Lecture 6- Trees and Binary Trees

Data Structure and Algorithm Analysis

Trees

- Linear access time of linked lists is expensive
- Requires $\mathrm{O}(\mathrm{N})$ running time for most of basic operations like search, insert and delete
- Does there exist any simple data structure for which the running time of most operations (search, insert, delete) is $\mathrm{O}(\log \mathrm{N})$?
- The answer is yes
- Data structures like binary tree

Trees...

- A tree is a collection of nodes
- The collection can be empty
- (recursive definition) If not empty, a tree consists of a distinguished node r (the root), and zero or more nonempty sub-trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}}$, each of whose roots are connected by an edge from r

Figure 4.1 Generic tree

Some Terminologies

- A node can have an arbitrary number of children (A has 6 while D has 1)
- Leaves / External Nodes
- Nodes with no children (B, C, H, I, P, Q, K, L, M, N)
- Sibling
- nodes with same parent (P and Q)
- Internal node
- A node with at least one child (A,D,E,F,G,J)

Some Terminologies...

- is a sequence of nodes from root to a node (arbitrary node in the tree).
- Length
- Number of edges on the path from node x to node y
- Depth of a node
- Number of edges from the root to that node (Depth of $\mathrm{C}=1$)
- The depth of a tree is equal to the depth of the deepest leaf (=3)

Some Terminologies...

Figure 4.2 A tree

- Height of a node
- length of the longest path from that node to a leaf ($\mathrm{E}=2$)
- all leaves are at height 0
- The height of a tree is equal to the height of the root
- Ancestor and descendant
- The ancestors of a node are all the nodes along the path from the root to the node.
- Descendant node reachable by repeated proceeding from parent to child.

Example: UNIX Directory

- Tree is useful to represent hierarchical data
- One of its application a file system used by many systems
- The following is an exmple of unix file system

Tree ADT

- We use struct/class to abstract nodes
- Generic methods:
- integer size()
- boolean isEmpty()
- gisplayElements()
- Accessor methods:
- Object root()
- Object parent(p)
- displayChildren(p)
- Query methods:
${ }_{4}$ boolean isInternal(p)
a boolean isExternal(p)
a boolean isRoot(p)
- Update methods:
a swapElements (\mathbf{p}, \mathbf{q})
m object replaceElement(\mathbf{p}, \mathbf{o})
- Additional update methods may be defined by data structures implementing the Tree ADT

A Tree Representation

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes

Binary Tree

- A binary tree is a tree with the following properties:
- Each internal node has at most two children (degree of two)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, OR
- a tree whose root has an ordered pair of children, each of which is a binary tree

Binary Tree ADT

- The Binary Tree ADT extends - Update methods may be the Tree ADT, i.e., it inherits defined by data structures all the methods of the Tree implementing the Binary Tree ADT ADT
- Additional methods:
- position leftChild(p)
- position rightChild(p)
- position sibling(p)

Data Structure for Binary Trees

- A node is represented by an object storing
- Element
- Parent node
- Left child node

- Right child node

Example

Struct Node \{
Int data;
Node * parent;
Node *Lchiled;
Node * Rchiled;
\} Node *root $^{\text {r }}$ NULL;

Example: Expression Trees

- One of the application of binary is representing arthematic exression

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

- Leaves are operands (constants or variables)
- The other nodes (internal nodes) contain operators
- Will not be a binary tree if some operators are not binary

Tree traversal

- Used to print out the data in a tree in a certain order
- Pre-order traversal
- Print the data at the root
- Recursively print out all data in the left subtree
- Recursively print out all data in the right subtree

Preorder, Postorder and Inorder

- Preorder traversal
- node, left, right
- prefix expression
$-++a * b c *+* \operatorname{def} g$

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

Preorder, Postorder and Inorder

- Postorder traversal
- left, right, node
- postfix expression
- abc* + de $* f+g^{*}+$
- Inorder traversal
- left, node, right.

Figure 4.14 Expression tree for $(a+b * c)+((d * e+f) * g)$

- infix expression
${ }^{-} a+b *{ }_{c}+d * e+f * g$

Preorder, Postorder and Inorder

Algorithm Preorder(x)
Input: x is the root of a subtree.

1. if $x \neq$ NULL
2. then output $\operatorname{key}(x)$;
3. Preorder(left(x));
4. Preorder(right(x));

Algorithm Inorder (x)
Input: x is the root of a subtree.

1. if $x \neq$ NULL
2. then Inorder(left(x));

3 . output $\operatorname{key}(x)$;
4. $\quad \operatorname{Inorder}(\operatorname{right}(x))$;

Algorithm Postorder(x)
Input: x is the root of a subtree.

1. if $x \neq$ NULL
2. then Postorder(left (x));
3. Postorder(right(x));
4. output $\operatorname{key}(x)$;

Binary Search Trees

- Stores keys in the nodes in a way so that searching, insertion and deletion can be done efficiently.
Binary search tree property
- For every node X, all the keys in its left subtree are smaller than the key value in X , and all the keys in its right subtree are larger than the key value in X

Binary Search Trees...

A binary search tree

Not a binary search tree

Binary search trees...

Two binary search trees representing the same set:

- Average depth of a node is $\mathrm{O}(\log \mathrm{N})$; maximum depth of a node is $\mathrm{O}(\mathrm{N})$

Implementation of BST

Struc node
\{
Int num;
Node * parent
Node*left;
Node * right;
\}
Node $*$ root $=$ NULL;

Inserting node in BST

- When a new node is inserted the definition of BST should be preserved.
- There are two cases to consider
- There is no data in the tree (root=null)
- Root=newnode;
- There is data
- Search the appropriate position
- Insert the node in that position.

Example- insert node13

- Proceed down the tree as you would with a find
- If newnode is found, do nothing (or update something)
- Otherwise, insert newnode at the last spot on the path traversed

- Time complexity $=\mathrm{O}$ (height of the tree)

Searching BST

- If we are searching for 15 , then we are done.
- If we are searching for a key <15, then we should search in the left subtree.
- If we are searching for a key >15, then we should search in the right subtree.

Example: Search for $9 \ldots$

Search for 9:

1. compare 9:15(the root), go to left subtree;
2. compare $9: 6$, go to right subtree;
3. compare 9:7, go to right subtree;
4. compare $9: 13$, go to left subtree;
5. compare 9:9, found it!

Searching (Find)

- Find X: return a pointer to the node that has key X, or NULL if there is no such node
- Node $*_{\text {searchBST(node } * \text { root, int } \mathrm{x}) ~}^{\text {(}}$
\{
If(root==NULL || root->num==x)
Return (root)
Else if(root->num $>$ x)
Return (searchBST(root->left, x)
Else
Return (searchBST(root->right, x))
\}
- Time complexity
- O (height of the tree)

findMin

- Return the node containing the smallest element in the tree
- Start at the root and go left as long as there is a left child. The stopping point is the smallest element

Node*findMin(node*root)
\{
If(root $==$ NULL $)$
Return Null;
Ellse if(root->left==Null)
Return root
Else
Return(findMin(root->left)
\}

- Similarly for findMax
- Time complexity $=\mathrm{O}$ (height of the tree)

findMax

- Finds the maximum element in BST
- Start at the root and go right as long as there is a right child. The stopping point is the largest element

Node*findMin(node*root)

If(root==NULL)
Return Null;
Ellse if(root->right==Null)
Return root
Else
Return(findMin(root->right)
\}

delete

- When we delete a node, we need to consider how we take care of the children of the deleted node.
- When a node is deleted the definition of a BST should be maintained.
- When a node is deleted four cases should be considered
- Case 1: Deleting a leaf node (a node with no chiled)
- Case2: Deleting a node having only one child
- Case3: Deleting a node having two child
- Case4: Deleting a root node

delete

Three cases:
(1) the node is a leaf

- Delete it immediately
(2) the node has one child
- Adjust a pointer from the parent to bypass that node
- Example delete node 4, make node 2 pointer point to node 3

Figure 4.24 Deletion of a node (4) with one child, before and after

delete

(3) the node has 2 children

- Copy the node containing the largest element in the left(or the smallest element in the right)to the node to be deleted
- Delete the copied node
- The picture below shows deleting node2

Figure 4.25 Deletion of a node (2) with two children, before and after

- Time complexity $=\mathrm{O}$ (height of the tree)

Delete the root

- If BST has only one node, make root to point to nothing
- Root=NULL
- Otherwise,
- copy the node containing the largest element in the left(or the smallest element in the right)to the node to be deleted
- Delete the copied node

End of Lecture 6

End of the Course

