Chapter 6 Carbohydrates

Definition

- Carbohydrates are polyhydroxylated aldehydes and ketones or their derivatives.
 - ➤ can also contain ether, amino, carboxylic, ester, amide and phosphate groups
- The term is literary to mean "hydrates of carbon"
 - Due to the fact that up on heating/dehydration carbohydrates give carbon
- They are the most abundant organic molecules on the planet
- Carbohydrates are formed in the plants by photosynthesis from carbon dioxide and water in the presence of sunlight

Classification of carbohydrates

- Carbohydrates can be classified based on the number of simpler (monomeric units) they contain as:-
 - > Monosaccharides:-containing single monomeric unit
 - ≻They cannot be further hydrolyzed to simpler units
 - Oligosaccharides:-containing 2-10 monomeric units
 - > Polysaccharides:- are polymers containing more than 10 monomeric units

Introduction

- Are simple carbohydrates that can't be hydrolyzed further in to simpler units
 - Seneral formula $(CH_2O)_m$ where 3 < m < 9
- Are crystalline solids highly soluble in water
- Most of them have sweet taste
- They are rarely exist in free form
 - ➢ Rather exist in oligometric or polymetric forms
- They are also called sugars

Classification

Monosaccharides can be classified based on:-

- > Number of carbon atoms (3, 4, 5, 6...) as triose, tetrose, pentose, hexose...
- Carbonyl functional they have on their C-1 or C-2 as aldose or ketose sugars
- Or both as aldotriose, aldotetrose, aldopentose aldohexose or ketotriose, ketotetrose, ketopentose, ketohexose

# C-atoms	Aldoses	Ketose
3	Trios e.g Glyceraldehyde	Trulose e.g Dihydroxyacetone
4	Tetrose e.g Erythrose,threose	Tetrulose e.g Erythrulose
5	Pentose e.g Ribose, xylose, lyxose, arabonose	Pentulose e.g Ribulose, xylulose
6	Hexose e.g Allose, altrose , glucose, mannose, gulose, idose, galactose, tallose	Hexulose e.g Piscose,fructose, sorbose, tagarose
7	Heptose e.g Manneheptose	Heptulose e.g Sedoheptulose, manneheptulose
8	Octose	Octulose
9	Nanose e.g Neuraminic (sialic) acid	Nanulose

Classification

Stereochemistry

- Monosaccharides can exist in two isomeric forms (D or L)
- Assignment of D/L based on relative position of hydroxyl group as in glyceraldehyde
 - ✤ Naturally occurong monosaccharides are all exist in D-form

- With one exception (dihydroxyacetone) all monosaccharides contain one or more chiral centers
 - * For "n" chiral centers 2^n stereoisomers are expected

Stereochemistry

- Stereochemical relations
 - Enantiomers: Pairs of isomers that have mirror image relationship.
 e.g D- and L-forms forms of each sugars
 - **Diastereomers**:-Pairs of isomers that have opposite configurations at one or more chiral centers but lacking a mirror images relationship
 - Epimers:- Special subset of diastereoisomers only differing in the configuration around one carbon

e.g D-mannose & D-glucose (C-2 epimers)

D-galactose & D-glucose (C-4 epimers)

Monosaccharides Cyclization

In aqueous solution pentose and hexose sugars spontaneously cyclize in to furanose or pyranose rings

- due intramolecular hemiacetal/hemiketal formation
- This leads to formation of a new chiral center
 - called anomeric carbon

Monosaccharides Cyclization

The OH group attached to anomeric carbon can have two orientations

> Yielding the α and β anomers

Fig. Orientation of OH of an α anomer in Fisher and Hawarth projections

* In aqueous solutions the α and β anomeric forms interchange through open structure.

> Phenomena is called **mutarotation**

Derivatives of monosaccharides

Are structures obtained when OH or carbonyl group of a monosaccharide is modified

p-Glucitol

- i) Sugar Phosphates:-
 - Formed when OH group substituted by inorganic phosphate

ii) Deoxy sugars :-

Have some OH group reduced

iii) Amino Sugars:-

 Formed when OH group substituted by amino group

iv) Sugar alcohols (Alditol)

➢Formed when aldehyde/ketone groups are reduced in to alcohol

D-Xvlitol

D-Mannitol

D-Glycerol

p-Ribitol

v) Oxidation of Sugars

Some sugars with free anomeric carbon atoms are reasonably good reducing agents to H2O2, Ferricyanide, Certain metals (e.g Cu2+, Ag+)

Such sugars are called reducing sugars

*****Oxidation can give **Aldonic or aldaric acids**

Introduction

Dimers of monosaccharides formed by condensation reaction.

> The most important disaccrharides are fructose, maltose and lactose.

Disaccharide	Linkage type	Characteristics	Hydrolyzing Enzyme	Natural Source
Maltose	Glcα(1→4)Glc	reducing	maltase	Plants (starch) Animals (glycogen)
Lactose	Gal β(1→4)Glc	reducing	Lactase	Milk (major energy source)
Sucrose	Glcα(1→2)βFru	non-reducing	Sucrase (invertase)	Fruits seeds roots and honey

Sucrose (cane sugar)

- \succ Is obtained from sugar cane and sugar beets.
- \succ Consists of α -D-glucose and β -D-fructose in 1:1 ratio.

> Has an α , β -1,2-glycosidic bond.

Maltose (malt sugar)

- It is produced in germinating seeds and during digestion of starch.
- > It is made from two α -D-glucose units through an

 α -1,4-glycosidic linkage

Lactose (Milk sugar)

- > Is a disaccharide of β -D-galactose and α or β -D-glucose.
- > Contains a β -1,4-glycosidic bond.
- > Is found in milk and milk products.

Polysaccharides

Introduction

- ✤ Are polymers of monosacharides (containing >10 monomeric units)
- ✤ Are the most dominant forms of carbohydrates in nature
- The most common polysaccharides include
 - Starches (composed of polymers amylose and amylopectin)
 - Glycogen (animal starch in muscle)
 - Cellulose (plants and wood)
 - > Dextrin
 - Chitin (in exoskeleton of insects)

Polysaccharide	Repeating units	Linkage type	Hydrolyzing Enzyme	Natural Source
Cellulose (unbranched)	Cellubiose (up to 15,000 glucose units)	All 1,4-β linkages	Cellulase	Plants
Starch Amylose (10-30%) (unbranched) Amylopectin (70-90%) (branched)	Glucose/Maltose(50-5,000 units) Glucose (up to 10 ⁶ units)	1,4-α-glycosidic bonds 1,4-α-glycosidic bonds & 1,6-α-glycosidic bonds(every 15-25 residues)	Amylase	Plants
Glycogen (more branched)	Glucose (up to 500 units)	1,4-α-glycosidic bonds & 1,6-α-glycosidic bonds (every 8-12 units)		Liver
Dextrans (branched)	Glucose (wide range)	1,6-α-glycosidic bonds Branches can be (1,2), (1,3), or (1,4)		Plants, Bacteria comp.of sephadex)
Chitin	N-acetylglucosamine (very large)	1,4-β-glycosidic bonds		

Polysaccharides

Starch

- A polymer of α-D-glucose \bullet
- Storage form of carbohydrate in plant roots and grain
- Is composed of amylose and amylopectin
 <u>Amylose</u>
- A polymer of α -D-glucose molecules (1000-2000) linked by α -1,4 glycosidic bonds.
- Form a continuous (unbranched) chain.
- May account for 10 -20% of starch

Amylopectin

- > Is a polymer of α -D-glucose (up to 10(E5) molecules) connected by
 - \checkmark α -1,4-glycosidic bonds between glucose units and
 - \checkmark α -1,6 bonds to branches (after every 25-30 units)
- ➢ It is therefore a branched-chain polysaccharide
- ➢ May account for 10 −20% of starch

Branched chain of amylopectin

Cellulose

- Is a polysaccharide of glucose units in unbranched chains.
- Has β -1,4-glycosidic bonds.
- Cannot be digested by humans because humans cannot break down β -1,4-glycosidic bonds.

Chitin

- A tough, protective, semitransparent polysaccharide composed primarily of N- aGlucosamine(N-containing monomer)
- Is the principal component of arthropod exoskeletons and the cell walls of certain fungi.

Dextrans

Are are α -1,6 -linked polysaccharides of D-glucose with 1,2; 1,3, or 1,4 branching in various species.

- The degree of branching and the average chain length between branches depend on the species and strain of the organism.
- Sephadex gels (used in electrophoresis) are formed from dextran chains cross-linked with epichlorohydrin.

Glycogen

- **\bigstar** Is the polysaccharide that stores α -D-glucose in liver and muscles.
- Consists of both α -1,4 and α -1,6 α -1,4-glycosidic bonds between glucose units
 - ➤ i.e similar to amylopectin but is more highly branched (after 8-12 glucose units)

Classification

Can be classified based on monomeric units they are composed of in to:-

i) Homopolysaccharides (Homoglycans):- Contain only one type of

monosaccharide residue

e.g Cellulose (from glucose), starch (from glucose), Chitin (from *N*-acetylglucosamine)

- **ii) Heteroploysaccharides (hetroglycans) :-** Contain mixture of monosaccharide residues
 - e.g Hemicellulose

Functional role of Carbohydrates

<u>Biological</u>

- Structural component of cell & nucleic acids (cellulose, chitin, ribose and 2-deoxyribose)
- Energy storage (glycogen, starch)
- Cellular recognition (Cell surface polysaccharides & carbohydrate derivatives (glycoproteins , glycolipids)
- Sweeteners (flavor) in foods (fructose is found in many fruits)
- ➢ Fermentation
- **Pharmaceutical agents**:- Emulsifier, bulking agent (filler), binder, suspending agent etc.
- **<u>Dietary role</u>** :- energy source, fiber
- **Industrial:** Pulp and paper industry
- Chromatographic separation:- Stationary phase, support
- **Drugs**:-Sugars, oligosaccharide and polysaccharide groups are incorporated in to many drug structures