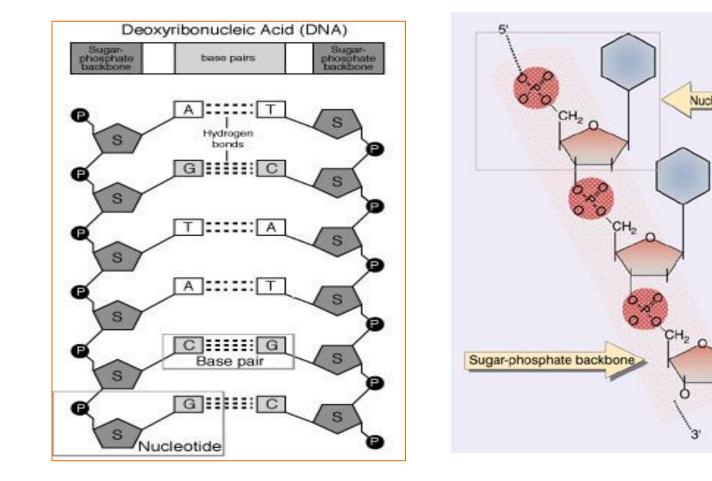


Nucleic acids

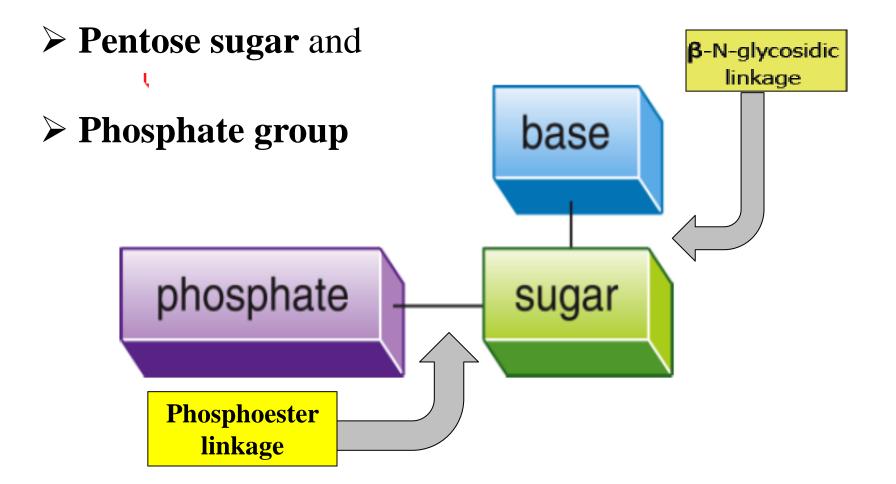
Introduction

- Typical living cells in organisms contain mechanism to undergo
 - Cell replication-i.e for the organism to construct a replica of itself and
 - Protein synthesis
- These processes requires set of instructions to specify every step required
- Genes/genomes (genetic material) are sources of these information required
- A typical genome is composed of Deoxyribonucleic acid (DNA) in living organisms
- Synthesis of specific protein is also directed by Ribonucleic acids (RNA's) derived from genes


Introduction

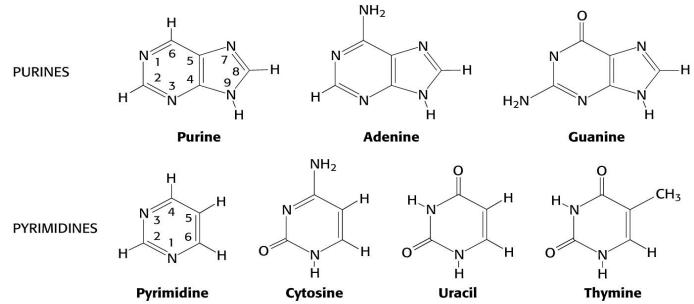
- Some viral genomes are composed of Ribonucleic acid (RNA)
- The DNA and RNA are called Nucleic acids (or polynucleotides b/c they are composed of nucleotide units)

Nucleotide subunit


Pyrimidine base

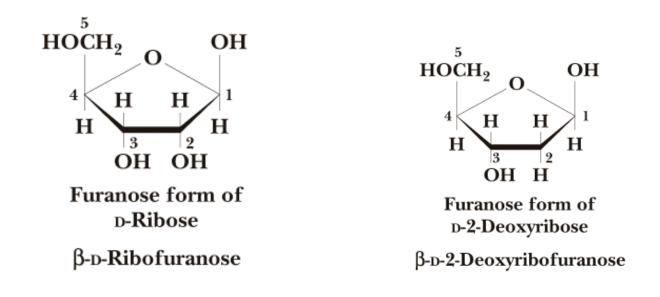
Purine base

Nucleotides


- Nucleotides are composed of three components
 - > A nitrogen base heterocyclic ring containing nitrogen

Nucleotide components

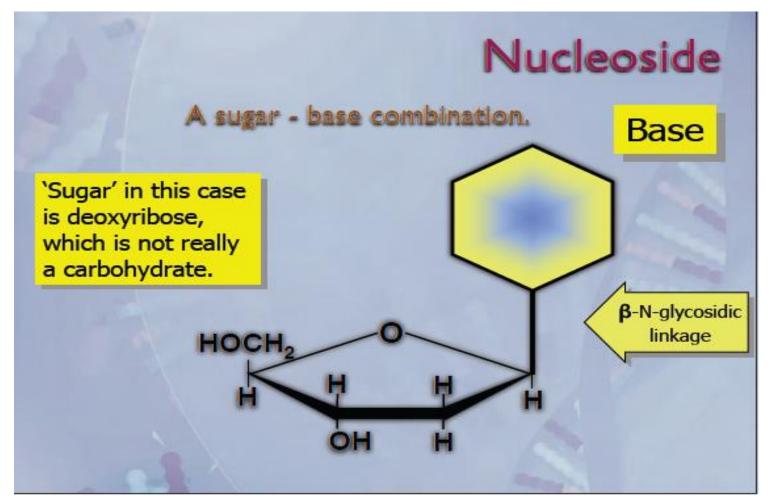
□ Nitrogen bases


- Heterocyclic nitrogenous compounds associated with nucleotides
- They are responsible for chemical basicity of the nucleotides
- Are placed into two major classes
 - Purines :- Including adenine (A) and guanine(G) and
 - Pyrimidines:- Inncluding thymine(T), cytosine(C) and uracil (U)

Nucleotide components

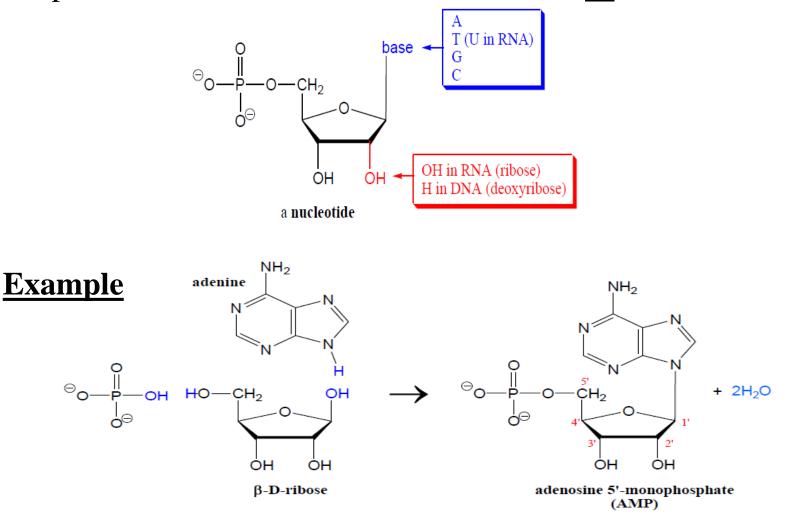
Pentose sugars

Two common types are used D-ribose & 2-deoxy-D-ribose



Phosphate groups

One or more phosphate groups may also be incorporated
They are responsible for chemical acidity of the nucleotides


Nucleotide construction

The N-bases (at N-1 or N-9) and pentose sugars (C-1) are linked through N-glycoside to give a <u>nucleoside</u>

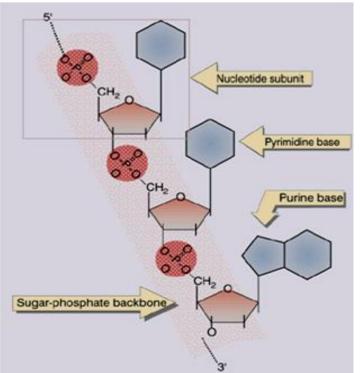
Nucleotide construction

The phosphate group forms phosphester bond with hydroxy group of pentose sugars (at C-5) to give a <u>nucleotide</u>

Nucleotide Nomenclature

Base Formula	Base (X=H)	Nucleoside X=ribose/deoxyribose	Nucleotide	Example
	Cytosine, C	Cytidine, A Deoxycytidine, dC	Cytidylate Deoxycytidylate	Cytidine monophosphate (CMP) Cytidine diphosphate (CDP) Cytidine triphosphate (CTP)
H N N N	Uracil, U	Uridine, U	Uridylate	Uridine monophosphate (UMP) Uridine diphosphate (UDP) Uridine triphosphate (UTP)
HNCH3 dX	Thymine, T	Thymidine, T Deoxythymidine, dT	Thymidylate Deoxythymidylate	Thymidine monophosphate (TMP) Thymidine diphosphate (TDP) Thymidine triphosphate (TTP)
NH2 N N X	Adenine, A	Adenosine, A Deoxyadenosine, dA	Adenylate Deoxyadenylate	Adenosine monophosphate (AMP) Adenosine diphosphate (ADP) Adenosine triphosphate (ATP)
H ₂ N N K	Guanine, G	Guanosine, G Deoxyguanosine, dG	Guanylate Deoxyguanylate	Guanosine monophosphate (GMP) Guanosine diphosphate (GDP) Guanosine triphosphate (GTP)

Comparison of DNA and RNA


DNA and RNA generally differ in the following regard

Parameters	DNA	RNA
Sugar units	2'-deoxyribose	Ribose
N-bases	Uracil is absent Thymine is exclusively found	Thymine is not found except in tRNAs
Helix structure	Double stranded	Single stranded
Molecular size	Larger	Smaller
Mobility	Basically immobile	Highly mobile
Life span	Long-lived	Broken down soon after their job

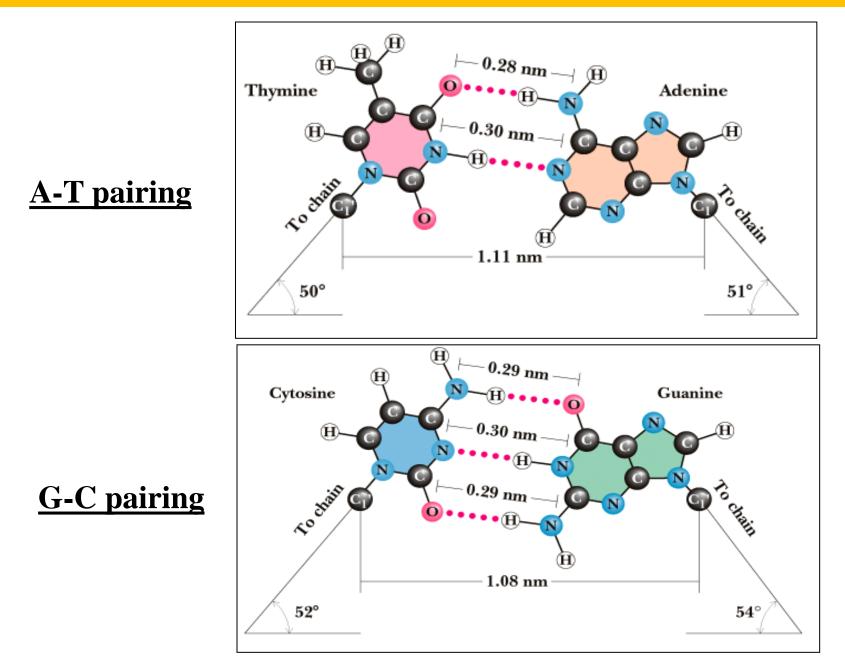
DNA Structure

DNA structure is created by joining nucleotide monomers using phosphodiester linkage with 3' ends of pentose sugar

- This creates the backbone
- N-bases/residues are extended outside the backbone

DNA/RNA have defined sequence of N- bases that always refer to arrangement in 5' to 3' direction

DNA Structure

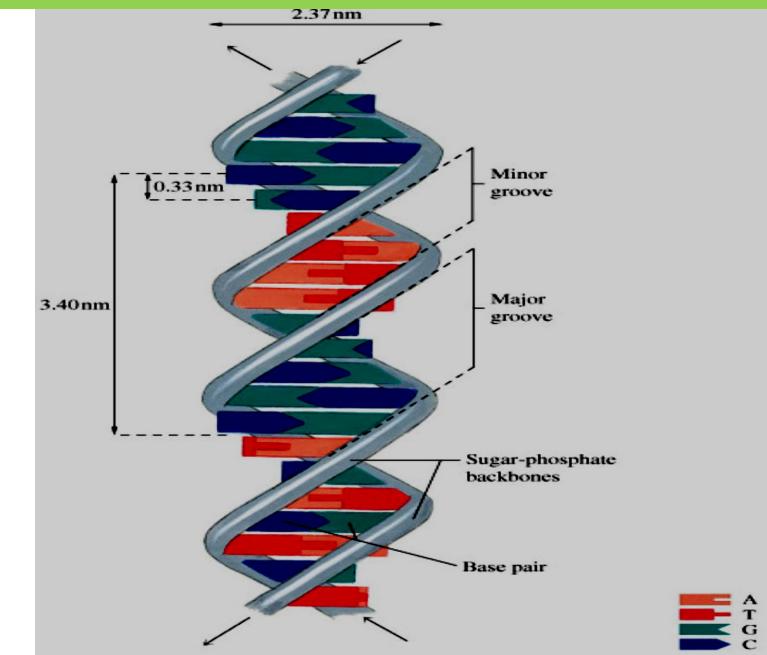

DNA has a double helical structure

First proposed by James Watson and Francis Crick (1953)

- This structure is formed due to
 - Base pairing b/n two adjacent strands and
 - Aqueous environment

Base pairing always occur through hydrogen bonds b/n a purine and a pyrimidine i.e G=C & A=T

DNA Structure


DNA Structure Properties of DNA helix

The helix stems of individual strands are antiparallel

 \checkmark i.e oriented in opposite direction 5' ---> 3' & 3' ---> 5'

- Distance between the backbones is always the same giving DNA molecule a regular shape.
- ✤Plane of bases are oriented perpendicular to backbone
- Twisting lead to the formation of two groves (major and minor) with different rise and pitch
- High temperature breaks H-bonds between bases pair
 This cause the strands of the helix separate
 This process is called thermal denaturation

DNA structure

Classes of RNA

***** Three major classes exist

i) <u>Ribosomal RNA (rRNA)</u>

- > an integral part of ribosomes (sites for protein synthesis)
- ➤ most abundant class (accounts for 80% of the total cellular RNA)

ii) Transfer RNA (tRNA)

➤ carry activated aa's to the ribosomes during protein synthesis

iii) Messenger RNA (mRNA

- ➢ are products of DNA transcription
- \succ serve as messengers to carry info. from DNA to the ribosomes
- \succ encode the sequence of aa in proteins

Biological role

- ***** Carriers of genetic information :- DNA
- Carriers of energy :-Nucleoside 5'-triphosphates (e.g ATP)
- ✤ Biological recognition units:- N-Bases serve this function

Component of coenzymes:- e.g NAD+, NADP+, FAD and coenzyme A.

≻Mediators of important cellular processes (e.g 2⁰ signal transduction pathways).

CAMP –control phosphorylation of a number of proteins

➤cGMP –involve in photoreception (rods) or opsins (cones)

Controlling enzymatic reactions through allosteric effects on enzyme activity.

>ATP is central to energy metabolism

- ➤GTP drives protein synthesis
- **CTP** drives lipid synthesis
- ►UTP drives carbohydrate metabolism

*****As activated intermediates in numerous biosynthetic reactions.

- S-adenosylmethionine (S-AdoMet) involved in
 - Methyl transfer reactions (methylation reactions)
 - Synthesis of polyamines (as a source of propylamine)
- Many sugar coupled nucleotides involved in <u>glycogen</u> and <u>glycoprotein</u> synthesis

Therapeutic:-

Many synthetic nucleotide analogues are used for their therapeutic potential.
e.g anti-tumor agents, anti-viral agents, drugs used for treatment of gauty etc..