JIMMA UNIVERSITY NATURAL SCIENCES COLLEGE
 DEPARTMENT OF MATHEMATICS: OPTIMIZATION THEORYI (MATH.356).
 WORKSHEETS: $1,2,3,4,5 \& 6$

WORKSHEET - 1 (On Convex Set).

Attempt Each Of The Following Problems:

1. Define a convex set.
2. Prove that a vertex is boundary point but all boundary points are not vertices. Give example. Identify the vertices, if any, of the following sets.
a) $\left\{x:|x| \leq 1, x \varepsilon R^{n}\right\}$
b) $\left\{x: x=(1-\lambda) x_{1}+\lambda x_{2}, \lambda \geq 0, x_{1}, x_{2} \varepsilon R^{n}\right\}$
3. Which of the following sets are convex; if so, why?

$$
\begin{aligned}
& X=\left\{\left(x_{1}, x_{2}\right): x_{1} x_{2} \leq 1, x_{1} \geq 0, x_{2} \geq 0\right\} \quad, \quad X=\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2} \leq 9\right\} \\
& X=\left\{\left(x_{1}, x_{2}\right): x_{2}^{2} \leq 4 x_{1} ; x_{1}, x_{2} \geq 0\right\}
\end{aligned}
$$

4. Discuss whether the following sets are convex or not. And find the convex hull of the set in each case: (i) Set of point on the line $y=m x+c$ (ii) Set of point of the union of the half lines $\mathbf{x}=\mathbf{0}, \mathrm{y}>0, \mathrm{y}=0 \mathrm{x}>0$ on the xy plane. (iii) Points $(0,0),(0,1),(1,0),(1,1)$ on the ((x, y) plane.
5. Prove that the set $\mathbf{B}=\left\{\left(\mathrm{x}_{1}, x_{2}\right): \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2} \leq 4\right\}$ is a convex set.
6. Show that the set $S=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}^{2}+2 x_{2}^{2} \leq 6\right\}$ is convex.
7. Determine the convex hull of the following sets: $X=\left\{\left(x_{1}, x_{2}\right): x_{1}{ }^{2}+x_{2}{ }^{2}=1\right\}$
8. Graph the convex hull of the following points: $(0,0),(0,1),(1,2),(1,1),(4,0)$. Which of these points are in an interior point of the convex hull?
9. Find the extreme points of the convex polygon given by the inequalities:

$$
2 x_{1}+x_{2}+9 \geq 0,-x_{1}+3 x_{2}+6 \geq 0, x_{1}+2 x_{2}-3 \leq 0, x_{1}+x_{2} \leq 0
$$

10. What do we mean by convex combination of a finite number of points $x_{1}, x_{2}, \ldots x_{m}$?
11. Draw a convex polygon \& a non - convex polygon.
12. Show the intersection of two convex sets is a convex set.

WORKSHEET - 2 (On Formulation an LP model for LPP). optimization theory i

Formulate an LP model for the following problems.

1. A manufacturer has $\mathbf{3}$ machines A, B, C with which he produces three different articles \mathbf{P}, \mathbf{Q}, R. The different machine times required per article, the amount of time available in any week on each machine and the estimated profits per article are furnished in following table:

Article	Machine time (in hrs.)			Profit per article
	A	B	C	(in rupees)
P	8	4	2	20
Q	2	3	0	6
R	3	0	1	8
Available	Machine hrs.	250	150	50

Formulate the problem as a linear programming problem.
2. Two alloys A and B are made from four different metals I, II, III and IV according to the following specifications: A: at most 80% of I, at most 30% of II, at least 50% of III, B:between $40 \% \& 60 \%$ of II, at least 30% of III, at most 70% of IV. The four metals are extracted from three different ores whose constituent's percentage of these metals, maximum available quantity and cost per ton are as follows:

Constituent \%

Ore	Max. Quantity (tons)	I	II	III	IV	Others	Price (Rs.per ton)
$\mathbf{1}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$
2	2000	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 0}$	$\mathbf{4 0}$
3	$\mathbf{3 0 0 0}$	5	5	$\mathbf{7 0}$	$\mathbf{2 0}$	$\mathbf{0}$	$\mathbf{5 0}$

Assuming the selling prices of alloys A and B are Rs. 200 and Rs. 300 per ton respectively.
Formulate the above as a linear programming problem selecting appropriate objective and constraint functions.
3. Formulate the following linear programming problem.

A used-car dealer wishes to stock-up his lot to maximize his profit. He can select cars A, B and
C which are valued wholesale at Rs. 5000 , Rs. 7000 and Rs. 8000 respectively. These can be sold at Rs. 6000,8500 and 10500 respectively.

For each car type, the probabilities of sale are:

Type of car	$:$	A	B	C
Prob. of sale in 90 days	$:$	0.7	0.8	0.6

For every two cars of \mathbf{B}, he should buy one car of type A or \mathbf{C}. If he has Rs, $\mathbf{1 , 0 0 , 0 0 0}$ to invest, What should he buy to maximize his expected gain ?
[Hint. Let x_{1}, x_{2}, x_{3} number of cars be purchased of type A, B, C respectively. Gain per car for A,B,C will be Rs. (6000-50000), Rs (8500-7000),Rs.(10500-8000) respectively.

Therefore total expected will be $\left.z=1000 x_{1} \times 0.7+1500 x_{2} 0.8+2500 x_{3} \times 0.6\right]$ Investment constraints will be given by: $\quad 5000 x_{1}+7000\left(2 x_{2}\right) \leq 1,00,000$ and $\left.7000\left(2 x_{2}\right)+8000 x_{3} \leq 1,00,000\right]$.
4. A feed mixing company purchases and mixes one or more of the three types of grain, each Containing different amount of three nutritional elements, the data is given below:

| $\begin{array}{c}\text { Item } \\ \begin{array}{c}\text { Nutritional } \\ \text { ingredient }\end{array}\end{array}$ | One unit weight of | | | |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}Minimum total

Requirement, over

Planning horizon\end{array}\right]\)

The production manager specifies that any feed mix for his livestock must meet at least minimal nutritional requirement; and seeks the least costly among all such mixes. Suppose his planning horizon is a two week period that is he purchases enough to fill his needs for two weeks. Formulate this as an L.P.P.
[Hint Let x_{1}, x_{2}, x_{3} denote the weight levels of three different grains. Then by considering the nutritional ingredient in the three grains, linear programming problem is:

To minimize $C=25 x_{1}+15 x_{2}+18 x_{3}$, subject to constraints:

$$
\left.2 x_{1}+4 x_{2}+6 x_{3} \geq 125,2 x_{2}+5 x_{3} \geq 24,5 x_{1}+x_{2}+3 x_{3} \geq 80, \text { and } x_{1}, x_{2}, x_{3} \geq 0\right]
$$

5. A person require 10,12 and 12 unit of chemicals A, B and C respectively for his garden. A liquid product contains 5, 2 and one unit of A, B and C respectively per jar. A dry product contains,1,2 and 4 unit of A, B and C per carton. If the liquid product sells for Rs. 3 per jar and the dry product sells for Rs. 2 per carton, how many of each should be purchased to minimize the cost and meet the requirements.
[Hint. Formulation: Min.z $=3 x_{1}+2 x_{2}$, s.t. $5 x_{1}+x_{2} \geq 10,2 x_{1}+2 x_{2} \geq 12, x_{1}+4 x_{2} \geq 12$ and

$$
x_{1}, x_{2} \geq 0 . \text { The vertices of the feasible region are :(12, 0),(4, 2),(1,5),(0, 10)]. }
$$

6. The manager of an oil refinery must decide on the optimal mix of two possible blanding Processes of which the inputs and outputs per production run are as follows:

Process	Input(unit)		Output(unit)	
	Crude A	Crude B	Gasoline X	Gasoline Y
1	5	3	5	8
2	4	5	4	4

The maximum amounts available of crude A and B are 200 units and 150 units respectively.
Market requirements show that at least 100units of gasoline x and 80 units of gasoline \mathbf{Y} must
Be produced. The profits per production run from process 1 and process 2 are Rs. 300 \& Rs. 400 respectively. Solve the LP problem by graphical method.
[Hint. Formulation is: Max. $z=300 x_{1}+400 x_{2}$, s.t.
$5 x_{1}+4 x_{2} \leq 200,3 x_{1}+5 x_{2} \leq 150,5 x_{1}+4 x_{2} \geq 100,8 x_{1}+4 x_{2} \geq 80, x_{1}, x_{2} \geq 0$.
The vertices of the feasible region are: $(20,0),(40,0),(400 / 13,150 / 13),(0,30),(0,25)]$
7. A television company has three major department for manufacture of its models, A and B. monthly capacities are given as follows:

Department	Per unit time requirement(hours)		Hours available This month
	Model A	ModeI B	
II	4.0	2.0	1020
III	2.5	1.0	1600

The margin profit of model A is Rs. 400 each and that of model B is Rs. 100 each. Assuming that the company can sell any quantity of either product due to favorable market conditions, determine the optimum out-put for both the models, the highest possible profit for this month and the slack time in the three departments.
[Hint. Formulation of this problem is: Max, $z=400 x_{1}+100 x_{2}$, subject to

$$
\left.4 x_{1}+2 x_{2} \leq 1600,2.5 x_{1}+x_{2} \leq 1200,4.5 x_{1}+1.5 x_{2} \leq 1600 ; x_{1}, x_{2} \geq 0\right]
$$

8. A manufacture produces two different models, X and Y of the same product. The raw material r_{1}, r_{2} are required for production. At least 18 kg of r_{1} and 12 kg of r_{2} must be used daily. Also, at most 34 hours of labor are to be utilized. $\mathbf{2} \mathbf{k g}$ of r_{1} 'are needed for model X and $1 \mathbf{k g}$ of r_{1} for each model Y.

For each model of X and $Y, 1 \mathrm{~kg}$ of r_{2} is required. It takes 3 hours manufacture a model X and 2 hours to manufacture a model Y. The profit is Rs. 50 for each model X and Rs. 30 for each model Y. How many units of each model should be produced to minimize the profit?
[Hint. The formulation of the problem is;
$\operatorname{Max} z=50 x_{1}+30 x_{2}$, st. $2 x_{1}+x_{2} \geq 18, x_{1}+x_{2} \geq 12,3 x_{1}+2 x_{2} \leq 34, x_{1} \geq 0, x_{2} \geq 0$.

WORKSHEET - 3 (On Graphical method Of Solution \& Types of Solutions).optimization theoryi.
I. Solve the following LP problems by Graphical method.

1) M in $. z=5 x_{1}-2 x_{2}$, Subjects to: $2 x_{1}+3 x_{2} \geq 1 ; x_{1}, x_{2} \geq 0$.
2) Max.z $=5 x_{1}+3 x_{2}$, Subjects to: $3 x_{1}+5 x_{2} \leq 15 ; 5 x_{1}+2 x_{2} \leq 10 ; x_{1}, x_{2} \geq 0$
3) Max.z $=2 x_{1}+3 x_{2}$, Subjects to: $x_{1}+x_{2} \leq 1 ; 3 x_{1}+1 x_{2} \leq 4 ; x_{1}, x_{2} \geq 0$
4) M in. $z=-x_{1}+2 x_{2}$, Subjects to: $-x_{1}+3 x_{2} \leq 10 ; x_{1}+x_{2} \leq 6 ; x_{1}-x_{2} \leq 2 ; x_{1}, x_{2} \geq 0$
5) Max.z $=3 x_{1}+4 x_{2}$, Subjects to: $x_{1}-x_{2} \leq 1 ;-x_{1}+x_{2} \leq 0 ; x_{1}, x_{2} \geq 0$
6) Max. $z=x_{1}+3 x_{2}$, Subjects to: $3 x_{1}+6 x_{2} \leq 8 ; 5 x_{1}+2 x_{2} \leq 10 ; x_{1}, x_{2} \geq 0$
7) Max. $z=7 x_{1}+3 x_{2}$, Subjects to: $x_{1}+2 x_{2} \geq 3 ; x_{1}+x_{2} \leq 4 ; 0 \leq x_{1} \leq \frac{5}{2} ; 0 \leq x_{2} \leq \frac{3}{2}$.
8) Max. $z=x_{1}+2 x_{2}$, Subjects to: $2 x_{1}-x_{2} \geq-2 ; x_{1}+2 x_{2} \geq 8 ; x_{1}, x_{2} \geq 0$
9) Find the Maximum \& Minimum value of , $z=5 x_{1}+3 x_{2}$ subjectto: $x_{1}+2 x_{2} \leq 6$; $2 x_{1}+3 x_{2} \geq 3 ; 0 \leq x_{1} \geq 0 ; 0 \leq x_{2} \geq 3$.
II. Answer The Following Question Clearly.
10. Establish the difference between : i) Feasible Solution, ii) Basic Feasible Solution, iii) Degenerate Basic Feasible Solution.
11. a) Define a basic solution to a given system of m simultaneous linear equations in n unknowns.
b) How many Basic Feasible Solution are thereto a given system of $\mathbf{3}$ simultaneous linear equations in 4 unknowns.
12. Define the following terms.
a) Basic Variable. b) Basic Solution. c) Basic Feasible Solution. d) Degenerate Solution.
13. What do you mean by two-phase method for solving a given LPP. Why is it used.
14. What are the various methods known to you for solving LP problems?
15. Name the $\mathbf{3}$ basic parts of the simplex technique?
16. In the course of simplex table calculations, describe how you will detect a degenerate , un unbounded and non existing feasible solutions.
17. What is degeneracy in simplex? Solve the following LPP using simplex:

$$
\text { Max. } z=3 x_{1}+9 x_{2}, \text { Subjects to: } 4 x_{1}+4 x_{2} \leq 8 ; x_{1}+x_{2} \leq 4 \text {, and } x_{1}, x_{2} \geq 0
$$

18. With reference to the solution of LPP by simple method/table when do you conclude as follows: a) LPP has multiple solutions, b) LPP has no limit for the improvement of the objective function, c) Lpp has no feasible solution.

WORKSHEET: 4 (On Simplex Algorithm). OPTIMIZATION THEORY I.

I. Solve the following Linear Programming Problems using Simplex Method

1. $\operatorname{Max} . z=2 x+y$
subject to: $x+4 y \leq 24, \quad x+y \leq 9, \quad x-y \leq 3, \quad x-2 y \leq 2$, and $x \geq 0, y \geq 0$
2. $\operatorname{Max} . z=-3 x+4 y$
subject to: $3 x-4 y \leq 24, \quad 5 x+4 y \leq 36, \quad-x+3 y \leq 8, \quad-3 x+y \leq 0$, and $x \geq 0, y \geq 0$
3. $\operatorname{Max} . z=x+2 y$
subject to: $-2 x+y \leq 1, \quad-x+y \leq 2, \quad x+y \leq 6, \quad 2 x-3 y \leq 2, \quad$ and $x \geq 0, y \geq 0$
4. $M a x, z=-3 x+4 y+5 z$
subject to: $5 x+-4 y-8 z \leq 40,4 x+y+2 z \leq 40, x+4 y+z \leq 50,3 x+3 y+4 z \leq 60$, and $x \geq 0, y, z \geq 0 \geq 0$
5. $\operatorname{Max.z}=5 x_{1}+7 x_{2}$
subject to: $x_{1}+x_{2} \leq 4,3 x_{1}-8 x_{2} \leq 24,10 x_{1}+7 x_{2} \leq 35$ and $x_{1}, x_{2} \geq 0$
6. $\operatorname{Max.z}=3 x_{1}+2 x_{2}$ subject to: $2 x_{1}+x_{2} \leq 40, x_{1}+x_{2} \leq 24,2 x_{1}+3 x_{2} \leq 60$ and $x_{1}, x_{2} \geq 0$
7. $\operatorname{Max.z}=3 x_{1}+2 x_{2}$ subject to: $2 x_{1}+x_{2} \leq 5, x_{1}+x_{2} \leq 3$, and $x_{1}, x_{2} \geq 0$
8. $\operatorname{Max.z}=2 x_{1}+4 x_{2}$ subject to: $2 x_{1}+3 x_{2} \leq 48, x_{1}+3 x_{2} \leq 42, x_{1}+x_{2} \leq 21$ and $x_{1}, x_{2} \geq 0$
9. Max.z $=3 x_{1}+4 x_{2}$
subject to: $x_{1}-x_{2} \leq 1,-x_{1}+x_{2} \leq 2$, and $x_{1}, x_{2} \geq 0$
10. $\operatorname{Max.z}=3 x_{1}+2 x_{2}$
subject to: $2 x_{1}+x_{2} \leq 10, x_{1}+3 x_{2} \leq 6$ and $x_{1}, x_{2} \geq 0$
11. $\operatorname{Max.z}=2 x_{1}+5 x_{2}$
subject to: $x_{1}+3 x_{2} \leq 3,3 x_{1}+2 x_{2} \leq 6$, and $x_{1}, x_{2} \geq 0$
12. Max.z $=3 x_{1}+5 x_{2}$
subject to: $3 x_{1}+2 x_{2} \leq 18, x_{1} \leq 4, x_{2} \leq 6$ and $x_{1}, x_{2} \geq 0$
13. $\operatorname{Max.z}=2 x_{1}+x_{2}$
subject to: $x_{1}+2 x_{2} \leq 10, x_{1}+x_{2} \leq 6, x_{1}-x_{2} \leq 2, x_{1}-2 x_{2} \leq 1$ and $x_{1}, x_{2} \geq 0$
14. $\operatorname{Max} . z=8 x_{1}+19 x_{2}+7 x_{3}$
subject to: $3 x_{1}+4 x_{2}+x_{3} \leq 25, x_{1}+3 x_{2}+3 x_{3} \leq 50$ and $x_{1}, x_{2}, x_{3} \geq 0$
15. Max. $z=x_{1}+x_{2}+3 x_{3}$
subject to: $3 x_{1}+2 x_{2}+x_{3} \leq 3,2 x_{1}+x_{2}+2 x_{3} \leq 2$ and $x_{1}, x_{2}, x_{3} \geq 0$
16. $\operatorname{Max} . z=4 x_{1}+3 x_{2}+4 x_{3}+6 x_{4}$
subject to: $x_{1}+2 x_{2}+2 x_{3}+4 x_{4} \leq 80,2 x_{1}+2 x_{3}+x_{4} \leq 60,3 x_{1}+3 x_{2}+x_{3}+x_{4} \leq 80$ and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
17. $\operatorname{Max} . z=2 x_{1}+4 x_{2}+x_{3}+4 x_{4}$
subject to: $x_{1}+3 x_{2}+x_{4} \leq 4,2 x_{1}+x_{2} \leq 3, x_{2}+4 x_{3}+x_{4} \leq 3$ and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
18. $\operatorname{Max} . z=8 x_{1}+11 x_{2}$
subject to: $3 x_{1}+x_{2} \leq 7, x_{1}+3 x_{2} \leq 8$, and $x_{1}, x_{2} \geq 0$
II. Solve The following LP Problems by Two-Phase Method.
19. Max.z $=3 x_{1}-x_{2}$
subject to: $2 x_{1}+x_{2} \geq 2, x_{1}+3 x_{2} \leq 2, x_{2} \leq 4$ and $x_{1}, x_{2} \geq 0$
20. $\operatorname{Max.z}=5 x_{1}+8 x_{2}$
subject to: $3 x_{1}+2 x_{2} \geq 3, x_{1}+4 x_{2} \geq 4, x_{1}+x_{2} \leq 5$ and $x_{1}, x_{2} \geq 0$
21. $M x z=3 x_{1}+2 x_{2}+x_{3}+4 x_{4}$
subject to: $4 x_{1}+5 x_{2}+x_{3}-3 x_{4}=52 x_{1}-3 x_{2}-4 x_{3}+5 x_{4}=7, x_{1}+4 x_{2}+25 x_{3}-4 x_{4}=6$ and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
22. $M x z=2 x_{1}+3 x_{2}+5 x_{3}$
shbject to: $3 x_{1}+10 x_{2}+5 x_{3} \leq 15 x_{1}+2 x_{2}+x_{1} \geq 4,33 x_{1}-10 x_{2}+9 x_{3} \leq 33$ and $x_{1}, x_{2}, x_{3} \geq 0$
III. Solve The following LP Problems (Use Artificial Variables if necessary).
23. $\operatorname{Max}: z=5 x_{1}+3 x_{2}$
subject to: $x_{1}+x_{2} \leq 2,5 x_{1}+2 x_{2} \leq 10,3 x_{1}+8 x_{2} \leq 12$, and $x_{1}, x_{2} \geq 0$
24. $\operatorname{Max}: z=3 x_{1}+5 x_{2}$
subject to: $x_{1}+x_{3}=4, x_{2}+x_{4}=6,3 x_{1}+2 x_{2}+x_{5}=12$ and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$
25. Max $z=2 x_{1}+3 x_{2}+10 x_{3}$
subject to: $x_{1}+2 x_{3}=1, x_{2}+x_{3}=1$, and $x_{1}, x_{2}, x_{3} \geq 0$
26. Max. $z=2 x_{1}+3 x_{2}+10 x_{3}$
subject to: $x_{1}+2 x_{3}=0, x_{2}+x_{3}=1$, and $x_{1}, x_{2}, x_{3} \geq 0$
27. a) Compute all the basic feasible solution of the LP problem : Max. $z=2 x_{1}+3 x_{2}+4 x_{3}-7 x_{4}$, Subjectsto: $2 x_{1}+3 x_{2}-x_{3}+4 x_{4}=8 ; x_{1}-2 x_{2}+6 x_{3}-7 x_{4}=-3$, and choose that one which maximizes z.
b) Find the maximum and minimum value of :
$z=5 x_{1}+3 x_{2}$, Subjectsto: $x_{1}+x_{2} \leq 6 ; 2 x_{1}+3 x_{2} \geq 3,0 \leq x_{1} \geq 3,0 \leq x_{2} \geq 3$.

WORKSHEET: 5 (Dual Simplex Algorithm). OPTIMIZATION THEORY I.

I. Obtain The Dual Of The Following LP Problems.

1. Max.z $=3 x_{1}+4 x_{2} ;$ subject to: $2 x_{1}+6 x_{2} \leq 10,5 x_{1}+2 x_{2} \geq 20$, and $x_{1}, x_{2} \geq 0$

2 Max. $z=x_{1}-x_{2}+3 x_{3} ;$ subjecto: $x_{1}+x_{2}+x_{3} \leq 10,2 x_{1}-x_{3} \leq 2,2 x_{1}-2 x_{2}+3 x_{3} \leq 6$ and $x_{1}, x_{2}, x_{3} \geq 0$
3. $M n z=7 x_{1}+3 x_{2}+8 x_{3}$
subject to: $8 x_{1}+x_{2}+x_{3} \geq 3,3 x_{1}+6 x_{2}+4 x_{3} \geq 4,4 x_{1}+x_{2}+5 x_{3} \geq 1, x_{1}+5 x_{2}+2 x_{3} \geq 7$ and $x_{1}, x_{2}, x_{3} \geq 0$
II. Use Duality In Obtaining An Optimal Solution, if any for the following LP Problems.
4. Max.z $=8 x_{1}+6 x_{2}$; subject to: $x_{1}-x_{2} \leq \frac{3}{5}, x_{1}-x_{2} \geq 2$, and $x_{1}, x_{2} \geq 0$
5. Max.z $=2 x_{1}+x_{2} ;$ subject to: $x_{1}+x_{2} \geq 2, x_{1}+3 x_{2} \leq 3$, and $x_{1}, x_{2} \geq 0$
6. Min. $z=-2 x_{1}+3 x_{2}+4 x_{3}$;

$$
\text { subject to: }-2 x_{1}+x_{2} \geq 3,-x_{1}+3 x_{2}+x_{3} \geq-1 \text {, and } x_{1}, x_{2}, x_{3} \geq 0
$$

III. Use Dual Simplex Method To Solve The Following LP Problems.
7. Max. $z=-2 x_{1}-2 x_{2}-4 x_{3} ;$ subject to: $2 x_{1}+3 x_{2}+5 x_{3} \geq 2,3 x_{1}+x_{2}+7 x_{3} \leq 3$ and $x_{1}, x_{2}, x_{3} \geq 0$
8. Mn. $z=80 x_{1}+60 x_{2}+80 x_{3}$
subject to: $x_{1}+2 x_{2}+3 x_{3} \geq 4,2 x_{1}+3 x_{3} \geq 3,2 x_{1}+2 x_{2}+x_{3} \geq 4,4 x_{1}+x_{2}+x_{3} \geq 6$ and $x_{1}, x_{2}, x_{3} \geq 0$
9. Max. $z=-3 x_{1}-2 x_{2} ;$ subjectto: $x_{1}+x_{2} \geq 1, x_{1}+x_{2} \leq 7, x_{1}+2 x_{2} \leq 10, x_{2} \leq 3$ and $x_{1}, x_{2} \geq 0$
10. Min. $z=6 x_{1}+x_{2} ;$ subject to: $2 x_{1}+x_{2} \geq 3, x_{1}-x_{2} \geq 0$ and $x_{1}, x_{2} \geq 0$
11. Mniz $=x_{1}+x_{2}$; subject to: $2 x_{1}+x_{2} \geq 2,-x_{1}-x_{2} \geq 1$ and $x_{1}, x_{2} \geq 0$

12 Mn $z=3 x_{1}+2 x_{2}+x_{3}+x_{4}$
subject to: $2 x_{1}+4 x_{2}+5 x_{3}+x_{4} \geq 103 x_{1}-x_{2}+7 x_{3}-2 x_{4} \geq 2,5 x_{1}+2 x_{2}+x_{3}+6 x_{4} \geq 15$ and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$
13. Max: $z=-4 x_{1}-6 x_{2}-18 x_{3}$; subject to: $x_{1}+3 x_{3} \geq 3, x_{2}+2 x_{3} \geq 5$ and $x_{1}, x_{2}, x_{3} \geq 0$
14. Mn. $z=2 x_{1}+2 x_{2}$; subject to: $x_{1}+2 x_{2} \geq 1,2 x_{1}+x_{2} \geq 1, x_{1} \geq 0$ and $x_{2} \geq 0$

WORKSHEET: 6 (Sensitivity Analysis). optimization theory I.

1. In a LPP, Max. $z=3 x_{1}+5 x_{2}$, Subject to: $x_{1}+x_{2} \leq 1,2 x_{1}+3 x_{2} \leq 1$ and $x_{1}, x_{2} \geq 0$ obtain the variation in c_{j} which are permitted without changing the optimal solution.

2 Given a LPP. Mxx. $z=-x_{2}+3 x_{3}-2 x_{5}$
Subject to: $3 x_{2}-x_{3}+2 x_{5} \leq 7,-2 x_{2}+4 x_{3} \leq 12,-4 x_{2}+3 x_{3}+8 x_{5} \leq 10$ and $x_{2}, x_{3}, x_{5} \geq 0$ The optimal table of this problemis:-

BasicVar.		$C_{j} \rightarrow 0$			3	0	-2	0	
	C_{B}	X_{B}	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X	
X_{2}	-1	4	$\frac{2}{5}$	1	0	$\frac{1}{10}$	$\frac{4}{5}$	0	
X_{3}	-3	5	$\frac{1}{5}$	0	1	$\frac{3}{10}$	$\frac{2}{5}$	0	
X_{6}	0	11	1	0	0	$\frac{-1}{2}$	10	1	
	$z=11$		$\frac{1}{5}$	0	0	$\frac{4}{5}$	$\frac{12}{5}$		$\leftarrow \Delta_{j}$

a) Formulate the dual problemfor this primal problem
b) What are optimal valuesof dual variables?
c) How wich c_{5} be decreased before x_{2} goes into basis?
d) Howmich can the 7 infirstconstraint be increased before the basis would change?
3. Given a LPP. Max. $z=10 x_{1}+3 x_{2}+6 x_{3}+5 x_{4}$

Subject to: $x_{1}+2 x_{2}+x_{4} \leq 6,3 x_{1}+2 x_{3} \leq 5, x_{2}+4 x_{3}+5 x_{4} \leq 3$ and $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0$
a) Determine an optimum solution to the problem
b) If element a_{11} is changed to $a_{11}+\Delta a_{11}$, determine the limits fordescrite change Δa_{11} so as to maintain the optimality of the current optimum solution.

