Chapter 6

The Mobius transformation

By: Habtamu G (Assistant Professor)
Email: habte200@gmail.com
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6.1 Complex Functions as Mappings

* Introduction
The complex function w =1(z) = u(x, y) + Iv(x, y)
may be considered as the planar transformation. We
also call w = f(z) iIs the image of z under f. See Fig 6.1.
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Example 1

“» Consider the function f(z) = ez If z=a+1t,0 <t <,
w = f(z) = e?e't. Thus this is a semicircle with center
w=0andradiusr =e2. Ifz=t+1Ib, 0o <t< oo, W=
f(z) = ete'. Thus this is a ray with Arg w = b, |w| = €.
See Fig 20.2.
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Example 2

** The complex function f = 1/z has domain z = 0 and

real part : u(x, y) = X
X~ +Y

2

y

Imaginary part: v(X, y) = 2_ 5

X“+Y
When a = 0, u(x,y) = acan be written as

2 1 2 1 2 2 1 2
X“=—X+y =0, (X=—)"+y =(—
JXTY (x=2 )y =())

Ch20_7



“» Likewise v(X, y) = b, b = 0 can be written as

2 1, 1.
oy =)

See Fig 6.3.
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Translation and Rotation

“*The function f(z) = z + z, is interpreted as a
translation. The function g(z) =¢'®z is interpreted
as a rotation. See Fig 6.4.
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Example 3

Find a complex function that maps —1 <y <1lonto2 <X
<4,

Solution
See Fig 6.5. We find that —1 <y < 1 is first rotated
through 90° and shifted 3 units to the right. Thus the

mapping Is

h(z)=e""?z+3=iz+3
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Magnification

“* A magnification is the function f(z) = az, where a Is a
fixed positive real number. Note that |w| = |az| = oz].
If g(z) =az +band a=re'® then the vector is
rotated through &,, magnified by a factor r,, and then
translated using b.
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Example 4

Find a complex function that maps the disk |z| <1 onto
the disk |w — (1 + 1)| < 2.

Solution
Magnified by %2 and translated to 1 + I, we can have the
desired function as w =1(z) =%z + (1 +1).
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Power Functions

“* A complex function f(z) = z# where a is a fixed
positive number, Is called a real power function. See
Fig 6.6. If z =re'% then w =f(z) = ree'®,
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Example 5

Find a complex function that maps the upper half-plane
y > 0 onto the wedge 0 < Arg w < 1/4.

Solution
The upper half-plane can also be described by 0 < Arg
w < . Thus f(z) = zZV4 will map the upper half-plane onto

the wedge 0 < Arg w < 1/4.
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Successive Mapping

“»See Fig 6.7. If £=1(z) maps R onto R”, and w = g(¢)
maps R” onto R’, w = g(f(z)) maps R onto R’.
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Example 6

Find a complex function that maps 0 <y < & onto the
wedge 0 < Arg w < /4.

Solution

We have shown that f(z) =e?maps 0 <y<montoto 0 <
Arg £<m and g(&) =Y maps0<Arg £<m onto 0 <
Arg w < n/4. Thus the desired mapping is w = g(f(z)) =
g(ez) — pZ/4
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Example 7

Find a complex function that maps n/4 < Arg z < 3n/4
onto the upper half-plane v > 0.

Solution

First rotate /4 < Arg z < 3n/4 by {=1(z) = e'™4z. Then
magnify it by 2, w = g(¢) = £2 Thus the desired
mapping is w = g(f(2)) = (e'¥42)? = -iz2
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6.2 Conformal Mappings

“* Angle —Preserving Mappings
A complex mapping w = f(z) defined on a domain D
Is called conformal at z = z, In D when f preserves

that angle between two curves in D that intersect at z,.
See Fig 6.10.
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*» Referring to Fig 6.10, we have

1 1 2 |2 !
0 -zf =[] +]2

or O=cos™

Likewise

¢ =CoS ™

F2 2
i+ i

\

\

‘ 2

(112 ;12 :

2

= Z‘Zin'z‘cosé’

3

2]z

J

3

2404 W

J

(1)

(2)
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® THEOREM20.1 ® . A
—Conformal Mapping

If f(z) Is analytic In the domain D and f’(z) # 0, then
fI1s conformal at z = z,,

\. J

Proof
If a curve C In D is defined by z = z(t), then w = f(z(t)) Is
the image curve in the w-plane. We have

w= T (z(t),w= 1"(z(t))z'(t)

If C; and C, Intersect at z = z,, then
W, = £'(20)2,W, = £'(2)2,

Ch20_24



Proof

Cont’d

Since f'(zy) # 0, we can use (2) to obtain

¢ =CoS ™

—cos ™

\

22

J

((2)2 + /' (2)z - |F' (27— F(20)2)]
\ 21'(20)2 f'(20)7,)

(102 12 C 02

o+ —u-n |
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Example 1

(a) The analytic function f(z) = e?is conformal at all
points, since f'(z) = e?Is never zero.

(b) The analytic function g(z) = z2 is conformal at all
points except z =0, since g'(z) =2z =0, for z =0.
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Example 2

“» The vertical strip —n/2 < x < 7w/2 Is called the
fundamental region of the trigonometric function
w = sin z. A vertical line x = a in the interior of the
region can be described by z=a + It, —oo <t < 00, We
find that
Sin z=sin x cosh y +1cos x sinhy
andso u-+Iv=sin (a+ if)
=sinacosh t+1cos asinh t.
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Since cosh?t —sinh?t =1, then

u’ Vv?

v
sina cos’a

The image of the vertical line x = a is a hyperbola with
+ sin a as u-intercepts and since —n/2 <a < n/2, the
hyperbola crosses the u-axis between u = -1 and u = 1.
Note If a = —n/2, thenw = —cosh t, the line x =—7/2 Is
mapped onto the interval (—oo, —1]. Likewise, the line X
= nt/2 1S mapped onto the interval [1, «).
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Example 3

The complex function f(z) =z + 1/z is conformal at all
points except z = £1 and z = 0. In particular, the
function is conformal at all points In the upper half-
plane satisfying |z| > 1. If z = re'?, then

w= re'?+ (1/r)e'? and so

u=(r+i)cos@, v=(r—i)sin6’ (3)

Note if r=1,thenv=0and u=2cos &. Thus the
semicircle z =¢e', 0 <t < m, is mapped onto [-2, 2] on
the u-axis. If r > 1, the semicircle z=re', 0 <t<m, is
mapped onto the upper half of the ellipse u%/a? + v4/b? =
1, wherea=r+ 1/r, b=7»— 1/r. See Fig 6.12.
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For a fixed value of 6, the ray te'?, for t > 1, is mapped
to the point u?/cos?@ — v4/sin?6 = 4 in the upper half-
plane v > 0. This follows from (3) since

2 2 2 2
s~ Y
cCos“éd sIin“@ t t

Since fis conformal for |zl > 1 and aray 0= 6,

Intersects a circle |z| = r at a right angle, the hyperbolas
and ellipses in the w-plane are orthogonal.
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® THEOREMG6.2 @ . )
Transformation Theorem for

Harmonic Functions

If f be an analytic function that maps a domain D onto
a domain D’. If U is harmonic in D’, then the real-valuec
Kfunction u(x, y) = U(f(z)) is harmonic in D.

J
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Proof

We will give a special proof for the special case In
which D’ is simply connected. If U has a harmonic
conjugate V in D', then H = U + 1V Is analytic in D', and
so the composite function H(f(z)) = U(f(z)) + 1IV(f(2)) Is
analytic in D. It follow that the real part U(f(2)) Is
harmonic in D.
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Solving Dirichlet Problems Using Conformal

Mapping

«+ Solving Dirichlet Problems Using Conformal
Mapping
1. Find a conformal mapping w = f(z) that transform
s the original region R onto the image R’. The
region R’ may be a region for which many
explicit solutions to Dirichlet problems are
known.

2. Transfer the boundary conditions from the R to
the boundary conditions of R’. The value of u at a
boundary point £ of R Is assigned as the value of
U at the corresponding boundary point f(&).
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3.

4.

Solve the Dirichlet problem in R’. The solution
may be apparent from the simplicity of the
problem In R’ or may be found using Fourier or
Integral transform methods.

The solution to the original Dirichlet problems is
u(x, y) = U(f(2)).
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Example 6

The function U(u, v) = (1/7) Arg w Is harmonic in the
upper half-plane v > 0 since It is the imaginary part of
the analytic function g(w) = (1/7) Ln w. Use this

function to solve the Dirichlet problem in Fig 6.14(a).
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Solution

The analytic function f(z) = sin z maps the original
region to the upper half-plane v > 0 and maps the
boundary segments to the segments shown in Fig
6.14(b). The harmonic function U(u, v) = (1/x) Arg w
satisfies the transferred boundary conditions U(u, 0) =0
foru>0and U(u,0) =1 for u<0.

u(x,y) = 1tanl(

T

cos xsinhy
sinxcosh y
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» A favorite image region R’ for a simply connected
region R is the upper half-plane y > 0. For any real
number a, the complex function

Ln(z—a) =log.lz —a| + 1 Arg (z—a)
IS analytic in R’ and is a solution to the Dirichlet
problem shown in Fig 6.16.
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+» It follows that the solution In R’ to the Dirichlet
problem with

Cp, a<X<Db
0, otherwise

U(x,O):{

IS the harmonic function
U(X, y) = (co/m)(Arg(z — b) — Arg(z — a))
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6.3 Linear Fractional Transformations

*»» Linear Fractional Transformation
If a, b, c, d are complex constants with ad — bc = 0,
then the function

T(Z):az+b
cz+d

IS called a llinear fractional transformation. Since

.,y ad—bc
T= gy
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T is conformal at z provided
A=ad-bc=0and z = —d/c.

Note when ¢ =0, T(z) has a simple zero at z, = —d/c,
and so

limT(z) =
217
We will write T (z,) = cc. In addition, if ¢ = 0, then
imT(z) = lim 270/2_2
2| Z4ooc+d/z C

and we write T (o) = a/c.
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Example 1

If T(z) = (22 + 1)/(z — 1), compute T(0), T(e0), T(1).
Solution
T(0)=1/(-1) =1, T(0) = I|mT(z) 2,

2z

T()=1imT(z) =, T(i) =00
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Circle Preserving Property

“*If ¢ =0, the transformation reduces to a linear
function T(z) = Az + B. This Is a composition of a
rotation, magnification, and translation. As such, a

linear function will map a circle in the z-plane to a
circle in the w-plane. When ¢ =0,

az+b bc—ad 1 C
W= = +— (1)
cz+d c c¢z+d a
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Letting A =

bc—ad’B a

C

C

zlzcz+d,22:£,W:Azz+B

Z

Note that if [z -z, =r,w= ;,then

1 1] w-w

wow o ww

V4

ror w—w|=(rw)w-0

=—, T(z) can be written as

(2)

(3)
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I
It Is easy to show that all points w that satisfy

W—W| = AW —W, (4)

Is a line when A =1 and is a circle when A >0 and A
= 1. It follows from (3) that the image of the circle
Iz — z4] = r under the inversion w = 1/z is a circle

except when r = 1/lwy| = |z4.
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® THEOREM 20.3 @ PW . )
—Clrcle-Preservmg Property

A linear fractional transformation maps a circle in the
z-plane to either a line or a circle in the w-plane. The
Image Is a line if and only If the original circle passes

through a pole of the linear fractional transformation.
-

J
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Example 2

I
Find the images of the circles |z| =1 and |z| = 2 under
T(z) = (z + 2)/(z—1). What are the images of the
Interiors of these circles?

Solution

The circle |z| = 1 passes through the pole z, =1 of the
linear transformation and so the image Is a line. Since
T(—1)=—%and T(1) = —(1/2) — (3/2)i, we conclude that
the line Is u = —%.
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The image of the interior |z| = 1 is either the half-plane
U < —% or the half-plane u > —%. Using z = 0 as a test
point, T(0) = —2 and so the image is the half-plane u <
—VA.

The circle |z| = 2 does not pass through the pole so the
Image Is a circle. For |z| = 2,
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Example 2 (2)

I -
Therefore T (z) Is a point on the image circle

and the image circle i1s symmetric w.r.t. the u - axis.

Since T(—2) =0 and T(2) = 4 the center of the circle is w
= 2 and the image Is the circle |w — 2| = 2. The interior
of |z| = 2 is either the interior or the exterior of the

Image |w — 2| = 2. Since T(0) =—2, we conclude that the
Image is |w — 2| > 2. See Fig 6.33.
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Matrix Methods

+s»\We assoclate the matrix

az+b
cz+d

A:(a bj with T (2) =
c d

a,z+b a,Z+b
If T,(z) = 2 , T,(2) = 22
1(2) c,z+d, 2(2) c,z+d,

then T, (T, (2)) is given by T (z) = 2P
cz+d
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where

¢ e a)e o
c d c, d,\c, d;

fw=T(2)=2% then 7= V=P
cz+d —CW+a
that is, T (W) = dw-b ~and the associated
—CW+a

. _ d -Db
matrix Is  adj A :( j (6)
—C a
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Example 3

27 -1

If T(z) = T

and S(z) = |Zz:ll find ST(T (2)).

Solution

Let ST (2)) = 22 +P

cz +d
e o)l )
=ad)| .
c d 1 -1/{(1 2
(—1 ij(Z —1) (—2+i —1+2ij
= . = _ |, then
-1 I\N1 2 1-21 2+1
(=2+1)z+1+2i
()= (1-2i)z+2+]

- Where

S™HT
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Triples to Triples

N
+2» The linear fractional transformation
7—2,2,—1
T (Z) — 1 =2 3

has a zero at z =z, a pole at z = z; and T(z,) = 1. Thus
T(z) maps three distinct complex numbers z,, z,, Z; to
0, 1, and oo, respectively. The term

Z —

Z, 2, — Zn . .
The term 172 =3 jscalled the cross - ratio of

2,2, 2, 3.
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2 Likewise, the linear fractional transformation

W—W, W, — W,

\A/'_'\A43 \A&Z __‘VV&

sends wy, W,, W3 t0 0, 1, and o, and so S-*maps 0, 1,

and oo to Wy, W,, Ws. It follows that w = S-1(T(2)) maps

the triple z,, z,, z5 to the triples wy, w,, W,. From w =

S-1(T(z)), we have S(w) = T(z) and
VV“"\AG_\AQz"'VVé . 2:__ Zl Zé!'_ 23
W—W, W, =W, Z—2Z32Z,—Z

S(w) =

(7)
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Example 4

Construct a linear fractional transformation that maps
the points 1, I, —1 on the circle |z| = 1 to the points —1, 0
and 1 on the real x-axis.

Solution

From (7) we get
w+1l 0-1 z-1i+1 _W+l__iZ—1
w-10-(-1) z+1li-1 w-1 Z+1

Solving for w, we get w=—1(z — )/(z + 1).
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Example 5

Construct a linear fractional transformation that maps
the points «, 0, 1 on the real x-axis to the points 1, 1, —1
on the circle |w| =

Solution
Since z; = oo, the terms z — z, and z, — z; In the cross-
product are replaced by 1. Then

w-li+1 1 0-1 w+1 -1

= or S(W=—I——=—-=T(z
w+li—-1 z-1 1 (W) w-1 z-1 (2)
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If we use the matrix method to find w = S(T(z2)),

: HJ(J( o

andso w=— - = -
—1z+1+1 z-1+1

Ch20_61



Example 6

Solve the Dirichlet problem in Fig 6.35(a) using
conformal mapping by constructing a linear fractional
transformation that maps the given region into the upper
half-plane.
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(a) (b)

Ch20_63



Solution

The boundary circles |z| =1 and |z — %2| = %2 each pass
through z = 1. We can map each boundary circle to a
line by selecting a linear fractional transformation that
hasapole atz=1. If we require T(i) =0and T(-1) = 1,

then 14 _
Z—1-1- L Z—
T(z)= =1-1)—
(2) z—-1-1-1 ( )z—l
Since T(0)=1+i,T(5+31)=-1+i, T maps the interior
of |z| = 1 onto the upper half-plane and maps |z — Y2| = %
onto the line v=1. See Fig 6.35(b).
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Example 6 (3)

The harmonic function U(u, v) = v is the solution to the
simplified Dirichlet problem in the w-plane, and so u(x,
y) = U(T(2)) Is the solution to the original Dirichlet
problem in the z-plane.

Since the imaginary partof T(z) =(1- i);—_l IS

1—x% — y?
(x=1)% +y?

1—x% — y?

, thesolutionis u(x,y) =
(X=1)°+y° (x.y)
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and are therefore circles that pass through z = 1. See Fig
6.36.
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