

Series representation of analytic functions

By: Habtamu G (Assistant Professor) Email: habte200@gmail.com

- 4.1. Basic definitions and properties of sequence
- and series
- 4.2. Taylor's theorem
- 4.3 .Lowville's theorem
- 4.4 .Laurent series and classification of singularities

Sequence

For example, the sequence $\{1 + i^n\}$ is

$$1+i, \quad 0, \quad 1-i, \quad 2, \quad 1+i, \quad \dots$$

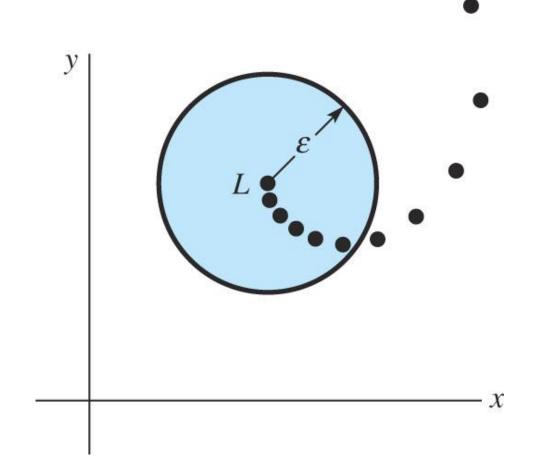
$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad (1)$$

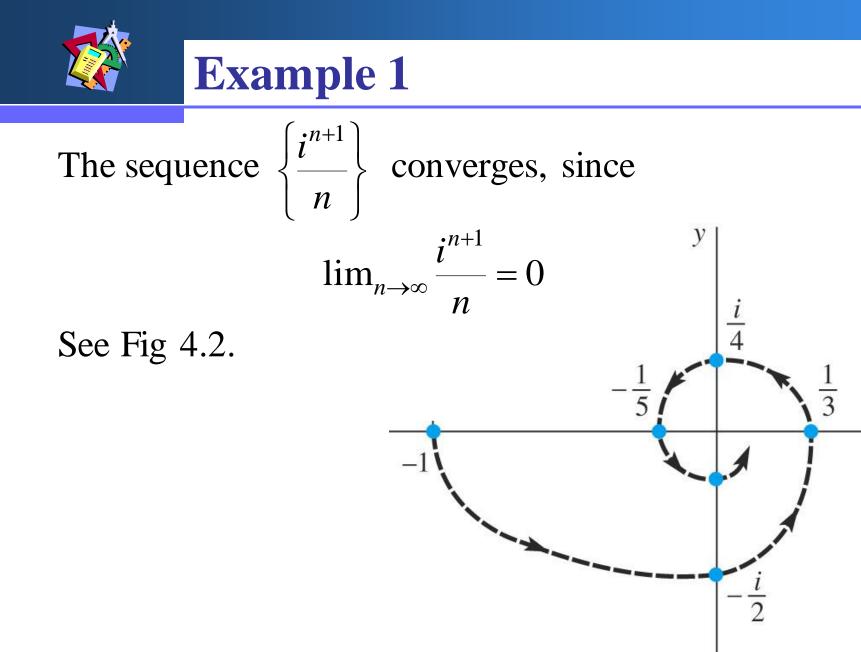
$$n=1, \quad n=2, \quad n=3, \quad n=4, \quad n=5, \quad \dots$$

* If $\lim_{n\to\infty} z_n = L$, we say this sequence is convergent. See Fig 4.1.

Definition of the existence of the limit:

 $\forall \varepsilon > 0, \exists N > 0, \Rightarrow |z_n - L| < \varepsilon, \forall n > N$





X

THEOREM 4.1

 $\left(\right)$

Criterion for Convergence

A sequence $\{z_n\}$ converge to a complex number *L* if and only if $\operatorname{Re}(z_n)$ converges to $\operatorname{Re}(L)$ and $\operatorname{Im}(z_n)$ converges to $\operatorname{Im}(L)$.

The sequence $\left\{\frac{ni}{n+2i}\right\}$ converges to *i*. Note that

 $\operatorname{Re}(i) = 0$ and $\operatorname{Im}(i) = 1$. Then

$$z_{n} = \frac{ni}{n+2i} = \frac{2n}{n^{2}+4} + i\frac{n^{2}}{n^{2}+4}$$
$$\operatorname{Re}(z_{n}) = \frac{2n}{n^{2}+4} \to 0, \ \operatorname{Im}(z_{n}) = \frac{n^{2}}{n^{2}+4} \to 1$$
as $n \to \infty$.

* An infinite series of complex numbers

$$\sum_{k=1}^{\infty} z_k = z_1 + z_2 + \dots + z_n + \dots$$

is convergent if the sequence of partial sum $\{S_n\}$, where

$$S_n = z_1 + z_2 + \dots + z_n$$

converges.

For the geometric Series

$$\sum_{k=1}^{\infty} az^{k-1} = a + az + az^2 + \dots + az^{n-1} + \dots$$
 (2)

the nth term of the sequence of partial sums is

$$S_n = a + az + az^2 + \dots + az^{n-1}$$
 (3)

and

$$S_n = \frac{a(1 - z^n)}{1 - z}$$
(4)

Since $z^n \to 0$ as $n \to \infty$ whenever |z| < 1, we conclude that (2) converges to a/(1-z) when |z| < 1; the series diverges when $|z| \ge 1$. The special series

$$\frac{1}{1-z} = 1 + z + z^{2} + z^{3} + \cdots$$
(5)

$$\frac{1}{1+z} = 1 - z + z^{2} - z^{3} + \cdots$$
(6)

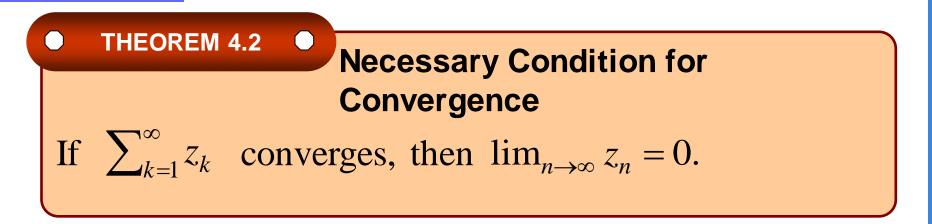
valid for |z| < 1.

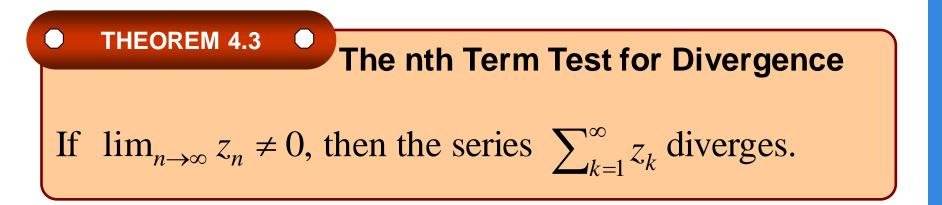
The series

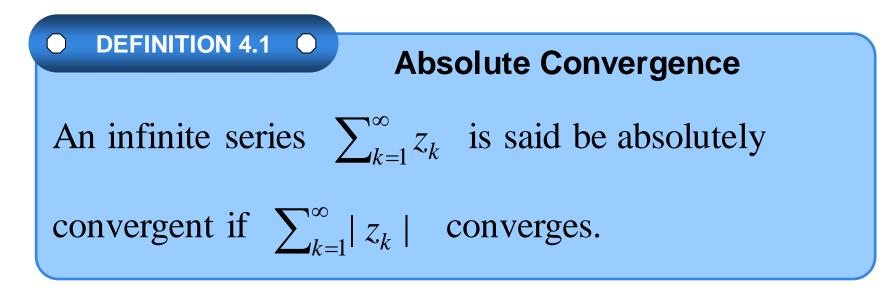
$$\sum_{k=1}^{\infty} \frac{(1+2i)^k}{5^k} = \frac{(1+2i)}{5} + \frac{(1+2i)^2}{5^2} + \frac{(1+2i)^3}{5^3} + \dots$$

is a geometric series with a = (1 + 2i)/5 and z = (1 + 2i)/5. Since |z| < 1, we have

$$\sum_{k=1}^{\infty} \frac{(1+2i)^k}{5^k} = \frac{\frac{1+2i}{5}}{1-\frac{1+2i}{5}} = \frac{i}{2}$$







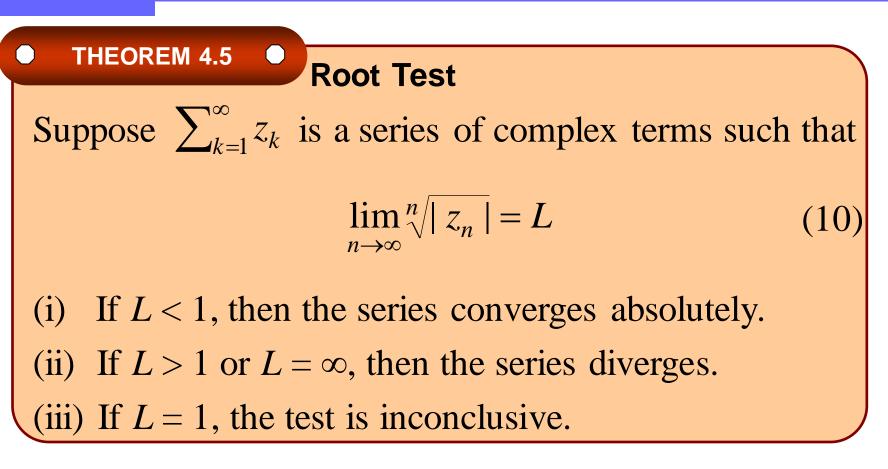
The series $\sum_{k=1}^{\infty} \frac{i^k}{k^2}$ is absolutely convergent since

 $|i^k/k^2| = 1/k^2$ and the real series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges.

As in real calculus,

Absolute convergence implies convergence. Thus the series in Example 4 converges.

THEOREM 4.4 \bigcirc **Ratio Test** Suppose $\sum_{k=1}^{\infty} z_k$ is a series of nonzero complex terms such that $\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = L$ (9) If L < 1, then the series converges absolutely. (i) (ii) If L > 1 or $L = \infty$, then the series diverges. (iii) If L = 1, the test is inconclusive.



* An infinite series of the form

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots, \quad (11)$$

where a_k are complex constants is called a power series in $z - z_0$. (11) is said to be centered at z_0 and z_0 is referred to the center of the series.

Every complex power series $\sum_{k=0}^{k} a_k (z-z_0)^k$ has radius of convergence *R* and has a circle of convergence defined by $|z - z_0| = R$, $0 < R < \infty$. See Fig 19.3. $|z - z_0| = R \gamma$ convergence divergence X

♦ The radius *R* can be
(i) zero (converges at only *z* = *z*₀).
(ii) a finite number (converges at all interior points of the circle |*z* − *z*₀| = *R*).
(iii) ∞ (converges for all *z*).

A power series may converge at some, all, or none of the points on the circle of convergence.

Consider the series $\sum_{k=1}^{\infty} \frac{z^{k+1}}{k}$, by ratio test

$$\lim_{n \to \infty} \left| \frac{\frac{z^{n+2}}{n+1}}{\frac{z^{n+1}}{n}} \right| = \lim_{n \to \infty} \frac{n+1}{n} |z| = |z|$$

Thus the series converges absolutely for |z| < 1 and the radius of convergence R = 1.

Summary: R.O.C. using ratio test

(i)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \neq 0$$
, the R.O.C. is $R = 1/L$.
(ii) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$ the R.O.C. is ∞ .
(iii) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$ the R.O.C. is $R = 0$.

For the power series

$$\sum_{k=0}^{\infty} a_k (z-z_0)^k$$

٠

Consider the power series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} (z-1-i)^k}{k!} \quad \text{with}$$

$$a_{n} = \frac{(-1)^{n+1}}{n!}, \lim_{n \to \infty} \frac{\left| \frac{(-1)^{n+2}}{(n+1)!} \right|}{\left| \frac{(-1)^{n+1}}{n!} \right|} = \lim_{n \to \infty} \left| \frac{1}{n+1} \right| = 0$$

The R.O.C. is ∞ .

Consider the power series

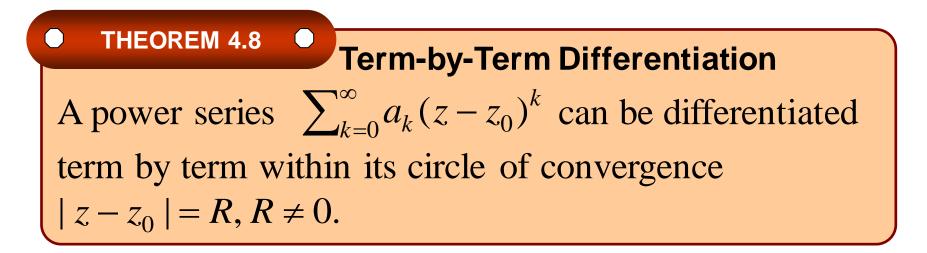
$$\sum_{k=1}^{\infty} \left(\frac{6k+1}{2k+5}\right)^k (z-2i)^k$$

$$a_{n} = \left(\frac{6n+1}{2n+5}\right)^{n}, \lim_{n \to \infty} \sqrt[n]{|a_{n}|} = \lim_{n \to \infty} \frac{6n+1}{2n+5} = 3$$

This root test shows the R.O.C. is 1/3. The circle of convergence is |z - 2i| = 1/3; the series converges absolutely for |z - 2i| < 1/3.

• THEOREM 4.6
• Continuity
A power series
$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 represents a
continuous function *f* within its circle of convergence
 $|z - z_0| = R, R \neq 0.$

THEOREM 4.7 Term-by-Term Integration A power series $\sum_{k=0}^{\infty} a_k (z - z_0)^k$ can be integrated term by term within its circle of convergence $|z - z_0| = R, R \neq 0$, for every contour *C* lying entirely within the circle of convergence.



Suppose a power series represents a function f for $|z - z_0| < R, R \neq 0$, that is

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

$$= a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + a_3 (z - z_0)^3 + \cdots$$
(1)

It follows that

$$f'(z) = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}$$

$$= a_1 + 2a_2 (z - z_0) + 3a_3 (z - z_0)^2 + \cdots$$
(2)

•

$$f''(z) = \sum_{k=2}^{\infty} k(k-1)a_k(z-z_0)^{k-2}$$

$$= 2 \cdot 1a_2 + 3 \cdot 2a_3(z-z_0) + \cdots$$
(3)

$$f^{(3)}(z) = \sum_{k=3}^{\infty} k(k-1)(k-2)a_k(z-z_0)^{k-3}$$

$$= 3 \cdot 2 \cdot 1a_3 + \cdots$$
(4)

From the above, at $z = z_0$ we have $f(z_0) = a_0, f'(z_0) = 1!a_1, f''(z_0) = 2!a_2,...$ $f^{(n)}(z_0) = n!a_n$

or

$$a_n = \frac{f^{(n)}(z_0)}{n!}, \qquad n \ge 0$$
 (5)

When n = 0, we interpret the zeroth derivative as $f(z_0)$ and 0! = 1. Now we have

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$
(6)

This series is called the Taylor series for *f* centered at z_0 . A Taylor series with center $z_0 = 0$,

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^{k} ,$$

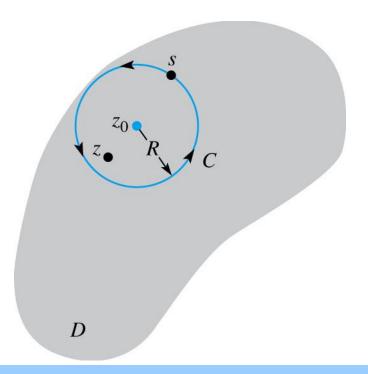
is referred to as a Maclaurin series.

(/)

THEOREM 4.9

Taylor's Theorem

Let *f* be analytic within a domain *D* and let z_0 be a point in *D*. Then *f* has the series representation $f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!}(z-z_0)^k$ (8) valid for the largest circle *C* with center at z_0 and radius R that lies entirely within *D*.



Some important Maclurin series

$$e^{z} = 1 + \frac{z}{1!} + \frac{z^{2}}{2!} + \dots = \sum_{k=0}^{\infty} \frac{z^{k}}{k!}$$
(12)

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$
(13)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$
(14)

Find the Maclurin series of $f(z) = 1/(1 - z)^{2}$. Solution

For |z| < 1,

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$$
(15)

Differentiating both sides of (15)

$$\frac{1}{(1-z)^2} = 1 + 2z + 3z^2 + \dots = \sum_{k=1}^{\infty} kz^{k-1}$$

***** Isolated Singularities

Suppose $z = z_0$ is a singularity of a complex function f. For example, 2i and -2i are sigularities of $f(z) = \frac{z}{z^2 + 4}$ The point z_0 is said to be an *isolated singularity*, if there exists some deleted neighborhood or punctured open disk $0 < |z - z_0| < R$ throughout which is analytic.

A New Kind of Series

About an isolated singularity, it is possible to represent *f* by a new kind of series involving both negative and nonnegative integer powers of $z - z_0$; that is

$$f(z) = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

Using summation notation, we have

$$f(z) = \sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
(1)

The part with negative powers is called the principal part of (1) and will converge for $|1/(z - z_0)| < r^*$ or $|z - z_0| > 1/r^* = r$. The part with nonnegative powers is called the analytic part of (1) and will converge for $|z - z_0| < R$. Hence the sum of these parts converges when $r < |z - z_0| < R$.

The function $f(z) = (\sin z)/z^3$ is not analytic at z = 0 and hence can not be expanded in a Maclaurin series. We find that

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots$$

converges for all z. Thus

$$f(z) = \frac{\sin z}{z^3} = \frac{1}{z^2} - \frac{1}{3!} + \frac{z^2}{5!} - \frac{z^4}{7!} + \dots$$
(2)

This series converges for all *z* except z = 0, 0 < |z|.

THEOREM 4.10

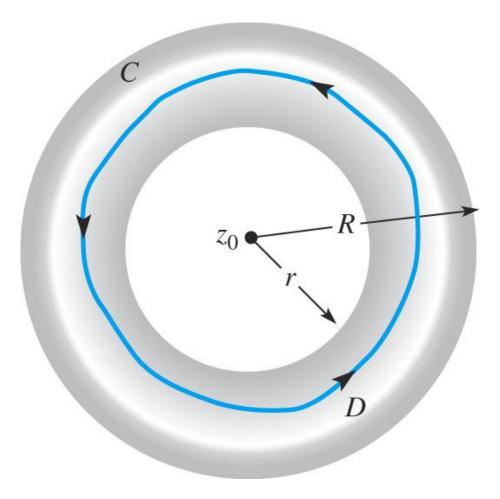
Laurent's Theorem

Let *f* be analytic within the annular domain *D* defined by $r < |z - z^0| < R$. Then f has the series representation $f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k$ (3)

valid for $r < |z - z_0| < R$. The coefficients a_k are given

by
$$a_k = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z_0)^{k+1}} ds$$
, $k = 0, \pm 1, \pm 2, \cdots$, (4)

where *C* is a simple closed curve that lies entirely within *D* and has z_0 in its interior. (see Figure 4.6)

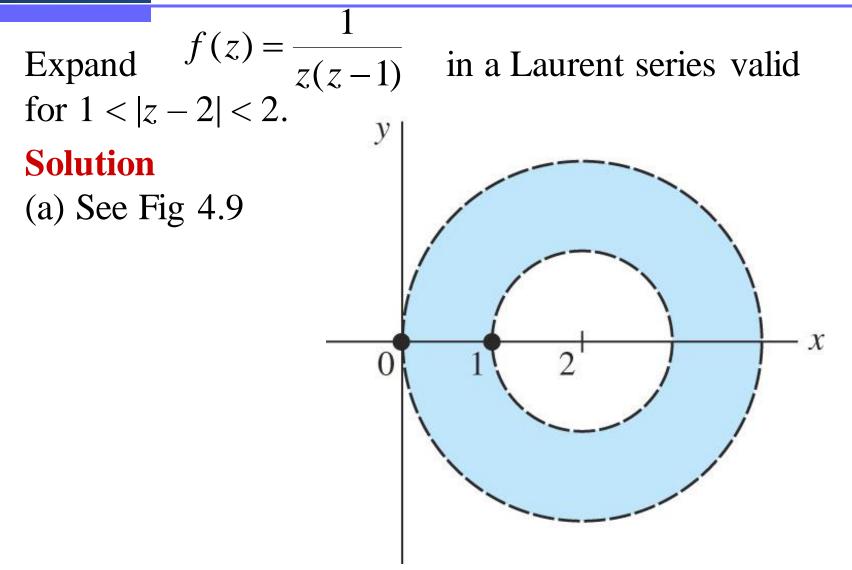


Expand
$$f(z) = \frac{8z+1}{z(1-z)}$$
 in a Laurent series valid

for 0 < |*z*| < 1. **Solution** (a) We can write

$$f(z) = \frac{8z+1}{z(1-z)} = \frac{8z+1}{z} \frac{1}{1-z} = (8+\frac{1}{z})\left[1+z+z^2+\dots\right]$$
$$= \frac{1}{z} + 9 + 9z + 9z^2 + \dots$$

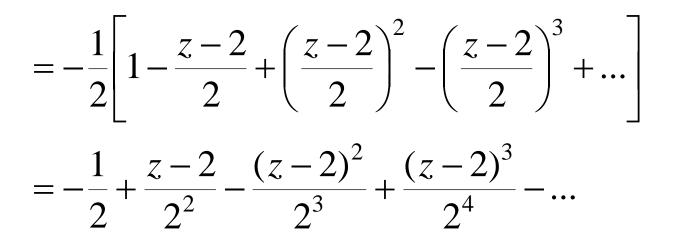
Example 5



The center z = 2 is a point of analyticity of f. We want to find two series involving integer powers of z - 2; one converging for 1 < |z - 2| and the other converging for |z - 2| < 2.

$$f(z) = -\frac{1}{z} + \frac{1}{z-1} = f_1(z) + f_2(z)$$

$$f_1(z) = -\frac{1}{z} = -\frac{1}{2+z-2} = -\frac{1}{2}\frac{1}{1+\frac{z-2}{2}}$$



This series converges for |(z-2)/2| < 1 or |z-2| < 2.

$$f_{2}(z) = \frac{1}{z-1} = \frac{1}{1+z-2} = \frac{1}{z-2} \frac{1}{1+\frac{1}{z-2}}$$
$$= \frac{1}{z-2} \left[1 - \frac{1}{z-2} + \left(\frac{1}{z-2}\right)^{2} - \left(\frac{1}{z-2}\right)^{3} + \dots \right]$$
$$= \frac{1}{z-2} - \frac{1}{(z-2)^{2}} + \frac{1}{(z-2)^{3}} - \dots$$

This series converges for |1/(z-2)| < 1 or 1 < |z-2|.

* Introduction

Suppose that $z = z_0$ is an isolated singularity of *f* and

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k} + \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
(1)

is the Laurent series of *f* valid for $0 < |z - z_0| < R$. The principal part of (1) is

$$\sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k}$$
(2)

(i) If the principal part is zero, $z = z_0$ is called a *removable singularity*.

- (ii) If the principal part contains a finite number of terms, then $z = z_0$ is called a pole. If the last nonzero coefficient is a_{-n} , $n \ge 1$, then we say it is a pole of order *n*. A pole of order 1 is commonly called a *simple pole*.
- (iii) If the principal part contains infinitely many nonzero terms, $z = z_0$ is called an *essential singularity*.

We form

$$\frac{\sin z}{z} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots$$

that z = 0 is a removable singularity.

(2)

(a) From

$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \dots$$

0 < |z|. Thus z = 0 is a simple pole. Moreover, $(\sin z)/z^3$ has a pole of order 2.

The Laurent series of f(z) = 1/z(z-1) valid for 1 < |z| is (exercise)

$$f(z) = \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots$$

The point z = 0 is an isolated singularity of f and the Laurent series contains an infinite number of terms involving negative integer powers of z. Does it mean that z = 0 is an essential singularity?

The answer is "NO". Since the interested Laurent series is the one with the domain 0 < |z| < 1, for which we have (exercise)

$$f(z) = -\frac{1}{z} - 1 - z - z^2 - \dots$$

Thus z = 0 is a simple pole for 0 < |z| < 1.

We say that z_0 is a zero of f if $f(z_0) = 0$. An analytic function f has a zero of order n at $z = z_0$ if

$$f(z_0) = 0, f'(z_0) = 0, f''(z_0) = 0, \dots, f^{(n-1)}(z_0) = 0,$$

but $f^{(n)}(z_0) \neq 0$ (3)

The analytic function $f(z) = z \sin z^2$ has a zero at z = 0, because f(0)=0.

$$\sin z^{2} = z^{2} - \frac{z^{6}}{3!} + \frac{z^{10}}{5!} - \dots$$
$$f(z) = z \sin z^{2} = z^{3} \left[1 - \frac{z^{4}}{3!} + \frac{z^{8}}{5!} - \dots \right]$$

hence z = 0 is a zero of order 3, because f(0) = 0, f'(0) = 0, f''(0) = 0 but $f^{(3)}(0) \neq 0$

THEOREM 4.11 Pole of Order n

If the functions *f* and *g* are analytic at $z = z_0$ and *f* has a zero of order *n* at $z = z_0$ and $g(z_0) \neq 0$, then the function F(z) = g(z)/f(z) has a pole of order *n* at $z = z_0$.

(a) Inspection of the rational function

$$F(z) = \frac{2z+5}{(z-1)(z+5)(z-2)^4}$$

shows that the denominator has zeros of order 1 at z = 1 and z = -5, and a zero of order 4 at z = 2. Since the numerator is not zero at these points, F(z) has simple poles at z = 1 and z = -5 and a pole of order 4 at z = 2.

5. Calculus of residues Contents

- 5.1. Calculation of residues
- 5.2. The Residue theorem and its application
- 5.3. Evaluation of definite integrals

5.1. Residues and Residue Theorem

Residue

The coefficient a_{-1} of $1/(z - z_0)$ in the Laurent series is called the residue of the function f at the isolated singularity. We use this notation

 $a_{-1} = \operatorname{Res}(f(z), z_0)$

(a) z = 1 is a pole of order 2 of $f(z) = 1/(z - 1)^2(z - 3)$. The coefficient of 1/(z - 1) is $a_{-1} = -\frac{1}{4}$.

• THEOREM 5.1 • Residue at a Simple Pole If *f* has a simple pole at $z = z_0$, then $\operatorname{Res}(f(z), z_0) = \lim_{z \to z_0} (z - z_0) f(z)$ (1)

Proof

Since $z = z_0$ is a simple pole, we have

$$f(z) = \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

$$\lim_{z \to z_0} (z - z_0) f(z)$$

$$= \lim_{z \to z_0} [a_{-1} + a_0(z - z_0) + a_1(z - z_0)^2 + \dots]$$

$$= a_{-1} = \operatorname{Res}(f(z), z_0)$$

THEOREM 5.2
Residue at a Pole of Order n
If f has a pole of order n at
$$z = z_0$$
, then

$$\operatorname{Res}(f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z) \quad (2)$$

Proof

Since $z = z_0$ is a pole of order *n*, we have the form

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

$$(z - z_0)^n f(z) = a_{-n} + \dots + a_{-1}(z - z_0)^{n-1} + a_0(z - z_0)^n + \dots$$

Then differentiating n - 1 times:

$$\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^n f(z)$$

$$= (n-1)!a_{-1} + n!a_0(z-z_0) + \cdots$$
(3)

The limit of (3) as $z \rightarrow z_0$ is

$$\lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z) = (n-1)! a_{-1}$$

$$\operatorname{Res}(f(z), z_0) = a_{-1} = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z)$$

The function $f(z) = 1/(z-1)^2(z-3)$ has a pole of order 2 at z = 1. Find the residues.

Solution

$$\operatorname{Res}(f(z), 1) = \frac{1}{1!} \lim_{z \to 1} \frac{d}{dz} (z-1)^2 f(z) = \lim_{z \to 1} \frac{d}{dz} \frac{1}{z-3}$$
$$= \lim_{z \to 1} \frac{-1}{(z-3)^2} = -\frac{1}{4}$$

* If *f* can be written as f(z) = g(z)/h(z) and has a simple pole at z_0 (note that $h(z_0) = 0$), then

$$\operatorname{Res}(f(z), z_0) = \frac{g(z_0)}{h'(z_0)}$$
(4)

because

$$\lim_{z \to z_0} (z - z_0) \frac{g(z)}{h(z)} = \lim_{z \to z_0} \frac{g(z)}{\frac{h(z) - h(z_0)}{z - z_0}} = \frac{g(z_0)}{h'(z_0)}$$

The polynomial $z^4 + 1$ can be factored as $(z - z_1)(z - z_2)(z - z_3)(z - z_4)$. Thus the function $f = 1/(z^4 + 1)$ has four simple poles. We can show that

$$z_{1} = e^{\pi i/4}, z_{2} = e^{3\pi i/4}, z_{3} = e^{5\pi i/4}, z_{4} = e^{7\pi i/4}$$
$$\operatorname{Res}(f(z), z_{1}) = \frac{1}{4z_{1}^{3}} = \frac{1}{4}e^{-3\pi i/4} = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$

$$\operatorname{Res}(f(z), z_{2}) = \frac{1}{4z_{2}^{3}} = \frac{1}{4}e^{-9\pi i/4} = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$
$$\operatorname{Res}(f(z), z_{3}) = \frac{1}{4z_{3}^{3}} = \frac{1}{4}e^{-15\pi i/4} = \frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i$$
$$\operatorname{Res}(f(z), z_{4}) = \frac{1}{4z_{4}^{3}} = \frac{1}{4}e^{-21\pi i/4} = -\frac{1}{4\sqrt{2}} + \frac{1}{4\sqrt{2}}i$$

THEOREM 5.3 Cauchy's Residue Theorem

Let *D* be a simply connected domain and *C* a simply closed contour lying entirely within *D*. If a function *f* is analytic on and within *C*, except at a finite number of singular points $z_1, z_2, ..., z_n$ within *C*, then $\int_C f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{Re} s(f(z), z_k)$ (5)

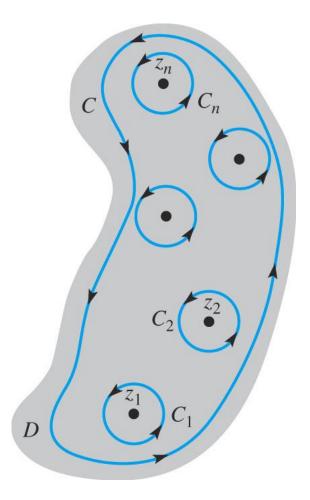
Proof

~

See Fig 5.1. Recalling from (15) of Sec. 4.3, we can easily prove this theorem.

$$\oint_{C_k} f(z)dz = 2\pi i \operatorname{Res}(f(z), z_k)$$

$$\oint_{C} f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{Res}(f(z), z_k)$$



Evaluate
$$\oint_c \frac{1}{(z-1)^2(z-3)} dz$$
 where

(b) the contour *C* is the circle |z|=2Solution

(b) Since only the pole z = 1 lies within the circle, then there is only one singular point z=1 within C, from (5)

$$\oint_C \frac{1}{(z-1)^2(z-3)} dz = 2\pi i \operatorname{Res}(f(z), 1)$$
$$= 2\pi i \left(-\frac{1}{4}\right) = -\frac{\pi}{2}i$$

5.3 Evaluation of Real Integrals

* Introduction

In this section we shall see how the residue theorem can be used to evaluate real integrals of the forms

$$\int_{0}^{2\pi} F(\cos\theta, \sin\theta) d\theta \qquad (1)$$
$$\int_{-\infty}^{\infty} f(x) dx \qquad (2)$$

Consider the form

$$\int_0^{2\pi} F(\cos\theta,\sin\theta)d\theta$$

The basic idea is to convert an integral form of (1) into a complex integral where the contour *C* is the unit circle: $z = \cos \theta + i \sin \theta$, $0 \le \theta \le \pi$. Using

$$dz = ie^{i\theta}d\theta, \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

✤ we can have

$$d\theta = \frac{dz}{iz}, \cos\theta = \frac{1}{2}(z+z^{-1}), \sin\theta = \frac{1}{2i}(z-z^{-1}) \quad (4)$$

The integral in (1) becomes

$$\oint_{C} F\left(\frac{1}{2}(z+z^{-1}), \frac{1}{2i}(z-z^{-1})\right) \frac{dz}{iz}$$

where *C* is |z| = 1.

Evaluate

$$\int_0^{2\pi} \frac{1}{\left(2 + \cos\theta\right)^2} d\theta$$

1

Solution

Using (4), we have the form

$$\frac{4}{i}\oint_C \frac{z}{\left(z^2+4z+1\right)^2}\,dz$$

We can write

$$f(z) = \frac{z}{(z - z_0)^2 (z - z_1)^2}$$

where $z_0 = -2 - \sqrt{3}, z_1 = -2 + \sqrt{3}.$

Since only z_1 is inside the unit circle, we have

 $\oint_C \frac{z}{(z^2 + 4z + 1)^2} dz = 2\pi i \operatorname{Res}(f(z), z_1)$ $\operatorname{Res}(f, z_1) = \lim_{z \to z_1} \frac{d}{dz} (z - z_1)^2 f(z) = \lim_{z \to z_1} \frac{d}{dz} \frac{z}{(z - z_0)^2}$ $= \lim_{z \to z_1} - \frac{(z + z_0)}{(z - z_0)^3} = \frac{1}{6\sqrt{3}}$

Hence

$$\int_{0}^{2\pi} \frac{1}{(2+\cos\theta)^2} d\theta = \frac{4}{i} 2\pi i \frac{1}{6\sqrt{3}} = \frac{4\pi}{3\sqrt{3}}$$

When *f* is continuous on $(-\infty, \infty)$, we have

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{r \to \infty} \int_{-r}^{0} f(x) dx + \lim_{R \to \infty} \int_{0}^{R} f(x) dx \quad (5)$$

If both limits exist, the integral is said to be convergent; if one or both of them fail to exist, the integral is divergent.

If we know (2) is convergent, we can evaluate it by a single limiting process:

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) \, dx \tag{6}$$

It is important to note that (6) may exist even though the improper integral is divergent. For example:

$$\int_{-\infty}^{\infty} x dx \text{ is divergent, since}$$
$$\lim_{R \to \infty} \int_{0}^{R} x dx = \lim_{R \to \infty} \frac{R^{2}}{2} = \infty$$

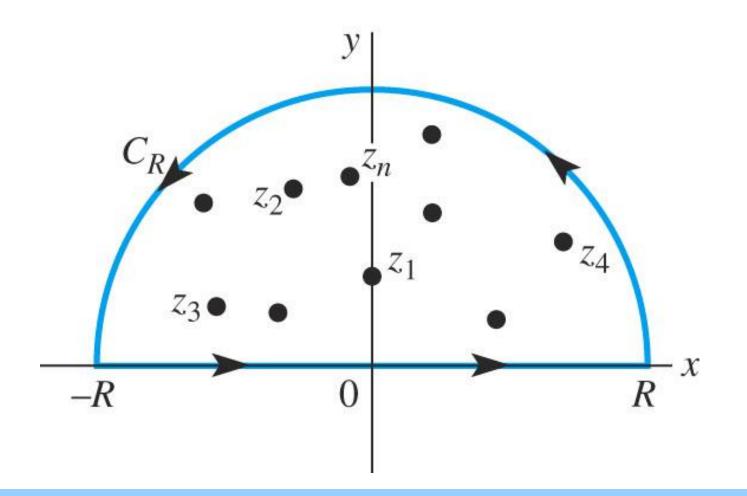
\bullet However using (6) we obtain

$$\lim_{r \to \infty} \int_{-R}^{R} x \, dx = \lim_{R \to \infty} \left[\frac{R^2}{2} - \frac{(-R)^2}{2} \right] = 0 \tag{7}$$

The limit in (6) is called the Cauchy principal value of the integral and is written

$$P.V.\int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx$$

 \bullet To evaluate the integral in (2), we first see Fig 5.2.



♦ By theorem 5.3, we have

$$\oint_C f(z) dz = \int_{C_R} f(z) dz + \int_{-R}^R f(x) dx$$
$$= 2\pi i \sum_{k=1}^n \operatorname{Res}(f(z), z_k)$$

where z_k , k = 1, 2, ..., n, denotes poles in the upper half-plane. If we can show the integral $\int_{C_R} f(z)dz \to 0$ as $R \to \infty$,

then we have

$$P. V. \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$
$$= 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(z), z_{k})$$
(8)

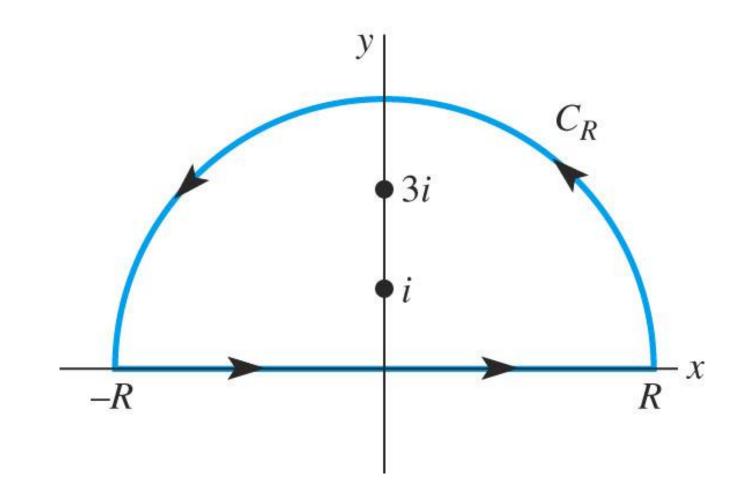
Evaluate the Cauchy principal value of

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx$$

Solution

Let
$$f(z) = 1/(z^2 + 1)(z^2 + 9)$$

= $1/(z + i)(z - i)(z + 3i)(z - 3i)$
Only $z = i$ and $z = 3i$ are in the upper half-plane.
See Fig 5.3.



$$\oint_{C} \frac{1}{(z^{2}+1)(z^{2}+9)} dz$$

$$= \int_{-R}^{R} \frac{1}{(z^{2}+1)(z^{2}+9)} dx + \int_{C_{R}} \frac{1}{(z^{2}+1)(z^{2}+9)} dz$$

$$= I_{1} + I_{2}$$

$$= 2\pi i \left[\operatorname{Res}(f(z), i) + \operatorname{Res}(f(z), 3i) \right]$$

$$= 2\pi i \left[\frac{1}{16i} - \frac{1}{48i} \right] = \frac{\pi}{12}$$

(9)

Now let $R \to \infty$ and note that on C_R :

$$|(z^{2}+1)(z^{2}+9)| = |(z^{2}+1)||(z^{2}+9)|$$
$$\geq ||z|^{2} - 1|||z|^{2} - 9| = (R^{2} - 1)(R^{2} - 9)$$

From the ML-inequality

$$|I_2| = \left| \int_{C_R} \frac{1}{(z^2 + 1)(z^2 + 9)} dz \right| \le \frac{\pi R}{(R^2 - 1)(R^2 - 9)}$$
$$|I_2| \to 0 \text{ as } R \to \infty$$

Thus

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{1}{(x^2 + 1)(x^2 + 9)} dx = \frac{\pi}{12}$$

THEOREM 5.4 Behavior of Integral as $\mathbb{R} \to \infty$ Suppose f(z) = P(z)/Q(z), where the degree of P(z) is *n* and the degree of Q(z) is $m \ge n + 2$. If C_R is a Semicircular contour $z = \operatorname{Re}^{i\theta}$, $0 \le \theta \le \pi$, then $\int_{C_R} f(z) dz \to 0$ as $R \to \infty$.

Evaluate the Cauchy principal value of

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

Solution

We first check that the condition in Theorem 19.15 is satisfied. The poles in the upper half-plane are $z_1 = e^{\pi i/4}$ and $z_2 = e^{3\pi i/4}$. We also knew that

$$\operatorname{Res}(f, z_{1}) = -\frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i,$$
$$\operatorname{Res}(f, z_{2}) = \frac{1}{4\sqrt{2}} - \frac{1}{4\sqrt{2}}i$$

Thus by (8)

$$P.V.\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

= $2\pi i [\operatorname{Res}(f, z_1) + \operatorname{Res}(f, z_2)]$
= $\frac{\pi}{\sqrt{2}}$

Using Euler's formula, we have

$$\int_{-\infty}^{\infty} f(x)e^{i\alpha x} dx$$

$$= \int_{-\infty}^{\infty} f(x)\cos\alpha x \, dx + i \int_{-\infty}^{\infty} f(x)\sin\alpha x \, dx$$
(10)

Before proceeding, we give the following sufficient conditions without proof.

THEOREM 5.5 Behavior of Integral as $\mathbb{R} \to \infty$ Suppose f(z) = P(z)/Q(z), where the degree of P(z) is n and the degree of Q(z) is $m \ge n + 1$. If C_R is a Semicircular contour $z = \operatorname{Re}^{i\theta}$, $0 \le \theta \le \pi$, and $\alpha > 0$, then $\int_{C_R} (P(z)/Q(z))e^{i\alpha z} dz \to 0$ as $R \to \infty$.

Evaluate the Cauchy principal value of

$$\int_0^\infty \frac{x \sin x}{x^2 + 9} dx$$

Solution

Note that the lower limit of this integral is not $-\infty$. We first check that the integrand is even, so we have

$$\int_{0}^{\infty} \frac{x \sin x}{x^{2} + 9} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2} + 9} dx \qquad (11)$$

With $\alpha = 1$, we now for the integral

$$\oint_C \frac{z}{z^2 + 9} e^{iz} dz$$

where C is the same as in Fig 19.12. Thus

$$\int_{C_R} \frac{z}{z^2 + 9} e^{iz} dz + \int_{-R}^{R} \frac{x}{x^2 + 9} e^{ix} dx$$

= $2\pi i \operatorname{Res}(f(z)e^{iz}, 3i)$

where $f(z) = z/(z^2 + 9)$. From (4) of Sec 5.1,

$$\operatorname{Res}(f(z)e^{iz},3i) = \frac{ze^{iz}}{2z}\Big|_{z=3i} = \frac{e^{-3}}{2}$$

In addition, this problem satisfies the condition of Theorem 5.5, so

P.V.
$$\int_{-\infty}^{\infty} \frac{x}{x^2 + 9} e^{ix} dx = 2\pi i \frac{e^{-3}}{2} = \frac{\pi}{e^3} i$$

Then

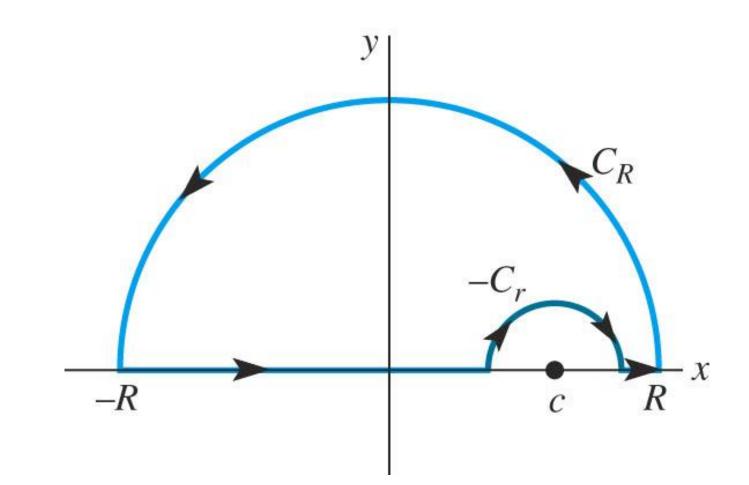
$$\int_{-\infty}^{\infty} \frac{x}{x^{2}+9} e^{ix} dx$$

$$= \int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}+9} dx + i \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} dx = \frac{\pi}{e^{3}} i$$
P.V.
$$\int_{-\infty}^{\infty} \frac{x \cos x}{x^{2}+9} dx = 0, \text{P.V.} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+9} dx = \frac{\pi}{e^{3}}$$

Finally,

$$\int_{0}^{\infty} \frac{x \sin x}{x^{2} + 9} dx = \frac{1}{2} \text{P.V.} \int_{-\infty}^{\infty} \frac{x \sin x}{x^{2} + 9} dx = \frac{\pi}{2e^{3}}$$

The complex functions f(z) = P(z)/Q(z) of the improper integrals (2) and (3) did not have poles on the real axis. When f(z) has a pole at z = c, where c is a real number, we must use the indented contour as in Fig 5.4.



THEOREM 5.6 Behavior of Integral as $r \rightarrow \infty$

Suppose f has a simple pole z = c on the real axis. If Cr is the contour defined by $z = c + re^{i\theta}$, $0 \le \theta \le \pi$, then

$$\lim_{r \to 0} \int_{C_r} f(z) \, dz = \pi i \operatorname{Res}(f(z), c)$$

proof Cont'd

Proof

Since f has a simple pole at z = c, its Laurent series is $f(z) = a_{-1}/(z - c) + g(z)$

where $a_{-1} = \text{Res}(f(z), c)$ and g is analytic at c. Using the Laurent series and the parameterization of C_r , we have

$$\int_{C_r} f(z) \, dz$$

$$= a_{-1} \int_{0}^{\pi} \frac{i r e^{i\theta}}{r e^{i\theta}} d\theta + i r \int_{0}^{\pi} g(c + r e^{i\theta}) e^{i\theta} d\theta$$
(12)
$$= I_{1} + I_{2}$$

First we see
$$I_1 = a_{-1} \int_0^{\pi} \frac{ire^{i\theta}}{re^{i\theta} + 9} d\theta = a_{-1} \int_0^{\pi} id\theta$$

= $\pi i a_{-1} = \pi i \operatorname{Res}(f(z), c)$

Next, g is analytic at c and so it is continuous at c and is bounded in a neighborhood of the point; that is, there exists an M > 0 for which $|g(c + re^{i\theta})| \le M$.

Hence

$$I_2 = \left| ir \int_0^{\pi} g(c + re^{i\theta}) e^{i\theta} d\theta \right| \leq r \int_0^{\pi} M d\theta = \pi r M$$

It follows that $\lim_{r\to 0} |I_2| = 0$ and $\lim_{r\to 0} I_2 = 0$. We complete the proof.

Evaluate the Cauchy principal value of

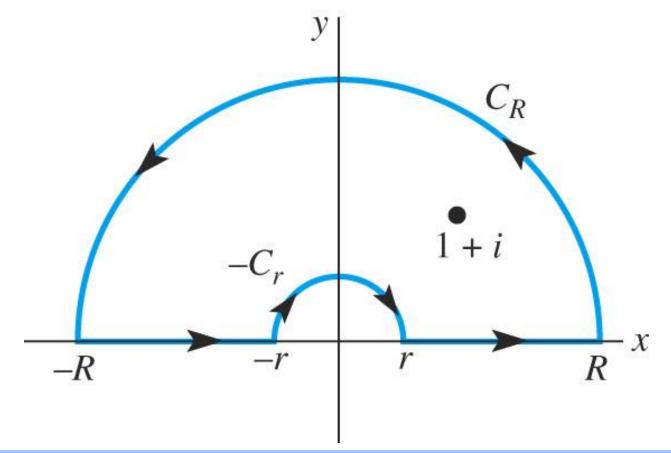
$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - 2x + 2)} dx$$

Solution

Since the integral is of form (3), we consider the contour integral

$$\oint_C \frac{e^{iz} dz}{z(z^2 - 2z + 2)}, \quad f(z) = \frac{1}{z(z^2 - 2z + 2)}$$

f(z) has simple poles at z = 0 and z = 1 + i in the upper half-plane. See Fig 5.5.



Now we have

$$\oint_{C} = \int_{C_{R}} + \int_{-R}^{-r} + \int_{-C_{r}} + \int_{r}^{R} = 2\pi i \operatorname{Res}(f(z)e^{iz}, 1+i) \quad (13)$$

Taking the limits in (13) as $R \rightarrow \infty$ and $r \rightarrow 0$, from Theorem 5.5 and 5.6, we have

$$P.V.\int_{-\infty}^{\infty} \frac{e^{ix}}{x(x^2 - 2x + 2)} dx - \pi i \operatorname{Res}(f(z)e^{iz}, 0)$$
$$= 2\pi i \operatorname{Res}(f(z)e^{iz}, 1 + i)$$

Now

$$\operatorname{Res}(f(z)e^{iz}, 0) = \frac{1}{2}$$
$$\operatorname{Res}(f(z)e^{iz}, 1+i) = \frac{e^{-1+i}}{4}(1+i)$$

Therefore,

$$P.V.\int_{-\infty}^{\infty} \frac{e^{ix}}{x(x^2 - 2x + 2)} dx = \pi i \frac{1}{2} + 2\pi i \left(-\frac{e^{-1+i}}{4}(1+i)\right)$$

Using $e^{-1+i} = e^{-1}(\cos 1 + i \sin 1)$, then

P.V.
$$\int_{-\infty}^{\infty} \frac{\cos x}{x(x^2 - 2x + 2)} dx = \frac{\pi}{2} e^{-1} (\sin 1 + \cos 1)$$

P.V.
$$\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - 2x + 2)} dx = \frac{\pi}{2} [1 + e^{-1}(\sin 1 - \cos 1)]$$

Thank You !

