Jimma University

College of Natural Sciences

Department of Chemistry

Continuing and Distance Education Programme

Module for

Environmental Chemistry & Toxicology (Chem 455)

Prepared by: Menberu Yitbarek (MSc)

Higemengist Astatkie (MSc)

Edited by: Vinebeb Tariku (MSc)

July, 2012

Jimma, Ethiopia

All rights reserved, except for the teaching of the course and quotation of short passages for the purpose of criticism and review

Prepared by: Menberu Yitbarek (MSc) and Higemengist Astatkie (MSc)

Environmental Chemistry and Toxicology (Chem 455) - Module for Continuing and Distance Education Programme- Compiled July, 2012

1 Title page

8 pages: including Copy right, Module overview, Table of contents and self study time

264 Module main body pages: including Chapter summaries and Self test exercises

Editor: Yinebeb Tariku (MSc)

Jimma University

P.O.Box 378

Jimma, Ethiopia

Tel: office: +251471111252/+251471120286

Writers' E-Mail: 1. <u>menbekly@yahoo.com</u>

2. <u>hige_merawi@yahoo.com</u>

Editor's E-Mail: <u>yinebeb_tariku@yahoo.com</u>

General Overview of the module

This module starts with Introduction to Environmental Chemistry. In addition to providing updated material in the rapidly developing area of environmental chemistry, this module emphasizes several major concepts that are proving essential to the practice of environmental chemistry at the beginning of the new millennium. These include the concept of the anthrosphere as a distinct sphere of the environment and the practice of industrial ecology, sometimes known as "Green Chemistry" as it applies to chemical science.

The first chapter of the module starts with Introduction to Environmental Chemistry. This module is about Environmental Chemistry. It also discuss further about the properties of chemicals in the environment, environmental transformation and degradation and matter and cycles of matter. To understand that topic, it is important to have some appreciation of environmental science as a whole.

Environmental science in its broadest sense is the science of the complex interactions that occur among the terrestrial, atmospheric, aquatic, living, and anthropological environments. It includes all the disciplines, such as chemistry, biology, ecology, sociology, & government that affect or describe these interactions. For our purpose, environmental science is defined as the study of the earth, air, water, and the living environments, and the effects of technology there on.

The second chapter deals with fundamentals of aquatic chemistry. It deals with definition of some basic terms, sources and uses of water: The hydrologic cycle, the unique properties of water, characteristics of bodies of water, chemical phenomena in water bodies, gases in water (O_2 , CO_2 ,), water acidity and CO_2 in water, alkalinity in water, calcium in water, complexation reaction in water, redox reaction in water, water quality, water quality parameters (physical, chemical and biological), water quality requirements, nature and types of water pollutants, types of pollutants, classes of pollutants.

The third chapter discusses atmospheric chemistry. It deals with definition of some basic terms, introduction to atmospheric chemistry, importance and physical characteristics of the atmosphere, atmospheric chemical reactions such as: (photochemical reactions, reactions in Troposphere, reactions in Stratosphere, Ozone formation and depletion, reactions in Thermosphere), atmospheric pollution, nature and classification of air pollutants, particles in the atmosphere, Gaseous inorganic air pollutant, Gaseous organic air pollutants, the endangered global atmosphere(Photochemical smog, Green house and Global warming, the Nuclear winter and Acid rain).

The fourth chapter discusses with Soil Chemistry. It deals with soil and agriculture, nature and compositions of soil, nutrients in soil, reactions in soil and wastes and pollutants in soil which provide you the basic concept of soil Chemistry. Soil and agricultural practices are strongly tied with the environment.

The fifth chapter deals with Environmental Toxicity and Toxicology. It introduces and outlines the topic of toxicological chemistry and discusses the toxicological chemistry of various classes of chemical substances. It discuss further about organic and inorganic pollutants, agricultural and pharmaceutical contaminants, pesticides, PCB's (poly chlorinated biphenyl), Chlorofluro compounds, nitrogen and phosphorous compounds, toxic heavy metals like mercury, lead, arsenic and chromium and Organo-metallic compounds.

The sixth chapter deals with introduction to Green Chemistry. It tried to introduce the concepts of Green Chemistry and to give students a chance to think about the field of chemistry from a different perspective. *Green chemistry* is a pro-active approach to pollution prevention. It targets pollution at the design stage, before it even begins. Green Chemistry is designing chemical products and processes that reduce or eliminate the use and/or the generation of hazardous substances.

Contents	Page
General overview of the module	ii
Table of Contents	iv
Self study Time	vii
CHAPTER 1: INTRODUCTION TO ENVIRONMENT	AL CHEMISTRY1
1.1. Basic concepts in Environmental Chemistry	8
1.2. Properties of chemicals in the environment	
1.3. Environnemental transformation & degradation	17
1.3.1. Abiotic transformation & degradation	
1.3.2. Biotransformation & degradation	23
1.4 Matter and Cycles of Matter	
CHAPTER 2: AQUATIC CHEMISTRY AND WATER	POLLUTION
2.1. Fundamentals of aquatic chemistry	
2.2. The Properties of water, a unique substance	
2.3 Characteristics of bodies of water	41
2.4 Chemical phenomena in water bodies	45
2.4.1 Gases in water (O ₂ , CO ₂ ,)	47
2.4.2 CO ₂ and water acidity in water	
2.4.3 Alkalinity in water	53
2.4.4 Calcium and other metals in water	56
2.4.5 Complexation reaction in water	
2.4.6 Redox reaction in water	60
2.5. Water Quality	65
2.5.1 Water quality requirements	66
2.5.2. Water quality parameters	66
2.6. Nature and types of Water pollutants	73
2.6.1 Types of water pollutants	74
2.6.2 Classes of water pollutants	

Table of Contents

CHAPTER 3: THE ATMOSPHERE AND ATMOSPHERIC CHEMISTRY	86
3.1. Introduction to Atmospheric Chemistry	87
3.2 .Composition of the Atmosphere	89
3.3. Importance and physical characteristics of the Atmosphere	90
3.3.1 Importance of the Atmosphere	91
3.3.2. Physical characteristics of the Atmosphere	91
3.4. Atmospheric chemical reactions	95
3.4.1 Photochemical reactions	97
3.4.2 Reactions in Troposphere	99
3.4.3 Reactions in Stratosphere	101
3.4.3.1 Ozone layer formation and depletion	101
3.4.4 Reactions in Thermosphere	114
3.5 Atmospheric Pollution	115
3.6. Nature and classification of air pollutants	116
3.6.1 Particles in the atmosphere as means of air pollution	116
3.6.2 Gaseous inorganic air pollutants	128
3.6.3 Gaseous organic air pollutants	141
3.6.4 The endangered global atmosphere	146
3.6.4.1 Photochemical smog	149
3.6.4.2 Green house gases and Global warming	152
3.6.4.3 The Nuclear winter	155
3.6.4.4 Acid rain	156
3.6.4.5 What is to be done?	159
CHAPTER 4: SOIL CHEMISTRY	169
4.1. Soil and agriculture	169
4.2. Nature and composition of soil	171
4.3. Nutrients in soil	180
4.4. Reactions in soil	187
4.5. Wastes and pollutants in soil	191

CHAPTER 5: ENVIRONMENTAL TOXICITY AND TOXICOLOGY	201		
5.1. Introduction to Toxicity and Toxicology	.202		
5.2. Organic and inorganic pollutants	.208		
5.3. Agricultural and pharmaceutical contaminants	219		
5.4. Pesticides	226		
5.5. PCB's(polychlorinated biphenyls)	.233		
5.6. Chlorofluro compounds and Stratospheric Ozone Depletion	235		
5.7. Nitrogen and phosphorous compounds2	237		
5.8. Toxic heavy metals and organo-metallic compounds2	239		
5.8.1 Mercury	242		
5.8.2 Lead2	45		
5.8.3 Arsenic	246		
5.8.4 Chromium	249		
CHAPTER 6: INTRODUCTION TO GREEN CHEMISTRY25	3		
6.1 Introduction to Green Chemistry25	54		
6.2 The 12 principles of Green Chemistry2	56		
References264	ŀ		
Mode of delivery: Tutorial, group discussion, group and individual assignment.			

Mode of assessment: Quizzes, assignments, tests, and final examination.

Mode of evaluation:

Total	100%
Final exam	<u>70%</u>
Assignment	30%

Self study time of the module

This module will require 242 hours

The following table is your study time table

Module Chapter	Study time	Duration
	(Hours)	
Chapter 1: Introduction to Environmental	25	Tikimit 1-25
Chemistry		
Chapter 2: Aquatic Chemistry and Water	60	Hidar 1- Tahsas 15
Pollution		
Chapter 3: Atmospheric Chemistry and Air	70	Tahsas 20- Yekatit 15
Pollution		
Chapter 4: Soil Chemistry	25	Yekatit 20- Megabit 15
Chapter 5: Environmental Toxicity and	50	Megabit 20- Miazia 30
Toxicology		
Chapter 6: Introduction to Green Chemistry	12	Ginbot 5- Ginbot 17
Total	242	