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PREFACE

The objective of this book is to make the concepts and methods of physical chem-
istry clear and interesting to students who have had a year of calculus and a year
of physics. The underlying theory of chemical phenomena is complicated, and so it
is a challenge to make the most important concepts and methods understandable
to undergraduate students. However, these basic ideas are accessible to students,
and they will find them useful whether they are chemistry majors, biologists, engi-
neers, or earth scientists. The basic theory of chemistry is presented from the view-
point of academic physical chemists, but many applications of physical chemistry
to practical problems are described.

One of the important objectives of a course in physical chemistry is to
learn how to solve numerical problems. The problems in physical chemistry
help emphasize features in the underlying theory, and they illustrate practical
applications.

There are two types of problems: problems that can be solved with a hand-
held calculator and COMPUTER PROBLEMS that require a personal computer
with a mathematical application installed. There are two sets of problems of the
first type. The answers to problems in the first set are given in the back of the
textbook, and worked-out solutions to these problems are given in the Solutions
Manual for Physical Chemistry. The answers for the second set of problems are
given in the Solutions Manual. In the two sets of problems that can be solved
using hand-held calculators, some problems are marked with an icon to indi-
cate that they may be more conveniently solved on a personal computer with a
mathematical program. There are 170 COMPUTER PROBLEMS that require
a personal computer with a mathematical application such as Mathematica™,
MathCad™, MATLAB™, or MAPLE™ installed. The recent development of
these mathematical applications makes it possible to undertake problems that
were previously too difficult or too time consuming. This is particularly true for
two- and three-dimensional plots, integration and differentiation of complicated
functions, and solving differential equations. The Solutions Manual for Physical
Chemistry provides Mathematica™ programs and printouts for the COMPUTER
PROBLEMS.

The Mathematica™ solutions of the 170 COMPUTER PROBLEMS in digi-
tal form are available on the web at http://www.wiley.com/college/silbey. They can
be downloaded into a personal computer with Mathematica™ installed. Students
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can obtain Mathematica at a reduced price from Wolfram Research, 100 Trade
Center Drive, Champaign, Illinois, 61820-7237. A password is required and will be
available in the Solutions Manual, along with further information about how to
access the Mathematica solutions in digital form. Emphasis in the COMPUTER
PROBLEMS has been put on problems that do not require complicated program-
ming, but do make it possible for students to explore important topics more deeply.
Suggestions are made as to how to vary parameters and how to apply these pro-
grams to other substances and systems. As an aid to showing how commands are
used, there is an index in the Solutions Manual of the major commands used.

Mathematica™ plots are used in some 60 figures in the textbook. The leg-
ends for these figures indicate the COMPUTER PROBLEM where the program
is given. These programs make it possible for students to explore changes in the
ranges of variables in plots and to make calculations on other substances and sys-
tems.

One of the significant changes in the fourth edition is increased emphasis on
the thermodynamics and kinetics of biochemical reactions, including the dena-
turation of proteins and nucleic acids. In this edition there is more discussion of
the uses of statistical mechanics, nuclear magnetic relaxation, nano science, and
oscillating chemical reactions.

This edition has 32 new problems that can be solved with a hand-held calcula-
tor and 35 new problems that require a computer with a mathematical application.
There are 34 new figures and eight new tables.

Because the number of credits in physical chemistry courses, and therefore the
need for more advanced material, varies at different universities and colleges, more
topics have been included in this edition than can be covered in most courses.

The Appendix provides an alphabetical list of symbols for physical quanti-
ties and their units. The use of nomenclature and units is uniform throughout the
book. SI (Systeme International d’Unités) units are used because of their advan-
tage as a coherent system of units. That means that when SI units are used with all
of the physical quantities in a calculation, the result comes out in SI units without
having to introduce numerical factors. The underlying unity of science is empha-
sized by the use of seven base units to represent all physical quantities.

HISTORY

Outlines of Theoretical Chemistry, as it was then entitled, was written in 1913 by
Frederick Getman, who carried it through 1927 in four editions. The next four
editions were written by Farrington Daniels. In 1955, Robert Alberty joined Far-
rington Daniels. At that time, the name of the book was changed to Physical
Chemistry, and the numbering of the editions was started over. The collaboration
ended in 1972 when Farrington Daniels died. It is remarkable that this textbook
traces its origins back 91 years.

Over the years this book has profited tremendously from the advice of physi-
cal chemists all over the world. Many physical chemists who care how their subject
is presented have written to us with their comments, and we hope that will con-
tinue. We are especially indebted to colleagues at MIT who have reviewed various
sections and given us the benefit of advice. These include Sylvia T. Ceyer, Robert
W. Field, Carl W. Garland, Mario Molina, Keith Nelson, and Irwin Oppenheim.



The following individuals made very useful suggestions as to how to im-
prove this fourth edition: Kenneth G. Brown (Old Dominion University), Thandi
Buthelez (Western Kentucky University), Susan Collins (California State Uni-
versity Northridge), John Gold (East Straudsburg University), Keith J. Stine
(University of Missouri-St. Louis), Ronald J. Terry (Western Illinois University),
and Worth E. Vaughan (University of Wisconsin, Madison). We are also indebted
to reviewers of earlier editions and to people who wrote us about the third edition.

The following individuals made very useful suggestions as to how to improve
the Mathematica™ solutions to COMPUTER PROBLEMS: Ian Brooks (Wol-
fram Research), Carl W. David (U. Connecticut), Robert N. Goldberg (NIST),
Mark R. Hoffmann (University of North Dakota), Andre Kuzniarek (Wolfram
Research), W. Martin McClain (Wayne State University), Kathryn Tomasson
(University of North Dakota), and Worth E. Vaughan (University of Wisconsin,
Madison).

We are indebted to our editor Deborah Brennan and to Catherine Donovan
and Jennifer Yee at Wiley for their help in the production of the book and the
solutions manual. We are also indebted to Martin Batey for making available the
web site, and to many others at Wiley who were involved in the production of this
fourth edition.

Cambridge, Massachusetts Robert]J. Silbey
January 2004 Robert A. Alberty
Moungi G. Bawendi
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PART

Thermodynamics

hermodynamics deals with the interconversion of various kinds of
energy and the changes in physical properties that are involved.
Thermodynamics is concerned with equilibrium states of matter and
has nothing to do with time. Even so, it is one of the most powerful
tools of physical chemistry; because of its importance, the first part of this book
is devoted to it. The first law of thermodynamics deals with the amount of work
that can be done by a chemical or physical process and the amount of heat
that is absorbed or evolved. On the basis of the first law it is possible to build
up tables of enthalpies of formation that may be used to calculate enthalpy
changes for reactions that have not yet been studied. With information on heat
capacities of reactants and products also available, it is possible to calculate the
heat of a reaction at a temperature where it has not previously been studied.

The second law of thermodynamics deals with the natural direction of
processes and the question of whether a given chemical reaction can occur by
itself. The second law was formulated initially in terms of the efficiencies of
heat engines, but it also leads to the definition of entropy, which is important
in determining the direction of chemical change. The second law provides the
basis for the definition of the equilibrium constant for a chemical reaction.

It provides an answer to the question, “To what extent will this particular
reaction go before equilibrium is reached?” It also provides the basis for
reliable predictions of the effects of temperature, pressure, and concentration
on chemical and physical equilibrium. The third law provides the basis for
calculating equilibrium constants from calorimetric measurements only. This
is an illustration of the way in which thermodynamics interrelates apparently
unrelated measurements on systems at equilibrium.

After discussing the laws of thermodynamics and the various physical
quantities involved, our first applications will be to the quantitative treatment
of chemical equilibria. These methods are then applied to equilibria between
different phases. This provides the basis for the quantitative treatment of
distillation and for the interpretation of phase changes in mixtures of solids.
Then thermodynamics is applied to electrochemical cells and biochemical
reactions.
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Zeroth Law of Thermodynamics
and Equations of State

1.1  State of a System

1.2 The Zeroth Law of Thermodynamics

1.3  The Ideal Gas Temperature Scale

1.4  Ideal Gas Mixtures and Dalton’s Law

1.5  Real Gases and the Virial Equation

1.6  P-V-T Surface for a One-Component System
1.7  Critical Phenomena

1.8  The van der Waals Equation

1.9 Description of the State of a System
without Chemical Reactions

1.10 Partial Molar Properties
1.11 Special Topic: Barometric Formula

Physical chemistry is concerned with understanding the quantitative aspects of
chemical phenomena. To introduce physical chemistry we will start with the most
accessible properties of matter—those that can readily be measured in the labora-
tory. The simplest of these are the properties of matter at equilibrium. Thermody-
namics deals with the properties of systems at equilibrium, such as temperature,
pressure, volume, and amounts of species; but it also deals with work done on
a system and heat absorbed by a system, which are not properties of the system
but measures of changes. The amazing thing is that the thermodynamic properties
of systems at equilibrium obey all the rules of calculus and are therefore interre-
lated. The principle involved in defining temperature was not recognized until the
establishment of the first and second laws of thermodynamics, and so it is referred
to as the zeroth law. This leads to a discussion of the thermodynamic properties
of gases and liquids. After discussing the ideal gas, we consider the behavior of
real gases. The thermodynamic properties of a gas or liquid are represented by an
equation of state, such as the virial equation or the van der Waals equation. The
latter has the advantage that it provides a description of the critical region, but
much more complicated equations are required to provide an accurate quantita-
tive description.
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Surroundings

System

(a)

System Surroundings

(b)

Figure 1.1 (a) A system is sepa-
rated from its surroundings by a
boundary, real or idealized. (b) As

a simplification we can imagine the
system to be separated from the sur-
roundings by a single wall that may
be an insulator or a heat conduc-
tor. Later, in Section 6.7 and Section
8.3 (see Fig. 8.6), we will consider
semipermeable boundaries so that
the system is open to the transfer of
matter.

1.1 STATE OF A SYSTEM

A thermodynamic system is that part of the physical universe that is under consid-
eration. A system is separated from the rest of the universe by a real or idealized
boundary. The part of the universe outside the boundary of the system is referred
to as the surroundings, as illustrated in Fig. 1.1. The boundary between the system
and its surroundings may have certain real or idealized characteristics. For exam-
ple, the boundary may conduct heat or be a perfect insulator. The boundary may
be rigid or it may be movable so that it can be used to apply a specified pressure.
The boundary may be impermeable to the transfer of matter between the system
and its surroundings, or it may be permeable to a specified species. In other words,
matter and heat may be transferred between system and surroundings, and the
surroundings may do work on the system, or vice versa. If the boundary around
a system prevents interaction of the system with its surroundings, the system is
called an isolated system.

If matter can be transferred from the surroundings to the system, or vice
versa, the system is referred to as an open system; otherwise, it is a closed
system.

When a system is under discussion it must be described precisely. A system is
homogeneous if its properties are uniform throughout; such a system consists of
a single phase. If a system contains more than one phase, it is heterogeneous. A
simple example of a two-phase system is liquid water in equilibrium with ice. Wa-
ter can also exist as a three-phase system: liquid, ice, and vapor, all in equilibrium.

Experience has shown that the macroscopic state of a system at equilibrium
can be specified by the values of a small number of macroscopic variables. These
variables, which include, for example, temperature 7, pressure P, and volume V,
are referred to as state variables or thermodynamic variables. They are called state
variables because they specify the state of a system. Two samples of a substance
that have the same state variables are said to be in the same state. It is remarkable
that the state of a homogeneous system at equilibrium can be specified by so few
variables. When a sufficient number of state variables are specified, all of the other
properties of the system are fixed. It is even more remarkable that these state vari-
ables follow all of the rules of calculus; that is, they can be treated as mathematical
functions that can be differentiated and integrated. Thermodynamics leads to the
definition of additional properties, such as internal energy and entropy, that can
also be used to describe the state of a system, and are themselves state variables.

The thermodynamic state of a specified amount of a pure substance in the
fluid state can be described by specifying properties such as temperature T, pres-
sure P, and volume V. But experience has shown that only two of these three
properties have to be specified when the amount of pure substance is fixed. If T
and P,or P and V,or T and V are specified, all the other thermodynamic prop-
erties (including those that will be introduced later) are fixed and the system is at
equilibrium. More properties have to be specified to describe the thermodynamic
state of a homogeneous mixture of different species.

Note that the description of the microscopic state of a system containing many
molecules requires the specification of a very large number of variables. For ex-
ample, to describe the microscopic state of a system using classical mechanics, we
would have to give the three coordinates and three components of the momentum
of each molecule, plus information about its vibrational and rotational motion.
For one mole of gas molecules, this would mean more than 6 X 10> numbers. An



important thing to notice is that we can use a small number of state variables to
describe the equilibrium thermodynamic state of a system that is too complicated
to describe in a microscopic way.

Thermodynamic variables are either intensive or extensive. Intensive vari-
ables are independent of the size of the system; examples are pressure, density,
and temperature. Extensive variables do depend on the size of the system and
double if the system is duplicated and added to itself; examples are volume, mass,
internal energy, and entropy. Note that the ratio of two extensive variables is an in-
tensive variable; density is an example. Thus we can talk about the intensive state
of the system, which is described by intensive variables, or the extensive state of a
system, which is described by intensive variables plus at least one extensive vari-
able. The intensive state of the gas helium is described by specifying its pressure
and density. The extensive state of a certain amount of helium is described by
specifying the amount, the pressure, and the density; the extensive state of one
mole of helium might be represented by 1 mol He(P, p), where P and p represent
the pressure and density, respectively. We can generalize this by saying that the
intensive state of a pure substance in the fluid state is specified by N + 1 variables,
where Nj is the number of different kinds of species in the system. The extensive
state is specified by Ny + 2 variables, one of which has to be extensive.

In chemistry it is generally more useful to express the size of a system in
terms of the amount of substance it contains, rather than its mass. The amount of
substance n is the number of entities (atoms, molecules, ions, electrons, or speci-
fied groups of such particles) expressed in terms of moles. If a system contains N
molecules, the amount of substance n = N/N4, where Ny is the Avogadro con-
stant (6.022 X 102> mol~!). The ratio of the volume V to the amount of substance
is referred to as the molar volume: V' = V/n. The volume V is expressed in SI
units of m?, and the molar volume V is expressed in SI units of m® mol~!. We will
use the overbar regularly to indicate molar thermodynamic quantities.

Comment:

Since this is our first use of physical quantities, we should note that the value of a
physical quantity is equal to the product of a numerical factor and a unit:

physical quantity = numerical value X unit

The values of all physical quantities can be expressed in terms of SI base units
(see Appendix A). However, some physical quantities are dimensionless, and so
the symbol for the SI unit is taken as 1 because this is what you get when units
cancel. Note that, in print, physical quantities are represented by italic type and
units are represented by roman type.

When a system is in a certain state with its properties independent of time
and having no fluxes (e.g., no heat flowing through the system), then the system is
said to be at equilibrium. When a thermodynamic system is at equilibrium its state
is defined entirely by the state variables, and not by the history of the system. By
history of the system, we mean the previous conditions under which it has existed.

Since the state of a system at equilibrium can be specified by a small number
of state variables, it should be possible to express the value of a variable that has
not been specified as a function of the values of other variables that have been
specified. The simplest example of this is the ideal gas law.

1.1 State of a System

5
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Vacuum M)

(a)

Vacuum

(b)

Figure 1.2 (a) The pressure ex-
erted by the atmosphere on the sur-
face of mercury in a cup is given by
P = hpg (see Example 1.1). (b) The
pressure of a system is given by the
same equation when a closed-end
manometer is used.

For some systems, more than two intensive variables must be stated to specify
the state of the system. If there is more than one species, the composition has to be
given. If a liquid system is in the form of small droplets, the surface area has to be
given. If the system is in an electric or magnetic field, this may have an effect on its
properties, and then the electric field strength and magnetic field strength become
state variables. We will generally ignore the effect of the earth’s gravitational field
on a system, although this can be important, as we will see in the special topic at the
end of this chapter. Note that the properties used to describe the state of a system
must be independent; otherwise they are redundant. Independent properties are
separately controllable by the investigator.

The pressure of the atmosphere is measured with a barometer, as shown in
Fig. 1.2a, and the pressure of a gaseous system is measured with a closed-end
manometer, as shown in Fig. 1.2b.

1.2 THE ZEROTH LAW OF THERMODYNAMICS

Although we all have a commonsense notion of what temperature is, we must
define it very carefully so that it is a useful concept in thermodynamics. If two
closed systems with fixed volumes are brought together so that they are in ther-
mal contact, changes may take place in the properties of both. Eventually a state
is reached in which there is no further change, and this is the state of thermal equi-
librium. In this state, the two systems have the same temperature. Thus, we can
readily determine whether two systems are at the same temperature by bringing
them into thermal contact and seeing whether observable changes take place in
the properties of either system. If no change occurs, the systems are at the same
temperature.

Now let us consider three systems, A, B, and C, as shown in Fig. 1.3. It is an
experimental fact that if system A is in thermal equilibrium with system C, and
system B is also in thermal equilibrium with system C, then A and B are in thermal
equilibrium with each other. It is not obvious that this should be true, and so this
empirical fact is referred to as the zeroth law of thermodynamics.

To see how the zeroth law leads to the definition of a temperature scale, we
need to consider thermal equilibrium between systems A, B, and C in more detail.
Assume that A, B, and C each consist of a certain mass of a different fluid. We
use the word fluid to mean either a gas or a compressible liquid. Our experience
is that if the volume of one of these systems is held constant, its pressure may
vary over a range of values, and if the pressure is held constant, its volume may
vary over a range of values. Thus, the pressure and the volume are independent
thermodynamic variables. Furthermore, suppose that the experience with these
systems is that their intensive states are specified completely when the pressure
and volume are specified. That is, when one of the systems reaches equilibrium
at a certain pressure and volume, all of its macroscopic properties have certain
characteristic values. It is quite remarkable and fortunate that the macroscopic
state of a given mass of fluid of a given composition can be fixed by specifying
only the pressure and the volume.*

If there are further constraints on the system, there will be a smaller num-
ber of independent variables. An example of an additional constraint is thermal

*This is not true for water in the neighborhood of 4 °C, but the state is specified by giving the temper-
ature and the volume or the temperature and the pressure. See Section 6.1.
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equilibrium with another system. Experience shows that if a fluid is in thermal
equilibrium with another system, it has only one independent variable. In other
words, if we set the pressure of system A at a particular value Pa, we find that
there is thermal equilibrium with system C, in a specified state, only at a particular
value of V5. Thus, system A in thermal equilibrium with system Cis characterized
by a single independent variable, pressure or volume; one or the other can be set
arbitrarily, but not both. The plot of all the values of P and V4 for which there
is equilibrium with system C is called an isotherm. Figure 1.4 gives this isotherm,
which we label 0. Since system A is in thermal equilibrium with system C at any
P4, Va on the isotherm, we can say that each of the pairs Pa, Vo on this isotherm
corresponds with the same temperature 0.

When heat is added to system C and the experiment is repeated, a different
isotherm is obtained for system A. In Fig. 1.4, the isotherm for the second exper-
iment is labeled ©,. If still more heat is added to system C and the experiment is
repeated again, the isotherm labeled O3 is obtained.

Figure 1.4 illustrates Boyle’s law, which states that PV = constant for a spec-
ified amount of gas at a specified temperature. Experimentally, this is strictly true
only in the limit of zero pressure. Charles and Gay-Lussac found that the volume
of a gas varies linearly with the temperature at specified pressure when the tem-
perature is measured with a mercury in glass thermometer, for example. Since it
would be preferable to have a temperature scale that is independent of the prop-
erties of particular materials like mercury and glass, it is better to say that the ratio
of the P,V product at temperature ®, to P,V at temperature ®; depends only
on the two temperatures:

= ¢$(04, 0,) (1.1)

where ¢ is an unspecified function. The simplest thing to do is to take the ratio
of the PV products to be equal to the ratio of the temperatures, thus defining

Va

Figure 1.4 Isotherms for fluid A. This plot, which is for a hypothetical fluid, might look
quite different for some other fluid.

A [
> Heat conductor
B C

If A and C are in thermal equilibrium, and
B and C are in thermal equilibrium, then

A and B will be found to be in thermal equilibrium
when connected by a heat conductor.
Figure 1.3 The zeroth law of
thermodynamics is concerned with
thermal equilibrium between three
bodies.
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Py
Py
/
/
/
VT P,>P,
/ /7
7
‘s
/7
V. 4
7/
-273.15 0

t/°C
Figure 1.5 Plots of V versus tem-
perature for a given amount of a real

gas at two low pressures Py and P,
as given by Gay-Lussac’s law.

a temperature scale:

PV, T, or PV, PV
PV T, T, T,

(1.2)

Here we have introduced a new symbol T for the temperature because we have
made a specific assumption about the function ¢. Equations 1.1 and 1.2 are exact
only in the limit of zero pressure, and so 7 is referred to as the ideal gas temper-
ature.

Since, according to equation 1.2, PV/T is a constant for a fixed mass of gas
and since V is an extensive property,

PVIT = nR (1.3)

where n is the amount of gas and R is referred to as the gas constant. Equation 1.3
is called the ideal gas equation of state. An equation of state is a relation between
the thermodynamic properties of a substance at equilibrium.

1.3 THE IDEAL GAS TEMPERATURE SCALE

The ideal gas temperature scale can be defined more carefully by taking the tem-
perature T to be proportional to PV = PV/n in the limit of zero pressure. Since
different gases give slightly different scales when the pressure is about one bar
(1 bar = 10° pascal = 10° Pa = 10° N-m™?), it is necessary to use the limit of
the PV product as the pressure approaches zero. When this is done, all gases
yield the same temperature scale. We speak of gases under this limiting condition
as ideal. Thus, the ideal gas temperature 7 is defined by

T = ;imO(PV/R) (1.4)

The proportionality constant is called the gas constant R. The unit of thermody-
namic temperature, 1 kelvin or 1 K, is defined as the fraction 1/273.16 of the tem-
perature of the triple point of water.* Thus, the temperature of an equilibrium
system consisting of liquid water, ice, and water vapor is 273.16 K. The tempera-
ture 0 K is called absolute zero. According to the current best measurements, the
freezing point of water at 1 atmosphere (101 325 Pa; see below) is 273.15 K, and
the boiling point at 1 atmosphere is 373.12 K; however, these are experimental
values and may be determined more accurately in the future. The Celsius scale ¢
is formally defined by

t/°C = T/K —273.15 (L5)

The reason for writing the equation in this way is that temperature 7" on the Kelvin
scale has the unit K, and temperature ¢ on the Celsius scale has the unit °C, which
need to be divided out before temperatures on the two scales are compared. In
Fig. 1.5, the molar volume of an ideal gas is plotted versus the Celsius temperature
t at two pressures.

*The triple point of water is the temperature and pressure at which ice, liquid, and vapor are in equi-
librium with each other in the absence of air. The pressure at the triple point is 611 Pa. The freezing
point in the presence of air at 1 atm is 0.0100 °C lower because (1) the solubility of air in liquid water at
1 atm (101 325 Pa) is sufficient to lower the freezing point 0.0024 °C (Section 6.7), and (2) the increase
of pressure from 611 to 101 325 Pa lowers the freezing point 0.0075 °C, as shown in Example 6.2. Thus,
the ice point is at 273.15 K.



1.3 The Ideal Gas Temperature Scale

We will find later that the ideal gas temperature scale is identical with one
based on the second law of thermodynamics, which is independent of the prop-
erties of any particular substance (see Section 3.9). In Chapter 16 the ideal gas
temperature scale will be identified with that which arises in statistical mechanics.

The gas constant R can be expressed in various units, but we will emphasize
the use of SI units. The SI unit of pressure (P) is the pascal, Pa, which is the pres-
sure produced by a force of 1 N on an area of 1 m?. In addition to using the prefixes
listed in the back cover of the book to express larger and smaller pressures, it is
convenient to have a unit that is approximately equal to the atmospheric pressure.
This unit is the bar, which is 10° Pa. Earlier the atmosphere, which is defined as
101 325 Pa, had been used as a unit of pressure.

Example 1.1 Express one atmosphere pressure in SI units

Calculate the pressure of the earth’s atmosphere at a point where the barometer reads 76
cm of mercury at 0°C and the acceleration of gravity g is 9.806 65 m s~2. The density of
mercury at 0°C is 13.5951 g cm ™3, or 13.5951 X 103 kg m—3.

Pressure P is force f divided by area A:

P =fIA

The force exerted by a column of air over an area A is equal to the mass m of mercury in
a vertical column with a cross section A times the acceleration of gravity g:

f=mg
The mass of mercury raised above the flat surface in Fig. 1.2a is pAh so that
f = pAhg
Thus, the pressure of the atmosphere is
P = hpg

If i, p, and g are expressed in SI units, the pressure P is expressed in pascals. Thus, the
pressure of a standard atmosphere may be expressed in SI units as follows:

1atm = (0.76 m)(13.5951 X 103 kg m~3)(9.806 65 m s~ 2)
101325 Nm~2 = 101 325 Pa = 1.013 25 bar

This equality is expressed by the conversion factor 1.013 25 bar atm™ L.

To determine the value of the gas constant we also need the definition of a
mole. A mole is the amount of substance that has as many atoms or molecules as
0.012 kg (exactly) of '>C. The molar mass M of a substance is the mass divided by
the amount of substance n, and so its SI unit is kg mol . Molar masses can also be
expressed in g mol ™!, but it is important to remember that in making calculations
in which all other quantities are expressed in SI units, the molar mass must be
expressed in kg mol~!. The molar mass M is related to the molecular mass m by
M = Nam, where Ny is the Avogadro constant and m is the mass of a single
molecule.

Until 1986 the recommended value of the gas constant was based on measure-
ments of the molar volumes of oxygen and nitrogen at low pressures. The accuracy

9
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of such measurements is limited by problems of sorption of gas on the walls of the
glass vessels used. In 1986 the recommended value* of the gas constant

R = 831451 JK ' mol ™! (1.6)

was based on measurements of the speed of sound in argon. The equation used
is discussed in Section 17.4. Since pressure is force per unit area, the product of
pressure and volume has the dimensions of force times distance, which is work
or energy. Thus, the gas constant is obtained in joules if pressure and volume are
expressed in pascals and cubic meters; note that 1 J = 1 Pam®.

Example 1.2  Express the gas constant in various units

Calculate the value of R in cal K™! mol™!, L bar K~! mol™!, and L atm K~! mol 1.
Since the calorie is defined as 4.184 J,

831451 JK ! mol™1/4.184 J cal ™!
= 1.98722 cal K~ ! mol~!

R

Since the liter is 1073 m> and the bar is 10° Pa,
R = (831451 Pam® K ' mol 1)(10° Lm™3)(10 7> bar Pa™ 1)
= 0.0831451 L bar K ! mol !
Since 1 atm is 1.013 25 bar,

R = (0.083 1451 L bar K~ mol~1)/(1.013 25 bar atm 1)
= 0.082057 8 L atm K~ ! mol !

1.4 IDEAL GAS MIXTURES AND DALTON’S LAW

Equation 1.3 applies to a mixture of ideal gases as well as a pure gas, when 7 is
the total amount of gas. Since n = n; + ny + -+, then
P =@ +n+--)RTIV
mRTIV + mRTIV + ---
Pi+Py+-=> P (1.7)
i

where P; is the partial pressure of species 1. Thus, the total pressure of an ideal
gas mixture is equal to the sum of the partial pressures of the individual gases;
this is Dalton’s law. The partial pressure of a gas in an ideal gas mixture is the pres-
sure that it would exert alone in the total volume at the temperature of the
mixture:

Pl' = anT/V (18)
A useful form of this equation is obtained by replacing RT/V by P/n:
Pl‘ = I/ll‘P/l’l = yiP (19)

*E. R. Cohen and B. N. Taylor, The 1986 Adjustment of the Fundamental Physical Constants,
CODATA Bull. 63:1 (1986); J. Phys. Chem. Ref. Data 17:1795 (1988).
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The dimensionless quantity y; is the mole fraction of species i in the mixture, and
it is defined by n;/n. Substituting equation 1.9 in 1.7 yields

L=yi+y+-=>y (1.10)

so that the sum of the mole fractions in a mixture is unity.

Figure 1.6 shows the partial pressures P and P, of two components of a binary
mixture of ideal gases at various mole fractions and at constant total pressure. The
various mixtures are considered at the same total pressure P.

The behavior of real gases is more complicated than the behavior of an ideal
gas, as we will see in the next section.

Example 1.3 Calculation of partial pressures

A mixture of 1 mol of methane and 3 mol of ethane is held at a pressure of 10 bar. What
are the mole fractions and partial pressures of the two gases?

Ym = 1 mol/4 mol = 0.25
Pm = ymP = (0.25)(10 bar) = 2.5 bar
Ve = 3mol/4 mol = 0.75
P. = yc.P = (0.75)(10 bar) = 7.5 bar

Example 1.4 Express relative humidity as mole fraction of water

The maximum partial pressure of water vapor in air at equilibrium at a given temperature is
the vapor pressure of water at that temperature. The actual partial pressure of water vapor
in air is a percentage of the maximum, and that percentage is called the relative humidity.
Suppose the relative humidity of air is 50% at a temperature of 20 °C. If the atmospheric
pressure is 1 bar, what is the mole fraction of water in the air? The vapor pressure of water
at 20 °C is 2330 Pa. Assuming the gas mixture behaves as an ideal gas, the mole fraction of
H,O in the air is given by

YH,0 = Pi/P = (0.5)(2330 Pa)/10° Pa = 0.0117

1.5 REAL GASES AND THE VIRIAL EQUATION

Real gases behave like ideal gases in the limits of low pressures and high tem-
peratures, but they deviate significantly at high pressures and low temperatures.
The compressibility factor Z = PV/RT is a convenient measure of the deviation
from ideal gas behavior. Figure 1.7 shows the compressibility factors for N, and
O, as a function of pressure at 298 K. Ideal gas behavior, indicated by the dashed
line, is included for comparison. As the pressure is reduced to zero, the compress-
ibility factor approaches unity, as expected for an ideal gas. At very high pressures
the compressibility factor is always greater than unity. This can be understood in
terms of the finite size of molecules. At very high pressures the molecules of the
gas are pushed closer together, and the volume of the gas is larger than expected

P

Py=yP
[0
5
2}
8
a

Py =y,P

0 1
Yo

Figure 1.6 Total pressure P and
partial pressures P and P, of com-
ponents of binary mixtures of gases
as a function of the mole fraction y,
of the second component at constant
total pressure. Note that y; = 1—y,.
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2.5
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05 | | | | | ity factor, PV/RT, for N, and
0 200 400 600 800 1000 O, at 298 K. (See Computer
P/bar Problem 1.D.)

for an ideal gas because a significant fraction of the volume is occupied by the
molecules themselves. At low pressure a gas may have a smaller compressibility
factor than an ideal gas. This is due to intermolecular attractions. The effect of
intermolecular attractions disappears in the limit of zero pressure because the
distance between molecules approaches infinity.

Figure 1.8 shows how the compressibility factor of nitrogen depends on tem-
perature, as well as pressure. As the temperature is reduced, the effect of inter-
molecular attraction at pressures of the magnitude of 100 bar increases because
the molar volume is smaller at lower temperatures and the molecules are closer
together. All gases show a minimum in the plot of compressibility factor ver-
sus pressure if temperature is low enough. Hydrogen and helium, which have very
low boiling points, exhibit this minimum only at temperatures much below 0 °C.

A number of equations have been developed to represent P-V -T data for
real gases. Such an equation is called an equation of state because it relates state
properties for a substance at equilibrium. Equation 1.3 is the equation of state for
an ideal gas. The first equation of state for real gases that we will discuss is closely
related to the plots in Figs. 1.7 and 1.8, and is called the virial equation.

In 1901 H. Kamerlingh-Onnes proposed an equation of state for real gases,
which expresses the compressibility factor Z as a power series in 1/V for a pure
gas:

T (1.11)

PV/RT

Z

100 °C
0°C —
-50 °C

| | | | Figure 1.8 Influence of pressure on the
0.80 s 3 .
0 200 400 600 800 1000 compressibility factor, PV /RT, for nitrogen
P/bar at different temperatures (given in °C).
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Table 1.1 Second and Third Virial Coefficients

at 298.15 K
Gas B/107° m? mol ™! C /1072 m® mol 2
H, 14.1 350
He 11.8 121
N, —-4.5 1100
O, —16.1 1200
Ar —15.8 1160
CO —8.6 1550

25

I
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o
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o
s}

B/(cm3 mol™1)

-150

| | | |
0 200 400 600 800 1000 1200 1400
T/K

-200

Figure 1.9 Second virial coefficient B. (From K. E. Bett, J. S. Rowlinson, and G. Saville,
Thermodynamics for Chemical Engineers. Cambridge, MA: MIT Press, 1975. Reproduced
by permission of The Athlone Press.) (See Computer Problem 1.E.)

The coefficients B and C are referred to as the second and third virial coefficients,
respectively.* For a particular gas these coefficients depend only on the tempera-
ture and not on the pressure. The word virial is derived from the Latin word for
force.

The second and third virial coefficients at 298.15 K are given in Table 1.1 for
several gases. The variation of the second virial coefficient with temperature is
illustrated in Fig. 1.9.

For many purposes, it is more convenient to use P as an independent variable
and write the virial equation as

PV
Z=-—=14+B'P+C'P*+--- 1.12

Example 1.5 Derive the relationships between two types of virial coefficients
Derive the relationships between the virial coefficients in equation 1.11 and the virial co-

efficients in equation 1.12.

*Statistical mechanics shows that the term B /V arises from interactions involving two molecules, the
C/V? term arises from interactions involving three molecules, etc. (Section 16.11).
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Figure 1.10 At the Boyle tempera-
ture (B = 0), a gas behaves nearly
ideally over a range of pressures.
The curvature at higher pressures
depends on the sign of the third
virial coefficient.

The pressures can be eliminated from equation 1.12 by use of equation 1.11 in the
following forms:

RT  BRT CRT

P=—+——i+———+-- 113
|4 V2 V3 (1.13)
RTY  2B(RT)?
Vv V3
Substituting these expressions into equation 1.12 yields
' ' 2
7z —1+p/(RL\ BBRT + C/RT)” (1.15)
|4 V2
When we compare this equation with equation 1.11 we see that
B =B'RT (1.16)
C =BB'RT + C'(RT)? (1.17)
Thus
B' =BIRT (1.18)
C - B?
' = 1.19
(RT)? (1.19)

The second virial coefficient B for nitrogen is zero at 54 °C, which is consistent
with Fig. 1.8. A real gas may behave like an ideal gas over an extended range
in pressure when the second virial coefficient is zero, as shown in Fig. 1.10. The
temperature at which this occurs is called the Boyle temperature 7. The Boyle
temperatures of a number of gases are given in Table 1.2.

Table 1.2  Critical Constants and Boyle Temperatures

Gas T./K Pe/bar V/Lmol ™! Z Ts/K
Helium-4 52 227 0.0573 0.301 22.64
Hydrogen 332 13.0 0.0650 0.306 110.04
Nitrogen 126.2 34.0 0.0895 0.290 327.22
Oxygen 154.6 50.5 0.0734 0.288 405.88
Chlorine 417 77.0 0.124 0.275
Bromine 584 103.0 0.127 0.269
Carbon dioxide 304.2 73.8 0.094 0.274 714.81
Water 647.1 220.5 0.056 0.230
Ammonia 405.6 113.0 0.0725 0.252 995
Methane 190.6 46.0 0.099 0.287 509.66
Ethane 305.4 48.9 0.148 0.285
Propane 369.8 42.5 0.203 0.281
n-Butane 4252 38.0 0.255 0.274
Isobutane 408.1 36.5 0.263 0.283
Ethylene 282.4 50.4 0.129 0.277 624
Propylene 365.0 46.3 0.181 0.276
Benzene 562.1 49.0 0.259 0.272
Cyclohexane 5534 40.7 0.308 0.272
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1.6 P-V-T SURFACE FOR A ONE-COMPONENT SYSTEM

To discuss more general equations of state, we will now look at the possible values
of P, V,and T for a pure substance. The state of a pure substance is represented
by a point in a Cartesian coordinate system with P, V, and T plotted along the
three axes. Each point on the surface of the three-dimensional model in Fig. 1.11
describes the state of a one-component system that contracts on freezing. We will
not be concerned here with the solid state, but will consider that part of the surface
later (Section 6.2). Projections of this surface on the PV and P-T planes are
shown. There are three two-phase regions on the surface: S+ G,L+ G,and S+ L
(Sis solid, G gas, and L liquid). These three surfaces intersect at the triple point t
where vapor, liquid, and solid are in equilibrium.

The projection of the three-dimensional surface on the P-T plane is shown
to the right of the main diagram in Fig. 1.11. The vapor pressure curve goes from
the triple point t to the critical point c (see Section 1.7). The sublimation pressure
curve goes from the triple point t to absolute zero. The melting curve rises from the
triple point. Most substances contract on freezing, and for them the slope dP/dT
for the melting line is positive.

At high temperatures the substance is in the gas state, and as the tempera-
ture is raised and the pressure is lowered the surface is more and more closely
represented by the ideal gas equation of state PV = RT.However, much more
complicated equations are required to describe the rest of the surface that repre-
sents gas and liquid. Before discussing equations that can represent this part of
the surface, we will consider the unusual phenomena that occur near the critical
point. Any realistic equation of state must be able to reproduce this behavior at
least qualitatively.

Figure 1.11 P-V-T surface for a one-component system that contracts on freezing.
(From K. E. Bett, J. S. Rowlinson, and G. Saville, Thermodynamics for Chemical En-
gineers. Cambridge, MA: MIT Press, 1975. Reproduced by permission of The Athlone
Press.)
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1.7 CRITICAL PHENOMENA

For a pure substance there is a critical point (P, T;) at the end of the liquid—gas
coexistence curve where the properties of the gas and liquid phases become so
nearly alike that they can no longer be distinguished as separate phases. Thus, T,
is the highest temperature at which condensation of a gas is possible, and P. is the
highest pressure at which a liquid will boil when heated.

The critical pressures P, volumes V.,and temperatures 7 of a number of sub-
stances are given in Table 1.2, along with the compressibility factor at the critical
point Z. = P.V./RT,, and the Boyle temperature 7.

Critical phenomena are most easily discussed using the projection of the
three-dimensional surface in Fig. 1.11 on the P-V plane. Figure 1.12 shows only
the parts of the P—V plot labeled L, G, and L + G. When the state of the system
is represented by a point in the L + G region of this plot, the system contains two
phases, one liquid and one gas, in equilibrium with each other. The molar vol-
umes of the liquid and gas can be obtained by drawing a horizontal line parallel
to the V axis through the point representing the state of the system and noting
the intersections with the boundary line for the L + G region. Such a line, which
connects the state of one phase with the state of another phase with which it is in
equilibrium, is called a tie line. Two tie lines are shown in Fig. 1.12. The pressure
in this case is the equilibrium vapor pressure of the liquid. As the temperature is

Figure 1.12 Pressure-molar volume relations (e.g., isotherms) in the region of the critical
point. The dashed horizontal lines in the two-phase region are called tie lines. The path
1-2-3-4 shows how a liquid can be converted to a gas without the appearance of a meniscus.
If liquid at point 4 is compressed isothermally, the volume decreases until the two-phase
region is reached. At this point there is a large decrease in volume at constant pressure
(the vapor pressure of the liquid) until all of the gas has condensed to liquid. As the liquid
is compressed, the pressure rises rapidly.
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raised, the tie line becomes shorter, and the molar volumes of the liquid and gas
approach each other. At the critical point c the tie line vanishes and the distinction
between liquid and gas is lost. At temperatures above the critical temperature,
there is a single fluid phase. Above the critical point a gas may have a very high
density, and it may be characterized as a supercritical fluid.

The isotherm that goes through the critical point has the following two prop-
erties: It is horizontal at the critical point,

L IR (1.20)
vV -,
and it has a point of inflection at the critical point,
o*P
== =0 1.21
= a2
T=T.

Figures 1.11 and 1.12 also show how a liquid at point 1 can be converted to
a gas at point 4 without the appearance of an interface between two phases. To
do this, liquid at point 1 is heated at constant volume to point 2, then expanded
at constant temperature to point 3, and finally cooled at constant volume to point
4, where it is a gas. Thus, liquid and vapor phases are really the same in terms of
molecular organization, and so when the densities of these two phases for a sub-
stance become equal, they cannot be distinguished and there is a critical point. On
the other hand, a solid and a liquid have different molecular organizations, and
the two phases do not become identical even if their densities are equal. There-
fore, solid-liquid, solid—gas, and solid—solid equilibrium lines do not have critical
points as do gas-liquid lines.

At the critical point the isothermal compressibility [« = —V ~(3V /9P )r;see
Problem 1.17] becomes infinite because (aP/aV )z, = 0. If the isothermal com-
pressibility is very large, as it is in the neighborhood of the critical point, very little
work is required to compress the fluid. Therefore, gravity sets up large differences
in density between the top and bottom of the container, as large as 10% in a col-
umn of fluid only a few centimeters high. This makes it difficult to determine PV
isotherms near the critical point. These large differences, or spontaneous fluctua-
tions, in the density can extend over macroscopic distances. The distance may be
as large as the wavelength of visible light or larger. Since fluctuations in density
are accompanied by fluctuations in refractive index, light is strongly scattered, and
this is called critical opalescence.

1.8 THE VAN DER WAALS EQUATION

Although the virial equation is very useful, it is important to have approximate
equations of state with only a few parameters. We turn now to the equation that
was introduced by van der Waals in 1877, which is based on plausible reasons that
real gases do not follow the ideal gas law. The ideal gas law can be derived for
point particles that do not interact except in elastic collisions (see Chapter 17,
Kinetic Theory of Gases). The first reason that van der Waals modified the ideal
gas law is that molecules are not point particles. Therefore V is replaced by V — b,

17
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Figure 1.13 Isotherms calculated
from the van der Waals equation.

The dashed line is the boundary of

the L + G region.

where b is the volume per mole that is occupied by the molecules. This leads to
P(V —b) =RT (1.22)

which corresponds to equation 1.12 with B’ = b/RT and C' and higher constants
equal to zero. This equation can represent compressibility factors greater than
unity, but it cannot yield compressibility factors less than unity.

The second reason for modifying the ideal gas law is that gas molecules at-
tract each other and that real gases are therefore more compressible than ideal
gases. The forces that lead to condensation are still referred to as van der Waals
forces, and their origin is discussed in Section 11.10. Van der Waals provided for
intermolecular attraction by adding to the observed pressure P in the equation of
state a term a/V 2, where a is a constant whose value depends on the gas.

The van der Waals equation is*

(P +alV*)(V —b) = RT (1.23)

When the molar volume V is large, b becomes negligible in comparison with V,
a/V? becomes negligible with respect to P, and the van der Waals equation re-
duces to the ideal gas law, PV = RT.

The van der Waals constants for a few gases are listed in Table 1.3. They
can be calculated from experimental measurements of P, V,and T or from the crit-
ical constants, as shown later in equations 1.32 and 1.33. The van der Waals
equation is very useful because it exhibits phase separation between gas and liquid
phases.

Figure 1.13 shows three isotherms calculated using the van der Waals equa-
tion. At the critical temperature the isotherm has an inflection point at the crit-
ical point. At temperatures below the critical temperature each isotherm passes
through a minimum and a maximum. The locus of these points shown by the
dotted line has been obtained from (9P/0V )7 = 0. The states within the dot-
ted line have (9P/0V )y > 0, that is, the volume increases when the pressure
increases. These states are therefore mechanically unstable and do not exist.
Maxwell showed that states corresponding to the points between A and B and

Table 1.3 Van der Waals Constants

a/L? bar a/L? bar

Gas mol 2 b/L mol™! Gas mol 2 b/L mol™!
H, 0.247 6 0.026 61 CH4 2.283 0.042 78
He 0.034 57 0.023 70 C,Hg 5.562 0.063 80
N, 1.408 0.039 13 C3Hg 8.779 0.084 45
0, 1.378 0.031 83 CyHio(n) 14.66 01226
Cl, 6.579 0.056 22 C4Hj(iso) 13.04 0.1142
NO 1.358 0.027 89 CsHyy(n) 19.26 0.146 0
NO, 5.354 0.044 24 CO 1.505 0.039 85
H,0 5.536 0.030 49 CO, 3.640 0.042 67

*The van der Waals equation can also be written in the form
(P +an*/V*)(V —nb) = nRT
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those between D and E are metastable, that is, not true equilibrium states. The
dashed line is the boundary of the two-phase region; the part of the isotherm to
the left of A represents the liquid and that to the right of E, gas. The horizon-
tal line ACE that produces two equal areas (ABC and CDE) is referred to as
the Maxwell construction. It connects the thermodynamic properties of the liquid
phase (A) with the properties of the gas phase (£ ) that is in equilibrium with it.
The compressibility factor for a van der Waals gas is given by
L, PV _ V. a
RT V-b RTV
. 1 . a
1-b/V RTV

(1.24)

At low pressures, b/V << 1so that we can expand the first term using (1—x)~! =
T4+x +x24---

Example 1.6 Expansion of (1 — x)~! using the Maclaurin series
Since we will use series like
VA —x)=1+x+x2+

a number of times, it is important to realize that functions can often be expressed as series
by use of the Maclaurin series

2
1) = £(0) + (jx—f>x=0x ; %(%) e

In this case,
f(0) =1
af\ 1 df _
<E> Taem M (@> 0o

Equation 1.24 then yields the virial equation in terms of volume:

2
z:1+( —%>%+<%>+ (1.25)

From this equation we can see that the value of a is relatively more important at
low temperatures, and the value of b is relatively more important at high temper-
atures. To obtain the virial equation in terms of pressure, we can replace V in the
second term by the ideal gas value to obtain, to first order in P,

1 a
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but this approximation is not good enough to give the correct coefficient for the
P2 term. At the Boyle temperature the second virial coefficient is zero, and so for
a van der Waals gas

a

Ts = 3R

(1.27)

The values of the van der Waals constants may be calculated from the critical
constants for a gas, as shown in the following example.

Example 1.7 Van der Waals constants expressed in terms of critical constants

Derive the expressions for the van der Waals constants in terms of the critical constants for
a gas.
The van der Waals equation may be written

RT a
p=_- - = 1.28
V-b V2 (1.28)
Differentiating with respect to molar volume and evaluating these equations at the critical
point yields
Py - R 20 (1.29)
av T. (Vc - b)2 Vc3
2
L_Pz :_2R7Tc3_%:0 (1.30)
v T, (Ve — b) V¢

A third simultaneous equation is obtained by writing equation 1.28 for the critical point:

RT,
po= e 4 (1.31)
Ve—b V2
These three simultaneous equations may be combined to obtain expressions for @ and b in
terms of 7. and P. or T, and V,:

27R?’T? 9 _ —
_ RT. _V,
b = 8P, = 3 (1.33)

Example 1.8 Critical constants expressed in terms of van der Waals constants

Derive the expressions for the molar volume, temperature, and pressure at the critical point
in terms of the van der Waals constants.
Equation 1.33 shows that

Equation 1.32 shows that

8a 8a

T. = °2 - _°%
" 9RV. 27Rb
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Equation 1.33 shows that

Example 1.9 Calculation of the molar volume using the van der Waals
equation

What is the molar volume of ethane at 350 K and 70 bar according to (a) the ideal gas law
and (b) the van der Waals equation?

(@) V. = RT/P = (0.083145 L bar K~ ! mol~1)(350 K)/(70 bar)
= 0.416 L mol !
(b) The van der Waals constants are given in Table 1.3.
RT  a
V-b V2

0 = (0.08315)(350) _ 5.562
V —0.06380 V2

This is a cubic equation, but we know it has a single real, positive solution because the
temperature is above the critical temperature. This cubic equation can be solved using a
personal computer with a mathematical application. This yields two complex roots and one
real root, namely 0.2297 L mol ! (see Computer Problem 1.G).

We will see later that equations of state are very important in the calculation
of various thermodynamic properties of gases. Therefore, a variety of them have
been developed. To represent the P-V -T properties of a one-component sys-
tem over a wide range of conditions it is necessary to use an equation with many
more parameters. As more parameters are used they lose any simple physical in-
terpretation. The van der Waals equation does not fit the properties of any gas
exactly, but it is very useful because it does have a simple interpretation and the
qualitatively correct behavior.

The van der Waals equation fails in the immediate neighborhood of the crit-
ical point. The coexistence curve (see Fig. 1.12) is not parabolic in the neigh-
borhood of the critical point. The van der Waals equation indicates that near
T, V.-V = k(T.— T)", but experiments show that the exponent is actually
0.32. Other properties in the neighborhood of the critical point vary with (7, — T')
with exponents that differ from what would be expected from the van der Waals
equation. These exponents are the same for all substances, which shows that the
properties in the neighborhood of the critical point are universal.

1.9 DESCRIPTION OF THE STATE OF A SYSTEM
WITHOUT CHEMICAL REACTIONS

In Section 1.1 we observed that the intensive state of a one-phase system can
be described by specifying N + 1 intensive variables, where N is the number of
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species. The intensive state of a solution containing species A and species B is
completely described by specifying T, P, and na/ng, and so three intensive vari-
ables are required. Now that we have discussed several systems, it is time to think
about the numbers of intensive variables required to define the thermodynamic
states of these more complicated systems. The number of independent variables
required is represented by F, which is referred to as the number of degrees of free-
dom. Therefore, for a one-phase system without chemical reactions, FF = N; + 1.
As we have seen, if Ny = 1, the independent intensive properties can be chosen
tobe T and P.If Ny = 1, but the system has two phases at equilibrium, Fig. 1.12
shows that it is sufficient to specify either 7 or P, but not both, so that F = 1.
Thus the intensive state of this system is described completely by saying that two
phases are at equilibrium and specifying 7 or P. In defining the ideal gas tem-
perature scale, we saw that water vapor, liquid water, and ice are in equilibrium
at a particular 7 and P. Thus the intensive state of this three-phase system is
completely described by saying that three phases are at equilibrium. There are no
independent intensive variables, and so F = 0.

Earlier we contrasted the thermodynamic description of a system with the
classical description of a system in terms of molecules, and now we can see that
the description of the thermodynamic state of a system is really quite different.
Another interesting aspect of specifying degrees of freedom is that the choice of
variables is not unique, although the number is. For example, the intensive state
of a binary solution can be described by T, P, and the mole fraction of one of the
species.

The preceding paragraph has discussed the intensive state of a system, but
it is often necessary to describe the extensive state of a system. The number of
variables required to describe the extensive state of a system is given by D =
F + p, where p is the number of different phases, because the amount of each
phase must be specified. For a one-phase system with one species and no reactions,
D =2+ 1 = 3,and so a complete description requires 7', P, and the amount of
the species (n). For a two-phase system with one species, D = 1+ 2 = 3, and so
it is necessary to specify T or P and the amounts of the two phases. For a three-
phase system with one species, D = 0 + 3 = 3, and so it is necessary to specify
the amounts of the three phases. For a one-phase binary solution, D = 3+1 = 4,
and so it is necessary to specify T, P, na/ng, and the amount of the solution.
Phase equilibria and chemical equilibria introduce constraints, and we will see in
the next several chapters how these constraints arise and how they are treated
quantitatively in thermodynamics.

Comment:

It is a good thing that this issue of the number of variables required to describe
the state of a system has come up before we discuss the laws of thermodynamics
because the conclusions in this section cannot be derived from the laws of
thermodynamics. The fact that N5 + 2 variables are required to describe

the extensive state of a homogeneous one-phase system at equilibrium is a
generalization of experimental observations, and we will consider it to be a
postulate. It is a postulate that has stood the test of time, and we will use it often
in discussing thermodynamic systems.



1.10 PARTIAL MOLAR PROPERTIES

This chapter has mostly been about pure gases, but we need to be prepared to
consider mixtures of gases and mixtures of liquids. There is an important math-
ematical difference between extensive properties and intensive properties of
mixtures. These properties can be treated as mathematical functions. A function
f(xy, x2, ..., xn) is said to be homogeneous of degree k if

f()\xl, )UC2, ooy )\)CN) = /\kf(xl, X2y o v ny XN) (1.34)

All extensive properties are homogeneous of degree 1. This is illustrated by the
volume for which

V(Any, Mg, ..., Any) = ANV (ny,ny, ... ny) = AV (ny, ny, ..., ny) (1.35)

where ny, ny, . .. are amounts of substances. That is, if we increase the amounts of
every substance A-fold, the total volume increases A-fold. All intensive properties
are homogeneous of degree zero. This is illustrated by the temperature for which

T (Any, Any, ..., Any) = AT (ny, ny, ...,ny) = T(ny, ny, ..., ny)  (1.36)

According to Euler’s theorem, when equation 1.34 applies,

N
kf(xl, X2, .. .,XN) = ZX,’ (a ) (137)
Xj #Xj

o \9x

Thus for the volume of a mixture (k = 1),

% 1% 1%
V =|— n o+ (— ny+ -+ — ny
M Jrp, M2 J1p, NN b,

= Vll’ll + Vzl’lz + e+ VNHN (138)

where the subscript n; indicates that the amounts of all other substances are held
constant when the amount of one of the substances is changed. These derivatives
are referred to as partial molar volumes. Since we will use such equations a lot,
partial molar properties are indicated by the use of an overbar:

— 1%
V, = ( ) (1.39)
on; TP{nj«}

This definition for the partial molar volume can be stated in words by saying that
V;dn; is the change in V' when an infinitesimal amount (d#n; ) of this substance
is added to the solution at constant 7', P, and all other n;. Alternatively, it can
be said that V; is the change in V' when 1 mol of i is added to an infinitely large
amount of the solution at constant 7" and P.

Note that the partial molar volume depends on the composition of the solu-
tion. When the amount of substance 1 is changed by dny, the amount of substance
2 is changed by dny, etc., and the volume of the solution is changed by

1.10 Partial Molar Properties
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Figure 1.14 Column of an ideal
gas of uniform temperature and unit
cross section.

dV = Vidny + Vodny + -+ + Vy dny (1.40)
Dividing equation 1.38 by the total number of moles in the solution yields
V = lel + VzXz + -+ VNXN (141)

where V is the molar volume of the solution and x; is the mole fraction of sub-
stance i in the solution. In Chapter 6 we will discuss the determination of the
partial molar volume of a species in a solution, and we will also see that in ideal
solutions the partial molar volume of a substance is equal to its molar volume in
the pure liquid.

Example 1.10 The partial molar volume of a gas in an ideal gas mixture

Calculate the partial molar volume of a gas in an ideal gas mixture.
The volume of an ideal gas mixture is

RT
V = T(m +I’Z2+)

Using equation 1.39 to find the partial molar volume of gas i yields

— 1'% RT
o
on; TP{nj«i}

Thus all of the gases in a mixture of ideal gases have the same partial molar volume. This
is not true for nonideal gases or for liquids.

Comment:

Calculus is used so much in physical chemistry that we have included a section

on calculus in Appendix D for quick reference. Since the properties of a system
depend on a number of variables, it is important to be clear about which properties
are held constant for a measurement or a process and to use subscripts on partial
derivatives.

1.11 SPECIAL TOPIC: BAROMETRIC FORMULA

In applying thermodynamics we generally ignore the effect of the gravitational
field, but it is important to realize that if there is a difference in height there is a
difference in gravitational potential. For example, consider a vertical column of a
gas with a unit cross section and a uniform temperature 7', as shown in Fig. 1.14.
The pressure at any height % is simply equal to the mass of gas above that height
per unit area times the gravitational acceleration g. The standard acceleration due
to gravity is defined as 9.806 65 m s~2. The difference in pressure dP between h
and & + dh is equal to the mass of the gas between these two levels times g and
divided by the area. Thus,

dP = —pg dh (1.42)



1.11 Special Topic: Barometric Formula

where p is the density of the gas. If the gas is an ideal gas, then p = PM /RT, where
M is the molar mass, so that

_ _PMg
dP = — === dh (1.43)

Separating variables and integrating from 4 = 0, where the pressure is Py, to A,
where the pressure is P, yields

P dap h oM
L d? = —L ‘;—Tdh (1.44)
111}950 - —% (1.45)
P = Py e $MMRT (1.46)

This relation is known as the barometric formula.

Example 1.11 Pressure and composition of air at 10 km

Assuming that air is 20% O, and 80% N, at sea level and that the pressure is 1 bar, what
are the composition and pressure at a height of 10 km, if the atmosphere has a temperature
of 0°C independent of altitude?

P =P exp(—%)
For O,,
-2 -3 -1 4
Po, = (020 bar)exp[— ©.8 m(; 3 fﬁ >1<<1? moﬁ%f;gn )Igo m)]
= 0.0503 bar
For N,,

.8 X 28 X 1073 x 104
Py, = (0,80)exp<98 810 0 )

8.3145 X 273
= 0.239 bar
The total pressure is 0.289 bar, and yo, = 0.173 and yn, = 0.827.

Figure 1.15 gives the partial pressures of oxygen, nitrogen, and the total pres-
sure as a function of height in feet, assuming the temperature is 273.15 K inde-
pendent of height.

Comment:

This is our first contact with exponential functions, but there will be many more.
The barometric formula can also be regarded as an example of a Boltzmann
distribution, which will be derived in Chapter 16 (Statistical Mechanics). The
temperature determines the way particles distribute themselves over various
energy levels in a system.

25
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Lo o v Ly Tty
10 000 20 000 30 000 40 000 50 000

h/feet

Figure 1.15 Partial pressures of oxygen, nitrogen, and the total pressure of the atmo-
sphere as a function of height in feet, assuming the temperature is 273.15 K independent
of height (see Computer Problem 1.H).

Nine Key Ideas in Chapter 1

The state of a macroscopic system at equilibrium can be specified by the
values of a small number of macroscopic variables. For a system in which
there are no chemical reactions, the intensive state of a one-phase system
can be specified by Ny + 1 intensive variables, where N is the number of
different species.

According to the zeroth law of thermodynamics, if systems A and B are
individually in thermal equilibrium with system C, then A and B are in
thermal equilibrium with each other.

The ideal gas temperature scale is based on the behavior of gases in the
limit of low pressures. The unit of thermodynamic temperature, the kelvin,
represented by K, is defined as the fraction 1/273.16 of the temperature of
the triple point of water.

The total pressure of a mixture of ideal gases is equal to the sum of the
partial pressures of the gases in the mixture.

The virial equation of state, which expresses the compressibility factor Z
for a gas in terms of powers of the reciprocal molar volume or of the pres-
sure, is useful for expressing experimental data on a gas provided the pres-
sure is not too high or the gas too close to its critical point.

The van der Waals equation is useful because it exhibits phase separation
between gas and liquid phases, but it does not represent experimental data
exactly.

For a one-phase system without chemical reactions, we have seen that the
number of degrees of freedom F is equal to N + 1. But if the system con-
tains two phases at equilibrium, F = Nj, and if the system contains three
phases at equilibrium, F = N; — 1. The number of variables D required
to describe the extensive state of a multiphase macroscopic system at equi-
librium is F + p, where p is the number of phases.

The volume of a mixture is equal to the sum of the partial molar volumes
of the species it contains each multiplied by the amount of that species.

For an isothermal atmosphere, the pressure decreases exponentially with
the height above the surface of the earth.
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PROBLEMS

@ Problems marked with an icon may be more conve-
niently solved on a personal computer with a mathematical pro-
gram.

1.1 The intensive state of an ideal gas can be completely de-
fined by specifying (1) 7, P, (2) T, V, or (3) P, V. The extensive
state of an ideal gas can be specified in four ways. What are the
combinations of properties that can be used to specify the exten-
sive state of an ideal gas? Although these choices are deduced
for an ideal gas, they also apply to real gases.

1.2 Theideal gas law also represents the behavior of mixtures
of gases at low pressures. The molar volume of the mixture is
the volume divided by the amount of the mixture. The partial
pressure of gas i in a mixture is defined as y; P for an ideal gas
mixture, where y; is its mole fraction and P is the total pressure.
Ten grams of N is mixed with 5 g of O, and held at 25 °C at 0.750
bar. (a) What are the mole fractions of N, and O, ? (b) What are
the partial pressures of N, and O, ? (¢) What is the volume of the
ideal mixture?

1.3 A mixture of methane and ethane is contained in a glass
bulb of 500 cm? capacity at 25 °C. The pressure is 1.25 bar, and
the mass of gas in the bulb is 0.530 g. What is the average molar
mass, and what is the mole fraction of methane?

1.4 Nitrogen tetroxide is partially dissociated in the gas phase
according to the reaction

N> O4(g) = 2NO,(g)

A mass of 1.588 g of N, Oy is placed in a 500-cm? glass vessel at
298 K and dissociates to an equilibrium mixture at 1.0133 bar.
(a) What are the mole fractions of N,O4 and NO,? (b) What
percentage of the N, Oy has dissociated? Assume that the gases
are ideal.

1.5 Although a real gas obeys the ideal gas law in the limit
as P — 0, not all of the properties of a real gas approach the
values for an ideal gas as P — 0. The second virial coefficient
of an ideal gas is zero, and so dZ/dP = 0 at all pressures. But
calculate dZ/dP for areal gasas P — 0.

@ 1.6 Show how the second virial coefficient of a gas and
its molar mass can be obtained by plotting P/p versus P, where
p is the density of the gas. Apply this method to the following
data on ethane at 300 K.

P/bar 1 10 20
p/1073 gem ™3 1.2145 13.006 28.235

@ 1.7 Calculate the second and third virial coefficients for
hydrogen at 0°C from the fact that the molar volumes at
50.7, 101.3, 202.6, and 303.9 bar are 0.4634, 0.2386, 0.1271, and
0.09004 L mol !, respectively.

@ 1.8 The critical temperature of carbon tetrachloride is
283.1°C. The densities in g/em? of the liquid p; and vapor py
at different temperatures are as follows:

t/1°C 100 150 200 250 270 280
p1 14343 13215 1.1888 0.9980 0.8666 0.7634
Pv 0.0103  0.0304 0.0742 0.1754 0.2710 0.3597

What is the critical molar volume of CCl,? It is found that the
mean of the densities of the liquid and vapor does not vary
rapidly with temperature and can be represented by

p1t py
2

where A and B are constants. The extrapolated value of the av-
erage density at the critical temperature is the critical density.
The molar volume V; at the critical point is equal to the molar
mass divided by the critical density.

= A+ Bt

1.9 Show that for a gas of rigid spherical molecules, b in
the van der Waals equation is four times the molecular vol-
ume times Avogadro’s constant. If the molecular diameter of
Ne is 0.258 nm (Table 17.4), approximately what value of b is
expected?

1.10 What is the molar volume of n-hexane at 660 K and 91
bar according to (a) the ideal gas law and () the van der Waals
equation? For n-hexane, 7. = 507.7 K and P, = 30.3 bar.



28

1.11 Derive the expressions for van der Waals constants a and
b in terms of the critical temperature and pressure; that is, derive
equations 1.32 and 1.33 from 1.29-1.31.

1.12 Calculate the second virial coefficient of methane at 300 K
and 400 K from its van der Waals constants, and compare these
results with Fig. 1.9.

1.13 You want to calculate the molar volume of O, at 298.15
K and 50 bar using the van der Waals equation, but you don’t
want to solve a cubic equation. Use the first two terms of
equation 1.26. The van der Waals constants of O, are a =
0.138 Pam® mol ! and b = 31.8 X 107° m3 mol~!. What is the
molar volume in L mol ~1?

1.14 The isothermal compressibility « of a gas is defined in
Problem 1.17, and its value for an ideal gas is shown to be 1/P.
Use implicit differentiation of V' with respect to P at constant 7’
to obtain the expression for the isothermal compressibility of a
van der Waals gas. Show that in the limit of infinite volume, the
value for an ideal gas is obtained.

1.15 Calculate the second and third virial coefficients of O,
from its van der Waals constants in Table 1.3.

1.16 Calculate the critical constants for ethane using the van
der Waals constants in Table 1.3.

1.17 The cubic expansion coefficient « is defined by

_1(wv
- VT Jp

and the isothermal compressibility  is defined by

_ L fav
“Tvir ),
Calculate these quantities for an ideal gas.

1.18 What is the equation of state for a liquid for which the co-
efficient of cubic expansion « and the isothermal compressibility
K are constant?

1.19 For a liquid the cubic expansion coefficient « is nearly
constant over a narrow range of temperature. Derive the expres-
sion for the volume as a function of temperature and the limiting
form for temperatures close to 7.

1.20 (a) Calculate (3P/9V )y and (dP/0T )y for a gas that has
the following equation of state:

nRT
V —nb

P =

(b) Show that (82P/dV 9T) = (9>P/aT 9V ). These are referred
to as mixed partial derivatives.

1.21 Assuming that the atmosphere is isothermal at 0°C and
that the average molar mass of air is 29 g mol ™!, calculate the
atmospheric pressure at 20 000 ft above sea level.

1.22 Calculate the pressure and composition of air on the top
of Mt. Everest, assuming that the atmosphere has a temperature
of 0°C independent of altitude (A = 29 141 ft). Assume that air
at sea level is 20% O, and 80% N,.

Chapter 1 Zeroth Law of Thermodynamics and Equations of State

1.23 Calculate the pressure due to a mass of 100 kg in the
earth’s gravitational field resting on an area of () 100 cm? and
(b) 0.01 cm?. (c) What area is required to give a pressure of 1
bar?

1.24 A mole of air (80% nitrogen and 20% oxygen by vol-
ume) at 298.15 K is brought into contact with liquid water,
which has a vapor pressure of 3168 Pa at this temperature.
(a) What is the volume of the dry air if the pressure is 1 bar?
(b) What is the final volume of the air saturated with water va-
por if the total pressure is maintained at 1 bar? (c) What are the
mole fractions of N,, O,, and H,O in the moist air? Assume the
gases are ideal.

1.25 Using Fig. 1.9, calculate the compressibility factor Z for
NHj3(g) at 400 K and 50 bar.

1.26 In this chapter we have considered only pure gases, but
it is important to make calculations on mixtures as well. This
requires information in addition to that for pure gases. Statis-
tical mechanics shows that the second virial coefficient for an
N -component gaseous mixture is given by

N N
B =2 > yiyiBj
i=1j=1

where y is mole fraction and i and j identify components. Both
indices run over all components of the mixture. The bimolecular
interactions between i and j are characterized by B;j, and so
Bj; = Bj;. Use this expression to derive the expression for B
for a binary mixture in terms of yq, y», B11, B12, and By;.

@ 1.27 The densities of liquid and vapor methyl ether in
g cm ™3 at various temperatures are as follows:

t/°C 30 50 70 100 120
Pl 0.6455 0.6116 0.5735 0.4950 0.4040
pv 0.0142 0.0241 0.0385 0.0810 0.1465

The critical temperature of methyl ether is 299 °C. What is the
critical molar volume? (See Problem 1.8.)

1.28 Use the van der Waals constants for CH, in Table 1.3 to
calculate the initial slopes of the plots of the compressibility fac-
tor Z versus P at 300 and 600 K.

1.29 A gasfollows the van der Waals equation. Derive the rela-
tion between the third and fourth virial coefficients and the van
der Waals constants.

1.30 Using the van der Waals equation, calculate the pressure
exerted by 1 mol of carbon dioxide at 0 °C in a volume of (a) 1.00
Land (b) 0.05 L. (¢) Repeat the calculations at 100 °C and 0.05 L.

1.31 A mole of n-hexane is confined in a volume of 0.500 L at
600 K. What will be the pressure according to (@) the ideal gas
law and () the van der Waals equation? (See Problem 1.10.)
1.32 A mole of ethane is contained in a 200-mL cylinder at 373
K. What is the pressure according to (a) the ideal gas law and
(b) the van der Waals equation? The van der Waals constants
are given in Table 1.3.



1.33 When pressure is applied to a liquid, its volume decreases.
Assuming that the isothermal compressibility

e
T viep ),

is independent of pressure, derive an expression for the volume
as a function of pressure.

1.34 Calculate a and « for a gas for which

P(V —b) = RT
1.35 What is the molar volume of N,(g) at 500 K and 600 bar
according to (a) the ideal gas law and (b) the virial equation?
The virial coefficient B of N (g) at 500 K is 0.0169 L mol 1.
1.36 What is the mean atmospheric pressure in Denver, Col-
orado, which is a mile high, assuming an isothermal atmosphere
at 25°C? Air may be taken to be 20% O, and 80% N,.
1.37 Calculate the pressure and composition of air 100 miles
above the surface of the earth assuming that the atmosphere has
a temperature of 0 °C independent of altitude.
1.38 The density p = m/V of a mixture of ideal gases A and
B is determined and is used to calculate the average molar mass

M of the mixture; M = pRT/P.How is the average molar mass
determined in this way related to the molar masses of A and B?

@ 1.39 Figure 1.13 shows the Maxwell construction for cal-
culating the vapor pressure of a liquid from its equation of state.
Since this requires an iterative process, a computer is needed,
and J. H. Noggle and R. H. Wood have shown how to write
a computer program in Mathematica (Wolfram Research, Inc.,
Champaign, IL 61820-7237) to do this. Use this method with the
van der Waals equation to calculate the vapor pressure of nitro-
gen at 120 K.

1A Problem 1.7 yields B = 0.135 L mol~! and C = 4.3 X
10™* L2 mol 2 for H,(g) at 0 °C. Calculate the molar volumes of
molecular hydrogen at 75 and 150 bar and compare these molar
volumes with the molar volume of an ideal gas.

29

Problems

1.B (a) Plot the pressure of ethane versus its molar volume in
the range 0 < P < 200 bar and molar volumes up to 0.5 mol L ™!
using the van der Waals equation at 265, 280, 310.671, 350, and
400 K, where 310.671 K is the critical temperature calculated
with the van der Waals constants. (b) Discuss the significance
of the plots and the extent to which they represent reality. (c)
Calculate the molar volumes at 400 K and P = 150 bar and at
265 K and 20 bar.

1.C This is a follow-up to Computer Problem 1.B on the van
der Waals equation. (a) Plot the derivative of the pressure with
respect to the molar volume for ethane at 265 K. (b) Plot the
derivative at the critical temperature. (c ) Plot the second deriva-
tive of the pressure with respect to the molar volume at the criti-
cal temperature. In each case, what is the significance of the
maxima and minima?

1.D (a) Express the compressibility factors for N, and O, at
298.15 K as a function of pressure using the virial coefficients in
Table 1.1. (b) Plot these compressibility factors versus P from 0
to 1000 bar.

1L.E The second virial coefficients of N, at a series of tempera-
tures are given by

T/K 75 100 125 150 200 250 300 400 500 600 700
B'/em® mol ' =274 —160 —104 —71.5 —352 —162 —4.2 9 169 21.3 24

(a) Fit these data to the function
B' = a+ BT +yT*?

(b) Plot this function versus temperature. (c) Calculate the
Boyle temperature of molecular nitrogen.

1.F Nitrogen tetroxide (N,Oy4) gas is placed in a 500-cm> glass
vessel, and the reaction N,O4 = 2NO, goes to equilibrium at
25 °C. The density of the gas at equilibrium at 1.0133 bar is
3.176 g L™!. Assuming that the gas mixture is ideal, what are
the partial pressures of the two gases at equilibrium?

1.G Calculate the molar volume of ethane at 350 K and 70 bar
using the van der Waals constants in Table 1.3.

1.H Plot the partial pressures of oxygen, nitrogen, and the to-
tal pressure in bars versus height above the surface of the earth
from zero to 50 000 feet assuming that the temperature is con-
stant at 273 K.
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In this chapter we begin to emphasize processes that take a chemical system from
one state to another. The first law of thermodynamics, which is often referred to as
the law of conservation of energy, leads to the definition of a new thermodynamic
state function, the internal energy U. An additional state function, the enthalpy

H, is defined in terms of U, P, and V for reasons of convenience.

Thermochemistry, which deals with the heat produced by chemical reactions
and solution processes, is based on the first law. If heat capacities of reactants and
products are known, the heat of a reaction may be calculated at other tempera-

tures once it is known at one temperature.



2.1 WORKAND HEAT

Force is a vector quantity; that is, it has direction as well as magnitude. Other
examples of vector quantities are displacement, velocity, acceleration, and electric
field strength. In this book vector quantities are represented by boldface italic
type. The magnitude of the vector is represented with lightface italic type. Force
is defined by

f =ma 2.1)
where f is the force that will give a mass m an acceleration a.
Work (w) is a scalar quantity defined by
w=f-L 2.2)

where f is the vector force, L is the vector length of path, and the dot indicates
a scalar product (i.e., the product is taken of the magnitude of one vector by the
projection of the second vector along the direction of the first). If the force vector
of magnitude f and the vector length of magnitude L are separated by the angle
0, the work is given by fL cos 0.*

The SI unit of force is the newton N, which is equal to kg m s~2. The SI unit
of work is the joule J, which is N m or kg m? s~2. The differential quantity of work
dw done by a force f operating over a distance dL in the direction of the force is
fdL.

Since pressure P is force per unit area, the force on a piston is PA, where A is
the surface area perpendicular to the direction of the motion of the piston. Thus,
the differential quantity of work done by an expanding gas that causes the piston
to move distance dL is PAdL. But AdL = dV, the increase in gas volume, and
so the differential quantity of pressure-volume work is P dV.

Work w can be positive or negative since work may be done on a system or a
system may do work on its surroundings, as shown in Fig. 2.1. The convention on
w is that it is positive when work is done on the system of interest and negative
when the system does work on the surroundings. (As we will see later, a similar
convention is applied to heat ¢q; g is positive when heat is transferred from the
surroundings to a system, and g is negative when heat is transferred from the sys-
tem to the surroundings.) Thus, the differential of the PV work done on a system
is given by

dw = —Per dV (2.3)°
where Py is the external or applied pressure.

Work is often conveniently measured by the lifting or falling of masses. The
work required to lift a mass m in the earth’s gravitational field, which has an ac-
celeration g, is mgh, where A is the height through which the mass is lifted.

*Since this is our first contact with vectors and matrices, we want to note that they are represented
by boldface italic type. They may have units like other physical quantities. Sections D.7 and D.8 of
Appendix D give information about the mathematical properties of vectors and matrices.

"We use dw rather than dw as a reminder that work is not an exact differential (Section 2.3), and so
the value of its integral depends on the path.
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Figure 2.1 (a) Work is done on a
system by the surroundings. In this
case the stops are pulled out, and
the system is compressed to a new
equilibrium state. (b) Work is done
on the surroundings by the system.
When the stops are pulled out, the
system expands to a new equilibrium
state.
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The work done by a system in lifting a kilogram 0.1 m is
w = —mgh = —(1kg)(9.807 m s 2)(0.1 m) = —0.9807 J

where g is the acceleration of gravity. The negative sign indicates that work has
been done by the system.

The total work w on a system when there is a finite change in volume is ob-
tained by summing the infinitesimal amounts of work given by equation 2.3:

2
w = —J PexedV (2.4)
1

To make this calculation of the work for a finite change in state, Pey; must have a
definite value at each volume.

If the expansion or compression of a gas is carried out very slowly, the pres-
sure throughout the gas will be uniform and equal to Py (within an infinitesimal
amount) and the maximum work of expansion (negative) or of compression (pos-
itive) will be obtained, as we will see in Section 2.4. When a process is carried out
in this way, the pressure given by the equation of state can be used in equation 2 .4.
Such a process is said to be quasistatic. When the gas is allowed to expand rapidly
or is compressed rapidly, the pressure is not uniform and so such a substitution
cannot be made.

The integral in equation 2.4 is called a line integral because its value depends
on the path. Line integrals are discussed in greater detail in Section 2.3. In the
quasistatic case Py = P and the pressure is a function of temperature and vol-
ume, and so equation 2.4 should be written

2
w = —J P(T,V)dV (2.5)
1

In an ordinary definite integral, the integrand is a function of one variable. Later,
in Section 2.4, we will replace P with nRT/V for an ideal gas and integrate equa-
tion 2.5 at constant temperature, but now we want to take a more general point
of view and consider the two processes in Fig. 2.2. The state of a mole of gas can
be changed from (2P, V}) to (Py, 2Vy) by an infinite number of quasistatic paths,
but we will consider only the two paths shown. In the upper path, the pressure
is held constant at 2P, and the gas is heated until it reaches 2V}. Then the vol-
ume is held constant while the gas is cooled until the pressure reaches Py. For this
path, w = —2PyV,. In the lower path, the volume is held constant at V, and the
gas is cooled until it reaches Py. Then the gas is heated at constant pressure until
it reaches 2V). For this path, w = —PyV,. Note that in both cases the work is
the negative of the area under the path. This example shows that w depends on
the path.

When work is done on a system that is thermally insulated so that there is
no exchange of heat with the surroundings, the thermodynamic state of the sys-
tem is changed. This type of process is referred to as an adiabatic process. Joule
performed experiments in 1840-1849 showing that the change in state of water in
an adiabatic process is independent of the path, that is, whether the work is used
to turn a paddle wheel (Fig. 2.3) or is dissipated by an electrical current flowing
through a resistance or by the friction of rubbing two objects together. Since a



| |
I \sobaric step l
- l (heat flows in) l
Initial | |
state | |
| |

2Pg————— —— = —————
| |

| | ;
Isochoric step

: :<_ (heat flows out)
| |

Py-————— 4 =
| |
| |
| |
| |
| |
0 | |
0 Vq 2V,

Figure 2.2 For the change in state of a mole of gas from (2P, V) to (Py,2Vy), the work
done on the gas depends on the path. By the upper path, w = —2P, V. By the lower path,
w = —PyV,. For a clockwise cyclic process,w = —2PyV+ PyVy = —PyV). In the cyclic
process, the gas is returned to its initial state, and so AU = 0 = g — PyV}y. Thus,q = P,V
and heat is absorbed by the system in the cyclic process.

given change in state of the water in the calorimeter can be accomplished in differ-
ent ways involving the same amount of work, or by different sequences of steps,
the change in state is independent of the path and is dependent only on the total
amount of work. This makes it possible to express the change in state of a system
in an adiabatic process in terms of the work required, without stating the type of
work or the sequence of steps used. The property of the system whose change is
calculated in this way is called the internal energy U. Since the internal energy U
of a system may be increased by doing work on it, we may calculate the increase
in internal energy from the work w done on a system to change it from one state
to another in an adiabatic process:

AU =w (in an adiabatic process) (2.6)

In words, the work done on a closed system in an adiabatic process is equal to
the increase in internal energy of the system. The symbol A indicates the value of
the quantity in the final state minus the value of the quantity in the initial state;
AU = U, — Uy, where Uj is the internal energy in the initial state and U, is the
internal energy in the final state. If the system does work on its surroundings, w is
negative and, furthermore, AU is negative (i.e., the internal energy of the system
decreases) if the process is adiabatic.

Although equation 2.6 provides a way to determine the change in internal
energy of a system, it does not provide a way to determine the absolute magnitude
of the internal energy of the system. However, the internal energy can be fixed
arbitrarily for some given equilibrium state of the system, and equation 2.6 can
be used to determine the internal energy with respect to that reference state.

When equation 2.6 is applied to a system of arbitrary size, the internal energy
is an extensive quantity, but in working problems we will often deal with molar
quantities and express the change in molar internal energy AU in J mol~!.

2.1 Work and Heat 33

Figure 2.3 Joule heated water by
performing work on it, in this case
by rotating a paddle wheel, and
found that the temperature rise de-
pends only on the amount of work
done on the system.
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Figure 2.4 (a) A system in state 1
is insulated from the heat reservoir.
(b) The system is brought into con-
tact with the heat reservoir through
a heat-conducting wall. (¢) The sys-
tem is then insulated from the heat
reservoir and is found to be in

state 2.

A given change in state of a system can be accomplished in ways other than
by the performance of work under adiabatic conditions. A change equivalent to
that in the Joule experiment may be obtained by immersing a hot object in the
water. We should not say, however, that the water now has more heat any more
than we would say it has more work after it has been heated with moving paddle
wheels. In other words, heat and work are forms of energy crossing a boundary.
After the experiment, the temperature of the water is higher, and it has a greater
internal energy U. Heat is transferred when there is a gradient in temperature, as
shown in Fig. 2 .4.

Since the same change in state (as determined by measuring properties such
as temperature, pressure, and volume) may be produced by doing work on the
system or by allowing heat to flow in, the amount of heat ¢ may be expressed in
mechanical units. When Joule was doing his experiments the unit of heat was the
calorie, which is the heat required to raise the temperature of a gram of water
1°C, from 14.5 to 15.5°C. Joule was able to determine the mechanical equivalent
of heat, which is now known to be 1 calorie = 4.184 kg m? s™2 = 4.184 J. Now
we find it more convenient to express heat in joules and to define the calorie as
4.184 J. A joule of heat is the amount of heat that produces the same change in a
system as a joule of work. The dietary calorie is actually a kilocalorie.

Since heat is an algebraic quantity, it is important to adopt a sign convention.
The convention is that a positive value of g indicates that heat is absorbed by the
system from its surroundings. A negative value of ¢ means that the system gives
up heat to its surroundings. The change in internal energy U produced by the
transfer of heat g to a system when no work is done is given by

AU =g¢q (no work done) 2.7)

In words, the heat absorbed by a closed system in a process in which no work is
done is equal to the increase in internal energy of the system. Or, put another way,
if no work is done, the heat evolved is equal to the decrease in the internal energy
of the system.

It is important to understand that it is the measurement of work in the sur-
roundings that makes it possible to determine the quantity of heat g transferred
to a system. In Section 2.5 we will find that there are a number of different kinds
of work, and each of them can be readily measured by measuring the raising or
lowering of weights in the gravitational field of the earth.

2.2 FIRST LAW OF THERMODYNAMICS
AND INTERNAL ENERGY

Since the internal energy of a system can be changed a given amount by either
heat or work, these quantities are in this sense equivalent. They are both usually
expressed in joules. If both heat and work are added to a system,

AU =g +w (2.8)
For an infinitesimal change in state,

dU =dq +dw (2.9)



2.2 First Law of Thermodynamics and Internal Energy

The d indicates that ¢ and w are not exact differentials, as discussed in the next
section.

Equations 2.8 and 2.9 are statements of the first law of thermodynamics. This
law is the postulate that there exists a property U, referred to as the internal en-
ergy, (1) that is a function of the state variables for the system and (2) for which
the change AU for a process in a closed system may be calculated using equa-
tion 2.8. The first law is not restricted to reversible processes.

This mathematical form of the first law seems obvious to us now, but prior to
1850 it was not obvious at all. Before 1850 the principle of conservation of energy
in mechanical systems was understood, but the role of heat in this principle was
not clear until Joule’s experiments led to equation 2.8.

If AU is negative, we may say that the system loses energy in heat that is
evolved and work that is done by the system. The first law has nothing to say
about how much heat is evolved and how much work is done except that equation
2.8 is obeyed. In other words, the entire decrease in internal energy could show
up as work (¢ = 0). Another possibility is that even more than this amount of
work would be done and heat would be absorbed (¢ > 0), so that equation 2.8 is
obeyed. Although the first law has nothing to say about the relative amounts of
heat and work, the second law does, as we will see in Chapter 3. Since the internal
energy is a function of the state of a system, there is no change in internal energy
when a system is taken through a series of changes that return it to its initial state.
This is expressed by setting the cyeclic integral equal to zero:

f dUu =0 (2.10)

The circle indicates integration around a cycle, that is, where the initial and final
states are the same. The cyclic integrals of ¢ and w are not generally equal to zero,
and their values depend on the path followed.

The first law is frequently stated in the form that energy may be transferred in
one form or another, but it cannot be created or destroyed. Thus, the total energy
of an isolated system is constant.

The internal energy U of a system is an extensive property (Section 1.1); thus,
if we double a system, the internal energy is doubled. However, the molar internal
energy is an intensive property. We will use U for the extensive property and U
for the intensive property.

The quantity of heat transferred to an object can be calculated using g =
AU — w, where w is the measured quantity of work done on the system. The
change in internal energy AU in the process can be calculated from the quantity
w of work required in an adiabatic process (see Section 2.1).

Comment:

The statement of the first law of thermodynamics in mathematical form was a
great achievement, and actually did not occur until after the statement of the
second law. A key idea is that the quantity of work required to produce the same
temperature rise in the system as an unknown quantity of heat can be used as

a measure of the quantity of heat; thus heat is measured in