Lecture Two- Algorithm Analysis

Data Structure and Algorithm Analysis

e
Algorithm analysis

e Studies computing resource requirements of different algorithms

° Computing Resources
® Running time (Most precious)
® Memory usage

¢ Communication bandwidth etc
° Why need algorithm analysis ?
® Writing a Working program is not good enough

The program may be inefficient!

If the program is run on a large data set, then the running time

becomes an issue

® Goalis to pick up an efficient algorithm for the problem at hand

e
Reasons to perform analyze algorithms

® [t enables us to:
® Predict performance of algorithms
® Compare algorithms.
® Provide guarantees on running time/space of algorithms

® Understand theoretical basis.

® Primary practical reason: avoid performance bugs.

® client gets poor performance because programmer did not understand

performance characteristics

e
How to Measure Efficiency/performance?

* Two approaches to measure algorithms

efficiency/performance

® Empirical
Implement the algorithms and
Trying them on different instances of input
Use/plot actual clock time to pick one

® Theoretical/ Asymptotic Analysis

Determine quantity of resource required

mathematically needed by each algorithms

4 ™
Example- Empirical

Actual clock time

250 0.0

500 0.0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1
16,000 ?

e
Drawbacks of empirical methods

e |t is difficult to use actual clock because clock time varies based

on
® Specitic processor speed
® Current processor load
® Specific data for a particular run of the program
Input size
Input properties
® Programming language (C++, java, python ...)
® The programmer (You, Me, Billgate ...)

® Operating environment/platform (PC, sun, smartphone etc)

® Theretore, it is quite machine dependent

e
Machine independent analysis

® (Critical resources:

® Time, Space (disk, RAM), Programmer s etfort, Ease of

use (user’s effort).
® Factors affecting running time:

® System dependent effects.
Hardware: CPU, memory, cache, ...
Software: compiler, interpreter, garbage collector, ...
System: operating system, network, other apps, ...

® System independent eftfects
Algorithm.

7 Input data/ Problem size

-

4 ™
Machine independent analysis...

® For most algorithms, running time depends on “size” of the
input.
® Size is often the number of inputs processed

® Example:- in searching problem, size is the no of items to

be sorted

® Running time is expressed as T(n) for some functionT on

input size n.

e

Machine independent analysis

Efficiency of an algorithm is measured in terms of the number of basic
operations it performs.

® Not based on actual time-clock

We assume that every basic operation takes constant time.

® Arbitrary time

Examples of Basic Operations:

® Single Arithmetic Operation (Addition, Subtraction, Multiplication)
® Assignment Operation

® Single Input/ Output Operation

® Single Boolean Operation

® Function Return

We do not distinguish between the basic operations.

Examples of Non-basic Operations are
® Sorting, Searching,

e

Examples: Count of Basic Operations T(n)

* Sample Code

int count()

{
Int k=0;
cout<< “Enter an integer”;
cin~>>n;
for i = 0;i < n;it++)

k = k+1;

return O;

j

10

4 N

Examples: Count of Basic Operations T(n)

Sample Code

int count()

d

Int k=0; ® 1 for the assignment statement: int k=0

Count of Basic Operations (Time Units)

« : » ® 1 for the output statement.
cout<< “Enter an integer”; P

e 1 for the input statement.

cin=>>n;
i : . ¢ In the forl :
for (i = 0;i < n;i++) n the for foop
® 1 assignment, n+1tests, and n increments.
k = k+1; 5
® n loops of 2 units for an assignment, and
return 0; an addition.
} ® 1 for the return statement.

o T(n)=1+1+1+(1+n+1+n)+2n+1 =
4n+6

N Y,

e

Examples: Count of Basic Operations T(n)

Int total(int n)
{
Int sum=0;
for (int 1=1;i<=n;1++)
sum=sum-i;
return sum;

}

12

e

Examples: Count of Basic Operations T(n)

Count of Basic Operations (Time
Sample Code Units)

int total(int n)

{

Int sum=0;

for (inti=1;i<=n;i++)

1 for the assignment statement: int sum=0

In the for loop:
® 1 assignment, nt1tests, and n increments.

Sum:sum+i; ® n loops of 2 units for an assignment, and an

addition.
return sum;

;

1 for the return statement.

T () =1+ (1+n+1+n)+2n+1 = 4n+4

13

Examples: Count of Basic Operations T(n)
void func()
{
Int x=0;
Int i=0;
Int j=1;
cout<< “Enter an Integer value”;
cin=>>n;
while (i<n){
X++;
i++;
j
while (j<n)
{
jt+;
j
14 }

-

e

Sample Code

void func()
{
Int x=0;
Int i=0;
Intj=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
x++;
i+,

b
while (j<n)

{

j+;

’

15

Examples: Count of Basic Operations T(n)

Count of Basic Operations (Time Units)

® 1 for the first assignment statement: x=0;

* 1 for the second assignment statement: i=0;
* 1 for the third assignment statement: j=1;

* 1 for the output statement.

* 1 for the input statement.

® In the first while loop:
e n+ltests

® nloops of 2 units for the two increment (addition) operations

* In the second while loop:
° n tests

® n-1 increments

* T(m)=1+1+1+1+1+n+1+2n+n+tn-1 = 5n+5

e

16

Examples: Count of Basic Operations T(n)

Sample Code
int sum (int n)
int partial_sum= 0;
for (inti = 1;i <= n;i++)
partial_sum= partial_sum+ (i * i * i),

return partial_sum;

j

e

Examples: Count of Basic Operations T(n)

Sample code Count of Basic Operations (Time Units)

int sum (int n)

{

int partjal_sumz 0; ® 1 for the assignment.

for (int i=1;i<=n;it ‘|‘) ® 1 assignment, n+1tests, and n increments.

artial_sum= partial sum+ (i *i * ® n loops of 4 units for an assignment, an addition,
P P o
i); and two multiplications.

)

return partial_sum;

;

e 1 for the return statement.

o T (n)=1+(1+n+1+n)+4n+1 =
6n+4

17

4 N
Simplified Rules to Compute Time Units(Formal Method)

» for Loops:

In general, a for loop translates to a summation. The index and
bounds of the summation are the same as the index and
bounds of the for loop.

for (inti=1;i <=N;i++){ Z?’;l 2=2N
sum = sum-+i;

}

e
Simplified Rules to Compute Time Units

» Nested Loops:

for (inti=1i;1<=N; it++) { Yiry XMiom =3MN
for (intj =13 <=M; j++) {
sum = sum-+i+j;
;
j

19

e
Simplified Rules to Compute Time Units

» Consecutive Statements

for (inti=1;1<=N;1++) {
sum = sum-+i;

} IZei2l + 12, XY_;3|=2N + 3N?
for (inti=1;1<=N;i1++) {
for (intj=1;j<=N;jt+) {
sum = sum-+i+j;
h
h

20

e
Simplified Rules to Compute Time Units

e Conditionals:

o |f (test) sl else s2: Compute the maximum
of the running time for s1 and s2.

if (test == 1) {

for(inti=1;i<=N;i++){ =
sum = sum-+i; max Z 2 Z Z 3
13 i=1 i=1 j=1)

Else
{ max (ZN 3]\%)=3N2
for(inti=1;i<=N; i++) {

for(intj=1;j<=N;j++){

sum = sum+i+j;

3

21

e

Example: Computation of Run-time

* Suppose we |

Instructions |

nave hardware capable of executing 10°

ber second. How long would it take to

execute an a

(n) = 2n’ on

22

_gorithm whose complexity function was T

an input size of n =108%?

e
Example: Computation of Run-time

* Suppose we have hardware capable of executing 10 instructions
per second. How long would it take to execute an algorlthm
whose complexity function wasT (n) = 2n” on an input size of n

=10%7

The total number of operations to be performed would be

T(10%):

T(10%) = 2%(10%)> =2%*10'¢

The required number of seconds would be given by
T(10%)/10° so:

Running time = 2%10'6/10% = 2*%101°

The number of seconds per day is 86,400 so this is about
231,480 days (634 years).

23

e
Types of Algorithm complexity analysis

® Best case.
® [ower bound on cost.
® Determined by “casiest” input.

® Provides a goal for all inputs.

® Worst case.
* Upper bound on cost.
® Determined by “most difficult” input.

® Provides a guarantee for all inputs.

® Average case. Expected cost for random input.
® Need a model for “random” input.

® Provides a way to predict performance.

24

4 N
Best, Worst and Average Cases

e Not all inputs of a given size take the same time.

® Sequential search for K in an array of n integers:

o Begin at first element in array and look at each element in turn until
K is found.

® Best Case: [Find at first position: 1 compare]
® Worst Case: [Find at last position: n compares]
® Average Case: [(n + 1)/2 compares]

® While average time seems to be the fairest measure, it may be difficult

to determine.

® Depends on distribution. Assumption for above analysis: Equally

likely at any position.

® When is worst case time important?

o5 @ algorithms for time-critical systems

/
Order of Growth and Asymptotic Analysis

® Suppose an algorithm for processing a retail store’s inventory takes:
® 10,000 milliseconds to read the initial inventory from disk, and then

® 10 milliseconds to process each transaction (items acquired or sold).
® Processing n transactions takes (10,000 + 10 n) milliseconds.

® Even though 10,000 >> 10, the "10 n" term will be more important if

the number of transactions is very large.

® We also know that these coefficients will Change if we buy a faster

computer or disk drive, or use a different language or compiler.

® we want to ignore constant factors (which get smaller and smaller as

technology improves)

* In fact, we will not worry about the exact values, but will look at “broad

classes" of values.

26

e
Growth rates

® The growth rate for an algorithm is the rate at which the cost of the

algorithm grows as the size of its input grows.

[nl}] 2¢ n? A log m
1400 t |

1200 ¢

1000 ¢

800 ¢

600 ¢

400 +

200 t

27

™~

http://algoviz.org/OpenDSA/Books/CS3114/html/Glossary.html

e
Rate of Growth

® Consider the example of buying elephants and goldfish:
Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

since the cost of the gold fish is insignificant when Compared with cost of

elephants

® Similarly, the low order terms in a function are relatively insignificant for

large n
n*+100n2+ 10n+50 ~ n*
i.e., we say that n* 4+ 100n” + 10n + 50 and n* have the same rate of

growth
More Examples: fB(n):n2+1 ~ n?
© fA(n):3On—|—8 ~ n
28

-

e

Visualizing Orders of Growth

® On a graph, as you go to the right, a faster growing

function eventually becomes larger. ..

fg(nN)=n?+1

Value of function —»

f,(N)=30n+8

Increasing n —»

29

4 I
Asymptotic analysis
® Refers to the study of an algorithm as the input size " gets big" or
reaches a limit.

* To compare two algorithms with running times f(n) and g(n), we need a
rough measure that characterizes how fast each function grows-
growth rate.

® Ignore constants [especia]]y when input size very]arge]

® But constants may have impact on small input size

e Several notations are used to describe the running-time equation for an

algorithm.

* Big-Oh (O), Little-Oh (o)

® Big-Omega ({), Little-Omega(«)
® Theta Notation()

30

N /

e
Big-Oh Notation

® Detinition
® For f(n) a non-negatively valued function, f(n) is in
set O(g(n)) if there exist two positive
constants ¢ and n, such that f(n)<cg(n)for all n>n, .
® Usage: The algorithm is in O(n?) in [best ,average, worst]
case.
® Meaning: For all data sets big enough (i.e., n > n0), the

algorithm always executes in less than cg (n) steps [in best,

average or worst case].

31

e

-

Big-Oh Notation - Visually

O(g(n)) ={f(n): there exist positive constants ¢ and ng such that
0< f(n)<cg(n)toralln = ny} .

cg(n)

g(n) 1s an asymptotic upper bound tor f (n).

32

™~

Big-O Visualization

o O(g(n)) is the set of functions
with smaller or same order of
growth as f(n)

O3

O(N)

2
AN+10 2N -10N +100

2N-1

100N

TR

e Wish tightest upper bound:

e While T(n) =3n?is in O(n3),
we prefer O(n?).

e Because, it provides more

- 4 information to say O(n?) than
O(n?3)

100

3

of1)

OfNlogN)
SN+10 2N-1
10NIogN-10N+1

Nlogns100N

/
Big-0
® Demonstrating that a function f(n) is in big—O of a function

g(n) requires that we find specific constants ¢ and n_ for which

the inequality holds.

e The following points are facts that you can use for Big—Oh

problems:

¢ |[<=nforalln>=1

on <=n’foralln>=1
e <=nlforalln>=4
®log,n <=nforalln>=2

on <= nlogzn foralln >=2
34

e
Examples

® f(n) = 10n + 5 and g(n) = n. Show that f(n) is in O(g(n)).
® To show that f(n) is O(g(n)) we must show constants c
and n_ such that

f(n) <= c.g(n) for alln >=n,

10n +5 <=cmnforalln >=n_

Try ¢ = 15.Then we need to show that 10n + 5 <=
15n

Solving for n we get: 5 <5nor 1 <=n.
So f(n) =10n + 5 <= 15.g(n) for alln >= 1.
(c=15, n,=1).

35

e

Examples

e 2n¢ = O(n3): 2nP ¢ ecnd=> 2 <ecn=>c =1 and ny= 2

e n?=0(N°) pzcenmcs 1 =c=1and ny=1

e 1000n2+1000n = O(n3):
1000n?+1000n ¢ 1000n?+ n2 =1001n>= ¢c=1001 and n, = 1000

e n=0(n?): n<cnP=>cn21=c=1andn,=1

36

e

More Examples

® Show that 30n+8 is O(n).
® Show dc,n,: 30n+8 < cn, Vn>n,,

Let c=31, n,=8.

Assume n>n,=8. Then

cn = 31n = 30n + n > 30n+8§
So 30n+8 < cn.

b/

37

/ ™
No Unigueness

® There is no unique set of values for Ny and C in proving the asymptotic

bounds

e Prove that 100n + 5 = O(n?)
e 100n + 5<100n + n = 101n < 101n?
foralln > H
no = 5 and ¢ = 101 is a solution

e 100n + 5 < 100n + 5n = 105n < 105n2
forallh > 1

N = 1 and ¢ = 105 is also a solution
® Must find SOME constants ¢ and n, that satisfy the asymptotic notation

relation

- * /

Order of common functions

Notation Example

O(1) Constant Adding two numbers, c=a+b

O(log n) Logarithmic Finding an item in a sorted array with a binary search or a search

tree (best case)

O(n) Linear Finding an item in an unsorted list or a malformed tree (worst

case); adding two n-digit numbers

O(nlogn) Linearithmic Performing a Fast Fourier transform; heap sort, quick sort (best

case), or merge sort

()(n2) Quadratic Multiplying two n-digit numbers by a simple algorithm; adding
two nXn matrices; bubble sort (worst case or naive
implementation), shell sort, quick sort (worst case), or insertion

sort

e
Some properties of Big-O

¢ Constant factors are may be ignored

® For all k>0, kt'is O(¥)

e The growth rate of a sum of terms is the growth rate of its

fastest growing term.
® Ex, an’ + bn? is O(n’)

® The growth rate of a polynomial is given by the growth
rate of its leading term

o If { is a polynomial of degree d, then fis O(n?)

40

4 N
Implication of Big-Oh notation

® We use Big—Oh notation to say how slowly code might run

as its input grows.

® Suppose we know that our algorithm uses at most O(f(n))
basic steps for any n inputs, and n is sufficiently large, then
we know that our algorithm will terminate after executing

at most constant times f(n) basic steps.

® We know that a basic step takes a constant time in a

machine.

® Hence, our algorithm will terminate in a constant times

f(n) units of time, for all large n.

41

/
Other notations

® Reading Assignments

42

End of Lecture 2

Next Lecture:—Simple Sorting and Searching Algorithms

43

