
Data Structure and Algorithm Analysis

Lecture 4: Lists

Review on Structures

2

 Structures are aggregate data types built using elements of primitive data types.

 Structure is defined using the struct keyword:

E.g. Struct Time {

int hour;

int minute;

int second;

};

 The struct keyword creates a new user defined data type that is used to declare

variables of an aggregate data type.

 Structure variables are declared like variables of other types.

 Syntax: struct<structure tag> <variable name>;

 E.g. Struct Time timeObject,

 Struct Time *timeptr

Accessing Members of Structure Variables

3

 The Dot operator (.):to access data members of structure

variables.

 The Arrow operator (->): to access data members of pointer

variables pointing to the structure.

 E.g. Print member hour of time Object and timeptr.

 cout<< timeObject. hour; or

 cout<< timeptr->hour;

 Note :timeptr->hour is the same as (*timeptr) . hour

 The parentheses is required since (*) has lower precedence than (.

)

Self-Referential Structures

4

 Structures can hold pointers to instances of

themselves.

Struct list {

char name[10];

Int count;

Struct list *next;

};

 However, structures cannot contain instances of

themselves.

The List ADT

5

 A list data structure is sequence of zero or more elements

A1, A2, A3, … AN

 N: length of the list

 A1: first element

 AN: last element

 Ai: element at position i

 If N=0, then empty list

 Linearly ordered

 Ai precedes Ai+1

 Ai follows Ai-1

Common operations of the List data structures

6

 printList: print the list

 makeEmpty: create an empty list

 find: locate the position of an object in a list

 list: 34,12, 52, 16, 12

 find(52)  3

 insert: insert an object to a list

 insert(x,3)  34, 12, 52, x, 16, 12

 remove: delete an element from the list

 remove(52)  34, 12, x, 16, 12

 findKth: retrieve the element at a certain position

Implementation of an ADT

7

 Choose a data structure to represent the list ADT

 E.g. arrays, LinkedList etc.

 Each operation associated with the ADT is implemented by one or

more subroutines(functions)

 Two standard implementations for the list ADT

 Array-based

 Linked list

Array Implementation

8

 Need to know the maximum number of elements in the

list at the start of the program

 Difficult

 Wastes space if the guess is bad

 Adding/Deleting an element can take O(n) operations if

the list has n elements.

 As it requires shifting of elements

 Accessing/changing an element anywhere takes O(1)

operations independent of n

 Random access

Array Implementation

9

 Elements are stored in contiguous array positions

Adding an element

10

 Normally first position (A[0]) stores the current size of the list

 Actual number of elements currsize+ 1

 Adding at the beginning:

 Move all elements one position up/behind

 Add at position 1;

 Increment the current size by 1

For (j = A[0]+1; j > 1; j--)

 A[j] = A[j-1];

A[1] = new element;

A[0]=A[0]+1;
Complexity: O(n)

Adding at the End

11

 Add the element at the end

 Increment current size by 1;

A[A[0]+1] = new element;

A[0]=A[0]+1;

 Complexity: O(1)

Adding at kth position

12

 Basic Steps

 Move all elements one position behind, kth position onwards;

 Add the element at the kth position

 Increment current size by 1;

For (j = A[0]+1; j > k; j--)

 A[j] = A[j-1];

A[k] = new element;

A[0]=A[0]+1;

 Complexity: O(n-k)

Deleting an Element at the Beginning

13

 Deleting at the beginning:

 Move all elements one position ahead;

 Decrement the current size by 1

For (j = 1; j < A[0] ; j++)

A[j] = A[j+1];

A[0]=A[0]-1;

 Complexity: O(n)

Deleting at the End

14

 Delete the element at the end

 Decrement current size by 1;

A[0]=A[0]-1;

 Complexity: O(1)

Deleting at the kth position

15

 Basic Steps

 Move all elements down one position ahead, k+1th position

onwards;

 Decrement the current size by 1;

For (j = k; j < A[0]+1; j++)

 A[j] = A[j+1];

A[0]=A[0]-1;

 Complexity: O(n-k)

Accessing an Element at the kth position

16

A[k];

 O(1) operation;

Linked Lists implementation

17

 A linked list is a series of connected nodes

 Each node contains at least

 A piece of data (any type)

 Pointer to the next node in the list

 Head: pointer to the first node

 The last node points to NULL

A 

Head

B C

A

data pointer

node

Array Vs. Linked list

18

Array Linked Lists

•Physically Contiguous

•Fixed Length

•Access Elements by Index

•Insertion/Removal is Costly

•Logically Contiguous Only

•Changeable Length

•Access Elements by Traversal

•Insertion/Removal is Efficient

Defining the data structure for a linked list

19

 The key part of a linked list is a structure, which holds the data for

each node. Example,

 name, address, age or whatever for the items in the list and,

 most importantly, a pointer to the next node.

 Example of a typical node:
Struct node{

char name[20]; // Name of up to 20 letters

Int age;

float height; // In metres

node *next; // Pointer to next node

};

Struct node *head= NULL;

Operations on Linked lists

20

 Inserting a node

At the beginning

At the end

At kth position

 Removing Elements

From front

From end

From kth position

 Traversing the list

Adding an element at the beginning

21

 Create a new node;
Struct node *newnode

newnode= new node;

 Fill in the details
newnode-> name = // store the value of the name field

newnode-> age= // store the value of the age field

newnode-> height= // store the value of the heightfield

newnode->next = NULL

 if the list is empty to start with,
if (head== NULL) head = newnode;

 Else Pointer from the newnode points to head;
newnode->next= header;

header= newnode;

Adding an element at the end

22

 Create a new node;

 Pointer from the last node points to new node;
Create(newnode);

last.next= newnode;

 How do we find the last node?

 Soln: step through the list until it finds the last node.

last = head; // We know this is not NULL -list not empty!

while (last->nxt!= NULL){

last= last>nxt; // Move to next link in chain

}

Adding an element at the end…

23

 Adding an element at the end

void add_node_at_end() {

node *temp, *temp2; // Temporary pointers

// Reserve space for new node and fill it with

data

temp = new node;

cout<< "Please enter the name of the person: ";

cin>> temp->name;

cout<< "Please enter the age of the person : ";

cin>> temp->age;

cout<< "Please enter the height of the person :

";

cin>> temp->height;

temp->nxt= NULL;

// Set up link to this node

if (head == NULL)

head = temp;

else {

temp2 = head ;

// We know this is not NULL -list not empty!

while (temp2->nxt!= NULL)

{

temp2 = temp2->nxt;

// Move to next link in chain

}

temp2->nxt= temp;

}

}// add node at end

Complexity: O(n)

Displaying the list of nodes

24

 Method

1. Set a temporary pointer to point to the head

2. If the pointer points to NULL, display the message "End

of list“ and stop.

3. Otherwise, display the details of the node pointed to by

the head pointer.

4. Make the temporary pointer point to the same thing as

the nxt pointer of the node it is currently indicating.

5. Jump back to step 2.

Displaying the list of nodes

25

temp = head;

do {

if (temp = = NULL)

cout<< "End of list" << endl;

else

{// Display details for what temp points to

cout<< "Name : " << temp->name << endl;

cout<< "Age : " << temp->age << endl;

cout<< "Height : " << temp->height << endl;

cout<< endl; // Blank line

// Move to next node (if present)

temp = temp-> nxt;

}

} while (temp != NULL);

Navigating through the list

26

 Necessary when you want to insert or delete a node from

somewhere inside the list

node *current;

current = head;

if (current -> nxt= = NULL)

cout<< "You are at the end of the list." << endl;

else

current = current-> nxt;

 Moving the current pointer back one step is a little harder

Deleting a node

27

 Basic steps

Find the desirable node (node to be deleted)

Release the memory occupied by the found node

 Set the pointer of the predecessor of the found node to

the successor of the found node

 When it comes to delete nodes, we have three choices:

Delete a node from the start of the list,

Delete one from the end of the list, or

Delete at the kth position

Deleting the first node in the linked list

28

 temp = head; //Make the temp pointer

//point to the head pointer

 head = head->nxt; // Second node in

chain

 Delete temp;

 Here is the function that

deletes a node from the head:

void delete_start_node()

{

node *temp;

temp = head;

head= head-> nxt;

delete temp;

}

Deleting the last node

29

 Steps:

1. Look at the head pointer.

a. If it is NULL, then the list is empty, so print out a "No nodes to delete" message.

2. Make temp1point to whatever the head pointer is pointing to.

 temp1=head;

3. If the nxtpointer of what temp1indicates is NULL, then we've found the last node of the list, so jump to

step 7 otherwise go to the next step.

 if(temp1->next==NULL)

4. Make another pointer, temp2, point to the current node in the list.

 temp2=temp1

5. Make temp1point to the next item in the list.

 temp1=temp1->next

6. Go to step 3.

7. Delete the node pointed by temp1.

 delete temp1

8. Mark the nxtpointer of the node pointed by temp2 as NULL -it is the new last node.

 temp2->next=NULL

Delete node from the end of the list

30

void delete_end_node()

{

node *temp1, *temp2;

if (head == NULL)

cout<< "The list is empty!" << endl;

else {

temp1 = head;

if (temp1->nxt== NULL)

{

delete temp1;

head = NULL;

}

else {

while (temp1->nxt!= NULL) {

temp2 = temp1;

temp1 = temp1->nxt;

}

delete temp1;

temp2->nxt= NULL;

}

}

} // delete end of node

Variations of Linked Lists

31

 Circular linked lists

 The last node points to the first node of the list

 How do we know when we have finished traversing the list? (Tip:

check if the pointer of the current node is equal to the head.)

A

Head

B C

Variations of Linked Lists

32

 Doubly linked lists

 Each node points to not only successor but the predecessor

 There are two NULL: at the first and last nodes in the list

 Advantage: given a node, it is easy to visit its predecessor. Convenient
to traverse lists backwards



A

Head

B C 

Creating Doubly Linked Lists

33

 The nodes for a doubly linked list would be defined as follows:
struct Node

 {

 int data;

 struct Node *Next;

 struct Node *Prev;

 }*Head;

 Data a new node can be created as follows
Node *current;

current = new node;

current->data= 15;

current->nxt= NULL;

current->prv= NULL

 Finally, link the node in the list

Add node at the beginning of the list

34

void Insert_front(int num)

 {

 struct Node *temp;

 temp = new Node;

 temp->Data = num;

 if (Head == NULL)

 {

 //List is Empty

 Head=temp;

 Head->Next=NULL;

 Head->Prev = NULL;

 }

 else

 {

 temp->Next=Head;

 Head->Prev = temp;

 Head=temp;

 }

 }

Array versus Linked Lists

35

 Linked lists are more complex to code and manage than arrays, but

they have some distinct advantages.

 Dynamic: a linked list can easily grow and shrink in size.

 We don’t need to know how many nodes will be in the list.

They are created in memory as needed.

 In contrast, the size of a C++ array is fixed at compilation

time.

 Easy and fast insertions and deletions

 To insert or delete an element in an array, we need to copy to

temporary variables to make room for new elements or close

the gap caused by deleted elements.

 With a linked list, no need to move other nodes. Only need to

reset some pointers.

Exercise

36

 Write full implementation for doubly linked lists and Circular

lists.

 Your implementation should support the following operations

 Adding element/node

 At the beginning

 At the end

 At the middle/specific location

 Deleting data/node

 From front

 From end

 From middle

 Displaying the list elements

The Next Lecture:-Stack and Queue

37

End of lecture 4

