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4.1 Sequences

“» Sequence
For example, the sequence {1 + 1"} IS
141,
T

nN=1, n

0, 1—1, 2 1+1, ...
T T T T (1)
2, nNn=3, n=4, n=5,

“If im, .z, =L, we say this sequence Is convergent.
See Fig 4.1.

«* Definition of the existence of the limit;
Ve>0, AN>0, 53|z, —Llkg, Vn>N
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Example 1

- N+1
|

The sequence {} converges, since

n
in+1 y
Ilmn_)oo T — O i
See Fig 4.2. 14
L7 T |
e \ =
51 1\ 3
t y—=
-1\ \\'/ ;
\\ 4/
N
.~’.~.~ e 4””,
R 0
2
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Cont’d

® THEOREM4.1 @ . R
Criterion for Convergence

A sequence {z,} converge to a complex number L
If and only If Re(z,) converges to Re(L) and Im(z,)
_converges to Im(L).
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Example 2

ni
n+2i
Re(1) =0 and Im(1) = 1. Then

The sequence { } converges to I. Note that

,o_onio_o2n n’
" n+2i n*+4 n’+4
2n n’
Re(z.) = >0, Im(z,) = >1
(2,) n+4 (2,) n+4

as N — oo,
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Series

“* An Infinite series of complex numbers

o0
Y2 =7+, + .+, +
k=1

IS convergent If the sequence of partial sum {S,},

where
S, =74 +2,+..+Z,

converges.
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Geometric Series

*» For the geometric Series

Yaz*t=a+az+az® +---+az" "+ (2)
k=1
the nth term of the sequence of partial sums is

S =—a+az+az’+..+az"" (3)
and

]-__ n
Sn=ag_§) (4)
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Since 2" — 0 as n — oo whenever |z| < 1, we conclude
that (2) converges to a/(1 —z) when |z| <1 ; the series
diverges when |z| > 1.

"he special series

1 2 | 3
——=1+z+7°+7" +---
1_ ()

P L (6)
1+2

valid for |z| < 1.
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Example 3

“2» The series

Z(1+ 2i)~ _(@+20) 1+ 2i)* NS 2i)° N
= 5 5 53
IS a geometric series with a = (1 + 21)/5 and
Zz=(1+21)/5.Since |z| < 1, we have

1+ 21
i(1+ 2i )X 5 i
o 5 l+a 2
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® THEOREM42 @ )

Necessary Condition for
Convergence
If >, .z converges, then lim, .z, =0.
U J

® THEOREM43 @ . h
—The nth Term Test for Divergence

If lim__ 2z =0, then the series Zf_lzk diverges.

\. J
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® DEFINITION4.1 @ ™
— Absolute Convergence

An infinite series ) z, s said be absolutely

\convergent if > |z/| converges. :
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Example 4

o :k

The series ZII(—Z Is absolutely convergent since
k=1

i¥/k?| = 1/k?and the real series ii converges.

2
=LK

As in real calculus,
Absolute convergence implies convergence.
Thus the series In Example 4 converges.
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® THEOREM4.4 @ .
EEETR: - e A

Suppose Zkzlzk IS a series of nonzero complex
terms such that

lim % = 9)

n—ow | /

n

() If L <1, then the series converges absolutely.
(i) If L>1 or L=oo,then the series diverges.
\ (i) If L =1, the test Is inconclusive. Y,
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® THEOREM45 @
Root Test )

Suppose Zlezk IS a series of complex terms such that

lim?/]z,|=L (10)

N—00

() If L <1, then the series converges absolutely.
(i) If L>1 or L =, then the series diverges.
\ (i) If L =1, the test Is inconclusive. Y,
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Power Series

+* An Infinite series of the form

>a(z-2y) =a,+a(2-2y) +8,(z—25)° +..., (11)
k=0

where a, are complex constants is called a power
series In z —z,. (11) Is said to be centered at z, and z,
IS referred to the center of the series.
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Circle of Convergence

< Every complex power series Za (2-2,)" has radius of
convergence R and has a circle of convergence
defined by [z—z5| =R, 0 <R <o0. See Fig 19.3.
3

|Z—Z0| = R\

convergence

divergence
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“* The radius R can be
(1) zero (converges at only z = z,).
(1) a finite number (converges at all interior points of
the circle |z — z5| = R).
(1i1) oo (converges for all z).

A power series may converge at some, all, or none of
the points on the circle of convergence.
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Example 5

. . 0 - K+1 _
«» Consider the series 3 £ by ratio test
o K
Zn+2
: . h+1
lim L jim =)= 2
n—o| 7" n>o |
n

Thus the series converges absolutely for |z| <1 and
the radius of convergence R = 1.
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Summary: R.O.C. using ratio test

o (1 dni I =
() lim _L=+0 the R.O.C.i1sR =1/L.
n—o 4,
(i) [im 2™ — o the R.O.C. is oo
n—o a,
. a-n+1 .
(|||)rI]|m | = o0 the R.O.C.isR=0.

For the power series > a,(z—12z,)"
k=0
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Example 6: R.O.C. using ratio test

<% Consider the power series i(—l)k“(z—l—i)k with
k=1

- k!
(_1)n+2
_1\h+l |
ay =0 gim (MDY i g
Nl N—00 (_1)n+ N—oo| Nt
n!

The R.O.C. IS .
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Example 7: R.O.C. using root test

Consider the power series Z(6k+1j (z - 2i)¥

3\ 2K +5
on+1 on+1
a, = Imq/ _I =3
(2n+ j N—>0 2N+5

This root test shows the R.O.C. is 1/3. The circle of
convergence Is |z — 2i| = 1/3; the series converges
absolutely for |z — 21| < 1/3.
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4.2 Taylor Series

-
® THEOREM 46 @

Continuity
: 00 K
A power series Y &, (Z—2,)" represents a

continuous function f within its circle of convergence
\| Z—2,|=R,R=0.

® THEOREM47 @ .
Term-by-Term Integration h

. © k .
A power series o2 (Z—20)" can be integrated
term by term within its circle of convergence
|z—2z,|=R,R=0, forevery contour C lying entirely

KWithin the circle of convergence.

J
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® THEOREM 48 @ . e )
—Term-by-Term Differentiation

A power series Y. &, (2—2,)" can be differentiated

term by term within its circle of convergence
\| z—-2,|=R,R=0.
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Taylor Series

“* Suppose a power series represents a function f for
z—2z5| <R,R=0,thatis

f(2)= Y 8,2 2,)"
(1)

It follows that

f'(z) = ékak (z—29)" (2)

—a, +2a,(z—2,)+3a,(z—2,)° +--
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£/(2) = Y k(k ~D)a, (2 - 2)"
k=2

(3)

=2-1a,+3-2a5(z —z5) +---

£ (2) = k(K -1)(k—2)a, (z—2,)"°
2 (4)

:::3.:2.15%3_+...

From the above, at z = z, we have
f(z,) =a,, f'(zy) =14, f"(z,) = 2a,,...

f™(z,) =nla,
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a. = , n>0

()
When n =0, we mterpret the zeroth derivative as
f (z;) and 0! = 1. Now we have

o g (K)
f(z)=2f o)y 6)

=0
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This series is called the Taylor series for f centered at
Zo. A Taylor series with center z, =0,

f(z):i f(kk)l(o)zk, (7)

IS referred to as a Maclaurin series.

Ch19_29



® THEOREM4.9 @
Taylor’s Theorem )

Let f be analytic within a domain D and let z, be a point

In D. Then f has the series representation
(2)=3 " )z
o K : (8)

valid for the largest circle C with center at z, and radius

R that lies entirely within D.
N Y Y,
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7 7 =7
el =1+"+" .= (12)
n 21 ék'
3 5 o0 2k+1
: V4 Vi Kk Z
sinz=72—-—-—+— —...= -1 13
3 5l é,( ) (2k +1)! (13)
2 4 00 2k
1% L Nk L
Cosz=1-"_+ => (-1

4 2D 1 (14)
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Example 1

Find the Maclurin series of f(z) = 1/(1 — z)?

Solution

For |z| <1,
S PP (15)
1-z2

Differentiating both sides of (15)
1

—14+27437%+..= 3 kzk
(1-2)° kZ:;
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4.3 Laurent Series

*» Isolated Singularities
Suppose z = z;, Is a singularity of a complex function f.
For example, 21 and -2i are sigularities of f(2)=———
The point z, is said to be an isolated singularity, if
there exists some deleted neighborhood or punctured
open disk 0 < |z — z,| < R throughout which iIs analytic.
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A New Kind of Series

“» About an isolated singularity, it is possible to
represent f by a new Kkind of series involving both
negative and nonnegative integer powers of z — z,;
that is

a a
f(2)=...+ =2 4 -
(2) (z-12,)° 7-1,

+a, +

a(z-2,)+a,(z—-12,)°" +...
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Using summation notation, we have

0

f)=Ya,z-2) +Ya@-2) @

k=1
The part with negative powers is called the principal
part of (1) and will converge for |1/(z — zp)| < r* or
Iz — 24| > 1/r* =r. The part with nonnegative powers

Is called the analytic part of (1) and will converge for

Iz — z,| < R. Hence the sum of these parts converges
whenr <|z -z, <R.
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Example 1

The function f(z) = (sin z)/z3 is not analytic at z = 0 and
hence can not be expanded in a Maclaurin series. We
find that

. 72 72 7'
sinz=z2——+———+
31 5 7
converges for all z. Thus
smz 1 1 z2 7%
_ _ - _ - _ 2
H2)= 7° 3I 5l 7!+ )

This series converges for all z except z=0, 0 <|z].
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® THEOREM4.10 @
_Laurent’s Theorem \

Let f be analytic within the annular domain D defined
by r<|z-2°|<R. Then f has the series representation

f(2) = Zak(z 3)

valid for r <|z -z, |< R. The coefficients a, are given

by a, = 1_j f()klds k=0,£1,£2,,
271 *¢ (S—12,)"" (4)

where C Is a simple closed curve that lies entirely within
\D and has z; In its interior. (see Figure 4.6) J
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Expand f(2)

for0<|z| < 1.
Solution

= i In a Laurent series valid

(@) We can write

82

+1 8z+1 1

f(z)=

1
==+
Z

z1-2) 7z 1-z

9+97+97°%+...

= (8+i)[1+ 2+7%+..)
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Example 5
f()= = .
Expand z2(z—1) InaLaurent series valid
forl<|z-2|<2

Solution _ mammamen
. -~ B
(a) See Fig 4.9 // \\
/ ',—f"__‘s\\ \
/ / N\ \
ST
0 1’('\ Y R
\\ b y //
\ /
\\ //
\~\~~‘-_"_—"‘,4/
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Cont’d

The center z = 2 Is a point of analyticity of f.We want
to find two series involving integer powers of z — 2; one

converging for 1 < |z — 2| and the other converging for
lz - 2| < 2.

1 1
f(z)=—"+—-=1(2)+ 1,(2
(=-"+ " =L@+ @)

1 1 1 1
h(z)=--=- T, 7.9

Z 2+272—2 21+
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1 z—2_(z—2)2+(z—2)3_m

2 2° 2° 2
This series converges for |(z —2)/2|<1lor|z—2|<2.
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= — + —...
z-2 (z2-2)* (z-2)

This series converges for |1/(z—2)|<lorl<|z-2|.
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4.4 Zeros and Poles

“» Introduction
Suppose that z =z, Is an isolated singularity of fand

f(2)= Yaz-2) =Y 2 +¥a (z-2) (1)
k=—o0

(217 k=0
Is the Laurent series of fvalid for 0 <|z—Zz) <R. The
principal part of (1) Is

Ya,(z-2))"= i = (2)

Ch19_45



Classification

(1) If the principal part is zero, z =z, Is called a
removable singularity.

(i) If the principal part contains a finite number of
terms, then z =z, Is called a pole. If the last
nonzero coefficient iIsa_,,n> 1, thenwe say It Is a
pole of order n. A pole of order 1 is commonly
called a simple pole.

(1) If the principal part contains infinitely many
nonzero terms, z =z, Is called an essential
singularity.
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__1_54_5_... (2)

that z = 0 Is a removable singularity.
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Example 2

(a) From

sinz 1 z 7°

+— ...
72z 31 b5

0 <|zl. Thusz =0 s a simple pole.
Moreover, (sin z)/z3 has a pole of order 2.
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A Question

“» The Laurent series of f(z) = 1/z(z — 1) valid for 1 < |z|

IS (exercise)
f(z)= : + . + :
A A

+ ...

“»The point z=0 is an isolated singularity of fand the
Laurent series contains an infinite number of terms
Involving negative integer powers of z. Does it mean
that z = 0 Is an essential singularity?
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**» The answer 1s “NO”. Since the interested Laurent
series Is the one with the domain 0 < |z| <1, for which
we have (exercise)

f(z)=—1—1—z—22—...
Z

Thusz=0Is a simple pole for 0 < |z| < 1.

Ch19_50



“»We say that z, Is a zero of f If f(z;) = 0. An analytic
function f has a zero of order nat z = z, If

f(z,)=0, f'(z,)=0,f"(z,) =0, ..., f"(z,) =0,
but M (z,)#0 (3)
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Example 3

“» The analytic function f(z) = z sin z2 has a zero at z = 0,
because f(0)=0.

6 10
. z° 7z
sinz®=z"-- +- —..
3 5
.-
. AR
f(z)=1zsinz°=2°|1-- += —
3l 5l

hence z = 0 is a zero of order 3, because f(0)=0,f'(0)=0,
f"(0)=0 but f®(0)=0
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® THEOREM4.11 @ p
QEEEED:. - o orcer

If the functions f and g are analytic at z =z, and f has a
zero of order nat z =z, and g(z,) # 0, then the function
\F(z) = g(2)/f(z) has a pole of order n at z = z,.

J

Ch19_53



Example 4

]
(a) Inspection of the rational function
F(2) = 272+5 4
(z-1(z+5)(z-2)

shows that the denominator has zeros of order 1 at z =
1 and z = —5, and a zero of order 4 at z = 2. Since the
numerator Is not zero at these points, F(z) has simple
polesatz=1 and z=—5 and a pole of order 4 at z = 2.
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Chapter 5

5. Calculus of residues

Contents

5.1. Calculation of residues
5.2. The Residue theorem and its application
5.3. Evaluation of definite integrals
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5.1. Residues and Residue Theorem

“* Residue
The coefficient a_; of 1/(z — z;) In the Laurent series IS
called the residue of the function f at the isolated
singularity. We use this notation
a_; = Res(f(z), zy)
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Example 1

(@) z=1is a pole of order 2 of f(z) =1/(z - 1)z - 3).
The coefficient of 1/(z—1)i1sa, =—%.
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® THEOREM51 @ . . )
Residue at a Simple Pole

If f has a simple pole at z = z,, then

Res(f(2) 20) = lim (2-2))F(2)
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THEOREM 1

Proof
Since z =z, Is a simple pole, we have
f(2)= 21 va +a(z—2))+a,(z—2))% +..
Z - ZO
lim(z-2z,)f(2)
11

= lim[a_ +a,(z—z) +a,(z — 2,)* +...]

Z—%ZO

=a_, =Res(f(2),z,)
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® THEOREM52 @ ) N
Residue at a Pole of Order n

If f has a pole of order n at z = z,, then

Res(1(2), )= 2 i 5@ 1) @

- J
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THEOREM 2

Proof
Since z =z, Is a pole of order n, we have the form
a a
f(z)=—"—+..+—+a,+a(z-17y)+..
(Z2-12,) L= 1,

(z-2,)"f()=a,+..+a,(z—2)" " +a,(2—2,)" +...
Then differentiating n — 1 times:

A 22, f(2)
dz’ 3)

=(n—Dla ,+nla,(z—z,) +---
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Proof Cont’d

The limit of (3)as z — z, IS

n-1

lim —(z2-2,)"f(z)=(n-Dla,

-1, (7

d n-1

Res(f(z),z5)=a, = (n _1)|Z-_>ZO 47"

(z-120)" f(2)
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Example 2

The function f(z) = 1/(z — 1)%(z — 3) has a pole of order 2
at z = 1. Find the residues.

Solution

Res((2) 1)_1||m—(z 128 (2) = lim & 2L
-1z 72—3

-1 1
=|im ——

251 (72— 3) 4
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Approach for a simple pole

I f can be written as f(z)= g(z)/h(z) and has a simple
pole at z, (note that h(z,) = 0), then

Res(1(2), 20)= 30 @

because

| 92) _ 9@ _ (%)
lim (z - Zo)@ =lim - h(zy) h'(ZZ)
L— L
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Example 3

“* The polynomial z* + 1 can be factored as (z — z,)(z -
2,)(2 — 25)(z — z,). Thus the function f = 1/(z* + 1) has
four simple poles. We can show that

zl _ em/4, 22 _ GSMM, 23 _ 57z|/4’ 24 _ e7721/4

1 1 34 1 1

Res(f (2), Zl):F:Ze =—m—mi
1
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Res(f(z),z,)=——==

Res(f(z), z5) =

Res(f(z),z,)=—=

42,
4z,
1
4243

1

A

4
1
="¢
A

o 11

_4@_4ﬁi

1 asaira _ L 1

=42 402

—21nl4 _ 1 1

SN AN
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e 3 @
Cauchy’s Residue Theorem A

Let D be a simply connected domain and C a simply
closed contour lying entirely within D. If a function f is
analytic on and within C, except at a finite number of

singular points z,, z,, ..., z, within C, then
jc f(z)dz = ZﬂikZ_;Res(f (2), z,)

()
J

o
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THEOREM 3

Proof
See Fig 5.1. Recalling from (15) of Sec. 4.3, we can
easily prove this theorem.

4% f(2)dz=27iRes(1(2), 2,)

{% f (2)dz =Z{% f(2)dz = ZﬂiZn:Res(f (2), z,)
k=1 K k=1
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Example 4

1
Evaluate {F dz where

(z-1)°(z -3)
(b) the contour C 1Is the circle |z|= 2
Solution
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(b) Since only the pole z =1 lies within the circle, then
there Is only one singular point z=1 within C, from (5)

§ oy dz=27iRes(f(2),]

(z-1)*(z-3)
py (-i) -7
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5.3 Evaluation of Real Integrals

¢ Introduction
In this section we shall see how the residue theorem
can be used to evaluate real integrals of the forms

jOZﬂ F(cos@,sind) do (1)

[~ f(x)dx (2)
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T

Integral of the Form | " F(cosé,sin6) d

+»» Consider the form
joz” F (cosd, sind)do

The basic idea Is to convert an integral form of (1)
Into a complex integral where the contour C is the
unitcircle: z=cos d+1isin 6,0< < .
Using
| i0 | -0 i0  -i0
dz = ie'’d0, cosf = = +2€ ,Sin@ =
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“*we can have

do = d cosé’——(z+z M, smé’—i(z ) @)
1Z 2 2

The integral in (1) becomes
1 4 1 4 j dz
F|—(z+27),—(z-12 -
(JSC (2( vz) 2|( ) 1Z

where C Is |z| =
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Example 1

Evaluate (>* 1 45
0 (2 +c0s6)°

Solution

Using (4), we have the form
4 Z

i (22 +4z2+12)?

We can write
7

f(7) =
(z—20)°(z-2)°
where z,=-2-+/3,2,=-2+/3.

Ch19_75



Since only z; is inside the unit circle, we have
b, dz = 27iRes(f (2) , z,)

(2° + 4z +1)2

d Z
Res(f, z _Ilm— z—2,) f(z)=Im
(f.z)=lim (z-2)*f(2) =2
(z+2zy) 1
= lim-—
51 (2-1,)° " 643

Hence . A . A
27 .
[ do -

- ="
0 (2+c0sb)? i 63 3.3
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Integral of the Form [~ f(x)dx

]
“*When f Is continuous on (—oo, o), we have

[ 00 dx=lim

'—0a0

[ fede+lim[“f(x)dx  (5)

R—o0

If both limits exist, the integral is said to be
convergent; If one or both of them fail to exist, the
Integral Is divergent.
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“ If we know (2) Is convergent, we can evaluate it by a
single limiting process:

[“fo0dx=1lim [ f(x) dx (6)

R—o0

It Is Important to note that (6) may exist even though
the improper integral is divergent. For example:

xdx Isdivergent, since
2
. (R . R
lim| xdx=lim— =

R—00 ¢0 R—w 2
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lim [ x dx=lim | . - =0 0

R—o0 ? ?

The limit in (6) is called the Cauchy principal value
of the integral and Is written

PV.[" F(x)dx=lim [ (x)dx

R—w
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» To evaluate the integral In (2), we first see Fig 5.2.

Yy

CR
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“» By theorem 5.3, we have

P f@dz=] f@dz+[_f(x)dx

= 27zizn: Res(f(z), z,)
k=1

where z,, k=1, 2, ..., n, denotes poles Iin the upper
half-plane. If we can show the integral [ f(z)dz—0 as
R — o, o
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then we have

PV, [7 f(x)dx=lim [ f(x)dx

R—o0

& (8)
=27i) Res(f(z), z)
k=1
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Example 2

Evaluate the Cauchy principal value of

© 1

j 5 5 dx

(X +1)(x°+9)
Solution
Let f(2) = 1/(z%2 + 1)(z% + 9)

=1/(z+1)(z—1(z + 31)(z— 31)

Only z=1and z = 3i are In the upper half-plane.
See Fig 5.3.
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Cr
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1

<P > > 0z
C(z°+1)(z°+9)

1

:jR > > dx +
R(z°+1)(z°+9)
=1, +1,

= 277l

= 27l

Res(f(z),i)+Res(f(z), 3i)]

1 1

160 48]

|

_"
12

0z
(22 +1)(2° +9)

)
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Cont’d

Now let R — oo and note that on Cxg:

(22 +1)(2% +9) = (2* +1) (2* +9)

> 712" -9 = (R ~1)(R* -9)

From the ML-inequality

:J'C

1 7R

2 2 dZS 2 2
(22 +1)(z2+9) | (R —1)(R?—-9)

—>0asR—>

Ch19_86



lim [° 1 dx ="

RooR(X2 +1)(x*+9) 12
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® THEOREM54 @ :
QEEEE ccrcvior ot mtegralasR -0

Suppose f(z) = P(z)/Q(z), Where the degree of P(z) Is
n and the degree of Q(z) Ism>n+ 2. If CsIs a
Semicircular contour z = Re'?. 0< 6 < 7, then

|, f(ydz>0as R
\;, R
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Example 3

Evaluate the Cauchy principal value of

o ]
LO x* +1dx

Solution

We first check that the condition in Theorem 19.15 Is
satisfied. The poles in the upper half-plane are z, = ™4
and z, = e37/4_ \We also knew that

1_1i
42 42
1 1

ReS(f,ZZ):m—m|

Res(f,z)=-
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Thus by (8)

ij dx

o x* +1
= 27i[Res(f, z,) + Res(f, z,)]

7T

V2
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A Integrals of the Form I f (x) cos axdx
L o [ fo)sinaxdx 7

“» Using Euler’s formula, we have

[~ f(x)e"dx
. } (10)
= [ f(x)cosaxdx+i| f(x)sincx dx

Before proceeding, we give the following sufficient
conditions without proof.
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® THEOREM55 @ :
—Behawor of Integralas R —» «

n and the degree of Q(z) Ism>n+ 1. If Cyis a

then | (P(2)/Q(2))e"“dz—0 as R— o,
"

Suppose f (z) = P(z)/Q(z), Where the degree of P(z) Is

Semicircular contour 7z = Re'?. 0<@ <z, and o > 0,

~
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Example 4

Evaluate the Cauchy principal value of

o XSIN X
_[2 dx
0 x“+9

Solution
Note that the lower limit of this integral Is not —cc. We

first check that the integrand is even, so we have

wxﬂnx XSIN X
- dx 11
! x2+9 joox +9 -
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With o =1, we now for the integral

fP 22 e'?dz
Cz°+9

where C Is the same as in Fig 19.12. Thus

7 R X
j 5 e'zdz+j 5 edx
Crz°4+9 Rx“+9

= 271 Res( f (2)e", 3i)
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where f(z) = z/(z¢ + 9). From (4) of Sec 5.1,

_ 1z -3
Res(f (z)e",3i) = 22e °

. ‘Z=3i — 2

In addition, this problem satisfies the condition of
Theorem 5.5, so

_ -3
PV.[" 2 ePdx=2x" =7
X +9 2 e
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© X COS X o XSIN X T

P.V. 5 dx=0,P.V. 5 dx = =
X" +9 X" +9 e
Finally,
ijfmxdx:lP.V. 0 Xi'nxdles
0 x“+9 2 —oX“4+9 2€e
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Indented Contour

]
“» The complex functions f(z) = P(z)/Q(z) of the
Improper integrals (2) and (3) did not have poles on
the real axis. When f(z) has a pole at z = ¢, where c Is
a real number, we must use the indented contour as In
Fig 5.4.
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® THEOREMG56 @ :
Behavior of Integral as r — o A

Suppose f has a simple pole z = c on the real axis. If
Cr is the contour defined by z =c+re'’, 0 <9 < . then

|imjC f(2) dz = 7i Res(f(2), c)

r—0
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proof  Cont’d

Proof
Since f has a simple pole at z = c, its Laurent series Is

f(z) = a.4/(z —c) +9(2)
where a_; = Res(f(z), ¢) and g is analytic at c. Using the
Laurent series and the parameterization of C,, we have

jc f(z) dz
(12)

- 10
7 IIe . (7 10y Aif
:a_lj0 o d6?+|rjo g(c+re') e'?do

=1, +1,
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7 irem

First wesee | —
=2, re' +9
= ma_, = mMRes(f (z), c)
Next, g Is analytic at ¢ and so it Is continuous at ¢ and IS
bounded In a neighborhood of the point; that Is, there
exists an M > 0 for which |g(c + re'd)| < M.

Hence
|, = irj:g(c +re'%)el?dg =< rj: Md @ = zrM

It follows that lim,_,|l,| =0 and lim,_4l, = 0.
We complete the proof.

do=a,| ido
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Example 5

Evaluate the Cauchy principal value of

o sSin X
j_oo 5 dx
X(X°—2X+2)

Solution
Since the integral Is of form (3), we consider the

contour integral

e'dz 1
L @)=
Cz(z°-22+2) 2(z°—22+2)
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f(z) has simple poles at z=0and z =1 + 1 In the upper
half-plane. See Fig 5.5.
¥

CR
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+* Now we have

f=[ +[ +[_ +[ =2xiRes(f(2)e ,1+i) (13)

Taking the limits in (13)asR —> «woand r — 0, from
Theorem 5.5 and 5.6, we have

o eix
P.V.
L. X(X* — 2+ 2)

= 27iRes( f (2)e"? 1+1)

dx — ziRes( f (2)e'?,0)
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Cont’d

Res( f (2)e”, 0) = ;

—1+i

Res( f (2)e"?,1+i) = 94

(1+1)

Therefore,

o eiX 1 - e—1+i -
PV.[ —; dx=7i=+ 27| ——— (1+1i)
—2 X(X* —2X+ 2) 2 4
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Using e1*' = el(cos 1 + i sin 1), then

P\V.[ ZCOSX dx = “e(sinl+ cos)
0 X(X° —2X + 2) 2

pV[* M gy =Z[1+e(sin1—cosL)]
—©X(X=2X+2) 2
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Thank You !



