
Data Structure and Algorithm Analysis

Lecture Two- Algorithm Analysis

Algorithm analysis

2

 Studies computing resource requirements of different algorithms

 Computing Resources

 Running time (Most precious)

 Memory usage

 Communication bandwidth etc

 Why need algorithm analysis ?

 Writing a working program is not good enough

 The program may be inefficient!

 If the program is run on a large data set, then the running time

becomes an issue

 Goal is to pick up an efficient algorithm for the problem at hand

Reasons to perform analyze algorithms

3

 It enables us to:

 Predict performance of algorithms

 Compare algorithms.

 Provide guarantees on running time/space of algorithms

 Understand theoretical basis.

 Primary practical reason: avoid performance bugs.

 client gets poor performance because programmer did not understand

performance characteristics

How to Measure Efficiency/performance?

4

 Two approaches to measure algorithms

efficiency/performance

Empirical

 Implement the algorithms and

Trying them on different instances of input

Use/plot actual clock time to pick one

Theoretical/Asymptotic Analysis

Determine quantity of resource required

mathematically needed by each algorithms

Example- Empirical

5

Input size

Actual clock time

Drawbacks of empirical methods

6

 It is difficult to use actual clock because clock time varies based

on

 Specific processor speed

Current processor load

 Specific data for a particular run of the program

 Input size

 Input properties

 Programming language (C++, java, python …)

 The programmer (You, Me, Billgate …)

Operating environment/platform (PC, sun, smartphone etc)

 Therefore, it is quite machine dependent

Machine independent analysis

7

 Critical resources:

Time, Space (disk, RAM), Programmer’s effort, Ease of

use (user’s effort).

 Factors affecting running time:

 System dependent effects.

Hardware: CPU, memory, cache, …

 Software: compiler, interpreter, garbage collector, …

 System: operating system, network, other apps, …

 System independent effects

Algorithm.

 Input data/ Problem size

Machine independent analysis…

8

 For most algorithms, running time depends on “size” of the

input.

 Size is often the number of inputs processed

Example:- in searching problem, size is the no of items to

be sorted

 Running time is expressed as T(n) for some function T on

input size n.

Machine independent analysis

9

 Efficiency of an algorithm is measured in terms of the number of basic
operations it performs.
 Not based on actual time-clock

 We assume that every basic operation takes constant time.
 Arbitrary time

 Examples of Basic Operations:
 Single Arithmetic Operation (Addition, Subtraction, Multiplication)
 Assignment Operation
 Single Input/Output Operation
 Single Boolean Operation
 Function Return

 We do not distinguish between the basic operations.

 Examples of Non-basic Operations are
 Sorting, Searching.

Examples: Count of Basic Operations T(n)

10

 Sample Code

int count()

{

Int k=0;

cout<< “Enter an integer”;

cin>>n;

for (i = 0;i < n;i++)

k = k+1;

return 0;

}

Examples: Count of Basic Operations T(n)

Sample Code
Count of Basic Operations (Time Units)

11

int count()

{

Int k=0;

cout<< “Enter an integer”;

cin>>n;

for (i = 0;i < n;i++)

k = k+1;

return 0;

}

 1 for the assignment statement: int k=0

 1 for the output statement.

 1 for the input statement.

 In the for loop:

 1 assignment, n+1tests, and n increments.

 n loops of 2 units for an assignment, and

an addition.

 1 for the return statement.

 T (n) = 1+1+1+(1+n+1+n)+2n+1 =

4n+6

Examples: Count of Basic Operations T(n)

12

int total(int n)

{

Int sum=0;

for (int i=1;i<=n;i++)

 sum=sum+i;

return sum;

}

Examples: Count of Basic Operations T(n)

Sample Code

Count of Basic Operations (Time

Units)

13

int total(int n)

{

Int sum=0;

for (inti=1;i<=n;i++)

 sum=sum+i;

return sum;

}

 1 for the assignment statement: int sum=0

 In the for loop:

 1 assignment, n+1tests, and n increments.

 n loops of 2 units for an assignment, and an

addition.

 1 for the return statement.

 T (n) = 1+ (1+n+1+n)+2n+1 = 4n+4

Examples: Count of Basic Operations T(n)

14

void func()

{

 Int x=0;

 Int i=0;

 Int j=1;

 cout<< “Enter an Integer value”;

 cin>>n;

 while (i<n){

 x++;

 i++;

 }

 while (j<n)

 {

 j++;

 }

}

Examples: Count of Basic Operations T(n)

Sample Code Count of Basic Operations (Time Units)

15

void func()

{

 Int x=0;

 Int i=0;

 Int j=1;

 cout<< “Enter an Integer value”;

 cin>>n;

 while (i<n){

 x++;

 i++;

 }

 while (j<n)

 {

 j++;

 }

}

 1 for the first assignment statement: x=0;

 1 for the second assignment statement: i=0;

 1 for the third assignment statement: j=1;

 1 for the output statement.

 1 for the input statement.

 In the first while loop:

 n+1tests

 n loops of 2 units for the two increment (addition) operations

 In the second while loop:

 n tests

 n-1 increments

 T (n) = 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5

Examples: Count of Basic Operations T(n)

16

 Sample Code

int sum (int n)

{

int partial_sum= 0;

for (int i = 1; i <= n; i++)

partial_sum= partial_sum+ (i * i * i);

return partial_sum;

}

Examples: Count of Basic Operations T(n)

Sample code Count of Basic Operations (Time Units)

17

int sum (int n)

{

int partial_sum= 0;

for (int i = 1; i <= n; i++)

partial_sum= partial_sum+ (i * i *

i);

return partial_sum;

}

 1 for the assignment.

 1 assignment, n+1tests, and n increments.

 n loops of 4 units for an assignment, an addition,

and two multiplications.

 1 for the return statement.

 T (n) = 1+(1+n+1+n)+4n+1 =

6n+4

Simplified Rules to Compute Time Units(Formal Method)

18

Simplified Rules to Compute Time Units

19

Simplified Rules to Compute Time Units

20

Simplified Rules to Compute Time Units

21

 Conditionals:

 If (test) s1 else s2: Compute the maximum

of the running time for s1 and s2.

if (test == 1) {

for (int i = 1; i <= N; i++) {

sum = sum+i;

}}

Else

{

 for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

sum = sum+i+j;

}}

Example: Computation of Run-time

22

 Suppose we have hardware capable of executing 106

instructions per second. How long would it take to

execute an algorithm whose complexity function was T

(n) = 2n2 on an input size of n =108?

Example: Computation of Run-time

23

 Suppose we have hardware capable of executing 106 instructions
per second. How long would it take to execute an algorithm
whose complexity function was T (n) = 2n2 on an input size of n
=108?

The total number of operations to be performed would be
T(108):
T(108) = 2*(108)2 =2*1016
The required number of seconds would be given by
 T(108)/106 so:
Running time = 2*1016/106 = 2*1010
The number of seconds per day is 86,400 so this is about
231,480 days (634 years).

Types of Algorithm complexity analysis

24

 Best case.

 Lower bound on cost.

 Determined by “easiest” input.

 Provides a goal for all inputs.

 Worst case.

 Upper bound on cost.

 Determined by “most difficult” input.

 Provides a guarantee for all inputs.

 Average case. Expected cost for random input.

 Need a model for “random” input.

 Provides a way to predict performance.

Best, Worst and Average Cases

25

 Not all inputs of a given size take the same time.

 Sequential search for K in an array of n integers:

 Begin at first element in array and look at each element in turn until

K is found.

 Best Case: [Find at first position: 1 compare]

 Worst Case: [Find at last position: n compares]

 Average Case: [(n + 1)/2 compares]

 While average time seems to be the fairest measure, it may be difficult

to determine.

 Depends on distribution. Assumption for above analysis: Equally

likely at any position.

 When is worst case time important?

 algorithms for time-critical systems

Order of Growth and Asymptotic Analysis

26

 Suppose an algorithm for processing a retail store’s inventory takes:

 10,000 milliseconds to read the initial inventory from disk, and then

 10 milliseconds to process each transaction (items acquired or sold).

 Processing n transactions takes (10,000 + 10 n) milliseconds.

 Even though 10,000 >> 10, the "10 n" term will be more important if

the number of transactions is very large.

 We also know that these coefficients will change if we buy a faster

computer or disk drive, or use a different language or compiler.

 we want to ignore constant factors (which get smaller and smaller as

technology improves)

 In fact, we will not worry about the exact values, but will look at “broad

classes" of values.

Growth rates

27

 The growth rate for an algorithm is the rate at which the cost of the

algorithm grows as the size of its input grows.

http://algoviz.org/OpenDSA/Books/CS3114/html/Glossary.html

Rate of Growth

28

 Consider the example of buying elephants and goldfish:

 Cost: cost_of_elephants + cost_of_goldfish

 Cost ~ cost_of_elephants (approximation)

 since the cost of the gold fish is insignificant when compared with cost of

elephants

 Similarly, the low order terms in a function are relatively insignificant for

large n

 n4 + 100n2 + 10n + 50 ~ n4

 i.e., we say that n4 + 100n2 + 10n + 50 and n4 have the same rate of

growth

More Examples: fB(n)=n2+1 ~ n2

 fA(n)=30n+8 ~ n

Visualizing Orders of Growth

29

 On a graph, as you go to the right, a faster growing

function eventually becomes larger...

fA(n)=30n+8

Increasing n

fB(n)=n2+1

V
a
lu

e
o
f

fu
n

ct
io

n

Asymptotic analysis

30

 Refers to the study of an algorithm as the input size "gets big" or

reaches a limit.

 To compare two algorithms with running times f(n) and g(n), we need a

rough measure that characterizes how fast each function grows-

growth rate.

 Ignore constants [especially when input size very large]

 But constants may have impact on small input size

 Several notations are used to describe the running-time equation for an

algorithm.

 Big-Oh (O), Little-Oh (o)

 Big-Omega (Ω), Little-Omega(w)

 Theta Notation()

Big-Oh Notation

31

 Definition

For f(n) a non-negatively valued function, f(n) is in

set O(g(n)) if there exist two positive

constants c and n0 such that f(n)≤cg(n)for all n>n0 .

 Usage: The algorithm is in O(n2) in [best ,average, worst]

case.

 Meaning: For all data sets big enough (i.e., n > n0), the

algorithm always executes in less than cg (n) steps [in best,

average or worst case].

Big-Oh Notation - Visually

32

Big-O Visualization

.

 O(g(n)) is the set of functions

with smaller or same order of

growth as f(n)

 Wish tightest upper bound:

 While T(n) = 3n2 is in O(n3),

we prefer O(n2).

 Because, it provides more

information to say O(n2) than

O(n3)

Big-O

34

 Demonstrating that a function f(n) is in big-O of a function

g(n) requires that we find specific constants c and no for which

the inequality holds.

 The following points are facts that you can use for Big-Oh

problems:

 1<= n for all n >= 1

 n <= n2 for all n >= 1

 2n <= n! for all n >= 4

 log2n <= n for all n >= 2

 n <= nlog2n for all n >= 2

Examples

35

 f(n) = 10n + 5 and g(n) = n. Show that f(n) is in O(g(n)).

To show that f(n) is O(g(n)) we must show constants c

and no such that

 f(n) <= c.g(n) for all n >= no

10n + 5 <= c.n for all n >= no

Try c = 15. Then we need to show that 10n + 5 <=

15n

 Solving for n we get: 5 < 5n or 1 <= n.

 So f(n) =10n + 5 <= 15.g(n) for all n >= 1.

 (c = 15, no = 1).

Examples

36

 2n2 = O(n3):

 n2 = O(n2):

 1000n2+1000n = O(n2):

 n = O(n2):

2n2 ≤ cn3 2 ≤ cn c = 1 and n0= 2

n2 ≤ cn2 c ≥ 1 c = 1 and n0= 1

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000

n ≤ cn2 cn ≥ 1 c = 1 and n0= 1

More Examples

37

 Show that 30n+8 is O(n).

 Show c,n0: 30n+8 cn, n>n0.

Let c=31, n0=8.

Assume n>n0=8. Then

 cn = 31n = 30n + n > 30n+8,

 So 30n+8 < cn.

No Uniqueness

38

 There is no unique set of values for n0 and c in proving the asymptotic

bounds

 Prove that 100n + 5 = O(n2)

 100n + 5 ≤ 100n + n = 101n ≤ 101n2
 for all n ≥ 5

 n0 = 5 and c = 101 is a solution

 100n + 5 ≤ 100n + 5n = 105n ≤ 105n2

 for all n ≥ 1

 n0 = 1 and c = 105 is also a solution

 Must find SOME constants c and n0 that satisfy the asymptotic notation

relation

Order of common functions

39

Notation Name Example

O(1) Constant Adding two numbers, c=a+b

O(log n) Logarithmic Finding an item in a sorted array with a binary search or a search

tree (best case)

O(n) Linear Finding an item in an unsorted list or a malformed tree (worst

case); adding two n-digit numbers

O(nlogn) Linearithmic Performing a Fast Fourier transform; heap sort, quick sort (best

case), or merge sort

O(n2) Quadratic Multiplying two n-digit numbers by a simple algorithm; adding

two n×n matrices; bubble sort (worst case or naive

implementation), shell sort, quick sort (worst case), or insertion

sort

Some properties of Big-O

40

 Constant factors are may be ignored

For all k>0, kf is O(f)

 The growth rate of a sum of terms is the growth rate of its

fastest growing term.

Ex, an3 + bn2 is O(n3)

 The growth rate of a polynomial is given by the growth

rate of its leading term

 If f is a polynomial of degree d, then f is O(nd)

Implication of Big-Oh notation

41

 We use Big-Oh notation to say how slowly code might run

as its input grows.

 Suppose we know that our algorithm uses at most O(f(n))

basic steps for any n inputs, and n is sufficiently large, then

we know that our algorithm will terminate after executing

at most constant times f(n) basic steps.

 We know that a basic step takes a constant time in a

machine.

 Hence, our algorithm will terminate in a constant times

f(n) units of time, for all large n.

Other notations

42

 Reading Assignments

Next Lecture:-Simple Sorting and Searching Algorithms

43

End of Lecture 2

