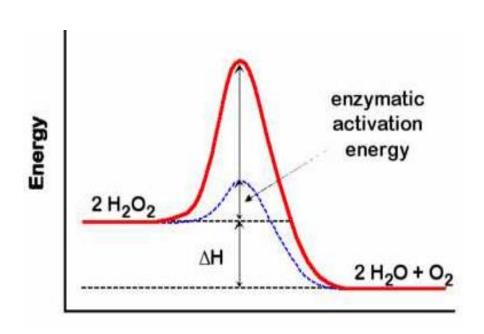
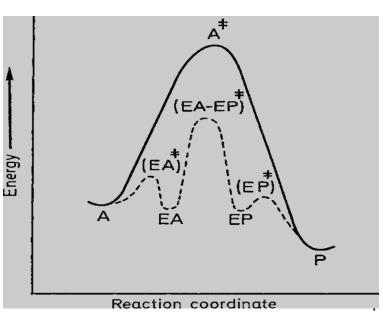
CHAPTER- 4

ENZYMES

Introduction

- Enzymes are biological catalysts that let reactions to go faster.
 - ➤ Usually 10⁵-10¹⁷ times
- ❖The term 'enzyme' was first suggested by Wilhelm Kühne (1867)
 - >From Greek term 'ensimo'
 - -Meaning "in leaven", "in ferment" or "in yeast"
- ❖ More than 2,000 enzymes exist in our body


Characteristic of enzymes


Enzymes

- ➤ Are large **globular proteins**
 - ✓ Exception:- **Ribozyme** have NA as catalytic site
- ➤ Most require certain **non-protein** component (**cofactor**) for their action
- ➤ Possess certain structural component /pocket site (cleft and sinks) for binding i.e active site
- > Are specific in their action
 - ✓ Particularly to *FG's*, *Linkages* & *Stereochemistry*
- ➤ Best function under physiologic conditions
- > They do not alter equilibrium condition
- > They can be **regulated**

How enzymes work (Enzyme Catalysis)

- Enzymes catalyze most reactions
 - ➤ By providing alternative easier pathway for the rxn to happen
 ✓ With lower activation energy barrier
- Enzymes will not have effect on equilibrium condition

Enzyme Nomenclature

Trivial names

- > Classic names mostly offered after discoverer or their properties
- > Doesn't have any relation with
 - ✓ Nature of their substrate(s) or
 - ✓ Nature of reaction they catalyse

Examples: Trypsin, pepsin, lysozyme, chymotrypsin

➤ Only few names still exist (acceptable)

Examples: Trypsin, pepsin

Enzyme Nomenclature

Official name

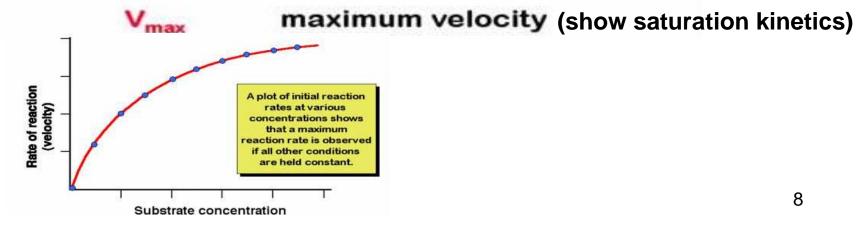
- ➤ Are those names to be approved by <u>IUBMB</u>
- > Are derived in relation with
 - ✓ Nature of their substrate(s) or
 - ✓ Nature of reaction they catalyze -

-Hence unambigeous & informative

6

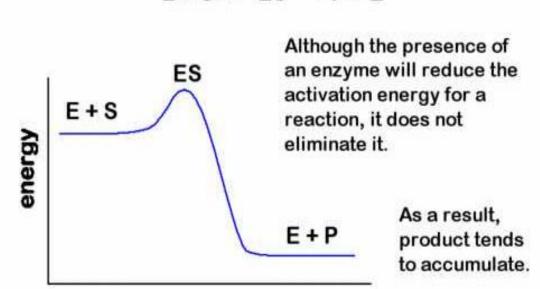
> Have an ending 'ase'

NB:-and can be represented by four digit number (EC No)


e.g <u>EC No</u>	Enzyme (activity)
1.1.1.1	Alcohol dehydrogenase-catalyse alcohol to aldehyde oxidation
2.27.1.2	Hexokinase – phosporylate hexose sugars
3.4.17.1	Carboxypeptidase A- Involve in C-terminal cleavage of peptide bond
4.1.1.1	Pyruvate decarboxylase-remove carboxyl group from pyruvate

Enzyme Classification

❖ Based on type of reaction they catalyze enzymes are groped in to six categories


S.N.	Enzyme class	Reactions catalyzed	
1.	Oxidoreductases	Oxidation and reduction of substrates (usually involve	
		hydrogen transfer)	
	Dehydrogenases	Transfer of hydrogen atoms from substrate to NAD*	
	Oxidases	Transfer of hydrogen atoms from substrate to oxygen	
	Oxygenases	Partial incorporation of oxygen to substrate	
	Peroxidases	Transfer of electrons from substrate to hydrogen peroxide	
2.	Transferases	Transfer of a chemical group (such as a methyl group, amino group, phosphate group from one molecule to another	
	Phosphorylases	Addition of orthophosphate to substrate	
	Transaminases	Transfer of amino group from one substrate to another	
	Kinases	Transfer of phosphate from ATP to substrate	
3.	Hydrolases	Cleavage of bonds by the addition of water	
	Phosphatases	Removal of phosphate from substrate	
	Peptidases	Cleavage of peptide bonds	
4.	Lyases	Addition of groups to double bond (-C=C-, C=O, -C=N-)	
	Decarboxylases	Removal of carbon dioxide from substrate	
5.	Isomerases	Rearrangement of atoms of a molecule	
6.	Liagases	Formation of new bonds using energy from	
		(simultaneous) breakdown of ATP	
	Synthetases	Joining two molecules together	

- Study of kinetics of enzymatic catalyzed reaction helps to
 - > Understand how enzymes function and
 - ➤ How their activity can be improved
- For non-catalyzed reactions Reaction rate increase with concentration.
- Enzyme catalyzed reactions Also increase but only to a certain point.

- ❖ Mechanism for this type reaction was first formulated by Michaelis and Menten (1913)
- ❖ Initially enzyme reacts with its substrate (S) to form an activated complex (ES)
- ❖The ES complex then decompose to a product (P) and the enzyme or back to substrate

 $E + S \rightleftharpoons ES \rightarrow P + E$

Assumptions

- \triangleright V_o = initial velocity (ignore reverse reaction)
- > [ES] is constant
- \triangleright Conversion of S to P is rate-limiting, $v_o = k_2$ [ES]

Michaelis-Menten equation

$$E + S \stackrel{k_1}{=} ES \stackrel{k_3}{=} P + E$$

Three rate expressions are used to describe the enzymatic reaction:

Where E_o = initial enzyme concentration

NB: k₄ is neglected because its effect is very small during the initial stages of the reaction.

Michaelis-Menten equation

Typically, as this type of reaction proceeds, it reaches an equilibrium like condition where [ES] remains constant.

If we substitute in our rate expressions and rearrange, we end up with:

[ES] =
$$\frac{k_1 [E_0] [S]}{(k_2 + k_3) + k1[S]}$$

We can simplify our equation by includin all of the rate constants in a single term.

$$K_m = \frac{k_2 + k_3}{k_4}$$
 Where: Km=Michaelis constant

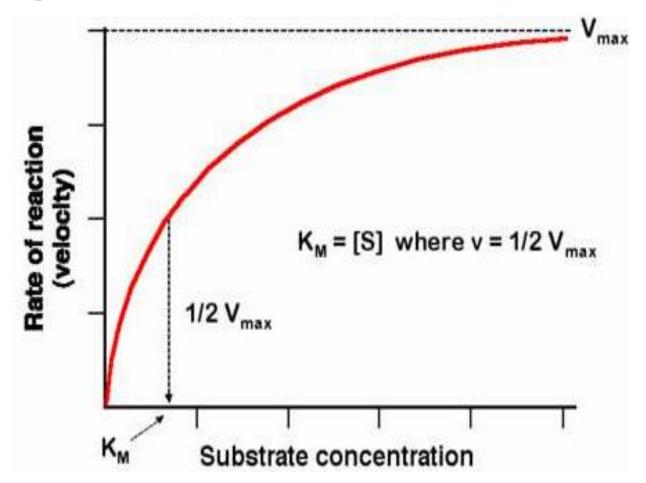
$$\triangleright$$
 In to $[ES] = [E_o] \frac{[S]}{K_M + [S]}$

- **Michaelis-Menten equation**
 - The rate of product formation is then:

$$rate_p = k_3 [E_o] \frac{[S]}{K_M + [S]}$$

Typically, it is the substrate that is to be measured so k₃[E_o] will control the rate.

$$V_{max} = k_3[E_o]$$
 Maximum velocity


rate of product formation is then:

$$rate_p = V_{max} \frac{[S]}{K_M + [S]}$$

$$V = V_{max} \frac{[S]}{K_M + [S]}$$

Michaelis-Menten equation

➤ The plot of **substrate concentration[S]** vs **rate of reaction[Vo]** gives rectangular hyperbolic plot

❖ Michaelis-Menten constant (Km)

- > A mathematical interpretation of enzyme action
- Measures
 - ✓ Substrate concentration required to reach one half its Vmax
 - i.e 1/2 of the enzyme is bound to S
 - ✓ "relative affinity/specificity" of an enzyme for its substrate
- > Is a characteristic physical property for each enzyme (for a given substrate)

 - ✓ Small Km implies strong E-S interaction → High affinity

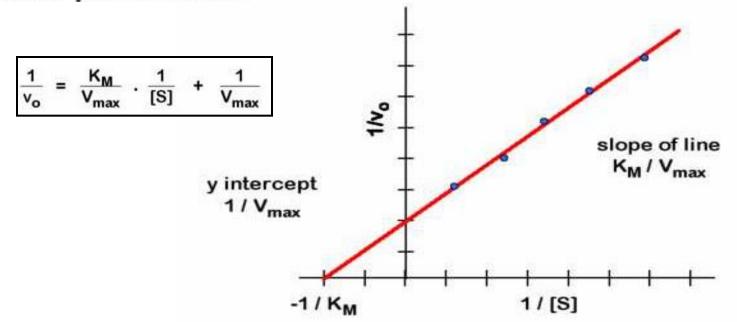
Turn over number (Kcat)

This is a measure of how rapidly an enzyme can process a substrate.

turnover number =
$$k_3 = \frac{V_{max}}{[E_T]}$$

Example. A 10-9 M solution of catalase causes the breakdown of 0.4 M H₂O₂ per second.

$$k_3 = \frac{0.4 \text{ moles/liter H}_2O_2 \text{ per second}}{10^{-9} \text{ moles/liter catalase}}$$

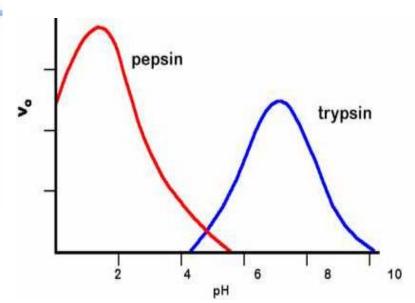

Values of k_{cat} (Turnover Number) for Some Enzymes

Enzyme	$k_{\rm cat}~({\rm sec}^{-1})$
Catalase	40,000,000
Carbonic anhydrase	1,000,000
Acetylcholinesterase	14,000
Penicillinase	2,000
Lactate dehydrogenase	1,000
Chymotrypsin	100
DNA polymerase I	15
Lysozyme	0.5

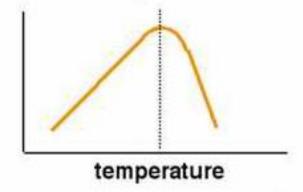
 $k_3 = 40,000,000 H_2O_2$ per mole of catalase per second

Lineweaver-Burk equation

- Using the Michaelis-Menten equation can be difficult to determine V_{max} from experimental data.
- An alternate approach was proposed by Lineweaver and Burk that results in a linear plot of data.



- **❖** Factors that alter performance of enzyme activity are
 - > Enzyme concentration
 - > Substrate concentration
 - > Reaction environment:- Temprature & pH
 - ➤ Modulators:-Activators (Cofactors) and inhibitors


Effect of pH on enzyme activity

> Enzymes have optimum working pH

Enzyme	Source	Optimum pH
pepsin	gastric mucosa	1.5
sucrase	intestine	6.2
catalase	liver	7.3
arginase	beef liver	9.0
alkaline phosphatase	bone	9.5

- **Effect of temprature on enzyme activity**
 - **✓** Enzymes have optimum working temperature
 - Exceeding normal temperature ranges always reduces enzyme reaction rates.

✓ Optimum temperature is usually 25 - 40°C but not always.

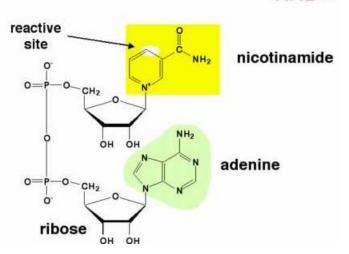
 Some enzymes require a second species to be present in order to do their job.

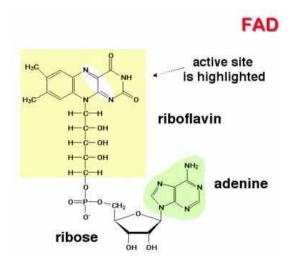
For Cofactor type enzymes:

Apoenzyme - protein portion of enzyme

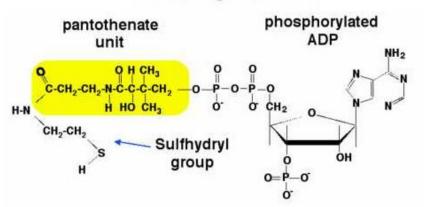
almost ready to work.

Cofactor


- prosthetic group needed to 'activate' the apoenzyme. (Coenzymes)
- usually a metal ion that holds protein in the proper shape.


Coenzymes /Prostetic groups

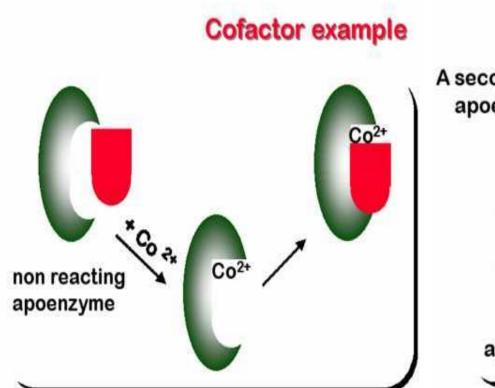
- Organic or organometallic molecule that assists an enzyme.
- are covalently linked or noncovalently bound very tightly to an enzyme partner.
- Part of each coenzyme structure is made from a vitamin.
- > Serve as transient carriers of specific atoms or functional groups


Coenzyms/prosthetic groups	Chemical groups transfered	Dietary precursor in mammals
Biocytin	CO ₂	Biotin
Coenzyme A	Acyl groups	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)
Lipoate	Electrons and acyl groups	Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)
Tetrahydrofolate	One-carbon groups	Folate
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B₁)

NAD+

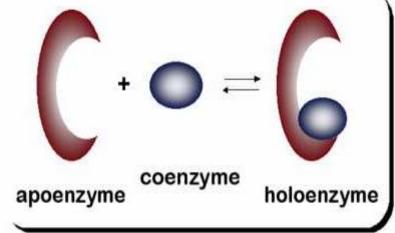
Coenzyme A

Metal ions

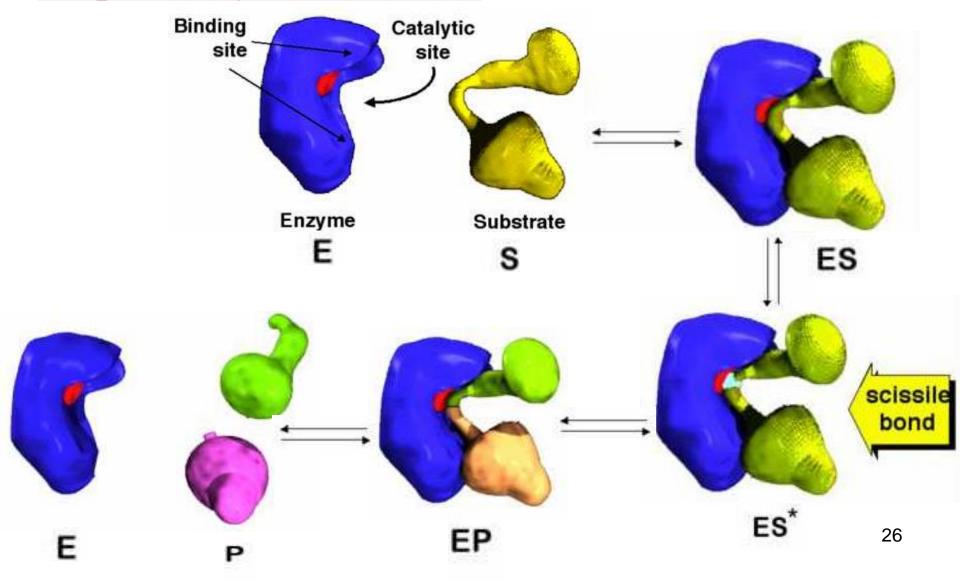

Metal ions associated with an enzyme or substrate often participate in catalysis.

Common metal ions:

```
Na+, K+, Mg2+, Mn2+, Cu2+, Zn2+, Fe2+, Fe3+, Ni2+
```


- They assist by one of the following actions.
 - * Properly holding substrate in place using coordinate covalent bonds
 - Enhance a reaction by polarizing the scissile bond or stabilizing a negatively charged intermediate.
 - * Participate in an oxidation-reduction reaction.

```
Cytochrome oxidase
Fe2+ or Fe3+
                Cytochrome oxidase, catalase, peroxidase
                Pyruvate kinase
Mg^{2+}
                Hexokinase, glucose 6-phosphatase,
                    pyruvate kinase
Mn<sup>2+</sup>
                Arginase, ribonucleotide reductase
Mo
                 Dinitrogenase
Ni^{2+}
                Urease
Se
                Glutathione peroxidase
7n^{2+}
                Carbonic anhydrase, alcohol
                    dehydrogenase, carboxypeptidases
                    A and B
```



Coenzymes

A second species that temporarily binds to the apoenzyme in order for it to work.

- **❖ Steps in enzymatic reaction**
 - Enzyme and substrate combine to form a complex.
 - Complex goes through a transition state
 not quite substrate or product
 - A complex of the enzyme and the product is produced
 - Finally the enzyme and product separate
 All of these steps are equilibria.

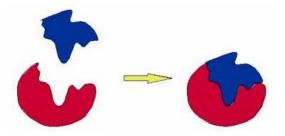
* Steps in enzymatic reaction

Catalytic and binding site of enzymes

Catalytic site

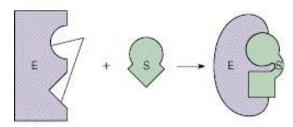
Where the reaction actually occurs.

Binding site


- Area that holds substrate in proper place.
- Enzymes use weak, non-covalent interactions to hold the substrate in place based on R groups of amino acids.
- Shape is complementary to the substrate and determines the specificity of the enzyme.
- Sites are pockets or clefts on the enzyme surface.

* Models in enzyme catalysis

- > Are explanations for enzyme's mechanism of action
- > Two of these are


Lock and key model (Emil Fisher, 1890)

√ Assume that only substrate of proper shape could fit with the enzyme

Induced fit model (Daniel Koshland,1958)

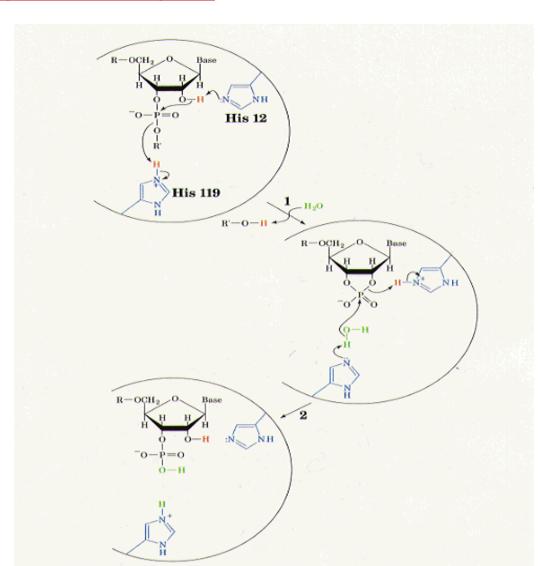
✓ Assume that enzymes have flexible structure

- **■** Mechanism of enzyme catalysis
 - Enzymes catalyze reactions in various ways
 - > Acid-base catalysis
 - > Covalent Catalysis
 - Metal ion catalysis (reading assignment)
 - Transition state stabilization (reading assignment)

Mechanism of enzyme catalysis

Acid-base catalysis

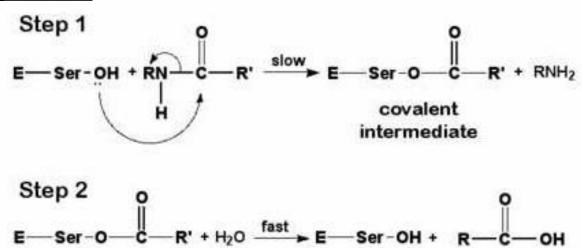
- ➤ Here an enzyme avoids unstable charged intermediates in reaction (which would have high free energies) by having groups(from its aa residues) appropriately located to:
 - √ donate a proton (act as a general acid), or
 - √ accept a proton (abstract a proton, act as a general base)
- ➤ Often used in the hydrolysis of ester/ peptide bonds, phosphate group reactions, addition to carbonyl groups, etc.


Catalytic functions of reactive groups of ionizable amino acids				
Amino acid	Reactive group	Net charge at pH 7	Principal functions	
Aspartate	-coo⊖	-1	Cation binding; proton transfer	
Glutamate	—coo⊖	-1	Cation binding; proton transfer	
Histidine	Imidazole	Near 0	Proton transfer	
Cysteine	−CH ₂ SH	Near 0	Covalent binding of acyl groups	
Tyrosine	Phenol	0	Hydrogen bonding to ligands	
Lysine	NH_3^{\oplus}	+1	Anion binding; proton transfer	
Arginine	Guanidinium	+1	Anion binding	
Serine	−CH ₂ OH	0	Covalent binding of acyl groups	

What side-chains of aa's can act donate or accept protons?

* Mechanism of enzyme catalysis

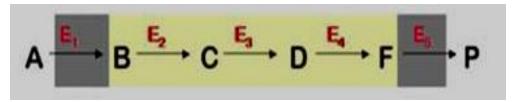
Acid-base catalysis


RNase (Bovine pancrease)

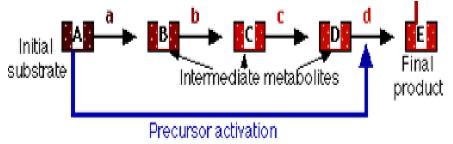
* Mechanism of enzyme catalysis

- > Covalent catalysis
 - **✓** Occurs when a nucleophilic functional group on enzyme reacts to a substrate
 - Mostly involve two steps
 - **✓** Leads to highly reactive intermediate form
 - eg. Protein kinases, Serine proteases

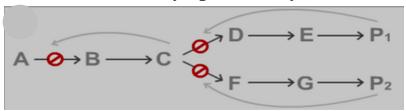
Serine proteases


* Mechanism of enzyme catalysis

> Covalent catalysis

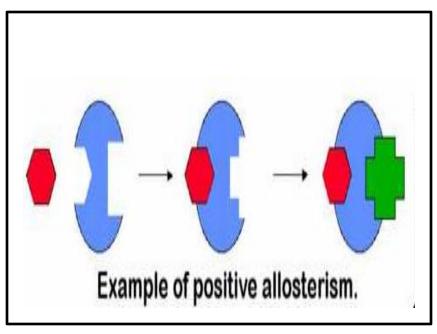

Chymotrypsin

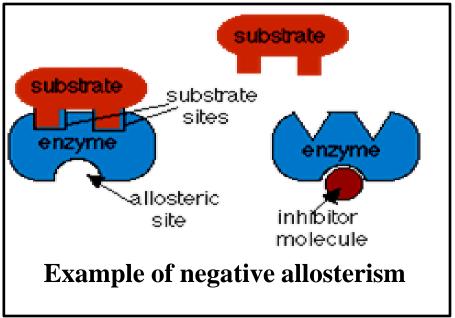
Regulation of key enzyme in multistep reactions


❖Many of reactions in metabolic processes are arranged in sequences (multi-step)

- *Regulation of such processes are commonly achieved through:-
 - > Precursor activation:- accumulation of a substance may specifically activate specific
 - enzyme (s) in a sequence.
 - ✓ This reduces concentration of the initial substrate

- Feedback inhibition:- accumulation of a product in a series may specifically inhibit
 - the action of previous enzymes
 - ✓ This inhibit further production of the product




Anchoring/sequestering enzymes on membranes

- > Activity many enzymes are regulated by sequestering them into
 - o Plasma membrane
 - o Membranes of mitochondria and chloroplasts
 - o Membranes of the endoplasmic reticulum
 - o Nuclear envelope
- Hence access to their substrates is limited
 - e.g Proteolysis of cell proteins and glycolipids by responsible enzymes is controlled by sequestering these enzymes within the lysosome.

Allosteric regulators

- The regulator molecule binds to the enzyme at a different site (allosteric site)
 - ✓ Thereby alter shape of the enzyme active site (similar to coenzymes)
 - -Substrates may be **promoted** or **inhibited** for binding

Covalent modification

- ➤ Involve reversible covalent changes to specific aa chain
- Common alterations include *phsphorylation*, *acetylation*, *adenylation*, *reduction* etc...
 - * Phosphorylation of hydroxyl groups in serine, threonine or tyrosine.
 - * Attachment of an adenosyl monophosphate _____ Adenylation (AMP) to a similar hydroxyl group.
 - ★ Reduction of cysteine disulfide bonds.
 Reduction

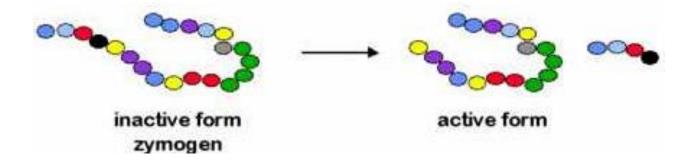
This may result in activation or deactivation of enzymes

Covalent modification

Examples

i) Control of glycogen phsphorylase

ii) Attachment of AMP to glutamine synthetase


iii) Reduction of cysteine disulfide bonds by AH₂

Proenzyme activation

Some enzymes are synthesized as their inactive form (**Proenzyme/zymogen**) and are stored in secretory granules

e.g Pepsinogen, trypsinogen and chymotrypsinogen

- Upon release from their storage sites; they are covalently activated
 - ✓ That remove portion of the protein (irreversibly)
 - Mostly in **pH dependent** fashion

Enzyme inhibition

Many substances can inhibit enzyme activity.

substrate analogs, toxins, drugs, metal complexes

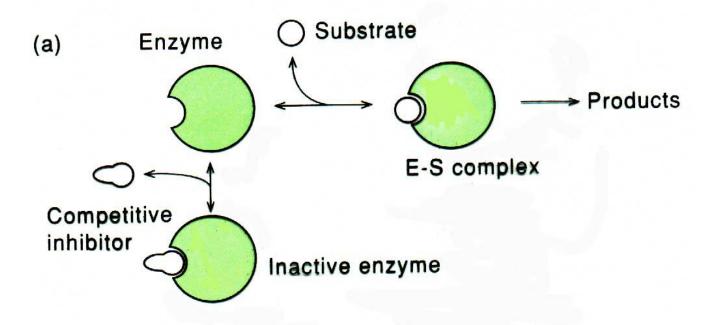
- Inhibition studies can provide:
 - Information on metabolic pathways.
 - Insight on how drugs and toxins exert their effects.
 - Better understanding of enzyme reaction mechanisms.
- Two broad classes of inhibitors have been identified based on the extent of interaction.

Irreversible

Forms covalent or very strong noncovalent bonds. The site of attack is an amino acid group that participates in the normal enzymatic reaction.

Reversible

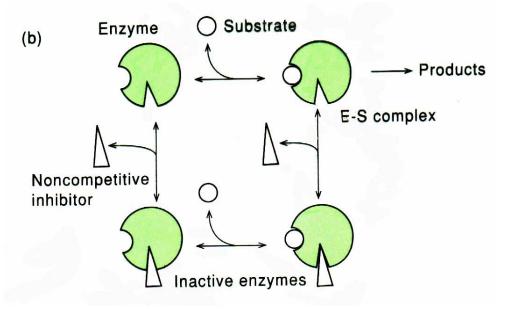
Forms weak, noncovalent bonds that readily dissociate from an enzyme. The enzyme is only inactive when the inhibitor is present.


Reversible enzyme inhibition

Competitive reversible inhibitors

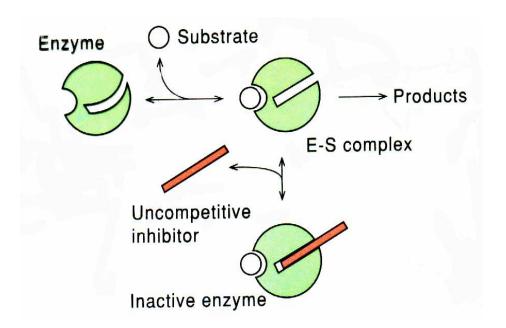
- > Resemble substrate in structure & competes with it for binding site
- > Effect could be reversed by increasing substrate concentration

Note: - Competitive inhibition can also occur in allosteric enzymes


- Called nonclassical competitive inhibition)

Reversible enzyme inhibition

Noncompetitive reversible inhibitors


- ➤ Is typically observed in allosteric enzymes
- Inhibitor binds to site other than active site
 - ✓ And changes catalytic property of the enzyme
 - Enzyme denies from binding substrate
- > Addition of excess substrate will not overcome the inhibition

Reversible enzyme inhibition

Uncompetitive reversible inhibitors

- > Typically seen in multi-substrate reactions
- ➤ Similar to noncompetitive inhibitor but only binds to ES complex (not free E)
 - √ affecting conversion of ES to E + P

Irreversible enzyme inhibition

Irreversible inhibitors

- Irreversibly bind to (or destroys) enzyme catalytic site (by covalent interaction)
- > Bear no structural similarity with substrates
- Addition of excess substrate will not overcome the inhibition.

Examples

- √ Heavy metal ions (e.g Ag, Hg & Pb)
- ✓ Malathion specific for insect acetylcholinesterase (organophosphorus inhibitor)
- ✓ Diisopropylfluorophosphate(nerve gas) irreversibly binds to catalytic sites that contain Serine (OH)
- ✓ Cyanide binds to transition metals that are used as cofactors (Fe, Cu, Zn, etc.)
- ✓ lodoacetate- reacts with cyteine SH, imidizol, carboxy & R-S-R groups

Application of enzymes

- Metabolism
- Industrial processing
- Clinical diagnosis of diseases
- ➤ Therapeutics (drug targets, enzyme therapy)
- > Food science and nutrition
- Organic synthesis
- Peptide sequencing
- ➤ Biomedical sciences (molecular biology, biotechnology, genetic engineering ...)
- > Forensic sciences
- > As detergents
- Photography etc...