
Data Structure and Algorithm Analysis 

Lecture Two- Algorithm Analysis 



Algorithm analysis 
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 Studies computing resource requirements of different algorithms 

 Computing Resources 

 Running time (Most precious) 

 Memory usage 

 Communication bandwidth etc 

 Why need algorithm analysis ? 

 Writing a working program is not good enough 

 The program may be inefficient! 

 If the program is run on a large data set, then the running time 

becomes an issue 

 Goal is to pick up an efficient algorithm for the problem at hand 

 



Reasons to perform analyze algorithms 
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 It enables us to: 

 Predict performance of algorithms 

 Compare algorithms.  

 Provide guarantees on running time/space of algorithms 

 Understand theoretical basis.  

 Primary practical reason: avoid performance bugs.  

 client gets poor performance because programmer did not understand 

performance characteristics 



How to Measure Efficiency/performance? 
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 Two approaches to measure algorithms 

efficiency/performance 

Empirical 

 Implement the algorithms and  

Trying them on different instances of input 

Use/plot actual clock time to pick one 

Theoretical/Asymptotic Analysis 

Determine quantity of resource required 

mathematically needed by each algorithms 
 



Example- Empirical 
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Input size 

Actual clock time 



Drawbacks of empirical methods 
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 It is difficult to use actual clock because clock time varies based 

on  

 Specific processor speed 

Current processor load 

 Specific data for a particular run of the program 

 Input size 

 Input properties 

 Programming language (C++, java, python …) 

 The programmer (You, Me, Billgate …) 

Operating environment/platform (PC, sun, smartphone etc) 

 Therefore, it is quite machine dependent 



Machine independent analysis 
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 Critical resources: 

Time, Space (disk, RAM), Programmer’s effort, Ease of 

use (user’s effort). 

 Factors affecting running time: 

 System dependent effects.  

Hardware: CPU, memory, cache, … 

 Software: compiler, interpreter, garbage collector, … 

 System: operating system, network, other apps, … 

 System independent effects 

Algorithm. 

 Input data/ Problem size  



Machine independent analysis… 
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 For most algorithms, running time depends on “size” of the 

input. 

 Size is often the number of inputs processed 

Example:- in searching problem, size is the no of items to 

be sorted 

 Running time is expressed as T(n) for some function T on 

input size n. 

 



Machine independent analysis 
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 Efficiency of an algorithm is measured in terms of the number of basic 
operations it performs. 
 Not based on actual time-clock 

 We assume that every basic operation takes constant time. 
 Arbitrary time 

 Examples of Basic Operations: 
 Single Arithmetic Operation (Addition, Subtraction, Multiplication) 
 Assignment Operation 
 Single Input/Output Operation 
 Single Boolean Operation 
 Function Return 

 We do not distinguish between the basic operations. 

 Examples of Non-basic Operations are  
 Sorting, Searching. 

 



Examples: Count of Basic Operations T(n) 
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 Sample Code 

int count() 

{  

Int k=0;  

cout<< “Enter an integer”; 

cin>>n; 

for (i = 0;i < n;i++) 

k = k+1; 

return 0; 

} 



Examples: Count of Basic Operations T(n) 

Sample Code 
Count of Basic Operations (Time Units) 
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int count() 

{  

Int k=0;  

cout<< “Enter an integer”; 

cin>>n; 

for (i = 0;i < n;i++) 

k = k+1; 

return 0; 

} 

 

 

 1 for the assignment statement:  int k=0 

 1 for the output statement. 

 1 for the input statement. 

 In the for loop: 

 1 assignment, n+1tests, and n increments. 

 n loops of 2 units for an assignment, and 

an addition. 

 1 for the return statement. 

 

 T (n) = 1+1+1+(1+n+1+n)+2n+1 = 

4n+6 



Examples: Count of Basic Operations T(n) 
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int total(int n) 

{ 

Int sum=0; 

for (int i=1;i<=n;i++) 

  sum=sum+i; 

return sum; 

} 



Examples: Count of Basic Operations T(n) 

Sample Code 

Count of Basic Operations (Time 

Units) 
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int total(int n) 

{ 

Int sum=0; 

for (inti=1;i<=n;i++) 

  sum=sum+i; 

return sum; 

} 

 

 

 

 1 for the assignment statement:  int sum=0 

 In the for loop: 

 1 assignment, n+1tests, and n increments. 

 n loops of 2 units for an assignment, and an 

addition. 

 1 for the return statement. 

 

 T (n) = 1+ (1+n+1+n)+2n+1 = 4n+4  



Examples: Count of Basic Operations T(n) 
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void func() 

{  

 Int x=0; 

 Int i=0; 

 Int j=1; 

 cout<< “Enter an Integer value”; 

 cin>>n; 

 while (i<n){ 

  x++; 

  i++; 

 } 

 while (j<n) 

 { 

     j++;  

 } 

} 

 



Examples: Count of Basic Operations T(n) 

Sample Code Count of Basic Operations (Time Units) 
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void func() 

{  

 Int x=0; 

 Int i=0; 

 Int j=1; 

 cout<< “Enter an Integer value”; 

 cin>>n; 

 while (i<n){ 

  x++; 

  i++; 

 } 

 while (j<n) 

 { 

     j++;  

 } 

} 

 

 

 1 for the first assignment statement: x=0; 

 1 for the second assignment statement: i=0; 

 1 for the third assignment statement: j=1; 

 1 for the output statement. 

 1 for the input statement. 

 In the first while loop: 

 n+1tests 

 n loops of 2 units for the two increment (addition) operations 
 

 In the second while loop: 

 n tests 

 n-1 increments 

 T (n) = 1+1+1+1+1+n+1+2n+n+n-1 = 5n+5 



Examples: Count of Basic Operations T(n) 
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 Sample Code 

int sum (int n) 

{ 

int partial_sum= 0; 

for (int i = 1; i <= n; i++) 

partial_sum= partial_sum+ (i * i * i); 

return partial_sum; 

} 



Examples: Count of Basic Operations T(n) 

Sample code Count of Basic Operations (Time Units) 
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int sum (int n) 

{ 

int partial_sum= 0; 

for (int i = 1; i <= n; i++) 

partial_sum= partial_sum+ (i * i * 

i); 

return partial_sum; 

} 

 

 

 

 1 for the assignment. 
 

 1 assignment, n+1tests, and n increments. 
 

 n loops of 4 units for an assignment, an addition, 

and two multiplications. 

 1 for the return statement. 

 

 T (n) = 1+(1+n+1+n)+4n+1 = 

6n+4 



Simplified Rules to Compute Time Units(Formal Method)  
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Simplified Rules to Compute Time Units  
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Simplified Rules to Compute Time Units  
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Simplified Rules to Compute Time Units  
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 Conditionals:  

 If (test) s1 else s2: Compute the maximum 

of the running time for s1 and s2. 

 

if (test == 1) { 

for ( int i = 1; i <= N; i++) { 

sum = sum+i; 

}} 

Else 

{ 

 for ( int i = 1; i <= N; i++) { 

for ( int j = 1; j <= N; j++) { 

sum = sum+i+j; 

}} 



Example: Computation of Run-time 
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 Suppose we have hardware capable of executing 106 

instructions per second. How long would it take to 

execute an algorithm whose complexity function was T 

(n) = 2n2 on an input size of n =108? 

 



Example: Computation of Run-time 
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 Suppose we have hardware capable of executing 106 instructions 
per second. How long would it take to execute an algorithm 
whose complexity function was T (n) = 2n2 on an input size of n 
=108? 

 
The total number of operations to be performed would be 
T(108): 
T(108) = 2*(108)2 =2*1016 
The required number of seconds would be given by    
  T(108)/106 so: 
Running time = 2*1016/106 = 2*1010 
The number of seconds per day is 86,400 so this is about 
231,480 days (634 years). 

 



Types of Algorithm complexity analysis  
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 Best case.  

 Lower bound on cost.  

 Determined by “easiest” input.  

 Provides a goal for all inputs.  

 Worst case.  

 Upper bound on cost.  

 Determined by “most difficult” input.  

 Provides a guarantee for all inputs.  

 Average case. Expected cost for random input.  

 Need a model for “random” input.  

 Provides a way to predict performance. 



Best, Worst and Average Cases 
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 Not all inputs of a given size take the same time. 

 Sequential search for K in an array of n integers: 

 Begin at first element in array and look at each element in turn until 

K is found. 

 Best Case: [Find at first position: 1 compare] 

 Worst Case: [Find at last position: n compares] 

 Average Case: [(n + 1)/2 compares] 

 While average time seems to be the fairest measure, it may be difficult 

to determine. 

 Depends on distribution. Assumption for above analysis: Equally 

likely at any position. 

 When is worst case time important? 

 algorithms for time-critical systems 



Order of Growth and Asymptotic Analysis 
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 Suppose an algorithm for processing a retail store’s inventory takes: 

 10,000 milliseconds to read the initial inventory from disk, and then  

 10 milliseconds to process each transaction (items acquired or sold). 

 Processing n transactions takes (10,000 + 10 n) milliseconds.  

 Even though 10,000 >> 10, the "10 n" term will be more important if 

the number of transactions is very large. 

 We also know that these coefficients will change if we buy a faster 

computer or disk drive, or use a different language or compiler. 

 we want to ignore constant factors (which get smaller and smaller as 

technology improves) 

 In fact, we will not worry about the exact values, but will look at “broad 

classes" of values. 



Growth rates 
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 The growth rate for an algorithm is the rate at which the cost of the 

algorithm grows as the size of its input grows. 

http://algoviz.org/OpenDSA/Books/CS3114/html/Glossary.html


Rate of Growth 
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 Consider the example of buying elephants and goldfish: 

  Cost: cost_of_elephants + cost_of_goldfish 

  Cost ~ cost_of_elephants (approximation)  

 since the cost of the gold fish is insignificant when compared with cost of 

elephants 

 Similarly, the low order terms in a function are relatively insignificant for 

large n 

              n4 + 100n2 + 10n + 50    ~     n4 

 i.e., we say that n4 + 100n2 + 10n + 50 and n4 have the same  rate of 

growth  

More Examples:         fB(n)=n2+1 ~     n2 


                                       fA(n)=30n+8    ~     n 

 

 

 



Visualizing Orders of Growth 
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 On a graph, as you go to the right, a faster growing 

function eventually becomes larger...  

 

fA(n)=30n+8 

Increasing n  

fB(n)=n2+1 
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Asymptotic analysis 
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 Refers to the study of an algorithm as the input size "gets big" or 

reaches a limit. 

 To compare two algorithms with running times f(n) and g(n), we need a 

rough measure that characterizes how fast each function grows- 

growth rate. 

 Ignore constants [especially when input size very large] 

 But constants may have impact on small input size 

 Several notations are used to describe the running-time equation for an 

algorithm. 

 Big-Oh (O),  Little-Oh (o) 

 Big-Omega (Ω), Little-Omega(w) 

 Theta Notation() 

 



Big-Oh Notation 
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 Definition 

For f(n) a non-negatively valued function, f(n) is in 

set O(g(n)) if there exist two positive 

constants c and n0 such that f(n)≤cg(n)for all n>n0 . 

 Usage: The algorithm is in O(n2) in [best ,average, worst] 

case. 

 Meaning: For all data sets big enough (i.e., n > n0), the 

algorithm always executes in less than cg (n) steps [in best, 

average or worst case]. 

 

 

 



Big-Oh Notation - Visually 
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Big-O Visualization 

. 

     O(g(n)) is the set of functions 

with smaller or same order of 

growth as f(n) 

 
 Wish tightest upper bound: 

 While T(n) = 3n2 is in O(n3), 

we prefer O(n2). 

 Because, it provides more 

information to say O(n2) than 

O(n3) 

 



Big-O  
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 Demonstrating that a function f(n) is in big-O of a function 

g(n) requires that we find specific constants c and no for which 

the inequality holds. 

 

 The following points are facts that you can use for Big-Oh 

problems: 

 1<= n for all n >= 1 

 n <= n2 for all n >= 1 

 2n <= n! for all n >= 4 

 log2n <= n for all n >= 2 

 n <= nlog2n for all n >= 2 



Examples 
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 f(n) = 10n + 5 and g(n) = n. Show that f(n) is in O(g(n)). 

To show that f(n) is O(g(n)) we must show constants c 

and no such that  

 f(n) <= c.g(n) for all n >= no 

 

10n + 5 <= c.n for all n >= no 

Try c = 15. Then we need to show that 10n + 5 <= 

15n 

 Solving for n we get: 5 < 5n or 1 <= n. 

 So f(n) =10n + 5 <= 15.g(n) for all n >= 1. 

 (c = 15,  no = 1). 



Examples 
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 2n2 = O(n3): 

  n2 = O(n2): 

  1000n2+1000n = O(n2):  

  

  n = O(n2): 

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2 

n2 ≤ cn2  c ≥  1   c = 1 and n0= 1 

1000n2+1000n ≤ 1000n2+ n2 =1001n2 c=1001 and n0 = 1000 

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1 



More Examples 
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 Show that 30n+8 is O(n). 

 Show c,n0: 30n+8  cn, n>n0. 

 

Let c=31, n0=8.   

Assume n>n0=8.  Then 

 cn = 31n = 30n + n > 30n+8,  

 So 30n+8 < cn. 
 



No Uniqueness 
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 There is no unique set of values for n0 and c in proving the asymptotic 

bounds 

 Prove that  100n + 5 = O(n2) 

 100n + 5 ≤ 100n + n = 101n ≤ 101n2 
    for all n ≥ 5 

  n0 = 5 and c = 101 is a solution 

 100n + 5 ≤ 100n + 5n = 105n ≤ 105n2 

   for all n ≥ 1 

   n0 = 1 and c = 105 is also a solution 

 Must find SOME constants c and n0 that satisfy the asymptotic notation 

relation 



Order of common functions 
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Notation Name Example 

O(1) Constant Adding two numbers, c=a+b 

O(log n) Logarithmic Finding an item in a sorted array with a binary search or a search 

tree (best case) 

O(n) Linear Finding an item in an unsorted list or a malformed tree (worst 

case); adding two n-digit numbers 

O(nlogn) Linearithmic Performing a Fast Fourier transform; heap sort, quick sort (best 

case), or merge sort 

O(n2) Quadratic Multiplying two n-digit numbers by a simple algorithm; adding 

two n×n matrices; bubble sort (worst case or naive 

implementation), shell sort, quick sort (worst case), or insertion 

sort 



Some properties of Big-O 
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 Constant factors are may be ignored 

For all k>0, kf is O(f) 

 The growth rate of a sum of terms is the growth rate of its 

fastest growing term. 

Ex, an3 + bn2 is O(n3 ) 

 The growth rate of a polynomial is given by the growth 

rate of its leading term 

 If f is a polynomial of degree d, then f is O(nd) 

 



Implication of Big-Oh notation 

41 

 We use Big-Oh notation to say how slowly code might run 

as its input grows. 

 Suppose we know that our algorithm uses at most O(f(n)) 

basic steps for any n inputs, and n is sufficiently large, then 

we know that our algorithm will terminate after executing 

at most constant times f(n) basic steps. 

 We know that a basic step takes a constant time in a 

machine. 

 Hence, our algorithm will terminate in a constant times 

f(n) units of time, for all large n. 



Other notations 
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 Reading Assignments 



Next Lecture:-Simple Sorting and Searching Algorithms 
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End of Lecture 2 


