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4.1 Sequences 

Sequence 

For example, the sequence {1 + in} is 

 

 

        (1) 

 

 

If limnzn = L, we say this sequence is convergent. 

See Fig 4.1. 

Definition of the existence of the limit:  
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Fig 14.1: Illustration 
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Example 1 

The sequence              converges, since 

 

 

 

See Fig 4.2. 
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Cont’d 

 

A sequence {zn} converge to a complex number L 

if and only if Re(zn) converges to Re(L) and Im(zn) 

converges to Im(L). 

THEOREM 4.1 
Criterion for Convergence 
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Example 2 

The sequence                 converges to i. Note that  

 

Re(i) = 0 and Im(i) = 1. Then 
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Series 

An infinite series of complex numbers  

 

 

 

is convergent if the sequence of partial sum {Sn}, 

where  

 

converges.   
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Geometric Series 

For the geometric Series 

 

        (2) 

 

the nth term of the sequence of partial sums is  

 

        (3) 

and  

 

        (4) 
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Cont’d 

 Since zn  0 as n   whenever |z| < 1, we conclude 

that (2) converges to a/(1 – z) when |z| < 1 ; the series 

diverges when |z|  1.  

The special series  

 

        (5) 

 

        (6) 

 

valid for |z| < 1.   
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Example 3 

The series  

 

 

 

is a geometric series with a = (1 + 2i)/5 and  

z = (1 + 2i)/5. Since |z| < 1, we have  
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If                 converges, then  

THEOREM 4.2 
Necessary Condition for  

Convergence 
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If                          then the series              diverges. 

THEOREM 4.3 
The nth Term Test for Divergence 
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An infinite series                 is said be absolutely 

 

convergent if                     converges. 

DEFINITION 4.1 
Absolute Convergence 
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Example 4 

The series              is absolutely convergent since 

  

|ik/k2| = 1/k2 and the real series            converges. 

 

As in real calculus, 

 Absolute convergence implies convergence. 

Thus the series in Example 4 converges.  
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Suppose               is a series of nonzero complex 

terms such that 

        (9) 

 

(i)   If L < 1, then the series converges absolutely. 

(ii)  If L > 1 or L = , then the series diverges. 

(iii) If L = 1, the test is inconclusive. 

THEOREM 4.4 
Ratio Test 
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Suppose               is a series of complex terms such that 

 

        (10) 

 

(i)   If L < 1, then the series converges absolutely. 

(ii)  If L > 1 or L = , then the series diverges. 

(iii) If L = 1, the test is inconclusive. 

THEOREM 4.5 
Root Test 
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Power Series 

An infinite series of the form 

 

        (11) 

 

where ak are complex constants is called a power 

series in z – z0. (11) is said to be centered at z0 and z0 

is referred to the center of the series.  
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Circle of Convergence 

Every complex power series                    has radius of 

convergence R and has a circle of convergence 

defined by |z – z0| = R,  0 < R < . See Fig 19.3. 
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The radius R can be 

(i) zero (converges at only z = z0). 

(ii) a finite number (converges at all interior points of  

      the circle |z − z0| = R). 

(iii)  (converges for all z). 

 

A power series may converge at some, all, or none of 

the points on the circle of convergence. 
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Example 5 

Consider the series  , by ratio test  

 

 

 

 

 

 

Thus the series converges absolutely for |z| < 1 and 

the radius of convergence R = 1.   
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Summary: R.O.C. using ratio test 

(i)             the R.O.C. is R = 1/L. 

 

 

(ii)     the R.O.C. is . 

 

 

(iii)    the R.O.C. is R = 0. 

 

For the power series  
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Example 6: R.O.C. using ratio test 

Consider the power series                    with 

 

 

 

 

 

 

The R.O.C. is . 
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Example 7: R.O.C. using root test 

Consider the power series                     

 

 

 

 

This root test shows the  R.O.C. is 1/3. The circle of 

convergence is |z – 2i| = 1/3; the series converges 

absolutely for |z – 2i| < 1/3. 
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4.2 Taylor Series 

 

A power series                              represents a  

continuous function f within its circle of convergence 

 

THEOREM 4.6 
Continuity 
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A power series                              can be integrated   

term by term within its circle of convergence 

                                  for every contour C lying entirely 

within the circle of convergence. 

THEOREM 4.7 
Term-by-Term Integration 
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A power series                              can be differentiated  

term by term within its circle of convergence 

 

THEOREM 4.8 
Term-by-Term Differentiation 
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Taylor Series 

Suppose a power series represents a function f for  

|z – z0| < R, R  0, that is  

 

 

        (1) 

 

It follows that  

 

        (2) 








3
03

2
02010

0

0

)()()(

)()(

zzazzazzaa

zzazf
k

k
k



 






2
03021

1

1
0

)(3)(2

)()(

zzazzaa

zzkazf
k

k
k

Ch19_26 



Cont’d 

  

         (3) 

 

 

 

        (4) 

 

 

From the above, at z = z0 we have  
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Cont’d 

 or  

 

        (5) 

When n = 0, we interpret the zeroth derivative as 

 f (z0) and 0! = 1. Now we have 

 

 

        (6) 
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Cont’d 

 This series is called the Taylor series for f centered at 

z0. A Taylor series with center  z0 = 0,  

 

        (7) 

 

is referred to as a Maclaurin series.  

( )

0

(0)
( ) ,

!

k
k

k

f
f z z

k







Ch19_29 



 

Let f be analytic within a domain D and let z0 be a point  

in D. Then f has the series representation 

 

        (8) 

valid for the largest circle C with center at z0 and radius  

R that lies entirely within D. 

THEOREM 4.9 
Taylor’s Theorem 
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Cont’d 
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Cont’d 

Some important Maclurin series 

 

        (12) 

 

 

        (13) 

 

 

        (14) 
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Example 1 

Find the Maclurin series of f(z) = 1/(1 – z)2. 

Solution 

For |z| < 1,  

 

        (15) 

 

Differentiating both sides of (15) 
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4.3 Laurent Series  

Isolated Singularities  

Suppose z = z0 is a singularity of a complex function f. 

For example, 2i and -2i are sigularities of                

The point z0 is said to be an isolated singularity, if 

there exists some deleted neighborhood or punctured 

open disk 0 < |z – z0| < R throughout which is analytic.  
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A New Kind of Series 

About an isolated singularity, it is possible to 

represent f  by a new kind of series involving both 

negative and nonnegative integer powers of z – z0; 

that is 
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Cont’d 

 Using summation notation, we have  

 

        (1) 

 

The part with negative powers is called the principal 

part of (1) and will converge for |1/(z – z0)| < r* or 

|z – z0| > 1/r* = r. The part with nonnegative powers 

is called the analytic part of (1) and will converge for 

|z – z0| < R. Hence the sum of these parts converges 

when r < |z – z0| < R.  
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Example 1 

The function f(z) = (sin z)/z3 is not analytic at z = 0 and 

hence can not be expanded in a Maclaurin series. We 

find that  

 

 

converges for all z. Thus  

 

        (2) 

 

This series converges for all z except z = 0, 0 < |z|.  
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Let f be analytic within the annular domain D defined  

by                          . Then f has the series representation 

        (3) 

 

valid for                          . The coefficients ak are given  

by 

        (4) 

where C is a simple closed curve that lies entirely within 

D and has z0 in its interior. (see Figure 4.6) 

THEOREM 4.10 
Laurent’s Theorem 
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Fig 4.6 
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Example 4 

Expand                             in a Laurent series valid  

 

for 0 < |z| < 1. 

Solution  

(a) We can write  
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Example 5 

Expand                                 in a Laurent series valid  

for 1 < |z – 2| < 2. 

Solution  

(a) See Fig 4.9 
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Cont’d 

The center z = 2 is a point of analyticity of  f . We want 

to find two series involving integer powers of z – 2; one 

converging for 1 < |z – 2| and the other converging for 

|z – 2| < 2.  
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Cont’d 

This series converges for |(z – 2)/2| < 1 or |z – 2| < 2. 
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Cont’d 

This series converges for |1/(z – 2)| < 1 or 1 < |z – 2|. 
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4.4 Zeros and Poles 

Introduction  

Suppose that z = z0 is an isolated singularity of f and  

 

        (1) 

 

is the Laurent series of f valid for 0 < |z – z0| < R. The 

principal part of (1) is  

 

        (2) 
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Classification 

(i) If the principal part is zero, z = z0 is called a 

removable singularity. 

(ii) If the principal part contains a finite number of 

terms, then  z = z0 is called a pole. If the last 

nonzero coefficient is a-n, n  1, then we say it is a 

pole of order n. A pole of order 1 is commonly 

called a simple pole. 

(iii) If the principal part contains infinitely many 

nonzero terms, z = z0 is called an essential 

singularity. 
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Example 1 

We form  

 

        (2) 

 

that z = 0 is a removable singularity. 
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Example 2 

(a) From  

 

 

 

0 < |z|. Thus z = 0 is a simple pole.  

Moreover, (sin z)/z3 has a pole of order 2. 
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A Question 

The Laurent series of f(z) = 1/z(z – 1) valid for 1 < |z| 

is (exercise) 

 

 

The point z = 0 is an isolated singularity of f and the 

Laurent series contains an infinite number of terms 

involving negative integer powers of z. Does it mean 

that z = 0 is an essential singularity?  
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Cont’d 

The answer is “NO”. Since the interested Laurent 

series is the one with the domain 0 < |z| < 1, for which  

we have (exercise) 

 

 

 

Thus z = 0 is a simple pole for 0 < |z| < 1. 
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Zeros 

We say that z0 is a zero of f  if  f(z0) = 0. An analytic 

function f  has a zero of order n at z = z0 if  

 

 

        (3)  
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Example 3 

The analytic function f(z) = z sin z2 has a zero at z = 0, 

because f(0)=0.   

 

 

 

 

 

 

hence z = 0 is a zero of order 3, because                      

                            but               . 
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If the functions f and g are analytic at z = z0 and f has a  

zero of order n at z = z0 and g(z0)  0, then the function 

F(z) = g(z)/f(z) has a pole of order n at z = z0. 

THEOREM 4.11 
Pole of Order n 
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Example 4 

(a) Inspection of the rational function  

 

 

 

shows that the denominator has zeros of order 1 at z = 

1 and z = −5, and a zero of order 4 at z = 2. Since the 

numerator is not zero at these points, F(z) has simple 

poles at z = 1 and z = −5 and a pole of order 4 at z = 2. 
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Chapter 5 

 

5. Calculus of residues 
Contents 

5.1. Calculation of residues  

5.2. The Residue theorem and its application  

5.3. Evaluation of definite integrals 
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5.1. Residues and Residue Theorem 

Residue   

The coefficient a-1 of 1/(z – z0) in the Laurent series is 

called the residue of the function f at the isolated 

singularity. We use this notation 

  a-1 = Res(f(z), z0) 

 

Ch19_56 



Example 1 

(a) z = 1 is a pole of order 2 of  f(z) = 1/(z – 1)2(z – 3). 

The coefficient of 1/(z – 1) is a-1 = −¼ . 
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If f has a simple pole at z = z0, then 

 

        (1) 

THEOREM 5.1 
Residue at a Simple Pole 
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THEOREM 1 

Proof  

Since z = z0 is a simple pole, we have  
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If f has a pole of order n at z = z0, then 

 

        (2) 

 

THEOREM 5.2 
Residue at a Pole of Order n 
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THEOREM 2 

Proof  

Since z = z0 is a pole of order n, we have the form  

 

 

 

 

Then differentiating n – 1 times:   

 

 

        (3) 
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Proof       Cont’d 

The limit of (3) as z  z0 is 
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Example 2 

The function f(z) = 1/(z – 1)2(z – 3) has a pole of order 2 

at z = 1. Find the residues.  

Solution 
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Approach for a simple pole 

If f can be written as f(z)= g(z)/h(z) and has a simple 

pole at z0 (note that h(z0) = 0), then   

 

        (4) 
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Example 3 

The polynomial z4 + 1 can be factored as (z – z1)(z – 

z2)(z – z3)(z – z4). Thus the function f = 1/(z4 + 1) has 

four simple poles. We can show that 
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Cont’d 

ie
z

zzf

ie
z

zzf

ie
z

zzf

i

i

i

24

1

24

1

4

1

4

1
) ),((sRe

24

1

24

1

4

1

4

1
) ),((sRe

24

1

24

1

4

1

4

1
) ),((sRe

4/21

3

4

4

4/15

3

3

3

4/9

3

2

2



















Ch19_66 



 

Let D be a simply connected domain and C a simply 

closed contour lying entirely within D. If a function f is 

analytic on and within C, except at a finite number of  

singular points z1, z2, …, zn within C, then    

        (5) 

 

THEOREM 5.3 
Cauchy’s Residue Theorem 
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THEOREM 3 

Proof  

See Fig 5.1. Recalling from (15) of Sec. 4.3 , we can 

easily prove this theorem. 
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Fig 5.1 
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Example 4 

Evaluate             where 

 

(b) the contour C  is the circle |z|= 2  

Solution  
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Cont’d 

(b) Since only the pole z = 1 lies within the circle, then 

there is only one singular point z=1 within C, from (5) 
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5.3 Evaluation of Real Integrals 

Introduction  

In this section we shall see how the residue theorem 

can be used to evaluate real integrals of the forms 
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        (2) 
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Integral of the Form 

Consider the form 

 

 

The basic idea is to convert an integral form of (1) 

into a complex integral where the contour C is the 

unit circle: z = cos  + i sin , 0    .  

Using 
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Cont’d 

we can have  

 

        (4) 

 

The integral in (1) becomes  

 

 

 

where C is |z| = 1. 
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Example 1 

Evaluate  

 

Solution 

Using (4), we have the form  

 

 

We can write 
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Cont’d 

Since only z1 is inside the unit circle, we have 
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Integral of the Form 

When f is continuous on (−, ), we have  

 

        (5) 

 

If both limits exist, the integral is said to be 

convergent; if one or both of them fail to exist, the 

integral is divergent. 
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If we know (2) is convergent, we can evaluate it by a 

single limiting process: 

 

        (6) 

 

It is important to note that (6) may exist even though 

the improper integral is divergent. For example: 
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However using (6) we obtain 

 

 

        (7) 

 

The limit in (6) is called the Cauchy principal value 

of the integral and is written  
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Fig 5.2 

To evaluate the integral in (2), we first see Fig 5.2. 
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By theorem 5.3, we have  

 

 

 

 

 

where zk, k = 1, 2, …, n, denotes poles in the upper 

half-plane. If we can show the integral                  0 as 
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 then we have 
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Example 2 

Evaluate the Cauchy principal value of  

 

 

Solution  

Let f(z) = 1/(z2 + 1)(z2 + 9)  

 = 1/(z + i)(z − i)(z + 3i)(z − 3i)   

Only z = i and  z = 3i are in the upper half-plane.   

See Fig 5.3.  
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Fig 5.3 
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Cont’d 
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Cont’d 

Now let R   and note that on CR: 

 

 

 

 

From the ML-inequality  
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Cont’d 

Thus 
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Suppose        where the degree of P(z) is  

n and the degree of Q(z) is m  n + 2. If CR is a  

Semicircular contour          then  

  

 

THEOREM 5.4 
Behavior of Integral as R →  
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Example 3 

Evaluate the Cauchy principal value of  

 

 

Solution  

We first check that the condition in Theorem 19.15 is 

satisfied. The poles in the upper half-plane are z1 = ei/4 

and z2 = e3i/4. We also knew that 
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Cont’d 

Thus by (8) 
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Integrals of the Form 

or 

Using Euler’s formula, we have 
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Before proceeding, we give the following sufficient 

conditions without proof. 
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Suppose        where the degree of P(z) is  

n and the degree of Q(z) is m  n + 1. If CR is a  

Semicircular contour          and  > 0, 

then  
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Example 4 

Evaluate the Cauchy principal value of  

 

 

Solution  

Note that the lower limit of this integral is not −. We 

first check that the integrand is even, so we have 
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Cont’d 

With  =1, we now for the integral 

 

        

    

where C is the same as in Fig 19.12. Thus 
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Cont’d 

where f(z) = z/(z2 + 9). From (4) of Sec 5.1,  

 

 

 

In addition, this problem satisfies the condition of 

Theorem 5.5, so 
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Cont’d 

Then 

 

 

 

 

 

 

Finally,  
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Indented Contour 

The complex functions f(z) = P(z)/Q(z) of the 

improper integrals (2) and (3) did not have poles on 

the real axis. When f(z) has a pole at z = c, where c is 

a real number, we must use the indented contour as in 

Fig 5.4. 
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Fig 5.4 
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Suppose f has a simple pole z = c on the real  axis. If 

Cr is the contour defined by 

 

  

THEOREM 5.6 
Behavior of Integral as r →  
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 proof       Cont’d 

Proof 

Since f has a simple pole at z = c, its Laurent series is

  f(z) = a-1/(z – c) + g(z)   

where a-1 = Res(f(z), c) and g is analytic at c. Using the 

Laurent series and the parameterization of Cr, we have 
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Cont’d 

First we see  

 

 

Next, g is analytic at c and so it is continuous at c and is 

bounded in a neighborhood of the point; that is, there 

exists an M > 0 for which |g(c + rei)|  M.  

Hence  

 

 

It follows that limr0|I2| = 0 and limr0I2 = 0. 

We complete the proof. 
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Example 5 

Evaluate the Cauchy principal value of  

 

 

Solution  

Since the integral is of form (3), we consider the 

contour integral 
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Fig 5.5 

f(z) has simple poles at z = 0 and z = 1 + i in the upper 

half-plane. See Fig 5.5. 
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Now we have 

 

        (13) 

 

Taking the limits in (13) as R   and r  0, from 

Theorem 5.5 and 5.6, we have 
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Cont’d 

Now 
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Cont’d 

Using e-1+i = e-1(cos 1 + i sin 1), then  
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