LINEAR ALGEBRA II Chapter one Characterístíc Equatíon

1.1. *Eígen values and Eígen vectors*

Definition1.1.1: Let A be an $n \times n$ matrix. A Number λ is called an Eigen

value of A if there exists a non zero vector $v \in F^n$ such that $Av = \lambda v$.

The vector v is then called an eigenvector of A corresponding to the Eigen value λ .

Example: Let
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
. Then taking $\lambda = 5$ and $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$,

Cont...

- we have $Av = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \lambda v$ so 5 is an eigenvalue of A and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of A corresponding to the eigenvalue 5
- **Definition1.1.2**: Let A be an $n \times n$ matrix. The set of all eigenvalues of A is called the spectrum of A.
- **Theorem 1.1.1**: Let *A* be an $n \times n$ matrix. A Number λ is an Eigen value of *A* if and only if $det(A \lambda I) = 0$, where *I* denotes the $n \times n$ identity matrix.

Properties of Eigen Values

- i. The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.
- ii. The product of the eigen values of a matrix A is equal to its determinant.
- iii. If λ is an eigen value of a matrix A, then $1/\lambda$ is the eigen value of A⁻¹
- *iv.* If λ is an eigen value of an orthogonal matrix, then $1/\lambda$ is also its eigen value.
- v. The eigen values of a triangular matrix are precisely the entries of diagonal entries.

Cont...

- vi. If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A, then
- a. $k\lambda_1, k\lambda_2, ..., k\lambda_n$ are the eigenvalues of the matrix kA, where k is a non zero scalar.

b. $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are the eigenvalues of the inverse matrix A^{-1} .

c. $\lambda_1^{p}, \lambda_2^{p}...\lambda_n^{p}$ are the eigenvalues of A^{P} , where p is any positive integer.

1.2 Characteristic polynomial

- **Definition 1.2.1:**Polynomial of degree n in x is an expression of the form $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $a_0, a_{1,\dots} a_n \in F$ and $a_n \neq 0$, n is non negative integer.
- We can write $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, if we replace x every where by a given number λ and we obtain $p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$
- Definition 1.2.2: Let p(x) be a polynomial in x. A number λ is called a root of p(x) if $p(\lambda) = 0$.

Cont....

• **Definition 1.2.3**: Let $A = (a_{ij})$ be an $n \times n$ matrix. Then the polynomial

$$det(A - \lambda I) = det \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{21} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{bmatrix}$$
 is called the

characteristic polynomial of A.

• Denoted as $C_A(x)$, the leading coefficient is $(-1)^n$ and the constant term is *detA*.

Cont...

- The equation $det(A \lambda I) = 0$ or equivalently $det(\lambda I A) = 0$ is called characteristic equation of A.
- **Definition 1.2.4**: If an eigenvalue λ occur k times as a root of the characteristic polynomial $C_A(x)$, then k is called the multiplicity of the eigenvalue .

• Example 1: Let
$$A = \begin{bmatrix} 3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1 \end{bmatrix}$$
 then,

- i. Find characteristic polynomial and characteristic equation of A.
- ii. Eigenvalues and eigenvectors of A.
- iii. Eigen values of A^{-1}
- iv. Eigen values of A^{10}
- v. Eigen values of 10A.

Solution:

Characteristic polynomial is

$$det(A - \lambda I) = \begin{vmatrix} 3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1 \end{vmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 3-\lambda & -1 & -1 \\ -12 & -\lambda & 5 \\ 4 & -2 & -1-\lambda \end{vmatrix} \\ = (3-\lambda)[(\lambda^2+\lambda)+10] + 1[(12\lambda+12)-20] - 1(24+4\lambda) \\ \text{characteristic polynomial is } -\lambda^3+2\lambda^2+\lambda-2 \text{ and characteristic} \\ \text{equation of A is } -\lambda^3+2\lambda^2+\lambda-2=0 \end{vmatrix}$$

ii. To find Eigenvalues of A we have to find root of

$$-\lambda^{3} + 2\lambda^{2} + \lambda - 2 = 0$$

$$\Rightarrow -(\lambda + 1)(\lambda - 1)(\lambda - 2) = 0$$

$$\lambda = -1 \text{ or } \lambda = 1 \text{ or } \lambda = 2$$

□So the eigenvalues are -1,1 and 2. □To find eigenvector corresponding to eigenvalues □write $Av = \lambda v$

$$\Rightarrow$$
 $(A - \lambda I)v = 0$ that is

$$\Rightarrow \begin{bmatrix} 3-\lambda & -1 & -1 \\ -12 & -\lambda & 5 \\ 4 & -2 & -1-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Then we can solve for x_1 , x_2 and x_3 by appropriate method.
Let $\lambda = -1$, then we have

$$\begin{bmatrix} 4 & -1 & -1 \\ -12 & 1 & 5 \\ 4 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solve by using Gaussian elimination .

Since the constant matrix is zero matrix, reduce the coefficient matrix to row echelon form

$$\begin{bmatrix} 4 & -1 & -1 \\ -12 & 1 & 5 \\ 4 & -2 & 0 \end{bmatrix} \xrightarrow{R_2 + 3R_1} \begin{bmatrix} 4 & -1 & -1 \\ 0 & -2 & 2 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 - 1/2R_2} \begin{bmatrix} 4 & -1 & -1 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 4 & -1 & -1 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus the linear system becomes

 $4x_{1} - x_{2} - x_{3} = 0$ -2x₂ + 2x₃ = 0 $\Rightarrow x_{2} = x_{3}, x_{1} = \frac{1}{2}x_{3}$ $\Box \text{ Let } x_{3} = t \text{ then } x_{2} = t \text{ and } x_{1} = \frac{1}{2}t \text{ where t is arbitrary}$

Thus
$$\mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1/2 & t \\ t \\ t \end{bmatrix} = t \begin{bmatrix} 1/2 \\ 1 \\ 1 \end{bmatrix}$$

So $\begin{bmatrix} 1/2 \\ 1 \\ 1 \end{bmatrix}$ is eigenvector corresponding to eigenvalue $\lambda = -1$
 \Box Similarly, we obtain $\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix}$ as an eigenvector corresponding to eigenvalue $\lambda = 1$ as an eigenvector corresponding to eigenvalue 2.

- iii. Eigen values of A^{-1} . 1, -1 and $\frac{1}{2}$ are eigenvalues of A^{-1} by the property of eigenvalue.
- iv. Eigen values of A^{10} are -1, 1 and 2^{10}
- v. Eigen values of 10A are -10,10 and 20 **Example 2**: Let $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ Solution:
- The characteristic equation of matrix A is $\lambda^3 5\lambda^2 + 8\lambda 4 = 0$, or, in factored form $(\lambda 1)(\lambda 2)^2 = 0$

• Thus the eigenvalues of *A* are $\lambda = 1$ and $\lambda_{2,3} = 2$, so there are two eigenvalues of *A*.

 $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, is an eigenvector of *A* corresponding to λ if and only *v* is a nontrivial solution of $(A - \lambda I)v = 0$

that is, of the form $\begin{bmatrix}
-\lambda & 0 & -2 \\
1 & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

cont.

• If
$$\lambda = 1$$
, then $\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

□Solving this system using Gaussian elimination yields $x_1 = -2s, x_2 = s, x_3 = s$ (verify)

Thus the eigenvectors corresponding to $\lambda = 1$ are the nonzero vectors of the form

$$\begin{bmatrix} -2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
 so that
$$\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
 is the Eigen vector corresponding to eigenvalue 1

• If
$$\lambda = 2$$
, then it becomes $\begin{bmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

• Solving this system using Gaussian elimination yields

$$x_1 = -s, x_2 = t, x_3 = s$$
(verify)

- Thus, the eigenvectors of *A* corresponding to $\lambda = 2$ are the nonzero vectors of the form
- Thus, the eigenvectors of *A* corresponding to $\lambda = 2$ are the nonzero vectors of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
by shimelis Ayele

Cont...

 $\Box \operatorname{Since} \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} \operatorname{and} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ are linearly independent, these vectors form a basis for the Eigen space corresponding to } \lambda = 2.$ $\Box \operatorname{So the Eigen vectors of A corresponding Eigen values 1 and 2 are \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \operatorname{and} \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ Exercise 1:

1. Find eigenvalues and eigenvectors of $\begin{bmatrix} 1 & 1 & 2 & 3 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

2. Let
$$A = \begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{bmatrix}$$
, then find

- a. Find characteristic polynomial and characteristic equation of A.
- b. Eigenvalues and eigenvectors of A.
- c. Eigen values of A^{-1}
- d. Eigen values of A^{11}

e.

Eigen values of
$$\begin{bmatrix} 30 & -20 & 20 \\ 40 & -40 & 60 \\ 20 & -30 & 50 \end{bmatrix}$$
.

1.3.Similarity of matrix

- **Definition1.3.1:** If A and B are n xn matrices, then A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$, or, equivalently $A = PBP^{-1}$
- Changing A into B is called a similarity transformation.
- **Theorem 1.3.1:** If nxn matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof:

□Suppose A and B are similar matrices of order n.

The characteristic polynomial of B is given by

$$det(B - \lambda I)$$

$$= det(P^{-1}AP - \lambda I)$$

$$= det(p^{-1}(A - \lambda I)p)$$

$$= det(p^{-1})det(A - \lambda I)det(p)$$

$$= det(p^{-1}p) det(A - \lambda I)$$

$$= det(A - \lambda I)$$

Definition 1.3.2: The set of *distinct* eigenvalues, denoted by $\sigma(A)$, is called the *spectrum* of **A**.

Definition 1.3.3:For square matrices A, the number $\rho(A) = \max |\lambda|, \lambda \in \sigma(A)$ is called the *spectral radius* of A.

1.4. Diagonalization

- **Definition1.4.1**: A square matrix A is called *diagonalizable* if there exist an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix; the matrix P is said to *diagonalize* A.
- **THEOREM 1.4.1** : *If* P_1 , P_2 , ..., P_k are Eigen vectors of A corresponding to distinct eigenvalues
- , λ_1 , λ_2 , ..., λ_k then {P₁, P₂, ..., P_k } is a linearly independent set. • **Proof**
- \Box Let , P_1 , P_2 , ..., P_k be eigenvectors of A corresponding to distinct eigenvalues λ_1 , λ_2 , ..., λ_k .

- We shall assume that, P_1 , P_2 , ..., P_k are linearly dependent and obtain a contradiction. We can then conclude that, P_1 , P_2 , ..., P_k are linearly independent.
- Since an eigenvector is nonzero by definition, $\{p_1\}$ is linearly independent. Let *r* be the largest integer such that P_1 , P_2 , ..., P_r is linearly independent. Since we are assuming that P_1 , P_2 , ..., P_k is linearly dependent, *r* satisfies $1 \le r \le k$.
- \Box More over, by definition of r, P_1 , P_2 , ..., P_{r+1} is linearly dependent.

 \Box Thus there are scalars c_1 , c_2 , ..., c_{r+1} , not all zero, such that $P_1c_1 + P_2c_2 + \dots, P_{r+1}c_{r+1} = 0$ (4)Multiplying both sides of 4 by A and using $AP_1 = \lambda_1 p_1, AP_2 = \lambda_2 P_2 \dots, AP_n = \lambda_{r+1} P_{r+1}$ $\Box \text{ we obtain } c_1 \lambda_1 p_1 + c_2 \lambda_2 p_2 + \dots + c_{r+1} \lambda_{r+1} p_{r+1} = 0 \dots$ (5) \Box Multiplying both sides of 4 by λ_{r+1} and subtracting the resulting equation from 5 yields

 $\Box c_{1}(\lambda_{1} - \lambda_{r+1})p_{1} + c_{2}(\lambda_{2} - \lambda_{r+1})p_{2} + ... + c_{r}(\lambda_{r} - \lambda_{r+1})p_{r} = 0$

• Since {P₁, P₂, ..., P_r} is a linearly independent set, this equation implies that $c_1(\lambda_1 - \lambda_{r+1}) + c_2(\lambda_2 - \lambda_{r+1}) + ... + c_r(\lambda_r - \lambda_{r+1}) = 0$ and since , λ_1 , λ_2 , ..., λ_r are distinct by hypothesis, it follows that

•
$$c_1 = c_2 = \dots = c_r = 0$$
 (6)

Substituting these values in 4 yields

• $P_{r+1}c_{n+1} = 0$ (7)

 \Box Since the eigenvector P_{r+1} is nonzero, it follows that $c_{r+1} = 0$

 \Box Equations 6 and 7 contradict the fact that c_1 , c_2 , ..., c_{r+1} are not all zero; this completes the proof

Theorem 1.4.2: If A is an $n \times n$ matrix, then the following are equivalent.

 \checkmark a. A is diagonalizable.

 \checkmark b. A has n linearly independent eigenvectors.

• Proof

 $\Box a \Rightarrow b$ Since A is assumed diagonalizable, there is an invertible matrix

$$\begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

such that $P^{-1}AP$ is diagonal, say $P^{-1}AP = D$,

where
$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

It follows from the formula $P^{-1}AP = D$ that $AP = PD$; that is,

$$\Box AP = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{12} & \cdots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \cdots & \lambda_n p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \cdots & \lambda_n p_{nn} \end{bmatrix}$$

□ If we denote the column vectors of *P*, by $P_1, P_2, ..., P_n$, then from 1, the successive columns of PD are $\lambda_1 P_1$, $\lambda_2 P_2$, ..., $\lambda_n P_n$.

The successive columns of AP are AP_1 , AP_2 , ..., AP_n .

□Thus we must have

$$AP_1 = \lambda_1 p_1, AP_2 = \lambda_2 P_2 \dots, AP_n = \lambda_n P_n$$
²

Cont....

• Since *P* is invertible, its column vectors are all nonzero; thus, it follows from 2 that $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of *A*, and P_1 , P_2 , ..., P_n are corresponding eigenvectors.

Since *P* is invertible, $P_1, P_2, ..., P_n$ are linearly independent. \Box Thus *A* has *n* linearly independent eigenvectors.

 $\Box b \Rightarrow a$ Assume that A has n linearly independent eigenvectors P_1 , P_2 , ..., P_n with corresponding eigenvalues, λ_1 , λ_2 , ..., λ_n

Cont....

• Let
$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$
 be the matrix whose column vectors are

 P_1 , P_2 , ..., P_n

• The column vectors of the product AP are AP_1 , AP_2 , ..., AP_n

$$\Box$$
But, $AP_1 = \lambda_1 p_1$, $AP_2 = \lambda_2 P_2 \dots$, $AP_n = \lambda_n P_n$ Why?

$$AP = \begin{bmatrix} \lambda_1 p_{11} & \lambda_2 p_{12} & \cdots & \lambda_n p_{1n} \\ \lambda_1 p_{21} & \lambda_2 p_{22} & \cdots & \lambda_2 p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1 p_{n1} & \lambda_2 p_{n2} & \cdots & \lambda_2 p_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = PD$$
 3

- Where *D* is the diagonal matrix having the eigenvalues, λ_1 , λ_2 , ..., λ_n on the main diagonal.
- Since the column vectors of *P* are linearly independent, *P* is invertible. Thus 3 can be rewritten as $P^{-1}AP = D$; that is, *A* is diagonalizable
- **THEOREM 1.4.3**: If an $n \times n$ matrix A has n distinct eigenvalues, λ_1 , λ_2 , ..., λ_n then A is diagonalizable
- **Proof:** If P_1 , P_2 , ..., P_n are eigenvectors corresponding to the distinct eigenvalues , λ_1 , λ_2 , ..., λ_n

then by Theorem , P_1 , P_2 , ..., P_n are linearly independent.

• Thus A is diagonalizable by Theorem .

Procedure to diagonalize a matrix

- \checkmark Find the linearly independent eigenvectors
- \checkmark Construct *P* from eigenvectors
- ✓ Construct $D = P^{-1}AP$ from eigenvalues
- Example 1: Finding a Matrix *P* that diagonalize a matrix *A*

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

- Solution
- The characteristic equation of A is $(\lambda 1)(\lambda 2)^2 = 0$ and we found the following bases for the Eigen spaces:

•
$$\lambda = 2$$
: $p_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $p_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\lambda = 1$: $p_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

• There are three basis vectors in total, so the matrix *A* is diagonalizable and

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 diagonalize A.

Verify that $P^{-1}AP =$

$$\begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

• EXAMPLE 2:

• Find a matrix *P* that diagonalizable
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

Solution

• The characteristic polynomial of A is

$$\Box \det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ -3 & 5 & 2 - \lambda \end{pmatrix}$$

 $= (\lambda - 1)(\lambda - 2)^2$ Thus the eigenvalues of A are $\lambda_1 = 1$ and $\lambda_{2,3} = 2$.

• Verify that eigenvalues are corresponding to

$$\lambda_1 = 1 \text{ is } p_1 = \begin{bmatrix} -1 \\ 1 \\ -8 \end{bmatrix} \text{ and corresponding to } \lambda_{2,3} = 2 \text{ is } p_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Since *A* is a 3 × 3 matrix and there are only two basis vectors in total, *A* is not diagonalizable by theorem.

1.5.Cayley-Hamilton Theorem

Theorem: If $C_A(x)$ is characteristic polynomial of A, then $C_A(x) = 0$

• Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
 then characteristic polynomial of A

$$C_{A}(x) = \det(A - \lambda I) = \det \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix}$$

The characteristic equation is given by
$$C_A(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0 = 0$$
• $C_A(x) = A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A^1 + Ia_0 = 0$
• **Theorem**: Let A be a non singular n × n matrix, and let its characteristic polynomial be $C_A(x) = A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A^1 + Ia_0 = 0$, then $A^{-1} = -\frac{1}{a_0}(A^{n-1} + a_{n-1}A^{n-2} + \dots + Ia_1)$

- <u>Proof</u>:
- By Cayley-Hamilton theorem $A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A^1 + Ia_0 = 0$

- $a_0 = (-1)^n detA \neq 0$, Since A is non singular.
- So the above equation can be written as

$$I = -\frac{1}{a_0} (A^n + a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A^1)$$
$$= -\frac{1}{a_0} (A^{n-1} + a_{n-1}A^{n-2} + \dots + Ia_1)A$$

$$\Box A^{-1} = -\frac{1}{a_0} \left(A^{n-1} + a_{n-1} A^{n-2} + \dots + I a_1 \right)$$

Cont....

Example 1:Let A =
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Verify Cayley -Hamilton theorem and compute A^{-1}

- <u>Solution</u>
- The characteristic equation of A is $|A \lambda I| = 0$ $\begin{vmatrix} 2 - \lambda & -1 & 1 \\ 1 & 2 & 2 \end{vmatrix}$

$$\begin{vmatrix} -1 & 2-\lambda & -1 \\ 1 & -1 & 2-\lambda \end{vmatrix} =$$

$$\Rightarrow -(\lambda^3 - 6\lambda^2 + 9\lambda - 4) = 0$$

To verify Cayley – Hamilton theorem, we have to show that $A^3 - 6A^2 + 9A - 4I = 0$

$$\Box A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$$

• $A^3 = A^2 A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 22 & -21 & 22 \end{bmatrix}$

• Therefore $A^3 - 6A^2 + 9A - 4I$

$$\checkmark = \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 22 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 1 & -1 & 2 \end{bmatrix}$$

$$4\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} = \begin{bmatrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{bmatrix}$$

• Now multiplying both side of (1) by A^{-1} yields

•
$$A^2 - 6A^1 + 9I - 4A^{-1} = 0$$

• $4A^{-1} = (A^2 - 6A^1 + 9I)$

$$4A^{-1} = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 9\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$
$$\Rightarrow A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

• Example 2: given A = $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$ find AdjA by using Cayley-Hamilton theorem.

• Solution

- The characteristic equation of a matrix A is • $|A - \lambda I| = 0$ i.e., $\begin{vmatrix} 1 - \lambda & 2 & -1 \\ 0 & 1 - \lambda & -1 \\ 3 & -1 & 1 - \lambda \end{vmatrix} = 0$ • $\Rightarrow \lambda^3 - 3\lambda^2 + 5\lambda + 3 = 0$
- by Cayley-Hamilton theorem $A^3 3A^2 + 5A + 3I = 0$
- Multiply both side by A^{-1} , we get $A^2 3A + 5I + 3A^{-1} = 0$

• We know that ,
$$A^{-1} = \frac{adjA}{|A|}$$

• Therefore $adjA = |A|A^{-1} = -3 \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} \\ 1 & \frac{-4}{3} & -\frac{1}{3} \\ 1 & -\frac{7}{3} & -\frac{1}{3} \end{bmatrix}$
 $= \begin{bmatrix} 0 & -1 & -1 \\ 1 & 4 & 1 \\ 1 & 7 & 1 \end{bmatrix}$

• Another application of Cayley-Hamilton theorem is to compute power of square matrix *A*

• Example: Let
$$A = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$$
 and then find A^{735}
• Solution

- The characteristic polynomial of A is $x^2 9$. Eigen values are -3,3.
- Division algorithm applied to the polynomial x^{735} , $x^2 9$ will give equation of the form $x^{735} = (x^2 - 9)q(x) + (a_0 + a_1x)$, (1) Where $(a_0 + a_1x)$ is remainder obtained by dividing x^{735} by $x^2 - 9$.

- Note that the degree of remainder is less than the degree of the divisor $x^2 9$.
- By Cayley-Hamilton theorem $A^2 9I = 0$.
- Inserting A for x in equation (1), we get
- $A^{735} = a_0 + a_1 A$ (2)
- Inserting eigen values 3 and -3 for x successively in equation (1), we get
- $3^{735} = a_0 + 3a_1$

Cont....

•
$$(-3)^{735} = a_0 - 3a_1$$

• This gives
$$a_0 = 0, a_1 = 3^{734}$$
.

- Then $A^{735} = a_0 + a_1 A$
- gives
- $A^{735} = 3^{735}A$.

1.6.Minimal polynomial

- **Definition 1.6.1**: The minimal polynomial of a matrix A, denoted by $m_A(\lambda)$ is the unique monic polynomial of least degree such that $m_A(\lambda) = 0$.
- Theorem: a scalar λ is Eigen values of a matrix A if and only if is root of minimal polynomial.
- proof(exercise)
- Example: find minimal polynomial $m_A(\lambda)$ of $A = \begin{bmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{bmatrix}$

• <u>Solution</u>

• First find the characteristic polynomial of A.

Exercise 3

• Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$
, then

- 1. Verify Cayley-Hamilton theorem
- 2. Find A^{-1} and AdjA by using Cayley-Hamilton theorem.

 $p(\lambda) = -\lambda^{3} + 5\lambda^{2} - 7\lambda + 3 = -(\lambda - 1)^{2}(\lambda - 3).$ The minimal polynomial must divide characteristic polynomial. Thus minimal polynomial is exactly one of the following $p(\lambda) = (\lambda - 3)(\lambda - 1)^{2} \text{ or } g(\lambda) = (\lambda - 3)(\lambda - 1)$ $g(A) = (A - I)(A - 3I) = \begin{pmatrix} 1 & 2 & -5 \\ 3 & 6 & -15 \\ 1 & 2 & -5 \end{pmatrix} \begin{pmatrix} -1 & 2 & -5 \\ 3 & 4 & -15 \\ 1 & 2 & -7 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

•

Thus $g(t) = (\lambda - 1)(\lambda - 3) = \lambda^2 - 4\lambda + 3$ is a minimal polynomial of A

Exercise 3 : Find minimal polynomial m (λ) of

i.
$$A = \begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{bmatrix}$$

$$i. \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$