
1 24 kJ mol . The work on the atmosphere is 1.24 kJ mol .

( ) 4269 m; ( ) 6.97 min; ( ) 1.05 min; ( ) 1.28 g.
The second function is exact because ( / ) ( / ) 1/ .

( ) , ; ( ) 1/ , / ; ( ) 1/ , 1/ ; ( ) 1/ , 1/ ; ( ) e , e .

�

� � � �

� �

�

� �
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 � �

�


 
 
 
 �

� � �

�

� �

� �

� �
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Chapter 1 Thermodynamic State of a Gas

Chapter 2 First Law of Thermodynamics
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1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.12

1.13
1.15
1.16
1.17
1.18
1.19
1.20

1.22
1.22

2.1
2.2
2.3
2.4

2.7

Answers to the First Set of Problems



T T
P T
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a b c

P V T T V P K

a . b .

a w nRT V nb V nb an V V
b

a . b c
d

a . b c d
e .

a w P V P V b

T . P .

T .

a . b .

.

a . b . c . d .

a . . . b . . .

. .

.

.

.

.

a b c
d

a b

a b

a b . c
d e

S

a b

a U S . w . q w . b
U S . w . q .

c U S . w
q

a b

� �

� �

�

� �

�

� � � � �
� � � �

� � �
�

1 1

2
2 1 1 2

1 1 1

1

1 1

1

1

1

1
2 2 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1 1

1 1

1 1

1 1 1

1 1 1

1 1

1 1

1

1 1 1 1

1 1 1 1 1

1

1 1 1 1

( ) 720 J; ( ) 735 J; ( ) 100 J.
( / )( / ) ( / )( / ) e e ( ).
( ) 5 03 kJ mol ; ( ) 2 12 kJ mol .
( ) ln[( )/( )] [(1/ ) (1/ )];
( ) (1) 9697 J; (2) 9575 J.
( ) 3 10 kJ mol ; ( ) 40.69 kJ mol ; ( ) 37.59 kJ mol ;
( ) 40.69 kJ mol .
( ) 5 70 kJ mol ; ( ) 5.70 kJ mol ; ( ) 0; ( ) 0;
( ) 2 23 kJ mol .
41.572 kJ mol .
21.468 kJ mol .
( ) ( )/( 1); ( ) 1260 J mol .

160 4 C, 1 609 bar.
118 70 K, 2238 J mol .

( ) 46 1 kJ; ( ) 24 1 kJ.
0, 899 8, 899.8 J mol .
0, 748, 748, 1247 J mol .
( ) 542 2; ( ) 184 62; ( ) 103 71; ( ) 9 48 kJ mol .
( ) 13 4, 7 98, 13 6 MJ kg ; ( ) 0 744, 0 299, 0 680.
493.580, 498.346, 513.482 kJ mol .
267.66, 39 84, 214 65, 13.17 kJ mol ; single reactor.

5619 J mol .
45 054 J mol .

89 849 kJ mol .
493.486 kJ mol , 5.115 eV.
41.4 kJ mol .

41 6 kJ mol .
81 21 kJ mol .
97 12 kJ mol .

( ) 25 968 kJ mol ; ( ) 2359 kJ mol ; ( ) 677.4 kJ mol ;
( ) 714.78 kJ mol .

( ) 109.04; ( ) 0 J K mol .
55.42 J K mol .
( ) 6.371; ( ) 10.618 J K mol .
( ) 26.4 kJ mol ; ( ) 4 96 kJ mol ; ( ) 26.4 kJ mol ;
( ) 21.4 kJ mol ; ( ) 46.99 J K mol .
Since this is always positive, the change is always spontaneous.
( ) 15.56; ( ) 0 J K mol .
19.14 J K mol , 0.
( ) 0 kJ, 30 03 J K , 9 01 kJ, 9 01 kJ; ( )

0 kJ mol , 10 01 J K mol , 3 00 kJ mol , 3 00
kJ mol ; ( ) 0 kJ mol , 10 01 J K mol , 0 kJ mol ,

0 kJ mol .
( ) 19.14 J K mol , the same; ( ) 0, 19.14 J K mol .
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2.8
2.9
2.10
2.11

2.12

2.13

2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35

3.5
3.6
3.7
3.8

3.9
3.10
3.11
3.12

3.13



�
P

P V

P

P V

V V

P P
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(a) Re ersible (b) Irre ersible (c) Isol. Re . (d) Isol. Irre .

w .
q .

U
H
S .

a . b c S

.

a S S . S
b S S S

a b a
T Mg

a b T .
h C

a b

C C R a RT V b V

S C T T V P

.

C C R a RT V

a b a RT b

U V RT V B T

G .
T P

a G G T T H T T b G G T T H
T C T T T C T T

a b

a b c
d e f g .

a b c d
e f

S a c T H b c T

.

1

1

1

1

1 1

�

� � � �
� � � �

� �

�

�

�

�

�

� � � � �
�

� � � �

1 1

1
syst

1 1

1

1 1

1 1

1

1 1

1 1
2 2

2 2

1 1

2 3

1 1

1 1

1 1

2 2

1

2 1 2 1 2 1 2 1 2 1 1

1 2 1 2 2 1
1

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1

2

1

/kJ mol 5 71 0 0 0
/kJ mol 5 71 0 0 0

/kJ mol 0 0 0 0
/kJ mol 0 0 0 0

/J K mol 19 1 19.1 0 19.1

19.26 J K mol .
( ) 39 52; ( ) 41.92; ( ) 2.40 J K , irreversible because 0.

1.12 J K mol .
44.95 J K .
12.51 J K mol .
14.92 J K mol .

154 4 kJ mol .
150.67 J K mol .
( ) (H ) (surr) 45 31 J K mol , (H surr) 0;
( ) (H ) (surr) (H surr) 0.
17 000 ft.
( ) 214 J; ( ) 307 J, or 93 J more than ( ).

( ) ; ( ) 16 8 C.

( ) 24.91; ( ) 25.55 J K mol .
/ 1 (2 / )[( ) / ] .

d ( / ) d d .
10 99 J K mol .

/(1 2 / ).
0.51 J K mol .
( ) 2 / ; ( ) 25 J bar mol .
( / ) ( / )( / ) .

213 9 J mol . This is negative, as expected for a spontaneous process
at constant and .
( ) / (1 / ); ( ) / (

)(1 / ) ln( / ).
1.8 kJ mol .
( ) 5708 J mol ; ( ) 5708 J mol .
166.848 J K mol , 11.41 kJ mol .
( ) 4993 J mol ; ( ) 4993 J mol ; ( ) 4993 J mol ;
( ) 4993 J mol ; ( ) 0; ( ) 0; ( ) 13 38 J K mol .
( ) 3193 J mol ; ( ) 33 340 J mol ; ( ) 33 340 J mol ; ( ) 30 147 J mol ;
( ) 0; ( ) 86.8 J K mol .

/ ; 2 / .
65 1 J mol .

v v v v

�

�
�
�

� �

�

� �� �
� � �

�
� � �

�

� � �

�
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3.14

3.15
3.16

3.17
3.18
3.20
3.22
3.23
3.24
3.25

3.26
3.27

3.28

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11
4.12
4.13
4.14

4.15

4.16
4.17

�

�

�

�

� �
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.

.

G G RT P P b a RT P

S S RT P P aP RT

A G RT P P RT

U U aP RT

H H b a RT P

V RT P b a RT
A RT V b V b a V V U a V V

X T S P V n Y S T P V n Z T S
V P n

a b . c

.

a b c

.

a b

K P P

a b

a b c

a b

a . b c d e

a b c d
e

K c

a y . y . y . V .
b y . y . y . P .

P . P . P .

.

�

� � �

� �

� �

�

� �

� �

� �

� � � �

�

�

� � � �
� � � �

� � �

1

1

2

2 1 2 1 2 1

3 1

1 1 1

1 1

3

3

1

2 2 3

3

1

2 4 2 2 6

2 2 3

2 2 3

2 2
5

63 6 J mol .
(real) (ideal) 1 72 kJ mol .

ln( / ) ( / )

ln( / ) /

ln( / )

/

( 2 / )

/ /
ln[( )/( )] (1/ 1/ ), (1/ 1/ ).

d d d d , d d d d , d d
d d .

106.9 bar.
51.7 bar.
29.3 cm mol .

1239 J mol ; 4.159 J K mol .
3.4 kJ.

( ) 48.9 kJ mol ; ( ) 8 78 kJ mol ; ( ) yes.
6 47 10 .
( ) 0.503; ( ) 1.36; ( ) 0.879.
1.83.
1 64 10 .
5.73 kJ mol .
( ) 9.520 g; ( ) 1.206, 0.032, 1.440 bar.

(2 2 ) /(1 )(1 3 ) ( / ).
0.0814, 0.0335, 94.6%.
1.44, 0.545.
0.0055.
( ) 10.3; ( ) 22.0 bar.
0.311.
231 bar.
( ) 12.7%; ( ) no effect; ( ) 54 bar.
( ) 35.6; ( ) 0.084 bar.
( ) 2 03 10 ; ( ) increase; ( ) increase; ( ) no; ( ) decrease.
0.973.
( ) decreases; ( ) increases; ( ) no effect; ( ) decreases;
( ) increases.
1023 K.
75 kJ mol .
0.0145, [C H ][H ]/[C H ] .
( ) (N ) 0 1266, (H ) 0 3798, (NH ) 0 493, 22 27 L;
( ) (N ) 0 990, (H ) 0 2970, (NH ) 0 302, 0 698 bar.

(H O) 0 084, (CO) 0 458, (H ) 0 458 bar.
3 47 10 bar.
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.

a b

.

H T S
H T S G

RT U

a . b . c

n . n . n .

K P P K

a
b

G S T V P n n n n n n n n

R N C

a

b , . , c
d

a b c d

T, P, n n

a b c

.

.

.

� �

� � �

� �

� � �
� � � � �

�

� �

�

� � � � � � � �

� � �

� � � �

� � � �

�

�

�

�

�

1 1

1

13

r r

r r r

5

5 3

2 2

2 2 2

2 2 2 2

2 2 6 6

2 2 10 8 2

A B A C B CI B I B

3 2 2

3 2 2

2 4 3 6 4 8

2 4 3 6

2 4 4 8

c c

80 67 J K mol . Since the ions polarize the neighboring water mol-
ecules, the product state is more ordered than the reactant state.
( ) 0.0204, 0.187; ( ) 154 kJ mol .
425 K.
3.2 bar.
1 82 10 bar.

/ is the increase in the entropy of the reservoir, and is the increase in
the entropy of the reaction. Thus, / is the global increase
in entropy.

.
9.2 10 bar.
( ) 1 4 10 bar; ( ) 6 83 10 bar; ( ) 0.72 bar.

(CuO) 0 82 mol, (Cu O) 0 14 mol, (O ) 0 02 mol.
/[4( / ) ].

0.249.
( ) One, for example, CO H CO H O;
( ) two, for example, CO H CO H O and 2CO CO C.
3C H C H

5C H C H H

3 5
2 0 6 10 0 1 0 0
2 2 6 8 1 0 0 0

0 1

d d d d d , where and .
There are four components, so there are 6 4 2 independent
reactions. These reactions can be taken to be

ClO 5Cl 6H 3H O 3Cl

5ClO Cl 6H 3H O 6ClO

C H C H C H( )
2 3 4
4 6 8

( ) The row-reduced form is [1 1 5 2]; ( ) there is one component because there
is one independent row; ( ) the two independent reactions are

R1 : 1.5C H C H

R2 : 2C H C H

( ) 1; ( ) 2; ( ) 4; ( ) 2.
3; (H)/ (O).
( ) 3; ( ) 2; ( ) 4.

The boiling point is reduced 0.4 C to 68 3 C.
90 6 C.
92 4 C.
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5.32
5.33
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5.36
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5.43
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6.1
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6.3
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a . b .

.

a b . c .

.

a b c
d

a . b

.

a b

a b

a . b

a b
c

a b

ta
x
y

b y .

a b

G RT x x x x wx x

S R x x x x

H wx x

V

a y . b y c y . y .

.

y

wx RT wx RT

P x P x Pw
RT x x P x P P

x

3

�

� � �

� �

�

�

� � � �

� �

�
�

�

1 3

1

1 1 1

1

2

3

benz

benz

benz

mix 1 1 2 2 1 2

mix 1 1 2 2

mix 1 2

mix

EtOH EtOH EtOH EtOH

EtOH

EtOH

(CHCl )

2 2
1 22 1

1 21 2

1 2 11 2 1

2

2

1

( ) 38 81; ( ) 16 6 C.
0.258 bar.
11.548 kJ mol , 6 190 10 bar.
3780 bar.
( ) 44.8 kJ mol ; ( ) 97 03 C; ( ) 97 36 C.
64 0 C, 152.2 kPa.
166 Pa.
( ) 31.4 kJ mol ; ( ) 13.9 kJ mol ; ( ) 17.5 kJ mol ;
( ) 88 C.
( ) 6 85 C; 5249 Pa; ( ) 10.48 kJ mol .
3 35 10 cm.
( ) 15.7 cm; ( ) 7.86 mm.
( ) 200 Pa; ( ) 20 Pa.
( ) 3 17 10 Pa; ( ) 373.5 K.
3, 4, and 5.
25.552 mm of mercury or 3406 Pa.
( ) 0.590, 0.410; ( ) 6980, 2430, 9410 Pa;
( ) 0.742.
( ) 29.4 kPa; ( ) 0.581.

/ C 88 94 100( )
0.633 0.422 0.244
0.814 0.644 0.439

( ) Bubble point, 92 C; 0 72.
( ) 0.560, 0196; ( ) 0.884, 0.577.
Three theoretical plates.
20.7%.

( ln ln )

( ln ln )

0

( ) 0 69; ( ) 1; ( ) 0 69, 0 90.
0 00233 C.

0 0.2 0.4 0.6 0.8 1.0
— 2.045 1.316 1.065 0.982 1.000
1 1.111 1.333 1.627 1.854 —

exp( / ), exp( / ).

( )

[ ( )]

0 0.2 0.4 0.6 0.8 1.0
— 0.24 0.13 0.093 0.080 —

1.00 1.15 1.52 2.09 2.82 —
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6.7
6.8
6.9
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a b .

a b

x .

x V x V

a V . . x . x b V . . x V .
. x . x

a . b .

a b c

a b c

a b

a m
E E . m P

b m
E E . m P

a b .
.

a . . .
b . .

a . b
.

a b . c . d .
e .

. . .

a . b . c .

a T P
b F T, P c F T, P, E

� �
�

�

� �

� � � � � �

�

�

� � �

� �

1

2 3

3 3 3

Bi

1 1 2 2
2 2

2 1 22 2
2

2 2

1 1

1

3 5

1

2
2 2 1/2

2

2 2 4 2 4
3 3 1

2
1 1

2 4 4
1 1

1 1 1

1 1 1 1

1 14 1

14

1

1

51 4 77

( ) 2.3066 kPa; ( ) 0 372 C.
( ) 719 Pa; ( ) 73.4 mm of water.
255 kg mol .
27.3 bar.
0.365, 0.516.
0.297.
0.513 K.
0.0569, yes.
Sb Cd is formed.
In the liquid region 2, in the two-phase regions 1, and at the eutectic
points 0.
461 cm ethanol, 570 cm water; the shrinkage is 31 cm .
0.143 bar.

0 700.
0 d d .
( ) 18 023 53 57 1 45 ; ( ) 18 023 1 45 , 71 60
2 90 1 45 .

14.398 J C ; 1389.3 kJ mol .
277.8 kJ mol .
5.04 miles.
( ) 6 34 10 ; ( ) 7 44 10 .
0.872.
( ) 0.24; ( ) 0.80; ( ) 0.06 mol kg .
( ) 0.964; ( ) 0.880; ( ) 0.762.
1.140 V.
( ) 0.710 V; ( ) 0.804.
( ) Na NaOH( ) H Pt

At 25 C, 0 0591 log[ (H ) ]
( ) Pt H H SO ( ) Ag SO Ag

At 25 C, 0 0296 log[4 (H ) ]

( ) Pb(s) Hg SO (s) PbSO (s) 2Hg(l); ( ) 186 16 kJ mol , 33.58 J K
mol , 176 15 kJ mol .
( ) 131 260 kJ mol , 167 127 kJ mol , 120 3 kJ mol ;
( ) 131 260 kJ mol , 167 127 kJ mol , 56.6 J K mol .
( ) 81.902 kJ mol , 5 69 10 ; ( ) 81.673 kJ mol ,
6 28 10 .
0.828 V.
( ) 212.55; ( ) 262 46; ( ) 47 40; ( ) 25 71;
( ) 2 9 kJ mol .

131 258, 157 26, 261 86 kJ mol .
( ) 3 1 10 ; ( ) 1 8 10 ; ( ) 7 8 10 .
0.1801 V.
( ) There is an additional independent variable beyond and ;
( ) 2 ( ); ( ) 3 ( ).

v v
v
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6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

6.46
6.47
6.48
6.50
6.51

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11

7.12

7.13

7.14
7.15
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a K . K .
b K .

.

.

a . b c

.
.

a b

a b .

a b

a . b .

a . b .

. .

S
S

G S T V P n n

G n r r RT r r r r RT c

G RT G RT

G G RT c RT

H r H r H H

.

.

.

a b

Y K K

K K K K
K K

C N R
K K K K

� �
�

�

�

� � �
�

� � � �

� � � � �

�

�

� �

� �

� � � � � �

� �
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� �

�
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� �

� �

�

7 11
1 2

4
a 2 3

5 1

1 1 1 1

1 1

1 1

7

1 1 1

3 1 23 1

1 1 1 1 14

1 1
r

1
r

1

4 1 2 1
2

3 1 2 8 1
3

i i1 2 1 1 2 21 2

f f

f f

f f f f

2 1

1

1

1

1 1

L1 21 2

L 3 4

1 3 2 4

( ) 4 35 10 ; 4 69 10 ;
( ) [H CO (aq)] 1 68 10 .

0 152 V.
1 33 10 mol kg .
( ) 3 040; ( ) 2.889; ( ) 1.458 V.
261.905 kJ mol , 240.12 kJ mol , 73 132 J K mol ,

32 572 J K mol .
( ) 73.08; ( ) 73.13 J K mol .
( ) 6.49; ( ) 3 24 10 .
1.30.
0.60.
( ) 1.086 V; ( ) 1.032 V.
( ) 817 90 kJ mol , 1.0596 V; ( ) 890 4 kJ mol , 356 kJ mol .
3.474 V.
0.018 V; the phase is positive.

0.036 V.
( ) 96 8 10 C mol ; ( ) 6 04 10 mol .

79.885 kJ mol , 55.836 kJ mol , 80 66 J K mol , 1 010 10 .
For the acetic acid dissociation, 91 J K mol . The increase in order is
due to the hydration of the ions that are formed. For aniline, 18 J K
mol . This number is smaller because there is no change in the number of ions.
2.026, 6.831.
[His ] 6.3 10 mol L , [HisH] 9.03 10 mol L , [HisH ] 9.03
10 mol L , [HisH ] 6 10 mol L .
4.35.
d d d (H ) d (H ) (A ) d (A).
Equation d can be written

(P ) ln( ln ln ) ln([P ]/ )

(A) ln exp[ (A )/ ]

exp [ (HA) (H ) ln([H ]/ )]/

(A ) (A ) (HA)[ (HA) (H )]

No, 1 1 10 mol L .
5.77 kJ mol .
135 g.

20 3 kJ mol .
11.2.

41 0 kJ mol .
( ) 3.6 kJ mol ; ( ) 5.2 kJ mol .

([A] / )/(1 [A] / ).
([ML] [LM])/[M]P ; [LML]/ ([ML]

[LM])P 1/(1/ 1/ ). Since there are five species and two components
(protein and ligand), the number of independent equilibria is 3; is
2 5 3. Since there are two paths from M to LML, .

� �

� �

� � � �

� �
�

�

�

�

�
�

�

� �

�

� �

� �

�

� �

� � �
�

�

� � ��

� � � � �

� � � � �

�

�

�

�

�

�

� �

� �

Answers to the First Set of Problems

� �

�

� �

�
�

Chapter 8 Thermodynamics of Biochemical Reactions

� �

�

� �

� � � �

� �

� �

�

� � �

� �

� � � � �

� �

�

�

� � � � �

� � � �

�

�

� �

� �

�

�

�

� �

	 	

	 	 	 	

	

	

�
�

� � �

� �

� � �

� � � �

7.21

7.22
7.23
7.24
7.25

7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36

8.3
8.4

8.5
8.6

8.7
8.8
8.9

8.10

8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19



T,P,n ,n

T,P,n ,

ax ax ax

kx kx kx

x x

920

.
.

. .

a F , D , G b F , D ,
G

a b

.

a . .
b . .

. . .

a b

a . b . c .
d .

.

a ax ax a b b bx b bx
bx x b

c k k x x
k k k

xp p x h

a b

a b

a b . c .

a . h, . h, . h . h b . n , . n

h

h h

a b

h

. .

x x h k x h k

a b . c .
d .

.

cA cB

cA B

2 2 2

�
�

� �

� � � �

�

�

� � �

5
2

5
2

7

17 1

19 20 1

23 25 1

7 7 7 1

1

33 19 10

9

25 1

2 2

2 2 2

i 2 i i 2 2

2 2

1

4 8

1/2

1/2

1

1

1 1

3
02

13 1 13 1

2 23 32 1/2 1/2 1/2
2 2

1 12 23 1

35

12 2 1

If the initial concentration of hemoglobin is 0.0025 M, [ ] 0 511
10 M and [( ) ] 0 002 47 M (1.04% dissociated). If the initial concentra-
tion of hemoglobin is 0.000 25 M, [ ] 1 60 10 M and [( ) ] 0 000 242
M (3.2% dissociated).
2.4, 4 10 .
( ) 3 4 (d ) 0; ( ) 3 4
(d ) 0.
( ) 3919, 0.769; ( ) 327, 0.969.

6 037 10 s ; X-rays.
( ) 3 61 10 J, 2 77 10 s ;
( ) 1 99 10 J, 5 03 10 s .
4.64 eV.
4 668 10 , 4 634 10 , 4 473 10 m s .
( ) 0.0387 nm; ( ) 2.24 nm.
0.012 J mol .
0.0259 nm, 3.46 nm.
0.1452 nm.
( ) 2 21 10 m; ( ) 6 626 10 m; ( ) 6 626 10 m;
( ) 3 1 10 m.
5 27 10 J, 0.318 J mol .
5.
( ) 2 e , 4 e 2 e ; ( ) sin , cos (therefore,
cos is an eigenfunction of d /d with eigenvalue );
( ) i e , e [therefore, e is an eigenfunction of both d/d and d /d
with eigenvalues i and (i ) , respectively].
( ˆ ˆ ˆ ˆ ) ¯ /i.
( ) 1/2; ( ) 0.609.
( ) 580.5, 2322, 5225 kJ mol ; ( ) 68.7 nm.
( ) Approximately 27; ( ) 2 7 10 ; ( ) 2 7 10 .
1, 3, 3.
( ) 0 568 ¯ 1 67 ¯ 2 63 ¯ , compared with 0 500 ¯ ; ( ) 0 03615 m 0 3615 m.
(3/2 ) .
(3 /2) ¯ .
3 ¯ /2 compared with ¯/2.
1903.01 N m .
2117.5 cm .
3.364 pm or 2.98% of the equilibrium bond length.
( ) 323.3, 122.5, 575.1 N mol ; ( ) 545 cm .

.

6 93 10 s , 4 52 10 s .
0, ( ¯ / ) , [ ( ¯ / ) ] .

( ) 1902 N m ; ( ) 3 381 10 m; ( ) 1 560 10 kg m s ;
( ) 5 273 10 J s.
1 269 10 s ; 42.3 cm .
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9.4
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9.11
9.12

9.13
9.14
9.15
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9.18
9.19
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9.25
9.26
9.28

9.29
9.30

9.31

9.32
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E h I h h

. .

hL hL

a . b .
c .

a b

a hc . k b .

a b c d

E V .

a b

. . E n

Z n . n n m
m , ,

, .

r a Z r a Z

a b c note: n

r a Z r . a Z . a Z

a b

r a Z a Z r a Z a Z

r a Z

. L h , , .
L h , , , ,

h h h

n
n

n
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� �

2 1/2 1/2

24 23

26 46 2

3

23 1

1

28 9 1 2

11 2
1 224

1 1

mp0 0

2

node node0 0 0

1 1 22 2
2 0 0 0 2 1 0 02 2 4

0
34

34

¯ / ; the angular momentum is [1(1 1)] ¯ 2 ¯ .
8 67 10 , 2 60 10 J.

ˆ ˆi ¯ , i ¯ .

( ) 1 139 10 kg; ( ) 1 449 10 kg m ;
( ) 2 58 10 m.
( ) 4830 K; ( ) 3623 K.
( ) /4 965 ; ( ) 5 9 10 mol .

13.598 42 eV.
( ) 145.9; ( ) 82.05; ( ) 82.05; ( ) 36.47 kJ mol .

/ 54 44, 122.49, 217.76, 340.25, 489.96.
( ) 13.598 48, 13.602 18 eV; ( ) 656.470, 656.291 nm.

1 646 397 10 kg, 1 983 35 10 m , (2461/ ) eV, 0.2928 pm.
5, 2, and 25(0 010 973 732)( 1/ ); 2 ,

1 2 . . . .
1.8756, 1.2822. 1.0941 m.
4.49 cm.
10 967 758.56 m 10 970 742 75 m .

= 3 / 2 , / .
1, 0, 1.
( ) 2; ( ) 8; ( ) 18 ( degeneracy 2 ).
105.8, 176.4 pm.
For 2s, 2 / . For 3s, 7 098 / , 1 902 / .

( ) 317.5, 264.6 pm; ( ) 105.8, 88.2 pm.

(2 / )(1 ) 6 / ; (2 / )[1 (1 )] 5 / .
408.5 MHz; 0.00508 mm.

5 / .
For 2p, 1 491 10 J s, / ¯ 1 0 1. For 3d, 2 583
10 J s, / ¯ 2 1 0 1 2.

3s 3p 3d

( 1) ¯ 0 2 ¯ 6 ¯
Radial nodes 2 1 0
Angular nodes 0 1 2

The number of angular nodes is 1; the number of radial nodes is 1 1; the total
number of nodes is 1.

1s 2s 2p 3p 3d

1 2 2 3 3
0 0 1 1 2

Angular 0 0 1 1 2
Radial 0 1 0 1 0
Total 0 1 1 2 2
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N

. .

, , , , ,

, , , , ,

.

s s

R R S .

. .

.

E S E S

a , b , c , d ,

. .
.

.

r .

.

.

2

�

�

� � �

�

�

� �

� � �
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�

�

1/2

23 2

2 2 2 2 6 2 2 6 2 2 6 2 2 6

1

1/2 1/2

A A
1 1/2 B B

A A
1/2 B B

A A
2 1/2 B B

3 2 4 1

sp (i)

1 5
2 2

3
2

1

1 2 3

4
1

1

m
30

29

2 .
1 8569 10 J, 1 0698 10 m, microwave.
1s 1s 1s 2s 2p 1s 2s 2p 1s 2s 2p 1s 2s 2p .
2 2 6 2 6 10.

13.6 eV, 19.4 eV, 300 eV, 51 4 eV.
941.49 kJ mol .
[2(1 )] , [2(1 )] .
See Fig. 11.3.
Maximum at 0, minimum at , 0 766.

1 1s (1) (1) 1s (2) (2)
1s (1) (1) 1s (2) (2)2

1 1s (1) (1) 1s (2) (2)
1s (1) (1) 1s (2) (2)2

1 1s (1) (1) 1s (2) (2)
1s (1) (1) 1s (2) (2)2

is the same as with replacing . is obtained from by replacing the
minus sign with a plus sign.
For example,

1 e
[(2 ) 2 cos ]

4 2 3

1
0 : (2 0 4 14 ) e

4 6
1

90 : (2 ) e
4 6

1
180 : (2 2 414 ) e

4 6

( )/(1 ) and ( )/(1 ).

; ; 3; 2.

The CH radical is planar with the 3 two-electron bonds due to the overlapping of
the sp orbitals of C with the s orbitals of H. The odd electron is in the remaining
unhybridized p orbital, which is perpendicular to the plane.
( ) 10 2 ; ( ) 14 0 ; ( ) 18 4 ; ( ) 24 6 .

153 kJ mol .
, no nodes; , one node between atoms 2 and 3; , two nodes between 1 and

2 and between 3 and 4; , three nodes between 1 and 2, 2 and 3, and 3 and 4.

Butadiene, 0 472 ; benzene, 2 ; 76 5 kJ mol ; the extra stabilization of
butadiene is 36 1 kJ mol .

0 472 ; 2 .
0 309 nm.

5.70 eV, 34 7 10 C m.

3 78 10 C m. The ions polarize each other.
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Chapter 11 Molecular Electronic Structure
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10.27
10.28
10.30
10.31

11.1
11.2
11.3
11.4
11.5

11.6

11.8

11.10

11.11

11.12

11.13

11.14
11.15

11.16

11.17
11.19

11.20

11.21
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.

C

C

D

C

D

C

C

D

D

D

D

C

D

C

D

E C i
E E C i
C C E i

i E C
i i C E

S S S S S S
C i C E

C trans- C
cis- C

D

, , , , ,

C C
D

Cis C trans C

30

2v

3v

4h

2

3h

1

4v

3d

2h

2h

2d

2v

2h

i

3h

1
h2

1
h2

1 1
h2 2
1

h h 2
1

h 2

1 2 3 4 5 6
6 6 6 6 6 6

1 2
3 3

2v 2h

2v

2d

2 3 2 4 2 3 5

3

2v 2v

2h

2v 2h

20 4 10 C m. The charges are not completely separated in HCl.
0.17, 0.12, 0.039. These are in accord with the electronegativities.

1,1-Dichloroethylene, , dipole; 1,2-dichloroethylene, , no dipole;
1,2-dichloroethylene, , dipole.
, no dipole moment.

H S PCl C H Cl C(CH )ClBrH IF thiophene.
C(CH )ClBrH.
1,2-Dichlorobenzene, , dipole; 1,3-dichlorobenzene, , dipole; 1,4-dichlorobenzene,

, no dipole.

-bent, ; -bent, .

�
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Answers to the First Set of Problems

Chapter 12 Symmetry

�11.22
11.23

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16

12.17

12.18

12.19
12.20
12.21
12.22

12.23

12.24
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a b c

a b .

. .

.

a . b

a b

a b . b

I mR

. .
.

a b

D
k

a b

a . b

a
b

a b c d

a b c d

a b c

a
b

a Vib. mode Changing Changing IR Raman

2 2 2

0
2

1

2

3

4

�

� � �� �

*The exclusion rule is useful because it is difficult to judge qualitatively whether
a vibrational mode involves a change in polarizability.

1

1 3

27 47 2

47 2

3 2

2

1 1

1

47 2

46 2

8 2
3

1 1 3 0 4 1
0 1 1 2 1 2

4

1

1

6

10

1

1

1

4 5 3 5 1 2 4
1

1

14.4, 1440, 144 000 K.
( ) 2991, 299.1 nm; ( ) 3343, 33 430 cm ; ( ) 0.415, 4.15 eV.
( ) 207 cm ; ( ) 4 83 10 cm.
3 162 10 kg, 5 141 10 kg m .
1 917 10 kg m .
The following molecules have permanent dipole moments: HBr, CH CH OH,
H O.
0.091 83 cm.
112.8 pm, 11.589 cm , 15.452 cm .
3.693, 3.596, 3.766, 3.863 cm .
( ) 4 37 10 kg m ; ( ) 163 pm.
At 300 K, 1, 2.710, 3.686, 3.805;
at 1000 K, 1, 2.910, 4.563, 5.830.
( ) 3, 3.79; ( ) 7, 8.90.
( ) 0.1162; ( 1) 8 071 10 kg m ; ( 2) same.

.

6.35 cm , 9.95 cm , 1 01 10 m, 2 51 10 m,
2 51 10 m.
( ) 2.5 nm; ( ) 3.5 nm.

I Br Cl

/eV 1.54 1.97 2.48
/N m 172.2 246.3 323.0

879 J mol .
3112.1, 3811.6 cm .
( ) 0.0133, 0.0018, 2 10 ; ( ) 0.0128, 0.0120, 0.0014.
( ) 6 2 10 ; ( ) 0.0165, 0.034, 0.007.
2886.30, 9.98, 10.19, 10.30, 0.21 cm .
216.088 kJ mol .
( ) 2632.72, 2666.61 cm ;
( ) 3.798 34, 3.750 08 m.
( ) 3; ( ) 6; ( ) 7; ( ) 30.
( ) 3, 0, 0; ( ) 3, 2, 1; ( ) 3, 2, 4; ( ) 3, 3, 6.
( ) ˜ and ˜ ; ( ) ˜ and ˜ ; ( ) ˜ , ˜ , and ˜ .
( ) 2143.24 cm , 4.665 84 m;
( ) 278.4 cm , 35.92 m.

( )

No Yes No Yes
Yes No Yes No
Yes No Yes No
Yes No Yes No
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Appendix H: Answers to the First Set of Problems

Chapter 13 Rotational and Vibrational Spectroscopy
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13.1
13.2
13.3
13.5
13.6
13.7

13.8
13.9
13.10
13.11
13.12

13.14
13.15
13.16

13.17

13.19
13.20

13.21
13.22
13.23
13.25
13.26
13.27
13.28

13.29
13.30
13.31
13.32

13.33
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b Vib. mode Changing Changing IR Raman

f . f . f . f .

.

a b

H .

a b c

a b c d

a . b

. .

Integrated Absorption Coeff. F

. . .

. .

R

.

.

.

h . ma

a . b . .

a b c

a

1

2

3

7 8 1 2

3 1 2 6

12 12

30

31

33

� � � �

�

�

0 1 2 3

1
R

1

4

4 1

1 1

1 1
f

1

4 1 1

5 5 1

2 2

1

4 1 15 1 4

16

1

8 10 18

1

( )

Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes

0 5530, 0 2472, 0 1105, 0 0494.

˜ /cm 214 312 454 759
/ m 46.8 32.0 22.0 13.2

110 pm.
2.3436, 3.9060, 5.4684, 7.0308 cm .
All of these molecules have a pure Raman spectrum except for CCl .

13.93 eV; 1 012 10 m s .
( ) 239.5 kJ mol ; ( ) 90.53 kJ mol , 0.938 eV.
5080 eV or 490.14 kJ mol , (0 K) 493 57 kJ mol .
( ) 804.35 nm; ( ) 433.7 nm; ( ) 94.32 pm.
( ) 1.2%; ( ) 0.311 mol L ; ( ) 32.8%; ( ) 10.3 cm.
( ) Yes, 5 81 10 L mol cm ; ( ) 81%.
2 17 10 , 3 37 10 mol L .
1.08, 0.152, and 0.002 2.

Strong 1 06 10 to 5.30 10 L mol cm 0 046 2 29
Weak 1 06 10 L mol cm 4 58 10

/cm /pm

Strong 9 72 10 60.7
Moderate 3 08 10 1.92
Weak 9 72 10 0.061

Yes; there is no way to make the predictions agree for all four orbitals;
5 /8(1 236) .

5.3 cm .
( ) 5 3 10 cm , 16 MHz; ( ) 5 3 10 cm , 1 6 10 MHz.
2.517 10 .
531, 53.1 cm .
( ) 10 J; ( ) 3.5 10 ; ( ) 4.03 10 .
0.199%.
5.14, 4.09, 3.27 km s .
553 eV.
( ) Since F is more electronegative than C and H, it pulls electrons toward itself,
thereby decreasing the shielding at the carbon nucleus, and increasing the binding
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Answers to the First Set of Problems
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Chapter 14 Electronic Spectroscopy of Molecules
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13.34

13.35

13.36
13.37
13.38

14.1
14.2
14.3
14.4
14.5
14.8
14.9
14.10

14.11

14.12

14.13

14.14
14.15
14.16
14.17
14.18
14.19
14.20
14.21
14.22
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b

. . E RT . .

E . . .

.

.

.

a . b

a b

a b

.

a . b . c .

b .

a b c

Transistion Relati e Frequency/s Relati e Intensity I1

�

� �

3

2

3

5 2 1 5 2

26

8 1 1

6

2

8 1 1

6

6

energy of the 1s electrons. ( ) The binding energy should be greatest for the CF
carbon, next largest for the COO carbon, next for the OCH carbon, and smallest
for the CH carbon.

67%.

1.409, 11.74 T.

2 394 10 , 1 995 10 kJ mol ; / 0 960 10 , 0 800 10 .

/10 J 2 240, 0 7465, 0.7456, 2.240; 22 53 MHz.

2 675 10 s T .

3 4485 10 .

0.500 003 43.

1 69 10 , 0.665.

( ) 2 67 10 s T ; ( ) 425.8 MHz.

( ) 17.39 T; ( ) 91.76 T.

2.35, 11.7 T.

( ) 14.52; ( ) 726 Hz.

7 270 10 , which is usually given as 7.270.

( ) 2 42 10 ; ( ) 2 42 T; ( ) 4 82 T.
( ) 145 2 Hz.

( ) 5.70 Hz; ( ) 0.318 ppm; ( ) 576.18, 581.88, 603.84, and 609.54 Hz.

1 2 8.090 0.382
3 4 3.090 1
1 3 3.090 1
2 4 8.090 0.382

At room temperature the rate of conversion of cyclohexane from boat to chair
forms is so fast that the protons are at the average local magnetic field.

v v
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Appendix H: Answers to the First Set of Problems

Chapter 15 Magnetic Resonance Spectroscopy
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14.23

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10

15.11

15.12

15.13

15.14
15.15

15.16

15.17

15.19

15.22

�
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.

a b

a . b . c . .

kT q N

a b .

.

. .

a b

x x x y

x x x

RT

.

.

. . .

a b c d

a b

.

q . f . f . f .

.

P
P
P

T P P

k . .

0

1

2

1 2

1 1
2 2

�

� � �

� �

� �

� � � �

1

1

4

17 169 4 40

11

30

28 29

1 1

1 1

2 3

2 3 4

1 1 1 1 1 1

6

29 30 30

4 2 4

1 1 1

e 1 2 3
1 1 1

1 1

1

41

1 1

1 1

24.1 s .
2.80 cm .
2 80 10 MHz.

( ) 0.0080; ( ) 0.0177.
( ) 1 253 10 ; ( ) 1 147 10 ; ( ) 1 100 10 , 2 596 10 .

ln( / ).

( ) 1.23; ( ) 2 83 10 .
1 414 10 .
8 84 10 , 2 50 10 .
( ) 139.86; ( ) 82.4 J K mol .

146.3 J K mol .
( )(1 ).

2 .
, as expected classically.

1.684.
12.472 J K mol , 3.718 kJ mol , 47.822 J K mol , 10 54 kJ mol .
1 43 10 .

5 00 10 , 1 42 10 , 2 60 10 , 5.72, 36.8.
( ) 18; ( ) 9; ( ) 81; ( ) 972.
For CH , 12. For C H , 4.
( ) 6; ( ) 18.
11.53 J K mol ; 3 44 kJ mol .

8 627; 0 1159, 0 3396, 0 5445.

19.92 J K mol , 17 92 kJ mol .

114.718, 153.301 J K mol .

298 K 1000 K

0.919 0.625
0.081 0.303
0.001 0.072

4.029, 4.568.
0.617, 0.294, 0.089.
0.076, 1.301 kJ mol .
4 10 .

/K

0 1 0
/ 0 73 0 27

55.67 J K mol .
191.52 J K mol .
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Answers to the First Set of Problems

Chapter 16 Statistical Mechanics
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15.23
15.24
15.25

16.1
16.2
16.7

16.8
16.9
16.10
16.11

16.12
16.13
16.14
16.15
16.17
16.18
16.19

16.20
16.21
16.22
16.23
16.24

16.25

16.26

16.27

16.28

16.29
16.30
16.31
16.32

16.33

16.34
16.35
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C R . , . , . , C R . , . , . , .

a b

f

a kT b kT c

a . b .

RT R

a b

a . b . c d

a . b .

a b . c .

. .

a . b . c .

.

a . . b .
.

b

a b .

.

. . .

a . b .
c .

.

.

a b c

k . t . .

� �

�

� � �

1 1

1 1 1 1

2 1

4 1

3 22
2 3

1

1

1

2 5

1 1

3 3
2 2

1

1 1

9 1 28 3 1

7 8

3 10 1 9

9 1 8 1 1

9 1 9 1 8 1 1

10

28 27 2 1 27

27 2 1

1

1

4 2 1

5 2 1

4 4 4 1 1

2 1 1 2 1 1

2 1 1

5 1

4 1

1

1
1/2

62.36 J K mol .
7.18.
3.23.

/ 1 5 3 5 6 5 12; / 2 5 4 5 7 5 13

33.26 J K mol , 58.20 J K mol .

( ) 8.6; ( ) 390.
/10 m s 1 3 5 7 10
( )/10 s m 3.47 18.64 18.42 7.67 0.58

0.0877.

( ) (15/4)( ) ; ( ) ; ( ) .

928, 982 m s .
393, 444, 481 m s .
2502 m s . Use the construction of Fig. 17.12.
( ) 2 099 10 ; ( ) 3 721 10 .
746 m s , compared with a mean speed of 1769 m s .

, .

352 m s 787 miles per hour.
( ) 428 m s ; ( ) 269 m s .
( ) 7 21 10 s ; ( ) 8 75 10 cm s ; ( ) 0.354; ( ) 4.
( ) 1 52 10 , 0.152 m; ( ) 3 77 10 , 0.037 m.
( ) 0.724 cm ; ( ) 5 92 10 s ; ( ) 4 83 10 miles.
9 52 10 s , 1 921 10 mol L s .
( ) 4 63 10 s ; ( ) 9 258 10 s ; ( ) 1 244 10 mol L s .
1 58 10 s, 7590.
( ) 1 075 10 , 5 866 10 m s ; ( ) 2 698 10 ,
1 473 10 m s .
21.3 Pa.
326 kJ mol .
347 s.
0.0711 g.
( ) 11 200 m s .
( ) 0.217 nm; ( ) 1 28 10 m s .
1 26 10 m s .

1 5 10 , 3 0 10 , 0 75 10 mol L s .
( ) 0 75 10 mol L s ; ( ) 1 5 10 mol L s ;
( ) 2 25 10 mol L s .
2310 s.
First order; 6 27 10 s .
1 32 10 s .
( ) First; ( ) 0.128 h ; ( ) 0.325.

0 251 min ; 2 76 min; 3 98 min.

v
v
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Appendix H: Answers to the First Set of Problems
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Chapter 17 Kinetic Theory of Gases

Chapter 18 Experimental Kinetics and Gas Reactions
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16.36
16.37
16.38
16.40

16.41

17.1
17.2

17.3

17.4

17.5
17.6
17.7
17.8
17.9
17.10

17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19

17.21
17.22
17.23
17.24
17.25
17.26
17.27

18.1
18.2

18.3
18.4
18.5
18.7
18.8
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a t k b .

c . d .

a b

t n k

t P P P

.

a b c

a b k c k

. .

t

.
t
F . . . .

k k k k

k k k K k K

t k k k k
k b

b c .

a b

.

a t k k k k b E E E E

t k k k k

a k . b t

b .

.

k . . T

t k k k

.

a . b .
c .

.

a . b
c d

.

A B

�

�

� � �

�

�

� � � � �

�

� � � �

� �

� �

�

�

� �

1

2 1 1
01/2

4 1 1 23 3 1

1 1

1 1

1 1
1/2 0

3

2
0 0

1 1

1

3 1

12 12 12 12

1 4 2 3

A HA HA HAA A

1 2 1 2

2

1 12 1

39 6 1

app1 3 2 3 a1 a3 a2

1 3 2 3
4 1

1
3 3 1 1

8 1 1

13 1 1

1/2 3/2
3 2 1 4 3

20 2

11 1 1 11

5

11 1 1

14 1 1

3

15.7 s .
( ) 1/2 [HI] ; ( ) 4 01 10 mol L s ;

( ) 6 17 10 bar s ; ( ) 6 66 10 cm s .
Second order; 0.675 L mol min .
( ) Second order; ( ) 0.59 L mol min .

(2 1)/( 1) [A] .

/h /bar /bar /bar

1 0.50 0.25 0.75
2 0.33 0.33 0.66

0 0.50 0.50

1 70 10 s.
( ) 6.25; ( ) 14.3; ( ) 0%.

0, [R] , [R] /2.
1 000 0 005 mol L h .
d[OI ]/d (60 s )[I ][OCl]/[OH ].
2 50 10 mol L .

/d 10 20 40 80
3 65 10 6 39 10 9 98 10 13 14 10

.
[A], where /(1 [H ]/ ) /(1 /[H ]).

The time B goes through its maximum is [1/( )] ln( / ). For a given
value of , you would wait the longer time in case ( ) for B to go through its
maximum concentration.
( ) 90.3 kJ mol ; ( ) 1 99 10 s .
( ) 76 C; ( ) 3 C.
1420 s.
2 76 10 cm s .
( ) d[D]/d [A][B]/( ); ( ) .
d[D]/d [A][B]/( [C]).
( ) 5 20 10 s ; ( ) 1333 s.
( ) 3 4 10 cm mol s .
4 5 10 mol L s .

(1 1 10 mol L s ) exp( 104 000/8 3145 ).
d[CH CHO]/d ( /2 ) [CH CHO] .

2 40 10 m , 87.4 pm.
( ) 8 00 10 mol L s ; ( ) 8 1 10 s;
( ) 6 2 10 s.
1 4 10 L mol s .
( ) 3 14 10 s ; ( ) 10 500 cm ;
( ) 925 nm; ( ) 1.31 eV.
1 7 10 mol.
0.167.
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Chapter 19 Chemical Dynamics and Photochemistry
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6

1 1
CH I

8

7 1

2 1

1

1/2 1/21/2
aa4 2 2 3

a q a qf f f f f

q af f f

q

a

2

f f

f

4
17 2

5 1

1 3

1

10 2 1 3

5 1

1 1

3 1 1 3

4 3 2

9 1 1

10 1 1 5 1

A B1 21 2
5 3 1

5 1 1

1
4 1 5 1 1

1

7 1 1 6 1 7
F F M

1 1 5 1 2 1 2
M 2 1

1

8 1 1 7 1 1
1 2

1 3 10 .
5595 m s , 662 m s .

6 4 10 s.
10 mol L .
( ) 10.1; ( ) a chain reaction is involved.
1 25 10 J s .
83 kW L .
d[CCl ]/d [Cl ] / 2 .

/( [Q]), which can be rearranged to / 1 ( / )[Q] so that
/ is the slope of the plot of / versus [Q]. The rate constant for fluorescence

can be calculated from the half-life of the fluorescence, and so can be calculated
from the slope.

A A

A A A

A A

[A]/( [A])

The stoichiometric number for step 4 is 2; 2.
1 36 10 molecules cm .

3.46 Pa s.
3 01 10 m s .
2.36 kJ mol , 1 41 10 Pa s.

0.61 m s .
( ) 5 23 10 m s ; ( ) 6 14 10 m.
( ) 1.75 h; ( ) 56.5 h.
2 00 10 cm s , 0.54 cm.
0.0426 m .
( ) 2 16 10 m ; ( ) 1 09 10 A.
9 26 10 , 9 26 10 , 9 26 10 .
7 4 10 J K mol .
0.89 nm.
4 42 10 mol L s , 7 65 10 s .
1/ .

7 9 10 , 1 8 10 , 25 s .
4 93 10 s , 0.0102 s .
d[Cl ]/d K [I ][OCl]/[OH].
1 35 10 m , 5 5 10 L mol min .
0.748, 3.20.
6.7 mol h .
( ) 6 5 10 mol L s , 3 9 10 mol L , 4 0 10
mol L s , 1 03 10 mol L , 3 3 10 s , 2 0 10
s

( ) 1 4 10 mol L s , 5 1 10 mol L s .

( ) 4 4.
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Appendix H: Answers to the First Set of Problems

Chapter 20 Kinetics in the Liquid Phase
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3 1 6 1

cat M0 0

catM
8 1 9 1

5 10 8 5 7
1 2

1 1
2 2

1 1
af ab

1 1

2 1/2

1/2 1/2

2 1/2

3 3

1

c r r

r

r
1

1

3 3

1

1

13

13

40 2 2 1

30 3 3
0

26 3

1
2

See equation 20.84.

15.1, 0 38 10 mol L , 8 6 10 mol L .

When /[E] [S] is plotted versus /[E] , the intercept on the ordinate is / ,
the slope is 1/ , and the intercept on the abscissa is .

234, 4 41 10 mol L , 3 67 10 mol L .

1 73 10 , 5 72 10 , 6 11 10 ; 1 47 10 , 10 .

( ) 0 00264 (25 C) 14 21 s (0 C) 0 947 s ;
( ) 78 07 kJ mol 73 34 kJ mol .

100 000 g mol , 103 000 g mol , 1.03.

( ) 31 6.

12.7 nm, 17.8 nm.

(8/3 ) .

.

( ) 100; ( ) 3 70 10 ; ( ) 3 70 10 .

( ) 0.9943; ( ) 175; ( ) 39 900 g mol .

/ . The ceiling temperature for polystyrene is 69 900/104 672
K. The ceiling temperature for poly- -methylstyrene is 35 200/104 338 K. The
bonding is not as strong as for styrene, as indicated by , and so depolymer-
ization occurs at a lower temperature. The methyl group apparently prevents as
close packing as in polystyrene. The ceiling temperature for tetrafluoroethylene is
154 800/112 1382 K, and so Teflon is used on cooking utensils. The bonding is
very strong, as indicated by .

500 000 g mol .

230 000 g mol .

2 30 10 g cm .

15 500 g mol .

67 600 g mol , 4.

0 236 10 s.

0.9938.

10 5 10 s.

The electric susceptibility is dimensionless.

4 45 10 C m J .

2 61 10 m or 17.6 expressed in units of . The volume calculated from

the collision diameter is 3 72 10 m .

For two spin , ( 1) 2. The value calculated from the magnetic susceptibility
is 2.2, indicating a small contribution from orbital angular momentum.

0.44.

2.47.
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Chapter 21 Macromolecules

Chapter 22 Electric and Magnetic Properties of Molecules
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d ab a b

. . .

F f f h k l
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a b d d d .

a b c d
e .

a . b
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2 2 1/2

A B
3

3 3

200 110 222

3 3

3 3

23 1

1

3 3

3 3

1 2 1 10 2 1

8 1

19 2 1

1

m A A B B A A B B A A A A A B B
3 1 5 1

m
3 3 3

8 8 8 1

2

/( ) .
5 74 , 11 54 , 17 46 .

( 1) . If is even, the reflection will be strong.
3.62 g cm .
21 32 10 kg m .
( ) 316 pm; ( ) 158, 223, 21 2 pm.
( ) Body-centered; ( ) face-centered; ( ) 286.8 pm; ( ) 57.4 pm;
( ) 7 84 10 kg m .
( ) 3 995 10 kg m ; ( ) 176 pm.
6 022 093 10 mol .
39.7 kg mol .
273 pm.
2 33 10 kg m .
12.
9 95 , 11 50 , 16 38 , 19 31 , 20 21 , 23 51 .

[1 ( 1) ].
0.414.
282.8 pm.
4 517 10 kg m .
0.0818 eV.

( ) 5 08 10 cm s ; ( ) 7 17 10 cm s .
18.5 s.
7 00 10 s .
3 26 10 m s .

11 6 kJ mol .
( ) /[1 ( ) ]; /( ).

40 cm g , 4 8 10 Pa .
2 3 10 Pa, 20 8 10 Pa, 188 10 Pa.
2 08 10 , 2 94 10 , 1 80 10 s .
20.6 L.
449 m .
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Appendix H: Answers to the First Set of Problems

Chapter 23 Solid-State Chemistry

Chapter 24 Surface Dynamics
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Langmuir, 843 Aufbau principle, 377
Absorbance: physical, 842 Auger electron spectroscopy (AES),

integrated, 515 Alpha helix, 281 850
molar, 512 Ammonia synthesis, equilibrium Average kinetic energy, 617

Absorption cross section, 514 constant, 142 Average number of protons bound,
Absorption curve, 795 Amount of substance, 5 261
Accelerating potential, for electron Angular frequency, 323 Average speeds, various types, 620

diffraction, 849 Angular momentum, 329, 331 Avogadro constant, 5, 9, 220
Acceleration: of a hydrogenlike atom, 362 determination of, 817

of centrifugal field, 779 of an atom, 383 Axis, principle, 440
of gravity, 9 of many-electron atoms, 381 Azeotrope, 192

Acid catalysis, 740 orbital, 366
Acid dissociation constant, 255 quantum number, 331, 334

table, 263 spin, 365, 366 Balmer series, 354
Actinometer, 711 total, 334, 471 Band gap, 431
Activated complex, 697 Anharmonicity constants, 478 Band spectra, 483
Activation energy, 657 Anode, 223 Band theory of solids, 431

for adsorption, 843 Antibonding orbital, 399, 402, 412 Band, of energy levels, 431
Activation-controlled reaction, 734 Anti-Stokes lines, 491 Barometer, 6
Activators, 749 Antisymmetric wavefunctions, 372 Barometric formula, 24
Activity coefficient, 195 Apparent equilibrium constant, 265, 274 Barrier, early or late, 695

of an ion, 229 calculation from tables, 273 Base catalysis, 740
Activity, 114, 118 derivation of the expression, 270 Beer’s law, for a mixture, 512

of a component of a solution, 186 for an enzyme-catalyzed reaction, 270 Beer-Lambert law, 511
of electrolytes, 227, 228 Apparent rate constant, 749 Belousov-Zhabotinskii reaction, 753
of liquid water, 118 Arrhenius activation energy, 657 Bimolecular reaction, 659, 665
of a solute, 236 Arrhenius plot, 658 activation energy, 665

Additivity of partial molar properties, Artificial atoms, 835 Binding of oxygen, by hemoglobin and
120 Asymmetric top, 470 myoglobin, 278

Adenosine triphosphate, 264 Atom radii, 815 Binding of protons, 261
acid dissociation constants, 265 Atomic configurations, table, 881 Binding polynomial, 262

Adiabatic calorimeter, 63 Atomic force microscopy (AFM), 851 Binomial coefficients, 552
Adiabatic demagnetization, 91 Atomic properties, 378 Biochemical reactions, 254
Adiabatic expansion, of an ideal gas, 54 table, 881 coupling, 276
Adiabatic ionization energy, 849 Atomic scattering factor, 819 Blackbody radiation, 296, 340
Adiabatic processes, 32 Atomic spectra, 387 Body-centered unit cell, 808

with gases, 54 Atomic structure, 348 Body-centered cubic lattice, 814
Adsorption: Atomic term symbols, 384, 386 Bohr magneton, 363

chemical 842 Atomic units, 390 Bohr radius, 352
dissociative, 845 Atoms, covalent radii, 819 Boiling point diagrams, 189

A

B

Index
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Boiling point, as a function of pressure, unbranched, 674 Colloid osmotic pressure, 767
182 Change in the binding of hydrogen ions, Combustion of graphite, 59

Boltzmann constant, 89, 297 in a biochemical reaction, 275 Commutability, and precision of
Boltzmann distribution, 461, 468, 542, Character of a representation, 452 measurement, 321

569 Character tables, 452 Commutative, 308
Bond angles, table, 883 Characteristic rotational temperature, Commutator, 309
Bond energy, 62 583 Complementarity, 299
Bond lengths, table, 883 Characteristic vibrational temperature, Complex conjugate, 302, 306, 894
Bond order, 412 580 Complex numbers, 894
Bonding orbital, 399, 402, 412 Charge number, 220 Component, 156, 159
Born-Oppenheimer approximation, 396 Chemical dynamics, 686 hydrogen, 268
Bosons, 372, 601 Chemical equations, as matrix equations, Composition of atmosphere, as a
Bound states, 350 163 function of height, 25
Boyle temperature, 14 Chemical equilibrium, criteria, 139 Compressibility factor, 11

for a van der Waals gas, 20 Chemical potential, 103 for a van der Waals gas, 19
Brackett series, 354 as a function of pressure of an ideal Compression of a gas, 40
Bragg equation, 811 gas, 120 irreversible, 42
Bragg reflection, 812 four different definitions, 118 Concentration gradient, 730
Branched chain reactions, 674 of a species at equilibrium, 134 Conduction band, 833
Branching ratio, 655 of an ideal gas in a mixture, 122 Conformations, of -butane, 770
Bravais lattices, 807 of gases, liquids, and solids, 179 Congruently melting compound, 204
Brønsted equation, 741 significance, 118 Conjugate pairs, of work, 45
Bubble point line, 187 transformed, 268 Conjugated molecule, 518
Bubble point surface, 190 when phases have different electric absorption spectrum, 519
Buckmeisterfullerene, 446 potentials, 222 Consecutive first-order reactions, 651
Buffer, preparation, 260 Chemical reaction, equilibrium Conservation matrix, 164

condition, 133 Conservation:
Chemical shift, 546, 548 of components, 156

Cage, solvent, 734 proton, 549 of energy, 35
Calorie, definition, 34, 865 Chemical thermodynamic properties, 870 Conservation, of orbital angular
Calorimeter, 33 Chemisorption, 842 momentum, 388

adiabatic, 63 Chiral molecules, 529 Conservative system, 324
Calorimetry, 63 Cholesteric liquid crystals, 829 Continuous wave, 524
Canonical ensemble, 598 Chromophores, 517 Contour surfaces, for one-electron atoms,
Canonical partition function, 570 Circular birefringence, 530 360

for an ideal gas, 575 Circular dichroism, 530 Convergence limit, 506, 509
Capacitance, 787 Circularly polarized light, 529 Conversion factors, 865
Carnot cycle, 95 Clapeyron equation, 181 Cooperative binding, 279
Catalysis: Classical mechanical observables, 307 Cooperative denaturation, 281

acid, 740 Clausius theorem, 77 Coordinates, spherical, 887
base, 740 Clausius-Clapeyron equation, 183 Correlation diagram, 412, 413
enzyme, 745 Close packing: Correlation energy, 376
general acid, 740 cubic, 826 Correlation spectroscopy (COSY),
hydrogen ion, 740 hexagonal, 826 560

Cathode, 222 Coexistence curve, 181 Correspondence principle, 314
Cells: Colligative properties, 198 Coulomb integral, 401

with liquid junctions, 224 Collision complex, 666 Coulomb’s law, 219
without liquid junction, 224 Collision density, 628 Coupling constant, 550

Celsius scale, 8 Collision diameter, 626 Coupling of biochemical reactions, 276
Center of symmetry, 438, 441 Collision frequency, 627 Covalent crystals, 825
Centrifugal distortion constant, 467 Collision theory, of bimolecular Covalent radii of atoms, 819
Centrosymmetric, 441 reactions, 687 Cramer’s rule, 890
Chain reaction: Collision with a surface, 624 Criteria for irreversibility and

branched, 674 Collisions, of hard-sphere molecules, reversibility, 107
determination of quantum yield, 712 626 Critical constants:

C

Index
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of gases, 14 vibration-rotation spectra, 483 for stimulated emission, 461
in terms of van der Waals constants, 20 Differential operators, 304 Einstein temperature, 602

Critical exponents, 21 Differentials, 886 Einstein unit, in photochemistry, 704
Critical opalescence, 17 exact, 31, 36 Electric conductivity, 731
Critical phenomena, 16 inexact, 36 Electric dipole moment operator, 426
Critical point, 15, 17 Diffraction methods, 811 Electric dipole moment, 425
Critical temperature, for Diffusion coefficient, 633, 727 Electric dipole transitions, 388, 504

superconductivity, 831 Diffusion: Electric dipole, transition moment, 476
Cross product, 332 in a liquid, 726 Electric field strength, 219, 731
Crystal structure data, 818 in gases, 633 Electric mobility, 731
Crystal structures, classification, 804 of a spherical molecule in a liquid, 727 of ions on water, 732
Crystallographic point groups, table, 806 Diffusion-controlled reaction, 734 Electric potential, 219
Crystals: Dilute real solutions, 194, 198 Electric susceptibility, 788

covalent, 825 Dipole moment operator, 453, 462, 466 Electrical work, 45
hydrogen-bonded, 825 Dipole moment: Electrochemical cell, 222
ionic, 824 allowed symmetry groups, 448 Electrochemical equilibrium, 218
molecular, 825 induced, 493 Electrochemical reaction, 225

Cubic close packing, 826 of a transition, 462 Electrode reaction, 222
Cubic expansion coefficient, 126 magnetic, 363 Electrolytes, activity, 227
Cubic lattices, 814 table, 791 Electrolytic cell, 222

characteristics, table, 827 Dipole-induced dipole interaction, 428 Electromagnetic spectrum, table,
Curie temperature, 800 Direct spin-spin coupling, 550 459
Curie’s law, 797 Dispersion curve, 795 Electromotive force, 225
Cyclic integral, 35 Dispersion force, 428 Electron affinity, 381

Dissociation constants: Electron configuration, 377
of magnesium complexes, 262 of homonuclear diatomic molecules,

Dalton’s law, 10 macroscopic, 280 411
de Broglie wavelength, 298, 813, 848, microscopic, 280 Electron density:
of the electron, 298 Dissociation energy, 510 for atomic hydrogen, 362

Debye temperature, 603 equilibrium, 479 for hydrogen molecule ion, 404
Debye wavelength, 602 of NaCl (g), 427 in a crystal, 822
Debye-Hückel constant, 230 spectroscopic, 479 in a one-dimensional crystal, 821
Debye-Hückel theory, 229 Dissociation, of weak acids, 255 Electron emission from surfaces, 849
Defects, in a surface, 841 Dissociative adsorption, 845 Electron g factor, 366, 539
Degeneracy, 319, 355 Dissociative chemisorption, 853 Electron in a box, 311
Degree of polymerization, number Distillation, 191 Electron spin resonance (ESR), 562

average, 772 Distortion polarization, 789 Electron spin, 364, 539
Degrees of freedom, 79, 155, 161 DNA: Electron transfer reactions, 744
Denaturation: denaturation, 282 Electron, formal, 67

cooperative, 281 structure, 282 Electroneutrality condition, 220
DNA, 282 Donnan effect, 767 Electronic absorption spectra, of
of proteins, 280 Doppler broadening, 300, 622 diatomic molecules, 505

Desorption, rate, 843 Electronic contributions to
Detailed balance, 655 thermodynamic properties, 586
Determinants, 889 Early barrier, 695 Electronic energy levels, 503
Dew point line, 187 Efficiency of a heat engine, 95 for the hydrogen atom, 351
Dew point surface, 190 Effusion, 624 Electronic spectroscopy, of molecules,
Diamagnetism, 800 Eigenfunction, 305 502, 517
Diamonds, 183, 816 for a particle in a box, 315 Electronic states:
Diatomic molecule, 520 harmonic oscillator, 327 of hydrogen molecules, 410

absorption, 520 of hydrogenlike atoms, 356 of polyatomic molecules, 416
fluorescence, 520 Eigenvalue, 305 Electrophoresis, 732
phosphorescence, 521 Einstein coefficient, 460 Electrostatic factor, 735
table of constants, 481 for spontaneous emission, 461 Elementary reactions, 659
vibrational and rotational levels, 484 for stimulated absorption, 460 Elongation work, 45

D

E
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Enantiomers, 529 in a reversible process, 81 Exact differential, 31, 36
Encounter pairs and solvent cage, 733 in a system and its surroundings, 83 Excited states, 354, 402
End-centered unit cell, 808 in an isolated system, 79 of hydrogen molecule ion, 407
Endothermic process, 56 in heating an ideal gas, 82 Excited molecule, 669
End-to-end distance, 769 in irreversible processes, 85 lifetime, 707
Energies of hydrogenlike atoms, in a Entropy of an ideal gas, as a function of Excluded volume, 771

magnetic field, 367 temperature and pressure, 85 Exothermic process, 56
Energy density, 296 Entropy of expansion, in a isolated Expansion of a gas, 41
Energy gap, 833 system, 80 irreversible, 42
Energy levels: Entropy of vaporization, 81 Expansion, Joule-Thomson, 53

electronic, 503 Enzyme catalysis, 745 Expectation values, 309, 359
for a particle in a three-dimensional Equation of continuity, 728 Experimental kinetics, 641

box, 318 Equation of state, 8, 12, 104 Explosion limits, 676
in a magnetic field, 364, 555 ideal gas, 8 Exponential drop off, 25
of a hydrogen atom, 353 Equilibria, involving potential Exponentials, 884
of a hydrogenlike atom, 350 differences, 220 Extended Debye-Hückel equation,
of an electron in a magnetic field, 562 Equilibrium composition: 231

Energy: effect of inert gases, 150 Extensive variables, 5
of a dipole in an electric field, 790 effect of initial composition, 150 Extent of reaction, 57
of a harmonic oscillator, 323 effect of pressure, 150 as a function of pressure, 140
of hydrogen molecule ion, 400 of a complicated system, 143 as a function of temperature, 149
of ionization, 354 Equilibrium condition, for a chemical dimensionless form, 140
of light, 459 reaction, 133
zero-point, 311 Equilibrium constant:

Ensembles, 597 apparent, 265 Face-centered unit cell, 808
canonical, 598 as a function of temperature, 148, 149 Face-centered cubic lattice, 814
microcanonical, 598 calculated from the standard electrode Falloff region, 668

Enthalpy, 48 potential, 241 Faraday constant, 220
as a criterion for spontaneous change, calculation from tables, 143, 144 Femtosecond dynamics of a barrier

106 definition, 134 reaction, 717
of adsorption, 843 determination of, 138 Femtosecond transition-state
transformed, 269 for a cell reaction, 226 spectroscopy, 714

Enthalpy of fusion, 185 for a gaseous reaction, 136 Fermi energy, 830
Enthalpy level diagram, 59 for reactions in dilute aqueous Fermi-Dirac distribution function,
Enthalpy of formation, 60 solutions, 243 830

of aqueous hydrogen ions, 67 from equilibrium density, 141 Fermions, 372, 601
Enthalpy of neutralization, 65 from statistical mechanics, 591, 594 Ferromagnetism, 800
Enthalpy of reaction, 57, 61 in terms of rate constants, 663 Fick’s first law, 727
Enthalpy of vaporization, 184 of enzyme-catalyzed reactions, 748 Fick’s second law, 728
Entropy: of gas reactions, in terms of First law of thermodynamics, 30, 34

as a state function, 75 concentrations, 152 First order spectrum, 552
Boltzmann postulate, 89 thermodynamic, 137 First-order phase transition, 180
calorimetric determination of, 91 Equilibrium dissociation energy, 479 First-order reactions, 645
in terms of the number of microscopic Equilibrium, 6 consecutive, 651

states, 571 as a function of temperature, 145 reversible, 650
of freezing supercooled water, 86 between phases, 119, 177 Flash photolysis, 644
of fusion, 185 thermal, 6 Flow chart, for determining point groups,
of mixing ideal gases, 87 vapor-liquid, 185 447
transformed, 269 Equipartition, 596 Fluctuations, 17, 603, 781

Entropy and statistical probability, 88 Error function, 728 Fluidity, 726
Entropy and the dispersal of energy, 90 Ethylene, bonding, 420 Fluoresence, 519
Entropy change: Euler formula, 895 quantum yield, 708

in a process, 80 Euler’s criterion for exactness, 38 spectrum, 522
in a reversible expansion of an ideal Euler’s theorem, 23, 105 Flux, 624, 841

gas, 82 Eutectic temperature, 203 Force constant, 323, 475

F
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Force, 31 transformed, 267 in terms of the canonical partition
Formal electron, 67 Gibbs equation for the entropy, 571 function, 570
Fourier transform, 564, 821, 895 Gibbs paradox, 88 Henderson-Hasselbalch equation, 259

infrared spectroscopy, 496 Gibbs, 103, 106 Henry’s law, 193
NMR spectrometer, 545, 546 Gibbs-Duhem equation, 124 Hermann-Mauguin symbols, 806

Fourier’s theorem, 821 Gibbs-Helmholtz equation, 112, 148 Hermite polynomials, 326
Fractional coordinates, 809, 820 Glass electrode, 244 Hermitian operator, 306
Fractional distillation, 191 Glide plane, 808 Heterogeneous catalysis, 853
Fractional saturation, of hemoglobin and Gradient, 892 reaction rate, 855

myoglobin, 278 Gravitational acceleration, 23 Heterogeneous reactions, 154
Franck-Condon overlap integral, 508 Greek alphabet, 897 Heterogeneous system, 4
Franck-Condon principle, 505 Grotrian diagram, 388 Hexagonal close packing, 826
Free induction decay (FID), 545, 558 Ground electronic state, 587 High polymers, 763
Free radical polymerization, 772 Ground state, 353 Highest occupied molecular orbital
Freely jointed chain model, 768 Ground states, of homonuclear diatomic (HOMO), 421
Freely rotating chain model, 769 molecules, table, 414 Hole, 833
Freezing point lowering, 199 Group, 443 Homogeneous functions, 23
Freezing point, as a function of pressure, multiplication table, 444 Homogeneous system, 4

182 Homonuclear diatomic molecules:
Frequency domain, 545 electron configurations, 411

Half life, 646Frequency, angular, 323 ground states, 414
Hamiltonian function, 305Frictional coefficient, 725, 778 Hückel molecular orbitals:
Hamiltonian operator, 304Fuel cells, 245 for 1,3-butadiene, 422

for electronic motion, 397Fugacity, 114, 136 for benzene, 424
for helium atom, 369coefficient, 116 for ethylene, 420
for nuclear motion, 464of a van der Waals gas, 117 theory, 419
for the hydrogen atom, 397Fundamental equation, 102 Hybrid orbitals, 416, 430
vibrational, 489for the enthalpy, 105 Hybrid sp orbitals, 417

Hard-sphere potential, 599for the Gibbs energy, 107, 133 Hydrogen atom spectrum, 353
Harmonic oscillator, 322for the Helmholtz energy, 107 Hydrogen bond, 192, 430

classical, 322for the internal energy, 103 Hydrogen component, 268
eigenfunctions, 327for the transformed Gibbs energy, 268, Hydrogen ion catalysis, 740
quantum mechanical, 325270 Hydrogen ions, standard enthalpy of

Hartree energy, 352with other kinds of work, 110 formation, 67
Hartree-Fock calculation, 375 Hydrogen molecule ion, 398
Heat capacity, 50 electron density, 404

Galvanic cell, 222 as a function of temperature, 51 energy, 400
Gas constant, 8 at constant pressure, 49 Hydrogen-bonded crystals, 825

in various units, 10 at constant volume, 47 Hydrogenlike atom, total wave function,
recommended value, 10 of ideal gases, at high temperatures 356

Gaussian curve, 729 (table), 597 Hydrogenlike radial wave function, 350
Gaussian functions, 419 of solids, in statistical mechanics, Hydrogenlike wave functions, real, 357
Gay-Lussac’s law, 8 601 Hydrogen-oxygen fuel cell, 245
General acid catalysis, 740 relations between, 51 Hydroxyl ions, standard enthalpy of
Gibbs energy, 106 Heat engines, 94 formation, 67

additivity of contributions of species, Heat of combustion, 65 Hyperfine splitting constant, 563
109 Heat of solution, 65

and non-PV work, 111 Heat, 31
as a criterion for spontaneous change, absorbed in expansion of a gas, 48 Ideal gas mixtures, 10

108 sign convention, 34 Ideal gas temperature scale, 8
as a function of extent of reaction, 134 Heisenberg uncertainty principle, 299 Ideal gas, single-molecule partition
dependence on pressure, 112 Helium atom: function, 574
dependence on temperature, 111 Hamiltonian operator, 369 Ideal solution, 186
of a reaction system, 138 wave function, 370 Identity element, 438
of an ideal solution, 188 Helmholtz energy, 106 Identity matrix, 164
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R

Impact parameter, 631, 688 Irreversible compression of a gas, 42 Lever rule, 187
Improper axis, 442 Irreversible expansion of a gas, 42 Lifetime, 463
Improper rotation axis, 438 Isobaric process, 48 of an excited molecule, 707
Independent intensive properties, Isolated system, 4 singlet, 708

choices, 157 Isolated system, spontaneous process, 78 total radiative, 463
Indices, of a plane, 809 Isolation method, 648 Light amplification, 523
Indirect spin-spin coupling, 550 Isomer group, thermodynamic Light scattering, 781
Induced dipole moment, 493 properties, 161, 163 Light:
Inexact differential, 38 Isomorphous replacement, 824 elliptically polarized, 532
Infrared bond regions, 490 Isotherm, 6 plane polarized, 532
Infrared spectroscopy, Fourier transform, Isothermal compressibility, 17, 126 Line integral, 32

496 Isothermal expansion: Linear operator, 304
Inhibition, 748 of a van der Waals gas, 44 Linear superposition, 309
Initial reaction rate, 648 of an ideal gas, 113 Liquid crystals, 829
Integral heat of solution, 65 Liquids, structure, 828
Integrals, 886 Liquid-vapor equilibrium, 185

Joule, SI unit, 34Integrated absorption coefficiemt, 515 Logarithms, 884
Joule-Thomson coefficient, 53Integrating factor, 39, 76 London force, 428
Joule-Thomson expansion, 53Intensity of light absorbed, 704 Lone-pair electrons, 418

Intensive state of a system, 156 Lorentzian, 558
Intensive variables, 5 Low energy electron diffraction (LEED),Kelvin equation, 208
Intermolecular energy transfer, rates, 706 847Kelvin scale, 8
Intermolecular forces, 427 Lowest unoccupied molecular orbitalKinetic energy, rotational, 330
Intermolecular potential energy, 429 (LUMO), 421Kinetic theory of gases, 613
Internal conversion, 520 Kinetics, 611
Internal energy, 33 in the liquid phase, 724

Maclaurin series, 19, 885of combustion, 65 Klystron, 474
Macromolecules, size and shape, 763in terms of the canonical partition Kronecker delta, 303
Macroscopic dissociation constants,function, 570

280with respect to a reference state, 33
Magic-angle spinning, 561Internal pressure, 48 Langmuir adsorption isotherm, 843
Magnetic dipole moment, 363, 366Internal rotation, 489 assumptions, 846

transitions, 542Internuclear distance, 399 for a mixture, 844
vector, 795from rotational spectra, 468 Laplacian operator, 317, 330

Magnetic domains, 800Internuclear spin-spin coupling, 550 Laplacian, 301, 892
Magnetic field, 540, 795Interstitial site, 827 Larmor frequency, 538, 541, 542

rotating, 544Intersystem crossing, 520 Laser, 461, 523
Magnetic flux density, 363, 540, 795Intramolecular processes, rates, 706 chemical, 526
Magnetic properties, of nuclei, 538Intrinsic viscosity, 776 gas, 525
Magnetic quantum number, 334relation to molar mass, 777 solid state, 524
Magnetic resonance, spectroscopy,Inversion operation, 441 Late barrier, 695

537Ion product of water, at several Lattice, 804
Magnetic susceptibility, 364, 796temperatures, 879 Laws of thermodynamics:

table, 797Ion product, 255 first, 30
units, 798Ion radii, 815 second, 74

Magnetization, 542, 795Ionic bonding, 425 third, 74, 92
Magnetogyric ratio, 363, 538, 540Ionic crystals, 824 zeroth law, 6
Mark-Houwink equation, 777Ionic strength, 229 LCAO molecular orbital, 398
Mass average molar mass, 764, 773Ionization energy, 354, 378, 480 Le Châtelier’s principle, 146, 150
Mass fractions, of polymers, 775as a function of atomic number, 380 Legendre transform, 105, 267, 889
Mathematical applications, 895in electron volts, 380 complete, 124
Mathematica , 895of hydrogenlike atoms, 354 to introduce pH as an independent
Matrices, 163, 892table, 883 variable, 267

for a reaction system, 167Ionization potential, 480 Lennard-Jones potential, 427, 429, 600,
Matrix representations, 448Irreducible representations, 450 631
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of a rotation, 451 Molecular properties, of gases (table), Number of degrees of freedom, 22, 157
Maxwell distribution of speeds, 617 590 Number of different phases, 22, 156
Maxwell relations, 104, 109 Molecularity, 659 Number of independent chemical

applications, 125 Moment of inertia, 329, 335, 469 reactions, 156, 167
Maxwell-Boltzmann distribution, 616 Momentum, of a photon, 298 Number of independent properties,
Mean free path, 630 Monatomic ideal gas: 158
Mean ionic activity coefficient, 228, 230 thermodynamic properties, 52 Number of independent variables, 22,

of hydrochloric acid, 232 translational energy, 52 157
of electrolytes, 233 Monod-Wyman-Changeux model, Number of microscopic states, 571

Mean ionic molality, 228 752 Number of normal modes of vibration,
Mean relative speed, 627 Monolayer, 843 488
Mean speed, 620 Morse potential, 482 Number of variables, to describe a
Mean-square end-to-end distance, 769 Most probable speed, 620 system, 22, 36
Mechanisms, of chemical reactions, 659 Multilayer adsorption (BET), 847
Meissner effect, 831 Multiple unit cells, 804
Melting temperature, of DNA, 283 Multiplicity, 552 Oblate top, 470
Membrane potential, 246 Mutual exclusion rule, 495 Octahedral complex, 518
Metallic bonds, 825 One-electron atoms, contour surfaces,
Metastable states, 389 360
Michaelis constant, 747 Nanocrystal, 835 Operator, 304
Michaelis-Menten equation, 746 Naperian molar absorption coefficient, for the square of the angular
Microcanonical ensemble, 598 512 momentum, 333
Microscopic dissociation constants, 280 Natural logarithm, 43 Hamiltonian, 304
Microscopic reversibility, 655 Natural variables, 103, 108 Hermitian, 306
Microwave spectrometer, 473 Nematic liquid crystals, 829 linear, 305
Miller indices, 809 Nernst equation, 226 quantum mechanical, 306
Mirror plane, 440 Neutron diffraction, 813 Optical activity, 529
Mixing ideal gases, thermodynamic Neutrons, thermal, 813 and symmetry, 448

properties, 123 Newton, SI unit, 31 Optical rotation, 529
Mobility, of an ion, 730 Newton’s law, 693 Optical rotatory dispersion, 532
Molar absorption coefficient, 512 Newton-Raphson calculation, 143 Orbital angular momentum, 355, 366,
Molar magnetic susceptibilities, 797, 799 Nonbonding molecular orbitals, 517 797
Molar mass distributions, 772 Nonideal gases, in statistical mechanics, of the hydrogenlike atom, 361
Molar mass, 9 599 quantum numbers, 411

from osmotic pressure, 765 Nonideal mixture, vapor pressure, 192 Orbital radius, 378
from sedimentation and diffusion, 780 Nonspontaneous processes, 75 Orbital, 356
mass average, 764 Normal coordinates, 488 antibonding, 402
number average, 764 Normal modes of vibration, 486, 488 bonding, 402
of hemoglobin, 780 Normalization factor, 303 Greek letter, 405

Molar polarization, 790 Normalized wave function, 303 Order of reaction, 644
Mole fraction, 11 Nuclear g factor, 539 Order of a rotation, 439

of a pseudoismer in a pseudoisomer Nuclear magnetic moment, 539 Orientation polarization, 789
group, 272 Nuclear magnetic relaxation, 556 Orthogonal wavefunction, 303

of polymers, 775 Nuclear magnetic resonance (NMR), Orthohydrogen, 584
Mole, 9 541, 537, 540 Orthonormal wavefunction, 303
Molecular beam: energy levels, 540 Oscillating chemical reactions, 752

experiments, 702 frequency, 541 Oscillator strength, 516
supersonic, 703 two-dimensional, 560 Oscillator, harmonic, 322

Molecular crystals, 825 Nuclear magnetism, 538 Osmotic pressure, 200
Molecular electronic structure, 396 Nuclear magneton, 539 colloid, 767
Molecular orbitals: Nuclear spin, table, 538 of polymer solutions, 764

bonding, 399 Null space, 164, 894 total, 767
LCAO, 398 Number average degree of virial equation, 201
of hydrogen molecule, 407 polymerization, 772 Overall order, 644
theory, 398 Number average molar mass, 764 Overlap integral, 399
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2

Ozone layer: principles, 704 surface, 690
destruction by chlorine atoms, 714 Photodissociation coefficient, 713 of rotation around an axis,
in the stratosphere, 712 Photoelectron spectroscopy (PES), 527, 771

Ozone, decomposition of, 661 849 Potentiometer, 223
Photoelectrons, 527 Power series, 12
Photons, 296 Precision of measurement, and

Pair correlation function, 828 Photosynthesis, 718 commutability, 321
Pair interaction potential, 766 Physical adsorption, 842 Precursor state, 853
Pairs of molecular orbitals from pairs of Physical chemical data, list of tables, 868 Predissociation, 511

atomic orbitals, 406 Physical constants, values, 867 Pre-exponential factor, 657
Parahydrogen, 584 Physical quantities, 5, 863 for bimolecular reactions, 700
Parallel reactions, 655 pK, 255 Pressure:
Paramagnetism, 563, 797 of weak acids as a function of ionic in SI units, 9
Parity, 388, 399 strength, 258 of an ideal gas, 623
Partial molar entropy, 180 table, 880 partial, 11
Partial molar Gibbs energy, 108 Planck’s blackbody distribution law, 462 Primary kinetic salt effect, 742
Partial molar properties, 23, 180 Planck’s constant, 297 Primitive cubic lattice, 814
Partial molar volume, 23 Point group symmetry, 438 Primitive unit cell, 804
Partial pressure, 11 Point group, of a molecule, identification, Principal axes, 440, 470, 471
Particle, in a one-dimensional box, 311 443, 444, 445, 447 Principal moments of inertia, 470
Particle, in a three-dimensional box, 317 table, 806 Principle of detailed balance, 656
Partition function: Point of inflection, 17 Principles of photochemistry, 704

for an ideal gas, 573 Poiseuille equation, 725 Probability density, 302, 310, 313,
single molecule, 572 Poisons, 854 326, 614

Pascal unit of pressure, 9 Polarizability, 492 for a random walker, 768
Pascal’s triangle, 552 ellipsoid, 493 for molecular speeds, 613
Paschen series, 354 of a dielectric, 789 in terms of energy, 619
Path between two states, 36 table, 791 joint, 615
Pauli exclusion principle, 371, 374 Polarization, 787 of various speeds, 618
Pauli principle, 408 distortion, 789 Probability, 302
Peak speed, 703 molar, 790 Processes:
Periodic table, 377 of a dielectric, 786 adiabatic, 32
Permittivity: orientation, 789 endothermic, 56

of vacuum, 219, 349, 787, 796 Polarized light, circularly polarized, 529 exothermic, 56
relative, 788 Polyatomic molecules, electronic spectra, in an isolated system, 78
table, 788 517 irreversible, 79

Perovskite structure, 832 Polymer chain, spatial configuration, 767 nonspontaneous, 75
pH, 243 Polymer, molar mass, 202 spontaneous, 75
as an independent variable, 267 Polymerization: types, 79
dependence on ionic strength, 257 free radical, 772 Products of inertia, 470

Phase diagrams: step-growth, 772 Prolate top, 470
for one-component systems, 178 Polyprotic acids, statistical effects, 284 Promoters, 854
for two-component systems, 202 Population inversion, 462, 523 Propagation reactions, 677

Phase difference, 820 Population: Proper rotation axis, 438
Phase equilibrium, 177 of rotational states, 486 Proteins:
Phase problem, 822, 824 of vibrational levels, 478 denaturation, 280
Phase rule, 155, 158 Postulates of quantum mechanics, 336 structure, 280
Phase transition: Potential barrier, for adsorption, 843 physical constants, 780

first order, 180 Potential difference, 45 Proton:
second order, 181 Potential energy: charge, 220

Phosphorescence, 519, 521 for a diatomic molecule, 475 chemical shift, 549
quantum yield, 709 for Cl , 477 spins, 542
spectrum, 522 for HCl, 482 spin-spin coupling constants,

Photochemical reactions, 710 for hydrogen molecules, 410 551
Photochemistry, 686 intermolecular, 429 Pseudoisomer group, 272
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2

Pulse length, 544 Rate: irreducible, 450
Pulse mode, 524 of absorption, of photons, 460 Resistivity, 731
Pulse sequences, 560 of conversion, 642 Resonance integral, 401
P-V-T surface, 15 of desorption, 843 Resonance Raman spectroscopy, 496
Pythagorean theorem, 627 of reaction, 642 Resonance signal, 544

of heterogeneous reaction, 854, 855 Resonate cavity, 524
of intermolecular energy transfer, 706 Reversible adiabatic expansion, of an
of ionization of water, 739 ideal monatomic gas, 55Quantized energy levels, 311

Rate-determining step, 662 Reversible first-order reactions, 650Quantum confined structure, 833
Reaction cross section, 688 Reversible process, 42Quantum dot, 835
Reaction enthalpy, 57, 136 Rhodopsin, 719absorption spectra, 836

calculated from K as a function of T, Rigid rotor, 329Quantum mechanical harmonic
145 Root-mean-square speed, 620oscillator, 325

Reaction entropy, 136 Rotation operation, 439Quantum mechanical operator, 306
Reaction Gibbs energy, 133, 137 Rotational constant, 466Quantum mechanics, 296

under specified conditions, 135 Rotational contributions to thepostulates, 336
Reaction heat capacity, 62 thermodynamic properties of anQuantum number:
Reaction order, 644 ideal gas, 583for angular momentum, 331, 334, 355
Reaction probability, 693, 695 Rotational energy, 330for spin, 365
Reaction quotient, 135 linear molecule, 472magnetic, 334
Reaction rate, 642 spherical top, 471vibrational, 325

initial, 648 symmetric top, 472Quantum theory, 295
Reaction: Rotational levels of diatomic molecule,Quantum well, 833

activation-controlled, 734 466Quantum wire, 834
bimolecular, 659 Rotational spectroscopy, 458Quantum yield, 705
diffusion-controlled, 734 of diatomic molecules, 465for fluorescence, 708
first order, 645 of polyatomic molecules, 469for phosphorescence, 709
heterogeneous, 154 Rotational symmetry, 806of photochemical reactions, 710
oscillating, 752 Rotational temperature, characteristic,Quasistatic, 32
parallel, 655 583Quenching process, 709
second order, 646 Rotatory dispersion, 530
trimolecular, 659 RRKM theory, 670, 700

Radial functions, 356 unimolecular, 659 Russell-Saunders coupling, 384
Radial probability densities, 376 zero order, 647 Rydberg constant, 353

for the hydrogen atom, 358 Reduced mass, 330, 349 in electron volts, 354
Radiant energy density, 297, 340, 460 Reduction potentials, 239
Radiative lifetime, 464 Reduction reaction, 222
Radius of curvature, 209 Reference state, 60 Sackur-Tetrode equation, 85, 578
Radius of gyration, 771 Reflection operation, 440 Saddle point, 690, 698
Raman apparatus, 492 Refractive index, 792 Scalar product, 332, 891
Raman spectra, 491 frequency dependence, 794 Scalar sum, 381

resonance, 496 Relative humidity, 11 Scanning tunneling microscopy (STM),
of CO , 494 Relative permeability, 796 851

Raman transitions, selection rules, 503 Relative permittivity, 219 Scattering factor, 819
Random walk, 768 as a function of frequency, 794 Scattering of X-rays from a unit cell,
Rank of a matrix, 165 of HCl, 792 819
Raoult’s law, 186 Relative velocity, 688 Scattering of plane-polarized light, 782
Rate constant: Relative viscosity, 776 Schoenflies groups, 443

for a diffusion-controlled reaction, 735 Relaxation methods, 736 Schoenflies symbols, table, 806
in terms of molecular partition Relaxation time, 646 Schrodinger equation, 301

functions, 699 for a one-step reaction, 738 for hydrogen-like atoms, 349
of enzyme-catalyzed reactions, as a nuclear magnetic, 556 for nuclear motion, 464

function of pH, 750 Renaturation of DNA, 283 for the hydrogenlike atom, in atomic
of ionic reactions, 742 Representations: units, 391
theoretical calculation, 692 in symmetry, 449 time-dependent, 337

Q

R

S

Index



942

time-independent, 302 Spectrum: Standard thermodynamic properties:
Screw axis, 808 of hydrogen atoms, 353 of ions, 234
Second law of thermodynamics, 74, 77 vibrational, 475 of reactions of ions, 235

mathematical statement, 77 Specular reflection, 623 of a species, 271
two parts, 78 Speed of light, 297 Standard transformed enthalpy, of a

Second order spectrum, 552 in a medium, 793 pseudoisomer group, 272
Second virial coefficient, 13 Speed, 614 Standard transformed Gibbs energies:
Second-order phase transition, 181 mean, 620 of formation at various pHs, 274
Second-order rate constant: most probable, 620 of hydrolysis, 277

for a reaction of two small radicals, 687 of sound, 621 of pseudoisomer group, 272
for a reaction of two spherical root-mean-square, 620 of species, as a function of ionic

molecules, 689 Spherical coordinates, 331, 887 strength, 271
Second-order reaction, 646 Spherical harmonics, 331 Standard transformed properties,
Sedimentation coefficient, 779 Spherical top, 470 calculation of, 271
Selection rules, 387, 460, 463 Spin angular momentum, 365, 382 Stark effect, 474

for electronic spectroscopy, 504 Spin multiplicity, 384 State functions, 76
for rotational spectra, 467 Spin quantum number, 365 State of a system, 4

Semiconductor quantum well, 834 of a solid, 798 extensive, 156
Semipermeable membranes, 200 of molecular oxygen, 799 intensive, 156
Separability, of a Hamiltonian, 320 Spin, electron, 362, 364 State of an ideal gas, reversible changes,
Series, 885 Spin-echo techniques, 559 76
Shell, 376 Spin-lattice relaxation, 557 State variables, 4
Shielding constant, 547 Spin-orbit coupling, 387 State:
Shock tube, 644 Spin-spin coupling: macroscopic, 4
SI system of units, 863 direct, 550 microscopic, 4
Sigma bond framework, 420 indirect, 550 Stationary state wavefunction, 303
Single-molecule partition function, 572 of protons, 551 Statistical effects, in polyprotic acids,

for an ideal gas, 574 Spin-spin splitting, 552 284
Singlet lifetime, 708 Splitting of energy levels, 364 Statistical mechanics, 568
Slater determinant, 372 Spontaneous processes, 75 Statistical probability, and entropy, 88
Smectic liquid crystals, 829 in an isolated system, 78 Steady-state approximation, 652
Solid solutions, 205 Standard deviation, 300, 311, 729 Steady-state method, 660
Solid, one-dimensional, 432 for a particle in a box, 315 Step-growth polymerization, 772
Solid-state chemistry, 803 Standard electrode potentials, 239 Stern-Volmer equation, 710
Solubility, in ideal solutions, 304 table, 240 Sticking coefficient, 843
Solution, of simultaneous linear Standard electromotive force of a cell, Stirling’s approximation, 573

equations, 893 226 Stoichiometric number matrix, 164
Solvents, Standard enthalpy of an ionic reaction: Stoichiometric number of the electron,

“good” and “poor”, 765 as a function of ionic strength, 238 226
Space group, 808 as a function of temperature, 62 Stoichiometric number, 57, 642
Space lattices, 807 Standard enthalpy of formation, 60 Stokes lines, 491
Special point groups, 446 as a function of ionic strength, 238 Structural pattern, 804
Specific rotation, 531 of an isomer group, 162 Structure factor, 820
Specific viscosity, 776 Standard enthalpy of reaction, 61 Structure, of liquids, 828
Spectral radiant energy density, 460 as a function of temperature, 61 Subshell, 376
Spectrometer, UV-visible, 512 calculation of, 146, 147 Superconductivity, 830
Spectroscopic dissociation energy, 479 Standard Gibbs energy of an ionic Supermolecule, 690
Spectroscopy: reaction,, 238 Superposition, 309, 340

basic ideas, 459 Standard Gibbs energy of formation, 143 linear, 309
photoelectron, 527 of an ion as a function of ionic state, 310
Raman, 491 strength, 238 Supersonic molecular beam, 703
rotational, 458 of an isomer group, 162 Surface area, determination of,
ultraviolet photoelectron (UPS), 527 Standard molar entropies of ions, 237 845
vibrational, 458 Standard reaction Gibbs energy, 135 Surface coverage, 843
X-ray photoelectron (XPS), 527 Standard states, 58 Surface dynamics, 840

Index



943

Surface reactions, theory, 852 Thermodynamic standard states, 58 Two-dimensional NMR, 560
Surface reconstruction, 856 Thermodynamic temperature, 8
Surface tension, 44 Thermodynamic variables, 4 Ultracentrifuge, 779

effect on vapor pressure, 205 Thermodynamics of isomer groups, Ultraviolet photoelectron spectroscopy
of some liquids, 206 161 (UPS), 527, 850

Surface work, 45 Theta temperature, 766 Unbranched chain reactions, 674
Surface, of a solid, 857 Third law of thermodynamics, 74, 92 Uncertainty principle, 299
Surroundings, in thermodynamics, 4 and the calculation of equilibrium Unimolecular reaction, 659, 667
Susceptibility, electric, 788 constants, 94 Unit cell, 804
Svedberg unit, 779 apparent deviations, 93 body centered, face centered, end
Symbols, for physical quantities, 899 Third virial coefficient, 13 centered, 808
Symmetric top, 470, 472 Tie line, 16, 187 of NaCl, 815
Symmetric wave functions, 371 Time domain, 545 primitive, 804
Symmetry element, 438 Time-dependent Schrodinger equation, multiple, 804
Symmetry number, 584 337 United atom, 412
Symmetry of crystals, 805 Titration curve, of a weak acid, 259 Units:
Symmetry operations, 438 Total angular momentum, 333 atomic, 390

applied to wavefunctions, 453 of an atom, 383 derived, 864
multiplication, 450 Total osmotic pressure, 767 non-SI, 865

Symmetry plane, 438, 440 Total spin angular momentum, 538 of physical quantities, 863
Symmetry, 437 Trajectory of a molecular collision, 694 supplementary, 864
System: Transformed chemical potential, 268

closed, 4 in a phase with an electric potential,
isolated, 4 221 Valence band, 833
open, 4 Transformed enthalpy, 269 Valence bond method, 416

Transformed entropy, 269 Valence electrons, 385
Transformed Gibbs energy, 267 van der Waals constants, 18

Taylor series, 475 as a criterion for equilibrium, 267 in terms of critical constants, 20
Temperature scale: fundamental equation, 268, 270 van der Waals equation, 17

ideal gas, 8 in a phase with an electric potential, van der Waals forces, 428
Kelvin, 8 221 Van’t Hoff equation, 145

Temperature, theta, 766 Transistor, 833 Vapor pressure, 16, 182
Temperature-jump apparatus, 738 Transition dipole moment, 462 effect of radius of curvature,
Tensor, 493 Transition moment, 464, 508 209
Term symbol, of a molecule, 411 Transition state theory, 697 effect on surface tension, 205
Term values, 465 Transition state, 691 from effusion, 625
Termination reactions, 677 Transition-state spectroscopy, of a nonideal mixture, 192
Tesla, 795 femtosecond, 714 of ice and water, 184
Test for exactness, 37 Translational contributions to the Variables:
Theoretical plates, 192 properties of an ideal gas, 576 extensive, 5
Thermal conduction, in gases, 633 Translational partition function, 576 intensive, 5
Thermal equilibrium, 6 for a hydrogen atom, 576 state, 4
Thermal neutrons, 813 Transmittance, 511 thermodynamic, 4
Thermal wavelength, 576 Transport coefficients, in gases, 635 Variance, 311
Thermochemistry, 56 Transport phenomena in gases, 632 Variational method, 368, 409
Thermodynamic equilibrium constant, Transpose of a matrix, 166 Vector force, 31

137 Trial wave function, 368 Vector product, 891
Thermodynamic potentials, 105 Trimolecular reaction, 659, 670 Vectors, 891
Thermodynamic properties: rate constants, 672 Velocity distribution, 615

acid dissociation, 256 Triple point, 15 Velocity gradient, 635
at several temperatures, table, 874 of water, 8 Velocity vector, 614
from statistical mechanics, 588 Triplet state, 374, 521, 563 Vibrational and rotational levels, of
of a monatomic ideal gas, 52 Tunneling, 326, 338 diatomic molecules, 484
of species in biochemical reactions, 266 Turbidity, 781 Vibrational contributions to the
table, 870 Turnover number, 747 properties of an ideal gas, 580
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Vibrational coordinates, 464 Viscous flow, in gases, 633 Work, 31
Vibrational degrees of freedom, 465 Vision, 718 conjugate pairs, 45
Vibrational quantum number, 325 Volume, of a unit cell, 809 electric, 45
Vibrational spectra, 458 from a reversible isothermal

of diatomic molecules, 475 expansion, 43
Water, lone-pair electrons, 418of HCl, 477 hydrostatic, 45
Watson-Crick base pairs, 283of polyatomic molecules, 486 of adiabatic expansion, 54
Wave function, 301characteristic, 580 of elongation, 45

symmetric, 372Vibrational term value, 476 of compression, 39
Wave number, 353, 459Vibration-rotation coupling constant, 485 of expansion, 39, 44
Wave packet, 299, 340, 715Vibration-rotation spectra, of diatomic SI unit, 31

in a parabolic barrier, 342molecules, 483 sign convention, 33
Wavefunction:Virial coefficients: various kinds, 44

antisymmetric, 372from Lennard-Jones potential, 600
for a particle in a three-dimensionalrelations between, 13

box, 318Virial equation, 11 X-ray photoelectron spectroscopy (XPS),
normalized, 303for a van der Waals gas, 19 527, 850
orthogonal, 303Virial expansion, 765
orthonormal, 303Viscosity, 634

Wavelength, of a particle, 299of a liquid, 725 Zeeman effect, 364
Weak acids:of DNA solution, 778 Zero matrix, 164

dissociation, 255of water, 726 Zero point energy, 311, 325, 580
practical calculations, 257intrinsic, 776 Zero-order reaction, 647

Web addresses, 898relative, 776 Zeroth law of thermodynamics,
Wien displacement law, 340specific, 776 3, 6

W

X

Z

Index



,

a

Quantity Symbol Value

c .

.
c

.
h .

h .
e .

.

.
R .
a .
E .
m .
m .
m .
m .
N .
m .
F .
R .

.

.

.
k .
g .

. .
. .

x x . x .
.

. .

�
�

� �

The best values and their uncertainties are given in Appendix B.

8 1

27
0

27

2
0 0

2 112 2

34

34

19

124
B

127
N

7 1

11
0

18
h

31
e

27
p

27
n

27
d

123
A

27
u

14

11

1 12

1 1

112

123

2

1

1

1

2 11 19

12 15 3 3

1 1

Speed of light in vacuum 2 998 10 m s (exact)
Permeability of vacuum 4 10 N A (exact)

12 57 10 N A
Permittivity of vacuum 1/ (exact)

8 854 10 C N m
Planck constant 6 626 10 J s

/2 1 055 10 J s
Elementary charge 1 602 10 C
Bohr magneton 9 274 10 J T
Nuclear magneton 5 051 10 J T
Rydberg constant 1 097 10 m
Bohr radius 5 292 10 m
Hartree energy 4 360 10 J
Electron mass 9 109 10 kg
Proton mass 1 673 10 kg
Neutron mass 1 675 10 kg
Deuteron mass 3 344 10 kg
Avogadro constant 6 022 10 mol
Atomic mass constant 1 661 10 kg
Faraday constant 9 649 10 C mol
Gas constant 8 315 J K mol

8 315 10 L bar K mol
1 987 cal K mol
8 206 10 L atm K mol

Boltzmann constant 1 381 10 J K
Acceleration due to gravity 9 806 65 m s

3 141 592 65 2 54 cm inch
e 2 718 281 828 453 6 g lb
ln log / log e 2 302 585 09 log 4 184 J cal (exactly)
101 325 N m atm 1 602 10 J eV
10 N m bar 10 m L
1 013 25 bar atm 133 32 Pa torr

PHYSICAL CONSTANTS
(ROUNDED TO FOUR

SIGNIFICANT FIGURES)
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a

A

Atomic Relati e Atomic Relati e

Number Name Symbol Atomic Mass Number Name Symbol Atomic Mass

Pure Appl. Chem.

12
rScaled to the relative atomic mass, ( C) 12

Values given here apply to elements as they exist naturally on earth. The uncertainties in the values are indicated by the figures given in
parentheses, which are applicable to the last digits.

1 Hydrogen H 1.007 94(7) 56 Barium Ba 137.327(7)
2 Helium He 4.002 602(2) 57 Lanthanum La 138.905 5(2)
3 Lithium Li 6.941(2) 58 Cerium Ce 140.115(4)
4 Beryllium Be 9.012 182(3) 59 Praseodymium Pr 140.907 65(3)
5 Boron B 10.811(5) 60 Neodymium Nd 144.24(3)
6 Carbon C 12.011(1) 61 Promethium Pm
7 Nitrogen N 14.006 74(7) 62 Samarium Sm 150.36(3)
8 Oxygen O 15.999 4(3) 63 Europium Eu 151.965(9)
9 Fluorine F 18.998 403 2(9) 64 Gadolinium Gd 157.25(3)

10 Neon Ne 20.179 7(6) 65 Terbium Tb 158.925 34(3)
11 Sodium Na 22.989 768(6) 66 Dysprosium Dy 162.50(3)
12 Magnesium Mg 24.305 0(6) 67 Holmium Ho 164.930 32(3)
13 Aluminum Al 26.981 539(5) 68 Erbium Er 167.26(3)
14 Silicon Si 28.085 5(3) 69 Thulium Tm 168.934 21(3)
15 Phosphorus P 30.973 762(4) 70 Ytterbium Yb 173.04(3)
16 Sulfur S 32.066(6) 71 Lutetium Lu 174.967(1)
17 Chlorine Cl 35.452 7(9) 72 Hafnium Hf 178.49(2)
18 Argon Ar 39.948(1) 73 Tantalum Ta 180.947 9(1)
19 Potassium K 39.098 3(1) 74 Tungsten W 183.84(1)
20 Calcium Ca 40.078(4) 75 Rhenium Re 186.207(1)
21 Scandium Sc 44.955 910(9) 76 Osmium Os 190.23(3)
22 Titanium Ti 47.88(3) 77 Iridium Ir 192.22(3)
23 Vanadium V 50.941 5(1) 78 Platinum Pt 195.08(3)
24 Chromium Cr 51.996 1(6) 79 Gold Au 196.966 54(3)
25 Manganese Mn 54.938 05(1) 80 Mercury Hg 200.59(3)
26 Iron Fe 55.847(3) 81 Thallium Tl 204.383 3(2)
27 Cobalt Co 58.933 20(1) 82 Lead Pb 207.2(1)
28 Nickel Ni 58.693 4(2) 83 Bismuth Bi 208.980 37(3)
29 Copper Cu 63.546(3) 84 Polonium Po
30 Zinc Zn 65.39(2) 85 Astatine At
31 Gallium Ga 69.723(1) 86 Radon Rn
32 Germanium Ge 72.61(2) 87 Francium Fr
33 Arsenic As 74.921 59(2) 88 Radium Ra
34 Selenium Se 78.96(3) 89 Actinium Ac
35 Bromine Br 79.904(1) 90 Thorium Th 232.038 1(1)
36 Krypton Kr 83.80(1) 91 Protactinium Pa 231.035 88(2)
37 Rubidium Rb 85.467 8(3) 92 Uranium U 238.028 9(1)
38 Strontium Sr 87.62(1) 93 Neptunium Np
39 Yttrium Y 88.905 85(2) 94 Plutonium Pu
40 Zirconium Zr 91.224(2) 95 Americium Am
41 Niobium Nb 92.906 38(2) 96 Curium Cm
42 Molybdenum Mo 95.94(1) 97 Berkelium Bk
43 Technetium Tc 98 Californium Cf
44 Ruthenium Ru 101.07(2) 99 Einsteinium Es
45 Rhodium Rh 102.905 50(3) 100 Fermium Fm
46 Palladium Pd 106.42(1) 101 Mendelevium Md
47 Silver Ag 107.868 2(2) 102 Nobelium No
48 Cadmium Cd 112.411(8) 103 Lawrencium Lr
49 Indium In 114.88(3) 104 Rutherfordium Rf
50 Tin Sn 118.710(7) 105 Dubnium Db
51 Antimony (stibium) Sb 121.75(3) 106 Seaborgium Sg
52 Tellurium Te 127.60(3) 107 Bohrium Bh
53 Iodine I 126.904 47(3) 108 Hassium Hs
54 Xenon Xe 131.29(2) 109 Meitnerium Mt
55 Cesium Cs 132.905 43(5)

IUPAC Commission on Atomic Weights, :1520 (1992).
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Relati e Isotopic
Atomic Mass, Abundance,

Z Symbol A m x

IUPAC Commission on Atomic Weights, :653 (1984).

An asterisk denotes an unstable nuclide. The standard error in parentheses is appli-
cable to the last digits quoted.

a/u /%

1 H 1 1.007 825 037(10) 99.985(1)
2 2.014 101 787(21) 0.015(1)
3* 3.016 049 286(32)

2 He 3 3.016 029 297(33) 0.000 138(3)
4 4.002 603 25(5) 99.999 862(3)

3 Li 6 6.015 123 2(8) 7.5(2)
7 7.016 004 5(9) 92.5(2)

4 Be 9 9.012 182 5(4) 100
5 B 10 10.012 938 0(5) 19.9(2)

11 11.009 305 3(5) 80.1(2)
6 C 12 12 (by definition) 98.90(3)

13 13.003 354 839(17) 1.10(3)
14* 14.003 241 993(24)

7 N 14 14.003 074 008(23) 99.634(9)
15 15.000 108 978(38) 0.366(9)

8 O 16 15.994 914 64(5) 99.762(15)
17 16.999 130 6(8) 0.038(3)
18 17.999 159 39(32) 0.200(12)

9 F 19 18.998 403 25(14) 100
10 Ne 20 19.992 439 1(5) 90.51(9)

21 20.993 845 3(12) 0.27(2)
22 21.991 383 7(6) 9.22(9)

11 Na 23 22.989 769 7(9) 100
12 Mg 24 23.985 045 0(8) 78.99(3)

25 24.985 839 2(12) 10.00(1)
26 25.982 595 4(10) 11.01(2)

13 Al 27 26.981 541 3(7) 100
14 Si 28 27.976 928 4(7) 92.23(1)

29 28.976 496 4(9) 4.67(1)
14 Si 30 29.973 771 7(10) 3.10(1)
15 P 31 30.975 363 8(11) 100
16 S 32 31.972 071 8(6) 95.02(9)

33 32.971 459 1(8) 0.75(1)
34 33.967 867 74(29) 4.21(8)
36 35.967 079 0(16) 0.02(1)

17 Cl 35 34.968 852 729(68) 75.77(5)
37 36.965 902 62(11) 24.23(5)

35 Br 79 78.918 336 1(38) 50.69(5)
81 80.916 290(6) 49.31(5)

53 I 127 126.904 477(5) 100

RELATIVE ATOMIC MASSES
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v

a

b



a

E

E

� �
� � �

�
�

�

W
he

n
a

ph
ys

ic
al

qu
an

ti
ty

is
ex

pr
es

se
d

in
th

e
un

it
s

in
th

e
le

ft
-h

an
d

co
lu

m
n,

th
e

fa
ct

or
is

th
e

nu
m

be
r

to
m

ul
ti

pl
y

by
to

co
nv

er
tt

o
th

e
un

it
s

at
th

e
he

ad
of

th
e

co
lu

m
ns

to
th

e
ri

gh
t.

1
h

1

h

cm
M

H
z

aJ
eV

kJ
/m

ol
kc

al
/m

ol
K

1
cm

1.
00

00
00

00
E

00
2.

99
79

24
58

E
04

1.
98

64
47

46
E

-0
5

1.
23

98
42

45
E

-0
4

4.
55

63
35

30
E

-0
6

1.
19

62
65

82
E

-0
2

2.
85

91
43

92
E

-0
3

1.
43

87
68

66
E

00
1

M
H

z
3.

33
56

40
95

E
-0

5
1.

00
00

00
00

E
00

6.
62

60
75

50
E

-1
0

4.
13

56
69

24
E

-0
9

1.
51

98
29

86
E

-1
0

3.
99

03
13

24
E

-0
7

9.
53

70
77

54
E

-0
8

4.
79

92
15

66
E

-0
5

1
aJ

5.
03

41
12

50
E

04
1.

50
91

88
96

E
09

1.
00

00
00

00
E

00
6.

24
15

06
36

E
00

2.
29

37
10

45
E

-0
1

6.
02

21
36

70
E

02
1.

43
93

25
22

E
02

7.
24

29
23

30
E

04
1

eV
8.

06
55

40
93

E
03

2.
41

79
88

34
E

08
1.

60
21

77
33

E
-0

1
1.

00
00

00
00

E
00

3.
67

49
30

88
E

-0
2

9.
64

85
30

90
E

01
2.

30
60

54
23

E
01

1.
16

04
44

75
E

04
1

2.
19

47
46

29
E

05
6.

57
96

83
86

E
09

4.
35

97
48

20
E

00
2.

72
11

39
61

E
01

1.
00

00
00

00
E

00
2.

62
54

99
96

E
03

6.
27

50
95

52
E

02
3.

15
77

32
18

E
05

1
kJ

/m
ol

8.
35

93
46

12
E

01
2.

50
60

68
92

E
06

1.
66

05
40

19
E

-0
3

1.
03

64
27

21
E

-0
2

3.
80

87
98

38
E

-0
4

1.
00

00
00

00
E

00
2.

39
00

57
36

E
-0

1
1.

20
27

16
52

E
02

1
kc

al
/m

ol
3.

49
75

50
41

E
02

1.
04

85
39

24
E

07
6.

94
77

00
14

E
-0

3
4.

33
64

11
46

E
-0

2
1.

59
36

01
24

E
-0

3
4.

18
40

00
00

E
00

1.
00

00
00

00
E

00
5.

03
21

65
92

E
02

1
K

6.
95

03
87

70
E

-0
1

2.
08

36
73

81
E

04
1.

38
06

58
00

E
-0

5
8.

61
73

85
69

E
-0

5
3.

16
68

29
68

E
-0

6
8.

31
45

11
21

E
-0

3
1.

98
72

15
87

E
-0

3
1.

00
00

00
00

E
00

E
N

E
R

G
Y

C
O

N
V

E
R

SI
O

N
FA

C
T

O
R

S

a

�

�

F
ra

ct
io

n
P

re
fix

Sy
m

bo
l

M
ul

tip
le

P
re

fix
Sy

m
bo

l

1 2
2

3
3

6
6

9
9

12
12

15
15

18
18

21
21

24
24

10
de

ci
d

10
de

ka
da

10
ce

nt
i

c
10

he
ct

o
h

10
m

ill
i

m
10

ki
lo

k
10

m
ic

ro
10

m
eg

a
M

10
na

no
n

10
gi

ga
G

10
pi

co
p

10
te

ra
T

10
fe

m
to

f
10

pe
ta

P
10

at
to

a
10

ex
a

E
10

ze
yt

o
z

10
ze

tt
a

Z
10

yo
ct

o
y

10
yo

tt
a

Y

P
R

E
F

IX
E

S

�

� � � � � � � � � �


	Copyright
	Preface
	CONTENTS
	Part ONE: THERMODYNAMICS
	1: Zeroth Law of Thermodynamics and Equations of State
	1.1 STATE OF A SYSTEM
	1.2 THE ZEROTH LAW OF THERMODYNAMICS
	1.3 THE IDEAL GAS TEMPERATURE SCALE
	1.4 IDEAL GAS MIXTURES AND DALTON’S LAW
	1.5 REAL GASES AND THE VIRIAL EQUATION
	1.6 PVT SURFACE FOR A ONE-COMPONENT SYSTEM
	1.7 CRITICAL PHENOMENA
	1.8 THE VAN DER WAALS EQUATION
	1.9 DESCRIPTION OF THE STATE OF A SYSTEM WITHOUT CHEMICAL REACTIONS
	1.10 PARTIAL MOLAR PROPERTIES
	1.11 SPECIAL TOPIC: BAROMETRIC FORMULA
	REFERENCES
	PROBLEMS

	2: First Law of Thermodynamics
	2.1 WORK AND HEAT
	2.2 FIRST LAW OF THERMODYNAMICS AND INTERNAL ENERGY
	2.3 EXACT AND INEXACT DIFFERENTIALS
	2.4 WORK OF COMPRESSION AND EXPANSION OF A GAS AT CONSTANT TEMPERATURE
	2.5 VARIOUS KINDS OF WORK
	2.6 CHANGE IN STATE AT CONSTANT VOLUME
	2.7 ENTHALPY AND CHANGE OF STATE AT CONSTANT PRESSURE
	2.8 HEAT CAPACITIES
	2.9 JOULE THOMSON EXPANSION
	2.10 ADIABATIC PROCESSES WITH GASES
	2.11 THERMOCHEMISTRY
	2.12 ENTHALPY OF FORMATION
	2.13 CALORIMETRY
	REFERENCES
	PROBLEMS

	3: Second and Third Laws of Thermodynamics
	3.1 ENTROPY AS A STATE FUNCTION
	3.2 THE SECOND LAW OF THERMODYNAMICS
	3.3 ENTROPY CHANGES IN REVERSIBLE PROCESSES
	3.4 ENTROPY CHANGES IN IRREVERSIBLE PROCESSES
	3.5 ENTROPY OF MIXING IDEAL GASES
	3.6 ENTROPY AND STATISTICAL PROBABILITY
	3.7 CALORIMETRIC DETERMINATION OF ENTROPIES
	3.8 THE THIRD LAW OF THERMODYNAMICS
	3.9 SPECIAL TOPIC: HEAT ENGINES
	REFERENCES
	PROBLEMS

	4: Fundamental Equations of Thermodynamics
	4.1 FUNDAMENTAL EQUATION FOR THE INTERNAL ENERGY
	4.2 DEFINITIONS OF ADDITIONAL THERMODYNAMIC POTENTIALS USING LEGENDRE TRANSFORMS
	4.3 EFFECT OF TEMPERATURE ON THE GIBBS ENERGY
	4.4 EFFECT OF PRESSURE ON THE GIBBS ENERGY
	4.5 FUGACITY AND ACTIVITY
	4.6 THE SIGNIFICANCE OF THE CHEMICAL POTENTIAL
	4.7 ADDITIVITY OF PARTIAL MOLAR PROPERTIES WITH APPLICATIONS TO IDEAL GASES
	4.8 GIBBS DUHEM EQUATION
	4.9 SPECIAL TOPIC: ADDITIONAL APPLICATIONS OF MAXWELL RELATIONS
	REFERENCES
	PROBLEMS

	5: Chemical Equilibrium
	5.1 DERIVATION OF THE GENERAL EQUILIBRIUM EXPRESSION
	5.2 EQUILIBRIUM CONSTANT EXPRESSIONS FOR GAS REACTIONS
	5.3 DETERMINATION OF EQUILIBRIUM CONSTANTS
	5.4 USE OF STANDARD GIBBS ENERGIES OF FORMATION TO CALCULATE EQUILIBRIUM CONSTANTS
	5.5 EFFECT OF TEMPERATURE ON THE EQUILIBRIUM CONSTANT
	5.6 EFFECT OF PRESSURE, INITIAL COMPOSITION, AND INERT GASES ON THE EQUILIBRIUM COMPOSITION
	5.7 EQUILIBRIUM CONSTANTS FOR GAS REACTIONS WRITTEN IN TERMS OF CONCENTRATIONS
	5.8 HETEROGENEOUS REACTIONS
	5.9 DEGREES OF FREEDOM AND THE PHASE RULE
	5.10 SPECIAL TOPIC: ISOMER GROUP THERMODYNAMICS
	5.11 SPECIAL TOPIC: CHEMICAL EQUATIONS AS MATRIX EQUATIONS
	REFERENCES
	PROBLEMS

	6: Phase Equilibrium
	6.1 PHASE DIAGRAMS OF ONE-COMPONENT SYSTEMS
	6.2 THE CLAPEYRON EQUATION
	6.3 THE CLAUSIUS–CLAPEYRON EQUATION
	6.4 VAPOR–LIQUID EQUILIBRIUM OF BINARY LIQUID MIXTURES
	6.5 VAPOR PRESSURE OF NONIDEAL MIXTURES AND HENRY’S LAW
	6.6 ACTIVITY COEFFICIENTS
	6.7 COLLIGATIVE PROPERTIES
	6.8 TWO-COMPONENT SYSTEMS CONSISTING OF SOLID AND LIQUID PHASES
	6.9 SPECIAL TOPIC: EFFECT OF SURFACE TENSION ON THE VAPOR PRESSURE
	REFERENCES
	PROBLEMS

	7: Electrochemical Equilibrium
	7.1 COULOMB’S LAW, ELECTRIC FIELD, AND ELECTRIC POTENTIAL
	7.2 EQUILIBRIA INVOLVING POTENTIAL DIFFERENCES
	7.3 EQUATION FOR AN ELECTROCHEMICAL CELL
	7.4 ACTIVITY OF ELECTROLYTES
	¨ 7.5 DEBYE–HUCKEL THEORY
	7.6 DETERMINATION OF STANDARD THERMODYNAMIC PROPERTIES OF IONS
	7.7 STANDARD ELECTRODE POTENTIALS
	7.8 DETERMINATION OF pH
	7.9 SPECIAL TOPIC: FUEL CELLS
	7.10 SPECIAL TOPIC: MEMBRANE POTENTIAL
	REFERENCES
	PROBLEMS

	8: Thermodynamics of Biochemical Reactions
	8.1 EXACT TREATMENT OF THE DISSOCIATION OF WEAK ACIDS
	8.2 PRACTICAL CALCULATIONS WITH WEAK ACIDS
	8.3 THERMODYNAMICS OF ENZYME-CATALYZED REACTIONS
	8.4 FUNDAMENTAL EQUATION OF THERMODYNAMICS FOR THE TRANSFORMED GIBBS ENERGY
	8.5 CALCULATION OF STANDARD TRANSFORMED FORMATION PROPERTIES OF REACTANTS IN BIOCHEMICAL REACTIONS
	8.6 COUPLING OF BIOCHEMICAL REACTIONS
	8.7 BINDING OF OXYGEN BY MYOGLOBIN AND HEMOGLOBIN
	8.8 PROTEIN DENATURATION
	8.9 DNA DENATURATION
	8.10 SPECIAL TOPIC: STATISTICAL EFFECTS IN POLYPROTIC ACIDS
	REFERENCES
	PROBLEMS


	Part TWO: QUANTUM CHEMISTRY
	9: Quantum Theory
	9.1 CLASSICAL MECHANICS FAILED TO DESCRIBE EXPERIMENTS ON ATOMIC AND MOLECULAR PHENOMENA
	9.2 THE HEISENBERG UNCERTAINTY PRINCIPLE
	¨ 9.3 THE SCHRODINGER EQUATION
	9.4 OPERATORS
	9.5 EXPECTATION VALUES AND SUPERPOSITION
	9.6 PARTICLE IN A ONE-DIMENSIONAL BOX
	9.7 PARTICLE IN A THREE-DIMENSIONAL BOX
	9.8 RELATION BETWEEN COMMUTABILITY AND PRECISION OF MEASUREMENT
	9.9 CLASSICAL HARMONIC OSCILLATOR
	9.10 QUANTUM MECHANICAL HARMONIC OSCILLATOR
	9.11 THE RIGID ROTOR
	9.12 ANGULAR MOMENTUM
	9.13 POSTULATES OF QUANTUM MECHANICS
	9.14 SPECIAL TOPIC: THE TIME-DEPENDENT ¨ SCHRODINGER EQUATION
	9.15 SPECIAL TOPIC: TUNNELING AND REFLECTION
	9.16 SPECIAL TOPIC: BLACKBODY RADIATION
	9.17 SPECIAL TOPIC: SUPERPOSITION OF VIBRATIONAL STATES AND WAVE PACKETS
	REFERENCES
	PROBLEMS

	10: Atomic Structure
	¨ 10.1 THE SCHRODINGER EQUATION FOR HYDROGENLIKE ATOMS
	10.2 THE SPECTRUM OF HYDROGEN ATOMS
	10.3 EIGENFUNCTIONS AND PROBABILITY DENSITIES FOR HYDROGENLIKE ATOMS
	10.4 ORBITAL ANGULAR MOMENTUM OF THE HYDROGENLIKE ATOM
	10.5 ELECTRON SPIN
	10.6 VARIATIONAL METHOD
	10.7 HELIUM ATOM
	10.8 PAULI EXCLUSION PRINCIPLE
	10.9 HARTREE–FOCK SELF-CONSISTENT FIELD METHOD
	10.10 THE PERIODIC TABLE AND THE AUFBAU PRINCIPLE
	10.11 IONIZATION ENERGY AND ELECTRON AFFINITY
	10.12 ANGULAR MOMENTUM OF MANY-ELECTRON ATOMS
	10.13 ATOMIC TERM SYMBOLS
	10.14 SPECIAL TOPIC: ATOMIC SPECTRA AND SELECTION RULES
	10.15 SPECIAL TOPIC: ATOMIC UNITS
	REFERENCES
	PROBLEMS

	11: Molecular Electronic Structure
	11.1 THE BORN–OPPENHEIMER APPROXIMATION
	11.2 THE HYDROGEN MOLECULE ION
	11.3 CALCULATION OF THE ENERGY OF THE HYDROGEN MOLECULE ION
	11.4 MOLECULAR ORBITAL DESCRIPTION OF THE HYDROGEN MOLECULE
	11.5 ELECTRON CONFIGURATIONS OF HOMONUCLEAR DIATOMIC MOLECULES
	11.6 ELECTRONIC STRUCTURE OF POLYATOMIC MOLECULES: VALENCE BOND METHOD
	11.7 HUCKEL MOLECULAR ORBITAL THEORY
	11.8 DIPOLE MOMENTS AND IONIC BONDING
	11.9 INTERMOLECULAR FORCES
	11.10 SPECIAL TOPICS: HYDROGEN BONDS, HYBRID ORBITALS, AND BAND THEORY OF SOLIDS
	REFERENCES
	PROBLEMS

	12: Symmetry
	12.1 SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
	12.2 THE ROTATION OPERATION AND THE SYMMETRY AXIS
	12.3 THE REFLECTION OPERATION AND THE SYMMETRY PLANE
	12.4 THE INVERSION OPERATION AND THE CENTER OF SYMMETRY
	12.5 ROTATION-REFLECTION AND THE IMPROPER AXIS
	12.6 IDENTIFICATION OF POINT GROUPS OF MOLECULES
	12.7 WHAT SYMMETRY TELLS US ABOUT DIPOLE MOMENTS AND OPTICAL ACTIVITY
	12.8 SPECIAL TOPIC: MATRIX REPRESENTATIONS
	12.9 SPECIAL TOPIC: CHARACTER TABLES
	REFERENCES
	PROBLEMS

	13: Rotational and Vibrational Spectroscopy
	13.1 THE BASIC IDEAS OF SPECTROSCOPY
	13.2 EINSTEIN COEFFICIENTS AND SELECTION RULES
	13.3 SCHRODINGER EQUATION FOR NUCLEAR MOTION
	13.4 ROTATIONAL SPECTRA OF DIATOMIC MOLECULES
	13.5 ROTATIONAL SPECTRA OF POLYATOMIC MOLECULES
	13.6 VIBRATIONAL SPECTRA OF DIATOMIC MOLECULES
	13.7 VIBRATION–ROTATION SPECTRA OF DIATOMIC MOLECULES
	13.8 VIBRATIONAL SPECTRA OF POLYATOMIC MOLECULES
	13.9 RAMAN SPECTRA
	13.10 SPECIAL TOPIC: FOURIER TRANSFORM INFRARED SPECTROSCOPY
	REFERENCES
	PROBLEMS

	14: Electronic Spectroscopy of Molecules
	14.1 ELECTRONIC ENERGY LEVELS AND SELECTION RULES
	14.2 ELECTRONIC ABSORPTION SPECTRA OF DIATOMIC MOLECULES AND THE FRANCK–CONDON PRINCIPLE
	14.3 DETERMINATION OF DISSOCIATION ENERGIES
	14.4 SPECTROPHOTOMETERS AND THE BEER–LAMBERT LAW
	14.5 OSCILLATOR STRENGTH
	14.6 ELECTRONIC SPECTRA OF POLYATOMIC MOLECULES
	14.7 CONJUGATED MOLECULES: FREE-ELECTRON MODEL
	14.8 FLUORESCENCE AND PHOSPHORESCENCE
	14.9 LASERS
	14.10 PHOTOELECTRON SPECTROSCOPY
	14.11 SPECIAL TOPIC: OPTICAL ACTIVITY AND OPTICAL ROTATION*
	REFERENCES
	PROBLEMS

	15: Magnetic Resonance Spectroscopy
	15.1 NUCLEAR MAGNETISM AND NUCLEAR MAGNETIC RESONANCE
	15.2 ENERGY LEVELS IN NUCLEAR MAGNETIC RESONANCE
	15.3 FOURIER TRANSFORM NMR SPECTROMETER
	15.4 THE CHEMICAL SHIFT
	15.5 INTERNUCLEAR SPIN–SPIN COUPLING
	15.6 SPIN–SPIN SPLITTING IN AX AND AB SYSTEMS
	15.7 NUCLEAR MAGNETIC RELAXATION
	15.8 TWO-DIMENSIONAL NMR
	15.9 ELECTRON SPIN RESONANCE
	15.10 SPECIAL TOPIC: FOURIER TRANSFORMS
	REFERENCES
	PROBLEMS

	16: Statistical Mechanics
	16.1 THE BOLTZMANN DISTRIBUTION
	16.2 SINGLE-MOLECULE PARTITION FUNCTION FOR AN IDEAL GAS 
	16.3 TRANSLATIONAL CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF IDEAL GASES
	16.4 VIBRATIONAL CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF IDEAL GASES
	16.5 ROTATIONAL CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF IDEAL GASES
	16.6 ELECTRONIC CONTRIBUTIONS TO THE THERMODYNAMIC PROPERTIES OF IDEAL GASES
	16.7 THERMODYNAMIC PROPERTIES OF IDEAL GASES
	16.8 DIRECT CALCULATION OF EQUILIBRIUM CONSTANTS FOR REACTIONS OF IDEAL GASES
	16.9 EQUIPARTITION
	16.10 ENSEMBLES
	16.11 NONIDEAL GASES
	16.12 HEAT CAPACITIES OF SOLIDS
	16.13 SPECIAL TOPIC: FLUCTUATIONS OF THERMODYNAMIC QUANTITIES
	REFERENCES
	PROBLEMS


	Part THREE: KINETICS
	17: Kinetic Theory of Gases
	17.1 PROBABILITY DENSITY FOR MOLECULAR SPEEDS OF GAS MOLECULES
	17.2 VELOCITY DISTRIBUTION IN ONE DIRECTION
	17.3 MAXWELL DISTRIBUTION OF SPEEDS
	17.4 TYPES OF AVERAGE SPEEDS
	17.5 PRESSURE OF AN IDEAL GAS
	17.6 COLLISIONS WITH A SURFACE AND EFFUSION
	17.7 COLLISIONS OF HARD-SPHERE MOLECULES
	17.8 EFFECTS OF MOLECULAR INTERACTIONS ON COLLISIONS
	17.9 SPECIAL TOPIC: TRANSPORT PHENOMENA IN GASES
	17.10 SPECIAL TOPIC: CALCULATION OF TRANSPORT COEFFICIENTS
	REFERENCES
	PROBLEMS

	18: Experimental Kinetics and Gas Reactions
	18.1 RATE OF REACTION
	18.2 ORDER OF REACTION
	18.3 REVERSIBLE FIRST-ORDER REACTIONS
	18.4 CONSECUTIVE FIRST-ORDER REACTIONS
	18.5 MICROSCOPIC REVERSIBILITY AND DETAILED BALANCE*
	18.6 EFFECT OF TEMPERATURE
	18.7 MECHANISMS OF CHEMICAL REACTIONS
	18.8 RELATION BETWEEN RATE CONSTANTS FOR THE FORWARD AND BACKWARD REACTIONS
	18.9 BIMOLECULAR REACTIONS
	18.10 UNIMOLECULAR AND TRIMOLECULAR REACTIONS
	18.11 UNBRANCHED CHAIN REACTIONS
	18.12 BRANCHED CHAIN REACTIONS
	REFERENCES
	PROBLEMS

	19: Chemical Dynamics and Photochemistry
	19.1 SIMPLE COLLISION THEORY OF BIMOLECULAR REACTIONS
	19.2 POTENTIAL ENERGY SURFACES
	19.3 THEORETICAL CALCULATION OF A RATE CONSTANT
	19.4 TRANSITION-STATE THEORY
	19.5 MOLECULAR BEAM EXPERIMENTS
	19.6 PRINCIPLES OF PHOTOCHEMISTRY
	19.7 RATES OF INTRAMOLECULAR PROCESSES AND INTERMOLECULAR ENERGY TRANSFER
	19.8 PHOTOCHEMICAL REACTIONS AND THEIR QUANTUM YIELDS
	19.9 THE OZONE LAYER IN THE STRATOSPHERE
	19.10 FEMTOSECOND TRANSITION-STATE SPECTROSCOPY*
	19.11 SPECIAL TOPIC: APPLICATIONS OF PHOTOCHEMISTRY
	REFERENCES
	PROBLEMS

	20: Kinetics in the Liquid Phase
	20.1 VISCOSITY OF A LIQUID
	20.2 DIFFUSION
	20.3 MOBILITY OF AN ION
	20.4 ENCOUNTER PAIRS AND SOLVENT CAGE
	20.5 DIFFUSION-CONTROLLED REACTIONS IN LIQUIDS
	20.6 RELAXATION TIME FOR A ONE-STEP REACTION
	20.7 ACID AND BASE CATALYSIS
	20.8 PRIMARY KINETIC SALT EFFECT
	20.9 RATES OF ELECTRON TRANSFER REACTIONS
	20.10 ENZYME CATALYSIS
	20.11 OSCILLATING CHEMICAL REACTIONS
	REFERENCES
	PROBLEMS


	Part FOUR: MACROSCOPIC AND MICROSCOPIC STRUCTURES
	21: Macromolecules
	21.1 SIZE AND SHAPE OF MACROMOLECULES
	21.2 OSMOTIC PRESSURE OF POLYMER SOLUTIONS
	21.3 SPATIAL CONFIGURATION OF POLYMER CHAINS
	21.4 MOLAR MASS DISTRIBUTIONS OF STEP-GROWTH POLYMERS
	21.5 DETERMINATION OF MOLAR MASSES USING VISCOSITY, SEDIMENTATION, AND LIGHT SCATTERING
	REFERENCES
	PROBLEMS

	22: Electric and Magnetic Properties of Molecules
	22.1 POLARIZATION OF A DIELECTRIC
	22.2 POLARIZABILITY OF A DIELECTRIC
	22.3 ORIENTATION POLARIZATION OF A DIELECTRIC
	22.4 REFRACTIVE INDEX
	22.5 MAGNETIZATION
	22.6 TYPES OF MAGNETIC MATERIALS
	REFERENCES
	PROBLEMS

	23: Solid-State Chemistry
	23.1 CLASSIFICATION OF CRYSTAL STRUCTURES
	23.2 DESIGNATION OF CRYSTAL PLANES
	23.3 DIFFRACTION METHODS
	23.4 CUBIC LATTICES
	23.5 ION RADII AND ATOM RADII
	23.6 SCATTERING OF X-RAYS FROM A UNIT CELL
	23.7 BINDING FORCES AND PACKING IN CRYSTALS
	23.8 STRUCTURE OF LIQUIDS
	23.9 LIQUID CRYSTALS
	23.10 THEORETICAL TREATMENT OF THE ELECTRON DISTRIBUTION IN SOLIDS
	23.11 SPECIAL TOPIC: SUPERCONDUCTIVITY
	23.12 SPECIAL TOPIC: QUANTUM CONFINED SEMICONDUCTOR STRUCTURES
	REFERENCES
	PROBLEMS

	24: Surface Dynamics
	24.1 PHYSISORPTION AND CHEMISORPTION
	24.2 LANGMUIR ADSORPTION ISOTHERM
	24.3 USE OF ADSORPTION MEASUREMENTS TO DETERMINE SURFACE AREA
	24.4 LOW-ENERGY ELECTRON DIFFRACTION (LEED)
	24.5 ELECTRON EMISSION FROM SURFACES
	24.6 SCANNING TUNNELING MICROSCOPY (STM) AND ATOMIC FORCE MICROSCOPY (AFM)
	24.7 THEORY OF SURFACE REACTIONS
	24.8 HETEROGENEOUS CATALYSIS
	24.9 SPECIAL TOPIC: SURFACE RECONSTRUCTION
	REFERENCES
	PROBLEMS


	APPENDIX
	A: Physical Quantities and Units
	B: Values of Physical Constants
	C: Tables of Physical Chemical Data
	D: Mathematical Relations
	E: Greek Alphabet
	F: Useful Information on the Web
	G: Symbols for Physical Quantities and Their SI Units
	H: Answers to the First Set of Problems

	INDEX

