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8.1 Collineations

We now turn to transformations that were first introduced by Leonhard

Euler (1707-1783).

Affine transformations (as collineations)

8.1.1 Definition. An affine transformation (or affinity) is a collineation

that preserves parallelness among lines.

So, if L and M are parallel lines and α is an affine transformation, then

lines α(L) and α(M) are parallel. It is easy to prove the following result.

8.1.2 Proposition. A collineation is an affine transformation and, con-

versely, an affine transformation is a collineation.

Proof : An affine transformation is by definition a collineation. If β is any

collineation and L and M are distinct parallel lines, then β(L) and β(M)
cannot contain a common point β(P ), as point P would then have to be on

both L and M. Therefore, every collineation is an affine transformation. ✷

Note : Affine transformations and collineations are exactly the same thing for the

Euclidean plane. The choice between the terms affine transformation and collineation

is sometimes arbitrary and sometimes indicates a choice of emphasis on parallelness of

lines or on collinearity of points. Loosely speaking, affine geometry is what remains

after surrendering the ability to measure length (isometries) and surrendering the

ability to measure angles (similarities), but maintaining the incidence structure of

lines and points (collineations).

8.1.3 Example. Similarities preserve parallelness and hence are affine trans-

formations. In particular, isometries are also affine transformations.

8.1.4 Example. The mapping

α : E2 → E2 , (x, y) �→ (2x, y)

is an affine transformation that is not a similarity.
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Note : The word symmetry brings to mind such general ideas as balance, agree-

ment, order, and harmony. We have been exceedingly conservative in our use of

the word symmetry; for us, symmetries are restricted to isometries. With a broader

mathematical usage of the term, we would certainly be saying that the similarities are

the symmetries of similarity geometry and that the collineations are the symmetries

of affine geometry. In the most broad usage, the group of all transformations on a

structure that preserves the essence of that structure constitutes the symmetries (also

called the automorphisms) of the structure.

A collineation preserves collinearity of points. We wish to show that,

conversely, a transformation such that the image of every three collinear points

are themselves collinear must be a collineation.

8.1.5 Proposition. A transformation such that the images of every three

collinear points are themselves collinear is an affine transformation.

Proof : We suppose α is a transformation that preserves collinearity and

aim to show α(L) is a line whenever L is a line. Let A and B be distinct
points on L, and let M be the line through α(A) and α(B). By the definition

of α, all the points of α(L) are on M. However, are all the points of M
on α(L) ? Suppose C� is a point on M distinct from α(A) and α(B), and

let C be the point such that α(C) = C�. To show C must be on L, we
assume C is off L and then obtain a contradiction. Now the image of all the
points of

←→
AB,

←→
BC, and

←→
AC are on M since collinearity is preserved under α.

However, any point P in the plane is on a line containing two distinct points

of �ABC. Since the images of these two points lie on M, then the image of
P lies on M. Therefore, the image of every point lies on M, contradicting
the fact that α is an onto mapping. Hence, C must lie on L, M = α(L),
and α is a collineation, as desired. ✷

Are the affine transformations the same as those transformations for which

the images of any three noncollinear points are themselves noncollinear ? The

answer is “Yes”.
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8.1.6 Proposition. A transformation is an affine transformation if and

only if the images of any three noncollinear points are themselves noncollinear.

Proof : Suppose α is an affine transformation. Then α−1 is an affine trans-

formation and can’t take three noncollinear points to three collinear points.

Therefore, affine transformation α must take any three noncollinear points to

three noncollinear points.

Conversely, suppose β is a transformation such that the images of any

three noncollinear points are themselves noncollinear. Assume β is not an

affine transformation. Then β−1 is not an affine transformation. By the

contrapositive of the preceding result, then there are three collinear points

whose images under β−1 are not collinear. Hence, since β is the inverse

of β−1, then there are three noncollinear points whose images under β are

collinear, contradiction. Therefore, β is an affine transformation. ✷

An affine transformation preserves betweenness

The result above does not state that the image of a triangle under an affine

transformation is necessarily a triangle, but states only that the images of the

vertices of a triangle are themselves vertices of a triangle. We do not know the

image of a segment is necessarily a segment. More fundamental, we do not

know that an affine transformation necessarily preserves betweenness. It will

take some effort to prove this. We begin by showing that midpoint is actually

an affine concept ; that is, an affine transformation carries the midpoint of two

given points to the midpoint of their images.

8.1.7 Proposition. If α is an affine transformation and M is the mid-

point of points A and B, then α(M) is the midpoint of α(A) and α(B).

Proof : Suppose A and B are distinct points and α is an affine transfor-

mation. Let P be any point off
←→
AB. Let Q be the intersection of the line

through A that is parallel to
←→
PB and the line through B that is parallel to

←→
PA. So ✷APBQ is a parallelogram. Let A� = α(A), B� = α(B), P � = α(P ),
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and Q� = α(Q). Since two parallel lines go to two parallel lines under α,

then ✷A�P �B�Q� is a parallelogram. (We are not claiming that α(✷APBQ) =

✷A�P �B�Q� but only that A�, P �, B�, Q� are vertices in order of a parallelogram.)

Further, M , the intersection of
←→
AB and

←→
PQ , must go to M �, the intersec-

tion of
←→
A�B� and

←→
P �Q�. However, since the diagonals of a parallelogram bisect

each other, then M is the midpoint of A and B while M � is the midpoint

of A� and B�. Hence, α preserves midpoints. ✷

8.1.8 Proposition. If α is an affine transformation, the n + 1 points

P0, P1, P2,

. . . , Pn divide the segment P0Pn into n congruent segments Pi−1Pi, and

P �i = α(Pi), then the n+1 points P
�
0, P

�
1, P

�
2, . . . , P

�
n divide the segment P

�
0P
�
n

into n congruent segments P �i−1P
�
i .

Proof : Suppose α is an affine transformation and the n+1 points P0, P1, P2, . . . ,

Pn divide the segment P0Pn into n congruent segments Pi−1Pi. Let P �i =

α(Pi). Since P0P1 = P1P2, P1P2 = P2P3, . . . , then P1 is the midpoint

of P0 and P2, point P2 is the midpoint of P1 and P3, etc. Hence, P
�
1 is

the midpoint of P �0 and P �2, point P �2 is the midpoint of P �1 and P �3, etc.

So the images P �0, P
�
1, P

�
2, . . . , P

�
n divide the segment P

�
0P
�
n into n congruent

segments P �i−1P
�
i . ✷

It follows from this last result that P between A and B implies α(P )

between α(A) and α(B) provided that AP/PB is rational.

Note : It would have to be a very strange collineation that allowed between-

ness not to be preserved in general although preserving midpoints. Early geometers

avoided such a “monster transformation” simply by incorporating the preservation of

betweenness within the definition of an affine transformation. In 1880 Gaston Dar-

boux (1842-1917) showed that the “monster transformation” does not exist. Thus

the following result holds (but the proof wil be omitted).

8.1.9 Theorem. If α is an affine transformation and point P is between

points A and B, then point α(P ) is between α(A) and α(B).
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As an immediate consequence of Theorem 8.1.9, we know that an affine

transformation preserves all those geometric entities whose definition goes back

only to the definition of betweenness. Thus, an affine transformation preserves

segments, rays, triangles, quadrilaterals, halfplanes, interiors of triangles, etc.

In particular, the following result holds :

8.1.10 Proposition. If A�, B�, C� are the respective images of three non-

collinear points A, B,C under affine transformation α, then

α(AB) = A�B� and α(�ABC) =�A�B�C� .

8.1.11 Proposition. An affine transformation fixing two points on a line

fixes that line pointwise.

Proof : Suppose affine transformation α fixes two points A and B. As-

sume there is a point C on
←→
AB such that C� �= C with C� = α(C). Without

loss of generality, we may assume C is on AB→. As an intermediate step, we

shall show C is between two fixed points A and D. Let B0 = B and define

Bi+1 so that Bi is the midpoint of A and Bi+1 for i = 0, 1, 2 . . . . Since A

and B0 are given as fixed by α, then each of B1, B2, B3, . . . in turn must be

fixed by α since α preserves midpoints. Let D = Bk where k is an integer

such that

ABk = 2
kAB > AC .

Then C lies between fixed points A and D. So AD is then fixed and both C

and C� lie in AD. Now, let n be an integer large enough so that nCC� > AD.

Let P0 = A, Pn = D, and the n+1 points P0, P1, . . . , Pn divide the segment

AD into n congruent segments Pi−1Pi. Each of the points Pi is fixed by

α by Proposition 8.1.7. So each APi and PiD is fixed by α. However,

integer n was chosen large enough so that for some integer j point Pj is

between C and C�. So C and C� are in different fixed segments APj and

PjD, contradiction. Therefore, α(C) = C for all points on
←→
AB, as desired.

✷
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8.1.12 Corollary. An affine transformation fixing three noncollinear points

must be the identity. Given �ABC and �DEF , there is at most one affine
transformation α such that α(A) = D, α(B) = E, and α(C) = F .

Note : In the next section we shall see that there is also at least one affine trans-

formation α as described in the corollary above. Thus an affine transformation is

completely determined once the images of any three noncollinear points are known.

8.2 Affine Linear Transformations

We start by making an “ad hoc” definition.

8.2.1 Definition. An affine linear transformation is any mapping

α : E2 → E2 , (x, y) �→ (ax+ by + h, cx+ dy + k) where ad− bc �= 0 .

The number ad− bc is called the determinant of α.

An affine linear transformation is actually a transformation since a given

(x, y) obviously determines a unique (x�, y�) and, conversely, a given (x�, y�)

determines a unique (x, y) precisely because the determinant is nonzero. As

we might expect, affine linear transformations are related to affine transfor-

mations.

Exercise 126 If P = (p1, p2), Q = (q1, q2), and R = (r1, r2) are vertices of a

triangle, show that the area of �PQR is
1

2
|(q1 − p1)(r2 − p2)− (q2 − p2)(r1 − p1)|.

(Hence the area of a triangle with vertices (0, 0), (a, b), (c, d) is half the absolute

value of ad− bc.)

8.2.2 Proposition. An affine linear transformation is an affine transfor-

mation and, conversely, an affine transformation is an affine linear transfor-

mation.
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Proof : Let α be an affine linear transformation and suppose line L has
equation px+ qy+ r = 0. Since p and q are not both zero, then ap+ cq and

bp+ dq are not both zero. So there is a line M with equation

(ap+ cq)x+ (bp+ dq)y + r + hp + kq = 0.

Line M is introduced because each of the following implies the next, where

α((x, y)) = (x�, y�) :

(1) (x�, y�) is on line L.

(2) px� + qy� + r = 0.

(3) p(ax+ by + h) + q(cx+ dy + k) + r = 0.

(4) (ap+ cq)x+ (bp+ dq)y + r + hp+ kq = 0.

(5) (x, y) is on line M.

We have shown that α−1 is a transformation that takes any line L to some
line M. So α−1 is a collineation. Hence, α is itself a collineation.
Conversely, suppose α is an affine transformation. Let

α((0, 0)) = (p1, p2) = P, α((1, 0)) = (q1, q2) = Q, and α((0, 1)) = (r1, r2) = R .

Since (0, 0), (1, 0), (0, 1) are noncollinear, then P, Q, R are noncollinear. Hence

the mapping β with equations
x� = (q1 − p1)x+ (r1 − p1)y + p1

y� = (q2 − p2)x+ (r2 − p2)y + p2
is an affine linear transformation, since the absolute value of its determinant is

twice the area of �PQR and therefore nonzero (see Exercise 126). Further,

β((0, 0)) = α((0, 0)), β((1, 0)) = α((1, 0)), and β((0, 1)) = α((0, 1)).

Therefore (Corollary 8.1.11), we have α = β. So α is an affine linear

transformation. ✷
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Note : Chosing the term affine linear transformation over its equivalents collineation

and affine transformation can emphasize a coordinate viewpoint.

Given �ABC and �DEF , we know that there is at most one affine
transformation α such that α(A) = D, α(B) = E, and α(C) = F . We can

now show that there is at least one such transformation α.

8.2.3 Proposition. Given �ABC and �DEF , there is a unique affine
transformation α such that

α(A) = D, α(B) = E, and α(C) = F.

Proof : Given �ABC and �DEF , we know (Corollary 8.1.12) there
is at most one affine transformation α such that α(A) = D, α(B) = E and

α(C) = F . We now show there is at least one such affine transformation α.

From the preceding paragraph, we see how to find the equations for an affine

linear transformation β1 such that

β1((0, 0)) = A, β1((1, 0)) = B, and β1((0, 1)) = C.

Repeating the process, we see there is an affine linear transformation β2 such

that

β2((0, 0)) = D, β2((1, 0)) = E, and β2((0, 1)) = F.

The transformation β2β
−1
1 is the desired affine transformation α that takes

points A, B,C to points D,E, F , respectively. ✷

Matrix representation

Let α : E2 → E2 be a transformation given by

(x, y) �→ (ax+ by + h, cx+ dy + k).

(α is an affine linear transformation.)

Note : Recall that �
a b

c d

��
x

y

�
=

�
ax+ by

cx+ dy

�
.
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Hence the matrix

�
a b

c d

�
defines a mapping (x, y) �→ (ax + by, cx + dy). Indeed,

we write the pair (x, y) as a column matrix

�
x

y

�
(in fact, we identify points with

geometric vectors) and so we get

(x, y) =

�
x

y

�
�→
�
a b

c d

� �
x

y

�
=

�
ax+ by

cx+ dy

�
= (ax+ by, cx+ dy).

This mapping is linear (i.e. preserves the vector structure of E2) and is invertible if

(and only if) the matrix is invertible.

When the coefficients h and k vanish, α is linear and hence admits a

matrix representation �
x�

y�

�
=

�
a b

c d

��
x

y

�
.

We say that the (invertible) matrix A =

�
a b

c d

�
represents the (linear) trans-

formation α. In order to extend this representation to the general case, of

affine linear transformations, we need to accomodate translations.

Exercise 127

(a) Verify that 
1 0 0

h a b

k c d



1

x

y

 =


1

ax+ by + h

cx+ dy+ k

 .

(b) Show that the matrix


1 0 0

h a b

k c d

 is invertible if and only if ad− bc �= 0,
and then find its inverse.

If we “redefine” the concept of point – and write the pair (x, y) as a column

matrix


1

x

y

 (this identification is more than just a “clever” notation) – then
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we have

(x, y) =


1

x

y

 �→

1 0 0

h a b

k c d



1

x

y

 =


1

ax+ by+ h

cx+ dy + k

 = (ax+by+h, cx+dy+k).
We see that the 3× 3 matrix

[α] =


1 0 0

h a b

k c d

 =
�
1 0

v A

�

(where v =

�
h

k

�
and A =

�
a b

c d

�
) represents the transformation

α : E2 → E2, (x, y) �→ (ax+ by+ h, cx+ dy + k).

Exercise 128 Use matrix representation to show that the set of all linear affine

transformations forms a group. (This group consists of all collineations, and is usually

denoted by Aff.)

8.2.4 Example. The identity transformation ι is represented by the ma-

trix


1 0 0

0 1 0

0 0 1

. Thus
[ι] =

�
1 0

0 I

�
.

8.2.5 Example. Consider the point P = (h, k) and let v =

�
h

k

�
. The

translation τ = τO,P is represented by the matrix


1 0 0

h 1 0

k 0 1

. Thus

[τ ] =

�
1 0

v I

�
.
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8.2.6 Example. Again, consider the point P = (h, k). The halfturn σ =

σP is represented by the matrix


1 0 0

2h −1 0

2k 0 −1

. Thus

[σ] =

�
1 0

2v −I

�
.

Exercise 129 Let P = (h, k) be a point. Determine the matrix which represents

the dilation δP,r (of ratio r �= 0 ) and hence verify the relations :

(a) δP,−r = σP δP,r .

(b) δP,1 = ι.

(c) δP,−1 = σP .

(d) δP,sδP,r = δP,rs (r, s �= 0).

Strains and shears

Some specific, basic affine transformations are introduced next.

8.2.7 Definition. For number k �= 0, the affine transformation

εX ,k : (x, y) �→ (x, ky)

is called a strain of ratio k about the x-axis.

8.2.8 Definition. For number k �= 0, the affine transformation

εY,k : (x, y) �→ (kx, y)

is called a strain of ratio k about the y-axis.

For fixed k, the product of the two affine transformations above is the

familiar dilation about the origin (x, y) �→ (kx, ky). Thus

εX ,kεY,k = δO,k.
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Note : The concept of a strain of ratio k about a given line L can be defined
analogously. However, one can prove that any dilation is the product of two strains

about perpendicular lines.

8.2.9 Example. The strain with equations
x� = 2x

y� = y

fixes the y-axis pointwise and stretches out the plane away from and perpen-

dicular to the y-axis.

Note : As with similarity theory, the terminology here is not standardized. Each

of the following words has been used for a strain or for a strain with positive ratio :

enlargement, expansion, lengthening, stretch, compression.

8.2.10 Definition. For number k �= 0, the affine transformation
ζX ,k : (x, y) �→ (x+ ky, y)

is called a shear along the x-axis.

Here the x-axis is fixed pointwise and every point is moved “horizontally”

a directed distance proportional to its directed distance from the x-axis. We

shall see below that a shear has the property of preserving area.

8.2.11 Definition. An affine transformation that preserves area is said to

be equiaffine.

8.2.12 Proposition. An affine transformation is the product of a shear,

a strain, and a similarity.

Proof : We can see that the general affine linear transformation with equa-

tions 
x� = ax+ by+ h

y� = cx+ dy + k

with ad− bc �= 0
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can be factored into the similarity with equations
x� = ax− cy + h

y� = cx+ ay + k

following the strain with equations
x� = x

y� =
ad− bc
a2 + c2

y

following the shear with equations
x� = x+

ab + cd

a2 + c2
y

y� = y.

Indeed, we have
1 0 0

h a b

k c d

 =

1 0 0

h a −c
k c a



1 0 0

0 1 0

0 0 ad−bc
a2+c2



1 0 0

0 1 ab+cd
a2+c2

0 0 1

 .
✷

8.2.13 Proposition. An affine transformation is a product of strains.

Proof : First, we see that the shear ( ζX ,1 ) with equations
x� = x+ y

y� = y

can be factored into the similarity with equations
x� = 5−

√
5

20 x +
5−3√5
20 y

y� = −5+3
√
5

20 x + 5−
√
5

20 y
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following the strain with equations
x� = 3+

√
5

2 x

y� = y

following the similarity with equations
x� = 2x+ (1 +

√
5)y

y� = −(1 +√5)x+ 2y.
Indeed, we have
1 0 0

0 1 1

0 0 1

 =

1 0 0

0 5−√5
20

5−3√5
20

0 −5+3√5
20

5−√5
20



1 0 0

0 3+
√
5

2 0

0 0 1



1 0 0

0 2 1 +
√
5

0 −(1 +√5) 2

 .
Secondly, we see that the nonidentity shear ( ζX ,k, k �= 0 ) with equations

x� = x + ky

y� = y

can be factored into the strain of ratio k about the y-axis ( εY,k : (x, y) �→
(kx, y) ) following the shear that just factored above following the strain of

ratio 1k about the y-axis ( εY, 1
k

: (x, y) �→ ( 1kx, y) ). The relation

ζX ,k = εY,kζX ,1εY, 1
k

holds since 
1 0 0

0 1 k

0 0 1

 =

1 0 0

0 k 0

0 0 1



1 0 0

0 1 1

0 0 1



1 0 0

0 1
k 0

0 0 1

 .
Putting these results together with Proposition 8.2.13, we see that an

affine transformation is a product of strains and similarities. Since a similarity
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is an isometry following a dilation about the origin (Proposition 7.1.12),

and since a dilation about the origin is a product of two strains, then an affine

transformation is a product of strains and isometries. However, isometries

are products of reflections, which are special cases of strains. Thus affine

transformations are products of strains.

✷

Note : One can also prove that an affine transformation is the product of a strain

and a similarity.

8.2.14 Theorem. Suppose affine transformation α has equations�
x� = ax+ by + h

y� = cx+ dy + k
with ad− bc �= 0.

Transformation α is equiaffine if and only if

|ad − bc| = 1 .

Transformation α is a similarity (of ratio r) if and only if

a2 + c2 = b2 + d2 = r2 and ab + cd = 0.

Transformation α is an isometry if and only f

a2 + c2 = b2 + d2 = 1 and ab+ cd = 0.

Proof : Suppose �
x� = ax + by + h

y� = cx+ dy+ k

are equations for affine transformation α. So the determinant ad − bc of
α is nonzero. What are the necessary and sufficient conditions for α to be

equiaffine? In other words, when is area preserved by α ? Suppose P,Q, R

are noncollinear points with

P = (p1, p2), Q = (q1, q2), R = (r1, r2),
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P � = α(P ) = (p�1, p
�
2), Q

� = α(Q) = (q�1, q
�
2), R

� = α(R) = (r�1, r
�
2).

Recall that the area PQR of �PQR is given by

PQR = ±1
2
|(q1 − p1)(r2 − p2)− (q2 − p2)(r1 − p1)|

and similarly the area P �Q�R� of �P �Q�R� is given by

P �Q�R� = ±1
2
|(q�1 − p�1)(r�2 − p�2)− (q�2 − p�2)(r�1 − p�1)|.

Substitution shows that

P �Q�R� = ±(ad − bc)PQR .

Thus, under an affine transformation with determinant t, area is multiplied by

±t. This result answers our question about preserving area : area is preserved
by α when the determinant of α is ±1.
Continuing with the same notation for affine transformation α, we recall

that α is a similarity if and only if there is a positive number r such that

P �Q� = rPQ for all points P and Q .

With substitution, this equation becomes�
(a2 + c2)(q1 − p1)2 + (b2 + d2)(q2 − p2)2 + 2(ab+ cd)(q1 − p1)(q2 − p2) =

r
�
(q1 − p1)2 + (q2 − p2)2 .

This equation can hold for all p1, p2, q1, q2 if and only if

a2 + c2 = b2 + d2 = r2 and ab+ cd = 0 .

Since a similarity of ratio r is an isometry if and only if r = 1, we obtain the

last result. ✷

Note : The matrix representing the given affine transformation α is

[α] =

�
1 0

v A

�
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where v is arbitrary and A is invertible (i.e. ad− bc �= 0).
Transformation α is equiaffine if and only if detA = ±1.
Transformation α is a similarity (of ratio r) if and only if AAT = r2I.

Transformation α is an isometry if and only if AAT = I (such a matrix is called

orthogonal).

8.3 Exercises

Exercise 130

(a) For a given nonzero number k, find all fixed points and fixed lines for the

affine transformations αk and βk with respective equations
x� = kx

y� = y

and


x� = x+ ky

y� = y.

(b) If P = (−2,−1), Q = (1, 2), and R = (3,−6), what is the area of �PQR
?

(c) What are the areas of the images of �PQR under the collineations αk
and βk , respectively ?

Exercise 131 TRUE or FALSE ?

(a) An affine transformation is a collineation; a collineation is an affine linear

transformation; and an affine linear transformation is an affine transfor-

mation.

(b) An affine transformation is determined once the images of three given

points are known.

(c) Strains and shears are equiaffine.

(d) A shear is a product of strains and similarities.

(e) A collineation is a product of strains and similarities.

(f) A collineation is a product of strains and isometries.

(g) A dilatation is a product of strains; a strain is a product of dilations.
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Exercise 132 Given nonzero number k and line L, give a definition for the strain
of ratio k about line L. Using your definition, show that a dilation is a product of
two strains.

Exercise 133 If x� = ax+ by+ h and y� = cx+ dy+ k are the equations of (affine

linear) transformation α, find the equations of its inverse α−1. Hence determine the

matrices [α] and [α−1] representing α and α−1, respectively.

Exercise 134 PROVE or DISPROVE : If affine linear transformation α has determi-

nant t, then α−1 has determinant t−1.

Exercise 135 Suppose any affine transformation is the product of a strain and a

similarity. Then show that an affine transformation is a product of two strains about

perpendicular lines and an isometry. (To see that the perpendicular lines cannot be

chosen arbitrarily, see the next exercise.)

Exercise 136 Show the shear with equations x� = x + y and y� = y is not the

product of strains about the coordinate axes followed by an isometry.

Exercise 137 Show that the shears do not form a group.

Exercise 138 PROVE or DISPROVE : An equiaffine similarity is an isometry.

Exercise 139 PROVE or DISPROVE : An involutory affine transformation is a re-

flection or a halfturn.

Exercise 140 Give an example of an equiaffine transformation that is neither an

isometry nor a shear.

Discussion : Perhaps the most fundamental concept of the earlier

books of Euclid’s Elements is that of congruence. Intuitively, two plane geometrical

figures (i.e. arbitrary subsets of the plane) are congruent if they differ only in the

position they occupy in the plane; that is, if they can be made to coincide by the

application of some “rigid motion” in the plane. Somewhat more precisely, two figures

F1 and F2 are said to be congruent if there is a mapping α of the plane onto itself

that leaves invariant the distance between each pair of points (i.e. α(F1) = F2 and


