Lecture Two- Algorithm Analysis

Data Structure and Algorithm Analysis

Algorithm analysis

- Studies computing resource requirements of different algorithms
- Computing Resources
- Running time (Most precious)
- Memory usage
- Communication bandwidth etc
- Why need algorithm analysis ?
- Writing a working program is not good enough
- The program may be inefficient!
- If the program is run on a large data set, then the running time becomes an issue
- Goal is to pick up an efficient algorithm for the problem at hand

Reasons to perform analyze algorithms

- It enables us to:
- Predict performance of algorithms
- Compare algorithms.
- Provide guarantees on running time/space of algorithms
- Understand theoretical basis.
- Primary practical reason: avoid performance bugs.
- client gets poor performance because programmer did not understand performance characteristics

How to Measure Efficiency/performance?

- Two approaches to measure algorithms efficiency/performance
- Empirical
- Implement the algorithms and
- Trying them on different instances of input
- Use/plot actual clock time to pick one
- Theoretical/ Asymptotic Analysis
- Determine quantity of resource required mathematically needed by each algorithms

Example- Empirical

Actual clock time

Input size \longrightarrow| | |
| :---: | :---: |
| 250 | time (seconds) + |
| 500 | 0.0 |
| 1,000 | 0.1 |
| 2,000 | 0.8 |
| 4,000 | 6.4 |
| 8,000 | $?$ |

Drawbacks of empirical methods

- It is difficult to use actual clock because clock time varies based on
- Specific processor speed
- Current processor load
- Specific data for a particular run of the program
- Input size
- Input properties
- Programming language ($\mathrm{C}++$, java, python ...)
- The programmer (You, Me, Billgate ...)
- Operating environment/platform (PC, sun, smartphone etc)
- Therefore, it is quite machine dependent

Machine independent analysis

- Critical resources:
- Time, Space (disk, RAM), Programmer's effort, Ease of use (user's effort).
- Factors affecting running time:
- System dependent effects.
- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...
- System independent effects
- Algorithm.
- Input data/ Problem size

Machine independent analysis...

- For most algorithms, running time depends on "size" of the input.
- Size is often the number of inputs processed
- Example:- in searching problem, size is the no of items to be sorted
- Running time is expressed as $T(n)$ for some function T on input size n .

Machine independent analysis

- Efficiency of an algorithm is measured in terms of the number of basic operations it performs.
- Not based on actual time-clock
- We assume that every basic operation takes constant time.
- Arbitrary time
- Examples of Basic Operations:
- Single Arithmetic Operation (Addition, Subtraction, Multiplication)
- Assignment Operation
- Single Input/Output Operation
- Single Boolean Operation
- Function Return
- We do not distinguish between the basic operations.
- Examples of Non-basic Operations are
- Sorting, Searching.

Examples: Count of Basic Operations T(n)

- Sample Code int count()
\{

Int $\mathrm{k}=0$;
cout<<"Enter an integer"; cin $\gg n$;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
$\mathrm{k}=\mathrm{k}+1$;
return 0;
$\}$

Examples: Count of Basic Operations T(n)

Sample Code

int count()

Count of Basic Operations (Time Units)

$\{$
Int $\mathrm{k}=0$;
cout<<"Enter an integer"; cin $\gg \mathrm{n}$;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)

$$
\mathrm{k}=\mathrm{k}+1 \text {; }
$$

return 0;
\}

- 1 for the assignment statement: int $\mathrm{k}=0$
- 1 for the output statement.
- 1 for the input statement.
- In the for loop:
- 1 assignment, $\mathrm{n}+1$ tests, and n increments.
- n loops of 2 units for an assignment, and an addition.
- 1 for the return statement.
- $T(n)=1+1+1+(1+n+1+n)+2 n+1=$ $4 n+6$

Examples: Count of Basic Operations T(n)

int total(int n)
\{
Int sum=0;
for (int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
sum=sum+i;
return sum;
\}

Examples: Count of Basic Operations T(n)

Sample Code

```
int total(int n)
{
Int sum=0;
for (inti=1;i<= n;i++)
    sum=sum+i;
return sum;
}
```


Count of Basic Operations (Time Units)

- 1 for the assignment statement: int sum=0
- In the for loop:
- 1 assignment, $n+1$ tests, and n increments.
- n loops of 2 units for an assignment, and an addition.
- 1 for the return statement.
- $T(n)=1+(1+n+1+n)+2 n+1=4 n+4$

Examples: Count of Basic Operations T(n)

```
void func()
    {
    Int x=0;
    Int i=0;
    Int j=1;
    cout<< "Enter an Integer value";
    cin>>n;
    while (i<n){
        x++;
        i++;
    }
    while (j<n)
    {
        j++;
    }
```


Examples: Count of Basic Operations T(n)

Sample Code

```
void func()
{
    Int x=0;
    Int i=0;
    Int j=1;
    cout<< "Enter an Integer value";
    cin>>n;
    while (i<n) {
                x++;
            i++;
    }
    while (j<n)
    {
        j++;
    }
}
```


Count of Basic Operations (Time Units)

- 1 for the first assignment statement: $\mathrm{x}=0$;
- 1 for the second assignment statement: $\mathrm{i}=0$;
- 1 for the third assignment statement: $\mathrm{j}=1$;
- 1 for the output statement.
- 1 for the input statement.
- In the first while loop:
- $\mathrm{n}+1$ tests
- n loops of 2 units for the two increment (addition) operations
- In the second while loop:
- n tests
- $\mathrm{n}-1$ increments
- $\mathrm{T}(\mathrm{n})=1+1+1+1+1+\mathrm{n}+1+2 \mathrm{n}+\mathrm{n}+\mathrm{n}-1=5 \mathrm{n}+5$

Examples: Count of Basic Operations T(n)

- Sample Code
int sum (int n)
\{
int partial_sum $=0$;
for (int $\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
partial_sum= partial_sum $+(\mathrm{i} * \mathrm{i} * \mathrm{i})$; return partial_sum;
\}

Examples: Count of Basic Operations T(n)

```
Sample code
int sum (int n)
{
int partial_sum= 0;
for (int i = 1; i <= n; i++)
partial_sum= partial_sum+ (i * i *
i);
return partial_sum;
}
```


Count of Basic Operations (Time Units)

- 1 for the assignment.
- 1 assignment, $n+1$ tests, and n increments.
- n loops of 4 units for an assignment, an addition, and two multiplications.
- 1 for the return statement.
- $T(n)=1+(1+n+1+n)+4 n+1=$ $6 n+4$

Simplified Rules to Compute Time Units(Formal Method)

- for Loops:
- In general, a for loop translates to a summation. The index and bounds of the summation are the same as the index and bounds of the for loop.

```
for (int i = I; i <= N; i++) { 
    sum = sum+i;
}
```


Simplified Rules to Compute Time Units

- Nested Loops:

```
for ( inti= i; i<=N; i++) {
\sum N N=1 }\quad\mp@subsup{\sum}{j=1 Mri' = MMN}{M
    for ( int j = 1; j<= M; j++) {
        sum = sum +i+j;
    }
}
```


Simplified Rules to Compute Time Units

- Consecutive Statements

```
for(int i = 1; i<= N;i++) {
sum = sum+i;
}
for( int i = 1;i<=N; i++) {
    for (int j=1;j<=N; j++) {
        sum = sum +i+j;
    }
}
```

$$
\left|\sum_{i=1}^{N} 2\right|+\left|\sum_{i=1}^{N} \quad \sum_{j=1}^{N} 3\right|=2 N+3 N^{2}
$$

Simplified Rules to Compute Time Units

- Conditionals:
- If (test) s1 else s2: Compute the maximum of the running time for s1 and s2.

```
if (test == 1) {
    for ( inti=1; i <= N; i++) {
    sum = sum+i;
}}
Else
{
for ( int i = 1; i <= N; i++) {
    for (int j= 1; j<= N; j++) {
    sum = sum+i+j;
}}
```


Example: Computation of Run-time

- Suppose we have hardware capable of executing 10^{6} instructions per second. How long would it take to execute an algorithm whose complexity function was T $(\mathrm{n})=2 \mathrm{n}^{2}$ on an input size of $\mathrm{n}=10^{8}$?

Example: Computation of Run-time

- Suppose we have hardware capable of executing 10^{6} instructions per second. How long would it take to execute an algorithm whose complexity function was $T(n)=2 n^{2}$ on an input size of n $=10^{8}$?

The total number of operations to be performed would be $\mathrm{T}\left(10^{8}\right)$:
$\mathrm{T}\left(10^{8}\right)=2 *\left(10^{8}\right)^{2}=2 * 10^{16}$
The required number of seconds would be given by
$\mathrm{T}\left(10^{8}\right) / 10^{6}$ so:
Running time $=2 * 10^{16} / 10^{6}=2 * 10^{10}$
The number of seconds per day is 86,400 so this is about 231,480 days (634 years).

Types of Algorithm complexity analysis

- Best case.
- Lower bound on cost.
- Determined by "easiest" input.
- Provides a goal for all inputs.
- Worst case.
- Upper bound on cost.
- Determined by "most difficult" input.
- Provides a guarantee for all inputs.
- Average case. Expected cost for random input.
- Need a model for "random" input.
- Provides a way to predict performance.

Best, Worst and Average Cases

- Not all inputs of a given size take the same time.
- Sequential search for K in an array of n integers:
- Begin at first element in array and look at each element in turn until K is found.
- Best Case: [Find at first position: 1 compare]
- Worst Case: [Find at last position: n compares]
- Average Case: [(n+1)/2 compares]
- While average time seems to be the fairest measure, it may be difficult to determine.
- Depends on distribution. Assumption for above analysis: Equally likely at any position.
- When is worst case time important?
- algorithms for time-critical systems

Order of Growth and Asymptotic Analysis

- Suppose an algorithm for processing a retail store's inventory takes:
- 10,000 milliseconds to read the initial inventory from disk, and then
- 10 milliseconds to process each transaction (items acquired or sold).
- Processing n transactions takes $(10,000+10 \mathrm{n})$ milliseconds.
- Even though $10,000 \gg 10$, the " 10 n " term will be more important if the number of transactions is very large.
- We also know that these coefficients will change if we buy a faster computer or disk drive, or use a different language or compiler.
- we want to ignore constant factors (which get smaller and smaller as technology improves)
- In fact, we will not worry about the exact values, but will look at "broad classes" of values.

Growth rates

- The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.

Rate of Growth

- Consider the example of buying elephants and goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)
since the cost of the gold fish is insignificant when compared with cost of elephants

- Similarly, the low order terms in a function are relatively insignificant for large n

$$
n^{4}+100 n^{2}+10 n+50 \sim n^{4}
$$

i.e., we say that $n^{4}+100 n^{2}+10 n+50$ and n^{4} have the same rate of growth
More Examples: $\quad f_{\mathrm{B}}(n)=n^{2}+1 \sim n^{2}$

- $\quad f_{A}(n)=30 n+8 \sim n$

Visualizing Orders of Growth

- On a graph, as you go to the right, a faster growing function eventually becomes larger...

Asymptotic analysis

- Refers to the study of an algorithm as the input size "gets big" or reaches a limit.
- To compare two algorithms with running times $f(n)$ and $g(n)$, we need a rough measure that characterizes how fast each function growsgrowth rate.
- Ignore constants [especially when input size very large]
- But constants may have impact on small input size
- Several notations are used to describe the running-time equation for an algorithm.
- Big-Oh (O), Little-Oh (o)
- Big-Omega (Ω), Little-Omega((u)
- Theta Notation()

Big-Oh Notation

- Definition
- For $f(n)$ a non-negatively valued function, $f(n)$ is in set $O(g(n))$ if there exist two positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for all $\mathrm{n}>\mathrm{n}_{0}$.
- Usage: The algorithm is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in [best , average, worst] case.
- Meaning: For all data sets big enough (i.e., $n>n 0$), the algorithm always executes in less than $\mathrm{cg}(\mathrm{n})$ steps [in best, average or worst case].

Big-Oh Notation - Visually

$O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$.

$g(n)$ is an asymptotic upper bound for $f(n)$.

Big-O Visualization

$O(g(n))$ is the set of functions with smaller or same order of growth as $f(n)$

- Wish tightest upper bound:
- While $T(n)=3 n^{2}$ is in $O\left(n^{3}\right)$, we prefer $O\left(n^{2}\right)$.
- Because, it provides more information to say $O\left(n^{2}\right)$ than $O\left(n^{3}\right)$

Big-0

- Demonstrating that a function $f(n)$ is in big-O of a function $\mathrm{g}(\mathrm{n})$ requires that we find specific constants c and n_{o} for which the inequality holds.
- The following points are facts that you can use for Big-Oh problems:
- $1<=\mathrm{n}$ for all $\mathrm{n}>=1$
- $\mathrm{n}<=\mathrm{n}^{2}$ for all $\mathrm{n}>=1$
- $2^{\mathrm{n}}<=\mathrm{n}$! for all $\mathrm{n}>=4$
- $\log _{2} \mathrm{n}<=\mathrm{n}$ for all $\mathrm{n}>=2$
- $\mathrm{n}<=\operatorname{nlog}_{2} \mathrm{n}$ for all $\mathrm{n}>=2$

Examples

- $f(n)=10 n+5$ and $g(n)=n$. Show that $f(n)$ is in $O(g(n))$.
- To show that $f(n)$ is $O(g(n))$ we must show constants c and n_{o} such that
- $\mathrm{f}(\mathrm{n})<=\mathrm{c} . \mathrm{g}(\mathrm{n})$ for all $\mathrm{n}>=\mathrm{n}_{\mathrm{o}}$
- $10 \mathrm{n}+5<=\mathrm{c} . \mathrm{n}$ for all $\mathrm{n}>=\mathrm{n}_{\mathrm{o}}$
- $\operatorname{Tryc}=15$. Then we need to show that $10 \mathrm{n}+5<=$ $15 n$
- Solving for n we get: $5<5 \mathrm{n}$ or $1<=\mathrm{n}$.
- So $f(n)=10 n+5<=15 . g(n)$ for all $n>=1$.
- $\left(\mathrm{c}=15, \mathrm{n}_{\mathrm{o}}=1\right)$.

Examples

- $2 n^{2}=O\left(n^{3}\right): 2 n^{2} \leq c n^{3} \Rightarrow 2 \leq c n \Rightarrow c=1$ and $n_{0}=2$
- $n^{2}=O\left(n^{2}\right): n^{2} \leq c n^{2} \Rightarrow c \geq 1 \Rightarrow c=1$ and $n_{0}=1$
- $1000 n^{2}+1000 n=O\left(n^{2}\right)$:
$1000 n^{2}+1000 n \leq 1000 n^{2}+n^{2}=1001 n^{2} \Rightarrow c=1001$ and $n_{0}=1000$
- $n=O\left(n^{2}\right): n \leq c n^{2} \Rightarrow c n \geq 1 \Rightarrow c=1$ and $n_{0}=1$

More Examples

- Show that $30 n+8$ is $\mathrm{O}(n)$.
- Show $\exists c, n_{0}: 30 n+8 \leq c n, \forall n>n_{0}$.
- Let $c=31, n_{0}=8$.
- Assume $n>n_{0}=8$. Then
- cn $=31 n=30 n+n>30 n+8$,
- So $30 n+8<c n$.

No Uniqueness

- There is no unique set of values for n_{0} and \boldsymbol{C} in proving the asymptotic bounds
- Prove that $100 n+5=O\left(n^{2}\right)$
- $100 n+5 \leq 100 n+n=101 n \leq 101 n^{2}$ for all $n \geq 5$

$$
n_{0}=5 \text { and } c=101 \text { is a solution }
$$

- $100 n+5 \leq 100 n+5 n=105 n \leq 105 n^{2}$ for all $n \geq 1$
$n_{0}=1$ and $c=105$ is also a solution
- Must find SOME constants c and n_{0} that satisfy the asymptotic notation relation

Order of common functions

Notation	Name	Example
$\mathrm{O}(1)$	Constant	Adding two numbers, $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$\mathrm{O}(\log \mathrm{n})$	Logarithmic	Finding an item in a sorted array with a binary search or a search tree (best case)
$\mathrm{O}(\mathrm{n})$	Linear	Finding an item in an unsorted list or a malformed tree (worst case); adding two n-digit numbers
$\mathrm{O}(\mathrm{nlogn})$	Linearithmic	Performing a Fast Fourier transform; heap sort, quick sort (best case), or merge sort
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Quadratic	Multiplying two n-digit numbers by a simple algorithm; adding two $\mathrm{n} \times \mathrm{n} \quad$ matrices; bubble sort (worst case or naive implementation), shell sort, quick sort (worst case), or insertion sort

Some properties of Big-0

- Constant factors are may be ignored
- For all $\mathrm{k}>0$, kf is $\mathrm{O}(\mathrm{f})$
- The growth rate of a sum of terms is the growth rate of its fastest growing term.
- $\mathrm{Ex}, \mathrm{an}^{3}+\mathrm{bn}^{2}$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- The growth rate of a polynomial is given by the growth rate of its leading term
- If f is a polynomial of degree d, then f is $O\left(n^{d}\right)$

Implication of Big-Oh notation

- We use Big-Oh notation to say how slowly code might run as its input grows.
- Suppose we know that our algorithm uses at most $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ basic steps for any n inputs, and n is sufficiently large, then we know that our algorithm will terminate after executing at most constant times $f(n)$ basic steps.
- We know that a basic step takes a constant time in a machine.
- Hence, our algorithm will terminate in a constant times $f(n)$ units of time, for all large n.

Other notations

- Reading Assignments

End of Lecture 2

Next Lecture:-Simple Sorting and Searching Algorithms

