

The Mobius transformation

By: Habtamu G (Assistant Professor) Email: habte200@gmail.com

6.1 Examples of mapping by functions

✤ 6.2 Magnification, translation, and rotation

36.3 The map w=1/z

6.4 Definition of Mobius transformation and basic properties

✤ 6.5 The cross –ratios

Introduction

The complex function w = f(z) = u(x, y) + iv(x, y)may be considered as the planar transformation. We also call w = f(z) is the image of *z* under *f*. See Fig 6.1.

Consider the function $f(z) = e^z$. If z = a + it, $0 \le t \le \pi$, $w = f(z) = e^a e^{it}$. Thus this is a semicircle with center w = 0 and radius $r = e^a$. If z = t + ib, $-\infty \le t \le \infty$, $w = f(z) = e^t e^{ib}$. Thus this is a ray with Arg w = b, $|w| = e^t$. See Fig 20.2.

* The complex function f = 1/z has domain $z \neq 0$ and

real part :
$$u(x, y) = \frac{x}{x^2 + y^2}$$

imaginary part :
$$v(x, y) = \frac{-y}{x^2 + y^2}$$

When $a \neq 0$, u(x, y) = a can be written as

$$x^{2} - \frac{1}{a}x + y^{2} = 0, \ (x - \frac{1}{2a})^{2} + y^{2} = (\frac{1}{2a})^{2}$$

♦ Likewise $v(x, y) = b, b \neq 0$ can be written as

$$x^{2} + (y + \frac{1}{2b})^{2} = (\frac{1}{2b})^{2}$$

See Fig 6.3.

The function $f(z) = z + z_0$ is interpreted as a translation. The function $g(z) = e^{i\theta_0}z$ is interpreted as a rotation. See Fig 6.4.

Ch20_10

Find a complex function that maps $-1 \le y \le 1$ onto $2 \le x \le 4$.

Solution

See Fig 6.5. We find that $-1 \le y \le 1$ is first rotated through 90° and shifted 3 units to the right. Thus the mapping is

$$h(z) = e^{i\pi/2}z + 3 = iz + 3$$

Magnification

A magnification is the function $f(z) = \alpha z$, where α is a fixed positive real number. Note that $|w| = |\alpha z| = \alpha |z|$. If g(z) = az + b and $a = r_0 e^{i\theta_0}$ then the vector is rotated through θ_0 , magnified by a factor r_0 , and then translated using *b*.

Find a complex function that maps the disk $|z| \le 1$ onto the disk $|w - (1 + i)| \le \frac{1}{2}$.

Solution

Magnified by $\frac{1}{2}$ and translated to 1 + i, we can have the desired function as $w = f(z) = \frac{1}{2}z + (1 + i)$.

A complex function $f(z) = z^{\alpha}$ where α is a fixed positive number, is called a real power function. See Fig 6.6. If $z = re^{i\theta}$, then $w = f(z) = r^{\alpha}e^{i\alpha\theta}$.

Find a complex function that maps the upper half-plane $y \ge 0$ onto the wedge $0 \le \text{Arg } w \le \pi/4$.

Solution

The upper half-plane can also be described by $0 \le \text{Arg}$ $w \le \pi$. Thus $f(z) = z^{1/4}$ will map the upper half-plane onto the wedge $0 \le \text{Arg } w \le \pi/4$.

See Fig 6.7. If $\zeta = f(z)$ maps R onto R'', and $w = g(\zeta)$ maps R'' onto R', w = g(f(z)) maps R onto R'.

Find a complex function that maps $0 \le y \le \pi$ onto the wedge $0 \le \text{Arg } w \le \pi/4$.

Solution

We have shown that $f(z) = e^z \text{ maps } 0 \le y \le \pi \text{ onto to } 0 \le Arg \ \zeta \le \pi \text{ and } g(\zeta) = \zeta^{1/4} \text{ maps } 0 \le Arg \ \zeta \le \pi \text{ onto } 0 \le Arg \ w \le \pi/4$. Thus the desired mapping is $w = g(f(z)) = g(e^z) = e^{z/4}$.

Find a complex function that maps $\pi/4 \le \text{Arg } z \le 3\pi/4$ onto the upper half-plane $v \ge 0$.

Solution

First rotate $\pi/4 \leq \text{Arg } z \leq 3\pi/4$ by $\zeta = f(z) = e^{-i\pi/4}z$. Then magnify it by 2, $w = g(\zeta) = \zeta^2$. Thus the desired mapping is $w = g(f(z)) = (e^{-i\pi/4}z)^2 = -iz^2$.

Angle – **Preserving Mappings**

A complex mapping w = f(z) defined on a domain *D* is called conformal at $z = z_0$ in *D* when *f* preserves that angle between two curves in *D* that intersect at z_0 . See Fig 6.10.

* Referring to Fig 6.10, we have $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos\theta$ or $\theta = \cos^{-1}\left(\frac{|z_1|^2 + |z_2|^2 - |z_1 - z_2|^2}{2|z_1||z_2|}\right)$

Likewise

$$\phi = \cos^{-1} \left(\frac{\left| w_{1}^{'} \right|^{2} + \left| w_{2}^{'} \right|^{2} - \left| w_{1}^{'} - w_{2}^{'} \right|^{2}}{2 \left| w_{1}^{'} \right| \left| w_{2}^{'} \right|} \right)$$

(1)

(2)

THEOREM 20.1

()

Conformal Mapping

If f(z) is analytic in the domain D and $f'(z) \neq 0$, then f is conformal at $z = z_0$.

Proof

If a curve *C* in *D* is defined by z = z(t), then w = f(z(t)) is the image curve in the *w*-plane. We have w = f(z(t)), w' = f'(z(t))z'(t)If C_1 and C_2 intersect at $z = z_0$, then

$$w_1 = f'(z_0)z_1, w_2 = f'(z_0)z_2$$

Since $f'(z_0) \neq 0$, we can use (2) to obtain

$$\phi = \cos^{-1} \left(\frac{\left| f'(z_0) z_1' \right|^2 + \left| f'(z_0) z_2' \right|^2 - \left| f'(z_0) z_1' - f'(z_0) z_2' \right|^2}{2 \left| f'(z_0) z_1' \right| \left| f'(z_0) z_2' \right|} \right)$$
$$= \cos^{-1} \left(\frac{\left| z_1' \right|^2 + \left| z_2' \right|^2 - \left| z_1' - z_2' \right|^2}{2 \left| z_1' \right| \left| z_2' \right|} \right) = \theta$$

- (a) The analytic function $f(z) = e^z$ is conformal at all points, since $f'(z) = e^z$ is never zero.
- (b) The analytic function $g(z) = z^2$ is conformal at all points except z = 0, since $g'(z) = 2z \neq 0$, for $z \neq 0$.

- ★ The vertical strip $-\pi/2 \le x \le \pi/2$ is called the fundamental region of the trigonometric function $w = \sin z$. A vertical line x = a in the interior of the region can be described by z = a + it, $-\infty \le t \le \infty$. We find that
 - and so sin z = sin x cosh y + i cos x sinh yu + iv = sin (a + it)= sin a cosh t + i cos a sinh t.

Since
$$\cosh^2 t - \sinh^2 t = 1$$
, then

$$\frac{u^2}{\sin^2 a} - \frac{v^2}{\cos^2 a} = 1$$

The image of the vertical line x = a is a hyperbola with $\pm \sin a$ as *u*-intercepts and since $-\pi/2 < a < \pi/2$, the hyperbola crosses the *u*-axis between u = -1 and u = 1. Note if $a = -\pi/2$, then $w = -\cosh t$, the line $x = -\pi/2$ is mapped onto the interval $(-\infty, -1]$. Likewise, the line $x = \pi/2$ is mapped onto the interval $[1, \infty)$.

The complex function f(z) = z + 1/z is conformal at all points except $z = \pm 1$ and z = 0. In particular, the function is conformal at all points in the upper halfplane satisfying |z| > 1. If $z = re^{i\theta}$, then $w = re^{i\theta} + (1/r)e^{-i\theta}$, and so

$$u = (r + \frac{1}{r})\cos\theta, \ v = (r - \frac{1}{r})\sin\theta$$
(3)

Note if r = 1, then v = 0 and $u = 2 \cos \theta$. Thus the semicircle $z = e^{it}$, $0 \le t \le \pi$, is mapped onto [-2, 2] on the *u*-axis. If r > 1, the semicircle $z = re^{it}$, $0 \le t \le \pi$, is mapped onto the upper half of the ellipse $u^2/a^2 + v^2/b^2 = 1$, where a = r + 1/r, b = r - 1/r. See Fig 6.12.

For a fixed value of θ , the ray $te^{i\theta}$, for $t \ge 1$, is mapped to the point $u^2/\cos^2\theta - v^2/\sin^2\theta = 4$ in the upper halfplane $v \ge 0$. This follows from (3) since

$$\frac{u^2}{\cos^2\theta} - \frac{v^2}{\sin^2\theta} = \left(t + \frac{1}{t}\right)^2 - \left(t - \frac{1}{t}\right)^2 = 4$$

Since *f* is conformal for |z| > 1 and a ray $\theta = \theta_0$ intersects a circle |z| = r at a right angle, the hyperbolas and ellipses in the *w*-plane are orthogonal.

THEOREM 6.2

Transformation Theorem for Harmonic Functions

If *f* be an analytic function that maps a domain *D* onto a domain *D'*. If *U* is harmonic in *D'*, then the real-valued function u(x, y) = U(f(z)) is harmonic in *D*.

Proof

We will give a special proof for the special case in which D' is simply connected. If U has a harmonic conjugate V in D', then H = U + iV is analytic in D', and so the composite function H(f(z)) = U(f(z)) + iV(f(z)) is analytic in D. It follow that the real part U(f(z)) is harmonic in D.

Solving Dirichlet Problems Using Conformal Mapping

- 1. Find a conformal mapping w = f(z) that transform s the original region *R* onto the image *R'*. The region *R'* may be a region for which many explicit solutions to Dirichlet problems are known.
- 2. Transfer the boundary conditions from the *R* to the boundary conditions of *R'*. The value of *u* at a boundary point ξ of *R* is assigned as the value of *U* at the corresponding boundary point $f(\xi)$.

- 3. Solve the Dirichlet problem in *R'*. The solution may be apparent from the simplicity of the problem in *R'* or may be found using Fourier or integral transform methods.
- 4. The solution to the original Dirichlet problems is u(x, y) = U(f(z)).

The function $U(u, v) = (1/\pi)$ Arg *w* is harmonic in the upper half-plane v > 0 since it is the imaginary part of the analytic function $g(w) = (1/\pi)$ Ln *w*. Use this function to solve the Dirichlet problem in Fig 6.14(a).

Solution

The analytic function $f(z) = \sin z$ maps the original region to the upper half-plane $v \ge 0$ and maps the boundary segments to the segments shown in Fig 6.14(b). The harmonic function $U(u, v) = (1/\pi)$ Arg w satisfies the transferred boundary conditions U(u, 0) = 0for u > 0 and U(u, 0) = 1 for u < 0.

$$u(x, y) = \frac{1}{\pi} \tan^{-1} \left(\frac{\cos x \sinh y}{\sin x \cosh y} \right)$$

A favorite image region R' for a simply connected region R is the upper half-plane y ≥ 0. For any real number a, the complex function
 Ln(z - a) = log_e/z - a/ + i Arg (z - a)

 is analytic in R' and is a solution to the Dirichlet

problem shown in Fig 6.16.

* It follows that the solution in R' to the Dirichlet problem with

$$U(x,0) = \begin{cases} c_0, & a < x < b \\ 0, & otherwise \end{cases}$$

is the harmonic function $U(x, y) = (c_0/\pi)(\operatorname{Arg}(z - b) - \operatorname{Arg}(z - a))$

***** Linear Fractional Transformation

If *a*, *b*, *c*, *d* are complex constants with $ad - bc \neq 0$, then the function

$$T(z) = \frac{az+b}{cz+d}$$

is called a llinear fractional transformation. Since

$$T'(z) = \frac{ad - bc}{\left(cz + d\right)^2}$$

★ *T* is conformal at *z* provided $\Delta = ad - bc \neq 0$ and $z \neq -d/c$. Note when $c \neq 0$, *T*(*z*) has a simple zero at $z_0 = -d/c$, and so

$$\lim_{z\to z_0}|T(z)|=\infty,$$

We will write $T(z_0) = \infty$. In addition, if $c \neq 0$, then

$$\lim_{|z|\to\infty} T(z) = \lim_{|z|\to\infty} \frac{a+b/z}{c+d/z} = \frac{a}{c},$$

and we write $T(\infty) = a/c$.

If T(z) = (2z + 1)/(z - i), compute T(0), $T(\infty)$, T(i). Solution

$$T(0) = 1/(-i) = i, \ T(\infty) = \lim_{|z| \to \infty} T(z) = 2,$$
$$T(i) = \lim_{z \to i} |T(z)| = \infty, \ T(i) = \infty$$

If *c* = 0, the transformation reduces to a linear function T(z) = Az + B. This is a composition of a rotation, magnification, and translation. As such, a linear function will map a circle in the *z*-plane to a circle in the *w*-plane. When *c* ≠ 0,

$$w = \frac{az+b}{cz+d} = \frac{bc-ad}{c} \frac{1}{cz+d} + \frac{c}{a}$$
(1)

Letting
$$A = \frac{bc - ad}{c}, B = \frac{a}{c}, T(z)$$
 can be written as

$$z_1 = cz + d, z_2 = \frac{1}{z_1}, w = Az_2 + B$$
(2)

Note that if
$$|z - z_1| = r, w = \frac{1}{z}$$
, then

$$\left|\frac{1}{w} - \frac{1}{w_1}\right| = \frac{|w - w_1|}{|w||w_1|} = r \text{ or } |w - w_1| = (r|w_1|)|w - 0| \quad (3)$$

 \therefore It is easy to show that all points *w* that satisfy

$$|w - w_1| = \lambda |w - w_2| \tag{4}$$

is a line when $\lambda = 1$ and is a circle when $\lambda > 0$ and $\lambda \neq 1$. It follows from (3) that the image of the circle $|z - z_1| = r$ under the inversion w = 1/z is a circle except when $r = 1/|w_1| = |z_1|$.

THEOREM 20.3

Circle-Preserving Property

A linear fractional transformation maps a circle in the *z*-plane to either a line or a circle in the *w*-plane. The image is a line if and only if the original circle passes through a pole of the linear fractional transformation.

Find the images of the circles |z| = 1 and |z| = 2 under T(z) = (z + 2)/(z - 1). What are the images of the interiors of these circles?

Solution

The circle |z| = 1 passes through the pole $z_0 = 1$ of the linear transformation and so the image is a line. Since $T(-1) = -\frac{1}{2}$ and T(i) = -(1/2) - (3/2)i, we conclude that the line is $u = -\frac{1}{2}$.

The image of the interior |z| = 1 is either the half-plane $u < -\frac{1}{2}$ or the half-plane $u > -\frac{1}{2}$. Using z = 0 as a test point, T(0) = -2 and so the image is the half-plane $u < -\frac{1}{2}$.

The circle |z| = 2 does not pass through the pole so the image is a circle. For |z| = 2,

$$|\overline{z}| = 2, \overline{T(z)} = \frac{z+2}{z-1} = \frac{\overline{z}+2}{\overline{z}-1} = T(\overline{z})$$

Therefore T(z) is a point on the image circle and the image circle is symmetric w.r.*t*. the *u* - axis. Since T(-2) = 0 and T(2) = 4 the center of the circle is *w* = 2 and the image is the circle |w - 2| = 2. The interior of |z| = 2 is either the interior or the exterior of the image |w - 2| = 2. Since T(0) = -2, we conclude that the image is |w - 2| > 2. See Fig 6.33.

♦ We associate the matrix

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ with } T(z) = \frac{az+b}{cz+d}$$

If $T_1(z) = \frac{a_1z+b_1}{c_1z+d_1}, \quad T_2(z) = \frac{a_2z+b_2}{c_2z+d_2},$
then $T_2(T_1(z))$ is given by $T(z) = \frac{az+b}{cz+d}$

where

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$
(5)
If $w = T(z) = \frac{az+b}{cz+d}$, then $z = \frac{dw-b}{-cw+a}$
that is, $T^{-1}(w) = \frac{dw-b}{-cw+a}$, and the associated
matrix is $adj \mathbf{A} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ (6)

If
$$T(z) = \frac{2z-1}{z+2}$$
 and $S(z) = \frac{z-i}{iz-1}$, find $S^{-1}(T(z))$.

Solution

Let $S^{-1}(T(z)) = \frac{az+b}{cz+d}$, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \operatorname{adj} \begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$ $=\begin{pmatrix} -1 & i \\ -i & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} -2+i & -1+2i \\ 1-2i & 2+i \end{pmatrix}$, then $S^{-1}(T(z)) = \frac{(-2+i)z + 1 + 2i}{(1-2i)z + 2 + i}$

The linear fractional transformation

$$T(z) = \frac{z - z_1}{z - z_3} \frac{z_2 - z_3}{z_2 - z_1}$$

has a zero at $z = z_1$, a pole at $z = z_3$ and $T(z_2) = 1$. Thus T(z) maps three distinct complex numbers z_1 , z_2 , z_3 to 0, 1, and ∞ , respectively. The term

The term $\frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1}$ is called the cross - ratio of

 $z, z_1, z_2, z_3.$

Likewise, the linear fractional transformation

$$S(w) = \frac{w - w_1}{w - w_3} \frac{w_2 - w_3}{w_2 - w_1}$$

sends w_1, w_2, w_3 to 0, 1, and ∞ , and so S^{-1} maps 0, 1,
and ∞ to w_1, w_2, w_3 . It follows that $w = S^{-1}(T(z))$ maps
the triple z_1, z_2, z_3 to the triples w_1, w_2, w_3 . From $w = S^{-1}(T(z))$, we have $S(w) = T(z)$ and

$$\frac{w - w_1}{w - w_3} \frac{w_2 - w_3}{w_2 - w_1} = \frac{z - z_1}{z - z_3} \frac{z_2 - z_3}{z_2 - z_1}$$
(7)

Construct a linear fractional transformation that maps the points 1, *i*, -1 on the circle |z| = 1 to the points -1, 0 and 1 on the real *x*-axis.

Solution

From (7) we get

$$\frac{w+1}{w-1}\frac{0-1}{0-(-1)} = \frac{z-1}{z+1}\frac{i+1}{i-1} \quad \text{or} \quad -\frac{w+1}{w-1} = -i\frac{z-1}{z+1}$$

Solving for w, we get w = -i(z - i)/(z + i).

Construct a linear fractional transformation that maps the points ∞ , 0, 1 on the real *x*-axis to the points 1, *i*, -1 on the circle |w| = 1.

Solution

Since $z_1 = \infty$, the terms $z - z_1$ and $z_2 - z_1$ in the crossproduct are replaced by 1. Then

 $\frac{w-1}{w+1}\frac{i+1}{i-1} = \frac{1}{z-1}\frac{0-1}{1} \text{ or } S(w) = -i\frac{w+1}{w-1} = \frac{-1}{z-1} = T(z)$

If we use the matrix method to find $w = S^{-1}(T(z))$,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \operatorname{adj} \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -i & -1+i \\ -i & 1+i \end{pmatrix}$$

and so $w = \frac{-iz-1+i}{-iz+1+i} = \frac{z-1-i}{z-1+i}.$

Solve the Dirichlet problem in Fig 6.35(a) using conformal mapping by constructing a linear fractional transformation that maps the given region into the upper half-plane.

Solution

The boundary circles |z| = 1 and $|z - \frac{1}{2}| = \frac{1}{2}$ each pass through z = 1. We can map each boundary circle to a line by selecting a linear fractional transformation that has a pole at z = 1. If we require T(i) = 0 and T(-1) = 1, then

$$T(z) = \frac{z - i - 1 - 1}{z - 1 - 1 - i} = (1 - i)\frac{z - i}{z - 1}$$

Since T(0) = 1 + i, $T(\frac{1}{2} + \frac{1}{2}i) = -1 + i$, *T* maps the interior of |z| = 1 onto the upper half-plane and maps $|z - \frac{1}{2}| = \frac{1}{2}$ onto the line v = 1. See Fig 6.35(b).

The harmonic function U(u, v) = v is the solution to the simplified Dirichlet problem in the *w*-plane, and so u(x, y) = U(T(z)) is the solution to the original Dirichlet problem in the *z*-plane.

Since the imaginary part of
$$T(z) = (1-i)\frac{z-i}{z-1}$$
 is
 $\frac{1-x^2-y^2}{(x-1)^2+y^2}$, the solution is $u(x,y) = \frac{1-x^2-y^2}{(x-1)^2+y^2}$

The level curves u(x, y) = c can be written as

$$\left(x - \frac{c}{1+c}\right)^2 + y^2 = \left(\frac{1}{1+c}\right)^2$$

and are therefore circles that pass through z = 1. See Fig 6.36.

