
Data Structure and Algorithm Analysis 

Lecture 6- Trees and  Binary Trees 



Trees 
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 Linear access time of linked lists is expensive 

Requires O(N) running time for most of basic operations 

like search, insert and delete 

 Does there exist any simple data structure for which the 

running time of most operations (search, insert, delete) is 

O(log N)? 

The answer is yes 

Data structures like binary tree 



Trees… 
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 A tree is a collection of nodes 

 The collection can be empty 

 (recursive definition) If not empty, a tree consists of a 

distinguished node r (the root), and zero or more nonempty 

sub-trees T1, T2, ...., Tk, each of whose roots are connected by 

an edge from r 

 



Some Terminologies 
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 Child and parent 
 Every node except the root has one parent (J is a parent of P and Q) 
 A node can have an arbitrary number of children (A has 6 while D has 

1) 

 Leaves/External Nodes 
 Nodes with no children (B, C, H, I, P, Q, K, L, M, N) 

 Sibling 
 nodes with same parent (P and Q) 

 Internal node  
 A node with at least one child (A,D,E,F,G,J) 

 



Some Terminologies… 
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 Path 

 is a sequence of nodes from root to a node (arbitrary node in the tree). 

 Length 

 Number of edges on the path from node x to node y  

 Depth of a node 

 Number of edges from the root to that node (Depth of C =1) 

 The depth of a tree is equal to the depth of the deepest leaf 
(=3) 



Some Terminologies… 
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 Height of a node 
 length of the longest path from that node to a leaf (E=2) 

 all leaves are at height 0 

 The height of a tree is equal to the height of the root 

 Ancestor and descendant 
 The ancestors  of a node are all the nodes along the path from the root to the node. 

 Descendant node reachable by repeated proceeding from parent to child. 

 



Example: UNIX Directory 
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 Tree is useful to represent hierarchical data 

 One of its application a file system used by many systems 

 The following is an exmple of unix file system 



Tree ADT 
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 We use struct/class to abstract 

nodes 

 Generic methods: 

 integer size() 

 boolean isEmpty() 

 gisplayElements() 

 Accessor methods: 

 Object root() 

 Object parent(p) 

 displayChildren(p) 

Query methods: 

boolean isInternal(p) 

boolean isExternal(p) 

boolean isRoot(p) 

Update methods: 

swapElements(p, q) 

object 
replaceElement(p, o) 

Additional update methods 
may be defined by data 
structures implementing 
the Tree ADT 



A Tree Representation 

9 

 A node is represented by an 
object storing 

 Element 

 Parent node 

 Sequence of children nodes 

B 

D A 

C E 

F 



Binary Tree 
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 A binary tree is a tree with the following 
properties: 
 Each internal node has at most two 

children (degree of two) 
 The children of a node are an ordered 

pair 
 

 We call the children of an internal node 
left child and right child 

 

 Alternative recursive definition: a binary 
tree is either 
 a tree consisting of a single node, OR 
 a tree whose root has an ordered pair 

of children, each of which is a binary 
tree 

Applications: 

arithmetic 
expressions 

decision processes 

searching 

A 

B C 

F G D E 

H I 



Binary Tree ADT 
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 The Binary Tree ADT extends 

the Tree ADT, i.e., it inherits 

all the methods of the Tree 

ADT 

 Additional methods: 

 position leftChild(p) 

 position rightChild(p) 

 position sibling(p) 

 Update methods may be 

defined by data structures 

implementing the Binary Tree 

ADT 

 

 



Data Structure for Binary Trees 
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 A node is represented 

by an object storing 

 Element 

 Parent node 

 Left child node 

Right child node 

B 

D A 

C E 



Example 
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Struct Node{ 

Int data; 

Node * parent; 

Node *Lchiled; 

Node * Rchiled; 

}Node *root=NULL; 



Example: Expression Trees 
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 One of the application of binary is representing arthematic exression 

 

 

 

 

 

 

 

 

 

 

 Leaves are operands (constants or variables) 

 The other nodes (internal nodes) contain operators 

 Will not be a binary tree if some operators are not binary 

 



Tree traversal 
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 Used to print out the data in a tree in a certain order 

 Pre-order traversal 

 Print the data at the root 

Recursively print out all data in the left subtree 

Recursively print out all data in the right subtree 



Preorder, Postorder and Inorder 
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 Preorder traversal 

 node, left, right 

 prefix expression 

++a*bc*+*defg 



Preorder, Postorder and Inorder 
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 Postorder traversal 

 left, right, node 

 postfix expression 

 abc*+de*f+g*+ 

 

 Inorder traversal 

 left, node, right. 

 infix expression 

 a+b*c+d*e+f*g 

 



Preorder, Postorder and Inorder 
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Binary Search Trees 
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 Stores keys in the nodes in a way so that searching, insertion and 

deletion can be done efficiently. 

Binary search tree property 

 For every node X, all the keys in its left subtree are smaller than 

the key value in X, and all the keys in its right subtree are larger 

than the key value in X 

 



Binary Search Trees… 
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A binary search tree Not a binary search tree 



Binary search trees… 
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 Average depth of a node is O(log N); maximum depth of a 
node is O(N) 

 

Two binary search trees representing the same set: 



Implementation of BST 
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Struc node 

{ 

Int num; 

Node * parent 

Node*left; 

Node * right; 

} 

Node *root=NULL; 



Inserting node in BST 
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 When a new node is inserted the definition of BST should be 

preserved. 

 There are two cases to consider 

 There is no data in the tree (root=null) 

Root=newnode; 

 There is data 

 Search the appropriate position 

 Insert the node in that position. 



Example- insert node13 
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 Proceed down the tree as you would with a find 

 If newnode is found, do nothing (or update something) 

 Otherwise, insert newnode at the last spot on the path traversed 

 

 

 

 

 

 

 

 
 

 Time complexity = O(height of the tree) 



Searching BST 
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 If we are searching for 15, then we are done. 

 If we are searching for a key < 15, then we should search in the 

left subtree. 

 If we are searching for a key > 15, then we should search in the 

right subtree. 
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Searching (Find) 
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 Find X: return a pointer to the node that has key X, or NULL if there is no such node 

 

 Node *searchBST(node *root, int x) 

{ 

If(root==NULL || root->num==x) 
Return (root) 

Else if(root->num>x) 
Return (searchBST(root->left, x) 

Else 
Return (searchBST(root->right, x)) 
} 
 

 Time complexity 
 O(height of the tree) 



findMin 
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 Return the node containing the smallest element in the tree 
 Start at the root and go left as long as there is a left child. The stopping point is 

the smallest element 
 

Node*findMin(node*root) 
{ 

If(root==NULL) 
Return Null; 

Ellse if(root->left==Null) 
Return root 

Else  
Return(findMin(root->left) 

} 
 

 Similarly for findMax 
 Time complexity = O(height of the tree) 



findMax 
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 Finds the maximum element in BST 

 Start at the root and go right as long as there is a right child. The stopping point 
is the largest element 

 

Node*findMin(node*root) 

{ 
If(root==NULL) 

Return Null; 
Ellse if(root->right==Null) 

Return root 
Else  

Return(findMin(root->right) 

} 

 

 



delete 
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 When we delete a node, we need to consider how we take care 

of the children of the deleted node. 

When a node is deleted the definition of a BST should be 

maintained. 

 When a node is deleted four cases should be considered 

Case1: Deleting a leaf node (a node with no chiled ) 

Case2: Deleting a node having only one child 

Case3: Deleting a node having two child 

Case4: Deleting a root node 

 

 

 



delete 
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Three cases: 

(1) the node is a leaf 

 Delete it immediately 

(2) the node has one child 

 Adjust a pointer from the parent to bypass that node 

 Example delete node 4, make node 2 pointer point to node 3 



delete 
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(3) the node has 2 children 
 Copy the node containing the largest element in the left( or the smallest element in 

the right)to the node to be deleted 

 Delete the copied node 

 The picture below shows deleting node2 

 

 

 

 

 

 

 

 

 

 Time complexity = O(height of the tree) 



Delete the root 
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 If BST has only one node, make root to point to nothing 

 Root=NULL 

 Otherwise,  

 copy the node containing the largest element in the left( or the 
smallest element in the right)to the node to be deleted 

 Delete the copied node 

 



End of the Course 

End of Lecture 6 


