University							
College /Faculty							
Department of Mathematics							
Program	Under gra	Under graduate Mathematics					
Module Name	Combina	Combinatorics and Graph Theory					
Module No.	03	03					
Module code	Math-M2	Math-M2031					
Course Title	Introduct	Introduction to Combinatorics and Graph Theory					
Course Code	Math 203	Math 2031					
Course EtCTS	5	5					
Module coordinator							
Instructor's Information	Office No Phone No E-mail:	Name					
workload (in hours)	Lecture	Tutorial	Lab Work	Assessment	Home study	Total study	
	48	32	0	8	47	135	
Lecture	Day	Day		Hour		Room	
Tutorial	Day		Но	Hour		Room	
Target Group	Second ye	Second year mathematics students					
Semester	II	II					
Pre-requisites	None						
Status of the Course	se Compulsory						
C							

Course description

This course deals with review of sets and functions, fundamental principles of Counting, generating functions and recurrence relations, graph theory and its application.

Course Objectives

On completion of the course, successful students will be able to:

- know basic concepts of discrete mathematics,
- understand the principles of counting, recurrence relations and generating functions,
- understand the basic concepts of graph and their types,
- know the basic algorithms on graphs,
- use the methods and principles of Combinatorics,
- apply Combinatorics in counting problems,
- solve simple counting problems,
- Construct graphs with given degree patterns,
- apply graph theory to solve network oriented problems

Time	Contents	Methodology	Teacher's Activity	Student's Activity		
Week 1	Chapter 1: Elementary counting principles 1.1 Basic counting principle	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Week 2	1.2 Permutations and combinations 1.3 The inclusion-exclusion principles	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Week 3	1.4 The pigeonhole principle 1.5 The binomial theorem	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Test I						
Week 4	Chapter 2: Elementary probability theory 2.1 Sample space and events	Lecture Method, Discussion and Presentation, questioning and answering	Giving lecture Grouping the students for discussion and presentation Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Week 5	2.2 Probability of an event 2.3 Conditional probability	Lecture Method, Discussion and Presentation, questioning and answering	Giving lecture Grouping the students for discussion and presentation Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Week 6	2.4 Independent events 2.5 Random variables and expectation	Lecture Method, Discussion and Presentation, questioning and answering	Giving lecture Grouping the students for discussion and presentation Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas		
Assignment						
Week 7	Chapter 3: Recurrence relations 3.1 Definition and examples 3.2 Linear recurrence relations with constant	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and	Taking Lecture notes, Discussion with group members, answering and asking an clear		

Week 8	3.3 Solutions of linear recurrence relations 3.4 Solutions of homogeneous and nonhomogeneous recurrence relations	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	directing Students Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas			
		Take home exan	1				
Week 9	Chapter 4: Elements of graph theory 4.1 Definition and examples of a graph 4.2 Matrix representation of a graph 4.3 Isomorphic graphs	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussio n with group members, answering and asking an clear ideas			
Week 10	4.4 Path and connectivity of a graph 4.5 Complete, regular and bipartite graphs 4.6 Eulerian and Hamiltonian graphs	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussio n with group members, answering and asking an clear ideas			
Week 11	4.7 Trees and forests (Rooted and Binary trees) 4.8 Planar graphs 4.9 Graph coloring	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussio n with group members, answering and asking an clear ideas			
Test 2							
Week 12	Chapter 5: Directed graphs 5.1 Definition and examples of digraphs 5.2 Matrix representation of digraphs	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering	Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas			

Week 13	5.3 Paths and connectivity	Lecture Method, Discussion, problem solving method, Reading assignment, questioning and answering		Giving lecture Grouping the students for discussion Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas
Week 14	Chapter 6: Weighted graphs and their applications 6.1 Weighted Graphs 6.2 Minimal Spanning trees	Lecture Method, Discussion and Presentation, problem solving method, Reading assignment, questioning and answering		Giving lecture, Grouping the students for discussion and Presentation, Asking and directing 'Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas
	Spanning trees	and answering		Students	ideas
Week 15	6.3 Shortest path problem 6.4 Critical Path Problem	Lecture Method, Discussion and Presentation, problem solving method, Reading assignment, questioning and answering		Giving lecture, Grouping the students for discussion and Presentation, Asking and directing Students	Taking Lecture notes, Discussion with group members, answering and asking an clear ideas
Week 16	Revision and Presentation				
		I	Final- Exam: 50%	/ o	
	ment/Evaluation & Grading Sys	tem	1. Quiz (1&2) 10% 2. Assignment (1) 10% 3. Test (1&2) 20% 5. Presentation 10% 6. Take home exam 10% 7. Final Exam 50% Total 100%		
Course Policy A student has to: At attend at least 85% of the classes. Take all continuous assessments. Take final examination. Respect all the rules and regulations of the University				f the University	

Text Books

- Steven Roman, An Introduction to Discrete Mathematics
- > Mattson, H.F., Discrete Mathematics with Application

References:

- N. CH SN lyengar et al, Discrete mathematics, Vikas publishing house PVT LTD, 2004
- > S. Roman, An introduction to discrete mathematics, CBS College publishing, 1986
- > B. Harris, Graph Theory and its applications, Academic press, 1970
- > Iyengar, S. N, Elements of Discrete Mathematics
- Lipschutz, S., Schaum's outline series, Discrete Mathematics
- Oystein Ore, Theory of graphs, American mathematical Society, 1974

- -