By: Habtamu Garoma 3/27/2017

For: Second Year Mathematics Student By:Habtamu Garoma

Email address: habte200@gmail.com

Numerical analysis

- is the branch of mathematics that is used to find approximations to difficult problems such as:
- finding the roots of non-linear equations
- integration involving complex expressions
- solving differential equations for which analytical solutions do not exist

It is applied to a wide variety of disciplines such as :

-business

- -all fields of engineering
- -computer science
- -education
- -geology

-meteorology and others.

It is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics.

By: Habtamu Garoma 3/27/2017

Chapter 1 Basic concepts in error estimation

- Modeling Error
 - -Blunders
 - -Formulation Error
 - -Data uncertainty
- Numerical Error
 - -Rounding Error
 - -Truncation Error

Round off Error

- which result when numbers having limited significant figures are used to represent exact numbers.
 - Caused by representing a number approximately.

Example:
$$\frac{1}{3} \approx 0.333333$$
 $\sqrt{2} \approx 1.4142...$

TRUNCATION EBBOR

- Error caused by truncating or approximating a mathematical procedure.
 - **Example of Truncation Error**
- 1. Taking only a few terms of a Maclaurin series to e^x $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

If only 3 terms are used,

Truncation Error = $e^x - \left(1 + x + \frac{x^2}{2!}\right)$

2. Using a finite Δx to approximate f'(x) $f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$

Figure 1. Approximate derivative using finite Δx

× Using finite rectangles to approximate an integral.

Example 1: Maclaurin series

Calculate the value of $e^{1.2}$ with an absolute relative approximate error of less than 1%.

$$e^{1.2} = 1 + 1.2 + \frac{1.2^2}{2!} + \frac{1.2^3}{3!} + \dots$$

п			
1	1		
2	2.2	1.2	54.545
3	2.92	0.72	24.658
4	3.208	0.288	8.9776
5	3.2944	0.0864	2.6226
6	3.3151	0.020736	0.62550

6 terms are required. How many are required to get at least 1 significant digit correct in your answer?

Example 2: Diffrentiation Find f'(3) for $f(x) = x^2$ using $f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$ and $\Delta x = 0.2$

$$f'(3) = \frac{f(3+0.2) - f(3)}{0.2} = \frac{f(3.2) - f(3)}{0.2} = \frac{3.2^2 - 3^2}{0.2} = \frac{10.24 - 9}{0.2}$$
$$= \frac{1.24}{0.2} = 6.2$$
The actual value is
$$f'(x) = 2x, \quad f'(3) = 2 \times 3 = 6$$

Truncation error is then,6-6.2 = -0.2Can you find the truncation error with $\Delta x = 0.1$?

Example 3: Integrations

Use two rectangles of equal width to approximate the area under the curve for $f(x) = x^2$ over the interval [3,9]

INTEGRATION EXAMPLE (CONT'D...)

× Choosing a width of 3, we have

$$\int_{3} x^{2} dx = (x^{2}) \Big|_{x=3} (6-3) + (x^{2}) \Big|_{x=6} (9-6) = (3^{2}) (3) + (6^{2}) (3)$$

Actual value is given by

$$\int_{3}^{9} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{3}^{9} = \left[\frac{9^{3}-3^{3}}{3}\right] = 234$$

Truncation error is then
 $234 - 135 = 99$

Can you find the truncation error with 4 rectangles?

APPROXIMATIONS AND ROUND-OFF ERRORS

- For many engineering problems, we cannot obtain analytical solutions.
- Numerical methods yield approximate results, results that are close to the exact analytical solution. We cannot exactly compute the errors associated with numerical methods.
 - Only rarely given data are exact, since they originate from measurements. Therefore there is probably error in the input information.

CONT'D

- Algorithm itself usually introduces errors as well, e.g., unavoidable round-offs, etc
- The output information will then contain error from both of these sources.
- * How confident we are in our approximate result?

The question is *"how much error is present in our calculation and is it tolerable?"*

- ★ Accuracy: How close is a computed or measured value to the true value
- Precision (or *reproducibility*): How close is a computed or measured value to previously computed or measured values.
- Inaccuracy (or *bias*): A systematic deviation from the actual value.

Imprecision (or uncertainty): Magnitude of scatter.

SIGNIFICANT FIGURES

- Number of significant figures indicates precision. Significant digits of a number are those that can be *used* with *confidence*.
 e.g., the number of certain digits plus one estimated digit.
 - 53,8<u>00</u> How many significant figures?
 - 5.38 x 10435.380 x 10445.3800 x 1045

By: Habtamu Garoma 3/27/2017

Zeros are sometimes used to locate the decimal point not significant figures.

0.00001753 4 0.0001753 4 0.001753 4 Error Definitions True Value = Approximation + Error

E_t = True value – Approximation (+/-) True error

True fractional relative error = $\frac{\text{true error}}{\text{true value}}$

True percent relative error, $\varepsilon_t = \frac{\text{true error}}{\text{true value}} \times 100\%$

- For numerical methods, the true value will be known only when we deal with functions that can be solved analytically (simple systems).
- In real world applications, we usually not know the answer a priori. Then

$\varepsilon_{a} = \frac{\text{Approximate error}}{\text{Approximation}} \times 100\%$

Iterative Approach, example Newton's method

$\varepsilon_{a} = \frac{\text{Current approximation} - \text{Previous approximation}}{\text{Current approximation}} \times 100\%$

× Use absolute value. × Computations are repeated until stopping criterion is satisfied

EalEs

Pre-specified % tolerance based on the knowledge of your solution

× If the following criterion is met

$$\varepsilon_{\rm s} = (0.5 \times 10^{(2-n)})\%$$

you can be sure that the result is correct to at least <u>n significant</u> figures.

a) Inaccurate and imprecise; (*b*) accurate and imprecise; (*c*) inaccurate and precise; (*d*) accurate and precise

Absolute and Relative Errors

Absolute Error (E_a)

Absolute error= |*Exact value* – *Approximate value*|

Relative Errors (E_r)

$$E_{r} = \frac{|Exact \ value - Approximate \ value|}{|Exact \ value|} \ x \ 100\%$$

 $\varepsilon_a = \frac{|\text{current approximation} - \text{previous approximation}|}{\text{current approximation}} X 100\%$

Round of Errors

- Round-off errors: originate from the fact that computers retain only a fixed number of significant figures during a calculation. Numbers such as π , e, or $\sqrt{7}$ cannot be expressed by a fixed number of significant figures.
 - Therefore, they cannot be represented exactly by the computer.

How the (*a*) decimal (base 10) and the (*b*) binary (base 2) systems work. In (*b*), the binary number 10101101 is equivalent to the decimal number 173.

CHOPPING

Example: π =3.14159265358 to be stored on a base-10 system carrying 7 significant digits. π =3.141592 chopping error ϵ_{t} =0.00000065 If rounded π =3.141593 ϵ_{t} =0.00000035

Some machines use chopping, because rounding adds to the computational overhead. Since number of significant figures is large enough, resulting chopping error is negligible.

Propagation of Error

- The purpose of this section is to study how errors in numbers can propagate through mathematical functions.
- If we multiply two numbers that have errors, we would like to estimate the error in the product.
 - * Functions of a Single Variable
 - * Functions of More than One Variable

- Suppose that we have a function f (x) that is dependent on a single independent variable x.
- \Box Assume that *x* is an approximation of x.
- to assess the effect of the discrepancy between x and \tilde{x} on the value of the function.

We would like to estimate by

$$\Delta f(x) = \left| f(x) - f(x) \right|$$

By: Habtamu Garoma 3/27/2017

FIGURE 4.7

Graphical depiction of first order error propagation

Example: Given a value of x = 2.5 with an error of $\triangle x = 0.01$, estimate the resulting error in the function $f(x) = x^3$. п Ans: $f(2.5) = 15.625 \pm 0.1875$ Functions of More than One Variable For *n* independent variables x_1, x_2, \dots, x_n having errors $\Delta x_1, \Delta x_2, ..., \Delta x_n$ the following general relationship holds: $\Delta f(x_1, x_2, \dots, x_n) = \left| \frac{\partial f}{\partial x_1} \right| \Delta x_1 + \left| \frac{\partial f}{\partial x_2} \right| \Delta x_2 + \dots + \left| \frac{\partial f}{\partial x_n} \right| \Delta x_n$

EXAMPLE 1

Find the bounds for the propagation in adding two numbers. For example if one is calculating X + Y where

 $X = 1.5 \pm 0.05$ $Y = 3.4 \pm 0.04$

Solution

Maximum possible value of X = 1.55 and Y = 3.44

Maximum possible value of X + Y = 1.55 + 3.44 = 4.99

Minimum possible value of X = 1.45 and Y = 3.36.

Minimum possible value of X + Y = 1.45 + 3.36 = 4.81

Hence

 $4.81 \le X + Y \le 4.99.$

The strain in an axial member of a square cross-section is given by $\in = \frac{F}{h^2 E}$

Given $F = 72 \pm 0.9 \text{ N}$ $h = 4 \pm 0.1 \text{ mm}$ $E = 70 \pm 1.5 \text{ GPa}$

Find the maximum possible error in the measured strain.

Solution:

$$\begin{aligned} &\in = \frac{72}{(4 \times 10^{-3})^2 (70 \times 10^9)} \\ &= 64.286 \times 10^{-6} = 64.286 \,\mu \end{aligned} \\ \Delta &\in = \left| \frac{\partial \in}{\partial F} \Delta F \right| + \left| \frac{\partial \in}{\partial h} \Delta h \right| + \left| \frac{\partial \in}{\partial E} \Delta E \right| \end{aligned}$$

$$\frac{\partial \in}{\partial F} = \frac{1}{h^2 E} \qquad \frac{\partial \in}{\partial h} = -\frac{2F}{h^3 E} \qquad \frac{\partial \in}{\partial E} = -\frac{F}{h^2 E^2}$$

Thus

$$\begin{aligned} JE &= \left| \frac{1}{h^2 E} \Delta F \right| + \left| \frac{2F}{h^3 E} \Delta h \right| + \left| \frac{F}{h^2 E^2} \Delta E \right| \\ &= \left| \frac{1}{(4 \times 10^{-3})^2 (70 \times 10^9)} \times 0.9 \right| + \left| \frac{2 \times 72}{(4 \times 10^{-3})^3 (70 \times 10^9)} \times 0.0001 \right| \\ &+ \left| \frac{72}{(4 \times 10^{-3})^2 (70 \times 10^9)^2} \times 1.5 \times 10^9 \right| \end{aligned}$$

 $= 5.3955 \mu$

Hence

 $\in = (64.286 \,\mu \pm 5.3955 \,\mu)$

EXAMPLE 3

Subtraction of numbers that are nearly equal can create unwanted inaccuracies. Using the formula for error propagation, show that this is true.

Solution: Let z = x - y

Then $\begin{aligned} |\Delta z| &= \left| \frac{\partial z}{\partial x} \Delta x \right| + \left| \frac{\partial z}{\partial y} \Delta y \right| \\ &= \left| (1) \Delta x \right| + \left| (-1) \Delta y \right| \\ &= \left| \Delta x \right| + \left| \Delta y \right| \\ \end{aligned}$ So the relative change is $\begin{aligned} \left| \frac{\Delta z}{z} \right| &= \frac{\left| \Delta x \right| + \left| \Delta y \right|}{\left| x - y \right|} \end{aligned}$

For example if $x = 2 \pm 0.001$ $y = 2.003 \pm 0.001$ $\left| \Delta z \right| = \frac{|0.001| + |0.001|}{|0.001|}$

= 0.6667= 66.67%

Numerical stability

- × refers to the accuracy of an algorithm
 - in the presence of rounding errors
- an algorithm is unstable if rounding errors cause large errors in the result
 rigorous definition depends on what
 - 'accurate' and 'large error' mean

