

Chapter One: Transformation and Collineation

By: Dinka Tilahun (M.Sc) E-mail:dinkatilahun34@gmail.com Address: Jimma University

Presentation Outline

DMapping and Types of Mapping

Transformation

Properties of Transformations

Collineation and Dilatation

Examples of Groups of Transformation
By: Dinka T.

Motivation

Imagination is more important than knowledge.

Albert Einstein

Do not just pay attention to the words; Instead pay attention to meaning behind the words. But, do not just pay attention to meanings behind the words; Instead pay attention to your deep experience of those meanings.

TENZIN GYATSO, THE 14TH DALAI LAMA

1. Transformations and Collineations

1.1 Preliminaries

Definition: Let X and Y be nonempty sets. Then, a *mapping f* from X to Y is a rule which assigns to every element x in X exactly one (unique) value f(x) in Y, here, f(x) is called the *image* of x under f. The set X is said to be the domain of f and Y is the co-domain of f. The set of all images of f is called range of f. In this definition of mappings, the word unique (exactly one) refers to the idea of *well definedness*. A rule which assigns to every element in the domain (in X) some value in the co domain (in Y) is said to be a mapping if it is well defined. **By: Dinka T.** 4

To show well-defined ness, it suffices to show that f(x) = y, $f(x) = z \Rightarrow y = z$. **Notation:** The mapping f from X to Y is denoted symbolically by $f: X \to Y$. **Examples**

1. Let $g : \mathbb{R}^2 \to \mathbb{R}^2$ be given by g(x, y) = (2x, 3y). Show that g is a mapping. **Solution**: Clearly g is a rule which assigns to each value in \mathbb{R}^2 a value in \mathbb{R}^2 . Now, let's show that g is *well-defined*. Suppose $g(x, y) = (a, b) \land g(x, y) = (c, d)$ $g(x, y) = (a, b) \land g(x, y) = (c, d) \Longrightarrow (2x, 3y) = (a, b) \land (2x, 3y) = (c, d)$ $\Rightarrow 2x = a, 3y = b \land 2x = c, 3y = d$ $\Rightarrow a = c \land b = d \Rightarrow (a, b) = (c, d)$

This implies that the image of any point (x, y) in \mathbb{R}^2 is unique and hence g is well defined and it is a mapping.

2*. Let Z be set of integers. Consider the set $S = \{x \in Z : |x-1| \le 2\}$. Define

 $h: Z \to S$ by $h(x) = x^2$. Is h a mapping or not?

Solution: Here,
$$S = \{x \in Z : |x-1| \le 2\} = \{x \in Z : -2 \le x - 1 \le 2\}$$

= $\{x \in Z : -1 \le x \le 3\} = \{-1, 0, 1, 2, 3\}$

As we see, x = -1 is in S. But there is no integer in the domain such that h(x) = -1. This means x = -1 has no pre-image. Hence, h is not a mapping. **Definitions:**

a) One-to-one (Injective) mapping: A mapping $f: X \to Y$ is said to be a *one-to-one (injective)* mapping if and only if f sends distinct elements of X in to distinct elements of Y. This means $x \neq y \Rightarrow f(x) \neq f(y)$. In other words, f is one to one if and only if $f(x) = f(y) \Rightarrow x = y$. By: Dinka T.

b) Onto (Surjective) mapping: A mapping $f: X \to Y$ is said to be *onto* mapping if and only if for every point y in Y, there exists an element x in X such that

y = f(x). Or if the image of f is the whole of Y. That is every element of Y has at least one pre-image in X.

c) Bijective mapping: A mapping is said to be bijective if and only if it is both one to one and onto mapping.

EXAMPLE

Verify the whether the following mappings are injective, surjective or bijective

a) $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (2x, y-1) b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (\sqrt[3]{x-1}, y^3 + 3)$

c) $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by f(x, y) = (x + y, x - y) d) $f: \mathbb{R} \to \mathbb{R}^+$ given by $f(x) = e^x$

Solution:

a) Assume f(x, y) = f(z, w) for any two points (x, y) and (z, w) in \mathbb{R}^2 . Then,

(2x, y-1) = (2z, w-1). But from equality of order pairs, this equality is true if and

only if
$$\begin{cases} 2x = 2z \\ y - 1 = w - 1 \end{cases} \Rightarrow x = z, \ y = w \Rightarrow (x, y) = (z, w). \text{ So, } f \text{ is one-to-one.} \end{cases}$$

ii) Let $(a,b) \in \mathbb{R}^2$ be in the co-domain of f. Then, if $\exists (x,y) \in \mathbb{R}^2$ in the domain of f, such that f(x,y) = (a,b), then f is on to.

But, $f(x, y) = (2x, y-1) = (a, b) \Rightarrow 2x = a$, $y-1=b \Rightarrow x = \frac{a}{2}$, y=b+1. Thus, we can find

$$(x, y) = (\frac{a}{2}, b+1) \in \mathbb{R}^2$$
 such that $f(x, y) = f(\frac{a}{2}, b+1) = (a, b), \forall (a, b) \in \mathbb{R}^2$.

So f is on to. Therefore, the given map is bijective.

Now, we are at the position to define transformation as follows. **Definition:** *Transformation* is a one-to-one mapping from a set *X* onto itself. In other words, the map $f : X \to X$ is said to be a transformation if and only if it is one to one and onto. This means that for every point *P* in the domain there is a unique point *Q* such that f(P) = Q and conversely, for every point *R* in the range there is a unique point *S* in the domain such that f(S) = R.

	α	alpha
Transformation are denoted by Greek letters like	β	beta
	γ	gamma
	δ	delta

But, for the sake of simplicity we use letters for function like f, g, h in some cases.

Example: Verify the whether the following mappings are transformation or not.

a)
$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
 given by $g(x, y) = (x + y + 1, x - y - 1)$
b) $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y) = (x, x - y)$

Solution:

a) i) Assume g(x, y) = g(z, w) for any two points (x, y) and (z, w) in \mathbb{R}^2 . Then,

$$(x+y+1, x-y-1) = (z+w+1, z-w-1).$$

But from equality of order pairs, this equality is true if and only if

 $\begin{cases} x+y+1=z+w+1\\ x-y-1=z-w-1 \end{cases} \Rightarrow 2x = 2z \Rightarrow x = z, \ y = w \quad \text{This gives } (x,y) = (z,w) \text{ So, } g \text{ is one-to-} \end{cases}$

one.

ii) Let $(a,b) \in \mathbb{R}^2$ be in the co-domain of g. Then, if $\exists (x,y) \in \mathbb{R}^2$ in the domain of g, such that g(x,y) = (a,b), then g is on to. By: Dinka T.

Equality of Transformations: Two transformations f and g on the same set from X to X are said to be equal if and only if they have the same value for each x in X. That is, $f = g \Leftrightarrow f(x) = g(x), \forall x \in X$.

Examples:

1. Let *f* and *g* be transformations on \mathbb{R}^2 given by $f(x, y) = (2ax^5 - 3, 4y)$ and $g(x, y) = (6x^5 + 2b, 4y)$. If f = g, find the constants *a* and *b*. Solution: By definition of equality,

$$f = g \Leftrightarrow f(x, y) = g(x, y), \forall (x, y) \in \mathbb{R}^{2}$$
$$\Leftrightarrow (2ax^{5} - 3, 4y) = (6x^{5} + 2b, 4y)$$
$$\Leftrightarrow 2ax^{5} - 3 = 6x^{5} + 2b$$
$$\Leftrightarrow 2a = 6, -3 = 2b \Leftrightarrow a = 3, b = -3/2$$

Properties of Transformation

Let $f: X \to Y$ and $g: Y \to Z$ be mappings. Then for each $x \in X$, $f(x) \in Y$. Thus, there exists $y \in Y$ such that f(x) = y. Besides, as g is a mapping from *Y* to *Z* for each $y \in Y$, there exists $z \in Z$ such that g(y) = z. Thus, g(y) = g(f(x)) = z which makes sense to write g(f(x)) as a mapping from X to Z. This mapping is evaluated by applying f first on the elements of X followed by g. This is defined as $g \circ f(x) = g(f(x))$ for each $x \in X$. So, the mapping gof("f followed by g") is called the composition mapping. In such cases, one has to remember that the range of the first mapping is a subset of the domain of the second mapping.

In particular, composition of transformation is defined as $(g \circ f)(x) = g(f(x))$ where *f* and *g* are transformations on the same set *X*.

Proposition 1.1: Composition of mappings is associative

If $h: X \to Y, g: Y \to Z$ and $f: Z \to W$ are mappings, then the compositions

 $(f \circ g) \circ h$ and $f \circ (g \circ h)$ represent the same mapping from *X* in to *W*. That is $(f \circ g) \circ h = f \circ (g \circ h)$. Particularly, $(f \circ g) \circ h = f \circ (g \circ h)$ holds if f, g and h are transformations on the same set *X*.

Proof: Since the domain of h is X, by definition of composition of mappings we can see that the domain of $(f \circ g) \circ h$ is also X. But, the domain of $f \circ (g \circ h)$ is the same as the domain of $g \circ h$ and the domain of $g \circ h$ is X. Hence, the domain of $(f \circ g) \circ h$ is the same as that of $f \circ (g \circ h)$, that is, X.

So, $(f \circ g) \circ h$ and $f \circ (g \circ h)$ are mappings with the same domain. Furthermore, for any $x \in X$,

$$\begin{split} &((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = f(g(h(x))), \forall x \in X \\ & \text{Also}, (f \circ (g \circ h))(x) = f((g \circ h)(x)) = f(g(h(x))), \forall x \in X \end{split}$$

Hence, by definition of equality of mappings $(f \circ g) \circ h = f \circ (g \circ h)$.

Note: Composition of two transformations need not be commutative. That is even though both $f \circ g$ and $g \circ f$ exists and have the same domain and codomain, $f \circ g$ and $g \circ f$ may not be equal.

Example: Let f(x, y) = (ax + 8, 3y - 5) and g(x, y) = (7x, 4y + b) be the transformations.

If $(g \circ f)(x, y) = (14x + 8, 12y + 23 - b)$, then, find the constants a and b.

If $(g \circ f)(x, y) = (14x + 8, 12y + 23 - b)$, then, find the constants *a* and *b*. Solution:

Here,
$$(f \circ g)(x, y) = (14x + 8, 12y + 23 - b)$$

 $\Rightarrow f(g(x, y)) = (14x + 8, 12y + 23 - b)$
 $\Rightarrow f(7x, 4y + b) = (14x + 8, 12y + 23 - b)$
 $\Rightarrow (7ax + 8, 12y + 3b - 5) = (14x + 8, 12y + 23 - b)$
 $\Rightarrow 7ax + 8 = 14x + 8, 12y + 3b - 5 = 12y + 23 - b$
 $\Rightarrow 7a = 14, 3b - 5 = 23 - b$
 $\Rightarrow a = 2, b = 7$

Proposition 1.2: The composition of transformations on the same set are again transformations.

Proof: Let $f: X \to X, g: X \to X$ be any two transformations on set X. We need to show that $f \circ g$ is also a transformation. That means we need to verify that $f \circ g$ is one to one and onto. By definition of composition $f \circ g$ is a mapping from X into X. To show $f \circ g$ is one to one, let x and y be arbitrary elements of X such that $f \circ g(x) = f \circ g(y)$.

Then, $f \circ g(x) = f \circ g(y) \Rightarrow f(g(x)) = f(g(y)) \Rightarrow g(x) = g(y) \Rightarrow x = y$ (because both f and g are one to one). Thus, $f \circ g$ is one to one.

To show $f \circ g$ is onto, let t be any element in X (considering X as co-domain of f), since f is onto there exists an element y in X (in the domain) such that f(y) = t.

Again, g is onto corresponding to the element y in X there is an element x in X such that g(x) = y. As a result, $(f \circ g)(x) = f(g(x)) = f(y) = t$. Thus, $f \circ g$ is onto. Hence, we have got that $f \circ g$ is one to one and onto on the set X. Therefore, $f \circ g$ is a transformation whenever f and g are transformations on X.

Definition: A transformation from a set *X* into *X* denoted by *i* is said to be *identity transformation* if and only if i(x) = x, $\forall x \in X$.

Any two transformations f and g from X to X are said to be *inverse of each* other if both $g \circ f$ and $f \circ g$ are identity transformations.

That is $(g \circ f)(x) = (f \circ g)(x) = i(x) = x$, $\forall x \in X$, then *f* is called the inverse of *g* and *g* is called the inverse of *f*. We denote the inverse of a transformation *f* by f^{-1} (Read as "the inverse of *f*" or *f* – inverse).

Finding Inverse of a transformation: Now let's see how can we find the inverse of transformations. Since every transformation f is bijective, its inverse denoted by f^{-1} always exists. But there is no hard and fast rule on how to find f^{-1} from the formula of f. Any way, one can use the following hints on how to find f^{-1} whenever the formula of f is given. Let $f: S \to S$ be a transformation such that Y = f(X). Then, to find f^{-1} :

Step-1: Interchange X and Y in the formula of f

Step-2: Solve for Y (for coordinates of Y) in terms of X (coordinates of X).

Step-3: Equate $f^{-1}(X) = Y$ from Y = f(X). That will be the formula of f^{-1} .

Example: Find the inverse of the transformation $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x, y) = (2x - 1, y + 5)

Step-1: Interchange coordinates of X and Y:

 $g(Y) = X \Rightarrow g(z, w) = (x, y) \Rightarrow (2z - 1, w + 5) = (x, y)$

Step-2: Solve for coordinates of Y in terms of coordinates of X. That is

$$(2z-1, w+5) = (x, y) \Rightarrow 2z-1 = x, w+5 = y \Rightarrow z = \frac{x}{2} + \frac{1}{2}, w = y-5$$

Step-3: Equate the coordinates of *Y* obtained in step 2 with $f^{-1}(x, y)$.

Hence,
$$g^{-1}(X) = Y \Rightarrow g^{-1}(x, y) = (z, w) \Rightarrow g^{-1}(x, y) = (\frac{x}{2} + \frac{1}{2}, y - 5)$$

Thus, $g(x, y) = (2x - 1, y + 5) \Leftrightarrow g^{-1}(x, y) = (\frac{x}{2} + \frac{1}{2}, y - 5)$

Preposition 1.3: The inverse of a transformation is unique. Besides, $(f^{-1})^{-1} = f$.

Proof: Let *f* be a transformation whose inverses are *g* and *h*. That is $f^{-1} = g$ and $f^{-1} = h$. We need to show g = h. Here, $f^{-1} = g \Rightarrow f \circ g = g \circ f = i$ and $f^{-1} = h \Rightarrow f \circ h = h \circ f = i$. But, $g = i \circ g = (h \circ f) \circ g = h \circ (f \circ g) = h \circ i = h$ (Because composition is associative as well as *g* and *h* are inverses of *f*). From this we can conclude that the inverse of a transformation is unique.

Preposition 1.4: The inverse of a transformation is again a transformation. **Proof:** Let $f: X \to X$ be any transformation on set X. Then, f^{-1} also exists as f is bijective. Now, we need to show f^{-1} is also a transformation. (i) **One-to-ones:** Let a and b be arbitrary elements in X. Since f is bijective, there exists unique x, $y \in X$, i = a, f(y) = b. But, f(x) = a, $f(y) = b \Longrightarrow x = f^{-1}(a)$, $y = f^{-1}(b)$. Now, assume that $f^{-1}(a) = f^{-1}(b)$. But, $f^{-1}(a) = f^{-1}(b) \Longrightarrow x = y \Longrightarrow f(x) = f(y) \Longrightarrow a = b$

Thus, $f^{-1}(a) = f^{-1}(b) \Longrightarrow a = b$. Hence, f^{-1} is one to one.

(*ii*) **Onto ness:** Let x be arbitrary element in X. Since f is onto, $f(x) \in X$, so, for every $x \in X$, $\exists f(x) \in X$, $\ni f^{-1}(f(x)) = x$. Hence, f^{-1} is onto. Therefore, from (*i*) and (*ii*), whenever f is a transformation on set X and so is f^{-1} .

Proposition 1.5: (Reverse Law of Inverse)

For any two transformations f and g, $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

Definition: Let $f: S \to T$ be a mapping. Then, a point $x_0 \in S$ (in the domain of

f) is said to be a fixed point of *f* if and only if $f(x_0) = x_0$. Generally, the set of fixed points of a mapping *f* is the set given by $S = \{x : f(x) = x\}$.

Involution: A non-identity transformation α is said to be an *involution* if and only if $\alpha^2 = \alpha \circ \alpha = i$. That means $\alpha^2(x) = (\alpha \circ \alpha)(x) = \alpha(\alpha(x)) = i(x) = x$ for all *x* in the domain of α .

Examples: Verify whether the following transformations are involution or not.

a)
$$\beta : \mathbb{R} \to \mathbb{R}$$
 given by $\beta(x) = 1 - x$
b) $h : \mathbb{R}^2 \to \mathbb{R}^2$, $h(x, y) = (-x + 7, -y - 2)$
c) $\alpha : \mathbb{R} \to \mathbb{R}$ given by $\alpha(x) = x + 3$
d) $g : \mathbb{R}^2 \to \mathbb{R}^2$, $g(x, y) = (x - 3, y + 5)$

Solution:

a)
$$\beta^2(x) = \beta \circ \beta(x) = \beta(\beta(x)) = \beta(1-x) = x = i(x) \Longrightarrow \beta^2 = i$$
.

So, β is an involution.

b)
$$h^{2}(x, y) = h(h(x, y)) = h(-x + 7, -y - 2) = (x, y) = i(x, y) \Longrightarrow h^{2} = i$$
.

So, h is an involution.

c) $\alpha^2(x) = \alpha(\alpha(x)) = \alpha(x+3) = x+6 \neq x = i(x) \Rightarrow \alpha^2 \neq i \Rightarrow \alpha$ is not an involution. d) $g^2(x,y) = g(g(x,y)) = g(x-3,y+5) = (x-6,y+10) \neq (x,y) = i(x,y) \Rightarrow g^2 \neq i$.

Hence, g is not an involution.

Definition: A transformation f is said to be a *collineation* if and only if the image of any line *l* under f is again a line. In other words, for any point $P \in l$ the image $f(P) \in f(l)$. Further more; f is said to be a *dilatation* if and only if the image of any line *l* under f is a line parallel to *l*. That is f(l)//l whenever f is a collineation then f is said to be a dilatation.

Examples:

1. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\alpha(x, y) = (x+1, y-2)$. Show that α is a dilatation. Solution: First let's show that α is a transformation. But, to show that α is a transformation, we need to show that it is one to one and onto.

One- to- one: Assume $\alpha(x, y) = \alpha(z, w)$ for any two points (x, y) and (z, w) in \mathbb{R}^2 . Then, (x+1, y-2) = (z+1, w-2). But from equality of order pairs, this equality is true if and only if x+1=z+1 and y-2=w-2. This gives x = z and y = w which implies (x, y) = (z, w). So, α is one-to-one.

On to ness: Let $(a,b) \in \mathbb{R}^2$ be in the co-domain of α . Then, if $\exists (x,y) \in \mathbb{R}^2$ in the domain of α , such that $\alpha(x,y) = (a,b)$, then α is on to. But,

 $\alpha(x, y) = (x+1, y-2) = (a, b) \Rightarrow x+1 = a, y-2 = b \Rightarrow x = a-1, y = b+2$. Thus, we can find $(x, y) = (a-1, b+2) \in \mathbb{R}^2$ such that $\alpha(x, y) = (a, b)$. So α is onto. Therefore, the given map α is a transformation. To show that α is a collineation we need to show the image of an arbitrary line l : ax + by + c = 0 is again a line.

Let (x, y) be any point on l. Then, the image $(x', y') = \alpha(x, y) = (x + 1, y - 2)$. Solving this for x and y we get x = x'-1, y = y'+2. So, the image line will be $l': a(x'-1) + b(y'+2) + c = 0 \Rightarrow ax'+by'+2b + c - a = 0$ and this is equation of a line. Hence we can say that α is a collineation. Besides, l' has the same slope to that of l which means l' is parallel to l. In other words, $l/l \alpha(l)$. Therefore, α is a dilatation.

Exercise: Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\alpha(x, y) = (-y, x+1)$. Then, find a) The image of the line l : x + 3y = 6 under α . b) The pre- image of the line l': 2x + y + 3 = 0 under α . By: Dinka T.

Remarks:

1. The main difference between collineation and dilatation is that any collineation maps a pair of parallel lines to a pair of parallel line but a dilatation maps every line to a line parallel to the given line. This means a transformation α is a collineation if and only if for any two lines *m* and *n*, $m/(n \Rightarrow \alpha(m)/(\alpha(n)))$. A transformation α is a dilatation if and only if for any line *m*, $m/(\alpha(m))$.

2. If $\alpha(x, y) = (x', y')$ where x' = ax + by + h, y' = cx + dy + k, then the necessary and sufficient conditions on the coefficients of x and y such that α to be a transformation is that $ad - bc \neq 0$. (This is known as transformation test). By: Dinka T.

Examples:

1. Define $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ by $\alpha(x, y) = (-y, x)$. Show that α is a collineation but not a dilatation.

Solution: Clearly, α is a transformation. Besides, for any two arbitrary parallel lines m: ax + by + c = 0 and n: ax + by + k = 0 (Parallel lines differ by a constant),

 $m' = \alpha(m)$: ay - bx + c = 0, $n' = \alpha(n) = ay - bx + k = 0$. Still, m' and n' have the same slope which means they are parallel. *i.e* $m/(n \Rightarrow \alpha(m))/(\alpha(n))$. Thus, α is a collineation. But, if we consider only the single line m: ax + by + c = 0separately, $m' = \alpha(m) : ay - bx + c = 0$. In this case, slope of line m is $-\frac{a}{b}$ while that of m' is $\frac{b}{a}$ which gives the product of their slope is -1. This means *i.e* $m \perp \alpha(m) = m'$. In other words, m and $\alpha(m) = m'$ are not parallel lines. Particularly, take the line m: 6x - 2y + 5 = 0. Then, its image under α is $\alpha(m) = m': 2x + 6y + 5 = 0$. Consequently, α is a collineation but not a dilatation. 29 By: Dinka T.

Examples of Transformation Groups

Definition: Let *G* be the set of all transformations on a non empty set *S*. Then the system (G,\circ) is said to be a transformation group if and only if the following conditions are satisfied:

- i) For all $f, g \text{ in } G, g \circ f$ is in G.
- ii) For all f in G, $\exists g \in G \ni f \circ g = g \circ f = i$ and denoted by $f^{-1} = g$. iii) For all f in G, $\exists i \in G \ni f \circ i = i \circ f = f$.

Examples

1. Let $f_{ab}: R \to R$ be defined by $f_{ab}(x) = ax + b, a \neq 0$.

Let $G = \{f_{ab} \mid a, b \in R, a \neq 0\}$. Show that (G, \circ) forms a transformation group.

Theorem 1.1 (Test for a transformation groups):

Let G be a nonempty set of transformations on a set S. Then, G with composition is a transformation group if and only if the following conditions are satisfied:

a) $f \in G \Rightarrow f^{-1} \in G, \forall f \in G$ b) $f, g \in G \Rightarrow f \circ g \in G, \forall f, g \in G$

Proof: Suppose (G,\circ) is a transformation group. We need to show conditions (a) and (b) hold true. Since (G,\circ) is a transformation group, from the definition $\forall f, g \in G, f^{-1} \in G$ and $f \circ g \in G$ which implies that conditions (a) and (b) are true. Conversely, suppose conditions (a) and (b) hold true. We need to show (G,\circ) is a transformation group.

i) Existence of Inverse: Since $G \neq \Phi$, $\exists f \in G$ but $\forall f \in G, f^{-1} \in G$ from condition(*a*). So, *G* contains inverse transformation.

ii) Closure property: From condition (b), $f, g \in G \Rightarrow f \circ g \in G$, $\forall f, g \in G$. *iii) Existence of Identity:* $\forall f \in G$, $f^{-1} \in G$ from condition(a) and from condition (b), $f^{-1} \circ f \in G$ and $f \circ f^{-1} \in G$. But, $f^{-1} \circ f = i \in G$ and $f \circ f^{-1} = i \in G$.

Thus, *G* contains identity transformation. Therefore, by definition, (G, \circ) forms a transformation group.

Example: Let $f_a: \mathbb{R}^2 \to \mathbb{R}^2$; $f_a(x, y) = (2a - x, y), \forall a \in \mathbb{R}$ such that $G = \{f_a: \forall a \in \mathbb{R}\}$.

Using criteria of transformation group, determine whether (G,o) is

transformation group or not.

Solution: For any $f_a \in G$, $f_a(x, y) = (2a - x, y)$. First of all, we need to show

that every element of G is transformation.

Now suppose, $f_a(x, y) = f_a(z, w)$.

$$\begin{aligned} f_a(x,y) &= f_a(z,w) \Rightarrow (2a-x,y) = (2a-z,w) \\ &\Rightarrow 2a-x = 2a-z, \ y = w \\ &\Rightarrow x = z, \ y = w \Rightarrow (x,y) = (z,w) \end{aligned}$$

This shows that each f_a is one to one.

Besides, to each $(z, w) \in \mathbb{R}^2$ (in the co-domain), $\exists (x, y) = (2a - z, w) \in \mathbb{R}^2$ such that $f_a(x, y) = f_a(2a - z, w) = (z, w)$.

So, each f_a is also onto.

Therefore, from these explanations every element of G is a transformation. For any $f_a \in G$,

$$f_a(x,y) = (2a - x, y) \Longrightarrow f_a^{-1}(x,y) = (2a - x, y) \Longrightarrow f_a^{-1} = f_a \Longrightarrow f_a^{-1} \in G.$$

But for any two elements $f_a, f_b \in G$,

$$f_a \circ f_b(x, y) = f_a(2b - x, y) = (x + 2a - 2b, y) \neq f_r(x, y), \ \forall r \in R \Longrightarrow f_a \circ f_b \notin G.$$

This means the second condition of the above theorem (test for a transformation group) fails.

As a result, (G,\circ) does not form transformation group.

Theorem 1.2 (Cancellation Laws on Transformation Groups): Let G be a transformation group. Then, for α , β , σ in G

- a) $\alpha \circ \beta = \alpha \circ \sigma \Rightarrow \beta = \sigma$ (This is called Left Cancellation Law)
- b) $\alpha \circ \beta = \sigma \circ \beta \Rightarrow \alpha = \sigma$ (This is called Right Cancellation Law)

Proof: Let G be a transformation group. Then, for α , β , σ in G

a)
$$\alpha \circ \beta = \alpha \circ \sigma \Longrightarrow \alpha^{-1} \circ (\alpha \circ \beta) = \alpha^{-1} \circ (\alpha \circ \sigma) \Longrightarrow \beta = \sigma$$

b)
$$\alpha \circ \beta = \sigma \circ \beta \Longrightarrow (\alpha \circ \beta) \circ \beta^{-1} = (\sigma \circ \beta) \circ \beta^{-1} \Longrightarrow \alpha = \sigma$$

Theorem 1.3: In any transformation group G, for any α , β in G, the equation

 $\alpha \circ \sigma = \beta$ has a unique solution for σ in *G* which is given by $\sigma = \alpha^{-1} \circ \beta$.

Proof: For α , β in G, $\alpha \circ \sigma = \beta \Longrightarrow \alpha^{-1} \circ (\alpha \circ \sigma) = \alpha^{-1} \circ \beta \Longrightarrow \sigma = \alpha^{-1} \circ \beta \in G$ Hence, the equation has a solution in G. For the uniqueness of this solution, assume there are two different solutions say σ , θ , then $\alpha \circ \sigma = \beta$, $\alpha \circ \theta = \beta \Rightarrow \alpha \circ \sigma = \alpha \circ \theta \Rightarrow \sigma = \theta$ (by Left cancellation) **Example:** Let (G, \circ) be a transformation group such that α, β, σ in G. If $\alpha(x, y) = (3 - x, 5 - y), \beta(x, y) = (3 - 2x, 5 - 3y)$. Find σ such that $\alpha \circ \sigma = \beta$ **Solution:** By the above theorem, $\alpha \circ \sigma = \beta$ has a unique solution for σ in G which is given by $\sigma = \alpha^{-1} \circ \beta$.

But after some ups and downs we get $\alpha^{-1}(x, y) = (3 - x, 5 - y)$.

Therefore, $\sigma(x, y) = \alpha^{-1} \circ \beta(x, y) = \alpha^{-1}(\beta(x, y))$ = $\alpha^{-1}(3 - 2x, 5 - 3y) = (2x, 3y)$

1.1. Which of the mappings defined on the Cartesian plane by the equations below are transformations?

$$\begin{aligned} \alpha((x, y)) &= (x^3, y^3), & \beta((x, y)) &= (\cos x, \sin y), & \gamma((x, y)) &= (x^3 - x, y), \\ \delta((x, y)) &= (2x, 3y), & \epsilon((x, y)) &= (-x, x + 3), & \eta((x, y)) &= (3y, x + 2), \\ \rho((x, y)) &= (\sqrt[3]{x}, e^y), & \sigma((x, y)) &= (-x, -y), & \tau((x, y)) &= (x + 2, y - 3). \end{aligned}$$

- 1.2. Which of the transformations in the exercise above are collineations? For each collineation, find the image of the line with equation aX + bY + c = 0.
- 1.3. Without looking back in the text, write in your own words definitions for *trans-formation* and *collineation*. Then compare to see whether your definitions are equivalent to those in the text.
- 1.4. Find the image of the line with equation Y = 5X + 7 under collineation α if $\alpha((x, y))$ is:

(a)
$$(-x, y)$$
, (b) $(x, -y)$, (c) $(-x, -y)$, (d) $(2y - x, x - 2)$.

1.5. Fill the following table with yes or No

$\alpha((x, y))$	(x , y)	(e^x, e^y)	(x^3-x^2,y)	(x^3, y^3)	(y/2, 2x)	(x/2, y/2)	(x - 2, 3y)	(-y, -x)
αis I−1								
α is onto								
α is a trans- formation								
α is a collineation								

1.6. Find the preimage of the line with equation Y = 3X + 2 under the collineation α where $\alpha((x, y)) = (3y, x - y)$.

Show the lines with equations aX + bY + c = 0 and dX + eY + f = 0 are parallel iff ae - bd = 0 and are perpendicular iff ad + be = 0.

1.8. Find the order of the following tranformations.

1. $(x,y) \mapsto (y,x);$

2.
$$(x, y) \mapsto (-x + 2a, -y + 2b);$$

3. $(x, y) \mapsto (\frac{1}{2}(x + \sqrt{3}y), \frac{1}{2}(\sqrt{3}x - y)).$

1.9. Consider the group $\mathfrak{V}_4 = \{\iota, \sigma_O, \sigma_h, \sigma_v\}$, where

$$\iota((x,y)) = (x,y), \quad \sigma_O((x,y)) = (-x,-y),$$

$$\sigma_h((x,y)) = (x,-y), \quad \sigma_v((x,y)) = (-x,y).$$

Show that:i. It forms abelian groupii. Every element except identity is involution

1.10. Prove that if α, β , and γ are elements in a group, then

1.11. Find all a and b such that the transformation $(x, y) \mapsto \left(ay, \frac{x}{b}\right)$ is an involution.

1.12. Suppose α , β , σ are transformation such that $\alpha \circ \sigma(X) = \beta(X)$ where

 $\alpha(x, y) = (-y, x)$ and $\beta(x, y) = (1 - x, -y - 10)$. Find equation of σ .

1.13. Let α , β , σ be elements of a transformation group G such that

 $\alpha \circ \sigma(x, y) = \beta(x, y), \forall (x, y) \in \mathbb{R}^2$ where $\alpha(x, y) = (-3y, 2x + 1)$ and $\beta(x, y) = (9y, 4x + 1)$. Find the equation of σ .