JIMMA University
 College of Natural Sciences
 Department of Mathematics

Course tittle: Linear Algebra II
Course code: Math 326
Credit hours:3 Contact hrs:3
Tutorial :2
Prerequisite: Math325
Course category: Compulsory

Aims

The course intends to de velop further concepts in Linear Algebra providing a foundation for studies in a number of other areas of mathematics and related fields

Course description

This course covers the characteristic equation of matrix, orthogonality, matrix factorizations, canonical forms, direct sum decomposition of vector spaces, bilinear, quadratic and positive definite forms.

Course Objective

On the completion of the course, successful students will be able to:
> Find eigenvalues and eigenvectors of a square matrix.
> Identify similar matrices
> Diogonilize a matrix when this is possible
$>$ Difine inner product space
> Find and apply LU factorization of matrix
> Understand the Gram-Schmidt process
$>$ Find an orthogonal basis for a subspace
> Find an orthogonal complement of subspace
$>$ Recognize and invert orthogonal matrices
$>$ Comprehend the three canonical forms of matrices

Course outline

Chapter 1: The characteristic equation of a matrix
\checkmark Eigenvalues and eigenvectors
\checkmark The characteristic polynomial
\checkmark Similarity of matrices and characteristic polynomial
\checkmark The spectral radius of a matrix
\checkmark Diagonalization
\checkmark Decomposable matrices
\checkmark Minimal polynomial and Cayley-Hamilton theorem

Chapter2: Orthogonality

\checkmark The inner product
\checkmark Inner product space
\checkmark Orthonormal sets
\checkmark The Gram-Schmidt orthogonalization process
\checkmark Cauchy-Schwartz and triangular inequalities
\checkmark The dual space
\checkmark Adjoint of linear operators
\checkmark Self-adjoint linear operators
\checkmark Isometry
\checkmark Normal operators and the spectral theorem
\checkmark Factorization of a matrix (LU, cholesky, QR)
\checkmark Singular value decomposition

Chapter 3: Canonical forms

\checkmark Elementary row and column operations on matrices
\checkmark Equivalence of matrices of polynomials
\checkmark Smith canonical forms and invariant factors
\checkmark Similarity of matrices and invariant factors
\checkmark The rational canonical forms
\checkmark Elementary divisors
\checkmark The normal and Jordan canonical forms

Chapter 4: Biline ar and quadratic forms

\checkmark Bilinear forms and matrices
\checkmark Alternating bilinear forms
\checkmark Symmetric bilinear forms and quadratic forms
\checkmark Real symmetric bilinear forms

Chapter 5: Direct sum de composition of vectors spaces

\checkmark Definition of a direct sum of vector spaces
\checkmark Projection and invariant subspaces of a linear operator
\checkmark Primary decomposition theorem

Teaching-learning methods

Three contact hours of lectures and two hours of tutorials per week. Students do home assignments.
Assignments /quizzes/ 20\%
Mid semester examination 30\%
Final examination 50%
Teaching mate rials
Textbooks:
$>$ Serge Lang, Linear Algebra
$>$ Schaum's Outline in Linear Algebra
References:
> S. Lipschitz, The ory and problems of Line ar Algebra, second Ed., McGraw-Hill1991
$>$ Larson/Edwards,Ele mentary Linear Algebra,D.C. Heath and company, Lexington, 1988
> J.N. Sharma and et al, Line ar Algebra, Krishna prakashan Media(p) Ltd.,2003
> Isaak and Manougian, Basic Concept of Line ar Algebra, ${ }^{\text {st }}$ ed., George J.McLead Limited, 1976
$>$ Otto Bretscher, Linear alge bra with application, $3^{\text {rd }}$ ed., Prentice Hall, 2005
$>$ Howard Anton, Ele mentary line ar alge bra, $8^{\text {th }}$ ed., John Wile y, 2000
$>$ K. Hoffman and R. kunze, Line ar Algebra, $2^{\text {nd }}$ ed., prentice Hall INC., 1971

