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Preface

The Java language began as a program for embedded devices, specifically con-
sumer electronics. The driving concepts behind the language included portabil-
ity, enabling reuse as the underlying processors were changed in new versions of
the device; and simplicity, to keep the best aspects of related languages and to
throw out the fluff.

As the World Wide Web blasted onto the scene, the Java development team
realized that with some additional functionality (specifically a GUI interface
API) a language such as Java could readily be used to enable the specification of
executable content on web pages. The inclusion of Java support in the Netscape
2.0 browser provided enough publicity and support for the language that it
immediately became the de facto standard language for programming executable
content.

Although Java has its roots in embedded systems and the web, it is important
to realize that it is a fully functional high-level programming language that can
provide users with a wide range of functionality and versatility. In “The Java
Language: A White Paper,” Sun Microsystems developers describe Java as:

Java: A simple, object-oriented, distributed interpreted, robust, se-
cure, architecture neutral, aportable, high-performance, multithreaded,
and dynamic language.

This list of terms describes Sun’s design goals for the Java language and
portrays some of the most important features of the language. Simplicity refers
to a small language learning curve, similarity to C and C++, and removal of some
standard (but dangerous) features of languages such as C++. For example, Java
does not use pointers as in C and C++, but rather references as in Pascal. This
avoids potential pointer manipulation errors by the programmer. In addition,
Java provides no header files as in C and C++, thus enabling more automated
bookkeeping (although compilers are not currently utilizing the full potential of
such a system, resulting in sometimes awkward coding constructs).

As an object-oriented language Java supports the concepts of abstract data
typing as encapsulated in many object-oriented programming languages. The
user defines a class which specifies a collection of data items and methods to
operate on those items. Data and methods of the class can exist with the class
(one instance per program execution) or with specific instances (objects) of the
class. Classes are arranged in a hierarchy to provide mechanisms for inheritance
and reuse. Java classes are further arranged into packages that provide some
additional protection and bookkeeping for Java programmers. To assist the
programmer, there exists a set of predefined classes that are provided with Java
development/execution environments. Some of these classes are essential as
they provide a bridge between the portable Java code and the underlying native
operating system.

As a distributed language, the Java API provides functionality for inter pro-
cess communication and remote data access. It is important to understand that
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this distributed nature of Java is solely the benefit of good API classes and not
any inherent distributed or parallel programming capabilities.

As an interpreted language, Sun means that the user creates an intermediate
file containing the “bytecode” implementation of the program. It is the byte
code that is subsequently interpreted and not the raw Java source code. The
Java interpreter and the supporting run-time system implement what is called
the Java Virtual Machine.

As a robust language, Java is strongly typed and does not use pointers. These
two features greatly reduce the possibility of very common software flaws. In
addition, Java has both built-in automatic garbage collection routine to prevent
memory leakage and exception handling. The exception handling allows almost
all errors to be caught and managed by the software.

As a secure language, Java provides for access control restrictions on class or
object methods and data items. These may be implemented as part of the basic
protection attribute of the items or through a run-time security monitor.

As architecture neutral and portable, Java functionality does not rely on any
underlying architecture specifics, thus allowing the code (or even the byte code)
to be executed on any machine with a virtual machine implementation.

As a high-performance language, Java is meant to execute well with respect
to similar high-level languages. The use of special “just in time” compilers or
other features may improve performance even more.

As a multithreaded language, Java permits the development of user specified
concurrent threads of control, as well as synchronization mechanisms to establish
consistency between the users.

As a dynamic language, Java is intended to be able to dynamically load code
from the network and execute the new version of the code in the current virtual
machine as opposed to recompiling the whole project.

The above list of features describes Sun’s view of the Java language, a view
that is shared by many users. We will assume that these features represent the
base capabilities of the language. In the rest of this part we describe various
features of Java, highlighting their challenges for formal method specifications
of the language.

Java Basic Data Types

The Java language includes several built-in basic data types. These include
boolean, char and numeric types: byte, short, integer, long for (8, 16, 32 and 64-
bit integer calculations) and float and double for (32 and 64-bit floating point
operations). Java provides standard operations for these types with the few
special features discussed below. In addition Java has a reference data type for
use of objects and a special reference data type, the array. Like Pascal and
unlike C, the Java reference data type can only be copied; no increment or other
operations can be performed on it.

Java is strongly typed and only permits limited type casting or automatic
conversions. This strengthens the reliability of the language. The only problems
is that the explicit casting of integer values (with either 32 or 64-bits) to smaller
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integers such as byte results in truncation of the high-order bits, resulting in
information loss and even potential change in sign.

Java Classes

All user-defined Java data types are specified using a class definition. A class
defines the fields and methods of the object and their appropriate access mod-
ifiers. With Java 1.1 and later, users have the ability to define subclasses and
anonymous classes within their own classes.

Java Files and Packages

A Java program consists of one or more packages, each of which consist of a
collection of Java classes. A class within a single package has a stronger trust
relationship with other classes in that package than with those outside of the
package. In addition, the package relationship provides the ability to utilize a
hierarchical naming convention for Java classes.

Each Java class is defined within a single file. Although a file may contain
more than one class definition, only one file in that class may be declared public
(and must be named the same as the source file). Classes within the same file
are implicitly within the same package.

Exception Handling

Java provides a flexible exception handling capability. Any time an exception
occurs the violating routine can throw a named exception, abruptly terminating
the statement. All Java statements can be encapsulated within a try-catch
statement. If the enclosed statement throws an exception that is specified within
the catch clause, the violating statement is terminated and the code in the catch
clause is executed. Otherwise, the thrown exception is propagated up the call
hierarchy.

The Java Virtual Machine

All Java programs are compiled into an intermediate form, the Java Byte Code.
The Java Virtual Machine (JVM) reads and executes the byte code. In addition
the JVM is responsible for downloading and verifying byte code from local and
remote sources. The virtual machine checks access rights to class fields and
methods, provides links to native code libraries and even implements security
monitors for further limited access.

Formal Methods

“Formal methods” is a term that refers to the application of formal mathemat-
ical models to computer systems and subsystems. The intent of this book is
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to provide a forum for the presentation of a variety of approaches to formal
specifications, execution models and analysis of Java programs.

There are several styles of formal methods, a few of which are used in this
book. The most common approach to specifying the meaning of a program
currently in use is operational semantics. The purpose behind an operational
semantics is to provide an abstract model of the internal state of the computer
(as referenced by the program) and to specify the modifications of that state
with respect to program statements and expressions. A typical semantic clause
could be of the form:

< c, σ >→< c′, σ′ >

< c; c1, σ >→< c′; c1, σ′ >

This clause states that if partial execution of command c while in state ?, will
result the remaining command c’ to be executed in state ?’, then the semantics
of the sequential composition of c and c1 will behave similarly.

Another type of semantics used in this book is denotational semantics. In this
form of semantics, each statement, expressions and other programming language
constructs are mapped into functions. These functions are defined as mapping
semantic domains to semantic domains. These domains may represent anything
from the basic data values stored in variables to the effects of complex recursive
functions on the state of the system.
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Formal Grammar for Java

Jim Alves-Foss and Deborah Frincke

Center for Secure and Dependable Software, Department of Computer Science
University of Idaho, Moscow ID 83844-1010, USA

1 Introduction

This chapter presents an attribute grammar for the Java programming language
(v. 1.1). This grammar is derived from the LALR grammar presented in the Java
Language Specification (JLS) [1]. The purpose of this grammar is to formally
specify not only the syntactic structure of Java programs, but also their static
semantics. Specifically, in this chapter we try to formally capture all aspects of
the language that would result in compile-time errors. These errors include, but
are not limited to:

– Type checking for assignment statements, ensuring that the type of the right-
hand side of the statement is assignment compatible with the left hand side.

– Type checking expression operands, ensuring that they are of compatible
types.

– Type checking method parameters, ensuring that they are the correct type
and number.

– Checking for duplicate variable and method names.
– Checking for undefined variables.

We do not actually capture all errors, but a sufficient body of them to demon-
strate the approach we are using. We have left comments within the syntax for
portions where we believe addition semantic checks are needed, as an exercise
to the reader. The grammar is written using a BNF-like notation of the form of
productions:

<NonTerm> ::= exp1
semantic action 1

| exp2
semantic action 2

where the left hand side (LHS) non-terminal <NonTerm> can be defined in
terms of either right hand side (RHS) expression exp1 or exp2. Within the pro-
ductions we use some abbreviations to shorten the specification. We define the
following abbreviations: exp? to specify optional inclusion of the expression, exp+

to specify one or more occurrences of the expression, exp∗ to specify zero or
more occurrences of the expression. On the lines immediately following the RHS
expression are the semantic actions for that production. These actions involve
propagation of the attributes, up and down the parse tree, and static correctness

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 1–40, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Table 1. Language unit caller/callee relationship.

Callees

names inter class meth field var blocks
Callers & lits pkgs types mods decl decl decl decl decl inits cnstr & stmts exprs

names X
& lits

pkgs X X X X

types X X

mods X

inter decl X X X X X X

class decl X X X X X X X

meth decl X X X X X

field decl X X X X

var decl

inits X ? X

cnstr X X X ?

blocks X X X X X
& stmts

exprs X X X X X X X

checks (compile-time errors). Associated with every potential compiler-time er-
ror we have placed the semantic action ERROR which displays a string error
message related to the compile time error.

1.1 Logical Units of the Grammar

The full grammar is broken down into several logical units, each consisting of
a collection of productions that define non-terminals in the grammar. Table 1
depicts the hierarchical relationship between these units. A logical unit is said
to call another logical unit if it uses a non-terminal of the other logical unit in
the RHS of one of its productions. The called logical unit is the callee. Note that
there are several self- and circular-references in this table. These logical units
are defined as follows:

names and literals - these define the lowest level constructs in the Java lan-
guage and provide abstract representations of the low-level syntax of the
Java language.

packages - these define the overall structure of the Java source code files, pack-
age and import specifications.

types - these define the type definition facilities of Java, which includes primi-
tive types, reference types, class types, array types and interface types.

modifiers - these define the modifiers of various Java constructs. Such modifiers
include protection modes (e.g., public, private) and status (e.g., static, final).
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interface declarations - these define the form and structure of interfaces spec-
ifications.

class declarations - these define the form and structure of class specifications.
method declarations - these define the form and structure of method speci-

fications.
field declarations - these define the form and structure of class and interface

field specifications.
variable declarations - these define the form and structure of local variable

specifications.
initializers - these define the initialization expressions for variable (including

array) initializations.
constructors - these define the constructor statements for classes.
blocks and statements - these define the instruction and scoping constructs

of the Java language.
expressions - these define all expressions of the Java language.

1.2 Attributes

To specify the semantic aspects of the grammar, we define a set of attributes
that are used during the traversal of the parse tree specified by the grammar. For
simplicity sake, we define the attributes using Java field and method use notation
(e.g., non.in.env defines the inherited environment from the non-terminal non).
An attribute is considered inherited if it is passed down from the non-terminal
(root of the subtree) and it is synthesize if is created by the right-hand side
expression (child nodes). We assume that all inherited attributes are included as
fields of the inherited object in, which is specified as a field of the non-terminal
of the production. We assume that all synthesize attributes are included as fields
of the synthesized object out which is specified as a field of the non-terminal of
the right-hand side expression.

This section describes the attributes of the grammar. The use of these at-
tributes by the logical units of the language is as depicted in Table 2.

context This defines the code type being executed, whether it is a static or
normal method, etc. This attribute is only inherited. The methods of this
attribute are:
– addPackage(name)which adds the specified package name to the current

context.
– addClass(name, mods) which adds the specified class name with its

correct modifiers mods to the current context.
– addInterface(name, mods) which adds the specified interface name

with its correct modifiers mods to the current context.
– addMethod(name, mods) which adds the specified method name with

its correct modifiers mods to the current context.
– addSwitchExpr(type) stores the type of the current switch expression.
– switchExpr() returns the type of the current switch expression.
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Table 2. Use of attributes in logical units of the language

context env vars type value mods ids

Inher. Both Both Synth. Synth. Synth. Synth.

names & lits S S

pkgs SI

types S

mods S

inter decl CI CI U

class decl CI SI U

meth decl CI SI U SU

field decl CI SI UI U U

var decl SU

inits I I I

cnstr CI SI U

blocks & stmts UI SUI SUI SU

exprs UI UI UI SU U

C = creates I = Inherits S = Synthesizes
U = used for static error check

– isInstanceMethod() which returns true if the current context is within
an instance method.

– isClassMethod() which returns true if the current context is within a
class method.

– isConstructor() which returns true if the current context is within a
constructor method.

– className()which returns the string representation of the current class.
– getClass() which returns the reference of the current class.
– getSuper() which returns the reference of the super class of the current

class.
env This defines the “environment” of the program, basically the definition of

all types, class fields and class definitions accessible by the current code. This
attribute is inherited by code, but synthesized by the declarations aspects of
the code. For a truly correct environment, the compiler must first parse all
relevant declarations to build the top-level environment. Then the compiler
can use this information in the second pass to evaluate expressions and
statements. Without these two passes, all information must be declared prior
to its use. To compress the presentation of the grammar in this chapter, we
have combined the two passes of the compiler into one presentation and have
greatly simplified the operations of the first pass of the compiler. The method
new() defined below activates the first pass of the compiler and returns its
results for the second pass. The methods of the env attribute are:
– new(CompUnit) which runs the first pass of the compiler on the code,

producing a top-level environment which is used for the second pass of
the compiler. In this environment are definitions of all classes, their fields
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and methods, imported classes, and compiler defined environment infor-
mation (e.g., classes defined in other files specified on the same command
line to the compiler). This method, in effect, runs the attributed gram-
mar by ignoring all error checks and returning the environment output
by CompUnit.

– typeCheck(type1, type2) which returns true if type2 is of the type
specified by type1.

– lookupFieldType(ref, id) which returns the type of the field id from
the reference ref.

– lookupFieldValue(ref, id) which returns the value of the field id from
the reference ref if that field is final and was initialized with a constant
expression, otherwise it returns undef.

– isDefined(name) which returns true if name is defined in the current
environment.

– idCheck(PrimaryType, IdType) which returns true if IdType is unam-
biguous and acceptable for PrimaryType.

– isLabel(name) which returns true if the specified name is a current
statement label.

– addLabel(name) which stores name as a named label in the current
environment.

vars This defines the set of local variable declarations and their types. This
attribute is typically only inherited, the exception being the local variable
declaration statement which modifies this attribute synthesizing a new one.

type This attribute is only synthesized to perform the necessary type checking.
It is synthesized by variable declarations and expressions. The methods of
this attribute are:
– insert(item) which adds item to the list
– equals(type) which returns true if the argument type is the same as

the current attributes type. This is used by the typeCheck method of
env.

– promotableTo(type) which returns true if the current attribute type is
promotable to the argument type.

– inc() which takes the current array type, increments the number of
dimensions and returns the new array type. If the current type is not an
array type, this method creates a one-dimensional array of the current
type. Note that in this method we do not keep track of the actual size
of each dimension (that is a run-time check.)

– inc(num) which takes the current array type, increments the number of
dimensions by num and returns the new array type. If the current type
is not an array type, this method creates a num-dimensional array of
the current type. Note that in this method we do not keep track of the
actual size of each dimension (that is a run-time check.)

value This attribute is synthesized from the low-level syntax of the language and
is used to return the actual value associated with language literals, specif-
ically identifier names and numeric, boolean, string, and character literals
and the null constant. The methods of this attribute are:
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– defined() returns true if the value is not undefined.
– XX(value) [for XX one of LT, GT, GE, LE, EQ] returns true if the value

compares correctly with the parameter value (e.g., the value is less than
the parameter for operation LT), and false otherwise.

– bitXX(value) returns the numeric result of performing the specified
bitwise operation (bitAND, bitOR or bitXOR) on the numeric value
and the numeric parameter value.

– bitNOT() returns the numeric result of performing the bitwise comple-
ment operation on the numeric value.

– XX(value) [for XX one of AND, OR or XOR] returns the boolean result
of performing the specified logical operation (AND, OR or XOR) on the
boolean value and the boolean parameter value.

– NOT() returns the boolean result of performing the logical complement
operation boolean value.

– XX(value) [for XX one of LS, RSS, RSZ] returns the numeric result
of performing the specified shift operation ( <<, >, or >>>) on the
numeric value and the numeric parameter value.

ids This attribute is only synthesized by variable declarations and is a list of
declared variable ids.

mods This is the list of modifiers for classes, methods, fields and interfaces. The
methods of this attribute are:

– exclusive(list)which returns true if the attribute only contains mod-
ifiers specified in list.

– containsmod) which returns true if the attribute contains the modifiers
specified by mod.

– insert(mod) which adds mod to the list of modifiers.

The following methods are part of the output attribute of a term. They are
part of a specific output attribute, since they utilize results of more than one
attribute.

– assignableTo(type) returns true if the current expression can be converted
to the specified type by assignment conversion.

– isExpression(name) returns true if the parameter name refers to a local
variable or a field accessible in the current context.

– getType(name) returns the type of the parameter name within the current
context (or undef if the type is unresolvable).

– getValue(name) returns the value of the parameter name within the current
context if name refers to a final variable who’s initializer was a constant
expression, otherwise it returns undef.

In addition, the following auxiliary functions are used in this grammar

– binaryNumericConversion(t1, t2) which returns the resultant type after
applying binary numeric conversion [1] to the two argument types t1 and
t2.
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– unaryNumericConversion(type) which returns the resultant type after ap-
plying unary numeric conversion [1] to the argument type.

– mkArrayType(type) which returns the type equivalent to an array of the
parameter type.

– unmkArrayType(type) which returns the type equivalent to a single element
of the array specified by the parameter type.

2 The Grammar

In this section we present the full attributed grammar, for each of the logical
units of the language defined above. A brief discussion of the attributes of each
logical unit is provided.

2.1 Names and Literals

The following grammar specifies the syntax of names and literals in the Java
language. Specific formatting details of these are not presented here, but rather
are assumed to be those defined in the Java Language Specification [1]. The
name entity in this specification returns a string representation of the name
that is used by the higher level production to determine the appropriate type.
The resulting name/type is returned in the type attribute. Literals, on the other
hand return the appropriate literal type in the type attribute. Integer literals
also return a value in the value attribute that can be evaluated in the assignment
statement. This permits a direct assignment of a small integer to shorts, chars
and bytes.

<Name> ::=
<SimpleName>

Name.out := SimpleName.out
| <QualifiedName>

Name.out := QualifiedName.out

<SimpleName>::=
<Id>

SimpleName.out.type := Id.out.value

<QualifiedName>::=
<Name> . <Id>

QualifiedName.type := Name.out.type+“.”+Id.out.value

<Literal> ::=
<IntLit>

Literal.out.type := int
Literal.out.value := IntLit.out.value

| <FloatLit>
Literal.out.type := float
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Literal.out.value := FloatLit.out.value
| <BoolLit>

Literal.out.type := bool
Literal.out.value := BoolLit.out.value

| <CharLit>
Literal.out.type := char
Literal.out.value := CharLit.out.value

| <StringLit>
Literal.out.type := java.lang.String
Literal.out.value := StringLit.out.value

| <NullLit>
Literal.out.type := null

2.2 Packages

The following grammar defines the high-level file syntax of Java programs. Specif-
ically this aspect of the grammar is responsible for defining package membership,
class imports and the top-level class and interface specifications. It is important
to remember that all of the type-checking performed within the method bodies is
performed only after all of these top-level definitions are parsed in the first pass.
All the attributes at this level are just passed up and down the parse tree with
the only changes being made are: the name of the current package is placed into
the context (if no package is defined, the current package is the default package)
and class definition imports are added to the environment.

Note that in this specification, there are some optional non-terminals on the
RHS of the productions. The question arises as to how the attribute grammar
handles the synthesized attributes of non-selected optional non-terminals. In this
case, we adopt the convention that all synthesized-only attributes of an non-
selected optional non-terminal are null, and that all inherited and synthesized
attributes take on the value of the inherited attribute.

<Goal> ::=
<CompUnit>

CompUnit.in.env := env.new(<CompUnit>)
CompUnit.in.context := new context()

<CompUnit> ::=

<PackageDecl>? <ImportDeclList>? <TypeDeclList>?

PackageDecl.in := CompUnit.in
ImportDeclList.in.context :=

CompUnit.in.context.addPackage(PackageDecl.out.type)
ImportDeclList.in.env := PackageDecl.out.env
TypeDeclList.in.context := ImportDeclList.in.context
TypeDeclList.in.env := ImportDeclList.out.env
CompUnit.out.env := TypeDeclList.out.env
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<PackageDecl> ::=
package <Name> ;

PackageDecl.out.type := Name.out.type

<ImportDeclList> ::=
<ImportDecl>

ImportDecl.in := ImportDeclList.in
ImportDeclList.out.env := ImportDecl.out.env

| <ImportDeclList1> <ImportDecl>
ImportDeclList1.in := ImportDeclList.in
ImportDecl.in.context := ImportDeclList.in.context
ImportDecl.in.env := ImportDeclList1.out.env
ImportDeclList.out.env := ImportDecl.out.env

<TypeDeclList> ::=
<TypeDecl>

TypeDecl.in := TypeDeclList.in
TypeDeclList.out.env := TypeDecl.out.env

| <TypeDeclList> <TypeDecl>
TypeDeclList1.in := TypeDeclList.in
TypeDecl.in.context := TypeDeclList.in.context
TypeDecl.in.env := TypeDeclList1.out.env
TypeDeclList.out := TypeDecl.out.env

<ImportDecl> ::=
<SingleTypeImportDecl>

SingleTypeImportDecl.in := ImportDecl.in
ImportDecl.out.env := SingleTypeImportDecl.out.env

| <TypeImportOnDemandDecl>
TypeImportOnDemandDecl.in := ImportDecl.in
ImportDecl.out.env := TypeImportOnDemandDecl.out.env

<SingleTypeImportDecl> ::=
import <Name> ;

SingleTypeImportDecl.out.env :=
SingleTypeImportDecl.in.env.import(Name.out.type)

<TypeImportOnDemandDecl> ::=
import <Name> . * ;

SingleTypeImportDecl.out.env :=
SingleTypeImportDecl.in.env.importOnDemand(Name.out.type)

<TypeDecl> ::=
;

TypeDecl.out.env := TypeDecl.in.env
| <ClassDecl>

ClassDecl.in := TypeDecl.in
TypeDecl.out.env := ClassDecl.out.env

| <InterfaceDecl>
InterfaceDecl.in := TypeDecl.in
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TypeDecl.out.env := InterfaceDecl.out.env

2.3 Types

The following grammar presents the syntax of type definitions in Java. These
productions simply pass back up the generated type of the term. If a reference
type is expected, a compile-time check is made to ensure that the reference is
defined, otherwise an error occurs. The same is true of array types.

<Type> ::=
<PrimType>

Type.out.type := PrimType.out.type
| <RefType>

Type.out.type := RefType.out.type

<PrimType> ::=
<NumType>

PrimType.out.type := NumType.out.type
| boolean

PrimType.out.type := boolean

<NumType> ::=
<IntType>

NumType.out.type := IntType.out.type
| <FloatType>

NumType.out.type := FloatType.out.type

<IntType> ::=
byte

IntType.out.type := byte
| short

IntType.out.type := short
| int

IntType.out.type := int
| long

IntType.out.type := long
| char

IntType.out.type := char

<FloatType> ::=
float

FloatType.out.type := float
| double

FloatType.out.type := double

<RefType> ::=
<ClassInterfaceType>
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RefType.out.type := ClassInterfaceType.out.type
| <ArrayType>

RefType.out.type := ArrayType.out.type

<ClassInterfaceType>
<Name>

ClassInterfaceType.out.type := Name.out.type
if not(ClassInterfaceType.in.env.isDefined(Name.out.type))

ERROR (“Undefined Name” + Name.out.type)
ClassInterfaceType.out.type := null

<ClassType> ::=
<ClassInterfaceType>

ClassType.out.type := ClassInterfaceType.out.type

<InterfaceType> ::=
<ClassInterfaceType>

InterfaceType.out.type := ClassInterfaceType.out.type

<ArrayType> ::=
<PrimType> [ ]

ArrayType.out.type := mkArrayType(PrimType.out.type)
| <Name> [ ]

ArrayType.out.type :=
mkArrayType(ArrayType.out.env.lookupType(Name.out.value))

| <ArrayType> [ ]
ArrayType.out.type := mkArrayType(ArrayType.out.type)

**** Type check these **

2.4 Modifiers

The following grammar presents the syntax of modifiers, which return the mods
attribute as a list of defined modifiers. These modifiers are used for classes,
fields and methods in a Java file. It was decided to include all modifiers in
a single grammatical structure here, and to perform restriction checking at a
higher level; such as the illegal modification of an interface declaration with the
volatile modifier. This structure does check for illegal duplicate modifiers, a
condition that is not permitted in any use of modifiers in the Java language.

<Modifiers> ::=
<Modifier>

Modifiers.out.mods := Modifer.out.mods
| <Modifiers> <Modifier>

if Modifiers1.out.mods.contains(Modifer.out.value)
ERROR (“The modifiers should contain only one instance of”+

Modifier.out.value)
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Modifiers.out.mods := Modifiers1 .out.mods
else

Modifiers.out.mods := Modifiers.out.mods.insert(Modifier1 .out.value)
endif

<Modifier> ::=
public

Modifer.out.value := public
| private

Modifer.out.value := private
| protected

Modifer.out.value := protected
| static

Modifer.out.value := static
| abstract

Modifer.out.value := abstract
| final

Modifer.out.value := final
| native

Modifer.out.value := native
| synchronized

Modifer.out.value := synchronized
| transient

Modifer.out.value := transient
| volatile

Modifer.out.value := volatile

2.5 Interface Declarations

The following grammar presents the syntax for interface declarations.

<InterfaceDecl> ::=
<Modifiers>? <UnmodInterfaceDecl>

**** Modifiers abstract or public

<UnmodInterfaceDecl> ::=

interface <Id> <Extends>? <InterfaceBody>

<Extends>::=
extends <InterfaceType>

| <Extends> , <InterfaceType>

<InterfaceBody> ::=

f <InterfaceMemberDeclList>? g

<InterfaceMemberDeclList> ::=
<InterfaceMemberDecl>



Formal Grammar for Java 13

| <InterfaceMemberDeclList> <InterfaceMemberDecl>

<InterfaceMemberDecl> ::=
<ClassDecl>

| <InterfaceDecl> | <ConstDecl>
| <AbsMethodDecl>

<ConstDecl> ::=
<FieldDecl>

**** Public, static and/or final. Field declaration in body of interface is all 3

<AbsMethodDecl> ::=
<MethodHdr> ;

2.6 Class Declarations

The following grammar presents class declarations.

<ClassDecl> ::=
<Modifiers> <UnmodClassDecl>

if not(Modifiers.out.mods.exclusive([public, abstract, final]))
ERROR “Classes may only be public, abstract and/or final”)

endif
if not(Modifiers.out.mods.contains(abstract) and

Modifiers.out.mods.contains(final))
ERROR (“Classes can not be both abstract and final”)

endif
UnmodClassDecl.in.context :=

ClassDecl.context.addClassMods(Modifiers.out.mods)
UnmodClassDecl.in.env := ClassDecl.in.env

<UnmodClassDecl> ::=

class <Id> <Super>? <Interfaces>? <ClassBody>
let con = UnmodClassDecl.in.context.addClassName(Id.out.value) in
let con1 = con.addSuper(Super.out.type)in
let con2 = con1.addInterfaces(Interfaces.out.type) in

ClassBody.in.context := con2
ClassBody.in.env := UnmodClassDecl.in.env

<Super> ::=
extends <ClassType>

Super.out.type := ClassType.out.type

<Interfaces> ::=
implements <InterfaceTypeList>

Interfaces.out.type := InterfaceTypeList.out.type
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<InterfaceTypeList> ::=
<InterfaceType>

InterfaceTypeList.out.type := InterfaceType.out.type
| <InterfaceTypeList>1 , <InterfaceType>

InterfacesTypeList.out.type :=
InterfaceTypeList.out.type.insert(InterfaceType1.out.type)

<ClassBody> ::=

f <ClassBodyDeclList>? g ClassBodyDeclList.in := ClassBody.in
ClassBody.out := ClassBodyDeclList.out

<ClassBodyDeclList> ::=
<ClassBodyDecl>

ClassBodyDecl.in := ClassBodyDeclList.in
ClassBodyDeclList.out := ClassBodyDecl.out

| <ClassBodyDeclList1> <ClassBodyDecl>
ClassBodyDeclList1.in := ClassBodyDeclList.in
ClassBodyDecl.in := ClassBodyDeclList1.out
ClassBodyDeclList.out := ClassBodyDecl.out

<ClassBodyDecl> ::=
<ClassDecl>

ClassDec.in := ClassBodyDecl.in
ClassBudyDecl.out := ClassDecl.out

**** Nested classes may be static, abstract, final, public, protected, or private **
| <InterfaceDecl>

ClassDec.in := ClassBodyDecl.in
ClassBudyDecl.out := ClassDecl.out

| <ClassMemberDecl>
ClassMemberDecl.in := ClassBodyDecl.in
ClassBudyDecl.out := ClassMemberDecl.out

| <StaticInit>
StaticInit.in := ClassBodyDecl.in
ClassBudyDecl.out := StaticInit.out

| <ConstrDecl>
ConstrDecl.in := ClassBodyDecl.in
ClassBudyDecl.out := ConstrDecl.out

<ClassMemberDecl> ::=
<FieldDecl>

FieldDecl.in := ClassMemberDecl.in
ClassMemberDecl.out := FieldDecl.out

| <MethodDecl> MethodDecl.in := ClassMemberDecl.in
ClassMemberDecl.out := MethodDecl.out
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2.7 Method Declarations

The following grammar presents the syntax for class method declarations.

<MethodDecl> ::=
<MethodHdr> <MethodBody>

<MethodHdr> ::=
<Modifiers>? <Type> <MethodDef> <Throws>?

| <Modifiers>? void <MethodDef> <Throws>?

<MethodDef> ::=

<Id> ( <FormalParmList>? )
| <MethodDef> [ ]

<FormalParmList> ::=
<FormalParam>

| <FormalParmList> , <FormalParam>

<FormalParam> ::=
<Modifier> <Type> <VarDeclId>

**** Modifier may be final **

<Throws> ::=
throws <ClassTypeList>

<ClassTypeList> ::=
<ClassType>

| <ClassTypeList> , <ClassType>

<MethodBody> ::=
;

| <Block>

2.8 Field and Variable Declarations

The following grammar presents the syntax for class field declarations, and vari-
able declarations.

<FieldDecl> ::=

<Modifiers>? <Type> <VarDecl> ;
**** Modifiers one of (public, protected, private) final, static, transient, volatile

<VarDeclList> ::=
<VarDecl>
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| <VarDeclList> , <VarDecl>

<VarDecl> ::=
<VarDeclId>

| <VarDeclId> = <VarInit>
*** Need Declared before used check here for Field inits***

<VarDeclId> ::=
<Id>

| <VarDeclId> [ ]

2.9 Initializers

The following grammar presents the syntax for variable and array initializers.

<StaticInit> ::=
static <Block>

<VarInits> ::=
<VarInit>

| <VarInits> , <VarInit>
*** Need Declared before used check here for Field inits***

<ArrayInit> ::=

f <VarInits>? ,? g

<VarInit> ::=
<Expr>

| <ArrayInit>

myline

2.10 Constructor Declarations

The following grammar presents the syntax for constructors.

<ConstrDecl> ::=
<Modifiers>? <ConstrDef> <Throws>? <ConstrBody>

**** Modifiers one of public, provate, protected

<ConstrDef> ::=

<SimpleName> ( <FormalParmList>? )

<ConstrBody> ::=

f <ExplConstrInv>? <BlockStmtList>? g
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<ExplConstrInv> ::=

this ( <ArgList>? ) ;

| super ( <ArgList>? ) ;

2.11 Blocks and Statements

The following grammar presents the syntax for statements and blocks in the Java
language. The pertinent attributes of blocks and statements are the environment
(env) and local variable (vars) attributes.

<Block> ::=

f <BlockStmtList>? g
BlockStmtList.in.context := Block.in.context
BlockStmtList.in.env := Block.in.env
BlockStmtList.in.vars := BlockStmtList.in.vars.newBlock()
Block.out.vars := Block.in.vars
Block.out.env := Block.in.env

<BlockStmtList> ::=
<BlockStmt>

BlockStmt.in := BlockStmtList.in
BlockStmtList.out := BlockStmt.out

| <BlockStmtList1> <BlockStmt>
BlockStmtList1.in := BlockStmtList.in
BlockStmt.in.context := BlockStmtList.in.context
BlockStmt.in.vars := BlockStmtList1.out.vars
BlockStmt.in.end := BlockStmtList1.out.env
BlockStmtList.out := BlockStmt.out

<BlockStmt> ::=
<LocalVarDeclStmt>

LocalVarDeclStmt.in := BlockStmt.in
BlockStmt.out := LocalVarDeclStmt.out

| <Statement>
Statement.in := BlockStmt.in
BlockStmt.out := Statement.out

| <UnmodClassDecl>
UnmodClassDecl.in := BlockStmt.in
BlockStmt.out := UnmodClassDecl.out

<LocalVarDeclStmt> ::=
<LocalVarDecl> ;

LocalVarDecl.in := LocalVarDeclStmt.in
LocalVarDeclStmt.out := LocalVarDecl.out

<LocalVarDecl> ::=
<Type> <VarDeclList>
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Type.in := LocalVarDecl.in
VarDeclList.in := LocalVarDecl.in
LocalVarDecl.out.vars :=

LocalVarDecl.in.vars.insert(Type.out.type, VarDeclList.out.ids)
if DeclConflict(Type.out.type, VarDeclList.out.ids, LocalVarDecl.in.vars)

ERROR (“Illegal Local Variable Declaration”)
endif
LocalVarDecl.out.env := LocalVarDecl.in.env

<Statement> ::=
<StmtNoTrailing>

StmtNoTrailing.in := Statement.in
| <LabeledStmt>

LabeledStmt.in := Statement.in
| <IfStmt>

IfStmt.in := Statement.in
| <IfElseStmt>

IfElseStmt.in := Statement.in
| <WhileStmt>

WhileStmt.in := Statement.in
| <ForStmt>

ForStmt.in := Statement.in

<StmtNoShortIf> ::=
<StmtNoTrailing>

StmtNoTrailing.in := StmtNoShortIf.in
| <LabeledStmtNoShortIf>

LabeledStmtNoShortIf.in := StmtNoShortIf.in
| <IfElseStmtNoShortIf>

IfElseStmtNoShortIf.in := StmtNoShortIf.in
| <WhileStmtNoShortIf>

WhileStmtNoShortIf.in := StmtNoShortIf.in
| <ForStmtNoShortIf>

ForStmtNoShortIf.in := StmtNoShortIf.in

<StmtNoTrailing>
<Block>

Block.in := StmtNoTrailing.in
| <EmptyStmt>

EmptyStmt.in := StmtNoTrailing.in
| <ExprStmt>

ExprStmt.in := StmtNoTrailing.in
| <SwitchStmt>

SwitchStmt.in := StmtNoTrailing.in
| <DoStmt>

DoStmt.in := StmtNoTrailing.in
| <BreakStmt>

BreakStmt.in := StmtNoTrailing.in
| <ContStmt>

ContStmt.in := StmtNoTrailing.in
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| <RetStmt>
RetStmt.in := StmtNoTrailing.in

| <SynchStmt>
SynchStmt.in := StmtNoTrailing.in

| <ThrowStmt>
ThrowStmt.in := StmtNoTrailing.in

| <TryStmt>
TryStmt.in := StmtNoTrailing.in

<EmptyStmt> ::=
;

<LabeledStmt> ::=
<Id> : <Statement>

Statement.in.context := LabeledStmt.in.context
Statement.in.vars := LabeledStmt.in.vars
if not(LabeledStmt.in.env.isLabel(Id.out.value))

ERROR(“Label ”+Id.out.value+“ already in use.”)
Statement.in.env := LabeledStmt.in.env

else
Statement.in.env := LabeledStmt.in.env.addLabel(Id.out.value)

endif

<LabeledStmtNoShortIf> ::=
<Id> : <StmtNoShortIf>

StmtNoShortIf.in.context := LabeledStmtNoShortIf.in.context
StmtNoShortIf.in.vars := LabeledStmtNoShortIf.in.vars
if not(LabeledStmtNoShortIf.in.env.isLabel(Id.out.value))

ERROR(“Label ”+Id.out.value+“ already in use.”)
StmtNoShortIf.in.env := LabeledStmtNoShortIf.in.env

else
StmtNoShortIf.in.env := LabeledStmtNoShortIf.in.env.addLabel(Id.out.value)

endif

<ExprStmt> ::=
<Assign>

Assign.in := ExprStmt.in
| <PreIncExpr>

PreIncExpr.in := ExprStmt.in
| <PreDecExpr>

PreDecExpr.in := ExprStmt.in
| <PostIncExpr>

PostIncExpr.in := ExprStmt.in
| <PostDecExpr>

PostDecExpr.in := ExprStmt.in
| <MethodInv>

MethodInv.in := ExprStmt.in
| <ClassInstCreationExpr>

ClassInstCreationExpr.in := ExprStmt.in
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<IfStmt> ::=
if ( <Expr> ) <Statement>

Expr.in := IfStmt.in
Statement.in := IfStmt.in
if not (Expr.out.type.equals(boolean))

ERROR(“Condition of if statement must be boolean”)
endif

<IfElseStmt> ::=
if ( <Expr> ) <StmtNoShortIf> else <Statement>

Expr.in := IfElseStmt.in
Statement.in := IfElseStmt.in
StmtNoShortIf.in := IfElseStmt.in
if not (Expr.out.type.equals(boolean))

ERROR(“Condition of if statement must be boolean”)
endif

<IfElseStmtNoShortIf> ::=
if ( <Expr> ) <StmtNoShortIf> else <StmtNoShortIf>

Expr.in := IfElseStmtNoShortIf.in
Statement.in := IfElseStmtNoShortIf.in
StmtNoShortIf.in := IfElseStmtNoShortIf.in
if not (Expr.out.type.equals(boolean))

ERROR(“Condition of if statement must be boolean”)
endif

<SwitchStmt> ::=
switch ( <Expr> ) <SwitchBlock>

Expr.in := SwitchStmt.in
SwitchBlock.in.env := SwitchStmt.in.env
if not(Expr.out.type.equals(integral))

ERROR(“Switch statement expression must be integral”)
SwitchBlock.in.context := SwitchStmt.in.context.addSwitchExpt(int)

else
SwitchBlock.in := SwitchStmt.in.context.addSwitchExpfr(Expr.out.type)

endif

<SwitchBlock> ::=

f <SwitchBlockStmtList>? <SwitchLabelList>? g
SwitchBlockStmtList.in := SwitchBlock.in
SwitchLabelList.in := SwitchBlock.in

<SwitchBlockStmtList> ::=
<SwitchBlockStmt>

SwitchBlockStmt.in := SwitchBlockStmtList.in
| <SwitchBlockStmtList1> <SwitchBlockStmt>

SwitchBlockStmtList1.in := SwitchBlockStmtList.in
SwitchBlockStmt.in := SwitchBlockStmtList.in



Formal Grammar for Java 21

<SwitchBlockStmt> ::=
<SwitchLabelList> <BlockStmtList>

SwitchLabelList.in := SwitchBlockStmt.in
BlockStmtList.in := SwitchBlockStmt.in

<SwitchLabelList> ::=
<SwitchLabel>

SwitchLabel.in := SwitchLabelList.in
| <SwitchLabelList1> <SwitchLabel>

SwitchLabelList1.in := SwitchLabelList.in
SwitchLabel.in := SwitchLabelList.in

<SwitchLabel> ::=
case <ConstExpr>

ConstExpr.in := SwitchLabel.in
if not(ConstExpr.out.assignableTo(SwitchLabel.in.context.switchExpr()))

ERROR(“Case label must be compatible with switch expression type.”)
endif

| default :

<WhileStmt> ::=
while ( <Expr> ) <Statement>

Expr.in := WhileStmt.in
Statement.in := WhileStmt.in
if not(Expr.out.type.equals(boolean))

ERROR(“While statement expression must be boolean”)
endif

<WhileStmtNoShortIf> ::=
while ( <Expr> ) <StmtNoShortIf>

Expr.in := WhileStmt.in
StmtNoShortIf.in := WhileStmt.in
if not(Expr.out.type.equals(boolean))

ERROR(“While statement expression must be boolean”)
endif

<DoStmt> ::=
do <Statement> while ( <Expr> )

Expr.in := DoStmt.in
Statement.in := DoStmt.in
if not(Expr.out.type.equals(boolean))

ERROR(“Do statement expression must be boolean”)
endif

<ForStmt> ::=

for ( <ForInit>? ; <Expr>? ; <ForUpdate>? ) <Statement>
ForInit.in := ForStmt.in
Expr.in.context := ForStmt.in.context
Expr.in.env := ForStmt.in.env
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Expr.in.vars := ForInit.out.vars
ForUpdate.in.context := ForStmt.in.context
ForUpdate.in.env := ForStmt.in.env
ForUpdate.in.vars := ForInit.out.vars
Statement.in.context := ForStmt.in.context
Statement.in.env := ForStmt.in.env
Statement.in.vars := ForInit.out.vars

<ForStmtNoShortIf> ::=

for ( <ForInit>? ; <Expr>? ; <ForUpdate>? ) <StmtNoShortIf>
ForInit.in := ForStmt.in
Expr.in.context := ForStmt.in.context
Expr.in.env := ForStmt.in.env
Expr.in.vars := ForInit.out.vars
ForUpdate.in.context := ForStmt.in.context
ForUpdate.in.env := ForStmt.in.env
ForUpdate.in.vars := ForInit.out.vars
StmtNoShortIf.in.context := ForStmt.in.context
StmtNoShortIf.in.env := ForStmt.in.env
StmtNoShortIf.in.vars := ForInit.out.vars

<ForInit> ::=
<ExprStmtList>

ExprStmtList.in := ForInit.in
ForInit.in.vars := ExprStmtList.out.vars

| <LocalVarDecl>
LocalVarDecl.in := ForInit.in
ForInit.out.vars := LocalVarDecl.out.vars

<ForUpdate> ::=
<ExprStmtList>

ExprStmtList.in := ForUpdate.in

<ExprStmtList> ::=
<ExprStmt>

ExprStmt.in := ExprStmtList.in
| <ExprStmtList1> , <ExprStmt>

ExprStmt.in := ExprStmtList.in
ExprStmtList1.in := ExprStmtList.in

<BreakStmt> ::=

break <Id>? ;
Id.in := BreakStmt.in
if not(BreakStmt.in.env.isLabel(Id.out.value))

ERROR(“Undefined Label ”+Id.out.value+“ in Break statement”)
endif

<ContStmt> ::=

continue <Id>? ;
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Id.in := ContStmt.in
if not(ContStmt.in.env.isLabel(Id.out.value))

ERROR(“Undefined Label ”+Id.out.value+“ in Continue statement”)
endif

<RetStmt> ::=

return <Expr>? ;
Expr.in := RetStmt.in
if not(Expr.out.assignableTo(RetStmt.in.context.returnType())

ERROR(Expr.out.type+ “ not compatible with return type”)
endif

<ThrowStmt> ::=
throw <Expr> ;

Expr.in := RetStmt.in
if not(RetStmt.in.context.throws(Expr.out.type))

ERROR(“Statment does not throw exception: ”+Expr.out.type)
endif

<SynchStmt> ::=
synchronized ( <Expr> ) <Block>

Expr.in := SynchStmt.in
Block.in := SynchStmt.in
if not(Expr.out.type.equals(ref))

ERROR(“Argument of synchronized statement must be reference type”)
endif

<TryStmt> ::=
try <Block> <Catches>

Block.in := TryStmt.in
Catches.in := TryStmt.in

| try <Block> <Catches>? <Finally>
Block.in := TryStmt.in
Catches.in := TryStmt.in
Finally.in := TryStmt.in

<Catches> ::=
<CatchClause>

CatchClause.in := Catches.in
| <Catches1> <CatchClause>

Catches1.in := Catches.in
CatchClause.in := Catches.in

<CatchClause> ::=
catch ( <FormalParam> ) <Block>

FormalParam.in := CatchClause.in
Block.in := CatchClause.in
if not(FormalParam.out.type.promotableTo(Throwable))

ERROR(“Catch clause parameter must be of type throwable.”)
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endif

<Finally> ::=
finally <Block>

Block.in := Finally.in

2.12 Expressions

The following grammar presents the syntax for expressions in the Java language.
For expressions, the pertinent output (synthesized) attributes are types and val-
ues, the input (inherited) attributes are context, environment and variables.

The JLS specifies the types of expressions, dependent on the types of the
subexpressions and the form of the expression. However, in the case where there
is a compile-time error (e.g., a type mismatch error), the JLS does not specify
either a default or calculated return type. This enables compiler writers to make
their own interpretation of the return type, resulting in incompatible behavior
during compilation when compile-time errors are present. In this specification
we have chosen return types that either follow the convention of the Sun JDK,
or result in a relatively intuitive result. For select expressions, the return type
and value are both undef an undefined value. For type checking methods, an
undefined type is compatible with all types. For these errors, we have made the
following decisions:

– For the conditional expression <CondExpr>, experimentation with the Sun
JDK indicates that the resulting type is the type of the right most expression
<CondExpr1>. We followed that precedent in this specification.

– For the overloaded operators |, &, and ∧, which can be used for either
boolean operations or for numeric bit-wise operations, we follow the conven-
tion that the expected and return types are boolean.

– for shift, addition, subtraction and multiplication operations, the default
return type is int.

– for the or, and, and xor operations the default value is boolean (even if the
programmer intended on a bitwise operation).

<ConstExpr> ::=
<Expr>

Expr.in := ConstExpr.in
ConstExpr.out := Expr.out

<Expr> ::=
<AssignExpr>

AssignExpr.in := Expr.in
Expr.out := AssignExpr.out
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<AssignExpr> ::=
<Assign>

Assign.in := AssignExpr.in
AssignExpr.out := Assign.out

| <CondExpr>
CondExpr.in := AssgnExpr.in
AssignExpr.out := CondExpr.out

<Assign> ::=
<LHS> <AssignOp> <AssignExpr>

LHS.in := Assign.in
AssignExpr.in := Assign.in
if (AssignOp.out.value == EQ)

if not(AssignExpr.out.assignableTo(LHS.out.type))
ERROR(“Assignment conversion error, cannot convert” +

AssignExpr.out.type + “to” + LHS.out.type)
endif

else if (AssignOp.out.value == NumEQ)
if not(LHS.out.type.equals(numeric) and

AssignExpr.out.type.equals(numeric))
ERROR(“Operands of ”+AssignOp+“ must be numeric”)

endif
else // AssignOp.out.value == BitEQ

if not(LHS.out.type.equals(numeric) and
AssignExpr.out.type.equals(numeric)) or
not(LHS.out.type.equals(boolean) and
AssignExpr.out.type.equals(boolean))

ERROR (“Operands of ”+AssignOp+“ must be
both either boolean or numeric”)

endif
endif
Assign.out.type := LHS.out.type
Assign.out.value := undef

<LHS> ::=
<Name>

Name.in := LHS.in
LHS.out := Name.out

| <FieldAccess>
Name.in := FieldAccess.in
FieldAccess.out := Name.out

| <ArrayAccess>
Name.in := ArrayAccess.in
ArrayAccess.out := Name.out

<AssignOp> ::=
=

AssignOp.out.value := EQ
| ∗ =

AssignOp.out.value := NumEQ
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| / =
AssignOp.out.value := NumEQ

| % =
AssignOp.out.value := NumEQ

| + =
AssignOp.out.value := NumEQ

| − =
AssignOp.out.value := NumEQ

| <<=
AssignOp.out.value := NumEQ

| >>=
AssignOp.out.value := NumEQ

| >>>=
AssignOp.out.value := NumEQ

| & =
AssignOp.out.value := BitEQ

| ∧ =
AssignOp.out.value := BitEQ

| | =
AssignOp.out.value := BitEQ

<CondExpr>::=
<CondOrExpr>

CondOrExpr.in := CondExpr.in
CondExpr.out := CondOrExpr.out

| <CondOrExpr> ? <Expr> : <CondExpr1>
CondOrExpr.in := CondExpr.in
Expr.in := CondExpr.in
CondExpr1 .in := CondExpr.in
// Check type of conditional expression and evaluate
if not(CondOrExpr.out.type.equals(boolean))

ERROR (“Expression on LHS of ? must be boolean”)
else if (CondOrExpr.out.value == undef)

CondOrExpr.out.value := undef
else
if (CondOrExpr.out.value == true)

CondExpr.out.value := Expr.out.value
else

CondExpr.out.value := CondExpr1.out.value
endif

endif
// Handle case if both right-hand subexpressions are boolean
if (Expr.out.type.equals(boolean) and

CondExpr1 .out.type.equals(boolean))
CondExpr.out.type := boolean

// Handle case if both right-hand subexpressions are numeric
else if (Expr.out.type.equals(numeric) and

CondExpr1 .out.type.equals(numeric))
if (Expr.out.type.equals(CondExpr1 .out.type))

CondExpr.out.type := Expr.out.type



Formal Grammar for Java 27

else if ((Expr.out.type.equals(byte) and
CondExpr1 .out.type.equals(short)) or
(Expr.out.type.equals(short) and
CondExpr1 .out.type.equals(byte))

CondExpr.out.type := short
else if (Expr.out.type.inList([short;char;byte]) and

CondExpr1 .out.assignableTo(Expr.out.type))
ConExpr.out.type := Expr.out.type

else if (CondExpr1.out.type.inList([short;char;byte]) and
Expr.out.assignableTo(CondExpr1 .out.type))

CondExpr.out.type := CondExpr1.out.type
else

CondExpr.out.type :=
binaryNumericConversion(Expr.out.type, CondExpr1 .out.type)

endif
// Handle case if both right-hand subexpresions are references
else if (Expr.out.type.equals(ref) and

CondExpr1 .out.type.equals(ref))
if (Expr.out.type.promotableTo(CondExpr1 .out.type))

CondExpr.out.type := CondExpr1.out.type
else if (CondExpr1.out.type.promotableTo(Expr.out.type))

CondExpr.out.type := Expr.out.type
else

ERROR(“Can’t convert ”+Expr.out.type+“to ”+CondExpr1 .out.type)
CondExpr.out.type := Expr.out.type

endif
else

ERROR(“Can’t convert ”+Expr.out.type+“to ”+CondExpr1.out.type)
CondExpr.out.type := Expr.out.type

endif

<CondOrExpr>::=
<CondAndExpr>

CondAndExpr.in := CondOrExpr.in
CondOrExpr.out := CondAndExpr.out

| <CondOrExpr1> || <CondAndExpr>
CondOrExpr1 .in := CondOrExpr.in
CondAndExpr.in := CondOrExpr.in
if not(CondOrExpr1.out.type.equals(boolean) and

CondAndExpr.out.type.equals(boolean))
ERROR(“Both arguments to || must be boolean”)
CondOrExpr.out.value := undef

else if not (CondOrExpr1.out.value.defined())
CondOrExpr.out.value := undef

else if (CondOrExpr1 .out.value == true)
CondOrExpr.out.value := true

else if not (CondAndExpr.out.value.defined())
CondOrExpr.out.value := undef

else if (CondAndExpr.out.value == true)
CondOrExpr.out.value := true



28 Jim Alves-Foss and Deborah Frincke

else
CondOrExpr.out.value := false

endif
CondOrExpr.out.type := boolean

<CondAndExpr>::=
<IncOrExpr>

IncOrExpr.in := CondAndExpr.in
CondAndExpr.out := IncOrExpr.out

| <CondAndExpr1> && <IncOrExpr>
CondAndExpr1 .in := CondAndExpr.in
IncOrExpr.in := CondAndExpr.in
if not(CondAndExpr1 .out.type.equals(boolean) and

IncOrExpr.out.type.equals(boolean))
ERROR(“Both arguments to && must be boolean”)
CondAndExpr.out.value := undef

else if not (CondAndExpr1 .out.value.defined())
CondAndExpr.out.value := undef

else if (CondAndExpr1 .out.value == false)
CondAndExpr.out.value := false

else if not (IncOrExpr.out.value.defined())
CondAndExpr.out.value := undef

else if (IncOrExpr.out.value == true)
CondAndExpr.out.value := true

else
CondAndExpr.out.value := false

endif
CondAndExpr.out.type := boolean

<IncOrExpr>::=
<XORExpr>

XORExpr.in := IncOrExpr.in
IncOrExpr.out := XORExpr.out

| <IncOrExpr1> | <XORExpr>
IncOrExpr1.in := IncOrExpr.in
XORExpr.in := IncOrExpr.in
if (IncOrExpr1.out.type.equals(integral) and

XORExpr.out.type.equals(integral))
IncOrExpr.out.type :=

binaryNumericConversion(IncOrExpr1 .out.type,XORExpr.out.type)
IncOrExpr.out.value := IncOrExpr1.out.value.bitOR(XORExpr.out.value)

else if not(IncOrExpr1 .out.type.equals(boolean) and
XORExpr.out.type.equals(boolean))

ERROR(“Both arguments to | must be boolean or numeric”)
IncOrExpr.out.value := undef
IncOrExpr.out.type := boolean

else
IncOrExpr.out.value := IncOrExpr1.out.value.OR(XORExpr.out.type)
IncOrExpr.out.type := boolean

endif
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<XORExpr>::=
<AndExpr>

AndExpr.in := XORExpr.in
XORExpr.out := AndExpr.out

| <XORExpr1>
∧ <AndExpr>

XORExpr1.in := XORExpr.in
AndExpr.in := XORExpr.in
if (XOROrExpr1.out.type.equals(integral) and

AndExpr.out.type.equals(integral))
XORExpr.out.type :=

binaryNumericConversion(XORExpr1 .out.type,AndExpr.out.type)
XORExpr.out.value := XORExpr1.out.value.bitXOR(AndExpr.out.value)

else if not(XORExpr1 .out.type.equals(boolean) and
AndExpr.out.type.equals(boolean))

ERROR(“Both arguments to ∧ must be boolean or numeric”)
XORExpr.out.value := undef
XORExpr.out.type := boolean

else
XORExpr.out.value := XORExpr1.out.value.XOR(AndExpr.out.type)
XORExpr.out.type := boolean

endif

<AndExpr>::=
<EqualExpr>

EqualExpr.in := AndExpr.in
AndExpr.out := EqualExpr.out

| <AndExpr1> & <EqualExpr>
AndExpr1 .in := AndExpr.in
EqualExpr.in := AndExpr.in
if (AndExpr1.out.type.equals(integral) and

EqualExpr.out.type.equals(integral))
AndExpr.out.type :=

binaryNumericConversion(AndExpr1 .out.type,EqualExpr.out.type)
AndExpr.out.value := AndExpr1 .out.value.bitAND(EqualExpr.out.value)

else if not(AndExpr1 .out.type.equals(boolean) and
EqualExpr.out.type.equals(boolean))

ERROR(“Both arguments to & must be boolean or numeric”)
AndExpr.out.value := undef
AndExpr.out.type := boolean

else
AndExpr.out.value := AndExpr1 .out.value.AND(EqualExpr.out.type)
AndExpr.out.type := boolean

endif

<EqualExpr> ::=
<RelatExpr>

RelatExpr.in := EqualExpr.in
EqualExpr.out := RelatExpr.out

| <EqualExpr1> == <RelatExpr>
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EqualExpr.out.type := boolean
if not(EqualsExpr1 .out.type.compatibleWith(RelatExpr.out.type))

ERROR(“Operands of == must be compatible types”)
EqualExpr.out.value := undef

else
EqualExpr.out.value := EqualExpr1 .out.value.EQ(RelatExpr.out.value)

endif
| <EqualExpr1> != <RelatExpr>

EqualExpr.out.type := boolean
if not(EqualsExpr1 .out.type.compatibleWith(RelatExpr.out.type))

ERROR(“Operands of != must be compatible types”)
EqualExpr.out.value := undef

else
EqualExpr.out.value := not(EqualExpr1 .out.value.EQ(RelatExpr.out.value))

endif

<RelatExpr>::=
<ShiftExpr>

ShiftExpr.in := RelatExpr.in
RelatExpr.out := ShiftExpr.out

| <RelatExpr1> < <ShiftExpr>
RelatExpr1.in := RelatExpr.in
ShiftExpr.in := RelatExpr.in
if (TypeCheck(numeric, RelatExpr1.out.type) and

TypeCheck(numeric, ShiftExpr.out.type))
RelatExpr.out.type := boolean
RelatExpr.out.value := RelatExpr1.out.value.LT(ShiftExpr.out.value)

else
ERROR (“Both arguments to < must be numeric type”)
RelatExpr.out.type := boolean
RelatExpr.out.value := undef

endif
| <RelatExpr1> > <ShiftExpr>

RelatExpr1.in := RelatExpr.in
ShiftExpr.in := RelatExpr.in
if (TypeCheck(numeric, RelatExpr1.out.type) and

TypeCheck(numeric, ShiftExpr.out.type))
RelatExpr.out.type := boolean
RelatExpr.out.value := RelatExpr1.out.value.GT(ShiftExpr.out.value)

else
ERROR (“Both arguments to > must be numeric type”)
RelatExpr.out.type := boolean
RelatExpr.out.value := undef

endif
| <RelatExpr1> <= <ShiftExpr>

RelatExpr1.in := RelatExpr.in
ShiftExpr.in := RelatExpr.in
if (TypeCheck(numeric, RelatExpr1.out.type) and

TypeCheck(numeric, ShiftExpr.out.type))
RelatExpr.out.type := boolean
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RelatExpr.out.value := RelatExpr1.out.value.LE(ShiftExpr.out.value)
else

ERROR (“Both arguments to <= must be numeric type”)
RelatExpr.out.type := boolean
RelatExpr.out.value := undef

endif
| <RelatExpr1> >= <ShiftExpr>

RelatExpr1.in := RelatExpr.in
ShiftExpr.in := RelatExpr.in
if (TypeCheck(numeric, RelatExpr1.out.type) and

TypeCheck(numeric, ShiftExpr.out.type))
RelatExpr.out.type := boolean
RelatExpr.out.value := RelatExpr1.out.value.GE(ShiftExpr.out.value)

else
ERROR (“Both arguments to >= must be numeric type”)
RelatExpr.out.type := boolean
RelatExpr.out.value := undef

endif
| <RelatExpr1> instanceof <RefType>

RelatExpr1.in := RelatExpr.in
RefType.in := RelatExpr.in
if (typeCheck(refOrNull, RelatExpr1.out.type) and

typeCheck(ref, ShiftExpr.out.type) and
RefType.out.type.promotableTo(RelatExpr1 .out.type)

RelatExpr.out.type := boolean
RelatExpr.out.type := undef

else
ERROR (“Impossible for ”+RelatExpr1.out.type+

“ to be instance of ”+RefType.out.type)
RelatExpr.out.type := boolean
RelatExpr.out.value := undef

endif

<ShiftExpr> ::=
<AddExpr>

AddExpr.in := ShiftExpr.in
ShiftExpr.out := AddExpr.out

| <ShiftExpr1> << <AddExpr>
ShiftExpr1.in := ShiftExpr.in
AddExpr.in := ShiftExpr.in
if (TypeCheck(integral, ShiftExpr1.out.type) and

TypeCheck(integral, AddExpr.out.type))
Shift.out.type := promote(ShiftExpr1 .out.type, AddExpr.out.type)

else ERROR (“Both arguments to << must be integral type”)
ShiftExpr.out.type := int
Shift.out.value := Shift1.out.value.LS(AddExpr.out.value)

endif
| <ShiftExpr1> >> <AddExpr>

ShiftExpr1.in := ShiftExpr.in
AddExpr.in := ShiftExpr.in
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if (TypeCheck(integral, ShiftExpr1.out.type) and
TypeCheck(integral, AddExpr.out.type))

Shift.out.type := promote(ShiftExpr1 .out.type, AddExpr.out.type)
Shift.out.value := Shift1.out.value.RSS(AddExpr.out.value)

else ERROR (“Both arguments to >> must be integral type”)
ShiftExpr.out.type := int
ShiftExpr.out.value := undef

endif
| <ShiftExpr1> >>> <AddExpr>

ShiftExpr1.in := ShiftExpr.in
AddExpr.in := ShiftExpr.in
if (TypeCheck(integral, ShiftExpr1.out.type) and

TypeCheck(integral, AddExpr.out.type))
Shift.out.type := promote(ShiftExpr1 .out.type, AddExpr.out.type)
Shift.out.value := Shift1.out.value.RSZ(AddExpr.out.value)
ShiftExpr.out.type := int
ShiftExt.out.value := undef

else ERROR (“Both arguments to >>> must be integral type”)
ShiftExpr.out.type := int
ShiftExt.out.value := undef

endif

<AddExpr> ::=
<MultExpr>

MultExpr.in := AddExpr.in
AddExpr.out := MultExpr.out

| <AddExpr1> + <MultExpr>
AddExpr1 .in := AddExpr.in
MultExpr.in := AddExpr.in
if (TypeCheck(string, AddExpr1.out.type) or

TypeCheck(string, MultExpr.out.type))
AddExpr.out.type := string
AddExpr.out.value := AddExpr1 .out.value.string+( MultExpr.out.value)

else if (TypeCheck(numeric, AddExpr1.out.type) and
TypeCheck(numeric, MultExpr.out.type))

AddExpr.out.type := promote(AddExpr1 .out.type, MultExpr.out.type)
AddExpr.out.value := AddExpr1 .out.value + MultExpr.out.value

else ERROR (“Both arguments to + must be numeric, or one a string”)
AddExpr.out.type := int
AddExpr.out.value := undef

endif
| <AddExpr> - <MultExpr>

AddExpr1 .in := AddExpr.in
MultExpr.in := AddExpr.in
if (TypeCheck(numeric, AddExpr1 .out.type) and

TypeCheck(numeric, MultExpr.out.type))
AddExpr.out.type := promote(AddExpr1 .out.type, MultExpr.out.type)
AddExpr.out.value := AddExpr1 .out.value - MultExpr.out.value

else ERROR (“Both arguments to + must be NumType”)
AddExpr.out.type := int
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AddExpr.out.value := undef
endif

<MultExpr> ::=
<UnaryExpr>

UnaryExpr.in := MultExpr.in
MultExpr.out := UnaryExpr.out

| <MultExpr1> * <UnaryExpr>
MultExpr1.in := MultExpr.in
UnaryExpr.in := MultExpr.in
if (typeCheck(numeric, MultExpr1.out.type) and

typeCheck(numeric,UnaryExpr.out.type))
MultExpr.out.type := promote(MultExpr1 .out.type, UnaryExpr.out.type)
AddExpr.out.value := MultExpr1.out.value - AddExpr.out.value

else ERROR (“Both arguments to * must be numeric”)
MultExpr.out.type := int
MultExpr.out.value := undef

endif
| <MultExpr1> / <UnaryExpr>

MultExpr1.in := MultExpr.in
UnaryExpr.in := MultExpr.in
if (typeCheck(numeric, MultExpr1.out.type) and

typeCheck(numeric,UnaryExpr.out.type))
MultExpr.out.type := promote(MultExpr1 .out.type, UnaryExpr.out.type)
MultExpr.out.value := MultExpr1.out.value - AddExpr.out.value

else ERROR (“Both arguments to / must be numeric”)
MultExpr.out.type := int
MultExpr.out.value := undef

endif
| <MultExpr1> % <UnaryExpr>

MultExpr1.in := MultExpr.in
UnaryExpr.in := MultExpr.in
if (typeCheck(numeric, MultExpr1.out.type) and

typeCheck(numeric,UnaryExpr.out.type))
MultExpr.out.type := promote(MultExpr1 .out.type, UnaryExpr.out.type)
MultExpr.out.value := MultExpr1.out.value % AddExpr.out.value

else ERROR (“Both arguments to % must be numeric”)
MultExpr.out.type := int
MultExpr.out.value := undef

endif

<UnaryExprNotPlusMinus> ::=
<CastExpr>

CastExpr.in := UnaryExprNotPlusMinus.in
UnaryExprNotPlusMinus.out := CastExpr.out

| <PostExpr>
PostExpr.in := UnaryExprNotPlusMinus.in
UnaryExprNotPlusMinus.out := PostExpr.out

| ∼ <UnaryExpr>
UnaryExpr.in := UnaryExprNotPlusMinus.in
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if not(UnaryExpr.out.type.equals(integral))
ERROR(“ Argument of ∼ must be primitive Integral Type”)
UnaryExprNotPlusMinus.out.type := int
UnaryExprNotPlusMinus.out.value := undef

else
UnaryExprNotPlusMinus.out.type := UnaryExpr.out.type
UnaryExprNotPlusMinus.out.value := UnaryExpr.out.value.bitNOT()

endif
| ! <UnaryExpr>

if not(UnaryExpr.out.type.equals(integral))
ERROR(“ Argument of ! must be boolean”)
UnaryExprNotPlusMinus.out.type := boolean
UnaryExprNotPlusMinus.out.value := undef

else
UnaryExprNotPlusMinus.out.type := UnaryExpr.out.type
UnaryExprNotPlusMinus.out.value := UnaryExpr.out.value.NOT()

endif

<CastExpr>::=
******* Needs to check types for validity of cast ***********

( <PrimType> <Dims>? ) <UnaryExpr>
PrimType.in := CastExpr.in
Dims.in := CastExpr.in
UnaryExpr.in := CastExpr.in
CastExpr.out.type := array(PrimType.out.type,Dims.out.type)

| ( <Expr> ) <UnaryExprNotPlusMinus>
Expr.in := CastExpr.in
UnaryExprNotPlusMinus.in := CastExpr.in
CastExpr.out.type := Expr.out.type

| ( <Name Dims> ) <UnaryExprNotPlusMinus>
Name.in := CastExpr.in
Dims.in := CastExpr.in
UnaryExprNotPlusMinus.in := CastExpr.in
CastExpr.out.type := array(Name.out.type, Dims.out.type)

<PostExpr> ::=
<Primary>

Primary.in := PostExpr.in
PostExpr.out := Primary.out

| <Name>
Name.in := PostExpr.in
if (Name.out.isExpression())

PostExpr.out.type := Name.out.getType()
PostExpr.out.value := Name.out.getValue()

else
ERROR(“Undefined variable ”+ Name.out.value)
PostExpr.out.type := undef
PostExpr.out.value := undef

endif
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| <PostIncExpr>
PostIncExpr.in := PostExpr.in
PostExpr.out := PostIncExpr.out

| <PostDecExpr>
PostDecExpr.in := PostExpr.in
PostExpr.out := PostDecExpr.out

<PostIncExpr> ::=
<PostExpr> ++

PostExpr.in := PostIncExpr.in
if not(PostExpr.out.type.equals(numeric))

ERROR(“Postfix Expr must be a variable of numeric type”)
PostIncExpr.out.type := int
PostIncExpr.out.value := undef

else
PostIncExpr.out.type := PostExpr.out.type
if (PostExpr.out.value.defined())

PostIncExpr.out.value := PostExpr.out.value + 1
else

PostIncExpr.out.value := undef
endif

endif

<PostDecExpr> ::=
<PostExpr> - -

PostExpr.in := PostDecExpr.in
if not(PostExpr.out.type.equals(numeric))

ERROR(“Postfix Expr must be a variable of numeric type”)
PostDecExpr.out.type := int
PostDecExpr.out.value := undef

else
PostDecExpr.out.type := PostExpr.out.type
if (PostExpr.out.value.defined())

PostDecExpr.out.value := PostExpr.out.value - 1
else

PostDecExpr.out.value := undef
endif

endif

<UnaryExpr>::=
<PreIncExpr>

PreIncExpr.in := UnaryExpr.in
UnaryExpr.out := PreIncExpr.out

| <PreDecExpr>
PreDecExpr.in := UnaryExpr.in
UnaryExpr.out := PreDecExpr.out

| + <UnaryExpr1>
UnaryExpr1 .in := UnaryExpr.in
if not(UnaryExpr1 .out.type.equals(numeric))

ERROR(“Argument of unary + must be numeric’)



36 Jim Alves-Foss and Deborah Frincke

UnaryExpr.out.type := int
UnaryExpr.out.value := undef

else
UnaryExpr.out := UnaryExpr1 .out

endif
| - <UnaryExpr1>

UnaryExpr1 .in := UnaryExpr.in
if not(UnaryExpr1 .out.type.equals(numeric))

ERROR(“Argument of unary - must be numeric’)
UnaryExpr.out.type := int
UnaryExpr.out.value := undef

else
UnaryExpr.out.type := UnaryExpr1.out.type
if (UnaryExpr1.out.value.defined())

UnaryExpr.out.value := 0 - UnaryExpr1 .out.value
else

UnaryExpr.out.value := undef
endif

endif
| <UnaryExprNotPlusMinus>

UnaryExprNotPlusMinus.in := UnaryExpr.in
UnaryExpr.in := UnaryExprNotPlusMinus.in

<PreIncExpr> ::=
++ <UnaryExpr>

UnaryExpr.in := PreIncExpr.in
PreIncExpr.out.value := undef
if not(UnaryExpr.out.type.equals(numeric))

ERROR(“Preincrement expr must be a variable of numeric type”)
PreIncExpr.out.type := int

else
PreIncExpr.out.type := UnaryExpr.out.type
endif

endif

<PreDecExpr> ::=
– <UnaryExpr>

UnaryExpr.in := PreDecExpr.in
PreDecExpr.out.value := undef
if not(UnaryExpr.out.type.equals(numeric))

ERROR(“Predecrement expr must be a variable of numeric type”)
PreDecExpr.out.type := int

else
PreDecExpr.out.type := UnaryExpr.out.type
endif

endif

<Primary> ::=
<PrimaryNoNewArray>

PrimaryNoNewArray.in := Primary.in
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Primary.out := PrimaryNoNewArray.out
| <ArrayCreationExpr>

ArrayCreationExpression := Primary.in
Primary.out := ArrayCreationExpression.out

<PrimaryNoNewArray> ::=
<Literal>

Literal.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := Literal.out

| this
if not(PrimaryNoNewArray.context.isInstanceMethod() or

PrimaryNoNewArray.context.isConstructor())
ERROR(“this permitted only in an instance method or constructor”)

endif
PrimaryNoNewArray.out.value := undef
PrimaryNoNewArray.out.type = Primary.NoNewArray.in.context.getClass()

| ( <Expr> )

Expr.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := Expr.out

| <ClassInstCreationExpr>
ClassInstCreationExpr.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := ClassInstCreationExpr.out

| <FieldAcc>
FieldAcc.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := FieldAcc.out

| <MethodInv>
MethodInv.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := MethodInv.out

| <ArrayAccess>
ArrayAccess.in := PrimaryNoNewArray.in
PrimaryNoNewArray.out := ArrayAccess.out

<ArrayCreationExpr> ::=

new <PrimType> <DimExprList> <Dims>?

PrimType.in := ArrayCreationExpr.in
DimExprList.in := ArrayCreationExpr.in
Dims.in := ArrayCreationExpr.in
ArrayCreationExpr.out.value := undef
ArrayCreationExpr.out.type :=

PrimType.out.type.inc(DimExprList.out.value + Dims.out.value)

| new <ClassInterfaceType> <DimExprList> <Dims>?

ClassInterfaceType.in := ArrayCreationExpr.in
DimExprList.in := ArrayCreationExpr.in
Dims.in := ArrayCreationExpr.in
ArrayCreationExpr.out.value := undef
ArrayCreationExpr.out.type :=

PrimType.out.type.inc(DimExprList.out.value + Dims.out.value)

<ClassInstCreationExpr>::=
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new <ClassType> ( <ArgList>? ) <ClassBody>?

ClassType.in := ClassInstCreationExpr.in
ArgList.in := ClassInstCreationExpr.in
ClassBody.in := ClassInstCreationExpr.in
ClassInstCreationExpr.out.type := ClassType.out.type
ClassInstCreationExpr.out.value := undef

********* Finish this to check argument types for constructor ***********
| new <InterfaceType> () <ClassBody>

InterfaceType.in := ClassInstCreationExpr.in
ArgList.in := ClassInstCreationExpr.in
ClassBody.in := ClassInstCreationExpr.in
ClassInstCreationExpr.out.type := InterfaceType.out.type
ClassInstCreationExpr.out.value := undef

********* Finish this to check types ***********

<FieldAcc> ::=
<Primary> . <Id>

Primary.in := FieldAcc.in
Id.in := FieldAcc.in
if not (FieldAcc.in.env.typeCheck(ref,Primary.out.type))

ERROR(Primary.out.type + “must be a reference type”)
FieldAcc.out.type := null

else if not(FieldAcc.in.env.idCheck(Primary.out.type,Id.out.type)))
ERROR(Id.out.value + “must be non-ambiguous and accessible”)
FieldAcc.out.type := null

else
FieldAcc.out.type :=

FieldAcc.in.env.lookupFieldType(Primary.out.type, Id.out.type)
FieldAcc.out.value :=

Field.in.env.lookupFieldValue(Primary.out.type, Id.out.type)
endif

| super . <Id>
Id.in := FieldAcc.in
FieldAcc.out := Id.out
if FieldAcc.context.className() == “Java.lang.Object”

Error(“Term super not permitted in class Object”)
else if not(PrimaryNoNewArray.context.isInstanceMethod() or

PrimaryNoNewArray.context.isConstructor())
ERROR(“super permitted only in an instance method or constructor”)

else
FieldAcc.out.type := FieldAcc.in.env.lookupFieldType

(FieldAcc.in.context.getSuper(), Id.out.type)
FieldAcc.out.value := FieldAcc.in.env.lookupFieldValue

(FieldAcc.in.context.getSuper(), Id.out.type)
endif

<MethodInv> ::=
<Name> ( <ArgList>? )

*** 15.11.1 Type Name ID not interface
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| <Primary> . <Id> ( <ArgList>? )
*** Id must be non-ambiguous and accessible

| super . <Id> ( <ArgList>? )
if FieldAcc.context.className() == “Java.lang.Object”

Error(“Term super not permitted in class Object”)
FieldAcc.out := FieldAcc.in

else if not(PrimaryNoNewArray.context.isInstanceMethod() or
PrimaryNoNewArray.context.isConstructor())
ERROR(“super permitted only in an instance method or constructor”)

else
FieldAcc.out.type = FieldAcc.out.context.getSuper() + Id.out.type

endif

<ArrayAccess> ::=
<Name> [ <Expr> ]

Name.in := ArrayAccess.in
Expr.in := ArrayAccess.in
ArrayAccess.out.value := undef
if not(Expr.out.type.promotableTo(int))

ERROR“Array indicies must be integers”)
endif
if not(typeCheck(array, ArrayAccess.env.lookupType(Name.out.type)))

ERROR(Name.value+“must be of array type”)
ArrayAccess.out.type := undef

else
ArrayAccess.out.type =

unmkArrayType(ArrayAccess.env.lookupType(Name.out.type))
endif

| <PrimaryNoNewArray> [ <Expr> ]
PrimaryNoNewArray.in := ArrayAccess.in
Expr.in := ArrayAccess.in
ArrayAccess.out.value := undef
if not(Expr.out.type.promotableTo(int))

ERROR(“Array indicies must be integers”)
endif
if not(typeCheck(array, PrimaryNoNewArray.type)))

ERROR(Name.value+“must be of array type”)
ArrayAccess.out.type := undef

else
ArrayAccess.out.type =

unmkArrayType(PrimaryNoNewArray.out.type)
endif

<ArgList> ::=
<Expr>

Expr.in := ArgList.in
ArgList.out := Expr.out

| <ArgList1> , <Expr>
ArgList1.in := ArgList.in



40 Jim Alves-Foss and Deborah Frincke

Expr.in := ArgList1.out
ArgList.out := Expr.out

<DimExprList> ::=
<DimExpr>

DimExpr.in := DimExprList.in
DimExprList.out := DimExpr.out

| <DimExprList1> <DimExpr>
DimExprList1.in := DimExprList.in
DimExpr.in := DimExprList.in
DimExprList.out.type := undef
DimExprList.out.value := DimExprList1.out.value + 1

<DimExpr> ::=
[ <Expr> ]

Expr.in := DimExpr.in
if not (typeCheck(integral, Expr.out.type))

ERROR (“Dimension declaration must be IntType”)
endif
DimExpr.out := Expr.out
DimExpr.out.type := undef
DimExpr.out.value := 1

<Dims> ::=
[ ]

Dims.out := Dims.in
Dims.out.type := undef
Dims.out.value := 1

| <Dims1> [ ]
Dims1.in := Dims.in
Dims.out.value := Dims1.out.value + 1
Dims.out.type := undef
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1 Introduction

Java combines the experience from the development of several object oriented
languages, such as C++, Smalltalk and Clos. The philosophy of the language
designers was to include only features with already known semantics, and to
provide a small and simple language.

Nevertheless, we feel that the introduction of some new features in Java, as
well as the specific combination of features, justifies a study of the Java formal
semantics. The use of interfaces, reminiscent of [10,6] is a simplification of the
signatures extension for C++ [4] and is – to the best of our knowledge – novel.
The mechanism for dynamic method binding is that of C++, but we know of
no formal definition. Java adopts the Smalltalk [15] approach whereby all object
variables are implicitly pointers.

Furthermore, although there are a large number of studies of the seman-
tics of isolated programming language features or of minimal programming lan-
guages [1], [31],[34], there have not been many studies of the formal semantics of
actual programming languages. In addition, the interplay of features which are
very well understood in isolation, might introduce unexpected effects.

Experience confirms the importance of formal studies of type systems early
on during language development. Eiffel, a language first introduced in 1985, was
discovered to have a loophole in its type system in 1990 [9,22]. Given the growing
usage of Java, it seems important that if there are loopholes in the type system
they be discovered early on.

We argue that the type system of Java is sound, in the sense that unless an
exception is raised, the evaluation of any expression will produce a value of a
type “compatible” with the type assigned to it by the type system.

We were initially attracted to Java because of its elegant combination of
several tried language features. For this work we were guided by the language
description in [17]. Any question relating to semantics could be answered unam-
biguously by [17]. However, we discovered some rules to be more restrictive than
necessary, and the reasons for some design decisions were not obvious. We hope
that the language authors will publish a language design rationale soon.

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 41–80, 1999.
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1.1 The Java Subset Considered so Far

In this paper we consider the following parts of the Java language: primitive
types, classes and inheritance, instance variables and instance methods, inter-
faces, shadowing of instance variables, dynamic method binding, object creation
with new, the null value, arrays, exceptions and exception handling.

We chose this Java subset because we consider the Java way of combining
classes, interfaces and dynamic method binding to be both novel and interesting.
Furthermore, we chose an imperative subset right from the start, because the
extension of type systems to the imperative case has sometimes uncovered new
problems, (e.g. multi-methods for functional languages [8], and for imperative
languages in [5], the Damas and Milner polymorphic type systems for functional
languages [11], and for the imperative extension [30]). We considered arrays,
because of the known requirement for run time type checking.

In contrast with our previous work [12,13,14] we follow the language descrip-
tion in [17] rather than the more general approach outlined in older versions of
the language description.

1.2 Our Approach

We define Javas, a provably safe subset of Java containing the features listed pre-
viously, a term rewrite system to describe the operational semantics and a type
inference system to describe compile-time type checking. We prove that program
execution preserves the types up to the subclass/subinterface relationship.

Java ⊃ Javas −→C Javase ⊂ Javar ;p Javar

↓ ↓ ↓ ↓
Type = Type = Type ≥wdn Type

We aimed to keep the description straightforward, and so we have removed
some of the syntactic sugar in Java, e.g. we require instance variable access to
have the form this.var as opposed to var, and we require the last statement in a
method to be a return statement. These restrictions simplify the type inference
and term rewriting systems, but do not diminish the applicability to Java itself.
It only takes a simple tranformation to turn a Java program from the domain
under cosideration to the corresponding Javas program.

The type system is described in terms of an inference system. In contrast with
many type systems for object oriented languages, it does not have a subsumption
rule, a crucial property when type checking message expressions, c.f. section 5.2.
Contrary to Java, Javas statements have a type – and thus we can type check
the return values of method bodies.

The execution of Java programs requires some type information at run-time
(e.g. method descriptors as in chapter 15.11 in [17]). For this reason, we define
Javase, an enriched version of Javas containing compile-time type information
to be used for method call and field access.
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During execution, these terms may be rewritten to terms which are not de-
scribed by the enriched language, Javase. We therefore extend the langauge,
obtaining Javar, that describes run-time terms. In previous work [12,13,14] we
did not distinguish between Javase and Javar; instead, we only conisdered one
enriched and extended language. However, as Don Syme pointed out early on,
the two different reasons for language modifications should naturally lead to
distinct languages. Also, such a distinction allows a clearer description of the
concepts. Last not least, this distinction is necessary for the formalization of the
notions around binary compatibility [33].

The operational semantics is defined as a ternary rewrite relationship be-
tween configurations, programs and configurations. Configurations are tuples of
Javar terms and states. The terms represent the part of the original program
remaining to be executed. We describe method calls through textual substitu-
tion.

We have been able to avoid additional structures such as program counters
and higher order functions. The Javas simplifications of eliminating block struc-
ture and local variables allow the definition of the state as a flat structure, where
addresses are mapped to objects and global variables are mapped to primitive
values or addresses. Objects carry their classes (similar to the Smalltalk abstract
machine [19], thus we do not need store types [1], or location typings [18]). Ob-
jects are labelled tuples, where each label contains the class in which it was
declared. Array values are tuples too, and they are annotated by their type and
their dimension.

There are strong links between our work and that described in the next two
chapters of that book [29,32] Don Syme describes in chapter 4 the formalization
of a large part of this work using his theorem checker, Declare. During this
process he uncovered a major flaw in our work, which will be described later on.
A close collaboration ensued.

David von Oheimb and Tobias Nipkow have encoded their formalization of
an enriched language similar to Javase into the theorem prover Isabelle. Thus the
treatment of the original language, Javas, is omitted. Their description of most
language constructs is similar to ours, except for exceptions, for which they
use a dedicated component of the run-time configuration. More importantly,
they used a large-step operational semantics. This turned out to have incisive
influence on the necessary proofs, and to allow for spectacular simplifications.
Thus, in the large step semantics inconsistent intermediate states need not be
considered and most lemmas could be significantly simplified. This difference
came as a surprise to all authors. On the other hand, strictly speaking, large
step semantics cannot make any promise about non terminating programs not
breaking the type system, nor is it yet clear how large step semantics could
adequately describe coroutines.

The rest of this chapter is organized as follows: In section 2 we give an exam-
ple in Java, which we use to illustrate the concepts introduced in the subsequent
sections. In section 3 we give the syntax of Javas. In section 4 we define the lan-
guage Javase. In section 5 we define the static types for Javas, and the mapping
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from Javas to Javase. In section 6 we describe the types of Javase terms, whereas
in section 7 we describe the types of Javar terms. In section 8 we describe states,
configurations and the operational semantics for Javar. In section 9 we state
properties of the operational semantics and in particular the Subject Reduction
Theorem. In section 10 we draw some conclusions.

2 An Example in Java

The following, admittedly contrived, Java program serves to demonstrate some
of the Java features that we tackle, and will be used in later sections to illustrate
our approach. It can have the following interpretation: Philosophers like truths.
When a philosopher thinks about a problem together with another philosopher,
then, after some deliberation, they refer the problem to a third philosopher.
When a philosopher thinks together with a French philosopher, they produce a
book. French philosophers like food; they too may think together with another
philosopher, and finally refer the question to another philosopher.

Assuming previous definitions of classes Book, Food and Truth, consider the
classes Phil, FrPhil defined as:

class Phil {
Truth like ;
Phil think(Phil y){ ...}
Book think(FrPhil y){ ...}

}
class FrPhil extends Phil {

Food like ;
Phil think(Phil y){like=oyster;...}

}
Consider the following declarations and expressions:

Phil aPhil ; FrPhil pascal = new FrPhil ;
...aPhil.like
...aPhil.think(pascal)...aPhil.think(aPhil)
...pascal.like
...pascal.think(pascal)...pascal.think(aPhil)

The above example demonstrates:

– Recursive scopes, e.g. the class FrPhil is visible inside the class Phil, that
is before its declaration.

– Shadowing of instance variables by static types, e.g. pascal.like is an ob-
ject of class Food, whereas aPhil.like indicates an object of class Truth,
even after the assignment aPhil:=pascal.

– Method binding according to the dynamic class of the receiver, and the static
class of the arguments: The call aPhil.think(pascal) will result in calling
the method Phil::think(FrPhil) (i.e. the think method declared in class
Phil and which takes a FrPhil argument, and returns a Book), even if aPhil
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contains a pointer to a FrPhil object. The call aPhil.think(aPhil) will
result in calling the method Phil::think(Phil) if aPhil is an object of
class Phil, and it will result in calling FrPhil::think(Phil), if aPhil is
an object of class FrPhil. The call pascal.think(pascal) is ambiguous,
because the methods Phil::think(FrPhil) and FrPhil::think(Phil) are
applicable, and neither is more special than the other.

3 The Language Javas

Javas is a subset of Java, which includes classes, instance variables, instance
methods, inheritance of instance methods and variables, shadowing of instance
variables, interfaces, widening, method calls, assignments, object creation and
access, the nullvalue, instance variable access and the exception NullPE, arrays,
array creation and the exceptions ArrStoreE, NegSzeE and IndOutBndE. The
features we have not yet considered include initializers, constructors, finalizers,
class variables and class methods, local variables, class modifiers, final/abstract
classes and methods, super, strings, numeric promotions and widenings, con-
currency, packages and separate compilation.

There are slight differences between the syntax of Javas and Java which were
introduced to simplify the formal description. A Java program contains both type
(i.e. variable declarations, parameter and result types for methods, interfaces
of classes) and evaluation information (i.e. statements in method bodies). In
Javas this information is split into two: type information is contained in the
environment (usually represented by a Γ ), whereas evaluation information is in
the program (usually represented by a p).

We follow the convention that Javas keywords appear as keyword, identifiers
as identifier, nonterminals appear in italics as Nonterminal, and the meta-
language symbols appear in Roman (e.g. ::=, ( ,*, )). Identifiers with the suffix
Id (e.g. VarId) indicate the identifiers of newly declared entities, whereas iden-
tifiers with the suffix Name (e.g. VarName) are entities that have been previously
declared.

3.1 Javas Programs

A program, as described in figure 1, consists of a sequence of class bodies. Class
bodies consist of a sequence of method bodies. Method bodies consist of the
method identifier, the names and types of the arguments, and a statement se-
quence. We require that there is exactly one return statement in each method
body, and that it is the last statement. This simplifies the Javas operational se-
mantics without restricting the expressiveness, since it requires at most a minor
transformation to enable any Java method body to satisfy this property.

We only consider conditional statements, assignments, method calls, try and
throw statements. This is because loop, break, continue and case statements
can be coded in terms of conditionals and recursion.
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Program ::= ( ClassBody )∗

ClassBody ::= ClassId ext ClassName {( MethBody )∗}
MethBody ::= MethId is (λ ParId:VarType.)∗ {Stmts; return [Expr]}
Stmts ::= ε | Stmts ; Stmt
Stmt ::= if Expr then Stmts else Stmts

| Var := Expr | Expr.MethName(Expr∗) | throw Expr
| try Stmts (catch ClassName Id Stmts)∗ finally Stmts
| try Stmts (catch ClassName Id Stmts)+

Expr ::= Value | Var | Expr.MethName ( Expr∗) | new ClassName

| newSimpleType ([ Expr ])+([ ])∗

Var ::= Name | Var.VarName | Var[Expr] | this

Value ::= PrimValue | null

PrimValue ::= intValue | charValue | byteValue | ...
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[ ] | ArrayType[ ]

PrimType ::= bool | char | int | ...

Fig. 1. Javas programs

We consider values, method calls, and instance variable access. Java values
are primitive (e.g. literals such as true, false, 3, ′c′ etc), references or arrays.
References are null, or pointers to objects. The expression new C creates a new
object of class C, whereas the expression new T[e1]...[en][]1...[]k, n ≥ 1, k ≥
0 creates a n+k-dimensional array value. Pointers to objects are implicit. We
distinguish variable types (sets of possible run-time values for variables) and
method types, as can be seen in figure 3.

Javas programs contain the class hierarchy. Thus, from a program p we can
deduce the v relationship, which is the transitive closure of the immediate su-
perclass relation, and also applies to arrays whose component types are sub-
classes of each other. This relation is defined in figure 2. We use the notation
p = p′, C ext C′{...}, p′′ to indicate that p contains a declaration of class C as
a subclass of C′. The assertion p ` C v C′ indicates that given program p, C is a
subclass of C′.

p = p′, C ext C′{...}, p′′
p ` C v C

p ` C v C′

p ` nil v C

p ` C v C′

p ` C′ v C′′

p ` C v C′′

p ` C v C′

p ` C[] v C′[]

Fig. 2. Subclasses deduced from programs p
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Given a program p we define the functions p(C), which looks up a class body
with identifier C in p, and Classes(p), which is the set of the identifiers of all
classes defined in p.

Definition 1 For a program p, we define p(C), and Classes(p) as follows:

– p(C) = cBody iff p = p′, cBody, p′′, and cBody = C ext C′ impl ...In{...},
– p(C) = Undef, otherwise.
– C ∈ Classes(Γ ) iff p ` C v C.

3.2 Environments

The environment, described in figure 3, usually denoted by a Γ , contains both
the subclass and interface hierarchies and variable type declarations. It also
contains the type definitions of all variables and methods of a class and its inter-
face. StandardEnv should include all the predefined classes, and all the classes
described in chapters 20-22 of [17], e.g. the exception classes Exception, NullPE,
ArrStoreE, IndOutBndE, NegSzeE and others – we do not need to distinguish
between checked and unchecked exceptions. Declarations may be class declara-
tions, interface declarations or identifier declarations.

Env ::= StandardEnv | Env ; Decl
StandardEnv ::= Exception ext Object ...NullPE ext Exception ...; ...
Decl ::= ClassId ext ClassName impl (InterfName)∗

{(VarId :VarType)∗ (MethId : MethType)∗}
| InterfId ext InterfName∗{(MethId : MethType)∗}
| VarId : VarType

MethType ::= ArgType → (VarType | void)
ArgType ::= [VarType (×V arType)∗ ]
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[ ] | ArrayType[ ]

PrimType ::= bool | char | int | ...
Type ::= VarType | void | nil | MethType | ClassName-Thrn

Fig. 3. Javas environments

A class declaration introduces a new class as a subclass of another class
(if no explicit superclass is given, then Object will be assumed), a sequence
of component declarations, and optionally, interfaces implemented by the class.
Component declarations consist of field identifiers and their types, and method
identifiers and their signatures. Since method bodies are not declarations, they
are found in the program part rather than the environment.

An interface declaration introduces a new interface as a subinterface of several
other interfaces and a sequence of components. The only interface components
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in Javas are methods, because interface variables are implicitly static, and have
not been considered. Variable declarations introduce variables of a given type.

3.3 The Example in Javas

The Java philosophers classes from section 2 correspond to the Javas program ps:

ps = Phil ext Object {
think is λy:Phil.{...}
think is λy:FrPhil.{...}

}
FrPhil ext Phil {

think is λy:Phil
.{this.like :=oyster;...}

}

The corresponding Javas environment Γ0 is:

Γ0 = Phil ext Object { like : Truth,
think : Phil→Phil,
think : FrPhil→Book,},

FrPhil ext Phil { like : Food,
think : Phil→Phil},

aPhil : Phil, pascal : FrPhil

3.4 Subclasses, Subinterfaces, Widening

The subclass v and the implements :imp relations deduced from an environment
Γ are defined by the inference rules in figure 4.

Γ = Γ ′, C ext C′ impl ...I...{...}, Γ ′′

Γ ` C v C, Γ ` C v C′, Γ ` C :imp I

Γ = Γ ′, I ext ..., I′ , ...{...}, Γ ′′

Γ ` I ≤ I, Γ ` I ≤ I′

` Object v Object

Γ ` C v C′

Γ ` C′ v C′′

Γ ` C v C′′

Γ ` I ≤ I′

Γ ` I′ ≤ I′′

Γ ` I ≤ I′′

Fig. 4. subclasses and subinterfaces

By the assertion Γ = Γ ′, def , Γ ′′ we indicate that Γ contains the definition
def . Every class introduced in Γ is its own subclass, and the assertion Γ ` C v C
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indicates that C is defined in the environment Γ as a class. The direct super-
class of a class is indicated in its declaration. Object is a predefined class. The
assertion Γ ` C :imp I indicates that the class C was declared in Γ as providing
an implementation for interface I. The subclass relationship is transitive. Every
interface is its own subinterface and the assertion Γ ` I ≤ I indicates that I is
defined in the environment Γ as an interface. The superinterface of an interface
is indicated in its declaration. The subinterface relationship is transitive.

Γ ` C v C

Γ ` C 3V arType

Γ ` I ≤ I

Γ ` I 3V arType

Γ ` T 3V arType

Γ ` T[] 3V arType

` int 3V arType

` char 3V arType

` bool 3V arType

Γ ` T 3V arType or T = void

Γ ` Ti 3V arType i∈{1...n}, n ≥ 0

Γ ` T1 × ... × Tn 3ArgType

Γ ` T1 × ... × Tn → T 3MethType

Fig. 5. Variable and method types

Variable types, i.e. primitive types, interfaces, classes and arrays, are de-
fined in figure 5 and are required in type declarations. Method types, i.e. n
argument types, with n≥0, and a result type, are defined in figure 5 and are
required in method declarations. The assertion Γ ` T 3V arType means that T
is a variable type, Γ ` AT 3ArgType means that AT is a method argument type,
and Γ ` MT 3MethType means that MT is a method type. Note that we do not
keep track of potentially throwable exceptions in the method type. However, in
future work method types should be extended to do so, and a stronger subject
reduction theorem should be proven, stating that a checked exception can only
be thrown during execution of a method that mentions this exception’s class (or
superclass) in the method’s type.

The widening relationship, described in figure 6, exists between variable
types. If a type T can be widened to a type T′ (expressed as Γ ` T ≤wdn T′),
then a value of type T can be assigned to a variable of type T′ without any
run-time casting or checking taking place. This is defined in chapter 5.1.4 [20];
chapter 5.1.2 in [20] defines widening of primitive types, but here we shall only
be concerned with widening of references. Furthermore, for the null value, we
introduce the type nil which can be widened to any array, class or interface.
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Γ ` T 3V arType

Γ ` T ≤wdn T

Γ ` T ≤wdn Object

Γ ` nil ≤wdn T

Γ ` T ≤ T

Γ ` T ≤wdn Object

Γ ` T v T′

Γ ` T ≤wdn T′

Γ ` T ≤ T′

Γ ` T ≤wdn T′
Γ ` T ≤wdn T′

Γ ` T[] ≤wdn T′[]

Γ ` T v T′

Γ ` T′ :imp T′′

Γ ` T′′ ≤ T′′′

Γ ` T ≤wdn T′′′

Γ ` T 3V arType

Γ ` T[] ≤wdn Object

Fig. 6. The widening relationship

3.5 Well-Formed Declarations and Environments

The relations v, :imp, ≤ and ≤wdn are computable for any environment – as can
be straightforwardly shown. In figure 7 we describe the Java requirements for
variable, class and interface declarations to be well-formed.

We indicate by Γ ` Γ ′ 3, that the declarations in environment Γ ′ are well-
formed, under the declarations of the larger environment Γ . We need to consider
a larger environment Γ because Java allows forward declarations (e.g. in the
philosophers example, class Phil uses the class FrPhil whose declaration follows
that of Phil). We shall call Γ well-formed, iff Γ ` Γ 3, in which case we use
the shorthand Γ ` 3, c.f. the third rule in figure 7. The assertion Γ ` Γ ′ 3 is
checked in two stages: The first stage establishes the relations v, :imp, ≤ and
≤wdn for the complete environment Γ and establishes that v and ≤ are acyclic;
if this is the case, then the second stage establishes that the declarations in Γ ′

are well-formed one by one, according to the rules in this section.
Not surprisingly, the empty environment is well-formed, c.f. the first rule in

figure 7.
We need the notion of definition table lookup, i.e. Γ (Id), which returns the

definition of the identifier Id in Γ , if it has one.

Definition 2 For an environment Γ , with unique definitions for every identi-
fier, define Γ (id) as follows:

– Γ (x) = T iff Γ = Γ ′, x : T, Γ ′′

– Γ (C) = C ext C′ impl I1, ...In {v1 : T1, ...vm : Tm, m1 : MT1, ...mk : MTk} iff
Γ = Γ ′, C ext C′ impl I1, ...In {v1 : T1, ...vm : Tm, m1 : MT1, ...mk : MTk}, Γ ′′

– Γ (I) = I ext I1, ...In{m1 : MT1, ...mk : MTk} iff
Γ = Γ ′′, I ext I1, ...In{m1 : MT1, ...mk : MTk}, Γ ′′

– Γ (id) = Undef otherwise
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Furthermore, Classes(Γ ) and Interfaces(Γ ) contains the identifiers of all classes
or interfaces declared in Γ , i.e.

– C ∈ Classes(Γ ) iff Γ ` C v C.
– I ∈ Interfaces(Γ ) iff Γ ` I ≤ I.

A variable should be declared to have a variable type and it should be de-
clared only once, c.f. the second rule in figure 7. The type declaration for T may
follow textually that of the variable x, as for example in:

A x; ...class A ....

We now consider when class declarations are well-formed. For this we shall
need several auxiliary concepts. The following auxiliary definition allows the
extraction of the argument types and the result type from a method type and
helps us describe restrictions imposed on variable and method definitions for
classes or interfaces, given in chapters 8.2 and 9 in [17].

Definition 3 For a method type MT= T1 × ...× Tn → T, we define the argument
types and the result type:

– Args(MT) = T1 × ...× Tn
– Res(MT) = T

Next we introduce some functions to find the class components:

– FDec(Γ, C, v) indicates the nearest superclass of C (possibly C itself) which
contains a declaration of the instance variable v and its declared type;

– FDecs(Γ, C, v) indicates all the field declarations for v, which were declared
in a superclass of C, and possibly hidden by C, or another superclass.

– MDecs(Γ, C, m) indicates all method declarations (i.e. both the class of the
declaration and the signature) for method m in class C, or inherited from one
of its superclasses, and not hidden by any of its superclasses;

– MSigs(Γ, C, m) returns all signatures for method m in class C, or inherited and
not hidden by any of its superclasses.

Note that shadowed variables are treated differently from overridden meth-
ods. Namely, shadowed variables are part of the set FDecs, whereas overridden
methods are not part of the set MDecs. The reason for the difference is that
shadowed variables need to be stored in the objects of subclasses (e.g. a FrPhil
object contains a like field inherited from the class Phil, even though this field
is shadowed in FrPhil), whereas overridden methods are never called by objects
of the subclasses (e.g. for FrPhil objects the only think method with a Phil
argument is that from FrPhil, whereas that defined in Phil is of no interest to
FrPhil objects).

From now on, we implicitly expect Γ to have unique declarations and the
relationsv and ≤ to be acyclic up to reflexivity. Thus the functions FDec, FDecs,
MDecs and MSigs are well-defined, c.f. [26].
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Definition 4 For an environment Γ , with a class declaration for C, i.e.
Γ = Γ ′, C ext C′ impl I1, ...In{v1 : T1, ...vk : Tk, m1 : MT1, ...ml : MTl}, Γ ′′,
define:

– FDec(Γ, Object, v) = Undef for any v
FDec(Γ, C, v) = (C, Tj) iff v = vj
FDec(Γ, C, v) = FDec(Γ, C′, v) iff v 6= vj ∀j∈{1...k}

– FDecs(Γ, Object, v) = ∅
FDecs(Γ, C, v) = {(C ′, T ′) | (C ′, T ′) = FDec(Γ, C, v)}∪ FDecs(Γ, C′, v)

– MDecs(Γ, Object, m) = ∅
MDecs(Γ, C, m) = { (C, MTj) | m = mj } ∪

{ (C′′, MT′′) | (C′′, MT′′) ∈ MDecs(Γ, C′, m), and
∀j∈{1...l} : m = mj =⇒ Args(MTj) 6= Args(MT′′) }

– MSigs(Γ, C, m) = { MT | ∃C′′ with (C′′, MT) ∈ MDecs(Γ, C, m) }

The sets FDecs(Γ, Object, v) and MDecs(Γ, Object, m) should contain the enti-
ties described in chapter 20.1 of [17]. We defined them as empty sets for simplic-
ity.

For the philosophers example the above functions are:
FDec(Γ0, Phil, like) = (Phil,Truth)
FDec(Γ0, FrPhil, like) = (FrPhil,Food)
FDecs(Γ0, Phil, like) = {(Phil,Truth)}
FDecs(Γ0, FrPhil, like) = {(Phil,Truth), (FrPhil,Food)}
MDecs(Γ0, Phil, think) = {(Phil,Phil→Phil), (Phil,FrPhil→Book)}
MDecs(Γ0, FrPhil, think) = {(FrPhil,Phil→Phil), (Phil,FrPhil→Book)}
MSigs(Γ0, Phil, think) = {Phil→Phil, FrPhil→Book}

Similar to classes, we introduce the following functions to look up the in-
terface components: MDecs(Γ, I, m) contains all method declarations (i.e. the
interface of the declaration and the signature) for method m in interface I, or
inherited – and not hidden – from any of its superinterfaces; MSigs(Γ, I, m) re-
turns all signatures for method m in interface I, or inherited – and not hidden –
from a superinterface.

Definition 5 For an environment Γ , containing an interface declaration for I,
i.e. Γ = Γ ′, I ext I1, ...In{m1 : MT1, ...mk : MTk}, Γ ′′, we define:

– MDecs(Γ, I, m) = { (I, MTj) | m = mj } ∪
{ (I′, MT′) | ∃j∈{1...n} : (I′, MT′) ∈ MDecs(Γ, Ij, m)

and ∀i∈{1...k} m = mi =⇒ Args(MT′) 6= Args(MTi) }
– MSigs(Γ, I, m) = { MT | ∃I′ : (I′, MT) ∈ MDecs(Γ, I, m) }

The following lemma says that if a type T inherits a method signature from
another type T′ i.e. if (T′, MT) ∈ MDecs(Γ, T, m), then T′ is either a class or an
interface exporting that method and no other superclass of T, which is a subclass
of T′ exports a method with the same identifier and argument types. Also, if a
class C inherits a field declaration for v, then there exists a C′, a superclass of C
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Γ ` ε 3

Γ ` Γ ′ 3

Γ ` T 3V arType

Γ ′(x) = Undef

Γ ` Γ ′, x : T 3

Γ ` Γ 3

Γ ` 3

n ≥ 0, k ≥ 0, l ≥ 0
Γ ` Γ ′ 3

Γ ′(C) = Undef

NOT Γ ` C′ v C

Γ ` C′ v C′

Γ ` Ij ≤ Ij j∈{1...n}
Γ ` Tj 3V arType j∈{1...k}
Γ ` MTj 3MethType j∈{1...l}
vi = vj =⇒ i = j j,i∈{1...k}
mi = mj =⇒ i = j or Args(MTi) 6= Args(MTj) j, i∈{1...l}
∀j∈{1...l}MT ∈ MSigs(Γ, C′, mj),Args(MT) = Args(MTj) =⇒

Res(MTj) = Res(MT)
∀m,∀j∈{1...n} AT → T ∈ MSigs(Γ, Ij, m) =⇒

∃T′ with AT → T′ ∈ MSigs(Γ, C, m), Γ ` T′ ≤wdn T

Γ ` Γ ′, C ext C′ impl I1, ...In{v1 : T1, ...vk : Tk, m1 : MT1, ...ml : MTl}3

n ≥ 0, l ≥ 0
Γ ` Γ ′ 3

Γ ′(I) = Undef

NOT Γ ` Ii ≤ I j∈{1...n}
Γ ` Ij ≤ Ij j∈{1...n}
Γ ` MTj 3MethType j∈{1...l}
mi = mj =⇒ i = j or Args(MTi) 6= Args(MTj)
i∈{1...n}, j∈{1...l} MT ∈ MSigs(Γ, Ii, mj), Args(MT) = Args(MTj)

=⇒ Res(MTj) = Res(MT)
∀i, j∈{1...n} MT1 ∈ MSigs(Γ, I1, m), MT2 ∈ MSigs(Γ, I2, m) :

Args(MT1) : Args(MT2) =⇒ Res(MT1) = Res(MT2)

Γ ` Γ ′, I ext I1, ...In{ m1 : MT1, ...ml : MTl} 3

Fig. 7. Well-formed environments

which contains the declaration of v. This lemma is needed later in the subject
reduction theorem when proving that there exists a redex in any well-typed
non-ground term.

Lemma 1 For any environment Γ , types T, T′ and identifiers v and m:

– (T′, MT) ∈ MDecs(Γ, T, m) =⇒
• Γ ` T v T′ and Γ (T′) = T′ ext ... impl ...{...m : MT...} and

∀T′′, C 6= T′ with Γ ` C v T′, Γ ` T v C :
Γ (C) 6=C ext ... impl ...{...m :Args(MT)→T′′}

or
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• Γ ` T ≤ T′ and Γ (T′) = T′ ext ...{...m : MT...} and ∀T′′, I 6= T′ with
Γ ` I ≤ T′, Γ ` T ≤ I : Γ (I) 6=I ext ...{...m : Args(MT)→T′′}

– FDec(Γ, C, v) = (C′, T′) =⇒
Γ (C′) = C′...{...v : T...} and Γ ` C v C′ and ∀T′, C′′ 6= C′

with Γ ` C v C′′, Γ ` C′′ v C′ : Γ (C′′) 6= C′′ ext ...impl...{...v : T′′}
The language description [17] imposes the following requirements, when a new
class C is declared as

C ext C′ impl I1, ...In{v1 : T1, ...vk : Tk, m1 : MT1, ...ml : MTl}
– there can be sequences of superinterfaces, instance variable declarations, and

instance method declarations;
– the previous declarations are well-formed;
– there is no prior declaration of C
– there are no cyclic subclass dependencies between C′ and C
– the declarations of the class C′, interfaces Ij and variable types Tj may

precede or follow the declaration for C – this is why we require Γ ` C′ v C′,
rather than Γ ′ ` C′ v C′;

– the MTj are method types;
– instance variable identifiers are unique;
– instance methods with the same identifier must have different argument

types;
– a method overriding an inherited method must have the same result type as

the overridden method;
– “unless a class is abstract, the declarations of methods defined in each direct

superinterface must be implemented either by a declaration in this class, or
by an existing method declaration inherited from a superclass”.

These requirements are formalized in the fourth rule in figure 7. Similar require-
ments for interfaces are given in [17], and their formalization is also given in the
fifth rule in figure 7.

3.6 Properties of Well-Formed Environments

It is straightforward to state and prove the following properties of well-formed
environments: Two types that are in the subclass relationship are classes, v is
reflexive, transitive and antisymmetric, and the subclass hierarchy forms a tree.
Also, two types that are in the subinterface relationship are interfaces, and ≤ is
transitive, reflexive and antisymmetric. Unlike v, ≤ does not form a tree.

Widening is reflexive, transitive and antisymmetric. If an interface widens
to another type, then the second type is a superinterface of the first. If a type
widens to a class, then the type is a subclass of that class. If a class widens
to an interface I, then the class implements a subinterface of I. If an interface
widens to another type, then the interface is identical to the type, or one of its
immediate superinterfaces is a subinterface of that type.

Finally, the following lemma states that if a type T widens to another type
T′, and T′ has a method m, then there exists in T a unique method m with the
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same argument types, and whose return type is the same as that of the method
from T′.

Lemma 2 If Γ ` 3, Γ ` T ≤wdn T′, then MSigs(Γ, T, m) ⊆ MSigs(Γ, T′, m)

From now on we implicitly assume that all environments are well-formed.

4 Javase, Enriching Javas

Javase is an enriched version of Javas which provides compile-time type informa-
tion necessary at run-time. It is a subset of JavaR from [29], and corresponds to
Javalight from[32]. The syntax of Javase programs is described in figure 8. The
process of enriching Javas terms is described by the mapping C:

C : Environment × Javas −→ Javase

Program ::= ( ClassBody )∗

ClassBody ::= ClassId ext ClassName {( MethBody )∗}
MethBody ::= MethId is (λ ParId : VarType.)∗ {Stmts ; return [Expr] }
Stmts ::= ε | Stmts ; Stmt
Stmt ::= if Expr then Stmts else Stmts

| Var := Expr | Expr.MethName(Expr∗) | throw Expr
| try Stmts (catch ClassName Id Stmts)∗ finally Stmts
| try Stmts (catch ClassName Id Stmts)+

Type ::= VarType | void | nil | ClassName-Thrn
Expr ::= Value | Var

| Expr.[ArgType]MethName(Expr∗)
| new ClassName �(VarName ClassName Value)∗�
| new SimpleType ([Expr])+([])∗[[Value]]

Var ::= Name | Var[Expr] | this

| Var.[ClassName]VarName
Value ::= PrimValue | null

PrimValue ::= intValue | charValue | byteValue | ...
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[ ] | ArrayType[ ]

PrimType ::= bool | char | int | ...

Fig. 8. Javase programs

Javase can be obtained from Javas by applying enrichments in four cases.
Method calls are enriched by the signature of the most special applicable method
available at compile-time. Thus, the Javas syntax Expr.MethName(Expr∗), is
replaced in Javase by the syntax Expr.[ArgType]MethName(Expr∗). Instance
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variable accesses are enriched by the class containing the field declaration. Thus,
Expr.VarName is replaced in Javase by Expr.[ClassName]VarName. Object cre-
ation is enriched by the names of all its fields, the classes they were declared in
and their initial, default values. Therefore, the Javas syntax new ClassName is re-
placed by the Javase syntax new ClassName �(VarName ClassName Value)∗�.
Finally, array creation is enriched by the initial values to be stored in each com-
ponent of the new array. Therefore, the Javas syntax new SimpleType ([ Expr
])+([ ])∗ is replaced in Javase by new SimpleType ([Expr])+([])∗[[Value]].
Examples of enriching of method call, of instance variable access and of object
creation can be seen in section 4.1. The Javas array creation new int[3] would
be represented in Javase as new int[3][[0]].

4.1 The Example in Javase

The program ps from section 2 would be mapped to the Javase program pse:

pse = C{(Γ0, ps)} =
Phil ext Object{

think is λy:Phil.{...}
think is λ y:FrPhil.{...}

}
FrPhil ext Phil {

think is λy:Phil.
{ this.[FrPhil]like :=oyster; ...}

}

The terms would be represented as:

... pascal := new FrPhil � like Phil nil, like FrPhil nil �

... aPhil.[Phil]like ...

... aPhil.[Phil]think (aPhil)

... aPhil.[FrPhil]think (pascal) ...

... pascal.[FrPhil]like ...

... pascal.think(pascal) !! ambiguous call

... pascal.[Phil]think (aPhil) ...

5 Javas Types

The type rules for Javas are given in figures 9, 10, and 11. They correspond to
the type checking phase of a Java compiler and have the form Γ ` t : T, which
means that term t has the type T in the environment Γ . The assertion Γ ` p 3

signifies that program p is well-formed under the environment Γ (i.e. that all
expression are type correct, and that all classes conform to their definitions),
whereas Γ ` p 33 signifies that p is complete, (i.e. well-formed, and it provides
a class body for each class declared in Γ ).



Describing the Semantics of Java and Proving Type Soundness 57

In parallel with type checking, Javas terms are enriched with type infor-
mation Thus, each type rule is followed by a an enrichment equation of the
form C{(Γ, t)} = t′ meaning that the Javas term t is enriched to the equivalent
Javase term t′. The enrichment rules are given together with the type rules
because in some cases (i.e. for method call and field access) the enrichments use
type information.

Figure 9 describes the types for variables, primitive values, null, statements,
newly created objects and arrays, and field and array access.

According to the first rule, character literals have character type, integer
literals have integer type etc. According to the second rule, a statement sequence
has the same type as its last statement. A return statement has void type, or the
same type as the expression it returns. An expression of type T′ can be assigned
to a variable of a type T if T′ can be widened to T. A conditional consists of two
statement sequences not necessarily of the same type.

For a class C, the expression new C has type C. For a simple type T, the
expression new T[e1]...[en][]1...[]k is a n+k-dimensional array of elements of type
T. Array and object creation expressions are enriched with initialization infor-
mation that determine the values for component initialization. Initial values are
defined in ch. 4.5.5. of [17], and here in the following definition:

Definition 6 The initial value of a simple type is:

– 0 is the initial value of int
– ′ ′ is the initial value of char
– false is the initial value of bool
– null is the initial value of classes, interfaces or nil

For an array access v[e], the variable v should have an array type T[], and e
should be of integer type. For a field access v.f, the variable v should have a class
type T, (because so far we only consider non-static fields, in Javas only instances
have fields) one of whose superclasses (C) should contain a field declaration for
f of type T′, i.e. FDec(Γ, T, f) = (C, T′), in which case the field access expression
has type T′, and the information from which superclass the field declaration
is inherited is stored in the corresponding Javase expression, i.e. C{(Γ, v.f)} =
C{(Γ, v)}.[C]f.

Figure 9 also contains the type rules for method bodies and method calls, as
in ch. 15.11, [20]: A method is applicable if the actual parameter types can be
widened to the corresponding formal parameter types. A signature is more special
than another signature, if and only if it is defined in a subclass or subinterface and
all argument types can be widened to the argument types of the second signature;
this defines a partial order. The most special signatures are the minima of the
“more special” partial order.

Definition 7 For an environment Γ , identifier m, variable types T, T1, ... Tn,
the most special declarations are defined as follows:

– ApplMeths(Γ, m, T, T1× ...× Tn) = {(T′, MT′) | (T′, MT′) ∈ MDecs(Γ, T, m)
and MT′ = T′1 × ...× T′n → T′n+1 and Γ ` Ti ≤wdn T′i for i∈{1...n}}
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i is integer, c is character, x is identifier

Γ ` null : nil, Γ ` true : bool, Γ ` false : bool,
Γ ` i : int, Γ ` c : char, Γ ` x : Γ(x)
C{(Γ, z)} = z if z is integer, character, identifier, null, true, or false

Γ ` e : bool

Γ ` stmts : void Γ ` stmts′ : void Γ ` stmt : T′

Γ ` stmts ; stmt : T′

C{(Γ, stmts ; stmt)} = C{(Γ, stmts)} ; C{(Γ, stmt)}
Γ ` if e then stmts else stmts′ : void

C{(Γ, if e then stmts else stmts′)} =
if C{(Γ, e)} then C{(Γ, stmts)} else C{(Γ, stmts′)}

Γ ` v : T

Γ ` e : T′

Γ ` T′ ≤wdn T

Γ ` v := e : void

C{(Γ, v := e)} = C{(Γ, v)} := C{(Γ, e)}

Γ ` e : T

Γ ` return e : T

C{(Γ, return e)} = return C{(Γ, e)}

Γ ` return : void

C{(Γ, return)} = return

Γ ` C v C∀f, C′, T′ with (C′, T′) ∈ FDecs(Γ, C,f) :
∃i∈{1...n} : fi = f, Ci = C′, Ti = T′

vi initial for Ti i∈{1...n}
Γ ` new C : C

C{(Γ, new C)} = new C�f1 C1 v1, ...fn Cn vn�

Γ ` T 3V arType, NOT Γ ` T ≤ T

Γ ` ei : int i∈{1...n}, n ≥ 1, k ≥ 0
v is initial for T

Γ ` new T[e1]...[en][]1...[]k : T[]1...[]n+k

C{(Γ, new T [e1]...[en][]1...[]k)} =
new T[C{(Γ , e1)}]...[C{(Γ , en)}][]1...[]k[[v]]

Γ ` v : T[]
Γ ` e : int

Γ ` v[e] : T

C{(Γ, v[e])} = C{(Γ, v)}[C{(Γ, e)}]

Γ ` v : T

FDec(Γ, T,f) = (C, T′)
Γ ` v.f : T′

C{(Γ, v.f)} = C{(Γ , v)}.[C]f

Γ ` ei : Ti i∈{1...n}, n ≥ 1
MostSpec(Γ, m, T1, T2 × ...× Tn) = {(T, MT)}
Γ ` e1.m(e2...en) : Res(MT)
C{(Γ, e1.m(e2...en))} =
C{(Γ, e1)}.[Args(MT)]m(C{(Γ, e2)}...C{(Γ, en)})

Fig. 9. Types for Javas expressions and statements
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– (T, T1 × ...× Tn → Tn+1) is more special than (T′, T′1 × ...× T′n → T′n+1)
iff Γ ` T ≤wdn T′ and ∀i∈{1...n} Γ ` Ti ≤wdn T′i

– MostSpec(Γ, m, T, T1× ...× Tn) = {(T′, MT′) |
(T′, MT′) ∈ ApplMeths(Γ, m, T, T1× ...× Tn) and
if (T′′, MT′′) ∈ ApplMeths(Γ, m, T, T1× ...× Tn)
and (T′′, MT′′) is more special than (T′, MT′)

then T′′ = T′ and MT′ = MT′′}
The signatures of the more specific applicable methods are contained in the

set MostSpec. A message expression is type-correct when this set contains exactly
one pair. The argument types of the signature of this pair is stored as the method
descriptor, c.f. ch.15.11 in [17], and the result type of the signature is the type
of the message expression.

Figure 10 describes the types for program, method or class bodies. The first
rule describes the type of a method body with parameters x1, ..., xn, consisting
of the statements stmts. The renaming of variables in the method body, namely
stmts[z1/x1, ..., zn/xn], is necessary in order to avoid name clashes and, also, in
order for lemma 8 to hold – as pointed out in [25]. It is worth noticing that
the rules describing method bodies do not determine T – instead, the expected
return type of the method, T, is taken from the environment Γ when applying
the next rule of the figure, which describes class bodies.

The second rule in figure 10 describes the type of a class body consisting
of method bodies mBody1, ... mBodyn. Note that each mBodyi is type checked
in the environment Γ, this : C, which does not contain the instance variable
declarations v1 : T1..., vk: Tk. Thus, through the type system, we force the use
of the expression this.vj as opposed to vj.

A program p = cBody1, ...cBodyn is well-formed, i.e. Γ ` p 3, if it contains no
more than one class body for each identifier, and if all class bodies, cBodyi, are
well-typed and satisfy their declarations. Furthermore, each class is transformed
by C. Finally, as described in the last rule of figure 10, a program is complete, if
it is well formed, and it provides a class body for each of the classes declared in
the environment Γ . This is indicated by Γ ` p 33.1

The following two functions will be needed for the operational semantics. In
a class body cBody the function MethBody(m, AT, cBody) finds the method body
with identifier m and argument types AT, if it exists. From the requirements for
classes in figure 10, it follows that for a well-formed environment Γ , the function
MethBody(m, AT, cBody) returns either an empty set or a set with one element.
In a program p the function MethBody(m, AT, C, p) finds the method body with
identifier m and argument types AT, in the nearest superclass of class C – if it
exists. It returns a single pair consisting of the class with the appropriate method
body, and the method body itself or the empty set if none exists.

Definition 8 Given a class body cBody = C ext C′ {mBody1, ...mBodyn}, argu-
ment types AT, and a program p, we define method look up as follows:
1 Notice, that in previous work, we did not distinguish between well-formed and com-

plete, and the assertion Γ ` p3 signified both.
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mBody = m is λx1 : T1...λxn : Tn.{stmts}
xi 6= this i∈{1...n}
z1, ...,zn are new variables in Γ
stmts′ = stmts[z1/x1, ...,zn/xn]
Γ, z1 : T1...zn : Tn ` stmts′ : T′

Γ ` T′ ≤wdn T

Γ ` mBody : T1 × ...× Tn → T

C{(Γ, mBody)} = m is λx1 : T1...λxn : Tn.{C{(Γ, stmts)}}

n,k, ml ≥ 0, Γ ` 3

Γ (C) = C ext C′ impl I1...In{v1 : T1...vk : Tk, m1 : MT1...ml : MTl}
cBody = C ext C′ {mBody1, ...mBodyl}
Γ (this : C) = Undef

mBodyi = mi is mPrsStsi i∈{1...l}
Γ, this : C ` mBodyi : MTi i∈{1...l}
Γ ` cBody : Γ (C)
C{(Γ, cBody)} = C ext C′ {C{(Γ, this : C, mBody1)}...C{(Γ, this : C, mBodyl)}}

n ≥ 0, p = cBody1, ...cBodyn
cBodyi = C ext ..., cBodyj = C ext ...

=⇒ i = j i, j∈{1...n}
Γ ` cBodyi 3 i∈{1...n}
Γ ` p 3

C{(Γ, p)} = C{(Γ, cBody1)}...C{(Γ, cBodyn)}

Classes(Γ ) = Classes(p)
Γ ` p 3

Γ ` p 33

Fig. 10. Types for Javas method bodies, class bodies, and program bodies

– MethBody (m, AT, cBody) = { mBodyj | mBodyj = m is λx1 : T1... λxk : Tk.{...}
and AT = T1 × ...× Tk }

– MethBody (m, AT, Object, p) = ∅
– MethBody (m, AT, C, p) = (C, mBody) iff

MethBody (m, AT, cBody) = {mBody}, where cBody = p(C)
– MethBody (m, AT, C, p) = MethBody(m, AT, C′, p) iff

MethBody (m, AT, cBody) = ∅, where p(C) = C ext C′...

In figure 11 we define the typing rules for exceptions. A throw statement has
the type void if the expression following the throw indicates an exception. We re-
quire the expression not to be an address. For addresses the rules for Javase found
in figure 12 apply. Similarly the try ... catch ... finally statements have the
type void, provided that the constituent statement lists are well-typed, and that
the names of exception classes and new variables appear after each catch. The
additional Java requirements, that no class Ei should appear more than once,
and that no class should appear preceded by a subclass are expressed in [21] but
are omitted here, since they do not affect the subject reduction property.
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Γ ` e : E, e 6= ιi
Γ ` E v Exception

Γ ` throw e : void

C{(Γ, throw e)} = throw C{(Γ, e)}

n ≥ 0, vi, zi new in Γ i∈{1...n}
Γ ` Ei v Exception i∈{1...n}
Γ, zi : Ei ` stmtsi[zi/vi] : void i∈{1...n}
Γ ` stmtsn+1 : void

Γ ` try stmts0 catch E1 v1 stmts1 ... catch En vn stmtsn : void

Γ ` try stmts0 catch E1 v1 stmts1 ... catch En vn stmtsn
finally stmtsn+1 : void

C{(Γ, try stmts0 catch E1 v1 stmts1 ... catch En vn stmtsn)}
= try C{(Γ, stmts0)} catch E1 v1 C{(Γ, stmts1)} ...

catch En vn C{(Γ, stmtsn)}
C{(Γ, try stmts0catch E1v1stmts1...catch En vn stmtsn finally stmtsn+1)}

= try C{(Γ, stmts0)} catch E1 v1 C{(Γ, stmts1)} ...
catch En vn C{(Γ, stmtsn)}finally C{(Γ, stmtsn+1)}

Fig. 11. Javas types for exceptions

5.1 Properties of the Javas Type System

The following lemma says that the Javas type system is deterministic, and that
in a complete Javas program any class that widens to a superclass or superin-
terface provides an implementation for each method exported by the superclass
or superinterface.

Lemma 3 For any well-formed environment Γ , variable types T, T1, ...,Tn, Tn+1,
class C, Javas program p, with Γ ` p 33:

– If p ` C v C′ then Γ ` C ≤wdn C′

Furthermore, if

– Γ ` C ≤wdn T
– T1 × ...Tn → Tn+1 ∈ MSigs(Γ, T, m)

then ∃T′n+1, C
′ :

– (C′, T1 × ...Tn → Tn+1) ∈ MDecs(Γ, C, m), and Γ ` C v C′

– MethBody (m, T1 × ...Tn, p, C)= (C′, λx1 : T1, ...λxn : Tn.{stmts}) and
Γ, this : C′, x1 : T1, ...xn : Tn ` stmts : T′n+1 and Γ ` T′n+1 ≤wdn Tn+1

5.2 Absence of the Subsumption Rule

The subsumption rule says that any expression of type T also has type T′ if T is
a subtype of T′. In the case of Java, where subtypes are expressed by the ≤wdn
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Γ s̀e v : T
Γ ` T ≤wdn C

FDec(Γ, C, f) = ( C, T′)
Γ s̀e v.[C]f : T′

Γ s̀e ei : T′i i∈{1...n}, n ≥ 0
Γ ` T′i ≤wdn Ti i∈{2...n}
FirstFit(Γ, m, T′1 , T2 × ... × Tn) = {(T, MT)}
Γ s̀e e1.[T2 × ... × Tn ]m(e2 ...en) : Res(MT)

Γ ` C v C

∀f, C′, T′ with (C′, T′) ∈ FDecs(Γ, C, f) :
∃i∈{1...n} : fi = f, Ci = C′, Ti = T′

Γ s̀e vi : Tii∈{1...n}
Γ s̀e new C�f1 C1 v1, ...fn Cn vn� : C

n ≥ 1, k ≥ 0
Γ ` T 3V arT ype, NOT Γ ` T ≤ T
Γ s̀e ei : int i∈{1...n}
Γ s̀e v : T

Γ s̀e new T[e1]...[en][]1...[]k[[v]] : T[]1 ...[]n+k

Fig. 12. Differences between Javase types and Javas types

relation, it would have had the form:

Γ ` e : T
Γ ` T ≤wdn T′

Γ ` e : T′

The type system introduced in this paper does not obey the subsumption
rule. For instance, the type of aPhil.like is Phil, but the type of pascal.like
is Food, though Γ0 ` aPhil : Phil, Γ0 ` pascal : FrPhil, and Γ0 `
FrPhil ≤wdn Phil. In fact, introduction of the subsumption rule would make
this type system non-deterministic – although [7] develops a system for Java
which has a subsumption rule, and in which the types of method call and field
access are determined by using the minimal types of the expressions.

6 Extending the Type Rules to Javase

After giving types to Javas terms, we also give types to Javase terms. However,
the rationale for typing the two languages is different: Javas typing corresponds
to typing performed by a Java compiler, and it determines whether a term is
well-formed. Javase typing, on the other hand, does not correspond to type
checking actually performed, it is needed in order to express the subject reduction
theorem. A Javase term that has emerged by enriching a well-typed Javas term
will be well-typed too, and will have the same type as the latter, c.f. lemma 5.
Therefore, the Javase type rules correspond to Javas type rules, except where
the expressions have different syntax.

Figure 12 contains the four cases where Javase syntax differs from that of
Javar, and therefore, where Javase types differ from Javas types. The assertion
Γ s̀e t : T signifies that the Javase term t has type T in the Javase type system.
Thus, we use the subscript se to distinguish between type systems.

The first rule describes field access. The difference between the type of a field
access expression in Javas and Javase is, that in Javase the type depends on the
descriptor (i.e. C) instead of the type of the variable on the left of the field access
(i.e. T).
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In the second rule we consider Javase method calls: we search for appropriate
methods using the descriptor signature, (T2 × ...× Tn), instead of the types of
the actual expressions, (T′2, ...T′n). For this search we first examine the class of
the receiver expression for a method body with appropriate argument types, and
then its superclasses:

Definition 9 For environment Γ , identifier m, type T1, argument types AT, we
define:
FirstFit(Γ, m, T1, AT) =
{(T, MT) | (T, MT) ∈ MDecs(Γ, T1, m) and Args(MT) = AT}

The last two rules describe object and array creation. The requirements are
the same as those for Javas, except that we additionally require the initialization
values to be of the appropriate type.

6.1 Properties of the Javase Type System

The following lemma states that no more than one signature with argument
types AT can be found for a type T. This signature will always be found in a
superclass or superinterface of T. Also, once such a signature is found, the same
signature can be found for any subclass or subinterface of T.

Lemma 4 For a well-formed environment Γ , types T, T′, T′′, and argument
types AT:

– card(FirstFit(Γ, m, T, AT)) ≤ 1
– ∃MT : FirstFit(Γ, m, T, AT) = {(T′, MT)} =⇒ Γ ` T ≤wdn T′

– ∃MT : FirstFit(Γ, m, T, AT) = {(T′, MT)} and Γ ` T′′ ≤wdn T
=⇒ ∃T′′′ : FirstFit(Γ, m, T′, AT) = (T′′′, MT) and Γ ` T′′′ ≤wdn T′

Not surprisingly, a well-typed Javas expression of type T is enriched into a
Javase expression which has the type T as well.

Lemma 5 For types T, T′, environment Γ , Javas term t:

Γ ` t : T =⇒ Γ s̀e C{(Γ, t)} : T

7 Javar, the Run Time Language

As we said in the previous section, Javase is an enriched version of Javas, enriched
with compile-time type information necessary at run-time. However, at run time,
new terms may be reached, whose syntax is not covered by Javase. For this, we
further extend Javase, to obtain Javar, the run time language. Javar is a pure
superset of Javase, it corresponds to Don Syme’s JavaR from [29], with the
difference that Javar also allows for exceptions. Javar is a superset of Javalight

from [32], because Javalight does not describe additional artifacts that may arise
at run-time only.
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Program ::= ( ClassBody )∗

ClassBody ::= ClassId ext ClassName {( MethBody )∗}
MethBody ::= MethId is (λ ParId : VarType.)∗ {Stmts ; return [Expr] }
Stmts ::= ε | Stmts ; Stmt
Stmt ::= if Expr then Stmts else Stmts

| Var := Expr | Expr.MethName(Expr∗) | throw Expr
| try Stmts (catch ClassName Id Stmts)∗ finally Stmts
| try Stmts (catch ClassName Id Stmts)+

Type ::= VarType | void | nil | ClassName-Thrn
Expr ::= Value | Var

| Expr.[ArgType]MethName(Expr∗)
| new ClassName �(VarName ClassName Value)∗�
| new SimpleType ([Expr])+([])∗[[Value]]
| Stmts

Var ::= Name | Var[Expr] | this

| Var.[ClassName]VarName
| ιi.[ClassName]VarName | ιi[Expr] i an integer
| null.[ClassName]VarName | null[Expr]

Value ::= PrimValue | null | RefValue
RefValue ::= ιi i an integer
PrimValue ::= intValue | charValue | byteValue | ...
VarType ::= SimpleType | ArrayType
SimpleType ::= PrimType | ClassName | InterfaceName
ArrayType ::= SimpleType[ ] | ArrayType[ ]

PrimType ::= bool | char | int | ...

Fig. 13. Javar programs

These additional artifacts that may arise at run-time and are not part of
Javase, but are part of Javar arise through addresses, the null value, and state-
ments as expressions. Addresses have the form ιi; they represent references
to objects and arrays, and may appear wherever a value is expected, as well
as in array and field accesses. Therefore, Javase variables may have the form
ιi.[ClassName]VarName, or ιi[Expr ], and expressions may have the form ιi. An
access to null may arise during evaluation of array or field access variables,
therefore Javase expressions may have the form null.[ClassName]VarName, or
null[Expr ]. Furthermore, in order to describe method evaluation through in-
line expansion rather than closures and stacks, in Javase we allow an expression
to consist of a sequence of statements, so that in the operational semantics a
method call can be rewritten to a statement sequence.

7.1 Extending the Type Rules to Javar

As stated in the previous section, we gave types to Javase terms, in order to be
able to formulate a subject reduction theorem. We shall now have to extend these
to cover the types of Javar. The Javar type rules correspond to Javase type rules,
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σ(ιi) = �...�C

Γ, σ r̀ ιi : C

σ(ιi) = [[...]]T[]1...[]n

Γ, σ r̀ ιi : T[]
1
...[]

n

Γ ` T ≤wdn Object

Γ, σ r̀ null : T

Γ, σ r̀ v[e] : T

Γ, σ r̀ e′ : T′

T, T′ 6= E-Thrn

Γ, σ r̀ v[e] := e′ : void

v 6= v′[e′] for any v′, e′

Γ, σ r̀ v : T

Γ, σ r̀ e : T′

Γ ` T′ ≤wdn T

Γ, σ r̀ v := e : void

Γ ` E v Exception

σ(ιi) = �...�E

Γ, σ r̀ throw ιi : E-Thrn

cont is a context
Γ, σ r̀ t : E-Thrn

Γ, σ r̀ cont<t= : E-Thrn

Fig. 14. Difference between Javar and Javase types

except where Javar introduces new syntax, or, where necessities of the subject
reduction theorem proof require otherwise.

The type of an address (ιi) depends on the object or array pointed at in
the current state σ (states are introduced in section 8); therefore, the type of
a Javar term depends on both the environment and the state, and this is why
type assertions for Javar terms t have the form Γ, σ r̀ t : T. Again, we use a
subscript in order to distinguish between the three type systems in our approach.

Figure 14 contains the seven cases where Javar types differ from Javase types.
The reasons for the differences can be classified into three categories. Firstly,
those that give types to expressions that may only arise during program execu-
tion but do not involve exceptions (i.e. the rules for addresses and for null).
Secondly, those that give types to terms enclosing a thrown exception (the last
two rules ). Thirdly, those that give types to terms that would be type incor-
rect in Javas(i.e. typing of assignments, and the rules for null). The rules in
the first category give the same type as that given if the address or null were
replaced by an identifier of an appropriate class or array type. The rules in the
second category make type-correct terms which would have been type-incorrect
in Javase. However, the evaluation of such terms does not corrupt the integrity
of the system, since the operational semantics requires run-time checks to be
performed, and exceptions to be thrown, if certain conditions are not satisfied.
The rules in the third category involve the type E-Thrn, a type which was not
available in Javase, or Javas.

We now discuss these seven rules in more detail.

The first two rules in figure 14 describe the types of addresses. If an object
is stored at address ιi, i.e. σ(ιi) = �...�C, then its class, C, is the type of ιi. If
a k-dimensional array of T is stored at such an address, i.e. σ(ιi) = [[...]]T[]1...[]k ,
then T[]1...[]k is the type of this reference.
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The third rule says that null has any reference type. This rule is required
in order to be able to give a type to terms like null[j-4], which, although
type incorrect in Javas, may arise during execution of Javar terms. Such terms
ultimately lead to exceptions, but they do not immediately raise the exception
NullPE, because the Java semantics requires other parts of the expression to be
evaluated first – in our example, j-4 has to be evaluated first. In order to be
able to prove the subject reduction theorem, such expressions need a type. The
effect of this rule is, that Javar terms do not have unique types.

The fifth and sixth rule describe assignments. The Javar array assignment
rule, suggested to us by Don Syme [27,28], only requires the left hand side
and the right hand side to be type-correct. It is weaker than the corresponding
assignment type rule in Javas, or Javase: it does not require the right hand side
to be of a type that can be widened to that of the left hand side. The reason for
this weaker requirement is, that the type of an array component may become
narrower during evaluation. For example, if z is a one dimensional array of
Phil, then the assignment z[3]:=aPhil is type-correct. However, if at run-time
z happens to contain a reference to an array of FrPhil, i.e. σ(z) = ιi and σ(ιi) =
[[...]]FrPhil[], then z[3]:=aPhil will be rewritten to ιi[3] := aPhil. Should this
term be considered type correct? A term y[3] := aPhil would be type incorrect
if y was declared as an array of FrPhil. On the other, hand the evaluation of the
term ιi[3] := aPhil will not stop here. The right hand hand side, in that case
aPhil, will be evaluated, and if it returns a value which is of a subclass of FrPhil
then the assignment will be performed, otherwise an exception will be thrown.
Therefore, in order to be able to prove subject reduction, the intermediate term
ιi[3] := aPhil has to be considered type correct in Javar. Interestingly, such a
distinction between types for array assignments and other assignments is not
necessary when using large steps operational semantics [23].

Finally, the last two rules in figure 14 deal with exceptions that have actually
been thrown. Namely, the term throw new E�� indicates potential throwing of
an exception, and would be rewritten to the term throw ιi, where ιi is the
address of an object of class E. The latter term indicates an exception which has
actually been thrown, and, according to the rules, it has the type E-Thrn. The
context of an exception, defined in figure 15, encompasses all enclosing terms up
to the nearest enclosing try...catch close, i.e. up to the first possible position
at which the exception might be handled. According to the last rule in figure 14,
the type of a term which is a context for a thrown exception of class E is E-Thrn.
This rule allows the typing of a message expression one of whose arguments
threw an exception, assignments whose left hand or right hand side threw an
exception, etc.
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Context ::= ExprCont | VarCont | StmtCont
VarCont ::= VarCont.[ClassName]VarName | VarCont [Expr]

| Var [ExprCont] | < ·=
ExprCont ::= new VarType [Expr]1 ... [ExprCont]k...[Expr]n

| ExprCont.[ArgType]MethName (Expr1,...Exprn)

| Expr.[ArgType]MethName (Expr1,...ExprContk,...Exprn)

where n ≥ 1, 1 ≤ k ≤ n
| < ·=

StmtCont ::= VarCont := Expr | Var := ExprCont
| if ExprCont then Stmts else Stmts
| StmtCont ; Stmt | return ExprCont | throw ExprCont
| < ·=

Fig. 15. Javar exception contexts

7.2 Properties of the Javar Type System

Trivially, any well-typed Javase expression retains its type for any state σ.

Lemma 6 For types T, environment Γ , Javase term t:

Γ s̀e t : T =⇒ ∀ states σ : Γ, σ r̀ t : T

Notice, that the opposite direction does not hold. For example, for a variable
diningFrPhils of type FrPhil[], the Javar term diningFrPhils[3]:=aPhil
is type correct, but the corresponding Javase term, diningFrPhils[3]:=aPhil
is not. Furthermore, Javar expressions may have more than one type.

The type E-Thrn characterizes Javar terms that contain actually thrown ex-
ceptions. Thus, the type E-Thrn can onlybe encountered when typingJavar terms.

Lemma 7 For any Javar term t: Γ, σ r̀ t : E-Thrn =⇒
∃ context t′< ·=, and reference ιi: t = t′<throw ιi=, and σ(ιi) =�... �E.

8 The Operational Semantics

Figure 16 describes the run-time model for the operational semantics. For a
given program p, the operational semantics maps configurations to new con-
figurations. Configurations are tuples of Javar terms and states, or just states.
The operational semantics is a mapping from programs and configurations to
configurations.

The state is flat; it consists of mappings from identifiers to primitive values
or to references, and from references to objects or arrays. Note that references
may point to objects, or arrays, but they may not point to other references,
primitive values, or null– this is so, because pointers in Java are implicit, and
there are no pointers to pointers.
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An object is annotated by its class, and it consists of a sequence of labels and
values. Each label also carries the class in which it was defined; this is needed for
labels shadowing labels from superclasses, c.f. [17] ch. 9.5. For the philosophers
example, � like Phil: ι2, like FrPhil: null �FrPhil is an object of class
FrPhil. It inherits the field like from Phil, and has the field like from FrPhil.

The following state σ0 contains mappings according to the philosophers ex-
ample:

σ0(aPhil) = ι1
σ0(oyster) = ι3
σ0(ι1) = �like Phil: ι2, like FrPhil: null�FrPhil

σ0(ι2) = �...�Truth

σ0(ι3) = �...�Food

Arrays carry their dimension and type information, and they consist of a
sequence of values for the first dimension. For example, [[3, 5, 8, 11]]int[] is a one
dimensional array of integers.

Configuration ::= 〈Javar term, state〉 ∪ 〈state〉
; : Javar program −→ Configuration

−→ Configuration
;p : Configuration −→ Configuration
State ::= (Ident −→ Value )∗ ∪

( RefValue −→ ObjectOrArray )∗

ObjectOrArray ::= Object | Array
Object ::= �(LabelName ClassName : Value )∗�ClassName

Array ::= [[(Value)∗]]ArrayType

Fig. 16. Javar run-time model

8.1 State, Object Operations, Ground Terms

In this section we define operations on objects, arrays and states. These opera-
tions are well-defined, only if the object, array or state “conforms” to the types
expected by the environment, a requirement introduced in definition 12.

Definition 10 For object,obj = �l1 C1 :val1, l2 C2 : val2, ...,ln Cn :valn�C′ ,
state σ, value val, reference ιi, identifier or reference z, class C, field identi-
fier f, integers m, k with m ≥ 0, array arr = [[val0, ...valn−1]]

T[]1 ...[]m , we define:

– the access to field f declared in class C as obj(f,C):
obj(f, C) = vali if f = li and C = Ci

– the access to component f, C of an object stored at reference ιi, in state σ :
σ(ιi, f, C) = σ(ιi)(f, C)
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– the access to the kth component of arr, arr[k] :
arr[k] = valk if 0 ≤ k ≤ n− 1

– a new state, σ′ = σ[z 7→val], such that:
σ′(z) = val
σ′(z′) = σ(z′) for z′ 6= z :

– a new object, obj′ = obj[f, C 7→val], a new state, σ′ = σ[ιi, f, C 7→val] :
obj′(f, C) = val
obj′(f′, C′) = obj(f′, C′) if f 6= f′ or C 6= C′

σ′ = σ[ιi 7→σ(ιi)[f, C 7→val]]
– a new array, arr′ = arr[k 7→val], and a new state, σ′ = σ[ιi, k 7→val] :

arr′[k] = val
arr′[j] = arr[j] if j 6= k
σ′ = σ[ιi 7→σ(ιi)[k 7→val]]

We distinguish ground terms which cannot be further rewritten, and l-ground
terms, which are “almost ground” and may not be further rewritten if they
appear on the left hand side of an assignment:

Definition 11 A Javar term t is

– ground iff t is a primitive value, or t=null , or t=ιi for some i;
– l-ground iff t=id for some identifier id, or t= ιi.[C]f for a class C and a

field f t= null.[C]f , or t = ιi[k] or t = null [k] for some integer k.

8.2 Program Execution

Figures 18, 17, 19 and 21 describe rewriting of Javarterms. We chose small
step semantics because we found this more intuitive. Interestingly, it turns out
that large step semantics allow for a simpler proof of subject reduction, and
in particular, do not require different type rules for Javar assignment to array
components and the other assignments statements [23]. On the other hand, this
allows the description of co-routines [21]. In figure 17 we describe the evaluation
of variables, field and array access, and the creation of new objects or arrays.

Figure 18 describes statement execution. Statement sequences are evaluated
from left to right. In conditional statements the condition is evaluated first; if it
evaluates to true, then the first branch is executed, otherwise the second branch
is executed. A return statement terminates execution. A statement returning
an expression evaluates this expression until ground and replaces itself by this
ground value – thus modeling methods returning values.

Variables (i.e. identifiers, instance variable access or array access) are evalu-
ated from left to right. The rules about assignment in figure 19 prevent an expres-
sion like x, or ιi[C]v, appearing on the left hand side of an assignment from being
rewritten further. They allow an expression of the form u[C1].w[C2].x[C3].y
to be rewritten to an expression of the form ιj[C3].y for some j. Furthermore,
there is no rule of the form 〈ιj, σ〉;p〈σ(ιj), σ〉. This is because there is no ex-
plicit dereferencing operator in Java. Objects are passed as references, and they
are dereferenced only implicitly, when their fields are accessed.
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〈id, σ〉;p〈σ(id), σ〉 〈ιi.[C]f, σ〉;p〈σ(ιi, f, C), σ〉

〈v, σ〉;p〈v′, σ′〉
〈v[e], σ〉;p〈v′[e], σ′〉
〈v.[C]f, σ〉;p〈v′.[C]f, σ′〉

〈e, σ〉;p〈e′, σ′〉
〈ιi[e], σ〉;p〈ιi[e′], σ′〉
〈null[e], σ〉;p〈null[e′], σ′〉

k is integer value

〈ιi[k], σ〉;p〈σ(ιi)[k], σ〉
k is integer value
〈 new NullPE��, σ〉;p〈ιi, σ′〉
〈null[k], σ〉;p〈throw ιi, σ

′〉
〈null.[C]f, σ〉;p〈throw ιi, σ

′〉

ιi is new in σ
σ′ = σ[ιi 7→�f1 C1 : v1, ...fn Cn : vn�C]

〈 new C�f1 C1 v1, ...fn Cn vn�, σ〉
;p〈ιi, σ′〉

ιi is new in σ
v = v0 = v1... = vn−1, n ≥ 0

σ′ = σ[ιi 7→[[v0, ...vn−1]]
T[]]

〈 new T[n][[v]], σ〉;p〈ιi, σ′〉

1 ≤ j ≤ k, k ≥ 1, m ≥ 0
ni ≥ 0 i∈{1...j− 1}
〈nj, σ〉;p〈n′j, σ′〉
〈new T[n1]...[nj]...[nk][]1...[]m[[v]], σ〉
;p〈new T[n1]...[n

′
j]...[nk][]1...[]m[[v]], σ

′〉

m ≥ 1, n ≥ 0, k ≥ 2
ιi new in σ

σ′ = σ[ιi 7→[[null0, ...nulln−1]]
T[]1...[]k ]

〈new T[n][]2...[]k[[v]], σ〉;p〈ιi, σ′〉

k ≥ 1, m ≥ 0
ni ground i∈{1...k}
nj < 0 for some j∈{1...k}
〈 new NegSzeE��, σ〉;p〈ιi, σ′〉
〈new T[n1]...[nk][]1..[]m[[v]], σ〉
;p〈throw ιi, σ

′〉

n1 ≥ 0, k ≥ 2, m ≥ 0, σ0 = σ
T is a simple type
〈 new T[n2]...[nk][]1...[]m[[v]], σi〉
;p〈ιji , σi+1〉

for all i∈{0...n1 − 1}
ιji is new in σni i∈{0...n1}
σ′ = σn1 [ιjn1

7→[[ιj0 , ..., ιjn1−1 ]]
T[]1...[]k+m ]

〈 new T[n1]...[nk][]1...[]m[[v]], σ〉;p〈ιjn1 , σ′〉

Fig. 17. Expression execution

Array access as described here adheres to the rules in ch. 15.12 of [17],
which require full evaluation of the expression to the left of the brackets. Thus,
with our operational semantics, the term a[(a := b)[3]] corresponds to the term
a[b[3]]; a := b.

The last six rules in figure 17 describe the creation of new objects or arrays,
c.f. ch. 15.8-15.9 of [17]. Essentially, a new value of the appropriate array or
class type is created, and its address is returned. The fields of the array, and the
components of the object are assigned initial values (calculated at compile time,
cf definition 6) of the type to which they belong.

For example, for a state σ00 the expression new int[2][3][][][[0]] would be
executed as: 〈 new int[2][3][][][[0]], σ00〉;p′ 〈ι7, σ01〉 where ι5, ι6, and ι7 are new



Describing the Semantics of Java and Proving Type Soundness 71

〈stmts, σ〉;p〈σ′〉
〈stmts;stmt, σ〉;p〈stmt, σ′〉

〈stmts, σ〉;p〈stmts′, σ′〉
〈stmts;stmt, σ〉;p〈stmts′; stmt, σ′〉

〈if true then stmts else stmts′, σ〉
;p〈stmts, σ〉

〈e, σ〉;p〈e′, σ′〉
〈if e then stmts else stmts′, σ〉
;p〈if e′ then stmts else stmts′, σ′〉

〈if false then stmts else stmts′, σ〉
;p〈stmts′, σ〉 〈return , σ〉;p〈σ〉

〈e, σ〉;p〈e′, σ′〉
〈return e, σ〉;p〈return e′, σ′〉

val is ground

〈return val, σ〉;p〈val, σ〉

Fig. 18. Statement Execution

in σ00, and they have the following contents in σ01:
σ01(ι5) = [[null, null, null]]int[][][]

σ01(ι6) = [[null, null, null]]int[][][]

σ01(ι7) = [[ι5, ι6]]
int[][][][]

Figure 19 describes the evaluation of assignments. According to the first rule,
the left hand side is evaluated first, until it becomes l-ground. Then, according to
the next rule, the right hand side of the assignment is evaluated, up to the point
of obtaining a ground term. Assignment to variables or to object components
modifies the state accordingly.

The last three rules describe assignment to array components where the index
being within bounds has to be checked first (if not, IndOutBndE is thrown), then
the value has to fit the array (if not, ArrStoreE is thrown), and, if the two
above requirements are satisfied, then the assignment is performed. Fitting, a
requirement which ensures that an object or array value is of a type that can be
appropriately stored into another array, is described in the definition 11.

Other exceptions (e.g. null access) need not be considered in these rules,
because they would be checked by the variable rules (figure 18), and then prop-
agated by the exception rules from figure 21. Also, we have no rule of the form
〈ιj := value, σ〉;p.... This is because in Java overwriting of objects is not possi-
ble – only sending messages to them, or overwriting selected instance variables.

Definition 12 A value val fits a type T = T′[] in a program p, iff val is prim-
itive, or val=null , or σ(val) = �...�C and p ` C v T′, or σ(val) = [[...]]T

′′

and p ` T′′ v T′.

Note that a primitive value fits any array type, e.g. 4 fits the type FrPhil[][][].
This is so, because when primitive values are assigned to array components no
run time check needs to be performed, c.f. lemma 11. Also, note that in the above
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v is not l-ground
〈v, σ〉;p〈v′, σ′〉
〈v:=e, σ〉;p〈v′:=e, σ′〉

v is l-ground
〈e, σ〉;p〈e′, σ′〉
〈v:=e, σ〉;p〈v:=e′, σ′〉

val is ground
id is an identifier

〈id:=val, σ〉;p〈σ[id7→val]〉
〈ιi.[C]v:=val, σ〉

;p〈σ[ιi, v,C 7→val]〉

val, k are ground

σ(ιi) = [[val0...valn−1]]
T[]1 ...[]m

0 > k, or k > n − 1
〈new IndOutBndE��, σ〉;p〈ιj, σ′〉
〈ιi[k]:=val, σ〉;p〈throw ιj, σ

′〉

val, k are ground

σ(ιi) = [[val0...valn−1]]
T[]1...[]m

0 ≤ k ≤ n − 1
val does not fit T[]1...[]m in p, σ
〈new ArrStoreE��, σ〉;p〈ιj, σ′〉
〈ιi[k]:=val, σ〉;p〈throw ιj, σ

′〉

val, k are ground

σ(ιi) = [[val0...valn−1]]
T[]1 ...[]m

0 ≤ k ≤ n − 1
val fits T[]

1
...[]

m
in p, σ

〈ιi[k]:=val, σ〉;p〈σ[ιi, k 7→val]〉

Fig. 19. assignment execution

definition the types T′ and T′′ may be array types themselves, and remember that
the subclass relationship is monotonic with the array type constructor (i.e. p `
C v C′ implies that p ` C[] v C′[]).

vali is ground for i∈{1...k− 1}, n ≥ k ≥ 1
〈ek, σ〉;p〈e′k, σ′〉
〈val1.[AT]m(val2, ...,valk−1, ek, ...en), σ〉;p

〈val1.[AT]m(val2, ...,valk−1, e
′
k, ...en), σ

′〉

vali is ground for i∈{2...n}, n ≥ 1

〈null .[AT]m(val2, ...valn), σ〉;p〈throw new NullPE��, σ〉

n ≥ 1
vali is ground for i∈{1...n}
σ(val1) = �...�C

AT = T2 × ... × Tn
MethBody(m,AT, C,p) = (C′, m is λx2 : T2...λxn : Tn.{stmts})
zi are new identifiers in σ
σ′ = σ[z1 7→val1]...[zn 7→valn]
stmts′ = stmts[z1/this,z2/x2, ...zn/xn]

〈val1.[AT]m(val2, ...valn), σ〉;p〈stmts′, σ′〉

Fig. 20. Evaluation of method call
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Figure 20 describes the evaluation of method calls. The receiver and ar-
gument expressions are evaluated left to right, c.f. ch. 9.3 in [20]. The first
rule describes rewriting the kth expression, where all the previous expressions
(i.e. vali, i∈{1...k− 1}) are ground. The second rule requires the exception
NullPE to be thrown if the receiver is null. The third rule describes dynamic
method look up, taking into account the argument types, and the statically
calculated method descriptor AT. The term t[t′/x] has the usual meaning of
replacing the variable x by the term t′ in the term t.

Execution of the method call aPhil.[Phil]think (aPhil) results in the
following rewrites:

〈aPhil.[Phil]think(aPhil), σ0〉 ;p′ 〈ι1.[Phil]think(aPhil), σ0〉 ;p′

〈ι1.[Phil]think(ι1), σ0〉 ;p′〈(w.[FrPhil]like:=oyster; ...), σ1〉 ;p′

〈(...), σ2〉
where σ1, σ2 are:

σ1(aPhil) = σ0(aPhil) = ι1
σ1(oyster) = σ0(oyster) = ι3
σ1(w) = ι1
σ1(w′) = ι1
σ1(ι1) = σ0(ι1) = �like Phil: ι2, like FrPhil: null�FrPhil

σ1(ι2) = σ0(ι2) = �...�Truth

σ1(ι3) = σ0(ι3) = �...�Food

σ2(z) = σ1(z) ∀z 6= ι1
σ2(ι1) = �like Phil: ι2, like FrPhil: ι3�FrPhil

The rules in figure 21 describe the operational semantics for propagation
and handling exceptions. Thus, 〈try throw new E; f(x)...catch E1 v1 stmts1, σ〉
would rewrite to 〈try throw ιi catch E1 v1 stmts1, σ〉 then to 〈stmts′1, σ〉, if E
is a subclass of E1. During execution the term maintains its type, which is void;
the subterm throw ιi has the type E-Thrn.

9 Soundness of the Javas Type System

9.1 Conforming Environments and States

We require objects to be constructed according to their class, array values to
conform to their dimension and to consist of values of appropriate types, and
variables to contain values of the appropriate type. Furthermore, an environ-
ment that contains all definitions from another environment, plus possibly some
additional variable definitions is said to conform to the second environment.

Definition 13 A value val weakly conforms to a type T in an environment Γ
and a state σ iff:

– val is a primitive value, T is a primitive type, and val∈T, or
– val=null, and T is a class, interface or array type, or
– val=ιj, σ(ιj) = �...�C, and Γ ` C ≤wdn T, or
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〈e, σ〉 ;p 〈e′, σ′〉
cont< ·= a context
〈cont<throw e=, σ〉 ;p 〈cont<throw e′=, σ′〉
〈cont<throw ιi=, σ〉 ;p 〈throwιi, σ〉

〈throw null , σ〉
;p 〈throw new NullPE��, σ〉

〈stmts, σ〉;p〈σ′〉
〈try stmts catch E1 v1 stmts1 ... catch En vn stmtsn , σ〉;p〈σ′〉
〈try stmts catch E1 v1 stmts1 ... catch En vn stmtsn finally stmtsn+1 , σ〉

;p〈stmtsn+1 , σ′〉

〈stmts, σ〉;p〈stmts′ , σ′〉
〈try stmts catch E1 v1 stmts1 ... catch En vn stmtsn , σ〉

;p〈try stmts′ catch E1 v1 stmts1 ... catch En vn stmtsn , σ′〉
〈try stmts catch E1 v1 stmts1 ... catch En vn stmtsn finally stmtsn+1 , σ〉

;p〈try stmts′ catch E1 v1 stmts1 ... catch En vn stmtsn finally stmtsn+1 , σ′〉

σ(ιi) = �...�E

∀k∈{1...n} NOT p ` E v Ek
〈try throw ιi catch E1 v1 stmts1 ... catch En vn stmtsn , σ〉;p〈throw ιi, σ′〉
〈try throw ιi catch E1 v1 stmts1 ... catch En vn stmtsn finally stmtsn+1 , σ〉

;p〈stmtsn+1 ;throw ιi , σ〉

σ(ιi) = � ... �E

∃i∈{1...n} : p ` E v Ei AND ∀k∈{1...i − 1} NOT p ` E v Ek
stmts′ = stmtsi [z/vi ], z new in stmts and in σ
σ′ = σ[z7→ιi]
〈try throw ιi catch E1 v1 stmts1 ... catch En vn stmtsn , σ〉;p〈stmts′ , σ′〉
〈try throw ιi catch E1 v1 stmts1 ... catch En vn stmtsn finally stmtsn+1 , σ〉

;p〈try stmts′ finally stmtsn+1 , σ′〉

Fig. 21. exception throwing, propagation and handling

– val=ιj, σ(ιj) = [[...]]T
′ []1...[]k and Γ ` T′[]1...[]k ≤wdn T.

A value val conforms to a type T in an environment Γ and a state σ iff val
weakly conforms to T in Γ and σ and

– val=ιj, σ(ιj) = �v1 C1 : val1, ...vn Cn : valn�C, and ∀ labels v, classes
C′, types T′ with (C′, T′) ∈ FDecs(Γ, C, v), ∃k∈{1...n} with vk = v, Ck = C′,
and valk weakly conforms to T′ in Γ and σ; or

– val=ιj, σ(ιj) = [[val0, ...valn]]
T′ []1...[]k , and ∀i ∈ {0...n} : vali weakly con-

forms to T′[]2...[]k.

Furthermore, a state σ conforms to an environment Γ iff for all identifiers x,
and integers i

– if Γ (x) 6= Undef then σ(x) conforms to Γ (x) in Γ ,σ;
– if σ(ιi) = �...�C, then ιi conforms to C in Γ , σ;
– if σ(ιi) = [[...]]T[]1...[]n , then ιi conforms to T[]1...[]n in Γ , σ.

Finally, an environment Γ conforms to environment Γ ′ iff for any identifier x:

– Γ ′(x) 6= Undef implies Γ (x) = Γ ′(x);
– Γ ′(x) = Undef 6= Γ (x), implies that Γ (x) is a variable.
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For example, the state σ0 from section 8 conforms to the environment Γ0. The
“fitting” requirement from definition 11 is weaker than conforming. Also, con-
forming is defined in terms of an environment, whereas fitting is defined in terms
of the more restricted information that is available in the program.

The following lemma states that conforming environments preserve all prop-
erties.

Lemma 8 Given environments Γ , Γ ′, where Γ conforms to Γ ′, any term t,
types T, t′ program p, and argument types AT = T2 × ...× Tn:

– Γ ` 3 =⇒ Γ ′ ` 3;
– Γ ′ ` p 3 =⇒ Γ ` p 3;
– Γ ` T ≤wdn T′ ⇐⇒ Γ ′ ` T ≤wdn T′;
– Γ ′ ` t : T =⇒ Γ ` t : T;
– FirstFit(Γ, m, T′, AT) = FirstFit(Γ ′, m, T′, AT);
– Γ ′

s̀e t : T =⇒ Γ s̀e t : T;
– Γ ′, σ r̀ t : T =⇒ Γ, σ r̀ t : T.

9.2 Properties of Term Evaluation

The operational semantics is deterministic up to renaming of addresses and
identifiers. A term containing an actually thrown exception not included by a
try statement, i.e. one with the type E-Thrn, will either not terminate, or it
will terminate in a throw statement. Rewriting variables on the left hand side of
assignments does not make their type more special, except for arrays. Program
execution may modify the contents of arrays and objects, but will not change
their type or class:

Lemma 9 For a state σ conforming to a well-formed environment Γ , a Javase

program with Γ ` p 3, a well-typed Javase term t:

– 〈t, σ〉;p〈t′, σ′〉 and 〈t, σ〉;p〈t′′, σ′′〉 implies that t′ = t′′, σ′ = σ′′ up to
renaming of addresses and identifiers. Also, 〈t, σ〉;p〈σ′〉 and 〈t, σ〉;p〈σ′′〉
implies that σ′ = σ′′ up to renaming of addresses and identifiers. Further-
more, it is impossible to have 〈t, σ〉;p〈t′′, σ′′〉 and 〈t, σ〉;p〈σ′〉.

– If Γ, σ r̀ t : E-Thrn, then, either 〈t, σ〉 ;p
∗ does not terminate, or

〈t, σ〉 ;p
∗ 〈throw ιi, σ〉

– For Javar variables v, v′, if 〈v, σ〉;p〈v′, σ′〉, and Γ, σ r̀ v : T, and v is
not l-ground, then Γ, σ r̀ v′ : T′, Γ ` T′ ≤wdn T and v′ is not ground.
Furthermore, if v is not an array access, then T = T′.

– If 〈t, σ〉;p〈t′, σ′〉, then for any ιi, if σ(ιi) = [[...]]T[]1...[]n then σ′(ιi) =
[[...]]T[]1...[]n , and if σ(ιi) = �...�C then σ′(ιi) = �...�C.

Don Syme pointed out to us [27,28] that a lemma stating that program ex-
ecution preserves types up to widening, is necessary for the proof of subject
reduction. Interestingly, it turned out that a stronger lemma, than that origi-
nally suggested and used in the subject reduction theorem, is possible, namely,
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execution of a program does not have any effect the type of an expression. This
lemma is easier to prove, and considerably facilitates the proof of subject reduc-
tion.

Lemma 10 For Javar terms t, t′, t′′, states σ, σ′, environments Γ , Γ ′, type
T′′, Javas program p and Javar program p′ = C{(Γ, p)}, if
– Γ ` p 3 and Γ, σ r̀ t : T and Γ, σ r̀ t′′ : T′′;
– σ conforms to Γ and Γ ′ conforms to Γ
– 〈t, σ〉;p′〈t′, σ′〉, or 〈t, σ〉;p′〈σ′〉

then
– Γ ′, σ′

r̀ t′′ : T′′.

The lemma may be surprising: As stated later in the subject reduction theorem, a
term t when rewritten to a new term t′ has, possibly, a narrower type; therefore,
one would expect evaluation of the term t to affect the type of a third term
t′′. However, according to the above lemma, even if t′′ should contain t as a
subterm, its type does not change. The lemma is proven by structural induction
over term execution (i.e. on 〈t, σ〉;p′ 〈t′, σ′〉, or 〈t, σ〉;p′〈σ′〉), and then, each
case by structural induction on the typing of t′′ (i.e. on Γ, σ r̀ t′′ : T′′). The
interesting cases are those where the state changes, i.e. the application of the
three different assignment rules from figure 19. Assignments do not change the
types of variables (these are looked up in the environment). They do not change
the type of addresses (as shown in lemma 9). They do not change the type of
array access because this depends on the type of the array and not on the type
of the actual array component. And they do not change the type of object access
because this too depends on the type of the object and the class stored in the
descriptor and not on the value stored in the object field.

The array property, introduced in the following definition, ensures that check-
ing for fitting when executing array assignments will be sufficient to preserve
conformance of the state.

Definition 14 A Javar term t has the array property for a program p and for
a state σ, iff for any subterm of t with the form v[e] := e′, with Γ, σ r̀ v[e] : T
and Γ, σ `r e′ : T′, if NOT Γ ` T′ ≤wdn T, then for appropriate n ≥ 0,
T = C[]1...[]n, T′ = C′[]1...[]n, and NOT p ` C′ v C.

The array property is trivially guaranteed in type correct Javase terms, and
thus in any Javar terms that are the result of enriching type-correct Javas terms,
and it is preserved by the execution of Javar terms.

Lemma 11 For an environment Γ under which the Javas term t and Javase

term t′ are well typed, Javase program p with Γ ` p 3, p′= C{(Γ, p)}:
– t′ has the array property for p and any state σ.
– C{(Γ, t)} has the array property for p and any state σ.
– If σ conforms to Γ , t′ has the array property for p′, σ, and 〈t′, σ〉;p′〈t′′, σ′〉,

then t′′ has the the array property for p′ and σ′.
– ∀ Javar terms t′′, states σ: t′′ has the array property for p and σ =⇒

t′′ has the array property for p′ and σ
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9.3 Subject Reduction and Soundness

The subject reduction theorem says that any non-ground well-typed Javase term
either rewrites to another well-typed term of a type that can be widened to
the type of the original term, or it rewrites to an exception. Furthermore, the
state remains consistent with the environment. The subject reduction theorem
of this paper is stronger than usual subject reduction theorems: not only does
it guarantee that rewriting preserves types, but it also guarantees that a rewrite
step exists for any well-formed, non-ground term. (In that sense it combines the
safety and soundness property described in chapter 4 of this book.) In particular,
it guarantees for statically type-correct expressions, that the situation where an
object cannot execute a message (the Smalltalk counterpart to “object does
not understand message”) will never occur. On the other hand, it does not
preclude the usual run-time errors like index out of bound, or wrong assignment
to array components; however, it does guarantee that such erroneous situations
will raise an exception, as opposed to going unnoticed and corrupting the run-
time environment.

Theorem 1 Subject Reduction For a state σ that conforms to an environ-
ment Γ , a Javase program p with Γ s̀e p 33, a non-ground Javar term t with
the array property for p and σ, and a type T with Γ, σ r̀ t : T, there exist σ′,
Γ ′, t′, T′ such that:

– 〈t, σ〉;p〈t′, σ′〉, and Γ ′, σ′
r̀ t′ : T′, and t′ has the array property for p

and σ′, and:
• T′=E-Thrn, E an exception, σ′ conforms to Γ , Γ ′ = Γ

or
• Γ ` T′ ≤wdn T, Γ ′ conforms to Γ , σ′ conforms to Γ ′

or
– 〈t, σ〉;p〈σ′〉 and σ′ conforms to Γ

Furthermore, if t is a non l-ground variable, then 〈t, σ〉;p〈t′, σ′〉 and t′ is not
ground. Also, if t is a non l-ground variable which isn’t an array access, then
T = T′.
The theorem isproven by structural induction over the derivationofΓ, σ r̀ t : T.

When the method call aPhil.[Phil]think(aPhil) was evaluated in the
philosophers example, then after the third rewrite step, the “environment ex-
tension” required by the subject reduction theorem is Γ ′ = Γ0, w : FrPhil,
w′ : FrPhil. The states σ1, σ2 conform to Γ ′.

Finally, the soundness theorem states that execution of a well-typed Javas pro-
gram will produce a uniquely defined value of the expected type in a state con-
forming to the definitions, or it will throw an exception which will be propagated
to the outermost level, or it will not terminate.

Theorem 2 Soundness Take any Javas term t, a well-formed environment
Γ , a type T with Γ ` t : T, a Javas program p with Γ ` p 33, and a state σ
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that conforms to Γ . Then for the Javase program p′, p′ = C{(Γ, p)}, there exists
a unique Javar term t′, and a state σ′, such that:

– T 6= void, 〈C{(Γ, t)}, σ〉;p′
∗〈t′, σ′〉, t′ is ground,

∃T′ : Γ, σ′
r̀ t′ : T′, Γ ` T′ ≤wdn T and σ′ conforms to Γ or

– T = void, and 〈C{(Γ, t)}, σ〉;p′
∗〈σ′〉 and σ′ conforms to Γ or

– 〈C{(Γ, t)}, σ〉;p′
∗ does not terminate or

– 〈C{(Γ, t)}, σ〉;p′
∗〈throw ιi, σ

′〉, and σ(ιi) = �...�E, and Γ ` E v Exception

10 Conclusions

We have given a formal description of the operational semantics and type sys-
tem for a substantial subset of Java. We believe this subset is reasonably rich
and contains many of the features which together might have led to difficul-
ties in the Java type system. By applying some simplifications we obtained a
straightforward system, which, we think, does not diminish the application of
our results.

Close scrutiny of the language description [17] showed that the semantic is-
sues related to the scope of our investigation are unambiguously answered by [17].
However, we found areas that could have been defined more generally (e.g. the
return types of methods override those from superclasses and superinterfaces)
and others that could have been defined more concisely (e.g. the descriptions
of widening and of exceptions). Furthermore, in [21,33] we describe problems
related to the definition of binary compatibility, and attempt a formalization of
this concept.

We believe that the formal system we have developed is very near to Java and
to programmers’ intuitive ideas about program execution. On the other hand,
we now have a large system, and the proofs of the lemmas require the consid-
eration of many cases. The system grew and evolved through many iterations,
and during which some omissions crept into the argumentation. The most sig-
nificant omissions were uncovered by Don Syme and are described earlier on in
this paper, and also, in the next chapter of this book[29]. With the modifica-
tions he suggested, he was able to validate the subject reduction theorem using
his theorem checker. This gives us greater confidence in our results, but it also
underlines the importance of the use of theorem checkers for such, rather large
systems.

Another proof of the soundness of the Java type system, using Isabelle in a
large step semantics is described in [23,32]. Applications of theorem provers for
programming language properties are also described in [16,26,31].

We aim to extend the language subset to describe a larger part of Java, and
we also hope that our approach may serve as the basis for other studies on
the language and its possible extensions [24,3,2]. We are also looking at further
language properties such as an abstraction property and binary compatibility
[33].
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Proving Java Type Soundness
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1 Introduction

This chapter describes a machine checked proof of the type soundness of a sub-
set of Java (we call this subset JavaS). In Chapter 3, a formal semantics for
approximately the same subset was presented by Drossopoulou and Eisenbach.
The work presented here serves two roles: it complements the written seman-
tics by correcting and clarifying some details; and it demonstrates the utility of
formal, machine checking when exploring a large and detailed proof based on
operational semantics.1

This work contributes to three distinct fields of formal reasoning:

– The Formal Study of Java: We contribute a detailed analysis of a significant
property of Java, and provide corrections to proofs that are interesting in
their own right.

– Tools for Formal Methods: This work is a major case study in so-called
‘declarative’ proof techniques. The tool we use, called DECLARE [Sym97],
has been developed by the author to demonstrate the utility of these tech-
niques.

– Formally Checked Properties of Languages: This work contributes a tool
and a methodology for the general task of machine checking properties of
languages.

Most of this chapter should be clear to readers with a basic understanding of
operational semantics, formal specification and the results presented in Chap-
ter 3.

Our main aim has not been to find errors. However, a significant error in
the original formulation adopted by Drossopoulou and Eisenbach [DE97] was
discovered during our work. We also independently rediscovered a significant
error in the Java Language Specification [GJS96]. Both errors are described in
Section 6.

1 The latest version of the proofs and specifications described in this document are
available on the World Wide Web at
http://www.cl.cam.ac.uk/users/drs1004/java-proofs.html. This will be updated to
reflect further work on the formalization.

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 83–118, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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The first error resulted in an interesting collaboration between Drossopoulou,
Eisenbach and the present author, and led to a deeper understanding of the prob-
lems involved. It is as a result of this exercise that we discuss methodology in this
chapter, because the methodology we adopted enabled us to find errors quickly
and to provide good feedback to the authors of Chapter 3. This demonstrates
the positive role that machine checking can play when used in conjunction with
existing techniques.

1.1 Outline

This chapter is organized as follows. The rest of this introduction describes, in
general terms, just what we have proved, and how we have gone about doing
it. Section 2 delves into the technical content of our model of JavaS, and puts
into place the building blocks necessary for the proof. As our semantics is based
heavily on that of Chapter 3, we only give details where our analysis departs
from theirs.

In Sections 4 and 5 we describe the process of machine checking this proof
in detail, taking us from a higher-order logic formalization of the problem to a
completed proof script. In Section 6 the errors we have mentioned are described,
and we summarize and discuss related work in Section 7.

1.2 What Have We Proved?

An introduction to the notion of type soundness has already been given at the
beginning of Part 2. Briefly, type soundness states that a well-typed Java pro-
gram will not ‘go wrong’ at runtime, in the sense that it will never reach a state
that violates conditions implied by the typing rules. To illustrate, one aspect of
type soundness is captured in the following statement that is taken directly from
the Java Language Specification [GJS96]:

The type [of a variable or expression] limits the possible values that the
variable can hold or the expression can produce at runtime. If a runtime
value is a reference that is not null, it refers to an object or array that
has a class ... that will necessarily be compatible with the compile-time
type.

In this study we are concerned with the Java language itself, rather than the
Java Virtual Machine (JVM). The two are closely related but the difference is
non-trivial: for example there are JVM bytecodes that do not correspond to any
Java text. Thus it remains a challenge to formalize and verify the corresponding
type soundness property for the JVM. However, unlike many high-level/low-level
language combinations (e.g. C++/assembler) the type systems of Java and the
JVM are closely related, and a comprehensive study of the former is a useful
precursor to the study of the latter (see also [Qia97]). Of course, even if an
abstract model of Java and/or the JVM is verified, this does not guarantee the
soundness of a particular implementation.
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The precise formulation of type soundness we use is described in Section 3,
but, not surprisingly, it must be expressed in terms of the inner workings of a
runtime machine, in our case the execution model we use for JavaS. This helps
explain why it takes so much infrastructure before we can even state type sound-
ness explicitly. Ultimately we would like to verify various “security properties”
that are independent of the inner workings of the particular runtime model, but
it is beyond the scope of this work to demonstrate such properties.

The Java subset we consider here is that covered in version 2.01 of Drossopou-
lou and Eisenbach’s paper.2 It includes primitive types, classes with inheritance,
instance variables and instance methods, interfaces, shadowing of instance vari-
ables, dynamic method binding, statically resolvable overloading of methods,
object creation, null pointers, arrays and a minimal treatment of exceptions. An
advantage of the approach to formalization we take in this work is that as new
features of the language are treated it will be possible to incrementally adjust
existing definitions and proofs.

1.3 Five Steps to a Formalized, Machine Checked, Human Readable
Proof of Java Type Soundness

In this chapter we are largely concerned with how we prove type soundness,
to the point that a machine can check our proof. Here we step back to look at
the methodology in general, to understand what we learn at each stage of the
process. The end result of the methodology is a proof outline that is machine
checkable, human readable and maintainable as further features are added to our
language. A feature of the methodology is that valuable feedback is provided to
language researchers at each step.

The steps of the methodology are as follows:

1. Understand the Problem
This first step is so obvious it should hardly need stating: we must develop
a strong understanding of the problem before we proceed. Like all theorem
provers, the tool we use, called DECLARE [Sym97], should only be used
when this has been achieved.3

2. Develop a Machine Acceptable Model
This involves developing a machine acceptable model of the system, in our
case as a DECLARE specification. This process typically uncovers many sig-
nificant errors and omissions in the original specification, and complications
arise, e.g. those that arise from the use of a formal logic rather than informal
mathematical notation.

2 This version was distributed only on the WWW, and is no longer directly available.
If a version is needed for reference please contact the authors.

3 We state this explicitly because some previous attempts at machine-checked language
formalization have held that machine formalization should (somehow) be used to
reveal the underlying theory (this can be seen by the fact that the theory was not
worked out in significant detail prior to using the machine). The two can be done
concomitantly but one should not be pursued at the expense of the other.
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3. Validate the Model by Generating an Interpreter and Running
Test Cases
If specifications were always perfect, then systems probably would be as
well, and there would be little need for formal methods. However, specifi-
cations nearly always contain mistakes, and thus some process of validation
is required. Thus, we must attempt to check that the logical specifications
represent a valid model of the JavaS language. This validation is of course
non-trivial, and the tools required to perform validation (notably the ability
to execute specifications when they fall in an executable subset) are rarely
provided by the theorem proving community. Researchers will often rely on
the process of proof to debug their specifications, a tedious exercise that is
not particularly effective.

We have used two main techniques for validation: typechecking (which is
easy as DECLARE is based on higher order logic), and the automatic gener-
ation of ML code for an interpreter, directly from the specification. It is not
possible to remove all mistakes in the specification via these techniques, but
are surprising number are caught.

4. Formulate All Key Properties
We should now have a valid model of the JavaS language, in a form that the
computer can accept. We now write the properties that we expect to hold of
the specification. Though this may seem simple, it invariably isn’t: formu-
lating properties can take as much work as formulating a model, especially
for properties of programming languages. Because writing in a formal logic
requires attention to detail, this process can uncover many mistakes.

5. Sketch Outlines of the Proofs and Refine the Proofs Until the
Proof Checker is Convinced
We now turn to the formal proofs of the propositions we have developed.
This involves writing ‘rough’ proof outlines in a format close to that accepted
by DECLARE, and repeatedly refining these proofs until they are accepted
as correct by DECLARE’s automated proof checker. DECLARE supports the
expression of proofs in a simple case-decomposition language that resembles
the style used by mathematicians. Most importantly, it supports a migratory
path from a rough outline to a machine acceptable outline.

The methodology is like the ‘waterfall’ methodology of software development:
each step can require a return to previous steps, and we iterate until the task
is complete. Some steps (e.g. validation) can be highly automated or skipped
in later iterations. The methodology differs substantially from that applied to
many previous theorem proving projects: it is top-down, especially when we write
proofs. The advantages of such an approach are well understood from software
engineering, and our tool, DECLARE has been developed especially with the aim
of supporting it.
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Surprisingly, the process of writing rough proof sketches was the most valu-
able stage in the work. It was here that the flaw in the original proof was discov-
ered (see Section 6). An important by-product of this stage is identifying the key
lemmas about component constructs that support the argument. Our methodol-
ogy supports this elegantly: unless you are formalizing a well-established corpus
of mathematics, the necessary lemmas are not at all obvious a priori, even if
the general direction is clear. Thus support for top-down proof development is
essential.

2 Our Model of JavaS

With issues of methodology out of the way, we move on to our proof of Java type
soundness. However, before we get to the proof itself, we present the details of
our model of JavaS . We will inherit much from Chapter 3, so we concentrate on
the areas where our model differs. The material in this section is quite technical
and there are many “building-blocks” to consider: the reader is encouraged to
refer back as needed.

The aim of the type correctness proof is to bridge the gap between:

– A model of the static checks performed on JavaS programs; and
– A model of the runtime execution of JavaS programs.

This section is devoted to describing these two components, which we will con-
nect in Section 3. A picture of the components of the semantics is shown in
Figure 1. The “annotated” language JavaA is the result of the static checking
process and the “machine-code” language JavaR is the code executed at runtime.
Our semantics were originally based on that developed by Drossopoulou and

static
checking compilation execution

Java ⊃ JavaS ;ann JavaA ;comp JavaR × state ;(Γ,p) JavaR × state
↓ ↓ ↓ ↓

type = type = type ≥wdn type

Fig. 1. Components of the Semantics and their Relationships

Eisenbach in version 2.01 of their paper [DE97]. The main differences between
our semantics and this version are outlined below. Some of these suggestions
have been incorporated into the version presented in Chapter 3.

– We correct minor mistakes, such as missing rules for null pointers, some
definitions that were not well-founded (e.g. those for MSigs, FDecs and FDec),
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some typing mistakes and some misleading/ambiguous definitions (e.g. the
definition of MethBody, and the incorrect assertion that any primitive type
widens to the null type).

– We choose different representations for environments, based on tables (par-
tial functions) rather than lists of declarations.

– We differentiate between the source language JavaS, the annotated language
JavaAand the ‘runtime terms‘ JavaR. The latter are used to model execution
and enjoy subtly different typing rules.

– We adopt a suggestion by von Oheimb (see Chapter 5) that well-formedness
for environments be specified without reference to a declaration order.

– We allow the primitive class Object to have an arbitrary set of methods (In
Chapter 3 Object has no methods). It was when considering this extension
that one mistake in the Java Language Specification was discovered (see
Section 6).

– We do not use substitution during typing, as it turns out to be unnecessary
given our representation of environments.

– At runtime we do not choose arbitrary new names for local variables when
calling a procedure, but use a system of ‘frames’ of local variables that makes
reasoning about substitution easier (and is also closer to a real implementa-
tion based on stacks and offsets).

– The modeling of multi-dimensional arrays in version 2.01 of Drossopoulou
and Eisenbach’s paper was not faithful to the Java Language Specification,
where sub-array dimensions are not constant.

– Arrays in Java support the methods supported by the class Object (e.g.
hashValue()). We include this in our model (with non-trivial consequences).
However our model of arrays is still incomplete, as Java arrays support cer-
tain array-specific methods and fields, whereas in our treatment they do
not.

Figure 2 presents the abstract syntax of JavaS programs.

2.1 The Static Semantics: Environments, Widening, and Visibility

Chapter 3 has already covered the basic components of the static semantics for
JavaS. The complicating factors for the static semantics are:

– Java allows the use of classes before they are defined. A non-circular class
and interface hierarchy must result. Thus type-checking environments were
defined, extracted from all the classes and interfaces that make up a program.
A well-formedness condition is required for these.

– Java allow subtyping in a typical object-oriented fashion, which leads to the
widening (≤wdn) relation.

– Defining well-formedness for type-checking environments requires knowledge
of what identifiers are visible from subclasses. Visibility is defined by relations
for traversing the class and interface hierarchies.
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prog = class1; . . . ; classn; (programs)
class = C extends Csup implements I1, . . . , In {

field1; . . . ; fieldn;
method1; . . . ; methodm;

}

(class declaration)

field = type field-name (field declaration)
method = expr-type method (type x1, . . . , type xn) {

stmt1; . . . ; stmtm
return expr?

}

(method declarations)

stmt = if expr then stmt else stmt (conditionals)
| var := expr (assignment)
| { stmt1; . . . ; stmtn; } (blocks)
| expr (evaluation)

var = id (local variable)
| expr.field-name (object field)
| expr[expr] (array element)

expr = prim (literal value)
| var (dereferencing)
| expr.method-name(expr+) (method call)
| new C (object creation)
| new comptype[expr]+[]* (array creation)

Fig. 2. The Abstract Syntax of JavaS

primitive-type = bool | char | short | int |

long | float | double

simple-reference-type = class-name | interface-name
component-type = simple-reference-type | primitive-type
array-type = component-type[]n (n > 0)
reference-type = simple-reference-type | array-type | nullT

type = primitive-type | reference-type
expr-type = type | void

arg-type = list of type
method-type = arg-type → expr-type

Fig. 3. Types
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– Java implementations disambiguate field and method references at compile-
time. Method calls may be statically overloaded (not to be confused with
the object oriented late-binding mechanism), and fields may be hidden by
superclasses.

Type checking environments contain several components (Figure 4). Always
present are tables of class and interface declarations, and when typechecking
inside method bodies we add a table of variable declarations. We write environ-
ments as records (〈 . . . 〉) , and omit record tag names when it is obvious which
record field is being referred to.4 In the machine acceptable model tables are
represented as partial functions, and sets as predicates:

α
table7−→ β ≡ α −→ β option

set of α ≡ α −→ bool

where the type function option has the standard definition.

class-env = class-names
table7−→ class-dec

interface-env = interface-names
table7−→ interface-dec

variable-env = variable-names
table7−→ type

class-dec = 〈 super: class-name,
interfaces: set of interface-names ,

fields: field-names
table7−→ type,

methods: method-names× arg-types
table7−→ expr-type〉

interface-dec = 〈 superinterfaces: set of interface-names ,

methods: method-names× arg-types
table7−→ type〉

Fig. 4. Type checking environments

We use Γ for a composite environment, Γ V , Γ C and Γ I its respective compo-
nents, and Γ (x) for the lookup of x in the appropriate table. We also use x ∈ Γ
to indicate that x is defined in the relevant table in Γ .

Component types, array types, reference types and regular types are said to
be well-formed, written Γ ` object 3syntax−category (e.g. .. |- .. wf_class in
the DECLARE specification) if all classes and interfaces are in scope.

Next we define the subclass (vclass ≡ subclass_of), subinterface (vint ≡
subinterface_of) and implements (:imp ≡ implements) relations as shown be-
low. All classes are a subclass of the special class Object, though we do not have
to mention this explicitly as the well-formedness conditions for environments will
ensure it.
4 In the machine acceptable model we do not use such conveniences: records are rep-

resented as tuples.
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Γ ` C 3class−name

Γ ` C vclass C
(reflC)

Γ (C).super = Csup Γ ` Csup vclass C′

Γ ` C vclass C′ (stepC)

I ∈ Γ
Γ ` I vint I

(reflI)
Ik ∈ Γ (I).interfaces Γ ` Ik vint I ′

Γ ` I vint I ′ (stepI)

Ik ∈ Γ (C).interfaces

Γ ` C :imp Ik
(implements)

In the DECLARE specification, the 3class−name and vclass relations are
defined by the DECLARE text

inductive_relation wf_class

(Object) [rw,prolog]

------------------------------------

TE |- "Object" wf_class

(Decl) [rw,prolog]

Cdec(TE,C) = SOME(classdec)

------------------------------------

TE |- C wf_class

inductive_relation subclass_of

(Refl) [rw,prolog]

------------------------------------

TE |- C subclass_of C

(Step) [prolog]

Cdec(TE,C) = SOME(CLASS(C’,_,_,_)) &

TE |- C’ subclass_of C’’

------------------------------------

TE |- C subclass_of C’’

Here TE is the type environment, and contains a partial function from class-
names to class declarations. Extra syntactic detail is required such as SOME to
indicate that the class is actually in the domain of CE.

Keywords such as rw and prolog are “pragmas” that provide interpretative
information to proof tools when the specification is used as a set of logical axioms:
in particular rw indicates that the rule can be safely used as a (conditional)
rewrite, and prolog that the rule can be safely used as a backchaining Prolog-
style rule.

Subtyping in Java is the combination of the subclass, subinterface and im-
plements relations, and is called widening. Defining widening accurately in the
machine acceptable model turns out to be a tedious but instructive process: we
define it incrementally over the different kinds of types, i.e. over simple reference
types (≤sref ) then component types (≤comp) then array types (≤arr) and so on
through to regular types (≤wdn). We have to be careful about this to avoid errors
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that creep in by other approaches: e.g. in the original formulation it appeared
that all primitive types are subtypes of Object, when in fact only reference types
are.

The full rules for widening are given in Appendix B. Note the co-variant rule
for arrays eventually leads to the need for runtime typechecking.

The functions FDec, FDecs and MSigs tell us what fields are visible from a
given class or interface. They traverse the subclass/subinterface graphs, starting
at a particular class/interface.

– FDec: Finds the ‘first visible’ definition of a field starting at a particular
class. A set is returned, with at most one element when the environment is
well-formed.

– MSigs: Finds all the methods visible from a reference type. Methods with
identical argument descriptors hide methods further up the hierarchy, though
return types may be different.

– FDecs: Finds all fields, including hidden ones. This is used to determine the
runtime fields of an object.

In Drossopoulou and Eisenbach’s original formulation these definitions were
given as recursive functions, and only make sense for well-formed environments,
as the search may not terminate for circular class and interface hierarchies. Un-
fortunately the constructs are themselves used in the definition of well-formedness
below. To avoid this problem we define the constructs as inductively defined sets.
Our definitions are given in Appendix C.

MSigs is defined by first defining MSigsC MSigsI and MSigsA for the visible
methods from the three different reference types. The methods visible from ar-
rays and interfaces include all methods found in the type Object. Whether this
should be the case for interfaces is the subject of discussion in Section 6.1.

2.2 The Static Semantics: Well-Formedness, Type Checking, and
JavaA

Well-formedness for type checking environments is essential (` Γ 3tyenv ≡
wf_tyenv) to ensure that subclasses provide methods compatible with their su-
perclasses. Drossopoulou and Eisenbach originally formulated this by an incre-
mental process, where the environment is constructed from a sequence of defini-
tions. We originally followed this formulation, but von Oheimb (See Chapter 5)
has pointed out that this is not necessary, since the definition is independent of
any ordering constraints (however a finiteness constraint is needed to ensure no
infinite chains of classes not terminating in ‘Object’ exist).

In the machine acceptable model, every class declaration in a well-formed
environment must satisfy:

– Its superclass and implemented interfaces must be defined and no circulari-
ties can occur in the hierarchy;

– Any methods that override inherited methods (by having the same name
and argument types) must have a narrower return type;



Proving Java Type Soundness 93

– All interfaces must be implemented by methods that have narrower return
types.

In addition the class Object must be defined and have no superclass, superin-
terfaces or fields. In the DECLARE specification these are written as follows (the
italicized labels are used in proofs to refer to facts that are deducible from the
well-formedness of an environment).

Cdec(TE,C) = SOME(CLASS(Csup,Is,fields,methods)) →
∀Csup’. Csup’ = SOME(Csup) →
~(TE |- Csup’ subclass of C) [no circular classes] &

(∀m at rt1. MSigsC(TE,Csup’)(m,MT(at,rt1)) →
(∃rt2. MSigsC(TE,C)(m,MT(at,rt2)) &

TE |- rt2 expty widens to rt1) [class return types wider])

Csup = NONE →
C = "Object" [only Object has no superclass] &

fields = { } [Object has no fields] &

Is = { } [Object implements no interfaces]

∀m mt1. (m,mt1) :: methods →
∀mt2. (m,mt2) :: methods →

Args(mt1) = Args(mt2) → mt1 = mt2 [class argtypes unique]

Several constraints mentioned in Chapter 3 are guaranteed by the types of the
constructs we have used to represent environments. A similar set of constraints
must hold for each interface declaration.

We can now define the static checks performed on JavaS programs, and can
assume we are operating with a well-formed type environment. Our rules differ
from Chapter 3 only in that we translate to a simpler, annotated version of JavaS

called JavaA rather than the runtime language JavaR. We later prove that the
compilation process preserves types.

We do not give the full details of the typing rules here, since they fol-
low the rules given in Chapter 3 very closely. The rules give rise to a se-
ries of relations for JavaS (var_hastype, exp_hastype, stmt_hastype through
to prog_hastype) and similar relations for JavaA (avar_hastype through to
aprog_hastype). The annotation process is also described by a relation (;ann

≡ prog_annotates_to). As an example, the typing rule for references to local
(stack) variables in both the unannotated and annotated languages is:

PLOOKUP(VE)(x) = SOME(vt)

-----------------------------------------------

(TE,VE) |- Id(x) var_hastype vt

The typing rule for method calls in the unannotated language is:
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LEN(args) = n &

LEN(argtys) = n &

(∀j. j < n → (TE,VE) |- EL(j)(args) exp_hastype SOME(EL(j)(argtys))) &

(TE,VE) |- e exp_hastype SOME(vt) &

MostSpecC(TE,vt,m,argtys)(mt) &

(∀y. MostSpecC(TE,vt,m,argtys)(y) → mt = y)

-------------------------------------------------------------------

(TE,VE) |- Call(e,m,args) exp_hastype Res(mt)

Note that iterated constructs are replaced by (bounded) universal quantification:
the first three lines of the rule correspond to a side condition like:

each argi has some type tyi (1 ≤ i ≤ n)

Note the index change to take advantage of the inbuilt theory of natural numbers
and zero-indexed lists and the use of the inbuilt list operators EL and LEN. The
definition of MostSpec can be found in Chapter 3. The typing rule for the same
construct in the annotated language is:

LEN(args) = nargs &

LEN(AT) = nargs &

(TE,VE) |- e aexp_hastype SOME(vt) &

MSigs(TE,vt)(m,MT(AT,rt))

----------------------------------------------------

(TE,VE) |- CallA(e,AT,m,args) aexp_hastype rt

This completes our presentation of the static checks performed for the JavaS

language. We now move onto the runtime model of execution.

2.3 The Runtime Semantics: Configurations, Runtime Terms, and
State

Chapter 3 models execution by a transition semantics, i.e. a ‘small step’ rewrite
system [Plo91]. A configuration (s, t) of the runtime system has a state s and
a runtime term (rterm) t. The rterm represents expressions yet to be evaluated
and the partial results of terms evaluated so far. The configuration is progres-
sively modified by making reductions. The rewrite system specifies an abstract
machine, which is an inefficient but simple interpreter for JavaS.

A small step system is chosen over a ‘big step’ (evaluation semantics) since
we want to reason about non-terminating programs, and later will want to model
non-determinism and concurrency. Using a small-step system imposes significant
overheads in the type soundness proof (e.g. with a big-step rewrite system certain
intermediary configurations need not be considered), but this seems unavoidable.

Runtime terms (the language JavaR) are JavaA programs with the addition
of addresses, exception packets and the method bodies that have been called.
There are three types of rterms: expressions, variables and statements, and thus
there are really three different types of configurations. As an intuition for what
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we mean by this, consider the “top level” configuration: it always contains an
expression (and a state) since Java begins execution with the main static method
from a given class, and this eventually evaluates to an integer.

In our model, the program state consists of two components: a list of frames
of local variables and a heap containing objects and arrays. Neither are garbage
collected5. Heap objects are annotated with types for runtime typechecking (in

state = 〈 frames: list of (id
table7−→ val),

heap: addr
table7−→ heap-object〉

heap-object = � fld1 7→ val1, . . . , f ldn 7→ valn �C (object)
| [[val1, . . . , valn]]

type (array)

Fig. 5. State

the case of arrays this is the type of values stored in the array). We use the
symbol ⊕ to indicate adding a new frame at the next available frame index,
s(id) and s(addr) for looking up local variables and objects, and s(id)← val and
s(addr) ← heap-obj for assigning things into the respective components of the
state.

2.4 The Rewrite System

The reduction of rterms is specified by three relations, one for each syntax cate-
gory:

exp
; (Γ,p),

var
; (Γ,p) and stmt

; (Γ,p) (≡ exp_reduces_to, var_reduces_to etc.).
Global parameters are an environment Γ (containing the class and interface hi-
erarchies, needed for runtime typechecking) and the program p being executed.
p contains JavaA terms: each time a method is executed we create a JavaR term
for the body of that method.

A term is ground if it is in normal form, i.e. no further reduction can be
made. Being ground is a syntactic test, and the test can depend on the syntax
category “from which a term is viewed”. A local variable id is ground if id is a
variable, but not ground if id is an expression (this is the standard distinction
between lvalues and rvalues in C). Formally, ground is defined as follows:

– A value is ground iff it is a primitive value or an address.
– An expression is ground iff it is a ground value.

5 In future versions of the semantics a garbage collection rule collecting inaccessi-
ble items at any time may be added. Garbage collection is semantically visible in
Java because of the presence of ‘finally’ methods that get called before an object is
deallocated.
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– A variable is ground iff all its component expressions are ground.
– A statement is ground iff it is an empty block of statements or a ground

expression.

There are 36 rules in our rewrite system. 15 of them are “redex” rules that specify
the reduction of expressions in the cases where sub-expressions have reductions.
A sample from the DECLARE specification is:

(stmt,s) stmt_reduce(TE,p) (stmt’,s’)

------------------------------------------------------------------------

(RBlock(stmt#stmts),s) stmt_reduce(TE,p) (RBlock(stmt’#stmts),s’)‘

11 of the rules specify the generation of exceptions: 5 for null pointer dereferences,
4 for bad array index bounds, one for a bad size when creating a new array and
one for runtime type checking when assigning to arrays. A simple example is:

exp_ground(exp) = T &

val_ground(val) = T‘

----------------------------------------------------------

(RAssign(RAccess(RValue(RAddr(NONE)),exp),RValue(val)),s)

stmt_reduce(TE,p)

(RExpr(RValue(RExn("NullPointExc"))),s)‘

The array creation rule is:

ndims = LEN(dims) &

(∀j. j < ndims → exp_ground(EL(j)(dims))) &

LEN(dimns) = ndims &

(∀j. j < ndims →
∃i32. EL(j)(dims) = RValue(RPrim(Int(i32))) &

dest_int32(i32) >>= 0 &

dest_int32(i32) = EL(j)(dimns)) &

s = (frames,heap) &

alloc(heap,st,dimns,ext) = (val,heap’) &

(frames,heap’) = s’

-------------------------------------------------------------

(RNewArray(st,dims,ext),s) exp_reduce(TE,p) (RValue(val),s’)

Here alloc represents the recursive process of allocating k1× . . . kn−1 arrays that
eventually point to initial values appropriate for the type type. This process is
described in detail in [GJS96].6

6 This model of array creation would need to be modified if threads or constructors
are considered. Array creation is not atomic with respect to thread execution, It
may execute constructors (and thus may not even terminate), and may raise an
out-of-memory exception.
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2.5 Runtime Typechecking

Java performs runtime typechecks at just two places: during array assignment,
and when casting reference values. Runtime typechecking is needed for array
assignment because of the well-known problem with a co-variant array typing
rule. Casts are not covered in this chapter: they are a trivial extension once
runtime checking for arrays is in place.

Runtime typechecking is performed by simply checking that the real (i.e.
runtime) type of any reference object, as stored in the state, is narrower than
the real type of the array cell it is being assigned to. This means the runtime
system must have access to the program class/interfaces hierarchies (as the JVM
does).

An aside: The notion of runtime type checking from Chapter 3 (weak con-
formance) is a little too strong: it allows the runtime machine to check the
conformance of primitive values to primitive types. No realistic implementa-
tion of Java checks at runtime that a primitive type such as int fits in a
given slot. The problem stems from the fact that conformance is used for two
purposes:

– to represent the procedure invoked at runtime to do runtime typechecking
– as an abstract concept used to formulate type soundness.

The function typecheck checks that a stored type is compatible with a given
type. It succeeds for an address addr, a type ty in a heap h if:

– h(addr) =� ...�C and ty is wider than C

– or h(addr) = [[...]]ty′
and ty is wider than ty′[]

In future versions of the semantics this will not perform compatibility checks for
primitive or null values.

2.6 The Model as a DECLARE Specification

DECLARE specifications can be interpreted as axioms in an appropriate logic,
or, if executable, as a specification of an interpreter. The documents we have
seen fragments from are abstracts, i.e. summaries of theories that are checked to
be consistent extensions of higher order logic. The declaration forms available
are simple (non-recursive) definitions, recursive datatype definitions (mutually
recursive and recursive through positive type functions like list), inductive rela-
tions (again mutually recursive, with any monotonic operators), and recursive
functions with a well-founded measure.7

The syntax classes and semantic objects (exp, type, state etc.) are easily
defined in DECLARE using logical datatypes, partial functions and sets — we
will not give an example here. As we have seen inductive relations [CM92,Pau94]
are formulated by specifying a set of rules, and giving a name to each. When
7 Not all the features listed here are fully implemented in the version of DECLARE

used for this work, for example monotonicity conditions are not currently checked.
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treated as a logical specification, DECLARE generates the appropriate axioms
for the least fixed point of the set of rules.

Formalizing the runtime rewrite system as an inductive relation is relatively
straight forward given DECLARE’s collection of background theories.

The machine-acceptable specification runs to around 2500 lines in total. The
use of three similar versions of the language results in some unfortunate dupli-
cation that seems hard to avoid: e.g. we have three sets of typing rules that are
very similar. Perhaps most importantly, the specification was easily read and
understood by the authors of Chapter 3 when shown to them.

3 Formulating Key Properties

In this section we formulate, in the terms of the model just developed, the
type soundness property we will prove. The main substantive differences with
Drossopoulou and Eisenbach’s original formulation are:

– We distinguish between the safety property (type soundness) and a liveness
property, that says that the runtime machine can always proceed if the result
is not yet ground. This formulation is correct for non-deterministic language
constructs.

– We correct the rule for typing array assignments at runtime.

Loosely speaking, type soundness says that as evaluation progresses the config-
uration of our rewrite system always conforms to the types we expect, and that
terms only ever narrow in type.

A frame typing F is a list of tables of types for local variables. A frame typing
indicates what types we expect local variables to conform to. We require other
auxiliary concepts too:

– typing for rterms (rexp_hastype, rvar_hastype etc.);
– self-consistency of a heap (3heap ≡ wf_heap);
– conformance between frame typings and the local variables in a state

(⇀↽frames ≡ frames_conform_to);
– conformance between two heaps (⇀↽heap ≡ heap_conforms_to);
– widening between two frame typings (≤ftyp ≡ ftyenv_leq)

and define these in the sections that follow.

Theorem 1. Type Soundness For a well-formed type environment Γ , an an-
notated program p that typechecks and a state s0 that conforms to some frame
typing F0, if a well-typed term t0 rewrites to some t1 and a new state s1, then
either t1 represents a raised exception, or there exists a new, larger frame typing
F1 such that t1 has some narrower type than t0 in the new state and environment,
and s1 conforms to F1. That is, if

– ` Γ 3

– Γ ` p 3
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– Γ ` h0 3

– Γ, h0 ` f0 ⇀↽F0

– Γ, h0, F0 ` t0 : ty0 and
– t0, s0 ;(Γ,p) t1, s1 with s0 = (f0 , h0) and s1 = (f1, h1)

then t1 represents an exception or there exists F1 and ty1 such that

– Γ ` h1 3

– Γ, h1 ` f1 ⇀↽F1

– Γ, h1, F1 ` t1 : ty1 and
– Γ ` ty1≤wdn ty0.

Note we assume a reduction is made, rather than proving that one exists. This
is distinguishes the safety property from the liveness property. In the presence
of non-determinism it is not sufficient to prove that a safe transition exists: we
want to show that all possible transitions are safe.

Type soundness is in fact three properties, one for each syntax category
within rterms. For variables we write the property in DECLARE as follows (a
similar property is used for expressions and statements):

TE wf_tyenv ∧
TE |- p aprog_hastype ∧
TE |- heap0 wf_heap ∧
(TE,heap0) |- frames0 frames_conform_to F0 ∧
(TE,F0,heap0) |- var0 rvar_hastype ty0 ∧
s0 = (frames0,heap0) ∧
s1 = (frames1,heap1) ∧
(var0,s0) var_reduce(TE,p) (var1,s1)

→
exceptional_var(var1)

∨ ∃F1 ty1.

TE |- heap1 wf_heap ∧
(TE,heap1) |- frames1 frames_conform_to F1 ∧
(TE,F1,heap1) |- var1 rvar_hastype ty1 ∧
TE |- ty1 widens_to ty0

The proof of type soundness is by induction on the derivation of the typing
judgment for t0. The outline originally sketched by Drossopoulou and Eisenbach
is a good guide, but is certainly ‘rough around the edges.’ The latter two syntax
categories do not have types, so the statements are simpler. In the proof we
strengthen the induction invariant in the following ways:

– Γ ` h0 ⇀↽heap h1,
– F1 ≤ftyp F0,
– If t0 is a field variable, then t1 is also and ty0 = ty1. This is needed because

field types on the left of assignments cannot narrow, otherwise runtime type-
checking would be needed.

– If t0 is an array variable, then t1 is also, and similarly for stack variables.
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3.1 Typing for Rterms and Conformance

As in Chapter 3, the typing rules at runtime are those for annotated expres-
sions, with the addition of rules for addresses. These make the typing relation
dependent on the current heap.

Note that we no longer demand unique typing: null values can be considered
to have any reference type. The rule for assignments must also be different: the
new rule drops the requirement that the source type be narrower than the target
type in the case of array assignments, since this will be checked by runtime type
checking. We will return to this issue in Section 6. The new rule for arrays is:

Γ, h ` e : tye

Γ, h ` arr[idx] : tyv

Γ, h ` arr[idx] := e : void

The definitions of conformance we use are similar to those in Chapter 3: A
value v weakly conforms to a type ty with a heap h and type environment Γ if

– ty is a primitive type and v is an element of that primitive type; or
– ty is a reference type and v is a null pointer; or
– v is an address whose value upon dereferencing h(v) is an instance of a class

type C and Γ ` C ≤wdn ty; or
– v is an address whose value upon dereferencing h(v) is an array with elements

of type ty′[]n and Γ ` ty′[]n+1≤wdn ty.

Value conformance states that the components of an object or array weakly
conform. A value v conforms to a type ty with heap h and type environment Γ
if v weakly conforms to ty and

– if v is an address then h(v) =� fldvals �C and for each (field, idx, ty′) ∈
FDecs(C) fldvals(field) is defined and weakly conforms to ty′; and

– if v is an address then h(v) = [[vec]]ty
′
and each val ∈ vec weakly conforms

to ty′.

A heap h is self-consistent in Γ , written Γ ` h 3 if these hold:

– if addr is an address and h(addr) =� fldvals�C then addr conforms to C.
– if addr is an address and h(addr) = [[vec]]ty

′
then addr conforms to ty′[].

A set of frames f conforms to a frame typing F (with a heap h and in Γ ), written
Γ, h ` f ⇀↽F if

– every local variable in every frame of f conforms to the corresponding type
given in F ;

We expect each new heap to maintain value conformance in the following way:
for in environment Γ a heap h1 conforms with a heap h0 at a set of addresses
A, written Γ, A ` h1 ⇀↽heap h0 if
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– for every addr in both A and h0, if addr conformed to some type ty in the
context of h0, then addr also conforms to ty in the context of h1.

We restrict the definition to a set of addresses A to allow for the possibility of
garbage collection: we would then demand continued conformance only at a set
of ‘active addresses’. Our current working definition makes A universal.

3.2 Key Lemmas

The following is a selective list of the lemmas that form the basis for the type
soundness proof. These have been proved using DECLARE.

Object is the least class
If ` Γ 3tyenv and Γ ` Objectvclass C then C = Object.

Widening is transitive and reflexive
These hold for the vclass, vint, ≤ref , ≤comp, ≤arr and ≤wdn relations. The
transitivity results only hold for well-formed environments.

Compatible fields and methods exist at subtypes
Methods and fields visible at one type must still be visible at narrower types,
though with possibly narrower return types. Put formally, if
` Γ 3tyenv and
Γ ` C1vclass C0 and
((Cf , fld), tyfld) ∈ FDecs(Γ, C0)

then ((Cf , fld), tyfld) ∈ FDecs(Γ, C1).
Similarly if Γ ` ty1≤ref ty0 and

(m, tyargs → tyret) ∈ MSigs(Γ, ty0)
then there exists some ty′ret with

Γ ` ty′ret≤wdn tyret and
(m, tyargs → ty′ret) ∈ MSigs(Γ, ty1).

Method fetching behaves correctly
Assuming ` Γ 3tyenv and Γ ` prog 3 , then if

(m, tyargs → tyret) ∈ MSigs(Γ, ty) and
MethBody(m, tyargs, ty, p) = method

then Γ ` method : tyret. That is, fetching the annotated body of a method
from the annotated program results in a method of the type we expect.

Compilation behaves correctly
If ` Γ 3tyenv and

Γ ` mbody : tyret and
Γ ` mbody ;comp rmbody

then Γ ` rmbody : tyret. Note compilation is an almost trivial process in the
current system, so this lemma is not difficult.
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Relations are preserved under ⇀↽heap and ≤ftyp

This holds for the typing, value conformance and frame conformance rela-
tions.

Atomic state/frame manipulations preserve ⇀↽heap, ⇀↽frames and 3heap

We prove this for all primitive state manipulations, including object and
array allocation, field, array and local variable assignment, and method call.
The case for array allocation involves a double induction because of the
nested loop used to allocate multi-dimensional arrays.

3.3 Annotation and Liveness

To complement the type soundness proof, we prove that the process of annotation
preserves types:

TE wf_tyenv ∧
TE |- p prog_hastype ∧
TE |- p prog_annotates_to p’

→ TE |- p’ aprog_hastype

This property is proved by demonstrating that a similar property holds for all
syntax classes from expressions through to class bodies. We also prove liveness,
which is again three properties, the one for variables being:

TE wf_tyenv ∧
TE |- p aprog_hastype ∧
TE |- heap wf_heap ∧
(TE,heap) |- frames frames_conform_to F ∧
(TE,F,heap) |- var0 rvar_hastype ty ∧
~var_ground var0 ∧
s0 = (frames,heap)

→ ∃var1 s1. (var0,s0) var_reduce(TE,p) (var1,s1)

4 Validating the Model

We claim the specification we have developed so far is a correct formulation of
the semantics of the Java subset we have in mind. But how do we know this,
indeed how do we know our definitions are even logically consistent?

Because of the style of definition we have used (least fixed points and simple
recursive definitions), consistency is essentially trivial. Validity is harder: we
have to measure this against the Java language standard [GJS96] and our own
understanding of the meaning of constructs in the subset.

We use two techniques to validate the specification:

1. Type checking of higher order logic;
2. Compiling to ML and running test cases.
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Here we concentrate on the second. Essentially we compile ‘manifestly exe-
cutable’ specifications to Objective CaML code, thus generating an interpreter
for the language based directly on our definitions. The interpreter is able to type-
check and execute concrete JavaS programs if given a concrete environment. The
interpreter is not efficient, but is sufficient to test small programs.

An example is required. The vclass relation shown in Section 4 compiles to
a ML function that is semantically equivalent to the following (we use CaML
syntax):

let rec subclass_of CE C =

(fun () -> if wf_class(C) then seq_cons(C,seq_nil) else fail()) seq_then

(fun () -> match (PLOOKUP CE C) with

NONE -> fail()

| SOME(C’,_,_,_) -> subclass_of CE C’);

where seq nil, seq cons and the infix operator seq then are the obvious op-
erations on lazy lists, used to implement backtracking. Thus subclass of will
return a lazy list of identifiers and acts as a non-standard model of the relation
defined by the inductive rules. Likewise we translate recursive functions to ML
code, though no backtracking is needed here.

Of course, not all inductive relations or higher order logic terms are exe-
cutable under this scheme. The executable subset is large and fairly straight-
forward to define, however only inductive relations that satisfy strict mode con-
straints are admitted at present. That is, arguments must be divisible into inputs
and outputs, and inputs must always be defined by previous inputs or generated
outputs. This concept is familiar from Prolog: the mode constraints for thevclass

relation are (+,+,-). We do not to translate directly to Prolog rules: this is
clearly possible but unification is almost never required when expressing ‘man-
ifestly executable’ rules, and indeed the elimination of all implicit unification
steps is a typical way of proving the existence of an algorithm for the relations
defined.

Thus, DECLARE produces a CaML module for each specification we have
written. The modules are compiled together and linked against a module which
implements core functionality. Test cases are expressed as higher order logic
expressions, though better would be the ability to parse, compile and run Java
programs directly from Java source code.

Approximately 40 errors were discovered by using these techniques. The
breakdown of these was as follows:

– Around 30 typing mistakes which led to mode violations.
– Around 5 logical mistakes in the typing rules.
– Around 5 logical mistakes in the runtime rules.

From our experience with this technique, we would recommend that every sys-
tem used for reasoning about programming language semantics include similar
functionality.
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5 The DECLARE Proof

We now outline the DECLARE proof of type soundness. The reader should keep
in mind that when this proof was begun, the only guide available was the rough
proof outline in [DE97], and this was based on a formulation of the problem
that was subsequently found to contain errors. Thus the process is one of proof
discovery rather than proof transcription!

The proof of type soundness proceeds by induction on the derivation of the
typing judgment for the term t0. We have one case for each rule in the mutually
recursive inductive relations that define rterm expression, statement and variable
typing judgments. The three mutually recursive goals are specified in DECLARE

as follows (var_types, exp_types and stmt_types are macros for the induction
invariants):

if "TE wf_tyenv" <auto>

"TE |- p aprog_hastype" <p_types>

"TE |- heap0 wf_heap" <heap0_conforms>

"(TE,heap0) |- frames0 frames_conform_to FT0" <frames0_conform>

"s0 = (frames0,heap0)" <auto>

"s1 = (frames1,heap1)" <auto>

then

if "(var0,s0) var_reduce(TE,p) (var1,s1)" <var0_reduces>

"(TE,FT0,heap0) |- var0 rvar_hastype var0_ty" <var0_welltyped>

then "var_types (TE,FT0,heap0) var0 var0_ty (var1,s1)"

or "exceptional_var(var1)" <var1_exceptional>

and

if "(exp0,s0) exp_reduce(TE,p) (exp1,s1)" <exp0_reduces>

"(TE,FT0,heap0) |- exp0 rexp_hastype exp0_ty" <exp0_welltyped>

then "exp_types (TE,FT0,heap0) exp0_ty (exp1,s1)"

or "exceptional_exp(exp1)" <exp1_exceptional>

and

if "(stmt0,s0) stmt_reduce(TE,p) (stmt1,s1)" <stmt0_reduces>

"(TE,FT0,heap0) |- stmt0 rstmt_hastype" <stmt0_welltyped>

then "stmt_types (TE,FT0,heap0) (stmt1,s1)"

or "exceptional_stmt(stmt1)" <stmt1_exceptional>

Note how we name facts, and can have multiple (disjunctive) goals. The name
<auto> indicates a fact should be implicitly included in all future justifications
for this branch of the proof. The induction step of the proof is specified by:

proceed by rule induction on

<var0_welltyped>, <exp0_welltyped>, <stmt0_welltyped>

with TE,heap0,frames0,FT0,s0,heap1,frames1,s1,p constant;

This step hides a great deal of complexity: DECLARE determines the correct
induction theorem to use based on the given judgments, and computes the in-
duction predicate based on the problem statement. The with ... constant
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construct tells DECLARE that the given local constants do not ‘vary during the
induction’, i.e. the induction hypotheses do not need to be general over these.
DECLARE will warn the user if a case of the induction is skipped, and can
present the cases remaining if asked to do so. The user is free to write the cases
in any order.

The first case we consider is very easy: it is when var0 is a local variable.
Local variables are ground, so there are no reductions possible, and we get an
immediate contradiction. The proof is:

case StackVar

"var0 = RStackVar(frame,id)" <auto>;

contradiction by rule cases on <var0_reduces>;

That is, by considering the different possibilities of how the fact var0_reduces is
derived, we get an immediate contradiction. We have given a claim (in this case
the simple claim that we can derive a contradiction, though in general we assert
a complex set of facts, possibly introducing new variables) and a justification
(by ...). The construct rule cases is a simple function that is an example of
the way we specify hints that help the proof checker (other examples are simply
quoting facts directly, or giving a fact with some explicit instantiations). DE-

CLARE combines ‘forward’ and ‘backward’ proof: each step specifies something
we have to prove, given our current context (in this case a contradiction). The
automation uses a combination of proof techniques to prove the result, and the
justification hints we give can involve little ‘forward’ proofs in their own right.

The next case we will consider is where stmt0 assigns to an array. DECLARE

informs us of the available inductive hypotheses, though we choose our own
names for the new variables and facts:

case AssignToArray

"lval0 = RAccess(arr0,idx0)" <auto>

"stmt0 = RAssign(RAccess lval0,rexp0)" <auto>

"∀exp1. (rexp0,s0) exp_reduce(TE,p) (exp1,s1)

→ exp_types (TE,FT0,heap0) rexp0_ty (exp1,s1)

| exceptional_exp exp1" <ihyp_for_rexp0>

"(TE,FT0,heap0) |- rexp0 rexp_hastype rexp0_ty" <rexp0_types_in_s0>

"∀var1. (RAccess lval0,s0) var_reduce(TE,p) (var1,s1)

→ var_types (TE,FT0,heap0) (RAccess lval0) lval0_ty (var1,s1)

| exceptional_var var1" <ihyp_for_lval0>

"(TE,FT0,heap0) |- RAccess(arr0,idx0) rvar_hastype lval0_ty"

<lval0_types_in_s0>;

This case can be decomposed into three sub-cases as follows, because there are
only three interesting reductions that can occur when our top term is an assign-
ment:
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cases by rule cases on <stmt0_reduces>,

not <stmt1_exceptional>,

<exceptional>;

// the lvalue reduces
case "(lval0,s0) var_reduce(TE,p) (lval1,s1)" <lval0_reduces>

"stmt1 = RAssign(lval1,rexp0)" <auto>;

...

// the rvalue reduces
case "(rexp0,s0) exp_reduce(TE,p) (rexp1,s1)" <rexp0_reduces>

"stmt1 = RAssign(lval0,rexp1)" <auto>;

...

// both are ground, so the assignment happens
case "arr0 = RValue(RAddr(SOME(taddr)))" <auto>

"idx0 = RValue(RPrim(Int(k32)))" <auto>

"rexp0 = RValue(val)" <auto>

"heap0(taddr) = cell" <cell>

"cell = SOME(ARRAY(arrty,vec))" <lookup>

"idx = dest_int32(k32)" <auto>

"idx >>= 0" <auto>

"idx < LEN(vec)" <auto>

"typecheck((TE,heap0),val,arrty)" <val_fits>

"heap1 = heap0 <++ (taddr,ARRAY(arrty,REPL idx vec val))" <auto>

"stmt1 = RExpr(RVoid)" <auto>

"frames1 = frames0" <auto>;

Here we see DECLARE’s third (and final!) proof language construct: decompo-
sition into cases, perhaps introducing new constants in each case. Those used
to tactic based theorem provers may find it difficult to believe that these three
constructs are sufficient to express any proof, and even harder to believe that
proofs end up simpler: this is discussed further in Appendix A.

The cases may look daunting, but consider how far we have come with
this case-split: the justification for the split is based on the possibilities for
how the stmt0 could have reduced (rule cases on <stmt0_reduces>), on the
fact that in the cases where an exception is produced the proof is trivial (not
<stmt1_exceptional>), and on the definition of what it means for a value to
be exceptional (<exceptional>). Thus we have eliminated all the cases in array
assignment where exceptions arise (there are three), as well as the 30 cases where
the reduction rules do not apply to array assignments (each of these require some
proof).

Of the remaining cases, the first two correspond to redex rules for arrays, and
their proofs use the induction hypotheses. The final case is the most interesting
one: it is where both the left and right of the assignment are ground. The rest
of the proof for this case is shown in Appendix D.

The above proof text was arrived at by repeatedly refining an approximate
proof script, and also cut-and-pasting some reasoning steps from previously
proved cases. This process was repeated for all 36 major cases of the type sound-
ness proof. Typically, a first pass at formally checking a proof will result in
roughly:
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– 50% of the steps (i.e. logical leaps) in the proof being accepted immediately;
– 25% of the steps requiring the addition of one or two supporting facts, and

perhaps some explicit instantiations;
– 25% of the cases requiring more thought than anticipated.

The success rate increases for cases that are very similar to previous ones. Ma-
chine checking the proofs up to the lemmas that were outlined in Section 3.2
took around 30 minutes to one hour per case: more for complex cases such as
procedure call. The lemmas were initially assumed, and proofs given to them at
a later stage. This sometimes involved refining the original proof script further,
or adapting the model where it was found to be inadequate.

The reader should note that although a very powerful automated routine
may be able to find the entire proof for one of these cases after the fact, the very
process of writing the proof corrected significant errors in the rough draft that
would have confounded even the best prover. Increased automation gives us a
diminishing return as we venture into areas where the correct formulation takes
care to find.

6 Errors Discovered

In this section we describe an error in the Java language specification that we
independently rediscovered during the course of this work. We also describe one
major error and a noteworthy omission in Drossopoulou and Eisenbach’s original
presentation of the type soundness proof.

6.1 An Error in the Java Language Specification

In the process of finishing the proofs of the lemmas described in Section 3.2 we
independently rediscovered a significant flaw in the Java language specification
that had recently been found by developers of a Java implementation [PB97]. In
theory the flaw does not break type soundness, but the authors of the language
specification have confirmed that the specification needs alteration.

The problem is this: in Java, all interfaces and arrays are considered sub-
types of the type Object, in the sense that a cast from an interface or array type
to Object is permitted. The type Object supports several “primitive” meth-
ods, such as <object>.hashValue() and <object>.getClass() (there are 11
in total). The question is whether expressions whose static type is an interface
support these methods.

By rights, interfaces should indeed support the Object methods - any class
that actually implements the interface will support these methods by virtue of
being a subclass of Object, or an array. Indeed, the Sun JDK toolkit allows
calling these methods from static interface types, as indicated by the successful
compilation (but not execution) of the code:
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public interface I { }
public class Itest {
public static void main(String args[]) {
I a[] = { null, null };
a[0].hashCode();

a[0].getClass();

a[0].equals(a[1]);

}
}

However, the existing language specification states explicitly that interfaces only
support those methods listed in the interface or its superinterfaces, and that
there is no ‘implicit’ superinterface (i.e. there is no corollary to the ‘mother-of-
all-classes’ Object for interfaces. To quote:

The members of an interface are all of the following:
– Members declared from any direct superinterfaces
– Members declared in the body of the interface.

. . .
There is no analogue of the class Object for interfaces; that is, while
every class is an extension of class Object, there is no single interface of
which all interfaces are extensions.

[GJS96], pages 87 and 185

The error was detected when trying to prove the existence of compatible methods
and fields as we move from a type to a subtype, in particular from the type
Object to an interface type.

6.2 Runtime Typechecking, Array Assignments, and Exceptions

In Drossopoulou and Eisenbach’s original formulation the type soundness prop-
erty was stated along the following lines (emphasis added):

Theorem 2. If a well-typed term t is not ground, then it rewrites to some t′

(and a new state s and environment Γ ). Furthermore, either t′ eventually
rewrites to an exception, or t′ has some narrower type than t, in the new state
and environment.

The iterated rewriting was an attempted fix for a problem demonstrated by the
following program:

void silly(C arr[], C s) {
arr[1] = s;

}

At runtime, arr may actually be an array of some narrower type, say C’ where
C’ is a subclass of C. Then the array assignment appears to become badly typed
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before the exception is detected, because during the rewriting the left side be-
comes a narrower type than the right. Thus they allow the exception to appear
after a number of additional steps.

However, arr can become narrower, and then subsequently fail to terminate!
Then an exception is never raised, e.g.

arr[loop()] = s;

The problem occurs in even simpler cases, e.g. when both arr and s have some
narrower types C’[] and C’. Then, after the left side is evaluated, the array
assignment appears badly typed, but will again be well typed after the right
side is evaluated.

Fixing this problem requires a different understanding of the role of the types
we assign to rterms. Types for intermediary rterms only exist to help express
the type soundness invariant of the abstract machine, i.e. to define the allowable
states that a well-typed execution can reach. In particular, the array assignment
rule must be relaxed to allow what appear to be badly typed assignments, but
which later get caught by the runtime typechecking mechanism.

This problem is an interesting case where the attempted re-use of typing
rules in a different setting (i.e. the runtime setting rather than the typechecking
setting) led to a subtle error, and one which we believe would only have been
detected with the kind of detailed analysis that machine formalization demands.
The mistake could not be missed in that setting!

6.3 Side Effects on Types

A significant omission in Drossopoulou and Eisenbach’s original proof was as
follows: when a term has two or more subterms, e.g. arr[idx] := e, and arr
makes a reduction to arr’, then the types of idx and e may change (become
narrower) due to side effects on the state. This possibility had not originally
been considered by Drossopoulou and Eisenbach, and requires a proof that heap
locations do not change type (our notion of heap conformity suffices). We also
need lemmas stating that typing is monotonic with respect to the ≤frame and
⇀↽heap relationship, up to the ≤wdn relationship. The foremost of these lemmas
has been mentioned in Section 3.2. This problem was only discovered while doing
detailed machine checking of the rough proof outline.

7 Summary

This chapter has presented corrections to the semantics of JavaS , a machine
formalization of this semantics, a technique to partially validate the semantics,
and an example of the use of new mechanized proof techniques to prove the type
soundness property for that language.

The work demonstrates how formal techniques can be used to help specify
a major language. Java itself is far more complicated than JavaS , but we have
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still covered a non trivial subset. The formalization in Chapter 3 was the orig-
inal inspiration for this work. We suggest that in the long run theorem prover
specifications may provide a better format for the formalization, especially when
flexible tools are provided to read, execute and reason about it.

The disciplined approach enforced when writing a proof to be accepted by
a mechanized tool ensures errors like those described in Section 6 are detected.
The declarative proof language played a very useful role: it allowed the author
to think clearly about the language while preparing the proof outlines for the
computer. The first error was found when simply preparing the proof outline,
rather than when checking it in detail. During this process of preparation the
question ‘will a machine accept this proof?’ was always in the back of the author’s
mind, and this ensured that unwarranted logical leaps were not made.

The independent rediscovery of the mistake in the Java language specification
described in Section 6.1 indicates that such errors can indeed be discovered by
the process of formal proof. However the mistake had already been discovered
by implementors attempting to follow the language specification precisely.

It is commonly accepted that formal specification in a logic is of value when
debugging specifications. This work has demonstrated that proof sketching and
proof checking can also be of value, even while the theoretical framework for the
language is still under development. It is interesting to note that of the three
major errors, two were discovered at a late stage in the work.

7.1 Related Work

In the following chapter, Tobias Nipkow and David von Oheimb present their
work on developing a proof of the type soundness property for a similar subset
of Java in the Isabelle theorem prover. I am extremely grateful for the chance to
meet with them and have adopted suggestions they have made. These two works
are valuable ‘modern’ case studies of theorem proving methods applied this kind
of problem. Isabelle is a mature system and has complementary strengths to
DECLARE, notably strong generic automation and manifest soundness. A tool
which unites these strengths with DECLARE’s is an exciting prospect.

7.2 Future Work

The model presented in this article has scope to be extended in many directions.
The treatment could be expanded to encompass features such as exceptions,
constructors, access modifiers, static fields and static methods without major
problems, although this would involve a significant expansion in the size of the
proofs. Features such as threads and Java’s semantically visible garbage collec-
tion pose greater problems, but should also be possible.

The work began as a case study for the application of a declarative proof
language to operational reasoning, and there are ways in which DECLARE (or
similar systems) could be improved based on this experience. The most necessary
features are the implementation of decision procedures for ground equational
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reasoning (as in PVS [ORR+96]) and a small amount of ‘Computer Aided Proof
Writing’, as described briefly in [Sym97].
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A A Brief Introduction to DECLARE

DECLARE is a proof checker for simple, polymorphic, higher order logic. It is
designed to aid in the production of clear, readable, maintainable specification
and proof documents. DECLARE is not a complete or polished system, and
has been developed with the aim of testing various features that could be in-
corporated in existing, supported theorem provers such as HOL, Isabelle and
PVS. It has been influenced heavily by Mizar, HOL, HOL-lite, Isabelle and PVS
[Rud92,ORR+96,GM93,Har96,Pau90]. It is not an LCF-style system: deductions
are not reduced to a primitive logical framework, though in principle we are
confident this is possible. The features of interest here are:

– The declarative language used to express proof outlines.
– The support for modularization, separate processing and top-down formal-

ization, which leads to a well-structured, efficient working environment.
– The automated proof support.

A.1 The Proof Language

We try to achieve, by the simplest means possible, results that are both machine
checkable and human readable. 8

DECLARE’s proof language was originally inspired by Mizar and work by
Harrison [Har97], but has been considerably streamlined. The language was
demonstrated by example in Section 5. and uses just three main constructs:

– Induction;
– Case-decomposition; and
– Justifications.

8 Some researchers take the view that human readable proofs should be generated as
output from mechanized proofs: this may be possible, but it is a highly complex
process and the results are not yet convincing. Our approach is to make the input
readable in the first place.
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Several other constructs are degenerate forms of these constructs: e.g. assert-
ing new facts, perhaps involving new local constants, is a degenerate form of
case-decomposition where there is only one case. Similarly introducing an ab-
breviation is a degenerate form of asserting new facts, where there is one new
fact and one new local constant.

Those used to tactic based theorem provers may find it difficult to believe
that these three constructs are sufficient to express any proof, and even harder
to believe that proofs end up simpler. It is clear that any higher order logic proof
can indeed be expressed: we simply have to implement the basic proof rules of
the logic within the default proof obligation checker. The key reasons why proofs
end up simpler with DECLARE are:

– (a) It provides excellent support for specifying complex reasoning deep within
a logical context;

– (b) Case splits may be based on a complex argument, rather than some
simple syntactic criteria (as is usually the case in a tactic based theorem
prover). Many trivial cases disappear without thought.

– (c) The proof style encourages extensive use of abbreviations, as in written
proofs, and gives easy control over variable and fact naming. A common
accusation levied at declarative proof languages is that in large verifications
terms get too large to be written out by hand. However, we would claim
the exact opposite: in large interactive proofs, terms get so complex it is
essential that a human be in charge of keeping the complexity under control.
This can be done through definitions, abbreviations and other conveniences
both logical and notational. These are essential to the production of an
elegant, clean and maintainable proof.

Of course, none of DECLARE’s constructs are incompatible with tactics, but our
experience indicates that adding more traditional tactic constructs into the proof
language does not gain much, and has the potential to destroy many of the useful
properties the language enjoys.

Such proof languages are called declarative, to place them in contrast to
‘procedural’ (often tactic based) mechanisms for specifying proofs. The main
feature of a declarative language is that the machine works out the vast ma-
jority of the syntactic manipulations necessary to achieve a proof (especially
those associated with propositional connectives, first-order quantifiers and asso-
ciative/commutative operators), leaving the user free to simply declare a seman-
tic intent. The use of a declarative proof language has clear advantages:

– Declarative proofs are more readable than tactic proofs.
– Proof interpretation always terminates, unlike tactic proofs which are ex-

pressed in a Turing-complete language. In particular guaranteed termination
makes error recovery in proof checking more tractable.

– Declarative proofs are potentially more maintainable under changes to the
specification and the prover.

– Declarative proofs are potentially more portable. Specification and proof
documents developed with DECLARE are, in principle, portable to other
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proof systems and may even be interpreted in other sufficiently powerful
logics.

– A declarative style appeals to a wider class of users, helping to deliver auto-
mated reasoning and formal methods to mathematicians and others.

A.2 The Working Environment

When using DECLARE, large bodies of work are broken into a series of articles,
each of which may have an interface called an abstract. Articles are checked
relative to the abstracts they import, and must ‘implement’ the abstract they
export. Abstracts may be pre-compiled, which, in combination with the make
system, gives us a simple, yet light-weight and effective means for maintaining
the coherence of large collections of specifications and proofs. This approach also
means DECLARE typically uses only 5-6 MB of memory when executing.

A.3 Automation

DECLARE proofs are only proof outlines, and require automation to fill in the
gaps in the argument. In this way the proof language acts as a bridge between
the human and the automated capabilities of the proof checker.

The automation we use in this chapter is fairly straightforward:

– We use Boyer-Moore/Isabelle style simplification with conditional, higher-
order rewriting to normalize expressions. Simplification is performed under
the auspices of a two-sided sequent calculus like that used by PVS. During
simplification we:
• Apply safe introduction and elimination rules, e.g. choosing witnesses

for existentials in assumptions; splitting disjuncts in goal formulae; and
transferring negated formulae across the sequent.

• Apply ‘unwinding’ rules to eliminate local constants from existential and
universal formulae, including the sequent itself.

• ‘Untuple’ all pair, tuple and record values.
• Apply a large background set of (conditional) rewrites collected from

imported abstracts;
• Normalize arithmetic expressions;
• Case-split on constructs such as conditionals and quantified structural

variables (booleans, options etc.).
• Use exploratory unwinding of some definitions, in the style of PVS.
• Use controlled left-right simplification of certain ‘program-like’

constructs, which helps implement partial evaluation and avoids com-
mon causes of non-terminating rewriting strategies.

– After simplification we use a simple model elimination [Lov68] prover (with
time, variable and depth limited iterative deepening) to search for values for
unknowns.
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This level of automation has been sufficient during exploratory proof develop-
ment, since in this most important stage we are content with guiding the prover
through the proof without expecting complex steps, such as inductions, to be
automated. The only significant problems arise when we venture into problem
spaces that requires significant equality and proof-search reasoning (this is still
a major research area), or equality reasoning not amenable to rewriting (adding
congruence closure will solve this).

Automation in DECLARE is guided by ‘pragmas’: lemmas are given once-
only ‘how to use me’ declarations, and no weightings or other obscure hints are
specified when a lemma is used. This helps ensure that proof documents are not
overly reliant on quirks of the underlying prover, and are robust as the prover
itself changes.

B The Full Widening Rules

These rules determine the widening (subtype) relation.

Γ ` C vclass C′

Γ ` C ≤sref C′
Γ ` I vint I ′

Γ ` I ≤sref I ′
I ∈ Γ

Γ ` I ≤sref Object

Γ ` C vclass C′

Γ ` C′ :imp I
Γ ` I vint I ′

Γ ` C ≤sref I ′

ty ∈ prim-types

Γ ` ty ≤comp ty

ty, ty′ ∈ simple-ref-types
Γ ` ty ≤sref ty′

Γ ` ty≤comp ty′

ty ∈ component-types
n > 0

Γ ` ty[]n ≤arr Object

n > 0
Γ ` ty ≤comp ty′

Γ ` ty[]n ≤arr ty′[]n

ty, ty′ ∈ array-types
Γ ` ty ≤arr ty′

Γ ` ty ≤ref ty′

ty, ty′ ∈ simple-ref-types
Γ ` ty≤sref ty′

Γ ` ty ≤ref ty′
ty ∈ ref-types

Γ ` nullT≤ref ty

ty ∈ prim-types

Γ ` ty ≤wdn ty

ty, ty′ ∈ ref-types
Γ ` ty≤ref ty′

Γ ` ty ≤wdn ty′

C The Full Traversal Rules

These rules determine what methods and fields are visible from a given class. The
relations evaluate graphs, which in well-formed environments determine partial
functions.

Γ (C).flds(field) = ty

Γ ` (C, ty)∈FDec(C,field)
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Γ (C) = 〈Csup,flds, . . .〉 flds(field) = ⊥ Γ ` (C′, ty)∈FDec(Csup,field)

Γ ` (C′, ty)∈FDec(C,field)

Γ (C).flds(field) = ty

Γ ` ((C,field), ty)∈FDecs(C)

Γ (C) = 〈Csup, . . .〉 Γ ` ((C′,field), ty)∈FDecs(Csup)

Γ ` ((C′,field), ty)∈FDecs(C)

Γ (C).meths(meth, at) = rt

Γ ` ((meth, at), rt)∈MSigsC(C)

Γ (C) = 〈Csup,meths〉 meths(meth, at) = ⊥ Γ ` ((meth, at), rt)∈MSigsC(Csup)

Γ ` ((meth, at), rt)∈MSigsC(C)

D The Proof for Ground Array Assignments

case AssignToArray

"lval0 = RAccess(arr0,idx0)" <auto>

"stmt0 = RAssign(RAccess lval0,rexp0)" <auto>

"∀exp1. (rexp0,s0) exp_reduce(TE,p) (exp1,s1)

→ exp_types (TE,FT0,heap0) rexp0_ty (exp1,s1)

| exceptional_exp exp1" <ihyp_for_rexp0>

"(TE,FT0,heap0) |- rexp0 rexp_hastype rexp0_ty"

<rexp0_types_in_s0>

"∀var1. (RAccess lval0,s0) var_reduce(TE,p) (var1,s1)

→ var_types (TE,FT0,heap0) (RAccess lval0) lval0_ty (var1,s1)

| exceptional_var var1" <ihyp_for_lval0>

"(TE,FT0,heap0) |- RAccess(arr0,idx0) rvar_hastype lval0_ty"

<lval0_types_in_s0>;

cases by rule cases on <stmt0_reduces>,

not <stmt1_exceptional>,

<exceptional>;

// Case 1: the lvalue reduces
case "(lval0,s0) var_reduce(TE,p) (lval1,s1)" <lval0_reduces>

"stmt1 = RAssign(lval1,rexp0)" <auto>;

...

// Case 2: the rvalue reduces
case "(rexp0,s0) exp_reduce(TE,p) (rexp1,s1)" <rexp0_reduces>

"stmt1 = RAssign(lval0,rexp1)" <auto>;

...

// Case 3: both are ground, so the assignment happens
case "arr0 = RValue(RAddr(SOME(taddr)))" <auto>

"idx0 = RValue(RPrim(Int(k32)))" <auto>

"rexp0 = RValue(val)" <auto>

"heap0(taddr) = cell" <cell>

"cell = SOME(ARRAY(arrty,vec))" <lookup>

"idx = dest_int32(k32)" <auto>

"idx >>= 0" <auto>

"idx < LEN(vec)" <auto>

"typecheck((TE,heap0),val,arrty)" <val_fits>
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"heap1 = heap0 <++ (taddr,ARRAY(arrty,REPL idx vec val))" <auto>

"stmt1 = RExpr(RVoid)" <auto>

"frames1 = frames0" <auto>;

// Because the lvalue is well-typed, its constituents must
// also be well-typed. We need these facts to derive interesting
// things about the content of the array we are assigning into.
consider simpty,dim,ndim st

"(TE,FT0,heap0) |- arr0 rexp_hastype

SOME(VT(simpty,dim))" <arr0_types>

"0N < dim" <auto>

"(TE,FT0,heap0) |- idx0 rexp_hastype

SOME(VT(PrimT(intT),0N))" <idx0_types>

"ndim = dim-1N" <auto>

"lval0_ty = VT(simpty,ndim)" <auto>

by rule cases on <lval0_types_in_s0>;

// The type of the target address
// correlates with that of the vector.
have "(TE,heap0) |- RAddr(SOME(taddr)) rval_hastype

VT(simpty,dim)" <taddr_types>

by rule cases on <arr0_types>;

// The stuff stored at the target address is an array...
consider dim’,vec’ st

"dim = dim’+1N" <auto>

"cell = SOME(ARRAY(VT(simpty,dim’),vec’))" <auto>

by rule cases on <taddr_types>,<cell>;

// And the array that’s stored there looks exactly like we expect...
then have "arrty = VT(simpty,dim’)" <auto>

"vec = vec’" <auto> by <lookup>;

// Now the rhs: it’s ground so it’s really a value...
consider rexp0_vty st

"rexp0_ty = SOME(rexp0_vty)" <auto>

"(TE,heap0) |- val rval_hastype rexp0_vty" <val_types>

by rule cases on <rexp0_types_in_s0>;

// Now we have everything we need to invoke our lemma that
// assigning into an array maintains the necessary heap properties.
have "TE |- heap1 wf_heap" <heap1_wf>

"TE |- heap0 heap_conforms_to heap1" <heap1_conforms>

by <array-assign-conforms-lemma> ["TE","heap1","heap0"],

<heap0_conforms>,<val_fits>,<val_types>,<lookup>,<cell>;

// And similarly for the frames: this is easy because they
// don’t change, and we just invoke the property that
// frames conforms˙to is monotonic under heap conforms to.
have "(TE,heap1) |- frames0 frames_conform_to
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FT0" <frames0_conform_in_s1>

by <frames_conform-mono-lemma>, <frames0_conform>,

<heap1_larger>,<heap0_wf>,<heap1_conforms>;

// Finally we can derive the typing judgment for stmt1...
have "(TE,FT0,heap1) |- stmt1 rstmt_hastype"

by <rstatics__Expr> ["NONE"],<rstatics__Void>;

// And we have everything we need to show the induction invariant
// still holds.
then qed by <heap1_wf>, <frames0_conform_in_s1>,

<heap1_conforms>,<stmt_types>;

end
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Abstract. In this article we present Bali, the formalization of a large
(hitherto sequential) sublanguage of Java. We give its abstract syntax,
type system, well-formedness conditions, and an operational evaluation
semantics. Based on these definitions, we can express soundness of the
type system, an important design goal claimed to be reached by the
designers of Java, and prove that Bali is indeed type-safe.

All definitions and proofs have been done formally in the theorem prover
Isabelle/HOL. Thus this article demonstrates that machine-checking the
design of non-trivial programming languages has become a reality.

1 Introduction

Bali is a large subset of Java [GJS96]. This article presents its formalization
and the proof of a key property, namely the soundness of its type system —
specified and verified in the theorem prover Isabelle/HOL [Pau94].

On the face of it, this article is mostly about Bali, its abstract syntax, type
system, well-formedness conditions, and operational semantics, formalized as a
hierarchy of Isabelle theories, and the structure of the machine-checked proof of
type soundness and its implications. Although these technicalities do indeed take
up much of the space, there is a meta-theme running through the article, which
we consider even more important: the technology for producing machine-checked
programming language designs has arrived.

We emphasize that by ‘machine-checked’ we do not just mean that it has
passed some type checker, but that some non-trivial properties of the language
have been established with the help of a (semi-automatic) theorem prover. The
latter process is still not a piece of cake, but it has become more than just
feasible. Therefore any programming language intended for serious applications
should strive for such a machine-checked design. The benefits are not just greater
reliability, but also greater maintainability because the theorem prover keeps
track of the impact that changes have on already established properties.
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Note that the type-safety of Java is not sufficient to guarantee secure execu-
tion of bytecode programs on the Java Virtual Machine, because the bytecode
might be tampered with, produced by a faulty compiler, or not be related to
any Java source program at all. This was the main reason for introducing the
Bytecode Verifier in the JVM, which checks the integrity, in particular type-
correctness, of any bytecode before execution. Of course similar security prob-
lems arise for any other high-level languages as well. Nevertheless, the investiga-
tion of type-safety at source level is worthwhile: it checks whether the language
design is sound, which means that at least all the necessary conditions express-
ible at that level are fulfilled. In particular static typing loses much of its raison
d’être if the language is not type-safe.

1.1 Related Work

The history of type soundness proofs goes back to the subject reduction theo-
rem for typed λ-calculus but starts in earnest with Milner’s slogan ‘Well-typed
expressions do not go wrong’ [Mil78] in the context of ML. Milner uses a de-
notational semantics, in contrast to most of the later work, including ours. The
question of type-safety came to prominence with the discovery of its failure in
Eiffel [Coo89]. Ever since, many designers of programming languages (especially
OO ones) have been at pains to prove type-safety of their languages (see, for
example, the series of papers by Bruce et al. [Bru93,BCM+93,BvGS95]).

Directly related to our work is that by Drossopoulou and Eisenbach [DE98]
who prove (on paper) type-safety of a subset of Java very similar to Bali.
Although we were familiar with an earlier version [DE97] of their work and
have certainly profited from it, our work is not a formalization of theirs in
Isabelle/HOL but differs in many respects from it, for example in the repre-
sentation of programs and the use of an evaluation (aka “big-step”) semantics
instead of a transition (aka “small-step”) semantics. Simultaneously with our
work, Syme [Sym98] formalized the paper [DE97] as far as possible, uncovering
two significant mistakes, both in connection with the use of transition semantics.
Syme uses his own theorem prover DECLARE, also based on higher-order logic.

There are two other efforts to formalize aspects of Java in a theorem prover.
Dean [Dea97] studies the interaction of static typing with dynamic linking. His
simple PVS specification addresses only the linking aspect and requires a formal-
ization of Java (such as our work provides) to turn his lemmas about linking into
theorems about the type-safety of dynamically linked programs. Cohen [Coh97]
has formalized the semantics of large parts of the Java Virtual Machine, essen-
tially by writing an interpreter in Common Lisp. He used ACL2, the latest ver-
sion of the Boyer-Moore theorem prover [BM88]. No proofs have been reported
yet.
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2 Overview

Bali includes the features of Java that we believe to be important for an inves-
tigation of the semantics of a practical imperative object-oriented language:

– class and interface declarations with instance fields and methods,
– subinterface, subclass, and implementation relations

with inheritance, overriding, and hiding,
– method calls with static overloading and dynamic binding,
– some primitive types, objects (including arrays),
– exception throwing and handling.

This portion of Java is very similar to that covered by [DE98] and [Sym98].
We do not consider Java packages and separate compilation. For the moment,

we also leave out several features of Java like class variables and static methods,
constructors and finalizers, the visibility of names, and concurrency, but we aim
to include at least part of them in later stages of our project. Some constructs
are simplified without limiting the expressiveness of the language (see §4.1).

In developing the formalization of Bali and investigating its properties, we
aim to meet the following design goals:

– faithfulness to the official language specification,
– succinctness and simplicity,
– maintainability and extendibility,
– adequacy for the theorem prover.

It might be interesting to keep these goals in mind while reading §4 on the
formalization of Bali and §5 on our proofs and check how far we have reached
them. We comment on our experience in pursuing these goals in §6.

3 The Basics of Isabelle/HOL

Before we present the formalization of Bali, we briefly introduce the underlying
theorem proving system Isabelle/HOL.

Isabelle/HOL is the instantiation of the generic interactive theorem prover
Isabelle [Pau94] with Church’s version of Higher-Order Logic and is very close
to Gordon’s HOL system [GM93]. In this article HOL is short for Isabelle/HOL.

The appearance of formulas is standard, e.g. ‘−→’ is the (right-associative)
infix implication symbol. Predicates are functions with Boolean result. Function
application is written in curried style. For descriptions we apply Hilbert’s choice
operator ε, where εx. P x denotes some value x satisfying P, or an arbitrary value
if no such x exists.

Logical constants are declared by giving their name and type, separated by
‘::’. Primitive recursive function definitions are written as usual. Non-recursive
definitions are written with ‘def= ’.

Types follow the syntax of ML, except that the function arrow is ‘⇒’. Type
abbreviations are introduced simply as equations. A free datatype is defined by
listing its constructors together with their argument types, separated by ‘|’.
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There are the basic types bool and int, as well as the polymorphic type (α)set
of homogeneous sets for any type α. Occasionally we apply the infix ‘image’
operator lifting a function over a set, defined as f“S def= {y. ∃x∈S. y = f x}.

The product type α × β comes with the projection functions fst and snd.
Tuples are pairs nested to the right, e.g. (a,b,c) = (a,(b,c)).

As the list type (α)list is defined via its constructors [] denoting the empty
list and the infix ‘cons’ operator ‘#’, it can be introduced by the datatype
declaration

(α)list = [] | α#(α)list

The concatenation operator on lists is written as the infix symbol ‘@’. There
is a functional map :: (α ⇒ β) ⇒ (α)list ⇒ (β)list applying a function to all
elements of a list, as well as a conversion function set :: (α)list ⇒ (α)set.

We frequently use the datatype

(α)option = None | Some α

It has an unpacking function the :: (α)option ⇒ α such that the (Some x) = x
and the None = arbitrary, where arbitrary is an unknown value defined as εx.False.
There is a simple function mapping o2s :: (α)option ⇒ (α)set converting an op-
tional value to a set, with the characteristic equations o2s (Some x) = {x} and
o2s None = {}.

Most of the HOL text shown in this article is directly taken from the input
files. However, it has been massaged by hand to hide Isabelle idiosyncrasies, in-
crease readability, and adapt the layout. Minor typos may have been introduced
in the process.

We adopt the following typographic conventions: Java keywords like catch
appear in typewriter font, the names of logical constants like cfield appear in
sans serif, while type names like state and meta-variables like v appear in italics.

4 The Formalization of Bali

This section presents all aspects of our formalization of Bali1.
As far as Bali is a subset of Java, it strictly adheres to the Java language

specification [GJS96], with several generalizations:

– we allow the result type of a method overriding another method to widen to
the result type of the other method instead of requiring it to be identical.

– if a class or an interface inherits more than one method with the same
signature, the methods need not have identical return types.

– no check of result types in dynamic method lookup.
– the type of an assignment is determined by the right-hand side, which can

be more specific than the left-hand side.
1 The Isabelle sources are available from the Bali project page
http://www.in.tum.de/~isabelle/bali/

http://www.in.tum.de/~isabelle/bali/
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We found several issues concerning exceptions not specified in [GJS96] and
therefore define a reasonable behavior that seems to be consistent with current
implementations:

– given a Null reference, the throw statement raises a NullPointer exception.
– each system exception thrown yields a fresh exception object.
– if there is not enough memory even to allocate an OutOfMemory error, pro-

gram execution simply halts. (Our experiments showed erratic behavior of
some implementation in this case, ranging from sudden termination without
executing finally blocks, over hangup, to repeated invocation of a single
exception handler!)

To illustrate our approach, we use the following (artificial) example.

class Base {
boolean vee;
Base foo(Base x) {

return x;
}

}

class Ext extends Base{
int vee;
Ext foo(Base x) {

((Ext)x).vee=1;
return null;

}
}

Base e;
e=new Ext();
try {e.foo(null); }
catch (NullPointerException x) {throw x;}

This program fragment consists of two simple but complete class declarations
and a block of statements that might occur in any method that has access to
these declarations. It contains the following features of Bali:

– class declarations with inheritance, hiding of fields, and overriding of meth-
ods (with refined result type),

– return expressions, parameter access,
– sequential composition, expression statements, field assignment, type cast,

local accesses, literal values, exception propagation,
– local assignment, instance creation,
– try & catch statement, method call (with dynamic binding), throw statement
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4.1 Abstract Syntax

First, we describe how we represent the syntax of Bali and which abstractions
we have introduced thereby.

Programs. A Bali program is a pair of lists of interface and class declarations:

prog = (idecl)list × (cdecl)list

Throughout the article, the symbol ‘Γ ’ denotes a Bali program, as we use
programs as part of the static type context defined in §4.2.

Each declaration is a pair of a name and the defined entity. Some names, like
those of predefined classes (including those of system exceptions xname), have
a predefined meaning and are therefore handled extra. We do not specify the
structure of names further, but use the opaque HOL types tname0, mname, and
ename0 for user-defined type names, method names, and “expression names”
(i.e. field and variable identifiers).

xname = Throwable
| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

tname = Object name of the top of the class hierarchy
| SXcpt xname name of a system exception
| TName tname0 other class or interface name

ename = this special name for this pointer
| EName ename0 expression name

An interface (iface) contains lists of superinterface names and method decla-
rations. A class specifies the names of an optional superclass and implemented
interfaces, and lists of field and method declarations.

iface = (tname)list × (sig× mhead)list
idecl = tname × iface
class = (tname)option × (tname)list × (fdecl)list × (mdecl)list
cdecl = tname × class

A field declaration (fdecl) simply gives the field type (ty, see §4.2). A method
declaration (sig × mhead for interfaces or mdecl for classes) consists of a “sig-
nature” [GJS96, 8.4.2] (i.e. the method name and the list of parameter types,
excluding the result type) followed by mhead, consisting of the list of param-
eter names and the result type, and (if it appears within a class) the method
body (mbody). The latter consists of the list of local variables, a statement stmt
as body, and a return expression expr (see below). As in [DE98], the separate
return expression saves us from dealing with return statements occurring in ar-
bitrary positions within the method body. Such statements may be replaced by
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assignments to a suitable result variable followed by a control transfer to the end
of the method body, using the result variable as return expression. We provide a
dummy result type and value for void methods. For simplicity, up to now each
method has exactly one parameter; multiple parameters can be simulated by a
single parameter object with multiple fields.

field = ty field type
fdecl = ename × field
sig = mname × ty method name and parameter type
mhead = ename × ty parameter name and result type
lvar = ename × ty local variable name and type
mbody = (lvar)list × stmt × expr local vars, block, and return expression
methd = mhead × mbody method (of a class)
mdecl = sig× methd

In the abstract syntax given above, the formalization of our example program
fragment looks like this:

BaseC def= (Base, (Some Object,
[],
[(vee, PrimT boolean)],
[((foo,Class Base),(x,Class Base), ([],Skip,x))]))

ExtC def= (Ext, (Some Base,
[],
[(vee, PrimT int)],
[((foo,Class Base),(x,Class Ext), ([],

Expr({ClassT Ext}(Class Ext)x.vee:=Lit (Intg 1)),
Lit Null))]))

classes def= [ObjectC,
SXcptC Throwable,
SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize, SXcptC IndOutBound, SXcptC ArrStore,
BaseC, ExtC]

tprg def= ([],classes)
test def= Expr(e:=new Ext);

try Expr(e.foo({Class Base}Lit Null))
catch((SXcpt NullPointer) x) (throw x)

where Base stands for TName Base , Ext for TName Ext , and similarly for
vee, x, and e. The constants Base , Ext , etc. are all distinct. The sequence of
statements test could have been embedded in tprg, which we have left out for
simplicity.
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Representation of Lookup Tables. The representation of declarations as
lists gives an implicit finiteness constraint, which turns out to be necessary for
the well-foundedness of the subclass and subinterface relation. The list repre-
sentation also enables an explicit check whether the declared entities are named
uniquely, implemented with the function unique given below. This function does
not check for duplicate definitions, which is harmless.

unique :: (α × β)list ⇒ bool
unique t def= ∀(x1,y1)∈set t. ∀(x2,y2)∈set t. x1 = x2 −→ y1 = y2

For the lookup of declared entities, we transform declaration lists into ab-
stract tables. They are realized in HOL as “partial” functions mapping names
to values:

(α,β)table = α ⇒ (β)option

The empty table, pointwise update, extension of one table by another, the func-
tion converting a declaration list into a table, and an auxiliary predicate relating
entries of two tables, are defined easily:

empty :: (α,β)table
[ 7→ ] :: (α,β)table ⇒ α ⇒ β ⇒ (α,β)table
⊕ :: (α,β)table ⇒ (α,β)table ⇒ (α,β)table

table of :: (α×β)list ⇒ (α,β)table
hiding
entails :: (α,β)table ⇒ (α,γ)table ⇒ (β ⇒ γ ⇒ bool) ⇒ bool

empty
def= λk. None

t[x7→y] def= λk. if k = x then Some y else t k
s ⊕ t def= λk. case t k of None ⇒ s k | Some x ⇒ Some x

table of [] = empty
table of ((k,x)#t) = (table of t)[k7→x]

t hiding s entails R def= ∀k x y. t k = Some x −→ s k = Some y −→ R x y

For the union of tables, we also need the type of non-unique tables,

(α,β)tables = α ⇒ (β)set

together with a union operator and straightforward variants of two of the notions
defined above:

⊕⊕ :: (α,β)tables ⇒ (α,β)tables ⇒ (α,β)tables
Un tables :: ((α,β)tables)set ⇒ (α,β)tables

hidings
entails :: (α,β)tables ⇒ (α,γ)tables ⇒ (β ⇒ γ ⇒ bool) ⇒ bool
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Un tables ts def= λk.
⋃

t∈ts. t k
s ⊕⊕ t def= λk. if t k = {} then s k else t k
t hidings s entails R def= ∀k. ∀x∈t k. ∀y∈s k. R x y

A simple application of type table is the translation of programs to tables
indexed by interface and class names:

iface :: prog ⇒ (tname, iface)table def= table of ◦ fst

class :: prog ⇒ (tname, class)table def= table of ◦ snd

More interesting are the following functions that traverse the type hierarchy
of a program, collecting the methods and fields into a table (the types tname
and ref ty are defined in §4.2):

imethds :: prog ⇒ tname ⇒ (sig, ref ty × mhead)tables
cmethd :: prog ⇒ tname ⇒ (sig, ref ty × methd)table
fields :: prog ⇒ tname ⇒ ((ename × ref ty) × field )list

Note that imethds collects a non-unique table of method declarations allowing
for inheritance of more than one method with the same signature.

As Syme [Sym98] points out, a naive recursive definition of these functions is
not possible in HOL because the class hierarchy might be cyclic, which is ruled
out for well-formed programs (see §4.3) only. This leads to partial functions,
which HOL does not support directly. Syme defines these functions as relations
instead. In contrast, we have chosen to define them as proper functions, based on
Slind’s work on well-founded recursion [Sli96]. We do not give their definitions,
but only the recursion equations, which we derive as easy consequences:

wf prog Γ ∧ iface Γ I = Some (is,ms) −→
imethds Γ I = Un tables ((λJ. imethds Γ J)“ set is) ⊕⊕

(o2s ◦ table of (map (λ(s,mh). (s,IfaceT I,mh)) ms))

wf prog Γ ∧ class Γ C = Some (sc,si,fs,ms) −→
cmethd Γ C = (case sc of None ⇒ empty | Some D ⇒ cmethd Γ D) ⊕

table of (map (λ(s,m). (s,(ClassT C,m))) ms)

wf prog Γ ∧ class Γ C = Some (sc,si,fs,ms) −→
fields Γ C = map (λ(fn,ft). ((fn,ClassT C),ft)) fs @

(case sc of None ⇒ [] | Some D ⇒ fields Γ D)

The structure of the three equations is the same: the tables are constructed
recursively from the corresponding tables of the superinterfaces or the superclass
(if any), which models inheritance, augmented — with overriding — by the newly
declared items. All declared items receive an extra label, namely their defining
interface or class.
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In our example, we obtain

fields tprg Base = [((vee, ClassT Base), PrimT boolean)]
fields tprg Ext = [((vee, ClassT Ext ), PrimT int),

((vee, ClassT Base), PrimT boolean)]
cmethd tprg Base = empty[(foo, Class Base) 7→

(ClassT Base, (x, Class Base), ([], Skip, x))]
cmethd tprg Ext = empty[(foo, Class Base)7→

(ClassT Ext , (x, Class Ext ), ([],
Expr({ClassT Ext}(Class Ext)x.vee:=Lit (Intg 1)),
Lit Null))]

Terms. We define statements (appearing in method bodies), expressions (ap-
pearing in statements), and values (appearing in expressions) as recursive data-
types.

Statements are reduced to their bare essentials. We do not formalize syntactic
variants of conditionals and loops. Neither do we consider jumps like the break
statement.

For a more modular description, we divide the try catch finally
statement into a try catch statement and a finally statement, which
might be used in any context. Our version of the try catch statement has
exactly one catch clause. Multiple catch clauses can be simulated with cascaded
if else statements applying the instanceof operator.

stmt = Skip
| Expr expr
| stmt; stmt
| if (expr) stmt else stmt
| while(expr) stmt
| throw(expr)
| try stmt catch(tname ename) stmt
| stmt finally stmt

Skip denotes the empty statement. The “expression statement” Expr is a con-
version from expressions to statements causing evaluation for side effects only.
Assignments and method calls, which are expressions because they yield a value,
can be turned into statements this way. In contrast to Java, for simplicity we
allow this conversion to be applied to any kind of expression.

Concerning expressions, our formalization leaves out the standard unary and
binary operators as their typing and semantics is straightforward. The this
expression is modeled as a special non-assignable local variable named this.
The super construct can be simulated with a this expression that is cast to
the superclass of the current class. Creation of multi-dimensional arrays can
be simulated with nested array creation, while access and assignment to multi-
dimensional arrays is nested anyway.
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It might be reasonable to introduce the general notion of variables (i.e. left-
hand sides of assignments) in order to factor out common behavior of local
variables, class instance variables, and array components. But we have chosen
not to do so because the semantic treatment of these three variants of variables
differs considerably. This decision leads to some redundancy between access and
assignment, especially in the semantics for arrays.

expr = new tname class instance creation
| new ty[expr] array creation
| (ty)expr type cast
| expr instanceof ref ty type comparison operator
| Lit val literal
| ename local/parameter access
| ename:=expr local/parameter assignment
| {ref ty}expr.ename field access
| {ref ty}expr.ename:=expr field assignment
| expr[expr] array access
| expr[expr]:=expr array assignment
| expr.mname({ty}expr) method call

The terms in braces {. . . } above are called type annotations. Strictly speaking,
they are not part of the input language but serve as auxiliary information (com-
puted by the type checker) that is crucial for the static binding of fields and
the resolution of method overloading. Distinguishing between the actual input
language and the augmented language would lead to a considerable amount of
redundancy. We avoid this by assuming that the annotations are added before-
hand by a kind of preprocessor. The correctness of the annotations is checked
by the typing rules (see §4.2).

The definition of values is straightforward. It relies on the standard HOL
types of Boolean values (bool) and integers (int), whereas the type loc of locations,
i.e. abstract non-null addresses of objects, is not further specified.

val = Unit dummy result of void methods
| Bool bool
| Intg int
| Null
| Addr loc

The definitions below give some simple destructor functions for val with their
characteristic properties.

the Bool :: val ⇒ bool
the Intg :: val ⇒ int
the Addr :: val ⇒ loc

the Bool (Bool b) = b
the Intg (Intg i) = i
the Addr (Addr a) = a
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4.2 Type System

This section defines types, various ordering relations between types, and the
typing rules for statements and expressions.

Types. We formalize Bali types as values of datatype ty, dividing them into
primitive and reference types:

prim ty = void
| boolean
| int

ref ty = NullT
| IfaceT tname
| ClassT tname
| ArrayT ty

ty = PrimT prim ty
| RefT ref ty

void is used as a dummy type for methods without result. In the sequel NT
stands for RefT NullT, Iface I for RefT(IfaceT I), Class C for RefT(ClassT C),
and T[] for RefT(ArrayT T).

An interface or class type is considered as a proper type only if there is a
corresponding declaration for its type name in the current program, which is
checked by the following predicates:

is iface :: prog ⇒ tname ⇒ bool
is class :: prog ⇒ tname ⇒ bool
is type :: prog ⇒ ty ⇒ bool

is iface Γ tn def= iface Γ tn 6= None

is class Γ tn def= class Γ tn 6= None
is type Γ (PrimT ) = True
is type Γ NT = True
is type Γ (Iface I) = is iface Γ I
is type Γ (Class C) = is class Γ C
is type Γ (T[]) = is type Γ T

For all types, a default value is defined via

default val :: ty ⇒ val
default val (PrimT void ) = Unit
default val (PrimT boolean) = Bool False
default val (PrimT int ) = Intg 0
default val (RefT r ) = Null
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Type Relations. The relations between types depend on the interface and class
hierarchy of a given program Γ , and are therefore expressed with reference to Γ .
The direct subinterface ( ` ≺1

i ), subclass ( ` ≺1
c ), and implementation

( ` ;1 ) relations are of type prog× tname × tname ⇒ bool and are defined
as follows:

Γ ` I≺1
i J def= is iface Γ I ∧ is iface Γ J ∧ J ∈ set (fst(the(iface Γ I)))

Γ `C≺1
c D def= is class Γ C ∧ is class Γ D ∧ Some D = fst(the(class Γ C))

Γ `C;1 I def= is class Γ C ∧ is iface Γ I ∧ I ∈ set (fst(snd(the(class Γ C))))

The transitive (but not reflexive) closures ` ≺i and ` ≺c can be
defined inductively:

Γ ` I≺1
i K

Γ ` I≺i K
Γ ` I≺i J; Γ ` J≺i K

Γ ` I≺i K
Γ `C≺1

c E
Γ `C≺c E

Γ `C≺c D; Γ ` D≺c E
Γ `C≺c E

There is also a kind of transitive closure of ` ;1 defined as

Γ ` C;1 J
Γ `C;J

Γ `C;1 I; Γ ` I≺i J
Γ `C;J

Γ `C≺1
c D; Γ `D; J

Γ `C;J
The key relation is widening: Γ ` S�T, where S and T are of type ty, means

that S is a syntactic subtype of T, i.e. in any expression context (especially
assignments and method invocations) expecting a value of type T, a value of
type S may occur. Note that this does not necessarily mean that type S behaves
like type T, but only that it has a syntactically compatible set of fields and
methods. The widening relation is defined inductively as given below. Note that
some rules carry the additional premise that Object is a proper class, which will
be ensured for well-formed programs.

is type Γ T
Γ `T�T

is type Γ (RefT R)
Γ `NT � RefT R

Γ ` I≺i J
Γ ` Iface I � Iface J

is iface Γ I; is class Γ Object

Γ ` Iface I � Class Object

Γ `C≺c D
Γ ` Class C � Class D

Γ `C; I
Γ ` Class C � Iface I

Γ ` RefT S � RefT T
Γ ` (RefT S)[] � (RefT T)[]

is type Γ T; is class Γ Object

Γ `T[] � Class Object

To allow for type casting we also have the casting relation, where Γ ` S�? T
means that a value of type S may be cast to type T:

Γ ` S�T
Γ ` S�? T

Γ `C≺c D
Γ ` Class D �? Class C

is class Γ C; is iface Γ I
Γ ` Class C �? Iface I

Γ ` RefT S �? RefT T
Γ ` (RefT S)[] �? (RefT T)[]

is class Γ Object; is type Γ T
Γ ` Class Object �? T[]
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is iface Γ J; ¬Γ ` I≺i J;
imethds Γ I hidings imethds Γ J entails

(λ(m1,(pn1,rT1)) (m2,(pn2,rT2)). Γ ` rT1� rT2)
Γ ` Iface I �? Iface J

is iface Γ I; is class Γ C
Γ ` Iface I �? Class C

Typing Rules. Now we come to type-checking itself, which is expressed as a
set of constraints on the types of expressions, relative to a type environment.

An environment consists of a global part, namely a program Γ , and a local
part (written ‘Λ’), namely the types of the local variables including the current
class, i.e. the type of this:

lenv = (ename, ty) table
env = prog× lenv

prg :: env ⇒ prog def= λ(Γ ,Λ). Γ

lcl :: env ⇒ lenv def= λ(Γ ,Λ). Λ

The well-typedness of statements and the typing of expressions are defined
inductively relative to an environment. The typing of expressions is unique, as
can be shown easily by rule induction.

` ::3 :: env ⇒ stmt ⇒ bool
` :: :: env ⇒ expr ⇒ ty ⇒ bool

The type-checking rules for most statements are standard:

E ` Skip ::3
E ` e::T

E ` Expr e::3
E ` c1::3 ; E ` c2::3

E ` c1; c2::3

E ` e::PrimT boolean; E ` c1::3 ; E ` c2::3
E ` if(e) c1 else c2::3

E ` e::PrimT boolean; E ` c::3
E ` while(e) c::3

E ` c1::3 ; E ` c2::3
E ` c1 finally c2

Note the use of the widening relation in the following two rules to ensure
that a value thrown or caught as an exception is indeed a exception object.

E ` e::Class tn; prg E ` Class tn�Class (SXcpt Throwable)
E ` throw e::3

(Γ ,Λ) ` c1::3 ; Γ ` Class tn�Class (SXcpt Throwable);
Λ vn = None; (Γ ,Λ[vn7→Class tn]) ` c2::3

(Γ ,Λ) ` try c1 catch(tn vn) c2::3

The try catch statement is the only one that involves a change of the type
environment, namely to include typing information for the exception parameter.
The name of this parameter is required to be new in the local environment.
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The typing rules for the first few of the expressions are straightforward,
except for the confusing direction of the casting relation in the type cast rule:

is class (prg E) C
E ` new C::Class C

is type (prg E) T; E ` i::PrimT int

E ` new T[i]::T[]

E ` e::T; prg E `T�? T ′

E ` (T ′)e::T ′
typeof (λa. None) x = Some T

E ` Lit x::T

E ` e::RefT T; prg E ` RefT T�? RefT T ′

E ` e instanceof T ′::PrimT boolean

The rule for Lit prohibits addresses as literal values, which is implemented by
supplying λa. None as the “dynamic type” argument in the call of the function

typeof :: (loc ⇒ ty option) ⇒ val ⇒ ty option
typeof dt Unit = Some (PrimT void)
typeof dt (Bool b) = Some (PrimT boolean)
typeof dt (Intg i) = Some (PrimT int)
typeof dt Null = Some (RefT NullT)
typeof dt (Addr a) = dt a

This function is reused below with a more interesting value for the parameter
dt, namely a function to compute the dynamic type of a reference.

The typings of all three assignment variants are quite similar, except that for
local variables additionally an assignment to this is forbidden. In any case, as a
generalization to the Java specification, the type of the assignment is determined
by the right-hand (as opposed to the left-hand) side.

lcl E vn = Some T; is type (prg E) T
E ` vn::T

E ` vn::T; E ` v::T ′; prg E `T ′�T; vn 6= this

E ` vn:=v::T ′

E ` e::Class C; cfield (prg E) C fn = Some (fd,fT)
E ` {fd}e.fn::fT

E ` {fd}e.fn::T; E ` v::T ′; prg E `T ′�T
E ` {fd}e.fn:=v::T ′

E ` a::T[]; E ` i::PrimT int

E ` a[i]::T

E ` a[i]::T; E ` v::T ′; prg E ` T ′�T
E ` a[i]:=v::T ′

E ` e::RefT T; E ` p::pT;
max spec (prg E) T (mn,pT) = {((md,(pn,rT)),pT ′)}

E ` e.mn({pT ′}p)::rT
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The function cfield :: prog ⇒ tname ⇒ (ename , ref ty × field)table , defined as
cfield Γ C def= table of ((map (λ((n,d),t). (n,(d,t)))) (fields Γ C)), is a variant of
fields. It implements a field lookup that is based on the field name alone in
contrast to a combination of field name and defining class. Thus in the above
typing rule for field access, equal field names hide each other, while at run-time
all fields are accessible, using the defining class as an additional search key.

The type annotations {. . . } in the above rules for field access and method call
are used to implement static binding for fields and to resolve overloaded method
names statically. Technically speaking, the typing rules serve as constraints on
these annotations during type-checking, but one can also think of the annotations
being filled with schematic variables that are instantiated with their correct
values in the type-checking process, as is demonstrated in the example overleaf.
The value of each annotation is uniquely determined by the value of a function
in the premise of the field access and method call rule:

A field access {fd}e.fn is annotated with the defining class of the field found
when searching the class hierarchy for the name fn (using cfield), starting from
the static type Class C of e. The annotation {fd} will be used at run-time to
access the field via the pair (fn,fd).

A method call e.mn({pT ′}p) is type-correct only if the function max spec
determining the set of “maximally specific” [GJS96, 15.11.2] methods for refer-
ence type T (as defined below) yields exactly one method entry. In this case,
the method call is annotated by pT ′, which is the argument type of the most
specific method mn applicable according to the static types T of e and pT of p.
Thus any static overloading of the method name mn has been resolved and the
dynamic method lookup at run-time will be based on the signature (mn,pT ′).

max spec :: prog ⇒ ref ty ⇒ sig ⇒((ref ty× mhead) × ty) set
appl methds :: prog ⇒ ref ty ⇒ sig ⇒((ref ty × mhead) × ty) set
mheads :: prog ⇒ ref ty ⇒ sig ⇒ (ref ty× mhead) set
more spec :: prog ⇒ (ref ty × mhead) × ty ⇒ (ref ty × mhead) × ty ⇒ bool

max spec Γ T sig def= {m | m ∈appl methds Γ T sig ∧
(∀m′∈appl methds Γ T sig.

more spec Γ m′ m −→ m′ = m)}
appl methds Γ T (mn, pT) def= {(m,pT ′) | m ∈ mheads Γ T (mn, pT ′) ∧

Γ ` pT�pT ′}
mheads Γ NullT = λsig. {}
mheads Γ (IfaceT I) = imethds Γ I
mheads Γ (ClassT C) = o2s ◦ option map (λ(d,(h,b)).(d,h)) ◦ cmethd Γ C
mheads Γ (ArrayT T) = λsig. {}
more spec Γ ((md,mh),pT) ((md′,mh′),pT ′) def= Γ ` RefT md�RefT md′ ∧

Γ ` pT�pT ′

where
option map :: (α ⇒ β) ⇒ (α option ⇒ β option)
option map f def= λy. case y of None ⇒ None | Some x ⇒ Some (f x)
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The well-typedness of our example code test is derived as given below. For formatting reasons, the derivation tree is cut at several
positions, whereby the positions are marked with the labels of the cut subtrees. Irrelevant values in formulas are replaced by .
We use the following abbreviations:

Γ = tprg
Λ = empty[e 7→Class Base]
SNP = SXcpt NullPointer

During the derivation, the schematic variable ?pT ′ is instantiated with Class Base, as a result of the function max spec.

Λ e = Some (Class Base) is type Γ (Class Base)

(Γ ,Λ) ` e::Class Base e 6= this

is class Γ Ext
(Γ ,Λ) ` new Ext::Class Ext Γ ` Class Ext�Class Base

(Γ ,Λ) ` (e:=new Ext)::

(Γ ,Λ) ` Expr(e:=new Ext)::3
(LAss)

Λ e = Some (Class Base) is type Γ (Class Base)

(Γ ,Λ) ` e::Class Base

typeof (λa. None) Null = Some NT

(Γ ,Λ) ` Lit Null::NT

max spec Γ (ClassT Base) (foo, NT) =
{(( , , Class Base), ?pT ′)}

(Γ ,Λ) ` (e.foo({?pT ′}Lit Null))::Class Base

(Γ ,Λ) ` Expr(e.foo({?pT ′}Lit Null))::3
(Call)

Λ[x 7→Class SNP] x = Some (Class SNP) is type Γ (Class SNP)

(Γ , Λ[x 7→Class SNP]) ` x::Class SNP Γ ` Class SNP�Class (SXcpt Throwable)

(Γ , Λ[x 7→Class SNP]) ` throw x::3
(Throw)

(LAss)

(Call) Γ ` Class SNP�Class (SXcpt Throwable) Λ x = None (Throw)

(Γ ,Λ) ` try Expr(e.foo({?pT ′}Lit Null)) catch(SNP x) (throw x)::3

(Γ ,Λ) ` Expr(e:=new Ext); try Expr(e.foo({?pT ′}Lit Null)) catch(SNP x) (throw x)::3
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4.3 Well-Formedness

A program must satisfy a number of well-formedness conditions concerning
global properties of all declarations. The conditions are expressed as predicates
on field, method, interface, class, and whole program declarations.

wf fdecl :: prog ⇒ fdecl ⇒ bool
wf mhead :: prog ⇒ sig × mhead ⇒ bool
wf mdecl :: prog ⇒ tname ⇒ mdecl ⇒ bool
wf idecl :: prog ⇒ idecl ⇒ bool
wf cdecl :: prog ⇒ cdecl ⇒ bool
wf prog :: prog ⇒ bool

A field declaration is well-formed iff its type exists:

wf fdecl Γ (fn,ft) def= is type Γ ft

A method declaration is well-formed only if its argument and result types
are defined and the name of the parameter is not this. Additionally, if the
declaration appears in a class, the names of the local variables must be unique
and may not contain the special name this nor hide the parameter, all types
of the local variables must exist, the method body has to be well-typed (in
the static context of its parameter type and the current class), and its result
expression must have a type that widens to the result type:

wf mhead Γ ((mn,pT),(pn,rT)) def= is type Γ pT ∧ is type Γ rT ∧ pn 6= this

wf mdecl Γ C ((mn,pT),(pn,rT),lvars,blk,res) def=
let ltab = table of lvars; E = (Γ ,ltab[this7→Class C][pn7→pT])
in wf mhead Γ ((mn,pT),(pn,rT)) ∧

unique lvars ∧ ltab this = None ∧ ltab pn = None ∧
(∀(vn,T)∈set lvars. is type Γ T) ∧
E ` blk::3 ∧ ∃T. E ` res::T ∧ Γ `T�rT

Even more complex conditions are required for well-formed interface and class
declarations. The name of a well-formed interface declaration is not a class name.
All superinterfaces exist and are not subinterfaces at the same time. All methods
newly declared in the interface are named uniquely and are well-formed. Further-
more, any method overriding a set of methods defined in some superinterfaces
has a result type that widens to all their result types:

wf idecl Γ (I,(is,ms)) def= ¬ is class Γ I ∧
(∀J∈set is. is iface Γ J ∧ ¬ Γ ` J≺i I) ∧
unique ms ∧ (∀m∈set ms. wf mhead Γ m ∧
let mtab = Un tables ((λJ. imethds Γ J)“ set is) in
(o2s ◦ table of ms) hidings mtab entails

(λ(pn,rT) (m,(pn′,rT ′)). Γ ` rT�rT ′)
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Similarly, the name of a well-formed class declaration is not an interface
name. All implemented interfaces exist, and for any method of such an interface,
the class provides an implementing method with a possibly narrower return type.
All fields and methods newly declared in the class are named uniquely and are
well-formed. If the class is not Object, it refers to an existing superclass, which
is not a subclass of the current class. Furthermore, any method overriding a
method of the superclass has a compatible result type:

wf cdecl Γ (C,(sc,si,fs,ms)) def= ¬ is iface Γ C ∧
(∀I∈set si. is iface Γ I ∧

∀s. ∀(m1,(pn1,rT1)) ∈ imethds Γ I s.
∃m2 pn2 rT2 b. cmethd Γ C s = Some (m2,(pn2,rT2),b) ∧

Γ ` rT2� rT1) ∧
unique fs ∧ (∀f ∈set fs. wf fdecl Γ f ) ∧
unique ms ∧ (∀m∈set ms. wf mdecl Γ C m) ∧
(case sc of None ⇒ C = Object

| Some D ⇒ is class Γ D ∧ ¬ Γ `D≺c C ∧
table of ms hiding cmethd Γ D entails

(λ((pn1,rT1),b) (m,((pn2,rT2),b′)). Γ ` rT1� rT2)

Finally, all interfaces and classes declared in a well-formed program are
named uniquely and are in turn well-formed. For uniformity, this includes the
predefined class declarations of Object and the (flat) hierarchy of system excep-
tions.

ObjectC
def= (Object , (None , [], [], []))

SXcptC xn def= let sc = if xn=Throwable then Object else SXcpt Throwable in
(SXcpt xn, (Some sc, [], [], []))

wf prog Γ
def= let is = set (fst Γ ); cs = set (snd Γ )

in ObjectC ∈ cs ∧ ∀xn. SXcptC xn ∈ cs ∧
unique (fst Γ ) ∧ ∀i∈is. wf idecl Γ i) ∧
unique (snd Γ ) ∧ ∀c∈cs. wf cdecl Γ c)

Our example program tprg is well-formed. Here is a heavily abstracted deriva-
tion tree of our proof of this fact.

wf mdecl tprg Base ((foo, Class Base),
(x, Class Base), [], Skip, x) ¬(tprg ` Object≺c Base)

wf cdecl tprg BaseC

wf mdecl tprg Ext ((foo, Class Base),
(x, Class Ext), [], Expr ({ClassT Ext}(Class Ext)

x.vee:=Lit (Intg 1)), Lit Null) ¬(tprg `Base≺c Ext)
wf cdecl tprg BaseC

wf cdecl tprg BaseC wf cdecl tprg ExtC Base 6= Ext
wf tprg tprg
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4.4 Operational Semantics

We formalize the semantics of Java in operational style with evaluation rules.
This is the natural choice since the language specification itself is given in an
operational evaluation-oriented style, which allows for a direct formalization and
its straightforward validation. Furthermore, a denotational semantics would re-
quire much more difficult mathematical tools, and an axiomatic semantics would
be problematic to validate and to use for reasoning on the language as a whole.
We prefer an evaluation semantics to a transition semantics in order to obtain
a concise description, because we consider a transition semantics less readable
and rather low-level, which in particular holds for a formulation as an Abstract
State Machine (ASM) like in [BS98].

In this section, we describe the notions of a state and its components and
give the evaluation rules for statements and expressions.

State. A state consists of an optional exception (of type xcpt), a heap, and a
current invocation frame, which is the values of the local variables (including
method and exception parameters and the this pointer):
state = (xcpt)option × st
st = heap × locals
heap :: st ⇒ heap def= λ(h,l). h
locals :: st ⇒ locals def= λ(h,l). l

Remember that tuples associative to the right, so if for some state σ we have an
equation like σ = (x, σ′), then x is the (optional) exception component alone,
while the second projection σ′ of the state has (tuple) type st, i.e. represents a
“small” state excluding the exception entry.

An exception is a reference to an instance of some exception class, which is a
subclass of Throwable. Normally, when an exception is thrown, a fresh exception
object is allocated and its location returned to represent the exception. But in the
case of system exceptions, we defer their allocation (and just record their names)
until an enclosing catch block references it. This helps to avoid the subtleties
of (conditional) side effects on the heap and out-of-memory conditions. Thus we
model exceptions as follows.

xcpt = XcptLoc loc
| SysXcpt xname

A heap maps locations to objects, while local variables map names to values:

heap = (loc , obj)table
locals = (ename, val)table

In our model there is no need to explicitly maintain a stack of invocation frames
containing local variables and return addresses for method calls. In this way we
also abstract over the finiteness of stack space. On the other hand, we explicitly
model the possibility of memory allocation on the heap to fail if there is no free
location (i.e. some a with (heap σ) a = None) available. Memory allocation is
loosely, yet deterministically, defined by the function



Machine-Checking the Java Specification: Proving Type-Safety 139

new Addr :: heap ⇒ (loc × (xcpt)option)option
new Addr h def= εy. ( y = None ∧ (∀a. h a 6= None)) ∨

(∃a x. y = Some (a,x) ∧ h a = None ∧
(x = None ∨ x = Some (SysXcpt OutOfMemory)))

This function fails, i.e. returns None, iff there is no free location on the heap,
and otherwise gives an unused location. At the latest when there is only one free
address left, it returns an OutOfMemory exception. In this way it is guaranteed
that when an OutOfMemory exception is thrown for the first time, there is a
free location on the heap to allocate it. Note that we do not consider garbage
collection.

An object is either a class instance, modeled as a pair of its class name and a
table mapping pairs of a field name and the defining class to values, or an array,
modeled as a pair of its component type and a table mapping integers to values:

fields = (ename × ref ty, val)table
components = (int , val)table
obj = Obj tname fields

| Arr ty components

the Obj :: (obj)option ⇒ tname × fields
the Arr :: (obj)option ⇒ ty × components
obj ty :: obj ⇒ ty

the Obj (Some (Obj C fs)) = (C,fs)
the Arr (Some (Arr T cs)) = (T,cs)
obj ty (Obj C fs) = Class C
obj ty (Arr T cs) = T[]

Using obj ty we define the predicate Γ ,σ ` v fits T, meaning that in the con-
text of Γ and state σ, the value v is assignable to a variable of type T. This
proposition, which is computed at run-time for type casts and array assignments,
is a weaker version of the notion of conformance introduced in §5.3.

, ` fits :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool
Γ ,σ ` v fits T def= (∃pt. T = PrimT pt) ∨ v = Null ∨

Γ ` obj ty (the (heap σ (the Addr v)))�T

There is a number of auxiliary functions for constructing and updating the
state, namely:

lupd[ 7→ ] :: ename ⇒ val ⇒ st ⇒ st
hupd[ 7→ ] :: loc ⇒ obj ⇒ st ⇒ st
x case :: xcpt option ⇒ st ⇒ st ⇒ state
lupd[v7→x ] (h,l) def= (h,l[v7→x])
hupd[a7→obj] (h,l) def= (h[a7→obj],l)
x case x σ′ σ

def= (x, if x = None σ′ else σ)
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init vars :: (α × ty)list ⇒ (α,val)table
init Obj :: prog ⇒ tname ⇒ obj
init Arr :: ty ⇒ int ⇒ obj
init vars

def= table of ◦ map (λ(n,T). (n,default val T))
init Obj Γ C def= Obj C (init vars (fields Γ C))
init Arr T i def= Arr T (λj. if 0≤ j ∧ j<i then Some (default val T)

else None)
raise if :: bool ⇒ xname ⇒ (xcpt)option ⇒ (xcpt)option
np :: val ⇒ (xcpt)option ⇒ (xcpt)option
raise if c xn xo def= if c ∧ (xo = None) then Some (SysXcpt xn) else xo
np v def= raise if (v = Null) NullPointer

The definition of raise if deserves a comment: raise if c xn xo either propagates
an already thrown exception xo or raises the system exception xn if c is true.
As an application, np v checks for a null pointer access through the value v and
throws a NullPointer exception in this case, but any other exception that has
already occurred takes precedence.

Evaluation Rule Format. Internally, the evaluation rules are given as mu-
tually inductive sets of tuples. These sets define relations, which we present as
predicates of the following form.

– Γ ` σ −c→ σ′ :: prog ⇒ state ⇒ stmt ⇒ state ⇒ bool
means that the execution of statement c transforms state σ into σ′.

– Γ ` σ −e�v→ σ′ :: prog ⇒ state ⇒ expr ⇒ val ⇒ state ⇒ bool
means that expression e evaluates to v, transforming σ into σ′.

Although defined as relations (for technical reasons), the semantics given below
can be shown to be functional, i.e. deterministic.

Strictly speaking it is not necessary to include an exception in the start state
of a computation. Similarly, an expression needs only return either a value or
an exception, but not both. However, the symmetry achieved by our slightly
redundant model simplifies the rules considerably. In particular, we can avoid
case distinctions on whether exceptions occur in intermediate states, which would
cause the rules to be split. Suppose for example that Γ ` σ −c→ σ′ had the
signature prog ⇒ st ⇒ stmt ⇒ state ⇒ bool, i.e. all rules assume that there is
no exception in the start state. Then the rule(s) for sequential composition would
look like

Γ ` σ0 −c1 → (None,σ1); Γ ` σ1 −c2→ σ2

Γ ` σ0 −c1; c2→ σ2

Γ ` σ0 −c1 → (Some xs,σ1)
Γ ` σ0 −c1; c2→ (Some xs,σ1)
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As a consequence of the design decisions just mentioned, there is exactly one
rule for each syntactic construct. Additionally there are general rules defining
that exceptions simply propagate when a series of statements is executed or a
series of expressions is evaluated:

Γ ` (Some xc,σ) −c→ (Some xc,σ)

Γ ` (Some xc,σ) −e�arbitrary→ (Some xc,σ)
All other rules can assume that in their concerning initial state no exception has
been thrown. For such states, we define the abbreviation Norm σ, which stands
for (None,σ).

Execution of Statements. The rules for the statements not explicitly involv-
ing exceptions are obvious:

Γ `Norm σ −Skip→ Norm σ

Γ `Norm σ0 −c1 → σ1; Γ ` σ1 −c2→ σ2

Γ ` Norm σ0 −c1; c2→ σ2

Γ ` Norm σ0 −e�v→ σ1

Γ `Norm σ0 −Expr e→ σ1

Γ `Norm σ0 −e�v→ σ1;
Γ ` σ1 −if the Bool v then c1 else c2→ σ2

Γ `Norm σ0 −if(e) c1 else c2→ σ2

Γ ` Norm σ0 −if(e) (c; while(e) c) else Skip→ σ1

Γ `Norm σ0 −while(e) c→ σ1

If no other exceptions have occurred while evaluating its argument and test-
ing for a null reference (using np), the throw statement copies the evaluated
location into the exception component of the state:

Γ `Norm σ0 −e�a′→ (x1,σ1); x1
′ = np a′ x1;

x1
′′=(if x1

′=None then (Some (XcptLoc (the Addr a′))) else x1
′)

Γ `Norm σ0 −throw e→ (x1
′′,σ1)

For the semantics of the try catch statement we have to distinguish
whether some exception is thrown and then caught by the catch clause or not.
In the first case, i.e. there is an exception of appropriate dynamic type to be
handled, the catch clause is executed with its exception parameter set to the
caught exception. In the second case the catch clause is skipped. Because of
technical limitations of the inductive definition package of Isabelle/HOL, even
in this case we have to provide an occurrence of the execution relation, which in
effect simply sets σ2 to (x1

′,σ1
′).

Γ `Norm σ0 −c1→ σ1; Γ ` σ1 −salloc→ (x1
′,σ1

′);
case x1

′ of None ⇒ σ1
′′ = (x1

′,σ1
′) ∧ c2

′ = Skip
| Some xc ⇒ let a = Addr (the XcptLoc xc) in

if Γ ,σ1
′ ` a fits Class tn

then σ1
′′ = Norm (lupd[vn7→a]σ1

′) ∧ c2
′ = c2

else σ1
′′ = (x1

′,σ1
′) ∧ c2

′ = Skip;
Γ ` σ1

′′ −c2
′→ σ2

Γ `Norm σ0 −(try c1 catch(tn vn) c2)→ σ2
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On the one hand, the exception parameter of the catch clause must repre-
sent the exception thrown in the try block by a reference to its exception ob-
ject. As on the other hand we defer the allocation of system exceptions when
evaluating expressions, we have to ensure that even for such exceptions a suit-
able exception object is allocated on the heap of σ1

′, replacing the SysXcpt
entry by an XcptLoc entry in x1

′. This is achieved by the auxiliary relation
Γ ` σ −salloc→ σ′ :: prog ⇒ state ⇒ state ⇒ bool. If no system exception has
been thrown, the relation behaves like the identity on the state, and otherwise
allocates an exception object and modifies the state accordingly. Note that this
allocation step is impossible — and therefore program execution halts — if there
is no free address left.

Γ `Norm σ −salloc→ Norm σ

Γ ` (Some (XcptLoc a),σ) −salloc→ (Some (XcptLoc a),σ)

new Addr (heap σ) = Some (a,x);
xobj = init Obj Γ (SXcpt (if x = None then xn else OutOfMemory))

Γ ` (Some (SysXcpt xn),σ) −salloc→ (Some (XcptLoc a),hupd[a7→xobj]σ)

The finally statement is similar to the sequential composition, but executes
its second clause regardless whether an exception has been thrown in its first
clause or not. If an exception occurs in either clause, it is (re-)raised after the
statement, and if both parts throw an exception, the first one takes precedence.

Γ `Norm σ0 −c1 → (x1,σ1);
Γ `Norm σ1 −c2 → (x2,σ2);

x2
′ = (if x1 6= None ∧ x2 = None then x1 else x2)
Γ `Norm σ0 −(c1 finally c2)→ (x2

′,σ2)

Evaluation of Expressions. In contrast to the statement rules, almost all
evaluation rules for expressions deserve some comments.

Creating a new class instance means picking a free address a and updating
the heap at that address with an object, the fields of which are initialized with
default values according to their types. Note that the rule is not applicable —
and therefore execution halts — if new Addr fails.

new Addr (heap σ) = Some (a,x)
Γ `Norm σ −new C�Addr a→ x case x (hupd[a7→init Obj Γ C]σ) σ

The same applies for the creation of a new array, where additionally an
exception is raised if the length of the array is negative:

Γ `Norm σ0 −e�i′→ (x1,σ1); i = the Intg i′;
new Addr (heap σ1) = Some (a,x);

x1
′ = raise if (i<0) NegArrSize (if x1 = None then x else x1)

Γ `Norm σ0 −new T[e]�Addr a→ x case x1
′ (hupd[a7→init Arr T i]σ1) σ1
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A type cast merely returns its argument value, but raises an exception if the
dynamic type happens to be unsuitable:

Γ `Norm σ0 −e�v→ (x1,σ1);
x1

′ = raise if(¬ Γ ,σ1 ` v fits T) ClassCast x1

Γ `Norm σ0 −(T)e�v→ (x1
′,σ1)

The type comparison operator checks if the type of its argument is assignable
to the given reference type:

Γ `Norm σ0 −e�v→ σ1;
b = (v6=Null ∧ Γ ,snd σ1 ` v fits RefT T)

Γ `Norm σ0 −e instanceof T�Bool b→ σ1

The result of a literal expression is simply the given value:

Γ `Norm σ −Lit v�v→ Norm σ

An access to a local variable (or the this pointer) reads from the local state
component:

Γ `Norm σ −vn�the (locals σ vn)→ Norm σ

An assignment to a local variable updates the state, unless the evaluation of
the subexpression raises an exception:

Γ `Norm σ0 −e�v→ (x,σ1);
σ1

′ = (if x = None then lupd[vn7→v] σ1 else σ1)
Γ `Norm σ0 −vn:=e�v→ (x,σ1

′)

A field access reads from a field of the given object, taking into account
the type annotation which yields the defining class of the field as determined
statically. It also checks for null pointer access.

Γ ` Norm σ0 −e�a′→ (x1,σ1);
v = the (snd (the Obj (heap σ1 (the Addr a′))) (fn,T))

Γ ` Norm σ0 −{T}e.fn�v→ (np a′ x1,σ1)

A field assignment acts accordingly:

Γ `Norm σ0 −e1�a′→ (x1,σ1); a = the Addr a′;
Γ ` (np a′ x1,σ1) −e2�v → (x2,σ2);

(c,fs) = the Obj (heap σ2 a); obj = Obj c (fs[(fn,T):=v])
Γ `Norm σ0 −({T}e1.fn:=e2)�v→ x case x2 (hupd[a7→obj]σ2) σ2

An array access reads a component from the given array, but raises an ex-
ception if the index is invalid:

Γ `Norm σ0 −e1�a′→ σ1; Γ ` σ1 −e2�i′→ (x2,σ2);
vo = snd (the Arr (heap σ2 (the Addr a′))) (the Intg i′);

x2
′ = raise if (vo = None) IndOutBound (np a′ x2)

Γ `Norm σ0 −e1[e2]�the vo→ (x2
′,σ2)
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Similarly, an array assignment updates the appropriate component, but first
has to check the type of the value to be assigned. Note one subtle difference to
field assignment: null pointer access is checked after evaluating the right-hand
side, whereas in field assignment the check occurs immediately after calculating
the reference.

Γ `Norm σ0 −e1�a′→ σ1; a = the Addr a′;
Γ ` σ1 −e2�i′→ σ2; i = the Intg i′;

Γ ` σ2 −e3�v → (x3,σ3);
(T,cs) = the Arr (heap σ3 a); obj = Arr T (cs[i 7→v]);

x3
′ = raise if (¬ Γ ,σ3 ` v fits T) ArrStore (

raise if (cs i = None) IndOutBound (np a′ x3))
Γ `Norm σ0 −(e1[e2]:=e3)�v→ x case x3

′ (hupd[a7→obj]σ3) σ3

The most complex rule is the one for method invocation: after evaluating
e to the target location a′ and p to the parameter value pv, the block blk and
the result expression res of method mn with argument type T are extracted
from the program Γ (using the dynamic type dynT of the object stored at a′).
For simplicity, we require local variables to be initialized with default values,
as the expensive rules for “definite assignment” [GJS96, Ch. 16] merely enable
the run-time optimization that variables need not be initialized before being
explicitly assigned to. After executing blk and res in the new invocation frame
built from the local variables, the parameter pv and a′ as the value of this, the
old invocation frame is restored and the result value v returned:

Γ `Norm σ0 −e�a′→ σ1;
Γ ` σ1 −p�pv→ (x2,σ2);

dynT = fst (the Obj (heap σ2 (the Addr a′)));
(md,(pn,rT),lvars,blk,res) = the (cmethd Γ dynT (mn,pT));

Γ ` (np a′ x2,(heap σ2,init vars lvars[this7→a′][pn7→pv])) −blk→ σ3;
Γ ` σ3 −res�v → (x4,σ4)

Γ `Norm σ0 −(e.mn({pT}p))�v→ (x4,(heap σ4,locals σ2))

Note that all rules are defined carefully in order to be applicable even in not
type-correct situations. For example, in any context where a value v is expected
to be an address, we do not use a premise like v = Addr a as this will disable the
rule if v happens to be, for example, a null pointer or a Boolean value. Instead,
we use an expression like a = the Addr v, which will yield an arbitrary value if
v is not an address, yet will leave the rule applicable. In such cases we could
not prove anything useful about a, but during the type soundness proof itself
it emerges that for well-formed programs (and statically well-typed statements
and expressions) such situations cannot occur. A “defensive” evaluation throw-
ing some artificial exception in case of type mismatches, which would require
additional overhead, is therefore not necessary.
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Below we give a derivation for the execution of our example code test, under the assumptions new Addr empty = Some (a, None)
and ∀obj. new Addr (empty[a 7→obj]) = Some (b, None), which guarantee that there are at least two free locations on the heap.

We use the following abbreviations:
Γ = tprg
NP = NullPointer

blk = Expr({ClassT Ext}(Class Ext)x.vee:=Lit (Intg 1))
obj1 = Obj Ext (empty[(vee, ClassT Base)7→Bool False ]

[(vee, ClassT Ext ) 7→Intg 0])
obj2 = Obj (SXcpt NP) empty
h = empty[a 7→obj1]
l = empty[e 7→Addr a]

Given only the start state σ0, all other states are computed
during the derivation, which results in the sequence
σ0 = Norm (empty , empty )
σ1 = Norm (h , l )
σ2 = Norm (h , empty[this7→Addr a][x 7→Null])
σ3 = (Some (SysXcpt NP), h , empty[this7→Addr a][x 7→Null])
σ4 = (Some (SysXcpt NP), h , l )
σ5 = (Some (XcptLoc b ), h[b 7→obj2], l )
σ6 = Norm (h[b 7→obj2], l[x 7→Addr b])
σ7 = (Some (XcptLoc b ), h[b 7→obj2], l[x 7→Addr b])

Γ ` σ2 −x�Null→ σ2 Γ ,snd σ2 ` Null fits Class Ext

Γ ` σ2 −(Class Ext)x�Null→ σ2 σ3 = (Some (SysXcpt NP), snd σ2) Γ ` σ3 −Lit (Intg 1)� → σ3

Γ ` σ2 − ({ClassT Ext}(Class Ext)x.vee:=Lit (Intg 1))� → σ3

Γ ` σ2 −Expr({ClassT Ext}(Class Ext)x.vee:=Lit (Intg 1)) → σ3
(Blk)

Γ ` σ1 −e�Addr a→ σ1

Γ ` σ1 −Lit Null�Null→ σ1

cmethd Γ Ext (foo, Class Base) = Some ( , (x, ), [], blk, Lit Null)
σ2 = Norm (h, empty[this7→Addr a][x 7→Null]) (Blk) Γ ` σ3 −Lit Null� → σ3

Γ ` σ1 − (e.foo({Class Base}Lit Null))� → σ4

Γ ` σ1 −Expr(e.foo({Class Base}Lit Null)) → σ4
(Call′)

Γ ` σ6 −x�Addr b→ σ6 σ7 = (Some (XcptLoc b), snd σ6)

Γ ` σ6 −throw x→ σ7
(Throw)new Addr empty = Some (a, None)

Γ ` σ0 −new Ext�a→ Norm (h, empty)

Γ ` σ0 − (e:=new Ext)� → σ1

Γ ` σ0 −Expr(e:=new Ext) → σ1

(Call′)
new Addr h = Some (b, None)

Γ ` σ4 −salloc→ σ5 Γ ,snd σ5 `Addr b fits Class (SXcpt NP) (Throw)

Γ ` σ1 −(try Expr(e.foo({Class Base}Lit Null)) catch((SXcpt NP) x) (throw x))→ σ7

Γ ` σ0 −(Expr(e:=new Ext); try Expr(e.foo({Class Base}Lit Null)) catch((SXcpt NP) x) (throw x))→ σ7
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5 The Proof of Type Soundness

In this section we discuss our type soundness theorem together with its cru-
cial lemmas. As we spent almost half of the proof effort deriving properties
of the type relations and the structure of well-formed programs, we dedicate to
them subsections of their own before introducing helpful notions concerning type
soundness, the main theorem itself, and interesting corollaries.

It is not surprising that many of them are similar to those given by Drosso-
poulou and Eisenbach [DE98] since the necessity of certain lemmas emerges quite
naturally. On the other hand, the proof principles we use are sometimes rather
different from those outlined in their earlier paper [DE97], some of which were
inadequate.

5.1 Lemmas on the Type Relations

There are two non-trivial lemmas concerning the type relations of Bali, namely
the well-foundedness wf of the converse subinterface and subclass relations

wf prog Γ −→ wf (λ(J ,I ). Γ ` I ≺i J )
∧ wf (λ(D,C). Γ `C≺c D)

and the frequently used transitivity of the widening relation:

wf prog Γ ∧ Γ ` S�U ∧ Γ `U�T −→ Γ ` S�T

The two relations are well-founded because they are finite and acyclic, where
the former is a consequence of representing class and interface declarations as
lists, and the latter follows from the irreflexivity of the relations, which in turn
follows from the well-formedness of the classes and interfaces implied by the
well-formedness of the whole program.

The well-foundedness facts are necessary for deriving the recursion equations
for the functions that traverse the type hierarchy of a program (see §4.1) and
also give rise to induction principles for the (direct) subinterface and subclass
relations, e.g. the rule

wf prog Γ ; P Object;
∀C D. C 6= Object ∧ Γ `C≺1

c D ∧ . . . ∧ P D −→ P C
∀E. is class Γ E −→ P E

means that for a well-formed program, if some property hold for class Object
and is preserved by the direct subclass relation, it holds for all classes.

Most lemmas, as well as auxiliary properties for deriving them, typically rely
on several well-formedness conditions and are usually proved by rule induction
on the type relation involved, or by applying the induction principles just men-
tioned. For example, the transitivity of ` � is proved by rule induction on
the widening relation. It requires a well-formed program because it uses the
properties that every class widens to Object and that Object has neither a
superclass nor a superinterface.
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5.2 Lemmas on Fields and Methods

For the type-safety of field accesses and method calls, characteristic lemmas
concerning the field lookup and method lookup are required. They are used to
relate the (static) types of fields and methods, as determined at compile-time,
to the actual (dynamic) types that occur at run-time.

For example, fields correctly referred to at compile-time must be found at run-
time. More formally, if a field access {T}e.fn, where e is of type Class C, statically
refers to a field of type fT defined in the reference type T, then within an instance
of some class C ′, which may be a subclass of C, the field can be (dynamically)
referred to using the same name and its defining class. In particular, there is no
dynamic binding for fields. This fact requires the following lemma:

wf prog Γ ∧ cfield Γ C fn = Some (T,fT) ∧ Γ ` Class C ′�Class C −→
table of (fields Γ C ′) (fn,T) = Some fT

Concerning method calls, a similar requirement preventing ‘method not un-
derstood’ errors can be formalized: if a method call of the form e.mn({pT}p)
with E ` e::RefT T refers to a method that is statically available for the reference
e, the dynamic lookup of the object pointed at by e should yield a method with
a compatible result type. The lemma that helps to establish this behavior reads
as follows: for a well-formed program, a reference type T, and any class type T1

that widens to T, if T (statically) supports a method with a given signature,
then the (dynamic) type T1 supports a method with the same signature and
whose result type widens to the result type of the first method:

wf prog Γ ∧ (m1,(pn1,rT1)) ∈ mheads Γ T sig ∧ Γ ` Class T1�RefT T −→
∃m2 pn2 rT2 b. cmethd Γ T1 sig = Some (m2,(pn2,rT2),b) ∧ Γ ` rT2� rT1

The proofs of these lemmas are lengthy and require many auxiliary theorems
that are proved by induction on the direct subclass relation, by case splitting on
the right-hand argument of the widening relation and by rule induction on the
subinterface, subclass, and implementation relation.

5.3 Type Soundness

Finally, we state and prove the type soundness theorem. We motivate how we
express type soundness, comment on the proof of the main theorem, and discuss
it consequences.

Goal. Type soundness is a relation between the type system and the semantics
of a language meaning that all values produced during any program execution
respect their static types. This can be formulated as a preservation property:
For all state transformations caused by executing a statement or evaluating an
expression, if in the original state the contents of all variables “conform” to their
respective types, this holds also for any final state. Additionally, if an expression
yields some result, this value “conforms” to the type of the expression. Of course,
we can only expect all this to hold if we assume a well-formed program and well-
typed statements and expressions.
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It remains to specify what we mean exactly by ‘conforms’, which is inspired
by [DE98]. Relative to a given program Γ and a state σ, a value v conforms
to a type T, written Γ ,σ ` v::T, iff the dynamic type of v widens to T. Via
two auxiliary conformance concepts, this can be lifted to the notion of a whole
state σ conforming to an environment E. The proposition σ ::�E means that
the value of any accessible variable within the state is compatible with its static
type. Formally, these four concepts
– , ` ::� :: prog ⇒ st ⇒ val ⇒ ty ⇒ bool

of a value conforming to a type,
– , ` [ ::� ] :: prog ⇒ st ⇒ (α,val)table ⇒ (α,ty)table ⇒ bool

of all values in a table conforming to their respective types,
– , ` ::� 3 :: prog ⇒ st ⇒ obj ⇒ bool

of all components of an object conforming to their respective types, and
– ::� :: state ⇒ env ⇒ bool

of a state conforming to an environment

are defined as follows:

Γ ,σ ` v ::� T def= let dyn ty = option map obj ty ◦ heap σ
in ∃T ′. typeof dyn ty v = Some T ′ ∧ Γ `T ′�T

Γ ,σ ` vs[ ::� ]Ts def= ∀n T. Ts n = Some T −→
(∃v. vs n = Some v ∧ Γ ,σ ` v ::�T)

Γ ,σ `Obj C fs ::� 3 = Γ ,σ ` fs[ ::� ]table of (fields Γ C
Γ ,σ ` Arr T cs ::� 3 = Γ ,σ ` cs[ ::� ]option map (λi. T) ◦ cs
(x,σ) ::�(Γ ,Λ) def= Γ ,σ ` locals σ[ ::� ]Λ ∧

(∀a obj. heap σ a = Some obj −→ Γ ,σ ` obj ::� 3 ) ∧
(∀a. x = Some(XcptLoc a) −→ Γ ,σ ` Addr a ::�Class(SXcpt Throwable))

The expression (option map obj ty ◦ heap σ) a calculates the dynamic type of
the object (if any) at address a on the heap. Note that the conformance relation is
defined such that it does not take into account inaccessible variables, i.e. values
that occur in the state but not in the corresponding component of the static
environment. Among others, this frees us from explicitly deallocating exception
parameters after a catch clause.

With the help of the notions just introduced, we can express the propositions
we aim to prove as follows. In the context of a well-formed program, the execution
of a well-typed statement transforms a state conforming to the environment into
another state that again conforms to the environment:
E = (Γ ,Λ) ∧ wf prog Γ ∧ E ` s::3 ∧ σ ::�E ∧ Γ ` σ −s→ σ′ −→ σ′ ::�E

Analogously, the evaluation of a well-typed expression preserves the conformance
of the state to the environment where, unless an exception has occurred, the value
of the expression conforms to its static type:
E = (Γ ,Λ) ∧ wf prog Γ ∧ E ` e::T ∧ σ ::�E ∧ Γ ` σ −e�v→ (x′,σ′) −→
(x′,σ′) ::�E ∧ (x′ = None −→ Γ ,σ′ ` v ::�T)

The validity of these two formulas will result as trivial corollaries from the
main theorem, given next.
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Main Theorem and Proof. To prove the intended type soundness theorems
given above, we utilize rule induction on the derivation on the execution of
statements and the evaluation of expressions. As these depend on each other, we
must deal with statements and expressions simultaneously. In addition, in order
to obtain a suitable induction hypothesis, we have to strengthen the propositions
by adding the auxiliary “heap extension” predicate � (defined below) and
introducing universal quantifications explicitly at several positions. As a result,
the main theorem looks quite formidable, yet we attempt to cast it into words:

wf prog Γ −→
(Γ ` (x,σ) −c → (x′,σ′) −→

∀Λ. (x,σ) ::�(Γ ,Λ) −→
(Γ ,Λ) ` c::3 −→
(x′,σ′) ::�(Γ ,Λ) ∧ σ �σ′

∧
(Γ ` (x,σ) −e�v→ (x′,σ′) −→

∀Λ. (x,σ) ::�(Γ ,Λ) −→
∀T. (Γ ,Λ) ` e::T −→

(x′,σ′) ::�(Γ ,Λ) ∧ σ �σ′ ∧ (x′ = None −→ Γ ,σ′ ` v ::�T))

For a well-formed program Γ , if the execution of a statement transforms one
state into another then for all local environments Λ, if the the statement is well-
typed according to the environment (Γ ,Λ) and the first state conforms to it, so
does the second state, and the new heap is an extension of the old one. The same
holds for expressions, but additionally the value of the expression conforms to
its type, in case there is no exception.

The “heap extension” is a pre-order on states of type st ⇒ st ⇒ bool, where
σ�σ′ means that any object existing on the heap of σ also exists on σ′ and
has the same type there. (If we considered garbage collection, we would have
to restrict this proposition to accessible objects.) The heap extension property
holds for any transition of the operational semantics, which turns out to be
necessary in our inductive proof.

σ�σ′ def= ∀a obj. heap σ a = Some obj −→
∃obj′. heap σ′ a = Some obj′ ∧ obj ty obj′ = obj ty obj

The proof of the main type soundness theorem is by far the heaviest. At the
top level, it consists of currently 21 cases, one for each evaluation rule, where

– 8 cases can be solved rather directly (e.g. from the induction hypothesis),
– 7 cases require just simple lemmas on the structure of the state, and
– the remaining 6 cases require extensive reasoning on the characteristic prop-

erties of the constructs concerned.

Most of this reasoning is independent of the operational semantics itself and can
be tackled separately, which keeps the main proof manageable.
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Consequences. A corollary of type soundness is that method calls always ex-
ecute a suitable method, i.e. a ‘method not understood’ run-time error is im-
possible. This property can be stated more formally: for a well-formed program
and a state that conforms to the environment, if an expression of reference type
(which plays the role of the target expression for the method call considered)
evaluates without an exception to a non-null reference, and if for that (static)
type and a given signature a method is available, the dynamic method lookup
for the same signature according to the class instance pointed at by the reference
value yields a proper method body:

E = (Γ ,Λ) ∧ wf prog Γ ∧ E ` e::RefT T ∧ σ ::�E ∧ Γ ` σ −e�a′→ Norm σ′ ∧
a′ 6= Val Null ∧ dynT = fst (the Obj (heap σ′ (the Addr a′))) ∧
mheads Γ T sig 6= {} −→ ∃m. cmethd Γ dynT sig = Some m

This implies that in a well-formed context, in every instance of the evaluation
rule for method calls, the function cmethd returns a proper method body.

As it stands, the type soundness theorem does not directly say anything about
non-terminating computations, which might lead to the conclusion that it is
useless for the type-safety of reactive systems and looping programs. Fortunately,
the theorem guarantees type-safety even in such cases if one accepts the following
meta-level reasoning. An infinite computation can be interrupted after any finite
number of computation steps, for example by introducing a counter of steps
and raising an exception when a given value has been reached. The theorem
implies that the state resulting from interrupting the computation after any finite
number of statements executed conforms to the environment. Together with
the fact that there is no single non-terminating statement, the whole (infinite)
computation can be concluded to be type-safe.

In addition to the evaluation semantics, we plan to define a transition seman-
tics and prove both styles equivalent (for finite computations). The transition
semantics will be less concise and abstract, but allows type soundness to be
formulated as a subject reduction property, which is more natural for infinite
computations. More importantly, it seems to be unavoidable to describe concur-
rency (and I/O).

6 Experience and Statistics

Recalling our design goals stated at the end of §2, we comment how far we have
reached them and share some of the lessons learned during the project.

Faithfulness to the official language specification. HOL’s expressiveness
enables us to formalize the Java specification quite naturally and directly,
without facing any severe obstacles. There is almost a one-to-one correspon-
dence between the concepts given in the specification and those defined in
Bali. As far as we could tell, all the messy well-formedness conditions in-
herited from the language specification are actually needed somewhere in
the proofs. This inspires confidence in the adequacy of both the specification
and our formalization.
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We do not yet have tools for automatically generating executable code from
our theories, which would be an additional help in validating our formaliza-
tion. The importance of such a mechanism became very obvious when we
uncovered a mistake in our formalization (which was not present in [NO98]
but was introduced by modifications) when symbolically executing the ex-
ample in this article in Isabelle: the list returned by function fields was in
reverse order. Although the type soundness proof itself was an excellent de-
bugging mechanism which caught many minor and some major mistakes, it
failed to detect the wrong order because type soundness is independent of
the order in which fields are inherited. In the original language specification
we did not find any significant errors, but some omissions and unneeded
restrictions, which we lifted.

Succinctness and simplicity. Our policy to restrict the number of features
considered and to make straightforward simplifications that do not diminish
the expressiveness of the language has lead to a clear and straightforward
formalization. Mixfix syntax and mathematical fonts as offered by Isabelle
also contribute greatly to moderately readable definitions and theorems.

The facility to conduct concise proofs strongly depends on the formal-
ization. In our case, the use of the (also more elegant) evaluation semantics
saved us from a lot of trouble, while the intricacies of a transition semantics
faced by Drossopoulou and Eisenbach [DE97] lead to several mistakes that
were finally corrected during Syme’s machine-checked proof [Sym97b], but
at the expense of additional concepts.

Maintainability and extendibility. Unless the language changes drastically,
modifications tend to be of a local nature, but only if both the formalization
and the proofs are reasonably structured. As always, modularity is the key
issue. But when the formalization is extended, even well-structured proofs
need to be modified, which remains a tedious job. Higher-level proof scripts
and more automation are some of the answers. A dedicated mechanism for
change management exploring and fixing the impact of modifications would
also help.

We are reasonably happy with the modularity of our work. For instance,
Martin Büchi [BW98] has adpoted the formalization (including the proofs),
extended it to handle compound types, and proved the type-safety of the
augmented language, all of which worked very smoothy.

Adequacy for the theorem prover. Theorem provers are notoriously sensi-
tive to the precise formulation of definitions and theorems. Thus the two
goals of maximal automation of proofs and maximal abstractness of defini-
tions are sometimes in conflict. In a number of cases this meant that although
we could start with an abstract definition, we had to derive consequences
which were better suited for the available proof procedures. Although we
are far from satisfied with the current status of Isabelle’s proof procedures
(for example, the handling of assumptions during simplification, or the ne-
cessity to expand tuples and similar datatypes by hand), they are basically
adequate for the task at hand. Nevertheless, more automation is necessary
and feasible by extending the capabilities of Isabelle itself.



152 David von Oheimb and Tobias Nipkow

Statistics. We spent two months (estimated net time) developing and maintain-
ing our formalization, and the Isabelle theory files produced add up to about
1200 lines of well-documented definitions. To conduct and maintain the type
soundness proof with all necessary lemmas, it took us roughly three months of
work and about 2400 lines of proof scripts.

7 Conclusion

The reader has been exposed to large chunks of a formal language specification
and a proof of type soundness and may need to be reminded of the benefits. Even
including the slight generalizations mentioned at the beginning of §4, we did not
discover a loop-hole in the type system. But we had not seriously expected this
either. So what have we gained over and above a level of certainty far beyond
any paper-and-pencil proof?

We view our work primarily as an investment for the future. For a start,
it can serve as the basis for many other mechanized proofs about Java, e.g. as
a foundation for the work by Dean [Dea97] or for compiler correctness. More
importantly, we see machine-checked proofs as an invaluable aid in maintaining
large language designs (or formal documents of any kind). It is all very well to
perform a detailed proof on paper once, but in the face of changes and extensions,
the reliability of such proofs begins to crumble. In contrast, we developed the
design incrementally, and Isabelle reminded us where proofs needed to be modi-
fied. This has shown to be important, for example when we extended Bali with
full exception handling. It will continue to help us further: apart from adding
the last important Java features missing from Bali, e.g. threads, we also plan to
use Bali as a vehicle for experimental extensions of Java such as parameterized
types [MBL97,OW97,AFM97].

Despite our general enthusiasm for machine-checked language designs, a few
words of warning are in order:

– Bali is still a half-way house: not a toy language any more, but missing
many details and some important features of Java.

– The Java type system is, despite subclassing, simpler than that of your av-
erage functional language: whereas the type checking rules of Java are al-
most directly executable, the verification of ML’s type inference algorithm
against the type system requires a significant effort [NN97]. The key compli-
cation there is the presence of free and bound type variables, which requires
complex reasoning about substitutions. VanInwegen [Van97] reports similar
difficulties in her formalization of the type system and the semantics of ML.

– Theorem provers, and Isabelle is no exception, require a certain learning
effort due to the machine-oriented proof style. Recent moves towards a more
human-oriented proof style like Syme’s DECLARE system [Sym97a] promise
to lower this hurdle. However, as Harrison [Har97] points out, both proof
styles have their merits, and we are currently investigating a combination.
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In a nutshell: although machine-checked language designs for the masses are still
some way off, this article demonstrates that they have definitely become a viable
option for the expert.
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Abstract A structural operational semantics of a significant sublan-
guage of Java is presented, including the running and stopping of threads,
thread interaction via shared memory, synchronization by monitoring
and notification, and sequential control mechanisms such as exception
handling and return statements. The operational semantics is paramet-
ric in the notion of “event space” [6], which formalizes the rules that
threads and memory must obey in their interaction. Different computa-
tional models are obtained by modifying the well-formedness conditions
on event spaces while leaving the operational rules untouched. In par-
ticular, we implement the prescient stores described in [10, §17.8] which
allow certain intermediate code optimizations, and prove that such stores
do not affect the semantics of properly synchronized programs.

1 Introduction

The object-oriented programming language Java offers simple and tightly in-
tegrated support for concurrent programming. In Java’s model of concurrency
multiple threads of control run in parallel and exchange information by operating
on objects which reside in a shared main memory. A precise informal descrip-
tion of this model is given in the Java language specification [10]. Other notable
references are [4] and [12].

This paper presents a formal semantics of a significant sublanguage of Java
including the running and stopping of threads, thread interaction via shared
memory, synchronization by monitoring and notification, and sequential control
mechanisms such as exception handling and return statements. Here we focus
on the dynamic semantics of Java and leave a detailed treatment of the static,
type-related aspects of the language, e.g. class declarations, to a followup paper.

Our semantics is given in the style of Plotkin’s structural operational seman-
tics (SOS) [15]. In SOS, which has been used in the past for describing SML
[13], evaluation is driven by the syntactic structure of programs. This allows a
powerful proof technique for semantic analysis: structural induction. The idea
inspiring the present work is that the semantics of real concurrent languages such
as Java, with complex, interacting control features can be given in full detail by
means of simple structural rules.
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One of the difficulties in modelling concurrent Java programs consists in
capturing the complex interplay of memory and thread actions during execution.
Each thread of control has, in Java, a private working memory in which it
keeps its own working copy of variables that it must use or assign. As the
thread executes a program, it operates on these working copies. The main
memory contains the master copy of each variable. There are rules about when
a thread is permitted or required to transfer the contents of its working copy
of a variable into the master copy or vice versa. The process of copying is
asynchronous. There are also rules which regulate the locking and unlocking
of objects, by means of which threads synchronize with each other. All this is
described precisely in [10, §17] in terms of eight kinds of low-level actions: Use,
Assign, Load , Store, Read , Write, Lock , and Unlock . Here is an example of a
rule from [10, §17.6, p. 407] involving locks and variables. Let T be a thread, V
a variable and L a lock:

“Between an Assign action by T on V and a subsequent Unlock action by
T on L, a Store action by T on V must intervene; moreover, the Write action
corresponding to that Store must precede the Unlock action, as seen by the
main memory.”

These rules impose constraints on any implementation of Java so as to allow
a correct exchange of information among threads. On the other hand they
intentionally leave much freedom to the implementor, thus permitting certain
standard hardware and software techniques to improve the speed and efficiency
of concurrent code. Therefore, it is only on the given rules that the programmer
should rely to predict the possible behaviour of a concurrent program. Likewise,
it is only the given rules that should constrain the possible execution traces
generated by a correct operational semantics.

The above considerations led us to base our semantics on the notion of event
space. These correspond roughly to configurations in Winskel’s event structures
[21] which are denotational, non-interleaving models of concurrent languages.
The use of such structures in (interleaving) operational semantics is new. It al-
lows us to give an abstract, “declarative” account of the Java thread model while
retaining the virtues of a structural approach. This description is a straight for-
mal paraphrase of the rules of [10]. Event spaces were introduced in [6], where we
showed that their use in modelling multi-threading preserves the naive seman-
tics of “sequential” computations (i.e. computations where one thread interacts
synchronously with the memory).

Basing our description of Java on the finely grained notion of event allowed
us to observe phenomena which may be not readily seen when more abstract
approaches are taken. For example, we realized that the asynchrony of commu-
nication between main memory and working memories (viz. the loose coupling of
Read and Load actions, and similarly of Store and Write) is actually observable
in Java. Let threads θ1 and θ2, respectively running the code

(θ1) synchronized(p) { p.y = 2; } a = p.x; b = p.y; c = p.y;
(θ2) synchronized(p) { p.y = 3; p.y = 100; } p.x = 1;
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share a main memory in which p.x = p.y = 0, and let their working memories
be initially empty. No parallel execution of θ1 and θ2 in which main and working
memories interact synchronously would possibly allow the values 1, 2 and 3 to
be assigned respectively to a, b and c. Any model of execution not capable of
producing a run with this assignment of values, indeed possible as we show in
Section 2.3, provides maybe a correct implementation, but cannot be considered
correct as semantics of Java.

The operational semantics presented below is parametric in the notion of
event space. This allows different computational models to be obtained by mod-
ifying the well-formedness conditions on event spaces while leaving the opera-
tional rules untouched. To show the flexibility of this approach we study the
“prescient” store actions introduced in [10, §17.8]. Such actions allow optimiz-
ing compilers to perform certain kinds of code rearrangements. A bisimulation
is given to prove that such rearrangements preserve the semantics of properly
synchronized programs (see also [17]).

Related work. Several other semantics of sublanguages of Java are available in the
literature. Much work has also been done on the semantics of the Java Virtual
Machine [7, 16, 18]; this is one half of a formal semantics of the language, the
other half being a description of a Java-to-Virtual Machine bytecode compiler,
not available to date.

In this volume Drossopoulou and Eisenbach [8] give a “small-step” structural
operational semantics which covers roughly the sequential part of our sublan-
guage of Java; their work, which is mainly concerned with proving type sound-
ness, has been formalized by Syme [19]. Von Oheimb and Nipkow [14] also deal
with a sequential sublanguage of Java and give a formal proof of type safety. A
noteworthy difference between [8] and [14] is that the latter follows a “big-step”
approach. In [9] Flatt, Krishnamurthy and Felleisen investigate the semantics of
operators for combining Java classes (so-called “mixins”). All these semantics
focus on type soundness for a sequential portion of Java.

As for multi-threading, non-structural descriptions based on abstract state
machines (see [11]) are given by Börger and Schulte [5], and by Wallace [20].

Synopsis. Section 2 describes and formalizes the Java memory-threads commu-
nication protocol. Section 3 presents our event-based, structural operational
semantics of Java. Section 4 studies the notion of prescient store action. Loose
ends and future research are discussed in Section 5.

2 Event Spaces

In this section we describe and formalize the memory-threads communication
protocol of Java. This is done by writing the rules of [10, §17] as simple logical
clauses (Section 2.2) and by adopting them as well-formedness conditions on
structures called event spaces (Section 2.4). The latter are used in the opera-
tional judgements to constrain the applicability of some operational rules. An
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example of event space is given in Section 2.3, describing the “1-2-3” parallel
run of the threads θ1 and θ2 introduced above.

2.1 Actions and Events

A formal notion of event is given below in terms of five sets of entities:

– {Use, Assign, Load , Store, Read , Write, Lock , Unlock}, the action names;
– Thread id, the thread identifiers;
– Obj, the objects;
– LVal, the left values (or “variables,” following [10]) and
– RVal, the (right) values.

Intuitively, Use and Assign actions do just what their names suggest, oper-
ating on the private working memories. Read and Load are used for a loosely
coupled copying of data from the main memory to a working memory and dually
Store and Write are used for copying data from a working memory to the main
memory. Lock and Unlock are for synchronizing the access to objects.

Formally, an action is either a triple (A, θ, o), where A ∈ {Lock , Unlock}, θ
is a thread (identifier) and o is an object, or a 4-tuple of the form (A, θ, l, v),
where A ∈ {Use, Assign, Load , Store, Read , Write}, l is a variable, v is a value
and θ is as above. When A ∈ {Use, Assign, Load , Store}, the tuple (A, θ, l, v)
records that the thread θ performs an A action on l with value v, while, if
A ∈ {Read , Write}, it records that the main memory performs an A action on
l with value v on behalf of θ. If A is Lock or Unlock , (A, θ, o) records that
θ acquires, or respectively relinquishes, a lock on o. Actions with name Use,
Assign, Load , Store, Lock and Unlock are called thread actions, while Read ,
Write, Lock and Unlock are memory actions.

Events are instances of actions, which we think of as happening at different
times during execution. We use the same tuple notation for actions and their
instances: the context clarifies which one is meant. When no confusion arises we
may omit components of an action or event which are not immediately relevant
in the context of discourse: so (Read , l) stands for (Read , θ, l, v), for some θ and
v. Given a thread θ, we write α(θ) for a generic instance of a thread action
performed by θ. Similarly, β(x) indicates a generic instance of a memory action
involving a location or object x.

2.2 The Rules of interaction

Here we formalize the rules of [10, Chapter 17], to which we refer for a detailed
discussion. These rules are translated into logical clauses describing the prop-
erties of a poset of events called the “poset of discourse.” The events of such a
poset, which are thought of as occurring in the given order, are meant to record
the activity of memory and threads during the execution of a Java program. We
assume that every chain of the poset of discourse can be counted monotonically:
a0 ≤ a1 ≤ a2 ≤ . . . . The clauses in our formalization have the form:

∀a ∈ η . (Φ ⇒ ((∃b1 ∈ η . Ψ1) ∨ (∃b2 ∈ η . Ψ2) ∨ . . . (∃bn ∈ η . Ψn)))
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where a and bi are lists of events, η is the poset of discourse and ∀a ∈ η . Φ
means that Φ holds for all tuples of events in η matching the elements of a (and
similarly for ∃bi ∈ η . Ψi). The clauses are abbreviated by adopting the following
conventions: quantification over a is left implicit when all events in a appear
in Φ; quantification over bi is left implicit when all events in bi appear in Ψi.
Moreover, a rule of the form ∀a ∈ η . (true ⇒ . . . ) is written a ⇒ (. . . ). When
the symbols θ and θ′ appear in a rule, we always assume that θ 6= θ′. Similarly
for values v and v′, and for events a and a′.

The rules are the following: The actions performed by any one thread are
totally ordered, and so are the actions performed by the main memory for any
one variable or lock [10, §17.2, §17.5].

α(θ), α′(θ) ⇒ α(θ) ≤ α′(θ) ∨ α′(θ) ≤ α(θ) (1)
β(x), β′(x) ⇒ β(x) ≤ β′(x) ∨ β′(x) ≤ β(x) (2)

Hence, the occurrences of any action (A, θ, x) are totally ordered in the poset
of discourse. We write η(A, θ, x) the subposet of η including only instances of
(A, θ, x).

A Store action by θ on l must intervene between an Assign by θ of l and a
subsequent Load by θ of l. Less formally, a thread is not permitted to lose its
most recent assign [10, §17.3]:

(Assign, θ, l) ≤ (Load , θ, l) ⇒ (Assign, θ, l) ≤ (Store, θ, l) ≤ (Load , θ, l) (3)

A thread is not permitted to write data from its working memory back to main
memory for no reason [10, §17.3]:

(Store , θ, l) ≤ (Store, θ, l)′ ⇒ (Store, θ, l) ≤ (Assign , θ, l) ≤ (Store, θ, l)′ (4)

Threads start with an empty working memory and new variables are created
only in main memory and are not initially in any thread’s working memory [10,
§17.3]:

(Use, θ, l) ⇒ (Assign, θ, l) ≤ (Use , θ, l) ∨ (Load , θ, l) ≤ (Use, θ, l) (5)
(Store, θ, l) ⇒ (Assign, θ, l) ≤ (Store, θ, l) (6)

A Use action transfers the contents of the thread’s working copy of a variable
to the thread’s execution engine [10, §17.1]:

(Assign, θ, l, v) ≤ (Use, θ, l, v′) ⇒
(Assign, θ, l, v) ≤ (Assign , θ, l)′ ≤ (Use , θ, l, v′) ∨
(Assign, θ, l, v) ≤ (Load , θ, l) ≤ (Use , θ, l, v′)

(7)

(Load , θ, l, v) ≤ (Use, θ, l, v′) ⇒
(Load , θ, l, v) ≤ (Assign, θ, l) ≤ (Use , θ, l, v′) ∨
(Load , θ, l, v) ≤ (Load , θ, l)′ ≤ (Use, θ, l, v′)

(8)
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A Store action transmits the contents of the thread’s working copy of a variable
to main memory [10, §17.1]:

(Assign, θ, l, v) ≤ (Store, θ, l, v′) ⇒
(Assign, θ, l, v) ≤ (Assign , θ, l)′ ≤ (Store, θ, l, v′)

(9)

The following rules require some events to be paired in the poset of discourse.
Let A and B be posets, and let f : A 
 B indicate that a function f is either
a monotonic injection A → B with downward closed codomain or the partial
inverse of a monotonic injection B → A with downward closed codomain. For
every poset η satisfying (1) and (2), for every thread θ, left value l and object
o, there exist unique functions

read ofη,θ,l : η(Load , θ, l) 
 η(Read , θ, l)

store ofη,θ,l : η(Write, θ, l) 
 η(Store, θ, l)

lock ofη,θ,o : η(Unlock , θ, o) 
 η(Lock , θ, o).

These are called the “pairing” functions. Indices are omitted when understood.
The function read of matches the n-th occurrence of (Load , θ, l) in η with the
n-th occurrence of (Read , θ, l) if such an event exists in η and is undefined oth-
erwise. Similarly for store of and lock of .

Each Load or Write action is uniquely paired with a preceding Read or Store
action respectively. Matching actions bear identical values [10, §17.2, §17.3]:

(Load , θ, l, v) ⇒ (Read , θ, l, v) = read of (Load , θ, l, v) ≤ (Load , θ, l, v) (10)
(Write, θ, l, v) ⇒ (Store , θ, l, v) = store of (Write, θ, l, v) ≤ (Write, θ, l, v) (11)

Rules (10) and (11) ensure that read of and store of are total. We call load of
and write of their partial inverses.

The actions on the master copy of any given variable on behalf of a thread are
performed by the main memory in exactly the order that the thread requested
[10, §17.3]:

(Store, θ, l) ≤ (Load , θ, l) ⇒ write of (Store, θ, l) ≤ read of (Load , θ, l) (12)

A thread is not permitted to unlock a lock it does not own [10, §17.5]:

(Unlock , θ, o) ⇒ lock of (Unlock , θ, o) ≤ (Unlock , θ, o) (13)

Rule (13) ensures that lock of is total. We write unlock of its partial inverse.
Only one thread at a time is permitted to lay claim to a lock, and moreover

a thread may acquire the same lock multiple times and does not relinquish
ownership of it until a matching number of Unlock actions have been performed
[10, §17.5]:

(Lock , θ, o) ≤ (Lock , θ′, o) ⇒ unlock of (Lock , θ, o) ≤ (Lock , θ′, o) (14)
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If a thread is to perform an Unlock action on any lock, it must first copy all
assigned values in its working memory back out to main memory [10, §17.6] (this
rule formalizes the quotation in the introduction):

(Assign, θ, l) ≤ (Unlock , θ) ⇒
(Assign, θ, l) ≤ store of (Write, θ, l) ≤ (Write, θ, l) ≤ (Unlock , θ)

(15)

A Lock action acts as if it flushes all variables from the thread’s working memory;
before use they must be assigned or loaded from main memory [10, §17.6]:

(Lock , θ) ≤ (Use, θ, l) ⇒
(Lock , θ) ≤ (Assign, θ, l) ≤ (Use, θ, l) ∨
(Lock , θ) ≤ read of (Load , θ, l) ≤ (Load , θ, l) ≤ (Use, θ, l)

(16)

(Lock , θ) ≤ (Store, θ, l) ⇒ (Lock , θ) ≤ (Assign, θ, l) ≤ (Store, θ, l) (17)

Discussion. Each of the above rules corresponds to one rule in [10]. Note that
the language specification requires any Read action to be completed by a corre-
sponding Load and similarly for Store and Write. The above theory does not
include clauses expressing such requirements because it must capture “incom-
plete” program executions (see Section 4). Except for read and store completion,
any rule in [10] which we have not included above can be derived in our axiom-
atization. In particular,

(Load , θ, l) ≤ (Store , θ, l) ⇒ (Load , θ, l) ≤ (Assign, θ, l) ≤ (Store, θ, l) (∗)

of [10, §17.3] holds in any model of the axioms. In fact, by (6) there must
be some Assign action before the Store; moreover, one of such Assign must
intervene in between the Load and the Store, because otherwise, from (1) and
(3), there would be a chain (Store, θ, l) ≤ (Load , θ, l) ≤ (Store , θ, l) with no
Assign in between, which contradicts (4). Similarly, the following rule of [10,
§17.3] derives from (10) and (11):

(Load , θ, l) ≤ (Store, θ, l) ⇒ read of (Load , θ, l) ≤ write of (Store, θ, l)

Clauses (6) and (17) simplify the corresponding rules of [10, §17.3, §17.6] which
include a condition (Load , θ, l) ≤ (Store , θ, l) to the right of the implication.
This would be redundant because of (∗).

2.3 Example

We briefly illustrate the above formal rules on the example given in the intro-
duction, where two threads

(θ1) synchronized(p) { p.y = 2; } a = p.x; b = p.y; c = p.y;
(θ2) synchronized(p) { p.y = 3; p.y = 100; } p.x = 1;

start with a main memory where both instance variables p.x and p.y have value
0, and with empty working memories, and interact so that the values 1, 2 and 3
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are eventually assigned to a, b, and c respectively. We shall run part of this
example through our operational rules in Section 3.7. Figure 1 describes this
run as a poset of events, whose ordering is represented by the arrows. The actions
of the two threads and of the main memory on the two instance variables p.x
and p.y are aligned vertically in four columns. We let o be the object denoted
by p, while x and y stand for the left values of p.x and p.y respectively.

Since all actions performed by the same thread and by the memory on the
same variable must be totally ordered, each column of Figure 1 is a chain. More-
over, some memory actions must occur before or after some thread actions. For
example, a (Write, θ1, y, 2) must come after (Assign , θ1, y, 2) because, as dictated
by the structure of the program, an Unlock follows the assignment p.y = 2, and
hence, by (15), θ1’s working copy of y must be written in main memory before
the Unlock and after a corresponding Store. Note that not all the assigned val-
ues must be stored in main memory. For example, it would have been legal to
omit (Store, θ2, y, 3) and (Write, θ2, y, 3); in this case, however, the value 3 would
have never been passed to θ1. Similarly, not all the values used by a thread must
be first loaded from main memory: in the example no (Load , θ1, y, 2) precedes
(Use, θ1, y, 2).

As stated in the introduction, the above assignments to a, b and c would
not be possible if communication between main and working memories where
“synchronous,” that is if no other event were allowed to happen between a Read
and a corresponding Load or, equivalently, if these two actions were executed as
a single atomic step (and similarly for Store and Write). Assume in fact that
there is a synchronous run producing a = 1, b = 2, and c = 3. Since 3 must
be assigned to c, an action (Read , θ1, y, 3) must occur, and moreover it must be
after θ2 writes 3 and before it writes 100 in the master copy of y. Hence, by (15),
(Read , θ1, y, 3) must occur while θ2 is executing the synchronized block. Again
by (15), a (Store, θ1, y, 2) must occur before θ1 exits its synchronized block;
moreover this Store must occur before (Read , θ1, y, 3), otherwise the value 3
would be lost, and therefore θ1 must enter its synchronized block before θ2.
Then, in order to get the value 1 for a, the assignment a = p.x must occur
after θ2 has left the block, it has assigned, stored and written 1 in x, and after
θ1 has read and loaded such value in its working copy of x. However, by the
time θ1 can load 1 in x, the value of y in its working memory must already be 3,
because a (Read , θ1, y, 3) occured while θ2 was executing the synchronized block.
Therefore, to assign 2 to b, θ1 can neither rely on the content of it’s working
copy of y, nor on the master copy in main memory, which, by now, must contain
100.

2.4 Event Spaces

An event space is a poset of events every chain of which can be counted monoton-
ically (a0 ≤ a1 ≤ a2 ≤ . . . ) and satisfying conditions (1) to (17) of Section 2.2.

Event spaces serve two purposes in our operational semantics: On the one
hand they provide all the information needed to reconstruct the working mem-
ories (which in fact do not appear in the operational judgements). On the other



An Event-Based Structural Operational Semantics of Multi-threaded Java 165

(Lock , θ1, o)

(Assign, θ1, y, 2)
?

(Store, θ1, y, 2)
?

(Write, θ1, y, 2)
-

(Unlock , θ1, o)
?

-
�

(Lock , θ2, o)

(Assign, θ2, y, 3)
?

(Store, θ2, y, 3)
?

(Write, θ2, y, 3)
? �

(Assign, θ2, y, 100)
?

(Read , θ1, y, 3)
?

(Store, θ2, y, 100)
?

(Write, θ2, y, 100)
? �

(Unlock , θ2, o)
?-

(Assign, θ2, x, 1)
?

(Store , θ2, x, 1)
?

(Write, θ2, x, 1)
�

(Read , θ1, x, 1)
?

(Load , θ1, x, 1)
? �

(Use , θ1, x, 1)
?

(Use, θ1, y, 2)
?

(Load , θ1, y, 3)
?

(Use, θ1, y, 3)
?

Figure 1. An event space for Example 2.3
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hand event spaces record the “historical” information on the computation which
constrains the execution of certain actions according to the language specifica-
tion, and hence the applicability of certain operational rules (see Section 3.4).

Given two event spaces (X,≤X) and (Y,≤Y ), we say that (X,≤X) is a con-
servative extension of (Y,≤Y ) when Y ⊆ X and ≤Y ⊆ ≤X and, for all a, b ∈ Y ,
a ≤X b implies a ≤Y b.

To adjoin a new event a to an event space η = (X,≤X), we use an operation ⊕
defined as follows: η⊕a denotes nondeterministically an event space η′ = (Y,≤Y )
such that:

– η′ is a conservative extension of η, with Y = X ∪ {a};
– if a = α(θ) is a thread action performed by θ, then a′ ≤Y a for all thread

actions a′ = α′(θ) by θ in η′;
– if a = β(x) is a memory action on x, then a′ ≤ a for all memory actions

a′ = β′(x) on x in η′.

If no event space η′ exists satisfying these conditions, then η⊕a is undefined. For
example, by (5), the term η⊕(Use , θ, l) is defined only if a suitable (Assign , θ, l)
or (Load , θ, l) occurs in η. If η is an event space and a = (a1, a2, . . . , an) is a
sequence of events, we write η ⊕ a for η ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an.

As little ordering may be added to an event space by the operation ⊕ as
is required by the rules of interaction: indeed two expressions η ⊕ a ⊕ b and
η ⊕ b⊕ a may denote the same event space. This reflects the fact that the same
concurrent activity may be described by different sequences of interleaved events.
More ordering can also be introduced than strictly dictated by the rules. For
example, the expression (Read , θ, o)⊕ (Lock , θ, l, v)⊕ (Load , θ, l, v) may produce
an event space {(Lock , θ, o) ≤ (Read , θ, l, v) ≤ (Load , θ, l, v)}: although no rule
enforces that (Lock , θ, o) ≤ (Read , θ, l, v), it better be so in view of rule (16) if a
(Use, θ, l) is to be further added to the space.

3 Operational Semantics

The present paper focuses on the dynamic semantics of Java. Of course, the
behaviour of a program may depend on type information obtained from static
analysis. Part of this information we assume is retrievable at run-time from the
main memory (see Section 3.1), part goes to enrich the syntactic terms upon
which the operational semantics operates (see Section 3.2).

In Java every variable and every expression has a type which is known at
compile-time. The type limits the possible values that the variable can hold or
expression can produce at run-time. Adopting the terminology of [10], every
object belongs to a class (the class of the object, the one which is mentioned
when the object is created). Moreover, the values contained by a variable or
produced by an expression should, by the design of the language, be compatible
with the type of the variable or expression. A value of primitive type (such as
booleans) is only compatible with that type (boolean), while a reference to an
object is compatible with any class type which is a superclass of the object’s
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class [10, §4.5.5]. We do not implement run-time compatibility checks in our
semantics (they can be added straightforwardly). For example, like in Java, we
do not check that the object produced by evaluating the expression e in throw e;
is compatible with Throwable. However, we do use type information wherever
it is needed to drive computation. An example is the execution of a try-catch
statement (see Section 3.8).

Java’s modifiers are not treated in the present paper. For example, we do
not consider static fields; these would require minor changes of the semantic
machinery. Similarly, synchronized methods can be easily implemented by using
synchronized statements (see Section 3.7), as remarked in [10, §8.4.3.5].

After introducing in Section 3.1 semantic domains such as stores and envi-
ronments, we describe a “compilation” function translating Java programs into
semantically enriched abstract syntax (Section 3.2). Next, we define operational
judgements (Section 3.3) and give the SOS rules which generate them. These
are presented in homogeneous groups (expressions, statements, exceptions, etc.)
in Section 3.4 to 3.10.

3.1 Semantic Domains

Primitive semantic domains. These are the building blocks of our operational
semantics, and nothing is assumed on the structure of their elements.

We call RVal the primitive domain of (right) values. These are produced by
the evaluation of expressions and can be assigned to variables. A distinguished
subset Obj of RVal is also given as primitive; we call its elements (references to)
objects. In particular, since threads are objects in Java, we choose the domain
Thread id of the previous section to be Obj. Right values come equipped with a
primitive function value mapping literals to the corresponding values.

value : Literal → RVal

In particular, null is the reference to the null object denoted by the literal null,
that is: null = value(null). Similarly, true = value(true) and so on.

In Java the object denoted by an expression e may contain several fields
with the same name i; then, the type of e decides on which field is actually
accessed by the expression e.i. An identifier together with a type are therefore a
non-ambiguous name for field access. We call FieldIdentifier, ranged over by f ,
the set of such pairs (see Table 1). The domain of left-values introduced in the
previous section is not primitive: an instance variable is addressed by a non-null
object reference o together with a field identifier f , and written o.f .

LVal = (Obj \ {null}) × FieldIdentifier

Store is the primitive domain of stores ranged over by µ. This domain comes
equipped with the following primitive semantic functions, where ClassType is as
in Appendix A:

new : ClassType× Store → Obj × Store
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upd : LVal× RVal× Store ⇀ Store
rval : LVal× Store ⇀ RVal.

Besides providing storage for variables, stores are assumed to contain infor-
mation produced by the static analysis of a program; typically: the names and
types of fields and methods for each class, the initial values of fields, the subclass
relation, and so on. This information does not change during execution and it
could alternatively be kept separate from stores.

Given a class type C and a store µ, the function new produces a new object
of type C with suitably initialized instance variables, and returns it in output
together with µ updated with the new object. We write:

o ∈µ C,

dropping µ when understood, to mean that o is a reference to an object in µ of a
class type which is compatible with C. We also assume that the partial function
init : FieldIdentifier × Store ⇀ RVal returns the initial values for an object’s
fields. The domain of this function is the set of pairs (f, µ) where f = (i, C) and
i is an appropriate field for C in µ.

The function upd updates a store, while rval gets the right-value associated
in a store with a given left-value. These functions are partial: they are undefined
on the left-values o.f where f is not an appropriate field for o in the given store.
We write µ[l 7→ v] and µ(l) for upd(l, v, µ) and rval(l, µ) respectively.

A rather weak axiomatization of stores is given below by using a binary
predicate � (written infix). The meaning of e1 � e2 is that if e1 is defined, then
so is e2 and they denote the same value. By e1 ' e2 we mean that both e1 � e2

and e2 � e1 hold.

µ(l) � µ′(l) where new (C, µ) = (o, µ′)
init((i, C), µ) � µ′(o.(i, C)) where new (C, µ) = (o, µ′)

µ[l 7→ v](l) � v

µ[l′ 7→ v](l) ' µ(l) if l 6= l′

µ[l 7→ v′][l 7→ v] � µ[l 7→ v]
µ[l′ 7→ v′][l 7→ v] ' µ[l 7→ v][l′ 7→ v′] if l 6= l′

µ[l 7→ µ(l)] � µ

Finally, Throws is the primitive domain of exceptional results. Upon occur-
rence of an exception, Java allows objects to be passed to handlers as “reasons”
for the exception. The primitive function

throw : Obj → Throws

turns an object into an exception throw(o) “with reason o.” Note that elements
of Throws are not right values.
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Environments and stacks. Environments are pairs (I, ρ) where I is a subset of
Identifier ∪ {this} and ρ is a partial function from I to right values.

I = Identifier ∪ {this}
Env =

∑
I⊆I(I ⇀ RVal)

The component I of an environment (I, ρ), called the source of ρ, is meant to
contain the local variables of a block and the formal parameters of a method body
or of an exception handler. Environments are also used to store the information
on which object’s code is currently being executed: ρ(this). By abuse of notation,
we write ρ for an environment (I, ρ) and indicate with src(ρ) its source I. In
particular, we understand that ρ∅ is an empty environment (I, ρ∅) such that ρ∅(i)
is undefined for all i ∈ I. As usual, ρ[i 7→ v](j) = v if i = j and ρ[i 7→ v](j) ' ρ(j)
otherwise.

Let Stack be the domain of stacks of environments, and let the metavariable
σ range over this domain. The empty stack is written σ∅. The operation push :
Env×Stack → Stack is the usual one on stacks. An instance variable declaration
i = v binds v to i in the topmost environment of a stack σ; we write σ[i = v] the
result of this operation. The result of assigning v to i in the first environment
(I, ρ) of σ such that i ∈ I is written σ[i 7→ v]. The value associated with i in
such an environment is denoted by σ(i). More precisely:

σ[i = v] =

{
push(ρ[i 7→ v], σ′) if σ = push(ρ, σ′) and i ∈ src(ρ)
undefined otherwise;

σ[i 7→ v] =




push(ρ[i 7→ v], σ′) if σ = push(ρ, σ′) and i ∈ src(ρ)
push(ρ, σ′[i 7→ v]) if σ = push(ρ, σ′) and i /∈ src(ρ)
undefined otherwise;

σ(i) =




ρ(i) if σ = push(ρ, σ′) and i ∈ src(ρ)
σ′(i) if σ = push(ρ, σ′) and i /∈ src(ρ)
undefined otherwise.

3.2 Abstract Terms

The operational semantics presented below does not work directly on the Java
syntax of Appendix A, which we call concrete, but on the abstract terms pro-
duced by the grammar of Table 1. We call A-Term the set of abstract terms and
let t range over this set. Concrete and abstract syntax share the clauses defining
Identifier, Literal, ReturnType and ClassInstanceCreationExpression.

Some of the abstract terms, those which cannot be further evaluated, play
the role of results in our operational semantics. There are operational rules
which only apply when a result is produced ([assign4] for example). Some of the
results are called abrupt (see Section 3.8), as specified by the following grammar:

Results ::= ∗ | RVal | AbruptResults
AbruptResults ::= Throws | return RVal | return
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The terms return v and return are results produced by evaluating return state-
ments, respectively with and without a return value.

In most cases, abstract terms look just like their concrete counterparts. Some
abstract terms, however, are enriched with semantic information produced by
the static analysis of the Java program. For example, abstract blocks, which we
write {S}ρ, have two components: a sequence S of (abstract) statements and an
environment ρ containing the local variables of the block. We leave ρ implicit
when irrelevant.

Unlike with field identifiers, the method invoked by a method call e.i(. . . )
is only known at run-time, because it depends not only on the static type C of
e but on the dynamic class type of the object denoted by e. At compile-time,
however, a “most specific compile-time declaration” is chosen for i among the
methods of C and of its superclasses. The class where this declaration is found,
the types of the parameters and the return type are attached by the compiler to
i for later run-time usage (see [10, §15.11] for more detail). This motivates the
introduction of the domain MethodIdentifier in the abstract syntax. When the
rest is understood, we write just the identifier of a method identifier.

A recursive function ( )◦ translates concrete into abstract syntax. Terms
of the shared domains are translated into themselves. The concrete list-like
syntactic domains, such as BlockStatements, are translated in the obvious way
into abstract domains of the form K∗ and K+, where:

K∗ ::= () | KK∗

K+ ::= K | KK∗ .

Lists that are optional in a concrete term are translated into the empty list ()
when missing. In writing abstract terms we often omit the empty list.

The translation is generally trivial. For example: (throw(e))◦ = throw (e◦).
All non-trivial cases are listed in Table 2. We understand that a “declaration
environment” is implicitly carried along during translation, recording the static
information collected from processing class declarations. We express that an
expression e has declared type τ (in the current declaration environment) by
writing e : τ .

Every syntactic domain A-K of the abstract syntax corresponds to a concrete
domain K, and the translation is such that t ∈ K whenever t◦ ∈ A-K. There
are syntactic categories in the abstract syntax which have no counterpart in the
concrete; these are: Obj, RVal, Throws, FieldIdentifier, MethodIdentifier and
ActivationFrame. Of these only the latter is still to be discussed, which we do
in Section 3.5.

3.3 Operational Judgements

Configurations. A configuration represents the state of execution of a multi-
threaded Java program; therefore, it may include several abstract terms, one for
each thread of execution. Each thread has an associated stack. We call M -term
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A-Statement ::= ∗ | ; | A-Block | A-StatementExpression ;
| synchronized(A-Expression ) A-Block
| A-IfThenStatement | AbruptResults
| throw A-Expression ; | A-TryStatement
| return ; | return A-Expression ;

A-Block ::= { A-BlockStatement∗ } Env
A-BlockStatement ::= A-LocalVariableDeclaration ; | A-Statement

A-LocalVariableDeclaration ::= Type A-VariableDeclarator+

A-VariableDeclarator ::= Identifier = A-Expression
A-Expression ::= RVal | Throws | Literal | Identifier | this

| A-FieldAccess | ClassInstanceCreationExpression
| A-MethodInvocation | ActivationFrame
| A-Assignment | UnaryOperator A-Expression
| A-Expression BinaryOperator A-Expression

A-FieldAccess ::= A-Expression . FieldIdentifier
FieldIdentifier ::= (Identifier , ClassType)

A-MethodInvocation ::= A-Expression . MethodIdentifier ( A-Expression∗ )
MethodIdentifier ::= (Identifier , ClassType , Type∗, ResultType)
ActivationFrame ::= (MethodIdentifier , A-Block)

A-Assignment ::= A-LeftHandSide = A-Expression
A-LeftHandSide ::= Identifier | A-FieldAccess

A-StatementExpression ::= A-Assignment | ClassInstanceCreationExpression
| A-MethodInvocation | ActivationFrame

A-TryStatement ::= try A-Block A-CatchClause+

| try A-Block A-CatchClause∗ finally A-Block
A-CatchClause ::= catch (Type Identifier ) A-Block

A-IfThenStatement ::= if (A-Expression ) A-Statement

Table 1. Abstract syntax

{ S }◦ = { S◦ }(I,ρ∅) where I is the set of local variables
declared in S

(catch (τ i) b)◦ = catch (τ i) { S }(I∪{i},ρ∅) where {S }(I,ρ∅) = b◦

((e))◦ = e◦

(e.i)◦ = e◦.f where e : τ and f = (i, τ)
(e.i(E))◦ = e◦. m(E◦) where m = (i, C, T , τ ) and the

“compile-time declaration” of i is found
in C and has signature T → τ

i◦ =




i if i appears in the scope of a local
variable declaration with that name;

this.f otherwise, where this : τ and f = (i, τ).

Table 2. Translation to abstract syntax
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a partial map from thread identifiers to pairs (t, σ), where t is an abstract term
and σ is a stack. We let the metavariable T range over M -terms:

T : Thread id ⇀ A-Term× Stack.

When we assume that θ is not in the domain of T we write T | (θ, t, σ) for the
M -term T ′ such that T ′(θ) = (t, σ) and T ′(θ′) ' T (θ′) for θ′ 6= θ, where ' is as
in Section 3.1.

A configuration of the operational semantics is a triple (T, η, µ) consisting
of an M -term T , an event space η and a store µ. In writing configurations, we
generally drop the parentheses and all parts that are not immediately relevant in
the context of discourse; for example, we may write just “t, σ, η” to mean some
configuration (T | (θ, t, σ), η, µ). Configurations are ranged over by γ.

Operational semantics. The operational semantics is the smallest binary relation
- on configurations which is closed under the rules of Section 3.4 to 3.10.

These are, in fact, rule schemes, whose instances are obtained by replacing
the metavariables with suitable semantic objects. Rules with no premise are
called axioms. Related pairs of configurations are written γ1

- γ2 and called
operational judgements or transitions.

Rule conventions. In writing an axiom γ1
- γ2 we focus only on the relevant

parts of the configurations involved, and understand that whatever is omitted
from γ1 remains unchanged in γ2. For example, we understand that the axiom
; - ∗ stands for T | (θ, ; , σ), η, µ - T | (θ, ∗, σ), η, µ. On the other hand, rules
with a premise are read by assuming that whatever changes occur in the omitted
parts of the premise (besides thread identifiers) also occur in the conclusion
(unless otherwise specified). For example, we understand that:

e1
- e2

e1 ; - e2 ;
stands for

T1 | (θ, e1, σ1), η1, µ1
- T2 | (θ, e2, σ2), η2, µ2

T1 | (θ, e1 ; , σ1), η1, µ1
- T2 | (θ, e2 ; , σ2), η2, µ2

.

Metavariable convention. The metavariables used below (in variously deco-
rated form) in the rule schemes range as follows: k ∈ Literal, i ∈ Identifier,
f ∈ FieldIdentifier, m ∈ MethodIdentifier, o ∈ Obj, l ∈ LVal, v ∈ RVal,
V ∈ RVal∗, e ∈ A-Expression, E ∈ A-Expression∗, τ ∈ Type, C ∈ ClassType,
d ∈ A-VariableDeclarator, D ∈ A-VariableDeclarator∗, s ∈ A-BlockStatement,
S ∈ A-BlockStatement∗, b ∈ A-Block, h ∈ A-CatchClause, H ∈ A-CatchClause∗,
c ∈ Results, and q ∈ AbruptResults.

3.4 “Silent” Actions

We call Load , Store, Read and Write the “silent” actions because they may
spontaneously occur during the execution of a Java program without the inter-
vention of any thread’s execution engine (no term evaluation). In some cases
such an occurrence is subject to the previous occurrence of other actions. In



An Event-Based Structural Operational Semantics of Multi-threaded Java 173

the operational semantics, the relevant “historical” information is recorded in a
configuration’s event space. Note that, given an event space η and an action a,
only if η ⊕ a is defined, and hence the occurrence of a in η complies with the
requirements of the language specification, can a rule η - η ⊕ a be fired. This
point is crucial for a correct understanding of the rules [read, load, store, write]
for silent actions given in Table 3, as well as [assign5, access3] of Table 4 and
[syn2, syn4] of Table 8.

The same argument explains how is the [store] rule able to “guess” the right
value to be stored: the axioms (6) and (9) of Section 2 guarantee that the
apparently arbitrary value v in η - η ⊕ (Store, θ, l, v) is in fact the latest value
assigned by θ to l. In Section 4, changing the event space axioms, we let [store]
make a real guess on v, by looking “presciently” into the future.

[read]1 T, η, µ - T, η ⊕ (Read , θ, l, µ(l)), µ

[load]1 T, η - T, η ⊕ (Load , θ, l, v)

[store]1 T, η - T, η ⊕ (Store, θ, l, v)

[write]1 T, η, µ - T, η ⊕ (Write, θ, l, v), µ[l 7→ v]

1 if T (θ) is defined

Table 3. “Silent” actions

3.5 Expressions

Table 4 contains the rules for expressions.
To evaluate the assignment to an instance variable successfully, the left hand

side is evaluated first by repeatedly applying [assign1], until a left value is pro-
duced. Then the right hand side is evaluated by [assign3], and the assignment of
the resulting value is recorded in the event space by [assign5]. Note that [assign1]
does not apply to an assignment e1 = e when e1 is a left value l because, even
though l may further evaluate to a right value v by [access3], v = e would not be
a legal abstract term. The same argument applies below to rules such as [syn3]
and so forth. Note that evaluating null.f to throw(o) in rule [access2] would
not allow exceptions thrown to the left hand side of an assignment to propagate
outward in the structure of the program (see Section 3.8). To wit, throw(o) is an
expression result while throw(o).f can be viewed as an “A-LeftHandSide result.”

The rules [assign2] and [assign4] deal with assignments to local variables. In
the present semantics an attempt to access a field of the null object raises a
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NullPointerException [access2]. A more elaborate treatment is required when
static fields are considered (see [10, §15.10.1]).

The evaluation of a method invocation e.m(e1, . . . , ek) is done in three steps:
First e, e1, . . . , ek are evaluated (in this order). If evaluation is successful, the
actual method to be invoked is then determined from m and from the type of
the object denoted by e. We deal with non-successful evaluations in Section 3.8.
Finally, the actual method call is performed. We assume that the run-time
retrieval of methods is performed by a function

methodBody : ClassType×MethodIdentifier × Store ⇀ A-Block× Identifier∗

which receives in input the class of the object for which the method is being
invoked, a method identifier m and a store (containing the class declarations),
and returns, together with the body of m, the list of its formal parameters. This
function is partial: methodBody(C, m, µ), where m = (i, C ′, T , τ ), is undefined if
no user-defined method i with signature T → τ can be found in µ, inspecting the
classes which lie between C and C ′ in the class hierarchy. In that case m could
still be a Java built-in method, like start or stop, otherwise a compile time
error would have occured. Separate operational rules are provided for built-in
methods (see Table 12 for example). Note that all such rules are subject to the
condition that methodBody is undefined (which it must be for final methods),
thus implementing method overriding.

Method calls produce activation frames, the elements of ActivationFrame
in Table 1. The block of a frame represents the body of the invoked method.
Activation frames are produced at run-time by the function

frame : Obj × MethodIdentifier × RVal ∗ × Store ⇀ ActivationFrame

defined as follows: frame(o, m, V, µ) = (m, {S}ρ[this 7→o][I 7→V ]), for an object o
of type C, if methodBody(C, m, µ) = ({S}ρ, I); otherwise it is undefined. Note
that, since the type of the null object has no name (see [10, §4.1]), frame is always
undefined when applied to null. Since it is the “static” information contained
in µ which is used by frame, we generally leave this parameter implicit. The
operational rules for evaluating activation frames are given in Table 5.

Start configuration. Let C be the only class in a program called P to be public,
and let the compilation of P produce an initial store µ∅ recording all relevant
type information. Let C have a method main with a string parameter (this is
a simplifying assumption: Java requires an array of strings, but arrays are not
treated in this paper). We understand that a command line “java P arg” given
as input to the computer produces a start configuration

(θ, (main, {S }ρ[i 7→v]), σ∅), ∅, µ

where ∅ is the empty event space, (θ, µ) = new(Thread, µ∅), v = value(arg), and
methodBody(C, main, µ∅) = ({S }ρ, i).
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[assign1]
e1

- e2

e1 = e - e2 = e
[assign2]

e1
- e2

i = e1
- i = e2

[assign3]
e1

- e2

l = e1
- l = e2

[assign4] i = v , σ - v , σ[i 7→ v]

[assign5] (θ, l = v), η - (θ, v), η ⊕ (Assign, θ, l, v)

[access1]
e1

- e2

e1 . f - e2 . f
[access2]1 null . f, µ - throw(o) . f, µ′

[access3] (θ, l), η - (θ, v), η ⊕ (Use, θ, l, v)

[this] this , σ - σ(this) , σ [var] i , σ - σ(i) , σ

[new] new C ( ), µ - new (C, µ) [lit] k - value(k)

[unop1]
e1

- e2

op e1
- op e2

[unop2] op v - op(v)

[binop1]
e1

- e2

e1 bop e - e2 bop e
[binop2]

e1
- e2

v bop e1
- v bop e2

[binop3] v1 bop v2
- bop(v1, v2)

[parseq1]
e1

- e2

e1 E - e2 E
[parseq2]

E1
- E2

v E1
- v E2

[call1]
e1

- e2

e1.m(E) - e2.m(E)
[call2]

E1
- E2

o.m(E1) - o.m(E2)

[call3] o.m(V ) - frame(o, m, V ) [call4]1 null.m(V ), µ - throw(o), µ′

1 where (o, µ′) = new(NullPointerException, µ)

Table 4. Expressions

[frame]
b1

- b2

(m, b1) - (m, b2)
[exit1] (m, { }) ; - ∗

[exit2] (m, { return S }) ; - ∗ [exit3] (m, { return v S }) - v

Table 5. Activation frames
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[decl]
e1

- e2

τ i = e1 D; - τ i = e2 D;

[locvardecl1] τ i = v d D; , σ - τ d D; , σ[i = v]

[locvardecl2] τ i = v ; , σ - ∗ , σ[i = v]

Table 6. Local variable declarations

[expstat1]
e1

- e2

e1 ; - e2 ;
[expstat2] v ; - ∗

[skip] ; - ∗ [if1]
e1

- e2

if(e1) s - if(e2) s

[if2] if(true) s - s [if3] if(false) s - ∗

Table 7. Expression statements, skip and conditional

[statseq]
s1

- s2

s1 S - s2 S
[∗] ∗S - S

[block1] { } - ∗

[block2]
S1, push(ρ1, σ1) - S2, push(ρ2 , σ2)

{S1}ρ1 , σ1
- {S2}ρ2 , σ2

[syn1]1
e1

- e2

synchronized (e1) b - synchronized (e2) b

[syn2]
e, η1

- o, η2

(θ, synchronized (e) b), η1
- synchronized (o) b, η2 ⊕ (Lock , θ, o)

[syn3]
b1

- b2

synchronized (o) b1
- synchronized (o) b2

[syn4]
b, η1

- c, η2

(θ, synchronized (o) b), η1
- c, η2 ⊕ (Unlock , θ, o)

1 if e2 /∈ RVal

Table 8. Blocks and synchronization
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3.6 Local Variable Declarations

The rules for local variable declarations are given in Table 6.

3.7 Statements

Table 7 contains the rules for expression statements, skip and conditional state-
ments. Table 8 contains the rules for blocks and synchronization. The statements
for control manipulation (return and exception try) are treated in Section 3.8.

Example. Consider the two threads θ1 and θ2 of Example 2.3 running in parallel
with initially empty working memories, empty event space ∅, and stacks mapping
the local variable p to o. We write t2 the portion of program run by θ2. In the
example θ1 enters its synchronized block first. Its evaluation is described in
Figure 2, where stacks are omitted.

3.8 Control mechanisms

In Java, the evaluation of expressions and statements may have a normal or
an abrupt completion. Abrupt completion may be caused by the occurrence
of an exceptional situation during execution, such as an attempt to divide an
integer by 0; it can also be forced by the program by means of a throw or a
return statement. For example, the execution of throw e;, where the expression
e evaluates to some object o, throws an exception “with reason o” to be caught
by the nearest dynamically-enclosing catch clause of a try statement (see [10,
§11.3]). Similarly, the execution of return e; returns control, together with the
value of e, to the nearest dynamically-enclosing activation frame.

The interactions between these two mechanisms are described in [10, §14.15,
§14.16, §14.18], to which we refer for more detail. The rules for exception han-
dling are given in Table 9 and Table 11. Uncaught exceptions are not treated in
the present paper.

Some of the rules for the try statement include a finally clause written
in square brackets, to be regarded as “optional:” the brackets indicate that
the clause should be ignored if the statement at hand has no finally block.
A similar convention is adopted for the return statements and results, where
return [v] ; accounts for both cases where some value v is and is not returned
(and similarly for the results).

Table 10 contains a grammar of syntactic contexts which pop control out
upon occurrence of an abrupt evaluation result, with no further ado. Contexts
of the form ϑ [ ], called “pop-out” contexts, are used in the rule scheme [pop]
to propagate abrupt evaluation results outwards through the structure of a pro-
gram. All syntactic constructs which are not represented in a pop-out context
respond to such results with some computational action described by a separate
semantic rule. Examples of such constructs are the synchronized and the try
statements.
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[pop]1 ϑ [q] - q [exit4] (m, { throw(o) S }) - throw(o)

[ret1]
e1

- e2

return e1 ; - return e2 ;
[ret2] return [v] ; - return [v]

[throw1]
e1

- e2

throw e1 ; - throw e2 ;
[throw2] throw o ; - throw (o)

[try1] try { } H - ∗

[try2] try { return [v] S } H [finally { }] - return [v]

[try3]2
b1

- b2

try b1 H [finally b] - try b2 H [finally b]

[try4]3
b - { throw(o) S }

try b catch (τ i) { S′ }ρ H [finally b′] -
try { throw(o) S } catch (τ i) {S′ }ρ[i 7→o] H [finally b′]

[try5]3
b1

- b2

try { throw (o)S } catch (τ i) b1 H [finally b] -
try { throw (o)S } catch (τ i) b2 H [finally b]

[try6]3
b - c

try { throw (o)S } catch (τ i) b H - c

[try7]4
b - { throw(o)S }

try b catch (τ i) b′ -
try { throw (o)S } catch (τ i) b′

[try8]4
try b H1 [finally b1] - try { throw(o)S } H2 [finally b2]

try b catch (τ i) b′ H1 [finally b1] -
try { throw (o)S } catch (τ i) b′ H2 [finally b2]

[try9]4 try { throw (o)S } catch (τ i) b [finally { }] - throw (o)

[try10]4
try { throw (o)S } H [finally b] - c

try { throw (o)S } catch (τ i) b H [finally b] - c

1 where ϑ [ ] is a “pop-out” context
2 if b2 6= { throw(o) S }
3 if o ∈ τ
4 if o /∈ τ

Table 9. Exceptions and return
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ϑ [ ] ::= [ ] .f = e | i = [ ] | l = [ ]
| op [ ] | [ ] bop e | v bop [ ]
| [ ] .f | [ ] . m(E) | o. m ( ξ [ ] )
| τ i = [ ] D ; | [ ] ; | { [ ] S }
| if ( [ ] ) s | return [ ] ;
| throw [ ] ; | synchronized( [ ] ) b

| try { } H finally { [ ] S }
| try { throw (o)S } finally { [ ] S′ }
| try { throw (o)S } catch (τ i) { [ ] S′ } H finally { } if o ∈ τ

| try { throw (o)S } catch (τ i) { q′S′ } H finally { [ ] S′′ } if o ∈ τ

| try { return [v] S } H finally { [ ] S′ }

ξ [ ] ::= [ ] E | v ξ [ ]

Table 10. “Pop-out” contexts

[fin1]
b1

- b2

try { } H finally b1
- try { } H finally b2

[fin2]
b - c

try { } H finally b - c

[fin3]
b1

- b2

try { return [v] S } H finally b1
-

try { return [v] S } H finally b2

[fin4]1
b1

- b2

try { throw (o)S } catch (τ i) { } H finally b1
-

try { throw (o)S } catch (τ i) { } H finally b2

[fin5]1
b - c

try { throw (o)S } catch (τ i) { } H finally b - c

[fin6]1
b1

- b2

try { throw (o)S } catch (τ i) { q S′ } H finally b1
-

try { throw (o)S } catch (τ i) { q S′ } H finally b2

[fin7]
b - { throw(o)S }

try b finally b′ - try { throw (o)S } finally b′

[fin8]
b1

- b2

try { throw (o)S } finally b1
-

try { throw (o)S } finally b2

1 if o ∈ τ

Table 11. finally
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(θ1 , synchronized(p) { p.y = 2; } . . . ) | (θ2, t2), ∅, µ

(θ1 , synchronized(o) { p.y = 2; } . . . ) | (θ2 , t2), {(Lock , θ1, o)}, µ

by [statseq,
?

syn2, var]

(θ1, synchronized (o) { o.y = 2; } . . . ) | (θ2 , t2), {(Lock , θ1, o)}, µ

by [statseq, syn3, block2, statseq,
?

expstat1, assign1, access1, var]

(θ1, synchronized(o) { o.y = 2; } . . . ) | (θ2, t2), {(Lock , θ1, o)}, µ

by [statseq, syn3, block2, statseq,
?

expstat1, assign3, lit]

(θ1, synchronized (o) { 2; } . . . ) | (θ2, t2), {· · · ≤ (Assign, θ1, o.y, 2)}, µ

by [statseq, syn3, block2, statseq,
?

expstat1, assign5]

(θ1 , synchronized(o) { ∗ } . . . ) | (θ2 , t2), {· · · ≤ (Assign , θ1, o.y, 2)}, µ

by [statseq, syn3, block2, statseq
?

expstat2]

(θ1, synchronized(o) { } . . . ) | (θ2, t2), {· · · ≤ (Assign, θ1, o.y, 2)}, µ

by [statseq, syn3, block2,
?

∗]

(θ1 , synchronized(o) { } . . . ) | (θ2, t2), {· · · ≤ (Store, θ1, o.y, 2)}, µ
?

by [store]

(θ1, synchronized(o) { } . . . ) | (θ2, t2), {· · · ≤ (Write, θ1, o.y, 2)}, µ[o.y 7→ 2]
?

by [write]

(θ1, ∗ a = p.x; . . . ) | (θ2, t2), {· · · ≤ (Unlock , θ1, o)}, µ[o.y 7→ 2]

by [statseq,
?

syn4, block1]

(θ1, a = p.x; . . . ) | (θ2, t2), {· · · ≤ (Unlock , θ1, o)}, µ[o.y 7→ 2]
?

by [∗]

(. . . )

Figure 2. Run of Example 2.3

3.9 Starting and Stopping Threads

The notion of configuration introduced in Section 3.3 is extended here to include
a set Θ of thread identifiers, whose elements identify threads which are bound
to stop. We write Θ | θ for Θ ∪ {θ} when we assume that θ is not in Θ. A
configuration is now redefined to be a 4-tuple of the form:

(T, Θ, η, µ).



An Event-Based Structural Operational Semantics of Multi-threaded Java 181

All operational rules introduced so far have no interaction with the mechanism
for stopping threads; in view of the conventions introduced in Section 3.3, by
which parts of a configuration may be left implicit when not directly involved in
the evaluation, the rules of the previous sections can be read with no editing in
the new operational setting with Θ.

Table 12 presents the rules for the methods start() and stop() of the class
Thread. The interplay of stopping threads and Java’s notification system is
discussed in Section 3.10.

[start1]1,2 θ.start(); , Θ - ∗ | (θ, frame(θ, run, ()); , σ∅), Θ

[start2]1,3 θ.start(); , Θ - ∗ | (θ, ∗, σ∅), Θ \ {θ}

[start3]1,4,5 T | (θ′, θ.start(); ), µ - T | (θ′, throw(o)), µ′

[stop1] θ.stop(); , Θ - ∗, Θ ∪ {θ}

[stop2]6 (θ, t), Θ | θ, µ - (θ, throw(o)), Θ, µ′

1 if frame(θ, start, ()) is undefined
2 if θ /∈ Θ
3 if θ ∈ Θ or frame(θ, run, ()) is undefined
4 if T (θ) is defined or θ = θ′
5 where (o, µ′) = new(IllegalThreadStateException, µ)
6 where t is a redex and (o, µ′) = new(ThreadDeath, µ)

Table 12. start() and stop()

The rules [start1], [start2] and [start3] can only be applied if the method
start() has not been overloaded, that is if frame(θ, start, ()) is undefined.
Since stop() is declared as final in class Thread and thus cannot be redefined,
no analogous side condition is required in the rules for stop(). The rule [start1]
only applies if no thread with the same identifier as the one to be started is
currently running; this is implicit in the use of “|”. If such a thread identifier
exists an IllegalThreadStateException is thrown by [start3].

If a thread θ is started and frame(θ, run, ()) is undefined, the built-in run
method of the class Thread is invoked. The latter simply calls the run method
of θ’s run object, that is the runnable object given as argument to the expression
that created θ [10, §20.20], if such an object exists, and do nothing otherwise
[10, §20.20.13]. Since, for simplicity, we only consider class instance creation
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expressions with empty parameter list, and hence have no run objects associated
with threads, θ does nothing when started if frame(θ, run, ()) is undefined. This
explains [start2]. This rule also captures the case of a thread which has been
stopped before having ever been started (indeed possible in Java [10, §20.20.15]).
If the thread is eventually started, it will immediately terminate and its name
removed from Θ.

As a result of the invocation of a stop method of class Thread an asyn-
chronous exception is thrown. Java allows a small but bounded amount of
execution to occur between the method call and the actual throw of the excep-
tion [10, §11.3.2]. We allow such execution to be arbitrarily long: at any time
during execution a thread whose stop method has been invoked (by [stop1])
may decide that the time has come to throw a ThreadDeath exception. The
exception is thrown by [stop2] as deep inside the structure of the program as is
necessary to allow a catch by a possibly enclosing try-catch statement. This is
ensured by the side condition that t is a redex. These are the terms of the form:

Redex ::= i = v | l = v | null.f | null.f = e | l | this | i | new C () ; | k

| op v | v1 bop v2 | o.m (V ) | τ i = v d D ; | τ i = v ; | v ; | ;
| if (v) s | { } | (m, { }) | throw (o) ; | return [v] ; | try{ } H

| θ.start () ; | θ.stop () ; | o.wait () ; | o.notify () ;

As throw v and return [v] are not contained in this list of redices, a thread cannot
stop as long as it is performing a transfer of control, i.e. performing pop-out rules.

A more committed policy for stopping threads may be adopted either by
requiring fairness on [stop2] or by enforcing such a condition by means of a
counter binding the amount of execution steps allowed before this rule is applied.

No rule removes threads from a configuration: when they finish execution,
threads keep dwelling in an M -term together with the result that they produced.

3.10 Wait and notification

In Java every object has a “wait set.” A thread θ who owns at least one, say n
locks on an object o can add itself on that object’s wait set by invoking o.wait().
This thread would then lose all its locks on o and lie dormant until some other
thread wakes it up by invoking o.notify(). Before resuming computation, θ
must get its n locks back, possibly competing with other threads in the usual
manner. When a thread goes to sleep in a wait set it is said to change its state
from running to waiting. When notified, such a thread changes its state from
waiting to notified, and finally from notified to running when it obtains its locks
back.

Let the letters R, W and N stand respectively for running, waiting and
notified. The notion of M -term introduced in Section 3.3 is extended here by
endowing each thread with a record of its state. The record of a running thread
consists just of the identifier R. The record of a thread which is waiting or
notified consists of a triple (X, o, n), where X is the identifier W or N , o is the
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object on whose wait set the thread is waiting and n is the number of locks that
the thread acquired on that object.

An M -term is now redefined to be a partial function mapping thread identi-
fiers to triples (t, ε, σ), where t and σ are as before and ε is a state record. The
notation T | (θ, t, ε, σ) extends that of Section 3.3 in the obvious way. When ε is
a triple (X, o, n) we write T | (θ, t, X, o, n, σ) for T | (θ, t, (X, o, n), σ) and omit
the parts that are not immediately relevant as usual when no confusion arises.

The operational rules introduced so far apply to M -terms of the new form by
agreeing that, unless otherwise specified, evaluation applies to running threads
(which can nevertheless change state when evaluated). More precisely: if the
state record of a thread is omitted in the left hand side of a judgement, then it
is understood to be R. For example, [expstat1] is now read
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T1 | (θ, e1, R, σ1), Θ1, η1, µ1
- T2 | (θ, e2, ε, σ2), Θ2, η2, µ2

T1 | (θ, e1 ; , R, σ1), Θ1, η1, µ1
- T2 | (θ, e2 ; , ε, σ2), Θ2, η2, µ2

while [skip] is now read T | (θ, ; , R, σ), Θ, η, µ - T | (θ, ∗, R, σ), Θ, η, µ. More-
over, silent actions only apply to running threads; more precisely: the side con-
dition in Table 3 changes now to “if T (θ) = (t, R).” Finally, threads run when
started, that is: the state of θ in the right hand side of [start1] and [start2] is R.

[wait1]1 (θ, o.wait(); ), η, µ - (θ, throw(o′)), η, µ′

[wait2]2 (θ, o.wait(); , R), η - (θ, ∗, W, o, n), η ⊕ (Unlock , θ, o)n

[notify1]1 (θ, o.notify(); ), η, µ - (θ, throw(o′)), η, µ′

[notify2]2 (θ, o.notify(); ) | (t, W, o), η - (θ, ∗) | (t, N, o), η

[notify3]3 T | o.notify(); - T | ∗

[ready] (θ, t, N, o, n), η - (θ, t, R), η ⊕ (Lock , θ, o)n

[stop3] (θ, t, W ), Θ | θ - (θ, t, N), Θ | θ

1 if locks(θ, o, η) = 0 and (o′, µ′) = new(IllegalMonitorException, µ)
2 if locks(θ, o, η) = n > 0
3 if T (θ) 6= (W, o) for all θ

Table 13. Wait sets and notification

The rules for the notification system are given in Table 13.
By the rules [wait1] and [notify1], an appropriate exception is thrown if a

thread attempts to operate on the wait set of an object on which it possesses no
locks. The expression locks(θ, o, η) denotes the number of locks that a thread
θ possesses on o in an event space η (the number of events (Lock , θ, o) with no
matching Unlock). By the rule [wait2] a thread θ can put itself in the wait set
of an object o. This step involves the release by θ of all its locks on o. Rule
[notify2] notifies a thread waiting in the wait set of an object o. Such a thread,
however, cannot run until all its locks on o are restored. This is done by [ready].
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Any notification on an object whose wait set is empty has no effect ([notify3]).
A waiting thread which has been stopped is woken up by [stop3].

Example. Figure 3 illustrates the interaction of the rules for wait and notification.
Consider the M -term

(θ, synchronized(p) { if(c) p.wait(); }, σ) |
(θ′, synchronized(p) { p.notify(); }, σ′).

Let t = synchronized(o) { ∗ } and t′ = synchronized(p) { p.notify(); }, let ∅
be the empty event space and η = {(Lock , θ, o) ≤ (Unlock , θ, o)}; let σ and σ′ be
stacks with σ(p) = σ′(p) = o and σ(c) = true. The stacks, which do not change
during execution, are omitted in the figure.

4 Prescient Event Spaces

The aim of this section is the formalization of the so-called “prescient stores”
of [10, §17.8] in our event space semantics. The specification claims that the
“prescient” semantics is conservative for “properly synchronized” programs. We
also formalize the intuitive notion of “proper synchronization” and prove this
claim.

The prescient store actions are introduced in [10, §17.8, p. 408] as follows:

“ . . . the store action [of variable V by thread T is allowed] to instead
occur before the assign action, if the following restrictions are obeyed:

– If the store action occurs, the assign is bound to occur. . . .

– No lock action intervenes between the relocated store and the assign.
– No load of V intervenes between the relocated store and the assign.

– No other store of V intervenes between the relocated store and the assign.
– The store action sends to the main memory the value that the assign

action will put into the working memory of thread T .

The last property inspires us to call such an early store action prescient : . . . ”

This section is an improved and corrected version of [17].

4.1 Prescient Event Space Rules

The specification of prescient stores [10, §17.8] seems to assume that it is known
which Store events are prescient and which prescient Store event is matched by
which Assign event (as if they would be e.g. re-arrangements of Store actions
in the old sense). We do not assume such knowledge but adopt a more general
approach introducing so-called labellings that allow us to use the “old” Store and
Assign events as introduced in Section 2.1 with an additional “labelling” that
states whether they are prescient or not. These labellings are not necessarily
unique but it is always possible to infer a labelling at run time. It will turn
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(θ, synchronized(p) { if(c) p.wait(); }, R) | (θ′, t′, R), ∅

(θ, synchronized(o) { if(c) p.wait(); }, R) | (θ′, t′, R), {(Lock, θ, o)}
?

by [syn2, var]

(θ, synchronized(o) { if(true) p.wait(); }, R) | (θ′, t′, R), {(Lock , θ, o)}

by [syn3, block2, statseq,
?

if1, var]

(θ, synchronized(o) { p.wait(); }, R) | (θ′, t′, R), {(Lock, θ, o)}

by [syn3, block2, statseq,
?

if2]

(θ, synchronized(o) { o.wait(); }, R) | (θ′, t′, R), {(Lock , θ, o)}

by [syn3, block2, statseq,
?

expstat1, call1, var]

(θ′ t′, R) | (θ, syn’d(o) { ∗ }, W, o, 1), {(Lock, θ, o) ≤ (Unlock , θ, o)}

by [syn3, block2, statseq,
?

wait2]

(θ′, synchronized(p) { p.notify(); }) | (θ, t, W, o, 1), η

=

(θ′, synchronized(o) { p.notify(); }, R) | (θ, t, W, o, 1), η⊕ (Lock , θ′, o)
?

by [syn2, var]

(θ′, synchronized(o) { o.notify(); }, R) | (θ, t, W, o, 1), η⊕ (Lock , θ′, o)

by [syn3, block2, statseq,
?

expstat1, call1, var]

(θ′, syn’d(o) { ∗ }, R) | (θ, syn’d(o) { ∗ }, N, o, 1), η⊕ (Lock , θ′, o)

by [syn3, block2, statseq,
?

notify2]

(θ′, syn’d(o) { }, R) | (θ, syn’d(o) { ∗ }, N, o, 1), η ⊕ (Lock , θ′, o)

by [syn3, block2,
?

∗]

(θ′, ∗, R) | (θ, synchronized(o) { ∗ }, N, o, 1), η ⊕ · · · ⊕ (Unlock , θ′, o)
?

by [syn4, block1]

(θ′, ∗, R) | (θ, synchronized(o) { ∗ }, R), η ⊕ · · · ⊕ (Lock , θ, o)
?

by [ready]

(θ′, ∗, R) | (θ, synchronized(o) { }, R), η ⊕ · · · ⊕ (Lock , θ, o)

by [syn3, block2,
?

by ∗]

(θ′, ∗, R) | (θ, ∗, R), W, η ⊕ · · · ⊕ (Unlock , θ, o)
?

by [syn4, block1]

Figure 3. Interaction of wait() and notify()
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out, however, that the semantics is independent of the choice of labellings, see
Corollary 4.7.

Prescient event spaces are defined, on the one hand, by a relaxation of the
event space rules: All rules which forbid prescient stores are cancelled and used
instead to define inductively a predicate that tells whether a Store event is
necessarily prescient. But, on the other hand, we have to add some rules to
ensure that a prescient Store corresponds to a relocated Store that obeyes the
old event space rules.

First, we define an abbreviation for the maximal event of type (A, θ, l), ir-
relevant of its fourth component, occurring before some other event a, and thus
write (A, θ, l) ≤L a if

(A, θ, l) ≤ a ∧
(
(A, θ, l)′ ≤ a ⇒ (A, θ, l)′ ≤ (A, θ, l)

)
If we write, however, (Store, θ, l, v) ≤L (Assign, θ, l, v), i.e. both events are
written with their values and those are identical, then we mean the maximal
(Store, θ, l, v) event with value v before (Assign , θ, l, v).

We define prescientη(Store, θ, l) to be valid if one of the rules (P1–P7) below
holds. The subscript η is usually omitted if it is clear from the context. Note
that Φ 6⇒ Ψ abbreviates ¬(Φ ⇒ Ψ) where we use the conventions of Section 2.2,
i.e. ¬(Φ ⇒ Ψ) is short for ¬∀a . (Φ ⇒ ∃b . Ψ) where a and b are lists of events
and a contains precisely all events occurring in Φ except the bound (Store , θ, l)
event.

(Store, θ, l)′ ≤ (Store, θ, l) 6⇒ (Store, θ, l)′ ≤ (Assign, θ, l) ≤ (Store, θ, l) (P1)

(Store, θ, l) 6⇒ (Assign, θ, l) ≤ (Store , θ, l) (P2)

(Assign , θ, l, v′) ≤ (Store, θ, l, v) 6⇒
(Assign , θ, l, v′) ≤ (Assign, θ, l)′ ≤ (Store, θ, l, v)

(P3)

(Lock , θ) ≤ (Store, θ, l) 6⇒ (Lock , θ) ≤ (Assign, θ, l) ≤ (Store, θ, l) (P4)

(Store, θ, l)′ ≤ (Store, θ, l) ∧ prescient((Store, θ, l)′) 6⇒
(Store, θ, l)′ ≤ (Assign , θ, l) ≤ (Assign, θ, l)′ ≤ (Store, θ, l)

(P5)

(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Load , θ, l) 6⇒
(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ (Load , θ, l)

(P6)

(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Unlock , θ) 6⇒
(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ write of ((Store, θ, l, v)′)

≤ (Unlock , θ) ∧ ¬prescient((Store, θ, l, v)′)
(P7)

Rules (P1–P4) are the negations of (4), (6), (9), and (17), respectively, that
forbid prescient Store events. Rule (P5) is sound because if there is only one
(Assign, θ, l, v) between two stores and the first is prescient, then by re-arranging
the prescient Store two Store events would follow each other without a triggering
Assign in between, which contradicts the old semantics. Rules (P6–P7) ensure
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that in cases where old event space rules (3) and (15) are violated, still a relocated
(i.e. prescient) Store exists which is responsible for storing the right value. So
e.g. (P6) states that if any Store between the last Assign before a Load and the
Load itself is necessarily prescient, then the last Store before the Assign must
also be prescient and thus responsible for fulfilling old (3) when relocated. Note
that it is sufficient to consider the last Assign before the Load (and the Unlock ,
respectively).

With respect to the other (old) event space laws, we keep rules (1), (2), (5),
(7–8), (10–14), and (16).

Rule (3) has to be adapted as follows, allowing prescient Stores on the right
hand side of an implication:

(Assign , θ, l, v) ≤L (Load , θ, l) ⇒(
(Assign , θ, l, v) ≤ (Store, θ, l, v) ≤ (Load , θ, l)

)
∨(

(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Load , θ, l)
) (3’)

and rule (15) analogously:

(Assign, θ, l, v) ≤L (Unlock , θ) ⇒(
(Assign, θ, l, v) ≤ (Store, θ, l, v) ≤ write of (Store, θ, l, v)

≤ (Unlock , θ) ∧ ¬prescient(Store, θ, l)
)

∨(
(Store, θ, l, v) ≤L (Assign, θ, l, v) ≤L (Unlock , θ) ∧
write of (Store, θ, l, v) ≤ (Unlock , θ)

)
(15’)

Both rules are used in cooperation with (P6–P7). Note that in the left branch
of the the disjunction in the conclusion of (3’) it is unnecessary to stipulate
¬prescient(Store, θ, l) since this will follow from (NP3) and (18) that will be
defined below.

We can also infer which Store events are necessarily not prescient: We define
the predicate non prescient(Store, θ, l) on the given event space η to be true if
one of the rules (NP1–NP3) is fulfilled.

∀a ∈ {(Lock ), (Load , l), (Store, l)} . (Store, θ, l, v) < a 6⇒
(Store, θ, l, v) ≤ (Assign, θ, l, v) < a

(NP1)

(Store, θ, l) ≤ (Store, θ, l)′ ∧ non prescient((Store, θ, l)′) 6⇒
(Store, θ, l) ≤ (Assign, θ, l) ≤ (Assign, θ, l)′ ≤ (Store, θ, l)′

(NP2)

(
(Assign, θ, l, v) ≤L (Unlock , θ) ∧

(Assign , θ, l, v) ≤ (Store, θ, l, v) ≤ (Unlock , θ)
)
6⇒(

(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ write of ((Store , θ, l, v)′)

≤ (Unlock , θ) ∧ ¬prescient((Store, θ, l, v)′)
)
∨(

(Store, θ, l, v)′′ ≤L (Assign, θ, l, v) ≤L (Unlock , θ) ∧
¬non prescient((Store, θ, l, v)′′)

)
(NP3)
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Rule (NP1) corresponds to the second, third, and fourth requirement in [10,
§17.8] (see top of Section 4), (NP2) to (P5), and (NP3) to (P7). If Assign ≤L

Unlock , such that the Assign is the last one before the Unlock , then (NP3) says
that if all Stores in between are prescient but one, then this one is necessarily
non prescient if the following holds: There is no matching Store before the
Assign or the last such is non prescient . This is a sound rule, because if the Store
of discourse were not non-prescient, then one might choose it to be prescient,
but then no last matching Store would occur before the Assign that could be
chosen prescient. In such a case the Assign would not have been stored before
the Unlock—not even by a prescient store—and hence the old semantics is not
preserved.

Notice that the predicate prescient propagates from past to present with the
exception of (P6–P7) which in some case needs to look back to the last non-
prescient Store, whereas non prescient is computed in the opposite direction.
Also observe that ¬non prescient(s) is not equivalent to prescient(s) for a Store
event s and hence also prescient(s) ∨ non prescient(s) does not always hold.

Finally, we add the new rule

(Store, θ, l) ⇒ ¬
(
prescient(Store, θ, l) ∧ non prescient(Store , θ, l)

)
(18)

according to the specification of prescient Store events. This rule in cooperation
with (NP1–NP3) prohibits that prescient Stores occur at places ruled out by the
specification.

Summing up, a prescient event space is a poset of events every chain of which
can be counted monotonically and satisfying conditions (1), (2), (3’), (5), (7–8),
(10–14), (15’), (16), and (18).

The non-deterministic operation ⊕ of Section 2.4 also works for prescient
event spaces (the only difference being that it defines a predicate on event spaces
that are prescient).

An event space is called complete if for all Read and Store events corre-
sponding Load and Write events exist (all load of and write of functions are
total; see the discussion at the end of Section 2.2). A prescient event space η is
called complete if additionally for any necessarily prescient (Store, θ, l, v) there
is a subsequent (Assign , θ, l, v). Note that it makes sense only for the final event
space of a reduction sequence to be complete. During execution, the matching
Assign for a prescient Store might not have happened. A complete prescient
event space fulfills the first and last requirement in [10, §17.8] (see top of Sec-
tion 4). A prescient event space Γ is called completable if there is a sequence of
events a such that Γ ⊕ a is complete.

4.2 Labellings

According to the definitions above even for complete prescient event spaces there
might be a Store event s in a given event space for which neither prescient(s)
nor non prescient(s) is derivable. We define so-called labellings which allow to
choose to a certain extent which Store shall be considered prescient and which
not.
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For a complete prescient event space η a labelling is a predicate ` on Stores
that obeys rules (L1–L4) below together with a corresponding matching function

passign of `
η,θ,l : {(Store, θ, l) ∈ η | `(Store, θ, l)} 
 η(Assign , θ, l)

that fulfills the axioms (M1–M5). Note that rule (M1) ensures that passign of
is total.

prescient(s) ⇒ `(s) (L1)
non prescient(s) ⇒ ¬`(s) (L2)

(P5) [`/prescient ] ⇒ `(Store, θ, l, v) (L3)
(NP3) [`/prescient,¬`/non prescient ] ⇒ ¬`(Store, θ, l, v) (L4)

(Store, θ, l, v) ∧ `(Store , θ, l, v) ⇒
(Store, θ, l, v) ≤ passign of `(Store, θ, l, v) = (Assign , θ, l, v)

(M1)

∀a ∈ {(Lock ), (Load , l), (Store, l)} . (Store, θ, l) < a ∧ `(Store, θ, l) ⇒
passign of `(Store, θ, l) ≤ a

(M2)

passign of `(Store, θ, l) ≤ (Store, θ, l)′ ∧ ¬`((Store, θ, l)′) ⇒
passign of `(Store, θ, l) ≤ (Assign, θ, l)′ ≤ (Store, θ, l)′

(M3)

(
(Store, θ, l, v) ≤L (Assign , θ, l, v) ≤L (Load , θ, l) ∧ `(Store, θ, l, v) 6⇒
(Assign, θ, l, v) ≤ (Store, θ, l, v)′ ≤ (Load , θ, l)

)
⇒ passign of `(Store, θ, l, v) = (Assign, θ, l, v)

(M4)

(
(Store, θ, l, v) ≤L (Assign , θ, l, v) ≤L (Unlock , θ) ∧ `(Store, θ, l, v) 6⇒

(Assign , θ, l, v) ≤ (Store, θ, l, v)′ ≤ write of ((Store , θ, l, v)′)

≤ (Unlock , θ) ∧ ¬`((Store, θ, l, v)′)
)

⇒ passign of `(Store, θ, l, v) = (Assign, θ, l, v)

(M5)

In rule (L3) we use “(P5) [`/prescient]” to abbreviate the axiom (P5) where
prescient is syntactically replaced by ` and the (bound) event (Store , θ, l, v) of
(P5) coincides with the one in the conclusion of (L3). The analogous convention
applies for (L4). Rule (L3) is necessary to propagate ` (as prescient) according
to (P5), and rule (L4) to propagate ¬` (as non prescient) according to (NP3).
Observe that one does not need similar rules in order to propagate (P7) and
(NP2), since those are already covered by (the contraposition of) rules (L4) and
(L3), respectively.

By rule (M3) one can never choose an Assign event as matching when its re-
arrangement would lead to a situation forbidden by the old event space rule (4),
i.e. where two Store events would follow each other. Rules (M4) and (M5) fix the
matching for the prescient Store in situations where rules (3’) and (15’) apply
but only the right disjunct in their conclusion is fulfilled. Note that for (M4–M5)



An Event-Based Structural Operational Semantics of Multi-threaded Java 191

the nested implication

(Φ 6⇒ Ψ) ⇒ passign of `(Store, θ, l, v) = (Assign, θ, l, v)

is read with the usual conventions for 6⇒ but (Store, θ, l, v) and (Assign , θ, l, v)
are obviously universally quantified outermost.

Lemma 4.1. For any complete prescient event space one can give a labelling.

Proof. We choose ` := prescient and show that it fulfills the labelling rules: (L1)
holds by definition of `, (L2) follows from (18), (L3) follows from (P5), and (L4)
can be shown by contradiction employing (15’), (P7), and (18).

For any (Store , θ, l) in the event space with `(Store , θ, l) there is a fol-
lowing matching (Assign, θ, l) event as the event space of discourse is com-
plete. So for passign of ` we can choose the function which maps any labelled
(Store, l) to the last following matching Assign before the first following event
a ∈ { (Load , l), (Lock), (Unlock), (Store, l) }, unless a = (Store, l) and ¬`(Store, l)
when the last but one such Assign is chosen which exists by (NP2). Then
passign of ` is a matching function by definition.

4.3 Prescient Operational Semantics

We obtain the prescient operational semantics from the old semantics of Section 3
just by switching from the event spaces of Section 2 to the prescient event spaces
of Section 4 keeping the operational rules untouched.

For the prescient operational semantics we write .. Moreover, let Conf.
denote the set of configurations with prescient event spaces, and Conf- those
according to the definition of - of Section 3.

Lemma 4.2. Any event space η (obeying the old rules) is also a prescient event
space, thus any old configuration is a new configuration, i.e., Conf- ⊆ Conf.,
and any reduction Γ - Γ ′ is also a prescient one, i.e. Γ . Γ ′ holds as well.

Proof. Assume η is an event space satisfying the old rules. By a simple induc-
tion, prescient(s) never holds for any Store event s in η. Thus η is a prescient
event space because the new rules form a subset of the old rules. Since the con-
figurations only differ in the event space definition and the rules of the semantics
are not changed at all, the other claims of the lemma now hold trivially.

Since we use labellings our operational semantics is very liberal. It accepts
reductions using Store events even if it is not clear during execution whether this
Store event is meant to be prescient or not. In such a case, however, the prescient
Store is not done as early as possible. Therefore, in practical cases, any Store
which is not recognized by the rules (P1–P7) can be considered non prescient .
This corresponds to choose the labelling to be simply prescient (cf. Lemma 4.1).
As a consequence, the labelling can be computed at run time. Due to (P6–
P7), however, it is not always possible to detect immediately whether a Store is
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prescient, sometimes one has to wait for a Load - or Lock event to happen. Also
the matching can be computed at run-time with a little lookahead, cf. (M4–M5).

By the proof of Lemma 4.1, however, labellings only exist for complete pre-
scient event spaces, hence, in the rest of the paper, any prescient event space Γ
is supposed to be completable. Any completion of Γ has a labelling and though
its restriction to Γ does not necessarily give a labelling, because (M1) obviously
need not be valid, it is easily checked that all the other rules for labellings still
hold. Thus for any completable prescient event space there exists a “partial”
labelling, which fulfills only (L1–L4) and (M2–M5). Therefore we can assume
that any completable prescient event space is endowed with a fixed (partial)
labelling ` that, for the sake of simplicity, will be exhibited in form of special
action names: pStore and pAssign. If `(Store, θ, l, v) holds then (Store , θ, l, v)
is denoted (pStore, θ, l, v) and analogously for the corresponding Assign we use
pAssign. This notation contains implicitly all information given by the matching
function, since by monotonicity of passign of for every (pStore , θ, l, v) the first
subsequent (pAssign , θ, l, v) must be the matching one.

4.4 Prescient Semantics is Conservative

The relation between the “normal” and the “prescient” semantics is described
in [10, §17.8, p. 408] as follows:

“The purpose of this relaxation is to allow optimizing Java compilers to
perform certain kinds of code rearrangements that preserve the semantics of
properly synchronized programs but might be caught in the act of performing
memory actions out of order by programs that are not properly synchronized.”

This has to be formalized in the sequel. The following notation, exemplified
for - only, will be used analogously for all kinds of arrows:

r- denotes a
one-step reduction with rule r; if e = (r1, . . . , rn) is a list of rules then

e-

denotes
r1- . . .

rn- ; if the list is irrelevant we write -∗. For rules that change
the event space we often decorate arrows with actions instead of rule names as
the latter are ambiguous.

First, we observe that . and - can not be bisimilar by definition since
. permits (prescient) Store-actions where - does not. But . cannot even

be bisimilar to the reflexive closure of -, since simulating a (pStore, θ, l) and
the following Writes by void steps leads to inequivalent configurations (since the
main memories will contain different values for l).

As a prerequisite for a simulation relation of type Conf- × Conf., we define
an equivalence on prescient configurations ∼ ⊆ Conf. × Conf. as follows:

(T, η, µ) ∼ (T ′, η′, µ′) ⇐⇒ T = T ′ ∧ (T, η, σ, µ) ↓ (T ′, η′, σ′, µ′)

(T, η, µ) ↓ (T ′, η′, µ′) ⇐⇒ ∀a . η ⊕ a↓ ⇔ η′ ⊕ a↓ ∧

∀e. (T, η, µ)
e
.c (T1, η1, µ1) ∧ (T ′, η′, µ′)

e
.c (T2, η2, µ2) ⇒ µ1 = µ2
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where a is any sequence of actions, e is a sequence of rules and (T, η, µ) .c

(T ′, η′, µ′) if (T, η, µ) .∗ (T ′, η′, µ′) such that η′ is complete. (For the sake of
simplicity we do not consider the extended configurations of Section 3.10.)

This equivalence relation is obviously preserved by the rules of the semantics:

Lemma 4.3. The relation ∼ is an equivalence relation such that if Γ1 ∼ Γ2

then Γ1
r
. Γ ′

1 iff Γ2
r
. Γ ′

2 for any rule r, and if such a reduction r exists then
Γ ′

1 ∼ Γ ′
2 holds.

In order to establish a bisimulation result, we must delay all the operations
which are possible due to a (pStore , θ, l, v) until the matching pAssign event.

But that will not work for all kinds of programs. Consider the following
example:

(θ, { synchronized(p) { p.x = 1; } }, σ) | (θ′, { p.x = 2; }, σ′)

with σ(p) = σ′(p) = o and l = o.x. Its execution may give rise to a sequence of
computation steps which contains the following complete subsequence of actions:

(Lock , θ, o), (Assign, θ, l, 1), (Store, θ, l, 1), (pStore, θ′, l, 2),
(Write, θ′, l, 2), (Write, θ, l, 1), (Unlock, θ, o), (pAssign, θ′, l, 2)

In a simulation the (pStore , θ′, l, 2) is illegal w.r.t. to the old event space definition
and can only be simulated by a void (i.e. delaying) step as well as the following
Write. Now the (Write, θ, l, 1) and the corresponding (Store , θ, l, 1) are bound to
occur before the Unlock . Finally, after the pAssign we must recover the pending
prescient (Store, θ′, l, 2) and its corresponding (Write, θ′, l, 2). According to this
simulation, l has value 2 in the global memory but the reduction via . yields
1 for l. Thus, both end-configurations are not equivalent.

Consequently, we have to restrict ourselves to “properly synchronized” pro-
grams. A multi-threaded program T is called properly synchronized if any (pre-
scient) event space in any possible configuration occurring during reduction ful-
fills the following axiom:

(Assign, θ, l), (Assign, θ′, l) ⇒
(Assign, θ, l) ≤ (Unlock , θ, o) ≤ (Lock , θ′, o) ≤ (Assign, θ′, l)

(19)

where the Assigns may correspond to prescient Store actions. Analogously,
an event space is called properly synchronized if it fulfills (19). A sufficient
condition for “properly synchronizedness” is obviously the syntactic criterion
that in a program shared variables may only be assigned in synchronized blocks.

Proper synchronization guarantees that between a prescient Store event and
its corresponding pAssign event no other thread can change the main memory:

Lemma 4.4. Let Γ be a properly synchronized complete prescient event space.
If θ 6= θ′ the following holds:

(pStore , θ, l) ≤ (Write, θ′, l) ⇒ passign of (pStore, θ, l) ≤ (Write, θ′, l)
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Proof. Let (pStore , θ, l) ≤ (Write, θ′, l) with θ 6= θ′ and let (pAssign , θ, l) =
passign of (pStore, θ, l).

First, assume that store of (Write, θ′, l) = (Store, θ′, l) ≤ (Write, θ′, l), for
a non-prescient (Store, θ′, l) such that we have (Assign, θ′, l) ≤ (Store, θ′, l)
by the negation of (P2). There is a maximal non-prescient (Assign, θ′, l) ≤L

(Store, θ′, l) such that by (P3) the fourth (value-)components of (Assign, θ′, l)
and (Store, θ′, l) are equal. Moreover, by (M3) no (pAssign, θ′, l) whatsoever can
occur between those two. If now

(pAssign , θ, l) ≤ (Unlock , θ, o) ≤ (Lock , θ′, o) ≤ (Assign, θ′, l)

we obviously have (pAssign, θ, l) ≤ (Write, θ′, l). Otherwise, from properly syn-
chronization, i.e. (19), it follows

(Assign , θ′, l) ≤ (Unlock , θ′, o) ≤ (Lock , θ, o) ≤ (pAssign , θ, l) (∗)

for a suitable (Unlock , θ′)–(Lock , θ) pair. We show that even

(Assign, θ′, l) ≤ (Store, θ′, l) ≤ write of (Store, θ′, l) ≤ (Unlock , θ′, o) (∗∗)

which proves the lemma since, by the negation of (NP3), we also have

(Lock , θ, o) ≤ (pStore, θ, l) ≤ (pAssign, θ, l)

which together with (∗) leads to a contradiction to our assumption that
(pStore, θ, l) ≤ (Write, θ′, l).

In order to prove (∗∗), first note that

(Store, θ′, l) ≤ (Unlock , θ′) ⇒
(Store, θ′, l) ≤ write of (Store , θ′, l) ≤ (Unlock , θ′)

holds in arbitrary prescient event spaces. To see this, it is sufficient to con-
sider the maximal (Store, θ′, l) ≤L (Unlock , θ′) by monotonicity of write of . By
(P7) and (M4) it is then impossible that there is also another (Assign, θ′, l)
or (pAssign , θ′, l) after (Store, θ′, l). There is a maximal (Assign, θ′, l) ≤L

(Store, θ′, l). Between those two events no (pAssign, θ′, l) can occur due to (M3),
hence (15’) is applicable and we are done.

For a proof of (∗∗) by contradiction, assume that

(Assign , θ′, l) ≤ (Unlock , θ′, o) ≤ (Store, θ′, l)

such that (Assign, θ′, l) ≤L (Unlock , θ′, o) follows. Then by (15’) we have

(Assign, θ′, l) ≤ (Store, θ′, l)′ ≤ write of ((Store , θ′, l)′) ≤ (Unlock , θ′)

since if we only had

(pStore , θ′, l, v) ≤L (Assign , θ′, l, v) ≤ (Unlock , θ′, o) ≤ (Store, θ′, l)
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the matching rule (M5) would be violated. By (P1), however, there must exist
a (pAssign , θ′, l) event such that

(Store, θ′, l)′ ≤ (pAssign, θ′, l) ≤ (Store, θ′, l).

which contradicts the assumed maximality of (Assign, θ′, l).
The second case that store of (Write, θ′, l) = (pStore , θ′, l) ≤ (Write, θ′, l) is

treated analogously.

In the rest of this subsection we formalize the already sketched simulation
idea. To that end, in the sequel ∆ (possibly with annotations) stands for con-
figurations in Conf- and Γ for new configurations in Conf.. Recall that any
old configuration is also a valid one in the new sense by Lemma 4.2. Ac-
cording to the observations above, we define a new reduction relation .- :
(Conf- × E∗) × (Conf- × E∗) where E = {(pStore), (Write), (Read)} by the
rules of (reds)–(redd) below. Note that we do not need to treat (Load) events
(cf. rule (NP3)). The corresponding .--configurations (∆, e) consist of an old
configuration ∆ ∈ Conf- plus a list of “pending” events e. Appending an event
a at the end of a list e is written e ◦ a. An additional operation splitθ,l(e) is
needed. Given a list of events e it yields a pair of lists (el, e

′) where both are
sublists of e; the sublist el is obtained from e by extracting all (pStore, θ, l),
(Write, θ, l) and (Read , θ′, l) events and simultaneously changing a (pStore , θ, l)
into (Store, θ, l); e′ is el’s complement w.r.t. e.

(∆, e) .
(pStore,θ,l,v)- (∆, e ◦ (pStore, θ, l, v)) (reds)

(∆, e) .
(Write,θ,l)- (∆, e ◦ (Write, θ, l, v)) if (pStore , θ, l, v) ∈ e ∧ (redw)

write of (pStore , θ, l, v) = (Write, θ, l, v)

(∆, e) .
(Read,θ′,l,v)- (∆, e ◦ (Read , θ′, l, v)) if (Write, θ, l) ∈ e (redr)

(∆, e) .
(pAssign,θ,l,v)- (∆′, e′) if splitθ,l(e) = (el , e

′) ∧

∆
(Assign,θ,l,v)- ∆1

el- ∆′
(reda)

(∆, e) .
r- (∆′, e) for any other case r if ∆

r- ∆′ (redd)

To relate configurations of . and .- reductions the simulation relation
≈ ⊆ Conf. × (Conf- × E∗) is defined as follows:

Γ ≈ (∆, e) if, and only if, (∆, e)↓ ∧ ∆
e
. Γ∆ ∧ Γ∆ ∼ Γ

where

(∆, e)↓ if, and only if, ∃∆′. (∆′, ε) .-∗ (∆, e)

i.e. Γ is equivalent to (∆, e) if e is obtained correctly by means of .- and Γ is
equivalent to the completion of ∆, usually called Γ∆, by executing the pending
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events in e. Note that . is used here for the sequence of events e, as e may
contain prescient Store events.

Below we use the following notation of a commuting diagram

Γ - Γ1

∼

Γ3

?
- Γ2

?

stating that Γ - Γ1
- Γ2 and Γ - Γ3

- Γ ′
2 and Γ2 ∼ Γ ′

2. This notation is
also used for any other kind of arrows.

Lemma 4.5. If Γ ≈ (∆, e) and Γ
r
. Γ ′, where r is as in case (redd) and Γ

stems from a properly synchronized program, then ∆
r- ∆′ and the diagram

∆
e

. Γ∆ ∼ Γ

∆′
?
r

e
. Γ ′

∆

r
5

∼ Γ ′
5
r

commutes; thus Γ ≈ (∆, e) .
r- (∆′, e) ≈ Γ ′ holds.

Proof. (sketched) First note that if the left square commutes, then the whole
diagram commutes by Lemma 4.3.

Next, observe that r can be executed also before e. For a proof of this
check that r does not depend on e by inspecting the relevant laws for event
spaces: Rules (5), (16) refer to in-between-events which are not possible in
e ∈ E∗. Rules (10) and (3’) are impossible since corresponding Loads are ruled
out by (NP1) and (18). Rule (11) is not relevant as matching Writes are treated
in (redw). Thus, we are left with (15’). Suppose r = (Unlock , θ) and that
(pAssign, θ, l, v) ≤ r is ensured via rule (15’) by a preceding Store only (i.e. the
right branch of the disjunction in (15’) holds exclusively), then the last of those
preceding (Store, θ, l, v) events is prescient, i.e. `(Store, θ, l, v) holds by (P6).
Therefore, (pAssign, θ, l, v) = passign of `(Store, θ, l, v) by (M4) such that e can
not contain the Store anymore as it is obtained via .-∗.

To prove that the diagram commutes it suffices, by definition of ∼, to show
that the same actions are executed, but maybe in different order. We have to
ensure that Write events of the same variable from different threads are not
re-ordered. Consider some (Write, θ, l) of e. By Lemma 4.4 Write events of a
different thread θ′ can not occur in the completion of ∆, so neither in Γ∆ and
hence neither in e. But e can also never contain two (Write, θ, l) events, since
the first would be the matching Write event for the starting pStore ; the second
Write event’s matching Store (maybe prescient) would have to intervene between
the starting pStore and its corresponding pAssign event by the monotonicity of
store of , thus contradicting (M2).
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Theorem 4.6. For properly synchronized programs the relation ≈ is a simula-
tion relation of . and .-, i.e. if Γ

r
. Γ ′ during the execution of such a

program and Γ ≈ (∆, e) then there is a (∆′, e′) such that (∆, e) .
r- (∆′, e′) and

Γ ′ ≈ (∆′, e′).

Proof. Assume Γ ≈ (∆, e), i.e. ∆
e
. Γ∆ ∼ Γ . We do a case analysis for

Γ
r
. Γ ′:

Case r = (Write): If (pStore, θ, l) ∈ e then it holds that (∆, e) .
r- (∆, e ◦ r) by

(redw). Moreover, by Lemma 4.3, Γ ′ ≈ (∆, e ◦ r).
If (pStore , θ, l) /∈ e then by Lemma 4.5, (∆, e) .

r- (∆′, e′) and Γ ′ ≈ (∆′, e).
Case r = (pAssign): Let splitθ,l(e) = (el, e

′). Since an Assign is always possible,

assume that ∆
(Assign,θ,l,v)- ∆1. Now every action in el becomes legal for the old

semantics, so we can further assume ∆1
el- ∆′, such that (∆, e) .

r- (∆′, e′).
One can prove analogously to Lemma 4.5 that the left rectangle in

∆
e

. Γ∆ ∼ Γ

∆1

(Assign, θ, l, v)
?

∼

∆′

el
?

e′
. Γ ′

∆

5

r

∼ Γ ′
5

r

commutes; the right rectangle commutes by Lemma 4.3, thus (∆, e) .
r- (∆′, e′)

and Γ ′ ≈ (∆′, e′).
For pStore and Read one proceeds as for Write, all other cases follow from

Lemma 4.5.

The main result of Section 4 is the following corollary which states that the
prescient semantics is conservative, i.e. any prescient execution sequence of a
properly synchronized program can be simulated by a “normal” execution of
Java.

Corollary 4.7. Given Γ ∈ Conf. from a properly synchronized program and
∆ ∈ Conf- , if Γ ∼ ∆ and Γ .∗ Γ ′ such that the event space ηΓ ′ of Γ ′ is
complete, then for any labelling of ηΓ ′ there is a reduction sequence ∆ -∗ ∆′

such that Γ ′ ∼ ∆′.
Moreover, if two different labellings yield two different reduction sequences

∆ -∗ ∆′
1 and ∆ -∗ ∆′

2, then still ∆′
1 ∼ ∆′

2 holds.

Proof. First, observe that if Γ ∼ ∆ then Γ ≈ (∆, ε). By a simple induction
on the length of the derivation by Theorem 4.6, we get (∆, ε) .-∗ (∆′, e) and
Γ ′ ≈ (∆′, e). Now e = ε follows from the fact that Γ ′ is complete which entails
that all prescient stores are matched by an Assign such that e must be empty in
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the end. From e = ε we immediately get Γ ′ ∼ ∆′. Also from (∆, ε) .-∗ (∆′, ε)
we can strip off a derivation ∆ -∗ ∆′ by definition of .-.

The second claim follows just by transitivity of ∼ as ∆′
1 ∼ Γ ′ ∼ ∆′

2.

5 Conclusions and Future Work

In this paper we presented a structural operational semantics of concurrent Java
and showed its flexibility by proving a non-trivial result relating two memory
implementations. Our semantics covers a substantial part of the dynamic be-
haviour of the language, and we expect it to combine easily with the type system
developed in [8]. A further ambitious step is to include in the semantics prac-
tical features like input/output, garbage collection, distributed applications via
sockets or remote method invocation, and applets.

Event spaces are not necessarily “complete,” that is, no matching Load must
necessarily occur after a Read action or Write after a Store. In fact, there are
well-formed event spaces which are not completable, and this complicates the
metatheory of the semantics. However, it is conceivable that completability may
be axiomatized by means of “local” conditions such as the rules of Section 2.2.

It might also be worthwhile to study stronger notions of “proper synchro-
nization” (for example, by taking into account Use actions). This might simplify
the simulation of prescient semantics and allow a synchronous treatment of Read
and Load .

The proofs of semantical properties (like Lemma 4.4 or Theorem 4.6) are
combinatorial in nature; this is a typical situation where proof checkers or auto-
mated theorem provers can be usefully employed.

Finally, we intend to investigate operationally based notions of program
equivalence, which may serve as foundations for program logics. Abadi and
Leino [2] have provided an axiomatic semantics, in Hoare style, for one of the
(sequential) object calculi of [1] and proved that the logic is sound with respect
to the operational semantics of the object calculus in use. The development of
such a logic for a real concurrent object-oriented language like Java remains a
challenge.

Acknowledgements. We thank Doug Lea for useful comments and some inspira-
tion regarding future work.
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A Syntax

Statement ::= ; | Block | StatementExpression ;
| synchronized(Expression ) Block
| throw Expression ; | TryStatement
| return Expression opt ;
| IfThenStatement

Block ::= { BlockStatements opt }
BlockStatements ::= BlockStatement |BlockStatementsBlockStatement
BlockStatement ::= LocalVariableDeclaration; | Statement

LocalVariableDeclaration ::= Type VariableDeclarators
ReturnType ::= Type | void

Type ::= PrimitiveType |ClassType
PrimitiveType ::= boolean | int | . . .

ClassType ::= Identifier
VariableDeclarators ::= VariableDeclarator

| VariableDeclarators , VariableDeclarator
VariableDeclarator ::= Identifier = Expression

Expression ::= AssignmentExpression
AssignmentExpression ::= Assignment | BinaryExpression

Assignment ::= LeftHandSide = AssignmentExpression
LeftHandSide ::= Name | FieldAccess

Name ::= Identifier | Name . Identifier
FieldAccess ::= Primary. Identifier

Primary ::= Literal | this | FieldAccess | (Expression )
| ClassInstanceCreationExpression
| MethodInvocation

ClassInstanceCreationExpression ::= new ClassType( )
MethodInvocation ::= Primary. Identifier( ArgumentListopt )

ArgumentList ::= Expression | ArgumentList , Expression
BinaryExpression ::= UnaryExpression

| BinaryExpression BinaryOperator
UnaryExpression

UnaryExpression ::= UnaryOperator UnaryExpression
| Primary | Name

StatementExpression ::= Assignment | ClassInstanceCreationExpression
| MethodInvocation

TryStatement ::= try Block Catches
| try Block Catches opt finally Block

Catches ::= CatchClause | CatchClauses CatchClause
CatchClause ::= catch(Type Identifier ) Block

IfThenStatement ::= if( Expression ) Statement
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Abstract. This chapter presents a dynamic denotational semantics of
the Java programming language. This semantics covers almost the full
range of the base language, excluding only concurrency and the API’s.
A discussion of these limitations is provided in the final section of the
chapter.

The abstract syntax described in Chapter 1 tells us how to construct a gram-
matically correct program. Every syntactically correct program describes an en-
vironment that provides all the information about what to do during program
execution. The semantics presented in this chapter, formalizes the definition of
Java program behavior as defined in the Java Language Specification (JLS) [1].
We describe the Java environment in Section 1. Each executing program is as-
sociated with a store that is a repository for all instance values during program
execution. The Java store is described in Section 2. Executing a Java program
begins with executing the command in the static method “main” in the given
class definition. Therefore, the result of a program depends on the semantics
of commands and the expressions in the commands. We shall introduce a de-
notational semantics of these commands and expressions in Sections 3 and 4.
Throughout these semantics, we concurrently define two sets of semantics, a
dynamic and a static semantics, to respectively represent the execution and def-
initional denotations of the programs.

1 Environment

An environment is the information center for the execution engine and is at the
heart of these semantics. Our environment is a semantic domain that has two
components, the dynamic and static semantics. The dynamic aspect of the envi-
ronment contains the traditional environmental information related to variables,
their types and locations in the store (as in Stoy’s classical book on denotational
semantics [4]. It also contains control flow information for exceptions and breaks.
The static aspect of the environment contains information related to all of the
classes used by the program. This information includes the class members, types,
initialization functions, super class and implemented interfaces. The static part
of the environment is determined by evaluating the input files and then is used
as an input parameter to the denotation of the main method of the invoked class.

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 201–240, 1999.
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In addition to information related to classes, their members and local vari-
ables; the environment contains a number of auxiliary variables (all starting with
the symbol &. These variables are used to record nesting and scoping information
as well as flow control information.

– &package - specifies the fully qualified name of the package currently being
defined.

– &currentInt - specifies the fully qualified name of the interface currently
being defined.

– &currentClass - specifies the fully qualified name of the class currently
being defined.

– &Mods - provides a list of modifiers used in the current declaration.
– &Type - defines the type used in the current declaration.
– &varType - defines if this is a “Field” or “Local” variable declaration.
– &switchExpr - value of the expression of the current Switch statement.
– &caseFound - boolean variable indicating if the case matching the switch

expression has been found.
– &defaultF ound - boolean variable indicating if the default switch case had

been found.
– &caseCont - command continuation for execution of the appropriate switch

statement. This is needed due to the fact that the default case may be defined
anywhere in the switch statement.

– &break - continuation information.
– &return - specifies the command continuation to execute upon return.
– &returnV al, &returnType - specify the return type and value for a call.
– &super - specifies the name of the current executing classes super class
– &throw - specifies the command continuation to be executed upon a throw

command.
– &thrown - specifies the value, type pair referring the thrown object (excep-

tion).
– &thisObject - specifies a reference to the current object in which execution

is occurring.
– &thisClass - specifies a reference to the class of the current object in which

execution is occurring.

To simplify the semantic presentation, we include within the environment a
collection of methods (or auxiliary functions). For these functions, we use method
invocation notation for these functions, where γ.m(p1 . . . pn) denotes invocation
of auxiliary function m, with parameters (p1 . . . pn), invoked in the context of the
current environment, γ. (Note that variable names will be referenced in the usual
way with γ[name] referring to the current value of name in the environment,
and γ[name ← v], denoting the new environment with name know returning
the value v. The functions related to the dynamic semantics (execution) of a
program are:

– assnCompatible(τ, τ1). This boolean function returns true if a value of type
τ can be assigned to a variable of type τ1, according to the rules of the JLS
[1].
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– classLoader(name, store). In Java, whenever a new instance of a class is cre-
ated, we invoke the class loader. In the runtime system this involves first
determining if the class is already loaded, otherwise finding it from some
source location, loading the bytecode, and then instantiating the class con-
stant variables and executing any static class initializer. This function rep-
resents this complex operation, and may result in modification to both the
environment and the store.

– condTypeOf(τt, vt, τf , vf). This function returns the type of conditional ex-
pressions as defined by the JLS [1]. A full definition of this function appears
following the specification of condition expressions in the semantics that
follow.

– getArrayElem(a, ind). This function returns the location of array element
ind from the array referenced by a.

– getArrayElemType(a). This function returns the type of array elements in
the array referenced by array a.

– getArrayRef(name). This function returns the reference for the array name.
– getComCont(term). This function retrieves the command condition from the

environment auxiliary variable denoted by term, where this term can be
&break or &continue. Continuations are discussed in detail in section 3.3.

– getMethod(name, signature). This function returns the denotation of the
named method (of the specified signature). Specifically the value returned
is a semantic function that takes a set of arguments as parameters and re-
turns a command function (a function that takes an environment, command
continuation and a store and returns an answer).. All appropriate searching
of the nested class and interface definitions is conducted, in accordance with
the JLS [1].

– getValue(term). This function returns the value of the auxiliary variable
referred to by term.

The auxiliary functions used to build the static (declaration) portion of the
environment are:

– addConstr(mods, defn, throws, body). This function is used to add the con-
structor specification to the environment for the current class.

– addField(name, initExp). This function is used to add the specified field and
initialization expression to the environment given the current type and class
scope.

– addLocal(name, initExp). This function is used to add the specified local
variable and initialization expression to the environment, given the current
type and class scope.

– addMethod(mod, hdrInfo, throws, body). This function is used to add the
method specification to the environment for the current class.

– addMethodHdr(hdrInfo). This function is used to add the abstract method
header specification to the environment for the current interface.

– addStaticField(name, valExpr). This function is used to add the specified
static field and initialization expression to the environment given the current
type and class scope.
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– addStaticInit(com). This function is used to add the command code (or de-
notation) for the specified static initializer to the class specification in the
environment.

– enterClass(mods, id, super, interfaces). This function is used to denote that
we are currently parsing a class specification. It modifies the current scope
of the environment and sets the &currentClass field of the environment to
indicate the current class.

– enterInterface(mods, id, extends). This function is used to denote that we
are currently parsing an interface specification. It modifies the current scope
of the environment and sets the &currentInt field of the environment to
indicate the current interface.

– import(name) and importOnDemand(name). These function are used to de-
note the java import command. Specifically they are used to add all the
class definitions from the specified files to the environment.

– instanceOf(τ1, τ2) - returns true if τ1 is an instance of τ2 in the current
environment.

– isStatic(). This boolean function returns true if the modifier of the current
field declaration include the static modifier.

2 Store

The store is memory that is dynamically created, expanded, and destroyed by
the execution engine. We can view the store as a communication channel between
statements. Together with the environment of Section 1, it forms the state of
the execution environment. Every local variable declaration, loading of a class
object or new operator applied to a class type or array type creates one or more
entries in the store. If the entry is a class object, the content of the entry is
filled according to the constructor code of the class and field initializations. An
array object is initialized with a field name of “length” denoting the number of
elements in the array.

For the semantic presented in this chapter the only auxiliary function for the
store is:

– mkException(className). This function creates a new exception object in
the store, as defined by the exception class referred to by className.

3 Denotational Semantics

This section presents the (almost) full denotational semantics of the Java lan-
guage – only missing aspects of concurrency.

3.1 Semantics Domains and Data Values

One is often tempted, when developing a formal model of a language, to abstract
out the limitations of the concrete representation of the language. For example,
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authors of many language models will abstract values of type int to mathematical
integers. Unfortunately, this provides an unrealistic definition of the behavior and
meaning of the language constructs. For example, in the Java language there
are no run-time indications of overflow or underflow of integers operations, but
rather an implicit truncation of the resulting two’s complement representation
of the number to the requisite number of bits. Without an understanding of
this functionality of the language and an explicit representation of it in a formal
description of the language, correctness proofs of the code may be incorrect. To
avoid this difficulty we represent all concrete limitations of the Java language
in the following semantics of expressions. This is possible since Java precisely
defines these limitations for all primitive types.

3.2 Semantic Domains

The semantic domains representing the values of the numeric data types are de-
fined below. To simplify the semantics, we have added two special values to each
of these domains, ⊥ (“bottom”) which represented a value with no information
content and > (“top”) which represents a value with full (potentially conflicting
information). The purpose of these values is to enable each domain to be a com-
plete partial order, which simplifies the mathematics underlying the semantics.
These values are used by the semantic functions and do not have an equivalent
representation within the Java language. The basic domains are flat domains
in that there is no implicit ordering between values of the domains other than
between the values and ⊥ and >.

Let I represent the set of integers, and R represent the set of real numbers.
In the following IEEE(s.m.e) denotes an IEEE 754 floating point number with
sign, mantissa and exponent, NAN represents not-a-number and +∞ and −∞
represent positive and negative infinity, respectively [2].

Byte = {n ∈ I | − 128 ≤ n ≤ 127} ∪
{⊥,>}

Short = {n ∈ I | − 32768 ≤ n ≤ 32767}∪
{⊥,>}

Int = {n ∈ I | − 2147483648≤ n ≤ 2147483647}∪
{⊥,>}

Long = {n ∈ I | − 9223372036854775808≤ n ≤ 9223372036854775807}∪
{⊥,>}

Char = {n ∈ I |0 ≤ n ≤ 65535} ∪
{⊥,>}

F loat = {f ∈ R |f = IEEE(s.m.e), 0 ≤ m ≤ 224 − 1 ∧ −149 ≤ e ≤ 104} ∪
{⊥,>, NAN, +∞,−∞}

Double = {f ∈ R |f = IEEE(s.m.e), 0 ≤ m ≤ 224 − 1 ∧ −149 ≤ e ≤ 104} ∪
{⊥,>, NAN, +∞,−∞}
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We define several other semantic domains for use within the denotational seman-
tics of Java presented in this Chapter. Note that we deliberately avoid specifying
the detailed semantic domains of literals, but leave them abstract and presume
that a parser will interpret them correctly. Note that in this presentation here,
we do not present the specifics of the domains, but rather try and define them in
a context specific manner. For example we typically have σ ∈ Σ be a store, and
γ ∈ Γ be an environment. The values (such as r ∈ V) denote the basic values of
the java language (shorts, ints, floats, etc.) and their types, τ ∈ T . We also refer
to locations l ∈ L as indecies into the store. These are all flat domains, with a
⊥ and > value as discussed above.

3.3 Continuations

Many of the semantic functions defined in the following sections utilize the con-
cept of continuations. While evaluating a syntactic construct, we typically focus
on one piece of the code. A continuation defines the semantics of the rest of
that code (whether it be the rest of an expression, the rest of a command, all of
a method, or the rest of a declaration). The results of continuations are either
values of the specified semantic domains, such as environment or an answer.
Since the core Java language does not interact with the outside world, we have
left the concept of modifications to this world as an abstract answer domain.
None of the semantics here modify that domain, such modification only occurs
in the runtime libraries (Java API). We utilize the following continuations in
these semantics:

– ρ(γ) - package continuation. This continuation takes the environment pa-
rameter, γ, and returns an environment based on the declarations of the
rest of the code. Note that this continuation is used in the highest level of
package/code declarations.

– δ(γ) - declaration continuation. This continuation takes the environment pa-
rameter, γ, and returns an environment based on the declarations of the rest
of the code. This continuation is used within specific declaration constructs.

– θ(γ, σ) - command continuation. This continuation takes the environment
parameter, γ and store parameter, σ, and returns a an answer based on the
denotation of the rest of the command. The denotation is dependent on the
parameters specified, which are typically a modified store and a potentially
modified environment from a command execution.

– κ(r, τ, σ) - expression continuation. This continuation takes a value, r, of type
τ and a store parameter, σ, and returns a store based on the denotation of
the rest of the program. The denotation is dependent on the typed data
value specified, which is typically the result of an expression evaluation.

– α(v, τ, l, σ) - location continuation. This continuation takes a value, v, of
type, τ , location, l, and a store parameter, σ, and returns an answer based
on the denotation of the rest of the program. The denotation is dependent
on the typed data value specified and location, which are typically the result
of an expression evaluation and the location is the location of the variable
referenced in the expression.
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3.4 Semantic Functions

Within the denotational semantics, we make use of several semantic functions.
These functions define the relationship between the code, as seen by the parser,
and the actual operations of the resulting program. Since we are working with a
full language specification (excluding multi-threading), we need to use a wider
range of semantic functions than those found in simpler examples in the liter-
ature. The semantic functions used are divided into two categories, operational
and definitional.

Operational Semantic Functions. In the context of the Java programming
language an operational semantic function is one that defines the relationship
between the current language construct and the execution time behavior of the
program. Specifically, operational semantic functions directly manipulate the
store, resulting in a new store. Specifically, in the following semantics, the oper-
ational semantic functions are:

– Command functions C[[]]. These functions define the meaning of Java com-
mands. The meaning of any Java command is defined in terms of three
parameters, the current environment γ, a command continuation θ, and the
current store σ. The command continuation is a function that defines the
behavior of the rest of the program in the context of an environment and a
store. Therefore, the result of the C[[c]] function is typically θ(γ1 , σ1), where
γ1 and σ1 are the new environment and store obtained from executing the
command c, and θ(γ1 , σ1) represents the behavior of the program given these
values. This is not true when the command c results in an exception, or ab-
normal flow of control change (such as a break or return command.) In
these cases, the result of the C[[c]] function is based on a related continua-
tion stored within the environment (e.g., see the semantics of the break and
return commands.)

– Expression functions E [[]] and location functions L[[]]. These functions define
the meaning of Java expressions. We separate the location functions to de-
note those expressions that result in a value (called value expressions in the
JLS [1]) and those that result in reference to some memory location (called
variable expressions in the JLS[1]). Note that modification of the store must
result in the assignment of a value to a location (either directly through an
assignment statement or through a pre or post expressions – e.g., i++.)
• The E [[]] functions are defined in terms of three parameters, the current

environment γ, an expression continuation κ, and the current store σ.
The expression continuation is a function that defines the behavior of
the rest of the program in the context of a value, type and a store.
Therefore, the result of the E [[e]] function is typically κ(v, τ, σ1), where v
is the resulting value of type τ obtained from executing the expression
e, and σ1 is the resulting store. As with commands, exceptions do occur
that may result in using a saved expression continuation instead of the
current continuation.
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• The L[[]] functions are also defined in terms of three parameters, the
current environment γ, a location continuation α, and the current store
σ. The location continuation is a function that defines the behavior of the
rest of the program in the context of a value, type, location and a store.
Therefore, the result of the L[[e]] function is typically α(v, τ, l, σ1), where
v is the resulting value of type τ obtained from executing the expression
e, which refers to a variable at location l, and σ1 is the resulting store.

Definitional Semantic Functions. A definitional semantic function is an-
cillary to the actual execution behavior of the program, but rather defines the
context in which the execution takes place. The definitional functions used in
the following semantics are:

– Goal G[[]] and Package functions P[[]]. These functions define the high-level
meaning of a Java source file, defined in terms of import files and class defi-
nitions. The goal function takes no parameters and returns an environment.
The environment is subsequently used during execution and provides the
full class definitions for the command and expression functions. The package
function takes two parameters, the current environment γ and a package
continuation function ρ. We use a continuation function here to be consis-
tent with the style of semantics presents in the command and expression
functions. The continuation function takes the newly modified environment
and returns an environment based on the rest of the file.

– Declaration functions D[[]]. These functions define the declarations of meth-
ods, classes, interfaces and other lower-level constructs within the package.

– Modifier functionsM[[]]. This function defines the list of modifiers for fields
and methods.

– Type functions T [[]]. These functions are used solely to determine specified
data types. These types are calculated based on the current environment,
provided as a parameter. The result of the type function is a string rep-
resentation of the data type. Specifically we use the same string notation
that Java bytecode uses to specify types [3]. Note that there are some cases
where multiple types must be returned (for example the list of interfaces im-
plemented by a class), in this case we just append the string representation
of the types as the Java bytecode does for parameter lists.

– Value functions V[[]]. These functions are a catch-all function that returns
a value associated with the static input. A value function only takes the
current environment as a parameter and returns a pair that consists of the
value (as a basic type or string) and the type. Throughout these semantics
we may need only the first or second element of this pair. We will select
these using the fst and snd operations on the result or by direct assignment
(r, τ ) =V[[E]]γ, where r is assigned the first value of the pair and τ is assigned
the second.
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3.5 Auxiliary Functions

– mkArrayType(τ, n) - this function takes the type specified by the first
parameter and returns an array type of n dimensions.

– mkMethodValue(d, τ ) - this function takes the definition specification of
a method, d which is a pair consisting of a method name and the formal
parameters, and a return type, τ , to create a value to store in the environment
for searching and retrieving the methods.

– binaryPromoteType(τ1, τ2) - - returns the type resulting from a binary
number promotion of the types τ1 and τ2 according to the rules of the JLS.

– unaryPromoteType(τ ) - returns the type resulting from a unary numeric
promotion of type τ according to the rules of the JLS.

– promote(τ, (r, τ1)) - this function converts a value r, of type τ1 to a com-
patible value of type τ following the numeric promotion rules of the JLS.

– cast(τ, (r, τ1)) - this function converts a value r, of type τ1 to a compatible
value of type τ following the type casting rules of the JLS.

– leftShift((r1, τ1), (r2, τ2)) - this function returns the value of r1, of type τ1

left shifted r2 places (where r2 is of type τ2). The resulting value is of type
τ1.

– String(r, τ ) - this function actually invokes the toString function of the
java.lang class corresponding to the type τ on te value r to return a string.

– fst(p) - this is a function that takes returns the first value of a pair.
– snd(p) - this is a function that takes returns the second value of a pair.
– append(l1, l1) - this is a simple list append function.
– isNumeric(τ ) - this function returns true is the type of the parameter can

be classified as a numeric value.

4 Java Semantics

The following sections detail the semantics of the Java language. To simplify the
presentation, we have taken the full syntax of the Java language (as presented
in Chapter 2 of this volume) and reduced it, by removing high-level redundancy.
For example, syntactically we define several levels of statements, including those
with and without trailing if’s. For the presentation here, we only worry about
the actual statements, such as the for-statement, while-statement, etc.

4.1 The Meaning of a Java Program

When a user wants to execute a Java program myclass they type “javac myclass
args”. In the context of the semantics presented here, this is defined as:

(γ.getMethod(“myclass.main′′ , “[Ljava.lang.String;′′ ))V[[args]]γ)γcexitσ where
γ = G[[Goal]] // where Goal is the myclass.java file and
σ = γ.classLoader(myclass, newStore()) and
cexit = the command continuation function that terminates the program
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This semantics evaluates the source file (and all other imported class files)
to create a new environment γ. It then invokes a classLoader function to load
the specified class into the store, σ and executes the method main of the class
with respect to the specified command-line arguments, the environment and the
new store.

4.2 Names and Literals

The designers of the Java language separated the concept of names from other
primary entities in the grammar. The reason for this is to avoid some possi-
ble ambiguities in a LALR(1) parser. For the semantic functions, all we need
to return is a representation of the name to be used once the full name is de-
fined. Since the value semantic function requires a returned (value,type) pair,
we specify the type of names as “name”.

V [[<Name>]]γ::=
V [[<SimpleName>]]γ
| V [[<QualifiedName>]]γ

V [[<SimpleName>]]γ ::=
V [[Id]]γ = (ValueOf(Id), “name”)

V [[<QualifiedName>]]γ::=
V [[Name.Id]]γ =

(Str + ‘.’ + ValueOf(Id),“name”) where
Str = fst(V [[Name]]γ )

V [[<Literal>]]γ ::=
V [[IntLit]]γ = (ValueOf(IntLit), “I”)
| V [[FloatLit]]γ =(ValueOf(FloatLit), “F”)
| V [[BoolLit]]γ = (ValueOf(BoolLit), “Z”)
| V [[CharLit]]γ = (ValueOf(CharLit),“C”)
| V [[StringLit]]γ = (ValueOf(StringLit), “Ljava.lang.String;”)
| V [[NullLit]]γ = (null, “L;”)

4.3 Packages

Goal and Compilation Unit. The following productions define the semantics of
a single Java compilation unit. This is encapsulated within a goal, which has no
parameters. The goal semantics specify the creation of a new environment and
an identity continuation such that the result of the goal will be an environment
to be used during execution. In the <CompUnit> specification we forced the
automatic loading of the java.lang package as if there were the statement “import
java.lang.*” immediately following any package declaration statement.

G[[<Goal>]] ::=
G[[<CompUnit>]] = P [[<CompUnit>]]γρ where

γ = newEnvironment() and
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∀γ1.ρ(γ1) = γ1

P [[<CompUnit>]]γρ ::=

P [[<PackageDecl>? <ImportDeclList>? <TypeDeclList>?]]γρ =

P [[<PackageDecl>?]]γρ1 where

∀γ1.ρ1(γ1) = P [[<ImportDeclList>?]]γ2ρ2 where
γ2 = ρ(γ.importOnDemand(java.lang)) and

∀γ2.ρ2(γ2) = P [[<TypeDeclList>?]]γ2ρ1‘

P [[<PackageDecl>]]γδ ::=
P [[package <Name> ;]]γρ = ρ(γ[&package←(fst(V [[<Name>]]γ))])

Import commands. The import commands cause some difficulty in the semantics.
Specifically, an import command loads into the environment all the relevant
information related to an entity specified in a separate compilation unit. For the
sake of brevity we include auxiliary functions that modify the environment to
reflect the action of the import command.

P [[<ImportDeclList>]]γδ ::=
P [[<ImportDecl>]]γρ
| P [[<ImportDeclList1> <ImportDecl>]]γρ =
P [[<ImportDeclList1>]]γρ1 where
∀γ1.ρ1(γ1) = P [[<ImportDecl>]]γ1ρ

P [[<ImportDecl>]]γρ ::=
P [[<SingleTypeImportDecl>]]γρ
| P [[<TypeImportOnDemandDecl>]]γρ

P [[<SingleTypeImportDecl>]]γδ ::=
P [[import <Name> ;]]γρ = ρ(γ.import(fst(V [[<Name>]]γ))

P [[<TypeImportOnDemandDecl>]]γδ ::=
P [[import <Name> . * ;]]γρ = ρ(γ.importOnDemand(fst(V [[<Name>]]γ))

Class and Interface Declarations. The class and interface declaration produc-
tions are defined in terms of the declaration semantic function. The following
semantics define the relationship between the package and declaration semantic
functions.

P [[<TypeDeclList>]]γδ ::=
P [[<TypeDecl>]]γρ
| P [[<TypeDeclList> <TypeDecl>]]γρ =
P [[<TypeDeclList>]]γρ1 where
∀γ1.ρ1(γ1) = D[[<TypeDecl>]]γ1δ where
∀γ1.δ(γ1) = ρ(γ1)

D[[<TypeDecl>]]γδ ::=
D[[<ClassDecl>]]γδ
| D[[<InterfaceDecl>]]γδ
| D[[;]]γδ = δ(γ)
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4.4 Types

The T [[]] semantic function returns the type defined by the given syntactic con-
struct. The returned type is a string representation of the specified type using
the notation defined in the JVM [3]. Specifically, the returned values are:

Type Return Value
boolean “Z”
byte “B”
short “S”
char “C”
int “I”
long “J”
float “F”
double “D”
void “V”
array of Type “[Type”
class or interface “Lclassname;”
method∗ (t1t2 . . . tn)tr
for methods of the form:
return-type meth-name(parm1, parm2, . . . , parmn)
where tr is the return type, ti is the type of parmi.

T [[<Type>]]γ ::=
T [[<PrimitiveType>]]γ
| T [[<ReferenceType>]]γ

T [[<PrimitiveType>]]γ ::=
T [[<NumericType>]]γ
| T [[boolean]]γ = “Z”

T [[<NumericType>]]γ ::=
T [[<IntegralType>]]γ
T [[<FloatingPointType>]]γ

T [[<IntegralType>]]γ ::=
T [[byte]]γ = “B”
| T [[int]]γ = “I”
| T [[long]]γ = “J”
| T [[short]]γ = “S”
| T [[char]]γ = “C”

T [[<FloatingPointType>]]γ ::=
T [[float]]γ = “F”
| T [[double]]γ = “D”

T [[<ReferenceType>]]γ ::=
T [[<ClassOrInterfaceType>]]γ
| T [[<ArrayType>]]γ
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T [[<ClassOrInterfaceType>]]γ ::=
T [[<name>]]γ = “L”+fst(V [[<Name>]]γ)+“;”

T [[<ClassType>]]γ ::=
T [[<ClassOrInterfaceType>]]γ

T [[<InterfaceType>]]γ ::=
T [[<ClassOrInterfaceType>]]γ

T [[<ArrayType>]]γ ::=
T [[<PrimitiveType> [ ]]]γ =mkArrayType(τ1 ,1) where

τ1 = T [[<PrimitiveType>]]γ
| T [[<Name> [ ]]]γ = mkArrayType(τ1,1) where

τ1 = fst(V [[<Name>]]γ)
| T [[<ArrayType> [ ]]]γ = mkArrayType(τ1 ,1) where

τ1 = T [[<ArrayType>]]γ where

mkArrayType(τ, n) =
{

τ when n = 0
“[”+mkArrayType(τ, n − 1) when n > 0

4.5 Modifiers

Modifiers specify the access constraints of classes, methods and fields in Java
programs. As such, we need to specify the list of modifiers for the declaration se-
mantic functions that use them. TheM[[]] semantic function returns all modifiers
as a list of strings.

M[[<Modifiers>]] ::=
M[[<Modifier>]]
| M[[<Modifiers1> <Modifier>]] = cons(M[[Modifiers1]],M[[Modifier]])

M[[<Modifier>]] ::=
M[[public]] = “public”
| M[[private]] = “private”
| M[[protected]] = “protected”
| M[[static]] = “static”
| M[[abstract]] = “abstract”
| M[[final]] = “final”
| M[[native]] = “native”
| M[[synchronized]] = “synchronized”
| M[[transient]] = “transient”
| M[[volatile]] = “volatile”

4.6 Interface Declarations

Interfaces specify a group of classes. Within each interface is a set of nested
class and interface declarations (starting in Java 1.1), constant fields and ab-
stract methods. In addition, an interface can extend another interface. All of
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this syntax represents a declaration abstraction for a group of classes. When a
class is declared to implement an interface, all of the interface body declarations
are included in the beginning of the class declaration. The auxiliary function
enterInterface modifies the current environment to include the new interface
declaration and members. The current interface is defined in terms of the name
of the declared interface for the remainder of the declaration, it then reverts to
the calling interface name for the continuation.

D[[<InterfaceDecl>]]γδ ::=

D[[<Modifiers>? interface <Id> <Extends>? <InterfaceBody>]]γδ =
D[[<InterfaceBody>]]γ1δ1 where

γ1 = γ.enterInterface(M[[<Modifiers>]],
V [[<Id>]]γ,
T [[<Extends>]]γ) and

∀γ2.δ1(γ2) = δ(γ2[&currentInt← γ(&currentInt)])

T [[<Extends>]]γ ::=
T [[extends <InterfaceType>]]γ = T [[<InterfaceType>]]γ
| T [[<Extends> , <InterfaceType>]]γ =
T [[<Extends>]]γ + T [[<InterfaceType>]]γ

D[[<InterfaceBody>]]γδ ::=

D[[f <InterfaceMemberDeclList>? g]]γδ =
D[[<InterfaceMemberDeclList>]]γδ

D[[<InterfaceMemberDeclList>]]γδ ::=
D[[<InterfaceMemberDecl>]]γδ
| D[[<InterfaceMemberDeclList1> <InterfaceMemberDecl>]]γδ =
D[[<InterfaceMemberDecl>]]γδ1 where
∀γ1.δ1(γ1) = D[[<InterfaceMemberDecl>]]γ1δ

D[[<InterfaceMemberDecl>]]γδ ::=
D[[<ClassDecl>]]γδ
| D[[<InterfaceDecl>]]γδ
| D[[<AbsMethodDecl>]]γδ
| D[[<ConstantDecl>]]γδ

D[[<AbsMethodDecl>]]γδ ::=
D[[<MethodHdr> ;]] γδ = δ(γ1) where

γ1 = γ.addMethodHdr(v) and
v = V [[<MethodHdr>]] γ

D[[<ConstantDecl>]]γδ ::=
D[[<FieldDecl>]]γδ

4.7 Class Declarations

The following grammar presents class declarations. As with interfaces, a class
declaration enters a new class, thus modifying the environment. The environment
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includes the definitions of all members of the class and links to the super class
and implemented interfaces.

D[[<ClassDecl>]]γδ ::=

D[[<Modifiers>? class <Id> <Super>? <Interfaces>? <ClassBody>]]γδ =
D[[<ClassBody>]]γ1δ1 where

γ1 = γ.enterClass(M[[<Modifiers>]],
V [[<Id>]]γ,
T [[<Super>]]γ,
T [[<Interfaces>]]γ) and

∀γ2.δ1(γ2) = δ(γ2[&currentClass← γ(&currentClass)])

T [[<Super>]]γ ::=
T [[extends <ClassType>]]γ = T [[<ClassType>]]γ

T [[<Interfaces>]]γ ::=
T [[implements <InterfaceTypeList>]]γ = T [[<InterfaceTypeList>]]γ

T [[<InterfaceTypeList>]]γ ::=
T [[<InterfaceType>]]γ
| T [[<InterfaceTypeList1> , <InterfaceType>]]γ =
T [[<InterfaceTypeList1>]]γ + T [[<InterfaceType>]]γ

D[[<ClassBody>]]γδ ::=

D[[<ClassBodyDeclList?>]]γδ

D[[<ClassBodyDeclList>]]γδ ::=
D[[<ClassBodyDecl>]]γδ
| D[[<ClassBodyDeclList1> <ClassBodyDecl>]]γδ

The Class Body consists of class members which include nested classes, nested
interfaces, fields and methods; constructors and static initializers (which are
class-level constructors invoked the first time a class is activated). It is impor-
tant to note that when a class is activated (denoted in these semantics by the
classLoader function): the parent class is loaded, then all static variables are ini-
tialized and all static initializers are executed in the order they appear in the class
declaration. The addStaticInit routine used below, and the addStaticF ield rou-
tine used in the Field Declaration section enters the partial semantic functions
for these initializers into the environment. The classLoader function recovers
these partial functions and completes them with the current parameters.

D[[<ClassBodyDecl>]]γδ ::=
D[[<ClassMemberDecl>]]γδ
| D[[<StaticInit>]]γδ =

δ(γ.addStaticInit(C[[<StaticInit>]]))
| D[[<ConstrDecl>]]γδ

D[[<ClassMemberDecl>]]γδ ::=
D[[<ClassDecl>]]γδ



216 Jim Alves-Foss and Fong Shing Lam

| D[[<InterfaceDecl>]]γδ
| D[[<FieldDecl>]]γδ
| D[[<MethodDecl>]]γδ

4.8 Method Declarations

We have slightly modified the method declaration productions from the grammar
presented in the JLS [1], including modifiers and throws directly in the method
declaration instead of in the header. This was done to simplify the semantic
functions. The major action of these productions is to add a method into the
environment of the current class. Associated with the type signature and name of
the method is a partial semantic function that defines the operational behavior
of the method. When the method is invoked, values of the actual parameters are
passed to the formal parameters of the method, and then the method body is
executed using the new values. Any resultant value is returned as the result of the
method semantic function. The mkMethodValue function takes the method
name and formal parameter type list and returns what we term a method value.
This method value specifies the name and type signature of the method along
with the names of the formal parameters. The exact details of this notation is
not important here, it is sufficient to know that this information is used by the
addMethod routine.

D[[<MethodDecl>]]γδ ::=

D[[<Modifiers>? <MethodHdr> <Throws>? <MethodBody>]]γδ =
γ.addMethod(M[[<Modifiers>]],V [[<MethodHdr>]]γ,

T [[<Throws>]]γ,C[[<MethodBody>]])

V [[<MethodHdr>]]γ ::=
V [[<Type> <MethodDef>]]γ = mkMethodValue(V [[<MethodDef>]]γ,<Type>)
| V [[void <MethodDef>]]γ = mkMethodValue(V [[<MethodDef>]]γ,void)

V [[<MethodDef>]]γ ::=

V [[<Id> ( <FormalParmList>? )]]γ =
(fst(V [[<Id>]]env),V [[<FormalParmList>]]γ)

| V [[<MethodDef> [ ]]]γ = mkArrayType(V [[<MethodDef>]]γ,1)

The formal parameter list is returns a pair that consists of a list names of
each of the parameters and a list of corresponding types. The following semantic
functions return this pair. The throws clause returns a type that corresponds to
the types of each of the thrown classes.

V [[<FormalParmList>]]γ ::=
V [[<FormalParam>]]γ
| V [[<FormalParmList> , <FormalParam>]]γ =
V [[<FormalParmList>]]γ + V [[<FormalParam>]]γ

V [[<FormalParam>]]γ ::=
T [[<Modifier> <Type> <VarDeclId>]]γ = (fst(V [[(]]<VarDecId>),T [[<Type>]]γ)
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T [[<Throws>]]γ ::=
T [[throws <ClassTypeList>]]γ = T [[<ClassTypeList>]]γ

T [[<ClassTypeList>]]γ ::=
T [[<ClassType>]]γ
| T [[<ClassTypeList> , <ClassType>]]γδ =
T [[<ClassTypeList>]]γ + T [[<ClassType>]]γ

C[[<MethodBody>]]γθσ ::=
C[[;]]γθσ = θ(γ, σ)
| C[[<Block>]]γδσ

4.9 Field and Variable Declarations

The following semantic functions define the meaning of the field and variable
declarations. These declarations are used to modify the environment to define
static and regular fields and local variables.

D[[<FieldDecl>]]γδ ::=

D[[<Modifiers>? <Type> <VarDecl> ;]]γδ = D[[<VarDecl>]]γ1δ where
γ1 = γ[&Mods← M[[<Modifiers>]],

&Type ←T [[<Type>]]γ,
&varType ← “Field”]

D[[<VarDeclList>]]γδ ::=
D[[<VarDecl>]]γδ
| D[[<VarDeclList> , <VarDecl>]]γδ = D[[<VarDeclList>]]γδ1 where
∀γ1.δ1(γ1) = D[[<VarDecl>]]γ1δ

D[[<VarDecl>]]γδ ::=
D[[<VarDeclId>]]γδ = δ(γ1) where

let (name, type) = V [[<VarDeclId>]]γ in
γ1 =

if (γ(&varType) == “Field”)
if (γ.isStatic()))

γ.addStaticF ield(name,defaultInit(type))
else

γ.addF ield(name,defaultInit(type))
endif

else //(γ(&varType) == “Local”)
γ.addLocal(name,defaultInit(type))

endif
| D[[<VarDeclId> = <VarInit>]]γδ = δ(γ1) where

let (name, type) = V [[<VarDeclId>]]γ in
γ1 =

if (γ(&varType) == “Field”)
if (γ.isStatic()))

γ.addStaticF ield(name,E[[<VarInit>]])
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else
γ.addF ield(name,E[[<VarInit>]])

endif
else //(γ(&varType) == “Local”)

γ.addLocal(name,E[[<VarInit>]])
endif

V [[<VarDeclId>]]γ ::=
V [[<Id>]]γ = (ValueOf(<Id>),γ(&Type))
| D[[<VarDeclId> [ ]]]γδ = (ValueOf(<Id>),mkArrayType(γ(&Type),1))

4.10 Initializers

Initializers consist of both static block initializers for classes and field and local
variable initializers. All initializers are simply evaluated upon instantiation of
the class, field or variable. For fields and variables the resultant value is a pair
consisting of a list of values and a list of types corresponding to these values.

C[[<StaticInit>]]γθσ ::=
C[[static <Block>]]γθσ = C[[<Block>]]γθσ

E[[<VarInits>]]γκσ ::=
E[[<VarInit>]]γκσ
| E[[<VarInits1> , <VarInit>]]γκσ = E[[<VarInits1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<VarInit>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) = κ(q, τ, σ2) where

q = append(r1, r2) and
τ = τ1 + τ2

E[[<VarInit>]]γκσ::=
E[[<Expression>]]γκσ
E[[<ArrayInitializer>]]γκσ

E[[<ArrayInit>]]γκσ ::=

E[[f <VarInits>? ,? g]]γκσ = E[[<VarInits>]]γκ1σ where
∀r, τ, σ.κ1(r, τ, σ) = κ(r, τ1, σ) where

τ1 = mkArrayType(τ ,1)

4.11 Constructor Declarations

The constructor semantic functions define the meaning of object constructors. It
is important to understand that when a constructor is invoked, it either calls an
implicit constructor of the super class or an explicit constructor. This is denoted
in the semantic functions below. The instantiateClass function of stores return
a triple consisting of a value (the reference to the new object), a type (of the
object), and a new store that contains the new locations for the fields of the
object.
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D[[<ConstrDecl>]]γδ ::=

D[[<Modifiers>? <ConstrDef> <Throws>? <ConstrBody>]]γδ = δ(γ1) where
γ1 = γ.addConstr(M[[<Modifiers>]],V [[<ConstrDef>]]γ,

T [[<Throws>]]γ,E[[<ConstrBody>]])

V [[<ConstrDef>]]γ ::=

V [[<SimpleName> ( <FormalParmList>? )]]γ =
(fst(V [[<SimpleName>]]γ),V [[<FormalParmList>]]γ)

E[[<ConstrBody>]]γκσ ::=
C[[f <ExplConstrInv> <BlockStmtList>? g]]γκσ =
E[[<ExplConstrInv>]]γκ1σ where
∀r, τ, σ1.κ1(r, τ, σ1) = θ(σ1) where
∀σ2.θ(σ2) = C[[<BlockStmtList>]]γ,θ1, σ3 where

let (r1, τ1, σ3) = σ2.instantiateClass(r) in
∀σ4.θ1(σ4) = κ(r1, τ1, σ4)

| E[[f <BlockStmtList>? g]]γκσ =
E[[super ()]]γκ1σ where
∀r, τ, σ1.κ1(r, τ, σ1) = θ(σ1) where
∀σ2.θ(σ2) = C[[<BlockStmtList>]]γ,θ1, σ3 where

let (r1, τ1, σ3) = σ2.instantiateClass(r) in
∀σ4.θ1(σ4) = κ(r1, τ1, σ4)

E[[<ExplConstrInv>]]γκσ ::=

E[[this ( <ArgList>? ) ;]]γκσ

| E[[super ( <ArgList>? ) ;]]γκσ

4.12 Blocks and Statements

In this section, we present the semantics for blocks and statements in the Java
language. We differ from the grammar in the JLS [1], by not presenting any of
the statements associated with the No Short If constructs, used in the JLS to
avoid syntactic ambiguity with dangling else clauses. The semantics for all of
these clauses can be easily derived from the semantics presented here.

Blocks. A block consists of an optional sequence of block statements within a
pair of braces. Note here, that if there are no block statements, the semantics of
the block are equivalent to θ(γ, σ).

C[[<Block>]]γθσ ::=

C[[f <BlockStmtList>? g]]γθσ = C[[BlockStmtList]]γθσ

C[[<BlockStmtList>]]γθσ ::=
C[[<BlockStmt>]]γθσ
| C[[<BlockStmtList1> <BlockStmt>]]γθσ = C[[<BlockStmtList1>]]γθ1σ where

∀γ1, σ1.θ1(γ1, σ1) = C[[<BlockStmt>]]γ1θσ1

C[[<BlockStmt>]]γθσ ::=
C[[<LocalVarDeclStmt>]]γθσ
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| C[[<Stmt>]]γθσ

C[[<LocalVarDeclStmt>]]γθσ ::=
C[[<LocalVarDecl> ;]]γθσ

Local Variable Declarations. These modify both the environment and the store
(local store), by creating a new semantic entity. As such, a local variable decla-
ration will continue program execution with these new attributes.

C[[<LocalVarDecl>]]γθσ ::=
C[[<Type> <VarDeclList>]]γθσ = D[[<VarDeclList>]]γδσ where
∀d, γ1, σ1.δ(d, γ1, σ1) = θ(γ2, σ1) where

γ2 = γ1[&Type←T [[<Type>]]γ,&varType ←“Local”]

Empty, Labeled and Expression Statements. These statements are basic primi-
tive statements of the Java language. The empty statement consists solely of a
single semicolon and semantically continues operation as if nothing happened.
The labeled statement modifies the environment to contain an identifier, Id that
refers to the current statement. The environment maintains the semantic evalu-
ation of the statement as a function of the current statement, parameterized by
possibly new environment and store. Note that the environment of the statement
contains a reference to the label, Id, but upon completion of execution, that la-
bel is removed from the environment. The expression statement evaluates the
expression using the semantic function for expressions, discarding any returned
value or type, and continues execution using the possibly modified store. Note
that we have simplified an expression statement to consist of any expression, al-
though this is not strictly true. In the JLS [1], the grammar restricts expression
statements to a list of possible expressions. We take liberty with our assumption
of syntactically correct programs to simplify the grammar here.

C[[<EmptyStmt>]]γθσ ::=
C[[;]]γθσ = θ(γ, σ)

C[[<LabeledStmt>]]γθσ ::=
C[[<Id> : <Stmt>]]γθσ = C[[<Stmt>]]γ1θ1σ where

γ1 = γ[Id← θ2] where
∀γ2, σ2.θ2(γ2, σ2) = C[[<Stmt>]]γ2θ1σ2

∀γ1, σ1.θ1(γ1, σ1) = θ(γ, σ1)

C[[<ExprStmt> ;]]γθσ ::=
C[[<Expr>]]γθσ = E[[<Expr>]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) = θ(γ, σ1)

If Statements. The if statement has two forms, one with and one without an
else clause. The if statement executes the expression first, possibly modifying
the store, and then behaves as the first statement if the expression is true. If
the expression is false it either continues execution or behaves as the statement
following the else clause.
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C[[<IfStmt>]]γθσ ::=
C[[if ( <Expr> ) <Stmt>]]γθσ = E[[Expr]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) =

if (r == true)
C[[<Stmt>]]γθσ1

else
θ(γ, σ1)

endif

C[[<IfElseStmt>]]γθσ ::=
C[[if ( <Expr> ) <Stmt1> else Stmt2]]γθσ = E[[<Expr>]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) =

if (r == true)
C[[<Stmt1>]]γθσ1

else
C[[<Stmt1>]]γθσ1

endif

The Switch Statement. The Java switch statement presents a few problems for
the design of a denotational semantics. The problems we found and their reso-
lution are discussed below. The approach we took involves modification of the
environment to provide additional information to subsequent semantic functions.
This modification is in the form of auxiliary variables. Note that these variables
must be restored to their previous values upon completion of the switch state-
ment to permit the correct evaluation of nested switch statements.

– The data value obtained upon execution of the switch statement determines
which case to execute. Thus this value must be carried along through the
semantic functions until it is utilized. We decided to maintain the value in
the environment under the auxiliary variable name &switchExpr.

– Once a case label has been found to match the switch expression, all subse-
quent switch block statements are to be executed. Thus, the semantic mean-
ing of these statements is dependent on whether or not a case label matched
the switch expression. We decided to maintain a boolean flag, &caseFound,
in the environment to indicate whether or not a match has been found.

– The default switch case label may occur any place a case label may occur.
If no case label matches the switch expression, the meaning of the switch
statement is the meaning of all switch block statements that follow the de-
fault label. The problem is that not only do we have to inform the semantic
evaluation functions that a default label has been found, but the functions
also have to allow for the existence of a matching case label occurring af-
ter the default label. The first problem is resolved with the boolean flag
&defaultF ound, which operates the same as the &caseFound flag. The
other problem is resolved using the &caseCont variable which records the
environment, store and continuation parameters for the switch statement.

– Unlabelled break statement may occur within a switch statement. The intent
of this statement is to terminate execution of the switch statement. As such,
the break information is stored in the environment.
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C[[<SwitchStmt>]]γθσ ::=
C[[switch ( <Expr> ) <SwitchBlock>]]γθσ =
E[[<Expr>]]γκσ where
∀r, τ, σ1. κ(r, τ, σ1) = C[[<SwitchBlock>]]γ1θ1σ1 where

γ1 = γ[&switchExpr← r, &caseFound← false,
&defaultFound← false,&caseCont← (γ, θ1, σ1),
&break ← θ1)] and

∀γ1, σ2. θ1(γ1, σ2) = θ(γ, σ2)

C[[<SwitchBlock>]]γθσ ::=

C[[f <SwitchBlockStmtList>? <SwitchLabelList>?g]]γθσ =

C[[<SwitchBlockStmtList>?]]γθ1σ where
∀γ1, σ2. θ1(γ1, σ2) =C[[<SwitchLabelList>]]γ1θσ2

C[[<SwitchBlockStmtList>]]γθσ ::=
C[[<SwitchBlockStmt>]]γθσ
| C[[<SwitchBlockStmtList1> <SwitchBlockStmt>]]γθσ =

C[[<SwitchBlockStmtList>?]]γθ1σ where

∀γ1, σ1. θ1(γ1, sto1) = C[[<SwitchBlockStmt>?]]γ1θσ1

C[[<SwitchBlockStmt>]]γθσ ::=
C[[<SwitchLabelList> <BlockStmtList>]]γθσ =

if (γ.getV alue(&caseFound) == true)
C[[BlockStmtList]]γθσ

else
C[[<SwitchLabelList>]]γθ1σ where
∀γ1, σ1. θ1(γ1σ1) =

if (γ1(&caseFound) == true)
C[[BlockStmtList]]γ1(&caseCont)

else if γ1(&defaultFound)
C[[BlockStmtList]]γ1θσ1

else
θ(γ1, σ1)

endif
endif

C[[<SwitchLabelList>]]γθσ ::=
C[[<SwitchLabel>]]γθσ
| C[[<SwitchLabelList1> <SwitchLabel>]]γθσ =
C[[<SwitchLabelList1>]]γθ1σ where
∀γ1, σ1. θ1(γ1σ1) = C[[<SwitchLabel>]]γ1θσ1

C[[<SwitchLabel>]]γθσ ::=
C[[case <ConstExpr>]]γθσ = E[[<ConstExpr>]]γκσ where
∀r, τ, σ1. κ(r, τ, σ1) =

if (fst(r) == γ[&switchExpr])
θ(γ[&caseFound← true], σ1)

else
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θ(γ, σ1)
endif

| C[[default :]]γθσ = θ(γ[&defaultFound← true], σ)

Looping Statements. The Java language looping constructs, the while, do and
for statements, are similar to the looping constructs of other languages. And
as such, they cause difficulty for the writing of denotational semantics. Two
different approaches to specifying the semantics of loops have been presented in
the literature, the fixpoint approach [4] and the recursive definition approach [5].
We have defined the do-statement and the for-statement in terms of the while
statement. Note that the expression in the for statement is optional. In the case
where it is not present, the semantics need to assume that the result is always
true; we have divided this case into two separate syntactic forms for clarity.

C[[<WhileStmt>]]γθσ ::=
C[[while ( <Expr> ) <Statement>]]γθσ = θ1(γ[&break ← θ], σ) where

rec, ∀γ1, σ1. θ1(γ1, σ1) = E[[<Expr>]]γ1κσ where
∀r, τ, σ1. κ(r, τ, σ1) =

if (r == true)
C[[<Statement>]]γ1θ1σ1

else
θ(γ, σ1)

endif

C[[<DoStmt>]]γθσ ::=
C[[do <Statement> while ( <Expr> )]]γθσ =
C[[<Statement> ; while ( <Expr> ) <Statement>]]γθσ

C[[<ForStmt>]]γθσ ::=

C[[for ( <ForInit>? ; ; <ForUpdate>? ) <Statement>]]γθσ =
C[[<ForInit> ; while ( true ) <Statement> ; <ForUpdate>]]γθσ

| C[[for ( <ForInit>? ; <Expr> ; <ForUpdate>? ) <Statement>]]γθσ =
C[[<ForInit> ; while ( <Expr> ) <Statement> ; <ForUpdate>]]γθσ

C[[<ForInit>]]γθσ ::=
C[[<StmtExprList>]]γθσ
| C[[<LocalVarDecl>]]γθσ

C[[<ForUpdate>]]γθσ ::=
C[[<StmtExprList>]]γθσ

C[[<StmtExprList>]]γθσ ::=
C[[<ExprStmt>]]γθσ
| C[[<StmtExprList1> , <ExprStmt>]]γθσ= C[[<StmtExprList1>]]γθ1σ where

∀γ1, σ1.θ1(γ1, σ1) = C[[<ExprStmt>]]γ1θσ1

Misc. The following semantic functions define the behavior of the miscellaneous
syntactic commands in the Java language. The expression statement list involves
evaluation of list of expression, with the result values discarded. The break,
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continue, return, and throw statements all evaluate their parameters and then
look up the corresponding continuation in the environment. The meaning of the
rest of the program is based on this continuation. The synchronized command
is ignored in these semantics since we do not specify concurrency.

C[[<ExprStmtList>]]γθσ ::=
C[[<ExprStmtList1> , <ExprStmt>]]γθσ = C[[<ExprStmtList1>]]γθ1σ where
∀γ1, σ1. θ1(γ1, σ1) = E[[<ExprStmt>]]γ1κσ1 where
∀r, τ, σ2. κ(r, τ, σ2) = θ1(γ1, σ2)

C[[<BreakStmt>]]γθσ ::=
C[[break ;]]γθσ = θ1(γσ) where

θ1 = γ.getComCont(&break)
| C[[break <Id> ;]]γθσ = θ1(γσ) where

θ1 = γ.getComCont(&break) (fst(V [[Id]]γ))

C[[<ContStmt>]]γθσ ::=
C[[continue;]]γθσ = θ1(γσ) where

θ1 = γ.getComCont(&continue))
| C[[continue <Id> ;]]γθσ = θ1(γσ) where

θ1 = γ.getComCont(&continue) fst(V [[Id]]γ)

C[[<RetStmt>]]γθσ ::=
C[[return ;]]γθσ = γ.getComCont(&return)
| C[[return <Expr> ;]]γθσ = E[[<Expr>]]γκσ where
∀r, τ, σ.κ(r, τ, σ) = θ1(σ1) where

θ1 = γ.getComCont(&return) and
τ1 = γ[&returnType] and
r1 = promote(τ1, (r, τ) and
σ1 = σ[&returnV al ← r1]

C[[<ThrowStmt>]]γθσ ::=
C[[throw <Expr> ;]] = E[[<Expr>]]γκσ where

forallr, τ, γ1, σ2.κ(r, τ, γ1, ]sto1) = θ1(γ2, σ1) where
γ2 = γ1[&thrown← (r, τ)] and
θ1 = γ.[&throw]

C[[<SynchStmt>]]γθσ ::=
C[[synchronized ( <Expr> ) <Block>]]γθσ = E[[<Expr>]]γκσ where
∀r, τ, σ1. κ(r, τ, σ1) = C[[<Block>]]γθσ1

The try-catch statements of the Java language are an important aspect of
the language for error control. The following semantic functions capture the
meaning of these statements. A try block is executed until a throw command is
executes, at that point the execution continues based on the continuation stored
in the environment. This continuation consists o the execution of the finally
block followed by evaluation of the catch parameter. If the thrown exception
matches the formal parameter, the catch clause is executed and the program
continues using the continuation from the commands following the try block. If
none of the catch clauses match, then the throw propagates on up.
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C[[<TryStmt>]]γθσ ::=
C[[try <Block> <Catches>]]γθσ = C[[<Block>]]γ1θ1σ where

γ1 = γ[&throw← θ2] and
∀γ2, σ2.θ1(γ2, σ2) = θ(γ, σ2) and
∀γ2, σ2.θ2(γ2, σ2) = C[[<Catches>]]γθ3σ2 where
∀γ3, σ3.θ3(γ3, σ3) =

if (γ3(&thrown) == (null, “V′′)) then
θ(γ3, σ3)

else
(γ3.[&throw])(γ3, σ3)

endif

| C[[try <Block> <Catches>? <Finally>]]γθσ = C[[<Block>]]γ1θ1σ where
γ1 = γ[&throw← θ2] and
∀γ2, σ2.θ1(γ2, σ2) = C[[<finally>]]γθσ2 and
∀γ2, σ2.θ2(γ2, σ2) = C[[<finally>]]γθ3σ2 where
∀γ3, sto3.θ3(γ3, σ3) = C[[<Catches>]]γ3θ4σ3 where
∀γ4, σ4.θ4(γ4, σ4) =

if (γ4(&thrown) == (null, “V′′)) then
θ(γ4, σ4)

else
(γ4.[&throw])(γ4, σ4)

endif

C[[<Catches>]]γθσ ::=
C[[<CatchClause>]]γθσ
| C[[<Catches1> <CatchClause>]]γθσ = C[[<Catches1>]]γθ1σ where

forallγ1, σ1.θ1(γ1, σ1) = C[[<CatchClause>]]γ1θσ1

C[[<CatchClause>]]γθσ ::=
C[[catch ( <FormalParam> ) <Block>]]γθσ =

let (r, τ) = γ(&thrown) and
(e, τ1 = V [[<FormalParm>]]) in

if (τ == τ1) then
C[[<Block>]]γ1θσ1 where

γ1 = γ[&thrown← (null, “V′′)] and
σ1 = σ[γ(e)← r]

else
θ(γ, σ)

endif

C[[<Finally>]]γθσ ::=
C[[finally <Block>]]γθσ = C[[<Block>]]γθσ

4.13 Expressions

Expressions in Java return either values or variables. In these semantics we have
broken these into two categories, handled by different semantic function s, E [[]] for
values and L[[]] for variables. The first two syntactic expressions denote constant
expressions (which must return a value) and general expressions (which also
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return values). Note that restriction that constant expressions return constant
values is a compile-time check and thus is not represented in these semantics.

E[[<ConstantExpr>]]γκσ ::=
E[[<Expr>]]γκσ

E[[<Expr>]]γκσ ::=
E[[<AssignExpr>]]γκσ

Assignment Expressions: There are several assignment operators in Java be-
sides the simple assignment. According to the JLS [1] the compound assignment
E1op = E2 is equivalent to E1 = (T )((E1)op(E2)) where T is the type of E1 and
the expression E1 is evaluated only once. In the semantic model, we evaluate
E1 once to obtain its memory location for assignment in the store, and use that
location to determine the value of the expression for the operation. This evalua-
tion requires the expression to return a variable (actually a variable location for
use by the store) as opposed to a value. To indicate this return type we use the
location L[[]] semantic functions.

E[[<AssignExpr>]]γκσ ::=
E[[<CondExpr>]]γκσ
| E[[<Assign>]]γκσ

E[[<Assign>]]γκσ ::=
E[[<LHS> <AssignOp> <AssignExpr>]]γκσ =

if (AssignOp == ‘+ =’)
L[[<LHS>]]γασ where
∀r1, τ1, l, σ1. α(r1, τ1, l, σ1) = E[[<AssignExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) =
let τ = binaryPromoteType(τ1 , τ2) and

d = cast(τ1,(promote(τ, (r1, τ1)) +τ promote(τ, (r2, τ2)),τ)) in
κ(d, τ1, σ2[l← d])

similar for − =, ∗ =,% =, & =, ∧ =, | =
where the meaning of opτ is defined in the section on numeric expressions

else if (AssignOp == ‘/ =’)
L[[<LHS>]]γασ where
∀r1, τ1, l, σ1. α(r1, τ1, l, σ1) = E[[<AssignExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) =
let τ = binaryPromoteType(τ1 , τ2) in
if (r2 = 0 ∧ (τ = “I′′ ∨ τ = “L′′))

θ(γ1, σ3) where
θ = γ.[&throw] and
σ3, r3, τ3 = σ.mkException(ArithmeticException) and
γ1 = γ[&thrown← (r3, τ3)]

else
let d = cast(τ1,(promote(τ, (r1, τ1)) /τ promote(τ, (r2, τ2)),τ) in
(κ(d, τ1, σ2[l← d])
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endif
else if (AssignOp == ‘<<=’)
L[[<LHS>]]γασ where
∀r1, τ1, l, σ1. α(r2, τ1, l, σ1) = E[[<AssignExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) =
let τ ′

1 = unaryPromoteType(τ1) and
τ ′
2 = unaryPromoteType(τ2) and

r′1 = promote(τ ′
1, (r1, τ1)) and

r′2 = promote(τ ′
2, (r2, τ2)) and

d = (leftShift((r′1, τ
′
1), (r

′
2, τ

′
2)) in

κ(d, τ1, σ2[l← d])

similar for >>=,>>>=
where the meaning of opτ is defined in the section on numeric expressions

else if (AssignOp == ‘=’)
L[[<LHS>]]γασ where
∀r1, τ1, l, σ1. α(r1, τ1, l, σ1) = E[[<AssignExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) =
if (r1 == null)

θ(γ1, σ3) where
θ = γ.[&throw] and
σ3, r3, τ3 = σ.mkException(NullPointerException) and
γ1 = γ[&thrown← (r3, τ3)]

else if (r1 == OutOfBounds)
θ(γ1, σ3) where

θ = γ.[&throw] and
σ3, r3, τ3 = σ.mkException(IndexOutOfBoundsException) and
γ1 = γ[&thrown← (r3, τ3)]

else if not (τ2 <T τ1) then
θ(γ1, σ3) where

θ = γ.[&throw] and
σ3, r3, τ3 = σ.mkException(ArrayStoreException) and
γ1 = γ[&thrown← (r3, τ3)]

else
κ(r2, τ1, σ2[l← promote(τ1, (r2, τ2))])

endif
endif

<AssignOp> ::=
=
| ∗ =
| / =
| % =
| + =
| − =
| <<=
| >>=
| >>>=
| & =
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| ∧ =
| | =

L[[<LHS>]]γασ ::=
L[[<Name>]]γασ
| L[[<FieldAccess>]]γασ
| L[[<ArrayAccess>]]γασ

Conditional Expressions. The conditional expressions (operator: ?) of the Java
language are the only expressions that do not guarantee that all subexpressions
are evaluated. The regular conditional expression, is a choice operation that
executes the second or third subexpression based on the boolean result of the
first subexpression. The return type of the expression is based on the type of the
two possible resultant subexpressions. The conditional-or expression (operator
||) and the conditional-and expression (operator &&) are short-circuit boolean
expressions that only evaluate the second subexpression if the result of the first
subexpression does not determine the result of the expression (i.e., short circuits
on true for or and false for and).

E[[<CondExpr>]]γκσ::=
E[[<CondOrExpr>]]γκσ
| E[[<CondOrExpr> ? <Expr> : <CondExpr1>]]γκσ =
E[[<CondOrExpr>]]γκ1σ where
∀r1, τ1, σ1. κ1(r, τ, σ1) =

if (r1 == true)
E[[<Expr>]]γκ2σ1

else
E[[<CondOrExpr1>]]γκ2σ1

endif
∀r2, τ2, σ2. κ2(r2, τ2, σ2) =

κ(promote(τ, (r2, τ2)), τ, σ2) where
τ = env.condTypeOf(τt, vt, τf , vf ) and
vt = compile-time value of <Expr> and
τt = type of <Expr> and
τf = type of <CondOrExpr1> and
vf = compile-time value of <CondOrExpr1>

we compute the result of r1 <τ r2 using the following:

γ.condTypeOf(τt, vt, τf , vf) =
if (τt == τf )

τt

else if (isNumeric(τt) and isNumeric(τf ))
if ((τt == “B”and τf == “S”) or

((τf == “B”and τt == “S”))
“S”

else if (τt ∈ [“B”, “S”,“C”] and vf ∈ τt)
τt

else if (τf ∈ [“B”, “S”, “C”] and vt ∈ τf)
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τf

else
binaryPromotionType(τt, τf )

end if
else if (γ.assnCompatible(τt, τf ))

τf

else
τt

endif

E[[<CondOrExpr>]]γκσ::=
E[[<CondAndExpr>]]γκσ
| E[[<CondOrExpr1> || <CondAndExpr>]]γκσ =
E[[<CondOrExpr1>]]γκ1σ where
∀r, τ, σ1. κ1(r, τ, σ1) =

if (r == true)
κ(r, τ, σ1)

else
E[[<CondAndExpr>]]γκσ1

endif

E[[<CondAndExpr>]]γκσ::=
E[[<IncOrExpr>]]γκσ
| E[[<CondAndExpr1> && <IncOrExpr>]]γκσ =
E[[<CondAndExpr1>]]γκ1σ where
∀r, τ, σ1. κ1(r, τ, σ1) =

if (r == true)
κ(r, τ, σ1)

else
E[[<IncOrExpr>]]γκσ1

endif

Bitwise and Boolean Expressions . The following expression all return boolean
results, with the exception of the first three (and, or and xor) which perform bit-
wise operations on integral operands and logical operations on boolean operands.
The comparison expressions can work with any operands of compatible types
and thus require a more extensive definition. The results of these operations
are rather complex for floating point values, and have been defined in tables to
simplify the presentation. Shift and comparison operations that a similar have
been removed from this presentation for space consideration.

E[[<IncOrExpr>]]γκσ::=
E[[<XORExpr>]]γκσ
| E[[<IncOrExpr1> | <XORExpr>]]γκσ = E[[<IncOrExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<XORExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(r1 or⊥ r2, τ, σ2) where

if (τ1 == “Z”)
τ = “Z”

else
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τ = binaryPromoteType(τ1, τ2)
endif

E[[<XORExpr>]]γκσ::=
E[[<AndExpr>]]γκσ
| E[[<XORExpr1>

∧ <AndExpr>]]γκσ = E[[<XORExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<AndExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(r1 xor⊥ r2, τ, σ2) where

if (τ1 == “Z”)
τ = “Z”

else
τ = binaryPromoteType(τ1, τ2)

endif

E[[<AndExpr>]]γκσ::=
E[[<EqualExpr>]]γκσ
| E[[<AndExpr1> & <EqualExpr>]]γκσ = E[[<AndExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<EqualExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(r1 and⊥ r2, τ, σ2) where

if (τ1 == “Z”)
τ = “Z”

else
τ = binaryPromoteType(τ1, τ2)

endif

E[[<EqualExpr>]]γκσ ::=
E[[<RelatExpr>]]γκσ
| E[[<EqualExpr1> == <RelatExpr>]]γκσ =
E[[<EqualExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<RelatExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q,boolean, σ2) where

if (isNumeric(τ1))
let (τ = binaryPromoteType(τ1, τ2)) and

r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

if (τ = “F”or τ = “D”)
if (r′1 == NAN or r′2 == NAN)

t = false
else if (| r′1 |== 0 and | r′2 |== 0)

t = true
else if (r′1 == r′2)

t = true
endif

else if (r′1 == r′2)
t = true

endif
else if (τ == “Z”)

t = (r1 == r2)
else // must be ref types
endif
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| E[[<EqualExpr1> != <RelatExpr>]]γκσ =
E[[!(<EqualExpr1> == <RelatExpr>)]]γκσ

E[[<RelatExpr>]]γκσ ::=
E[[<ShiftExpr>]]γκσ
| E[[<RelatExpr1> < <ShiftExpr>]]γκσ = E[[<RelatExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<ShiftExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, “Z′′, σ2) where

let (τ = binaryPromoteType(τ1, τ2)) and
r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

q = r′1 <τ r′2
similar for >, <= and >=,
with the understanding that positive and negative 0 are equal.

| E[[<RelatExpr1> instanceof <RefType>]]γκσ = E[[<RelatExpr1>]]γκ1σ1 where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) =
E[[<RefType>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(γ.instanceof(τ1, τ2), “Z

′′, σ2)

we compute the result of r1 <τ r2 using the following table

Computation of r1 <τ r2

r1

NAN ∞ −∞ | 0 | other
NAN false false false false false
∞ false false false false false

r2 −∞ false true false true true
| 0 | false true false false r1 <τ⊥ r2

other false true false r1 <τ⊥ r2 r1 <τ⊥ r2

where +τ⊥ is normal addition
(using either IEEE 754, or twos complement arithmetic)
32 or 64 bit computation is based on the value of τ
this is a strict extension of normal addition
IEEE underflow or overflow returns an ∞ or a 0 value
twos complement overflow or underflow returns the low order bits of the result

Numeric Expressions. The numeric expressions take numeric operands and pro-
duce numeric results. Again, the use of floating point values greatly complicates
the specification of operations such as addition and multiplication, and thus
are defined in tables to simplify the presentation. We also define subtraction
in terms of addition. There is an oversight in the JLS [1] involving multiplica-
tion of infinity values. Consistent with the JDK we define ∞ ∗ ∞ == ∞ and
−∞ ∗∞ ==∞∗−∞ == −∞.

E[[<ShiftExpr> ]]γκσ ::=
E[[<AddExpr>]]γκσ
| E[[<ShiftExpr1> << <AddExpr>]]γκσ = E[[<ShiftExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<AddExpr>]]γκ2σ1 where
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∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ ′
1, σ2) where

let τ ′
1 = unaryPromoteType(τ1) and

τ ′
2 = unaryPromoteType(τ2) and

r′1 = promote(τ ′
1, (r1, τ1)) and

r′2 = promote(τ ′
2, (r2, τ2)) in

q = leftShift((r′1, τ
′
1), (r

′
2, τ

′
2))

similar for >> and >>>

E[[<AddExpr> ]]γκσ ::=
E[[<MultExpr>]]γκσ
| E[[<AddExpr1> + <MultExpr>]]γκσ = E[[<AddExpr>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<MultExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ, σ2) where

if (τ1 == “Ljava.lang.String;” or τ2 == “Ljava.lang.String;”)
τ = “Ljava.lang.String;” and
q = r1 +τ r2

else
τ = binaryPromoteType (τ1, τ2) and

let r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

q = (r′1 +τ r′2)
endif

| E[[<AddExpr> - <MultExpr>]]γκσ = E[[<AddExpr>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<MultExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ, σ2) where

τ = binaryPromoteType (τ1, τ2) and
let r′1 = promote(τ, (r1, τ1)) and

r′2 = promote(τ, (r2, τ2)) in
q = ((r′1, τ1) +τ (−r′2, τ2))

where we define (r1, τ1) +τ (r2, τ2) =
if (τ == “Ljava.lang.String;”)

String(r1, τ1) + String(r2, τ2)
else

compute the result using the following table
endif

Computation of r1 +τ r2

r1

NAN ∞ −∞ 0 -0 other
NAN NAN NAN NAN NAN NAN NAN
∞ NAN ∞ NAN ∞ ∞ ∞

r2 −∞ NAN NAN −∞ −∞ −∞ −∞
0 NAN ∞ −∞ 0 0 r1

-0 NAN ∞ −∞ 0 -0 r1

other NAN ∞ −∞ r2 r2 r1 +τ⊥ r2

where +τ⊥ is normal addition
(using either IEEE 754, or twos complement arithmetic)
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32 or 64 bit computation is based on the value of τ
this is a strict extension of normal addition
IEEE underflow or overflow returns an ∞ or a 0 value
twos complement overflow or underflow returns the low order bits of the result

E[[<MultExpr> ]]γκσ ::=
E[[<UnaryExpr>]]γκσ
| E[[<MultExpr1> * <UnaryExpr>]]γκσ = E[[<MultExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<UnaryExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ, σ2) where
τ = binaryPromoteType (τ1, τ2) and

let r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

q = (r′1 ∗τ r′2)
| E[[<MultExpr1> / <UnaryExpr>]]γκσ = E[[<MultExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<UnaryExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ, σ2) where
τ = binaryPromoteType (τ1, τ2) and

let r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

if (| r′2 |== 0)
θ(γ1, σ3) where

θ = γ.[&throw] and
σ3, r3, τ3 = σ.mkException(ArithmeticException) and
γ1 = γ[&thrown← (r3, τ3)]

else
q = (r′1/τ r′2)

endif
| E[[<MultExpr1> % <UnaryExpr>]]γκσ = E[[<MultExpr1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<UnaryExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ1) = κ(q, τ, σ2) where
τ = binaryPromoteType (τ1, τ2) and

let r′1 = promote(τ, (r1, τ1)) and
r′2 = promote(τ, (r2, τ2)) in

q = (r′1%τ r′2)

where we compute r1 ∗τ r2 using the following table

Computation of r1 ∗τ r2

r1

NAN ∞ −∞ 0 -0 other
NAN NAN NAN NAN NAN NAN NAN
∞ NAN ∞ −∞ NAN NAN (s)∞

r2 −∞ NAN −∞ ∞ NAN NAN (s)∞
0 NAN NAN NAN 0 -0 (s)0
-0 NAN NAN NAN -0 0 (s)0

other NAN (s)∞ (s)∞ (s)0 (s)0 r1 ∗τ⊥ r2

where ∗τ⊥ is normal multiplication
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(using either IEEE 754, or twos complement arithmetic)
32 or 64 bit computation is based on the value of τ
this is a strict extension of normal addition
IEEE underflow or overflow returns an ∞ or a 0 value
twos complement overflow or underflow returns the low order bits of the result
(s) represents the sign of the result which is positive if both

r1 and r2 have the same sign and negative otherwise

where we compute r1/τ r2 using the following table

Computation of r1/τr2

r1

NAN ∞ −∞ 0 -0 other
NAN NAN NAN NAN NAN NAN NAN
∞ NAN NAN NAN 0 −0 (s)0

r2 −∞ NAN NAN NAN −0 0 (s)0
0 NAN ∞ −∞ NAN NAN (s)∞
-0 NAN −∞ ∞ NAN NAN (s)∞

other NAN (s)∞ (s)∞ (s)0 (s)0 r1/τ⊥r2

where /τ⊥ is normal division
(using either IEEE 754, or twos complement arithmetic)
32 or 64 bit computation is based on the value of τ
this is a strict extension of normal addition
IEEE underflow or overflow returns an ∞ or a 0 value
twos complement overflow or underflow returns the low order bits of the result
(s) represents the sign of the result which is positive if both

r1 and r2 have the same sign and negative otherwise

where we compute r1%τ r2 using the following table

Computation of r1%τr2

r1

NAN ∞ −∞ 0 -0 other
NAN NAN NAN NAN NAN NAN NAN
∞ NAN NAN NAN 0 −0 r1

r2 −∞ NAN NAN NAN 0 −0 r1

0 NAN NAN NAN NAN NAN NAN
-0 NAN NAN NAN NAN NAN NAN

other NAN NAN NAN 0 −0 r1%τ⊥r2

where %τ⊥ is integer division
(using C/C++ style remainder, or twos complement arithmetic)
Does NOT follow IEEE 754 remainder operation,

rather C/C++ style integer remainder operation
Floating point underflow or overflow returns an ∞ or a 0 value
twos complement overflow or underflow returns the low order bits of the result
(s) represents the sign of the result which is positive if both

r1 and r2 have the same sign and negative otherwise
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4.14 Location Expressions

All Java expressions return either a value, variable or void (for method invocations
that return no value). Unary and primary expressions are the only expressions that can
return a variable (location in a store). As such, we use the location semantic function
to evaluate unary and primary expressions. However, to maintain consistency in the
grammar, we have included regular expression productions and semantics interleaved
with the location expressions.

Unary Expressions. Unary expressions involve changing the sign or type of an ex-
pression, or incrementing or decrementing a value. In the case or pre or post increment
or decrement operations the expression has a definite side-effect on the store, as is
indicated in the semantics. Note that the return value of the expression indicates the
pre or post nature of the expression. If the unary (or primary) expression does not
return a variable, then the value undef is returned.

E[[<UnaryExpr>]]γκσ = L[[<UnaryExpr>]]γασ where
∀r, τ, l, σ1. α(r, τ, l, σ1) = κ(r, τ, σ1)

L[[<UnaryExp>]]γασ ::=
L[[<PreIncExpr>]]γκσ
| L[[<PreDecExpr>]]γκσ
| L[[<UnaryExprNotPlusMinus>]]γκσ
| L[[+ <UnaryExpr1>]]γασ = L[[<UnaryExpr1>]]γα1σ where
∀r, τ, l, σ1. α1(r, τ, l, σ1) = α(r, τ, undef,σ1)

| L[[- <UnaryExpr1>]]γασ = L[[<UnaryExpr1>]]γα1σ where
∀r, τ, l, σ1. α1(r, τ, l, σ1) = α(0−τ⊥ r, τ, undef, σ1)

L[[<UnaryExprNotPlusMinus> ]]γκσ ::=
L[[<PostExpr>]]γκσ
| L[[<CastExpr>]]γκσ
| E[[∼ <UnaryExpr>]]γκσ = L[[<UnaryExpr>]]γασ where
∀r, τ, l, σ1. α(r, τ, l, σ1) =

let τ1 = unaryPromoteType(τ) and
r1 = promote(τ1, (r, τ)) in

κ((−r1) − 1, τ, σ1)
| E[[! <UnaryExpr>]]γκσ = L[[<UnaryExpr>]]γασ where
∀r, τ, l, σ1. α1(r, τ, l, σ1) =

if (r == true)
κ(false, τ, σ2)

else
κ(false, τ, σ2)

endif

We have reverted to the non-LALR(1) grammar for cast expressions to simplify the
presentation of the semantics. Specifically, the return type of the expression is the type
of the cast (given that no error occurs), and the return value is the converted value of
the expression.
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E[[<CastExpr>]]γκσ ::=

E[[( <PrimType> <Dims>? ) <UnaryExpr>]]γκσ = E[[<UnaryExp>]]γκ1σ where
let τ ′ = T [[<PrimType>]]γ and

d = fst(V [[<Dims>]]γ) and
τ = mkArrayType(τ ′ , d) in

∀r, τ1, σ.κ1(r, τ1, sto) = κ(r1, τ, σ) where
r1 = cast(τ, (r, τ1))

| E[[( <RefType> ) <UnaryExprNotPlusMinus>]]γκσ =
E[[<UnaryExprNotPlusMinus>]]γκ1σ where
let τ = T [[<RefType>]]γ in
∀r, τ1, σ.κ1(r, τ1, sto) =

if (not (env.assnCompatible(τ, τ1) or
env.assnCompatible(τ1, τ)))

θ(γ1, σ2) where
θ = γ.[&throw] and
σ2, r2, τ2 = σ.mkException(CastConversionException) and
γ1 = γ[&thrown← (r2, τ2)]

else
κ(r1, τ, σ) where

r1 = cast(τ, (r, τ1))
endif

In the JLS [1], there is discussion that (p)++ is a valid post fix operation (“(p)++
can make sense only as a postfix increment of p”). However, in the JDK, any paren-
thesized expression returns only a value and not a variable. We follow that convention
here.

L[[<PostIncExpr> ]]γασ ::=
L[[<PostExpr> ++]]γασ = L[[<PostExpr>]]γα1σ where
∀r, τ1, l, σ1. α1(r, τ1, l, σ1) =

let τ = binaryPromotionType(τ, “I′′) and
r1 = promote(τ, (r, τ1)) and
r2 = promote(τ, (1, “I′′)) and
q = cast(τ1, (r1 +τ⊥ r2), τ) in

α(r, τ1, undef,σ1[l← q])

L[[<PostDecExpr> ]]γασ ::=
L[[<PostExpr> - -]]γασ = L[[<PostExpr>]]γα1σ where
∀l, r, τ1, l, σ1. α1(r, τ1, l, σ1) =

let τ = binaryPromotionType(τ, “I′′) and
r1 = promote(τ, (r, τ1)) and
r2 = promote(τ, (−1, “I′′)) and
q = cast(τ1, (r1 +τ⊥ r2), τ) in

α(r, τ1, undef,σ1[l← q])

L[[<PostExpr>]]γασ ::=
L[[<Primary>]]γασ
| L[[<Name>]]γασ
| L[[<PostIncExpr>]]γασ
| L[[<PostDecExpr>]]γασ
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L[[<PreIncExpr> ]]γασ ::=
L[[++ <UnaryExpr>]]γασ = L[[<UnaryExpr>]]γα1σ where
∀r, τ1, l, σ1. α1(r, τ1, l, σ1) =

let τ = binaryPromotionType(τ, “I′′) and
r1 = promote(τ, (r, τ1)) and
r2 = promote(τ, (1, “I′′)) and
q = cast(τ1, (r1 +τ⊥ r2, τ)) in

α(q, τ1, undef, σ1[l← q])

L[[<PreDecExpr> ]]γασ ::=
L[[- - <UnaryExpr>]]γασ = L[[<UnaryExpr>]]γα1σ where
∀r, τ1, l, σ1. α1(r, τ1, l, σ1) =

let τ = binaryPromotionType(τ, “I′′) and
r1 = promote(τ, (r, τ)) and
r2 = promote(τ, (−1, “I′′)) and
q = cast(τ1, (r1 +τ⊥ r2, τ)) in

α(q, τ1, undef, σ1[l← q])

Primary Expressions. These expressions are the base expressions of the Java language
providing access to variables, fields, methods, arrays and new object instances.

L[[<Primary>]]γασ ::=
L[[<PrimaryNoNewArray>]]γασ
| L[[<ArrayCreationExpr>]]γασ = E[[<ArrayCreationExpr>]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) = α(r, τ, undef, σ1)

L[[<PrimaryNoNewArray> ]]γασ ::=
L[[<Literal>]]γασ =

let (r, τ) = V [[<Literal>]]γ in
α(r, τ, undef, σ)

| L[[this]]γασ = α(γ[&thisObject],γ[&thisClass], undef, σ)
| L[[( <Expr> )]]γασ = E[[<Expr>]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) = α(r, τ, undef, σ1)

| L[[<ClassInstCreationExpr>]]γασ
| L[[<FieldAccess>]]γασ
| L[[<MethodInv>]]γασ = E[[<MethodInv>]]γκσ where
∀r, τ, σ1.κ(r, τ, σ1) = α(r, τ, undef, σ1)

| L[[<ArrayAccess>]]γασ

Array creation expressions are responsible for the creation of a new array of values.
Specifically, they allocate space in the store for the array, and then initialize all of the
elements of the array based on the default initializer for the array elements. Note that
if these elements are reference types, they are initialized to null. This expression only
returns a value, the reference to the array, and not a location.

E[[<ArrayCreationExpr> ]]γκσ ::=

E[[new <PrimType> <DimExprList> <Dims>?]]γκ1σ =
E[[<DimExprList>]]γκσ where
∀r, τ, σ1.κ1(r, τ, σ1) = κ(q, τ1, σ2) where
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v = fst(V [[<Dims>]]γ) and
τp = T [[<PrimType>]]γ and
τ1 = mkArrayType(τ, v) and
(σ2, q) = σ1.allocateArray(τ1, τp)

| E[[new <ClassInterfaceType> <DimExprList> <Dims>?]]γκσ =
E[[<DimExprList>]]γκ1σ1 where

sto1 = γ.classLoader(fst(V [[<ClassInterfaceType>]]),σ) and
∀r, τ, σ1.κ1(r, τ, σ1) = κ(q, τ1, σ2) where

v = fst(V [[<Dims>]]γ) and
τp = T [[<ClassInterfaceType>]]γ and
τ1 = mkArrayType(τ, v) and
(σ2, q) = σ1.allocateArray(τ1, τp)

The following semantics denote field access. Specifically, these semantics look up
the named field in the enviroment and return the fields location and type.

L[[<FieldAccess> ]]γασ ::=
L[[<Primary> . <Id>]]γασ = α(r, τ, l, σ) where

r = σ[l] and
l, τ = γ[V [[<Primary>. <Id>]]γ]

| L[[super . <Id>]]γασ = α(r, τ, l, σ) where
r = σ[l] and
l, τ = γ[V [[γ[&super] . <Id>]]γ]

The following semantics denote the process of invoking a method call. We have sim-
plified the syntax here from the JLS by just specifying a Name for the method instead
of separating the primary and super constructs. The concept for this access is detailed
in the auxiliary functions that search the environment. The result of the environment
search and retrieval is a function that takes an environment, command continuation
and a store and returns an answer. These semantics evaluate the arguments, look up
the function for the specified method and execute that function.

E[[<MethodInv> ]]γκσ ::=

E[[<Name> ( <ArgList>? )]]γκσ =
E[[<ArgList>]] γκ1σ where
∀r, τ, σ1. κ1(r, τ, σ1) = m(γθσ1) where

sig = getSigs(r) and
m = γ.getMethod(fstV [[<Name>]]γ,sig) and
∀γ2, σ2. θ(γ2, σ2) = κ(γ2[&returnV al], γ2[&returnType], σ2)

The following semantics are used to specify the creation of an instance of a class
through the invocation of a new operator. Upon invocation of this operator the class
needs to be loaded (if it had not been loaded). Loading involves creation of storage space
in the store, execution of field initializers for static fields of the class, and execution
of static constructors for the class. After the execution of these entities, only then is
the explicit constructor invoked (and its arguments evaluated). Note the inclusion of
the <ClassBody> construct in the last two productions. These are new as of Java 1.1
and permit the construction of anonymous classes. For the sake of brevity, we do not
include their semantics here. These semantics would be the same as the first semantics
except that the execution method m would be the evaluation of the class body.
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E[[<ClassInstCreationExpr>]]γκσ ::=

E[[new <ClassType> ( <ArgList>? )]]γκσ =
E[[<ArgList>]]γκ1σ1 where

sto1 = γ.classLoader(fst(V [[<ClassType>]]),σ) and
∀r, τ, σ2.κ1(r, τ, σ2) = m(γθσ2) where

sig = getSigs(r) and
m = γ.getMethod(fstV [[<ClassType>]]γ,sig) and
∀γ2, σ2. θ(γ2, σ2) = κ(γ2[&returnV al], γ2[&returnType], σ2)

| new <ClassType> ( <ArgList>? ) <ClassBody>
| new <InterfaceType> () <ClassBody>

The array access expressions allow us to dereference an existing array and return
the location of an element of the array. If that element is a reference type, then the
location returned is the location that stores the references and not the location of the
object itself.

L[[<ArrayAccess> ]]γασ ::=
L[[<Name> [ <Expr> ]]]γα1σ = E[[<Expr>]]γκσ where
∀r, τ, σ1. κ(r, τ, σ1) = α(q, τ1, l, σ1) where

v = fst(V [[Name]]γ) and
a = γ.getArrayRef(v) and
τ ′ = unaryPromoteType(τ) and
l = γ.getArrayElem(a, promote(τ ′, (r, τ))) and
τ1 = γ.getArrayElemType(a) and
q = σ(l)

| L[[<PrimaryNoNewArray> [ <Expr> ]]]γασ =
L[[<PrimaryNoNewArray>]]γα1σ where
∀r1, τ1, l1, σ1. αr, τ, l, σ1 = E[[<Expr>]]γκσ1 where
∀r2, τ2, σ2. κr2, τ2, σ2 = α(q, τ1, l, σ2) where

τ ′ = unaryPromoteType(τ2) and
l = γ.getArrayElem(r1 ,promote(τ ′, (r2, τ2))) and
τ1 = γ.getArrayElemType(r1 ) and
q = σ(l)

The <ArgList> construction allows us to specify a list of expressions. The result
is a list of pairs of values and types for each of the arguments in the argument list.

E[[<ArgList> ]]γκσ ::=
[ E[[<Expr>]]γκσ ]
| E[[<ArgList1> , <Expr>]]γκσ = E[[<ArgList1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<Expr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) = κ(q, τ, σ2) where

q = append(r1, r2) and
τ = τ1 + τ2

Dims. The following three productions are used in cast expressions and array creation
expressions to specify the dimensions of the created array. The information obtained
from these productions is used to provide a count of the number of array indices and
any specified dimension sizes.
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E[[<DimExprList> ]]γκσ ::=
E[[<DimExpr>]]γκσ
| E[[<DimExprList1> <DimExpr>]]γκσ = E[[<DimExprList1>]]γκ1σ where
∀r1, τ1, σ1. κ1(r1, τ1, σ1) = E[[<DimExpr>]]γκ2σ1 where
∀r2, τ2, σ2. κ2(r2, τ2, σ2) = κ(q, τ, σ2) where

q = append(r1, r2) and
τ = mkArrayType(τ1 ,1)

E[[<DimExpr> ]]γκσ ::=
E[[[ <Expr> ]]]γκσ = E[[<Expr>]]γκ1σ where
∀r, τ, σ1. κ1(r, τ, σ) = κ(q, int[], sto) where

τ ′ = unaryPromoteType(τ) and
q = [promote(τ ′, (r, τ))]

E[[<Dims> ]]γκσ ::=
V [[[ ]]]γ = (1,int)
| V [[<Dims1> [ ]]]γ = (v + 1, int) where

(v, τ) = V [[<Dims1>]]γ
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A Programmer’s Reduction Semantics

for Classes and Mixins
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Abstract. While class-based object-oriented programming languages
provide a flexible mechanism for re-using and managing related pieces
of code, they typically lack linguistic facilities for specifying a uniform
extension of many classes with one set of fields and methods. As a result,
programmers are unable to express certain abstractions over classes. In
this paper we develop a model of class-to-class functions that we refer to
as mixins . A mixin function maps a class to an extended class by adding
or overriding fields and methods. Programming with mixins is similar to
programming with single inheritance classes, but mixins more directly
encourage programming to interfaces. The paper develops these ideas
within the context of Java. The results are

1. an intuitive model of an essential Java subset;
2. an extension that explains and models mixins; and
3. type soundness theorems for these languages.

1 Organizing Programs with Functions and Classes

Object-oriented programming languages offer classes, inheritance, and overrid-
ing to parameterize over program pieces for management purposes and re-use.
Functional programming languages provide various flavors of functional abstrac-
tions for the same purpose. The latter model was developed from a well-known,
highly developed mathematical theory. The former grew in response to the need
to manage large programs and to re-use as many components as possible.

Each form of parameterization is useful for certain situations. With higher-
order functions, a programmer can easily define many functions that share a
similar core but differ in a few details. As many language designers and program-
mers readily acknowledge, however, the functional approach to parameterization
is best used in situations with a relatively small number of parameters. When
a function must consume a large number of arguments, the approach quickly
becomes unwieldy, especially if many of the arguments are the same for most of
the function’s uses.1

Class systems provide a simple and flexible mechanism for managing col-
lections of highly parameterized program pieces. Using class extension (inheri-
tance) and overriding, a programmer derives a new class by specifying only the
1 Function entry points à la Fortran or keyword arguments à la Common Lisp are a

symptom of this problem, not a remedy.
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elements that change in the derived class. Nevertheless, a pure class-based ap-
proach suffers from a lack of abstractions that specify uniform extensions and
modifications of classes. For example, the construction of a programming envi-
ronment may require many kinds of text editor frames, including frames that can
contain multiple text buffers and frames that support searching. In Java, for ex-
ample, we cannot implement all combinations of multiple-buffer and searchable
frames using derived classes. If we choose to define a class for all multiple-buffer
frames, there can be no class that includes only searchable frames. Hence, we
must repeat the code that connects a frame to the search engine in at least two
branches of the class hierarchy: once for single-buffer searchable frames and again
for multiple-buffer searchable frames. If we could instead specify a mapping from
editor frame classes to searchable editor frame classes, then the code connecting
a frame to the search engine could be abstracted and maintained separately.

Some class-based object-oriented programming languages provide multiple
inheritance, which permits a programmer to create a class by extending more
than one class at once. A programmer who also follows a particular protocol
for such extensions can mimic the use of class-to-class functions. Common Lisp
programmers refer to this protocol as mixin programming [20,21], because it
roughly corresponds to mixing in additional ingredients during class creation.
Bracha and Cook [6] designed a language of class manipulators that promote
mixin thinking in this style and permit programmers to build mixin-like classes.
Unfortunately, multiple inheritance and its cousins are semantically complex
and difficult to understand for programmers.2 As a result, implementing a mixin
protocol with these approaches is error-prone and typically avoided.

For the design of MzScheme’s class and interface system [15], we experi-
mented with a different approach. In MzScheme, classes form a single inheri-
tance hierarchy, but are also first-class values that can be created and extended
at run-time. Once this capability was available, the programmers of our team
used it extensively for the construction of DrScheme [14], a Scheme programming
environment. However, a thorough analysis reveals that the code only contains
first-order functions on classes.

In this paper, we present a typed model of such “class functors” for Java [17].
We refer to the functors as mixins due to their similarity to Common Lisp’s
multiple inheritance mechanism and Bracha’s class operators. Our proposal is
superior in that it isolates the useful aspects of multiple inheritance yet retains
the simple, intuitive nature of class-oriented Java programming. In the following
section, we develop a calculus of Java classes. In the third section, we motivate
mixins as an extension of classes using a small but illuminating example. The
fourth section extends the type-theoretic model of Java to mixins. The last
section considers implementation strategies for mixins and puts our work in
perspective.

2 Dan Friedman determined in an informal poll in 1996 that almost nobody who
teaches C++ teaches multiple inheritance [pers. com.].
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interface Placei . . .

interface Barrieri . . .

interface Doori

extends Placei, Barrieri . . .
. . .
class Doorc extends Object

implements Doori {
. . .
Roomc Enter(Personc p) { . . . }
. . .

}
class LockedDoorc extends Doorc . . .
class ShortDoorc extends Doorc . . .

⇒
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Fig. 1. A program determines a static directed acyclic graph of types
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Fig. 2. Given a type graph, reductions map a store-expression pair to a new pair

2 A Model of Classes

ClassicJava is a small but essential subset of sequential Java. To model its
type structure and semantics, we use well-known type elaboration and rewriting
techniques for Scheme and ML [13,18,29]. Figures 1 and 2 illustrate our strategy.
Type elaboration verifies that a program defines a static tree of classes and
a directed acyclic graph (dag) of interfaces. A type is simply a node in the
combined graph. Each type is annotated with its collection of fields and methods,
including those inherited from its ancestors.

Evaluation is modeled as a reduction on expression-store pairs in the con-
text of a static type graph. Figure 2 demonstrates reduction using a pictorial
representation of the store as a graph of objects. Each object in the store is
a class-tagged record of field values, where the tag indicates the run-time type
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P = defn* e
defn = class c extends c implements i* { field* meth* }

| interface i extends i* { meth* }
field = t fd
meth = t md ( arg* ) { body }

arg = t var
body = e | abstract

e = new c | var | null | e : c .fd | e : c .fd = e
| e.md (e* ) | super ≡ this : c .md (e* )
| view t e | let var = e in e

var = a variable name or this
c = a class name or Object
i = interface name or Empty

fd = a field name
md = a method name

t = c | i

Fig. 3. ClassicJava syntax; underlined phrases are inserted by elaboration and
are not part of the surface syntax

of the object and its field values are references to other objects. A single re-
duction step may extend the store with a new object, or it may modify a field
for an existing object in the store. Dynamic method dispatch is accomplished
by matching the class tag of an object in the store with a node in the static
class tree; a simple relation on this tree selects an appropriate method for the
dispatch.

The class model relies on as few implementation details as possible. For
example, the model defines a mathematical relation, rather than a selection
algorithm, to associate fields with classes for the purpose of type-checking and
evaluation. Similarly, the reduction semantics only assumes that an expression
can be partitioned into a proper redex and an (evaluation) context; it does not
provide a partitioning algorithm. The model can easily be refined to expose more
implementation details [12,18].

2.1 ClassicJava Programs

The syntax for ClassicJava is shown in Figure 3. A program P is a sequence
of class and interface definitions followed by an expression. Each class definition
consists of a sequence of field declarations and a sequence of method declarations,
while an interface consists of methods only. A method body in a class can be
abstract, indicating that the method must be overridden in a subclass before
the class is instantiated. A method body in an interface must be abstract. As
in Java, classes are instantiated with the new operator, but there are no class
constructors in ClassicJava; instance variables are always initialized to null.
In the evaluation language for ClassicJava, field uses and super invocations
are annotated by the type-checker with extra information (see the underlined
parts of the syntax). Finally, the view and let forms represent Java’s casting
expressions and local variable bindings, respectively.

A valid ClassicJava program satisfies a number of simple predicates and
relations; these are described in Figure 4. For example, the ClassesOnce(P )



A Programmer’s Reduction Semantics for Classes and Mixins 245

The sets of names for variables, classes, interfaces, fields, and methods are assumed to be
mutually distinct. The meta-variable T is used for method signatures of the form (t . . . −→
t), V is used for variable lists of the form (var. . .), and Γ is used for environments mapping
variables to types. Ellipses on the baseline (. . .) indicate a repeated pattern or continued
sequence, while centered ellipses (· · ·) indicate arbitrary missing program text (without
straddling a class or interface definition).

ClassesOnce(P ) Each class name is declared only once
∀c,c′ class c · · · class c′ · · · is in P =⇒ c 6= c′

FieldOncePerClass(P ) Field names in each class declaration are unique
∀fd,fd′ class · · · { · · · fd · · · fd′ · · · } is in P =⇒ fd 6= fd′

MethodOncePerClass(P ) Method names in each class declaration are unique
∀md,md′

class · · · { · · · md ( · · · ) { · · · } · · · md′ ( · · · ) { · · · } · · · } is in P =⇒ md 6= md′

InterfacesOnce(P ) Each interface name is declared only once
∀i,i ′ interface i · · · interface i ′ · · · is in P =⇒ i 6= i ′

InterfacesAbstract(P ) Method declarations in an interface are abstract
∀md,e interface · · · { · · · md ( · · · ) {e} · · · } is in P =⇒ e is abstract

≺c
P Class is declared as an immediate subclass

c ≺c
P c′ ⇔ class c extends c′ · · · { · · · } is in P

∈∈c
P Field is declared in a class

〈c.fd, t〉 ∈∈c
P c ⇔ class c · · · { · · · t fd · · · } is in P

∈∈c
P Method is declared in class

〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈∈c
P c

⇔ class c · · · { · · · t md (t1 var1 . . . tn varn) {e} · · · } is in P
≺i

P Interface is declared as an immediate subinterface

i ≺i
P i ′ ⇔ interface i extends · · · i ′ · · · { · · · } is in P

∈∈ i
P Method is declared in an interface

〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈∈ i
P i

⇔ interface i · · · { · · · t md (t1 var1 . . . tn varn) {e} · · · } is in P
≺≺c

P Class declares implementation of an interface
c ≺≺c

P i ⇔ class c · · · implements · · · i · · · { · · · } is in P
≤c

P Class is a subclass
≤c

P ≡ the transitive, reflexive closure of ≺c
P

CompleteClasses(P ) Classes that are extended are defined
rng(≺c

P ) ⊆ dom(≺c
P )∪{Object}

WellFoundedClasses(P ) Class hierarchy is an order
≤c

P is antisymmetric

ClassMethodsOK(P ) Method overriding preserves the type
∀c,c′,e,e′,md, T, T ′, V, V ′

(〈md, T , V , e〉 ∈∈c
P c and 〈md, T ′, V ′ , e′〉 ∈∈c

P c′) =⇒ (T = T ′ or c 6≤c
P c′)

∈c
P Field is contained in a class

〈c′ .fd, t〉 ∈c
P c

⇔ 〈c′ .fd, t〉 ∈∈c
P c′ and c′ = min{c′′ | c ≤c

P c′′ and ∃t ′ s.t. 〈c′′ .fd, t′〉 ∈∈c
P c′′}

∈c
P Method is contained in a class
〈md, T , V , e〉 ∈c

P c
⇔ (〈md, T , V , e〉 ∈∈c

P c′ and c′ = min{c′′ | c ≤c
P c′′ and ∃e′, V ′ s.t. 〈md, T , V ′ , e′〉 ∈∈c

P c′′})
Table continues in Figure 5.

Fig. 4. Predicates and relations in the model of ClassicJava

predicate states that each class name is defined at most once in the program P .
The relation ≺c

P associates each class name in P to the class it extends, and the
(overloaded) ∈∈c

P relations capture the field and method declarations of P .
The syntax-summarizing relations induce a second set of relations and pred-

icates that summarize the class structure of a program. The first of these is the
subclass relation ≤c

P , which is a partial order if the CompleteClasses(P ) and
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≤i
P Interface is a subinterface

≤i
P ≡ the transitive, reflexive closure of ≺i

P

CompleteInterfaces(P ) Extended/implemented interfaces are defined

rng(≺i
P ) ∪ rng(≺≺c

P ) ⊆ dom(≺i
P )∪{Empty}

WellFoundedInterfaces(P ) Interface hierarchy is an order

≤ i
P is antisymmetric

�c
P Class implements an interface

c �c
P i ⇔ ∃c′,i ′ s.t. c ≤c

P c′ and i ′ ≤i
P i and c′ ≺≺c

P i ′

InterfaceMethodsOK(P ) Redeclarations of methods are consistent
∀i,i ′,md,T, T ′, V, V ′

〈md, T , V , abstract〉 ∈∈ i
P i and 〈md, T ′, V ′, abstract〉 ∈∈ i

P i ′ =⇒ (T = T ′ or i 6≤i
P i ′)

∈i
P Method is contained in an interface

〈md, T , V , abstract〉 ∈ i
P i ⇔ ∃i ′ s.t. i ≤i

P i ′ and 〈md, T , V , abstract〉 ∈∈ i
P i ′

ClassesImplementAll(P ) Classes supply methods to implement interfaces

∀i,c c ≺≺c
P i =⇒ (∀md, T, V 〈md, T , V , abstract〉 ∈ i

P i =⇒ ∃e, V ′ s.t. 〈md, T , V ′, e〉 ∈c
P c)

NoAbstractMethods(P, c) Class has no abstract methods (can be instantiated)
∀md, T, V,e 〈md, T , V , e〉 ∈c

P c =⇒ e 6= abstract
≤P Type is a subtype

≤P ≡ ≤c
P ∪ ≤i

P ∪ �c
P

∈P Field or method is in a type

∈P ≡ ∈c
P ∪ ∈ i

P

Fig. 5. Predicates and relations continued from Figure 4

WellFoundedClasses(P ) predicates hold. In this case, the classes declared in
P form a tree that has Object at its root.

If the program describes a tree of classes, we can “decorate” each class in
the tree with the collection of fields and methods that it accumulates from local
declarations and inheritance. The source declaration of any field or method in
a class can be computed by finding the minimum (i.e., farthest from the root)
superclass that declares the field or method. This algorithm is described precisely
by the ∈c

P relations. The ∈c
P relation retains information about the source class

of each field, but it does not retain the source class for a method. This reflects
the property of Java classes that fields cannot be overridden (so instances of a
subclass always contain the field), while methods can be overridden (and may
become inaccessible).

Interfaces have a similar set of relations: the superinterface declaration re-
lation ≺ i

P induces a subinterface relation ≤ i
P . Unlike classes, a single interface

can have multiple proper superinterfaces, so the subinterface order forms a dag

instead of a tree. The methods of an interface, as described by ∈ i
P , are the union

of the interface’s declared methods and the methods of its superinterfaces.
Finally, classes and interfaces are related by implements declarations, as

captured in the ≺≺c
P relation. This relation is a set of edges joining the class tree

and the interface graph, completing the subtype picture of a program. A type in
the full graph is a subtype of all of its ancestors.
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`p

ClassesOnce(P) InterfacesOnce(P) MethodOncePerClass(P) FieldOncePerClass(P)
CompleteClasses(P) WellFoundedClasses(P) CompleteInterfaces(P) WellFoundedInterfaces(P)
ClassFieldsOK(P) ClassMethodsOK(P) InterfaceMethodsOK(P) InterfacesAbstract(P)
ClassesImplementAll(P) P `d defnj ⇒ defn′

j for j ∈ [1, n] P, [ ] `e e ⇒ e′ : t
where P = defn1 . . . defnn e

`p defn1 . . . defnn e ⇒ defn′
1 . . . defn′

n e′ : t
[progc]

`d
P `t tj for each j ∈ [1, n] P, c `m methk ⇒ meth′

k for each k ∈ [1, p]

P `d class c · · · { t1 fd1 . . . tn fdn

meth1 . . . methp }
⇒ class c · · · { t1 fd1 . . . tn fdn

meth′
1 . . . meth′

p }
[defnc]

P, i `m methj ⇒ meth′
j for each j ∈ [1, p]

P `d interface i · · · { meth1 . . . methp } ⇒ interface i · · · { meth′
1 . . . meth′

p } [defni]

`m

P `t t P `t tj for j ∈ [1, n] P ,[this : to, var1 : t1, . . . varn : tn] `s e ⇒ e′ : t

P, to `m t md (t1 var1 . . . tn varn) { e } ⇒ t md (t1 var1 . . . tn varn) { e′ } [meth]

`e
P `t c NoAbstractMethods(P,c)

P, Γ `e new c ⇒ new c : c
[newc ]

where var ∈ dom(Γ)

P, Γ `e var ⇒ var : Γ(var)
[var]

P `t t

P, Γ `e null ⇒ null : t
[null]

P, Γ `e e ⇒ e′ : t′ 〈c.fd, t〉 ∈P t′

P, Γ `e e.fd ⇒ e′ : c .fd : t
[getc]

P, Γ `e e ⇒ e′ : t′ 〈c.fd, t〉 ∈P t′ P, Γ `s ev ⇒ e′v : t

P, Γ `e e.fd = ev ⇒ e′ : c .fd = e′v : t
[setc]

Rules continue in Figure 7

Fig. 6. Context-sensitive checks and type elaboration rules for ClassicJava

2.2 ClassicJava Type Elaboration

The type elaboration rules for ClassicJava are defined by the following judge-
ments:

`p P ⇒ P ′ : t P elaborates to P ′ with type t
P `d defn ⇒ defn′ defn elaborates to defn′

P, t `m meth ⇒ meth′ meth in t elaborates to meth′

P, Γ `e e ⇒ e′ : t e elaborates to e′ with type t
P, Γ `s e ⇒ e′ : t e has type t using subsumption

P `t t t exists

The type elaboration rules translate expressions that access a field or call a
super method into annotated expressions (see the underlined parts of Figure 3).
For field uses, the annotation contains the compile-time type of the instance
expression, which determines the class containing the declaration of the accessed
field. For super method invocations, the annotation contains the compile-time
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P, Γ `e e ⇒ e′ : t′ 〈md, (t1 . . . tn −→ t), (var1 . . . varn), eb〉 ∈P t′

P, Γ `s ej ⇒ e′j : tj for j ∈ [1, n]

P, Γ `e e.md (e1 . . . en) ⇒ e′.md (e′1 . . . e′n) : t
[callc]

P, Γ `e this ⇒ this : c′ c′ ≺c
P c 〈md, (t1 . . . tn −→ t), (var1 . . . varn), eb〉 ∈P c

P, Γ `s ej ⇒ e′j : tj for j ∈ [1, n] eb 6= abstract

P, Γ `e super.md(e1 . . . en) ⇒ super ≡ this : c .md(e′1 . . . e′n) : t
[superc]

P, Γ `s e ⇒ e′ : t

P, Γ `e view t e ⇒ e′ : t
[wcastc]

P `t t

P, Γ `e abstract ⇒ abstract : t
[abs]

P, Γ `e e ⇒ e′ : t′ t ≤P t′ or t ∈ dom(≺i
P ) or t′ ∈ dom(≺i

P )

P, Γ `e view t e ⇒ view t e′ : t
[ncastc]

P, Γ `e e1 ⇒ e′1 : t1 P, Γ [var : t1] `e e2 ⇒ e′2 : t

P, Γ `e let var = e1 in e2 ⇒ let var = e′1 in e′2 : t
[let]

`s,`t

P, Γ `e e ⇒ e′ : t′ t′ ≤P t

P, Γ `s e ⇒ e′ : t
[subc]

t ∈ dom(≺c
P ) ∪ dom(≺ i

P )∪{Object, Empty}
P `t t

[typec]

Fig. 7. Rules continued from Figure 6

type of this, which determines the class that contains the declaration of the
method to be invoked.

The complete typing rules are shown in Figure 6. A program is well-typed if
its class definitions and final expression are well-typed. A definition, in turn, is
well-typed when its field and method declarations use legal types and the method
body expressions are well-typed. Finally, expressions are typed and elaborated in
the context of an environment that binds free variables to types. For example, the
getc and setc rules for fields first determine the type of the instance expression,
and then calculate a class-tagged field name using ∈P ; this yields both the type
of the field and the class for the installed annotation. In the setc rule, the right-
hand side of the assignment must match the type of the field, but this match
may exploit subsumption to coerce the type of the value to a supertype. The
other expression typing rules are similarly intuitive.

2.3 ClassicJava Evaluation

The operational semantics for ClassicJava is defined as a contextual rewriting
system on pairs of expressions and stores. A store S is a mapping from objects
to class-tagged field records. A field record F is a mapping from elaborated field
names to values. The evaluation rules are a straightforward modification of those
for imperative Scheme [13].

The complete evaluation rules are in Figure 8. For example, the call rule
invokes a method by rewriting the method call expression to the body of the
invoked method, syntactically replacing argument variables in this expression
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e = . . . | object
v = object | null

E = [ ] | E : c .fd | E : c .fd = e | v : c .fd = E
| E.md(e . . .) | v.md(v . . . E e . . .)
| super ≡ v : c .md(v . . . E e . . .)
| view t E | let var = E in e

P ` 〈E[new c], S〉 ↪→ 〈E[object], S[object 7→〈c, F〉]〉 [new ]
where object 6∈ dom(S) and F = {c′.fd 7→null | c ≤c

P c′ and ∃t s.t. 〈c′ .fd, t〉 ∈∈c
P c′}

P ` 〈E[object : c′ .fd], S〉 ↪→ 〈E[v], S〉 [get ]
where S(object) = 〈c, F〉 and F(c′.fd) = v

P ` 〈E[object : c′ .fd = v], S〉 ↪→ 〈E[v], S[object 7→〈c, F [c′.fd 7→v]〉]〉 [set ]
where S(object) = 〈c, F〉

P ` 〈E[object.md(v1, . . . vn)], S〉 ↪→ 〈E[e[object/this, v1/var1, . . . vn/varn]], S〉 [call ]
where S(object) = 〈c, F〉 and 〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈c

P c
P ` 〈E[super ≡ object : c′ .md(v1, . . . vn)], S〉

↪→ 〈E[e[object/this, v1/var1, . . . vn/varn]], S〉
[super ]

where 〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈c
P c′

P ` 〈E[view t ′ object], S〉 ↪→ 〈E[object], S〉 [cast ]
where S(object) = 〈c, F〉 and c ≤P t ′

P ` 〈E[let var = v in e], S〉 ↪→ 〈E[e[v/var]], S〉 [let ]

P ` 〈E[view t ′ object], S〉 ↪→ 〈error: bad cast, S〉 [xcast ]
where S(object) = 〈c, F〉 and c 6≤P t ′

P ` 〈E[null : c .fd], S〉 ↪→ 〈error: dereferenced null, S〉 [nget ]
P ` 〈E[null : c .fd = v], S〉 ↪→ 〈error: dereferenced null, S〉 [nset ]
P ` 〈E[null.md(v1, . . . vn)], S〉 ↪→ 〈error: dereferenced null, S〉 [ncall ]

Fig. 8. Operational semantics for ClassicJava

with the supplied argument values. The dynamic aspect of method calls is im-
plemented by selecting the method based on the run-time type of the object (in
the store). In contrast, the super reduction performs super method selection
using the class annotation that is statically determined by the type-checker.

2.4 ClassicJava Soundness

For a program of type t, the evaluation rules for ClassicJava produce either a
value that has a subtype of t, or one of two errors. Put differently, an evaluation
cannot get stuck. This property can be formulated as a type soundness theorem.

Theorem 1 (Type Soundness). If `p P ⇒ P ′ : t and
P ′ = defn1 . . . defnn e, then either

– P ′ ` 〈e, ∅〉 ↪→∗ 〈object, S〉 and S(object) = 〈t′, F〉 and t′ ≤P t; or
– P ′ ` 〈e, ∅〉 ↪→∗ 〈null, S〉; or
– P ′ ` 〈e, ∅〉 ↪→∗ 〈error: bad cast, S〉; or
– P ′ ` 〈e, ∅〉 ↪→∗ 〈error: dereferenced null, S〉.

The main lemma in support of this theorem states that each step taken in the
evaluation preserves the type correctness of the expression-store pair (relative
to the program) [29]. Specifically, for a configuration on the left-hand side of an
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evaluation step, there exists a type environment that establishes the expression’s
type as some t. This environment must be consistent with the store.

Definition 2 (Environment-Store Consistency).

P ,Γ σ̀ S
⇔ (S(object) = 〈c,F〉

Σ1: ⇒Γ (object) = c
Σ2: and dom(F) = {c1.fd | 〈c1.fd ,c2〉 ∈c

P c1}
Σ3: and rng(F) ⊆ dom(S) ∪ {null}
Σ4: and (F(c1.fd) = object ′ and 〈c1.fd ,c2〉 ∈c

P c1)
⇒ ((S(object ′) = 〈c′,F ′〉) ⇒ c′ ≤P c2))

Σ5: and object ∈ dom(Γ ) ⇒ object ∈ dom(S)
Σ6: and dom(S) ⊆ dom(Γ ).

Note that the environment may contain bindings for lexical variables, which are
not store objects.

Since the rewriting rules reduce annotated terms, we derive new type judge-
ments that relate annotated terms. Each of the new rules performs exactly the
same checks as the rule it is derived from, but does not add any annotation. Thus
s̀ is derived from s̀, and so forth. Only the judgement on expressions ( è) is al-

tered slightly: we retain the view operation in all cases and ignore the [wcastc]
relation, which is only an optimization that removes an unnecessary check. This
relaxation obviously does not change the type-checking or extensional behavior
of any programs.

The following lemmata are used to prove the main lemma.

Lemma 3 (Free). If P ,Γ è e : t and a 6∈ dom(Γ ), then P ,Γ [a : t ′] è e : t .

Proof. This follows by reasoning about the shape of the derivation. 2

Lemma 4 (Replacement). If P ,Γ è E[e] : t , P ,Γ è e : t ′, and P ,Γ è e′ :
t ′, then P ,Γ è E[e′] : t .

Proof. This follows by a replacement argument in the derivation tree. 2

Lemma 5 (Substitution). If P ,Γ [var1 : t1, . . . varn : tn] è e : t and {var1,
. . . varn} ∩ dom(Γ ) = ∅ and P ,Γ s̀ vi : ti for i ∈ [1,n], then P ,Γ s̀ e [v1/var1,
. . . vn/varn] : t .

Proof. Let σ denote the substitution [v1/var1, . . . vn/varn], and e′ = σ(e). The
proof proceeds by induction over the shape of the derivation showing that P ,Γσ

è e : t . We perform a case analysis on the last step.

Case e = new c. P ,Γσ è e : c and P ,Γ è e′ : c.
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Case e = var . If var 6∈ dom(σ), then var must be in dom(Γ ). Thus P ,Γσ è var
: t iff P ,Γ è var : t . Otherwise, var = vari for some i ∈ [1,n], and P ,Γσ è

var : ti. But P ,Γ s̀ vi : ti and e′ = σ(e) = σ(vari) = vi, so P ,Γ s̀ e′ : ti.

Case e = null. By [null], any type is derivable.

Case e = e1 : c .fd . P ,Γσ è e1 : t ′ and 〈c.fd ,t〉 ∈P t ′ follow from the antecedents.
By induction, P ,Γ s̀ σ(e1) : t ′. Therefore P ,Γ è σ(e1) : t ′′, where t ′′ is a
sub-type of t ′. Hence, 〈c.fd ,t〉 ∈P t ′′. Thus P ,Γ è σ(e1) : c .fd : t .

Case e = e1 : c .fd = e2. This case is similar to the one above.

Case e = view t e1. P ,Γσ è e1 : t ′ and t ≤P t ′ follow from the antecedent.
Inductively, P ,Γ è σ(e1) : t ′′ for t ′′ ≤P t ′. If t ≤P t ′′ or t ′′ ≤P t , P , Γ è

view t σ(e1) : t (by our relaxed [ncastc] rule).

Case e = let var = e1 in e2. Let σ1 = σ. From [let], we get P ,Γσ1 è e1 : t1.
Let σ2 be the substitution [var : t1]. Then P ,Γσ2σ1 è e2 : t . By induction,
P ,Γ s̀ σ1(e1) : t1 and P ,Γσ2 s̀ σ1(e2) : t . By using Lemma 6 for each term,
P ,Γ è σ1(let var = e1 in e) : t .

Case e = e0.md (e1, . . . en). Typability of the expression implies P ,Γσ s̀ ei : ti
for i ∈ [1,n] and P ,Γσ è e0 : t0 where 〈md, (t1 . . . tn → t), (var1, ..., varn), e〉
∈c

P t0. By induction, P ,Γ s̀ σ(ei) : ti for each ei, and P ,Γ è σ(e0) : t0′ where
t0′ ≤P t0, which implies that 〈md, (t1 . . . tn → t), (var1, ..., varn), e〉 ∈c

P t0′.
Thus P ,Γ è σ(e0.md (e1, . . . en)) : t .

Case e = super ≡ this : c .md (e1, . . . en). This follows in a similar fashion
to the rule above. Since the class c is embedded in the expression, and
the induction yields a subtype of the original type, this can be subsumed
appropriately to instantiate the method in the superclass. 2

Lemma 6. If P ,Γ è E[e] : t , P ,Γ è e : t ′, and P ,Γ è e′ : t ′′ where t ′′ ≤P t ′,
then P ,Γ s̀ E[e′] : t .

Proof. The proof is by induction on the depth of the evaluation context E. If E
is the empty context [ ] we are done. Otherwise, partition E[e] = E1[E2[e]] where
E2 is a singular evaluation context, i.e., a context whose depth is one. Consider
the shape of E2[•], which must be one of:

Case • : c .fd . Since c is fixed, •’s type does not matter: the result is the type
of the field.

Case • : c .fd = e. Compare to the previous case.

Case v : c .fd = •. Since t ′′ ≤P t ′, the type of • is t ′ by subsumption and the
type of the expression is unchanged.

Case •.md(e . . . ). Since t ′′ ≤P t ′ and methods in an inheritance chain must
preserve the type, the result of method application is the same type.

Case v .md(v . . . • e . . . ). By subsumption, arguments have the declared type
by [meth]; t ′′ can be t ′ by subsumption.
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Case super ≡ v : c .md (v . . . • e . . . ). Analogous to the previous case.

Case view t •. The type of this expression is the same regardless of •. Since è

has the less restrictive condition for [ncastc] that t and t ′′ be comparable
by ≤P , the typing proceeds even if t ′′ is a subtype of t .

Case let var = • in e2. We are given P ,Γ è e : t ′, so from [let], P ,Γσ1 è e2 :
t1 for some type t1 where σ1 is [var : t ′]. We must show that P ,Γσ2 s̀ e2 :
t1 where σ2 = [var : t ′′]. This follows from Lemma 8. 2

Definition 7. Γ ≤Γ Γ ′ if dom(Γ ) = dom(Γ ′) and ∀ v ∈ dom(Γ ), Γ ′(v) ≤P

Γ (v).

Lemma 8. If P ,Γ è e : t and Γ ≤Γ Γ ′, then P ,Γ ′
s̀ e : t .

Proof. The proof is a simple adaptation of that of Lemma 5. 2

We can now prove the subject reduction lemma. Since ClassicJava does not
include any primitives, its type soundness follows by induction over this result.

Definition 9 (Error Configuration). An error configuration is any one of
[xcast ], [nget ], [nset ] and [ncall ].

Lemma 10 (Subject Reduction). If P ,Γ è e : t , P ,Γ σ̀ S, fv(e) ⊆ dom(Γ ),
and 〈e,S〉 ↪→ 〈e′,S′〉, then e′ is an answer, e′ is an error configuration, or ∃ Γ ′

such that

1. P ,Γ ′
s̀ e′ : t ,

2. P ,Γ ′
σ̀ S′.

Proof. The proof examines the structure of the reduction step. For each case,
we construct the new environment Γ ′ and show that, if execution has not halted
with an answer or in an error configuration, the two consequents of the theorem
are satisfied relative to the new expression, store, and environment.

Case [new ]. Set Γ ′ = Γ [object : c].
1. We have P ,Γ è E[new c] : t . From Σ5, object 6∈ dom(S) ⇒ object 6∈

dom(Γ ). Thus P ,Γ ′
è E[new c] : t by Lemma 3. Since P ,Γ ′

è new c :
c and P ,Γ ′

è object : c we use Lemma 4 to get P ,Γ ′
è E[object ] : t .

2. Let S ′(object) = 〈c,F〉. object is the only new element in dom(S′).
Σ1: Γ ′(object) = c.

Σ2: dom(F) is correct by construction.

Σ3: rng(F) = {null}.
Σ4: Since rng(F) = {null}, this property is unaffected.

Σ5 and Σ6: The only change to Γ and S is object .
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Case [get ]. Set Γ ′ = Γ . Let t ′ be the type such that P ,Γ è object : c′ .fd : t ′.
P ,Γ è E[object : c′ .fd] : t implies that Γ (object) ≤P c′. Thus S(object) =
〈c,F〉 with c′.fd ∈ dom(F).
1. If v is null, it can be cast to t ′, so P ,Γ ′

è E[v] : t by Lemma 4. If v is
not null, by Σ4, S(v) = 〈c′′, 〉 where c′′ ≤P t ′. By Lemma 6, P ,Γ ′

s̀

E[v] : t .

2. S and Γ are unchanged.

Case [set ].

1. The proof is by a straight-forward extension of the proof for [get ].

2. The only change to the store is a field update; thus only Σ3 and Σ4 are
affected. Let v be the assigned value. Assume v is non-null.
Σ3: Since v is typable, it must be in dom(Γ ). By Σ5, it is therefore in

dom(S).

Σ4: The typing of the active expression indicates that the type of v can
be treated as the type of the field fd by subsumption. Combining
this with Σ1 indicates that the type tag of v will preserve Σ4.

Case [call ]. From P ,Γ è object .md(v1, . . . vn) : t we know P ,Γ è object : t ′,
P ,Γ s̀ vi : ti for i in [1, n], and 〈md, (t1 . . . tn → t), (var1, ..., varn), e〉 ∈c

P

t ′. The type-checking of P proves that P ,t0 m̀ t md (t1 var1, . . . tn varn)
{e}, which implies that P ,[this : t0, var1 : t1, . . . varn : tn] s̀ e : t where
t0 is the defining class of md. Further, we know that t ′ ≤P t0 from ∈c

P for
methods and ClassMethodsOk(P ).
1. Lemma 5 shows that P ,Γ s̀ e[object/this, v1/var1, . . . vn/varn] : t .

2. S ′ = S and Γ ′ does not bind new addresses, so σ̀ is preserved.

Case [super ]. The proof is essentially the same as that for [call ].

Case [let ]. P ,Γ è let var = v in e : t implies P ,Γ è v : t ′ for some type t ′. Set
Γ ′ = Γ [var : t ′]. From [let], P ,Γ ′

è e : t .

1. By Lemma 5, P ,Γ s̀ e [v/var ] : t .

2. The store is unchanged and the only addition to the environment is not
an object , so the store relation holds. 2

2.5 Related Work on Classes

Our model for class-based object-oriented languages is similar to two recently
published semantics for Java [9,28], but entirely motivated by prior work on
Scheme and ML models [13,18,29]. The approach is fundamentally different from
most of the previous work on the semantics of objects. Much of that work has
focused on interpreting object systems and the underlying mechanisms via record
extensions of lambda calculi [11,19,24,22,25] or as “native” object calculi (with
a record flavor) [1,2,3]. In our semantics, types are simply the names of entities
declared in the program; the collection of types forms a dag, which is specified
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by the programmer. The collection of types is static during evaluation3 and is
only used for field and method lookups and casts. The evaluation rules describe
how to transform statements, formed over the given type context, into plain
values. The rules work on plain program text such that each intermediate stage
of the evaluation is a complete program. In short, the model is as simple and
intuitive as that of first-order functional programming enriched with a language
for expressing hierarchical relationships among data types.

3 From Classes to Mixins: An Example

Implementing a maze adventure game [16, page 81] illustrates the need for
adding mixins to a class-based language. A player in the adventure game wanders
through rooms and doors in a virtual world. All locations in the virtual world
share some common behavior, but also differ in a wide variety of properties that
make the game interesting. For example, there are many kinds of doors, includ-
ing locked doors, magic doors, doors of varying heights, and doors that combine
several varieties into one. The natural class-based approach for implementing
different kinds of doors is to implement each variation with a new subclass of
a basic door class, Doorc. The left side of Figure 9 shows the Java definition
for two simple Doorc subclasses, LockedDoorc and ShortDoorc. An instance of
LockedDoorc requires a key to open the door, while an instance of ShortDoorc

requires the player to duck before walking through the door.
A subclassing approach to the implementation of doors seems natural at

first because the programmer declares only what is different in a particular door
variation as compared to some other door variation. Unfortunately, since the su-
perclass of each variation is fixed, door variations cannot be composed into more
complex, and thus more interesting, variations. For example, the LockedDoorc

and ShortDoorc classes cannot be combined to create a new LockedShortDoorc

class for doors that are both locked and short.
A mixin approach solves this problem. Using mixins, the programmer declares

how a particular door variation differs from an arbitrary door variation. This
creates a function from door classes to door classes, using an interface as the
input type. Each basic door variation is defined as a separate mixin. These
mixins are then functionally composed to create many different kinds of doors.

A programmer implements mixins in exactly the same way as a derived class,
except that the programmer cannot rely on the implementation of the mixin’s
superclass, only on its interface. We consider this an advantage of mixins because
it enforces the maxim “program to an interface, not an implementation” [16, page
11].

The right side of Figure 9 shows how to define mixins for locked and short
doors. The mixin Lockedm is nearly identical to the original LockedDoorc class
definition, except that the superclass is specified via the interface Doori. The new
LockedDoorc and ShortDoorc classes are created by applying Lockedm and Shortm

3 Dynamic class loading could be expressed in this framework as an addition to the
static context. Still, the context remains the same for most of the evaluation.
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class LockedDoorc extends Doorc {
boolean canOpen(Personc p) {
if (!p.hasItem(theKey)) {

System.out.println(“You don’t have the Key”);
return false;

}
System.out.println(“Using key...”);
return super.canOpen(p);

}
}
class ShortDoorc extends Doorc {
boolean canPass(Personc p) {
if (p.height() > 1) {

System.out.println(“You are too tall”);
return false;

}
System.out.println(“Ducking into door...”);
return super.canPass(p);

}
}

/* Cannot merge for LockedShortDoorc */

interface Doori {
boolean canOpen(Personc p);
boolean canPass(Personc p);

}
mixin Lockedm extends Doori {
boolean canOpen(Personc p) {
if (!p.hasItem(theKey)) {

System.out.println(“You don’t have the Key”);
return false;

}
System.out.println(“Using key...”);
return super.canOpen(p);

}
}
mixin Shortm extends Doori {
boolean canPass(Personc p) {
if (p.height() > 1) {

System.out.println(“You are too tall”);
return false;

}
System.out.println(“Ducking into door...”);
return super.canPass(p);

}
}
class LockedDoorc = Lockedm(Doorc);
class ShortDoorc = Shortm(Doorc);
class LockedShortDoorc = Lockedm(Shortm(Doorc));

Fig. 9. Some class definitions and their translation to composable mixins

to the class Doorc, respectively. Similarly, applying Lockedm to ShortDoorc yields
a class for locked, short doors.

Consider another door variation: MagicDoorc, which is similar to LockedDoorc

except the player needs a book of spells instead of a key. We can extract the
common parts of the implementation of MagicDoorc and LockedDoorc into a
new mixin, Securem . Then, key- or book-specific information is composed with
Securem to produce Lockedm and Magicm, as shown in Figure 10. Each of the new
mixins extends Doori since the right hand mixin in the composition, Securem ,
extends Doori.

The Lockedm and Magicm mixins can also be composed to form LockedMagicm .
This mixin has the expected behavior: to open an instance of LockedMagicm , the
player must have both the key and the book of spells. This combinational effect
is achieved by a chain of super.canOpen() calls that use distinct, non-interfering
versions of neededItem. The neededItem declarations of Lockedm and Magicm do
not interfere with each other because the interface extended by Lockedm is Doori,
which does not contain neededItem. In contrast, Doori does contain canOpen, so
the canOpen method in Lockedm overrides and chains to the canOpen in Magicm.

4 Mixins for Java

MixedJava is an extension of ClassicJava with mixins. In ClassicJava, a
class is assembled as a chain of class expressions. Specifically, the content of a
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interface Securei extends Doori {
Object neededItem();

}
mixin Securem extends Doori implements Securei {

Object neededItem() { return null; }
boolean canOpen(Personc p) {

Object item = neededItem();
if (!p.hasItem(item)) {

System.out.println(“You don’t have the ” + item);
return false;

}
System.out.println(“Using ” + item + “...”);
return super.canOpen(p);

}
}
mixin NeedsKeym extends Securei {

Object neededItem() {
return theKey;

}
}
mixin NeedsSpellm extends Securei {

Object neededItem() {
return theSpellBook;

}
}
mixin Lockedm = NeedsKeym compose Securem;
mixin Magicm = NeedsSpellm compose Securem;
mixin LockedMagicm = Lockedm compose Magicm;
mixin LockedMagicDoorm = LockedMagicm compose Doorm ;
class LockedDoorc = Lockedm(Doorc); . . .

Fig. 10. Composing mixins for localized parameterization

NeedsKeym

neededItem

-Securei

Securem

neededItem

canOpen

-Doori
NeedsSpellm

neededItem

-Securei

Securem

neededItem

canOpen

-Doori
Doorm

canPass

canOpen

-
- -
-

Lockedm Magicm

LockedMagicm

LockedMagicDoorm

Fig. 11. The LockedMagicDoorm mixin corresponds to a sequence of atomic mix-
ins

class is defined by its immediate field and method declarations and by the decla-
rations of its superclasses, up to Object.4 In MixedJava, a “class” is assembled
by composing a chain of mixins. The content of the class is defined by the field
and method declarations in the entire chain.

4 We use boldfaced class to refer to the content of a single class expression, as opposed
to an actual class.
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MixedJava provides two kinds of mixins:

– An atomic mixin declaration is similar to a class declaration. An atomic
mixin declares a set of fields and methods that are extensions to some in-
herited set of fields and methods. In contrast to a class, an atomic mixin
specifies its inheritance with an inheritance interface, not a static connec-
tion to an existing class. By abuse of terminology, we say that a mixin extends
its inheritance interface.
A mixin’s inheritance interface determines how method declarations within
the mixin are combined with inherited methods. If a mixin declares a method
x that is not contained in its inheritance interface, then that declaration never
overrides another x.
An atomic mixin implements one or more interfaces as specified in the
mixin’s definition. In addition, a mixin always implements its inheritance
interface.

– A composite mixin does not declare any new fields or methods. Instead,
it composes two existing mixins to create a new mixin. The new composite
mixin has all of the fields and methods of its two constituent mixins. Method
declarations in the left-hand mixin override declarations in the right-hand
mixin according to the left-hand mixin’s inheritance interface. Composition
is allowed only when the right-hand mixin implements the left-hand mixin’s
inheritance interface.
A composite mixin extends the inheritance interface of its right-hand con-
stituent, and it implements all of the interfaces that are implemented by its
constituents. Composite mixins can be composed with other mixins, produc-
ing arbitrarily long chains of atomic mixin compositions.5

Figure 11 illustrates how the mixin LockedMagicDoorm from the previous
section corresponds to a chain of atomic mixins. The arrows connecting the tops
of the boxes represent mixin compositions; in each composition, the inheritance
interface for the left-hand side is noted above the arrow. The other arrows show
how method declarations in each mixin override declarations in other mixins
according to the composition interfaces. For example, there is no arrow from
the first Securem ’s neededItem to Magicm’s method because neededItem is not
included in the Doori interface. The canOpen method is in both Doori and Securei ,
so that corresponding arrows connect all declarations of canOpen.

Mixins completely subsume the role of classes. A mixin can be instantiated
with new when the mixin does not inherit any services. In MixedJava, this
is indicated by declaring that the mixin extends the special interface Empty.

5 Our composition operator is associative semantically, but not type-theoretically. The
type system could be strengthened to make composition associative—giving Mixed-

Java a categorical flavor—by letting each mixin declare a set of interfaces for inher-
itance, rather than a single interface. Each required interface must then either be
satisfied or propagated by a composition. We have not encountered a practical use
for the extended type system.
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defn = mixin m extends i implements i* { field* meth* }
| mixin m = m compose m
| interface i extends i* { meth* }

e = new m | var | null | e : m .fd | e : m .fd = e
| e.md (e*) | super ≡ this .md (e*)
| view t as t e | let var = e in e

m = mixin name
t = m | i

Fig. 12. Syntax extensions for MixedJava

Consequently, we omit classes from our model of mixins, even though a realistic
language would include both mixins and classes.

The following subsections present a precise description of MixedJava. Sec-
tion 4.1 describes the syntax and type structure of MixedJava programs, fol-
lowed by the type elaboration rules in Section 4.2. Section 4.3 explains the op-
erational semantics of MixedJava, which is significantly different from that of
ClassicJava. Section 4.4 presents a type soundness theorem, Section 4.5 briefly
considers implementation issues, and Section 4.6 discusses related work.

4.1 MixedJava Programs

Figure 12 contains the syntax for MixedJava; the missing productions are in-
herited from the grammar of ClassicJava in Figure 3. The primary change
to the syntax is the replacement of class declarations with mixin declarations.
Another change is in the annotations added by type elaboration. First, view
expressions are annotated with the source type of the expression. Second, a type
is no longer included in the super annotation. Type elaboration also inserts
extra view expressions into a program to implement subsumption.

The predicates and relations in Figure 13 (along with the interface-specific
parts of Figure 4) summarize the syntactic content of a MixedJava program.
A well-formed program induces a subtype relation ≤m

P on its mixins such that a
composite mixin is a subtype of each of its constituent mixins.

Since each composite mixin has two supertypes, the type graph for mixins
is a dag, rather than a tree as for classes. This dag can lead to ambiguities if
subsumption is based on subtypes. For example, LockedMagicm is a subtype of
Securem , but it contains two copies of Securem (see Figure 11), so an instance
of LockedMagicm is ambiguous as an instance of Securem . More concretely, the
fragment

LockedMagicDoorm door = new LockedMagicDoorm ;
(view Securem door).neededItem();

is ill-formed because LockedMagicm is not viewable as Securem . The “viewable
as” relation �P is a restriction on the subtype relation that eliminates ambi-
guities. Subsumption is thus based on �P rather than ≤P . The relations ∈m

P ,
which collect the fields and methods contained in each mixin, similarly eliminate
ambiguities.
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MixinsOnce(P ) Each mixin name is declared only once
∀m,m ′ mixin m · · · mixin m ′ · · · is in P =⇒ m 6= m ′

FieldOncePerMixin(P ) Field names in each mixin declaration are unique
∀fd,fd′ mixin · · · { · · · fd · · · fd′ · · · } is in P =⇒ fd 6= fd′

MethodOncePerMixin(P ) Method names in each mixin declaration are unique
∀md,md′ mixin · · · { · · · md ( · · · ) { · · · } · · · md′ ( · · · ) { · · · } · · · } is in P =⇒ md 6= md′

NoAbstractMixins(P ) Methods in a mixin are not abstract
∀md,e mixin · · · { · · · md ( · · · ) { e } · · · } is in P =⇒ e 6= abstract

≺m
P Mixin declares an inheritance interface

m ≺m
P i ⇔ mixin m extends i · · · { · · · } is in P

≺≺m
P Mixin declares implementation of an interface

m ≺≺m
P i ⇔ mixin m · · · implements · · · i · · · { · · · } is in P

• .
=m

P • ◦ • Mixin is declared as a composition

m
.
=m

P m ′ ◦ m ′′ ⇔ mixin m = m ′ compose m ′′ is in P
∈∈m

P Method is declared in a mixin
〈md, (t1 . . . tn −→ t), (var1 . . . varn), e〉 ∈∈m

P m
⇔ mixin m · · · { · · · t md (t1 var1 . . . tn varn) { e } · · · } is in P

∈∈m
P Field is declared in a mixin

〈m.fd, t〉 ∈∈m
P m ⇔ mixin m · · · { · · · t fd · · · } is in P

≤m
P Mixin is a submixin

m ≤m
P m ′ ⇔ m = m′ or (∃m′′, m′′′ s.t. m

.
=m

P m ′′ ◦ m ′′′ and (m ′′ ≤m
P m ′ or m ′′′ ≤m

P m ′))
�

m
P Mixin is viewable as a mixin

m �
m
P m ′ ⇔ m = m′ or (∃m′′, m′′′ s.t. m

.
=m

P m ′′ ◦ m′′′ and (m′′
�

m
P m′ xor m′′′

�
m
P m′))

CompleteMixins(P ) Mixins that are composed are defined

rng(
.
=m

P ) ⊆ {m ◦ m ′ | m,m ′ ∈ dom(≺m
P ) ∪ dom(

.
=m

P )}
WellFoundedMixins(P ) Mixin hierarchy is an order

≤m
P is antisymmetric

CompleteInterfaces(P ) Extended/implemented interfaces are defined

rng(≺ i
P ) ∪ rng(≺m

P ) ∪ rng(≺≺m
P ) ⊆ dom(≺i

P )∪{Empty}
≺|mP Mixin extends an interface

m ≺|mP i ⇔ m ≺m
P i or (∃m ′,m ′′ s.t. m

.
=m

P m ′ ◦ m ′′ and m ′′ ≺|mP i)
�m

P Mixin implements an interface

m �m
P i ⇔ ∃m ′,i ′ s.t. m ≤m

P m ′ and i ′ ≤ i
P i and (m ′ ≺m

P i ′ or m ′ ≺≺m
P i ′)

<�m
P Mixin is viewable as an interface

m <�m
P i ⇔ (∃i′ s.t. i ≤ i

P i ′ and (m ≺m
P i ′ or m ≺≺m

P i ′))
or (∃m′, m′′ s.t. m

.
=m

P m ′ ◦ m ′′ and (m′ <�m
P i xor m′′ <�m

P i))

MixinCompositionsOK(P ) Mixins are composed safely

∀m,m ′,m ′′ m
.
=m

P m′ ◦ m′′ =⇒ ∃i s.t. m′ ≺|mP i and m′′ <�m
P i

:: and @ Sequence constructors
:: adds an element to the beginning of a sequence; @ appends two sequences

−→P Mixin corresponds to a chain of atomic mixins
m −→P M
⇔ (∃i s.t. m ≺m

P i and M = [m])

or (∃m′, m′′, M ′, M ′′ s.t. m
.
=m

P m′ ◦ m′′ and m ′ −→P M ′

and m ′′ −→P M ′′ and M = M ′@M ′′)
≤M Views have an inverted subsequence order

M ≤M M ′ ⇔ ∃M ′′ s.t. M = M ′′@M ′

Table continues in Figure 14.

Fig. 13. Predicates and relations in the model of MixedJava

4.2 MixedJava Type Elaboration

Despite replacing the subtype relation with the “viewable as” relation for sub-
sumption, ClassicJava’s type elaboration strategy applies equally well for typ-
ing MixedJava. The typing rules in Figure 15 are combined with the defni,
meth, let, var, null, and abs rules from Figure 6.
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MixinMethodsOK(P ) Method definitions match inheritance interface
∀m,i,e,md,T, T ′, V, V ′

(〈md, T , V , e〉 ∈∈m
P m and 〈md, T ′, V ′, abstract〉 ∈∈m

P i) =⇒ (T = T ′ or m 6≺|mP i)
∈m

P Field is contained in a mixin
〈m′ .fd, t〉 ∈m

P m
⇔ ∃M, M ′ s.t. m −→P M and 〈m′ .fd, t〉 ∈∈m

P m ′

and {m′ ::M ′} = {m′::M ′ | M ≤M m′::M ′ and ∃t′ s.t. 〈m′ .fd, t′〉 ∈∈m
P m ′}

∈m
P Method is contained in a mixin

〈md, T , V , e〉 ∈m
P m

⇔ ∃M, m′, M ′ s.t. m −→P M and 〈md, T , V , e〉 ∈∈m
P m ′

and {m′::M ′} = {m′ ::M ′ | M ≤M m′ ::M ′ and ∃V ′,e′ s.t. 〈md, T , V ′, e′〉 ∈∈m
P m ′}

MixinsImplementAll(P ) Mixins supply methods to implement interfaces

∀m,i m ≺≺m
P i =⇒ (∀md,T 〈md, T , V , abstract〉 ∈ i

P i
=⇒ (∃ e s.t. 〈md, T , V , e〉 ∈∈m

P m
or ∃ i ′ s.t. (m ≺|mP i′

and 〈md, T , V , abstract〉 ∈i
P i′)))

≤P Type is a subtype ≤P ≡ ≤m
P ∪≤ i

P ∪ �m
P

�P Type is viewable as another type �P ≡ �m
P ∪ ≤i

P ∪ <�m
P

∈P Field or method is in a type ∈P ≡ ∈m
P ∪∈ i

P

•/• . • Mixin selects a view in a chain

M/m . M ′ ⇔ {M ′} = {M ′′@M ′′′ | m −→P M ′′ and M ≤M M ′′@M ′′′}
•/• . • Interface selects a view in a chain

M/i . M ′ ⇔ M ′ = min{m::M ′′ | m ≺|mP i and M ≤M m::M ′′}
•/• ∝ • Method in a sequence is the same as in a subsequence

m::M/md ∝ M ′ ⇔ m::M = M ′ or (∃i, T,V, M ′′ s.t. m ≺|mP i and 〈md, T , V , abstract〉 ∈∈ i
P i

and M ′/i . M ′′ and M ′′/md ∝ M ′)
•∈rt

P • in • Method and view is selected by a view in a chain
〈md, T , V , e, m::M〉 ∈rt

P Mv in Mo

⇔ 〈md, T , V , e〉 ∈∈m
P m and Mb = max{M ′ | Mv/md ∝ M ′}

and {m::M} = {m::M | m::M≤MMo and m::M/md ∝ Mb

and ∃V ′,e′ s.t. 〈md, T , V ′, e′〉 ∈∈m
P m}

Fig. 14. Predicates and relations continued from Figure 13

Three of the new rules deserve special attention. First, the superm rule allows
a super call only when the method is declared in the current mixin’s inheritance
interface, where the current mixin is determined by looking at the type of this.
Second, the wcastm rule strips out the view part of the expression and delegates
all work to the subsumption rules. Third, the subm rule for subsumption inserts
a view operator to make subsumption coercions explicit.

4.3 MixedJava Evaluation

The operational semantics for MixedJava differs substantially from that of
ClassicJava. The rewriting semantics of the latter relies on the uniqueness
of each method name in the chain of classes associated with an object. This
uniqueness is not guaranteed for chains of mixins. Specifically, a composition m1

compose m2 contains two methods named x if both m1 and m2 declare x and
m1’s inheritance interface does not contain x. Both x methods are accessible in
an instance of the composite mixin since the object can be viewed specifically
as an instance of m1 or m2.
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`p

MixinsOnce(P) MethodOncePerMixin(P) InterfacesOnce(P) CompleteMixins(P)
WellFoundedMixins(P) CompleteInterfaces(P) WellFoundedInterfaces(P) MixinFieldsOK(P)
MixinMethodsOK(P) InterfaceMethodsOK(P) InterfacesAbstract(P) NoAbstractMixins(P)
MixinsImplementAll(P) P `d defnj ⇒ defn′

j for j ∈ [1, n] P, [ ] `e e ⇒ e′ : t
where P = defn1 . . . defnn e

`p defn1 . . . defnn e ⇒ defn′
1 . . . defn′

n e′ : t
[progm]

`d
P `t tj for each j ∈ [1, n] P, m `m methk ⇒ meth′

k for each k ∈ [1, p]

P `d mixin m · · · { t1 fd1 . . . tn fdn

meth1 . . . methp }
⇒ mixin m · · · { t1 fd1 . . . tn fdn

meth′
1 . . . meth′

p }
[defnm]

`e

P `t m m ≺|mP Empty

P, Γ `e new m ⇒ new m : m
[newm]

P, Γ `e e ⇒ e′ : m 〈m′ .fd, t〉 ∈P m

P, Γ `e e.fd ⇒ e′ : m ′ .fd : t
[getm]

P, Γ `e e ⇒ e′ : m 〈m′ .fd, t〉 ∈P m P, Γ `s ev ⇒ e′v : t

P, Γ `e e.fd = ev ⇒ e′ : m ′ .fd = e′v : t
[setm]

P, Γ `e e ⇒ e′ : t′ 〈md, (t1 . . . tn −→ t), (var1 . . . varn), eb〉 ∈P t′

P, Γ `s ej ⇒ e′j : tj for j ∈ [1, n]

P, Γ `e e.md (e1 . . . en) ⇒ e′.md (e′1 . . . e′n) : t
[callm]

P, Γ `e this ⇒ this : m m ≺|mP i 〈md, (t1 . . . tn −→ t), (var1 . . . varn), abstract〉 ∈P i

P, Γ `s ej ⇒ e′j : tj for j ∈ [1, n]

P, Γ `e super.md(e1 . . . en) ⇒ super ≡ this .md(e′1 . . . e′n) : t
[superm]

P, Γ `s e ⇒ e′ : t

P, Γ `e view t e ⇒ e′ : t
[wcastm]

P, Γ `e e ⇒ e′ : t′ t′ 6≤P t

P, Γ `e view t e ⇒ view t ′ as t e′ : t
[ncastm]

`s
P, Γ `e e ⇒ e′ : t′ t′ �P t

P, Γ `s e ⇒ view t ′ as t e′ : t
[subm]

`t
t ∈ dom(≺m

P ) ∪ dom(
.
=m

P ) ∪ dom(≺i
P )∪{Empty}

P `t t
[typem]

Fig. 15. Context-sensitive checks and type elaboration rules for MixedJava

One strategy to avoid the duplication of x is to rename it in m1 and m2.
At best, this is a global transformation on the program, since x is visible to the
entire program as a public method. At worst, renaming triggers an exponential
explosion in the size of the program, which occurs when m1 and m2 are actually
the same mixin m. Since the mixin m represents a type, renaming x in each
use of m splits it into two different types, which requires type-splitting at every
expression in the program involving m.
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Our MixedJava semantics handles the duplication of method names with
run-time context information: the current view of an object.6 During evaluation,
each reference to an object is bundled with its view of the object, so that values
are of the form 〈object‖view〉. A reference’s view can be changed by subsumption,
method calls, or explicit casts.

e = . . . | 〈object‖M〉
v = 〈object‖M〉 | null

E = [ ] | E : m .fd | E : m .fd = e | v : m .fd = E
| E.md(e . . .) | v.md(v . . . E e . . .)
| super ≡ v .md(v . . . E e . . .)
| view t as t E | let var = E in e

P ` 〈E[new m], S〉 ↪→ 〈E[〈object‖M〉], S[object 7→〈m, [M1 .fd1 7→null, . . . Mn.fdn 7→null]〉]〉 [new ]
where object 6∈ dom(S) and m −→P M

{M1.fd1, . . . Mn.fdn} = {m′::M ′ .fd | M ≤M m′ ::M ′

and ∃t s.t. 〈m ′.fd, t〉 ∈∈m
P m′

}

P ` 〈E[〈object‖M〉 : m ′ .fd], S〉 ↪→ 〈E[v], S〉 [get ]
where S(object) = 〈m, F〉 and M/m′ . M ′ and F(M ′.fd) = v

P ` 〈E[〈object‖M〉 : m ′ .fd = v], S〉 ↪→ 〈E[v], S′[object 7→〈m, F [M ′ .fd 7→v]〉]〉 [set ]
where S(object) = 〈m, F〉 and M/m′ . M ′

P ` 〈E[〈object‖M〉.md(v1, . . . vn)], S〉
↪→ 〈E[e[〈object‖M ′〉/this, v1/var1, . . . vn/varn]], S〉

[call ]

where S(object) = 〈m, F〉 and m −→P Mo

and 〈md, T , (var1 . . . varn), e, M ′〉 ∈rt
P M in Mo

P ` 〈E[super ≡ 〈object‖m::M〉 .md(v1, . . . vn)], S〉
↪→ 〈E[e[〈object‖M ′〉/this, v1/var1, . . . vn/varn]], S〉

[super ]

where m ≺|mP i and M/i . M ′′ and 〈md, T , (var1 . . . varn), e, M ′〉 ∈rt
P M ′′ in M ′′

P ` 〈E[view t ′ as t 〈object‖M〉], S〉 ↪→ 〈E[〈object‖M ′〉], S〉 [view ]
where t′ �P t and M/t . M ′

P ` 〈E[view t ′ as t 〈object‖M〉], S〉 ↪→ 〈E[〈object‖M ′′〉], S〉 [cast ]
where t′ 6�P t and S(object) = 〈m, F〉 and m �P t and m −→P M ′ and M ′/t . M ′′

P ` 〈E[let var = v in e], S〉 ↪→ 〈E[e[v/var]], S〉 [let ]

P ` 〈E[view t ′ as t 〈object‖M〉], S〉 ↪→ 〈error: bad cast, S〉 [xcast ]
where t′ 6�P t and S(object) = 〈m, F〉 and m 6�P t

P ` 〈E[null : m .fd], S〉 ↪→ 〈error: dereferenced null, S〉 [nget ]
P ` 〈E[null : m .fd = v], S〉 ↪→ 〈error: dereferenced null, S〉 [nset ]
P ` 〈E[null.md(v1, . . . vn)], S〉 ↪→ 〈error: dereferenced null, S〉 [ncall ]

Fig. 16. Operational semantics for MixedJava

A view is represented as a chain of mixins. This chain is always a tail of
the object’s full chain of mixins, i.e., the chain of mixins for the object’s in-
stantiation type. The tail designates a specific point in the full mixin chain for
selecting methods during dynamic dispatch. For example, when an instance of
LockedMagicDoorm is used as a Magicm instance, the view of the object is

[NeedsSpellm Securem Doorm].

With this view, a search for the neededItem method of the object begins in the
NeedsSpellm element of the chain.
6 A view is analogous to a “subobject” in languages with multiple inheritance, but

without the complexity of shared superclasses [26].
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The first phase of a search for some method x locates the base declaration
of x, which is the unique non-overriding declaration of x that is visible in the
current view. This declaration is found by traversing the view from left to right,
using the inheritance interface at each step as a guide for the next step (via the
∝ and . relations). When the search reaches a mixin whose inheritance interface
does not include x, the base declaration of x has been found. But the base dec-
laration is not the destination of the dispatch; the destination is an overriding
declaration of x for this base that is contained in the object’s instantiated mixin.
Among the declarations that override this base, the leftmost declaration is se-
lected as the destination. The location of that overriding declaration determines
both the method definition that is invoked and the view of the object (i.e., the
representation of this) within the destination method body. This dispatching
algorithm is encoded in the ∈rt

P relation.
The dispatching algorithm explains how Securem ’s canOpen method calls

the appropriate neededItem method in an instance of LockedMagicDoorm , some-
times dispatching to the method in NeedsKeym and sometimes to the one in
NeedsSpellm . The following example illustrates the essence of dispatching from
Securem ’s canOpen:

Object canOpen(Securem o) { . . . o.neededItem() . . . }

let door = new LockedMagicDoorm

in canOpen(view Securem view Lockedm door) . . .
canOpen(view Securem view Magicm door)

The new LockedMagicDoorm expression produces door as an 〈object‖view〉 pair,
where object is a new object in the store and view is (recall Figure 11)

[NeedsKeym Securem NeedsSpellm Securem Doorm].

The view expressions shift the view part of door. Thus, for the first call to
canOpen, o is replaced by a reference with the view

[Securem NeedsSpellm Securem Doorm].

In this view, the base declaration of neededItem is in the leftmost Securem since
neededItem is not in the interface extended by Securem . The overriding declara-
tion is in NeedsKeym , which appears to the left of Securem in the instantiated
chain and extends an interface that contains neededItem.

In contrast, the second call to canOpen receives a reference with the view

[Securem Doorm].

In this view, the base definition of neededItem is in the rightmost Securem of
the full chain, and it is overridden in NeedsSpellm . Neither the definition of
neededItem in NeedsKeym nor the one in the leftmost occurrence of Securem is a
candidate relative to the given view, because Securem extends an interface that
hides neededItem.
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MixedJava not only differs from ClassicJava with respect to method dis-
patching, but also in its treatment of super. In MixedJava, super dispatches
are dynamic, since the “supermixin” for a super expression is not statically
known. The super dispatch for mixins is implemented like regular dispatches
with the ∈rt

P relation, but using a tail of the current view in place of both the
instantiation and view chains; this ensures that a method is selected from the
leftmost mixin that follows the current view.

Figure 16 contains the complete operational semantics for MixedJava as
a rewriting system on expression-store pairs, like the class semantics described
in Section 2.3. In this semantics, an object in the store is tagged with a mixin
instead of a class, and the values are null and 〈object‖view〉 pairs.

4.4 MixedJava Soundness

The type soundness theorem for MixedJava is mutatis mutandis the same as the
soundness theorem for ClassicJava as described in Section 2.4. To prove the
soundness theorem, we introduce a conservative extension, MixedJava

′, which
is defined by revising some of the MixedJava relations (see Figure 17).

In the extended language, the subtype relation is used directly for the “view-
able as” relation without eliminating ambiguities. Thus, MixedJava

′ allows
coercions and method calls that are rejected as ambiguous in MixedJava. This
makes MixedJava

′ less suitable as a programming language, but simplifies the
proof of a type soundness theorem. The soundness theorem for MixedJava

′

applies to MixedJava by the following two lemmas:

1. Every MixedJava program is a MixedJava
′ program.

2. P ` 〈e, S〉 ↪→ 〈e′, S′〉 in MixedJava

⇒ P ` 〈e, S〉 ↪→ 〈e′, S′〉 in MixedJava
′.

The proof of the soundness theorem is divided into two parts: we first sketch
the soundness of MixedJava

′, then show why this result applies to MixedJava.

Type Soundness of MixedJava
′. To prove the soundness of MixedJava

′,
we must first update the type of the environment and the environment-store
consistency relation ( σ̀) to reflect the differences between ClassicJava and
MixedJava

′. In MixedJava
′, the environment Γ maps 〈object ||M〉 pairs to the

mixin type M . The updated consistency relation is defined as follows:

Definition 11 (Environment-Store Consistency).

P ,Γ σ̀ S
⇔ (S(object) = 〈m,F〉

Σ1: ⇒m ≤P Γ (object)
Σ2: and dom(F) = {m′::M ′.fd | |m| ≤M m′::M ′ and

∃ t 〈m′.fd ,t〉 ∈∈m
P m′}

Σ3: and rng(F) ⊆ dom(S) ∪ {null}
Σ4: and (F(m′::M ′.fd) = object ′ and
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≤P Type is a subtype
Extended for views: M ≤P m ⇔ M contains m’s sequence;

M ≤P i ⇔ M contains an m s.t. m ≺m
P i

�P Type is viewable as another type �P ≡ ≤P

∈P Field or method is contained in a type
Choose the leftmost field/method instance

•/• . • Mixin selects a view in a chain
Choose the leftmost instance in the chain

•∈rt
P • in • Method and view is selected by a view in a chain

Choose the minimum view with a method

Fig. 17. Revised relations for MixedJava
′

|m| ≤M m′::M ′ and 〈m′.fd ,t〉 ∈∈m
P m′)

⇒ ((S(object ′) = 〈m′′,F ′〉) ⇒ m′′ ≤P t))
Σ5: and 〈object || 〉 ∈ dom(Γ ) ⇒ object ∈ dom(S)
Σ6: and object ∈ dom(S) ⇒ 〈object || 〉 ∈ dom(Γ ).

The statements of the theorems and lemmata remain unchanged, but the
proofs must be adjusted for differences between the two languages. We show
how the subject reduction lemma is updated; the remaining proofs change along
similar lines.

To prove the type soundness of MixedJava
′ , we must establish that field

accesses and method invocations that have passed the type-checker will not fail
at run-time. The salient differences in the proof of the subject reduction lemma
are:

Case [get ]. The typing rules show that P ,Γ è 〈object ||M〉 : m′ .fd : t1 where
〈m′.fd ,t1〉 ∈P Γ (〈object ||M〉). By Σ2, object has the field m′.fd . The rest of
the proof follows as for ClassicJava.

Case [call ]. Γ (〈object ||M〉) = M combined with [callm] shows that the method
is in M . The search algorithm seeks out the base class of the method def-
inition, and then the leftmost definition of the method in the instantiated
mixin. Since the search algorithm (• ∈rt

P • in •) follows interfaces in both
directions, we know that the method must exist. Further, both the “down-
ward” and “upward” searches are type-preserving, since method overrid-
ing must preserve type (by MixinMethodsOk). Thus, the invoked method
must exist and must have the same type. The rest of the proof is similar to
that for ClassicJava.

The proof for the remaining language features is similar to the corresponding
proofs for ClassicJava.

Relationship Between MixedJava and MixedJava
′. Since the revised re-

lations for MixedJava
′ are conservative extensions of those for MixedJava, it

is easy to see that every MixedJava program is also a MixedJava
′ program.
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What remains to be shown is that for programs common to both languages,
their evaluators produce analogous configurations for each reduction step.

The crucial difference between the languages is, for a given expression, which
field or method is chosen by the run-time system of each language. Whereas in
MixedJava the choice is unique (this is ensured by the “viewable as” relation,
�P ), MixedJava

′ allows implicit and explicit views that can result in ambiguity,
and then chooses the leftmost entity (in the linearization) from the set of options.
These differences are captured in the ∈P , •/• ∝ • and • ∈rt

P • in • relations.
Since we are only concerned with programs common to the two languages, we

can ignore programs that select views that result in ambiguity. In the remaining
programs there is only one field or method to be picked at each stage, which
is also the leftmost choice. Hence the two evaluators coincide by making the
same choices. As a result, they compute the same answers, and can be used
interchangeably for programs common to the two languages. This establishes
that the type soundness of MixedJava

′ applies to MixedJava.

4.5 Implementation Considerations

The MixedJava semantics is formulated at a high level, leaving open the ques-
tion of how to implement mixins efficiently. Common techniques for implement-
ing classes can be applied to mixins, but two properties of mixins require new
implementation strategies. First, each object reference must carry a view of the
object. This can be implemented using double-wide references, one half for the
object pointer and the other half for the current view. Second, method invoca-
tion depends on the current view as well as the instantiation mixin of an object,
as reflected in the ∈rt

P relation. Nevertheless, this relation determines a static,
per-mixin method table that is analogous to the virtual method tables typically
generated for classes.

The overall cost of using mixins instead of classes is equivalent to the cost
of using interface-typed references instead of class-typed references. The justi-
fication for this cost is that mixins are used to implement parts of a program
that cannot be easily expressed using classes. In a language that provides both
classes and mixins, portions of the program that do not use mixins do not incur
any extra overhead.

4.6 Related Work on Mixins

Mixins first appeared as a CLOS programming pattern [20,21]. Unfortunately,
the original linearization algorithm for CLOS’s multiple inheritance breaks the
encapsulation of class definitions [10], which makes it difficult to use CLOS for
proper mixin programming. The CommonObjects [27] dialect of CLOS supports
multiple inheritance without breaking encapsulation, but the language does not
provide simple composition operators for mixins.

Bracha has investigated the use of “mixin modules” as a general language for
expressing inheritance and overriding in objects [5,6,7]. His system is based on
earlier work by Cook [8]; its underlying semantics was recently reformulated in
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categorical terms by Ancona and Zucca [4]. Bracha’s system gives the program-
mer a mechanism for defining modules (classes, in our sense) as a collection of
attributes (methods). Modules can be combined into new modules through var-
ious merging operators. Roughly speaking, these operators provide an assembly
language for expressing class-to-class functions and, as such, permit programmers
to construct mixins. However, this language forces the programmer to resolve
attribute name conflicts manually and to specify attribute overriding explicitly
at a mixin merge site. As a result, the programmer is faced with the same prob-
lem as in Common Lisp, i.e., the low-level management of details. In contrast,
our system provides a language to specify both the content of a mixin and its in-
teraction with other mixins for mixin compositions. The latter gives each mixin
an explicit role in the construction of programs so that only sensible mixin com-
positions are allowed. It distinguishes method overriding from accidental name
collisions and thus permits the system to resolve name collisions automatically
in a natural manner.

5 Conclusion

We have presented a programming language of mixins that relies on the same
intuition as single inheritance classes. Indeed, a mixin declaration in our lan-
guage hardly differs from a class declaration since, from the programmer’s local
perspective, there is little difference between knowing the properties of a super-
class as described by an interface and knowing the exact implementation of a
superclass. However, from the programmer’s global perspective, mixins free each
collection of field and method extensions from the tyranny of a single superclass,
enabling new abstractions and increasing the re-use potential of code.

While using mixins is inherently more expensive than using classes (because
mixins enforce the distinction between implementation inheritance and subtyp-
ing), the cost is reasonable and offset by gains in code re-use. Future work on
mixins must focus on exploring compilation strategies that lower the cost of
mixins, and on studying how designers can exploit mixins to construct better
design patterns.

Acknowledgements: Thanks to Corky Cartwright, Robby Findler, Cormac
Flanagan, and Dan Friedman for their comments on early drafts of this paper.
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Abstract. In this chapter we formally specify a subset of Java Virtual
Machine (JVM) instructions for objects, methods and subroutines based
on the official JVM Specification, the official Java Language Specifica-
tion and Sun’s JDK 1.1.4 implementation of the JVM. Our formal spec-
ification describes the runtime behaviors of the instructions in relevant
memory areas as state transitions and most structural and linking con-
straints on the instructions as a static typing system. The typing system
includes a core of the Bytecode Verifier and resembles data-flow analysis.
We state some properties based on our formal specification and sketch
the proofs. One of these properties is that if a JVM program is statically
well-typed with respect to the typing system, then the runtime data of
the program will be type-correct. Our formal specification clarifies some
ambiguities and incompleteness and removes some (in our view) unnec-
essary restrictions in the description of the official JVM Specification.

1 Introduction

The Java Virtual Machine (JVM) is a platform-independent abstract computing
machine containing an instruction set and running on various memory areas.
The JVM is typically used as an intermediate machine in the implementation
of the programming language Java. The official JVM Specification by Lindholm
and Yellin [10] (OJVMS) defines the syntax of the instructions and describes the
semantics of the instructions in related memory areas.

This chapter specifies a subset of the instructions for objects, methods and
subroutines by giving a formal semantics to them. The formal specification is
based on the OJVMS, Sun’s JDK 1.1.4 implementation of the JVM, in par-
ticular, the Bytecode Verifier, and the official Java Language Specification by
Gosling, Joy and Steele [8] (OJLS). The formal specification provides a foun-
dation for exposing the behaviors of the subset of the JVM. Since programs
of the instructions in the JVM can be used directly over the Web, our formal
specification defines parts of the security of internet programming in Java.

The formal specification considers the following essential instructions: the
load and store instructions for objects and integers, the object creation instruc-
tion, one operand stack management instruction, several control transfer instruc-

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 271–311, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



272 Zhenyu Qian

tions, all method invocation instructions, several return instructions, and the jsr
and ret instructions for implementing finally-clauses.

Many features in the JVM are not considered in this chapter. They are multi-
threads, arrays, primitive types other than type int, two-word wide data, class
initialization method <clinit>, access control modifiers, exception handlings,
native methods, lookupswitch, tableswitch, wide, runtime exceptions, mem-
ory organization, the overflow and underflow of the operand stack, the legality
of accesses of local variables, the class file format in details, constant pool reso-
lution in details and the difference between “static” and “link time”. We assume
that all classes have been loaded by a single class loader. Due to space constraints
we only very briefly sketch all proofs in this chapter.

The paper [12] considers a larger subset of JVM instructions, in particular,
those for exception handling. In addition, it contains the proofs.

The main ideas of our approach are as follows:

– We formalize an operational semantics of the instructions by defining each
instruction as a state transition.

– At the same time we formulate a static typing system. Based on the typing
rules in the system, one may try to derive a static type for each memory
location such that the static type covers the types of all runtime data possibly
held by the memory location. The typing system characterizes aspects of the
data-flow analysis (see e.g. [1]).

– Our formal specification consists of the state transition machine and the
typing system. The state transition machine is defined only for programs,
where static types for all memory locations are derivable with respect to the
typing system. Practically, the typing system includes a core of the Bytecode
Verifier.

– We finally state some properties of the formal specification. In particular, we
state that if the type inference system can be successful, then the runtime
data are guaranteed to be type-correct.

To a large extent, our formal specification follows the OJVMS. However,
some extensions and changes of the semantics are necessary and desirable. Four
of them are as follows:

– The OJVMS (page 130) requires that the static type of an operand stack
entry or a local variable should be the least upper bound of the types of all
possible runtime data in it, and the least upper bound should be one JVM
type. The problem is, however, that the subtyping relation on interfaces
allows multiple inheritance and thus two interfaces need not have one least
common superinterface. Our solution is to allow a set of interfaces (and
classes) to be a static type of an operand stack entry or a local variable.

– The OJVMS (page 132) uses a special type indicating that an object is new,
i.e. it has been created by the instruction new but not yet initialized by
an instance initialization method. We introduce two kinds of special types
indicating two different stages of object initialization in the specification:
one indicates that the object is uninitialized; the other indicates that the
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object is being initialized by an instance initialization method, but has not
yet encountered the invocation of another instance initialization method. We
distinguish between these two stages because the objects at different stages
should be dealt with differently.

– The OJVMS introduces a concept of subroutines: a jsr instruction jumps
to or calls a subroutine and a ret instruction returns from a subroutine.
The mechanism of subroutines is based on the correct use of return ad-
dresses. The OJVMS defines a new primitive type returnAddress indicat-
ing that a value is a return address. For the formal specification we refine
type returnAddress into a family of special types, called subroutine types,
where a value of a subroutine type is the address of a jsr instruction calling
a subroutine and thus can be used to compute the return address of the
subroutine. As we will see, subroutine types are crucial in our specification
of constraints on jsr and ret instructions.

– The OJVMS does not clearly distinguish between types for memory loca-
tions and types for runtime data. Our formal specification clearly distinguish
between static types for memory locations and types (or tags) of runtime
data. Therefore, we can formally discuss the type safety property of runtime
data in the execution.

In this chapter we use the following notations.
We use the notation αn to denote n syntactical objects α1, · · · , αn, the nota-

tion {· · ·} a set and define size({αn}) := n.
We use {αn 7→ α′

n}, where αi 6= αj hold for all i, j with 0 ≤ i, j ≤ n and i 6= j,
to denote a mapping, where the mapping of each αi is α′

i, and the mapping of
every other element will be defined in each concrete case. In fact, in each concrete
case, the mapping of every other element will always be either the element itself,
or a special value failure, or not explicitly defined because it is never used. We
define Dom({αn 7→ α′

n}) := {αn}. For a mapping θ, we use θ(α) to denote the
result of the mapping for α, and write θ[α 7→ α′] for the mapping that is equal
to θ except it maps α to α′. For a set D, we define

θ|D := {α 7→ θ(α) | α ∈ Dom(θ) ∩ D}
θ|−D := {α 7→ θ(α) | α ∈ Dom(θ) − D}

A list [α0 · · · , αn] with n ≥ −1 is a special mapping {i 7→ αi | 0 ≤ i ≤ n}.
For any list lis, we define lis + α := lis[size(lis) 7→ α].

2 Related Work

Stata and Abadi proposed a type system for a set of instructions focusing on
subroutines and proved the soundness [15]. Since they considered only a few
instructions, they could provide lengthy proofs and clarify several key semantic
issues about subroutines. Freund and Mitchell made a significant extension of
Stata and Abadi’s type system by considering object initialization [5,6], and in
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doing this, discovered a bug in Sun’s implementation of the bytecode verifier,
which allows a program to use an object before it has been initialized. To fix
the bug, they wrote a typing rule that ensures that at no time during program
execution, there may be more than one uninitialized object that is created by
the same new instruction and is usable.

After realizing the bug discovered Freund and Mitchell, we detected that
an early version of the current paper contains the same bug. Except for this
point, the results of the current paper are independent of those by Stata, Abadi,
Freund and Mitchell. There are several differences between our approach and
theirs. First, we follow the constraint-solving framework and use typing rules
to generate constraints that define all legal types. Second, we consider more
JVM instructions and more details. Two examples are that our approach allows
an inner subroutine to return directly to an outer jsr instruction in nested
subroutines, whereas their approach does not, and that upon a subroutine return,
our approach assigns a type to a local variable using the information on whether
the local variable is modified in the subroutine, whereas their approach does not
consider the case.

Cohen described a formal model of a subset of the JVM, called defensive
JVM (dJVM), where runtime checks are used to assure type-safe execution [2].
Our approach is different in that we design a static type inference system, which
assures that statically well-typed programs do not have runtime type errors. In
addition, the current dJVM does not consider subroutines, whereas our specifi-
cation does.

Goldberg gave a formal specification of bytecode verification [7]. Compared
with our work, he considered array types, but not subroutines. In addition, his
formal specification is a dataflow analysis and thus closer to the implementation.

Hagiya presented another type system for subroutines [9]. One of the inter-
esting points in his approach is to introduce a mechanism to distinguish the
so-called “used” from the “unused” data in a subroutine. His idea is to use a
kind of special types indicating that a certain memory location in a subroutine
always has the same content as a memory location at a call to the subroutine.

The Kimera project is quite successful in testing some running bytecode
verifiers and detecting some flaws [14]. In general, testing is often based on a
precise specification. Thus a formal specification may be useful for testing.

Dean [3] studied a formal model relating static typing and dynamic linking
and proved the safety of dynamic linking with respect to static typing. As men-
tioned before, our formal specification does not consider the issue between static
typing and dynamic linking.

Our formal specification considers only one single class loader. Saraswat
studied static type-(un)safety in Java in the presence of more than one class
loader [13] .

Although the JVM uses some structures of the Java language, our type
system for the JVM resembles data-flow analysis and thus is quite different from
a formal specification of a type system for Java in e.g. [4,11,16].
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3 JVM Programs, Methods, Data Areas, and Frames

According to the OJVMS, a byte is 8 bits, and a word is an abstract size that
is larger than, among others, a byte. One-byte-wide data build instructions,
whereas one-word wide data represent runtime data. We use byt to range over
all one-byte data and wrd over all one-word wide data.

The OJVMS still allows two-word wide integers. But, as mentioned before,
we do not consider two-word wide data in this chapter for simplicity.

A (JVM) program in this chapter is defined to contain a set of methods. We
assume that each method has a unique method code reference. We use cod to
range over all method code references. An address is a pair (cod , off ), where
off is a one-word wide datum, called a byte offset. For any address (cod , off )
and another byte offset off ′, we define (cod , off ) + off ′ := (cod , off + off ). An
instruction may be longer than one byte. A program point, denoted by pp, is the
starting address of an instruction. Since we do not consider multi-threads, we
assume that there is just one program count register, which contains the current
program point.

As mentioned in the introduction to this chapter, the program point of a
jsr instruction may be used in computing the returning program point for a
subroutine. In fact, it is the byte offset of the program point, not the program
point itself, that may be used, since, as we will see later, a ret instruction, which
uses the program point of a jsr instruction, is always in the same method as
the jsr instruction. Thus we may talk about the byte offset of a jsr in the rest
of this chapter.

We consider an arbitrary but fixed program Prg. Note that the methods in
a program may stem from different class files. A method in Prg consists of all
instructions in Prg whose program points contain the same given method code
reference. We use Mth to denote an arbitrary but fixed method in Prg.

We use allPP(Prg) and allPP(Mth) to denote the sets of all program points
in Prg and Mth, respectively. We assume that allPP(Mth) always contains one
unique element of the form ( , 0). Intuitively, it is the starting program point of
the method.

We define that the function offset(byt1, byt2) yields (byt1 ∗ (28)) + byt2 if it
is a one-word wide value, a failure otherwise.

In our specification an object reference is formally a one-word wide datum.
We use obj to range over all object references. Furthermore, we use null to
denote a special object reference.

Following the OJVMS, we formally specify int as the primitive type of all
one-word wide integers and use val to range over these integers.

We use cnam , inam, mnam and fnam to range over names of classes, inter-
faces, methods and fields, respectively. For our formal specification we require
that fnam is always a qualified name.

A record is formally a mapping of the form {fnamn 7→ wrdn}, which maps all
elements other than fnamn to a special value failure. We use rec to range over
all records.
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The JVM has a heap, from which memory for all objects is allocated. For-
mally, a heap state is defined as a mapping of the form {objn 7→ recn}, which
maps all elements other than obj n to a special value failure. We use hp to range
over all heap states.

A frame is created each time a method is invoked, which contains a local
variable table and an operand stack for the method. A frame is destroyed when
the method completes.

A local variable table state is a list of the form [wrd0, · · · , wrdn] with n ≥ −1.
We use lvs to range over all local variable table states. Each method has a fixed
number of local variables.

An operand stack state is a list [wrd0, · · · , wrdn] with n ≥ −1. We use stk to
range over all operand stack states. Each method has a fixed maximal length of
operand stacks.

Note that we need not define formally what a frame is, since no frames are
explicitly used in our specification.

Each JVM thread has a Java stack to store at least the old current frame
and a return address upon a method invocation. When the method invocation
completes normally, the old current frame becomes the current frame and the
return address becomes the current program point. In this chapter the Java
stack contains tuples (lvs, stk , pp), where lvs is the old current local variable
table state, stk the old current operand stack state and pp a return address.
Since we do not consider multi-threads, we need only to consider one Java stack.
We use jstk to range over all Java stack states.

A program state is a tuple of the form (pp, jstk , lvs, stk , hp). We use stat to
range over all program states.

4 Static Types

Figure 1 defines all static types. In the static analysis, a memory location at a
program point may obtain a static type, indicating the types of the runtime data
that the memory location may hold at that program point in all executions. For
simplicity, we may omit the phrases “at a program point” and “in all executions”
in the rest of this chapter.

Reference type set {ref n} (n > 0)
where each ref i is either type null, or a class or
interface name as in Java.

Primitive type int
Subroutine type sbr(pp) | invldsbr
Raw object type unin(pp, cnam) | init(cnam)
Unusable value type unusable

Figure 1: Static types
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We introduce the static type null. If a memory location may hold nothing
more than the special object reference null, then the memory location may be
given the static type null.

The static type null and class or interface names in Java are called reference
types. Note that java.lang.Object (short: Object) is a class name in Java.

A nonempty reference type set is a static type. Intuitively, if a memory lo-
cation may hold nothing more than null and objects that are of the reference
types ref i for i = 1, · · · , n but not raw objects (see below), then it may obtain
the static type {ref n}.

It is worth mentioning that the Sun’s implementation does not implement
the concept of reference type sets in the bytecode verifier.

In our specification, a single reference type is always regarded as identical to
the singleton set containing the reference type.

If a memory location may hold nothing more than elements of the primitive
type int, then it may obtain the static type int.

As mentioned before, the byte offset of a jsr instruction can be regarded
as an element of the subroutine type corresponding to the called subroutine.
If a memory location may hold nothing more than some valid byte offsets of
jsr instructions that call one common subroutine starting at pp, then the mem-
ory location may obtain a subroutine type sbr(pp) as its static type. Note that
sbr(pp) 6= sbr(pp′) if and only if pp 6= pp′.

If a memory location may hold some valid and invalid byte offsets of jsr
instructions, then the memory location may obtain the static type invldsbr .

The forms unin(pp, cnam) and init(cnam) are static types for memory lo-
cations holding raw objects. More concretely, if a memory location may hold
nothing more than objects of the class cnam created by one common new in-
struction at a program point pp, then the memory location may obtain the static
type unin(pp, cnam). If the memory location may hold nothing more than an
object that is being currently initialized by an instance initialization method for
the class cnam and has not encountered another instance initialization method
within the current instance initialization method, then the memory location may
obtain the static type init(cnam). Note that unin(pp, cnam) 6= unin(pp′, cnam ′)
if and only if pp 6= pp′ or cnam 6= cnam ′, init(cnam) 6= init(cnam ′) if and only
if cnam 6= cnam ′.

Any memory location may obtain the static type unusable . In particular,
if a memory location may hold runtime data of incompatible types, then it
should obtain the static type unusable , indicating that the content of the memory
location is unusable in practice. For example, if a local variable may hold an
object and an element of the type int, then our specification will enforce the
local variable to obtain the static type unusable .

To represent the above intuitive semantics more precisely, we define a partial
order w on static types as the smallest reflexive and transitive relation satisfying
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that

{ref n} w {ref m} for all n and m with n ≤ m and all ref i, i = 1, . . . , m
invldsbr w sbr(pp) for all pp
unusable w any for all static types any

The relation any w any′ is read as “any covers any′”.
Intuitively, if any covers any′, then any instruction applicable to a memory

location with any is also applicable to a memory location with any′. Note that
the relation implies that, for example, if any covers both int and a reference
type ref , then any must be unusable.

5 Short Notations for Zero or One of Several Static
Types

The syntax in Figure 2 means that an identifier on the left of ::= denotes an
arbitrary static type or the identifier void that either explicitly occurs or is
denoted by an identifier on the right of ::=.

Conceptually, the identifier void is not a static type. It is just an auxiliary
identifier denoting the situation that no static type is present.

For example, ref denotes an arbitrary class or interface name or null, tys
denotes an arbitrary reference type set or a primitive type, notnull void denotes
an arbitrary class or interface name or void, and any denotes an arbitrary static
type.

Class name cnam ::= an arbitrary class name
Interface name inam ::= an arbitrary interface name
Reference type ref ::= cnam | inam | null
Primitive type prim ::= int
Void type void ::=
Type that is not null notnull ::= cnam | inam | prim
Type ty ::= ref | prim

Reference type set refs ::= {ref n} (n > 0)
Type set tys ::= refs | prim
Subroutine type sbr ::= sbr(pp) | invldsbr
Raw object type raw ::= unin(pp, cnam) | init(cnam)
Type or void notnull void ::= notnull | void
Reference type set or
raw object type refs raw ::= refs | raw
Reference type set,
raw object type or
subroutine type refs raw sbr ::= refs | raw | sbr
Anything any ::= tys | raw | sbr | unusable

Figure 2: Auxiliary symbols denoting zero or one of several static types
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6 Program Point Types and Program Types

In general, there is no guarantee that any class file that is asked to be loaded
is properly formed. Thus according to the OJVMS, the bytecode verifier should
ensure that the class file satisfies some constraints. In particular, the bytecode
verifier should be able to statically derive a static type for each local variable
and operand stack entry at each program point, and ensure that the derived
static types satisfy some constraints.

For this purpose, we define a local variable table type as a list of the form
[any0, · · · , anyn] with n ≥ −1. We use lvsty to range over all local variable table
types. For lvsty = [any0, · · · , anyn] and lvsty′ = [any0, · · · , anym], we define that
lvsty w lvsty′ holds if and only if n = m and anyi w any′i hold for all i = 0, . . . , n.

We define an operand stack type as a list of the form [any0, · · · , anyn] with
n ≥ −1. We use stkty to range over all operand stack types. For stkty =
[any0, · · · , anyn] and stkty′ = [any0, · · · , anym], we define that stkty w stkty ′

holds if and only if n = m and anyi w any′i hold for all i = 0, . . . , n.
The above definitions that a local variable or an operand stack entry can

hold values of arbitrary static types.
To record whether an instance initialization method has been called inside

another instance initialization method, we use three initialization tags, namely
notInitd , Initd and unknown . We use intag to range over all initialization tags.
A w-relation is defined on these tags as follows:

intag w intag ′ if and only if intag = unknown or intag = intag′

We define a program point type as a tuple (lvsty, stkty, intag, mod) where mod
will be defined in Section 10.6. We use ptty to range over all program point types.

Let ptty = (lvsty , stkty, intag, mod) and ptty ′ = (lvsty′, stkty′, intag ′, mod ′).
The relation ptty w ptty ′ holds if and only if lvsty w lvsty ′, stkty w stkty′,
intag w intag ′ and mod w mod ′ hold, where the last relation will be defined in
Section 10.6.

Intuitively, the relation ptty w ptty ′ is used to ensure that any instruction
that is applicable to all program states of the program point type ptty must be
applicable to all program states of the program point type ptty ′.

For the program Prg, a program type is a mapping {pp 7→ pttypp | pp ∈
allPP(Prg)}. We use prgty to range over all program types. Let prgty and prgty′

be two program types. Then we define that prgty w prgty′ holds if and only if
prgty(pp) w prgty ′(pp) holds for all pp ∈ allPP(Prg). These concepts can also
be defined for the fixed method Mth .

7 The Reference Type Hierarchy

A reference type hierarchy in the JVM is as in Java. Following the OJVMS
(§ 2.6.4), we formally define a subtyping relation widRefConvert as the smallest



280 Zhenyu Qian

reflexive transitive relation on all reference type sets refs satisfying:

widRefConvert(cnam , cnam ′) if cnam extends cnam ′

widRefConvert(cnam , inam) if cnam implements inam
widRefConvert(inam, inam ′) if inam extends inam ′

widRefConvert(inam , Object)
widRefConvert(null, ref )

widRefConvert({ref n}, {ref ′m}) if ∀(1 ≤ i ≤ n).∃(1 ≤ j ≤ m).
widRefConvert(ref i, ref

′
j)

Note that we do not consider array types. We use the relation diSubcls to denote
the direct subclass relation on classes.

To constrain the types of the actual and formal parameters in a method
invocation we define the relation invoConvert on all reference type sets and the
primitive type int as

invoConvert := widRefConvert ∪ {(int, int)}

Note that {(int, int)} is a degenerate case of the widening primitive conver-
sion in the OJVMS (§ 2.6.2). It suffices for us to have the degenerate case, since
we consider only one primitive type int.

To constrain the types of the variable and the value in an assignment, we
define the relation assConvert on all reference type sets and the primitive type
int as

assConvert := invoConvert .

The OJVMS requires that assConvert extends invoConvert by some narrowing
primitive conversions for integer constants. We do not consider this difference
for simplicity.

Intuitively, if a reference type set contains both a super- and a subtype,
then the subtype is redundant. Practically, a Bytecode Verifier could implement
elimination of redundant reference types from a reference type set with respect
to a subtyping relation as an optimization step.

8 Constant Pool Resolution

According to the OJVMS, each class (or interface) should have a constant pool
whose entries name entities like classes, interfaces, methods and fields referenced
from the code of the class (or interface, respectively) or from other constant pool
entries. An individual instruction in the class (or interface, respectively) may
carry an index of an entry in the constant pool, and during the execution of
this instruction, the JVM is responsible for resolving the entry, i.e. determining
a concrete entity from the entry. This process of resolving an entry is called
constant pool resolution.

For our formal specification we introduce some defined functions, called res-
olution functions, which hide the details of resolution. In fact, except that the
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resolution processes should take correct sorts of data as argument and yield cor-
rect sorts of data or a failure as result, other details are not important at all
for the formal specification and proofs in this chapter. Nevertheless, we still ex-
plain the definitions of the resolution functions, in order to give a feeling why the
resolution functions here are proper abstractions of the real resolution processes.

A resolution function in this section often takes as parameter two one-byte-
wide integers ind1 and ind2, which build the index offset(ind1, ind2) in a con-
stant pool. In this sense, a resolution function has always a constant pool as an
implicit parameter.

The resolution function cResol (index1, index2) yields a class name cnam .
For any cnam, we define a function

allFields(cnam) := {(fnam, notnull) | fnam and notnull are the name
and type of a field in the class cnam}

Note that a field in the class cnam is either directly defined in the class or in a
superclass of the class. Since a field name fnam is a qualified name, we need not
consider the problem with hiding of fields.

We define a resolution function for a field as

fResol(ind1, ind2) := (fnam, cnam, notnull )

where fnam is the name of the field, cnam the class containing the field decla-
ration, and notnull the type of the field.

We define a resolution function for a special method as

mResolSp(ind1, ind2) := (mnam , cnam, (tyn)notnull void , cod, nlv)

where mnam is the name of the method, cnam the class containing the decla-
ration of the method, (tyn)notnull void the descriptor of the method, cod the
method code and nlv the length of the local variable table in the method.

We define a resolution function for a static method as

mResolSt(ind1, ind2) := (mnam , cnam, (tyn)notnull void , cod, nlv).

We define a resolution function for an instance method1 as

mResolV (ind1, ind2) := (mnam , cnam, (tyn)notnull void).

But the function mResolV (ind1, ind2) does not yield a method code. For doing
this, we need to define another function

mSelV (obj, mnam, (tyn)notnull void) := (cod , nlv)

which takes an object obj, and yields the method code cod for the object obj
and the length nlv of the local variable table in the method.
1 Thanks to Gilad Bracha for clarifying comments on the semantics of method dispatch

at this point.
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We define a resolution function for an interface method as

mResolI (ind1, ind2) := (mnam , inam, (tyn)notnull void)

where inam is the name of the interface, instead of the class, that contains the
declaration of the method. Furthermore, we define

mSelI (obj, mnam, (tyn)notnull void) := (cod , nlv).

For convenience we define the auxiliary function

mInfo(pp) := (mnam , cnam, (tyn)notnull void , nlv)

where mnam is the method containing the pp, (tyn)notnull void the descriptor
of the method, cnam the class containing the declaration of the method, and
nlv the number of the local variables in the method.

In order to find out whether a method is an instance or a static method,
we define the following relations:

– instMeth(mnam , cnam, (tyn)notnull void) holds if and only the method
mnam with the signature (tyn)notnull void is an instance method.

– statMeth(mnam , cnam, (tyn)notnull void) holds if and only the method
mnam with the signature (tyn)notnull void is a static method.

9 Constraint Domain and Constraints

The previous sections have in fact introduced (part of) a constraint domain for
our formal specification. Although there are no problems to completely formally
define all concepts in a constraint domain, we can only discuss (part of) them
informally in this chapter due to the space limit.

First of all, all data, data structures (e.g. local variable table states, operand
stack states, program states), static types and type structures (e.g. local variable
table types, operand stack types, program point types, pogram types) defined in
the previous sections are elements of the constraint domain. These elements are
all sorted. Informally, every time when we introduce an identifier to range over a
kind of data, data structures, static types or type structures, we introduce a sort.
We use the introduced identifiers also as names of these sorts. So it is possible
for one sort to have several names. For example, the sort byt consists of all one-
byte wide data, the sort wrd all one-word wide data, the sort pp all program
points, the sort lvs all local variable table states, the sort stk all operand stack
states, the sort stat all program states, the sorts ref , refs, tys and refs raw
corresponding static types, respectively, as defined in Figure 2, the sort lvsty all
local variable table types, the sort stkty all operand stack types and the sort
prgty all program point types. Standard data or type structures, e.g. sets or lists
of some data or types, also build sorts, but not necessarily have a sort name.

There is a subsort relation among the sorts, which corresponds to the subset
relation. In particular, Figure 2 defines that if a sort occurs as an alternative on
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the right of ::=, then the sort on the left of ::= is a supersort of it. For example,
the sort ref is a supersort of the sorts cnam and inam and contains null, the
sort prim contains int, the sort notnull is a supersort of the sorts cnam , inam
and prim, refs contains all {ref n}, where each ref i is an element of the sort
ref , etc. Since a singleton reference type set {ref } and the reference type ref are
regarded as the same static type, we define that the sort refs is a supersort of
the sort ref .

For each sort, there are a countable set of variables. In general, the completely
capitalized version of a sort name denotes a variable of the sort. For example,
BYT is a variable of byt and WRD a variable of wrd . For notional simplicity we
also introduce the variable P for the sort pp, L for the sort lvs, S for the sort
stk , J for the sort jstk , H for the sort hp, LG for the sort lvstag, SG for the sort
stktag, Ξ for the sort stat, LT for the sort lvsty , ST for the sort stkty, IT for
the sort intag , M for mod , Π for the sort ptty and Φ for the sort prgty. We use

to denote a wildcard variable.
In general, terms are built using variables, constants and functions in the

constraint domain. Terms are sorted as usual. A sort of a subsort is always
a term of a supersort. Every term has a least sort. We will use the partially
capitalized version of a sort name, where only the first letter is changed into a
capital letter, to range over all terms of the sort. For example, Pp, Stat and Ptty
range over the terms in the sorts pp, stat and ptty , respectively.

A term containing no variables is called closed. In fact, each element in the
constraint domain is a closed term.

Logical formulas are built as in First-Order Predicate Logic, where predicates
take only sorted arguments in the constraint domain. We use q and r to range
over all logical formulas.

We use the form q[sn] to denote a logical formula containing the (occurrences
of) terms sn. If the forms q[sn] and q[tn] occur in the same context (e.g. the same
rule), then si and ti are of the same sort for i = 1, . . . , n, and q[tn] is the logical
formula obtained from q[sn] by replacing each si by ti for i = 1, . . . , n.

A substitution is a finite mapping of the form {Xn 7→ sn}, where the sort
of each term si must be a subsort of the sort of Xi for all i = 1, · · · , n. We
consider only closed substitutions in this chapter, i.e. where si is a closed term
for i = 1, . . . , n. We use σ to range over all closed substitutions.

A constraint is a logical formula. A set of constraints {q1, · · · , qm} represents
the logical formula q1 ∧ · · · ∧ qm ∧ true.

A constraint q is satisfied under a substitution σ if and only if σ(q) is closed
and holds in the constraint domain. A constraint q is satisfiable if there is a
substitution, under which the constraint q is satisfied.

In our formal specification, we may define a function f that yields results
in a sort a for some arguments and the special value failure not in a for all
other arguments, and use a term f(sn) in a constraint, say q[f(sn)], where a
term of a is required. Intuitively, this usage always implicitly requires that f(sn)
should not yield failure. Formally, we may always define a new sort a′, which
is a supersort of a and contains the failure as a constant, define the f to have
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the result sort a′, and replace the constraint q[f(sn)] by the constraints q[X]
and X = f(sn), where X is a new variable of the sort a. The reason why the
constraint X = f(sn) assures that “f(sn) is not equal to failure” is that failure is
not in the sort a and thus X = failure is never satisfiable. (Note that if there are
two functions yielding failure, then we need to assume that they yield different
failure’s; otherwise the least sort of the term failure may not exist.)

Our formal specification consists of two parts. The first part defines a state
transition relation on program states stat =⇒ stat ′, read as “stat changes into
stat ′”. The relation is defined by state transition rules of the following form:

Premises
Ξ[sn] =⇒ Ξ[tn]

where Premises is a set of constraints. Let

Q := FV(Premises) ∪ FV(Ξ[sn] =⇒ Ξ[tn]).

Then the rule means that if all constraints in Premises are satisfied under a
substitution σ, then σ(Ξ)[σ(sn)] =⇒ σ(Ξ)[σ(tn)] holds. In the sequel, we may
also say that Ξ[sn] changes into Ξ[tn] in the informal discussion for simplicity.

To specify all program types of a program, the following two forms of con-
straints are particularly important:

Prgty(Pp) = Ptty and Prgty(Pp) w Ptty

The former says that the program point type at Pp in Prgty is Ptty. The latter
says that the program point type at Pp in Prgty covers Ptty. If a program point
Pp can be reached by more than one preceding program point, then it is quite
convenient to write a constraint of the latter form to constrain the program point
type at Pp.

The type system in our formal specification should introduce constraints on
one program type for the method Mth. Therefore, we require that all typing
rules contain one common program type variable Φ.

In general, a typing rule is in the form:

AC
CC
SC

The AC is a set of logical formulas, called applicability conditions, and contains
a distinguished constraint Mth(P ) = Instr . The term Instr gives the form of
an instruction. Intuitively, AC is used to determine a program point P , where
the rule can be applied. The identifier CC stands for a set of logical formulas. It
contains no logical formulas of the form Φ(P ) w Ptty . Intuitively, CC constrains
Φ(P ). The identifier SC stands for a set of logical formulas of the form Φ(Pp′) w
Ptty, where in most cases Pp′ stands for a successor program point.

The reason for us to write a typing rule in the form as above is that a typing
rule also suggests an intuitive data-flow analysis step. Roughly speaking, if the
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data-flow analysis arrives at a program point Pp satisfying AC, in particular the
constraint Mth(Pp) = Instr in AC, and if the program type at Pp satisfies CC,
then the program type at each successor program point Pp′ should satisfy the
corresponding constraint in SC.

Let
Q := FV(AC) − {Φ}
Q′ := FV(CC ∪ SC) − ({Φ} ∪Q)

then a typing rule as above formally introduces the constraint

∀Q.(AC ⇒ ∃Q′.(CC ∪ SC))

It is easy to see that the constraint holds if and only if, if AC is satisfied under
a substitution σ with Dom(σ) = Q ∪ {Φ}, then there is a substitution σ′ with
Dom(σ) = Q ∪ Q′ ∪ {Φ} such that σ′

|Q∪{Φ} = σ and σ′(CC ∪ SC) hold.
Let ConstrsMth denote the set of the constraints introduced as above from

all typing rules. Then we say that the method Mth has a program type prgty, or
that a program type prgty is a program type of the method Mth, if and only if all
constraints in ConstrsMth are satisfied under {Φ 7→ prgty}. Note that a program
may have more than one program type. For example, a local variable that is not
used in a method may be given an arbitrary static type in a program type. A
program is said to be statically well-typed if and only if it has a program type.

10 The Rules in the Formal Specification

There are constraints that should occur in many rules. We omit the explicit
presentation of the following constraints for notational simplicity.

– The CC in a typing rule always implicitly contains a constraint Pp ∈
allPP(Mth) for each Φ(Pp) w Ptty in the SC. This assures that Pp is
always a program point, i.e. a starting address of an instruction.

– In the specification we only consider the instructions for one-word wide data.
Thus the rules are all based on the assumption that all data in local variables
and the operand stack are one-word wide.

10.1 Load and Store Instructions

The state transitions for loading and storing objects and integers of type int are
defined by the rules in Figure 3. The aload and iload instructions load a local
variable onto the operand stack. The astore and istore instructions store a
value from the operand stack in a local variable.

The typing rules for load and store instructions are given in Figure 4. We
explain rule (T-1) to show some of the tricky points in the formulation of con-
straints. First, REFS RAW = LT (IND) expresses a membership constraint, i.e.
that the static type LT (IND) should be in the sort refs raw , since REFS RAW
can only be instantiated by an element in the sort refs raw . It implies that an
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Prg(P ) = aload IND or iload IND

Ξ[P, L, S] =⇒ Ξ[P + 2, L, S + L(IND)]
(S-1),(S-2)

Prg(P ) = astore IND or istore IND

Ξ[P,L, S + WRD ] =⇒ Ξ[P + 2, L[IND 7→ WRD], S]
(S-3),(S-4)

Figure 3: The state transitions for load and store instructions

aload instruction can load both initialized and uninitialized objects. In addi-
tion, rule (T-1) says that the local variable table type at P + 2 (i.e. after the
instruction) should componentwise cover that at P (before the instruction). The
same should also hold for the operand stack type, except that the operand stack
type at P +2 should be extended by the static type of the IND -th local variable.
A similar constraint should also hold on the components M at P and Mod ′ at
P + 2. The precise definitions of M and Mod ′ will be given in Sections 10.6
and 10.7. Note that the variables Φ and LT in the terms Φ(P ) and LT (IND)
are not higher-order (i.e. function) variables, since the terms of this form in this
chapter can always be regarded as applications of an implicit function app on
two first-order arguments.

Similar explanations can be given for the other three typing rules. One point
that is worth noticing in rule (T-3) is that the variable REFS RAW SBR can be
initiantiated into an element of the sort sbr , whereas the variable REFS RAW in
rule (T-1) cannot. This means that, as required in the OJVMS and implemented
in the Sun’s implementation, an astore instruction can store a (valid or invalid)
byte offset, whereas an aload instruction cannot load it.

An aconst_null instruction loads the reference null. Its state transition rule
and typing rule are defined in Figure 5.

The state transitions for getfield and putfield are defined in Figure 6.
A getfield instruction replaces an object reference at the top of the operand
stack by the content of a field of the referenced object.

A putfield instruction stores the content at the top of the operand stack
into a field of the object referenced by the second top of the operand stack.

The typing rules for getfield and putfield are given in Figure 7. The
sort of the variable REFS in Π [ST + REFS ] and Π [ST + REFS + TYS ] as-
sures that the OBJ in Figure 6 really references an object. The constraint
widRefConvert(REFS , CNAM ) assures that in Figure 6 if OBJ ∈ Dom(H),
then FNAM ∈ Dom(H(OBJ )) holds, i.e. both H(OBJ )(FNAM ) and H(OBJ )
[FNAM 7→ WRD ] are defined and make sense. But the typing rules do not
ensure that the condition OBJ ∈ Dom(H) in Figure 6 holds, since the OBJ
may hold null at run time. If OBJ 6∈ Dom(H) holds, then H(OBJ ) yields a
failure. Thus the Premises in both rules in Figure 6 are not satisfiable. In fact,
in this case we would need another state transition rule to describe which kind
of runtime exception can be thrown. However, as mentioned before, our formal
specification does not consider this.
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Mth(P ) = aload IND

Φ(P ) = Π [LT ,ST , M ]
REFS RAW = LT (IND)

Φ(P + 2) w Π [LT ,ST + REFS RAW ,Mod ′]
(T-1)

Mth(P ) = iload IND

Φ(P ) = Π [LT , ST , M ]
int = LT (IND)

Φ(P + 2) w Π [LT ,ST + int,Mod ′]
(T-2)

Mth(P ) = astore IND

Φ(P ) = Π [LT ,ST + REFS RAW SBR, M ]

Φ(P + 2) w Π [LT [IND 7→ REFS RAW SBR],ST ,Mod ′]
(T-3)

Mth(P ) = istore IND

Φ(P ) = Π [LT ,ST + int, M ]

Φ(P + 2) w Π [LT [IND 7→ int],ST ,Mod ′]
(T-4)

Figure 4: The typing rules for load and store instructions

Prg(P ) = aconst null

Ξ[P,S] =⇒ Ξ[P + 1, S + null]
(S-5)

Mth(P ) = aconst null

Φ(P ) = Π [ST ]

Φ(P + 1) w Π [ST + null]
(T-5)

Figure 5: The state transitions for aconst null and bipush

Prg(P ) = getfield IND1 IND2
(FNAM , ,NOTNULL) = fResol(IND1, IND2)
WRD = H(OBJ )(FNAM )

Ξ[P,S + OBJ , H ] =⇒ Ξ[P + 3, S + WRD , H ]
(S-6)

Prg(P ) = putfield IND1 IND2
(FNAM , , ) = fResol(IND1, IND2)
REC = H(OBJ )[FNAM 7→ WRD ]

Ξ[P, S + OBJ + WRD, H ] =⇒ Ξ[P + 3, S, H [OBJ 7→ REC ]]
(S-7)

Figure 6: The state transitions for getfield and putfield
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Mth(P ) = getfield IND1 IND2

Φ(P ) = Π [ST + REFS ]
( ,CNAM ,NOTNULL) = fResol(IND1, IND2)
widRefConvert(REFS ,CNAM )

Φ(P + 3) w Π [ST + NOTNULL]
(T-6)

Mth(P ) = putfield IND1 IND2

Φ(P ) = Π [ST + REFS + TYS ]
( ,CNAM ,NOTNULL) = fResol(IND1, IND2)
widRefConvert(REFS ,CNAM )
assConvert(TYS ,NOTNULL)

Φ(P + 3) w Π [ST ]
(T-7)

Figure 7: The typing rules for getfield and putfield

10.2 Object Creation

A new instruction creates an object. The state transition and typing rules for
the instruction are defined in Figure 8.

Prg(P ) = new IND1 IND2
CNAM = cResol(IND1, IND2)
OBJ 6∈ Dom(H)
Dom(REC ) = allFields(CNAM )

Ξ[P,S, H ] =⇒ Ξ[P + 3, S + OBJ , H [OBJ 7→ REC ]]
(S-8)

Mth(P ) = new IND1 IND2

Φ(P ) = Π [LT ,ST ]
CNAM = cResol(IND1, IND2)
unin(P,CNAM ) 6∈ LT
unin(P,CNAM ) 6∈ ST

Φ(P + 3) w Π [LT ,ST + unin(P,CNAM )]
(T-8)

Figure 8: The state transition and the typing rule for new

The condition OBJ 6∈ Dom(H) in rule (S-8) assures that the object reference
OBJ is new. Rule (T-8) says that the operand stack type after the instruction
covers one with unin(P, CNAM )2 at the top, which indicates that the operand
stack may hold an object that has not been initialized by an instance initial-
ization method <init>, i.e. an uninitialized object. Indeed, a typing rule that
forbids the use of a memory location with a static type of the form unin( , )
forbids the use of an uninitialized object.
2 The OJVMS mentions such a type but gives no details on how it can be used in the

specification.
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The constraints unin(P, CNAM ) 6∈ LT and unin(P, CNAM ) 6∈ ST assure
that at the program point P , no new object created by the same new instruction
at P can be used as a new object. This is strictly weaker than to say that there
is no new object created by the new instruction at P , since a memory location
at P is still allowed to hold a new object created by the new instruction at P if
the memory location has the type unusable. For an example, see Section 11.

10.3 Operand Stack Management Instructions

We only give the rules for dup in Figure 9. The rules for other instructions are
similar.

Prg(P ) = dup

Ξ[P, S + WRD ] =⇒ Ξ[P + 1, S + WRD + WRD ]
(S-9)

Mth(P ) = dup

Φ(P ) = Π [ST + ANY ]

Φ(P + 1) w Π [ST + ANY + ANY ]
(T-9)

Figure 9: The state transition and typing rules for dup

10.4 Control Transfer Instructions

Prg(P ) = if acmpeq BYT1 BYT2
OBJ 1 = OBJ2 ⇒ P ′ = P + offset(BYT1,BYT2)
OBJ 1 6= OBJ2 ⇒ P ′ = P + 3

Ξ[P,S + OBJ1 + OBJ2] =⇒ Ξ[P ′, S]
(S-10)

Prg(P ) = if icmpeq BYT1 BYT2
VAL1 = VAL2 ⇒ P ′ = P + offset(BYT1,BYT2)
VAL1 6= VAL2 ⇒ P ′ = P + 3

Ξ[P,S + VAL1 + VAL2] =⇒ Ξ[, S]
(S-11)

Prg(P ) = goto BYT1 BYT2

Ξ[P ] =⇒ Ξ[offset(BYT1, BYT2)]
(S-12)

Figure 10: The state transitions for control transfer instructions

All control transfer instructions can be dealt with in a very similar way. We
consider only a few control transfer instructions. The state transitions for these
instructions are given in Figure 10. They are quite straightforward.
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Mth(P ) = if acmpeq BYT1 BYT2

Φ(P ) = Π [ST + REFS + REFS′ ]

Φ(P + offset(BYT1,BYT2)) w Π [ST ]
Φ(P + 3) w Π [ST ]

(T-10)

Mth(P ) = if icmpeq BYT1 BYT2

Φ(P ) = Π [ST + int + int]

Φ(P + offset(BYT1,BYT2)) w Π [ST ]
Φ(P + 3) w Π [ST ]

(T-11)

Mth(P ) = goto BYT1 BYT2

Φ(P ) = Π

Φ(P + offset(BYT1, BYT2)) w Π
(T-12)

Figure 11: The typing rules for control transfer instructions

The OJVMS requires (page 133) that no uninitialized objects may exist on
the operand stack or in a local variable when a control transfer instruction causes
a backwards branch. In our specification this requirement is unnecessary, thanks
to rule (T-8).

10.5 Method Invocation and Return Instructions

The state transitions for method invocation instructions are defined in Figure 12.
We first consider the state transition rule (S-13) for invokespecial. Since the
instruction is only used to invoke instance instantiation methods <init> and
private methods, and to perform method invocations via super, we use the
function mResolSp. The state transition says that the execution of the invoked
method starts with a program state, in which the operand stack is empty and the
local variables hold the object, on which the method is invoked, and all actual
arguments. We use the notation lvsn to denote an arbitrary local variable table
state with the length n.

The state transition for invokevirtual (or invokeinterface) is similar to
that for invokespecial. The difference is only that the former uses the func-
tions mResolV and mSelV (or mResolI and mSelI , respectively) to compute
the method code associated with OBJ , whereas the latter uses the function
mResolSp to do the same thing, independent of OBJ . Note that the bytes BYT
and 0 in a invokeinterface instruction are useless. They are contained in the
instruction for historical reasons.

Invocation of a method leads to the execution of a method code. The typing
rule in Figure 13 constrains the program point type at the beginning of a method
code. The rule is totally independent of method invocation instructions. The rule
says that the method must be a <init>, an instance or a static method. The
static types given for the local variables depend on what kind method it is. In
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Prg(P ) = invokespecial IND1 IND2

( , , (TYn)NOTNULL VOID ,COD ,NLV ) = mResolSp(IND1, IND2)

Ξ[P, J, L, S + OBJ+WRDn]

=⇒ Ξ[COD , J + (L, S, P + 3), lvsNLV [0 7→ OBJ , n 7→ WRDn], []]

(S-13)

Prg(P ) = invokevirtual IND1 IND2

(MNAM , , (TYn)NOTNULL VOID) = mResolV (IND1, IND2)
MNAM 6= < init >

(COD ,NLV ) = mSelV (OBJ ,MNAM , (TYn)NOTNULL VOID)

Ξ[P, J, L, S + OBJ+WRDn]

=⇒ Ξ[COD , J + (L, S, P + 3), lvsNLV [0 7→ OBJ , n 7→ WRDn], []]

(S-14)

Prg(P ) = invokeinterface IND1 IND2 BYT 0

(MNAM , , (TYn)NOTNULL VOID) = mResolI (IND1, IND2)
n = BYT − 1

(COD ,NLV ) = mSelI (OBJ ,MNAM , (TYn)NOTNULL VOID)

Ξ[P, J, L, S + OBJ+WRDn]

=⇒ Ξ[COD , J + (L, S, P + 5), lvsNLV [0 7→ OBJ , n 7→ WRDn], []]

(S-15)

Prg(P ) = invokestatic IND1 IND2

( , , (TYn)NOTNULL VOID,COD ,NLV ) = mResolSt(IND1, IND2)

Ξ[P,J, L, S+WRDn]
=⇒ Ξ[COD , J + (L, S, P +3), lvsNLV [i 7→WRD i+1 | 0 ≤ i < n], []]

(S-16)

Figure 12: The state transitions for method invocation instructions

Mth(P ) =
P = ( , 0)

(MNAM ,CNAM , (TYn)NOTNULL VOID,NLV ) = mInfo(P )
MNAM = < init > ⇒

( NOTNULL VOID = void ∧
( CNAM 6= Object ⇒ ( LT = unusableNLV [0 7→ init(CNAM ), n 7→TYn ] ∧

IT = notInitd ) ) ∧
( CNAM = Object ⇒ ( LT = unusableNLV [0 7→CNAM , n 7→TYn ] ∧

IT = Initd ) )

instMeth(MNAM ,CNAM , (TYn)NOTNULL VOID) ⇒
LT = unusableNLV [0 7→ CNAM , n 7→ TYn]

statMeth(MNAM ,CNAM , (TYn)NOTNULL VOID) ⇒
LT = unusableNLV [i 7→ TYi+1 | 0 ≤ i < n]

Φ(P ) w (LT , [], IT ,mod0)
(T-13)

Figure 13: The typing rule for the starting program point of a method code
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general, however, each local variable that does not store the object, on which the
method is invoked, nor an actual parameter, is always given the type unusable .
This means that the content of such a local variable cannot be used before the
program explicitly assigns something to the local variable. This means that the
content of such a local variable cannot be used before the program explicitly
assigns something to the local variable. We use unusablen to denote the list
[unusable, · · · , unusable] consisting of n unusable .

In the case of an <init> method, the local variable 0 stores the object being
initialized. The static type for the local variable 0 and the initialization tag
depend on whether the class CNAM containing the method code is Object or
not. If CNAM is not Object, then the initialization tag is notInitd and the static
type for the local variable 0 is init(CNAM ); The initialization tag notInitd means
that an instance initialization method needs to be called exactly once within the
current method code in any case, since, as we will see, rule (T-14) will change the
initialization tag into Initd and rule (T-20) checks whether the initialization tag
is really Initd . Note that if CNAM is Object, the object being initialized cannot,
and need not, be initialized by another <init> within the current <init>.

Another point here is that the class CNAM is chosen to be the one containing
the <init> method. In fact, rule (T-14) will assure that CNAM is either the
original class of the object being initialized, or a superclass of it. Thus it is safe
to use CNAM at the place of the original class

The rule contains the component mod0, which will be defined in Section 10.6.
The cases for an instance method and a static method are straightforward.

Not much explanation for these rules is necessary.
The typing rules for method invocation instructions are given in Figure 14

and 15. Although these method invocation instructions are based on quite dif-
ferent mechanisms, they all require that the operand stack at the program point
of the instruction contain the correct number of arguments with certain types.
In order to express this, each of the typing rules contains constraints of the
following forms:

(· · · , (TYn)void, · · ·) = a resolution function(IND1, IND2)
Φ(P ) = Π [· · · , ST + · · ·+TYSn, · · ·]
invoConvert(TYS i, TYi) (i = 1, . . . , n)

We consider rule (T-14) for invokespecial in Figure 14 in detail. The rule
looks quite complicated, since the CC-part of the rule basically gives three cases.
The program point type at the program point of a invokespecial instruction
must satisfy one of these cases.

The first case is when an <init> method is invoked on an object, on which
no <init> method has been invoked before. In this case, the operand stack en-
try containing the object to be initialized has the static type unin(P ′, CNAM ).
Following the OJVMS, the rule requires that the class containing the <init>
method must be CNAM , and that after the instruction, all occurrences of
unin(P ′, CNAM ) are changed into CNAM , indicating that the object has been
initialized.
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Mth(P ) = invokespecial IND1 IND2

(MNAM ,CNAM , (TYn)NOTNULL VOID, , )=mResolSp(IND1, IND2)

Φ(P ) = Π [LT ,ST + REFS RAW +TYSn, IT , M ]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
MNAM = < init > ⇒

( ( ( REFS RAW = unin(P ′,CNAM ) ∧
LT ′ = LT [CNAM/REFS RAW ] ∧
ST ′ = ST [CNAM/REFS RAW ] ∧
IT ′ = IT ∧
M ′ = Mod1 ) ∨

( REFS RAW = init(CNAM ′) ∧
IT = notInitd ∧
(CNAM ′ = CNAM ∨ diSubcls(CNAM ′,CNAM )) ∧
LT ′ = LT [CNAM/REFS RAW ] ∧
ST ′ = ST [CNAM/REFS RAW ] ∧
IT ′ = Initd ∧
M ′ = Mod2 ) ) ∧

NOTNULL VOID = void )
MNAM 6= < init > ⇒

( widRefConvert(REFS RAW ,CNAM ) ∧
LT ′ = LT ∧
( NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL ) ∧
( NOTNULL VOID = void ⇒ ST ′ = ST ) ∧
IT ′ = IT ∧
M ′ = M )

Φ(P + 3) w Π [LT ′,ST ′, IT ′, M ′]
(T-14)

Figure 14: The typing rule for invokespecial

Note that the rule changes the component M into Mod1 in the above case.
The definition of Mod1 will be given in Section 10.7.

The second case is when the instruction invokes an <init> method on an
object that is being initialized within the enclosing <init> method, i.e. when the
initialization tag IT is notInitd and the operand stack entry for the object has
the static type init(CNAM ′). In this case init(CNAM ′) must be introduced by
rule (T-13). As mentioned in the discussion for that rule, the enclosing method
must be in the class CNAM ′. The constraint

(CNAM ′ = CNAM ) ∨ diSubcls(CNAM ′, CNAM )

means that the invoked <init>method is either in the same class as the enclosing
method or in the immediate superclass of it. Analogous to the first case above,
the instruction changes all occurrences of init(CNAM ′) into CNAM , indicating
that after the instruction (but still inside the enclosing <init> method) the
object being initialized is regarded as having been initialized. In addition, the
constraint IT ′ = Initd in the rule expresses the change of the initialization tag



294 Zhenyu Qian

into Initd . Rule (T-20) for return will use the tag to determine whether an
<init> method really invokes another <init> method or not.

The constraint NOTNULL VOID = void assures that the <init> method
has no return type.

Note that the rule changes the component M into Mod2 in the second case.
The definition of Mod2 will be given in Section 10.7.

The third case concerns the invocation of a usual instance method (e.g. via
super). In this case, the constraint widRefConvert(REFS RAW , CNAM ) as-
sures that the class CNAM is a superclass of all possible classes of the object,
on which the method is invoked. In addition, the constraint implicitly implies
that REFS RAW = REFS holds. Now the method may have a return type or
not. the operand stack type ST ′ after the instruction is either ST +NOTNULL
or ST .

Mth(P ) = invokevirtual IND1 IND2

(MNAM ,CNAM , (TYn)NOTNULL VOID, , ) = mResolV (IND1, IND2)

Φ(P ) = Π [ST + REFS+TYSn]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
widRefConvert(REFS, CNAM )
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST
NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL

Φ(P + 3) w Π [ST ′]
(T-15)

Mth(P ) = invokeinterface IND1 IND2 BYT1 BYT2

BYT1 > 0
BYT2 = 0

(MNAM ,INAM ,(TYBYT1−1)NOTNULL VOID)=mResolI (IND1,IND2)

Φ(P ) = Π [ST + REFS+TYSBYT1−1]
invoConvert(TYS i, TYi) (i = 1, . . . ,BYT1 − 1)
widRefConvert(REFS, INAM )
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST
NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL

Φ(P + 5) w Π [ST ′]
(T-16)

Mth(P ) = invokestatic IND1 IND2

(MNAM , , (TYn)NOTNULL VOID, , ) = mResolSt(IND1, IND2)

Φ(P ) = Π [ST+TYSn]
invoConvert(TYS i, TYi) (i = 1, . . . , n)
MNAM 6= < init >
NOTNULL VOID = void ⇒ ST ′ = ST
NOTNULL VOID = NOTNULL ⇒ ST ′ = ST + NOTNULL

Φ(P + 3) w Π [ST ′]
(T-17)

Figure 15: The typing rules for other method invocation instructions
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Rules (T-15), (T-16) and (T-17) are for invokevirtual, invokeinterface
and invokestatic. They are very similar to the third case of rule (T-14).
One difference is that they use the resolution functions mResolV , mResolI and
mResolSt , respectively, instead of mResolSp. In addition, rule (T-16) needs to
deal with the number BYT1 and BYT2 explicitly occurring in the
invokeinterface instruction. The invokestatic does not need an object, on
which the method is invoked.

Prg(P ) = areturn or ireturn

Ξ[P,J + [(L′, S′, P ′)], L, S+WRD ] =⇒ Ξ[P ′, J, L′, S′+WRD ]
(S-17),(S-18)

Prg(P ) = return

Ξ[P,J + [(L′, S′, P ′)],L, S] =⇒ Ξ[P ′, J, L′, S′]
(S-19)

Figure 16: The state transitions for return instructions

The state transition rules for return instructions are given in Figure 16. The
state transition uses the return address P ′ stored in the current Java stack.

Mth(P ) = areturn

Φ(P ) = Π [ST + REFS]

( , , (TYn)REF, ) = mInfo(P )
widRefConvert(REFS, REF )

(T-18)

Mth(P ) = ireturn

Φ(P ) = Π [ST + int]

( , , (TYn)int, ) = mInfo(P )
(T-19)

Mth(P ) = return

( ,MNAM , (TYn)void, ) = mInfo(P )
MNAM = < init > ⇒ Φ(P ) = Π [Initd]

(T-20)

Figure 17: The typing rules for return instructions

The typing rules for return instructions are given in Figure 17. The rules need
no additional explanations. The only thing that is worth mentioning is that a
return instruction may be used to terminate an <init> method. In this case,
the rule checks whether the initialization tag is Initd to assure that the <init>
method has indeed invoked another <init> method. Note that if the <init>
method is in Object, then the tag has been set into Initd at the beginning of the
method.
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Note that in general, there may exist some uninitialized objects in the operand
stack or local variables when a method terminates. However, there is no possi-
bility to pass an uninitialized object to the invoking method (see Theorem 2).

10.6 Implementing Finally-Clauses

According to the OJVMS, jsr and ret instructions are control transfer in-
structions typically used to implement finally clauses in Java. Following the
OJVMS, we call the program point, to which a jsr instruction jumps, a jsr
target, and the code starting from a jsr target a subroutine. If no ambiguity is
possible, we also call a jsr target a subroutine. Roughly speaking, a jsr instruc-
tion calls a subroutine and a ret instruction returns from a subroutine. But,
formally a subroutine need not have a ret instruction. We use sb to range over
all jsr targets (i.e. subroutines) and write SB as a variable for them.

Prg(P ) = jsr BYT1 BYT2
P = ( ,OFF )

Ξ[P,S] =⇒ Ξ[P + offset(BYT1,BYT2), S + OFF ]
(S-20)

Prg(P ) = ret IND
P = (COD , )

Ξ[P,L] =⇒ Ξ[(COD , L(IND) + 3), L]
(S-21)

Figure 18: The state transitions for jsr and ret

The state transitions for jsr and ret are given in Figure 18. Rule (S-20)
says that a jsr instruction pushes the byte offset OFF of the current pro-
gram point onto the operand stack and transfers control to the jsr target
P + offset(BYT 1, BYT2).

Rule (S-21) is for ret. It uses a byte offset in a local variable to compute the
program point following the jsr as the returning program point.

Typing jsr and ret is complex, since the OJVMS requires the following
features:

– Not every path in a subroutine needs to reach a ret instruction. A subroutine
implicitly terminates whenever the current method terminates.

– Subroutines may be nested: a subroutine can call another subroutine. (This
feature is useful in implementing nested finally clauses.)

– In nested subroutines, an inner subroutine may contain a ret instruction
that directly returns to an arbitrary outer subroutine.

– During the execution, a returning program point can never be used more
than once by a ret instruction. Furthermore, at the outer program point, to
which a ret instruction in an inner subroutine directly returns, no returning
program point for a subroutine between the inner and the outer subroutine
should still be able to be used as a returning program point.
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Technically, the mechanism should be more complex, since the OJVMS still
takes three additional situations into account. First, the implementation of a
finally clause often needs to be reachable from different execution paths. Sec-
ond, different execution paths often have to use a common local variable to
hold their own contents that are incompatible to each other. Third, the content
stored in a local variable in an execution path before the execution of a finally
clause may need to be used after the execution of the finally clause. As an
example for all these three situations, we can consider the implementation of
a try-catch-finally clause. More concretely, the finally clause needs to be
reachable from the end of the try clause and from the beginning of the catch
clause, the try clause needs to store a return integer value in a local variable
for use after the execution of the finally clause, but the catch clause stores an
exception in the same local variable for use after the execution of the finally
clause as well.

The problem is that since a common local variable may hold incompatible
contents, as described in the second situation above, the usual typing rules in our
formal specification would force the local variable in and, in particular, after the
finally clause to have the type unusable. Therefore a use of the local variable
in an individual execution path after the finally clause, as described in the
third situation, would be impossible.

To solve the problem, the OJVMS suggests to change the usual typing process
such that in an execution path, if a local variable is not modified or accessed
in a finally clause, then its type after the execution of the finally clause
should be the same as before the execution of the finally clause. Thus we need
a mechanism to record the local variables that are modified or accessed within a
finally clause. The component mod in a program point type has been reserved
for this purpose. Now we formally define what a component mod is:

– First, we build a set grf of pairs of jsr targets, representing a directed acyclic
graph.

– Then we build a set csb of jsr targets.
– Finally, a component mod is a mapping such that Dom(mod) = grf ∪ csb,

mod(sb, sb′) for (sb, sb′) ∈ grf and mod(sb) for sb ∈ csb are sets of indices
of local variables.

Intuitively, a pair (sb, sb′) in a grf should denote a call of the subroutine sb′

inside the subroutine sb, and grf should contain nested non-recursive subroutine
calls that may reach the current program point. A set grf need not be a tree,
since more than one subroutine may contain a call of the same subroutine and
one subroutine may contain calls of more than one subroutine. A set csb should
contain current subroutines, i.e. those subroutines that contain the current pro-
gram point. The set mod(sb, sb′) for (sb, sb′) ∈ grf should contain the indices of
all local variables that may be modified or accessed in an execution path from
sb to sb′, and mod(sb) for sb ∈ csb those from sb to the current address.
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We define the following notations:

nod(mod) := {sb | (sb, ) or ( , sb) or sb ∈ Dom(mod )}
grf (mod) := {(sb, sb′) | (sb, sb′) ∈ Dom(mod )}
csb(mod) := {sb | sb ∈ Dom(mod)}

We define that mod w mod ′ holds if and only if grf (mod) ⊇ grf (mod ′)
and csb(mod) ⊇ csb(mod ′) hold, mod(sb, sb′) ⊇ mod ′(sb, sb′) holds for each
(sb, sb′) ∈ grf (mod ′) and mod(sb) ⊇ mod ′(sb) holds for each sb ∈ csb(mod ′).

Mth(P ) = jsr BYT1 BYT2

Φ(P ) = Π [ST , M ]
SB = P + offset(BYT1,BYT2)
SB 6∈ nod(M)

Φ(SB) w Π [ST + sbr(SB),
M|grf (M) ∪ {(sb, SB) 7→ M(sb) | sb ∈ csb(M)} ∪ {SB 7→ ∅}]

(T-21)

Mth(P ) = ret IND

Φ(P ) = Π [LT ]
LT (IND) = sbr( )
∀P ′∀IND ′∀Π ′∀LT ′.( (Mth(P ′)=ret IND′ ∧ P ′ 6=P ∧ Φ(P ′)=Π ′[LT ′])

⇒ LT (IND) 6=LT ′(IND ′) )
(T-22)

Mth(P ) = ret IND
Φ(P ) = (LT ,ST , IT , M)
Mth(P ′) = jsr BYT1 BYT2
SB = P ′+offset(BYT1,BYT2)
LT (IND) = sbr(SB)
Φ(P ′) = Π ′[LT ′,ST ′, M ′]

Φ(P ′ + 3) w (LT ′[j 7→ invld(LT (j), subrs(SB, M)) | j ∈ mlvs(SB , M)],
invld(ST , subrs(SB, M)), IT ,
reachMod(M, {sb | (sb,SB) ∈ Dom(M)}) ∪
{sb 7→ M ′(sb, SB) ∪ mlvs(SB, M) | (sb,SB) ∈ Dom(M)})

(T-23)

Figure 19: The typing rules for ret and jsr

The typing rules for jsr and ret are given in Figure 19. We first consider
rule (T-21). The rule defines only one constraint at the program point P of a
jsr instruction, namely SB 6∈ nod(M), which assures that the called subroutine
SB is not called recursively. At the beginning of the subroutine SB , the new M
records the addition of the edges (sb, SB) representing the calls of SB inside all
old current subroutines in csb(M), and elimination of the old current subroutines
in csb(M) and addition of the new current subroutine SB , where SB 7→ ∅ denotes
that no local variables have been modified or accessed since the beginning of the
new current subroutine SB .
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Rule (T-22) is for ret. The constraint LT (IND) = sbr( ) assures that the
local variable IND holds a byte offset. The constraint ∀P ′∀IND ′∀Π ′∀LT ′. · · ·
assures that the method Mth has at most one ret instruction for the same
subroutine. This is not a serious restriction, since whenever two ret instructions
are needed, one can always write the first ret and at the place of the second ret
a goto instruction to the first ret.

Rule (T-23) introduces constraints for the program type at the returning
program point P ′ + 3, to which a ret at P returns, where the calling jsr of the
subroutine is at P ′.

The formulation of rule (T-23) uses several new auxiliary functions.
The first auxiliary function computes the set of the indices of all local vari-

ables that may be modified or accessed in an execution path from a given pro-
gram point to the current program point. For the component mod in a program
point type and a subroutine sb ∈ nod(mod), we define

mlvs(sb, mod) :=




⋃
(sb,sb′)∈grf (mod)(mod(sb, sb′) ∪ mlvs(sb′, mod))

if sb 6∈ csb(mod)
mod(sb) if sb ∈ csb(mod)

The term mlvs(SB , M) in rule (T-23) is a set containing the indices of all local
variable that may be modified or accessed from SB to P .

The second auxiliary function computes all subroutines called from the call
of a given outer subroutine to the current subroutine. For the component mod
in a program point type and a subroutine sb ∈ nod(mod), we define

subrs(sb, mod) :=
{⋃

(sb,sb′)∈grf (mod){sb}∪subrs(sb′, mod) if sb 6∈ csb(mod)
{sb} if sb ∈ csb(mod)

In order to change all subroutine types of those subroutines in a given set
of subroutines E into invalid subroutine types, we define the following function
invld(any, E):

invld(any, E) :=
{

invldsbr if any = sbr(sb) and sb ∈ E
any otherwise

Note that any in the second line can be an arbitrary static type.
For convenience, we lift the function invld to operand stack types:

invld([any0, · · · , anym], E) := [invld(any0, E), · · · , invld(anym, E)]

In order to compute the part of a mod , which is reachable to a subroutine in
a given set of subroutines E, we define the following function reachMod(mod , E):

reachMod(mod , E) :=


{(sb, sb′) 7→ mod(sb, sb′) | (sb, sb′) ∈ Dom(mod ), sb′ ∈ E}
∪ reachMod(mod , {sb | (sb, sb′) ∈ Dom(mod ), sb′ ∈ E}) if E 6= ∅

∅ if E = ∅
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In rule (T-23), the applicability conditions Φ(P ) = (LT , · · ·), Mth(P ′) =
jsr BYT 1 BYT2, SB = P ′ + offset(BYT1, BYT2) and LT (IND) = sbr(SB)
assure that the ret at P causes the subroutine SB to return to the next program
point P ′ + 3 of the calling jsr at P ′. Note that the constraint ∀P ′∀IND ′∀Π ′

∀LT ′ · · · in rule (T-22) enforces that there exists at most one P for a jsr at P ′

in rule (T-23).
Rule (T-23) expresses the following relationship between the program types

at P , P ′ and P ′ + 3, where the jsr at P ′ calls a subroutine SB , the ret at P
returns from the subroutine SB to P ′ + 3:

– If a local variable is definitely not modified or accessed from SB to P , then
its static type at P ′ +3 covers that at P ′; otherwise, i.e. if the local variable
may be modified or accessed from SB to P , then its static type at P ′ + 3
covers that at P , except that if its static type at P is a subroutine type for
a subroutine possibly called from SB to P , then its static type at P ′ + 3
covers invldsbr .

– The operand stack type at P ′+3 covers that at P , except that if an operand
stack entry at P has a subroutine type for a subroutine called from SB to
P , then the static type of the entry at P ′ + 3 covers invldsbr .

– The initialization tag at P ′ + 3 covers that at P .
– The subroutines called until P ′ + 3 include all those called until P but not

from SB to P . The local variables possibly modified or accessed from the
call of a current subroutine to P ′ +3 include those from the call of the same
current subroutine to SB plus all those possibly modified or accessed from
SB to P .

A final tricky point is that although the ret instruction in rule (T-23) accesses
all those local variables that have a subroutine type for a subroutine called from
P ′ to P , the typing rule need not treat this explicitly. The reason is that the
indices of these variables are all contained in the set mlvs(SB , M) in rule (T-23).
In fact, if a local variable holds a program point of a jsr instruction between
SB and P , then the program point must be stored in the local variable by an
astore instruction between SB and P . By the typing rule for astore (see the
discussion below) and the definition of mlvs, the index of the local variable must
be included in the set mlvs(SB , M).

10.7 On the Instructions that Modify or Access Local Variables

Now it is time to give the precise definitions of the term Mod ′ in Figure 4, the
term mod0 in Figure 13 and the terms Mod1 and Mod2 in 14.

We first consider the typing rules in Figure 4. Given the notations in Figure 4,
we formally define

Mod ′ := M|grf (M) ∪ {sb 7→ M(sb) ∪ {IND} | sb ∈ csb(M)}

The typing rule in Figure 13 introduces the program point type for the start-
ing program point of a method. We define mod0 := ∅.
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Now we consider rule (T-14) for invokespecial in Figure 14. Since the first
two cases in rule (T-14) consider the initialization of a raw object, we regard all
those local variables whose contents reference the raw object as being modified.
Given the notations in Figure 14, we formally define

Mod1 := M|grf (M) ∪
{sb 7→ M(sb)∪{i |unin(P ′, CNAM )=LT (i)} | sb ∈ csb(M)}

Mod2 := M|grf (M) ∪ {sb 7→ M(sb)∪{i | init(CNAM )=LT (i)} | sb ∈ csb(M)}

Note that the third case in rule (T-14) does not deal with initialization of a raw
object, thus does not cause the extension of the M .

11 Examples

In this section we use real methods to illustrate how to check whether a given
method has a given program type.

For notational simplicity, some instructions are abbreviated as follows:

– Each instruction
opcode byt1 byt2

at the program point pp with opcode ∈ {if acmeq, if icmeq, goto, jsr} and
pp = ( , off ) is abbreviated as

opcode n

with n = off + (byt1 ∗ (28)) + byt2.
– Each instruction

opcode ind1 ind2

with opcode∈{getfield,putfield,new,invokespecial,invokevirtual,
invokeinterface, invokestatic} is abbreviated as

opcode #n

with n = (ind1 ∗ (28)) + ind2. The instruction

invokeinterfaceind1 ind2 byt 0

is abbreviated as invokeinterface #n with n = (ind1 ∗ (28)) + ind2.

Figure 20 gives the type checking for the first method. A row in Figure 20
contains a program point, i.e. an instruction, in the given method, the program
point type in the given program type at the program point, the typing rule
applied at the program point and all possible successor program points with
respect to the rule. Since the method does not deal with any subroutines or
instance initializations, we consider only the local variable table type and the
operand stack type in a program point type.
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We assume that the declaration of the method void m(J1,J2) in Figure 20
is contained in a class C. Furthermore, we assume that J1 and J2 are two
interfaces, and the entry at the index #17 in the constant pool references a
method in a superinterface of J1 and J2, which takes no parameters and yields
no result. At the program point 13, the static type of the top entry in the
operand stack needs to be represented as a set, since the top entry may be the
first or second actual parameter and the interfaces J1 and J2 need not have one
smallest common superinterface. Rule (T-16) is applied at the program point
13, where the constraint widRefConvert(REFS, INAM ) in the rule assures that
the invoked method must exist in a superinterface of J1 and J2.

The method LT ST Rule Successors

Method void m(J1,J2) (T-13) 0

0 aconst_null [C, J1, J2] [] (T-5) 1

1 aload 1 [C, J1, J2] [null] (T-1) 3

3 if_acmpeq 11 [C, J1, J2] [null, J1] (T-10) 6, 11
6 aload 1 [C, J1, J2] [] (T-1) 8

8 goto 13 [C, J1, J2] [J1] (T-12) 13

11 aload 2 [C, J1, J2] [] (T-1) 13

13 invokeinterface #17 [C, J1, J2] [{J1, J2}] (T-16) 18

18 return [C, J1, J2] [] (T-20)

Figure 20: A method containing an interface method invocation

The second example in Figure 21 shows the use of subroutine types. The
method contains two jsr instructions at 0 and 9 calling the subroutine 13. The
subroutine 13 contains a jsr at 15 calling the (inner) subroutine 18, and the
subroutine 18 directly returns to the corresponding calling jsr of the (outer)
subroutine 13, i.e. to 3 or 12. After the return, i.e. at 3 and 12, the subroutine
types sbr(13) and sbr(18) are changed into invldsbr . The local variable 1 has
different static types at the two calling jsr, i.e. at 0 and 9. Since the local
variable 1 is not modified or accessed in the subroutine 13, after the return of
the subroutine, i.e. at 3 and 12, the static type of the local variable 1 is the same
as that at the calling jsr, i.e. at 0 and 9.

12 Static Well-Typedness vs. Runtime Properties

The OJVMS requires that the type-correctness of nearly all runtime uses of data
is checked statically. In our formal specification, which considers a subset of the
JVM, we can formally prove that if a program is statically well-typed, then all
runtime data to be used will definitely have correct types. For doing this, we
first need to define precisely what are the types of runtime data.
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The method LT ST Rule Successors

Method void m() (T-13) 0

0 jsr 13 [C, unusable, unusable] [] (T-21) 13

3 astore 2 [C, unusable, invldsbr] [invldsbr] (T-3) 5

5 aload 0 [C, unusable, invldsbr] [] (T-1) 7

7 astore 1 [C, unusable, invldsbr] [C] (T-3) 9

9 jsr 13 [C, C, invldsbr] [] (T-21) 13

12 return [C, C, invldsbr] [invldsbr] (T-20)
13 astore 2 [C, unusable, unusable] [sbr(13)] (T-3) 15

15 jsr 18 [C, unusable, sbr(13)] [] (T-21) 18

18 ret 2 [C, unusable, sbr(13)] [sbr(18)] (T-22)
(T-23) 3

(T-23) 6

Figure 21: A method containing subroutines

12.1 Tags of Runtime Data

In the previous sections we have often informally mentioned the types of runtime
data. Two examples are as follows:

– In Section 10.2 we mentioned that a new instruction creates an object. This
informally implies that the created datum is a reference of an object.

– In Section 10.6 we mentioned that a jsr instruction pushes a byte offset
onto the operand stack.

However, the problem is that both an object reference and a byte offset are
one-word wide data in our constraint domain. In other words, the type of a
datum cannot be determined by the datum itself. Thus we need an additional
mechanism to explicitly determine the type of a datum.

The mechanism can be built in two steps: first, we define the possible types
of runtime data; second, we extend the state transition relation to define the
types of the contents in the local variables and the operand stack.

A relatively simple set of possible types of runtime data, called tags, is defined
as follows:

tag ::= cnam | null | int | addr | undefined

Intuitively, the tag cnam should be the tag of the reference of each object
of the class cnam , null that of the special reference null, and int that of each
element of the primitive type int. As mentioned before, we need to deal with
the byte offset of a jsr. Thus we introduce the tag addr for all byte offsets. The
tag undefined indicates that the content of a local variable or an operand stack
entry has not been explicitly defined by an instruction in the execution so far.
We use tag to range over all tags.

Note that the above set of tags is a relatively simple one, since they do not
contain anything to express that an object is a raw object or an offset is of a
special subroutine type. In fact, there are no problems to do that, except that
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the definition of the types of the contents in the local variables and the operand
stack would become more complicated. We consider the above simple set due to
space limits in this chapter.

To record the type of the content of each local variable and each operand
entry, lists of tags of the form [tag0, · · · , tagn] with n ≥ −1 are introduced. We
define [tag0, · · · , tagn](k) := tagk if 0 ≤ k ≤ n, [tag0, · · · , tagn](k) := failure
otherwise. A list of the above form is called a local variable state tag if it consists
of the types of the contents in all local variables; it is called an operand stack
state tag if it consists of the types of the contents of an operand stack.

For readability, we use lvstag to range over all local variable state tags, and
stktag over all operand stack state tags. For notational simplicity, we write LG
as a variable for the sort lvstag , and SG for the sort stktag .

A local variable state tag and an operand stack state tag do not record the
type of an object that is held by a field of another object but not directly by
a local variable or an operand stack entry. Thus we still need to introduce a
class record as a mapping {objn 7→ cnamn}. A class record as above maps all
elements other than obj n to a special value failure. We use classof to range over
all concrete class records and C as a variable for the sort classof .

In order to record the local variable state tags and the operand stack state
tags for the methods stored in a Java stack, we define a Java stack tag as a list
consisting of entries of the form (lvstag, stktag ). We use jstktag to range over all
Java stack tags and use JG as a variable of the sort jstktag.

We define a program state tag as a tuple (jstktag, classof , lvstag, stktag) and
in the rest of the chapter still use statag to range over all program state tags.

Finally, we define that an extended program state is a pair (stat , statag), where
stat = (pp, jstk , lvs, stk , hp), statag = (jstktag, classof , lvstag, stktag), size(jstk)
= size(jstktag), size(lvs) = size(lvstag) and size(stk) = size(stktag) hold.

Now we extend the state transition rules in Section 10. Let us call an extended
state transition rule an extended rule and an original state transition rule an
extended rule in this section.

In order to ensure that the extended rule relation does not affect the original
state transition relation, we require that if an original rule in Section 10 is of the
form

Premises
Stat =⇒ Stat ′

then the extended rule obtained from it is always of the form

Premises
Stat , Statag =⇒ Stat ′, Statag ′

satisfying that

– FV(Statag ′) ⊆ FV(Statag)
– for every two program states stat and stat ′ and every extended program state

(stat , statag), if there is a substitution σ such that Dom(σ) = FV(Premises)
cupFV(Stat =⇒ Stat ′), stat = σ(Stat), stat ′ = σ(Stat ′) and σ(Premises)
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hold, then there is a substitution σ′ such that Dom(σ′) = Dom(σ)∪
FV(Statag) and σ′(Statag) = statag hold, and (stat ′, σ′(Statag ′)) is an ex-
tended program state.

For notational simplicity, we always omit the Premises-, Stat - and Stat ′-parts
in the definition of an extended rule in this section. Note that the Statag- and
Statag ′-parts may contain variables occurring in Stat - and Stat ′-parts.

In many extended rules, the Java stack tags are not changed and the local
variable state tags (or the operand stack state tags) are changed in a completely
analogous way as the local variable states (or the operand stack states, respec-
tively). The extended rules for aload and new are two such extended rules. We
give their definitions in Figure 22 and omit the explicit presentation of other
such extended rules due to space constraints.

(JG,C , LG ,SG) =⇒ (JG ,C , LG ,SG + LG(IND)]
(S’-1)

(JG ,C ,LG ,SG) =⇒ (JG, C [OBJ 7→ CNAM ],LG ,SG + CNAM ]
(S’-8)

Figure 22: The extended rules for aload and new

Figure 23 contains the extended rule for getfield. The rule is slightly tricky,
since the way to get the tag of the loaded content depends on whether the loaded
content is an object or not. If it is an object, then the tag should be obtained
from the class record classof in the program state. If it is a value of a primitive
type, then the tag should the primitive type. (In this chapter the only primitive
type is the type int.) To model this, we define the following auxiliary function,
which yields the tag of the content held by the field fnam of the type notnull in
the object obj .

seltag(fnam, notnull , obj , hp, classof ) :=


classof (hp(obj )(fnam)) if notnull is a cnam
int if notnull is int
failure otherwise

(JG ,C , LG ,SG)
=⇒ (JG ,C , LG, SG + seltag(FNAM ,NOTNULL,OBJ , H,C ))

(S’-6)

Figure 23: The extended rule for getfield

Rules (S-13), (S-14) and (S-15) for method invocations change the Java stack
states. Thus their extended rules change the Java stack tags. Since these exten-
sions are very similar, we present only one of them. The situation is similar
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for rules (S-17) and (S-19). Thus we present only one of the two extended
rules. Figure 24 these two extended rules, where undefined k stands for a list
[undefined , · · · , undefined ] consisting of k times undefined .

(JG ,C , LG ,SG + TAG0+TAGn)

=⇒ (JG + (LG, SG),C , undefinedNLV [i 7→ TAGi | 0 ≤ i ≤ n], []]

(S’-13)

(JG + (LG ′,SG ′),C , LG ,SG + TAG
=⇒ (JG + (LG ′,SG′),C ,LG ′,SG′ + TAG ]

(S’-17)

Figure 24: The extended rules for invokespecial and areturn

(JG,C , LG ,SG) =⇒ (JG ,C , LG ,SG + addr)
(S’-20)

(JG,C , LG ,SG) =⇒ (JG ,C , LG ,SG)
(S’-21)

Figure 25: The extended rules for jsr and ret

Figure 25 contains the extended rules for jsr and ret. Note that in rule (S’-
21), the program state tag does not change at all. The intuition is that a ret
may change some the validity of some byte offsets. However, since we consider
only a simple tag addr for byte offsets, this intuition cannot be reflected. (As
mentioned, the simple tag addr could be replaced by a family of tags indexed
by all subroutines. But we do not consider them here.)

12.2 The Concepts for Runtime Type Safety

To model the correctness of a tag tag with respect to a static type any , we
formally define a relation correct by:

correct(null, refs)
correct(cnam , refs) if widRefConvert(cnam , refs)
correct(cnam , unin( , cnam))
correct(cnam , init(cnam ′)) if widRefConvert(cnam , cnam ′)
correct(int, int)
correct(addr , sbr( ))
correct(undefined , unusable)
correct(tag , any) if correct(tag , any′) and any w any ′

We also define that correct(lvstag, lvsty) holds if and only if size(lvstag) =
size(lvsty) and correct(lvstag(i), lvsty(i)) for all i = 0, . . . , size(lvstag), and that
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correct(stktag , stkty) holds if and only if size(stktag) = size(stkty) and
correct(stktag(i), stkty(i)) for all i = 0, . . . , size(stktag).

For a heap hp and a class record classof , we define that correct(hp, classof )
holds if and only if the following conditions are true:

1. Dom(hp) ⊆ Dom(classof ).
2. For each obj 7→ rec ∈ hp, if (fnam, notnull) ∈ allFields(classof (obj )), then

fnam ∈ Dom(rec).
3. For each obj 7→ rec ∈ hp and (fnam, notnull) ∈ allFields(classof (obj )), if

notnull = ref , then rec(fnam) ∈ Dom(classof ).
4. For each obj 7→ rec ∈ hp and (fnam, notnull) ∈ allFields(classof (obj )), if

notnull = ref , then widRefConvert(classof (rec(fnam)), notnull ).

Intuitively, condition 1 says that classof can determine the class of each object
in hp. Condition 2 assures that an object in hp always contains all fields required
by its class. Condition 3 assures that if an object in hp contains a field whose
type is a class or an interface, then the field holds an object, whose class can be
determined by classof . Condition 4 says that the class of the object held by the
field in condition 3 is a subtype of the class or interface of the field.

Note that if notnull 6= ref , i.e. if notnull = int, then conditions 3 and 4 have
no effects. Thus one might wonder why we do not define a condition constraining
rec(fnam). The intuition is that if the runtime type of a datum is a primitive
type, then the runtime type is always the static type. Thus for (fnam, int) ∈
allFields(classof (obj )) and obj 7→ rec ∈ hp, the content rec(fnam)) is always an
integer of the type int. Hence such a condition is useless.

12.3 Runtime Properties

From now on, we assume that the program Prg has a program type prgty.
Formally we define an arbitrary execution of Prg as

(stat1, statag1) =⇒ (stat2, statag2) =⇒ · · ·

where each (stat i, statagi) for i = 1, 2, 3, · · ·, are extended program states, stat1

is of the form (pp1, [], · · ·) and Prg(pp1) is of the form invokestatic · · ·.
We use (stat1, statag1) =⇒∗ (stath, statagh) with h ≥ 1 to denote a zero or

more step execution

(stat1, statag1) =⇒ · · · =⇒ (stath, statagh)

For the rest of the chapter, we assume that

– stat i = (ppi, jstki, lvsi, stk i, hpi) for all i = 1, 2, 3, . . .,
– statag i = (jstktag i, classof i, lvstagi, stktagi) for all i = 1, 2, 3, . . ., and
– prgty(ppi) = pttyppi

= (lvstyppi
, stktyppi

, intagppi
, modppi ) for all

i = 1, 2, 3, . . .. Note that i 6= j does not imply that ppi 6= ppj.
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Now we give some lemmas and theorems. Proofs are omitted due to space
limits.

The first theorem states the runtime type safety.

Theorem 1. In the execution (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · ·, if
correct(lvstag1, lvstypp1

), correct(stktag1, stktypp1
) and correct(hp1) hold, then

correct(lvstag i, lvstyppi
), correct(stktag i, stktyppi

) and correct(hp i) hold for all
i = 1, 2, · · ·.

The proof follows from an induction on the length of the execution using the
extended rules and typing rules.

A practical consequence of Theorem 1 is as follows:

Corollary 1. An offset cannot be manipulated by an instruction described in
our formal specification except:

1. It can be created and stored onto the operand stack by a jsr.
2. It can be manipulated in the operand stack by the stack manipulation in-

struction dup.
3. It can be stored from the operand stack in a local variable by an astore.
4. In a local variable, it can be used to compute the return address by a ret.

Now let us consider raw objects and instance initialization methods. The fol-
lowing theorems can either be proved using a set of tags for runtime data that
is more refined then the current one, or by a careful analysis of all possible exe-
cutions. Note that Theorems 2 and 3 are not completely trivial, since a method
may pass values via the heap.

Theorem 2. Assume that a method invokes another method. Then the invoked
method can never pass a raw object back to the invoking method.

Theorem 3. Assume that a method invokes another method that is not an
<init>. Then the invoking method can never pass a raw object to the invoked
method.

It is very easy to show how an instance initialization method invokes another
instance initialization method.

Theorem 4. If an instance initialization method is not in class Object, then a
fragment of an execution path from the starting address to a return instruction
of the method always includes exactly one invocation of an instance initialization
method of the same class or the immediate superclass on the object being initial-
ized. If the instance initialization method is in class Object, then the fragment
includes no invocations of an instance initialization method on the object being
initialized.

Now we can state when the static type of a local variable or an operand stack
entry ensures that it contains a raw object.
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Theorem 5. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · · is an
execution and X ∈ {lvsh, stkh} and XT ∈ {lvstyh, stktyh} with h ≥ 1 are such
that X is lvsh if and only if XT is lvstyh (and thus X is stkh if and only if XT
is stktyh).

– If XT (k) = unin(pp, cnam) holds for some k, pp and cnam, then X (k)
contains a reference to an uninitialized object of the class cnam created by a
new at pp.

– If XT (k) = init(cnam) holds for some k and cnam, then X (k) contains a
reference to an object of cnam that is being initialized inside an <init> and
has not been initialized by another <init>.

The following lemma shows that it is impossible for two different local vari-
ables/operand stack entries at a program point to have the same static type
unin(pp, cnam) for some pp and cnam but hold references to different unini-
tialized objects. In fact, the lemma states the correctness of the typing rule
for invokespecial on an instance initialization method, i.e., that if an object
in a local variable/operand stack entry with the static type unin(pp, cnam) is
initialized, then all occurrences of unin(pc, cnam) can be replaced by cnam .

Lemma 1. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · · is an
execution and X ,Y ∈ {lvsh, stkh} and XT ,YT ∈ {lvstyh, stktyh} with h ≥ 1
such that X is lvsh if and only if XT is lvstyh, and Y is lvsh if and only if YT
is lvstyh. Then the following conditions cannot hold at the same time for the
indices k and k′:

– XT (k) = YT (k′) = unin(pp, cnam) holds for certain pp and cnam.
– X (k) and Y(k′) contain references to different uninitialized objects created

by the same new at pp.

Now we know that if a memory location has a class as a static type, then it
always holds initialized object or null.

Theorem 6. Assume that (stat1, statag1) =⇒ (stat2, statag2) =⇒ · · · is an
execution and X ∈ {lvsh, stkh} and XT ∈ {lvstyh, stktyh} with h ≥ 1 such that
X is lvsh if and only if XT is lvstyh. If XT (k) = cnam holds for some k and
cnam, then X (k) contains a reference to an initialized object of cnam or null.

The typing rules for an instruction specify precisely how the instruction be-
haves on an uninitialized object. The following theorem summarizes some of the
results:

Theorem 7. 1. A reference to an uninitialized object cannot be used in an
instruction described in our formal specification except it is dup aload,
astore or invokespecial. In the case of invokespecial, the method must
be <init>, the object is the one being initialized and must be of the same
class as the <init>.
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2. Inside a method <init> that is not declared in the class Object, there must be
a call to another <init> on the object being initialized via an invokespecial,
where the called <init> is declared in the same class as or in an immediate
superclass of that of the calling <init>. Before this call, the object being ini-
tialized cannot be used in an instruction described in our formal specification
except it is dup, aload or astore.

13 Conclusion

We have shown a formal specification of a substantial subset of JVM instruc-
tions. The formal specification clarifies some ambiguities and incompleteness
and removes some (in our view) unnecessary restrictions in the description of
the official Java Virtual Machine Specification [10].

Finally, it is worth mentioning that our study on the semantics of the JVM
in this chapter led to the discovery of a possibility of writing a constructor that
invoked no other constructor in the JDK 1.1.4 implementation of the JVM,
which is clearly an implementation bug with respect to the official Java Virtual
Machine Specification (page 122).
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Abstract. A formal specification of a Java Secure Processor is pre-
sented, which is mechanically checked for type consistency, well formed-
ness and operational conservativity. The specification is executable and
it is used to animate and study the behaviour of sample Java programs.
The purpose of the semantics is to document the behaviour of the com-
plete JSP for the benefit of implementors.

1 Introduction

A smart card is a complete ‘embedded’ computer housed in a piece of plastic
the same size as a credit card [12]. The computer has to be small to reduce the
risk of mechanical problems. Because of these mechanical constraints, as well as
aspects of cost, the current generation of smart cards typically contains only a
small 8-bit micro processor, a few hundred bytes of RAM, a few Kbytes of ROM
and a few Kbytes of EEPROM. This small size constrains the freedom in the
design of the software that has to be run on a smart card processor.

Java [4] was originally designed for writing embedded software. Because of
this pedigree it is attractive as a smart card programming language. Some facil-
ities provided by the Java language are too expensive to be implemented on a
smart card. Threads, and dynamic class file loading fall in this category. Further
study is needed to find ways of incorporating the Java exception mechanism and
a garbage collector on smart cards. Smart cards do not use floating point arith-
metic so this feature of Java is not needed. Using the subset of Java as described
above for smart cards is attractive. It is also feasible to implement this Java
subset on computers with limited resources.

The standard Java class libraries are not suitable for smart cards because
many of the facilities provided are meaningless on smart cards. Examples in-
clude the interface to GUI libraries. Instead a smart card would host a specially
designed set of class libraries dedicated to the application domain of card appli-
cations. The set of class libraries would be small enough to fit in the card and
would be versatile enough to provide standard smart card facilities, such as the
ISO 7816-4 command set [1], or down loadable applications for multi-application
smart cards [9].

Jim Alves-Foss (Ed.): Formal Syntax and Semantics of Java, LNCS 1523, pp. 313–351, 1999.
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A Java Secure Processor (JSP) is a virtual machine that is designed to fit on a
smart card. A JSP does not implement the full Java Virtual Machine (JVM) [7].
Instead a JSP is accompanied by a JVM to JSP translator, which compiles
standard JVM byte codes into byte codes for the JSP. Java Soft has written
a sophisticated translator, which performs extensive program analysis to allow
a large class of Java programs to be run on the JSP. To support our work on
the formal definition of the operational semantics of the JSP we have written a
simple translator, which accepts a smaller class of Java programs. The simple
translator is used to validate the operational semantics.

A standard Java development environment can be used to write Java pro-
grams for smart cards. Instead of relying on the standard class libraries the
programmer uses the smart card class libraries. A simulator can be used to test
the code. The process of loading Java programs into a card is quite different
from loading and running programs on a workstation, as it may involve man-
ufacturing ROM masks. We will not discuss this aspect further, the interested
reader is referred to the literature [12].

A smart card is a secure token that may control commodities of real value.
Secure here means that the card should be hardware and software tamper re-
sistant, and that it should not leak information. The considerations that apply
to the security of Java in general [8] also apply to Java for smart cards. In ad-
dition, Java for smart cards should provide facilities such as ownership control
and cryptographically protected modes of use.

The resource limitation of a smart card makes it more difficult to ensure that
security is maintained. For example currently a complete byte code verifier is
too large to be implemented on a smart card. The JSP approach assumes that
JVM byte codes are verified when translated into JSP byte codes. The results
are then digitally signed so that tampering can be detected when code is being
loaded.

A clear, concise and complete specification of the semantics is a prerequisite
for a successful and secure implementation of a JSP. The present document
provides such a specification. The document is based on an informal description
of the JSP from Java Soft, who are currently building a tool suite for a JSP [6].
The formal specification is self contained but does not document the motivation
for many of the design decisions made for the JSP. The interested reader is
referred to the informal specification.

The present formal specification is a latos [5] literate script. Latos is a
tool for developing operational semantics. Latos supports publication quality
rendering using LATEX, execution and animation using a functional programming
language, and derivation tree browsing using Netscape. Latos helps to check
that a specification is operationally conservative. The latos meta language is
basically Miranda1 [11] augmented with a notation for rules of inference and sets.
Developing a semantics as a literate script avoids clerical errors and confusion,
as syntax and type errors are detected by the tool.

1 Miranda is a trademark of Research Software Ltd.
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The formal specification does not support the capabilities of JSP development
environment. Instead the latos tool provides a tracing facility allowing for a
detailed study and analysis of executing application programs.

Related work on the semantics of the JVM includes the executable speci-
fication of the ‘defensive’ JVM made by Computational Logic Inc [3], work by
Bertelsen on another subset of the JVM [2], and also other chapters of this book.

The next section describes the restrictions imposed on the kind of Java pro-
grams supported by a JSP on a smart card. Section 3 presents the execution
model of a JSP and Section 4 defines the instructions of the virtual machine.
The relationship between the JVM and the JSP is explored in Section 5. A brief
example of how the semantics of the JSP may be used to validate the behaviour
of a sample Java program is given in Section 6. The last section presents our
conclusions and suggestions for future work.

2 Java Language Restrictions

The JSP design imposes a number of restrictions to allow a Java program to be
run in the constrained runtime environment of a smart card. The most important
restrictions are:

– The JSP provides no support for threads, multi-dimensional arrays, floating
point numbers, and Just-in-time byte code translation.

– Exceptions may be raised by application programs, but they can only be
handled by the system.

– There is no garbage collection. Objects can be allocated dynamically but the
majority are expected to be allocated statically using compile time garbage
collection techniques. The formal specification allows objects to be allocated
any time. It would be possible to state and prove a property about programs
that are guaranteed not to allocate objects after a certain point in their
execution. This constitutes a desirable safety property of those programs.

– Class files cannot be loaded dynamically. Instead the software to be present
in the card is loaded when the card is manufactured or personalised.

– Recursive methods are discouraged and recursive class constructors and ex-
ceptions are disallowed.

– Integers and shorts are identified. The JVM to JSP byte code translator
should ensure that the results obtained from a computation on the JSP are
identical to the results that would have been obtained on a JVM.

– The number of arguments, local variables, methods, and object instances are
limited.

Java programmers have to be aware of these restrictions when writing code
that is intended for a JSP. Some of the restrictions can be circumvented by
the use of appropriate class libraries. Others will be taken care of by program
analysis techniques in the JVM to JSP translator.
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3 Execution Model

The JSP is a byte oriented stack machine. It also has a read-only memory area
for storing methods and constants, an area of memory and some registers to
maintain the book-keeping of the machine, and a heap.

The data manipulated directly by Java programs is faithfully modelled by the
semantics. In particular the operand stack, the fields of objects and the elements
of arrays contain bytes only. A short or a reference is always treated as a pair
of bytes. The structures that support the machine itself, such as the byte codes,
stack frames and heap objects are modelled as higher level entities rather than
as collections of bytes. The ensuing specification is of a low level, which makes
it eminently suitable to serve as a guideline for implementors of a JSP.

The formal specification defines all structured data (not scalars) of the virtual
machine either as (partial) mappings or as algebraic data types (i.e., a sum of
product types). Each of these is of a different type, that is incompatible with any
other useful type. The latos system performs strong type checking to ensure
that all the type constraints in the operational semantics are indeed satisfied.

3.1 Basic Data

The basic data in the formal specification are derived from the natural numbers.
Similarly, the raw data in the JSP implementation are derived from a sequence
of bytes. The type bit (below) permits any numeric value, but sensible values are
in the range 0 . . .1. (The equivalence symbol is used to bind a name to a type,
the equals symbol binds a name to a value). In a JSP implementation, a boolean
is stored in a byte, which permits sensible values as well as non-sensible values.
We would have preferred to identify bit and bitrange but unfortunately the type
system used by latos (i.e., the Hindley-Milner type system of Miranda) is not
strong enough to support sub types.

bit ≡ num;
bitrange = 0 . . . 1;
Other raw data and ranges defined in a similar way include the signed 8-bit

byte, the signed 16-bit short and the unsigned 16-bit reference. The nullreference is
a special reference value, which is represented as zero. Regular references should
not have this particular value.

3.2 Store Areas

The JSP virtual machine uses a number of areas of store for data, code and
book-keeping. Each of these areas is represented in the formal specification as a
mapping of numerical indices onto values of the appropriate type, thus providing
a uniform, albeit low level approach to information handling in the JSP.

– A JSP uses a stack of activation frames, where each frame contains an
operand stack and some book-keeping. The activation frames are gathered
in the machine-wide frameArea. The frame area is represented as a partial
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mapping from the domain framePointer to the range frame. The representa-
tion as a partial function makes it possible to represent common operations
on structures in a clear and succinct way. The type frame itself is defined in
Section 3.3.
framePointer ≡ num;
framePointerrange = 0 . . . 255;
frameArea ≡ framePointer ⇀ frame;

– Heap objects are instances of classes or arrays. The objects are gathered in
the machine-wide heapArea. The type object is defined in Section 3.5.
heapPointer ≡ num;
heapPointerrange = 0 . . . 65535;
heapArea ≡ heapPointer ⇀ object;

– Static program data are represented by bytes. This data is gathered in the
machine-wide staticArea.
staticPointer ≡ num;
staticPointerrange = 0 . . . 65535;
staticArea ≡ staticPointer ⇀ byte;

– The machine-wide codeArea gathers the byte codes and the method headers
for the methods of all application programs in the system. The type byteCode
is defined in Section 4.
programCounter ≡ num;
programCounterrange = 0 . . . 65535;
codeArea ≡ programCounter ⇀ byteCode;

– The application program table progTable records the class table of each
loaded application program.
progId ≡ num;
progIdrange = 0 . . . 63;
progTable ≡ progId ⇀ classTable;

– There is one instance of class Class for each class in the system. The class
table gathers such instances. The type classObject is defined in Section 3.5.
classId ≡ num;
classIdrange = 0 . . . 127;
classTable ≡ classId ⇀ classObject;

– Each class in the system is accompanied by a method table, which maps
a method id onto the program counter value at which the method header
is located. The methodTable is defined as an algebraic data type with two
components and with constructor MethodTable.
methodId ≡ num;
methodIdrange = 0 . . . 255;
entryTable ≡methodId ⇀ programCounter;
methodTable ≡MethodTable classId entryTable;

3.3 Stack Frames

The operand stack within the topmost frame plays a special role in that it
can be accessed by the JSP instructions. To acknowledge this special role, the
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formal specification shadows the operand stack, and manipulates it as a separate
component of the virtual machine configuration.

A method invocation creates a stack frame (shown below as an instance of
the data type frame). The frame has the following four components:

– the programCounter representing the return address to the caller of the
method.

– the framePointer to the previous frame. This information is redundant in
the specification, as frames are numbered sequentially starting from 0. In an
implementation frames would be referred to by their address, in which case
the frame pointer is needed.

– the stackPointer within the operand stack; local and temporary variables of
the current method.

In the specifications that follow, a stack is always accompanied by a stack
pointer (which points at the last used element). All stack operations can be
modelled by a combination of adding (or subtracting) a constant to (from) the
stack pointer and/or updating the mapping. For example, pushing an element
onto the stack means incrementing the pointer and updating the mapping with
a new association.

stackPointer ≡ num;
stackPointerrange = 0 . . . 255;
operandStack ≡ stackPointer ⇀ byte;
frame ≡ Frame programCounter framePointer

stackPointer operandStack;
A JSP uses a slightly different stack frame configuration than the JVM, a

difference that is taken into account by the JVM to JSP byte code translator.

3.4 Headers

Objects and methods have headers, which record book-keeping information. This
section describes all possible headers in the system.

– An objectHeader records the identity of the application program progId, the
size of the object in bytes instanceSize and a table listing all the methods for
the object. The classId for the object is available from the methodTable.
instanceSize ≡ num;
instanceSizerange = 0 . . . 127;
objectHeader ≡ObjectHeader progId instanceSize methodTable;

– An array may contain scalars (bits, bytes or shorts) or references to objects.
An array has a header, which records the application program id, the class
id of the element type, the method table for the element type, an indication
of the element type and the length of the array.
dataType ≡ bit | byte | short | ref;
arrayLength ≡ num;
arrayLengthrange = 1 . . . 4096;
arrayHeader ≡ArrayHeader progId classId methodTable

dataType arrayLength;
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– A method has a header, which records two flags and three sizes. The flags
record whether the method is native and whether it is public. The stack
size is currently unused, but the paramsSize and localsSize are used to create
appropriate frames. Stack frames are limited in size due to the limitations
on available RAM space in smart cards.
isNative ≡ bool;
isPublic ≡ bool;
stackSize ≡ num;
stackSizerange = 0 . . . 15;
paramsSize ≡ num;
paramsSizerange = 0 . . . 15;
localsSize ≡ num;
localsSizerange = 0 . . . 15;
methodHeader ≡MethodHeader isNative isPublic

stackSize paramsSize localsSize;

3.5 Objects

The JSP works with three different kinds of objects:

– A regular object has a header and a number of fields represented by the
fieldTable. The fields are represented as bytes and the methods are available
from the header.
fieldId ≡ num;
fieldIdrange = 0 . . . 255;
fieldTable ≡ fieldId ⇀ byte;
regularObject ≡ RegularObject objectHeader fieldTable;

– An array object records an array header as well as the array elements. The
elements are represented as bytes.
arrayIndex ≡ num;
arrayIndexrange = 0 . . . 4095;
arrayTable ≡ arrayIndex ⇀ byte;
arrayObject ≡ArrayObject arrayHeader arrayTable;

– There is one classObject for every object in the system. The classObject
itself is an instance of class Class. The classObject records the normal object
header as well as the size of an instance of the class, the method table for the
class, the depth in the class hierarchy, the classId of the super classes and the
interface classes implemented by the class. The instance size and the method
table are redundant as the object header also contains this information.
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classDepth ≡ num;
classDepthrange = 0 . . . 255;
superId ≡ num;
superIdrange = 0 . . . 255;
superTable ≡ superId ⇀ classId;
interfaceId ≡ num;
interfaceIdrange = 0 . . . 255;
implementTable ≡methodId ⇀ methodId;
interfaceTable ≡ interfaceId ⇀ implementTable;
classObject ≡ ClassObject objectHeader instanceSize methodTable

classDepth superTable interfaceTable;

The JSP heap is used to store regular and array objects only. A classObject
is allocated statically in a area separate from the heap. The union type object
therefore does not cover class objects.

object ≡ regularObject | arrayObject;
The two auxiliary predicates below are used to determine whether we are

dealing with a regular object or an array object.
isRegularObject regularObject = True;
isRegularObject arrayObject = False;
isArrayObject arrayObject = True;
isArrayObject regularObject = False;

4 Instruction Set

There are 25 different categories of JSP byteCode (below), all with their own
type. The methodHeader is treated as a pseudo instruction. This models the
practice of preceding the code for each method by its header.

byteCode≡methodHeader |
constInst | loadInst | storeInst | incInst | stackInst |
newarrayInst | arrayLoadInst | arrayStoreInst |
arithInst | logicalInst | convertInst | compareInst |
controlInst | switchInst | exceptionInst |
invokeinterfaceInst | invokevirtualInst |
invokeInst | returnInst |
objectInst | instanceInst |
getfieldInst | putfieldInst | getstaticInst | putstaticInst |
breakpointInst;

The following categories of byte codes have been defined:

– Load, store and increment instructions.
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constInst ≡ nop | bpush byte | spush byte byte | apush byte byte |
aconstnull | bconstm1 |
bconst0 | bconst1 | bconst2 | bconst3 | bconst4 | bconst5;

loadInst ≡ bload stackPointer | bload0 | bload1 | bload2 | bload3 |
sload stackPointer | sload0 | sload1 | sload2 | sload3 |
aload stackPointer | aload0 | aload1 | aload2 | aload3;

storeInst ≡ bstore stackPointer | bstore0 | bstore1 | bstore2 | bstore3 |
sstore stackPointer | sstore0 | sstore1 | sstore2 | sstore3 |
astore stackPointer | astore0 | astore1 | astore2 | astore3;

incInst ≡ binc stackPointer byte | sinc stackPointer byte;
– Stack instructions.

stackInst ≡ pop | pop2 | dup | dup2 | dup x byte | swap | swap2;
– Array creation, load and store instructions.

newarrayInst ≡ newarray dataType | anewarray classId;
arrayLoadInst ≡ arraylength | baload | saload | aaload;
arrayStoreInst ≡ bastore | sastore | aastore;

– Instructions for arithmetical, logical, conversion and comparison operations.
arithInst ≡ bneg | sneg | badd | sadd | bsub | ssub |

bmul | smul | bdiv | sdiv | brem | srem;
logicalInst ≡ bshl | bshr | bushr | sshl | sshr | sushr |

band | sand | bor | sor | bxor | sxor;
convertInst ≡ s2b | b2s;
compareInst ≡ bcmp | scmp | acmp;

– Instructions for the transfer of control.
offset ≡ (byte, byte);
controlInst ≡ ifeq offset | iflt offset | ifgt offset |

ifne offset | ifge offset | ifle offset | goto offset;
– Instructions to support switch statements.

tableswitchIndex ≡ num;
tableswitchIndexrange = 0 . . . 127;
tableswitchTable ≡ tableswitchIndex ⇀ offset;
lookupswitchIndex ≡ num;
lookupswitchIndexrange = 0 . . . 126;
lookupswitchTable ≡ lookupswitchIndex ⇀ (byte, offset);
switchInst ≡ tableswitch offset byte byte tableswitchTable |

lookupswitch offset byte lookupswitchTable;
– Instructions to support exceptions.

exceptionInst ≡ athrow | jsr offset | ret stackPointer;
– Instructions for method invokation.

invokeinterfaceInst ≡ invokeinterface paramsSize interfaceId methodId;
invokevirtualInst ≡ invokevirtual paramsSize methodId;
invokeInst ≡ invoke offset;
returnInst ≡ breturn | sreturn | areturn | return;

– Instructions for object creation and manipulation.
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objectInst ≡ new classId;
instanceInst ≡ instanceof classId | checkcast classId |

ainstanceof dataType | acheckcast dataType |
aainstanceof classId | aacheckcast classId;

getfieldInst ≡ bgetfield stackPointer | sgetfield stackPointer;
putfieldInst ≡ bputfield stackPointer | sputfield stackPointer;
getstaticInst ≡ bgetstatic byte byte | sgetstatic byte byte;
putstaticInst ≡ sputstatic byte byte | bputstatic byte byte;

– Miscellaneous instructions.
breakpointInst ≡ breakpoint;

codeArea ≡

programCounter 6→

byteCode ≡
methodHeader ≡
MethodHeader
isNative
isPublic
stackSize
paramsSize
localsSize

constInst . . .

progTable ≡

progId 6→

classTable ≡

classId 6→

classObject ≡
ClassObject
objectHeader ≡
ObjectHeader
progId
instanceSize
methodTable ≡
MethodTable
classId
entryTable ≡
methodId 6→ programCounter

instanceSize
methodTable ≡
MethodTable
classId
entryTable ≡
methodId 6→ programCounter

classDepth
superTable ≡
superId 6→ classId

interfaceTable ≡
interfaceId 6→ implementTable ≡

methodId 6→ methodId

Fig. 1. Read only structures.
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staticArea ≡
staticPointer 6→ byte

heapArea ≡
heapPointer 6→ object

frameArea ≡

framePointer 6→

frame ≡
Frame
programCounter
framePointer
stackPointer
operandStack ≡
stackPointer 6→ byte

object ≡

regularObject ≡
RegularObject
objectHeader ≡
ObjectHeader
progId
instanceSize
methodTable ≡
MethodTable
classId
entryTable ≡
methodId 6→ programCounter

fieldTable ≡
fieldId 6→ byte

arrayObject ≡
ArrayObject
arrayHeader ≡
ArrayHeader
progId
classId
methodTable ≡
MethodTable
classId
entryTable ≡
methodId 6→ programCounter

dataType
arrayLength

arrayTable ≡
arrayIndex 6→ byte

Fig. 2. Structures that can be written to.

We have now completed the definition of the JSP machine structures. To
assist the reader retrieving a particular definition, Figures 1 and 2 summarise
the read only structures and the structures that are written to during execution
of a JSP program respectively. For each of the three different kinds of structures
that we have used, the name is given (followed by an ≡ symbol) and a suggestive
graphical representation. The partial maps are shown in a single box, with the
domain to the left of the ⇀ symbol and the range to the right. A product data
type is shown as a sequence of vertically stacked boxes, one for each component.
A sum data type is shown as a horizontally arranged sequence of boxes.

The following sections present the semantic rules for a representative selection
of the JSP byte codes. Since there are many groups of similar byte codes, we
consider it justified to give the rule for just one member of each group without
sacrificing the rigour of the specification.

4.1 Pushing Constants onto the Stack

The stack is controlled by the stack pointer, which points at the last used loca-
tion. A short occupies two consecutive locations in the stack, with the high byte
at the lowest stack pointer index (bigendian).
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Table 1. Labelled equality relations. The type given is that of the two operands.

ah⇒ arrayHeader
at⇒ arrayTable
b⇒ byte
ct⇒ classTable
fa⇒ frameArea
ft⇒ fieldTable

ha⇒ heapArea
it⇒ implementTable
ob⇒ object
oh⇒ objectHeader
os⇒ operandStack
p⇒ (byte,byte)
ps⇒ [(byte,byte)]

s⇒ short
hp⇒ heapPointer
pc⇒ programCounter
sa⇒ staticArea
f⇒ frame
bc⇒ byteCode

The relation const⇒ below describes the effects of each of the instructions deal-
ing with constants on the stack. The type of the relation shows that in addition
to the instruction itself, only the stack pointer and the operand stack are rel-
evant here. The left operand of the relation specifies the machine components
that are accessed, the right operand mentions those that may be changed by
the instruction. Specifying the types of the relations thus provides an aid in the
documentation of the system. The types of all relations of the JSP transition
system are summarised in Table 2. We will not give the explicit types of the
remaining relations.

lhsconst ≡ 〈constInst, stackPointer, operandStack〉;
rhsconst ≡ 〈stackPointer, operandStack〉;
const⇒ :: (lhsconst↔rhsconst);
The rules for nop, bpush and spush below reveal most aspects of the notation

that we are using. The semantics of an instruction is defined by an axiom or a rule
of inference. The text in square brackets to the left of the axiom/rule is a label
to identify the rule. A rule has a number of premises (above the horizontal line)
and a conclusion. An axiom has a conclusion but no premises. Rules and axioms
may have side conditions. The two axioms and the rule below together define
the relation const⇒ over components of the JSP virtual machine configurations.

[nop] `〈nop, sp, os〉 const⇒ 〈sp, os〉;

[bpush] `〈bpush v, sp, os〉 const⇒ 〈sp + 1, os⊕ {sp + 1 7→ v}〉,
if (sp + 1) ∈ stackPointerrange;

`os⊕ {sp + 1 7→ hi} ⊕ {sp + 2 7→ lo} os⇒ os′

[spush] `〈spush hi lo, sp, os〉 const⇒ 〈sp + 2, os′〉,
if (sp + 1 . . . sp + 2) ⊆ stackPointerrange;

The configuration on the left hand side of the arrow consists of an instruction
and its operands (eg. spush hi lo), the current stack pointer (sp), and the operand
stack (os). Other components of the JSP machine, such as the heap are not used
by the three rules above.

The configuration on the right hand side consists of the next value of the stack
pointer (eg. sp + 2) and the new operand stack (os′). Some of the components
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mentioned on the left hand side are not present on the right hand side, because
they are not changed by the instruction. We have been careful in exposing only
the information required, so as to improve the clarity and succinctness of the
specification.

The premise of the spush rule asserts a relationship between components of
the old and the new configuration. The relation os⇒ is an equality relation, which
holds when the operands are both of type operandStack. Labelling equalities with
the type of the operands helps the mechanical type checker spot clerical errors.
Many other labelled equalities are used throughout. The labels and the types of
the operands are summarised in Table 1. The actual definition of the relations
is omitted.

The notation os⊕ {sp + 1 7→ v} extends the mapping os with a new do-
main/range pair. Any previous association for the new domain value sp + 1 is
lost. It follows that it is sufficient to decrement the stack pointer to ‘forget’
mappings for particular values in the domain. Furthermore, we do not in general
have the invariant domain(os) = 0 . . . sp.

The side condition for the bpush and spush operations determines when it
is safe to extend the stack. If it is not safe, then the relation const⇒ does not hold.

The rule for the apush operation is not shown here because it is identical
to that of the spush operation: an address is a numeric value and therefore
indistinguishable from a short. In a typed version of the JSP the instructions
would not be the same.

4.2 Pushing Immediate Constants

Some constants are needed so often that special instructions have been defined to
push them onto the stack. The semantics of the specialised instructions such as
bconst0 (below) is defined in terms of the general operation bpush. The rules for
the remaining instructions aconstnull, bconstm1, bconst1 . . .bconst5 (not shown)
are defined in a similar way.

`〈bpush 0, sp, os〉 const⇒ 〈sp′, os′〉
[bconst0] `〈bconst0, sp, os〉 const⇒ 〈sp′, os′〉;

4.3 Loading Local Variables onto the Stack

The load instructions transfer values from the parameter and local variable area
of the stack frame to the top of the operand stack. Local variables and parameters
are accessed via a fixed index from the bottom of the operand stack. The reader
is reminded that the operand stack is just a portion of the current frame, but
we view the operand stack separately from the frame for convenience.

The side conditions on the rules below check for stack overflow. There is no
explicit check on the value of the index i because it is assumed that the static
semantics of the byte codes, as enforced by the byte code verifier, will deal with
illegal offsets.
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Table 2. A summary of the types of all relations defining the transition system
of the Java secure processor.
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const⇒ constInst rw rw
load⇒ loadInst rw rw
store⇒ storeInst rw rw
inc⇒ incInst r rw

stack⇒ stackInst rw rw
newarray⇒ newarrayInst r rw rw rw r r
arrayload⇒ arrayloadInst rw r r
arraystore⇒ arraystoreInst rw r rw

arith⇒ arithInst rw rw
logical⇒ logicalInst rw rw
conv⇒ convInst rw rw

compare⇒ compareInst rw rw
control⇒ controlInst rw rw rw
switch⇒ switchInst rw rw rw

exception⇒ exceptionInst rw rw rw
invokeinterface⇒ invokeinterfaceInst rw r rw rw rw rw r r r

invokevirtual⇒ invokevirtualInst rw r rw rw rw rw r
invoke⇒ invokeInst rw r rw rw rw rw
return⇒ returnInst w rw rw rw r
object⇒ objectInst rw rw rw rw r r

instance⇒ instanceInst rw rw r r r r
getfield⇒ getfieldInst rw r r
putfield⇒ putfieldInst rw r rw
getstatic⇒ getstaticInst rw r r
putstatic⇒ putstaticInst rw r rw

breakpoint⇒ breakpointInst rw r rw
exec⇒ execInst rw r r rw rw rw rw rw rw r r rw rw
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`os(i) b⇒ v

[bload] `〈bload i, sp, os〉 load⇒ 〈sp + 1, os⊕ {sp + 1 7→ v}〉,
if (sp + 1) ∈ stackPointerrange;

`(os(i), os(i + 1))
p⇒ (hi, lo),

`os⊕ {sp + 1 7→ hi} ⊕ {sp + 2 7→ lo} os⇒ os′

[sload] `〈sload i, sp, os〉 load⇒ 〈sp + 2, os′〉,
if (sp + 1 . . . sp + 2) ⊆ stackPointerrange;

The rule for aload and those for the specialised versions bload0 . . .bload3,
sload0 . . . sload3 and aload0 . . .aload3 are not shown here.

4.4 Storing Stack Values into Local Variables

The store instructions transfer values from the operand stack into parameter
and local variable area of the stack frame. This time the side conditions check
for stack underflow.

`os(sp) b⇒ v

[bstore] `〈bstore i, sp, os〉 store⇒ 〈sp− 1, os⊕ {i 7→ v}〉,
if sp ∈ stackPointerrange;

`(os(sp− 1), os(sp)) p⇒ (hi, lo),
`os⊕ {i 7→ hi} ⊕ {i + 1 7→ lo} os⇒ os′

[sstore] `〈sstore i, sp, os〉 store⇒ 〈sp− 2, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

The astore instruction is identical to the sstore instruction. The specialised
instructions bstore0 . . .bstore3, sstore0 . . . sstore3 and astore0 . . .astore3 are not
shown here.

Table 3. Explicit conversions between arbitrary integers and shorts (n2s), ar-
bitrary integers and bytes (n2b), between shorts and pairs of bytes (s2p, p2s),
between booleans and bytes (b2b) and a range comparison operator ==.

n2s :: num→short;
n2s(n) = n mod 32768;
s2p :: short→(byte, byte);
s2p(s) = (s div 256, s mod 256);
b2b :: bool→byte;
b2b True = 1;
b2b False = 0;

n2b :: num→byte;
n2b(n) = n mod 128;
p2s :: (byte, byte)→short;
p2s(hi, lo) = 256∗hi + lo;
== :: num→num→num;
x == y = 1, if x > y;

= 0, if x = y;
= −1, otherwise;
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4.5 Increment Instructions

The increment instructions load the value of a local, increment the value with a
signed, 8-bit constant, and store the result. There is no scope for stack underflow
or stack overflow, but it is possible for the data to under or overflow. This
particular error condition is ignored by the JSP. The specification models this
behaviour by using a conversion function n2s, which maps out of bounds values
into the range of a short. The functions of Table 3 define explicit conversions
between arbitrary integers and shorts (n2s), arbitrary integers and bytes (n2b),
between shorts and pairs of bytes (s2p, p2s), and between booleans and bytes
(b2b). These conversions are used consistently throughout the document, so
that is would be easy to change the byte order of shorts. This approach makes
it easier to implement the JSP on platforms with different views on number
representations.

`n2b(os(i) + c) b⇒ v

[binc] `〈binc i c, sp, os〉 inc⇒ 〈os⊕ {i 7→ v}〉;

`s2p(n2s(p2s(os(i), os(i + 1)) + c))
p⇒ (hi, lo),

`os⊕ {i 7→ hi} ⊕ {i + 1 7→ lo} os⇒ os′

[sinc] `〈sinc i c, sp, os〉 inc⇒ 〈os′〉;

4.6 Stack Instructions

The stack manipulation instructions are intended to rearrange information on
the operand stack. The side conditions check for stack underflow and/or overflow.

– The pop and pop2 instructions remove one and two bytes respectively from
the stack. There are no separate pop instructions for shorts and references,
to save opcodes.
[pop1] `〈pop, sp, os〉 stack⇒ 〈sp− 1, os〉;

[pop2] `〈pop2, sp, os〉 stack⇒ 〈sp− 2, os〉;
– The dup and dup2 instructions duplicate one and two bytes respectively on

top of the stack.
`os(sp) b⇒ v

[dup] `〈dup, sp, os〉 stack⇒ 〈sp + 1, os⊕ {sp + 1 7→ v}〉,
if (sp . . . sp + 1) ⊆ stackPointerrange;

`(os(sp− 1), os(sp)) p⇒ (v2, v1),
`os⊕ {sp + 1 7→ v2} ⊕ {sp + 2 7→ v1} os⇒ os′

[dup2] `〈dup2, sp, os〉 stack⇒ 〈sp + 2, os′〉,
if (sp− 1 . . . sp + 2) ⊆ stackPointerrange;
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– The dup x instruction duplicates the top k elements of the operand stack n
elements down the stack. The symbol ] is the function overriding operator
and the notation {xi | i ← [a..b]} generates a set of xi where i ranges from
a to b.

`kn mod 16 b⇒ n,

`kn div 16 b⇒ k,

`sp′ + k
s⇒ sp′,

`os ] {sp′ − i + 1 7→ os(sp− i + 1) | i←[n..1]} os⇒ os′,
`os′ ] {sp′ − n− i + 1 7→ os(sp′ − i + 1) | i←[k..1]} os⇒ os′′

[dupx] `〈dup x kn, sp, os〉 stack⇒ 〈sp + k, os′′〉,
if (sp− n . . . sp + k) ⊆ stackPointerrange∧
k ∈ (1 . . . 4)∧n ∈ (0 . . . 8)∧k < n;

– The swap and swap2 instructions swap the top two bytes and the top two
pairs of bytes respectively on top of the operand stack.

`(os(sp− 1), os(sp)) p⇒ (v2, v1),
`os⊕ {sp− 1 7→ v1} ⊕ {sp 7→ v2} os⇒ os′

[swap] `〈swap, sp, os〉 stack⇒ 〈sp, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

`(os(sp− 3), os(sp− 2))
p⇒ (hi2, lo2),

`(os(sp− 1), os(sp))
p⇒ (hi1, lo1),

`os⊕ {sp− 3 7→ hi1} ⊕ {sp− 2 7→ lo1} os⇒ os′,
`os′ ⊕ {sp− 1 7→ hi2} ⊕ {sp 7→ lo2} os⇒ os′′

[swap2] `〈swap2, sp, os〉 stack⇒ 〈sp, os′′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange;

4.7 Creating Array Objects

Arrays are stored in the heap. Therefore, the transition relation
newarray⇒ specifies

read/write access to the heap, as well as the operand stack. In addition, object
creating instructions need to know which is the current application program
id (pi). This information is used to classify objects according to who created
them. The type of the relation reflects the fact that the program id is used but
not changed. (The reader is reminded that Table 2 summarises the types of all
transition relations.)

The array operation newarray expects the length of the array on the top of
the operand stack. It accesses the length as al. newarray creates an appropriate
array header ah and a mapping with a domain of 0 . . .al− 1 to serve as the initial
value of the array. The method table used is that of class java.lang.Object. The
heap is extended with a new object which is to receive the created array header
and contents. The reference to the new object is pushed onto the stack. The side
condition ensures that stack underflow, heap overflow, or an invalid array length
is detected.
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`p2s(os(sp− 1), os(sp)) s⇒ al,

`ArrayHeader pi 0 java.lang.Objectmt byte al
ah⇒ ah,

`{i 7→ 0 | i←[0..al− 1]} at⇒ at,

`hp + 1
hp⇒ hp′,

`s2p(hp′) p⇒ (hi, lo),
`os⊕ {sp− 1 7→ hi} ⊕ {sp 7→ lo} os⇒ os′,

`ha ⊕ {hp′ 7→ArrayObject ah at} ha⇒ ha′

[newarray1] `〈newarray byte, sp, os, hp, ha, pi, pt〉
newarray⇒ 〈os′, hp′, ha′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
al ∈ arrayLengthrange∧hp′ ∈ heapPointerrange;

The two other versions of newarray are not shown here: the bit version of
newarray is identical to the byte version above, because each bit is stored in a
byte field. The short version uses two bytes for storing each short.

The anewarray instruction allocates an array of references to objects of the
class associated with the given class id (ci). The application program id (pi) is
used to access the class table of the current application program. This class table
provides the method table for the array elements. The array is initialised to null
references.

`p2s(os(sp− 1), os(sp)) s⇒ al,

`pt(pi) ct⇒ ct,

`ct(ci) ob⇒ ClassObject mt ,

`ArrayHeader pi ci mt ref al
ah⇒ ah,

`{i 7→ 0 | i←[0..2∗al− 1]} at⇒ at,

`hp + 1 hp⇒ hp′,
`s2p(hp′) p⇒ (hi, lo),
`os⊕ {sp− 1 7→ hi} ⊕ {sp 7→ lo} os⇒ os′,

`ha ⊕ {hp′ 7→ ArrayObject ah at} ha⇒ ha′

[anewarray] `〈anewarray ci, sp, os, hp, ha, pi, pt〉
newarray⇒ 〈os′, hp′, ha′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
al ∈ arrayLengthrange∧hp′ ∈ heapPointerrange;

4.8 Loading Values from Arrays

The operation arraylength expects an array reference r on the stack and returns
the length of the array. The side condition checks for stack underflow, and that
a valid heap pointer to an array object is presented.
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`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ ArrayObject(ArrayHeader al) ,

`s2p(al)
p⇒ (hi, lo),

`os⊕ {sp− 1 7→ hi} ⊕ {sp 7→ lo} os⇒ os′

[arraylength] `〈arraylength, sp, os, ha〉 arrayload⇒ 〈sp, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r));

Array load instructions access an array and deliver a value at the given
index position. The side conditions check for stack underflow, a null reference,
an improper object and illegal values of the array index.

`p2s(os(sp− 3), os(sp− 2)) s⇒ r,

`p2s(os(sp− 1), os(sp)) s⇒ i,

`ha(r) ob⇒ ArrayObject at,

`at(i) b⇒ v

[baload] `〈baload, sp, os, ha〉 arrayload⇒ 〈sp− 3, os⊕ {sp− 3 7→ v}〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r))∧i ∈ domain(at);

`p2s(os(sp− 3), os(sp− 2)) s⇒ r,

`p2s(os(sp− 1), os(sp)) s⇒ i,

`ha(r) ob⇒ ArrayObject at,

`(at(i∗2), at(i∗2 + 1)) p⇒ (hi, lo),
`os⊕ {sp− 3 7→ hi} ⊕ {sp− 2 7→ lo} os⇒ os′

[saload] `〈saload, sp, os, ha〉 arrayload⇒ 〈sp− 2, os′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r))∧

(i∗2 . . . i∗2 + 1) ⊆ domain(at);

The operation aaload is identical to saload and not shown here.

4.9 Storing Values into Arrays

The array store instructions need read/write access to the stack and read access
to the heap. The side conditions check for stack underflow, null references, non-
array objects, and illegal array indices. The aastore instruction is identical to
sastore.
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`p2s(os(sp− 4), os(sp− 3)) s⇒ r,

`p2s(os(sp− 2), os(sp− 1)) s⇒ i,

`os(sp) b⇒ v,

`ha(r) ob⇒ ArrayObject ah at,

`at⊕ {i 7→ v} at⇒ at′,

`ha ⊕ {r 7→ ArrayObject ah at′} ha⇒ ha′

[bastore] `〈bastore, sp, os, ha〉 arraystore⇒ 〈sp− 5, ha′〉,
if (sp− 4 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r))∧i ∈ domain(at);

`p2s(os(sp− 5), os(sp− 4)) s⇒ r,

`p2s(os(sp− 3), os(sp− 2)) s⇒ i,

`(os(sp− 1), os(sp))
p⇒ (hi, lo),

`ha(r) ob⇒ ArrayObject ah at,

`at⊕ {i∗2 7→ hi} ⊕ {i∗2 + 1 7→ lo} at⇒ at′,

`ha⊕ {r 7→ArrayObject ah at′} ha⇒ ha′

[sastore] `〈sastore, sp, os, ha〉 arraystore⇒ 〈sp− 6, ha′〉,
if (sp− 5 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r))∧

(i∗2 . . . i∗2 + 1) ⊆ domain(at);

4.10 Arithmetic

The unary (arithmetic) negation operator is defined below for bytes and shorts.
It ignores under/overflow of values, but checks for stack underflow.

`os(sp) b⇒ v

[bneg] `〈bneg, sp, os〉 arith⇒ 〈sp, os⊕ {sp 7→ n2b(−v)}〉,
if sp ∈ stackPointerrange;

`s2p(n2s(−(p2s(os(sp− 1), os(sp)))))
p⇒ (hi, lo),

`os⊕ {sp− 1 7→ hi} ⊕ {sp 7→ lo} os⇒ os′

[sneg] `〈sneg, sp, os〉 arith⇒ 〈sp, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

Binary addition for bytes and shorts is defined below. The other binary arith-
metic instructions (for subtraction, multiplication, division and remainder) are
defined in the same way, and are not shown. The side condition of the division
and remainder operations check that the divisor is non-zero.

`(os(sp− 1), os(sp))
p⇒ (v2, v1)

[badd] `〈badd, sp, os〉 arith⇒ 〈sp− 1, os⊕ {sp− 1 7→ n2b(v2 + v1)}〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;
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`p2s(os(sp− 3), os(sp− 2)) s⇒ v2,

`p2s(os(sp− 1), os(sp)) s⇒ v1,

`s2p(n2s(v2 + v1))
p⇒ (hi, lo),

`os⊕ {sp− 3 7→ hi} ⊕ {sp− 2 7→ lo} os⇒ os′

[sadd] `〈sadd, sp, os〉 arith⇒ 〈sp− 2, os′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange;

4.11 Logical Instructions

The logical shift left as defined below shifts the element next to the top of the
stack. The shift count is the top of the stack. The remaining binary logical
instructions (for arithmetic shift right with sign extension, unsigned shift right,
bit-wise and, bit-wise or and bit-wise exclusive or) are defined in the same way
and are not shown.

`(os(sp− 1), os(sp)) p⇒ (v2, v1)

[bshl] `〈bshl, sp, os〉 logical⇒ 〈sp− 1, os⊕ {sp− 1 7→ n2b(v2 << v1)}〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧v1 ∈ (0 . . . 7);

`p2s(os(sp− 3), os(sp− 2)) s⇒ v2,

`p2s(os(sp− 1), os(sp)) s⇒ v1,

`s2p(n2s(v2 << v1))
p⇒ (hi, lo),

`os⊕ {sp− 3 7→ hi} ⊕ {sp− 2 7→ lo} os⇒ os′

[sshl] `〈sshl, sp, os〉 logical⇒ 〈sp− 2, os′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange∧v1 ∈ (0 . . . 15);

4.12 Conversions

The conversion operations explicitly truncate a short to a byte or zero fill a byte
to a short. Stack underflow and overflow are detected.

`n2b(p2s(os(sp− 1), os(sp))) s⇒ v

[s2b] `〈s2b, sp, os〉 conv⇒ 〈sp− 1, os⊕ {sp− 1 7→ v}〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

`s2p(os(sp))
p⇒ (hi, lo),

`os⊕ {sp 7→ hi} ⊕ {sp + 1 7→ lo} os⇒ os′

[b2s] `〈b2s, sp, os〉 conv⇒ 〈sp + 1, os′〉,
if (sp . . . sp + 1) ⊆ stackPointerrange;

4.13 Comparisons

The compare instruction bcmp returns −1 if the top element of the stack is
greater than the one below it. It returns 0 if the top two elements are equal and
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1 otherwise. The scmp instruction compares the shorts on top of the stack. The
definition of the range comparison operator == is given in Table 3.

`(os(sp− 1), os(sp)) p⇒ (v2, v1)
[bcmp] `〈bcmp, sp, os〉 compare⇒ 〈sp− 1, os⊕ {sp− 1 7→ (v2 == v1)}〉,

if (sp− 1 . . . sp) ⊆ stackPointerrange;

`p2s(os(sp− 3), os(sp− 2)) s⇒ v2,

`p2s(os(sp− 1), os(sp)) s⇒ v1,

`os⊕ {sp− 3 7→ (v2 == v1)} os⇒ os′

[scmp] `〈scmp, sp, os〉 compare⇒ 〈sp− 3, os′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange;

The acmp instruction compares object references and returns 0 if the refer-
ences are equal, 1 otherwise.

`p2s(os(sp− 3), os(sp− 2)) s⇒ v2,

`p2s(os(sp− 1), os(sp)) s⇒ v1

[acmp] `〈acmp, sp, os〉 compare⇒ 〈sp− 3, os⊕ {sp− 3 7→ (v2 == v1)mod 2}〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange;

4.14 Transferring Control

The ifeq instruction adds its immediate operand to the value of the program
counter (pc) if the top of the stack contains 0. Otherwise the program counter is
incremented to point at the next instruction. Stack underflow is detected. The
static semantics is assumed to detect illegal values for the program counter.

`os(sp) b⇒ v,

`pc + p2s offset
pc⇒ pc′

[ifeq0] `〈pc, ifeq offset, sp, os〉 control⇒ 〈pc′, sp− 1, os〉,
if sp ∈ stackPointerrange∧v = 0;

`os(sp) b⇒ v

[ifeq1] `〈pc, ifeq offset, sp, os〉 control⇒ 〈pc + 1, sp− 1, os〉,
if sp ∈ stackPointerrange∧v 6=0;

The remaining operations iflt, ifgt, ifne, ifge, ifle are similar and not shown.
The static semantics is assumed to check that the unconditional jump in-

struction goto carries a valid offset.
`pc + p2s offset

s⇒ pc′

[goto] `〈pc, goto offset, sp, os〉 control⇒ 〈pc′, sp, os〉;

4.15 Support for Switch Statements

The tableswitch and lookupswitch instructions provide support for the Java
switch statements. The tableswitch instruction allows for a selection of jump
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targets from an indexed table, with the choice index coming from the stack. The
lookupswitch instruction is similar, except that a keyed table is used rather than
an indexed one.

Both instructions have a number of immediate operands, the first of which is
the default offset. The tableswitch instruction has further immediate operands
to specify the lower and upperbounds of a jump table and the jump table itself.
The instruction expects a byte index on the stack, which is used to select the
appropriate offset from the jump table. The offset is then added to the current
value of the program counter. If the index lies outside the range defined by the
lower and upperbound, the default offset is added to the program counter.

The side condition checks that the stack pointer is valid, but does not need
to check that the old or new values of the program counter are valid. This is the
task of the static semantics.

`os(sp) b⇒ index,

`cases(index)
p⇒ offset,

`pc + p2s(offset) s⇒ pc′

[tableswitch1] `〈pc, tableswitch default low high cases, sp, os〉
switch⇒ 〈pc′, sp− 1, os〉,
if sp ∈ stackPointerrange∧index ∈ (low . . . high);

`os(sp) b⇒ index,

`pc + p2s(default) s⇒ pc′

[tableswitch2] `〈pc, tableswitch default low high cases, sp, os〉
switch⇒ 〈pc′, sp− 1, os〉,
if sp ∈ stackPointerrange∧index 6∈ (low . . . high);

The lookupswitch has a default offset and further immediate operands to
specify the number of entries in the jump table and the jump table itself. The
lookupswitch instruction expects a key on the stack, which when it occurs in
the table is used to select the appropriate offset from the jump table. The offset
is then added to the current value of the program counter. If the key does not
occur in the jump table, the default offset is added to the program counter.

`os(sp) b⇒ key,

`{o | (k, o)←range(cases) ∧ key = k} ps⇒ offsets,

`pc + p2s(hd(offsets)) s⇒ pc′

[lookupswitch1] `〈pc, lookupswitch default entries cases, sp, os〉
switch⇒ 〈pc′, sp− 1, os〉,
if sp ∈ stackPointerrange∧offsets 6={};
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`os(sp) b⇒ key,

`{o | (k, o)←range(cases) ∧ key = k} ps⇒ offsets,

`pc + p2s(default) s⇒ pc′

[lookupswitch2] `〈pc, lookupswitch default entries cases, sp, os〉
switch⇒ 〈pc′, sp− 1, os〉,
if sp ∈ stackPointerrange∧offsets = {};

4.16 Exception Handling

The athrow instruction terminates the execution of the JSP program, for there
is no pc, sp and os for which the relation below holds. The present treatment of
exceptions is somewhat crude, but consistent with ISO 7816-4 requirements.

[athrow] `〈pc, athrow, sp, os〉 exception⇒ 〈pc, sp, os〉,
if False;

The jsr and ret instructions are used by the JVM to support exception han-
dling. Even though the JSP provides only rudimentary support for exceptions,
the semantics of these two instructions is well defined. Stack overflow and illegal
return addresses are detected.

`p2s(os(i), os(i + 1)) s⇒ pc′

[ret] `〈pc, ret i, sp, os〉 exception⇒ 〈pc′, sp, os〉,
if pc′ ∈ programCounterrange;

`pc + p2s(hiv, lov)
s⇒ pc′,

`s2p(pc)
p⇒ (hip, lop),

`os⊕ {sp + 1 7→ hip} ⊕ {sp + 2 7→ lop} os⇒ os′

[jsr] `〈pc, jsr(hiv, lov), sp, os〉 exception⇒ 〈pc′, sp + 2, os′〉,
if (sp + 1 . . . sp + 2) ⊆ stackPointerrange∧
pc′ ∈ programCounterrange;

4.17 Method Invocation

The JSP has three different instructions to invoke methods. The invokevirtual
is the normal dynamic method dispatch instruction. The invoke instruction is
used when the Java compiler or JSP to JVM byte code translator are able to
determine statically which method to invoke. The invokeinterface instruction
supports Java’s approach to multiple inheritance by searching for a method that
implements an abstract method from an interface.

The invokeinterface instruction has three operands. The first, params, spec-
ifies the number of arguments to be expected on the operand stack. The second
immediate operand, ii, indicates the index of an interface. The third mi deter-
mines which (abstract) method within the interface is required.
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`pt(pi) ct⇒ ct,

`p2s(os(sp− params + 1), os(sp− params + 2)) s⇒ r,

`ha(r) ob⇒ RegularObject oh ,

`oh
oh⇒ ObjectHeader (MethodTable ci et),

`ct(ci) ob⇒ ClassObject cit,

`cit(ii) it⇒ it,

`it(mi) s⇒ mi′,
`et(mi′) s⇒ pc′,
`{params− i 7→ os(sp− i + 1) | i←[1..params]} os⇒ os′,

`fa⊕ {fp + 1 7→ Frame(pc + 1)fp(sp− params)os} fa⇒ fa′

[invoke1] `〈pc, ca, invokeinterface params ii mi, sp, os, fp, fa, ha, pi, pt〉
invokeinterface⇒ 〈pc′, params− 1, os′, fp + 1, fa′〉,
if (sp− params + 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r))∧
ci ∈ classIdrange∧ii ∈ interfaceIdrange∧
mi ∈ methodIdrange∧mi′ ∈ methodIdrange∧
fp + 1 ∈ framePointerrange;

The top of the operand stack must contain a reference to an object, which
should be an instance of a regular class that implements the interface method.
The header of the object is accessed to yield the interface table (cit) associated
with the object. The table it maps the method index of the abstract method
(mi) onto the method index of the implementation (mi′). The latter is then used
to locate the appropriate program counter in the method table of the object
pointed at by r. The value of the program counter will be made to point at the
first proper instruction of the method. A new frame is created, linking to the
previous frame for the benefit of the return instruction. Execution continues at
the first instruction of the callee.

The invokevirtual instruction expects a reference to an object on top of the
operand stack. The object header of the object is accessed to yield the method
table associated with the object. The method index mi determines which method
is to be activated. The value of the program counter pc will be made to point
at the first proper instruction of the method. A new frame is created, linking to
the previous frame for the benefit of the return instruction. Execution continues
at the first instruction of the callee.
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`p2s(os(sp− params + 1), os(sp− params + 2)) s⇒ r,

`ha(r) ob⇒ RegularObject oh ,

`oh
oh⇒ ObjectHeader (MethodTable et),

`et(mi) s⇒ pc′,
`{params− i 7→ os(sp− i + 1) | i←[1..params]} os⇒ os′,

`fa⊕ {fp + 1 7→ Frame(pc + 1)fp(sp− params)os} fa⇒ fa′

[invoke2] `〈pc, ca, invokevirtual params mi, sp, os, fp, fa, ha〉
invokevirtual⇒ 〈pc′, params − 1, os′, fp + 1, fa′〉,
if (sp− params + 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r))∧
mi ∈ methodIdrange∧fp + 1 ∈ framePointerrange;

The immediate operands of the invoke instruction specify the two bytes that
determine the index of the method in the codeArea. The number of parameters
is retrieved from the method header (which is stored in the pseudo instruction
preceding the first proper instruction of the method).

`p2s offset
s⇒ pc′,

`ca(pc′ − 1) bc⇒ (MethodHeader params locals),
`{params− i 7→ os(sp + 1− i) | i←[1..params]} os⇒ os′,

`fa⊕ {fp + 1 7→ Frame(pc + 1)fp(sp− params)os} fa⇒ fa′

[invoke3] `〈pc, ca, invoke offset, sp, os, fp, fa〉
invoke⇒ 〈pc′, locals + params − 1, os′, fp + 1, fa′〉,
if (sp− params + 1 . . . sp) ⊆ stackPointerrange∧
fp + 1 ∈ framePointerrange;

4.18 Method Return

The return instructions below return from a (non-static) method. The four in-
structions differ only in the return value produced. Each return instruction aban-
dons the frame pointed at by the frame pointer and returns to the previous frame
pointer. The appropriate return value is deposited onto the operand stack of the
caller (except in the last case below, which is intended for a void returning
method). The side conditions check for stack under/overflow and frame under-
flow.

`fa(fp) f⇒ Frame pc′ fp′ sp′ os′,

`os(sp) b⇒ v,

`os′ ⊕ {sp′ + 1 7→ v} os⇒ os′′

[breturn] `〈breturn, sp, os, fp, fa〉 return⇒ 〈pc′, sp′ + 1, os′′, fp′〉,
if fp ∈ framePointerrange∧sp ∈ stackPointerrange∧
(sp′ + 1) ∈ stackPointerrange;
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`fa(fp) f⇒ Frame pc′ fp′ sp′ os′,
`(os(sp− 1), os(sp))

p⇒ (hi, lo),
`os′ ⊕ {sp′ + 1 7→ hi} ⊕ {sp′ + 2 7→ lo} os⇒ os′′

[sreturn] `〈sreturn, sp, os, fp, fa〉 return⇒ 〈pc′, sp′ + 2, os′′, fp′〉,
if fp ∈ framePointerrange∧
(sp− 1 . . . sp) ⊆ stackPointerrange∧
(sp′ + 1 . . . sp′ + 2) ⊆ stackPointerrange;

`fa(fp) f⇒ Frame pc′ fp′ sp′ os′

[return] `〈return, sp, os, fp, fa〉 return⇒ 〈pc′, sp′, os′, fp′〉,
if fp ∈ framePointerrange;

The instruction areturn is identical to sreturn and thus not shown here.

4.19 Object Operations

The new operation creates an instance of the class identified by the given class
index ci. The class index is used to lookup the class in the class table pertaining
to the current application program, which itself is found by using the current
application program id pi as an index in the application program table. The
fields are initialised to zeroes.

`pt(pi) ct⇒ ct,

`ct(ci) ob⇒ ClassObject oh is ,

`{i 7→ 0 | i←[0..is− 1]} ft⇒ ft,

`hp + 1 hp⇒ hp′,
`s2p(hp′)

p⇒ (hir, lor),
`os⊕ {sp + 1 7→ hir} ⊕ {sp + 2 7→ lor} os⇒ os′,
`ha⊕ {hp′ 7→ RegularObject oh ft} ha⇒ ha′

[new] `〈new ci, sp, os, hp, ha, pi, pt〉 object⇒ 〈sp + 2, os′, hp′, ha′〉,
if (sp + 1 . . . sp + 2) ⊆ stackPointerrange∧
pi ∈ progIdrange∧ci ∈ classIdrange∧
hp′ ∈ heapPointerrange;

There are three instructions to determine whether an object is an instance of a
particular class. The instanceof instruction is for regular objects. The two other
instructions ainstanceof and aainstanceof handle array objects of primitive and
non-primitive types respectively.

The immediate operand cit of the instruction instanceof must be the index
into the class table of some regular class, t say. In addition, the top of the stack
must contain a reference r to a regular object of some class, s say. If t and s are
the same, or if t is a super class of s, the instruction pushes 1 on the operand
stack; 0 otherwise. (See Table 3 for the definition of b2b).
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`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ RegularObject(ObjectHeader (MethodTable cis )) ,

`pt(pi) ct⇒ ct,

`ct(cis) ob⇒ ClassObject super ,

`b2b(cit = cis∨cit∈range(super)) b⇒ v,

`os⊕ {sp− 1 7→ v} os⇒ os′

[instanceof] `〈instanceof cit, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp− 1, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r))∧
pi ∈ progIdrange∧cis ∈ classIdrange;

The immediate operand dtt of the instruction ainstanceof must specify one
of the three primitive array types, t say. The top of the stack r must point at
an array of primitive types, s say. If t and s are the same, 1 is pushed on the
operand stack; 0 otherwise.

`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ ArrayObject(ArrayHeader dts ) ,

`b2b(dts∈{bit, byte, short}∧dtt = dts)
b⇒ v,

`os⊕ {sp− 1 7→ v} os⇒ os′

[ainstanceof] `〈ainstanceof dtt, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp− 1, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r));

The immediate operand cit of the instruction ainstanceof must be the index
into the class table of some regular class, t say. The top of the stack must contain
a reference r to an array object, whose elements are instances of some class, s
say. If t and s are the same, or if t is a super class of s, the instruction pushes 1
on the operand stack; 0 otherwise.

`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ ArrayObject(ArrayHeader cis ref ) ,

`pt(pi) ct⇒ ct,

`ct(cis) ob⇒ ClassObject super ,

`b2b(cit = cis∨cit∈range(super)) b⇒ v,

`os⊕ {sp− 1 7→ v} os⇒ os′

[aainstanceof] `〈aainstanceof cit, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp− 1, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isArrayObject(ha(r))∧
pi ∈ progIdrange∧cis ∈ classIdrange;

The three instructions checkcast, acheckcast and aacheckcast below handle,
regular objects, array objects of primitive and non-primitive types respectively
in the same way as the three ‘instance of’ instructions above.
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The checkcast instruction permits a null reference to be cast to any other
reference. Otherwise instanceof is used to determine whether the cast is accept-
able. The operand stack is unaffected.

`p2s(os(sp− 1), os(sp)) s⇒ r

[checkcast0] `〈checkcast ci, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp, os〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧r = nullreference ;

`〈instanceof ci, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp′, os′〉,
`os′(sp′) b⇒ v

[checkcast1] `〈checkcast ci, sp, os, hp, ha, pi, pt〉 instance⇒ 〈sp, os〉,
if v = 1;

The two instructions acheckcast and aacheckcast rely on the appropriate
‘instance of’ instructions in a similar way. They are not shown here.

4.20 Loading and Storing Object Fields

The two ‘get’ instructions below load a value from an object field onto the
operand stack. The two ‘put’ instructions serve to store a field with a byte or a
short. There are no agetfield or aputfield instructions. The side conditions check
for stack underflow, null references, or a reference to an object of the wrong type.
Illegal field indices should be detected by the static semantics.

`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ RegularObject oh ft,

`ft(i) b⇒ v

[bgetfield] `〈bgetfield i, sp, os, ha〉 getfield⇒ 〈sp− 1, os⊕ {sp− 1 7→ v}〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r));

`p2s(os(sp− 1), os(sp)) s⇒ r,

`ha(r) ob⇒ RegularObject oh ft,

`(ft(i), ft(i + 1)) p⇒ (hi, lo),
`os⊕ {sp− 1 7→ hi} ⊕ {sp 7→ lo} os⇒ os′

[sgetfield] `〈sgetfield i, sp, os, ha〉 getfield⇒ 〈sp, os′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r));
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`p2s(os(sp− 2), os(sp− 1)) s⇒ r,

`os(sp) b⇒ v,

`ha(r) ob⇒ RegularObject oh ft,

`ft⊕ {i 7→ v} ft⇒ ft′,

`ha ⊕ {r 7→ RegularObject oh ft′} ha⇒ ha′

[bputfield] `〈bputfield i, sp, os, ha〉 putfield⇒ 〈sp− 3, ha′〉,
if (sp− 2 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r));

`p2s(os(sp− 3), os(sp− 2)) s⇒ r,

`(os(sp− 1), os(sp))
p⇒ (hi, lo),

`ha(r) ob⇒ RegularObject oh ft,

`ft⊕ {i 7→ hi} ⊕ {i + 1 7→ lo} ft⇒ ft′,
`ha⊕ {r 7→ RegularObject oh ft′} ha⇒ ha′

[sputfield] `〈sputfield i, sp, os, ha〉 putfield⇒ 〈sp− 4, ha′〉,
if (sp− 3 . . . sp) ⊆ stackPointerrange∧
r ∈ heapPointerrange∧isRegularObject(ha(r));

4.21 Loading and Storing Static Objects

Static objects are kept in the static area. The instructions bgetstatic, sgetstatic,
bputstatic, and sputstatic are used to manipulate static objects.

`p2s(hir, lor)
s⇒ i,

`sa(i) b⇒ v,

`os⊕ {sp + 1 7→ v} os⇒ os′

[bgetstatic] `〈bgetstatic hir lor, sp, os, sa〉 getstatic⇒ 〈sp + 1, os′〉,
if (sp + 1) ∈ stackPointerrange;

`p2s(hir, lor)
s⇒ i,

`(sa(i), sa(i + 1))
p⇒ (hiv, lov),

`os⊕ {sp + 1 7→ hiv} ⊕ {sp + 2 7→ lov} os⇒ os′

[sgetstatic] `〈sgetstatic hir lor, sp, os, sa〉 getstatic⇒ 〈sp + 2, os′〉,
if (sp + 1 . . . sp + 2) ⊆ stackPointerrange;

`p2s(hir, lor)
s⇒ i,

`os(sp) b⇒ v

[bputstatic] `〈bputstatic hir lor, sp, os, sa〉 putstatic⇒ 〈sp− 1, sa⊕ {i 7→ v}〉,
if sp ∈ stackPointerrange;
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`p2s(hir, lor)
s⇒ i,

`(os(sp− 1), os(sp))
p⇒ (hiv, lov),

`sa⊕ {i 7→ hiv} ⊕ {i + 1 7→ lov} sa⇒ sa′

[sputstatic] `〈sputstatic hir lor, sp, os, sa〉 putstatic⇒ 〈sp− 2, sa′〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

4.22 Miscellaneous Instructions

The breakpoint instruction pops the top two elements of the operand stack,
interprets them as the high and low byte of a short and appends the short to
the output stream.

outputStream ≡ [short];

`p2s(os(sp− 1), os(sp)) s⇒ v

[breakpoint] `〈breakpoint, sp, os, output〉 breakpoint⇒ 〈sp− 2, output++[v]〉,
if (sp− 1 . . . sp) ⊆ stackPointerrange;

4.23 Combining the Rules

The semantics of the 25 subsets of the instruction set are specified by as many
different relations, such as const⇒ . These different relations are embedded in the
relation exec⇒ by the rules below. The exec⇒ relation also automatically increments
the program counter by one upon completing the execution of an instruction,
with a few exceptions detailed below.

The separation of the different categories of instructions shows that the speci-
fication is modular: The configuration of the virtual machine has 12 components,
which is quite large. However, the relation for many of the subsets uses only a
small number of components, thus hiding the remaining components.

`〈constInst, sp, os〉 const⇒ 〈sp′, os′〉
[execconst] `〈pc, ca, constInst, sp, os, fp, fa, hp, ha, pi, pt, sa, output〉

exec⇒ 〈pc + 1, sp′, os′, fp, fa, hp, ha, sa, output〉;
Most other relations defining subsets of the instruction set are embedded in

the relation execs⇒ in the same way as shown above. The exception to this rule
is formed by the relations return⇒ , control⇒ , switch⇒ , and invoke...⇒ , which calculate the
new value of the program counter pc′. The automatic increment of the program
counter is thus suppressed.

`〈returnInst, sp, os, fp, fa〉 return⇒ 〈pc′, sp′, os′, fp′〉
[execreturn] `〈pc, ca, returnInst, sp, os, fp, fa, hp, ha, pi, pt, sa, output〉

exec⇒ 〈pc′, sp′, os′, fp′, fa, hp, ha, sa, output〉;
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4.24 Main Semantic Function

The function jsp defines the semantics of a JSP programs the transitive closure
of the relation decode⇒ (below). When given an initial JSP machine configuration,
jsp computes a list of successive configurations that can be inspected.

configuration≡ 〈programCounter, codeArea, stackPointer, operandStack,
framePointer, frameArea, heapPointer, heapArea,
progId, progTable, staticArea, outputStream〉;

jsp :: configuration→[configuration];
jsp s0 = (s0 decode⇒ ∗);

The relation decode⇒ accesses the instruction at the current program counter.
The case analysis by the exec⇒ relation decides to which category the current
instruction belongs and delegates the actual processing of the instruction to the
appropriate embedded relation.

decode⇒ :: (configuration↔configuration);
`〈pc, ca, ca(pc), sp, os, fp, fa, hp, ha, pi, pt, sa, output〉
exec⇒ 〈pc′, sp′, os′, fp′, fa′, hp′, ha′, sa′, output′〉

[decode] `〈pc, ca, sp, os, fp, fa, hp, ha, pi, pt, sa, output〉
decode⇒ 〈pc′, ca, sp′, os′, fp′, fa′, hp′, ha′, pi, pt, sa′, output′〉;

A sample machine configuration such as test (see Section 6) can be supplied
as an argument to jsp.

5 On the Relationship Between the JVM and the JSP

The JSP is essentially a scaled down version of the JVM. However, the JSP
byte codes are not a strict subset of the JVM and translating JVM byte codes
into JSP byte codes presents some interesting problems. This section comments
on the relationship between the two virtual machines and sketches a simplified
process of translating Java class files into the tables required to run JSP code.

The main problem of translating JVM byte codes into JSP bytecodes is the
pervasive use of 32-bit data in Java programs. The translator built by Java Soft
performs a sophisticated analysis to ensure that the computations performed by
the JSP have the same semantics as those carried out by the JVM. The results
of the analysis enable the translator to map certain integers and associated
operations on bytes, and some on shorts. The translator also inserts instructions
to support multiple precision arithmetic when genuine 32-bit integers are needed.

The simplified translation to be described here assumes that all integers can
be represented as shorts. We make no attempt to either identify opportunities
for using bytes or to warn if shorts are too limited.

The translation of Java class files into the tables required by the JSP consists
of the following steps:

– To allocate all statics in the staticArea, to create an index of all application
programs in the progTable, and to gather the code sections of all methods in
the codeArea.
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– For each application program to allocate a classTable.
– For each class to allocate a classObject with its objectHeader , a methodTable,

a superTable, and an interfaceTable, and to decide on the layout of the fields
in the instance of the class.

– For each method to allocate a methodHeader , to gather the byte codes of the
method and to decide on a start address of the method.

– For each word offset, address or integer to convert it into a short. Depending
on the sophistication of the translation process this may simply truncate all
values, or restructure the byte code to deal with values that cannot be fit
into 16 bits.

– For each instruction to convert it as indicated below.

To present the translation of individual JVM byte codes into JSP byte codes
in a reasonably succinct manner we use the following abbreviations:

– byte, short, index, params and address stand for numeric values in the appro-
priate range.

– class, field, method, and static stand for the appropriate name.
– [a|b|c] stands for exactly one of the words a, b or c.

We list all JVM instructions [7] (on the left), and describe the equivalent
JSP instruction or sequence of instructions (on the right).

– Constant instructions.
nop = nop;
bipush byte = spush 0 byte;
sipush short = spush(short div 256)(short mod 256);
aconstnull = aconstnull;
iconstm1 = bconst0, bconstm1;
iconst[0|1|2|3|4|5] = bconst0, bconst[0|1|2|3|4|5];
iconst short = bpush(short div 256), bpush(short mod 256);
iconst byte = bpush byte;

– The load, store and increment instructions.
[a|i]load[0|1] = [A|S]load[0|2];
[a|i]load[2|3] = [A|S]load [4|6];
[a|i]load index = [A|S]load(2∗index);
[a|i]store[0|1] = [A|S]store[0|2];
[a|i]store[2|3] = [A|S]store [4|6];
[a|i]store index = [A|S]store(2∗index);
iinc index byte = sinc(2∗index)byte;

– Stack instructions.
dup = dup2;
dup x [1|2] = dup x(2∗16 + [2|4]);
dup2 = dup x(4∗16 + 4);
dup2 x [1|2] = dup x(4∗16 + [6|8]);
pop = pop2;
pop2 = pop2, pop2;
swap = swap2;
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– Array creation, load and store instructions.
anewarray class = anewarray class;
newarray [boolean|byte|short|int] = newarray [bit|byte|short|short];
arraylength = arraylength;
[a|b|i|s]load = [A|B|S|S]load;
[a|b|i|s]store = [A|B|S|S]store;

– Instructions for arithmetical, logical and conversion operations.
i[add|sub|mul|div|rem] = S[add|sub|mul|div|rem];
i[shl|shr|ushr] = S[shl|shr|ushr];
i[and|or|xor] = S[and|or|xor];
i2b = s2b;
i2s = nop;

– The JVM Conditional branches translate into a number of JSP instructions.
ifnonnull address = aconstnull, acmp, ifne address;
ifnull address = aconstnull, acmp, ifeq address;
if[a|i]cmp[eq|lt|gt|ne|ge|le] address = [A|S]cmp, If[eq|lt|gt|ne|ge|le] address;
if[eq|lt|gt|ne|ge|le] address = s2b, If[eq|lt|gt|ne|ge|le] address;
goto address = goto address;

– The JVM instructions tableswitch and lookupswitch are variable length in-
structions. The tables may contain an arbitrary number of index/target or
key/target pairs.
tableswitch from to default{index 7→ address} =
tableswitch default from to{index 7→ address};

lookupswitch size default{index 7→ (key, address)} =
lookupswitch default size{index 7→ (key, address)};

– Exception handling.
athrow = athrow;
jsr address = jsr address;
ret index = ret(2∗index);

– Instructions for method invokation.
invokeinterface params class method = invokeinterface params class method;
invokespecial address = invoke address;
invokestatic address = invoke address;
invokevirtual params method = invokevirtual params method;
[a|i]return = [A|S]return;
return = return;

– Instructions for object creation and manipulation.
new class = new class;
instanceof class = instanceof class, b2s;
checkcast class = checkcast class;
getfield field = sgetfield field;
putfield field = sputfield field;
getstatic static = sgetstatic static;
putstatic static = sputstatic static;

– Miscellaneous instructions.
breakpoint = breakpoint;
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– All other JVM instructions are unsupported. These are jsr w, goto w, wide,
monitorenter, monitorexit, multianewarray, and all instructions involving char-
acter, long, float, and double data types.

We use SUN’s Java compiler from the Java Development Kit version 1.1 to
generate class files from sample Java programs. The translations sketched above
have been implemented as a simple sed/awk script, such that the results of the
translation can be used as sample input for the main semantic function jsp. This
will be explored briefly in the next section.

6 A Sample Program

We have written a suite of simple Java programs, varying from quick sort to
specific tests for the object system, to validate aspects of the semantics. The
workings of the JSP semantics is best illustrated by exposing some details of a
representative program from our suite. The program below is a slightly modified
version of [4, Page 48]. The two calls to println have been added to show that
the program is working. Furthermore we have added the call to setColor to
demonstrate the workings of multiple inheritance.

public class Point{ int x, y; } ;

public interface Colorable {
void setColor( byte r, byte g, byte b) ;

}

public class ColoredPoint extends Point implements Colorable {
byte r,g,b;
public void setColor( byte rv, byte gv, byte bv ) {

r = rv ; g = gv; b = bv ;
}

}

public class test {
public static void main( String [] args ) {

Point p = new Point() ;
ColoredPoint cp = new ColoredPoint() ;
p = cp ;
System.out.println( p.x ) ;
Colorable c = cp ;
c.setColor( (byte) 0, (byte) 1, (byte) 2 ) ;
System.out.println( cp.b ) ;

}
}
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The 12 components of the JSP virtual machine configuration necessary to exe-
cute test.main are initialised as follows:

program counter The program counter is initialised to 0.
code area The code for all methods to be executed by the current application

program (which includes the initialiser for java.lang.Object) is gathered in
the code area. An extra instruction at address zero is added to the code
area whose task it is to invoke the main method. This is represented as
0 7→ (invoke s2p(test.mainpc))

stack pointer The initial value of the stack pointer is argc.
argc :: stackPointer;
argc = 1;

operand stack Initially the operand stack is the same as argv.
argv :: operandStack;
argv = {0 7→ 0, 1 7→ 0};

frame pointer The initial value of the frame pointer is −1, to indicate that
the frame area is initially empty.

frame area The initial frame area is empty.
heap pointer The initial heap pointer is −1, indicating an empty heap.
heap The heap is initially empty.
application program index testpi is the index in the application program ta-

ble of the current application program. The formal specification presently
does not specify a mechanism for switching application programs.

application program table machinept is the machine wide mapping from ap-
plication program ids to a class tables, providing one class table per appli-
cation program.

Static area machinesa is the machine wide area used to store static values. The
sample program does not have any static values.

Initial output The initial output stream is empty.

test :: configuration;
test = 〈0, {0 7→ invoke(s2p(test.mainpc))} ∪ machineca,

argc, argv, − 1, {}, − 1, {}, testpi, machinept, machinesa, []〉;

The JSP byte codes for the main method of class test are shown below. Instead
of calling the println method of the library class System, we use the breakpoint
instruction to inspect the configuration of the machine.
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test.mainca :: codeArea;
test.mainca = {test.mainpc − 1 7→MethodHeader False False 8 2 6,

test.mainpc + 0 7→ new Pointci,
test.mainpc + 1 7→ dup2,
test.mainpc + 2 7→ invoke(s2p Point.initpc),
test.mainpc + 3 7→ astore2,
test.mainpc + 4 7→ new ColoredPointci,
test.mainpc + 5 7→ dup2,
test.mainpc + 6 7→ invoke(s2p ColoredPoint.initpc),
test.mainpc + 7 7→ astore 4,
test.mainpc + 8 7→ aload 4,
test.mainpc + 9 7→ astore2,
test.mainpc + 10 7→ nop,
test.mainpc + 11 7→ aload2,
test.mainpc + 12 7→ sgetfield Point.xfi,
test.mainpc + 13 7→ breakpoint,
test.mainpc + 14 7→ aload 4,
test.mainpc + 15 7→ astore 6,
test.mainpc + 16 7→ aload 6,
test.mainpc + 17 7→ bconst0, test.mainpc + 18 7→ bconst0,
test.mainpc + 19 7→ bconst0, test.mainpc + 20 7→ bconst1,
test.mainpc + 21 7→ bconst0, test.mainpc + 22 7→ bconst2,
test.mainpc + 23 7→ invokeinterface 8 Colorableii Colorable.setColormi,
test.mainpc + 24 7→ nop,
test.mainpc + 25 7→ aload 4,
test.mainpc + 26 7→ sgetfield ColoredPoint.bfi,
test.mainpc + 27 7→ breakpoint,
test.mainpc + 28 7→ return};

The execution of the program can be expressed simply as jsp(test). The latos
tool makes it possible to trace the execution of the program, and to experiment
with different initial configurations.

The program starts by creating two heap objects, one representing a Point
and the second representing a ColoredPoint. The objects are properly initialised
by a chain of calls to the initialisers of the super classes. The most interesting
instruction is the invokeinterface, which has to discover that the instance of
ColoredPoint indeed implements the setColor method.

The program causes two values to be appended to the output stream (via
the breakpoint instruction). The values are 0 (because the coordinates of the
class Point are initialised to 0) and 2 (because ColoredPoint.setColor assigns this
value to the field cp.b).
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7 Conclusions and Future Work

The result of formalising the operational semantics of the JSP is a specification
that is:

– succinct, because it is shorter and more detailed than the natural language
documents.

– clear, because the rules are not open to more than one interpretation.
– executable, because a program can be generated automatically from the

specification, which can subsequently be executed to validate and explore
the behaviour of sample Java programs.

– consistent, because the tools available for the notation used check well
formedness, types and source dependency.

– modular, because sub sets of rules can be considered in isolation.
– large, because it has to cope with 25 groups of 124 different JSP instructions.
– not difficult to read, because the rules describing the semantics of many

instructions are similar.

The fact that our specification is executable allows implementors to experi-
ment with Java programs and byte codes, inspect the configuration of the JSP
and generally sharpen their understanding of the mechanisms. Without tool sup-
port it would be impossible to construct a derivation tree for anything but the
most trivial Java programs. With the help of our latos tool, our specification
could be used to automatically construct derivation trees for small to medium
sized programs.

We hope to be able to make our complete specification available on the Web,
so that others may down load the specification and the latos tool and use these
resources whilst implementing a JSP.

In future we hope to gain access to a complete operational semantics of
the JVM, formally specify the JVM to JSP translator and attempt to give a
correctness proof of the translator with respect to the semantics of the JVM
byte codes and that of the JSP byte codes.

We have not considered the static semantics of a JSP, that is a specification of
properties of JSP programs that can be be checked statically, for example by the
JVM to JSP byte code translator, or the byte code verifier. An important goal
would be to investigate which static properties of the JVM that are preserved by
the JVM to JSP translator. The work of Stata and Abadi [10] offers a promising
basis for this.
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Abstract. We propose in this paper a definition of the semantics of
Java programs which can be used as a basis for the standardization of
the language and of its implementation on the Java Virtual Machine.
The definition provides a machine and system independent view of the
language as it is seen by the Java programmer. It takes care to directly
reflect the description in the Java language reference manual so that the
basic design decisions can be checked by standardizers and implementors
against a mathematical model.
Our definition is the basis for a related definition we give in a sequel to
this paper for the implementation of Java on the Java Virtual Machine as
described in the language and in the Virtual Machine reference manuals.

1 Introduction

In this chapter we formalize the semantics of Java by a system independent,
purely mathematical yet easily manageable model, which reflects directly the
intuitions and design decisions underlying the language as described in Java’s
language reference manual (LRM) [19]. Our goal is to contribute to a rigorous
yet readable definition of the entire language, which supports the programmer’s
understanding of Java programs. At the same time the definition should provide
a basis for the standardization and clarification of critical language features, for
the specification and evaluation of variations or extensions of the language and
for the mathematical analysis and comparison of Java implementations. In par-
ticular we aim for a model that is amenable to both mathematical and computer
assisted proofs and to experimental validation of the correctness of compilation
schemes to Java Virtual Machine (JVM) code and of safety properties of Java
programs when executed on the JVM.

These goals oblige us to abstract the central ideas of Java’s LRM into a trans-
parent but rigorous form, whose adequacy can be recognized (or falsified in the
sense of Popper[29]) by inspection, i.e., by a direct comparison of the mathemat-
ical definitions with the verbal descriptions in the manual (see the discussion on
? A preliminary version of this paper has been presented to the IFIP WG 2.2 Meet-
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ground models in [2]). To be able to establish the required simplicity and faith-
fulness of such abstractions, one needs a modeling technique which provides the
following two possibilities:

– to express the basic language concepts (its objects and operations) directly,
without encoding, i.e., as abstract entities as they appear in the LRM,

– to model basic actions on the level of abstraction of the LRM, i.e., as local
modifications with clear preconditions and effects and avoiding any a priori
imposed static representations of actions-in-time.

Gurevich’s Abstract State Machines (ASMs), previously called Evolving Al-
gebras, see [20], provide the fundamental concept for such a modeling technique.
ASMs have been successfully used to model the semantics and implementation
of programming languages as different as Prolog [10,11], Occam[6,5], VHDL [7],
C++[36] and others. Furthermore, ASMs are effective in modeling architectures
[4,8], protocols [21,1], control software [3,9], and by being amenable to execution
(see for an ASM interpreter [17]) they can be used for high-level validation. See
[2] for a survey. ASMs have a simple mathematical foundation [20], which jus-
tifies their intuitive understanding as “pseudo-code over abstract data” so that
the practitioner can use them correctly and successfully without having to go
through any special formal training. Therefore we invite the reader to go ahead
with reading our specification and to consult the formal definition of ASMs in
[20] only should the necessity arise.

We formally define the semantics of Java by providing an ASM which in-
terprets arbitrary Java programs. A Java program consists of a set of classes.
In the use of a class there are three phases: parsing, elaboration, and execu-
tion. Parsing determines the grammatical form yielding an abstract syntax tree.
Elaboration, the static phase, determines whether the class is well-typed and
well-formed and records such information as annotations in the abstract syntax
tree. Execution, the dynamic phase, loads, links, and executes the code of the
class by evaluating expressions and modifying the memory. Corresponding to
these phases, a full mathematical definition of Java needs a grammar, a static
and a dynamic semantics. The grammar is well defined in the LRM [19]. Numer-
ous authors have formalized the static semantics of sequential Java, in particular
its type soundness [18,26,31,35]. The dynamic semantics given in these papers
cover only a small structured sublanguage of sequential Java and do not con-
sider the interaction of jump statements (like break), exception handling and
concurrency, which we treat in full. We therefore concentrate in this paper on a
complete but nevertheless transparent mathematical definition of the dynamic
semantics of Java.

Two features characterize our modeling of the dynamics of Java programs: it
is run-time instead of syntax oriented and it comes with a systematic separation
of static and dynamic concerns.

To let the dynamic aspects stand out as clearly as possible, we relegate
compile-time matters to static functions as much as we can without making the
specification unreadable for the Java practitioners with no training in formal
methods. As is well known such a separation of statics and dynamics also lays
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the ground for efficient implementations of the static features for program inter-
pretation and for the generation of program debuggers, animation tools etc. (see
for example [28]). In addition it has led to an interesting and novel integration,
into ASM specifications, of various useful methods from functional programming
and algebraic specifications for the definition of static (compile-time) functions.

After some experimentation we decided to strictly stick to a run-time and not
syntax-directed modeling. Structural methods (like SOS [27], natural semantics
[22], action semantics [25], etc.) are known to work well for the definition of
languages where the control flow essentially follows the syntax (tree) structure
with only little involvement of environment information (as is the case for exam-
ple for purely functional languages or for strongly syntax supported languages).
Structural methods offer however no advantage in cases of languages like Java
where the participation of the run-time environment in determining the program
control flow becomes more complex and when concurrency features—which are
not syntax driven—enter the scene. The decision for a strictly process-oriented
modeling throughout the entire Java language provides the programmer with
a uniform view of the intricate interaction of the different language features
like jumps, returns, exceptions, concurrency and synchronization. The use of
ASMs makes this view particularly transparent (and thus easily comparable
with the verbal explanations in the LRM): ASM specifications concentrate on
local changes which avoids having to carry, for a given action, global contexts
which remain constant for this action.

Before we proceed to the technical overview of the paper we want to make
clear that our paper is not an introduction to (programming in) Java; the in-
tended reader is familiar with Java: a programmer, a standardizer, implementor
or teacher who looks for a rigorous but easy to understand language definition.

1.1 Overview

To make the complete dynamic semantics of Java manageable, we factor it into
five sublanguages, by isolating orthogonal language features, namely imperative,
procedural, object-oriented, exception handling and concurrency features. This
can be made in such a way that each corresponding ASM model is a conservative
extension of its predecessor. We found it interesting to discover at a later stage
of our work on the Java language that an analogous modular decomposition can
be given also for models of the JVM [14].

Section 2 defines the basic ASM JavaI for Java’s imperative core, which
is essentially a while language. It contains statements and expressions over
Java’s primitive types. This section provides an introduction to our approach
and notation.

In Sect. 3, we upgrade JavaI to JavaC by including Java’s classes; JavaC
supports class fields, class methods, and class initializers. Thus, JavaC defines an
object-based sublanguage of Java, which supports procedural abstraction and
(module-) global variables.
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In Sect. 4, we extend JavaC to JavaO by including Java’s (real) object-oriented
concepts, namely instances, instance creation, instance field access, instance
method calls with late binding, casts, and null pointers.

Section 5 extends JavaO with exceptions, resulting in the model JavaE . We
specify which exception will be thrown when semantic constraints are violated.
We introduce Java’s throw and try/catch/finally statement, and we exhibit
the interaction of exception handling with other language constructs.

In Sect. 6, we move from sequential Java to concurrent Java, the correspond-
ing ASM model JavaT introduces Java’s lightweight processes, called threads,
their synchronization mechanism using locks, and their stopping, waiting and
notification mechanism. We study two complementary memory models: the first
one uses only the main memory for storing objects, the second model uses the
local working memory as much as possible. For ‘best practice programs’ both
agree.

In order not to lengthen the definition of our models by tedious and routine
repetitions, we skip those language constructs (in particular in JavaI), which
can easily be reduced to the core constructs dealt with explicitly in our models;
examples are alternative control structures (like for, do, switch), pre- and post-
fix operators (++,--), conditional operators (&&,||), assignments combined with
operations (+=, -=, etc.), variable initialization and similar expressive sugar. And
since most of the object-oriented concepts of JavaO apply equally well to arrays
and strings, we do not treat them either.

We do not consider Java packages, compilation units, and the visibility of
names. We abstract from these aspects because they do not influence the dy-
namic semantics. We do not deal with input/output questions. We also do not
consider the loading and linking of classes nor garbage collection. This is in
accordance with the usual understanding of the dynamic semantics of program-
ming languages. Yet, in Java these aspects are semantically visible: Dynamic
loading and linking might raise exceptions, and in the presence of finalize
methods also garbage collection is semantically visible. We plan to include these
interesting aspects in later stages of the project.

2 The Imperative Core of Java

In this section we define the basic model JavaI, which defines the semantics
of the sequential imperative core of Java with statements (appearing in Java’s
method bodies) and expressions (appearing in statements) over Java’s primitive
types.

2.1 Signature

For each of our models we start with an arbitrary but fixed Java program. We
separate standard compile-time matters from run-time issues by assuming that
the program is given in a form in which it appears after parsing and elaboration,
namely as an annotated abstract syntax tree. In this way we can abstract from
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Fig. 1 Abstract Java Syntax for JavaI

Exp ::= Lit | Uop Exp | Exp Bop Exp | Var | Var = Exp | Exp? Exp : Exp :

Stm ::= ; | Exp; | Lab : Stm | break Lab; | continue Lab;

| if (Exp) Stm else Stm | while (Exp) Stm | Block

Block ::= {Type Var ; . . .Type Var ;Stm . . .Stm}
Phrase ::= Exp | Stm | finished

the peculiarities of Java’s concrete syntax and rely upon a series of useful syn-
tactical simplifications which will be mentioned as we proceed in building our
models.

The abstract syntax of Java’s imperative core is defined in Fig. 1. It can also
be viewed as defining corresponding domains (also called universes) of JavaI . Al-
though in our ASM’s we will extend some of these domains by a small number of
auxiliary constructs which do not appear in Java’s syntax, we use the names of
Java’s grammatical constructs also as names for the corresponding (extended)
ASM universes. We are sure the reader will be thankful for the simplified nota-
tion provided by this naming convention. Usually we denote domains by words
beginning with a capital letter and write dom for elements of Dom, i.e. assum-
ing without further mentioning that dom ∈ Dom. Figure 1 uses some additional
universes, which represent basic syntactic constructs of Java, namely:

Lit ,Bop,Uop,Type ,Var ,Lab

for Java’s literals (except strings), Java’s binary operators (except assignment
and not including conditional operators), Java’s unary operators (except prim-
itive cast and pre- and postfix operators, but including all primitive widening
and narrowing conversions), Java’s primitive types, local variables, and labels,
respectively.

As a result of the parsing and elaboration of the given Java program, no
variable is declared twice, i.e., there are no hidden variables; all conversions are
made explicit by applying the corresponding unary conversion operator; local
variable initializers are syntactically reduced to ordinary assignments, following
the variable declarations, which are all shifted to the beginning of blocks.

To separate as much as possible the dynamic (run-time) aspects from the
static aspects the compiler (parsing and elaboration) can take care of, we use
the idea (which is taken from the work on Occam [6]) to view program execution
by a thread as a walk of the thread through the program’s annotated abstract
syntax tree: at each node the corresponding task is executed and then the control
flow proceeds to the next task. The reader should keep in mind that the nodes
represent occurrences of program constructs (phrases) and that all the functions
we are going to define are defined on such occurrences of program constructs.
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The following dynamic function task , an abstract program counter, always points
to the current phrase to execute.

task : Phrase

The abstract program counter task must be updated according to Java’s con-
trol flow. For sequential Java the control flow is fixed. As a matter of fact, for
any statement and expression the LRM defines which substatement or subex-
pression to evaluate first and which expression or statement—depending on the
context—to evaluate next (if any). This is captured by the following two static
functions fst and nxt , which yield finished, if there is no first or next phrase
to execute. (The definition of these functions, belonging to the compiler, will be
given below by a recursion on abstract syntax trees.)

fst ,nxt : Phrase → Phrase

Proceeding from one task to the next task in accordance to Java’s (uncondi-
tional) control flow is thus reduced to the following macro:

proceed ≡ task := nxt(task)

Statement execution and side-effects of expression evaluation typically up-
date the local environment, formalized (for JavaI) using a dynamic function

loc : Var → Value

which captures the association between local variables and their values (bound
to the given method activation). The universe Value, defined by

Value ::= Bool | Integers | Floats

contains Java’s primitive values: booleans, integers in specific ranges, and float-
ing point numbers according to IEEE 754. For simplicity, we identify Java’s
booleans with the corresponding ASM values true and false, and abbreviate in
our formulae often bool = true to bool .

The storage of intermediate values of expressions, which are computed to be
used as arguments or operands in larger expressions or to affect the conditional
control flow among statements, is formalized using a dynamic function on the
subset Exp of Phrase:

val : Exp → Value

This concludes the definition of the signature of JavaI . Minor additions per-
taining only to some special constructs will be presented in the corresponding
sections.
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2.2 Transition Rules

Transition rules describe how the states of JavaI, here its dynamic functions
task , loc, and val , change over time by evaluation of expressions and execution
of statements.

The initial state of JavaI is defined by the given phrase, which defines also
the static functions fst and nxt . In particular, we assume that nxt(phrase) =
finished. task points to the first phrase to be executed, formally task =
fst(phrase). The functions loc and val are everywhere undefined.

The run terminates, if no rule can be executed, because the preconditions of
all rules evaluate to false. If the execution completes normally, i.e., without any
run-time violation, the ASM reaches: task = finished.

Expressions

The expressions of Java’s imperative core—except the conditional operators—are
evaluated from left to right and from innermost to outermost. This is described
in Chap. 15.6 of Java’s LRM [19]. (In the remainder of this chapter, we will
abbreviate citations like this one using the ‘§’ sign, writing (§ 15.6) to cite the
corresponding chapter of the LRM. This should help the reader to check the
correctness of our ASM formalization by comparing it with the LRM.)

We capture this ‘postfix’ evaluation order as follows: When the expression exp
is going to be executed, we start with task pointing to fst(exp), then we repeat
applying nxt on task until task points to exp. During this process, we evaluate
any expression to which task points and assign the computed expression value
to the task using val .

This evaluation order is reflected in the recursive definition of the functions fst
and nxt : If the expression exp does not have any subexpression, we set fst(exp) =
exp. Otherwise let exp have the form f (exp1 , . . . , expn), where f denotes any n-
ary expression constructor, but not the conditional expression. We set fst(exp) =
fst(exp1), nxt(expi ) = fst(expi+1), 0 < i < n, and nxt(expn ) = exp. For the
special case of conditional expressions, see below.

This establishes the required control flow. It remains to specify the normal
evaluation of expressions (in JavaI constants and operator terms, variables and
conditional expressions) by transition rules.

Evaluating constants and operators. The value l̃it of every occurrence lit
of a literal is as defined in § 15.7.1. Its dynamic semantics is defined by the
following transition rule:

if task is lit then

val(task) := l̃it
proceed

(Literal)

The macro ‘is’, defined below, tests whether task points to lit . The macro
will be refined for JavaT .
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task is phrase ≡ task = phrase

The reader should keep in mind that by our typing convention for elements
of universes, task is lit stands for task = lit ∧ lit ∈ Lit . lit stands for a variable,
which has to be instantiated by an element of Lit . Similarly for all rules below.

The value of a unary expression with operation symbol � is defined by apply-
ing the corresponding semantic operation �̃—a static function for JavaI , which
is defined in the LRM—on the result of the operand (§ 15.13, 15.14)

if task is (�exp) then

val(task) := �̃(val(exp))
proceed

(UnaryExp)

The value of a binary expression with operation symbol ⊗ is defined by ap-
plying the corresponding semantic operation ⊗̃ on the results of both operands.
The rule cannot be executed, if the binary operator is an integer division or re-
mainder operation (denoted by / and %), and the value of the second operand is
0 (§ 15.13, 15.14). (See Sect. 5 BinaryExp for the exception case.) The transition
rule is defined by:

if task is (exp1 ⊗ exp2) ∧ (⊗ ∈ {/, %} ⇒ val(exp2) 6= 0) then

val(task) := val(exp1)⊗̃val(exp2)
proceed

(BinaryExp)

Using variables. The value of a variable is the value bound under the name
of the variable in the local environment (§ 15.13.1).

if task is var then
val(task) := loc(var)
proceed

(VarAcc)

The value of a simple assignment expression is the value of its right hand
side. The execution of the assignment operator replaces the existing value bound
under the name of the variable of the left hand side in the local environment by
the result of the right hand side (§ 15.25.1).

if task is (var = exp) then
loc(var) := val(exp)
val(task) := val(exp)
proceed

(VarAss)

Evaluating conditional expressions. To determine the value of a conditional
expression requires two steps. The condition is evaluated first: if its value is true,
the value of the conditional expression is the value of the second expression,
otherwise it is the value of the third expression (§ 15.22–24).

Processing a phrase in several steps means that we have to associate several
rules with the same phrase, which are executed at different times. In order to
distinguish the rules syntactically, we associate the rules not only with the single
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Fig. 2 Normal control flow of a conditional expression / block

let exp = exp1? exp2 : exp3 : in
fst(exp) = fst(exp1)
nxt(exp1) = exp
nxt(expi) = expi :, i ∈ {2, 3}

let stm = {type var ; . . . ; stm1 . . . stmn} in
fst(stm) = fst(stm1)
nxt(stmi) = fst(stmi+1), 0 < i < n
nxt(stmn) = nxt(stm)

phrase but with (some of) its subphrases, too. Here, we associate a rule with
the conditional expression and one with the auxiliary subphrases of form (exp :).
The static control flow is defined in Fig. 2.

The rule for the condition triggers the evaluation of the second or third
expression.

if task is exp1?exp2 : exp3 : then
if val(exp1) then task := fst(exp2)

else task := fst(exp3)

(IfExp)

The rule for the second and third expression assigns the value of the evaluated
subexpression to the immediately enclosing conditional expression and proceeds.

if task is exp : then
val(if (task)) := val(exp)
task := nxt(if (task))

(ThenElseExp)

The auxiliary static function if always points from a then or else (sub-) expres-
sion to its father, namely the conditional expression.

Statements

The sequence of execution of a Java program is controlled by statements. We
distinguish in JavaI three statement kinds: those which transfer control uncon-
ditionally, those which transfer control conditionally, and those which transfer
control abruptly. The latter are described in Sect. 2.3.

Unconditional transfer of control. Statements whose only effect is to trans-
fer control unconditionally do not have transition rules – their effect is already
precompiled into the functions fst and nxt .

A block is executed by executing each of the statements in order from first
to last (§ 14.2), see Fig. 2. We abstract from executing variable declarations
because in our ASM the assignment of a value to a variable implicitly enlarges
the domain of the environment, provided the variable is not already in the envi-
ronment’s domain. Variable access is always defined, since the elaboration phase
assures—due to the rules of definite assignment (§ 16)—that every local variable
is assigned before it is used. We can also abstract from deleting variables from
the environment, because we know that in the annotated syntax tree no variable
is declared twice.
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Fig. 3 Normal control flow of an empty statement / an expression statement /
a labeled statement

let stm = ; in
fst(stm) = nxt(stm)

let stm = exp; in
fst(stm) = fst(exp)
nxt(exp) = nxt(stm)

let stm = lab : stm1 in
fst(stm) = fst(stm1)
nxt(stm1) = nxt(stm)

Fig. 4 Normal control flow of if/ while

let stm = if (exp) stm1 else stm2 in
fst(stm) = fst(exp)
nxt(exp) = stm
nxt(stmi) = nxt(stm), i ∈ {1, 2}

let stm = while (exp)stm1 in
fst(stm) = fst(exp)
nxt(exp) = stm
nxt(stm1) = fst(exp)

An empty statement does nothing (§ 14.5). The control flow simply skips the
empty statement. Figure 3 shows its control flow.

An expression statement is executed by evaluating the expression (§ 14.7).
Figure 3 shows its control flow. (In the JVM an additional action is taken to
discard the value because it is not needed furthermore.)

A labeled statement is executed by executing the immediately contained state-
ment (§ 14.6), see Fig. 3.

Conditional transfer of control. An if-else statement is executed by first
evaluating the expression. Execution continues by making a choice based on the
resulting value. If the value is true, the first contained statement is executed,
otherwise the second contained statement is executed (§ 14.8). Figure 4 captures
the static aspect of the control flow. The dynamic aspect is described by the
following transition rule:

if task is if (exp) stm1 else stm2 then
if val(exp) then task := fst(stm1)

else task := fst(stm2)

(IfStm)

A while statement is executed by first evaluating the expression. Execution
continues by making a choice on the resulting value. If the value is true, then the
contained statement is executed, otherwise no further action is taken (§ 14.10),
see Fig. 4 for the definition of fst and nxt .

if task is while (exp) stm then
if val(exp) then task := fst(stm)

else task := nxt(task)

(While)
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2.3 Abrupt Transfer of Control

The preceding subsection describes the normal control flow, in which certain
steps of computations are carried out. Normal control flow can be abrupted
in JavaI by the restricted jump statements break and continue. Upon switch
from normal to abrupted mode, the execution of one or more phrases may be
terminated before all steps of their normal mode of execution have completed,
e.g., only part of the statements of a block are executed because a break or
continue was encountered which transfers control out of the block. Phrases
which do not terminate normally are said to complete abruptly. In the later
extensions abrupt completion can also be due to return from procedure execution
(in JavaC) or to raising and handling of exceptions (in JavaE ).

Signature. Any abrupt completion always has an associated reason, which in
JavaI is a break or continue with a given label. For a uniform formulation of
these interrupts (which supports the process oriented view of interrupt descrip-
tion in the LRM) we introduce a universe

Reason ::= Break(Lab) | Continue(Lab)

(to be extended in JavaC and JavaE ) together with a dynamic function

mode : Reason

which records whether the current mode is normal (mode is undefined) or ab-
rupted, due to a Break or a Continue with a specific label.

When execution is abrupted control transfers up the grammatical nesting
level. To formalize this we use an auxiliary function

up : Phrase → Phrase

which applied to a phrase returns the next enclosing phrase for a given phrase,
which might handle the reason for abruption. (We say that phrase A is enclosed
by phrase B , if B contains A.)

In JavaI up points only to labeled statements. Formally, let c be any n-ary
phrase constructor but not a labeled statement, i.e. phrase = c(phrase1, . . . ,
phrasen), then we set up(phrasei ) = up(phrase), 1 ≤ i ≤ n. If phrase denotes
a labeled statement, i.e. phrase = lab : stm1, we set up(stm1) = phrase. And
for the given program up returns finished. (We shall extend this definition for
static, try-catch, try-finally and synchronized clauses, see Sects. 3, 5 and
6).

The function up is used to update the dynamic function task , formalized by
the macro:

abrupt ≡ task := up(task).

The function up supports the uniform treatment of different forms of inter-
rupts: in each of them the control flow is transfered up the grammatical nesting
level and then up the method invocation stack. Whereas for break and continue
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the control remains within the given method, for return the control leaves the
current method (see Sect. 3) and for exceptions the control can climb up the
whole method invocation stack (see Sect. 5).

Transition rules. In JavaI a break statement or a continue statement (which
can be assumed to appear in the annotated syntax tree with label lab) transfers
control to the (innermost) enclosing labeled statement having lab as its label—
Java’s context conditions guarantee the existence of such a labeled statement.
This labeled statement, which is called the target, and all statements which
are passed during this transfer complete abruptly, the reason being a Break or
Continue with label lab.

if task is jump lab; then
mode := Jump(lab)
abrupt

for (jump, Jump) ∈ {(break,Break), (continue,Continue)}

(Jump)

If task points to a labeled statement (due to the definitions of fst and nxt
this can happen only in abrupted mode) it is checked whether the label of the
reason agrees with the label of the statement. In case it does, and the reason is
a Break , execution proceeds normally at the next phrase of the target, in case
of a Continue the next iteration of the embedded statement is executed, which
for while statements is the first phrase of the target (§ 14.13,14.14,14.10). (If
we would include do and for statements the following rule has to be refined.)

if task is lab : stm then
if mode = Jump(lab) then

mode := undef
task := jump

else abrupt
for (Jump, jump) ∈ {(Break ,nxt(task)),(Continue ,fst(stm))}

(LabStm)

Jump transfers control immediately to the nearest enclosing matching la-
beled statement. We could have included this into the definition of nxt , avoiding
Jump and LabStm. We prefer to formulate a rule here in order to smoothen
the refinement in the context of exception handling and multithreading where
control may not directly proceed at the first or next phrase of the target but has
to execute certain clauses first, see Sects. 5 and 6.

3 Adding Classes

JavaC enhances JavaI for an object-based language. JavaC includes class fields,
class methods and class initializers. (These entities are also known as static fields,
static methods and static initializers, respectively.) JavaC also supports a limited
form of interfaces, namely its static fields. Conceptually JavaC describes the
semantics of an imperative language supporting modules. Modula2 is a typical
representative of such a language: Class fields are the module’s global variables,
class methods are the module’s procedures and class initializers correspond to
module initializers.



A Programmer Friendly Modular Definition of the Semantics of Java 365

Fig. 5 Abstract Java Syntax for JavaC

Exp ::= . . . | FieldSpec | FieldSpec = Exp | MethodSpec(Exp, . . . ,Exp)

Stm ::= . . . | return Exp; | return;

Phrase ::= . . . | Init

Init ::= static Block endstatic

3.1 Signature

Figure 5 shows JavaC ’s abstract syntax, where ‘. . .’ stands for the constructs of
JavaI . The abstract syntax uses the universes FieldSpec and MethodSpec, which
denote class fields and overloaded class methods, respectively.

FieldSpec = Class × Field

MethodSpec = Class × Method × Functionality

Functionality = Type∗ × (Type | {void})

These type abbreviations use JavaC’s new abstract universes

Class ,Field ,Method

denoting the given program’s fully qualified classes and interfaces, as well as
field and method identifiers, respectively. Furthermore, we extend the universe
Var of JavaI to denote local variables and method parameters.

Unless otherwise stated we will not distinguish classes and interfaces. So
whenever we speak of classes, class fields or class initializers, this normally in-
cludes interfaces, their fields and initializers, respectively.

For the sake of simplicity, but without loss of generality, we assume that due
to the elaboration phase the annotated syntax trees in JavaC have the follow-
ing properties: Method specifications denote the most specific method chosen at
compile-time (§ 15.11.2.2). Every execution path of any method body ends with
a return statement. Any class has a class initializer—its body (whose function
is to initialize the class fields at the first active use of the class, see below) may
be empty. Non constant class field initializations are syntactically reduced to as-
signments and are placed at the beginning of a class initializer. JavaC abstracts
from initializations of constant fields; the latter are final class fields, whose
values are compile-time constants (§ 15.27). The value of constant fields is pre-
computed (as part of the elaboration phase) and stored in the program’s class
and interface environment.

JavaC programs are executed w.r.t. a static class environment, which is set up
during parsing and elaboration. Each class (not interface) declaration consists
of the superclass of the class, of its implemented interfaces, its class fields, class
methods, and its initializer. Due to the fact that interfaces do not contain code,
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an interface declaration consists only of its superinterfaces, its static fields and
its static initializer.

The following static functions look up information in the environment and
either access the environment directly or traverse the inheritance hierarchy from
bottom to top (subtype to supertype):

super : Class → Class

supers : Class → PClass

interfaces : Class → PClass

classInit : Class → Init

classFields : Class → PField

classFieldValue : FieldSpec → Value

classMethod : MethodSpec → Var∗ × Block

The function super returns the direct superclass of the specified class, provided
the class has a superclass. The function supers calculates the transitive closure
of the direct superclass relationship. The function interfaces returns the direct
interfaces of a class. The function classInit returns the body of a class initializer
of the given class. The function classFields returns the set of all fields declared
by the class (which have to be initialized exactly once for the whole class, just
before their first use, as specified in the LRM). The function classFieldValue
maps non-constant class fields to their default values, and constant class fields
to the values of their respective compile-time constant expressions. The function
classMethod looks up the method in the specified class.

In JavaC we distinguish three initialization states for a class: either the ini-
tialization of the class has not yet started, it is InProgress or it is already Done,
so that we introduce a universe

InitState ::= InProgress | Done

together with a dynamic function

init : Class → InitState

which records the current initialization status of a class. A class is ‘initialized’,
if initialization for the class is InProgress or Done. (If the initialization of class
has not yet started, init(class) is undefined.)

initialized(class) ≡ init(class) ∈ {InProgress,Done}
To model the dynamic state of class fields, we have to reserve storage for all

these variables. The dynamic function glo returns the value stored under a field
specification.

glo : FieldSpec → Value

The introduction of methods has a fundamental effect on the definition of
JavaI ’s dynamic objects. During execution of a JavaI (method) body the local
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environment and the value of an expression is computed and both may then
be used in future computation steps (of that method). However, if in JavaC
a method invokes itself recursively, the same statements and expressions are
executed several times, thus ‘overwriting’ the local environment as well as values
of expressions. To handle this properly, we refine the two functions loc and val
by indexing the value of any expression or (local) variable in the environment
with the calling depth of the code in execution. This corresponds to the usual
technique of introducing stacks, to handle recursive method activation. Likewise,
we introduce a task stack, whose topmost element always points to the code in
execution. When a method is invoked, we push the first phrase of the invoked
method onto the stack to resume the task of the invoker after the invoked method
has finished and its task is popped from the stack. The signatures of the modified
dynamic functions of JavaI are extended to finite sequences:

taskO : Phrase∗

valO : (Exp → Value)∗

locO : (Var → Value)∗

During execution of a single method body in JavaI the calling depth does
not change. Hence, task , val and loc of JavaI are guaranteed to be the topmost
elements of the corresponding dynamic functions in JavaC.

task ≡ top(taskO)

val ≡ top(valO)

loc ≡ top(locO)

Via this refinement JavaC can be shown to be a conservative extension of JavaI
(see the conclusion) so that all propositions which are valid for JavaI carry over
mutatis mutandis to JavaC .

To simplify notation in connection with method invocation and return we
introduce frames, denoting triples consisting of the stacks taskO, valO and locO :

frames ≡ (taskO, valO, locO)

Finally, we extend the universe Reason, since return statements always com-
plete the method’s body abruptly. We introduce the new reasons Return and
Result , the latter carrying a specific Value which (eventually, see Sect. 5) be-
comes the value of the method invocation.

Reason ::= . . . | Return | Result(Value)

3.2 Transition Rules

Via the refinement of task , loc and val in JavaC , each JavaI -rule becomes a rule
of JavaC. Therefore it only remains to give here the rules for the evaluation of
the new JavaC-expressions and for the execution of the new JavaC-statements.

The initial state of JavaC is as follows: The environment, modeled by the
respective lookup functions and predicates, is defined by the given program,
which consists of a list of classes and interfaces. For any method body and class
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initializer, the functions fst , nxt and up are defined as given in Sect. 2—only
return and static need new definitions. All class fields of all classes are set to
their default or constant values and no class is initialized.

The run of JavaC starts by invoking the class method main : MethodSpec
(with an empty parameter list) being part of the environment. task denotes
the first phrase of main’s body , loc and val are undefined. Formally: frames =
start(fst(body)), where the macro ‘start’ is used to initialize the task, temporary
and locals stacks, respectively. (The expression 〈. . .〉 denotes finite sequences.)

start(phrase) ≡ (〈phrase〉,〈∅〉, 〈∅〉)
For the sake of exposition let us first assume that all classes have been ini-

tialized. When and how classes are initialized is explained in Sect. 3.3.
The run terminates, if no rule of JavaC can be executed any more. If the

execution completes without any run-time violation, the ASM reaches: taskO =
〈finished〉; this means that main’s body has been executed successfully.

Fields. The value of a class field access is the value bound under the name of
the class and of the field in the global environment (§ 15.10).

if task is (class ,field)∧ initialized(class) then
val(task) := glo(class ,field)
proceed

(CFieldAcc)

The value of a class field assignment is the value of its right-hand side
(§ 15.25). The execution of the assignment replaces the existing value bound
under the class and field’s name in the global environment by the result of the
right hand side.

if task is ((class ,field) = exp)∧ initialized(class) then
glo(class ,field) := val(exp)
val(task) := val(exp)
proceed

(CFieldAss)

Methods. A class method invocation is used to call a class method (§ 15.11).
The value of a method invocation is the return value of the invoked method—
this is specified in Result and Return. Through method invocation new bindings
are created in the environment, containing the bindings of the actual argument
values to the methods parameters. The execution begins at the first phrase of the
invoked method’s body. Formal arguments and the method’s body are looked
up in the environment.

if task is ((class ,method , fcty)(exp1, . . . , expn))∧
initialized(class) then
frames := invoke(〈val(exp1), . . . , val(expn)〉,args , fst(body),frames)
where (args , body) = classMethod(class ,method , fcty)

(CMethod)

The macro ‘invoke’, defined below, pushes the new phrase to be executed on the
method call stack, an everywhere undefined function on the temporary stack
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Fig. 6 Normal control flow of return / throw

let stm = return exp; in
fst(stm) = fst(exp)
nxt(exp) = stm

let stm = throw exp; in
fst(stm) = fst(exp)
nxt(exp) = stm

and the new bindings on the environment stack, respectively. (Concatenation of
sequences is denoted by juxtaposition, for example 〈1〉 〈2〉 = 〈1, 2〉).

invoke(〈val1, . . . , valn〉, 〈var1, . . . , varn〉, phrase,(tasks , vals , locs)) ≡
(〈phrase〉 tasks ,〈∅〉 vals , 〈{(var1, val1), . . . , (varn , valn)}〉 locs)

Methods return when a return statement in their respective bodies is en-
countered.

A return expression statement is executed by first evaluating its subex-
pression. (The control flow aspect of this execution is shown in Fig. 6.) If the
expression evaluation completes normally, the return statement abrupts pro-
cessing the method’s body, and attempts to transfer control and the value of the
expression to the invoker of the method. This is achieved in several steps: First,
the return statement completes abruptly, the reason being a Result with the
value of the subexpression.

if task is return exp; then
mode := Result(val(exp))
abrupt

(Result)

If there are still enclosing statements, they too have to be abrupted. For JavaC
the only enclosing statement kind pointed to by up is a labeled statement and
it is easy to see that (by execution of LabStm) the labeled statement abrupts,
since the reason for abruption is a Result .

If there is no enclosing statement any more, i.e. when task becomes finished,
execution of the return statement transfers the value of the expression to the
invoker (provided there is still one), deletes the topmost bindings, and continues
processing normally at the invoker’s next phrase (§ 14.15). In case there is no
invoker anymore—main has terminated—the ASM run finishes.

if task is finished∧ mode = Result(res)∧ length(taskO) > 1 then
mode := undef
frames := result(res , frames)

(Result’)

The modification of the task, temporary and local environment stack is sum-
marized in the macro ‘result’, see below.

A return statement without an expression has the same semantics as the
return expression statement, except that no expression needs to be evaluated
and consequently no value needs to be transfered from the invoked method to
the invoker (§ 14.15).
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Fig. 7 Normal control flow of a class initializer

let init = static block endstatic in
fst(init) = static block nxt(static block) = fst(block)
nxt(block) = endstatic nxt(endstatic) = finished

if task is return; then
mode := Return
abrupt

(Return)

if task is finished∧ mode = Return ∧ length(taskO) > 1 then
mode := undef
frames := return(frames)

(Return’)

Result and Return use macros to determine the next phrase to execute, to
transfer the expression’s value to the invoker (only ‘result’), and to delete the
topmost bindings.

result(res , (〈 , inv〉 tasks ,〈 , val〉 vals ,〈 〉 locs)) ≡
(〈nxt(inv)〉 tasks , 〈val ⊕ {(inv , res)}〉 vals , locs)

return(〈 , inv〉 tasks ,〈 〉 vals ,〈 〉 locs) ≡
(〈nxt(inv)〉 tasks , vals , locs)

The anonymous variable ‘ ’ stands for values that don’t care. ‘result’ uses the
operator ⊕ to override the invoker’s val function at the phrase of the invocation.
(An expression f ⊕ {(k , v)} is still a function, which returns the same values as
f everywhere except at the argument k , where it returns the value v .)

3.3 Initialization

Execution starts in a state in which no class is initialized. A class or interface
will be initialized at its first active use by executing its static initializer. Before
a class is initialized its superclasses must be initialized. The superinterfaces of
an interface need not be initialized before the interface is initialized (see below).
This leads to three rules for class initialization: FirstActiveUse invokes the class
initializer at the first active use of a class, Static starts the execution of the class
initializer code or invokes the initialization of the direct superclass, Endstatic
terminates a static initialization block. (The control flow is shown in Fig. 7.)

The first active use of a class or interface T can occur if a class method
declared in T is invoked, or if a (non-constant) static field declared in T is used
or assigned. (Sect. 4 defines the case if an instance for T is created.) The rule

if (task is (class ,field)∨ task is (class ,field) = exp∨
task is ((class ,method , fcty)(exp1, . . . , expn)))∧
¬initialized(class) then
frames := initialize(class , frames)

(FirstActiveUse)
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uses the macro ‘initialize’, which abbreviates (method) invocation:

initialize(class , frames) ≡ invoke(〈〉, 〈〉, fst(classInit(class)),frames)

Note that by definition calling main, where main = (startClass, , ), is a first
active use of startClass. Thus we have to trigger the initialization of startClass
before we process the first phrase of main’s body . We set frames =
initialize(startClass, start(fst(body))).

The execution of a class initializer records that starting from now, initializa-
tion of this class is InProgress.

if task is static block then
init(currClass) := InProgress
enter

(Static)

If the class represents (really) a class rather than an interface, the macro ‘enter’
invokes the class initialization of its direct superclass (if any), provided it is not
initialized; otherwise execution enters the computation of the static block.

enter ≡ if supers(currClass) 6= ∅ ∧ ¬initialized(super(currClass)) then
frames := initialize(super(currClass), frames)

else task := fst(block)

The macro ‘currClass’ always returns the class which contains the given phrase
using the static function classScope : Phrase → Class.

currClass ≡ classScope(task)

But what happens if the current class is actually an interface rather than
a class? The LRM says that the superinterfaces may be initialized. However,
if the initialization of any of the superinterfaces has a side-effect or fails (see
Sect.5) this leads (at least on different machines) to nondeterministic behaviour
contradicting Java’s design goals. Therefore we restrained from modelling this
nondeterminism and rather present the solution of Sun’s Java Development Kit
(JDK), which does not initialize superinterfaces.

After having executed the static phrase, its block is executed; except that
return statements cannot be part of the block, there are no restrictions on the
kinds of possible statements or expressions. Note however, that when a static
block of class T is executed, accesses to T ’s fields and invocations of T ’s methods
must be possible without triggering a new first use of T . This is the reason why
we included InProgress in the predicate initialized.

When the phrase endstatic is executed, it records that the initialization is
Done, and returns to the invoker.

if task is endstatic then
init(currClass) := Done
exit

(Endstatic)

The used macro ‘exit’ distinguishes whether this initializer was called implicitly
(by a first use) or explicitly (during processing of a static phrase). In case the
execution of the class initializer was not triggered by a first use, processing has
to resume at the next task of the invoker, otherwise it has to go back to the last
task of the invoker.
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exit ≡ if invoker = static block then
frames := return(frames)

else frames := goBack(frames)
where 〈 , invoker〉 = taskO

To pop the task, temporaries and local variables from their respective stacks, we
use the macro

goBack(〈 〉 tasks ,〈 〉 vals ,〈 〉 locs) ≡ (tasks ,vals , locs)

On return from an implicitly invoked static initializer, task still points to the
same phrase, but this time the class is initialized and processing can continue
normally.

4 Adding Objects

JavaO, the ASM for the object-oriented sublanguage of Java, extends the object-
based JavaC for an object-oriented language. JavaO supports instance fields and
instance methods, instance creation and method overriding, type casts and null
pointers. In contrast to JavaC one may say that JavaO is object-oriented, since
its defining equation ”module = type”[24] holds.

4.1 Signature

The abstract syntax of the object-oriented sublanguage of Java is given in Fig. 8,
where [new Class] denotes the optional appearence of the subphrase new Class.
The abstract syntax makes use of constructor specifications, which denote class
constructors (whose function is to initialize the instance fields during instance
creation):

ConstrSpec = Class × Type∗

Instance method invocations have an additional invocation Kind , which is
used for method lookup.

Kind ::= Virtual | Nonvirtual | Super

Additionally, we extend the universe Type of JavaI in JavaO to include classes
and interfaces and the type null.

As a result of the parsing and elaboration phase the following holds: Field
access using super is reduced to “ordinary” field access of the superclass’ field.
Method invocations (including their invocation kinds) are attributed as specified
in § 15.11.1–3. (The invocation kind Static is not needed here, since it is already
handled by class methods. We do not introduce the invocation mode Interface,
because it is semantically equivalent to Virtual .) Any constructor body—except
the body of the constructor of the class Object—either begins with an explicit
constructor invocation of another constructor in the same class, or with an ex-
plicit invocation of a superclass constructor (§ 12.5). Every execution path of
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Fig. 8 Abstract Java Syntax for JavaO

Exp ::= . . .

| [new Class ]ConstrSpec(Exp, . . . ,Exp)

| this | Exp.FieldSpec | Exp.FieldSpec = Exp

| Exp.MethodSpec{Kind}(Exp, . . . ,Exp)

| Exp instanceofClass | (Class)Exp

any constructor or instance method body ends with a return statement. In-
stance field initializers of class T are syntactically reduced to assignments. They
are replicated in all constructors for class T , which call a superclass constructor.
The assignments immediately follow the call of the superclass constructor, which
guarantees that instance field initializers are evaluated only once per instance
creation.

The following static functions look up compile-time information in the envi-
ronment:

instFields : Class → PFieldSpec

instFieldValue : FieldSpec → Value

instConstr : ConstrSpec → Var∗ × Block

instMethod : MethodSpec × Class × Kind → Var∗ × Block

compatible : Class × Class → Bool

The function instFields calculates the set of instance fields declared by the
specified class and all of its superclasses (if any). The function instFieldValue
maps fields to their default values (as specified in the LRM § 4.5.4). The function
instConstr looks up the required constructor. The function instMethod starting
at a particular class, returns the (first) method declaration for the given method
specification. If the invocation mode is Nonvirtual , overriding is not allowed; the
specified method in the explicitly given class is the one to be invoked. Otherwise
the invocation mode is Virtual or Super and overriding may occur. If a method
with the given method specification is not implemented in the given class, the
superclass of that class is then recursively searched; whatever it comes up with
is the result of the search (§ 15.11.4). The predicate compatible(src, tar) returns
true iff the reference type src is assignment compatible—defined according to
LRM § 5.2—with reference type tar . For instance, if both src and tar are classes,
src must be equal to tar or src must be a subclass of tar .

The values of reference types are references to instances of classes. References
belong to the abstract dynamic universe

Reference .
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We extend the universe Value in JavaO to include the values of Java’s primitive
types, references and the value null .

Value ::= . . . | Reference | {null}

In JavaO any class has its Class object. Since we ignore linking and loading
in this paper, the function classRef , which maps any class to its class object, is
not dynamic but static.

classRef : Class → Reference

To model the dynamic state of instances, we have to reserve storage for
all instance variables and have to store to which class an object belongs. The
function classOf returns the class of the object that is refered to by the reference.
The dynamic function dyn returns the value stored under a field specification of
an object.

classOf : Reference → Class

dyn : Reference × FieldSpec → Value

4.2 Transition Rules

The initial state and the termination conditions of JavaO are taken from JavaC .
Additionally, we require that in JavaO’s initial state classOf and classRef are
inverses of each other. JavaO has all the rules of JavaC and in addition the rules
below for the new object-oriented features.

Instance creation. In JavaO new class instances are explicitly created by
evaluating a class instance creation expression. The value of this expression is a
reference to the newly created object of the specified class type. The new object
contains new instances of all the fields declared in the specified class and its
superclasses (§ 15.8). The creation of a new instance proceeds as follows.

First, the term new class (which is the first subphrase of the instance creation
expression) is evaluated. If it is the first active use of the class, the class initializer
is invoked.

if task is new class ∧ ¬initialized(class) then
frames := initialize(class , frames)

(IFirstActiveUse)

If the class is initialized, we generate a new instance:

if task is new class ∧ initialized(class) then
newInstance(class ,

val(task) := ref )
proceed

(NewInstance)

The macro ‘newInstance’ allocates a new reference, keeps track of its origin, sets
each new field to its default value, and executes the updates.
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newInstance(class ,updates) ≡ extend Reference by ref
classOf (ref ) := class
vary f over instFields(class)

dyn(ref , f ) := instFieldValue(f )
updates

Then the argument expressions are evaluated (if any). When the arguments
are evaluated the constructor is called. New bindings are created in the local
environment: the formal arguments vari are bound to the actual ones val(expi ); if
the constructor is part of a new instance creation expression, this is bound to the
newly generated reference, which is already assigned to val(new); otherwise—
the constructor is called explicitly—the value of this can be looked up in the
local environment.

if task is new constrSpec(exp1, . . . , expn) then
frames := invoke(〈this〉 vals , 〈this〉 args , fst(body),frames)
where (args , body) = instConstr(constrSpec)

this = if new = new class then val(new) else loc(this)
vals = 〈val(exp1), . . . , val(expn)〉

(Constr)

Fields and this. The value of a field access expression is the value of the field
in the object pointed to by the target reference (§ 15.10), provided it is not null .

if task is (exp.fieldSpec)∧ val(exp) 6= null then
val(task) := dyn(val(exp),fieldSpec)
proceed

(IFieldAcc)

The value of a field assignment expression is the value of its right-hand side
(§ 15.25) – provided the target reference is defined. Execution of the assignment
redefines the value of the field in the object pointed to by the target reference
with the value of the right-hand side.

if task is (exp1.fieldSpec = exp2) ∧ val(exp1) 6= null then
dyn(val(exp1),fieldSpec) := val(exp2)
val(task) := val(exp2)
proceed

(IFieldAss)

The value of the keyword this is a reference of the object for which the
instance method was invoked (§ 15.7.2). This reference is bound at each method
invocation and can therefore be used at the current calling depth.

if task is this then
val(task) := loc(this)
proceed

(This)

Methods. An instance method invocation expression is used to invoke an in-
stance method (§ 15.11). The value of a method invocation expression is the
return value of the invoked method—this is specified in Result. Provided the
target reference is defined, we have to distinguish three cases to locate the in-
voked method: If the invocation mode is
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– Nonvirtual it denotes a private method. The instance method is looked up
statically, searching its declaration at the current class. (Context restrictions
guarantee that the method specification’s class and the explicitly given class
agree.)

– Virtual , then the instance method is looked up dynamically, searching its
current definition starting at the class of the object.

– Super , then the instance method is looked up dynamically, too. However,
here the search for the method’s definition starts at the immediate superclass
of the current class.

Through method invocation new bindings are created in the environment, con-
taining the bindings of the actual argument values to the methods parameters,
and the target reference available as this. The execution begins at the first
phrase of the invoked method’s body.

if task is (exp.methodSpec{kind}(exp1, . . . , expn))∧
val(exp) 6= null then
frames := invoke(〈val(exp)〉 vals ,〈this〉 args , fst(body),frames)
where (args , body) = instMethod(methodSpec,class ,kind)

vals = 〈val(exp1), . . . , val(expn)〉
class = case kind of Nonvirtual : currClass

Virtual : classOf (val(exp))
Super : super(currClass)

(IMethod)

Dynamic typing. The value of an instanceof expression is true, if the value
of its operand is not null and the reference is compatible with the required type.
Otherwise the result is false (§ 15.19.2).

if task is (exp instanceof class) then
val(task) := val(exp) 6= null∧

compatible(classOf (val(exp)),class)
proceed

(Instanceof)

The value of a reference type cast expression is the value of its operand –
provided it is compatible with the required class or interface type or it is null
(§ 15.15).

if task is (class)exp∧
val(exp) = null ∨ compatible(classOf (val(exp)),class) then
val(task) := val(exp)
proceed

(Cast)

4.3 Arrays and Strings

Most of the object-oriented concepts introduced in the previous subsection apply
equally well to arrays and strings; so we do not extend JavaO but rather sketch
necessary extensions.

Java’s arrays are objects. Therefore, we can use the previously introduced
function classOf to store the array’s type and use the previously introduced dyn
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function to also model the dynamic state of array components. However, since
components are accessed by natural numbers, we have to refine FieldSpec to also
include natural numbers. Every array also has an associated Class object, shared
with all other arrays with the same component type. So we also have to refine
the function classRef and the initialization of classOf . In the context of class
initialization an ambiguity arises. Whereas the LRM specifies that in an array
creation expression the array’s element type—provided it is a class or interface—
is initialized, this is left out in Java’s Virtual Machine specification [23], although
this is required as part of the resolution process. In fact, Sun’s JDK triggers the
initialization of the array’s element type in array creation expressions.

Java strings are unusual, in that the language treats them almost as if they
were primitive types supporting literals; instead they are instances of the Java
String class. Thus, strings are objects and we could model them accordingly,
namely like arrays. However, string literals always refer to the same instance of
class String—these string literals are interned, so as to share unique instances.
This is in contrast to strings which are concatenated at run-time. To distinguish
both kinds of strings we need a dynamic function interned which always holds
the set of references of interned strings. Furthermore, we have to modify the
initialization of JavaO, because strings can be assigned to constant fields. We
refine the static function classFieldValue, so as to return not only primitive
values but also (constant) strings. The initialization of dyn must be refined
accordingly, i.e. if classFieldValue maps a field to a string, the string must be
stored.

5 Adding Exceptions

JavaE extends JavaO with exceptions. We take particular care that our refine-
ment of JavaO by exceptions makes it transparent how break and continue
statements (of JavaI), return statements and the initialization of classes and
interfaces (in JavaO) interact with catching and handling exceptions. Exception
handling is a means of recovering from abnormal situations. Java’s exceptions
are represented by instances of class Throwable. Java distinguishes between run-
time exceptions (which correspond to invalid operations violating the semantic
constraints of Java), errors (which are failures detected by the executing ma-
chine) and user-defined exceptions. We consider here only run-time and user-
defined exceptions, because, errors are considered as belonging to the JVM and
are therefore ignored in the dynamic semantics.

5.1 Signature

The abstract syntax as presented in Fig. 9 defines the extension of JavaO by
Java’s exception handling constructs.

When an exception is thrown processing completes abruptly. To model this
we extend the universe Reason with the reason Throw embedding the particular
exception of type Reference.
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Fig. 9 Abstract Java Syntax for JavaE

Stm ::= . . .

| throw Exp

| try Block catch (Class Var) Block . . . catch (Class Var) Block

| try Block finally Block endfinally

Reason ::= . . . | Throw(Reference)

Exceptions propagate through the grammatical block structure of a Java
method and then up the method call stack to the nearest dynamically enclosing
catch clause of a try-catch statement that handles the exception. A catch
clause handles an exception if the exception object is compatible with the de-
clared type.

In situations where it is desirable to ensure that after one block of code
another one is always executed, Java provides the try-finally statement. The
finally clause is generally used to clean-up after the try clause. It is executed
if any portion of the try block—regardless how it completes—is executed. In the
normal case control reaches the end of the try block and then proceeds to the
finally block. If control leaves the try block abruptly, the code of the finally
block is executed before control transfers to the ‘intended’ interrupt destination.

5.2 Transition Rules

We assume that JavaE is initialized like JavaO and execution starts normally.
If all iterations and recursions of the given program terminate, JavaE ’s final
state is taskO = 〈finished〉. Then, if mode is Return execution has completed
normally, otherwise mode denotes the thrown exception, which is not caught by
the program.

Throwing exceptions. User-defined exceptions are thrown explicitly, using
throw statements. Run-time exceptions are thrown, if certain semantic con-
straints for binary operations, target expressions and reference type cast ex-
pressions do not hold.

A throw statement is executed by first evaluating the expression. (Figure 6
captures the definition of the normal control flow.) If this evaluation completes
abruptly, the throw statement completes abruptly, the reason being the same as
the abrupt completion of the expression. Otherwise, if the value of the expression
is null , a NullPointerException is thrown. In case the exception is not null ,
the intended exception is thrown: the control flow is abrupted the reason being
a Throw with the value of the subexpression (§ 14.16).
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Fig. 10 Normal control flow of try-catch

let stm = try block catch (. . .)block0 . . . catch (. . .)blockn in
fst(stm) = fst(block)
nxt(block) = nxt(blocki) = nxt(stm),0 ≤ i ≤ n
up(block) = catch (. . .)block0 . . . catch (. . .)blockn

up(blocki) = up(stm),0 ≤ i ≤ n

if task is throw exp; then
if val(exp) 6= null then

mode := Throw(val(exp))
abrupt

else fail(NullPointerException)

(Throw)

The macro ‘fail’ allocates an exception object, throws the exception and
abrupts (which starts the execution of the corresponding finally code, if there
is some, and the search for the appropriate exception handler; see the following
subsection on propagating and handling of exceptions).

fail(class) ≡ newInstance(class , mode := Throw(ref )
abrupt)

This definition left out to call a class constructor. This is correct, as long as
constructors only call superclass constructors. Otherwise ‘fail’ must be defined
to be equivalent to execute the following code: throw new class(class, ε)();

A binary expression throws an ArithmeticException, if the operator is an
integer division or remainder operator and the right operand is 0 (§ 15.13, 15.14).
The following rule refines BinaryExp of Sect. 2.

if task is (exp1 ⊗ exp2) ∧ ⊗ ∈ {/, %} ∧ val(exp2) = 0 then
fail(ArithmeticException)

(BinaryExp)

An instance target expression throws a NullPointerException, if the
operand is null . The following rule refines IFieldAcc, IFieldAss and IMethod
of Sect. 4.

if (task is exp.fieldspec∨ task is exp.fieldspec = exp2∨
task is exp.methodspec{kind}(exp1, . . . , expn))∧
val(exp) = null then
fail(NullPointerException)

(ITarget)

A reference type cast expression throws a ClassCastException, if the value
of the immediately contained expression is neither null nor compatible with the
required type (§ 15.15). The following rule refines Cast of Sect. 4.

if task is (type)exp∧
val(exp) 6= null ∧ ¬compatible(classOf (val(exp)),class) then

fail(ClassCastException)

(Cast)



380 Egon Börger and Wolfram Schulte

Propagating and handling exceptions. A try-catch statement is executed
by executing first the try clause. If execution of the try clause completes nor-
mally, then this completes the try-catch statement normally. If in the try clause
an exception is thrown, it is checked whether there is a catch clause, which can
handle this exception. If the exception object is not compatible with any of the
declared types, the exception propagates to the next higher enclosing block of
code. Otherwise (the exception object is compatible with at least one declared
type) the first (leftmost) compatible catch clause is selected, the exception is
bound to the exception handler parameter and execution continues normally
by executing the block of the selected catch clause. If processing of the latter
abrupts, this abrupts the try-catch statement.

Figure 10 shows the control flow in normal mode. In addition it defines the
function up, which is used when processing completes abruptly.

We need no rule for the try block, because the control flow abstracts from
this syntactic construct. For the selection of the compatible catch clause we use
the following transition rule, which uses the descriptive operator ι, to determine
that catch clause which fulfills the given predicate.

if task is ( catch (c0 v0) b0 . . . catch (cn vn ) bn) then
if mode = Throw(exc) ∧ ∃ i : 0 ≤ i ≤ n : catches(ci) then

loc(vk) := exc
mode := undef
task := fst(bk)
where k = ιi : 0 ≤ i ≤ n : catches(ci)∧

∀j : 0 ≤ j < i : ¬catches(cj)
else abrupt
where catches(class) = compatible(classOf (exc), class)

(Catch)

If the thrown exception is compatible with any of the clauses, Catch assigns
the exception object to the exception handler parameter, resets the processing
mode, and proceeds normally.

If an exception is not caught by the block of code that throws it, it propagates
to the next outer enclosing block of code. If an exception is not caught anywhere
in the method, (i.e. task becomes finished) it cleans the bindings and the
temporaries of this method call, and returns to the invoking method, where it
again propagates through the block structure.

if task is finished∧ mode = Throw(exc) ∧ length(taskO) > 1 then
frames := throw(frames)

(Throw’)

To pop the task, temporaries and local variables from their respective stacks
and to restart the search for an exception handler in the invoking method the
rule uses the macro

throw(〈 , inv〉 tasks , 〈 〉 vals , 〈 〉 locs) ≡ (〈up(inv)〉 tasks ,vals , locs)

If an exception is never caught, it propagates all the way up to main’s body,
where in JavaE processing gets stuck. This will be refined by exceptional thread
termination in the next section.
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Fig. 11 Normal control flow of try-finally/ synchronized

let stm = try block0 finally block1

endfinally in
fst(stm) = fst(block0)
nxt(block0) = up(block0)

= finally block1

nxt(block1) = up(block1)
= endfinally

nxt(endfinally) = nxt(stm)
up(endfinally) = up(stm)

let stm = synchronized (exp) block
endsynchronized in

fst(stm) = fst(exp)
nxt(exp) = synchronized (exp) block
nxt(block) = up(block)

= endsynchronized

nxt(endsynchronized) = nxt(stm)
up(exp) = up(endsynchronized)

= up(stm)

Handling clean-up code. A try-finally statement is executed by executing
the try clause. Independently of whether the try clause completes normally or
abruptly, the finally clause is executed, see Fig. 11 for the definition of the
control flow functions fst , nxt and up. To restore thrown exceptions—when the
finally clause is left—we introduce an initially empty dynamic function

finally : Mode∗

to store the current execution mode when the finally clause is entered.

if task is finally block then
finally := 〈mode〉finally
mode := undef
task := fst(block)

(Finally)

If this finally clause completes—task points to endfinally—there is a
choice: If the finally clause was entered in normal mode, the execution of the
try-finally statement proceeds normally. If the finally clause was entered
in abrupted mode, the execution abrupts again with the same reason given by
that abrupted mode. However, if a finally clause itself completes abruptly,
the pending control transfer is abandoned and this new transfer is processed
(§ 14.18). This is expressed by the transition rule for endfinally.

if task is endfinally then
finally := finally ′

if mode = undef ∧ mode ′ = undef then proceed
elseif mode = undef ∧ mode ′ 6= undef then mode := mode ′

abrupt
else abrupt

where 〈mode ′〉finally ′ = finally

(Endfinally)

We invite the reader to check that these rules correctly formalize the description
of the LRM for handling exceptions and clean-up (§ 14.18).

Initialization of classes and interfaces. Java is a robust language. So we
also have to care about uncaught exceptions in static initializers. For them Java
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specifies the following strategy: If the current class is in an erroneous state, then
initialization is not possible; throw a NoClassDefFoundError. If during execu-
tion of the body of the static initializer an exception is thrown and this is not
an Error or one of its subclasses, then throw ExceptionInInitializerError.
(With respect to the subclassing of ExceptionInInitializerError, the LRM
is ambiguous. Whereas § 11.5.2 defines it to be a subclass of Error, § 20.23 de-
fines it to be a subclass of RuntimeException, which is the correct definition,
since it signals an uncaught exception during execution and not during loading,
linking or preparing.)

We extend the universe InitState by a new element, signalling that a class is
in an erroneous state.

InitState ::= . . . | Error

The following transition rule extends Static of Sect. 3.3, to whose guard we
add the condition init(currClass) = undef . Furthermore, we assume the correct
extension of the function up, namely by up(static block) = finished.

if task is static block ∧ init(currClass) = Error then
fail(NoClassDefFoundError)

(Static)

We have no extra transition rules for the static block. Instead we assume
that the static block acts like the try block of a try-catch statement, where
the endstatic phrase plays the rôle of the catch clause. This induces the
correct extension of the up function for this case, formally let init = static
block endstatic, then up(block) =endstatic and up(endstatic) = finished.

According to the LRM, the rule for endstatic simply (re)throws the excep-
tion.

if task is endstatic ∧mode = Throw(ref ) then
init(currClass) := Error
if compatible(classOf (ref ), Error) then

frames := throw(frames)
else fail(ExceptionInInitializerError)

(Endstatic)

This rule extends Endstatic of Sect. 3.3 to whose guard we add the condition
mode = undef .

6 Adding Threads

The preceding models are concerned with the behavior of Java executing a sin-
gle phrase at a time, that is by a single thread. In this section we extend JavaE
to JavaT , the model for multithreaded Java, which provides support for execu-
tion of many different tasks working on shared main and local working memory.
We consider Java’s thread creation and destruction, its mechanisms for synchro-
nizing the concurrent activity of threads using locks, and Java’s waiting and
notification mechanism for efficient transfer of control between threads.
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Fig. 12 Abstract Java Syntax for JavaT

Stm ::= . . . | synchronized (Exp) Block endsynchronized

Exp ::= . . . | Exp.start() | Exp.stop() | Exp. wait () | Exp. notify ()

The reference manual specifies a memory model for shared memory multi-
processors that support high performance implementations. It allows objects to
reside in main and local working memory and presents rules (formalized as a
particular event-structure by Cenciarelli et al. [15]) specifying when a thread
is permitted or required to transfer the contents of its working copy of an in-
stance variable into the master copy in main memory or vice versa. In order to
separate this memory model—which “details the low-level actions that may be
used to explain the interaction of Java Virtual Machine threads with a shared
memory”[23, page 371]—from the semantics of the mechanisms defined by the
language for thread creation, destruction, synchronization and for waiting and
notification, we will first build a model for these mechanisms which uses only the
main memory for storing objects and which agrees for best practice programs
with the LRM memory model.

“Best practice is that if a variable is ever to be assigned by one thread
and used or assigned by another, then all accesses to that variable should
be enclosed in synchronized statements.” § 17.13.

In Sect. 6.3 we define another model, which supports local working memo-
ries and uses them as much as possible. The meaning of programs running on
these two extreme memory models—both of which are in accordance with the
semantics described in the LRM—agrees for best practice programs.

6.1 Signature

The abstract syntax of JavaT is given in Fig. 12, where—for ease of reading—
invocation kinds are suppressed.

Threads are concurrent independent processes running within a single pro-
gram so that they correspond to code executing agents in distributed ASMs [20].
For the modeling of threads we therefore use a universe

Thread

to formalize the objects belonging to the class Thread through which threads
in Java are represented and controlled. Since threads are objects, the universe
Thread is a subset of Reference. Every thread has its own state, consisting of
its taskO, locO, valO stacks and its execution mode, represented by the variables
mode and finally ; it is impossible for one thread to access parameters or local
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variables or the execution mode of another thread. Correspondingly we parame-
terize each of these dynamic functions with its agent , i.e., we obtain the following
signatures of these functions in JavaT :

taskT : Thread → Phrase∗

valT : Thread → (Exp → Value)∗

locT : Thread → (Var → Value)∗

modeT : Thread → Reason

finallyT : Thread → Reason∗

During execution of a single thread the agent, denoted in JavaE by the logical
function self (which supports the self-identification of agents), does not change.
A consequence is that we can define our former functions as abbreviations of the
refined ones. We have:

taskO ≡ taskT (self )

valO ≡ valT (self )

locO ≡ locT (self )

mode ≡ modeT (self )

finally ≡ finallyT (self )

Through these abbreviations the rules, macros and propositions—where indi-
cated with some further refinement—carry over from JavaE to JavaT .

Threads exchange information among each other by operating on objects
residing in shared main memory, which is modeled by the functions glo, dyn and
classOf .

To synchronize threads Java uses monitors, a mechanism for allowing only
one thread at a time to execute a region of code protected by the monitor. The
behavior of monitors is explained in terms of locks uniquely associated with
objects. When a synchronized statement is processed, the executing thread
must grab the lock associated with the target reference to become the owner
of the lock before the thread can continue. Upon completion of the block the
mechanism releases that very same lock. We use a dynamic function owns to
keep track of the dynamic nestings of synchronized statements; owns(thread)
denotes the stack of all references grabbed by thread . Since a single thread can
hold a lock more than once we have to define dynamic lock counters.

owns : Thread → Reference∗

locks : Reference → Nat

To assist communication between threads, each object also has an associated
wait set, a set of threads. Wait sets are used by the statements wait and notify.
The wait method allows a thread to wait for a notification condition. Execut-
ing wait adds the current thread to the wait set for this object and releases
the lock—which is reacquired to continue processing after the thread has been
notified by another thread. Wait sets are modeled by the dynamic function
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waitSet : Reference → PThread .

Every thread can be in one of five states. This is modeled using the dynamic
function:

exec : Thread → ThreadState

where the universe ThreadState is defined by

ThreadState ::= Runnable | Blocked | Notified | Exiting .

A thread T is in the initial state (exec(T ) = undef ), from the period when
it is created until the start method of the Thread object is called whereby it
becomes Runnable. A thread that is in the Blocked state is one that cannot be
run because a wait method has been called. A thread is in the Notified state
once the notify method has been called for it. A thread is in the Exiting state
once its run method has terminated or its stop method has been called.

The stop method is an asynchronous method. It may be invoked by one
thread, to affect another thread in its current point of execution. We use a
dynamic function

stopped : Thread → {Yes}
to signal to a thread that it has been stopped. We strengthen the macro task is
phrase for JavaT as follows:

task is phrase ≡ top(taskT (self )) = phrase∧
stopped(self ) = undef∧
exec(self ) ∈ {Runnable ,Notified ,Exiting}

so that a thread is only allowed to execute a phrase if the thread is neither
stopped nor blocked.

The language reference manual leaves the scheduling strategy open. Although
the language designers had a pre-emptive priority-based scheduler in mind, they
explicitly say that there is no guarantee that threads with highest priority will
always be running. Therefore, we abstract from priority based scheduling and
use a ‘loose’ scheduling strategy. This means that we make the executability of
a JavaT -rule, in addition to its being guarded by task is phrase, depend only
on the partial order conditions for distributed ASM runs, leaving the further
specification for any particular scheduling open.

6.2 Transition Rules

The initial state of JavaT is like the one for JavaE . The run starts with a single
thread, called main, i.e., {main} = Thread . The thread main starts in normal
mode, the state of main is Runnable, and main’s task, temporary and local
stacks are initialized as discussed in Sect. 3.3. The remaining newly introduced
dynamic functions are undefined.

Execution continues until all threads are blocked or have exited, i.e. the run
of the distributed JavaT ASM terminates, if no agent can execute any rule any
more.
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Thread creation. There are two ways to create a new thread. One way is to
declare a class to be a subclass of Thread; this subclass should override the run
method of class Thread—the run method is the body of the thread. Creating
an instance of this class by NewInstance creates a new thread T , which is (by
default) in its initial state (so that in particular exec(T ) = undef , stopped(T ) =
undef , taskT (T ) = undef , etc.). Since threads are modeled as agents of the
distributed ASM JavaT , by definition each newly created thread T gets the
rules of JavaT assigned for execution with T = self .

Executing a thread. The start method of class Thread is used to cause a
thread (provided it is not null and it is started for the first time) to begin exe-
cution by calling the run method of its Thread object (§ 20.20.14). If the thread
to be started has already been started, an IllegalThreadStateException is
thrown.

if task is exp.start() ∧ val(exp) 6= null then
if exec(val(exp)) = undef then

newFrames := start(fst(body))
exec(val(exp)) := Runnable
proceed

else fail(IllegalThreadStateException)
where ((), body) = instMethod(run, classOf (val(exp)),Virtual)

newFrames ≡ (taskT (val(exp)),valT (val(exp)), locT (val(exp)))

(Start)

A thread runs until the run method has nothing else to do or its stop method
is called (see below). A thread terminates also if it could not handle an exception
which had occurred (and after having executed all relevant finally clauses); in
this case the uncaught exception method for the parent thread group is invoked.
(We have not specified the latter). The transition rule for the normal termination
is as follows:

if task is finished∧ length(taskO)=1 ∧ exec(self )=Runnable then
exec(self ) := Exiting

(Terminate)

Thread synchronization. A synchronized statement is executed by first
grabbing the lock of the object denoted by the target reference, provided it is
not null . (If it is null a NullPointerException is thrown.) If the current thread
already holds the lock, or if the lock is free and the current thread is the one
chosen for execution, it grabs the lock, increments the lock counter and executes
the block; this is summarized in the macro ‘lock’.

if task is synchronized (exp) block then
if val(exp) 6= null then

lock(val(exp), task := fst(block))
else fail(NullPointerException)

(Synchronize)

Upon completion of the block—either normally or abruptly—the
endsynchronized phrase is executed. (Figure 11 defines the control flow.) Exe-
cuting endsynchronized releases the very same lock, namely the last in the se-
quence of locks grabbed by the thread due to the correct nesting of synchronized
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and endsynchronized phrases, and decrements the lock counter, see the macro
‘unlock’. If execution has completed normally, processing continues normally. If
execution was abrupted, the reason of abruption is propagated up the nesting
level.

if task is endsynchronized then
unlock( top(owns(self )),

if mode = undef then proceed
else abrupt)

(Endsynchronize)

The macro ‘lock’ tests whether the thread already holds a lock on the given
reference. Whether the agent himself is the one chosen for locking the particular
object, is captured by the macro ‘competing’, see below. If the thread already has
or gets the lock the thread can enter the synchronized block; the lock counter
is incremented and the grabbed reference is pushed onto the owns stack. The
macro ‘unlock’ is an inverse of the macro ‘lock’. (elem ∈ list tests whether elem
is in the list).

lock(ref , updates) ≡
if ref ∈ owns(self ) ∨ (locks(ref ) ∈ {0, undef } ∧ competing(ref ) = self ) then

owns(self ) := 〈ref 〉 owns(self )
locks(ref ) := locks(ref ) + 1
updates

unlock(ref , updates) ≡
owns(self ) := pop(owns(self ))
locks(ref ) := locks(ref ) − 1
updates

The macro ‘competing’ uses a not further specified scheduling function
choosesync , to return an arbitrary thread out of a set of threads competing to
get the lock for the given reference. A thread competes for a lock, if it executes a
synchronized statement, a wait expression, or the phrase static or endstatic,
provided the thread is in the appropriate state. We specify the macro ‘competing ’
in tabular form (where classObj(t) abbreviates
classRef (classScope(top(taskT (t))))):

competing(ref ) ≡ choosesync{t ∈ Thread |
top(taskT (t)) = · ∧ ref = · ∧ state(t) ∈ ·

synchronized (exp) block top(val(t))(exp) {Runnable ,Exiting}
exp. wait () top(val(t))(exp) {Notified}
static block classObj(t) {Runnable ,Exiting}
endstatic classObj(t) {Runnable ,Exiting}

}

It is easy to show that upon leaving a synchronized statement, the previous
state of the lock counters and the stack of grabbed references become exactly as
they were when the statement was entered.



388 Egon Börger and Wolfram Schulte

Thread notification. The wait method of class Object causes the current
Runnable thread to wait until some other thread invokes the notify method for
this object. This method can be called only when the current thread is already
synchronized on this object, otherwise an IllegalMonitorStateException is
thrown. Executing wait enables the thread from executing: it changes the state
of the process from Runnable to Blocked , adds the current thread to the wait set
for this object and releases the lock. The LRM does not specify what happens if
already Exiting threads should wait. We decided that the thread should behave
as if it were Runnable. (Other choices are conceivable and easily formalized
changing our rules.) To remember that a thread is already exiting we introduce
a new dynamic function

backup : Thread → ThreadState

which is set when the current thread enters the wait expression and is used
when it proceeds from there.

if task is (exp. wait ()) ∧ exec(self ) ∈ {Exiting ,Runnable}∧
val(exp) 6= null then
if val(exp) ∈ owns(self ) then

backup(self ) := exec(self )
enable(val(exp),self ,Blocked)

else fail(IllegalMonitorStateException)

(Wait)

To continue processing the thread first has to be notified by another thread.
The notify method of class Object chooses one thread among those wait-

ing on this object. The choice is left unspecified by the Java LRM; we reflect
this by introducing yet another not furthermore specified choice function, say
choosenotify. The chosen thread is then removed from the wait set and its state
is changed from Blocked to Notified . We say the thread is awaked. The notify
method may be called only when the current thread is already synchronized on
this object, otherwise an IllegalMonitorStateException is thrown.

if task is (exp. notify ()) ∧ val(exp) 6= null then
if val(exp) ∈ owns(self ) then

if waitSet(val(exp)) 6= ∅ then
awake(val(exp),choosenotify(waitSet(val(exp))),Notified)

proceed
else fail(IllegalMonitorStateException)

(Notify)

The notified thread whose task still points to the wait method invocation
then competes in the usual manner with other threads for the right to synchro-
nize on the object. Once the reenabled thread has gained control of the object,
all its synchronization claims are reacquired, its state switches to the state in
which wait was entered (which is either Runnable or Exiting) and its execution
continues normally.

if task is (exp. wait ()) ∧ exec(self ) = Notified ∧ val(exp) 6= null then
reenable(val(exp),self , backup(self ), proceed)

(Wait)
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The macros ‘enable’, ‘awake’ and ‘reenable’ show the relation between these
three notification phases. (occs(list , elem) yields the number of occurrences of
elem in the list).

enable(ref , thread ,state) ≡ waitSet(ref ) := waitSet(ref ) ∪ {thread}
locks(ref ) := 0
exec(thread) := state

awake(ref , thread ,state) ≡ waitSet(ref ) := waitSet(ref ) − {thread}
exec(thread) := state

reenable(ref , thread ,

state ,updates) ≡ if locks(ref ) ∈ {0, undef } ∧ competing(ref ) = thread then
locks(ref ) := occs(owns(thread),ref )
exec(thread) := state
updates

It is easy to show that upon return from the wait method, the synchroniza-
tion state of the object of this thread returns exactly as it was when the wait
method was invoked.

Stopping a thread. The stop method of class Thread is an asynchronous
method. It may be be invoked by one thread to throw the error ThreadDeath
for another thread; the thread to be stopped is notified if it is waiting. It is
permitted to stop threads in Initial as well as in Exiting mode. In the former
case, if the thread is eventually started, it will immediately terminate. In the
latter case, nothing happens. In the usual case that the exception is not caught,
it propagates up to the run (or for the main thread up to the main) method of
this thread (§ 20.20.15).

We model this asynchronous behavior by two rules. During invocation of
the stop method, we set the dynamic function stopped to Yes for the stopped
thread, provided this thread is not already exiting.

if task is exp.stop() ∧ val(exp) 6= null then
if exec(val(exp)) 6= Exiting then

stopped(val(exp)) := Yes
proceed

(Stop)

If a Runnable thread receives the stop signal, it changes its execution state to
Exiting , resets the dynamic function stopped and throws the error ThreadDeath.
Blocked threads first have to be awaked, and Notified threads first have to be
reenabled, so that they can change their state and throw the exception.

if stopped(self ) then
case exec(self ) of
Runnable : stop
Blocked : awake(val(exp),self ,Notified)
Notified : reenable(val(exp),self ,Exiting ,stop)
where exp. wait () = task

(Stopped)

The used macro ‘stop’ changes the thread’s state and raises the exception.
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stop ≡ stopped(self ) := undef
exec(self ) := Exiting
fail(ThreadDeath)

Stopped threads can continue to work—the ThreadDeath exception may be
caught and execution can proceed as if nothing had happened, except that (as
is easy to show for JavaT ) the stopped thread cannot be stopped once more.

The thread that receives the stop signal immediately reacts. For implemen-
tations this might be rather expensive. So Java permits a small but bounded
amount of execution to occur before an asynchronous exception is received.
Java’s LRM (§ 11.3.2) gives only hints how big the ‘bounded amount’ might be.
In our model it is matter of refining Stopped (and the macro ‘is’) by strength-
ening (or weakening) the conditions to specify precisely when a stop signal is
received.

Initialization of classes and interfaces. Initialization of a class or interface in
JavaT requires synchronization, since several threads may be trying to initialize
the class at the same time. If initialization by one thread is InProgress, other
threads have to wait until the initialization is Done or an Error occurs. To
distinguish the thread that actually initializes a class from those that have to
wait, we introduce a dynamic function

initThread : Class → Thread

and we refine the predicate ‘initialized’, so that it is true, if either initialization is
Done or, if initialization is InProgress the initializing thread must be the current
thread.

initialized(class) ≡ init(class) = Done ∨
(initState(class) = InProgress ∧ initThread(class) = self )

The procedure of JavaE for initializing a class or interface must then be re-
fined as follows. During processing the static phrase, first synchronize on the
Class object. (This is captured by a strengthened ‘is’ predicate.) If initializa-
tion has not yet started, record that the current thread initializes the class, set
the initialization state to InProgress and either invoke the initialization for the
superclass (if any) or enter the computation of the static block.

if task is static block ∧ init(currClass) = undef then
initThread(class) := self
init(currClass) := InProgress
enter

(Static)

If initialization is InProgress by some other thread, then wait. (According to
the refined ‘initialized’ predicate, we do not start the class initialization, if it is
already InProgress by the current thread).

if task is static block ∧ init(currClass) = InProgress then
backup(self ) := exec(self )
enable(classRef (currClass), self ,Blocked)

(Static)
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If initialization is Done, then no further action is required; return immedi-
ately.

if task is static block ∧ init(currClass) = Done then
exit

(Static)

The case that the initialization is erroneous (see Sect. 5.2), remains the same
modulo the refinement defined below for task is phrase.

To express the synchronization of the Class object, we strengthen the macro
‘is’ by an additional condition, which guarantees (just for entering or exiting the
class initializer) that the current thread is chosen to execute the monitor.

task is phrase ≡ task is phrase∧
(classRef (currClass) ∈ owns(self )∨
(locks(classRef (currClass)) ∈ {0, undef }∧
competing(classRef(currClass)) = self ))

When executing endstatic, we have again to synchronize on the Class ob-
ject. In every case (i.e., whether mode = undef or mode = Throw(ref )) we have
to wake up all waiting threads and to reset their state. We add to the previous
Endstatic rules of Sect. 3.3 and 5.2 the following one:

if task is endstatic then
vary thread over waitset(classRef(currClass))

awake(classRef (currClass), thread ,backup(thread))

(Endstatic)

By closer inspection of the rules, one can observe that concurrent class initial-
ization may deadlock : Assume that two threads T and S start the initialization
of two different classes A and B ; if during their respective initializations T en-
counters a first active use of B , and similarily S encounters a first active use of A,
both threads become Blocked and there is no way that either one of the threads
becomes Runnable or Exiting again. This is in accordance with the LRM.

6.3 Adding Local Working Memory

In JavaT class and instance fields, as well as dynamic type information are kept
in main memory, shared by all threads. The main memory is represented by the
glo, dyn and classOf functions. This model is not appropriate when Java runs on
a shared-memory multiprocessor computer supporting local working memories.

In the sequel we will discuss the necessary modifications to support local
memories for instance fields. The adoption of the following strategy to support
local working memories for class fields and the classOf function is described at
the end of this section.

Local working memories of threads, as described in the LRM, can be modeled
by the dynamic function

cache : Thread → Reference × FieldSpec → CacheValue

storing values, which are tagged as either Used or Assigned by the thread; so
the universe CacheValue is defined by:
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CacheValue ::= Used(Value) | Assigned(Value)

The LRM defines rules when a thread is permitted or required to transfer
data between main memory, where the master copies of variables are hold, and
the local working memory, where working copies reside. The following strategy
which guides the definition of the Java model JavaT (local) in this section is
consistent with those rules: Every thread works as much as possible on its own
working copy of a variable. When a thread assigns a variable, it uses its cache
for storing it (in the sequel we abbreviate cache(self ) by ‘cache’) so that we have
to refine IFieldAss as follows:

if task is (exp1.fieldSpec = exp2) ∧ val(exp1) 6= null then
cache(val(exp1),fieldSpec) := Assigned(val(exp2))
val(task) := val(exp2)
proceed

(IFieldAss)

Variable access is slightly more complicated. The LRM requires that new
variables are always allocated in main memory. Therefore, instance field access
has to distinguish whether the variable is already cached or whether it must be
transferred between main memory and the local working memory.

if task is (exp.fieldSpec)∧ val(exp) 6= null then
if cache(val(exp),fieldSpec) = undef then

cache(val(exp),fieldSpec) := Used(dyn(val(exp),fieldSpec))
val(task) := dyn(val(exp),fieldSpec)

else val(task) := get(cache(val(exp),fieldSpec))
proceed
where get(c) =if c ∈ {Assigned(v),Used(v)} then v

(IFieldAcc)

The synchronized statement allows reliable transmission of values from one
thread to another through shared main memory. When we enter a synchronized
block, we flush all variables (of the target reference of the synchronized state-
ment) from the thread’s working memory. We model this effect by extending the
application of the macro ‘lock’ in Synchronize as follows:

lock( val(exp),
vary f over instFields(classOf (val(exp)))

cache(val(exp), f ) := undef
proceed)

IFieldAcc guarantees that before using a variable the variable is either assigned
or loaded from main memory.

When we leave a synchronized block, the thread must copy all assigned
values in its working memory back to main memory. To this purpose, we extend
the application of the macro ‘unlock’ in Endsynchronize as follows:

unlock( top(owns(self )),
vary f over instFields(classOf (top(owns(self ))))

if cache(top(owns(self )), f ) = Assigned(res) then
dyn(top(owns(self )), f ) := res

if mode = undef then proceed
else abrupt)
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In contrast to our model, the LRM (§ 17.6) requires to flush all variables
from the thread’s working memory—this is overspecified. For best practice pro-
grams our formulation is sufficient to guarantee reliable transmission of values
between different threads. Furthermore Java’s LRM requirement would reduce
the expected performance gain when using shared memory multiprocessors.

Supporting local memories for class fields requires analogous modifications.
It is even possible to support local versions of the classOf function. However, as
long as garbage collection is not considered, local copies of the classOf function
need not be retransmitted into main memory, since the classOf function is only
assigned once.

The LRM also formulates rules about the time delay between the transfer of
variables from main memory into local working memory and vice versa. However
for best practice programs neither these time delays nor the different memory
models produce any semantical difference.

7 Conclusion and Outlook

In this work we have defined a rigorous abstract operational model which cap-
tures faithfully the programmer’s view of Java as described in the reference
manual [19]. The model can be used for standardization purposes along the lines
the ASM model for Prolog [10] has been used for defining the ISO standard for
the semantics of Prolog. For such an endeavor it is important that our math-
ematical definition of the semantics of Java yields a complete model which is
falsifiable by mental or machine experiments, in the sense of Popper [29], and
thus complements and enhances purely experimental studies of Java and its
implementations (see for example the Kimera project [33]).

Our definition provides a basis for a machine and system independent math-
ematical analysis of the behavior of Java programs. As illustration we cite here
some examples of theorems we can formulate and prove in rigorous mathemat-
ical terms for our models of Java; we hope to publish these and related results
at another occasion.

Theorem 1. In the sequence JavaI, JavaC,JavaO, JavaE , JavaT each model is
a conservative extension of its predecessor.

This theorem strongly supports the semantics (not only syntax) based mod-
ular approach we propose for the study of Java and its implementations. In
particular it allows us to decompose the justification for the correctness of our
Java model w.r.t. the LRM into the (routine) justification of the correctness of
JavaI followed by the separate justification of the orthogonal procedural, object-
oriented, exception handling and concurrency features and their interaction.

Theorem 2. Upon correct initialization the exception handling in JavaEand
JavaT is precise. Each exception is either caught or propagates through the se-
quence of method calls to the first statement with which the given program was
started.
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Theorem 3. The semantics of best practice programs in the same in the main
memory model JavaT and in its refinement by local working memories
JavaT (local).

Theorem 4. The static initialization in JavaC , JavaEand JavaT runs is correct,
i.e. it is done for each class (by exactly one thread) exactly at the first use of
the relevant field modification, constructor or method invocation. Once a class is
initialized, all its superclasses are initialized.

The modular structure, and the relegation of standard compile-time matters
to static functions, which support the comprehension of the model by humans
and its use for proving interesting properties for Java programs, are two main
features which distinguish our work from the approach of Wallace [37], which is
geared towards executability of the ASM specification. A comparison of these two
models illustrates the high degree of freedom ASMs offer to tune a mathematical
model to its intended use.

We are working on refinements of our Java model to the level of abstraction
of the Java Virtual machine [13]. These refinements take advantage of the mod-
ular specification of orthogonal Java features as they appear in our models. The
ASMs we are developing for the JVM provide the basis for a rigorous mathe-
matical analysis of general compilation schemes of Java programs into JVM code
including correctness proofs as developed for the implementation for Prolog on
the WAM [11] (see also [32]) and of Occam on the Transputer [5].

We are also working on applying our JVM models for safety analysis of Java
byte code along the research approaches of Stati and Abadi [34], Qian [30] and
Cohen [16].

Acknowledgement. We thank the following persons for having read and com-
mented upon previous versions of our Java models: Martin Abadi, Klaus Achatz,
Matthias Anlauff, Giuseppe Del Castillo, Dag Diesen, Igor Durdanovic, Vincenzo
Gervasi, Alexander Knapp, Bernd Koblinger, Philipp Kutter, Arnd Poetzsch-
Heffter, Peter Päppinghaus, Karl Stroetmann, Giovanni Ricci, Kirsten Winter,
Wolf Zimmermann, Ton Vullinghs, and in particular Esben Krag Hanson, for
pointing out an omision in connection with the try-finally rules.
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A ASM Rules for Java

A.1 Semantic Domains

Domains for method execution

Value ::= Bool | Integers | Floats | Reference | {null}
Reason ::= Break(Lab) | Continue(Lab)

| Return | Result(Value) | Throw(Reference)

taskT : Thread → Phrase∗

valT : Thread → (Exp → Value)∗

locT : Thread → (Var → Value)∗

modeT : Thread → Reason
finallyT : Thread → Reason∗

taskO ≡ taskT (self )
valO ≡ valT (self )
locO ≡ locT (self )
mode ≡ modeT (self )
finally ≡ finallyT (self )

task ≡ top(taskO)
val ≡ top(valO)
loc ≡ top(locO)
frames ≡ (taskO, valO, locO)

http://www.kimera.cs.washington.edu/
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Domains for modeling class and instance variables

glo : FieldSpec → Value

dyn : Reference × FieldSpec → Value

classOf : Reference → Class

Domains for modeling concurrency

ThreadState ::= Runnable | Blocked | Notified | Exiting

exec,backup : Thread → ThreadState

stopped : Thread → {Yes}
owns : Thread → Reference∗

locks : Reference → Nat

waitSet : Reference → PThread

Domains for class initialization

InitState ::= InProgress | Done | Error

init : Class → InitState

initThread : Class → Thread

General Macros

proceed ≡ task := nxt(task)
abrupt ≡ task := up(task)

task is phrase ≡ top(taskT (self )) = phrase ∧ stopped(self ) = undef∧
exec(self ) ∈ {Runnable ,Notified ,Exiting}

initialized(class) ≡ init(class) = Done∨
(initState(class) = InProgress ∧ initThread(class) = self )

A.2 JavaI : The Imperative Core

if task is lit then

val(task) := l̃it
proceed

(Literal)

if task is (�exp) then

val(task) := �̃(val(exp))
proceed

(UnaryExp)

if task is (exp1 ⊗ exp2) ∧ (⊗ ∈ {/, %} ⇒ val(exp2) 6= 0) then

val(task) := val(exp1)⊗̃val(exp2)
proceed

(BinaryExp)
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if task is var then
val(task) := loc(var)
proceed

(VarAcc)

if task is (var = exp) then
loc(var) := val(exp)
val(task) := val(exp)
proceed

(VarAss)

if task is exp1?exp2 : exp3 : then
if val(exp1) then task := fst(exp2)

else task := fst(exp3)

(IfExp)

if task is exp : then
val(if (task)) := val(exp)
task := nxt(if (task))

(ThenElseExp)

if task is if (exp) stm1 else stm2 then
if val(exp) then task := fst(stm1)

else task := fst(stm2)

(IfStm)

if task is while (exp) stm then
if val(exp) then task := fst(stm)

else task := nxt(task)

(While)

if task is jump lab; then
mode := Jump(lab)
abrupt

for (jump, Jump) ∈ {(break,Break), (continue,Continue)}

(Jump)

if task is lab : stm then
if mode = Jump(lab) then

mode := undef
task := jump

else abrupt
for (Jump, jump) ∈ {(Break ,nxt(task)),(Continue ,fst(stm))}

(LabStm)

A.3 JavaC: Adding Classes

if task is (class ,field)∧ initialized(class) then
val(task) := glo(class ,field)
proceed

(CFieldAcc)

if task is ((class ,field) = exp)∧ initialized(class) then
glo(class ,field) := val(exp)
val(task) := val(exp)
proceed

(CFieldAss)
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if task is ((class ,method , fcty)(exp1, . . . , expn))∧
initialized(class) then
frames := invoke(〈val(exp1), . . . , val(expn)〉,args , fst(body),frames)
where (args , body) = classMethod(class ,method , fcty)

(CMethod)

invoke(〈val1, . . . , valn〉, 〈var1, . . . , varn〉, phrase,(tasks , vals , locs)) ≡
(〈phrase〉 tasks ,〈∅〉 vals , 〈{(var1, val1), . . . , (varn , valn)}〉 locs)

if task is return exp; then
mode := Result(val(exp))
abrupt

(Result)

if task is finished∧ mode = Result(res)∧ length(taskO) > 1 then
mode := undef
frames := result(res , frames)

(Result’)

if task is return; then
mode := Return
abrupt

(Return)

if task is finished∧ mode = Return ∧ length(taskO) > 1 then
mode := undef
frames := return(frames)

(Return’)

result(res , (〈 , inv〉 tasks ,〈 , val〉 vals ,〈 〉 locs)) ≡
(〈nxt(inv)〉 tasks , 〈val ⊕ {(inv , res)}〉 vals , locs)

return(〈 , inv〉 tasks ,〈 〉 vals ,〈 〉 locs) ≡
(〈nxt(inv)〉 tasks , vals , locs)

A.4 JavaO: Adding Objects

if task is new class ∧ initialized(class) then
newInstance(class ,

val(task) := ref )
proceed

(NewInstance)

newInstance(class ,updates) ≡ extend Reference by ref
classOf (ref ) := class
vary f over instFields(class)

dyn(ref , f ) := instFieldValue(f )
updates

if task is new constrSpec(exp1, . . . , expn) then
frames := invoke(〈this〉 vals , 〈this〉 args , fst(body),frames)
where (args , body) = instConstr(constrSpec)

this = if new = new class then val(new) else loc(this)
vals = 〈val(exp1), . . . , val(expn)〉

(Constr)
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if task is this then
val(task) := loc(this)
proceed

(This)

if task is (exp.fieldSpec)∧ val(exp) 6= null then
val(task) := dyn(val(exp),fieldSpec)
proceed

(IFieldAcc)

if task is (exp1.fieldSpec = exp2) ∧ val(exp1) 6= null then
dyn(val(exp1),fieldSpec) := val(exp2)
val(task) := val(exp2)
proceed

(IFieldAss)

if task is (exp.methodSpec{kind}(exp1, . . . , expn))∧
val(exp) 6= null then
frames := invoke(〈val(exp)〉 vals ,〈this〉 args , fst(body),frames)
where (args , body) = instMethod(methodSpec,class ,kind)

vals = 〈val(exp1), . . . , val(expn)〉
class = case kind of Nonvirtual : currClass

Virtual : classOf (val(exp))
Super : super(currClass)

(IMethod)

if task is (exp instanceof class) then
val(task) := val(exp) 6= null∧

compatible(classOf (val(exp)),class)
proceed

(Instanceof)

if task is (class)exp∧
val(exp) = null ∨ compatible(classOf (val(exp)),class) then
val(task) := val(exp)
proceed

(Cast)

A.5 JavaE: Adding Exceptions

if task is throw exp; then
if val(exp) 6= null then

mode := Throw(val(exp))
abrupt

else fail(NullPointerException)

(Throw)

fail(class) ≡ newInstance(class , mode := Throw(ref )
abrupt)
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if task is ( catch (c0 v0) b0 . . . catch (cn vn ) bn) then
if mode = Throw(exc) ∧ ∃ i : 0 ≤ i ≤ n : catches(ci) then

loc(vk) := exc
mode := undef
task := fst(bk)
where k = ιi : 0 ≤ i ≤ n : catches(ci)∧

∀j : 0 ≤ j < i : ¬catches(cj)
else abrupt
where catches(class) = compatible(classOf (exc), class)

(Catch)

if task is finished∧ mode = Throw(exc) ∧ length(taskO) > 1 then
frames := throw(frames)

(Throw’)

throw(〈 , inv〉 tasks , 〈 〉 vals , 〈 〉 locs) ≡ (〈up(inv)〉 tasks ,vals , locs)

if task is finally block then
finally := 〈mode〉finally
mode := undef
task := fst(block)

(Finally)

if task is endfinally then
finally := finally ′

if mode = undef ∧ mode ′ = undef then proceed
elseif mode = undef ∧ mode ′ 6= undef then mode := mode ′

abrupt
else abrupt

where 〈mode ′〉finally ′ = finally

(Endfinally)

if task is (exp1 ⊗ exp2) ∧ ⊗ ∈ {/, %} ∧ val(exp2) = 0 then
fail(ArithmeticException)

(BinaryExp)

if (task is exp.fieldspec∨ task is exp.fieldspec = exp2∨
task is exp.methodspec{kind}(exp1, . . . , expn))∧
val(exp) = null then
fail(NullPointerException)

(ITarget)

if task is (type)exp∧
val(exp) 6= null ∧ ¬compatible(classOf (val(exp)),class) then

fail(ClassCastException)

(Cast)

A.6 JavaT : Adding Threads

if task is exp.start() ∧ val(exp) 6= null then
if exec(val(exp)) = undef then

newFrames := start(fst(body))
exec(val(exp)) := Runnable
proceed

else fail(IllegalThreadStateException)
where ((), body) = instMethod(run, classOf (val(exp)),Virtual)

newFrames ≡ (taskT (val(exp)),valT (val(exp)), locT (val(exp)))

(Start)
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start(phrase) ≡ (〈phrase〉,〈∅〉, 〈∅〉)

if task is finished∧ length(taskO)=1 ∧ exec(self )=Runnable then
exec(self ) := Exiting

(Terminate)

if task is synchronized (exp) block then
if val(exp) 6= null then

lock(val(exp), task := fst(block))
else fail(NullPointerException)

(Synchronize)

if task is endsynchronized then
unlock( top(owns(self )),

if mode = undef then proceed
else abrupt)

(Endsynchronize)

lock(ref , updates) ≡
if ref ∈ owns(self ) ∨ (locks(ref ) ∈ {0, undef } ∧ competing(ref ) = self ) then

owns(self ) := 〈ref 〉 owns(self )
locks(ref ) := locks(ref ) + 1
updates

unlock(ref , updates) ≡
owns(self ) := pop(owns(self ))
locks(ref ) := locks(ref ) − 1
updates

if task is (exp. wait ()) ∧ val(exp) 6= null then
case exec(self ) of
Runnable ,
Exiting : if val(exp) ∈ owns(self ) then

backup(self ) := exec(self )
enable(val(exp),self ,Blocked)

else fail(IllegalMonitorStateException)
Notified : reenable(val(exp),self , backup(self), proceed)

(Wait)

if task is (exp. notify ()) ∧ val(exp) 6= null then
if val(exp) ∈ owns(self ) then

if waitSet(val(exp)) 6= ∅ then
awake(val(exp),choosenotify(waitSet(val(exp))),Notified)

proceed
else fail(IllegalMonitorStateException)

(Notify)

enable(ref , thread ,state) ≡ waitSet(ref ) := waitSet(ref ) ∪ {thread}
locks(ref ) := 0
exec(thread) := state

awake(ref , thread ,state) ≡ waitSet(ref ) := waitSet(ref ) − {thread}
exec(thread) := state

reenable(ref , thread ,

state ,updates) ≡ if locks(ref ) ∈ {0, undef } ∧ competing(ref ) = thread then
locks(ref ) := occs(owns(thread),ref )
exec(thread) := state
updates



A Programmer Friendly Modular Definition of the Semantics of Java 403

if task is exp.stop() ∧ val(exp) 6= null then
if exec(val(exp)) 6= Exiting then

stopped(val(exp)) := Yes
proceed

(Stop)

if stopped(self ) then
case exec(self ) of
Runnable : stop
Blocked : awake(val(exp),self ,Notified)
Notified : reenable(val(exp),self ,Exiting ,stop)
where exp. wait () = task

(Stopped)

stop ≡ stopped(self ) := undef
exec(self ) := Exiting
fail(ThreadDeath)

A.7 Initialization

if (task is (class ,field)∨ task is (class ,field) = exp∨
task is ((class ,method , fcty)(exp1, . . . , expn)∨
task is new class))∧ ¬initialized(class) then

frames := initialize(class , frames)

(FirstActiveUse)

initialize(class , frames) ≡ invoke(〈〉, 〈〉, fst(classInit(class)),frames)

if task is static block then
case init(currClass) of
undef : initThread(class) := self

init(currClass) := InProgress
enter

InProgress : backup(self ) := exec(self )
enable(classRef (currClass), self ,Blocked)

Done : exit
Error : fail(NoClassDefFoundError)

(Static)

enter ≡ if supers(currClass) 6= ∅ ∧ ¬initialized(super(currClass)) then
frames := initialize(super(currClass), frames)

else task := fst(block)
exit ≡ if invoker = static block then

frames := return(frames)
else frames := goBack(frames)
where 〈 , invoker〉 = taskO

goBack(〈 〉 tasks ,〈 〉 vals , 〈 〉 locs) ≡ (tasks ,vals , locs)

currClass ≡ classScope(task)
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task is phrase ≡ task is phrase∧
(classRef (currClass) ∈ owns(self )∨
(locks(classRef (currClass)) ∈ {0, undef }∧
competing(classRef(currClass)) = self ))

if task is endstatic then
vary thread over waitset(classRef(currClass))

awake(classRef (currClass), thread ,backup(thread))
if mode = undef then

init(currClass) := Done
exit

else
init(currClass) := Error
if compatible(classOf (ref ), Error) then

frames := throw(frames)
else fail(ExceptionInInitializerError)
where Throw(ref ) = mode

(Endstatic)
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