| University | | | | | | | | |---------------------------|----------------------------------|--|-------------|------------|---------------|-------------|--| | College /Faculty | | | | | | | | | Department of Mathematics | | | | | | | | | Program | Under gra | Under graduate Mathematics | | | | | | | Module Name | Combina | Combinatorics and Graph Theory | | | | | | | Module No. | 03 | 03 | | | | | | | Module code | Math-M2 | Math-M2031 | | | | | | | Course Title | Introduct | Introduction to Combinatorics and Graph Theory | | | | | | | Course Code | Math 203 | Math 2031 | | | | | | | Course EtCTS | 5 | 5 | | | | | | | Module coordinator | | | | | | | | | Instructor's Information | Office No
Phone No
E-mail: | Name | | | | | | | workload
(in hours) | Lecture | Tutorial | Lab
Work | Assessment | Home
study | Total study | | | | 48 | 32 | 0 | 8 | 47 | 135 | | | Lecture | Day | Day | | Hour | | Room | | | Tutorial | Day | | Но | Hour | | Room | | | Target Group | Second ye | Second year mathematics students | | | | | | | Semester | II | II | | | | | | | Pre-requisites | None | | | | | | | | Status of the Course | se Compulsory | | | | | | | | C | | | | | | | | ## Course description This course deals with review of sets and functions, fundamental principles of Counting, generating functions and recurrence relations, graph theory and its application. ## Course Objectives On completion of the course, successful students will be able to: - know basic concepts of discrete mathematics, - understand the principles of counting, recurrence relations and generating functions, - understand the basic concepts of graph and their types, - know the basic algorithms on graphs, - use the methods and principles of Combinatorics, - apply Combinatorics in counting problems, - solve simple counting problems, - Construct graphs with given degree patterns, - apply graph theory to solve network oriented problems | Time | Contents | Methodology | Teacher's Activity | Student's Activity | | | |------------|---|---|--|---|--|--| | Week
1 | Chapter 1: Elementary
counting principles
1.1 Basic counting principle | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture Grouping the students for discussion Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Week
2 | 1.2 Permutations and
combinations
1.3 The inclusion-exclusion
principles | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture Grouping the students for discussion Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Week
3 | 1.4 The pigeonhole principle
1.5 The binomial theorem | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture
Grouping the students
for discussion
Asking and directing
Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Test I | | | | | | | | Week
4 | Chapter 2: Elementary
probability theory
2.1 Sample space and events | Lecture Method,
Discussion and
Presentation, questioning
and answering | Giving lecture Grouping the students for discussion and presentation Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Week
5 | 2.2 Probability of an event
2.3 Conditional probability | Lecture Method,
Discussion and
Presentation, questioning
and answering | Giving lecture Grouping the students for discussion and presentation Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Week
6 | 2.4 Independent events
2.5 Random variables and
expectation | Lecture Method,
Discussion and
Presentation, questioning
and answering | Giving lecture Grouping the students for discussion and presentation Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | Assignment | | | | | | | | Week
7 | Chapter 3: Recurrence
relations
3.1 Definition and examples
3.2 Linear recurrence
relations with constant | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture
Grouping the
students for
discussion
Asking and | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear | | | | Week
8 | 3.3 Solutions of linear recurrence relations 3.4 Solutions of homogeneous and nonhomogeneous recurrence relations | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | directing Students Giving lecture Grouping the students for discussion Asking and directing Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | |------------|---|---|---|--|--|--|--| | | | Take home exan | 1 | | | | | | Week
9 | Chapter 4: Elements of
graph theory
4.1 Definition and examples
of a graph
4.2 Matrix representation of
a graph
4.3 Isomorphic graphs | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture Grouping the students for discussion Asking and directing Students | Taking Lecture
notes, Discussio n
with group
members, answering
and asking an clear
ideas | | | | | Week
10 | 4.4 Path and connectivity of
a graph
4.5 Complete, regular and
bipartite graphs
4.6 Eulerian and Hamiltonian
graphs | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture
Grouping the students
for discussion Asking
and directing Students | Taking Lecture
notes, Discussio n
with group
members, answering
and asking an clear
ideas | | | | | Week
11 | 4.7 Trees and forests (Rooted
and Binary trees)
4.8 Planar graphs
4.9 Graph coloring | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture
Grouping the students
for discussion Asking
and directing
Students | Taking Lecture
notes, Discussio n
with group
members, answering
and asking an clear
ideas | | | | | Test 2 | | | | | | | | | Week
12 | Chapter 5: Directed graphs 5.1 Definition and examples of digraphs 5.2 Matrix representation of digraphs | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | Giving lecture
Grouping the students
for discussion
Asking and directing
Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | | | Week
13 | 5.3 Paths and connectivity | Lecture Method,
Discussion, problem
solving method, Reading
assignment, questioning
and answering | | Giving lecture
Grouping the students
for discussion
Asking and directing
Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | |--|--|---|--|--|---| | Week
14 | Chapter 6: Weighted
graphs and their
applications 6.1 Weighted Graphs 6.2 Minimal Spanning trees | Lecture Method,
Discussion and
Presentation, problem
solving method, Reading
assignment, questioning
and answering | | Giving lecture,
Grouping the students
for discussion and
Presentation,
Asking and directing
'Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | | Spanning trees | and answering | | Students | ideas | | Week
15 | 6.3 Shortest path
problem
6.4 Critical Path
Problem | Lecture Method, Discussion and Presentation, problem solving method, Reading assignment, questioning and answering | | Giving lecture,
Grouping the students
for discussion and
Presentation,
Asking and directing
Students | Taking Lecture
notes, Discussion
with group
members, answering
and asking an clear
ideas | | Week
16 | Revision and Presentation | | | | | | | | I | Final- Exam: 50% | / o | | | | ment/Evaluation & Grading Sys | tem | 1. Quiz (1&2) 10% 2. Assignment (1) 10% 3. Test (1&2) 20% 5. Presentation 10% 6. Take home exam 10% 7. Final Exam 50% Total 100% | | | | Course Policy A student has to: At attend at least 85% of the classes. Take all continuous assessments. Take final examination. Respect all the rules and regulations of the University | | | | f the University | | ## Text Books - Steven Roman, An Introduction to Discrete Mathematics - > Mattson, H.F., Discrete Mathematics with Application ## References: - N. CH SN lyengar et al, Discrete mathematics, Vikas publishing house PVT LTD, 2004 - > S. Roman, An introduction to discrete mathematics, CBS College publishing, 1986 - > B. Harris, Graph Theory and its applications, Academic press, 1970 - > Iyengar, S. N, Elements of Discrete Mathematics - Lipschutz, S., Schaum's outline series, Discrete Mathematics - Oystein Ore, Theory of graphs, American mathematical Society, 1974 - -