
 

 

 

 

Calculus of Functions of Complex  

Variables (Math 2072) 
 



Chapter One: Complex numbers  

Define the complex numbers & their operations 

Geometric representation & polar form of complex 

numbers 

De-Moiver’s formula  

Root extraction 

 

The Riemann and the extended complex plane 

 

 

 



 

Complex Number 

 
  Who uses them in real life? 

Here’s a hint…. 

 

 

 



Cont’d 

 

 

 

 

 

 

 

 

The navigation system in the space shuttle 
depends on complex numbers 

 



Definition of complex numbers 

z = x + iy, the real number x is called the real part and 

y is called the imaginary part:  

  Re(z) = x,  Im(z) = y 

 

A complex number is any number of the z = a + ib  

where a and b are real numbers and 𝑖 = −1 is 

the imaginary units. 

DEFINITION 1.1 
Complex Number 



Equality of complex numbers 

x + iy = 0 iff  x = 0 and y = 0. 

Example: Let w=2+3i and  r=a+bi are two complex 

numbers, then w=r iff a=2 and b=3 

 

 

Complex number                     and                      are 

equal,           , if                           and  

DEFINITION 1.2 
Complex Number 
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Operation of Complex Numbers 

Addition of Complex Numbers 

(x + yi ) + (a + bi ) = (x + a) + (y + b )i 

 Example: 

Find each sum or difference 
 

            a.                               
Solution: 

                                                            Add  real parts              Add imaginary parts 
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Practical Exercise 

Perform each the following operations 

a)(8+3i)+(6-2i) 

b)(8-6i)-(2i-7) 

c)(5+7i)-(2+6i) 

d)3 + 3i + 8 − 2i − 7              Ans.4 + i 

e)−1 − 8i − 4 − i               Ans.  −5 − 9i 

 

 



Cont’d 

Subtraction of Complex Numbers 

 𝑥 + 𝑦𝑖) − 𝑎 +  𝑏𝑖 = 𝑥 −  𝑦 + 𝑦 −  𝑏 𝑖 

Examples 

a)  −3 + 6i − (−5 − 3i) − 8i  Ans. 2 + i 

b) (5+3i)+(-1+2i)+(7-5i) 

c) 8+3i-(6-2i) 

 



 

 

 

 

           The product of  two complex numbers 

 

 

 

 

 

 

Examples     

a)(8-6i)(6-2i) 

b)(2-i)(-3+2i)(5-4i)  

c)4i (−2 − 8i) 

d)(−2 − 2i)(−4 − 3i)(7 + 8i) 

e)(7 − 6i)(−8 + 3i) 
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Con’t 

Remark 

 (x + yi )(x – yi)= x
2
 – y

2
i
2 

                  
= x

2
 – y

2
(– 1) 

           = x
2
 + y

2 

Hence 

(x+iy)(x-iy)=x
2
+y

2 

Example 

(2+3i)(2-3i)=2
2
+3

2
=4+9=13 

 



z
1
 = x

1
 + iy

1
, z

2
 = x

2
 + iy

2
 then

 

1 1 1 1 1 2 2

2 2 2 2 2 2 2

z x + iy x + iy x - iy

= = .

z x + iy x + ix x - iy

1 2 1 2 2 1 1 2

2 2

2 2

1 2 1 2 2 1 1 2

2 2 2 2

2 2 2 2

x x + y y + i(x y - x y )

=

x + y

x x + y y i(x y - x y )

= +

x + y x + y

 

        Division of  Complex Numbers 

  

 

Re(z)E Re(z)

E 
Im(z) 



Find x and y if  (2x – 3iy)(-2+i)
2
 = 5(1-i) 

 

Solution:  

(2x – 3iy)(4+i
2
-4i) = 5 -5i 

(2x – 3iy)(3 – 4i) = 5 –5i 

(6x – 12y – i(8x + 9y)) = 5 – 5i 

6x – 12y = 5, 8x + 9y = 5 


7 -1

x = , y =

10 15

         Example 



Properties:
 

1) Closure: z
1
 + z

2
 is a complex number 

 

 

 

2) Commutative: z
1
 + z

2
 = z

2
 + z

1 

3) Associative: z
1
 + (z

2 
+ z

3
) = (z

1
 + z

2
) + z

3 

4) Additive identity 0: z + 0 = 0 + z = z
 

5) Additive inverse -z: z + (-z) = (-z) + z = 0
 

           Algebra properties of Complex       

            Numbers –   



Complex conjugate/Conjugaate/ 

 Let z = x + yi , the complex conjugate of a complex 

number z is denoted by :  

 

                                                                         

                                                   (real number) 

 

The conjugate of a complex number changes the 

sign of the imaginary part only!!! 

Obtained geometrically by reflecting point z on 

the real axis 

 

z = x+yi= x - yi

2 2

zz =(x+iy)(x - iy)

= x +y



Complex Conjugate 

 
 
 

1 2 1 2

1 2 1 2

1 2 1 2

1 1

2 2

Suppose  z = x+iy,z = x - iy, and

z +z = z +z

z - z = z - z

z z = z z

z z

=

z z



 cont’d 

Find the complex conjugate of  the following complex 

number  

a) z=7+3i 

b) z=-5-2i 

c) z=-3i 

d) z=8 



Definition 1.5 

   (Division of  Complex Numbers) 

If  z1 = a + bi and z2 = c + di then: 

 

 

 

  

              Operations 

 

1

2

2 2

( )

z a bi

z c di

a bi c di

c di c di

ac bd bc ad i

c d






 
 

 

  




Multiply  with 
the conjugate of 
denominator 



Example: Simplify and write in standard 

form, z: 

            cont’d 
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                Perform the operation and write the result   

                  in standard form. 
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Two important equations 
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       The Properties of  Conjugate Complex 

Numbers 

  

 

)Im(
2

)

)Re(
2

)

;)

11
)

..)

)

)

)

2121

2121

2121

z
zz

viii

z
zz

vii

nzzvi

zz
v

zzzziv

zzzziii

zzzzii

zzi

nn





























Definition : (Modulus of  Complex Numbers) 

 The modulus of  z is defined by 

            The Complex Plane Diagram 

22 bazr 

Im(z) 

Re(z) 
O(0,0) 

z(a,b) 

a 

b 

r 



Geometric Interpretation 

Fig 1.1 is called the complex plane and a complex 

number z is considered as a position vector. 



 

The modulus or absolute value of z = x + iy, denoted  

by │z│, is the real number 

 

DEFINITION 1.3 
Modulus or Absolute Values 

zzyxz  22||



Example 3 

If z = 2 − 3i, then 

 

As in Fig 1.2, the sum of the vectors z1 and z2 is the 

vector z1 + z2. Then we have 

        (5) 

The result in (5) is also known as the triangle inequality 

and extends to any finite sum: 

        (6) 

Using (5), 
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Fig 1.2 
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(Triangle inequality) 
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         The Properties of  Modulus 
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z z
x Re(z)

2


 

z z
y Im(z)

2i

    2 2z x iy x y z

     1 y
Arg(z) Arg(x iy) tan Arg(z)

x

                     Conjugate of a Complex Number 



1.2 Powers and Roots 

Polar Form 

Referring to Fig 1.3, we have  

  z = r(cos  + i sin )    (1) 

where r = |z| is the modulus of z and   is the 

argument of z,  = arg(z). If  is in the interval  

− <   , it is called the principal argument, denoted 

by Arg(z).  



Fig 1.3 



               THE POLAR FORM OF COMPLEX NUMBER 

b 

a 

(a,b) 

r 

Re(z) 

Im(z) 

 

 

 

 

 

 

• Based on figure above: 
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rbra
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        Recall how we graph  complex numbers: 

Imaginary 

Axis 

Real 

Axis 

P(a, b) 

z = a + bi  

r 

0 

a 

b 
   cosθ sinθr r i 

sinθb r

tanθ
b

a


 cosθ sinθr i 

cosθa r

2 2r z a b  

z a bi 



     Trigonometric Form of a Complex  Number 

The trigonometric form of the complex number z = a + bi is 

 cosθ sin θz r i 

The number r is the absolute value or modulus of z, 

and 0 is an argument of z. 

 Is the argument of any particular complex number unique? 



            Practice changing forms of           

             complex numbers 

1 3i

0 θ 2π 

   
22

1 3 

Switch forms of the given complex number, for 

1 3r i 

5π 5π
1 3 2cos 2 sin

3 3
i i  

π 5π
θ 2π

3 3

 
    

 

π

3


2

(between trigonometric form and standard form) 

How about a graph??? 

Reference angle: so… 



Example 1 

 

Solution 

See Fig 1.4 that the point lies in the fourth quarter.  

form.polar in  31 Express i
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 Rewrite  in polar form with RAD1 i IANS.

 
2 2 21 21 rr   

1 2 cos

1 2 sin
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4


 

  
 

 

3 3
2 cos isin

4 4

Rewrite 1 3 i in polar form with RADIANS.

 
2

2 2 r3 21 r    1 2cos

3 2sin
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3


   

 
 

5 5
2 cos iA sin
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Example 1   (2) 

In addition, choose that − <    , thus  = −/3. 
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3
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3
cos(2
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Fig 1.4  



Multiplication and Division 

   

 

Then  

 

        (2) 

 

for z2  0,  
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From the addition formulas from trigonometry,  
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        (5) 

Thus we can show 
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Powers of z 

(8)                    )sin(cos

)3sin3(cos

)2sin2(cos
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Demoivre’s Formula 

When r = 1, then (8) becomes 

 

        (9)  nini n sincos)sin(cos 



   

   

1

2

Given      and

              w r cos(

z r cos( ) isi

) is 

( )

in(

n

)

          1 2zw r r cos isin        1

2

rz
cos isin

w r

Compute  and , learning your answer in polar form i
z

zw
w

n rad

 

 

z 2 cos120 isin120

w 3 cos100 isin100

   

   

             zw 2 3 cos 120 100 isin 120 100

 
   

11 11
zw 6(cos220 isin220) 6(cos isin )

9 9

      
z 2

(cos 120 100 isin 120 100 )
w 3

 
  

z 2
(cos20 isin20)

w 3

2
(cos isin )

3 9 9



Compute  and , learning your answer in polar form in 
z

zw
w

rad.

      
      

   

3 3 9 9
z 4 cos isin ,  w 3 cos isin

8 8 16 16

  
       

       
    

3 9 3 9
zw 4 3 cos isin

8 16 8 16
  

  
 

15 15
zw 12 cos isin

16 16

       
       

    

z 4 3 9 3 9
cos isin

w 3 8 16 8 16

       
     

    

z 4 3 3
cos isin

w 3 16 16



 

DeMoivre’s Theorem 
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                   Find the cube roots of     3x8i 88 8i
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6 5 5
k 0, 2 2 cos is in

1
 

12 2

     
     

    

6 13 13
k 1, 2 2 cos isin

12 12

 

    

     
    

    


   

      
    

 1/

6

n

5 2 k 5 2 k
2 2

2 k 2 k

cos isin
12 3 12 3

n n
r cos isin

n n



           DE MOIVRE’S THEOREM 

Theorem 3 

If                                        is a complex number in polar form to 

any power of  n, then 

 

 

De Moivre’s Theorem: 

 

 

Therefore : 

 

 nnn irz  sincos 

   nini
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sincossincos 

  ninrz nn sincos 

  sincos irz 



Roots 

A number w is an nth root of a nonzero number z if 

wn = z. If we let w =  (cos  + i sin ) and  

z = r (cos  + i sin ),  then 

 

 

 

 

 

The root corresponds to k=0 called the principal nth root. 
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            FINDING ROOTS 

Theorem 4 

If                                       then, the n root of  z is: 

(θ in degrees) 

 

 

OR 

(θ in radians) 

 

 

 

Where k = 0,1,2,..n-1  
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          Using DeMoivre to Find Roots 

Again, starting with  

a + bi = 

 also  

 

works when n is a fraction 

 Thus we can take a root of a complex number 

 cos sinz r i    

    cos sinn nz r n i n  

1/ 1/ 360 360
cos sinn n k k

z r i
n n

         
       

    



Using DeMoivre to Find Roots 

Note that there will be n such roots 

 

 

 

 One each for k = 0, k = 1, … k = n – 1 

 

Find the two square roots of 

 Represent as  

 What is r? 

 What is θ? 

1/ 1/ 360 360
cos sinn n k k

z r i
n n

         
       

    

1 3z i  

(cos sin )z r i  



Graphical Interpretation of Roots 

Solutions                               are: 

  
1/ 2

1 3

2 cos120 sin120

120 120
2 cos sin

2 2

120 360 120 360
2 cos sin

2 2

i

i

i

and i

  

  

 
    

 

  
   
 

2 6

2 2
i 

2 6

2 2
i  

Roots will be equally spaced 
around a circle with radius r1/2 

2

1 3z i  



 

FINDING COMPLEX ROOTS 

Find the two square roots of 4i. Write the roots in 

rectangular form. 

Write 4i in trigonometric form:  

The square roots have absolute value                      

and argument 



 

FINDING COMPLEX ROOTS  (continued) 

Since there are two square roots, let k = 0 and 1. 

Using these values for , the square roots are 

and
5 5

2 cos sin   2 cos sin
4 4 4 4

i i
      
    

   



 

FINDING COMPLEX ROOTS  (continued) 



 

FINDING COMPLEX ROOTS (continued) 

Since there are four roots, let k = 0, 1, 2, and 3. 

Using these values for α, the fourth roots are   

 
2(cos30 sin 30),  2(cos120 sin120),  

2(cos 210 sin 210),  2(cos300 sin 300),

i i

i i

 

 



      Converting from Rectangular form to Trig form 

 

2 2

1

1.  Find r.  

2.  Find .  tan

3.  Fill in the blanks in cos sin

r a b

b

a

z r i

 

 



 

 
  

 

  Convert z = 4 + 3i to trig form. 

2 24 3 16 9

25 5

r

r

   

 

1.  Find r 2.  Find  

1 3
tan 36.9

4
  

3.  Fill in the blanks 

 

 

5 cos36.9 sin36.9

5,36.9

z i

Polar form

 



Chapter 2: Analytic Functions 

2.1. Elementary Functions 

2.1.1 Exponential and Logarthimic Functions 

2.1.2. Trignometric and Hyperbolic Functions 

2.1.3 Inverse Trigonometric and Hyperbolic Functions 

2.2. Open  and closed sets ,connected sets & regions in complex  

        plane 

2.3. Definitions of limit and continuity 

2.4.  Limit theorem  

2.5.  Definition of derivative &its properties 

2.6.  Analytic function &their algebraic properties 

2.7.  Conformal mappings 

2.8.  The Cauchy Riemann equations and Harmonic functions 



2.1 Exponential and Logarithmic Functions 

Exponential Functions 

Recall that the function f(x) = ex  has the property  

        

        (1) 

and the Euler’s formula is  

 

        (2) 

 

Thus  
)sin(cos yiyee xiyx 

and  )()( xfxf  )()()( 2121 xfxfxxf 

cos sin ,    :  a real numberiye y i y y 



 

 

        (3) 

 

DEFINITION 2.9 
Exponential Functions 

( c o s s i n )z x i y xe e e y i y  

Example 1: Evaluate e1+3i. 

Solution  

1 4 1(cos4 sin4)ie e i  



Cont’d 

 

 

 

 

Periodicity 

 

 

Polar From of a Complex number 
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2 2

(cos 2 sin 2 )
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Logarithm Function 

Given a complex number z = x + iy, z  0, we define  

  w = ln z   if  z = ew    (5)  

Let w = u + iv, then 

 

We have  

 

and also  

vieveviveeiyx uuuivu sincos)sin(cos  

2 2 2 2 2| | ,  log | |

tan ,  2 , arg ,  0,  1,  2,...

u

ee x y r z u z

y
v v n z n

x
  

    

      

veyvex uu sin  ,cos 



 

For z  0, and  = arg z,  

 

        (6) 

DEFINITION 2.10 
Logarithm of a Complex Number 

,2,1,0,)2(||logln  nnizz e 



Example 2 

Find the values of (a) ln (−2) (b) ln i, (c) ln (−1 – i ). 

Solution 
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Example 3 

Find all values of z such that  

Solution 

.3 iez 

)2
6

(6931.0

)2
6

(2log)3ln(

6
)3arg(,2|3|),3ln(
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Principal Value 

         (7) 

 

Since Arg z              is unique, there is only one value 

of Ln z for which z  0. 

 

zizz e Arg||logLn 

( , ]  



Example 4 

The principal values of example 2 are as follows. 

 
2

)(Ln  ,
2

)(Arg   )(
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)2(Arg   )(
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Example 4   (2) 

Each function in the collection of ln z is called a 

branch. The function Ln z is called the principal 

branch or the principal logarithm function. 

 

Some familiar properties of logarithmic function hold 

in complex case: 

 

(8)                      lnln)ln(

lnln)ln(
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Example 5 

Suppose z1 = 1 and z2 = −1. If we take ln z1 = 2i,  

ln z2 = i, we get 

 

izz
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z

izzzz
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Analyticity 

The function Ln z is not analytic at z = 0, since Ln 0 

is not defined. Moreover, Ln z is discontinuous at all 

points of the negative real axis. Since Ln z is the 

principal branch of ln z, the nonpositive real axis is 

referred to as a branch cut. See Fig 2.19. 



Fig 2.91 



It is left as exercises to show  

 

        (9) 

 

for all z in D (the complex plane except those on the 

non-positive real axis).  

 

z
z

dz

d 1
Ln 



Complex Powers 

In real variables, we have                    . 

If   is a complex number, z = x + iy, we have 

 

        (10) 

ln xx e 

ln ln , 0z zz e e z
   



Example 6 

Find the value of i2i. 

Solution 

,...2 ,1 ,0 where

            

(9), from,2 ,2/arg ,With 

)41()]22/(1[log22
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2.7 Trigonometric and Hyperbolic Functions 

Trigonometric Functions 

From Euler’s Formula, we have 

 

        (1) 
2

cos
2

sin
ixixixix ee

x
i

ee
x

 







Four additional trigonometric functions: 

 

        (3) 

 

For any complex number z = x + iy,   

 

        (2) 

 

DEFINITION 2.11 
Trigonometric Sine and Cosine 

2
cos

2

e
sin

iz iziziz ee
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z

 





z
z

z
z

z
z

z

z
z

sin

1
csc,

cos

1
sec

,
tan

1
cot,

cos

sin
tan







Analyticity  

Since eiz and e-iz are entire functions, then sin z and 

cos z are entire functions.  

sin z = 0 only for the real numbers z = n &  

cos z = 0 only for the real numbers z = (2n+1)/2. 

Thus tan z and sec z are analytic except z = (2n+1)/2, 

and cot z and  

csc z are analytic except z = n. 



Derivatives 

    

 

 

Similarly we have 
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Identities 
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Zeros 

If y is real, we have  
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From Definition 11.17 and Euler’s formula 
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 Thus we have  
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and  
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From (6) and (7) and cosh2y = 1 + sinh2y 
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Example 1 

From (6) we have  
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Example 2 

Solve cos z = 10. 

Solution 
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Additional functions are defined as  
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For any complex number z = x + iy,   
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DEFINITION 2.12 
Hyperbolic Sine and Cosine 
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Similarly we have 
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Zeros 

  

   

 

Since sin(−y) = − sin y, cos(−y) = cos y, then 

        (15) 

 

        (16) 

It also follows from (14) that the zeros of sinh z and 

cosh z are respectively,  

 

 z = ni  and z = (2n+1)i/2, n = 0, 1, 2, …. 
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Periodicity 

From (6),  

 

 

 

 

 

 

The period is then 2. 
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2.8  Inverse Trigonometric and Hyperbolic 

Functions 

Inverse Sine 

We define  

        (1) 

From (1),  
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Solving (2) for w then gives  
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Similarly we can get 
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Example 1 

Find all values of  

Solution  

From (3),  
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Example 1   (2) 

Noting that 
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Derivatives 

If we define w = sin-1z,  z = sin w, then  
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Example 2 

Find the derivative of w = sin-1 z at z =  

Solution 
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Inverse Hyperbolic Functions 

Similarly we have  
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        (11) 
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Example 3 

Find all values of cosh-1(−1). 

Solution 

From (11),  

,...2 ,1 ,0
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2.3  Sets in the Complex Plane 

Terminology 

 

 

 

 

If z satisfies |z – z0| = , this point lies on a circle of 

radius   centered at the point z0.   

 

0 0 0

2 2

0 0 0

,  

( ) ( )

z x iy z x iy

z z x x y y

   

    



Example 1 

(a) |z| = 1 is the equation of a unit circle centered at the 

origin. 

(b) |z – 1 – 2i|= 5 is the equation of a circle of radius 5 

centered at 1 + 2i. 



If z satisfies |z – z0| < , this point lies within (not on)  

a circle of radius   centered at the point z0. The set is 

called a neighborhood of z0, or an open disk.    

A point z0 is an interior point of a set S if there exists 

some neighborhood of z0 that lies entirely within S. 

If every point of S is an interior point then S is an 

open set. See Fig 2.7. 



Fig 2.7 



Fig 2.8  

The graph of |z – (1.1 + 2i)| < 0.05 is shown in Fig 

2.8. It is an open set. 



Fig 2.9 

The graph of Re(z)  1 is shown in Fig 2.9. It is not 

an open set. 



Example 2 

Fig 2.10 illustrates some additional open sets. 



Example 2   (2) 



  

If every neighborhood of z0 contains at least one point 
that is in a set S and at least one point that is not in S, 
z0 is said to be a boundary point of S. The boundary 
of S is the set of all boundary points. 

If any pair of points z1 and  z2 in an open set S can be 
connected by a polygonal line that lies entirely in S is 
said to be connected. See Fig 2.11. An open 
connected set is called a domain. 



Fig2.11 



A region is a domain in the complex plane with all, 

some or none of its boundary points. Since an open 

connected set does not contain any boundary points, it 

is a region. A region containing all its boundary 

points is said to be closed. 



2.4 Functions of a Complex Variable 

Complex Functions 

        (1) 

 

where u and v are real-valued functions.  

Also, w = f(z) can be interpreted  as a mapping or 

transformation from the z-plane to the w-plane. See 

Fig 2.12. 
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Fig 2.12 



Example 1 

Find the image of the line Re(z) = 1 under f(z) = z2. 

Solution  

 

 

 

Now Re(z) = x = 1, u = 1 – y2, v = 2y.  

 

 

See Fig 2.13. 
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Fig 2.13 



 

Suppose the function f is defined in some neighborhood 

of z0, except possibly at z0 itself. Then f is said to  

possess a limit at z0, written 

 

 

if, for each  > 0, there exists a  > 0 such that  

   whenever  

 

DEFINITION 2.4 
Limit of a Function 
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Suppose     and    

Then 

 

(i) 

 

(ii) 

 

(iii) 

THEOREM 2.1 
Limit of Sum, Product, Quotient 
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A function f defined by 

   

        (2) 

where n is a nonnegative integer and ai, i = 0, 1, 2, …, 

n, are complex constants, is called a polynomial of 

degree n. 

 

A function f is continuous at a point z0 if 

 

DEFINITION 2.5 
 Continuous Function 
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If the limit in (3) exists, f is said to be differentiable at 

z0. Also,  

if f is differentiable at  z0, then f is continuous at z0. 

 

Suppose the complex function f is defined in a  

neighborhood of a point z0. The derivative of f at z0 is 

 

        (3) 

provided this limit exists. 

DEFINITION 2.6 
Derivative 
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Rules of differentiation 

Constant Rules: 

        (4) 

 

Sum Rules: 

        (5) 

 

Product Rule: 

        (6) 
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Quotient Rule: 

        (7) 

 

Chain Rule: 

        (8) 

 

Usual rule 
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Example 3 

Differentiate  

 

Solution 

.
14

)()(,253)()(
2

34




z

z
zfbzzzzfa

3 2

2 2

2 2

( ) '( ) 12 15 2

(4 1)2 4 4 2
( ) '( )

(4 1) (4 1)

a f z z z

z z z z z
b f z

z z

  

  
 

 



Example 4 

Show that f(z) = x + 4iy is nowhere differentiable. 

Solution  

 

 

 

 

And so 
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Example 4   (2) 

Now if we let z0 along a line parallel to the x-axis 

then y=0 and the value of (10) is 1. On the other hand, 

if we let z0 along a line parallel to the y-axis then 

x=0 and the value of (10) is 4. Therefore f(z) is not 

differentiable at any point z. 

 



A function is analytic at every point z is said to be an 

entire function. Polynomial functions are entire 

functions. 

 

A complex function w = f(z) is said to be analytic at 

a point z0 if f is differentiable at z0 and at every point  

in some neighborhood of z0. 

DEFINITION 2.7 
Analyticity at a Point 



17.5 Cauchy-Riemann Equations 

 

Suppose f(z) = u(x, y) + iv(x, y) is differentiable at a  

point z = x + iy. Then at z the first-order partial  

derivatives of u and v exists and satisfy the  

Cauchy-Riemann equations 
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THEOREM 2.2 
Cauchy-Riemann Equations 

and   
y

v

x

u










x

v

y

u












THEOREM 2.2 Proof 

Proof  

Since f ’(z) exists, we know that 

 

        (2) 

By writing f(z) = u(x, y) + iv(x, y), and z = x + iy, 

form (2) 
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THEOREM 2.2 Proof   (2) 

Since the limit exists, z can approach zero from any 

direction. In particular, if z0 horizontally, then z = 

x and (3) becomes 

 

        (4) 

 

 

By the definition, the limits in (4) are the first partial 

derivatives of u and v w.r.t. x. Thus  
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THEOREM 2.2 Proof   (3) 

Now if z0 vertically, then z = iy and (3) becomes 

 

 

 

        (6) 

 

which is the same as 

 

        (7) 

 

Then we complete the proof. 
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Example 1 

The polynomial f(z) = z2 + z  is analytic for all z and 

f(z) = x2 − y2 + x + i(2xy + y). Thus u = x2 − y2 + x, v 

= 2xy + y. We can see that  
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Example 2 

Show that f(z) = (2x2 + y) + i(y2 – x)  is not analytic at 

any point. 

Solution 

 

 

 

 

We see that u/y = −v/x but u/x = v/y is 

satisfied only on the line y = 2x. However, for any z on 

this line, there is no neighborhood or open disk about z 

in which f is differentiable. We conclude that f is 

nowhere analytic. 
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Suppose the real-valued function u(x, y) and v(x, y) are 

continuous and have continuous first-order partial 

derivatives in a domain D. If u and v satisfy the  

Cauchy-Riemann equations at all points of D, then the 

complex function f(z) = u(x, y) + iv(x, y) is analytic in D. 

THEOREM 2.3 
Criterion for Analyticity 



Example 3 

That is, the Cauchy-Riemann equations are satisfied 

except at the point x2 + y2 = 0, that is z = 0. We 

conclude that f is analytic in any domain not containing 

the point z = 0. 
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From (5) and (7), we have 

 

        (8) 

 

This is a formula to compute f ’(z) if f(z) is 

differentiable at the point z. 
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A real-valued function (x, y) that has continuous  

second-order partial derivatives in a domain D and  

satisfies Laplace’s equation is said to be harmonic in D. 

DEFINITION 2.8 
Harmonic Functions 

 

Suppose f(z) = u(x, y) + iv(x, y) is analytic in a domain D. 

Then the functions u(x, y) and v(x, y) are harmonic  

functions. 

THEOREM 2.4 
A Source of Harmonic Functions 



THEOREM 2.4 

Proof  we assume u and v have continuous second order derivative  
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Conjugate Harmonic Functions 

If u and v are harmonic in D, and u(x,y)+iv(x,y) is an 

analytic function in D, then u and v are called the 

conjugate harmonic function of each other. 



Example 4 

(a) Verify u(x, y) = x3 – 3xy2 – 5y is harmonic in the 

entire complex plane.  

(b) Find the conjugate harmonic function of u.  

Solution  
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Example 4   (2) 
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