
Data Structure and Algorithm Analysis

Lecture 6- Trees and Binary Trees

Trees

2

 Linear access time of linked lists is expensive

Requires O(N) running time for most of basic operations

like search, insert and delete

 Does there exist any simple data structure for which the

running time of most operations (search, insert, delete) is

O(log N)?

The answer is yes

Data structures like binary tree

Trees…

3

 A tree is a collection of nodes

 The collection can be empty

 (recursive definition) If not empty, a tree consists of a

distinguished node r (the root), and zero or more nonempty

sub-trees T1, T2,, Tk, each of whose roots are connected by

an edge from r

Some Terminologies

4

 Child and parent
 Every node except the root has one parent (J is a parent of P and Q)
 A node can have an arbitrary number of children (A has 6 while D has

1)

 Leaves/External Nodes
 Nodes with no children (B, C, H, I, P, Q, K, L, M, N)

 Sibling
 nodes with same parent (P and Q)

 Internal node
 A node with at least one child (A,D,E,F,G,J)

Some Terminologies…

5

 Path

 is a sequence of nodes from root to a node (arbitrary node in the tree).

 Length

 Number of edges on the path from node x to node y

 Depth of a node

 Number of edges from the root to that node (Depth of C =1)

 The depth of a tree is equal to the depth of the deepest leaf
(=3)

Some Terminologies…

6

 Height of a node
 length of the longest path from that node to a leaf (E=2)

 all leaves are at height 0

 The height of a tree is equal to the height of the root

 Ancestor and descendant
 The ancestors of a node are all the nodes along the path from the root to the node.

 Descendant node reachable by repeated proceeding from parent to child.

Example: UNIX Directory

7

 Tree is useful to represent hierarchical data

 One of its application a file system used by many systems

 The following is an exmple of unix file system

Tree ADT

8

 We use struct/class to abstract

nodes

 Generic methods:

 integer size()

 boolean isEmpty()

 gisplayElements()

 Accessor methods:

 Object root()

 Object parent(p)

 displayChildren(p)

Query methods:

boolean isInternal(p)

boolean isExternal(p)

boolean isRoot(p)

Update methods:

swapElements(p, q)

object
replaceElement(p, o)

Additional update methods
may be defined by data
structures implementing
the Tree ADT

A Tree Representation

9

 A node is represented by an
object storing

 Element

 Parent node

 Sequence of children nodes

B

D A

C E

F

Binary Tree

10

 A binary tree is a tree with the following
properties:
 Each internal node has at most two

children (degree of two)
 The children of a node are an ordered

pair

 We call the children of an internal node
left child and right child

 Alternative recursive definition: a binary
tree is either
 a tree consisting of a single node, OR
 a tree whose root has an ordered pair

of children, each of which is a binary
tree

Applications:

arithmetic
expressions

decision processes

searching

A

B C

F G D E

H I

Binary Tree ADT

11

 The Binary Tree ADT extends

the Tree ADT, i.e., it inherits

all the methods of the Tree

ADT

 Additional methods:

 position leftChild(p)

 position rightChild(p)

 position sibling(p)

 Update methods may be

defined by data structures

implementing the Binary Tree

ADT

Data Structure for Binary Trees

12

 A node is represented

by an object storing

 Element

 Parent node

 Left child node

Right child node

B

D A

C E

Example

13

Struct Node{

Int data;

Node * parent;

Node *Lchiled;

Node * Rchiled;

}Node *root=NULL;

Example: Expression Trees

14

 One of the application of binary is representing arthematic exression

 Leaves are operands (constants or variables)

 The other nodes (internal nodes) contain operators

 Will not be a binary tree if some operators are not binary

Tree traversal

15

 Used to print out the data in a tree in a certain order

 Pre-order traversal

 Print the data at the root

Recursively print out all data in the left subtree

Recursively print out all data in the right subtree

Preorder, Postorder and Inorder

16

 Preorder traversal

 node, left, right

 prefix expression

++a*bc*+*defg

Preorder, Postorder and Inorder

17

 Postorder traversal

 left, right, node

 postfix expression

 abc*+de*f+g*+

 Inorder traversal

 left, node, right.

 infix expression

 a+b*c+d*e+f*g

Preorder, Postorder and Inorder

18

Binary Search Trees

19

 Stores keys in the nodes in a way so that searching, insertion and

deletion can be done efficiently.

Binary search tree property

 For every node X, all the keys in its left subtree are smaller than

the key value in X, and all the keys in its right subtree are larger

than the key value in X

Binary Search Trees…

20

A binary search tree Not a binary search tree

Binary search trees…

21

 Average depth of a node is O(log N); maximum depth of a
node is O(N)

Two binary search trees representing the same set:

Implementation of BST

22

Struc node

{

Int num;

Node * parent

Node*left;

Node * right;

}

Node *root=NULL;

Inserting node in BST

23

 When a new node is inserted the definition of BST should be

preserved.

 There are two cases to consider

 There is no data in the tree (root=null)

Root=newnode;

 There is data

 Search the appropriate position

 Insert the node in that position.

Example- insert node13

24

 Proceed down the tree as you would with a find

 If newnode is found, do nothing (or update something)

 Otherwise, insert newnode at the last spot on the path traversed

 Time complexity = O(height of the tree)

Searching BST

25

 If we are searching for 15, then we are done.

 If we are searching for a key < 15, then we should search in the

left subtree.

 If we are searching for a key > 15, then we should search in the

right subtree.

26

Searching (Find)

27

 Find X: return a pointer to the node that has key X, or NULL if there is no such node

 Node *searchBST(node *root, int x)

{

If(root==NULL || root->num==x)
Return (root)

Else if(root->num>x)
Return (searchBST(root->left, x)

Else
Return (searchBST(root->right, x))
}

 Time complexity
 O(height of the tree)

findMin

28

 Return the node containing the smallest element in the tree
 Start at the root and go left as long as there is a left child. The stopping point is

the smallest element

Node*findMin(node*root)
{

If(root==NULL)
Return Null;

Ellse if(root->left==Null)
Return root

Else
Return(findMin(root->left)

}

 Similarly for findMax
 Time complexity = O(height of the tree)

findMax

29

 Finds the maximum element in BST

 Start at the root and go right as long as there is a right child. The stopping point
is the largest element

Node*findMin(node*root)

{
If(root==NULL)

Return Null;
Ellse if(root->right==Null)

Return root
Else

Return(findMin(root->right)

}

delete

30

 When we delete a node, we need to consider how we take care

of the children of the deleted node.

When a node is deleted the definition of a BST should be

maintained.

 When a node is deleted four cases should be considered

Case1: Deleting a leaf node (a node with no chiled)

Case2: Deleting a node having only one child

Case3: Deleting a node having two child

Case4: Deleting a root node

delete

31

Three cases:

(1) the node is a leaf

 Delete it immediately

(2) the node has one child

 Adjust a pointer from the parent to bypass that node

 Example delete node 4, make node 2 pointer point to node 3

delete

32

(3) the node has 2 children
 Copy the node containing the largest element in the left(or the smallest element in

the right)to the node to be deleted

 Delete the copied node

 The picture below shows deleting node2

 Time complexity = O(height of the tree)

Delete the root

33

 If BST has only one node, make root to point to nothing

 Root=NULL

 Otherwise,

 copy the node containing the largest element in the left(or the
smallest element in the right)to the node to be deleted

 Delete the copied node

End of the Course

End of Lecture 6

