
Data Structure and Algorithm Analysis

1

Lecture 3: Simple Sorting and Searching Algorithms

Searching and Sorting

2

Topics

 Searching

Linear/Sequential Search

Binary Search

 Sorting

Bubble Sort

 Insertion Sort

 Selection sort

Common Problems

3

 There are some very common problems that we use

computers to solve:

Searching: Looking for specific data item/record

from list of data items or set of records.

Sorting : placing records/items in order

 There are numerous algorithms to perform searches and

sorts.

 We will briefly explore a few common ones in this

lecture.

Searching

4

 There exists many searching algorithms you can choose from

 A question you should always ask when selecting a search algorithm

is

 “How fast does the search have to be?”

 Facts

 In general, the faster the algorithm is, the more complex it is.

 You don’t always need to use or should use the fastest algorithm.

 The list to be searched can either be ordered or unordered list

 Let’s explore the following search algorithms, keeping speed in

mind.

 Sequential (linear) search

 Binary search

Linear/Sequential Search on an Unordered List

5

 Basic algorithm:

Get the search criterion (key)

Get the first record from the file

While ((record != key) and (still more records))

 Get the next record

End_while

 When do we know that there wasn’t a record in the List

that matched the key?

Linear Search (Sequential Search)

6

• Example Implementation:

int linear_search(int list[], int n, int key){

 for (int i=0;i<n; i++){

 if(list[i]==key)

 return i;

 }

 return -1;

}
Time complexity O(n)

 --Unsuccessful search --- n times

 --Successful search (worst) --- n times

 --Successful search (Best) --- 1 time

 --Successful search (average) --- n/2 times

Sequential Search of Ordered vs. Unordered List

7

 If sequential search is used on list of integers say

[14,80,39,100,-8], how would the search for 100 on the

ordered list compare with the search on the unordered

list?

Unordered list <14,80,39,100,-8>

 if 100 was in the list?

 if -50 was not in the list?

Ordered list <-8,14,39,80,100>

 if 100 was in the list?

 if -50 was not in the list?`

Ordered vs. Unordered (con’t)

8

 Observation: the search is faster on an ordered list only

when the item being searched for is not in the list.

 Also, keep in mind that the list has to first be placed in order

for the ordered search.

 Conclusion: the efficiency of these algorithms is roughly

the same.

 So, if we need a faster search, on sorted list we need a

completely different algorithm.

Binary Search

9

 Sequential search is not efficient for large lists because, on

average, the sequential search searches half the list.

 If we have an ordered list and we know how many things

are in the list, we can use a different strategy.

 The binary search gets its name because the algorithm

continually divides the list into two parts.

Uses the divide-and-conquer technique to search the list

How a Binary Search Works

10

 Always look at the center value.

Each time you get to discard half of

the remaining list.

 Is this fast ?

Example Implementation

11

int binary_search(int list[],int n, int key)

{

 int left=0; int right=n-1;

 int mid;

 while(left<=right){

 mid=(left+right)/2;

 if(key==list[mid])

 return mid;

 else if(key > list[mid])

 left=mid+1;

 else

 right=mid-1;

 }

 return -1;

}

How Fast is a Binary Search?

12

 Worst case: 11 items in the list took 4 tries

 How about the worst case for a list with 32 items ?

1st try - list has 16 items

2nd try - list has 8 items

3rd try - list has 4 items

4th try - list has 2 items

5th try - list has 1 item

How Fast is a Binary Search? (con’t)

13

 List has 250 items

 1st try - 125 items

 2nd try - 63 items

 3rd try - 32 items

 4th try - 16 items

 5th try - 8 items

 6th try - 4 items

 7th try - 2 items

 8th try - 1 item

 List has 512 items

 1st try - 256 items

 2nd try - 128 items

 3rd try - 64 items

 4th try - 32 items

 5th try - 16 items

 6th try - 8 items

 7th try - 4 items

 8th try - 2 items

 9th try - 1 item

Efficiency

14

 Binary search is one of the fastest Algorithms

 The computational time for this algorithm is proportional

to log2n

 Lg n means the log to the base 2 of some value of n.

8 = 23 lg 8 = 3 16 = 24 lg 16 = 4

 Therefore, the time complexity is O(logn)

Sorting

15

 The binary search is a very fast search algorithm.

But, the list has to be sorted before we can search it

with binary search.

 To be really efficient, we also need a fast sort algorithm.

 There are many known sorting algorithms.

 Bubble Sort Heap Sort

 Selection Sort Merge Sort

 Insertion Sort Quick Sort

Common Sort Algorithms

16

 Bubble sort is the slowest, running in n2 time. Quick

sort is the fastest, running in n lg n time.

 As with searching, the faster the sorting algorithm, the

more complex it tends to be.

 We will examine three sorting algorithms:

Bubble sort

 Insertion sort

 Selection sort

Bubble Sort

17

 Suppose we have an array of data which is unsorted:
 Starting at the front, traverse the array, find the

largest item, and move (or bubble) it to the top

 With each subsequent iteration, find the next
largest item and bubble it up towards the top of the
array

 Bubble sort is a simple algorithm with:
 a memorable name, and
 a simple idea

 It is an O(n2) algorithm and usually called “the
generic bad algorithm”

Implementation

18

 Starting with the first item, assume that it is the largest

 Compare it with the second item:
 If the first is larger, swap the two,
 Otherwise, assume that the second item is the

largest

 After one pass, the largest item must be the last in the
list

 Start at the front again:
 the second pass will bring the second largest

element into the second last position

 Repeat n – 1 times, after which, all entries will be in
place

Bubble Sort Code

19

void bubbleSort (int a[] , int size)

{

 int i, j, temp;

 for (i = 0; i < size; i++) /* controls passes through the list */

 {

 for (j = 0; j < size - 1; j++) /* performs adjacent comparisons */

 {

 if (a[j] > a[j+1]) /* determines if a swap should occur */

 {

 temp = a[j]; /* swap is performed */

 a[j] = a[j + 1];

 a[j+1] = temp;

 }

 }

 }

}

Example

 Consider the unsorted array to

the right

 We start with the element in

the first location, and move

forward:

 if the current and next items

are in order, continue with the

next item, otherwise

swap the two entries

Example

 After one loop, the largest

element is in the last

location

 Repeat the procedure

Example

 Now the two largest

elements are at the end

 Repeat again

Example

 With this loop, 5 and 7 are

swapped

Example

 Finally, we swap the last

two entries to order them

 At this point, we have a

sorted array

Insertion Sort

25

 Consider the following observations:

A list with one element is sorted

 In general, if we have a sorted list of k items,

we can insert a new item to create a sorted list

of size k + 1

 Insertion sort works the same way as arranging your hand

when playing cards.

Out of the pile of unsorted cards that were dealt to you,

you pick up a card and place it in your hand in the correct

position relative to the cards you’re already holding.

Arranging Your Hand

26

7

5 7

Arranging Your Hand

27

5 6

 7 5

7

5 6 7

K

5 6 7 8 K

Insertion Sort

28

 Unsorted - shaded

 Look at 2nd item - 5.

 Compare 5 to 7.

 5 is smaller, so move 5 to temp, leaving

 an empty slot in position 2.

 Move 7 into the empty slot, leaving

 position 1 open
 .

 Move 5 into the open position

 .

7

 7

5 7

5

7

K

5

 7

v

>

<

1

2

3

Insertion Sort (con’t)

29

 Look at next item - 6.
Compare to 1st - 5.

6 is larger, so leave 5. Compare to next - 7.

6 is smaller, so move 6 to temp, leaving an empty slot.

Move 7 into the empty slot, leaving position 2 open.

 Move 6 to the open 2nd position.

7

 7

5

7

5

K 5

 7

v

>

<

1

2

3

 6

 7

 6 5

 6

5

Insertion Sort (con’t)

30

 Look at next item - King.

 Compare to 1st - 5.

 King is larger, so leave 5 where it is.

 Compare to next - 6. King is larger, so

leave 6 where it is.

 Compare to next - 7. King is larger, so

 leave 7 where it is.

 7 K 5 6

Insertion Sort (con’t)

31

7

 7

5

7

5 K

5

 7

v

>

<

1

2

3

 6 7

 8

5

 6

5

 6

 6

 6

8

K 8

K

K 8

K

Implementation- Insertion sort

32

 Basic Idea is:

 Find the location for an element and move all others up, and insert the

element.

 Steps:

1. The left most value can be said to be sorted relative to itself. Thus, we

don’t need to do anything.

2. Check to see if the second value is smaller than the first one.

 If it is swap these two values.

The first two values are now relatively sorted.

3. Next, we need to insert the third value in to the relatively sorted portion

 So that after insertion, the portion will still be relatively sorted.

4. Now the first three are relatively sorted.

5. Do the same for the remaining items in the list.

Implementation- Insertion sort

33

void insertion_sort(int list[])

{

int temp;

for(int i = 1; i < n; i++){

 temp = list[i];

for(int j = i; j > 0 && temp < list[j - 1]; j--)

{ //work backwards through the array finding where temp should go

 list[j] = list[j - 1];

 list[j - 1] = temp;

 }//end of inner loop

 }//end of outer loop

}//end of insertion_sort

Analysis – Insertion sort

34

 How many comparisons?

 1 + 2 + 3 +…+ (n-1) = O(n2)

 How many swaps?

 1 + 2 + 3 +…+ (n-1) = O(n2)

 How much space?

 In-place algorithm

Selection Sort

35

 Basic Idea:

Loop through the array from I = 0 to n - 1.

 Select the smallest element in the array from i to n

 Swap this value with value at position i.

Implementation- Selection Sort

36

void selection_sort(int list[])

{

int i, j, smallest;

for(i = 0; i < n; i++){

smallest = i;

 for(j = i + 1; j < n; j++){

 if(list[j] < list[smallest])

 smallest = j;

 }//end of inner loop

 temp = list[smallest];

 list[smallest] = list[i];

 list[i] = temp;

} //end of outer loop

}//end of selection_sort

Analysis- Selection Sort

37

 How many comparisons?

 (n-1) + (n-2) +…+ 1 = O(n2)

 How many swaps?

 n = O(n)

 How much space?

 In-place algorithm

Next Lecture: Linked lists

38

End of Lecture 3

