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General data and fundamental constants

Quantity Symbol Value Power of ten Units
Speed of light c 2.997 925 58* 108 ms!
Elementary charge e 1.602 176 107" C
Faraday’s constant F=N,e 9.648 53 10* Cmol™!
Boltzmann’s constant k 1.380 65 1073 JK!
Gas constant R=N,k 8.314 47 JK ' mol™!
8.314 47 107 dm’ bar K™ mol™
8.205 74 107 dm’ atm K™ mol™
6.236 37 10 dm’ Torr K™' mol™
Planck’s constant h 6.626 08 1073 Js
h=h/2m 1.054 57 107 Js
Avogadro’s constant N, 6.022 14 10% mol™
Atomic mass constant m, 1.660 54 107%7 kg
Mass
electron m, 9.109 38 107! kg
proton m, 1.672 62 1077 kg
neutron m, 1.674 93 10747 kg
Vacuum permittivity g,=1/c’u, 8.854 19 10712 J'C?m™
4me, 1.112 65 10710 J'CPm™!
Vacuum permeability U 4 1077 J2C?2m ! (=T 'm?)
Magneton
Bohr Uy =eh/2m, 9.274 01 107 JT!
nuclear = ehl2m, 5.050 78 10777 JT™!
gvalue 2 2.002 32
Bohr radius a, = Aneh’/m e 5.29177 1071 m
Fine-structure constant o= ye*c/2h 7.297 35 107
o’ 1.370 36 10°
Second radiation constant c, = hclk 1.438 78 1072 mK
Stefan—Boltzmann constant o=2mk*/15h%* 5.670 51 1078 Wm?2K™*
Rydberg constant R=me*/8hce; 1.097 37 10° cm™!
Standard acceleration of free fall g 9.806 65* ms™
Gravitational constant G 6.673 1071 N m? kg™
*Exact value
The Greek alphabet
A, a alpha H,n eta N,v nu Y,v upsilon
B, beta ©, 6 theta B, & xi @, ¢ phi
I,y gamma L1 iota ILLw pi X,x chi
A, 6  delta K, x kappa P,p rho Y, v psi
E,& epsilon A, A lambda 2,0 sigma Q,® omega
Z,{ zeta M,y mu T,T tau
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Preface

We have followed our usual tradition in that this new edition of the text is yet another
thorough update of the content and its presentation. Our goal is to keep the book
flexible to use, accessible to students, broad in scope, and authoritative, without
adding bulk. However, it should always be borne in mind that much of the bulk arises
from the numerous pedagogical features that we include (such as Worked examples,
Checklists of key equations, and the Resource section), not necessarily from density of
information.

The text is still divided into three parts, but material has been moved between chap-
ters and the chapters themselves have been reorganized. We continue to respond
to the cautious shift in emphasis away from classical thermodynamics by combining
several chapters in Part 1 (Equilibrium), bearing in mind that some of the material
will already have been covered in earlier courses. For example, material on phase
diagrams no longer has its own chapter but is now distributed between Chapters 4
(Physical transformation of pure substances) and 5 (Simple mixtures). New Impact sec-
tions highlight the application of principles of thermodynamics to materials science,
an area of growing interest to chemists.

In Part 2 (Structure) the chapters have been updated with a discussion of contem-
porary techniques of materials science—including nanoscience—and spectroscopy.
We have also paid more attention to computational chemistry, and have revised the
coverage of this topic in Chapter 10.

Part 3 has lost chapters dedicated to kinetics of complex reactions and surface pro-
cesses, but not the material, which we regard as highly important in a contemporary
context. To make the material more readily accessible within the context of courses,
descriptions of polymerization, photochemistry, and enzyme- and surface-catalysed
reactions are now part of Chapters 21 (The rates of chemical reactions) and 22
(Reaction dynamics)—already familiar to readers of the text—and a new chapter,
Chapter 23, on Catalysis.

We have discarded the Appendices of earlier editions. Material on mathematics
covered in the appendices is now dispersed through the text in the form of
Mathematical background sections, which review and expand knowledge of mathem-
atical techniques where they are needed in the text. The review of introductory
chemistry and physics, done in earlier editions in appendices, will now be found in
a new Fundamentals chapter that opens the text, and particular points are developed
as Brief comments or as part of Further information sections throughout the text. By
liberating these topics from their appendices and relaxing the style of presentation we
believe they are more likely to be used and read.

The vigorous discussion in the physical chemistry community about the choice of
a‘quantum first’ or a ‘thermodynamics first’ approach continues. In response we have
paid particular attention to making the organization flexible. The strategic aim of this
revision is to make it possible to work through the text in a variety of orders and at the
end of this Preface we once again include two suggested paths through the text. For
those who require a more thorough-going ‘quantum first’ approach we draw atten-
tion to our Quanta, matter, and change (with Ron Friedman) which covers similar
material to this text in a similar style but, because of the different approach, adopts a
different philosophy.

The concern expressed in previous editions about the level of mathematical
ability has not evaporated, of course, and we have developed further our strategies for
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showing the absolute centrality of mathematics to physical chemistry and to make it
accessible. In addition to associating Mathematical background sections with appro-
priate chapters, we continue to give more help with the development of equations,
motivate them, justify them, and comment on the steps. We have kept in mind the
struggling student, and have tried to provide help at every turn.

We are, of course, alert to the developments in electronic resources and have made
a special effort in this edition to encourage the use of the resources on our website
(at www.whfreeman.com/pchem). In particular, we think it important to encourage
students to use the Living graphs on the website (and their considerable extension in
the electronic book and Explorations CD). To do so, wherever we call out a Living
graph (by an icon attached to a graph in the text), we include an interActivity in the
figure legend, suggesting how to explore the consequences of changing parameters.

Many other revisions have been designed to make the text more efficient and
helpful and the subject more enjoyable. For instance, we have redrawn nearly every
one of the 1000 pieces of art in a consistent style. The Checklists of key equations at the
end of each chapter are a useful distillation of the most important equations from
the large number that necessarily appear in the exposition. Another innovation is the
collection of Road maps in the Resource section, which suggest how to select an appro-
priate expression and trace it back to its roots.

Opverall, we have taken this opportunity to refresh the text thoroughly, to integrate
applications, to encourage the use of electronic resources, and to make the text even
more flexible and up-to-date.

Oxford P.W.A.
Portland J.de P.
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About the book

There are numerous features in this edition that are designed to make learning
physical chemistry more effective and more enjoyable. One of the problems that make
the subject daunting is the sheer amount of information: we have introduced several
devices for organizing the material: see Organizing the information. We appreciate
that mathematics is often troublesome, and therefore have taken care to give help with
this enormously important aspect of physical chemistry: see Mathematics support.
Problem solving—especially, ‘where do I start?’—is often a challenge, and we have
done our best to help overcome this first hurdle: see Problem solving. Finally, the web
is an extraordinary resource, but it is necessary to know where to start, or where to go
for a particular piece of information; we have tried to indicate the right direction: see
About the Book Companion Site. The following paragraphs explain the features in

more detail.

Organizing the information

Key points

The Key points act as a summary of the main take-home
message(s) of the section that follows. They alert you to the
principal ideas being introduced.

1.1 The states of gases

Key points Each substance is described by an equation of state. (a) Pressure, force divided by
area, provides a criterion of mechanical equilibrium for systems free to change their volume.
(b) Pressure is measured with a barometer. (c) Through the Zeroth Law of thermodynamics,

temperature provides a criterion of thermal equilibrium.

The physical state of a sample of a substance, its physical condition, is defined by its
physical properties. Two samples of a substance that have the same physical proper-

Equation and concept tags

The most significant equations and concepts—which we urge
you to make a particular effort to remember—are flagged with
an annotation, as shown here.

mental fact that each substance is described by an equation of state, an equation that

interrelates these four variables.
General form of (1.1)
an equation of state :

The general form of an equation of state is

p=f(T,V,n)

Justifications

On first reading it might be sufficient simply to appreciate
the ‘bottom line’ rather than work through detailed develop-
ment of a mathematical expression. However, mathematical
development is an intrinsic part of physical chemistry, and
to achieve full understanding it is important to see how a par-
ticular expression is obtained. The Justifications let you adjust
the level of detail that you require to your current needs, and
make it easier to review material.

These relations are called the Margules equations.

Justification 5.5 The Margules equations

The Gibbs energy of mixing to form a nonideal solution is

A i G =nRT{x, In a, +xIn ag}

mix
This relation follows from the derivation of eqn 5.16 with activities in place of mole
fractions. If each activity is replaced by yx, this expression becomes

AixG=nRT{x, In x, + x5 In xg + x,In ¥, + x5 In 5}

mix
Now we introduce the two expressions in eqn 5.64, and use x,, +x = 1, which gives

ApixG = nRT{x, In x, +xp In x + Ex,xf + Expxd}
=nRT{x, Inx, + xp Inxp + Ex o (x, +x)}
=nRT{x, Inx, + x5 Inxy + Ex,xp}

as required by eqn 5.29. Note, moreover, that the activity coefficients behave cor-
rectly for dilute solutions: 3, — 1 asx; — 0 and 3 — 1 asx, — 0.

At this point we can use the Margules equations to write the activity of A as




Checklists of key equations

We have summarized the most important equations intro-
duced in each chapter as a checklist. Where appropriate, we
describe the conditions under which an equation applies.

Checklist of key equations

Property Equation Comment
Chemical potential = @GIm)), 7, G= gty + gty
equation of chemica dG = Vdp— SAT+ ptydn, + figdny +
Gibbs-Duhem equation Y mduy=0
I
Chemical potential of a gas =+ RTIn(plp®) Perfect gas

RT(x, In x, + x5 1n xp)
—nR(xy In x, + x5 In xg)

Thermodynamic properties of mixing Perfect gases and ideal solutions

Raoults law ‘True for ideal solutions; limiting law as x, — 1
True for ideal-dilute solutions; limiting law as x; — 0
Validas [B] -0

ay > xyasx, = 1

Henry's law
van't Hoff equation

Activity ofa solvent

Chemical potential

Conversion to biological standard state
Mean activity coefficient

General form for a species ]
Tonic strength Definition

Validas [0
Model regular solution

Debye-Hiickellimiting law
Margules equation
Lever rule ol =y

Road maps

In many cases it is helpful to see the relations between equa-
tions. The suite of ‘Road maps’ summarizing these relations
are found in the Resource section at the end of the text.

Part1 Road maps

Gas laws (Chapter 1)
Gas laws (Chapter 1)

Compression factor

V,=3b

PV, =RT(1 + BIV,_ + CIV? +..} L p=RT(V, - b)-alVZ P, = a/27b*

7. = 8al27Rb

- : van der Waals’ equation
Virial equation a

Critical constants

Tha Firet | aw (C} 2)

Impact sections

Where appropriate, we have separated the principles from their
applications: the principles are constant and straightforward;
the applications come and go as the subject progresses. The Impact
sections show how the principles developed in the chapter are
currently being applied in a variety of modern contexts.

IMPACT ON NANOSCIENCE
18.1 Quantum dots

Nanoscience is the study of atomic and molecular assemblies with dimensions ranging
from 1 nm to about 100 nm and nanotechnology is concerned with the incorporation
of such assemblies into devices. The future economic impact of nanotechnology
could be very significant. For example, increased demand for very small digital elec-
tronic devices has driven the design of ever smaller and more powerful micropro-
cessors. However, there is an upper limit on the density of electronic circuits that can
be incorporated into silicon-based chips with current fabrication technologies. As the
ability to process data increases with the number of components in a chip, it follows
that soon chips and the devices that use them will have to become bigger if processing

ABOUT THE BOOK xi

Notes on good practice

Science is a precise activity and its language should be used
accurately. We have used this feature to help encourage the use
of the language and procedures of science in conformity to
international practice (as specified by IUPAC, the Inter-
national Union of Pure and Applied Chemistry) and to help
avoid common mistakes.

Answer The number of photons is
E _ PAt_APAt

T Them) he

Substitution of the data gives
A note on good practice To avoid
rounding and other numerical errors, N=
it is best to carry out algebraic
calculations first, and to substitute

(5.60 % 107 m) x (100 ] ™) % (1.0's)

=2.8%10%
(6.626 X 107 ]5) X (2.998 x 10* m s™)

- Note that it would take the lamp nearly 40 min to produce 1 mol of these photons.
numerical values into a single, final

formula. Moreover, an analytical
result may be used for other data Self-test 7.1 How many photons does a monochromatic (single frequency)
without having to repeat the entire infrared rangefinder of power 1 mW and wavelength 1000 nm emit in 0.1 s7

calculation. [5%10"]

interActivities

You will find that many of the graphs in the text have an
interActivity attached: this is a suggestion about how you can
explore the consequences of changing various parameters or
of carrying out a more elaborate investigation related to the
material in the illustration. In many cases, the activities can be
completed by using the online resources of the book’s website.

fore it is switched on, the

20°C (293 K). When it is
00 K. The energy density
es nearly white light. ®

ile Rayleigh’s was not. The
xcites the oscillators of the
the oscillators of the field
he highest frequencies are
b results in the ultraviolet
scillators are excited only
o large for the walls to sup- —
e latter remain unexcited. 0 0.5 1 15 2
from the high frequency AkTihe
energy available.

p/A8m(kT)*/(hc)*}

Fig. 7.7 The Planck distribution (eqn 7.8)
accounts very well for the experimentally
determined distribution of black-body
radiation. Planck’s quantization hypothesis
essentially quenches the contributions of
high frequency, short wavelength
oscillators. The distribution coincides with
the Rayleigh—Jeans distribution at long
wavelengths.

interActivity Plot the Planck
distribution at several temperatures
and confirm that eqn 7.8 predicts the
behaviour summarized by Fig. 7.3.

-Louis Dulong and Alexis-
v (Section 2.4), of a num-
rhat slender experimental
I monatomic solids are the

ssical physics in much the
diation. If classical physics
ler that the mean energy of
T for each direction of dis-
the average energy of each
tribution of this motion to




xii ABOUT THE BOOK

Further information

In some cases, we have judged that a derivation is too long,
too detailed, or too different in level for it to be included
in the text. In these cases, the derivations will be found less
obtrusively at the end of the chapter.

Further information

Further information 7.1 Classical mechanics

Classical mechanics describes the behaviour of objects in terms of two
equations. One expresses the fact that the total energy is constant in
the absence of external forces; the other expresses the response of
particles to the forces acting on them.

(a) The trajectory in terms of the energy

The velocity, v, of a particle is the rate of change of ts position:

dr Definition
a 74
The velocity is a vector, with both direction and magnitude. (Vectors  Fig.731 The linear momentum of a particle is a vector property and
are discussed in ical background 5.) The deofthe  points in the direction of motion.

velocity is the speed, v. The linear momentum, p, of a particle of mass
mis related to its velocity, v, by

o Defiln ol near| ;o) momentum, the total energy—the sum of the kinetic and potential
r= momentum 4) energy—ofa particle is

2
Like the velocity vector, the linear momentum vector points in the E=E+V(x)= P v (7.46)
2i

direction of travel of the particle (Fig. 7.31). In terms of the lincar m

Resource section

Long tables of data are helpful for assembling and solving
exercises and problems, but can break up the flow of the text.
The Resource section at the end of the text consists of the Road
maps, a Data section with a lot of useful numerical informa-
tion, and Character tables. Short extracts of the tables in the
text itself give an idea of the typical values of the physical
quantities being discussed.

Table 1.6* van der Waals coefficients

van der Waals

equation of state (1.21a) a/(atm dm® mol™2)  b/(1072 dm> mol™)
. . . . Ar 1.337 3.20
Juation is often written in
CO, 3.610 429
He  0.0341 2.38
Xe 4.137 5.16

(1.21b)

* More values are given in the Data section.

Mathematics support

A brief comment

A topic often needs to draw on a mathematical procedure or a
concept of physics; a brief comment is a quick reminder of the
procedure or concept.

5 in magnetic fields

fields, which remove the degeneracy of the quantized
resented on the vector model as vectors precessing at

noment 4 in a magnetic field B is equal to the i
A brief comment

Scalar products (or ‘dot products’) are
(14.1) explained in Mathematical background 5

duction and is measured in tesla, T; 1 T =  following Chapter9.

is also occasionallv used: 1 T=10*G

Mathematical background

It is often the case that you need a more full-bodied account
of a mathematical concept, either because it is important to
understand the procedure more fully or because you need to
use a series of tools to develop an equation. The Mathematical
background sections are located between some chapters,
primarily where they are first needed, and include many illus-
trations of how each concept is used.

MATHEMATICAL BACKGROUND 5 v v

Vectors w M N

Avector quantity has both magnitude and direction. The vector

shown in Fig. MB5.1 has components on the , 3, and z axes

with magnitudes v,, v,, and v,, respectively. The vector may be " b
o

v
represented as (b) (c)

v=uituj+uk (MB5.1)
where1, j, and k are unit vectors, vectors of magnitude 1, point-
ing along the positive directions on the x-, y-, and z-axes. The
magnitude of the vector is denoted v or |v| and is given by

Fig.MB5.2 (a) The vectors u and v make an angle 6. (b) To add
v to u, we first join the tail of v to the head of u, making sure
that the angle 6 between the vectors remains unchanged. (c)
To finish the process, we draw the resultant vector by joining
the tail of u to the head of v.

v=(02+02+02)" (MB5.2)

Problem solving

A brief illustration

Abriefillustration is a short example of how to use an equation
that has just been introduced in the text. In particular, we show
how to use data and how to manipulate units correctly.

® A brief illustration

The unpaired electron in the ground state of an alkali metal atom has [ =0, so j = ‘7
Because the orbital angular momentum is zero in this state, the spin-orbit coupling
energy is zero (as is confirmed by setting j = s and / = 0 in eqn 9.42). When the electron
is excited to an orbital with / = 1, it has orbital angular momentum and can give rise to
a magnetic field that interacts with its spin. In this configuration the electron can have
j= % orj= %, and the energies of these levels are

1 i3 5 1 3 1 i
Eyp=5heA{3x3-1x2-3x5}=3hcA

1 il 3 1 3 i

Eyjp=shcA{3 X5 - 1x2— x5} = —hcA
The corresponding energies are shown in Fig. 9.30. Note that the baricentre (the ‘centre
of gravity’) of the levels is unchanged, because there are four states of energy%hcﬁ and

two of energy —hcA. ®




Examples

We present many worked examples throughout the text to
show how concepts are used, sometimes in combination with
material from elsewhere in the text. Each worked example
has a Method section suggesting an approach as well as a fully
worked out answer.

Example 9.2 Calculating the mean radius of an orbital
Use hydrogenic orbitals to calculate the mean radius of a 1s orbital.

Method The mean radius is the expectation value

(= Jw*rwdf: Jrl ylPdr

We therefore need to evaluate the integral using the wavefunctions given in Table 9.1
and d7 = r’dr sin d60d¢. The angular parts of the wavefunction (Table 8.2) are
normalized in the sense that

T (21
JJ 1Y, |?sin 0d6dg=1

0J0

The integral over r required is given in Example 7.4.

Answer With the wavefunction written in the form y= RY, the integration is

oo (M (2T -
(r):J J J rRﬁJ|YLmllzrz drsin 9d9d¢:j 'R dr

0J0J 0 0

For a 1s orbital

3/2
Ry [g ] o2l
ay

Hence

39,

473 (7
(,) == Pl 2Zriady =
ay |, 2Z

0

Self-tests

Each Example has a Self-test with the answer provided as a
check that the procedure has been mastered. There are also
a number of free-standing Self-tests that are located where
we thought it a good idea to provide a question to check your

ABOUT THE BOOK xiii

Discussion questions

The end-of-chapter material starts with a short set of questions
that are intended to encourage reflection on the material
and to view it in a broader context than is obtained by solving

numerical problems.

Discussion questions

9.1 Discuss the origin of the series of lines in the emission spectra of
hydrogen. What region of the electromagnetic spectrum s associated with
each of the series shown in Fig. 9.17

9.2 Describe the separation of variables procedure as it is applied to simplify
the description of a hydrogenic atom free to move through space.

9.3 Listand describe the significance of the quantum numbers needed to
specify the internal state of a hydrogenic atom.

9.4 Specify and account for the selection rules for transitions in hydrogenic

atoms.

9.5 Explain the significance of (a) a boundary surface and (b) the radial

9.6 Outline the electron configurations of many-electron atoms in terms of
their location in the periodic table.

9.7 Describe and account for the variation of first ionization energies along
Period 2 of the p . Would you expect the s in Period 3¢

9.8 Describe the orbital approximation for the wavefunction of a many-
electron atom. What are the limitations of the approximation?

9.9 Explain the origin of spin-orbit coupling and how it affects the
appearance of a spectrum.

9.10 D physical origins of linewidths in absorpt d emission
spectra. Do you expect the same contributions for species in condensed and

distribution function for hydrogenic orbitals. gas phases?

Exercises and Problems

The core of testing understanding is the collection of end-of-
chapter Exercises and Problems. The Exercises are straightfor-
ward numerical tests that give practice with manipulating
numerical data. The Problems are more searching. They are
divided into ‘numerical’, where the emphasis is on the
manipulation of data, and ‘theoretical’, where the emphasis is
on the manipulation of equations before (in some cases) using
numerical data. At the end of the Problems are collections of
problems that focus on practical applications of various kinds,
including the material covered in the Impact sections.

Exercises

9.1(a) Determine the shortest and longest wavelength lines in the Lyman series. ~ 9.12(a) What i the orbital angular momentum of an electron in the orbitals

(a) 1s, (b) 3s, (¢) 3d? Give the numbers of angular and radial nodes in each case.
91(6) The Pfund series has n, = 5. Determine the shortest and longest )1, © © e cach case.
wavelength lines in the Pfund series. 9.12(b) What is the orbital angular momentum of an electron in the orbitals

- a) 4d, (b) 2p, (c) 3p? Give the numbers of angular and radial nodes in each case.
9.2(a) Compute the wavelength, frequency, and wavenumber of then =2 — (@) 14 (?) 2P () 3p 8

n=1transition in He". 9.13(a) Locate the angular nodes and nodal planes of cach of the 2p orbitals
of a hydrogenic atom of atomic number Z To lacate the angular nodes, give

9:206) Compute the wavelength, requency, and wavenumber of the =3 - & SR i,

=4 transition in Li”.
9.13(b) Locate the angular nodes and nodal planes of each of the 3d orbitals
ofa hydrogenic atom of atomic number Z. To locate the angular nodes, give
the angle that the plane makes with the z-axis.

9.3(a) When ultraviolet radiation of wavelength 58.4 nm from a helium
lamp s directed on to a sample of krypton, electrons are ejected with a speed
0f1.59 Mm s™". Calculate the ionization energy of krypton.

9.14(a) Which of the following transitions are allowed in the normal electronic

9.3(6) When ultraviolet radiation of wavelength 58.4 nm from a helium emission spectrum ofan atoms (3) 25> 15, (b) 2p = 15, (¢) 3d = 2p?

lamp s directed on to a sample of xenon, electrons are ejected with a speed

. . . . 0f 1.79 Mm 57!, Calculate the ionization energy of xenon. 9.14(b) Which of in
understanding. Think of Self-tests as in-chapter exercises : :
designed to help you monitor your progress.
Problems*
Numerical problems are pected to be hydrogen-like, the &

Self-test 9.4 Evaluate the mean radius of a 3s orbital by integration.  [27a,/2Z]

arising largely from the mass differences. Predict the wavenumbers of the first
three lines of the Balmer series of positronium. What i the binding energy of
the ground state of positronium?

9.1 The Humphreys series is a group of lines in the spectrum of atomic
hydrogen. It begins at 12 368 nm and has been traced to 3281.4 nm.
Whatare the transitions involved? What are the wavelengths of the
intermediate transitions? 9.9 The Zeeman effect s the modification of an atomic spectrum by the
application of a strong magnetic field. It arises from the interaction between

9.2 A series of lines in the spectrum of atomic hydrogen lies at 656.46 nm,
486.27 nm, 434.17 nm, and 410.29 nm. What s the wavelength of the next line
in the series? What is the ionization energy of the atom when it s in the lower
state of the transitions?

9.3 The Li** ion is hydrogenic and has a Lyman series at 740 747 cm™,
877924 cm!, 925933 cm ", and beyond. Show that the energy levels are of

applied magnetic fields and the magnetic moments due to orbital and spin
angular momenta (recall the evidence provided for electron spin by the
Stern-Gerlach experiment, Section 8.8). To gain some appreciation for the so-
called normal which s observed in transit volving singlet
states, consider a p electron, with /= 1 and m;= 0, £1. In the absence of a
‘magnetic field, these three states are degenerate. When a field of magnitude
Bis present, the degeneracy is removed and itis observed that the state with

the form ~heR/n” and find the value of R for this ion. Go on to predict the
the two length the Balmer series
of the ion and find the ionization energy of the ion.

y=-+1 moves up in energy by 1y, the state with 1, = 0 is unchanged, and
the state with m,=~1 moves down in energy by 18, where 1y = ehi2m, =
9.274 107 T is the Bohr magneton (sce Section 13.1). Therefore, a

Molecular modelling and computational chemistry

Over the past two decades computational chemistry has
evolved from a highly specialized tool, available to relatively
few researchers, into a powerful and practical alternative to
experimentation, accessible to all chemists. The driving force
behind this evolution is the remarkable progress in computer
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technology. Calculations that previously required hours or
days on giant mainframe computers may now be completed
in a fraction of time on a personal computer. It is natural
and necessary that computational chemistry finds its way
into the undergraduate chemistry curriculum as a hands-on
experience, just as teaching experimental chemistry requires
a laboratory experience. With these developments in the
chemistry curriculum in mind, the text’s website features
a range of computational problems, which are intended to
be performed with special software that can handle ‘quan-
tum chemical calculations’. Specifically, the problems have
been designed with the student edition of Wavefunction’s
Spartan program (Spartan Student™) in mind, although
they could be completed with any electronic structure

program that allows Hartree-Fock, density functional and
MP2 calculations.
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not the same as experiments, and that each ‘chemical model’
built from calculations has its own strengths and shortcom-
ings. With this caveat in mind, it is important that some of
the problems yield results that can be compared directly with
experimental data. However, most problems are intended to
stand on their own, allowing computational chemistry to serve
as an exploratory tool.

Students can visit www.wavefun.com/cart/spartaned.html and
enter promotional code WHFPCHEM to download the Spartan
Student™ program at a special 20% discount.
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Tables of data
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Fundamentals

Chemistry is the science of matter and the changes it can undergo. Physical chemistry
is the branch of chemistry that establishes and develops the principles of the subject
in terms of the underlying concepts of physics and the language of mathematics. It
provides the basis for developing new spectroscopic techniques and their interpreta-
tion, for understanding the structures of molecules and the details of their electron
distributions, and for relating the bulk properties of matter to their constituent atoms.
Physical chemistry also provides a window on to the world of chemical reactions and
allows us to understand in detail how they take place. In fact, the subject underpins
the whole of chemistry, providing the principles in terms we use to understand struc-
ture and change and providing the basis of all techniques of investigation.

Throughout the text we shall draw on a number of concepts, most of which should
already be familiar from introductory chemistry. This section reviews them. In almost
every case the following chapters will provide a deeper discussion, but we are pre-
suming that we can refer to these concepts at any stage of the presentation. Because
physical chemistry lies at the interface between physics and chemistry, we also need
to review some of the concepts from elementary physics that we need to draw on in
the text.

F.1 Atoms

Key points (a) The nuclear model is the basis for discussion of atomic structure: negatively
charged electrons occupy atomic orbitals, which are arranged in shells around a positively
charged nucleus. (b) The periodic table highlights similarities in electronic configurations of
atoms, which in turn lead to similarities in their physical and chemical properties. (c) Monatomic

ions are electrically charged atoms and are characterized by their oxidation numbers.

Matter consists of atoms. The atom of an element is characterized by its atomic
number, Z, which is the number of protons in its nucleus. The number of neutrons in
a nucleus is variable to a small extent, and the nucleon number (which is also com-
monly called the mass number), A, is the total number of protons and neutrons, which
are collectively called nucleons, in the nucleus. Atoms of the same atomic number but
different nucleon number are the isotopes of the element.

According to the nuclear model, an atom of atomic number Z consists of a nucleus
of charge +Ze surrounded by Z electrons each of charge —e (e is the fundamental
charge: see inside the front cover for its value and the values of the other fundamental
constants). These electrons occupy atomic orbitals, which are regions of space where
they are most likely to be found, with no more than two electrons in any one orbital.
The atomic orbitals are arranged in shells around the nucleus, each shell being
characterized by the principal quantum number, n=1, 2, .. .. A shell consists of n?
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F.3 Bulk matter
F.4 Energy
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and bulk properties
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individual orbitals, which are grouped together into # subshells; these subshells, and
the orbitals they contain, are denoted s, p, d, and f. For all neutral atoms other than
hydrogen, the subshells of a given shell have slightly different energies.

The sequential occupation of the orbitals in successive shells results in periodic
similarities in the electronic configurations, the specification of the occupied orbitals,
of atoms when they are arranged in order of their atomic number, which leads to
the formulation of the periodic table (a version is shown inside the back cover). The
vertical columns of the periodic table are called groups and (in the modern conven-
tion) numbered from 1 to 18. Successive rows of the periodic table are called periods,
the number of the period being equal to the principal quantum number of the valence
shell, the outermost shell of the atom. The periodic table is divided into s, p, d, and
f blocks, according to the subshell that is last to be occupied in the formulation of
the electronic configuration of the atom. The members of the d block (specifically the
members of Groups 3—11 in the d block) are also known as the transition metals;
those of the f block (which is not divided into numbered groups) are sometimes
called the inner transition metals. The upper row of the f block (Period 6) consists
of the lanthanoids (still commonly the ‘lanthanides’) and the lower row (Period 7)
consists of the actinoids (still commonly the ‘actinides’). Some of the groups also have
familiar names: Group 1 consists of the alkali metals, Group 2 (more specifically,
calcium, strontium, and barium) of the alkaline earth metals, Group 17 of the halo-
gens, and Group 18 of the noble gases. Broadly speaking, the elements towards the left
of the periodic table are metals and those towards the right are nonmetals; the two
classes of substance meet at a diagonal line running from boron to polonium, which
constitute the metalloids, with properties intermediate between those of metals and
nonmetals.

A monatomic ion is an electrically charged atom. When an atom gains one or more
electrons it becomes a negatively charged anion; when it loses one or more electrons
it becomes a positively charged cation. The charge number of an ion is called the
oxidation number of the element in that state (thus, the oxidation number of magne-
sium in Mg?* is +2 and that of oxygen in O% is —2). It is appropriate, but not always
done, to distinguish between the oxidation number and the oxidation state, the latter
being the physical state of the atom with a specified oxidation number. Thus, the
oxidation number of magnesium is +2 when it is present as Mg>*, and it is present
in the oxidation state Mg?*. The elements form ions that are characteristic of their
location in the periodic table: metallic elements typically form cations by losing the
electrons of their outermost shell and acquiring the electronic configuration of the
preceding noble gas. Nonmetals typically form anions by gaining electrons and
attaining the electronic configuration of the following noble gas.

F.2 Molecules

Key points (a) Covalent compounds consist of discrete molecules in which atoms are linked by
covalent bonds. (b) Ionic compounds consist of cations and anions in a crystalline array. (c) Lewis
structures are useful models of the pattern of bonding in molecules. (d) The valence-shell electron
pair repulsion theory (VSEPR theory) is used to predict the three-dimensional structures of
molecules from their Lewis structures. (e) The electrons in polar covalent bonds are shared

unevenly between the bonded nuclei.

A chemical bond is the link between atoms. Compounds that contain a metallic
element typically, but far from universally, form ionic compounds that consist of
cations and anions in a crystalline array. The ‘chemical bonds’ in an ionic compound



are due to the Coulombic interactions (Section F.4) between all the ions in the crystal,
and it is inappropriate to refer to a bond between a specific pair of neighbouring ions.
The smallest unit of an ionic compound is called a formula unit. Thus NaNO,, con-
sisting of a Na* cation and a NOj3 anion, is the formula unit of sodium nitrate.
Compounds that do not contain a metallic element typically form covalent com-
pounds consisting of discrete molecules. In this case, the bonds between the atoms of
amolecule are covalent, meaning that they consist of shared pairs of electrons.

The pattern of bonds between neighbouring atoms is displayed by drawing a Lewis
structure, in which bonds are shown as lines and lone pairs of electrons, pairs of
valence electrons that are not used in bonding, are shown as dots. Lewis structures
are constructed by allowing each atom to share electrons until it has acquired an octet
of eight electrons (for hydrogen, a duplet of two electrons). A shared pair of electrons
is a single bond, two shared pairs constitute a double bond, and three shared pairs
constitute a triple bond. Atoms of elements of Period 3 and later can accommodate
more than eight electrons in their valence shell and ‘expand their octet’ to become
hypervalent, that is, form more bonds than the octet rule would allow (for example,
SE,), or form more bonds to a small number of atoms (for example, a Lewis structure
of SOi’ with one or more double bonds). When more than one Lewis structure can be
written for a given arrangement of atoms, it is supposed that resonance, a blending of
the structures, may occur and distribute multiple-bond character over the molecule
(for example, the two Kekulé structures of benzene). Examples of these aspects of
Lewis structures are shown in Fig. F.1.

Except in the simplest cases, a Lewis structure does not express the three-
dimensional structure of a molecule. The simplest approach to the prediction of
molecular shape is valence-shell electron pair repulsion theory (VSEPR theory). In
this approach, the regions of high electron density, as represented by bonds—whether
single or multiple—and lone pairs, take up orientations around the central atom that
maximize their separations. Then the position of the attached atoms (not the lone
pairs) is noted and used to classify the shape of the molecule. Thus, four regions of
electron density adopt a tetrahedral arrangement; if an atom is at each of these
locations (as in CH,), then the molecule is tetrahedral; if there is an atom at only three
of these locations (as in NHj), then the molecule is trigonal pyramidal; and so on. The
names of the various shapes that are commonly found are shown in Fig. F.2. In a
refinement of the theory, lone pairs are assumed to repel bonding pairs more strongly
than bonding pairs repel each other. The shape a molecule then adopts, if it is not

O:C:é ﬁ _l—
H O:T—O
e
Expanded octet e
F
SO A T > R
| F: F—B—F Y R
£ Incomplete octet Hypervalent
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A note on good practice Some
chemists use the term ‘molecule’
to denote the smallest unit of a

compound with the composition of

the bulk material regardless of

whether it is an ionic or covalent
compound and thus speak of
‘amolecule of NaCl’. We use the

term ‘molecule’ to denote a discrete
covalently bonded entity (as in H,O);

for an ionic compound we use

‘formula unit’.

Fig.F.1 A collection of typical Lewis

structures for simple molecules and ions.
The structures show the bonding patterns
and lone pairs and, except in simple cases,
do not express the shape of the species.
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Fig.F.2 The names of the shapes of the
geometrical figures used to describe
symmetrical polyatomic molecules
and ions.
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Fig.F.3 (a) The influences on the shape of
the SF, molecule according to the VSEPR
model. (b) As a result the molecule adopts
a bent see-saw shape.
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determined fully by symmetry, is such as to minimize repulsions from lone pairs.
Thus, in SF, the lone pair adopts an equatorial position and the two axial S—F bonds
bend away from it slightly, to give a bent see-saw shaped molecule (Fig. E.3).

Covalent bonds may be polar, or correspond to an unequal sharing of the electron
pair, with the result that one atom has a partial positive charge (denoted d+) and the
other a partial negative charge (0—). The ability of an atom to attract electrons to
itself when part of a molecule is measured by the electronegativity, y(chi), of the
element. The juxtaposition of equal and opposite partial charges constitutes an elec-
tric dipole. If those charges are +Q and —Q and they are separated by a distance d, the
magnitude of the electric dipole moment is (4 = Qd. Whether or not a molecule as
a whole is polar depends on the arrangement of its bonds, for in highly symmetrical
molecules there may be no net dipole. Thus, although the linear CO, molecule (which
is structurally OCO) has polar CO bonds, their effects cancel and the molecule as
a whole is nonpolar.

F.3 Bulk matter

Key points (a) The physical states of bulk matter are solid, liquid, or gas. (b) The state of a sample
of bulk matter is defined by specifying its properties, such as mass, volume, amount, pressure,
and temperature. (c) The perfect gas law is a relation between the pressure, volume, amount, and

temperature of an idealized gas.

Bulk matter consists of large numbers of atoms, molecules, or ions. Its physical state
may be solid, liquid, or gas:

A solid is a form of matter that adopts and maintains a shape that is independent of
the container it occupies.

A liquid is a form of matter that adopts the shape of the part of the container it

occupies (in a gravitational field, the lower part) and is separated from the unoccu-
pied part of the container by a definite surface.

A gas is a form of matter that immediately fills any container it occupies.
Aliquid and a solid are examples of a condensed state of matter. A liquid and a gas are

examples of a fluid form of matter: they flow in response to forces (such as gravity)
that are applied.



The state of a bulk sample of matter is defined by specifying the values of various
properties. Among them are:

The mass, m, a measure of the quantity of matter present (unit: kilogram, kg).

The volume, V, a measure of the quantity of space the sample occupies (unit: cubic
metre, m>).

The amount of substance, 7, a measure of the number of specified entities (atoms,
molecules, or formula units) present (unit: mole, mol).

An extensive property of bulk matter is a property that depends on the amount of
substance present in the sample; an intensive property is a property that is independ-
ent of the amount of substance. The volume is extensive; the mass density, p (rho), the
mass of a sample divided by its volume, p =m/V, is intensive.

The amount of substance, n (colloquially, ‘the number of moles’), is a measure of
the number of specified entities present in the sample. ‘Amount of substance’ is the
official name of the quantity; it is commonly simplified to ‘chemical amount’ or sim-
ply ‘amount’. The unit 1 mol is defined as the number of carbon atoms in exactly 12 g
of carbon-12. The number of entities per mole is called Avogadro’s constant, N ,; the
currently accepted value is 6.022 X 10%* mol™" (note that N, is a constant with units,
not a pure number). The molar mass of a substance, M (units: formally kilograms per
mole but commonly grams per mole, g mol™) is the mass per mole of its atoms, its
molecules, or its formula units. The amount of substance of specified entities in a
sample can readily be calculated from its mass, by noting that

(F.1)

A sample of matter may be subjected to a pressure, p (unit: pascal, Pa; 1 Pa =
1 kg m~! s72), which is defined as the force, F, it is subjected to, divided by the area,
A, to which that force is applied. A sample of gas exerts a pressure on the walls of its
container because the molecules of gas are in ceaseless, random motion and exert a
force when they strike the walls. The frequency of the collisions is normally so great
that the force, and therefore the pressure, is perceived as being steady. Although
pascal is the SI unit of pressure (Section F.6), it is also common to express pressure in
bar (1 bar = 10° Pa) or atmospheres (1 atm = 101 325 Pa exactly), both of which cor-
respond to typical atmospheric pressure. We shall see that, because many physical
properties depend on the pressure acting on a sample, it is appropriate to select a cer-
tain value of the pressure to report their values. The standard pressure for reporting
physical quantities is currently defined as p®= 1 bar exactly. We shall see the role of the
standard pressure starting in Chapter 2.

To specify the state of a sample fully it is also necessary to give its temperature, T.
The temperature is formally a property that determines in which direction energy will
flow as heat when two samples are placed in contact through thermally conducting
walls: energy flows from the sample with the higher temperature to the sample with
the lower temperature. The symbol T'is used to denote the thermodynamic tempera-
ture, which is an absolute scale with T' = 0 as the lowest point. Temperatures above
T = 0 are then most commonly expressed by using the Kelvin scale, in which the
gradations of temperature are called kelvin (K). The Kelvin scale is defined by setting
the triple point of water (the temperature at which ice, liquid water, and water vapour
are in mutual equilibrium) at exactly 273.16 K. The freezing point of water (the melting
point of ice) at 1 atm is then found experimentally to lie 0.01 K below the triple point,
so the freezing point of water is 273.15 K. The Kelvin scale is unsuitable for everyday

F.3 BULK MATTER
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A note on good practice Be careful
to distinguish atomic or molecular
mass (the mass of a single atom or
molecule; units kg) from molar

mass (the mass per mole of atoms or
molecules; units kg mol™). Relative
molecular masses of atoms and
molecules, M, = m/m,, where m is the
mass of the atom or molecule and 1,
is the atomic mass constant, are still
widely called ‘atomic weights’ and
‘molecular weights’ even though they
are dimensionless quantities and

not weights (the gravitational force
exerted on an object). Even IUPAC
continues to use the terms ‘for
historical reasons’.

A note on good practice Note that
we write T=0, not T=0 K. General
statements in science should be
expressed without reference to a
specific set of units. Moreover,
because T (unlike 6) is absolute,
the lowest point is 0 regardless

of the scale used to express higher
temperatures (such as the Kelvin scale
or the Rankine scale). Similarly, we
write m =0, notm=0kgand /=0,
not/=0m.
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A note on good practice Although
the term ‘ideal gas’ is almost
universally used in place of ‘perfect
gas’, there are reasons for preferring
the latter term. In an ideal system
(as will be explained in Chapter 5) the
interactions between molecules in a
mixture are all the same. In a perfect
gas not only are the interactions all
the same but they are in fact zero.
Few, though, make this useful
distinction.

measurements of temperature, and it is common to use the Celsius scale, which is
defined in terms of the Kelvin scale as

Definition of (F.2)

0/°C=T/K-273.15 Celsius scale

Thus, the freezing point of water is 0°C and its boiling point (at 1 atm) is found to
be 100°C (more precisely 99.974°C). Note that in this text T invariably denotes the
thermodynamic (absolute) temperature and that temperatures on the Celsius scale
are denoted 0O (theta).

The properties that define the state of a system are not in general independent of
one another. The most important example of a relation between them is provided by
the idealized fluid known as a perfect gas (also, commonly, an ‘ideal gas’)

Perfect gas (F.3)

pV=nRT equation

Here R is the gas constant, a universal constant (in the sense of being independent of
the chemical identity of the gas) with the value 8.314 ] K~! mol™'. Equation F.3 is cen-
tral to the development of the description of gases in Chapter 1.

F.4 Energy

Key points (a) Energy is the capacity to do work. (b) The total energy of a particle is the sum of its
kinetic and potential energies. The kinetic energy of a particle is t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>