Chapter 3

Cauchy's Theorem

By: Habtamu G (Assistant Professor)
Email: habte200@gmail.com

Contents

3.1. Definition and basic properties of line integrals
3.2 .Intuitive version of Cauchy's theorem
3.3. Cauchy's theorem on simply connected regions
3.4. Cauchy - Goursat theorem for a rectangle
3.5. The Cauchy integral Formula
3.6. The Maximum Principle

3.1 Contour Integrals

DEFINITION 3.1

Contour Integral

Let f be defined at points of a smooth curve C given by $z=x(t)+i y(t), a \leq t \leq b$. The contour integral of f along C is

$$
\begin{equation*}
\int_{C} f(z) d z=\lim _{\left\|\Delta z_{\|}\right\| \rightarrow 0} \sum_{k=1}^{n} f\left(z_{k}^{*}\right) \Delta z_{k} \tag{1}
\end{equation*}
$$

THEOREM 3.1

Evaluation of a Contour Integral

 If f is continuous on a smooth curve C given by $z(t)=x(t)+i y(t), a \leq t \leq b$, then$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \tag{2}
\end{equation*}
$$

Example 1

Evaluate $\int_{C}^{\bar{z}} d z$

where C is given by $x=3 t, y=t^{2},-1 \leq t \leq 4$.
Solution

$$
\begin{aligned}
z(t) & =3 t+i t^{2}, z^{\prime}(t)=3+2 i t \\
f(z(t)) & =\overline{3 t+i t^{2}}=3 t-i t^{2}
\end{aligned}
$$

Thus, $\int_{C}^{\bar{z}} d z=\int_{-1}^{4}\left(3 t-i t^{2}\right)(3+2 i t) d t$

$$
=\int_{-1}^{4}\left(2 t^{3}+9 t\right) d t+i \int_{-1}^{4} 3 t^{2} d t=195+65 i
$$

Example 2

Evaluate $\oint_{C} \frac{1}{z} d z$
where C is the circle $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$. Solution

$$
\begin{aligned}
z(t) & =\cos t+i \sin t=e^{i t}, z^{\prime}(t)=i e^{i t} \\
f(z) & =\frac{1}{z}=e^{-i t}
\end{aligned}
$$

Thus, $\oint_{C}^{1} d z=\int_{0}^{2 \pi} e^{-i t} i e^{i t} d t=2 \pi i$

$$
\int_{-i}^{i} \frac{d z}{z}=\operatorname{Ln} i-\operatorname{Ln}(-i)=\frac{i \pi}{2}-\left(-\frac{i \pi}{2}\right)=i \pi \text {. Here } D \text { is the complex plane without } 0 \text { and the negative real }
$$

axis (where $\mathrm{Ln} z$ is not analytic). Obviously, D is a simply comected domain.
$\int_{B+\pi i}^{8-3 \pi t} e^{z / 2} d z=\left.2 e^{z / 2}\right|_{8+\pi i} ^{8-3 \pi t}=2\left(e^{4-3 \pi i / 2}-e^{4+\pi i / 2}\right)=0$
since e^{z} is periodic with period $2 \pi i$.

$$
\int_{0}^{1+i} z^{2} d z=\left.\frac{1}{3} z^{3}\right|_{0} ^{1+i}=\frac{1}{3}(1+i)^{3}=-\frac{2}{3}+\frac{2}{3} i
$$

Cont'd

Integral of a Nonanalytic Function. Dependence on Path

Integrate $f(z)=\operatorname{Re} z=x$ from 0 to $1+2 i\left(\right.$ a) along C^{*} in Fig. 343, (b) along C consisting of C_{1} and C_{2}.
Solution. (a) \mathbf{C}^{*} can be represented by $z(t)=t+2 i t(0 \leqq t \leqq 1)$. Hence $\dot{z}(t)=1+2 i$ and $f[z(t)]=$ $x(t)=t$ on C^{*}. We now calculate

$$
\int_{C^{*}} \operatorname{Re} z d z=\int_{0}^{1} t(1+2 i) d t=\frac{1}{2}(1+2 i)=\frac{1}{2}+i .
$$

(b) We now have

$$
\begin{array}{llll}
C_{1}: z(t)=t, & z(t)=1, & f(z(t))=x(t)=t & (0 \leqq t \leqq 1) \\
C_{2}: z(t)=1+i t, & z(t)=i, & f(z(t))=x(t)=1 & (0 \leqq t \leqq 2)
\end{array}
$$

Using (6) we calculate

$$
\int_{C} \operatorname{Re} z d z=\int_{C_{1}} \operatorname{Re} z d z+\int_{C_{\mathrm{g}}} \operatorname{Re} z d z=\int_{0}^{1} t d t+\int_{0}^{2} 1 \cdot i d t=\frac{1}{2}+2 i
$$

Note that this result differs from the result in (a).

Fig. 343. Paths in Example 7

Cont'd

THEOREM 3.2

Properties of Contour Integrals

Suppose f and g are continuous in a domain D and C is a smooth curve lying entirely in D. Then:
(i) $\int_{C} k f(z) d z=k \int_{C} f(z) d z, k$ a constant
(ii) $\int_{C}^{C}[f(z)+g(z)] d z=\int_{C} f(z) d z+\int_{C} g(z) d z$
(iii) $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z$, where C is the union of the smooth curve C_{1} and C_{2}.
(iv) $\int_{-C} f(z) d z=-\int_{C} f(z) d z$, where $-C$ denotes the curve having the opposite orientation of C.

Example 3

Evaluate $\int_{C}\left(x^{2}+i y^{2}\right) d z$ where C is the contour in Fig 3.1.

Solution

Fig 3.1

Cont'd

We have

$$
\int_{C}\left(x^{2}+i y^{2}\right) d z=\int_{C_{1}}\left(x^{2}+i y^{2}\right) d z+\int_{C_{2}}\left(x^{2}+i y^{2}\right) d z
$$

Since C_{1} is defined by $y=x$, then $z(x)=x+i x, z^{\prime}(x)=1$ $+i, f(z(x))=x^{2}+i x^{2}$, and

$$
\begin{aligned}
\int_{C_{1}}\left(x^{2}+i y^{2}\right) d z & =\int_{0}^{1}\left(x^{2}+i x^{2}\right)(1+i) d x \\
& =(1+i)^{2} \int_{0}^{1} x^{2} d x=\frac{2}{3} i
\end{aligned}
$$

Cont'd

The curve C_{2} is defined by $x=1,1 \leq y \leq 2$. Then $z(y)=1+i y, z^{\prime}(y)=i, f(z(y))=1+i y^{2}$. Thus

$$
\begin{aligned}
\int_{C_{2}}\left(x^{2}+i y^{2}\right) d z & =\int_{1}^{2}\left(1+i y^{2}\right) i d y \\
& =-\int_{1}^{2} y^{2} d y+i \int_{1}^{2} d y=-\frac{7}{3}+i
\end{aligned}
$$

Finally, $\int_{C}\left(x^{2}+i y^{2}\right) d z=\frac{2}{3} i+\left(-\frac{7}{3}+i\right)=-\frac{7}{3}+\frac{5}{3} i$

Cont'd

THEOREM 3.3

A Bounding Theorem

If f is continuous on a smooth curve C and if $|f(z)| \leq M$ for all z on C , then $\left|\int_{c} f(z) d z\right| \leq M L$, where L is the length of C .

* This theorem is sometimes called the ML-inequality

Example 4

Find an upper bound for the absolute value of

$$
\oint_{C} \frac{e^{z}}{z+1} d z
$$

where C is the circle $|z|=4$.
Solution
Since $|z+1| \geq|z|-1=3$, then

$$
\begin{equation*}
\left|\frac{e^{z}}{z+1}\right| \leq \frac{\left|e^{z}\right|}{|z|-1}=\frac{\left|e^{z}\right|}{3} \tag{3}
\end{equation*}
$$

Cont'd

In addition, $\left|e^{z}\right|=e^{x}$, with $|z|=4$, we have the maximum value of x is 4. Thus (3) becomes

$$
\left|\frac{e^{z}}{z+1}\right| \leq \frac{e^{4}}{3}
$$

Hence from Theorem 3.3,

$$
\left|\oint_{C} \frac{e^{z}}{z+1} d z\right| \leq \frac{8 \pi e^{4}}{3}
$$

3.2 Cauchy-Goursat Theorem

Cauchy's Theorem

Suppose that a function f is analytic in a simply connected domain D and that f^{\prime} is continuous in D. Then for every simple closed contour C in D,

$$
\oint_{C} f(z) d z=0
$$

This proof is based on the result of Green's Theorem.

$$
\begin{align*}
& \int_{C} f(z) d z \\
& =\int_{C} u(x, y) d x-v(x, y) d y+i \int_{C} v(x, y) d x+u(x, y) d y \\
& =\iint_{D}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d A+i \iint_{D}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d A \tag{4}
\end{align*}
$$

Now since f is analytic, the Cauchy-Riemann equations imply the integral in (4) is identical zero.

THEOREM 3.4 ○

Cauchy-Goursat Theorem

Suppose a function f is a analytic in a simply connected domain D. Then for every simple closed C in D,

$$
\oint_{C} f(z) d z=0
$$

Cont'd

Since the interior of a simple closed contour is a simply connected domain, the Cauchy-Goursat Theorem can be stated as
If f is analytic at all points within and on a simple closed contour C,

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{5}
\end{equation*}
$$

Example 1

Evaluate $\oint_{C} e^{z} d z$
where C is shown in Fig 3.2.
Solution
The function e^{z} is entire and C is a simple closed contour. Thus the integral is zero.

Fig 3.2

Example 5

Evaluate $\oint_{C} \frac{d z}{z^{z}}$
where C is the ellipse $(x-2)^{2}+(y-5)^{2 / 4}=1$.
Solution
We find that $1 / z^{2}$ is analytic except at $z=0$ and $z=0$ is not a point interior to or on C. Thus the integral is zero.

Cauchy-Goursat Theorem for Multiply Connected Domains

*Fig 3.3(a) shows that C_{1} surrounds the "hole" in the domain and is interior to C.

Cont'd

Suppose also that f is analytic on each contour and at each point interior to C but exterior to C_{1}. When we introduce the cut $A B$ shown in Fig 3.3(b), the region bounded by the curves is simply connected. Thus from (5)

$$
\oint_{C} f(z) d z+\oint_{C_{1}} f(z) d z=0
$$

and

$$
\begin{equation*}
\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z \tag{6}
\end{equation*}
$$

Example 6

Evaluate $\oint_{C} \frac{d z}{z-i}$
where C is the outer contour in Fig 4.

Solution

From (6), we choose the simpler circular contour $C_{1:} \mid z-$ $i \mid=1$ in the figure. Thus $x=\cos t, y=1+\sin t, 0 \leq t \leq$
2π, or $z=i+e^{i t}, 0 \leq t \leq 2 \pi$. Then

$$
\oint_{C} \frac{d z}{z-i} d z=\oint_{C_{1}} \frac{d z}{z-i} d z=\int_{0}^{2 \pi} \frac{i e^{i t}}{e^{i t}} d t=i \int_{0}^{2 \pi} d t=2 \pi i
$$

Fig. 4

Cont'd

The result in Example 6 can be generalized. We can show that if z_{0} is any constant complex number interior to any simple closed contour C, then

$$
\oint_{C} \frac{d z}{\left(z-z_{0}\right)^{n}}= \begin{cases}2 \pi i, & n=1 \tag{7}\\ 0, & n \text { an integer } \neq 1\end{cases}
$$

Example 7

Evaluate $\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z$
where C is the circle $|z-2|=2$.
Solution

$$
\frac{5 z+7}{z^{2}+2 z-3}=\frac{3}{z-1}+\frac{2}{z+3}
$$

and so

$$
\begin{equation*}
\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3 \oint_{C} \frac{d z}{z-1}+2 \oint_{C} \frac{d z}{z+3} \tag{8}
\end{equation*}
$$

Cont'd

Since $z=1$ is interior to C and $z=-3$ is exterior to C, we have

$$
\oint_{C} \frac{5 z+7}{z^{2}+2 z-3} d z=3(2 \pi i)+2(0)=6 \pi i
$$

Fig 5

See Fig 5. We can show that

$$
\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z
$$

D

THEOREM 3.5

Cauchy-Goursat Theorem for Multiply Connected Domain

Suppose C, C_{1}, \ldots, C_{n} are simple closed curves with a positive orientation such that $C_{1}, C_{2}, \ldots, C_{n}$ are interior to C but the regions interior to each $C_{k}, k=1,2, \ldots, n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the $C_{k}, k=1,2, \ldots, n$, then

$$
\begin{equation*}
\oint_{C} f(z) d z=\sum_{k=1}^{n} \oint_{C_{k}} f(z) d z \tag{7}
\end{equation*}
$$

Example 8

Evaluate $\oint_{C} \frac{d z}{z^{2}+1}$
where C is the circle $|z|=3$.
Solution

$$
\begin{gathered}
\frac{1}{z^{2}+1}=\frac{1 / 2 i}{z-i}-\frac{1 / 2 i}{z+i} \\
\oint_{C} \frac{d z}{z^{2}+1}=\frac{1}{2 i} \oint_{C}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z
\end{gathered}
$$

Cont'd

We now surround the points $z=i$ and $z=-i$ by circular contours C_{1} and C_{2}. See Fig 6, we have
$\oint_{C} \frac{d z}{z^{2}+1}$
$=\frac{1}{2 i} \oint_{C_{1}}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z+\oint_{C_{2}}\left[\frac{1}{z-i}-\frac{1}{z+i}\right] d z$
$=\frac{1}{2 i} \oint_{C_{1}} \frac{d z}{z-i}-\frac{1}{2 i} \oint_{C_{1}} \frac{d z}{z+i}+\frac{1}{2 i} \oint_{C_{2}} \frac{d z}{z-i}-\frac{1}{2 i} \int_{C_{2}} \frac{d z}{z+i}$
Since $\quad \int_{C_{1}} \frac{d z}{z-i} i=2 \pi i, \quad \int_{C_{2}} \frac{d z}{z+i} i=2 \pi i$
thus (8) becomes zero.

3.3 Independence of Path

Independence of the Path

Let z_{0} and z_{1} be points in a domain D. A contour integral $\oint_{C} f(z) d z$ is said to be independent of the path if its value is the same for all contours C in D with an initial point z_{0} and a terminal point z_{1}.

- See Fig 7

Fig 7

Note that C and C_{1} form a closed contour. If f is analytic in D then

$$
\begin{equation*}
\int_{C} f(z) d z+\int_{-C_{1}} f(z) d z=0 \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{-C_{1}} f(z) d z \tag{9}
\end{equation*}
$$

THEOREM 3.6
 Analyticity Implies Path Independence

If f is an analytic function in a simply connected domain D, then $\int_{C} f(z) d z$ is independent of the path C.

Example 9

Evaluate $\int_{C} 2 z d z$
where C is shown in Fig 8.

Cont'd

Solution

Since $f(z)=2 z$ is entire, we choose the path C_{1} to replace C (see Fig 7). C_{1} is a straight line segment $x=-1,0 \leq y \leq 1$. Thus $z=-1+i y, d z=i d y$.

$$
\begin{aligned}
\int_{C} 2 z d z & =\int_{C_{1}} 2 z d z \\
& =-2 \int_{0}^{1} y d y-2 i \int_{0}^{1} d y=-1-2 i
\end{aligned}
$$

Cont'd

DEFINITION 3.3

Antiderivative

Suppose f is continuous in a domain D. If there exists a function F such that $F^{\prime}(z)=f(z)$ for each z in D, then F is called an antiderivative of f.

Cont'd

THEOREM 3.7

Fundamentals Theorem for Contour Integrals

Suppose f is continuous in a domain D and F is an antiderivative of f in D. Then for any contour C in D with initial point z_{0} and terminal point z_{1},

$$
\begin{equation*}
\int_{C} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right) \tag{10}
\end{equation*}
$$

Cont'd

Proof

With $F^{\prime}(z)=f(z)$ for each z in D, we have

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{a}^{b} F^{\prime}(z(t)) z^{\prime}(t) d t \\
& =\int_{a}^{b} \frac{d}{d t} F(z(t)) d t \quad \leftarrow \text { Chain Rule } \\
& =\left.F(z(t))\right|_{a} ^{b} \\
& =F(z(b))-F(z(a))=F\left(z_{1}\right)-F\left(z_{0}\right)
\end{aligned}
$$

Example 10

In Example 9, the contour is from -1 to $-1+i$. The function $f(z)=2 z$ is entire and $F(z)=z^{2}$ such that $F^{\prime}(z)=$ $2 z=f(z)$. Thus

$$
\int_{-1}^{-1+i} 2 z d z=\left.z^{2}\right|_{-1} ^{-1+i}=-1-2 i
$$

Example 11

Evaluate $\int_{C} \cos z d z$
where C is any contour fro $z=0$ to $z=2+i$.

Solution

$$
\begin{aligned}
\int_{C} \cos z d z & =\int_{0}^{2+i} \cos z d z=\left.\sin z\right|_{0} ^{2+i} \\
& =\sin (2+i)=1.4031-0.4891 i
\end{aligned}
$$

Some Conclusions from Theorem 3.7

If C is closed then $z_{0}=z_{2}$, then

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{11}
\end{equation*}
$$

- In other words:

If a continuous function f has an antiderivative F in D, then $\int_{C} f(z) d z$ is independent of the path.

* Sufficient condition for the existence of an antiderivative:
Iff is continuous and $\int_{C} f(z) d z$ is independent of the path in a domain D, then f has an antiderivative everywhere in D.

Cont'd

THEOREM 3.8

Existence of a Antiderivative

If f is analytic in a simply connected domain D, then f has an antiderivative in D; that is, there existence a function F such that $F^{\prime}(z)=f(z)$ for all z in D.

Example 12

Evaluate $\int_{C} \frac{d z}{z}$
where C is shown in Fig 8.

Cont'd

Solution

Suppose that D is the simply connected domain defined by $x>0, y>0$. In this case $\operatorname{Ln} z$ is an antiderivative of $1 / z$. Hence

$$
\begin{aligned}
& \int_{3}^{2 i} \frac{d z}{z}=\left.\operatorname{Ln} z\right|_{3} ^{2 i}=\operatorname{Ln} 2 i-\operatorname{Ln} 3 \\
& \operatorname{Ln} 2 i=\log _{e} 2+\frac{\pi}{2} i, \operatorname{Ln} 3=\log _{e} 3 \\
& \int_{3}^{2 i} \frac{d z}{z}=\log _{e} \frac{2}{3}+\frac{\pi}{2} i
\end{aligned}
$$

3.4 Cauchy Integral Formulas

THEOREM 3.9

Cauchy's Integral Formula

Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D. If z_{0} is any point within C, then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z \tag{11}
\end{equation*}
$$

Cont'd

Proof

Let C_{1} be a circle centered at z_{0} with radius small enough that it is interior to C. Then we have

$$
\begin{equation*}
\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z \tag{12}
\end{equation*}
$$

For the right side of (12)

$$
\begin{align*}
\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z & =\oint_{C_{1}} \frac{f\left(z_{0}\right)-f\left(z_{0}\right)+f(z)}{z-z_{0}} d z \tag{13}\\
& =f\left(z_{0}\right) \oint_{C_{1}} \frac{d z}{z-z_{0}}+\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
\end{align*}
$$

Cont'd

From (4) of Sec. 3.2, we know

$$
\oint_{C} \frac{d z}{z-z_{0}}=2 \pi i
$$

Thus (13) becomes

$$
\begin{equation*}
\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)+\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{14}
\end{equation*}
$$

However from the ML-inequality and the fact that the length of C_{1} is small enough, the second term of the right side in (4) is zero. We complete the proof.

$$
\left|\oint_{C_{1}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right| \leq \frac{\delta}{\delta / 2} 2 \pi\left(\frac{\delta}{2}\right)=2 \pi \varepsilon
$$

Cont'd

A more practical restatement of Theorem 3.9 is :

Iff is analytic at all points within and on a simple closed contour C, and z_{0} is any point interior to C, then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z \tag{15}
\end{equation*}
$$

Example 13

Evaluate $\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z$
where C is the circle $|\mathrm{z}|=2$.
Solution
First $f=z^{2}-4 z+4$ is analytic and $z_{0}=-i$ is within C.
Thus
$\oint_{C} \frac{z^{2}-4 z+4}{z+i} d z=2 \pi i f(-i)=2 \pi i(3+4 i)=2 \pi(-4+3 i)$

Example 14

Evaluate $\oint_{C} \frac{z}{z^{2}+9} d z$
where C is the circle $|z-2 i|=4$.
Solution
See Fig 8 . Only $z=3 i$ is within C, and

$$
\frac{z}{z^{2}+9}=\frac{\frac{z}{z+3 i}}{z-3 i}
$$

Fig 8.

Cont'd

Let $f(z)=\frac{z}{z+3 i}$, then
$\oint_{C} \frac{z}{z^{2}+9} d z=\oint_{C} \frac{z}{z+3 i} d z=2 \pi i f(3 i)=2 \pi i \frac{3 i}{6 i}=\pi i$

Example 15

The complex function $f(z)=k /\left(\bar{z}-\bar{z}_{1}\right)$
where $k=a+i b$ and z_{1} are complex numbers, gives rise to a flow in the domain $z \neq z_{1}$. If C is a simple closed contour containing $z=z_{1}$ in its interior, then we have

$$
\oint_{C} \overline{f(z)} d z=\oint_{C} \frac{a-i b}{z-z_{1}} d z=2 \pi i(a-i b)
$$

Cont'd

The circulation around C is $2 \pi b$ and the net flux across C is $2 \pi a$. If z_{1} were in the exterior of C both of them would be zero. Note that when k is real, the circulation around C is zero but the net flux across C is $2 \pi k$. The complex number z_{1} is called a source when $k>0$ and is a sink when $k<0$.
See Fig 9.

Fig 9.

(a) Source: $k>0$

(b) Sink: $k<0$

Cont'd

THEOREM 3.8
 Cauchy's Integral Formula For Derivative

Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D If z_{0} is any point within C, then

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \tag{16}
\end{equation*}
$$

Cont'd

Partial Proof

Prove only for $n=1$. From the definition of the derivative and (11) $f(z)=k /\left(\bar{z}-\bar{z}_{1}\right)$

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i \Delta z}\left[\oint_{C} \frac{f(z)}{z-\left(z_{0}+\Delta z\right)} d z-\oint_{C} \frac{f(z)}{z-z_{0}} d z\right] \\
& =\lim _{\Delta z \rightarrow 0} \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z
\end{aligned}
$$

Contd

From the ML-inequality and

$$
\begin{aligned}
& \left|\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z-\oint_{C} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z\right| \\
& =\left|\oint_{C} \frac{-\Delta z f(z)}{\left(z-z_{0}\right)^{2}\left(z-z_{0}-\Delta z\right)} d z\right| \leq \frac{2 M L|\Delta z|}{\delta^{3}} \rightarrow 0 \text { as } \Delta \mathrm{z} \rightarrow 0
\end{aligned}
$$

Thus

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Example 16

Evaluate $\oint_{C} \frac{z+1}{z^{4}+4 z^{3}} d z$
where C is the circle $|z|=1$.

Solution

This integrand is not analytic at $z=0,-4$ but only $z=0$ lies within C. Since $\quad z+1$

$$
\frac{z+1}{z^{4}+4 z^{3}}=\frac{\overline{z+4}}{z^{3}}
$$

We get $z_{0}=0, n=2, f(z)=(z+1) /(z+4), f^{\prime \prime}(z)=-6 /(z$ $+4)^{3}$. By (6):

$$
\oint_{C} \frac{z+1}{z^{4}+4 z^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}(0)=-\frac{3 \pi}{32} i
$$

Example 17

Evaluate $\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z$
where C is shown in Fig 9 .

Cont'd

Solution

Though C is not simple, we can think of it is as the union of two simple closed contours C_{1} and C_{2} in Fig 10.

$$
\begin{aligned}
\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z & =\oint_{C_{1}} \frac{z^{3}+3}{z(z-i)^{2}} d z+\oint_{C_{2}} \frac{z+3}{z(z-i)^{2}} d z \\
& =-\oint_{C_{1}} \frac{\frac{z^{3}+3}{z(z-i)^{2}}}{z} d z+\oint_{C_{2}} \frac{\frac{z^{3}+3}{z}}{z(z-i)^{2}} d z \\
& =-I_{1}+I_{2}
\end{aligned}
$$

Cont'd

For $I_{1}: z_{0}=0, f(z)=\left(z^{3}+3\right) /(z-i)^{2}$:

$$
I_{1}=\oint_{C_{1}} \frac{\frac{z^{3}+3}{z(z-i)^{2}}}{z} d z=2 \pi i f(0)=-6 \pi i
$$

$I_{2}=\oint_{C_{2}} \frac{z}{(z-i)^{2}} d z=\frac{2 \pi i}{1!} f^{\prime}(i)=-2 \pi i(3+2 i)=2 \pi(-2+3 i)$
We get
$\oint_{C} \frac{z^{3}+3}{z(z-i)^{2}} d z=-I_{1}+I_{2}=6 \pi i+2 \pi(-2+3 i)=4 \pi(-1+3 i)$

Liouville's Theorem

If we take the contour C to be the circle $\left|z-z_{0}\right|=r$, from (16) and ML-inequality that

$$
\begin{align*}
& \left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!}{2 \pi}\left|\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \\
& \left.\quad \begin{array}{l}
0
\end{array} \right\rvert\, \tag{17}\\
& \leq \frac{n!}{2 \pi} M \frac{1}{r^{n+1}} 2 \pi r=\frac{n!M}{r^{n}}
\end{align*}
$$

where $|f(z)| \leq M$ for all points on C. The result in (17) is called Cauchy's inequality.

Liouville's Theorem

The only bounded entire functions are constants.

Proof

For $n=1$, (17) gives $\left|f^{\prime}\left(z_{0}\right)\right| \leq M / r$. By taking r arbitrarily large, we can make $\left|f^{\prime}\left(z_{0}\right)\right|$ as small as we wish. That is, $\left|f^{\prime}\left(z_{0}\right)\right|=0, f$ is a constant function.

Thank You!

