Chapter 6

The Mobius transformation

By: Habtamu G (Assistant Professor)
Email: habte200@gmail.com

Contents

6.1 Examples of mapping by functions
6.2 Magnification, translation, and rotation
*.3 The map $w=1 / z$
6.4 Definition of Mobius transformation and basic properties
6.5 The cross -ratios

6.1 Complex Functions as Mappings

Introduction

The complex function $w=f(z)=u(x, y)+i v(x, y)$ may be considered as the planar transformation. We also call $w=f(z)$ is the image of z under f. See Fig 6.1.

Fig 6.1

(a) z-plane
(b) w-plane

Example 1

Consider the function $f(z)=e^{z}$. If $z=a+i t, 0 \leq t \leq \pi$, $w=f(z)=e^{a} e^{i t}$. Thus this is a semicircle with center $w=0$ and radius $r=e^{a}$. If $z=t+i b,-\infty \leq t \leq \infty, w=$ $f(z)=e^{t} e^{i b}$. Thus this is a ray with $\operatorname{Arg} w=b,|w|=e^{t}$. See Fig 20.2.

2发 Fig 6.2

(a)

(b)

Example 2

The complex function $f=1 / z$ has domain $z \neq 0$ and
real part : $u(x, y)=\frac{x}{x^{2}+y^{2}}$
imaginary part: $v(x, y)=\frac{-y}{x^{2}+y^{2}}$
When $a \neq 0, u(x, y)=a$ can be written as

$$
x^{2}-\frac{1}{a} x+y^{2}=0,\left(x-\frac{1}{2 a}\right)^{2}+y^{2}=\left(\frac{1}{2 a}\right)^{2}
$$

Cont'd

Likewise $v(x, y)=b, b \neq 0$ can be written as

$$
x^{2}+\left(y+\frac{1}{2 b}\right)^{2}=\left(\frac{1}{2 b}\right)^{2}
$$

See Fig 6.3.

Fig 6.3

(a)

(b)

Translation and Rotation

The function $f(z)=z+z_{0}$ is interpreted as a translation. The function $g(z)=e^{i \theta_{0}} z$ is interpreted as a rotation. See Fig 6.4.

(a)

(b)

Example 3

Find a complex function that maps $-1 \leq y \leq 1$ onto $2 \leq x$ ≤ 4.

Solution

See Fig 6.5. We find that $-1 \leq y \leq 1$ is first rotated through 90° and shifted 3 units to the right. Thus the mapping is

$$
h(z)=e^{i \pi / 2} z+3=i z+3
$$

Fig 6.5

(a)

(b)

Magnification

* A magnification is the function $f(z)=\alpha z$, where α is a fixed positive real number. Note that $|w|=|\alpha z|=\alpha|z|$. If $g(z)=a z+b$ and $a=r_{0} e^{i \theta_{0}}$ then the vector is rotated through θ_{0}, magnified by a factor r_{0}, and then translated using b.

Example 4

Find a complex function that maps the disk $|z| \leq 1$ onto the disk $|w-(1+\mathrm{i})| \leq 1 / 2$.

Solution

Magnified by $1 / 2$ and translated to $1+i$, we can have the desired function as $w=f(z)=1 / 2 z+(1+i)$.

Power Functions

- A complex function $f(z)=z^{\alpha}$ where α is a fixed positive number, is called a real power function. See Fig 6.6. If $z=r e^{i \theta}$, then $w=f(z)=r^{\alpha} e^{i \alpha \theta}$.

Example 5

Find a complex function that maps the upper half-plane $y \geq 0$ onto the wedge $0 \leq \operatorname{Arg} w \leq \pi / 4$.

Solution

The upper half-plane can also be described by $0 \leq \operatorname{Arg}$
$w \leq \pi$. Thus $f(z)=z^{1 / 4}$ will map the upper half-plane onto the wedge $0 \leq \operatorname{Arg} w \leq \pi / 4$.

Successive Mapping

See Fig 6.7. If $\zeta=f(z)$ maps R onto $R^{\prime \prime}$, and $w=g(\zeta)$ maps $R^{\prime \prime}$ onto $R^{\prime}, w=g(f(z))$ maps R onto R^{\prime}.

Fig 6.7

Example 6

Find a complex function that maps $0 \leq y \leq \pi$ onto the wedge $0 \leq \operatorname{Arg} w \leq \pi / 4$.

Solution

We have shown that $f(z)=e^{z}$ maps $0 \leq y \leq \pi$ onto to $0 \leq$ $\operatorname{Arg} \zeta \leq \pi$ and $g(\zeta)=\zeta^{1 / 4}$ maps $0 \leq \operatorname{Arg} \zeta \leq \pi$ onto $0 \leq$ $\operatorname{Arg} w \leq \pi / 4$. Thus the desired mapping is $w=g(f(z))=$ $g\left(e^{z}\right)=e^{z / 4}$.

Example 7

Find a complex function that maps $\pi / 4 \leq \operatorname{Arg} z \leq 3 \pi / 4$ onto the upper half-plane $v \geq 0$.

Solution

First rotate $\pi / 4 \leq \operatorname{Arg} z \leq 3 \pi / 4$ by $\zeta=f(z)=e^{-i \pi / 4} z$. Then magnify it by $2, w=g(\zeta)=\zeta^{2}$. Thus the desired mapping is $w=g(f(z))=\left(e^{-i \pi / 4} z\right)^{2}=-i z^{2}$.

6.2 Conformal Mappings

* Angle -Preserving Mappings

A complex mapping $w=f(z)$ defined on a domain D is called conformal at $z=z_{0}$ in D when f preserves that angle between two curves in D that intersect at z_{0}. See Fig 6.10.

Fig 6.10

Referring to Fig 6.10, we have

$$
\begin{align*}
& \quad\left|z_{1}^{\prime}-z_{2}^{\prime}\right|^{2}=\left|z_{1}^{\prime}\right|^{2}+\left|z_{2}^{\prime}\right|^{2}-2\left|z_{1}^{\prime}\right|\left|z_{2}^{\prime}\right| \cos \theta \\
& \text { or } \theta=\cos ^{-1}\left(\frac{\left|z_{1}^{\prime}\right|^{2}+\left|z_{2}^{\prime}\right|^{2}-\left|z_{1}^{\prime}-z_{2}^{\prime}\right|^{2}}{2\left|z_{1}^{\prime}\right|\left|z_{2}^{\prime}\right|}\right) \tag{1}
\end{align*}
$$

Likewise

$$
\begin{equation*}
\phi=\cos ^{-1}\left(\frac{\left|w_{1}^{\prime}\right|^{2}+\left|w_{2}^{\prime}\right|^{2}-\left|w_{1}^{\prime}-w_{2}^{\prime}\right|^{2}}{2 w_{1}^{\prime}| | w_{2}^{\prime} \mid}\right) \tag{2}
\end{equation*}
$$

THEOREM 20.1

Conformal Mapping

If $f(z)$ is analytic in the domain D and $f^{\prime}(z) \neq 0$, then f is conformal at $z=z_{0}$.

Proof

If a curve C in D is defined by $z=z(t)$, then $w=f(z(t))$ is the image curve in the w-plane. We have

$$
w=f(z(t)), w^{\prime}=f^{\prime}(z(t)) z^{\prime}(t)
$$

If C_{1} and C_{2} intersect at $z=z_{0}$, then

$$
w_{1}^{\prime}=f^{\prime}\left(z_{0}\right) z_{1}^{\prime}, w_{2}^{\prime}=f^{\prime}\left(z_{0}\right) z_{2}^{\prime}
$$

Proof Cont'd

Since $f^{\prime}\left(z_{0}\right) \neq 0$, we can use (2) to obtain

$$
\begin{aligned}
\phi & =\cos ^{-1}\left(\frac{\left|f^{\prime}\left(z_{0}\right) z_{1}^{\prime 2}+\left|f^{\prime}\left(z_{0}\right) z_{2}^{\prime}\right|^{2}-\left|f^{\prime}\left(z_{0}\right) z_{1}^{\prime}-f^{\prime}\left(z_{0}\right) z_{2}^{\prime}\right|^{2}\right.}{2\left|f^{\prime}\left(z_{0}\right) z_{1}^{\prime}\right|\left|f^{\prime}\left(z_{0}\right) z_{2}^{\prime}\right|}\right) \\
& =\cos ^{-1}\left(\frac{\left|z_{1}^{\prime}\right|^{2}+\left|z_{2}^{\prime}\right|^{2}-\left|z_{1}^{\prime}-z_{2}^{\prime}\right|^{2}}{2\left|z_{1}^{\prime}\right| z_{2}^{\prime} \mid}\right)=\theta
\end{aligned}
$$

Example 1

(a) The analytic function $f(z)=e^{z}$ is conformal at all points, since $f^{\prime}(z)=e^{z}$ is never zero.
(b) The analytic function $g(z)=z^{2}$ is conformal at all points except $z=0$, since $g^{\prime}(z)=2 z \neq 0$, for $z \neq 0$.

Example 2

The vertical strip $-\pi / 2 \leq x \leq \pi / 2$ is called the fundamental region of the trigonometric function $w=\sin z$. A vertical line $x=a$ in the interior of the region can be described by $z=a+i t,-\infty \leq t \leq \infty$. We find that

$$
\sin z=\sin x \cosh y+i \cos x \sinh y
$$

and so $\quad u+i v=\sin (a+i t)$
$=\sin a \cosh t+i \cos a \sinh t$.

Cont'd

Since $\cosh ^{2} t-\sinh ^{2} t=1$, then

$$
\frac{u^{2}}{\sin ^{2} a}-\frac{v^{2}}{\cos ^{2} a}=1
$$

The image of the vertical line $x=a$ is a hyperbola with $\pm \sin a$ as u-intercepts and since $-\pi / 2<a<\pi / 2$, the hyperbola crosses the u-axis between $u=-1$ and $u=1$. Note if $a=-\pi / 2$, then $w=-\cosh t$, the line $x=-\pi / 2$ is mapped onto the interval $(-\infty,-1]$. Likewise, the line x $=\pi / 2$ is mapped onto the interval $[1, \infty)$.

Example 3

The complex function $f(z)=z+1 / z$ is conformal at all points except $z= \pm 1$ and $z=0$. In particular, the function is conformal at all points in the upper halfplane satisfying $|z|>1$. If $z=r e^{i \theta}$, then

$$
\begin{align*}
& w=r e^{i \theta}+(1 / r) e^{-i \theta}, \text { and so } \\
& \qquad u=\left(r+\frac{1}{r}\right) \cos \theta, v=\left(r-\frac{1}{r}\right) \sin \theta \tag{3}
\end{align*}
$$

Note if $r=1$, then $v=0$ and $u=2 \cos \theta$. Thus the semicircle $z=e^{i t}, 0 \leq t \leq \pi$, is mapped onto [$-2,2$] on the u-axis. If $r>1$, the semicircle $z=r e^{i t}, 0 \leq t \leq \pi$, is mapped onto the upper half of the ellipse $u^{2} / a^{2}+v^{2} / b^{2}=$ 1 , where $a=r+1 / r, b=r-1 / r$. See Fig 6.12.

珽 Fig 6.12

(a)

(b)

Cont'd

For a fixed value of θ, the ray $t e^{i \theta}$, for $t \geq 1$, is mapped to the point $u^{2} / \cos ^{2} \theta-v^{2} / \sin ^{2} \theta=4$ in the upper halfplane $v \geq 0$. This follows from (3) since

$$
\frac{u^{2}}{\cos ^{2} \theta}-\frac{v^{2}}{\sin ^{2} \theta}=\left(t+\frac{1}{t}\right)^{2}-\left(t-\frac{1}{t}\right)^{2}=4
$$

Since f is conformal for $|z|>1$ and a ray $\theta=\theta_{0}$ intersects a circle $|z|=r$ at a right angle, the hyperbolas and ellipses in the w-plane are orthogonal.

THEOREM 6.2

Transformation Theorem for Harmonic Functions

If f be an analytic function that maps a domain D onto a domain D^{\prime}. If U is harmonic in D^{\prime}, then the real-valued function $u(x, y)=U(f(z))$ is harmonic in D.

Cont'd

Proof

We will give a special proof for the special case in which D^{\prime} is simply connected. If U has a harmonic conjugate V in D^{\prime}, then $H=U+i V$ is analytic in D^{\prime}, and so the composite function $H(f(z))=U(f(z))+i V(f(z))$ is analytic in D. It follow that the real part $U(f(z))$ is harmonic in D.

Solving Dirichlet Problems Using Conformal Mapping

Solving Dirichlet Problems Using Conformal Mapping

1. Find a conformal mapping $w=f(z)$ that transform s the original region R onto the image R^{\prime}. The region R^{\prime} may be a region for which many explicit solutions to Dirichlet problems are known.
2. Transfer the boundary conditions from the R to the boundary conditions of R^{\prime}. The value of u at a boundary point ξ of R is assigned as the value of U at the corresponding boundary point $f(\xi)$.

Fig 6.13

3. Solve the Dirichlet problem in R^{\prime}. The solution may be apparent from the simplicity of the problem in R^{\prime} or may be found using Fourier or integral transform methods.
4. The solution to the original Dirichlet problems is $u(x, y)=U(f(z))$.

Example 6

The function $U(u, v)=(1 / \pi) \operatorname{Arg} w$ is harmonic in the upper half-plane $v>0$ since it is the imaginary part of the analytic function $g(w)=(1 / \pi) \mathrm{Ln} w$. Use this function to solve the Dirichlet problem in Fig 6.14(a).

Fig 6.14

(a)

(b)

Cont'd

Solution

The analytic function $f(z)=\sin z$ maps the original region to the upper half-plane $v \geq 0$ and maps the boundary segments to the segments shown in Fig 6.14(b). The harmonic function $U(u, v)=(1 / \pi) \operatorname{Arg} w$ satisfies the transferred boundary conditions $U(u, 0)=0$ for $u>0$ and $U(u, 0)=1$ for $u<0$.

$$
u(x, y)=\frac{1}{\pi} \tan ^{-1}\left(\frac{\cos x \sinh y}{\sin x \cosh y}\right)
$$

* A favorite image region R^{\prime} for a simply connected region R is the upper half-plane $y \geq 0$. For any real number a, the complex function

$$
\operatorname{Ln}(z-a)=\log _{e}|z-a|+i \operatorname{Arg}(z-a)
$$

is analytic in R^{\prime} and is a solution to the Dirichlet problem shown in Fig 6.16.

Fig 6.16

It follows that the solution in R^{\prime} to the Dirichlet problem with

$$
U(x, 0)=\left\{\begin{array}{cc}
c_{0}, & a<x<b \\
0, & \text { otherwise }
\end{array}\right.
$$

is the harmonic function

$$
U(x, y)=\left(c_{0} / \pi\right)(\operatorname{Arg}(z-b)-\operatorname{Arg}(z-a))
$$

6.3 Linear Fractional Transformations

* Linear Fractional Transformation If a, b, c, d are complex constants with $a d-b c \neq 0$, then the function

$$
T(z)=\frac{a z+b}{c z+d}
$$

is called a llinear fractional transformation. Since

$$
T^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}}
$$

T is conformal at z provided

$$
\Delta=a d-b c \neq 0 \text { and } z \neq-d / c .
$$

Note when $c \neq 0, T(z)$ has a simple zero at $z_{0}=-d / c$, and so

$$
\lim _{z \rightarrow z_{0}}|T(z)|=\infty,
$$

We will write $T\left(z_{0}\right)=\infty$. In addition, if $c \neq 0$, then

$$
\lim _{|z| \rightarrow \infty} T(z)=\lim _{|z| \rightarrow \infty} \frac{a+b / z}{c+d / z}=\frac{a}{c},
$$

and we write $T(\infty)=a / c$.

Example 1

If $T(z)=(2 z+1) /(z-i)$, compute $T(0), T(\infty), T(i)$.
Solution

$$
\begin{aligned}
& T(0)=1 /(-i)=i, T(\infty)=\lim _{\mid z \rightarrow \infty} T(z)=2, \\
& T(i)=\lim _{z \rightarrow i} T(z) \mid=\infty, T(i)=\infty
\end{aligned}
$$

Circle Preserving Property

If $c=0$, the transformation reduces to a linear function $T(z)=A z+B$. This is a composition of a rotation, magnification, and translation. As such, a linear function will map a circle in the z-plane to a circle in the w-plane. When $c \neq 0$,

$$
\begin{equation*}
w=\frac{a z+b}{c z+d}=\frac{b c-a d}{c} \frac{1}{c z+d}+\frac{c}{a} \tag{1}
\end{equation*}
$$

Letting $A=\frac{b c-a d}{c}, B=\frac{a}{c}, T(z)$ can be written as
$z_{1}=c z+d, z_{2}=\frac{1}{z_{1}}, w=A z_{2}+B$
Note that if $\left|z-z_{1}\right|=r, w=\frac{1}{z}$, then

$$
\begin{equation*}
\left|\frac{1}{w}-\frac{1}{w_{1}}\right|=\frac{\left|w-w_{1}\right|}{|w| w_{1} \mid}=r \text { or }\left|w-w_{1}\right|=\left(r\left|w_{1}\right|\right)|w-0| \tag{3}
\end{equation*}
$$

It is easy to show that all points w that satisfy

$$
\begin{equation*}
\left|w-w_{1}\right|=\lambda\left|w-w_{2}\right| \tag{4}
\end{equation*}
$$

is a line when $\lambda=1$ and is a circle when $\lambda>0$ and λ $\neq 1$. It follows from (3) that the image of the circle $\left|z-z_{1}\right|=r$ under the inversion $w=1 / z$ is a circle except when $r=1 /\left|w_{1}\right|=\left|z_{1}\right|$.

Circle-Preserving Property

A linear fractional transformation maps a circle in the z-plane to either a line or a circle in the w-plane. The image is a line if and only if the original circle passes through a pole of the linear fractional transformation.

Example 2

Find the images of the circles $|z|=1$ and $|z|=2$ under $T(z)=(z+2) /(z-1)$. What are the images of the interiors of these circles?

Solution

The circle $|z|=1$ passes through the pole $z_{0}=1$ of the linear transformation and so the image is a line. Since $T(-1)=-1 / 2$ and $T(i)=-(1 / 2)-(3 / 2) i$, we conclude that the line is $u=-1 / 2$.

Cont'd

The image of the interior $|z|=1$ is either the half-plane $u<-1 / 2$ or the half-plane $u>-1 / 2$. Using $z=0$ as a test point, $T(0)=-2$ and so the image is the half-plane $u<$ $-1 / 2$.
The circle $|z|=2$ does not pass through the pole so the image is a circle. For $|z|=2$,

$$
|\bar{z}|=2, \overline{T(z)}=\frac{\overline{z+2}}{z-1}=\frac{\bar{z}+2}{\bar{z}-1}=T(\bar{z})
$$

Example 2 (2)

Therefore $\overline{T(z)}$ is a point on the image circle and the image circle is symmetric w.r.t. the u-axis. Since $T(-2)=0$ and $T(2)=4$ the center of the circle is w $=2$ and the image is the circle $|w-2|=2$. The interior of $|z|=2$ is either the interior or the exterior of the image $|w-2|=2$. Since $T(0)=-2$, we conclude that the image is $|w-2|>2$. See Fig 6.33.

Fig 6.33

Matrix Methods

We associate the matrix
$\mathbf{A}=\left(\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right)$ with $T(z)=\frac{a z+b}{c z+d}$
If $T_{1}(z)=\frac{a_{1} z+b_{1}}{c_{1} z+d_{1}}, \quad T_{2}(z)=\frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}$,
then $T_{2}\left(T_{1}(z)\right)$ is given by $T(z)=\frac{a z+b}{c z+d}$
where
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$
If $w=T(z)=\frac{a z+b}{c z+d}$, then $z=\frac{d w-b}{-c w+a}$
that is, $T^{-1}(w)=\frac{d w-b}{-c w+a}$, and the associated
matrix is $\quad \operatorname{adj} \mathbf{A}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Example 3

If $T(z)=\frac{2 z-1}{z+2}$ and $S(z)=\frac{z-i}{i z-1}$, find $S^{-1}(T(z))$.
Solution

$$
\begin{aligned}
& \text { Let } S^{-1}(T(z))=\frac{a z+b}{c z+d} \text {, where } \\
& \begin{aligned}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\operatorname{adj}\left(\begin{array}{ll}
1 & -i \\
i & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & i \\
-i & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-2+i & -1+2 i \\
1-2 i & 2+i
\end{array}\right) \text {, then } \\
S^{-1}(T(z)) & =\frac{(-2+i) z+1+2 i}{(1-2 i) z+2+i}
\end{aligned}
\end{aligned}
$$

Triples to Triples

The linear fractional transformation

$$
T(z)=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}}
$$

has a zero at $z=z_{1}$, a pole at $z=z_{3}$ and $T\left(z_{2}\right)=1$. Thus $T(z)$ maps three distinct complex numbers z_{1}, z_{2}, z_{3} to 0,1 , and ∞, respectively. The term

The term $\frac{z-z_{1}}{z_{2}-z_{3}}$ is called the cross - ratio of

$$
z-z_{3} z_{2}-z_{1}
$$

z, z_{1}, z_{2}, z_{3}.

Likewise, the linear fractional transformation

$$
S(w)=\frac{w-w_{1}}{w-w_{3}} \frac{w_{2}-w_{3}}{w_{2}-w_{1}}
$$

sends w_{1}, w_{2}, w_{3} to 0,1 , and ∞, and so S^{-1} maps 0,1 , and ∞ to w_{1}, w_{2}, w_{3}. It follows that $w=S^{-1}(T(z))$ maps the triple z_{1}, z_{2}, z_{3} to the triples w_{1}, w_{2}, w_{3}. From $w=$ $S^{-1}(T(z)$), we have $S(w)=T(z)$ and

$$
\begin{equation*}
\frac{w-w_{1}}{w-w_{3}} \frac{w_{2}-w_{3}}{w_{2}-w_{1}}=\frac{z-z_{1}}{z-z_{3}} \frac{z_{2}-z_{3}}{z_{2}-z_{1}} \tag{7}
\end{equation*}
$$

Example 4

Construct a linear fractional transformation that maps the points $1, i,-1$ on the circle $|z|=1$ to the points $-1,0$ and 1 on the real x-axis.
Solution
From (7) we get

$$
\frac{w+1}{w-1} \frac{0-1}{0-(-1)}=\frac{z-1}{z+1} \frac{i+1}{i-1} \text { or }-\frac{w+1}{w-1}=-i \frac{z-1}{z+1}
$$

Solving for w, we get $w=-i(z-i) /(z+i)$.

Example 5

Construct a linear fractional transformation that maps the points $\infty, 0,1$ on the real x-axis to the points $1, i,-1$ on the circle $|w|=1$.
Solution
Since $z_{1}=\infty$, the terms $z-z_{1}$ and $z_{2}-z_{1}$ in the crossproduct are replaced by 1 . Then

$$
\frac{w-1 i+1}{w+1} \frac{i-1}{i-1} \frac{1}{z-1} \frac{0-1}{1} \text { or } S(w)=-i \frac{w+1}{w-1}=\frac{-1}{z-1}=T(z)
$$

Cont'd

If we use the matrix method to find $w=S^{-1}(T(z))$,
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\operatorname{adj}\left(\begin{array}{cc}-i & i \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)=\left(\begin{array}{cc}-i & -1+i \\ -i & 1+i\end{array}\right)$
and so $w=\frac{-i z-1+i}{-i z+1+i}=\frac{z-1-i}{z-1+i}$.

Example 6

Solve the Dirichlet problem in Fig 6.35(a) using conformal mapping by constructing a linear fractional transformation that maps the given region into the upper half-plane.

Fig 6.35(a)

(a)

(b)

Cont'd

Solution

The boundary circles $|z|=1$ and $|z-1 / 2|=1 / 2$ each pass through $z=1$. We can map each boundary circle to a line by selecting a linear fractional transformation that has a pole at $z=1$. If we require $T(i)=0$ and $T(-1)=1$, then

$$
T(z)=\frac{z-i-1-1}{z-1-1-i}=(1-i) \frac{z-i}{z-1}
$$

Since $T(0)=1+i, T\left(\frac{1}{2}+\frac{1}{2} i\right)=-1+i, T$ maps the interior of $|z|=1$ onto the upper half-plane and maps $|z-1 / 2|=1 / 2$ onto the line $v=1$. See Fig 6.35(b).

Example 6 (3)

The harmonic function $U(u, v)=v$ is the solution to the simplified Dirichlet problem in the w-plane, and so $u(x$, $y)=U(T(z))$ is the solution to the original Dirichlet problem in the z-plane.

Since the imaginary part of $T(z)=(1-i) \frac{z-i}{z-1}$ is
$\frac{1-x^{2}-y^{2}}{(x-1)^{2}+y^{2}}$, the solution is $u(x, y)=\frac{1-x^{2}-y^{2}}{(x-1)^{2}+y^{2}}$

Cont'd

The level curves $u(x, y)=c$ can be written as

$$
\left(x-\frac{c}{1+c}\right)^{2}+y^{2}=\left(\frac{1}{1+c}\right)^{2}
$$

and are therefore circles that pass through $z=1$. See Fig 6.36 .

酸 Fig 6.36

