
Data Structure and Algorithm Analysis

Lecture Two- Algorithm Analysis

Algorithm analysis

2

 Studies computing resource requirements of different algorithms

 Computing Resources

 Running time (Most precious)

 Memory usage

 Communication bandwidth etc

 Why need algorithm analysis ?

 Writing a working program is not good enough

 The program may be inefficient!

 If the program is run on a large data set, then the running time

becomes an issue

 Goal is to pick up an efficient algorithm for the problem at hand

Reasons to perform analyze algorithms

3

 It enables us to:

 Predict performance of algorithms

 Compare algorithms.

 Provide guarantees on running time/space of algorithms

 Understand theoretical basis.

 Primary practical reason: avoid performance bugs.

 client gets poor performance because programmer did not understand

performance characteristics

How to Measure Efficiency/performance?

4

 Two approaches to measure algorithms

efficiency/performance

Empirical

 Implement the algorithms and

Trying them on different instances of input

Use/plot actual clock time to pick one

Theoretical/Asymptotic Analysis

Determine quantity of resource required

mathematically needed by each algorithms

Example- Empirical

5

Input size

Actual clock time

Drawbacks of empirical methods

6

 It is difficult to use actual clock because clock time varies based

on

 Specific processor speed

Current processor load

 Specific data for a particular run of the program

 Input size

 Input properties

 Programming language (C++, java, python …)

 The programmer (You, Me, Billgate …)

Operating environment/platform (PC, sun, smartphone etc)

 Therefore, it is quite machine dependent

Machine independent analysis

7

 Critical resources:

Time, Space (disk, RAM), Programmer’s effort, Ease of

use (user’s effort).

 Factors affecting running time:

 System dependent effects.

Hardware: CPU, memory, cache, …

 Software: compiler, interpreter, garbage collector, …

 System: operating system, network, other apps, …

 System independent effects

Algorithm.

 Input data/ Problem size

Machine independent analysis…

8

 For most algorithms, running time depends on “size” of the

input.

 Size is often the number of inputs processed

Example:- in searching problem, size is the no of items to

be sorted

 Running time is expressed as T(n) for some function T on

input size n.

Machine independent analysis

9

 Efficiency of an algorithm is measured in terms of the number of basic
operations it performs.
 Not based on actual time-clock

 We assume that every basic operation takes constant time.
 Arbitrary time

 Examples of Basic Operations:
 Single Arithmetic Operation (Addition, Subtraction, Multiplication)
 Assignment Operation
 Single Input/Output Operation
 Single Boolean Operation
 Function Return

 We do not distinguish between the basic operations.

 Examples of Non-basic Operations are
 Sorting, Searching.

Examples: Count of Basic Operations T(n)

10

 Sample Code

int count()

{

Int k=0;

cout<< “Enter an integer”;

cin>>n;

for (i = 0;i < n;i++)

k = k+1;

return 0;

}

Examples: Count of Basic Operations T(n)

Sample Code
Count of Basic Operations (Time Units)

11

int count()

{

Int k=0;

cout<< “Enter an integer”;

cin>>n;

for (i = 0;i < n;i++)

k = k+1;

return 0;

}

 1 for the assignment statement: int k=0

 1 for the output statement.

 1 for the input statement.

 In the for loop:

 1 assignment, n+1tests, and n increments.

 n loops of 2 units for an assignment, and

an addition.

 1 for the return statement.

 T (n) = 1+1+1+(1+n+1+n)+2n+1 =

4n+6

Examples: Count of Basic Operations T(n)

12

int total(int n)

{

Int sum=0;

for (int i=1;i<=n;i++)

 sum=sum+i;

return sum;

}

Examples: Count of Basic Operations T(n)

Sample Code

Count of Basic Operations (Time

Units)

13

int total(int n)

{

Int sum=0;

for (inti=1;i<=n;i++)

 sum=sum+i;

return sum;

}

 1 for the assignment statement: int sum=0

 In the for loop:

 1 assignment, n+1tests, and n increments.

 n loops of 2 units for an assignment, and an

addition.

 1 for the return statement.

 T (n) = 1+ (1+n+1+n)+2n+1 = 4n+4

Examples: Count of Basic Operations T(n)

14

void func()

{

 Int x=0;

 Int i=0;

 Int j=1;

 cout<< “Enter an Integer value”;

 cin>>n;

 while (i<n){

 x++;

 i++;

 }

 while (j<n)

 {

 j++;

 }

}

Examples: Count of Basic Operations T(n)

Sample Code Count of Basic Operations (Time Units)

15

void func()

{

 Int x=0;

 Int i=0;

 Int j=1;

 cout<< “Enter an Integer value”;

 cin>>n;

 while (i<n){

 x++;

 i++;

 }

 while (j<n)

 {

 j++;

 }

}

 1 for the first assignment statement: x=0;

 1 for the second assignment statement: i=0;

 1 for the third assignment statement: j=1;

 1 for the output statement.

 1 for the input statement.

 In the first while loop:

 n+1tests

 n loops of 2 units for the two increment (addition) operations

 In the second while loop:

 n tests

 n-1 increments

 T (n) = 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5

Examples: Count of Basic Operations T(n)

16

 Sample Code

int sum (int n)

{

int partial_sum= 0;

for (int i = 1; i <= n; i++)

partial_sum= partial_sum+ (i * i * i);

return partial_sum;

}

Examples: Count of Basic Operations T(n)

Sample code Count of Basic Operations (Time Units)

17

int sum (int n)

{

int partial_sum= 0;

for (int i = 1; i <= n; i++)

partial_sum= partial_sum+ (i * i *

i);

return partial_sum;

}

 1 for the assignment.

 1 assignment, n+1tests, and n increments.

 n loops of 4 units for an assignment, an addition,

and two multiplications.

 1 for the return statement.

 T (n) = 1+(1+n+1+n)+4n+1 =

6n+4

Simplified Rules to Compute Time Units(Formal Method)

18



Simplified Rules to Compute Time Units

19



Simplified Rules to Compute Time Units

20



Simplified Rules to Compute Time Units

21

 Conditionals:

 If (test) s1 else s2: Compute the maximum

of the running time for s1 and s2.

if (test == 1) {

for (int i = 1; i <= N; i++) {

sum = sum+i;

}}

Else

{

 for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}}

Example: Computation of Run-time

22

 Suppose we have hardware capable of executing 106

instructions per second. How long would it take to

execute an algorithm whose complexity function was T

(n) = 2n2 on an input size of n =108?

Example: Computation of Run-time

23

 Suppose we have hardware capable of executing 106 instructions
per second. How long would it take to execute an algorithm
whose complexity function was T (n) = 2n2 on an input size of n
=108?

The total number of operations to be performed would be
T(108):
T(108) = 2*(108)2 =2*1016
The required number of seconds would be given by
 T(108)/106 so:
Running time = 2*1016/106 = 2*1010
The number of seconds per day is 86,400 so this is about
231,480 days (634 years).

Types of Algorithm complexity analysis

24

 Best case.

 Lower bound on cost.

 Determined by “easiest” input.

 Provides a goal for all inputs.

 Worst case.

 Upper bound on cost.

 Determined by “most difficult” input.

 Provides a guarantee for all inputs.

 Average case. Expected cost for random input.

 Need a model for “random” input.

 Provides a way to predict performance.

Best, Worst and Average Cases

25

 Not all inputs of a given size take the same time.

 Sequential search for K in an array of n integers:

 Begin at first element in array and look at each element in turn until

K is found.

 Best Case: [Find at first position: 1 compare]

 Worst Case: [Find at last position: n compares]

 Average Case: [(n + 1)/2 compares]

 While average time seems to be the fairest measure, it may be difficult

to determine.

 Depends on distribution. Assumption for above analysis: Equally

likely at any position.

 When is worst case time important?

 algorithms for time-critical systems

Order of Growth and Asymptotic Analysis

26

 Suppose an algorithm for processing a retail store’s inventory takes:

 10,000 milliseconds to read the initial inventory from disk, and then

 10 milliseconds to process each transaction (items acquired or sold).

 Processing n transactions takes (10,000 + 10 n) milliseconds.

 Even though 10,000 >> 10, the "10 n" term will be more important if

the number of transactions is very large.

 We also know that these coefficients will change if we buy a faster

computer or disk drive, or use a different language or compiler.

 we want to ignore constant factors (which get smaller and smaller as

technology improves)

 In fact, we will not worry about the exact values, but will look at “broad

classes" of values.

Growth rates

27

 The growth rate for an algorithm is the rate at which the cost of the

algorithm grows as the size of its input grows.

http://algoviz.org/OpenDSA/Books/CS3114/html/Glossary.html

Rate of Growth

28

 Consider the example of buying elephants and goldfish:

 Cost: cost_of_elephants + cost_of_goldfish

 Cost ~ cost_of_elephants (approximation)

 since the cost of the gold fish is insignificant when compared with cost of

elephants

 Similarly, the low order terms in a function are relatively insignificant for

large n

 n4 + 100n2 + 10n + 50 ~ n4

 i.e., we say that n4 + 100n2 + 10n + 50 and n4 have the same rate of

growth

More Examples: fB(n)=n2+1 ~ n2


 fA(n)=30n+8 ~ n

Visualizing Orders of Growth

29

 On a graph, as you go to the right, a faster growing

function eventually becomes larger...

fA(n)=30n+8

Increasing n 

fB(n)=n2+1

V
a
lu

e
o
f

fu
n

ct
io

n
 

Asymptotic analysis

30

 Refers to the study of an algorithm as the input size "gets big" or

reaches a limit.

 To compare two algorithms with running times f(n) and g(n), we need a

rough measure that characterizes how fast each function grows-

growth rate.

 Ignore constants [especially when input size very large]

 But constants may have impact on small input size

 Several notations are used to describe the running-time equation for an

algorithm.

 Big-Oh (O), Little-Oh (o)

 Big-Omega (Ω), Little-Omega(w)

 Theta Notation()

Big-Oh Notation

31

 Definition

For f(n) a non-negatively valued function, f(n) is in

set O(g(n)) if there exist two positive

constants c and n0 such that f(n)≤cg(n)for all n>n0 .

 Usage: The algorithm is in O(n2) in [best ,average, worst]

case.

 Meaning: For all data sets big enough (i.e., n > n0), the

algorithm always executes in less than cg (n) steps [in best,

average or worst case].

Big-Oh Notation - Visually

32

Big-O Visualization

.

 O(g(n)) is the set of functions

with smaller or same order of

growth as f(n)

 Wish tightest upper bound:

 While T(n) = 3n2 is in O(n3),

we prefer O(n2).

 Because, it provides more

information to say O(n2) than

O(n3)

Big-O

34

 Demonstrating that a function f(n) is in big-O of a function

g(n) requires that we find specific constants c and no for which

the inequality holds.

 The following points are facts that you can use for Big-Oh

problems:

 1<= n for all n >= 1

 n <= n2 for all n >= 1

 2n <= n! for all n >= 4

 log2n <= n for all n >= 2

 n <= nlog2n for all n >= 2

Examples

35

 f(n) = 10n + 5 and g(n) = n. Show that f(n) is in O(g(n)).

To show that f(n) is O(g(n)) we must show constants c

and no such that

 f(n) <= c.g(n) for all n >= no

10n + 5 <= c.n for all n >= no

Try c = 15. Then we need to show that 10n + 5 <=

15n

 Solving for n we get: 5 < 5n or 1 <= n.

 So f(n) =10n + 5 <= 15.g(n) for all n >= 1.

 (c = 15, no = 1).

Examples

36

 2n2 = O(n3):

 n2 = O(n2):

 1000n2+1000n = O(n2):

 n = O(n2):

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2

n2 ≤ cn2  c ≥ 1  c = 1 and n0= 1

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1

More Examples

37

 Show that 30n+8 is O(n).

 Show c,n0: 30n+8  cn, n>n0.

Let c=31, n0=8.

Assume n>n0=8. Then

 cn = 31n = 30n + n > 30n+8,

 So 30n+8 < cn.

No Uniqueness

38

 There is no unique set of values for n0 and c in proving the asymptotic

bounds

 Prove that 100n + 5 = O(n2)

 100n + 5 ≤ 100n + n = 101n ≤ 101n2
 for all n ≥ 5

 n0 = 5 and c = 101 is a solution

 100n + 5 ≤ 100n + 5n = 105n ≤ 105n2

 for all n ≥ 1

 n0 = 1 and c = 105 is also a solution

 Must find SOME constants c and n0 that satisfy the asymptotic notation

relation

Order of common functions

39

Notation Name Example

O(1) Constant Adding two numbers, c=a+b

O(log n) Logarithmic Finding an item in a sorted array with a binary search or a search

tree (best case)

O(n) Linear Finding an item in an unsorted list or a malformed tree (worst

case); adding two n-digit numbers

O(nlogn) Linearithmic Performing a Fast Fourier transform; heap sort, quick sort (best

case), or merge sort

O(n2) Quadratic Multiplying two n-digit numbers by a simple algorithm; adding

two n×n matrices; bubble sort (worst case or naive

implementation), shell sort, quick sort (worst case), or insertion

sort

Some properties of Big-O

40

 Constant factors are may be ignored

For all k>0, kf is O(f)

 The growth rate of a sum of terms is the growth rate of its

fastest growing term.

Ex, an3 + bn2 is O(n3)

 The growth rate of a polynomial is given by the growth

rate of its leading term

 If f is a polynomial of degree d, then f is O(nd)

Implication of Big-Oh notation

41

 We use Big-Oh notation to say how slowly code might run

as its input grows.

 Suppose we know that our algorithm uses at most O(f(n))

basic steps for any n inputs, and n is sufficiently large, then

we know that our algorithm will terminate after executing

at most constant times f(n) basic steps.

 We know that a basic step takes a constant time in a

machine.

 Hence, our algorithm will terminate in a constant times

f(n) units of time, for all large n.

Other notations

42

 Reading Assignments

Next Lecture:-Simple Sorting and Searching Algorithms

43

End of Lecture 2

