
Data Structure and Algorithm Analysis 

Lecture Two- Algorithm Analysis 



Algorithm analysis 
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 Studies computing resource requirements of different algorithms 

 Computing Resources 

 Running time (Most precious) 

 Memory usage 

 Communication bandwidth etc 

 Why need algorithm analysis ? 

 Writing a working program is not good enough 

 The program may be inefficient! 

 If the program is run on a large data set, then the running time 

becomes an issue 

 Goal is to pick up an efficient algorithm for the problem at hand 

 



Reasons to perform analyze algorithms 
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 It enables us to: 

 Predict performance of algorithms 

 Compare algorithms.  

 Provide guarantees on running time/space of algorithms 

 Understand theoretical basis.  

 Primary practical reason: avoid performance bugs.  

 client gets poor performance because programmer did not understand 

performance characteristics 



How to Measure Efficiency/performance? 
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 Two approaches to measure algorithms 

efficiency/performance 

Empirical 

 Implement the algorithms and  

Trying them on different instances of input 

Use/plot actual clock time to pick one 

Theoretical/Asymptotic Analysis 

Determine quantity of resource required 

mathematically needed by each algorithms 
 



Example- Empirical 
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Input size 

Actual clock time 



Drawbacks of empirical methods 
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 It is difficult to use actual clock because clock time varies based 

on  

 Specific processor speed 

Current processor load 

 Specific data for a particular run of the program 

 Input size 

 Input properties 

 Programming language (C++, java, python …) 

 The programmer (You, Me, Billgate …) 

Operating environment/platform (PC, sun, smartphone etc) 

 Therefore, it is quite machine dependent 



Machine independent analysis 
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 Critical resources: 

Time, Space (disk, RAM), Programmer’s effort, Ease of 

use (user’s effort). 

 Factors affecting running time: 

 System dependent effects.  

Hardware: CPU, memory, cache, … 

 Software: compiler, interpreter, garbage collector, … 

 System: operating system, network, other apps, … 

 System independent effects 

Algorithm. 

 Input data/ Problem size  



Machine independent analysis… 
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 For most algorithms, running time depends on “size” of the 

input. 

 Size is often the number of inputs processed 

Example:- in searching problem, size is the no of items to 

be sorted 

 Running time is expressed as T(n) for some function T on 

input size n. 

 



Machine independent analysis 
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 Efficiency of an algorithm is measured in terms of the number of basic 
operations it performs. 
 Not based on actual time-clock 

 We assume that every basic operation takes constant time. 
 Arbitrary time 

 Examples of Basic Operations: 
 Single Arithmetic Operation (Addition, Subtraction, Multiplication) 
 Assignment Operation 
 Single Input/Output Operation 
 Single Boolean Operation 
 Function Return 

 We do not distinguish between the basic operations. 

 Examples of Non-basic Operations are  
 Sorting, Searching. 

 



Examples: Count of Basic Operations T(n) 
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 Sample Code 

int count() 

{  

Int k=0;  

cout<< “Enter an integer”; 

cin>>n; 

for (i = 0;i < n;i++) 

k = k+1; 

return 0; 

} 



Examples: Count of Basic Operations T(n) 

Sample Code 
Count of Basic Operations (Time Units) 
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int count() 

{  

Int k=0;  

cout<< “Enter an integer”; 

cin>>n; 

for (i = 0;i < n;i++) 

k = k+1; 

return 0; 

} 

 

 

 1 for the assignment statement:  int k=0 

 1 for the output statement. 

 1 for the input statement. 

 In the for loop: 

 1 assignment, n+1tests, and n increments. 

 n loops of 2 units for an assignment, and 

an addition. 

 1 for the return statement. 

 

 T (n) = 1+1+1+(1+n+1+n)+2n+1 = 

4n+6 



Examples: Count of Basic Operations T(n) 
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int total(int n) 

{ 

Int sum=0; 

for (int i=1;i<=n;i++) 

  sum=sum+i; 

return sum; 

} 



Examples: Count of Basic Operations T(n) 

Sample Code 

Count of Basic Operations (Time 

Units) 
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int total(int n) 

{ 

Int sum=0; 

for (inti=1;i<=n;i++) 

  sum=sum+i; 

return sum; 

} 

 

 

 

 1 for the assignment statement:  int sum=0 

 In the for loop: 

 1 assignment, n+1tests, and n increments. 

 n loops of 2 units for an assignment, and an 

addition. 

 1 for the return statement. 

 

 T (n) = 1+ (1+n+1+n)+2n+1 = 4n+4  



Examples: Count of Basic Operations T(n) 
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void func() 

{  

 Int x=0; 

 Int i=0; 

 Int j=1; 

 cout<< “Enter an Integer value”; 

 cin>>n; 

 while (i<n){ 

  x++; 

  i++; 

 } 

 while (j<n) 

 { 

     j++;  

 } 

} 

 



Examples: Count of Basic Operations T(n) 

Sample Code Count of Basic Operations (Time Units) 
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void func() 

{  

 Int x=0; 

 Int i=0; 

 Int j=1; 

 cout<< “Enter an Integer value”; 

 cin>>n; 

 while (i<n){ 

  x++; 

  i++; 

 } 

 while (j<n) 

 { 

     j++;  

 } 

} 

 

 

 1 for the first assignment statement: x=0; 

 1 for the second assignment statement: i=0; 

 1 for the third assignment statement: j=1; 

 1 for the output statement. 

 1 for the input statement. 

 In the first while loop: 

 n+1tests 

 n loops of 2 units for the two increment (addition) operations 
 

 In the second while loop: 

 n tests 

 n-1 increments 

 T (n) = 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5 



Examples: Count of Basic Operations T(n) 
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 Sample Code 

int sum (int n) 

{ 

int partial_sum= 0; 

for (int i = 1; i <= n; i++) 

partial_sum= partial_sum+ (i * i * i); 

return partial_sum; 

} 



Examples: Count of Basic Operations T(n) 

Sample code Count of Basic Operations (Time Units) 
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int sum (int n) 

{ 

int partial_sum= 0; 

for (int i = 1; i <= n; i++) 

partial_sum= partial_sum+ (i * i * 

i); 

return partial_sum; 

} 

 

 

 

 1 for the assignment. 
 

 1 assignment, n+1tests, and n increments. 
 

 n loops of 4 units for an assignment, an addition, 

and two multiplications. 

 1 for the return statement. 

 

 T (n) = 1+(1+n+1+n)+4n+1 = 

6n+4 



Simplified Rules to Compute Time Units(Formal Method)  
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



Simplified Rules to Compute Time Units  
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

 



Simplified Rules to Compute Time Units  
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



Simplified Rules to Compute Time Units  
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 Conditionals:  

 If (test) s1 else s2: Compute the maximum 

of the running time for s1 and s2. 

 

if (test == 1) { 

for ( int i = 1; i <= N; i++) { 

sum = sum+i; 

}} 

Else 

{ 

 for ( int i = 1; i <= N; i++) { 

for ( int j = 1; j <= N; j++) { 

sum = sum+i+j; 

}} 



Example: Computation of Run-time 
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 Suppose we have hardware capable of executing 106 

instructions per second. How long would it take to 

execute an algorithm whose complexity function was T 

(n) = 2n2 on an input size of n =108? 

 



Example: Computation of Run-time 
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 Suppose we have hardware capable of executing 106 instructions 
per second. How long would it take to execute an algorithm 
whose complexity function was T (n) = 2n2 on an input size of n 
=108? 

 
The total number of operations to be performed would be 
T(108): 
T(108) = 2*(108)2 =2*1016 
The required number of seconds would be given by    
  T(108)/106 so: 
Running time = 2*1016/106 = 2*1010 
The number of seconds per day is 86,400 so this is about 
231,480 days (634 years). 

 



Types of Algorithm complexity analysis  
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 Best case.  

 Lower bound on cost.  

 Determined by “easiest” input.  

 Provides a goal for all inputs.  

 Worst case.  

 Upper bound on cost.  

 Determined by “most difficult” input.  

 Provides a guarantee for all inputs.  

 Average case. Expected cost for random input.  

 Need a model for “random” input.  

 Provides a way to predict performance. 



Best, Worst and Average Cases 
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 Not all inputs of a given size take the same time. 

 Sequential search for K in an array of n integers: 

 Begin at first element in array and look at each element in turn until 

K is found. 

 Best Case: [Find at first position: 1 compare] 

 Worst Case: [Find at last position: n compares] 

 Average Case: [(n + 1)/2 compares] 

 While average time seems to be the fairest measure, it may be difficult 

to determine. 

 Depends on distribution. Assumption for above analysis: Equally 

likely at any position. 

 When is worst case time important? 

 algorithms for time-critical systems 



Order of Growth and Asymptotic Analysis 
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 Suppose an algorithm for processing a retail store’s inventory takes: 

 10,000 milliseconds to read the initial inventory from disk, and then  

 10 milliseconds to process each transaction (items acquired or sold). 

 Processing n transactions takes (10,000 + 10 n) milliseconds.  

 Even though 10,000 >> 10, the "10 n" term will be more important if 

the number of transactions is very large. 

 We also know that these coefficients will change if we buy a faster 

computer or disk drive, or use a different language or compiler. 

 we want to ignore constant factors (which get smaller and smaller as 

technology improves) 

 In fact, we will not worry about the exact values, but will look at “broad 

classes" of values. 



Growth rates 
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 The growth rate for an algorithm is the rate at which the cost of the 

algorithm grows as the size of its input grows. 

http://algoviz.org/OpenDSA/Books/CS3114/html/Glossary.html


Rate of Growth 
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 Consider the example of buying elephants and goldfish: 

  Cost: cost_of_elephants + cost_of_goldfish 

  Cost ~ cost_of_elephants (approximation)  

 since the cost of the gold fish is insignificant when compared with cost of 

elephants 

 Similarly, the low order terms in a function are relatively insignificant for 

large n 

              n4 + 100n2 + 10n + 50    ~     n4 

 i.e., we say that n4 + 100n2 + 10n + 50 and n4 have the same  rate of 

growth  

More Examples:         fB(n)=n2+1 ~     n2 


                                       fA(n)=30n+8    ~     n 

 

 

 



Visualizing Orders of Growth 
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 On a graph, as you go to the right, a faster growing 

function eventually becomes larger...  

 

fA(n)=30n+8 

Increasing n  

fB(n)=n2+1 
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Asymptotic analysis 
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 Refers to the study of an algorithm as the input size "gets big" or 

reaches a limit. 

 To compare two algorithms with running times f(n) and g(n), we need a 

rough measure that characterizes how fast each function grows- 

growth rate. 

 Ignore constants [especially when input size very large] 

 But constants may have impact on small input size 

 Several notations are used to describe the running-time equation for an 

algorithm. 

 Big-Oh (O),  Little-Oh (o) 

 Big-Omega (Ω), Little-Omega(w) 

 Theta Notation() 

 



Big-Oh Notation 
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 Definition 

For f(n) a non-negatively valued function, f(n) is in 

set O(g(n)) if there exist two positive 

constants c and n0 such that f(n)≤cg(n)for all n>n0 . 

 Usage: The algorithm is in O(n2) in [best ,average, worst] 

case. 

 Meaning: For all data sets big enough (i.e., n > n0), the 

algorithm always executes in less than cg (n) steps [in best, 

average or worst case]. 

 

 

 



Big-Oh Notation - Visually 
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Big-O Visualization 

. 

     O(g(n)) is the set of functions 

with smaller or same order of 

growth as f(n) 

 
 Wish tightest upper bound: 

 While T(n) = 3n2 is in O(n3), 

we prefer O(n2). 

 Because, it provides more 

information to say O(n2) than 

O(n3) 

 



Big-O  
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 Demonstrating that a function f(n) is in big-O of a function 

g(n) requires that we find specific constants c and no for which 

the inequality holds. 

 

 The following points are facts that you can use for Big-Oh 

problems: 

 1<= n for all n >= 1 

 n <= n2 for all n >= 1 

 2n <= n! for all n >= 4 

 log2n <= n for all n >= 2 

 n <= nlog2n for all n >= 2 



Examples 
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 f(n) = 10n + 5 and g(n) = n. Show that f(n) is in O(g(n)). 

To show that f(n) is O(g(n)) we must show constants c 

and no such that  

 f(n) <= c.g(n) for all n >= no 

 

10n + 5 <= c.n for all n >= no 

Try c = 15. Then we need to show that 10n + 5 <= 

15n 

 Solving for n we get: 5 < 5n or 1 <= n. 

 So f(n) =10n + 5 <= 15.g(n) for all n >= 1. 

 (c = 15,  no = 1). 



Examples 
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 2n2 = O(n3): 

  n2 = O(n2): 

  1000n2+1000n = O(n2):  

  

  n = O(n2): 

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2 

n2 ≤ cn2  c ≥  1   c = 1 and n0= 1 

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000 

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1 



More Examples 
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 Show that 30n+8 is O(n). 

 Show c,n0: 30n+8  cn, n>n0. 

 

Let c=31, n0=8.   

Assume n>n0=8.  Then 

 cn = 31n = 30n + n > 30n+8,  

 So 30n+8 < cn. 
 



No Uniqueness 
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 There is no unique set of values for n0 and c in proving the asymptotic 

bounds 

 Prove that  100n + 5 = O(n2) 

 100n + 5 ≤ 100n + n = 101n ≤ 101n2 
    for all n ≥ 5 

  n0 = 5 and c = 101 is a solution 

 100n + 5 ≤ 100n + 5n = 105n ≤ 105n2 

   for all n ≥ 1 

   n0 = 1 and c = 105 is also a solution 

 Must find SOME constants c and n0 that satisfy the asymptotic notation 

relation 



Order of common functions 
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Notation Name Example 

O(1) Constant Adding two numbers, c=a+b 

O(log n) Logarithmic Finding an item in a sorted array with a binary search or a search 

tree (best case) 

O(n) Linear Finding an item in an unsorted list or a malformed tree (worst 

case); adding two n-digit numbers 

O(nlogn) Linearithmic Performing a Fast Fourier transform; heap sort, quick sort (best 

case), or merge sort 

O(n2) Quadratic Multiplying two n-digit numbers by a simple algorithm; adding 

two n×n matrices; bubble sort (worst case or naive 

implementation), shell sort, quick sort (worst case), or insertion 

sort 



Some properties of Big-O 
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 Constant factors are may be ignored 

For all k>0, kf is O(f) 

 The growth rate of a sum of terms is the growth rate of its 

fastest growing term. 

Ex, an3 + bn2 is O(n3 ) 

 The growth rate of a polynomial is given by the growth 

rate of its leading term 

 If f is a polynomial of degree d, then f is O(nd) 

 



Implication of Big-Oh notation 
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 We use Big-Oh notation to say how slowly code might run 

as its input grows. 

 Suppose we know that our algorithm uses at most O(f(n)) 

basic steps for any n inputs, and n is sufficiently large, then 

we know that our algorithm will terminate after executing 

at most constant times f(n) basic steps. 

 We know that a basic step takes a constant time in a 

machine. 

 Hence, our algorithm will terminate in a constant times 

f(n) units of time, for all large n. 



Other notations 
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 Reading Assignments 



Next Lecture:-Simple Sorting and Searching Algorithms 
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End of Lecture 2 


