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3. Orthogonal Transformations
Preliminaries

* Distance is a real valued non-negative function denoted by which
assigns to any pair of points in the plane or space a non-negative real
number satisfying the following conditions:

i) d(P.Q)=d(0.P)
i) d(P.0)=0d(P.0)=0=P=0

i) d(P.R)<d(P.Q)+d(Q.R)
Here, the third property is known as friangle inequality and equality occurs 1f

and only 1f the points P, 0. R are collinear points.

By: Dinka T. 4
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Note: The notation d(P.Q)stands to mean the distance fromPtoQ and
equivalently denoted by d(P.Q) = |PQ| = PO . It is the length of the line segment

between PandQwhich shows that line segment 1s the shortest path between
two points.

In Euclidean geometry. distance between two points Pand Q1 a plane 1s given

by d(P.0)= PO = \f(-‘ﬁ —x,) +(»-»)" . where P=(x.1) and 0=(x,.3,)

It can be easily verified that this distance formula satisfies the above three

conditions. Throughout this text, the writer uses f(P)f(Q) to mean the

distance between f(P)and £(0Q). PO to mean the distance between PandQ.

By: Dinka T.
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Definition. An orthogonal mapping of a plane n into a plane
n’ is a mapping under which line segments of 7 are carried into
equal line segments of n'. More precisely, the mapping a of #n
into n’ is said to be orthogonal if, for any two points M, N of =,
the distance between M and N is equal to the distance (in n)
between a(M) and a{ N). We take the notion of distance in the
plane to be fundamental.

Definition: An isometric transformation or orthogonal transformation of
a plane is a transformation from a plane on to itself which preserves

distances.

By: Dinka T. 6



Chapter Three

Example: Verify whether the following transformation is isometries or

mot. f:R >R givenby f(x,y)=(2y-9.2x+9)

Solutzon

—

Fob—’ any +wo :,)otn'té'
P=(x4) and @ =(2,»)

£Cp) = £(xy)=(29-2 2%t 9) = ¢’
£() = (2w =(2w- 722 +9) =0

By: Dinka T. 7
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Properties of Orthogonal Transformations

Propositions 3.1: The inverse of an 1sometry 1s an 1sometry.

Proof: Let fbe an 1somefry. Now let Pand Qbe any two pomnts. We need to
show H fH(P)-f 'I{Q)H =|P-@]. Since £1s an isometry.
I -1 o= @)-fr7 )

(fo fHP)-(fo £)Q)| =[P -i(0)] =|P-4]
=|*®)-1"©)-IP-9

Hence. for any isometry f. f'is also an isomefry.

By: Dinka T. 9



Chapter Three

Proposition 3.2: The composition of any two 1sometries 15 again an 1sometry.

Proof: Let fand gbe any two 1sometries. We need to show their composition

fegisalso an isometry. Let Pand Qbe any two points.

f©)=[P-4|

But gis also an isometry, so [g(f(P)-g(f(@Q)|=]/(P)- f(0)|.

Since f1s an 1sometry. | f

Combining these two results together, we get that
g f(P)-g< f(0) =|g(/ () -e(1@))=[/P)- f©)=|P-].

Hence. the composition fo g1s an 1sometry.

By: Dinka T.
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Theorem |.  Under an orthogonal mapping, any three col-
linear points are taken into three collinear points, and any three
noncollinear points are taken into three noncollinear points.

Proof. Let P, Q, R be three collinear points, and suppose,
for example, that Q lies between P and R.
Then

PQ + QR = PR.

By: Dinka T. 11
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Suppose the respective images of P, O, Rare P’, Q', R'. Then
by the definition of orthogonality, P'Q" = PQ, etc., and so

P!QF + QFRJ‘ —_— PFRF

But this is possible only if P’, Q', R’ lie on a line, with Q’
in the middle; otherwise we should have

P!QF + QFR.I' } PIR#'

Let P, O, R be noncollinear points, and suppose their images
are collinear. Then the inverse mapping which takes P’ into
P, etc., would take the collinear points P’, Q’, R’ into collinear
points, by what we have already proved (since the inverse
of an orthogonal mapping is orthogonal). But P, O, R are not
collinear; this contradiction shows that the images are not
collinear. WY

By: Dinka T.
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Theorem 2. Let « be an orthogonal map of the plane 7
onto the plane 7'. Then the image under o of a line l in n is a line
I'"inn'. More precisely: given a line l'in 7, there is a line I in o’
such that every point of | is mapped onto some point of I', and
moreover every point of I' has precisely one point of | mapped
onto it. We may say more concisely that o induces a one-one
mapping of [ onto I'.

By: Dinka T.
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Proof. Let A and B be any two distinct points of /, and let
A" and B’ be their (distinct) images. Let /' be the line of =’
through 4’ and B'. Then, by Theorem 1, any point C of the
line ! is mapped into a point of I'. For C is collinear with 4
and B, so that its image must be collinear with A" and B’

Conversely let C’ be any point of /'. Then, by the same argu-
ment, its image under the inverse mapping« ™" of 7’ onto n must
lie on /, so that every point of I has an inverse image on /.

We have shown that the line /is mapped onto the line /', That
the mapping of / 1s one-one follows from the fact that « is

one-one. Y

By: Dinka T.
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Theorem 3. Under an orthogonal mapping o of space into
itself, the image of a plane 7 is a plane n'. Moreover, the mapping

of m onto n' is itself an orthogonal mapping.

Proof: Exercise!

Theorem 4. Under an orthogonal mapping of a plane n onto
a plane 7', the image of two parallel lines of © is two parallel
lines of '.

Proof. By Theorem 2, two parallel lines of n go into two
lines of . If these two lines had a point in common, the inverse

image of this point would be a point common to the two

By: Dinka T.
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parallel lines of m, which is impossible. Thus the lines in n" have
no common point; that is, they are parailel, W

Theorem 5. Under an orthogonal mapping of space:

1. the image of two parallel lines is two parallel lines;

2. the image of two parallel planes is two parallel planes;

3. the image of a plane and a line parallel to it is a plane and

a line parallel to it.

Theorem 6. Under an orthogonal mapping, the order of
points on a line is preserved. That is to say, if P', R" are the images
of two points P, R, then the interior points of the segment PR
go into the interior points of the segment P'R', while the exterior
points of PR go into the exterior points of P'R’.

By: Dinka T. 16
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Theorem 7. Orthogonal mappings preserve angles.

Proof. Let g and b be two rays through a point 0. Choose
points 4, B on a, b respectively, neither being the point O.
Let O, A’, B’ be the images of the three points under the
orthogonal mapping. Then O'A’, O'B’ will be the images of
a and b respectively (by Theorem 6).

By the orthogonality of the mapping, the triangles OAB and
O'A’B’ are congruent (three pairs of equal sides). So the

respective angles are equal, and, in particular, LAQB=
LAOR. Y

By: Dinka T.
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Theorem 8. Ler A, B, C be three noncollinear points of the
plane ©n, and A, B, C' three points of the plane n’ such thar
B'C'=BC,C'A" =CA, A'B' = AB. Then there exists one and
only one orthogonal mapping of the plane n onto the plane n'
such that the images under it of A, B, C are A', B, C', respec-
tively.

Proof. We construct a mapping as follows: we make A, B,
C correspond to A', B', C’, respectively. If P is a point of AC,
we make it correspond to the point P’ of A'C’ such that
A'P' = AP; if P lies on the extension of AC, we let its image P’

By: Dinka T.
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be the point on the extension of A'C’ such that (1) AP = A'P’,
and (2) the points P’; A’, C’ lie in the same order along the
line A'C" as do P, 4, and C along the line AC.

It is easy to see that if P and P, are any points of AC, and
P', P,’ their images, then PP, = P'P," and that the order of the
points P, P,’, A, C along the line A'C’ is the same as the order
of P, P, A, C along the line AC. We place the points O of 4B
in correspondence with the points Q' of A'B’ in just the same
way (Fig. 12).

Suppose now that M is a point of the plane not lying on
either of the lines AB or AC. We draw parallels through M to

By: Dinka T. 19
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Nav/4
A/

Fig. 12

meet AB and AC in Q and P, respectively. Let 0" and P’ be the
images of O and P on A'B"and A'C". Through Q" and P’ draw
parallels to A'C’ and A'B’ respectively, and suppose these
parallels meet in M'. Then we put M in correspondence with M’

By: Dinka T.
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We have now said what we put in correspondence with every
point of n. Let us show that the mapping we have defined is
orthogonal. Let M and M, be two points of r and M', M|’ their
respective images. If M and M, both lie on AB, orbothon AC,
then we already know MM, =M'M,". If M and M, both lic on
a line parallel to AC (say), then MM, = PP, = P'P,"= M'M,’
(where the notation is obvious). In the general case, let MQ
meet M, P, in S, so that M’'Q’ meets M,'P," in the image S’
of S (in case M, for example, lies on AB, we interpret M Q to be
the line through M paraliel to AC, and Q = M). Then MS =
PP, =PP,/' = M'S and SM, =00, = Q' @, = 5'M,". Next,
the sides of the angles BAC and M,SM are parallel, so that
the angles must be equal or supplementary. If they are equal,
then so are the angles B'A'C’ and M,'S'M’, but if BAC and
MSM, are supplementary, B'A'C’ and M'S'M," will be too.

By: Dinka T.
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But L BAC= L BA'Csothat LMSM;= L M'S'M,’. Thus
the triangles MSM, and M'S'M,’ are congruent (two sides and
included angle), and, in particular, MM, = M'M,". We have
shown that the mapping we have constructed is orthogonal. 'Y

By: Dinka T.
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The fundamental types of orthogonal transformations

1. Translation

Definition: A mapping T :R* — R” 1s called translation if there exists a vector

v such that T(P)=P+ v for every point P in R”.

-

X=x+4+a

ly=y+b

In other word. for P=(x.y).v=(a.b).T(P)=T(x.y)=(x".y') where

The vector v 1s called translator vector. The translation with translator vector
v 1s sometimes denoted by T, . In translation problem. whenever any two of
(x.y).(x'.y").or (a.b) (the pre image. the image or the translator vector) are

given, the third can be uniguely determuned from the translation equation.
By: Dinka T. 23
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Properties of Translations

a) The translator vector of a translation 1s unique.

b) The composition of translation T and T 1s again a franslation by v+w .

¢) The mverse of a franslation 1s a gam a translation with opposite vector.

d) The image of a line under a translation 15 a lime parallel to the given|line.

e) The image of a vector under a translation 1s an equal vector.

Examples: Let T be a translation by the vector(1.2) . Find the image of
a) AABC whose vertices are A(0.0). B(3.0) andC(0.4)
b)thelme [: x-2y=6.

By: Dinka T. 24
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Solution: Let P=(x,y) by any object in the plane containing A4BC' . Then.
T(P)=T(x.y)=(x+1y+2) by definition of translation. Thus.

a) A'=T(4)=(1.2).B'=T(B)=(4.2).C'=T(C)=(1.6). Hence. the mmage of
A4BC under T will be A4'B'C'with vertices A'=(1.2.).B'=(4.2) and C'=(1.6).

Theorem: Any translation is a dilatation. ‘ Proof!!

lFDI‘ any four pomnts P.Q.Rand § .17, ,(R)=S.then T,, =T,.

Proof: Let vbe a translator vector of the translation 7. Then.

T.(P)=v+P=Q=v=0-P=PQ
=T (R)=Q—-P+R=S5
= Q-P=S-R=PO=RS=T, =T,

By: Dinka T. 25
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2. Reflection

Definition: Given a line [ and a pomt P. Then P'is said to be the reflection

image of Pon the line/ if and only if PP'is perpendicular to / and

PM=P'M, where Mis the point of intersection of PP' and the line /. In
other words. Pand P'are located on different sides of [but at equal distances
from the lne 7. In this case. P'1s said to be the murror image of Pand the line

15 said to be line of reflection or axis of symmetry.

Notation: Reflection on /15 usually denoted by §, .

By: Dinka T. 26
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Theorem 3.2: (The Generalized Reflection Theorem): Let /:ax+by+ec=0

be any line and S, be a reflection on line /.

Then. for any point (x.y). S,(x.y)=(x'.)") where |

X'=x-

y'=y-

2a(ax+by+c)
a’+b’

2b(ax +by +c)
a’+b°

Proof: From the definition of reflection. the line through P(x.y)and P'(x'.y")1s

perpendicular to the given lne and the mudpoint of (x.y)and (x'.y')1s on the

line I. Refer the figure 3.3.

By: Dinka T.
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f:ax+&y+c =10

Figure 3.3: Reflection on arbitrary line |

As the slope of the given line 1s m = —% .the slope of the line through P(x. y)

and P'(x'.y')1s m'=£
a

By: Dinka T.
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Thus. the equation of the line through P(x.y)and P'(x'.y")1s given by

'~y 'E} 1 ¥ -
}. Y -2 AV =F) = DX =X i, (i)
X=X [
T - . ! " ] - xT I .:-I' Ll
Now. the midpoint of P(x.y)and P'(x'.y")1s on [ means | |15 onl.
(x+x") (v+y")
So. a| —— |+b| - ‘—I—q‘_":[]:}t‘?.l"+gl'_‘1":—2f'—ﬂ?t'—gi'_‘1' ............... (if)
\ ! \, !
Combining these two equations gives us
JI bx"—ay' =bx—ay
........................................................... (7i7 )

lm:*' +by'=-2¢c—ax—by
Now, solve these equations for x' and y'. In this equation. by multiplying the

first equation by 'b', the second by 'a'and adding them we obtain.

By: Dinka T. 29
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a’x'+h"x'= b(bx - ay + a(-2c - ax—by)

- b(bx-ay)+a(-2c-ax-by)

—X=

i ¥
a +b
1 3 1
b*x+a x-2a"x-2aby-2ac

a’+b°
~ x(a” +b*)-2a(ax+by +c¢)
) a’+b’
2a(ax+by +c)

9 §
a- +b°

=X —

Sinularly, multiplying the first equation by 'a’. the second by 'b'and adding

the result gives.

By: Dinka T.
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b(—2¢c —ax — byv) — a(bx — ay)
a? + b?
”2_1" —+ EJ':}’ — -_"-’EJ'E_F — Z2abx — 2bc

ac +« bh?

_ via® + b)) — 2b(ax + by + <)

a 4+ b-°

- 2bi{ax +~ by + )

= b |
- + b

By: Dinka T.
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Examples

1. Find the image of the point (2.3)by a reflection on the line 7:3x-2y+5=0
Solution: Given (x.y)=(2.3)and from /:3x-2y+5=0.a=3.b=-2.c=5.
Then.

2a(ax+byv+c) 6(6-6+5) 4

¥

| X'=x— .
_j a’+b’ 9+4 13
| o Eb{n.r—f.i}-‘+f)_%+4(6—6+5)_59
l.'l Y a’ +b* ] 0+ 4 13
4 59
Theretfore. S,(2.3)=(———.—).
(2.3)=( = 13}

2. Given S,(a.b)=(2.5)where /:x—y+1=0. Find the value of the point (a.b).

Solution: Using the generalized reflection equation derived in the above

theorem.

By: Dinka T.
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12g-20704Y o abil)=b=3

S, (a.b)=(2.5) =1 ,. 1‘; |
o T Gl ) S S J
1+1

3. Given the lines m:y=2x+1 and n: y=2x-3. Find the image of the point
(L1)by a product of reflection on line m followed by line n .
Solution: We need to find S, o5, (L)

Fust calculate S, (1.1) using reflection equation as

r 4(2-1+1 3
=1 (4 1 -2
1+ 5
S (L) =(x"y")=+
D= ey o
=1+ =2
| 4+1 5

By: Dinka T.
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6 9
'l_ll_ 3 4(_E_E_3) :1
— 30, |7 T s :
Now. SFI C ’Sii'ﬂ [-11) = Sn (Sm (11)} = S”(__.E.} = '1 G 4;1 :!I
b —
. | —6 9
9 -L‘? 5 )3
yEgt———— =1
| 3 4+1 5
21 3
Therefore. § oS, (L1)= (?._T},
5 5

By: Dinka T.
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Examples: Find the images of the circleC:x* +y” +2x-6y+6=0 and the
ellipse E:4x* +9y" =36 under a reflection on the line/: y=x+1 .

Solution: For clarity. let’s follow the above procedure directly.

First: Identify the center and radius of the circle C: x* + y* + 2x -6y +6=0.

By completing square. we get x* +y° +2x—6y+6=0=(x+1)* +(y-3)’ =4.
Hence. the center 1s O =(-13)and 1ts radius 1s r =2,

Second : Find the image of the center 0 = (-1.3)by areflectionon /: y=x+1

Using, reflection formula we get the image of the center to be

0'=S5,(-1.3)=(2.0)

By: Dinka T.
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Third: Write the equation of the mmage circle using the image center and the
radius of the given circle.

That is the image circle is €' (x-2)* +(y-0)" =4=x"+y’ =4x

| | | Y’ 2
In standard form, the ellipse is written as E:4x” +9y° =36 = o }T =1.

Thus, the major axis 1s a =9, the mmor axis 1s b=2 and the center 15 C(0.0).

Besides. the image of the center 1s C"(-11). Therefore. the image of the ellipse

g,

]

=1=4(x+1)" +9(y-1)* =36.

=+ (p-1
becomes E':(l }+(“1 )

By: Dinka T. 36
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3. Rotation

Definition: A rotation is a transformation in which a figure is turned about a
fixed poimnt through an angle of ¢ m a specific direction. In other words,
rotation about a point C through directed angle £ 1s a transformation that fixes
the pomnt € and sends every other pomnt P to P'such that P and P'have the

same distance from the fixed pomnt C. Here. the fixed pomnt Cis called the

center of rotation and the angle & measured from CP to CP' is called
direction of the rotation. The rotation may happen either clockwise or counter
clockwise direction. usually clockwise rotation will have negative measure of
angle. whereas counter clockwise rotation will have positive measure of angle.

Rotation with center C through an angle of & 1s usually denoted by g , .

By: Dinka T. 37
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So. the image of any pomnt P under g, 1s given as:

(C,if P=C
PeolP)= {LP'. if P=C,s.t. CP=CP'
. .
\ , 5 P'(e',)') Fxy)
. ] i 0 e

Figure 3.5

L | L 3

Theorem 3.3: A rotation through an angle of#. about the origin which takes
each point P(x.y)in to P'(x'.y")1is given by 0, ,(x.¥) = (x.»"). where

[x'=xcosf—ysinb
.\_-:

|y'=xsm&+ycosd

By: Dinka T.
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Theorem 3.4 (Generalized Rotation Theorem):

The 1mage of any pomnt P(x. y)under a rotation about arbitrary center C( h.k)
through an angle of # is givenby p, ,(x.y)=(x.y") where

(x'=(x—h)cos 8 —(y—k)sinf + T
\|._J*"= (x—h)sm&+(y-k)cosd+k

Example: The image of the point (1.2) by a counter clockwise rotation about

the center C =(2.3)is (2.3—+/2).Find the angle of rotation.

Solution: By the generalized rotation theorem.

x'=(x—h)cos@—(v—k)sin@+h
V'=(x—h)sin@+(y—k)cos@+k

By: Dinka T. 39
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So. for (x.y)=(1.2). C=(h.k)=(23) and (x'.y") = (E.S—wE ). we get

J.T'=—C055’—3ﬁ15’+2=1 J_T'=—cms§—si115’={}

) . ~
|,._1": —sinf-cosf+3=3-42 |_.}"= —smf—cos=—v2

—

(cos@ =smn b | J
= —=smf=cosf=—
—sinf—cosf =—2 2

Here, both sin# and cos# are positive.

But this 1s true if and only 1f #1s in the first quadrant.

V2. 1
—I15 —,

Thus, an angle in the first quadrant with smé =cosé = .

By: Dinka T. 40
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Suppose the general equation of a rotation about any center C =(h.k) with
angle of rotation ¢ 1s given by p. ,(x.v)=(x".»') where

| X'=xcosf-ysm&+r .
with 7.z #being real numbers,

]_}"=I5i113—}'c2ﬂ$ B +1

Then. the center ¢ = (h.k) of this rotation 1s given

r F I

1= ——

: 2 2tanf
I !

k=L 1

I 2 2tan<s

Proof! Exercise

By: Dinka T. 41
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Example: Suppose R.,is a counferclockwise rotation with center C=(h.k)

1 "'g —
I'=—I—L}'+2+4w"3
7 g

f . Find the angle and
|
.}"=—I+—}’+4—2\E

whose equations are given by

)] 1

- -

center of this rotation.

Answer!

V3

Here. r=2+4+3.t =4— 23 . Besides. cos® =%.sﬁ1ﬂ=j:}+ﬂ=6{}‘.

Therefore, the center of the rotation 1s C = (h.k) = (4.9).

By: Dinka T.
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Theorem 3.6: Let R be a counter clock wise rotation by a given angle # about
the origin. Then,

a) R,°R, =R,,,, for any two angles

b)R™ =R

_,» the inverse of a rotation by #1s a rotation by -¢

¢) R,=i< 0=2nx, neZ(Where i1s identity rotation)
Proof: a) Let P(x,y)be any point. Then,

R,R,(x,y)=R,(R,(x,y))

=R,(xcos f=ysm f,xsm f+ ycos ff) =(x',y"), where
x'=(xcos ff—ysin ff)cos@—(xsin ff + ycos ff)sind
{y'= (xcos f—ysm f)sind + (xsin f+ yeos ff)sinéd

By: Dinka T. 43



Chapter Three

Rearranging these equations and using angle sum theorem, we get
x'=xcos(d+ ff)-ysm(F+ )
y'=xsm(f+ f)+ ycos(d+ f)

On the other hand, using ¢ =6+ as angle of rotation, we get

R, ﬂ(x, y)=(xcos(A+ ff)-ysm(f+ f),xsm(@+ f)+ ycos(B+ f)) = (x", 3 )erereeene.

Comparing equations (i) and (i7), one can conclude that R,R, =R,, ,.

By: Dinka T.
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Examples:

1. Find the image of the point (2.5)by a product of rotations through an angle

of #=15" and £ =75"1n counferclockwise direction about the same center
C=(7.2).

Solution: From the above theorem, p., ° o ,(x. V) = pr 4.5 (x. ) Where

(x.)=(2.5),8=15", f=75 and C=(7.2).

. o35 25 ¥'=(2=Tcos90" =(5=2)sin90" +7 =4
us, - @ e 22)=p L) = _
Peas ° Leas c.er V=(2=T)sm90" +(5—=2)cos 90" +2 = -3

2. Suppose R,1s a counterclockwise rotation about the origin whose equations

are given by -« 2 J‘j; . Find the equations for the inverse, R, of this
3

rotation.

By: Dinka T. 45
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S

x'=xcos(=30") = ysm(=30") = T:r + E;I.'

1 A3

y'=xsm(=30") + ycos(=30") = - Xty

R (x,y)=(x",y") where 1

3.If R, =R_,, then what should be the possible values of & ? Particularly for

D<t<2r.
Solution: Using part (c) of the above theorem, we have

R,=R,<=R,(P)=R ,(P)=R,*R,(P)=R,=R_,(P)
& Ryy(P)=R(P)=i(P)=P =R,y =1

e 20=2m nel=f=m.necl

Particularly for 0<f# <27, #=7,when n=1

By: Dinka T.
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Half-turns

Definition: 4 half furn 15 a rotation by 180°. A half turn about a pomnt Pis
denoted by H,.If Aisrotated by 180" about point P(a.b), then A'P=A4P.In

other words P 1s the mid point of 4{and 4.

X'+
: ——=a
Thus using the midpoint formula, #ﬂ:j_ 3  =x=-x+da,y'=-y+2b-
2 Y _y
| 2

By: Dinka T. 47
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Examples:
1. Find the image of a point (2.—7) by a half-turn about the pomnt P=(5.-3).
Solution: By defimition,

xX==x+10
Ho(x,¥)=(x".y") whereq | . Therefore. H,(2.=7) = (8.1).

y==y—6
2 If the image of (-2.3) by a half-turn 1s (10.11), find the center of the half-turn.
Solution: Let the center be P=(a.b). Then, using the definition, we have

H.(-23)=(1011)= (2a+2.2b-3)=(1011)
—=2a+2=102b-3=11
= a=4b=T=P=(4.T)

3. Let H.be a half turn about P=(-3.2). Find,
a) The image of the line /: y=5x+7

b) The pre-image of the line m: y=2x+17
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Example: Let PORT be a parallelogram with vertices P(1.2), 0(6.2), T(14).
Find the vertex R.

Solution: From the above corollary, PORT 1s a parallelogram if and only 1f
HyeH,eH,=H; Let R=(a.b)and X =(x.y)be any point.

Then,
Hﬂ "JHQ 'ﬂ'H‘n =H]r
S HyeHyeHp(X)=H(X)
S HpeHy(—x+2-y+4)=(-x+2-y+8§)
< Ho(x+10,y) =(=x+ 2=y +8)
& (=x=10+2a=-y+2b)=(=x+2 -y +8) = (2a=1025) =(2.8)
<> (2a,2b)=(128) < (a.b) =(6.4)

Thus, the unknown vertex 1s R=(a.b)=(6.4).
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5. Glide Reflection

Definition: A glide reflection gis the composition of a reflection S, over a

line /followed by a translation T with non-zero vector v where the line /1s

1

paralle]l to the direction of the translation or parallel to the translator vector v.
The vector v 1n this case 15 called glide vector and the line [1s called axis of the
glide reflection. Here, the vector wvis requwed fo be non-zero otherwise
translation by a zero vector will be 1dentity map and the composition also will
be the usual reflection but not glide reflection. We can easily justify that the
same result 15 obtained by first reflecting and then franslating or vice versa. As

a result, the order of the two transformations

(Translation and reflection) 15 immatenial So, g=T &5, =5,T .
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General Equations of Glide-Reflections:
Let gbe a ghde reflection with axis /:ax+bv+¢=0and glide vector y= (d.e)

with the condition ad+be=0 .Then, the general equation of gis given by

2 :
I'=.T—ha(a{+b},+f}+d
{:T T]_T ﬂS {I \")_S (I '!?)1-':’—{]" 1!1}“:]1ETE B a +b—
ST AR AR  Db(ax+by+c)
y=y- ; - +e
a +b°

Conversely, if g1s a ghde reflection given by g(x,»)=(x".»") where

Y'=ax+by+c

y'=bx-ay+d

Then, the axis of g1s given by 7:2bx-2(a+1)y+ad —bc+d =0 or 2x=c.
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Examples:

1. Let gbe a glide reflection with axis /:3x—4y-2=0and ghde vector

V= (=4.-3). Find the equation of g and calculate the image of the pomnt (0.0)

Solution: Here, g(x,y)=T o5,(x.¥)=5,(x,») + y= (x'.y")Ywhere

Y T_Ea{a:r+b}‘+r] de o 5(31—4}*—2)_4_ ?x+24_]'_83
' a’+b’ 9+16 25 25 25
Eb(ax+b}*+-:")+e_T+E{31’—4_]'—2)_3_24x_32}'_91

a’+b* ‘ 9+16 25 25 25

y=y—

Therefore the image of the point (0,0) 15 given by

700), 24(0) 88 _ 88 ., 24(0) 32(0) 91_ 91
25 25 25 25T 25 25 25 25

g(0.0) =(x",»") where x'=

Hence, g(0.0)= {-E—%,—ﬂ]-
3 25

By: Dinka T.
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Exercise! 2. Suppose gis a glide reflection with axis 7:5x-ky+7=0and glide vector
y= (6.10). Then, find the value of the constant & .
3. Let gbe a ghde reflection with axis /:2x+7y-9=0and ghde vector
;f':{d.al] . Then, find the value of the constant 4 .
4 Let gbe a ghde reflection with axis /:2x+y-5=0 and glde vector
v=(d.e). If g(0.0)=(6-2), then find the glide vector v.
5. Let gbe a glide reflection with axis 7-x-y+1=0 and glide vector v=(33).

If g(p.q)=(5.8), then find the pownt (p.q).
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Orientation Preserving and Orientation Reversing Orthogonal

transformation

Definitions: Let g be any orthogonal transformation. Then, we say that g
preserves orientation if and only 1if for any positively oriented vectors X and ¥
, their images X'=g(X), "= g(¥)are agam positively oriented vectors. In this
case, g1s said to be orentation preserving orthogonal fransformation. In
general, if the pair(X.T)and the pair(g(X).g(¥))have the same orientation,
then gpreserves orientation. But, if they have opposite onentation, then g
reverses (changes) orientation. In this case, g1s said to be orientation reversing

(changing) orthogonal transformation.
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Examples:

1. Determine whether the following 1sometries preserve or reverse orientation.

D) -0 a0

A

W

Solution: Let X = [ }md ¥= [ :Jhe positively oriented vectors. Then,

A

—

det(X. 1) = |>0

YW

a) From the given formula,

a2} o7

= det(X".¥") =
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Thus, the pair (X".1")1s posttively ortented, has the same onentation to the pair
(X.T), which shows that g preserves orientation.

X

b) Similarly as in part(a), X'= g(.X) =[_ 1]~ I'=g(l) :{-:w]

X X Z

— det(X'.T') = <0

C|=mwt = -aw=-
-y =W

VoW
Thus, the pair (X", 1")1s negatively oriented, has opposite orentation to the pair

(X.T), which implies that g reverses or changes orientation.
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Examples: Determine whether the following transformations are orientation

preserving or orientation reversing

. Lo x Ix=2y+7
a) g: - >R givenby g N il Y

; . . x+1
b) @:R- — R™ given by m{r]z[ ' ”]
I.‘I I.‘I-

L_eft for the reader!

'Translations and rotations (including identity) are the only types
of Isometries preserving orientation. Reflections and glide-reflections are

the only types of isometries reversing (changing) orientation.

Prove 1s an exercise!!!
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Fixed Points of Isometries

1) Exactly one fixed point: Isometries that have exactly one fixed point are only
Rotations: Any rotation has exactly one fixed point and the fixed point is exactly the
center of the rotation.

I1) Two or more fixed points:

Any isometry that has two fixed points but not identity is a reflection over a

line and the whole points on the line of reflection are also fixed points.

As a result the line of reflection is a fixed line.
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1i1) Three non-collinear fixed points:
An isometry that has three non-collinear fixed points is an identity.
IvV) No fixed poin:
Isometries that have no fixed point at all- This category includes
translation

and glide reflection.
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