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7.1 Classification of Similarities

The image of a triangle as seen through a “magnifying glass” is similar to

the original triangle. For instance, the transformation (x, y) �→ (2x, 2y) is
a “magnifying glass” for the Euclidean plane, multiplying all distances by 2.

(We shall call such a mapping a stretch.)

Some definitions

We make the following definition.

7.1.1 Definition. If C is a point and r > 0, then a stretch (or homo-

thety) of ratio r about C is the transformation that fixes C and otherwise

sends point P to point P �, where P � is the unique point on CP→ such that

CP � = rCP (or, alternatively, where P � is the unique point on
←→
CP such that

CP � = rCP ).

We say that the point C is the centre and the (positive) factor r is the

magnification ratio of the stretch. A stretch is also called a homothetic

transformation.

Note : We allow the identity transformation to be a stretch (of ratio 1 and any

centre). Observe, however, that we allow magnification ratios r ≤ 1, which is in
slight conflict with the everyday meaning of the word “magnification”.

Exercise 106 Verify that the set of all stretches with a given centre C forms a

commutative group.

There is nothing to stop us from allowing a negative ratio in the definition

of a stretch. In this case, point P is taken to a point P � lying on
←→
CP but

on the other side of C from where P is located; that is, CP � = rCP . Thus

such a transformation is the product (in either order) of a stretch about C

and a halfturn about the centre. This motivates the following definition.
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7.1.2 Definition. A dilation about point C is a stretch about C or

else a stretch about C followed by a halfturn about C.

Other transformations can be obtained by composing a stretch with any

other transformation (e.g. an isometry). Two such special combinations will

be given a name.

7.1.3 Definition. A stretch reflection is a nonidentity stretch about

some point C followed by the reflection in some line through C.

7.1.4 Definition. A stretch rotation is a nonidentity stretch about some

point C followed by a nonidentity rotation about C.

Any of the above transformations are shape-preserving : they increase or

decrease all lengths in the same ratio but leave shapes unchanged. We make

the following definition.

7.1.5 Definition. If r > 0, then a similarity (or similitude) of ratio

r is a transformation α such that

P �Q� = rPQ for all points P and Q , where P � = α(P ) and Q� = α(Q) .

Since a similarity is a transformation that multiplies all distances by some

positive number, then the image of a triangle under a similarity is a triangle.

Exercise 107 Show that collinear points are mapped onto collinear points by a

similarity transformation.

Thus a similarity is a collineation. The following proposition is easy to

prove (and we shall leave it as an exercise).

7.1.6 Proposition. The following results hold.

(a) An isometry is a similarity.

(b) A similarity with two fixed points is an isometry.
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(c) A similarity with three noncollinear fixed points is the identity.

(d) A similarity is a collineation that preserves betweenness, midpoints,

segments, rays, triangles, angles, angle measure, and perpendicular-

ity.

(e) The product of a similarity of ratio r and a similarity of ratio s

is a similarity of ratio rs.

(f ) The similarities form a group Sim that contains the group of

Isom of all isometries.

Exercise 108 Prove the preceding proposition.

7.1.7 Proposition. If �ABC ∼ �A�B�C�, then there is a unique simi-
larity α such that

α(A) = A�, α(B) = B�, and α(C) = C�.

Proof : Suppose �ABC ∼ �A�B�C�. Let δ be the stretch about A such
that δ(B) = E with AE = A�B�. With F = δ(C), then �AEF ∼= �A�B�C�
by ASA. Since there is an isometry β such that β(A) = A�, β(E) = B�, and

β(F ) = C�, then βδ is a similarity taking A, B,C to A�, B�, C�, respectively.

If α is a similarity taking A, B,C to A�, B�, C�, respectively, then α−1(βδ)

fixes three noncollinear points and must be the identity. Therefore, α = βδ.

✷

Note : Generalizing from triangles to arbitrary sets of points, we say that (the

sets of points) S1 and S2 are similar provided there is a similarity α such that

α(S1) = S2.

What are the dilatations ?

Recall that a dilatation is a collineation α such that L � α(L) for every
line L and that the group H generated by the halfturns is contained in the
group D of all dilatations.



102 M2.1 - Transformation Geometry

7.1.8 Proposition. A dilation is a dilatation and a similarity.

Proof : Let α be a dilation. First suppose α is a stretch of ratio r about

point C. Transformation α fixes the lines through C. Suppose P, Q, R are

three collinear points on a line off C and have images P �, Q�, R�, respectively,

under α. Since

CP � = rCP , CQ� = rCQ , and CR� = rCR

it follows (from the theory of similar triangles) that
←→
P �Q� �

←→
PQ, that points

P �, Q�, R� are collinear, and that P �Q� = rPQ. Hence, a stretch is a dilatation

and a similarity. Since a halfturn is a dilatation and a similarity, then the

product of a stretch and a halfturn is both a dilatation and a similarity. ✷

7.1.9 Proposition. If
←→
AB �

←→
A�B�, then there is a unique dilatation δ such

that

δ(A) = A� and δ(B) = B�.

Proof : Suppose
←→
AB �

←→
A�B� and there is a dilatation δ such that δ(A) =

A� and δ(B) = B�. If point P is off
←→
AB, then δ(P ) is uniquely determined

as the intersection of the line through A� that is parallel to
←→
AP and the line

through B� that is parallel to
←→
BP . Then, if Q is on

←→
AB, point δ(Q) is

uniquely determined as the intersection of
←→
A�B� and the line through δ(P )

that is parallel to
←→
PQ. Since the image of each point is uniquely determined

by the images of A and B, then there is at most one dilatation δ taking A

to A� and B to B�. On the other hand, τA,A� followed by the dilation about

A� that takes τA,A�(B) to B� is a dilatation taking A to A� and B to B�.✷

7.1.10 Proposition. If point A is not fixed by dilatation δ, then line
←→
AA� is fixed by δ, where A� = δ(A).

Proof : If dilatation δ does not fix point A and if A� = δ(A), then δ(
←→
AA�)

must be the line through δ(A) that is parallel to
←→
AA�. ✷

We can now answer the question “What are the dilatations ?”
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7.1.11 Proposition. A dilatation is a translation or a dilation.

Proof : A nonidentity dilatation α must have some nonfixed line L. So L
and α(L) are distinct parallel lines. Any two points A and B on line L are
such that neither α(A) nor α(B) is on L. Let A� = α(A) and B� = α(B).
Now

←→
AB and

←→
A�B� are distinct parallel lines. If

←→
AA� �

←→
BB�, then ✷AA�B�B

is a parallelogram, τA,A�(B) = B
�, and (Proposition 7.1.9) dilatation α

must be the translation τA,A� . However, suppose
←→
AA� ��

←→
BB�. Then the lines

←→
AA� and

←→
BB� are fixed (Proposition 7.1.10) and must intersect at some

fixed point C. Since
←→
AB is not fixed, then C is off both parallel lines

←→
AB and

←→
A�B� with C,A�, A collinear and C,B�, B collinear. So CA�/CA = CB�/CB.

Then there is a dilation δ about C such that δ(A) = A� and δ(B) = B�. (If

point C is between points A and A�, then δ is a stretch followed by σC ;

otherwise, δ is simply a stretch about C.) By the uniqueness of a dilatation

taking A to A� and B to B�, the dilatation α must be the translation τA,A�

or else the dilation δ. ✷

The classification theorem

7.1.12 Proposition. If α is a similarity and P is any point, then α =

βδ, where δ is a stretch about P and β is an isometry.

Proof : A similarity is just a stretch about some point P followed by an

isometry. Actually, the point P can be arbitrarily chosen as follows. If α is

a similarity of ratio r, let δ be the stretch of ratio r about P . Then δ−1 is

a stretch of ratio 1/r. So αδ−1 is an isometry and α = (αδ−1)δ. ✷

This important result gives us a feeling for the nature of the similarities.

We need only one more result on similarities before the Classification The-

orem. However, the proof uses a lemma about directed distance.

We suppose the lines in the plane are directed (in an arbitrary fashion)

and AB denotes the directed distance from A to B on line
←→
AB. For any
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points A and B, we have

AB = −BA and so AA = 0 .

Note : For distinct points A, B,C on line L the number AC/CB is independent
of the choice of positive direction on line L, as changing the positive direction would
change the sign of both numerator and denominator and leave the value of the fraction

itself unchanged.

Exercise 109 Show that the function

f : R \ {1} → R \ {−1}, x �→ x

1− x
is a bijection.

7.1.13 Lemma. Given the line
←→
AB, the function

�f :←→AB \{B} → R \ {−1}, X �→ AX/XB
is a bijection.

Proof : There is a one-to-one correspondence between points X ∈
←→
AB and

real numbers x ∈ R given by (the equation)

AX = xAB.

Hence we can identify any point X ∈
←→
AB, different from B, with its intrinsic

coordinate x ∈ R \ {1}. Then

XB = XA+ AB = (1− x)AB

and so

AX/XB =
x

1− x
= f(x).

It follows that the function

X �→ AX/XB

is a bijection. ✷
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7.1.14 Corollary. If point P ∈
←→
AB, different from B, then

AP/PB �= −1.

7.1.15 Corollary. If t �= −1, then there exists a unique point P ∈
←→
AB,

different from B, such that

AP/PB = t.

7.1.16 Corollary. Point P ∈
←→
AB is between A and B if and only if

AP/PB is positive.

7.1.17 Proposition. A similarity without a fixed point is an isometry.

Proof : The lemma above will now be used to prove that a similarity that

is not an isometry must have a fixed point. Suppose α is a similarity that is

not an isometry. We may suppose α is not a dilatation. (Why ?) So there is

a line L such that L� �� L where L� = α(L). Let L intersect L� at point A.
With A� = α(A), then A� is on L�. We suppose A� �= A. Let M be the line

through A� that is parallel to L. With M� = α(M), then M� � L�. Let M�

intersect M at point B. With B� = α(B), then B� is on M� and distinct

from A�. We suppose B� �= B. So

L� =
←→
AA� , M� =

←→
BB� , and

←→
AA� �

←→
BB� .

Now
←→
AB ��

←→
A�B� as otherwise A�B� = AB and α is an isometry. So

←→
AB and

←→
A�B� intersect at some point P off both parallel lines

←→
AA� and

←→
BB� with

P, A,B collinear and P, A�, B� collinear. So AP/PB = A�P/PB�. If α has

ratio r and P � = α(P ), then

AP/PB = rAP/rPB = A�P �/P �B�.

Hence, A�P/PB� = A�P �/P �B�. Point P is between A� and B� if and only

if P is between A and B since
←→
AA� �

←→
BB� , but P is between A and B if

and only if P � is between A� and B�. Hence, P is between A� and B� if
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and only if P � is between A� and B�. Therefore, by Lemma 7.1.13 (and its

corollaries),

A�P/PB� = A�P �/P �B� and P = P �.

So α(P ) = P , as desired. ✷

7.1.18 Theorem. (The Classification Theorem for Plane Similarities)

Each nonidentity similarity is exactly one of the following : isometry, stretch,

stretch rotation or a stretch reflection.

Proof : In order to classify the similarities, suppose α is a similarity that

is not an isometry. Then α has some fixed point C. So α = βδ where δ is

a stretch about C and where β is an isometry. Since β(C) = αδ−1(C) = C,

then β must be one of the identity ι, a rotation ρ about C, or a reflection

σC with C on C. Hence, α is one of δ, ρδ, or σCδ. We have proved the major
part of the result. There remains only the task of verifying the “exactly” in

the statement of the classification theorem; this is left as an exercise. ✷

Exercise 110 Finish the proof of the Classification Theorem (for similarities).

7.2 Equations for Similarities

The following technical result is easy to prove.

7.2.1 Proposition. Suppose α ∈ Sim. Then

(a) αγα−1 ∈ Isom if γ ∈ Isom.
(b) αδα−1 ∈D if δ ∈D.
(c) αηα−1 ∈ H if η ∈ H.
(d) ατα−1 ∈ T if τ ∈ T.
(e) ασPα

−1 = σα(P ).

(f ) ασLα−1 = σα(L).
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Exercise 111 Prove the preceding proposition.

In order to look at the dilatations a little more closely, a notation for the

dilation is introduced as follows. If a > 0, then δP,a is the stretch about P

of (magnification) ratio a and dilation δP,−a is defined by

δP,−a : = σP δP,a.

Multiplying both sides of this last equation by σP on the left, we have

σP δP,−a = δP,a. So

δP,−r = σP δP,r , r �= 0.

The number r is called the dilation ratio of dilation δP,r . There are two

special cases where a dilation is also an isometry :

δP,1 = ι and δP,−1 = σP .

Clearly, the ratio of δP,r is the absolute value |r| of the dilation ratio r. For
example, δP,−3 has ratio +3 but dilation ratio −3.

7.2.2 Proposition. If P is a point, then

δP,−r = σP δP,r , δP,1 = ι , δP,−1 = σP , δP,sδP,r = δP,rs (r, s �= 0).

If δP,r is a dilation and α is a similarity, then

αδP,rα
−1 = δα(P ),r.

Proof : From the special case

σP = δP,rσP δ
−1
P,r (see Proposition 7.2.1)

it follows

σP δP,r = δP,rσP

and then

δP,sδP,r = δP,rs (r, s �= 0).
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Thus,

δ−1P,r = δP,1/r , r �= 0.

If α is any similarity, then αδP,rα
−1 is a dilatation (Proposition 7.2.1)

fixing point α(P ) and has ratio |r|. Hence,

αδP,rα
−1 = δα(P ),s , where s = ±r.

The question is “Is r the dilation ratio of αδP,rα
−1 ?” With P � = α(P ) and

Q� = α(Q) for Q �= P , that the answer is “Yes” follows from the equivalence
of each of the following :

(1) r > 0.

(2) δP,r is a stretch.

(3) δP,r(Q) is on PQ
→.

(4) αδP,r(Q) is on P
�Q�→.

(5) αδP,rα−1(α(Q)) is on P �Q�→.

(6) δP,s(Q�) is on P �Q�→.

(7) δP,s is a stretch.

(8) s > 0.

Since s = ±r and both r and s have both the same sign, then r = s, as
desired. ✷

Note : If r �= 1, then the nonidentity dilation δP,r is said to have centre P .

Further results

Further results on the dilatations are more easily obtained by using coor-

dinates.
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7.2.3 Proposition. If P = (u, v), then (the dilation) δP,r has equations
x� = rx+ (1− r)u

y� = ry + (1− r)v.

Proof : Let O = (0, 0) be the origin of the plane. We clearly have

δO,r((x, y)) = (rx, ry) , r > 0

and this same equation must hold for negative r since σO((x, y)) = (−x,−y).
So δO,r has equations 

x� = rx

y� = ry

in any case. Now, suppose P = (u, v) and δP,r((x, y)) = (x�, y�). Then, from

the equations

δP,r = τO,P δO,rτ
−1
O,P = τO,PδO,rτP,O

we have

δP,r((x, y)) = (r(x− u) + u, r(y − v) + v) = (x�, y�).

Indeed,

(x, y) �→ (x− u, y− v) �→ (r(x− u), r(y− v)) �→ (r(x− u) + u, r(y − v) + v).

Hence δP,r has equations 
x� = rx+ (1− r)u

y� = ry + (1− r)v.
✷

This simple result has some interesting corollaries.
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7.2.4 Corollary. Given δA,1/r and δB,r, then for some point C

δB,rδA,1/r = τA,C .

7.2.5 Corollary. Given δA,r and δB,s with rs �= 1, then for some point
C

δB,sδA,r = δC,rs.

7.2.6 Corollary. Given τA,B and δA,r with r �= 1, then for some point
C

τA,BδA,r = δB,rτA,B = δC,r .

Exercise 112 In each case, work out an explicit expression for the point C (in

terms of A, B, r, and s, as may be the case).

Note : Although the coordinate proofs for the corollaries above are easy to give

and the content of the equations themselves is easy to understand, the visualization

is very hard, if not, in some sense, virtually impossible.

7.2.7 Proposition. A similarity (of ratio r) has equations of the form
x� = ax− by+ h

y� = ±(bx+ ay) + k
with r2 = a2 + b2 �= 0

and, conversely, equations of this form are those of a similarity.

Proof : A similarity is a stretch about the origin O followed by an isometry

(Proposition 7.1.12). From this fact and the equations for an isometry given

by Proposition 5.3.3, it follows that a similarity has equations of the form
x� = (r cosq)x− (r sin q)y+ h

y� = ±((r sin q)x+ (r cos q)y) + k
and, conversely, equations of this form are those of a similarity. With

a = r cos q and b = r sin q
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we get the desired result. ✷

7.2.8 Definition. A similarity α that is a stretch about some point P

followed by an even isometry is said to be direct.

7.2.9 Definition. A similarity α that is a stretch about some point P

followed by an odd isometry is said to be opposite.

From the equations for isometries and similarities it is evident that whether

a similarity is direct or opposite is independent of the point P above.

Note : In the equations in Proposition 7.2.7, the positive sign applies to direct

similarities and the negative sign applies to opposite similarities.

We have

7.2.10 Proposition. Every similarity is either direct or opposite, but not

both. The direct similarities form a group. The product of two opposite simi-

larities is direct. The product of a direct similarity and an opposite similarity

is an opposite similarity.

7.3 Exercises

Exercise 113 For what point P does a dilation about P have equations
x� = −2x+ 3

y� = −2y − 4 ?

Exercise 114 What are the fixed points and fixed lines of a stretch reflection ?

What are the fixed points and fixed lines of a stretch rotation ?

Exercise 115 TRUE or FALSE ?

(a) A similarity that is not an isometry has a fixed point, and a dilatation

that is not a translation has a fixed point.

(b) The group of all dilatations is generated by the dilations.
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(c) σP δP,r = δP,rσP for any point P and nonzero number r.

(d) δA,r(B) is on AB
→ if A �= B.

(e) There is a unique point Q on
←→
AB such that AQ/QB = 7.

(f) ατA,Bα
−1 = τα(A),α(B) for any similarity α and points A and B.

(g) A dilatation is a similarity.

Exercise 116 PROVE or DISPROVE : If α is a transformation and δ is a dilation,

then αδα−1 is a dilatation.

Exercise 117 PROVE or DISPROVE : If r > 0, then a mapping α such that

P �Q� = rPQ for all points P and Q with P � = α(P ) and Q� = α(Q) is a similarity.

Exercise 118 Complete each of the following :

(a) If δP,3((x, y)) = (3x+ 7, 3y − 5), then P = . . .
(b) If x� = 3x + 5y + 2 and y� = tx − 3y are the equations of a similarity,
then t = . . .

(c) If σP δP,15 = δP,x , then x = . . .

(d) If δC,rτA,B = τP,QδC,r, then P = . . . and Q = . . .

(e) If δB,sδA,t = δT,tδB,s , then T = . . .

(f) If ρA,rδA,s = δA,sρA,x, then x = . . .

(g) If τ−1A,B = τA,C , then C = . . .

Exercise 119 PROVE or DISPROVE : Nonidentity dilatations α and β commute

if and only if α and β are translations.

Exercise 120 If α((1, 2)) = (0, 0) and α((3, 4)) = (3, 4), then what is the ratio of

similarity α ?

Exercise 121 If α((0, 0)) = (1, 0), α((1, 0)) = (2, 2), and α((2, 2)) = (−1, 6) for
similarity α, then find α((−1, 6)).

Exercise 122 Show that an involutory similarity is a reflection or a halfturn.


