Chapter 10

Metabolism of Amino Acid

Overview

- Nitrogen is contained in amino acids, nucleotides
- Biologically useful nitrogen compounds are generally scarce in nature.
- Most organisms maintain strict economy in their use of nitrogenous cpds (ammonia, amino acids, and nucleotides)
 - \succ often salvaging and reusing them.
- The nitrogen cycle maintains a pool of biologically available nitrogen.

Nitrogen cycle

- Involve conversion of atmospheric nitrogen into forms useful to living organisms (NO₂⁻, NO₃⁻, NH₄⁺) and then set it free back
- Soil bacteria play significant role in recycling N in biosphere

•	Nitrogenase containing bacteria	$N_2 \rightarrow NH_3$
•	Nitrite bacteria (Nitrosomonas)	$NH_3 \rightarrow NO_2^-$
•	Nitrate bacteria (Nitrobacter)	$NO_2^- \rightarrow NO_3^-$
•	Denitrifying bacteria	$NO_3 \rightarrow N_2$

The cycle involves nitrogen fixation (reduction), nitrification and denitrification

Lightning also produce nitrates

Nitrogen cycle

Nitrogen cycle

Assimilation of ammonia in biological system

Ammonia generated from N₂ is assimilated into low molecular weight metabolites such as glutamate or glutamine

• At pH 7 ammonium ion predominates (NH_4^+)

At enzyme reactive centers unprotonated NH₃ is the nucleophilic reactive species

Catabolism of amino acid

Digestion & absorption of dietary proteins

- Mammalian body lack protein stores
 - ➤ Hence essential amino acids must come from diet.
- Proteins are broken down in to peptides and amino acids by
 - > **Pepsin** in the stomach
 - > Pancreatic proteases (**trypsin** & **chymotrpsin**) in the SI
- Intestinal wall produces peptidases which continue to split remnants into tripeptides, dipeptides, and some amino acids
- * Resulting amino acids are absorbed by the intestinal mucosa and $\longrightarrow \approx 99\%$ enter the capillaries for travel to the liver. (**Portal circulation**)

Absorption is through active transport (most) and facilitated diffusion (Leu,Ile)

Proteins may be absorbed as such during infancy (e.g clostrum) and certain diseases (e.g allergy)

Digestion & absorption of dietary proteins

© 2008 W. H. Freeman and Company

Fates of absorbed aminoacids

Amino acids are used as

Building blocks for proteins (200mg /day)

- Energy source (cover ~10% of our daily energy needs)
 - or more during starvation or following protein diet
- Synthesis of some non-protein metabolites

✤ Liver catabolise (oxidize) all amino acids

≻Nitrogen (amine) in them is safely removed to avoid ammonia toxicity.

➢ The remaining c-skeleton of amino acids can be harvested for energy converting reactions

Removal of amino groups from α -amino acids

Transamination (occur in liver cytosol)

Major reactions involved in the removal of

nitrogen from aa's

Amino groups to transferred to
 ✓ α-ketoglutarate to form Glutamate or
 ✓ Oxaloacetate to form Aspartate

- Transaminases (aka aminotransferases) catalyze the reaction
 - ✓ Require **pyridoxal phosphate as a** cofactor
- Transaminases exist for all amino acids except <u>threonine</u> and <u>lysine</u>.

Removal of amino groups from α -amino acids

Oxidative deamination (in hepatocyte matrix)

- Catalyzed by glutamate dehydrogenase it cause removal of amino groups from glutamate
 - ✓ To set free α -KG
- Amino group must be processed for excretion (urea cycle).

Other ways of transport of amino groups

Transport of amino groups as glutamine

Other tissues may send their amino groups as glutamine through the bloodstream to the liver for processing

Other ways of transport of amino groups

Transport of amino groups as alanine

In concert with the Cori cycle, skeletal muscle may send pyruvate through bloodstream as Ala (the glucose-alanine cycle).

Operates when muscle proteins are undergoing catabolism.

Fate of Ammonium ion (NH_4^+)

Depends on type of organism H HN Form of excretion Organism N H Ĥ **Fishes** NH₃(ammonotelic) **Uric Acid Birds** Uric acid (uricotelic) urea in H₂O(ureotelic) Humans

:0

Summary of paths of amino groups

NH⁺₄, urea, or uric acid

Urea cycle

A cyclic pathway that synthesize urea from aspartate and carbamoyl phosphate (produced from NH₄⁺ and CO₂)

≻The pathway dispose most (80%) of nitrogen as urea

- Urea is excreted to maintain daily nitrogen balance
- ✤ Occurs in the liver in:-

Two compartments: *Mitichondrial matrix* and *cytosol*.

≻Two sites: partly in mitochondria and cytosol

Urea cycle

Urea cycle

Urea cycle is linked with Citric acid cycle

Fumarate released here can taken up by citric acid cycle which intern gives free aspartate

Summary of nitrogen metabolism

Fates of carbon skeletons (α -Keto acids)

- Degradation(N-removal) of amino acids give α-keto acids which can be converted in to *Pyruvate*, *TCA cycle intermediates*, *Acetyl CoA & Acetoacetyl CoA*
- * Accordingly amino acids can be classified as glucogenic or ketogenic

Glcogenic amino acids	Ketogenic amino acids	
Are degraded to give pyruvate or TCA intermediate	Are degraded to give acetyl-CoA. or acetoacetyl-CoA	
finally used for glucose synthesis	finally used for synthesis of ketone bodies	
 Include alanine, glycine, valine, isoleucine, serine, threonine, cysteine, methionine, arginine, histidine Include tryptophan, lysine, leucine, aspartate, asparagines, glutamine, tryptophan ,phenylalanine, tyrosine proline 		
, phenylalanine, tyrosine proline	phenylalanne, tyrosine and isoleacine	

Note

Normal amino acid degradation accounts for ~10-15% of the metabolic fuel for animals (increased when high protein diets are consumed or during starvation)

Fates of carbon skeletons (α -Keto acids)

Divergent pathways of NH₃ groups and carbon keletons

Introduction

- A normal healthy adult needs about 400 g protein daily to maintain nitrogen balance.
- In contrast, young children & pregnant women have a +Ve N-balance
 because they accumulate nitrogen in new protein
- A -Ve N-balance is a sign of disease or starvation due to: Elevated rates of protein breakdown (loss of muscle tissue) or
 Insufficient amino acids in diets
- ✤ Bothe cases require synthesis of more proteins
- ✤ Humans can only synthesize about half of the twenty amino acids. (the less complex ones)
 ➢ But plants and bacteria can do all

Assimilation of NH_3 into amino acids

- First nitrogen is incorporated into either glutamate or glutamine'
 - Glutamate is the source of amino groups for synthesis of most amino acids
 - Glutamine is the source of amino groups for synthesis of most other

nitrogen-containing molecules (e.g., nucleotides)

Assimilation of NH_3 into amino acids

Formation of Glu: reductive amination of α-KG via glutamate dehydrogenase

Formation of Gln: glutamine synthetase reaction

Assimilation of NH_3 into amino acids

Glutamine synthetase is allosterically controlled

Assimilation of $\ensuremath{\mathsf{NH}}_3$ into amino acids

 Glutamine synthetase is controlled by covalent modification (adenylylation)

Incorporation of C-skeleton into amino acids

Carbon skeletons of amino acids are made from intermediates of glycolysis, TCA, or PPP

Amino Acid Biosynthetic Families, Grouped by Metabolic Precursor

α-Ketoglutarate	Pyruvate
Glutamate	Alanine
Glutamine	Valine*
Proline	Leucine*
Arginine	Isoleucine*
3-Phosphoglycerate	Phosphoenolpyruvate and
Serine	erythrose 4-phosphate
Glycine	Tryptophan*
Cysteine	Phenylalanine*
Oxaloacetate	Tyrosine [†]
Aspartate Asparagine Methionine* Threonine* Lysine*	Ribose 5-phosphate Histidine*

*Essential amino acids.

[†]Derived from phenylalanine in mammals.

Incorporation of C-skeleton into amino acids

Amino Acid Biosynthesis Pathways

Amino Acid Biosynthesis Pathways

Catabolism of Nucleotides

Purine Nucleotide Catabolism

Purine Nucleotide Catabolism

>Excreted in different forms

TRENDS in Plant Science

Pyrimidine Nucleotide Catabolism

De novo synthesis of purins and pyrimidines

De novo synthesis of purines and pyrimidines

Biosynthesis of purines

De novo synthesis of purines and pyrimidines Biosynthesis of pyrimidines

De novo synthesis of purines and pyrimidines Summary

Salvage pathways

Salvage pathways are used to dispatch most Purines (90%)

guanosine monophosphate

Biosynthesis of deoxyribonucleotide(dNTP)

- Deoxyribonucleotide(dNTP) are synthesized by replacement of 2'-OH of ribonucleotide(NTP)
 - with the involvement of enzymes Ribonucleotide reductase and Thioredoxin reductase

