$\mathcal{L I N E} \mathcal{A} \mathcal{R} \mathcal{A L G E B R} \mathcal{A} I I$ Chapter one
 Characteristic Equation

1.1. Eigen vafues and Eigen vectors

Definition1.1.1: Let A be an $n \times n$ matrix. A Number λ is called an Eigen value of A if there exists a non zero vector $v \in F^{n}$ such that $A v=\lambda v$.

The vector v is then called an eigenvector of A corresponding to the Eigen value λ.

DExample: Let $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$. Then taking $\lambda=5$ and $v=\left[\begin{array}{l}1 \\ 2\end{array}\right]$,.

Cont...

\square we have $A v=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}5 \\ 10\end{array}\right]=5\left[\begin{array}{l}1 \\ 2\end{array}\right]=\lambda v$ so 5 is an eigenvalue of A and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue 5

DDefinition1.1.2: Let A be an $n \times n$ matrix. The set of all eigenvalues of A is called the spectrum of A.
DTheorem 1.1.1: Let A be an $n \times n$ matrix. A Number λ is an Eigen value of A if and only if $\operatorname{det}(A-\lambda I)=0$, where I denotes the $n \times n$ identity matrix.

Properties of Eigen Values

i. The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal.
ii. The product of the eigen values of a matrix A is equal to its determinant.
iii. If λ is an eigen value of a matrix A, then $1 / \lambda$ is the eigen value of A^{-} ${ }^{1}$.
iv. If λ is an eigen value of an orthogonal matrix, then $1 / \lambda$ is also its eigen value.
v. The eigen values of a triangular matrix are precisely the entries of diagonal entries.

Cont...

vi. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A , then
a. $k \lambda_{1}, k \lambda_{2}, \ldots, k \lambda_{n}$ are the eigenvalues of the matrix $k A$, where k is a non - zero scalar.
b. $\quad \frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}} \cdots \frac{1}{\lambda_{n}}$ are the eigenvalues of the inverse matrix A^{-1}.
c. $\lambda_{1}{ }^{p}, \lambda_{2}{ }^{p} \ldots \lambda_{n}{ }^{p}$ are the eigenvalues of A^{P}, where p is any positive integer.

1.2 Characteristic polynomial

- Definition 1.2.1: Polynomial of degree n in x is an expression of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where $a_{0}, a_{1}, \cdots a_{n} \in F$ and $a_{n} \neq 0$,n is non negative integer.
- We can write $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, if we replace x every where by a given number λ and we obtain $p(\lambda)=a_{n} \lambda^{n}+$ $a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}$
- Definition 1.2.2: Let $p(x)$ be a polynomial in x . A number λ is called a root of $p(x)$ if $p(\lambda)=0$.

Cont....

- Definition 1.2.3: Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Then the polynomial

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \cdots & a_{21} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda
\end{array}\right] \text { is called the }
$$

characteristic polynomial of A.

- Denoted as $C_{A}(x)$, the leading coefficient is $(-1)^{n}$ and the constant term is $\operatorname{det} A$.

Cont...

- The equation $\operatorname{det}(A-\lambda I)=0$ or equivalently $\operatorname{det}(\lambda I-A)=0$ is called characteristic equation of A.
- Definition 1.2.4: If an eigenvalue λ occur k times as a root of the characteristic polynomial $C_{A}(x)$, then k is called the multiplicity of the eigenvalue .
- Example 1: Let $A=\left[\begin{array}{ccc}3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1\end{array}\right]$ then,

Cont.

i. Find characteristic polynomial and characteristic equation of A.
ii. Eigenvalues and eigenvectors of A.
iii. Eigen values of A^{-1}
iv. Eigen values of A^{10}
v. Eigen values of 10 A .

Solution:

Characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=\left|\left[\begin{array}{ccc}
3 & -1 & -1 \\
-12 & 0 & 5 \\
4 & -2 & -1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right|
$$

Cont.

$$
\begin{aligned}
& =\left|\left[\begin{array}{ccc}
3-\lambda & -1 & -1 \\
-12 & -\lambda & 5 \\
4 & -2 & -1-\lambda
\end{array}\right]\right| \\
& =(3-\lambda)\left[\left(\lambda^{2}+\lambda\right)+10\right]+1[(12 \lambda+12)-20]-1(24+4 \lambda)
\end{aligned}
$$

characteristic polynomial is $-\lambda^{3}+2 \lambda^{2}+\lambda-2$ and characteristic equation of A is $-\lambda^{3}+2 \lambda^{2}+\lambda-2=0$
ii. To find Eigenvalues of A we have to find root of

$$
-\lambda^{3}+2 \lambda^{2}+\lambda-2=0
$$

$$
\Rightarrow-(\lambda+1)(\lambda-1)(\lambda-2)=0
$$

$\lambda=-1$ or $\lambda=1$ or $\lambda=2$

Cont.

\square So the eigenvalues are $-1,1$ and 2 .
\square To find eigenvector corresponding to eigenvalues
\square write $A v=\lambda v$

$$
\begin{aligned}
& \Rightarrow(A-\lambda I) v=0 \text { that is } \\
& \Rightarrow\left[\begin{array}{ccc}
3-\lambda & -1 & -1 \\
-12 & -\lambda & 5 \\
4 & -2 & -1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Then we can solve for x_{1}, x_{2} and x_{3} by appropriate method.
Let $\lambda=-1$,then we have

Cont.

$$
\left[\begin{array}{ccc}
4 & -1 & -1 \\
-12 & 1 & 5 \\
4 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solve by using Gaussian elimination .
Since the constant matrix is zero matrix, reduce the coefficient matrix to row echelon form

$$
\left[\begin{array}{ccc}
4 & -1 & -1 \\
-12 & 1 & 5 \\
4 & -2 & 0
\end{array}\right] \xrightarrow{R_{2}+3 R_{1}} \xrightarrow{R_{3}-R_{1}}\left[\begin{array}{ccc}
4 & -1 & -1 \\
0 & -2 & 2 \\
0 & -1 & 1
\end{array}\right] \xrightarrow{R_{3}-1 / 2 R_{2}}\left[\begin{array}{ccc}
4 & -1 & -1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

Cont.

$$
\left[\begin{array}{ccc}
4 & -1 & -1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Thus the linear system becomes
$4 x_{1}-x_{2}-x_{3}=0$
$-2 x_{2}+2 x_{3}=0$
$\Rightarrow x_{2}=x_{3}, x_{1}=\frac{1}{2} x_{3}$
\square Let $x_{3}=t$ then $x_{2}=t$ and $x_{1}=1 / 2 t$ where t is arbitrary

Cont.

Thus $\mathrm{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\left[\begin{array}{c}1 / 2 t \\ t \\ t\end{array}\right]=t\left[\begin{array}{c}1 / 2 \\ 1 \\ 1\end{array}\right]$
So $\left[\begin{array}{c}1 / 2 \\ 1 \\ 1\end{array}\right]$ is eigenvector corresponding to eigenvalue $\lambda=-1$
QSimilarly, we obtain $\left[\begin{array}{c}3 \\ -1 \\ 7\end{array}\right]$ as an eigenvector corresponding to
eigenvalue $\lambda=1$ and $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ as an eigenvector corresponding to eigenvalue 2 .

Cont.

iii. Eigen values of $A^{-1} .1,-1$ and $\frac{1}{2}$ are eigenvalues of A^{-1} by the property of eigenvalue.
iv. Eigen values of A^{10} are $-1,1$ and 2^{10}
v. Eigen values of 10 A are $-10,10$ and 20

Example 2: Let $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
Solution:

- The characteristic equation of matrix A is $\lambda^{3}-5 \lambda^{2}+8 \lambda-4=0$, or, in factored form $(\lambda-1)(\lambda-2)^{2}=0$

Cont.

- Thus the eigenvalues of A are $\lambda=1$ and $\lambda_{2,3}=2$, so there are two eigenvalues of A.
$\mathrm{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, is an eigenvector of A corresponding to λ if and
only \boldsymbol{v} is a nontrivial solution of $(A-\lambda I) v=0$
that is, of the form

$$
\left[\begin{array}{ccc}
-\lambda & 0 & -2 \\
1 & 2-\lambda & 1 \\
1 & 0 & 3-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

cont.

- If $\lambda=1$, then $\left[\begin{array}{ccc}-1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
\square Solving this system using Gaussian elimination yields $x_{1}=$ $-2 s, x_{2}=s, x_{3}=s$ (verify)
\square Thus the eigenvectors corresponding to $\lambda=1$ are the nonzero vectors of the form
$\left[\begin{array}{c}-2 s \\ s \\ s\end{array}\right]=s\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ so that $\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$ is the Eigen vector corresponding to
eigenvalue 1

Cont.

- If $\lambda=2$, then it becomes $\left[\begin{array}{ccc}-2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- Solving this system using Gaussian elimination yields

$$
x_{1}=-s, x_{2}=t, x_{3}=s(\text { verify })
$$

- Thus, the eigenvectors of A corresponding to $\lambda=2$ are the nonzero vectors of the form
\square Thus, the eigenvectors of A corresponding to $\lambda=2$ are the nonzero vectors of the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-s \\
t \\
s
\end{array}\right]=s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Cont...

-Since $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ are linearly independent, these vectors form a basis for the Eigen space corresponding to $\lambda=2$.
\square So the Eigen vectors of A corresponding Eigen values 1and 2 are
$\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Exercise 1:

1. Find eigenvalues and eigenvectors of

$$
\mathrm{A}=\left[\begin{array}{lllll}
1 & 1 & 2 & 3 & 4 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]
$$

Cont.

2. Let $\mathrm{A}=\left[\begin{array}{lll}3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5\end{array}\right]$,then find
a. Find characteristic polynomial and characteristic equation of A.
b. Eigenvalues and eigenvectors of A.
c. Eigen values of A^{-1}
d. Eigen values of A^{11}
e. Eigen values of $\left[\begin{array}{lll}30 & -20 & 20 \\ 40 & -40 & 60 \\ 20 & -30 & 50\end{array}\right]$.

1.3.Similarity of matrix

DDefinition1.3.1: If A and B are n xn matrices, then A is similar to B if there is an invertible matrix P such that $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{B}$, or, equivalently
$\mathrm{A}=\mathrm{PBP}^{-1}$
\square Changing A into B is called a similarity transformation.
DTheorem 1.3.1: If nxn matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).
DProof:
\square Suppose A and B are similar matrices of order n .

Cont.

The characteristic polynomial of B is given by

$$
\begin{aligned}
& \operatorname{det}(\mathrm{B}-\lambda \mathrm{I}) \\
= & \operatorname{det}\left(\mathrm{P}^{-1} \mathrm{AP}-\lambda \mathrm{I}\right) \\
= & \operatorname{det}\left(\mathrm{p}^{-1}(A-\lambda \mathrm{I}) \mathrm{p}\right) \\
= & \operatorname{det}\left(\mathrm{p}^{-1}\right) \operatorname{det}(\mathrm{A}-\lambda \mathrm{I}) \operatorname{det}(\mathrm{p}) \\
= & \operatorname{det}\left(\mathrm{p}^{-1} \mathrm{p}\right) \operatorname{det}(\mathrm{A}-\lambda \mathrm{I}) \\
= & \operatorname{det}(\mathrm{A}-\lambda \mathrm{I})
\end{aligned}
$$

\square Definition 1.3.2: The set of distinct eigenvalues, denoted by $\sigma(\mathrm{A})$, is called the spectrum of \mathbf{A}.
\square Definition 1.3.3:For square matrices A , the number $\rho(\mathrm{A})=$ $\max |\lambda|, \lambda \in \sigma(\mathbf{A})$ is called the spectral radius of A.

1.4. Diagonalization

- Definition1.4.1: A square matrix A is called diagonalizable if there exist an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix; the matrix P is said to diagonalize A.
पTHEOREM 1.4.1: If $P_{1}, P_{2}, \ldots, P_{k}$ are Eigen vectors of A corresponding to distinct eigenvalues
$, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ then $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{k}}\right\}$ is a linearly independent set.
- Proof
\square Let , $P_{1}, P_{2}, \ldots, P_{k}$ be eigenvectors of A corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$.

Cont.

- We shall assume that, $P_{1}, P_{2}, \ldots, P_{k}$ are linearly dependent and obtain a contradiction. We can then conclude that, $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{k}}$ are linearly independent.
- Since an eigenvector is nonzero by definition, $\left\{\mathrm{p}_{1}\right\}$ is linearly independent. Let r be the largest integer such that $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{r}}$ is linearly independent. Since we are assuming that $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$, P_{k} is linearly dependent, r satisfies $1 \leq \mathrm{r} \leq \mathrm{k}$.
\square More over, by definition of $r, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{r}+1}$ is linearly dependent.

Cont.

\square Thus there are scalars $c_{1}, c_{2}, \ldots, c_{r+1}$, not all zero, such that

$$
\begin{equation*}
\mathrm{P}_{1} \mathrm{c}_{1}+\mathrm{P}_{2} \mathrm{c}_{2}+\ldots, \mathrm{P}_{\mathrm{r}+1} \mathrm{c}_{\mathrm{r}+1}=0 \tag{4}
\end{equation*}
$$

Multiplying both sides of 4 by A and using
$\mathrm{AP}_{1}=\lambda_{1} \mathrm{p}_{1}, \mathrm{AP}_{2}=\lambda_{2} \mathrm{P}_{2} \ldots, \mathrm{AP}_{\mathrm{n}}=\lambda_{\mathrm{r}+1} \mathrm{P}_{\mathrm{r}+1}$
Dwe obtain $\mathrm{c}_{1} \lambda_{1} \mathrm{p}_{1}+\mathrm{c}_{2} \lambda_{2} \mathrm{p}_{2}+\ldots+\mathrm{c}_{\mathrm{r}+1} \lambda_{\mathrm{r}+1} \mathrm{p}_{\mathrm{r}+1}=0 \quad \ldots$
\square Multiplying both sides of 4 by $\lambda_{\mathrm{r}+1}$ and subtracting the resulting equation from 5 yields
$\square \mathrm{c}_{1}\left(\lambda_{1}-\lambda_{\mathrm{r}+1}\right) \mathrm{p}_{1}+\mathrm{c}_{2}\left(\lambda_{2}-\lambda_{\mathrm{r}+1}\right) \mathrm{p}_{2}+\ldots+\mathrm{c}_{\mathrm{r}}\left(\lambda_{\mathrm{r}}-\lambda_{\mathrm{r}+1}\right) \mathrm{p}_{\mathrm{r}}=0$

Cont.

- Since $\left\{\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{r}}\right\}$ is a linearly independent set, this equation implies that $c_{1}\left(\lambda_{1}-\lambda_{r+1}\right)+c_{2}\left(\lambda_{2}-\lambda_{r+1}\right)+\ldots+c_{r}\left(\lambda_{r}-\lambda_{r+1}\right)=$ 0 and since, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are distinct by hypothesis, it follows that
- $\mathrm{c}_{1}=\mathrm{c}_{2}=\ldots=\mathrm{c}_{\mathrm{r}}=0$

Substituting these values in 4 yields

- $\mathrm{P}_{\mathrm{r}+1} \mathrm{c}_{\mathrm{n}+1}=0$
\square Since the eigenvector P_{r+1} is nonzero, it follows that $c_{r+1}=0$
\square Equations 6 and 7 contradict the fact that $c_{1}, c_{2}, \ldots, c_{r+1}$ are not all zero; this completes the proof

Cont.

DTheorem 1.4.2: If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then the following are equivalent.
\checkmark a. A is diagonalizable.
\checkmark b. A has n linearly independent eigenvectors.

- Proof
$\square a \Rightarrow b$ Since A is assumed diagonalizable, there is an invertible matrix

$$
\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]
$$

such that $P^{-1} A P$ is diagonal, say $P^{-1} A P=D$,

Cont.

where $\mathrm{D}=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$
\square lt follows from the formula $P^{-1} A P=D$ that $A P=P D$; that is,

$$
\square \mathrm{AP}=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Cont.

$$
=\left[\begin{array}{cccc}
\lambda_{1} p_{11} & \lambda_{2} p_{12} & \cdots & \lambda_{n} p_{1 n} \\
\lambda_{1} p_{21} & \lambda_{2} p_{22} & \cdots & \lambda_{n} p_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
\lambda_{1} p_{n 1} & \lambda_{2} p_{n 2} & \cdots & \lambda_{n} p_{n n}
\end{array}\right]
$$

DIf we denote the column vectors of P, by $P_{1}, P_{2}, \ldots, P_{n}$, then from 1 , the successive columns of PD are $\lambda_{1} P_{1}, \lambda_{2} P_{2}, \ldots, \lambda_{n} P_{n}$.
\square The successive columns of AP are $A P_{1}, A P_{2}, \ldots, A P_{n}$.
\square Thus we must have
$A P_{1}=\lambda_{1} p_{1}, A P_{2}=\lambda_{2} P_{2} \ldots, A P_{n}=\lambda_{n} P_{n}$
2

Cont....

- Since P is invertible, its column vectors are all nonzero; thus, it follows from 2 that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of A, and P_{1}, P_{2}, \ldots, P_{n} are corresponding eigenvectors.

Since P is invertible, $P_{1}, P_{2}, \ldots, P_{n}$ are linearly independent.
\square Thus A has n linearly independent eigenvectors.
$\square b \Rightarrow a$ Assume that A has n linearly independent eigenvectors P_{1}, P_{2},
\ldots, P_{n} with corresponding eigenvalues $, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

Cont....

- Let $\mathrm{P}=\left[\begin{array}{cccc}p_{11} & p_{12} & \cdots & p_{1 n} \\ p_{21} & p_{22} & \cdots & p_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ p_{n 1} & p_{n 2} & \cdots & p_{n n}\end{array}\right]$ be the matrix whose column vectors are
$P_{1}, P_{2}, \ldots, P_{n}$
- The column vectors of the product AP are $A P_{1}, A P_{2}, \ldots, A P_{n}$
\square But $, A P_{1}=\lambda_{1} p_{1}, A P_{2}=\lambda_{2} P_{2} \ldots, A P_{n}=\lambda_{n} P_{n}$ Why?

Cont.

$$
\begin{aligned}
& \mathrm{AP}=\left[\begin{array}{cccc}
\lambda_{1} p_{11} & \lambda_{2} p_{12} & \cdots & \lambda_{n} p_{1 n} \\
\lambda_{1} p_{21} & \lambda_{2} p_{22} & \cdots & \lambda_{2} p_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
\lambda_{1} p_{n 1} & \lambda_{2} p_{n 2} & \cdots & \lambda_{2} p_{n n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=P D
\end{aligned}
$$

Cont.

- Where D is the diagonal matrix having the eigenvalues, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ on the main diagonal.
- Since the column vectors of P are linearly independent, P is invertible. Thus 3 can be rewritten as $P^{-1} A P=D$; that is, A is diagonalizable
- THEOREM 1.4.3: If an $\mathrm{n} \times \mathrm{n}$ matrix A has n distinct eigenvalues, λ_{1}, $\lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ then A is diagonalizable
- Proof: If $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ are eigenvectors corresponding to the distinct eigenvalues $, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
then by Theorem $, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}$ are linearly independent.
- Thus A is diagonalizable by Theorem .

Procedure to diagonalize a matrix

\checkmark Find the linearly independent eigenvectors
\checkmark Construct P from eigenvectors
\checkmark Construct $D=P^{-1} A P$ from eigenvalues

- Example 1: Finding a Matrix P that diagonalize a matrix A

$$
A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

- Solution

- The characteristic equation of A is $(\lambda-1)(\lambda-2)^{2}=0$ and we found the following bases for the Eigen spaces:

Cont.

- $\lambda=2: p_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], p_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\lambda=1: p_{3}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$
- There are three basis vectors in total, so the matrix A is diagonalizable and

$$
\mathrm{P}=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \text { diagonalize } A
$$

Cont.

Verify that $P^{-1} A P=$

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 1 \\
-1 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

- EXAMPLE 2:
- Find a matrix P that diagonalizable $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2\end{array}\right]$

Cont.

Solution

- The characteristic polynomial of A is
$\square \operatorname{det}(A-\lambda I)=\left(\begin{array}{ccc}1-\lambda & 0 & 0 \\ 1 & 2-\lambda & 0 \\ -3 & 5 & 2-\lambda\end{array}\right)$

$$
=(\lambda-1)(\lambda-2)^{2}
$$

\square Thus the eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2,3}=2$.

Cont.

- Verify that eigenvalues are corresponding to
$\lambda_{1}=1$ is $p_{1}=\left[\begin{array}{c}-1 \\ 1 \\ -8\end{array}\right]$ and corresponding to $\lambda_{2,3}=2$ is $p_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- Since A is a 3×3 matrix and there are only two basis vectors in total, A is not diagonalizable by theorem.

1.5.Cayley-Hamilton Theorem

\square Theorem: If $C_{A}(x)$ is characteristic polynomial of A, then $C_{A}(x)=0$

- Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$ then characteristic polynomial of A

$$
C_{A}(x)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\
\vdots & \vdots & & \ddots \\
\vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda
\end{array}\right]
$$

Cont.

\square The characteristic equation is given by
$C_{A}(x)=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x^{1}+a_{0}=0$

- $\mathrm{C}_{\mathrm{A}}(\mathrm{x})=\mathrm{A}^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{n}-2}+\cdots+\mathrm{a}_{1} \mathrm{~A}^{1}+\mathrm{Ia}_{0}=0$
- Theorem: Let A be a non singular $n \times n$ matrix, and let its characteristic polynomial be $C_{A}(x)=A^{n}+a_{n-1} A^{n-1}+a_{n-2} A^{n-2}+$ $\cdots+a_{1} A^{1}+I a_{0}=0$, then $A^{-1}=-\frac{1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+I a_{1}\right)$
- Proof:
- By Cayley-Hamilton theorem $\mathrm{A}^{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{~A}^{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-2} \mathrm{~A}^{\mathrm{n}-2}+\cdots+$ $a_{1} A^{1}+I a_{0}=0$

Cont.

- $\mathrm{a}_{0}=(-1)^{\mathrm{n}} \operatorname{det} \mathrm{A} \neq 0$, Since A is non singular .
- So the above equation can be written as

$$
\begin{aligned}
& I=-\frac{1}{a_{0}}\left(A^{n}+a_{n-1} A^{n-1}+a_{n-2} A^{n-2}+\cdots+a_{1} A^{1}\right. \\
& =-\frac{1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+\operatorname{Ia}_{1}\right) A
\end{aligned}
$$

$\square A^{-1}=-\frac{1}{a_{0}}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+\mathrm{Ia}_{1}\right)$

Cont....

Example 1:Let A $=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
Verify Cayley -Hamilton theorem and compute A^{-1}

- Solution
- The characteristic equation of A is $|A-\lambda I|=0$
$\cdot\left|\begin{array}{ccc}2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -1 \\ 1 & -1 & 2-\lambda\end{array}\right|=0$
$\Rightarrow-\left(\lambda^{3}-6 \lambda^{2}+9 \lambda-4\right)=0$

Cont.

DTo verify Cayley - Hamilton theorem, we have to show that $A^{3}-6 A^{2}+9 A-4 I=0$
$\square A^{2}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]$
$\cdot A^{3}=A^{2} A=\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}22 & -21 & 21 \\ -21 & 22 & -21 \\ 22 & -21 & 22\end{array}\right]$

Cont.

- Therefore $A^{3}-6 A^{2}+9 A-4 I$
$\checkmark=\left[\begin{array}{ccc}22 & -21 & 21 \\ -21 & 22 & -21 \\ 22 & -21 & 22\end{array}\right]-6\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]+9\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]-$

$$
4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Now multiplying both side of (1) by A^{-1} yields
- $\mathrm{A}^{2}-6 \mathrm{~A}^{1}+9 \mathrm{I}-4 \mathrm{~A}^{-1}=0$
- $4 \mathrm{~A}^{-1}=\left(\mathrm{A}^{2}-6 \mathrm{~A}^{1}+9 \mathrm{I}\right)$

Cont.

$$
\begin{aligned}
4 A^{-1} & =\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right] \\
\Rightarrow A^{-1} & =\frac{1}{4}\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{aligned}
$$

Cont.

- Example 2: given $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$ find AdjA by using Cayley-
- Solution
- The characteristic equation of a matrix A is
- $|A-\lambda I|=0$ i.e., $\left|\left[\begin{array}{ccc}1-\lambda & 2 & -1 \\ 0 & 1-\lambda & -1 \\ 3 & -1 & 1-\lambda\end{array}\right]\right|=0$
- $\Rightarrow \lambda^{3}-3 \lambda^{2}+5 \lambda+3=0$
- by Cayley-Hamilton theorem $A^{3}-3 A^{2}+5 A+3 I=0$
- Multiply both side by A^{-1}, we get $A^{2}-3 A+5 I+3 A^{-1}=0$

Cont.

$$
\begin{aligned}
& \cdot A^{-1}=-\frac{1}{3}\left(A^{2}-3 A+5 I\right) \\
& \cdot=-\frac{1}{3}\left(\left[\begin{array}{ccc}
-2 & 5 & -4 \\
-3 & 2 & -2 \\
6 & 4 & -1
\end{array}\right]-\left[\begin{array}{ccc}
3 & 6 & -3 \\
0 & 3 & -3 \\
9 & -3 & 3
\end{array}\right]+\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]\right) \\
& \cdot A^{-1}=\left[\begin{array}{ccc}
0 & \frac{1}{3} & \frac{1}{3} \\
1 & \frac{-4}{3} & -\frac{1}{3} \\
1 & -\frac{7}{3} & -\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

Cont.

- We know that , $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
- Therefore $\operatorname{adj} A=|A| A^{-1}=-3\left[\begin{array}{ccc}0 & \frac{1}{3} & \frac{1}{3} \\ 1 & \frac{-4}{3} & -\frac{1}{3} \\ 1 & -\frac{7}{3} & -\frac{1}{3}\end{array}\right]$

$$
=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 4 & 1 \\
1 & 7 & 1
\end{array}\right]
$$

Cont.

- Another application of Cayley-Hamilton theorem is to compute power of square matrix A
- Example: Let $A=\left[\begin{array}{cc}2 & 5 \\ 1 & -2\end{array}\right]$ and then find A^{735}

- Solution

- The characteristic polynomial of A is $x^{2}-9$. Eigen values are $-3,3$.
- Division algorithm applied to the polynomial $x^{735}, x^{2}-9$ will give equation of the form $x^{735}=\left(x^{2}-9\right) q(x)+\left(a_{0}+a_{1} x\right)$,
Where $\left(a_{0}+a_{1} x\right)$ is remainder obtained by dividing x^{735} by $x^{2}-9$.

Cont.

- Note that the degree of remainder is less than the degree of the divisor $x^{2}-9$.
- By Cayley-Hamilton theorem $\mathrm{A}^{2}-9 \mathrm{I}=0$.
- Inserting A for x in equation (1), we get
- $\mathrm{A}^{735}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{~A}$
- Inserting eigen values 3 and -3 for x successively in equation (1), we get
- $3^{735}=\mathrm{a}_{0}+3 \mathrm{a}_{1}$

Cont....

- $(-3)^{735}=\mathrm{a}_{0}-3 \mathrm{a}_{1}$
- This gives $\mathrm{a}_{0}=0, \mathrm{a}_{1}=3^{734}$.
- Then $\mathrm{A}^{735}=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{~A}$
- gives
- $\mathrm{A}^{735}=3^{735} \mathrm{~A}$.

1.6.Minimal polynomial

- Definition 1.6.1: The minimal polynomial of a matrix A, denoted by $m_{A}(\lambda)$ is the unique monic polynomial of least degree such that $m_{A}(\lambda)=0$.
- Theorem: a scalar λ is Eigen values of a matrix A if and only if is root of minimal polynomial.
- proof(exercise)
- Example: find minimal polynomial $m_{A}(\lambda)$ of $A=\left[\begin{array}{ccc}2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4\end{array}\right]$

- Solution

- First find the characteristic polynomial of A.

Exercise 3

- Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$, then

1. Verify Cayley-Hamilton theorem
2. Find A^{-1} and AdjA by using Cayley-Hamilton theorem.

Cont.

$$
p(\lambda)=-\lambda^{3}+5 \lambda^{2}-7 \lambda+3=-(\lambda-1)^{2}(\lambda-3)
$$

The minimal polynomial must divide characteristic polynomial.
Thus minimal polynomial is exactly one of the following

$$
\begin{gathered}
\mathrm{p}(\lambda)=(\lambda-3)(\lambda-1)^{2} \operatorname{org}(\lambda)=(\lambda-3)(\lambda-1) \\
g(A)=(A-\mathrm{I})(A-3 \mathrm{I})=\left(\begin{array}{ccc}
1 & 2 & -5 \\
3 & 6 & -15 \\
1 & 2 & -5
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & -5 \\
3 & 4 & -15 \\
1 & 2 & -7
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Cont.

Thus $g(t)=(\lambda-1)(\lambda-3)=\lambda^{2}-4 \lambda+3$ is a minimal polynomial of A
Exercise 3 : Find minimal polynomial m (λ) of
i. $\quad A=\left[\begin{array}{lll}3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5\end{array}\right]$
i. $\quad B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

