NUMERICAL ANALYSIS I (MATH 2061)

For: Second Year Mathematics Student By:Habtamu Garoma

Email address: habte200@gmail.com

Numerical analysis

is the branch of mathematics that is used to
find approximations to difficult problems such as:
finding the roots of non-linear equations integration involving complex expressions
solving differential equations for which analytical solutions do not exist

It is applied to a wide variety of disciplines such as:
-business
-all fields of engineering
-computer science
-education
-geology
-meteorology and others.
It is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics.

Chapter 1

Basic concepts in error estimation

Source of Error

\square Modeling Error

-Blunders
-Formulation Error
-Data uncertainty

Numerical Error

-Rounding Error
-Truncation Error

Round off Error

* which result when numbers having limited significant figures are used to represent exact numbers.
Caused by representing a number approximately.

Example: $\frac{1}{3} \cong 0.333333 \quad \sqrt{2} \cong 1.4142 \ldots$

TRUNCATION ERROR

× Error caused by truncating or approximating a mathematical procedure.
Example of Truncation Error

1. Taking only a few terms of a

Maclaurin series to e^{x}
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots \ldots \ldots \ldots \ldots$.

If only 3 terms are used,

Truncation Error $=e^{x}-\left(1+x+\frac{x^{2}}{2!}\right)$
2. Using a finite Δx to approximate $f^{\prime}(x)$

$$
f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Figure 1. Approximate derivative using finite Δx

\times Using finite rectangles to approximate an integral.

Example 1: Maclaurin series

Calculate the value of $e^{1.2}$ with an absolute relative approximate error of less than 1%.

$$
e^{1.2}=1+1.2+\frac{1.2^{2}}{2!}+\frac{1.2^{3}}{3!}+
$$

\boldsymbol{n}			
1	1	-	
2	2.2	1.2	54.545
3	2.92	0.72	24.658
4	3.208	0.288	8.9776
5	3.2944	0.0864	2.6226
6	3.3151	0.020736	0.62550

6 terms are required. How many are required to get at least 1 significant digit correct in your answer?

Example 2: Diffrentiation

Find $f^{\prime}(3) \quad$ forf $(x)=x^{2} \quad$ using $f^{\prime}(x) \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$ and $\Delta x=0.2$
$f^{\prime}(3)=\frac{f(3+0.2)-f(3)}{0.2}=\frac{f(3.2)-f(3)}{0.2}=\frac{3.2^{2}-3^{2}}{0.2}=\frac{10.24-9}{0.2}$
$=\frac{1.24}{0.2}=6.2$
The actual value is
$f^{\prime}(x)=2 x, \quad f^{\prime}(3)=2 \times 3=6$
Truncation error is then, $6-6.2=-0.2$
Can you find the truncation error with
$\Delta x=0.1 ?$

Example 3: Integrations

 Use two rectangles of equal width to approximate the area under the curve for $f(x)=x^{2}$ over the interval $[3,9]$

INTEGRATION EXAMPLE (CONT’D...)

\times Choosing a width of 3 , we have

$$
\begin{aligned}
& \int_{3}^{8} x^{2} d x=\left.\left(x^{2}\right)\right|_{x=3}(6-3)+\left.\left(x^{2}\right)\right|_{x=6}(9-6)=\left(3^{2}\right) 3+\left(6^{2}\right) 3 \\
&=27+108=135 .
\end{aligned}
$$

Actual value is given by

$$
\int_{3}^{2} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{3}^{9}=\left[\frac{9^{3}-3^{3}}{3}\right]=234
$$

Truncation error is then
$234-135=99$
Can you find the truncation error with 4 rectangles?

APPROXIMATIONS AND ROUND-OFF ERRORS

* For many engineering problems, we cannot obtain analytical solutions.
\times Numerical methods yield approximate results, results that are close to the exact analytical solution. We cannot exactly compute the errors associated with numerical methods.

Only rarely given data are exact, since they originate from measurements. Therefore there is probably error in the input information.

CONT'D

- Algorithm itself usually introduces errors as well, e.g., unavoidable round-offs, etc

The output information will then contain error from both of these sources.

How confident we are in our approximate result?

The question is "how much error is present in our calculation and is it tolerable?"
\times Accuracy: How close is a computed or measured value to the true value
\times Precision (or reproducibility): How close is a computed or measured value to previously computed or measured values.

Inaccuracy (or bias): A systematic deviation from the actual value.

Imprecision (or uncertainty): Magnitude of

 scatter.

SIGNIFICANT FIGURES

Number of significant figures indicates precision. Significant digits of a number are those that can be used with confidence. e.g., the number of certain digits plus one estimated digit.
53,800 How many significant figures?

$$
\begin{array}{ll}
5.38 \times 10^{4} & 3 \\
5.380 \times 10^{4} & 4 \\
5.3800 \times 10^{4} & 5
\end{array}
$$

Zeros are sometimes used to locate the decimal point not significant figures.

0.00001753
0.0001753
0.001753

4
4
4

Error Definitions

True Value = Approximation + Error $\mathrm{E}_{\mathrm{t}}=$ True value - Approximation ($+/-$) True error
True fractional relative error $=\frac{\text { true error }}{\text { true value }}$

True percent relative error, $\varepsilon_{\mathrm{t}}=\frac{\text { true error }}{} \times 100 \%$ true value

- For numerical methods, the true value will be known only when we deal with functions that can be solved analytically (simple systems).
- In real world applications, we usually not know the answer a priori. Then

CON'D

$\varepsilon_{\mathrm{a}}=\frac{\text { Approximat e error }}{\text { Approximation }} \times 100 \%$
Iterative Approach, example Newton's method
$\varepsilon_{\mathrm{a}}=\frac{\text { Current approximation }- \text { Previous approximation }}{\text { Current approximation }} \times 100 \%$
Use absolute value.
Computations are repeated until stopping criterion is satisfied

CONT'D...

x If the following criterion is met

$$
\varepsilon_{\mathrm{s}}=\left(0.5 \times 10^{(2-\mathrm{n})}\right) \%
$$

you can be sure that the result is correct to at least \underline{n} significant figures.
a) Inaccurate and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d) accurate and precise

Absolute and Relative Errors

Absolute Error (E_{a})

Absolute error $=\mid$ Exact value - Approximate value \mid

Relative Errors $\left(E_{r}\right)$

$$
\begin{gathered}
E_{r}=\frac{\mid \text { Exact value -Approximate value } \mid}{\mid \text { Exact value } \mid} \times 100 \% \\
\varepsilon_{a}=\frac{\mid \text { current approximation - previous approximation } \mid}{\text { current approximation }} \times 100 \%
\end{gathered}
$$

Round of Errors

Round-off errors: originate from the fact that computers retain only a fixed number of significant figures during a calculation.

Numbers such as π, e, or $\sqrt{7}$ cannot be expressed by a fixed number of significant figures.

Therefore, they cannot be represented exactly by the computer.

How the (a) decimal (base 10) and the (b) binary (base 2) systems work. In (b), the binary number 10101101 is equivalent to the decimal number 173.

Sign
FIGURE
The representation of the decimal integer -173 on a 16 -bit computer using the signed magnitude method.

Signed

Mantissa

Sian

CHOPPING

Example:

$\pi=3.14159265358$ to be stored on a base-10 system carrying 7 significant digits.
$\pi=3.141592 \quad$ chopping error $\varepsilon_{\mathrm{t}}=0.00000065$
If rounded
$\pi=3.141593$ $\varepsilon_{\mathrm{t}}=0.00000035$

Some machines use chopping, because rounding adds to the computational overhead. Since number of significant figures is large enough, resulting chopping error is negligible.

Propagation of Error

The purpose of this section is to study how errors in numbers can propagate through mathematical functions.

If we multiply two numbers that have errors, we would like to estimate the error in the product.

* Functions of a Single Variable
* Functions of More than One Variable
- Suppose that we have a function $f(x)$ that is dependent on a single independent variable x .
\square Assume that x is an approximation of x.
to assess the effect of the discrepancy between x and \tilde{x} on the value of the function.

We would like to estimate by

$$
\Delta f(x)=|f(x)-f(x)|
$$

By expansion of Taylor's series, we obtain:

$$
\Delta f(x)=\left|f^{\prime}(x)\right| \Delta x \text {, where } \Delta x=|x-x|
$$

FIGURE 4.7
Graphical depiction of first order error propagation

Example: Given a value of $x=2.5$ with an error of $\Delta x=0.01$, estimate the resulting error in the function $f(x)=x^{3}$.

Ans: $\mathrm{f}(2.5)=15.625 \pm 0.1875$
Functions of More than One Variable
For n independent variables $x_{1}, x_{2}, \ldots, x_{n}$ having errors $\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{n}$ the following general relationship holds:

$$
\Delta f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left|\frac{\partial f}{\partial x_{1}}\right| \Delta x_{1}+\left|\frac{\partial f}{\partial x_{2}}\right| \Delta x_{2}+\ldots+\left|\frac{\partial f}{\partial x_{n}}\right| \Delta x_{n}
$$

EXAMPLE 1

Find the bounds for the propagation in adding two numbers. For example if one is calculating $X+Y$ where

$$
\begin{aligned}
& X=1.5 \pm 0.05 \\
& Y=3.4 \pm 0.04
\end{aligned}
$$

Solution
Maximum possible value of $X=1.55$ and $Y=3.44$
Maximum possible value of $X+Y=1.55+3.44=4.99$
Minimum possible value of $X=1.45$ and $Y=3.36$.
Minimum possible value of $X+Y=1.45+3.36=4.81$
Hence

$$
4.81 \leq X+Y \leq 4.99
$$

The strain in an axial member of a square cross-section is given by $\in=\frac{F}{h^{2} E}$

Given

$$
\begin{aligned}
& F=72 \pm 0.9 \mathrm{~N} \\
& h=4 \pm 0.1 \mathrm{~mm} \\
& E=70 \pm 1.5 \mathrm{GPa}
\end{aligned}
$$

Find the maximum possible error in the measured strain.

Solution:

$$
\begin{aligned}
\epsilon & =\frac{72}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)} \\
& =64.286 \times 10^{-6} \quad=64.286 \mu \\
\Delta \in & =\left|\frac{\partial \epsilon}{\partial F} \Delta F\right|+\left|\frac{\partial \epsilon}{\partial h} \Delta h\right|+\left|\frac{\partial \epsilon}{\partial E} \Delta E\right| \\
& \frac{\partial \epsilon}{\partial F}=\frac{1}{h^{2} E} \quad \frac{\partial \epsilon}{\partial h}=-\frac{2 F}{h^{3} E} \quad \frac{\partial \epsilon}{\partial E}=-\frac{F}{h^{2} E^{2}}
\end{aligned}
$$

CONT' ${ }^{\prime}$. .

Thus

$$
\begin{aligned}
\Delta E= & \left|\frac{1}{h^{2} E} \Delta F\right|+\left|\frac{2 F}{h^{3} E} \Delta h\right|+\left|\frac{F}{h^{2} E^{2}} \Delta E\right| \\
= & \left|\frac{1}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)} \times 0.9\right|+\left|\frac{2 \times 72}{\left(4 \times 10^{-3}\right)^{3}\left(70 \times 10^{9}\right)} \times 0.0001\right| \\
& +\left|\frac{72}{\left(4 \times 10^{-3}\right)^{2}\left(70 \times 10^{9}\right)^{2}} \times 1.5 \times 10^{9}\right| \\
= & 5.3955 \mu
\end{aligned}
$$

Hence

$$
\epsilon=(64.286 \mu \pm 5.3955 \mu)
$$

EXAMPLE 3

Subtraction of numbers that are nearly equal can create unwanted inaccuracies. Using the formula for error propagation, show that this is true.

Solution: Let $z=x-y$
Then

$$
\begin{aligned}
|\Delta z| & =\left|\frac{\partial z}{\partial x} \Delta x\right|+\left|\frac{\partial z}{\partial y} \Delta y\right| \\
& =|(1) \Delta x|+|(-1) \Delta y| \\
& =|\Delta x|+|\Delta y|
\end{aligned}
$$

So the relative change is

$$
\left|\frac{\Delta z}{z}\right|=\frac{|\Delta x|+|\Delta y|}{|x-y|}
$$

CONT'D

For example if $\quad x=2 \pm 0.001$

$$
\begin{aligned}
y & =2.003 \pm 0.001 \\
\left|\frac{\Delta z}{z}\right| & =\frac{|0.001|+|0.001|}{|2-2.003|} \\
& =0.6667 \\
& =66.67 \%
\end{aligned}
$$

Numerical stability

\times refers to the accuracy of an algorithm in the presence of rounding errors

- an algorithm is unstable if rounding errors cause large errors in the result
rigorous definition depends on what
'accurate' and 'large error' mean

THE END

