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6.1 Complex Functions as Mappings 

Introduction 

The complex function w = f(z) = u(x, y) + iv(x, y) 

may be considered as the planar transformation. We 

also call w = f(z) is the image of z under f. See Fig 6.1.
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Fig 6.1 
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Example 1 

Consider the function f(z) = ez. If z = a + it, 0  t  , 

w = f(z) = eaeit. Thus this is a semicircle with center 

w = 0 and radius r  = ea. If z = t + ib, −  t  , w = 

f(z) = eteib. Thus this is a ray with Arg w = b, |w| = et.  

See Fig 20.2. 
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Fig 6.2 
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Example 2 

The complex function f = 1/z has domain z  0 and  
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Cont’d 

Likewise v(x, y) = b, b   0 can be written as 

 

 

 

See Fig 6.3. 
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Fig 6.3 
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Translation and Rotation 

The function f(z) = z + z0 is interpreted as a 

translation. The function                         is interpreted 

as a rotation. See Fig 6.4. 
zezg
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Example 3 

Find a complex function that maps −1  y  1 onto 2  x 

 4. 

Solution 

See Fig 6.5. We find that −1  y  1 is first rotated 

through 90 and shifted 3 units to the right. Thus the 

mapping is  

33)( 2/  izzezh i
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Fig 6.5 
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Magnification 

A magnification is the function f(z) = z, where  is a 

fixed positive real number. Note that |w| = |z| = |z|. 

If g(z) = az + b and                   then the vector is 

rotated through 0, magnified by a factor r0, and then 

translated using b. 
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Example 4 

Find a complex function that maps the disk |z|  1 onto 

the disk |w – (1 + i)|  ½. 

Solution  

Magnified by ½ and translated to 1 + i, we can have  the 

desired function as w = f(z) = ½z + (1 + i). 
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Power Functions 

A complex function f(z) = z where  is a fixed 

positive number, is called a real power function. See 

Fig 6.6. If z = rei, then w = f(z) = rei. 
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Example 5  

Find a complex function that maps the upper half-plane 

y  0 onto the wedge 0  Arg w  /4. 

Solution  

The upper half-plane can also be described by 0  Arg 

w  . Thus f(z) = z1/4 will map the upper half-plane onto 

the wedge 0  Arg w  /4. 



Successive Mapping 

See Fig 6.7. If  = f(z) maps R onto R, and w = g() 

maps R onto R, w = g(f(z)) maps R onto R. 
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Fig 6.7 
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Example 6  

Find a complex function that maps 0  y   onto the 

wedge 0  Arg w  /4. 

Solution  

We have shown that f(z) = ez maps 0  y   onto to  0  

Arg     and  g() =  1/4 maps 0  Arg     onto 0  

Arg w  /4. Thus the desired mapping is w = g(f(z)) = 

g(ez) = ez/4.  
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Example 7  

Find a complex function that maps /4  Arg z  3/4 

onto the upper half-plane v  0. 

Solution  

First rotate /4  Arg z  3/4 by  = f(z) = e-i/4z. Then 

magnify it by 2, w = g() =  2. Thus the desired 

mapping is w = g(f(z)) = (e-i/4z)2 = -iz2. 
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6.2 Conformal Mappings  

Angle –Preserving Mappings  
A complex mapping w = f(z) defined on a domain D 
is called conformal at z = z0 in D when f preserves 
that angle between two curves in D that intersect at z0. 
See Fig 6.10.  
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Fig 6.10 
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Referring to Fig 6.10, we have  
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Proof  

If a curve C in D is defined by z = z(t), then w = f(z(t)) is 

the image curve in the w-plane. We have  

 

If C1 and C2 intersect at z = z0, then  

 

If f(z) is analytic in the domain D and f’(z)  0, then 

f is conformal at z = z0. 

THEOREM 20.1 
Conformal Mapping 
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Proof       Cont’d 

Since f (z0)  0, we can use (2) to obtain   
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Example 1 

(a) The analytic function  f(z) = ez is conformal at all 

points, since f (z) = ez is never zero. 

(b) The analytic function  g(z) = z2 is conformal at all 

points except z = 0, since g(z) = 2z  0, for z  0. 
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Example 2 

The vertical strip −/2  x  /2 is called the 

fundamental region of the trigonometric function  

w = sin z. A vertical line x = a in the interior of the 

region can be described by z = a + it, −  t  . We 

find that  

  sin z = sin x cosh y + i cos x sinh y  

and so  u + iv = sin (a + it)  

   = sin a cosh t + i cos a sinh t.  
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Cont’d 

Since cosh2 t − sinh2 t  = 1, then 

 

 

 

The image of the vertical line x = a is a hyperbola with 

 sin a as u-intercepts and since −/2 < a < /2, the 

hyperbola crosses the u-axis between u = −1 and u = 1. 

Note if a = −/2, then w = − cosh t, the line x = − /2 is 

mapped onto the interval (−, −1]. Likewise, the line x 

= /2 is mapped onto the interval [1, ).  
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Example 3 

The complex function f(z) = z + 1/z is conformal at all 

points except z = 1 and z = 0. In particular, the 

function is conformal at all points in the upper half-

plane satisfying |z| > 1. If z = rei, then  

 w =  rei +  (1/r)e-i, and so 

 

 

Note if r = 1, then v = 0 and u = 2 cos  . Thus the 

semicircle z = eit, 0  t  , is mapped onto [−2, 2] on 

the u-axis. If r > 1, the semicircle z = reit, 0  t  , is 

mapped onto the upper half of the ellipse u2/a2  + v2/b2 = 

1, where a = r + 1/r, b = r − 1/r. See Fig 6.12. 
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Fig 6.12 
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Cont’d 

For a fixed value of , the ray tei, for t  1, is mapped 

to the point u2/cos2 − v2/sin2  = 4 in the upper half-

plane v  0. This follows from (3) since  

 

 

 

Since f is conformal for |z| > 1 and a ray  = 0 

intersects a circle |z| = r at a right angle, the hyperbolas 

and ellipses in the w-plane are orthogonal. 
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If f be an analytic function that maps a domain D onto 

a domain D. If U is harmonic in D, then the real-valued 

function u(x, y) = U(f(z)) is harmonic in D. 

THEOREM 6.2 
Transformation Theorem for 

Harmonic Functions 
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Cont’d 

Proof  

We will give a special proof for the special case in 

which D is simply connected. If U has a harmonic 

conjugate V in D, then H = U + iV is analytic in D, and 

so the composite function H(f(z)) = U(f(z)) + iV(f(z)) is 

analytic in D. It follow that the real part U(f(z)) is 

harmonic in D.  
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Solving Dirichlet Problems Using Conformal 

Mapping 

 Solving Dirichlet Problems Using Conformal 

Mapping 

1. Find a conformal mapping w = f(z) that transform 

s the original region R onto the image R. The 

region R may be a region for which many 

explicit solutions to Dirichlet problems are 

known. 

2. Transfer the boundary conditions from the R to 

the boundary conditions of R. The value of u at a 

boundary point  of R is assigned as the value of 

U at the corresponding boundary point f().  
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Fig 6.13 
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3. Solve the Dirichlet problem in R. The solution 

may be apparent from the simplicity of the 

problem in R or may be found using Fourier or 

integral transform methods. 

4. The solution to the original Dirichlet problems is 

u(x, y) = U(f(z)). 
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Example 6 

The function U(u, v) = (1/) Arg w is harmonic in the 

upper half-plane v > 0 since it is the imaginary part of 

the analytic function g(w) = (1/) Ln w. Use this 

function to solve the Dirichlet problem in Fig 6.14(a). 
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Fig 6.14 
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Cont’d 

Solution  

The analytic function f(z) = sin z maps the original 

region to the upper half-plane v  0 and maps the 

boundary segments to the segments shown in Fig 

6.14(b). The harmonic function U(u, v) = (1/) Arg w 

satisfies the transferred boundary conditions U(u, 0) = 0 

for u > 0 and U(u, 0) = 1 for u < 0. 
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A favorite image region R for a simply connected 

region R is the upper half-plane y  0. For any real 

number a, the complex function  

       Ln(z – a) = loge|z – a| + i Arg (z – a) 

is analytic in R and is a solution to the Dirichlet 

problem shown in Fig 6.16. 
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Fig 6.16 
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It follows that the solution in R to the Dirichlet 

problem with  

 

 

 

is the harmonic function  

 U(x, y) = (c0/)(Arg(z – b) – Arg(z – a))  
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6.3  Linear Fractional Transformations 

Linear Fractional Transformation 

If a, b, c, d are complex constants with ad – bc  0, 

then the function 
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T is conformal at z provided  

   = ad – bc  0 and  z  −d/c.  

Note when c  0, T(z) has a simple zero at z0 = −d/c, 

and so 
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Example 1 

If T(z) = (2z + 1)/(z – i), compute T(0), T(), T(i). 

Solution 
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Circle Preserving Property 

If c = 0, the transformation reduces to a linear 

function T(z) = Az + B. This is a composition of a 

rotation, magnification, and translation. As such, a 

linear function will map a circle in the z-plane to a 

circle in the w-plane. When c  0,  
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It is easy to show that all points w that satisfy 

 

 

is a line when  = 1 and is a circle when  > 0 and  

 1. It follows from (3) that the image of the circle 

|z – z1| = r under the inversion w = 1/z is a circle 

except when r = 1/|w1| = |z1|.      

(4)                         21 wwww  
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A linear fractional transformation maps a circle in the 

z-plane to either a line or a circle in the w-plane. The  

image is a line if and only if the original circle passes 

through a pole of the linear fractional transformation. 

THEOREM 20.3 
Circle-Preserving Property 
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Example 2 

Find the images of the circles |z| = 1 and |z| = 2 under 

T(z) = (z + 2)/(z – 1). What are the images of the 

interiors of these circles? 

Solution 

The circle |z| = 1 passes through the pole z0 = 1 of the 

linear transformation and so the image is a line. Since 

T(−1) = −½ and T(i) = −(1/2) – (3/2)i, we conclude that 

the line is u = −½.  
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Cont’d 

The image of the interior |z| = 1 is either the half-plane 

u < −½ or the half-plane u > −½. Using z = 0 as a test 

point, T(0) = −2 and so the image is the half-plane u < 

−½.  

The circle |z| = 2 does not pass through the pole so the 

image is a circle. For |z| = 2,  
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Example 2   (2) 

Since T(−2) = 0 and T(2) = 4 the center of the circle is w 

= 2 and the image is the circle |w – 2| = 2. The interior 

of |z| = 2 is either the interior or the exterior of the 

image |w – 2| = 2. Since T(0) = −2, we conclude that the 

image is |w – 2| > 2. See Fig 6.33. 
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Fig 6.33 
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Matrix Methods 

We associate the matrix  
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where 
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Example 3  

Solution 
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Triples to Triples 

The linear fractional transformation  

 

 

has a zero at z = z1, a pole at z = z3 and T(z2) = 1. Thus 

T(z) maps three distinct complex numbers z1, z2, z3 to 

0, 1, and , respectively. The term  
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Likewise, the linear fractional transformation  

 

 

sends w1, w2, w3 to 0, 1, and , and so S-1maps 0, 1, 

and  to w1, w2, w3. It follows that w = S-1(T(z)) maps 

the triple z1, z2, z3 to the triples w1, w2, w3. From w = 

S-1(T(z)), we have S(w) = T(z) and 

 

12

32

3

1)(
ww

ww

ww

ww
wS










(7)                     
12

32

3

1

12

32

3

1

zz

zz

zz

zz

ww

ww

ww

ww


















Ch20_58 



Example 4 

Construct a linear fractional transformation that maps 

the points 1, i, −1 on the circle |z| = 1 to the points −1, 0 

and 1 on the real x-axis. 

Solution  

From (7) we get  

 

 

 

Solving for w, we get w = −i(z – i)/(z + i).  
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Example 5 

Construct a linear fractional transformation that maps 

the points , 0, 1 on the real x-axis to the points 1, i, −1 

on the circle |w| = 1. 

Solution  

Since z1 = , the terms z − z1 and z2 − z1 in the cross-

product are replaced by 1. Then 
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Cont’d 

If we use the matrix method to find w = S-1(T(z)),  
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Example 6 

Solve the Dirichlet problem in Fig 6.35(a) using 

conformal mapping by constructing a linear fractional 

transformation that maps the given region into the upper 

half-plane. 
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Fig 6.35(a) 
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Cont’d 

Solution  

The boundary circles |z| = 1 and |z – ½| = ½ each pass 

through z = 1. We can map each boundary circle to a 

line by selecting a linear fractional transformation that 

has a pole at z = 1. If we require T(i) = 0 and T(-1) = 1, 

then  

 

 

Since                                                , T maps the interior 

of |z| = 1 onto the upper half-plane and maps |z – ½| = ½ 

onto the line v = 1. See Fig 6.35(b).  
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Example 6   (3) 

The harmonic function U(u, v) = v is the solution to the 

simplified Dirichlet problem in the w-plane, and so u(x, 

y) = U(T(z)) is the solution to the original Dirichlet 

problem in the z-plane. 
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Cont’d 

The level curves u(x, y) = c can be written as 

 

 

 

and are therefore circles that pass through z = 1. See Fig 

6.36. 
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Fig 6.36 
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