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Preface 

Mathematical modelling is a bridge between the study of mathematics and the application of 

mathematics to various fields. The module affords the student an early opportunity to see how 

the pieces of an applied problem fit together. The student investigates meaningful and practical 

problems chosen from common experiences encompassing many academic disciplines, including 

the mathematical sciences, operation research, engineering, and the management and life 

science. 

This module provides an introduction to the entire modelling process. The student will have 

occasions to practice the module facets of modelling and enhance their problem solving 

capabilities. The aim of this module is to display by examples some of the many facets of 

mathematical modelling. 

This module needs a student with a good knowledge of calculus, ordinary differential equation 

and a little probability and matrix theory would find all of it accessible. 

The module are organized according to a definite point of view, the first chapter focused on 

introduction of modelling and how to relate mathematical model with other models. Although in 

this part we try to show steps of modelling and properties of modelling. 

The second and third chapter tries to explain about dimensional analysis and modelling using 

graphical methods respectively. 

The last two chapters focused on applications. In this chapter we try to show examples of 

mathematical modelling related to differential equations and optimization.  

 

 

.  

 

 



 

 

1 

 

 

 

Contents 

   

Contents 
Contents.................................................................................................................................................. 1 

CHAPTER 1 ....................................................................................................................................... 4 

Introduction to Modeling ................................................................................................................. 4 

1.1 Models and reality ........................................................................................................................... 10 

1.2   Properties of models ................................................................................................................. 14 

1.3   Building a model ....................................................................................................................... 16 

1.3.1  Constriction of Models ...................................................................................................... 16 

1.3.2  Iterative Nature of Model Construction .............................................................................. 23 

1.4  Modeling Using Proportionality ................................................................................................. 25 

1.6 Why Study Modeling? ................................................................................................................ 38 

CHAPTER 2 ..................................................................................................................................... 41 

DIMENSIONAL ANALYSIS ................................................................................................................ 41 

2.1 Introduction: ................................................................................................................................... 41 

2.2 Dimensions as Products ................................................................................................................... 47 

2.3   The process of the Dimensional Analysis ........................................................................................ 60 

2.4 A Damped Pendulum ....................................................................................................................... 70 

2.5 Dimensional Analysis in the Model-Building Process ........................................................................ 77 

2.6 Examples Illustrating Dimensional Analysis ...................................................................................... 80 

Chapter 3 ....................................................................................................................................... 94 



 

 

2 

 

GRAPHICAL METHODS ................................................................................................................... 94 

3.1Using Graphs in Modeling ................................................................................................................. 94 

3. 2. COMPARATIVE STATICS.................................................................................................................. 95 

3.3 STABILITY QUESTIONS ...................................................................................................................... 99 

Chapter 4 ..................................................................................................................................... 103 

Application of Mathematical Modeling ........................................................................................ 103 

Introduction ........................................................................................................................................ 103 

4.1 Modeling using Proportionality ...................................................................................................... 103 

4.2 Modeling Using Geometric Similarity ............................................................................................ 108 

4.3 Modeling Using Differential Equations .......................................................................................... 112 

4.3.1 The Derivative as a Rate of Change ......................................................................................... 114 

4.3.2The Derivatives as the Slope of the Tangent Line ..................................................................... 115 

4.3.3 Some Mathematical Models Related to first order differential equations ................................ 116 

I. Newton’s Law of Cooling .................................................................................................... 116 

II.  Population Growth ............................................................................................................... 118 

III.  Prescribing Drug Dosage .................................................................................................. 124 

Based on Prescribing Drug Dosage model try to answer the following ......................................... 130 

4.4 Modeling with Higher-order differential Equations ........................................................................ 130 

4.4.1 Spring/Mass Systems: Free Un-damped Motion .................................................................. 131 

4.4.2 Spring/Mass Systems: Free Damped Motion ........................................................................... 136 

4.4.3 Spring/Mass Systems: Driven Motion ...................................................................................... 141 

CHAPTER 5 ................................................................................................................................... 144 

Basic optimization........................................................................................................................ 144 

5.1 An Overview of Discrete Optimization Modeling ...................................................................... 145 

5.1.1  Classifying Some Optimization Problems ......................................................................... 147 



 

 

3 

 

5.1.2 Unconstrained Discrete Optimization Problem ................................................................. 149 

5.2   Linear Programming I: Geometric Solutions ................................................................................. 150 

5.2.1 Interpreting a Linear Program Geometrically .................................................................... 151 

5.3   Linear Programming II: Algebraic Solutions .................................................................................. 159 

5.4  Linear Programming Ill: The Simplex Method .......................................................................... 163 

5.4.1 Steps of the Simplex Method ............................................................................................ 164 

5.4.2 Computational Efficiency .................................................................................................. 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4 

 

CHAPTER 1 

Introduction to Modeling 

Learning objectives 
 
    After studying this chapter students will be able to: 

� Identify properties of Models & its relation with reality. 
� Apply the mathematical modeling cycle to simple problems 
� Understand some of the assumptions used when modeling. 
� Formulate a Mathematical model of real life problems. 

Introduction  

To help us better understand our world, we often describe a particular phenomenon 
mathematically (by means of a function or an equation, for instance). Such description is an 
idealization (model) of the real-world phenomenon and never a completely accurate 
representation. Although any model has its limitations, a good one can provide valuable results 
and conclusions.  

In modeling our world, we are often interested in predicting the value of a variable at some time 
in the future. Perhaps it is a population, a real estate value, or the number of people with a 
communicative disease. Often a mathematical model can help us understand a behavior better or 
aid us in planning for the future. Let’s think of a mathematical model as a mathematical 
construct designed to study a particular real-world system or behavior of interest. The model 
allows us to reach mathematical conclusions about the behavior. These conclusions can be 
interpreted to help a decision maker plan for the future.  
 
Simplification  
 
Most models simplify reality. Generally, models can only approximate real-world behavior. One 
very powerful simplifying relationship is proportionality.  

 

DEFINITION: 

Two variables y and x are proportional (to each other) if one is always a constant multiple of the 

other; that is, if      for some non zero constant k, we write                           

 

  The definition means that the graph of y versus x lies along a straight line through the 
origin. This graphical observation is useful in testing whether a given data collection reasonably 
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assumes a proportionality relationship. If proportionality is reasonable, a plot of one variable 
against the other should approximate a straight line through the origin. Here is an example. 

    EXAMPLE:     Testing for Proportionality  

Consider a spring-mass system, such as the one shown in Figure 1.1. We conduct an experiment 
to measure the stretch of the spring as a function of the mass (measured as weight) placed on the 
spring. Consider the data collected for this experiment, displayed in Table 1.1. A scatter plot 
graph of the stretch or elongation of the spring versus the mass or weight placed on it reveals an 
approximate straight line passing through the origin, (Figure 1.2). 

  The data appear to follow the proportionality rule that elongation e is proportional to the 
mass m, or symbolically, 

.e m∝   The straight line appears to pass through the origin. This 
geometric understanding allows us to look at the data to determine if proportionality is a 
reasonable simplifying assumption and, if so, to estimate the slope k. In this case, the assumption 
appears valid, so we estimate the constant of proportionality by picking the two points (200, 
3.25) and (300, 4.875) as lying along the straight line. We calculate the slope of the line joining 
these points as  
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Thus the constant of proportionality is approximately 0.0163 and we estimate our model as: 
  e=0163m 

  We then examine how close our model fits the data by plotting the line it represents 
superimposed on the scatter plot (Figure 1.3). The graph reveals that the simplifying 
proportionality model is reasonable.  

 

Modeling Change  

A powerful paradigm to use in modeling change is  

future value =  present value + change  

Often, we wish to predict the future on what we know now, in the present, and add the change 
that has been carefully observed. In such cases, we begin by studying the change itself according 
to the formula  

  change = future value — present value  
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By collecting data over a period of time and pot1ing that data, we often can discern patterns to 
model that capture the trend of the change. If the behavior is taking place over discrete time 
periods, the preceding construct leads to a difference equation, which we study in this chapter. If 
the behavior is taking place continuously with respect to time, then the construct leads to a 
differential equation. Both are powerful methodologies for studying change to explain and 
predict behavior.  

  Modeling Change with Difference Equations  

In this section we build mathematical models to describe change in an observed behavior. When 
we observe change, we are often interested in understanding why the change occurs in the way it 
does, perhaps to analyze the effects of different conditions on the behavior or to predict what will 
happen in the future.      A mathematical model helps us better understand a behavior while 
allowing us to experiment mathematically with different conditions affecting it.  

  DEFINITION:  For a sequence of numbers   the first 
differences are  

                                         

For each positive integer n, the nth first difference is 

  

         Note from Figure 1.4 that the first difference represents the rise or fall between consecutive 
values of the sequence; that is, the vertical change in the graph of the sequence during one time 
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period.  

 

  Example:  A savings Certificate 

Consider the value of a savings certificate initially worth $1000 that accumulates interest paid 
each month at 1% per month. The following sequence of numbers represents the value of the 
certificate month by month:  

                              

  The first differences are as follows:  

 

  Note that the first differences represent the change in the sequence during one time 
period, or the interest earned in the case of the savings certificate example.  
  The first difference is useful for modeling change taking place in discrete intervals. In 
this example, the change in the value of the certificate from one month to the next is merely the 
interest paid during that month. If n is the number of months and an, the value of the certificate 
after n months, then the change or interest growth in each month is represented by the nth 
difference  

                          
This expression can be rewritten as the difference equation  
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  We also know the initial deposit (initial value) that then gives the dynamical system 
model  

                                                    (1.1) 

where an ,  represents the amount accrued after n months. Because n represents the nonnegative 
integers (0, I, 2, 3 . . .), Equation (1.1) represents an Infinite set of algebraic equations, called a 
dynamical system. Dynamical systems allow us to describe the change from one period to the 
next. The difference equation formula computes the next term knowing the immediately previous 
term in the sequence, but it does not compute the value of a specific term directly (e.g., the 
savings after 100 periods).  

Because it is change we often observe, we can construct a difference equation by 
representing or approximating the change from one period to the next. To modify our example, if 
we were to withdraw $50 from the account each month, the change during a period would be the 
interest earned during that period minus the monthly withdrawal, or  

                          

In most examples, mathematically describing the change is no going to be as precise a 
procedure as illustrated here. Often it is necessary to plot the change, observe a pattern, and then 
describe the change in mathematical terms. Thai is, we will be trying to find  

    

  The change may be a function of previous terms in the sequence (as was the case with no 
monthly withdrawals), or it may also involve some external terms (such as the amount of money 
withdrawn in the current example or an expression involving the period n). Thus, in constructing 
models representing change in this chapter we will be modeling change in discrete intervals, 
where  

    

Modeling change in this way becomes the art of determining or approximating a function f that 
represents the change.  
  Consider a second example in which a difference equation exactly models a behavior in 
the real world.  

Examples of problems where modeling could be used: 
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• to determine the maximum speed of a car round a bend, 
• to help define the design requirements of a sports stadium, 
• to evaluate new design options for a mountain bike, 
• to work out how to send a space station into orbit. 

etc. 
 

1.1 Models and reality   

The theoretical and scientific study of a situation centers around a model, that is, something that 

mimics (imitate) relevant features of the situation being studied. For example, a road map, a 

geological map, and a plant collection are all models that mimic different aspects of a portion of 

the earth's surface. 

    The ultimate test of a model is how well it performs when it is applied to the problems it was 

designed to handle. 

Now we examine more closely the process of mathematical modeling. To gain an understanding 

of the processes involved in mathematical modeling, consider the two worlds depicted in Figure 

1.5. Suppose we want to understand some behavior or phenomenon in the real world. We may 

wish to make predictions about that behavior in the future and analyze the effects various 

situations have on it.  

 

For example, when studying the populations of two interacting species, we may wish to 

know if the species can coexist within their environment or if one species will eventually 

dominate and drive the other to extinction. In the case of the administration of a drug to a person, 

it is important to know the correct dosage and the time between doses to maintain a safe and 

effective level of the drug in the bloodstream. 
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How can we construct and use models in the mathematical world to help us better 

understand real-world systems? Before discussing how we link the two worlds together, let’s 

consider what we mean by a real-world system and why we would be interested in constructing a 

mathematical model for a system in the first place. 

  A system is an assemblage of objects joined in some regular interaction or 

interdependence. The modeler is interested in understanding how a particular system works, 

what causes changes in the system, and how sensitive the system is to certain changes. He or she 

is also interested in predicting what changes might occur and when they occur. How might such 

information be obtained? 

  For instance, suppose the goal is to draw conclusions about an observed phenomenon in 

the real world. One procedure would be to conduct some real-world behavior trials or 

experiments and observe their effect on the real-world behavior.  

 

This is depicted on the left side of Figure 1.6. Although such a procedure might minimize 

the loss in fidelity incurred by a less direct approach, there are many situations in which 

we would not want to follow such a course of action. For instance, there may be 

prohibitive costs for conducting even a single experiment, such as determining the level 

of concentration at which a drug proves to be fatal or studying the radiation effects of a 

failure in a nuclear power plant near a major population area. Or we may not be willing to 

accept even a single experimental failure, such as when investigating different designs for 

a heat shield for a manned spacecraft. Moreover, it may not even be possible to produce a 
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trial, as in the case of investigating specific change in the composition of the ionosphere 

and its corresponding effect on the polar ice cap. Furthermore, we may be interested in 

generalizing the conclusions beyond the specific conditions set by one trial (such as a 

cloudy day in Addis Ababa with temperature 82°F, wind 15—20 miles per hour, 

humidity 42k. and so on). Finally, even though we succeed in predicting the real-world 

behavior under some very specific conditions, we have not necessarily explained why the 

particular behavior occurred. (Although the abilities to predict and explain are often 

closely related, the ability to predict a behavior does not necessarily imply an 

understanding of it). The preceding discussion underscores the need to develop indirect 

methods for studying real-world systems.  

  An examination of Figure 1.6 suggests an alternative way of reaching conclusions 

about the real world. First, we make specific observations about the behavior being 

studied and identify the factors that seem to be involved. Usually we cannot consider, or 

even identify, all the factors involved in the behavior, so we make simplifying 

assumptions that eliminate some factors. For instance, we may choose to neglect the 

humidity in Addis Ababa, at least initially, when studying radioactive effects from the 

failure of a nuclear power plant. Next, we conjecture tentative relationships among the 

factors we have selected, thereby creating a rough model of the behavior. Having 

constructed a model, we then apply appropriate mathematical analysis leading to 

conclusions about the model. Note that these conclusions pertain only to the model, not to 

the actual real-world system under investigation. Because we made some simplifications 

in constructing the model and the observations on which the model is based invariably 

contain errors and limitations, we must carefully account for these anomalies before 

drawing any inferences about the real-world behavior.  In summary, we have the 

following rough modeling procedure:  

1.   Through observation, identify the primary factors involved in                   

the     real- world behavior,      possibly making simplifications. 

2. Conjecture tentative relationships among the factors.  

3. Apply mathematical analysis to the resultant model.  

4.  Interpret mathematical conclusions in terms of the real-world             problem. 
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Given some real-world system, we gather sufficient data to formulate a model. Next we 

analyze the model and reach mathematical conclusions about it. Then we interpret the model and 

make predictions or offer explanations. Finally, we test our conclusions about the real- world 

system against new observations and data. We may then find we need to go back and refine the 

model to improve its predictive or descriptive capabilities. Or perhaps we will discover that the 

model really does not fit the real world accurately. so we must formulate a new model. We will 

study the various components of this modeling process in detail throughout the module.  

Mathematical Models  

Definition.   

A mathematical model is a mathematical construct designed to study a particular real-world 

system or phenomenon. We include graphical, symbolic, simulation, and experimental 

constructs. Many real problems can be  very complex and so the idea of creating a mathematical 

model is to simplify the real situation, so that it can be described using equations or graphs. 

These equations or graphs are referred to as a mathematical model. These mathematical models 

can provide solutions to the original problem. It is often necessary to interpret these answers in 

the context of the original problem and to check that the answers that you have obtained are 

reasonable.  

Mathematical models can be differentiated further. There are existing mathematical 

models that can be identified with some particular real-world phenomenon and used to study it. 

Then there are those mathematical models that we construct specifically to study a special 

phenomenon. Starting from some real-world phenomenon, we can represent it mathematically by 

constructing a new model or selecting an existing model. On the other hand, we can replicate the 

phenomenon experimentally or with some kind of simulation.  

The real world refers to 

• engineering 

• physics  

• physiology 

•  ecology 
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• wildlife management 

• chemistry 

• economics 

• sports 

 . . . 

Regarding the question of constructing a mathematical model, a variety of conditions can 

cause us to abandon hope of achieving any success. The mathematics involved may be so 

complex and intractable that there is little hope of analyzing or solving the model, thereby 

defeating its utility.  

  This complexity can occur, for example, when attempting to use a model given by a 

system of partial differential equations or a system of nonlinear algebraic equations. Or the 

problem may be so large (in terms of the number of factors involved) that it is impossible to 

capture all the necessary information in a single mathematical model. Predicting the global 

effects of the interactions of a population, the use of resources, and pollution is an example of 

such an impossible situation. In such cases we may attempt to replicate the behavior directly by 

conducting various experimental trials. Then we collect data from these trials and analyze the 

data in some way. Possibly using statistical techniques or curve-fitting procedures. From the 

analysis, we can reach certain conclusions. 

  

  There may be distinction between the various model types. For example, the distinction 

between experiments and simulations is based on whether the observations are obtained directly 

(experiments) or indirectly (simulations). In practical models this distinction is not nearly so 

sharp, one master model may employ several models as sub models, including selections from 

existing models, simulations, and experiments. Nevertheless, it is informative to contrast these 

types of models and compare their various capabilities for portraying the real world.  

1.2   Properties of models   

To that end, consider the following properties of a model:  
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Fidelity:  The preciseness of a model’s representation of reality  

Costs: The total cost of the modeling process  

Flexibility : The ability to change and control conditions affecting the     model as 

required data are gathered.  

It is useful to know the degree to which a given model possesses each of these characteristics. 

However, since specific models vary greatly, the best we can hope for is a comparison of the 

relative performance between the classes of models for each of the characteristics. The 

comparisons are depicted in Figure 1.7, where the ordinate axis denotes the degree of 

effectiveness of each class.  

 

Let’s summarize the results shown in Figure 1.7. First, consider the characteristic of 

fidelity. We would expect observations made directly in the real world to demonstrate the 

greatest fidelity, even though some testing bias and measurement error may be present. We 

would expect experimental models to show the next greatest fidelity because behavior is 

observed directly in a more controlled environment such as a laboratory. Because simulations 

incorporate indirect observations, they suffer a further loss in fidelity. Whenever a mathematical 

model is constructed, real-world conditions are simplified, resulting in more loss of fidelity. 

Finally, any selected model is based on additional simplifications that are no even tailored to the 

specific problem, and these simplifications imply still further loss in fidelity.  

  Next, consider cost. Generally, we would expect any selected mathematical model to be 

the least expensive. Constructed mathematical models bear an additional cost of tailoring the 



 

 

16 

 

simplifications to the phenomenon being studied. Experiments are usually expensive to set up 

and operate. Likewise, simulations use indirect devices that are often expensive to develop, and 

simulations commonly involve large amounts of computer space, time, and maintenance. 

  Finally, consider flexibility. Constructed mathematical models are generally the most 

flexible because different assumptions and conditions can be chosen relatively easily. Selected 

models are less flexible because they are developed under specific assumptions; nevertheless, 

specific conditions can often be varied over wide ranges. Simulations usually entail the 

development of some other indirect device to alter assumptions and conditions appreciably. 

Experiments are even less flexible because some factors are very difficult to control beyond 

specific ranges. Observations of real-word behavior have little flexibility because the observer is 

limited to the specific conditions that pertain at the time of the observation. Moreover, other 

conditions might be highly improbable, or impossible, to create. It is important to understand that 

our discussion is only qualitative in nature, and that there are many exceptions to these 

generalizations.  

1.3   Building a model   

 Model building involves imagination and skill. It is like listing rules and provides a framework 

around which to build skill and develop imagination. 

  1.3.1  Constriction of Models 

In the preceding discussion we viewed modeling as a process and considered briefly the form of 

the model. Now let’s focus attention on the construction of mathematical models. We begin by 

presenting an outline of a procedure that is helpful in constructing models. In the next section, 

we illustrate the various steps in the procedure by discussing several real-world examples.  

  STEP  1.  Identify the problem.   What is the problem you would like to explore? 

Typically this is a difficult step because in real-life situations no one simply hands you a 

mathematical problem to solve. Usually you have to sort through large amount of data and 

identify some particular aspect of the situation to study. Moreover, it is imperative to be 

sufficiently precise (ultimately) in the formulation of the problem to allow for translation of the 

verbal statements describing the problem into mathematical symbology. This translation is 
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accomplished through the next steps. It is important to realize that the answer to the question 

posed might not lead directly to a usable problem identification.  

  STEP  2.  Make assumptions.   Generally, we cannot hope to capture in a usable 

mathematical model all the factors influencing the identified problem. The task is simplified by 

reducing the number of factors under consideration. Then, relationships among the remaining 

variables must be determined. Again, by assuming relatively simple relationships, we can reduce 

the complexity of the problem. Thus the assumptions fall into two main activities:  

 a.   Classify the variables: What things influence the behavior of the problem identified in Step 

1? List these things as variables. The variables the model seeks to explain are the dependent 

variables and there may be several of these. The remaining variables are the independent 

variables. Each variable is classified as dependent, independent, or neither. 

 You may choose to neglect some of the independent variables for either of two reasons. 

First, the effect of the variable may be relatively small compared to other factors involved in the 

behavior. Second, a factor that affects the various alternatives in about the same way may be 

neglected, even though it may have a very important influence on the behavior under 

investigation. For example, consider the problem of determining the optimal shape for a lecture 

hall, where readability of a chalkboard or overhead projection is a dominant criterion. Lighting is 

certainly a crucial factor, but it would affect all possible shapes in about the same way. By 

neglecting such a variable, possibly incorporating it later in a separate, more refined model, the 

analysis can be simplified considerably. 

b.   Determine interrelationships among the variables selected for Study:  

Before we can hypothesize a relationship between the variables, we generally must make sonic 

additional simplifications. The problem may be sufficiently complex so that we cannot see a 

relationship among all the variables initially. In such cases it may be possible to study sub 

models. That is we study one or more of the independent variables separately. Eventually we will 

connect the Sub models together. Studying various techniques, such as proportionality, will aid 

in hypothesizing relationships among the variables.  
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  STEP 3.  Solve or interpret the model.   Now put together all the sub models to 

see what the model is telling us. In some cases the model may consist of mathematical equations 

or inequalities that must be solved to find the information we are seeking. Often, a problem 

statement requires a best or optimal solution to the model. Models of this type are discussed 

latter.  

  Often, we will find that we are not quite ready to complete this step or we may end up 

with a model so unwieldy we cannot solve or interpret it. In such situations we might return to 

Step 2 and make additional simplifying assumptions. Sometimes we will even want to return to 

Step 1 to redefine the problem. This point will be amplified in the following discussion.  

  STEP 4.  Verify the model.   Before we can use the model, we must test it out. 

There are several questions to ask before designing these tests and collecting data—a process 

that can be expensive and time-consuming. First, does the model answer the problem identified 

in Step 1, or did it stray from the key issue as we constructed the model? Second, is the model 

usable in a practical sense; that is, can we really gather the data necessary to operate the model? 

Third, does the model make common sense?  

  Once the commonsense tests are passed, we will want to test many models using actual 

data obtained from empirical observations. We need to be careful to design the test in such a way 

as to include observations over the same range of values of the various independent variables we 

expect to encounter when actually using the model. The assumptions made in Step 2 may be 

reasonable over a restricted range of the independent variables but very poor outside of those 

values. For instance, a frequently used interpretation of Newton’s second law states that the net 

force acting on a body is equal to the mass of the body times its acceleration. This law is a 

reasonable model until the speed of the object approaches the speed of light.  

  Be careful about the conclusions you draw from any tests. Just as we cannot prove a 

theorem simply by demonstrating many cases that support the theorem, likewise, we cannot 

extrapolate broad generalizations from the particular evidence we gather about our model. A 

model does not become a law just because it is verified repeatedly in some specific instances. 

Rather, we corroborate the reasonableness of our model through the data we collect.  

  STEP  5.  Implement the model.   Of course, our model is of no use just sitting in a 

filing cabinet. We will want to explain our model in terms that the decision makers and users can 
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understand if it is ever to be of use to anyone. Furthermore, unless the model is placed in a user-

friendly mode, it will quickly fall into disuse. Expensive computer programs sometimes suffer 

such a  demise. Often the inclusion of an additional step to facilitate the collection and input of 

the data necessary to operate the model determines its success or failure.  

  STEP 6.  Maintain the model. Remember that the model is derived from a specific 

problem identified in Step 1 and from the assumptions made in Step 2. Has the original problem 

changed in any way, or have some previously neglected factors become  important? Does one of 

the sub models need to be adjusted?  

  We summarize the steps for constructing mathematical models in Figure 1.8. We should 

no be too enamored with our work. Like any model, our procedure is an approximation process 

and therefore has its limitations. For example, the procedure seems to consist of discrete steps 

leading to a usable result, but that is rarely the case in practice. Before offering an alternative 

procedure that emphasizes the iterative nature of the modeling process. Let us discuss the 

advantages of the methodology depicted in Figure 1.8.  

 

  The process shown in Figure 1.8 provides a methodology for progressively focusing on 

those aspects of the problem we wish to study. Furthermore, it demonstrates a curious blend of 

creativity with the scientific method used in the modeling process. The first two steps are more 
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artistic or original in nature. They involve abstracting the essential features of the problem under 

study, neglecting any factor judged to be unimportant and postulating relationships precise 

enough to help answer the questions posed by the problem. However, these relationships must be 

simple enough to permit the completion of the remaining steps. Although these steps admittedly 

involve a degree of craftsmanship, we will learn some scientific techniques we can apply to 

appraise the importance of a particular variable and the preciseness of an assumed relationship. 

Nevertheless, when generating numbers in Steps 3 and 4, remember that the process has been 

largely inexact and intuitive.  

EXAMPLE  1.    Vehicular Stopping Distance  

    Scenario     Consider the following rule often given in driver education classes:  Allow 

one car length for every 10 miles of speed under normal driving conditions, but more distance in 

adverse weather or road conditions. One way to accomplish this is to use the 2-second rule for 

measuring the correct following distance no matter what your speed. To obtain that distance, 

watch the vehicle ahead of you pass some definite point on the highway, like   a tar strip or 

overpass shadow. Then count to yourself “one thousand and one, one thousand and two;” that is 

2 seconds. If you reach the mark before you finish saying those words, then you are following 

too close behind.  

The preceding rule is implemented easily enough, but how good is it?  

Problem Identification  Our ultimate goal is to test this rule and suggest another 

rule if it fails. However, the statement of the problem, How good is the rule? is vague. We need 

to be more specific and spell out a problem, or ask a question. Whose solution or answer will 

help us accomplish our goal while permitting a more exact mathematical analysis? Consider the 

following problem statement: 

Predict the vehicle’s total stopping distance as a function of its speed.  

  Assumptions     We begin our analysis with a rather obvious model for total 

stopping distance:  

 total stopping distance = reaction distance  +  braking distance  
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By reaction distance, we mean the distance the vehicle travels from the instant the driver 

perceives a need to stop to the instant when the brakes are actually applied. Braking distance is 

the distance required for the brakes to bring the vehicle to a complete stop. 

  First let’s develop a sub model for reaction distance. The reaction distance is a function 

of many variables, and we start by listing just two of them: 

 reaction distance  = f (response time, speed)  

  We could continue developing the sub model with as much detail as we like. For 

instance, response time is influenced by both individual driving factors and the vehicle operating 

system. System time is the time from which the driver touches the brake pedal until the brakes 

are mechanically applied. For modern cars we would probably neglect the influence of the 

system because it is quite small in comparison to the human factors. The portion of the response 

time determined by the driver depends on many things, such as reflexes, alertness, and visibility. 

Because we are developing only a general rule, we could just incorporate average values and 

conditions for these latter variables. Once all the variables deemed important to the sub model 

have been identified, we can begin to determine interrelationships among them. We suggest a 

sub model for reaction distance in the next section.  

  Next consider the braking distance. The weight and speed of the vehicle are certainly 

important factors to be taken into account. The efficiency of the brakes, type and condition of the 

tires, road surface, and weather conditions are other legitimate factors. As before, we would must 

likely assume average values and conditions for these latter factors. Thus, our initial sub models 

give braking distance as a function of vehicular weight and speed:  

   braking distance = h(weight, speed)  

In the next section we also suggest and analyze a sub model for braking distance.  

  Finally, let’s discuss briefly the last three steps in the modeling process for this problem. 

We would want to test our model against real-world data. Do the predictions afforded by the 

model agree with real driving situations? If not, we would want to assess some of our 

assumptions and perhaps restructure one (or both) of our sub models. If the model does predict 
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real driving situations accurately, then does the rule stated in the opening discussion agree with 

the model? The answer gives an objective basis for answering, how good is the rule? Whatever 

rule we come up with (to implement the model), it must be easy to understand and easy to use if 

it is going to be effective. In this example, maintenance of the model does not seem to be a 

particular issue. Nevertheless, we would want to be sensitive to the effects on the model of such 

changes as power brakes or disc brakes, a fundamental change in tire design, and so on.  

  Let’s contrast the modeling process presented in Figure 1.8 with the scientific method. 

One version of the scientific method is as follows:  

STEP   1.   Make some general observations of a phenomenon.  

STEP   2. Formulate a hypothesis about the phenomenon.  

STEP    3. Develop a method to test that hypothesis.  

STEP    4. Gather data to use in the test.  

STEP    5 .  Test the hypothesis using the data.  

STEP    6.   Confirm or deny the hypothesis.  

  By design, the mathematical modeling process and scientific method have similarities. 

For instance, both processes involve making assumptions or hypotheses, gathering real-world 

data, and testing or verification using that data. These similarities should not be surprising; 

though recognizing that part of the modeling process is an art, we do attempt to be scientific and 

objective whenever possible. 

  There are also subtle differences between the two processes. One difference lies in the 

primary goal of the two processes. In the modeling process, assumptions are made in selecting 

which variables to include or neglect and postulating the interrelationships among the included 

variables. The goal in the modeling process is to hypothesize a model, and as with the scientific 

method, evidence is gathered to corroborate that model. Unlike the scientific method, however, 

the objective is not to confirm or deny the model (we already know it is not precisely correct 

because of the simplifying assumptions we have made) but rather to test its reasonableness. We 

may decide that the model is quite satisfactory and useful, and elect to accept it. Or we may 

decide that the model needs to be refined or simplified. In extreme cases we may even need to 
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redefine the problem, in a sense rejecting the model altogether. We will see in subsequent 

chapters that this decision process really constitutes the heart of mathematical modeling.  

1.3.2  Iterative Nature of Model Construction  

Model construction is an iterative process. We begin by examining some system and identifying 

the particular behavior we wish to predict or explain. Next we identify the variables and 

simplifying assumptions, and then we  

 

generate a mode. We will generally start with a rather simple model, progress through the 

modeling process, and then refine the model as the results of our validation procedure dictate. If 

we cannot come up with a model or solve the one we have, we must simplify it (Figure 1.9). This 

is done by treating some variables as constants, by neglecting or aggregating some variables, by 

assuming simple relationships (such as linearity) in any sub model, or by further restricting the 

problem under investigation. On the other hand, if our results are not precise enough, we must 

refine the model (Figure 1.9).  

  Refinement is generally achieved in the opposite way to simplification we introduce 

additional variables, assume more sophisticated relationships among the variables, or expand the 

scope of the problem. By simplification and refinement, we determine the generality, realism, 
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and precision of our model. This process cannot be overemphasized and constitutes the art of 

modeling. These ideas are summarized in Table 1.2.  

Table 1.2  The art of mathematical modeling:  simplifying or refining the       model as 

required  

              Model  simplification  

1.    Restrict problem identification.  

2.    Neglect variables.  

3.    Conglomerate effects of several 

variables.  

4.    Set some variables to be constant.  

5.    Assume simple (linear)   relationships.  

6.    Incorporate more assumptions.  

            Model  refinement  

I.     Expand the problem.  

2.    Consider additional variables.  

3.    Consider each variable in detail.  

4.    Allow variation in the variables.  

5.    Consider nonlinear   relationships.  

6.    Reduce the number of assumptions  

   We complete the section by introducing several terms that are useful in describing 

models. A model is said to be robust when its conclusions do not depend on the precise 

satisfaction of the assumptions. A model is fragile if its conclusions do depend on the precise 

satisfaction of some sort of conditions. The term sensitivity refers to the degree of change in a 

models conclusions as some condition on which they depend is varied; the greater the change, 

the more sensitive is the model to that condition.  

 

     Problems         

In  Problems  1 - 4, the scenarios are vaguely stated. From these vague scenarios, identify a 

problem you would like to study Which variables affect the behavior you have identified in the 

problem identification? Which variables are the most important? Remember there are really no 

right answers.  

1.   The population growth of a single species.  

2.    A retail store intends to construct a new parking lot. How should the lot be 

illuminated?  

3.    How would you design a lecture hail for a large class?  

4.     How should a manufacturer of some product decide how many units of that product 
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should be manufactured each year and how much to charge for each Unit?  

 

       Projects           

1. Consider the taste of brewed coffee. What are some of the variables affecting taste? 

Which variables might be neglected initially? Suppose you hold all variables fixed 

except water temperature. Most coffeepots use boiled water in some manner to 

extract the flavor from the ground coffee. Do you think boiled water is optimal for 

producing the best flavor? How would you test this sub model?  What data would 

you collect and how would you gather it? 

2.  A transportation company is considering transporting people between skyscrapers 

in New York City via helicopter. You are hired as a consultant to determine the 

number of helicopters needed. Identify an appropriate problem precisely. Use the 

model-building process to identify the data you would like to have to determine the 

relationships between the variables you select. You may want to redefine your 

problem as you proceed. 

 

  1.4  Modeling Using Proportionality  

We introduced the concept of proportionality in the introduction part .   Recall that: 

  (1.2)  

  Of course, if   because the constant k in Equation (1.2) is greater than 

zero and then
1

x y
k
 =  
 

. The following are other examples of proportionality relationships:  

  (1.3) 

      (1.4) 

           (1.5) 
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In Equation (1.3),   because               

1
2

1
x y

k

 =  
 

.   This leads us to consider how to link proportionalities together, a transitive 

rule for proportionality: 

               

 Thus, any variables proportional to the same variables are proportional to one another.  

                               

Now let’s explore a geometric interpretation of proportionality. In Equation (1.2) , 

y
y kx yields k

x
= = .  Thus, k may be interpreted as the tangent of the angle  depicted 

in Figure 1.10, and the relation defines a set of points along a line in the plane with angle 

of inclination .  

  Comparing the general form of a proportionality relationshipy kx=   with the 

equation for a straight liney mx b= +  ; we can see that the graph of a proportionality 

relationship is a line (possibly extended) passing through the origin. If we plot the 
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proportionality variables for Models (1.3)—(1.5), we obtain the straight-line graphs presented in 

Figure 1.11.  

 

  It is important to note that not just any straight line represents a proportionality 

relationship: the y-intercept must be zero so that the line passes through the origin. Failure to 

recognize this point can lead to erroneous results when using our model. For example, suppose 

we are interested in predicting the volume of water displaced by a boat as i is loaded with cargo. 

Because a floating object displaces a volume of water equal to its weight, we might be tempted 

to assume that the total volume y of displaced water is proportional to the weight x of the added 

cargo. However, there is a flaw with that assumption because the unloaded boat already displaces 

a volume of water equal to its weight. Although the graph of total volume of displaced water 

versus weight of added cargo is given by a straight line, it is not given by a line passing through 

the origin (Figure 1.12). so the proportionality assumption is incorrect.  
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A proportionality relationship may, however, be a reasonable simplifying assumption, 

depending on the Size of the y-intercept and the slope of the line. The domain of the independent 

variable can also be significant since the relative error 

a p

a

y y

y

−
 

 

is greater for small values of x. These features are depicted in Figure 2.13. If the slope is nearly 
zero, proportionality may be a poor assumption because the initial displacement dwarfs the effect 
of the added weight. For example, there would be virtually no effect in placing 400 lbs. on an 
aircraft carrier already weighing many tons. On the other hand, if the initial displacement is 
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relatively small and the slope is large, the effect of the initial displacement is dwarfed quickly, 
and proportionality is a good simplifying assumption.  

EXAMPLE  1.   Kepler’s Third Law  

To assist in further understanding the idea of proportionality, let’s examine one of the famous 

proportionalities from Table 1.3, Kepler’s third law. In 1601, the German astronomer Johannes 

Kepler became director of the Prague Observatory. Kepler had been helping Tycho Braise in 

collecting 13 years of observations on thy relative motion of the planet Mars. By 1609, Kepler 

had formulated his first two laws:  

1. Each planet moves along an ellipse with the sun at one focus.  

2. For each planet, the line from the sun to the planet sweeps out equal areas in   equal 

times.  

Table 1.3   Famous proportionalities 

 

 

Table 1.4     Famous proportionalities  Orbital periods & mean distances of  

Planets from the sun. 
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  Kepler spent many years verifying these laws and formulating the third law given in 

Table 1.3, which relates the orbital periods and mean distances of the planets from the sun. The 

data shown in Table 1.4 are from the 1993 World Almanac.  

Modeling Vehicular Stopping Distance  

. Consider again the scenario posed in Example 1 of Section 1.3. Recall the general rule 

that allows one car length for every 10 mph of speed. It was also stated that this rule is the same 

as allowing for 2 seconds between cars. The rules are in fact different from one another (at least 

for most cars). For the rules to be the same, at 10 mph both should allow one car length:  

                      

This is an unreasonable result for an average car length of 15 ft, so the rules are not the same.  

  Let’s interpret the one-car-length rule geometrically. If we assume a car length of 15 ft 

and plot this rule, we obtain the graph shown in Figure 2.14, which shows that the distance 
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allowed by the rule is proportional to the speed. In fact, if we plot the speed in feet per second, 

the constant of proportionality has the units seconds and represents the total time for the equation 

D = kv to make sense. Moreover, in the case of a 15-ft car, we obtain a constant of 

proportionality as follows:  

                

 

In our previous discussion of this problem, we presented the model  

 total stopping distance = reaction distance + braking distance.  

Let’s consider the sub models for reaction distance and braking distance.  

   Recall  that 

   reaction   distance = f(response  time, speed)  

Now assume that the vehicle continues at constant speed from the time the driver determines the 
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need to stop until the brakes are applied. Under this assumption, reaction distance dr is simply the 

product of response time tr and velocity v:  

                                                         (1.6)                        

  To test sub model (1.6), plot measured reaction distance versus velocity, if the resultant 

graph approximates a straight line through the origin, we could estimate the slope tr and feel 

fairly confident in the sub model. Alternatively, we could test a group of drivers representative of 

the assumptions made in the example in Section 1.3 and estimate tr directly.  

  Next, consider the braking distance:  

   braking distance = h(weight , speed)  

Suppose there is a panic stop and that the maximum brake force F is applied throughout the stop. 

The brakes are basically an energy-dissipating device; that is, the brakes do work on the vehicle 

producing a change in the velocity that results in a loss of kinetic energy. Now, the work done is 

the force F times the braking distance db. This work must equal the change in kinetic energy, 

which, in this situation, is simply 0.5 mv2. Thus, we have  

        (1.7)  

Next, we consider how the force F relates to the mass of the car. A reasonable design 

criterion would be to build cars in such a way that the maximum deceleration is constant when 

the maximum brake force is applied regardless of the mass of the car. Otherwise, the passengers 

and driver would experience an unsafe jerk during the braking to a complete stop. This 

assumption means that the panic deceleration of a larger car, such as a Cadillac, is the same as 

that of a small car, such as a Honda, owing to the design of the braking system. Moreover, 

constant deceleration occurs throughout the panic stop. From Newton’s second law, F = ma, it 

follows that the force F is proportional to the mass. Combining this result with Equation (1.7) 

gives the proportionality relation  
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At this point we might want to design a test for the two sub models, or we could test the 

sub models against the data provided by the U.S. Bureau of Public Roads given in Table 1.5. 

  Figure 1. 15 depicts the plot of driver reaction distance against velocity using the data in 

Table 1.5. The graph is a straight line of approximate slope 1.1 passing through the origin; our 

results are too good. Because we always expect some deviation in experimental results, we 

should be suspicious. 
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In fact, the results of Table 1.5 are based on Sub model (1.5),where an average response time of 

3/4 sec was obtained independently. So we might later decide to design another test for the sub 

model.  

  To test the sub model for braking distance, we plot the observed braking distance 

recorded in Table 1.5 against v2, as shown in Figure 1.16. Proportionality seems to be a 

reasonable assumption at the lower speeds, although it does seem to be less convincing at the 

higher speeds. By graphically tilting a straight line to the data, we estimate the slope and obtain 

the sub model: 

                                 (1.8)  
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Summing Sub models (1.7) and (1.8), we obtain the following model for the  

total stopping distance d:  

                               (1.9)  

The predictions of Model (1.9) and the actual observed stopping distance recorded in Table 1.5 

are plotted in Figure 1.17. Considering the grossness of the assumptions and the inaccuracies of 

the data, the model seems to agree fairly reasonably with the observations up to 70 mph. The rule 

of thumb of one 15-ft car length for every 10 mph of speed is also plotted in Figure 1.17. We can 

see that the rule significantly underestimates the total stopping distance at speeds exceeding 

40mph. 

  Let’s suggest an alternative rule of thumb that is easy to understand and use. Assume the 

driver of the trailing vehicle must be fully stopped by the time he or she reaches the point 
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occupied by the lead vehicle at the exact time of the observation. Thus, the driver must trail the 

lead vehicle by the total slopping distance, based either on Model (1.9) or on the observed data in 

Table 1.4. The maximum stopping distance can readily be converted to a trailing time. The 

results of these computations for the observed distances, in which 85% of the drivers were able 

to stop, are given in Table 1.6. These computations suggest the following general rule:  
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This alternative rule is plotted in Figure 1.18. An alternative to using such a rule might be 

to convince manufactures to modify existing speedometers to compute stopping distance and 

time for the car’s speed v based on Equation (1.9).  
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    Problems   

1.  Show graphically the meaning of the proportionality    

2.   If a spring is stretched 0.37 in. by a 14-lb force, what stretch will be produced by a 9-

lb force? By a 22-lb force? Assume Hooke’s law, which asserts the distance stretched is 

proportional to the force applied.  

1.6 Why Study Modeling? 

 Mathematical modeling is the art of translating problems from an application area into tractable 

mathematical formulations whose theoretical and numerical analysis provides insight, answers, 

and guidance useful for the originating application. 

Mathematical modeling 

• is indispensable (crucial) in many applications 

•  is successful in many further applications 

•  gives precision and direction for problem solution 

•  enables a thorough(detail) understanding of the system modeled 

•  prepares the way for better design or control of a system 

•  allows the efficient use of modern computing capabilities 
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Learning about mathematical modeling is an important step from a theoretical mathematical 

training to an application-oriented mathematical expertise, and makes the student fit for 

mastering the challenges of our modern technological culture. 

   Mathematical modeling plays a big role in the description of a large part of phenomena 

in the applied sciences and in several aspects of technical and industrial activity. By a 

“mathematical model” we mean a set of equations and/or other mathematical relations capable of 

capturing the essential features of a complex natural or artificial system, in order to describe, 

forecast and control its evolution. The applied sciences are not confined to the classical ones; in 

addition to physics and chemistry, the practice of mathematical modeling heavily affects 

disciplines like finance, biology, ecology, medicine, sociology. 

    In the industrial activity (e.g. for aerospace or naval projects, nuclear reactors, 

combustion problems, production and distribution of electricity, traffic control, etc.) the 

mathematical modeling, involving first the analysis and the numerical simulation and followed 

by experimental tests, has become a common procedure, necessary for innovation, and also 

motivated by economic factors. It is clear that all of this is made possible by the enormous 

computational power now available. 

 

Self  Test  Exercises.1 

I. For the scenarios presented in Problems 1—3, identify a problem worth studying and 

list the variables that affect the behavior you have identified. Which variables would be 

neglected completely? Which might be considered as constants initially? Can you identify any 

sub models you would want to study in detail? Identify any data you would want collected.  

 

1.    A botanist is interested in studying the shapes of leaves and the forces that mold 

them. She clips some leaves from the bottom of a white oak tree and finds the leaves to 

he rather broad, not very deeply indented. When she goes to the top of the tree, she finds 

very deeply indented leaves with hardly any broad expanse of blade. 

2.    Animals of different size work differently. Small ones have squeaky voices, their 

hearts beat faster, and they breathe more often than larger ones. On the other hand, the 
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skeleton of a larger animal is more robustly built than that of a small animal. The ratio of 

the diameter to the length in a larger animal is greater than it is in a smaller one. So there 

are regular distortions in the proportions of animals as the size increases from small to 

large.  

3.    A physicist is interested in studying properties of light. He wants to understand the 

path of a ray of light as it travels through the air into a smooth lake, particularly at the 

interface of the two different media. 

 

  

 

II. ANSWER THE FOLLOWING QUESTIONS. 

 

1.    Should a couple buy or rent a home? As the cost of a mortgage rises, intuitively, it 

would seem that there is a point where it no longer pays to buy a house. What variables 

determine the total cost of a mortgage?  

 

2.   Consider the operation of a medical office. Records have to be kept on individual 

patients, and accounting procedures are a daily task. Should the office buy or lease a 

small computer system? Suggest objectives that might be considered. What variables 

would you consider? How would you relate the variables? What data would you like to 

have to determine the relationships between the variables you select? Why might 

solutions to this problem differ from office to office?  

 

3. Determine whether the following data support a proportionality argument for   

.   
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CHAPTER 2 

DIMENSIONAL ANALYSIS 

Objectives:- 

At the end of this chapter you will be able to: 

� Define dimensional analysis 
� Express dimensions of different physical quantities as products of dimensions in MLT 

system 
� Understand the concept dimensional compatibility 
� Describe the process of dimensional analysis 
� Apply Buckingham’s theorem to produce all possible dimensionally homogeneous 

equations among the variables under consideration 
� Understand the basic procedures in applying dimensional analysis in model building 

process 
� Use dimensional analysis in model building process 

 
 
 
 
 
 
 

2.1 Introduction: 

 

Activity 2.1:- 

� Define the term “dimension”. 

� When do you say “a quantity is dimensionless”. 

� Define dimensional analysis. 
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In the process of constructing a mathematical model, we have seen that the variables influencing 
the behaviour must be identified and classified. We must then determine appropriate 
relationships among those variables retained for consideration. In the case of a single dependent 
variable this procedure gives rise to some unknown function:    .   where the 

xi measure the various factors influencing the phenomenon under investigation. In some 
situations the discovery of the nature of the function f for the chosen factors comes about by 
making some reasonable assumption based on a law of nature or previous experience and 
construction of a mathematical model. We were able to use this methodology in constructing our 
model on vehicular stopping distance (see section 2.2). On the other hand, especially for those 
models designed to predict some physical phenomenon, we may find it difficult or impossible to 
construct a solvable or tractable explicative model because of the inherent complexity of the 
problem. In certain instances we might conduct a series of experiments to determine how the 
dependent variable y is related to various values of the independent variable(s). In such cases we 
usually prepare a figure or table and apply an appropriate curve-fitting or interpolation method 
that can be used to predict the value of y for suitable ranges of the independent variable(s).  

 

 

Dimensional analysis is a method for helping determine how the selected variables are 
related and for reducing significantly the amount of experimental data that must be 
collected. It is based on the premise that physical quantities have dimensions and that physical 
laws are not altered by changing the units measuring dimensions. Thus, the phenomenon under 
investigation can be described by a dimensionally correct equation among the variables. A 
dimensional analysis provides qualitative information about the model. It is especially important 
when it is necessary to conduct experiments in the modeling process because the method is 
helpful in testing the validity of including or neglecting a particular factor, in reducing the 
number of experiments to be conducted to make predictions, and in improving the usefulness of 
the results by providing alternatives for the parameters employed to present them. Dimensional 
analysis has proven useful in physics and engineering for many years and now even plays a role 
in the study of the life sciences, economics, and operations research. Let's consider an example 
illustrating how dimensional analysis can be used in the modeling process to increase the 
efficiency of an experimental design. 

 

 

 

Consider the situation of a simple pendulum as suggested in Figure 2.1. Let r denote the length 

of the pendulum, m its mass, and the initial angle of displacement from the vertical. One 
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characteristic that is vital in understanding the behaviour of the pendulum is the period, which is 
the time required for the pendulum bob to swing through one complete cycle and return to its 
original position (as at the beginning of the cycle) We represent the period  of the pendulum by 

the dependent variable t.  

Figure 2.1 A simple pendulum 

                              

Problem identification For a given pendulum system determine its speed.  

 

Assumptions First, we list the factors that influence the period. Some of these factors are the 

length r, the mass m, the initial angle of displacement  ,the acceleration due to gravity g, and 

frictional forces such as the friction at the hinge and the drag on the pendulum. Assume initially 
that the hinge is frictionless, that the mass of the pendulum is concentrated at one end of the 
pendulum, and that the drag force is negligible. Other assumptions about the frictional forces will 
be examined in section 2.3. Thus the problem is to determine or approximate the function 

   and test its worthiness as a predictor. 

 

Experimental Determination of the Model  Because gravity is essentially constant under the 
assumptions, the period t is a function of the tree variables length r, mass m, and initial angle of 

displacement  .At this point we could systematically conduct experiments to determine how t 

varies with these three variables. We could want to choose enough values of the independent 
variables to feel confident in predicting the period t over that range. How many experiments will 
be necessary? 
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For the sake of illustration, consider a function of one independent variable y=f(x) and assume 
that four points been deemed necessary to predict y over a suitable domain for x. The situation is 
depicted in Figure 2.2. 

 

 

Figure 2.2 Four points have been deemed necessary to predict y for this function of one variable 
x 

 

 An appropriate curve-fitting or interpolation method could be used to predict y within the 
domain for x. 

Next consider what happens when a second independent in variable affects the situation under 
investigation. We then have a function  .  

For each data value of x in figure2.2, experiments must be conducted to obtain y for four values 
of z. Thus, 16(i.e.,42) experiments are required. These observations are illustrated in figure 2.3. 
Likewise a function of three variables requires 64(i.e.,43) experiments. In general, 4n experiments 
are required to predict y when n is the number of arguments of the function, assuming four points 
for the domain of each argument. Thus, a procedure that reduces the number arguments of the 
function f will dramatically reduce the total number of required experiments. Dimensional 
analysis is one such procedure. 
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Figure 2.3 Sixteen points are necessary to predict y for this function of the two variables x and z. 

 

The power of dimensional analysis can also be appreciated when we examine the interpolation 
curves that would be determined after collecting the data represented in figure 2.2and 2.3. Let's 
assume it is decided to pass a cubic polynomial through the four points shown in figure 2.2. That 
is, the four points are used to determine the four constants C1-C4 in the interpolating curve:  

                                  . 

 

Now consider interpolating from figure 2.3. If for a fixed value of x, say x=x1, we decide to 
connect our points using a cubic polynomial in z, the equation of the interpolating surface is 
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Note from the equation that there are 16 constants --D1,D2,...,D16--to determine rather than 4 as 
in the two dimensional case. This procedure again illustrates the dramatic reduction in effort 
required when we reduce the number of arguments of the function we will finally investigate. 

 

At this point we make the important observation that the experimental effort required depends 
more heavily on the number of arguments of the function to be investigated than on the true 
number of independent variables the modeler originally selected. For example, consider a 
function of two arguments, say y=f(x,z).The discussion concerning the number of experiments 
necessary would not be altered if x were some particular combination of several variables. That 
is, x could be uv/w, where u, v, and w are the variables originally selected in the model. 

 

Consider now the following preview of dimensional analysis, which describes how it reduces our 
experimental effort. Beginning with a function of n variables (hence, n arguments), the number 
of arguments is reduced (ordinarily by three) by combining the original variables into products. 
These resulting (n-3) products are called dimensionless products of the original variables. After 
applying dimensional analysis, we still need to conduct experiments to make our predictions, but 
the amount of experimental effort that is required will have been reduced exponentially. 

 

 In chapter 1 we discussed the trade-offs of considering additional variables for increased 
precision versus neglecting variables for simplification. In constructing models based on 
experimental data, the preceding discussion suggests that the cost of each additional variable is 
an exponential increase in the number of experimental trials that must be conducted. In the next 
two sections we present the main ideas underlying the dimensional analysis process. You may 
find that some of these ideas are slightly more difficult than previous ones we have investigated, 
but the methodology is powerful when modeling physical behaviour. 
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2.2 Dimensions as Products 

 

Activity 2.2:- 

� Describe basic physical quantities. 

� What dimensions are associated with the physical quantities mass, length, and time? 

� Can you assign dimensions of other physical quantities in terms of those of mass, length, 

and time? 

� Determine the dimensions of physical quantities force, velocity, density, momentum, 

power, and energy as products of dimensions of mass, length, and time. 

� How can you determine dimensionless products among the variables? 

 

 

 

The study of physics is based on abstract concepts such as mass, length, time, velocity, 
acceleration, force, energy, work, and pressure. To each such concept there is assigned a unit of 
measurement. A physical law such as F=ma is true, provided that the units of measurement are 
consistent. Thus, if mass is measured in kilograms and acceleration in meters per second 
squared, then the force must be in newtons. These units of measurement belong to the MKS 
(meter-kilogram-second) mass system. It would be inconsistent with the equation F=ma to 
measure mass in slugs, acceleration in feet per second squared, and force in newtons. In this 
illustration, force must be measured in pounds, giving the American Engineering System of 
measurement. There are other systems of measurement, but all are prescribed by international 
standards so as to be consistent with the laws of physics. 

 

The three primary physical quantities we consider in this chapter are mass, length, and time. We 
associate with these quantities the dimensions M, L, and T respectively. The dimensions are 
symbols that reveal how the numerical value of a quantity changes when the units of 
measurement change in certain ways. The dimensions of other quantities follow from definitions 
or from physical laws and are expressed in terms of M, L, and T. For example, velocity v is 
defined as the ratio of distance s (dimension L) travelled to time t (dimension T) of travel--that 
is, v=st-1, so the dimension of velocity is LT-1. Similarly, because area is fundamentally a product 
of two lengths, its dimension is L2. These dimension expressions hold true regardless of the 
particular system of measurement, and they show, for example, that velocity may be expressed in 
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meters per second, feet per second, miles per hour, and so forth. Likewise area can be measured 
in terms of square meters, square feet, square miles, and so on. 

 

There are still other entities in physics that are more complex in the sense that they are not 
usually defined directly in terms of mass, length, and time alone: instead, their definitions 
include other quantities, such as velocity. We associate dimensions with these more complex 
quantities in accordance with algebraic operations involved in the definitions. For example, 
because momentum is the product of mass with velocity, its dimension is M(LT-1) or 
simplyMLT-1.  

 

The basic definition of a quantity may also involve dimensionless constants; these are ignored in 
finding dimensions. Thus the dimension of kinetic energy, which is one-half (a dimensionless 
constant) the product of mass with velocity squared, is M(LT-1)2 or simply ML2T-2. As you will 
see in example 2, some constants (dimensional constants), such as gravity g, do have an 
associated dimension, and these must be considered in a dimensional analysis.  

 

These examples illustrate the following important concepts regarding dimensions of physical 
quantities. 

 

1. We have based the concept of dimension on three physical quantities: mass m, length 
s, and time t. These quantities are measured in some appropriate system of units whose 
choice does not affect the assignment of dimensions. (This underlying system must be 
linear. A dimensional analysis will not work if the scale is logarithmic, for example.) 

 

2. There are other physical quantities, such as area and velocity that are defined as simple 
products involving only mass, length, or time. Here we use the term product to indicate 
any quotient because we may indicate division by negative exponents.  

 

3.There still other, more complex, physical entities, such as momentum and kinetic 
energy, whose definitions involve quantities other than mass, length, and time. Because 
the simpler quantities from (1) and (2) are products, these more complex quantities can 
also be expressed as products involving mass, length, and time by algebraic 
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simplification. We use the term product to refer to any physical quantity from item (1), 
(2), or (3); a product from (1) is trivial because it has only one factor. 

 

         4. To each product, there is assigned a dimension--that is, an expression of the form  

 

                                                                                         (2.1) 

 

             where n, p, and q are real numbers that may be positive, negative, or zero. 

When a basic dimension is missing from a product, the corresponding   exponent is understood 
to be zero. Thus, the dimension M2L0T-1 may also appear as M2T-1. When n, and q are all zero in 
an expression of the form (2.1), so that the dimension reduces to 

 

                                                                                         (2.2) 

 

the quantity, or product, is said to be dimensionless. 

Special care must be taken in forming sums of products because just as we cannot add apples and 
oranges, in an equation we cannot add products that have unlike dimensions. For example, if F 
denotes force, m mass, and v velocity, we know immediately that the equation  

cannot be correct because mv has dimension MLT-1, where as v2 has dimension L2T-2. These 
dimensions are unlike; hence, the products mv and v2 cannot be added. An equation such as this-
-that is, one that contains among its terms two products having unlike dimensions--is said to be 
dimensionally incompatible. Equations that involve only sums of products having the same 
dimension are dimensionally compatible.  

The concept of dimensional compatibility is related to another  concept called 

dimensional homogeneity. In general, an equation that is true regardless of the system of units in 
which the variables are measured is said to be dimensionally homogeneous. For example, 

  giving the time a body falls a distance s under gravity (neglecting air resistance) is 

dimensionally homogeneous (true in all systems), whereas the equation   is not 

dimensionally homogeneous (because it depends on a particular system). In particular, if an 
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equation involves only sums of dimensionless products (i.e., it is a dimensionless equation), then 
the equation is dimensionally homogeneous. Because the products are dimensionless, the factors 
used for conversion from one system of units to another would simply cancel. 

The application of dimensional analysis to a real- world problem is based on the assumption that 
the solution to the problem is given by a dimensionally homogeneous equation that the problem 
is given by a dimensionally homogeneous equation in terms of the appropriate variables. Thus, 
the task is to determine the form of the desired equation by finding an appropriate dimensionless 
equation and then solving for the dependent variable. To accomplish this task, we must decide 
which variables enter into the physical problem under investigation and determine all the 
dimensionless products among them. In general, there may be infinitely many such products, so 
they will have to be described rather than actually written out. Certain subsets of these 
dimensionless products are then used to construct dimensionally homogeneous equations. In 
section 2.2 we investigate how the dimensionless products are used to find all dimensionally 
homogeneous equations. The following example illustrates how the dimensionless products may 
be found. 

Example 1  A simple Pendulum Revised 

 

Consider again the simple pendulum discussed in the introduction. Analysing the dimensions of 
the variables for the pendulum problem, we have 

 

 
r t g m Variable 

M0L0T0 L T LT-2 M Dimension 

    Next we find all the dimensionless products among the variables. Any product of these 
variables must be of the form 

 

                                                    (2.3). 

 

and hence must have dimension 
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 Therefore, a product of the form (2.3) is dimensionless if and only if  

 

                                                                 (2.4) 

 

Equating the exponents on both sides of this last equation leads to the system of linear equations 

 

                                                                         (2.5) 

 

 

 Solution of the system (2.5) gives a=0, c=2b, d=-b, where b is arbitrary. Thus, there are 
infinitely many solutions. Here are some general rules for selecting arbitrary variables: (1) 
choose the dependent variable so it will appear only once, (2) select any variable that expedites 
the solution of the other equations (i.e., a variable that appears in all equations), and (3) choose a 
variable that always has a zero coefficient, if possible. Notice that the exponent e does not really 
appear in (2.4) (because it has a zero coefficient in each equation) so that it is also arbitrary. One 
dimensionless product is obtained by setting b=0 and e=1, yielding a=c=d=0. A second, 
independent dimensionless product is obtained when b=1 and e=0, yielding a=0, c=2, and d=-1. 
These solutions give the dimensionless products 

 

                      

   

 In section 2.2, we will learn a methodology for relating these products to carry the modeling 
process to completion. For now, we will develop a relationship in an intuitive manner. 

 

Assuming t=f(r, m, g,), to determine more about the function f, we observe that if the units in 

which we measure mass are made smaller by same factor(e.g., 10), then the measure of the 
period t will not change because it is measured in units (T) of time. Because m is the only factor 
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whose dimension contains M, it cannot appear in the model. Similarly, if the scale of the units 
(L) for measuring length is altered, it cannot change the measure of the period. For this to 
happen, the factors r and g must appear in the model as r/g, g/r, or, more generally, (g/r)k. This 
ensures that any linear change in the way length is measured will be cancelled. Finally, if we 
make the units (T) that measure time smaller by a factor of 10, for example, the measure of the 
period will directly increase by the same factor 10. Thus, to have the dimension of T on the right 

side of the equation t=f(r,m,g,), g and r must appear as  because T appears to the power -

2 in the dimension of g. Note that none of the preceding conditions places any restrictions on the 

angle  . Thus, the equation of the period should be of the form 

 

                           

 

where the function h must be determined or approximated by experimentation. 

We note two things in this analysis that are characteristic of a dimensional analysis. First, in the 
MLT system, three conditions are placed on the model, so we should generally expect to reduce 
the number of arguments of the function present at the end of a dimensional analysis (in this 

case, ) are dimensionless products. 

In the problem of the undamped pendulum we assumed that friction and drag were negligible. 
Before proceeding with experiments (which might be costly), we would like to know if that 
assumption is reasonable. Consider the model obtained so far:  

                        

                              

Keeping  constant while allowing r to vary, form the ratio 

                                                      

 Hence the model predicts that t will vary as   for constant . Thus, if plot t versus r with fixed 

  for some observations, we would expect to get a straight line (figure 2.4). If we do not obtain a 

reasonable straight line, then we need to re-examine the assumptions. Note that our judgment 
here is qualitative. The final measure of the adequacy of any model is always how will it predicts 
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or explains the phenomenon under investigation. Nevertheless, this initial test is useful for 
eliminating obviously bad assumptions and for choosing among competing sets of assumptions. 

                  

 

 

 

Figure 2.4 Testing the assumptions of the simple pendulum model by plotting the period t versus 

the square root of the length r for constant displacement              

 

Dimensional analysis has helped construct a model t=f(r, m, g, ) f or the undamped pendulum as 

. If we are interested in predicting the behaviour of the pendulum, we could isolate 

the effect of h by holding r constant and varying. This provides the ratio                                                                        
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Hence a plot of t versus  for several observations would reveal the nature of h. This plot is 

illustrated in figure 2.5. We may never discover the true function h relating the variables. In such 
cases, an important model might be constructed from the experimental data, as discussed in 
Chapter 4. When we are interested in using our model to predict t, based on experimental results, 

it is convenient to use the equation   and to plot   versus  , as in figure 2.6.  

Then, for a given value of   , we would determine  , multiply it by       for a specific 

r, and finally determine t. 

 

 

 

 

 

 

 

Figure 2.5Determining the unknown  

Function h                                                                                            Figure 2.6 presenting the 
results for the  

 Simple pendulum 
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Example 2  Wind Force on a Van 

Suppose you are driving a van down a highway with gusty winds. How does the speed of your 
vehicle affect the wind force you are experiencing?  

 

The force F of the wind on the van is certainly affected by the speed v of the van and the surface 
area A of the van directly exposed to the wind's direction. Thus, we might hypothesize that the 
force is proportional to some power of the speed times some power of the surface area; that is, 

                                                                                             (2.6) 

 

for some (dimensionless) constant k. Analyzing the dimensions of the variables gives 

 

 

 

 

 Hence, dimensionally, Equation (2.6) becomes 

 

                                                 

 

 This last equation cannot be correct because the dimension M for mass does not enter into the 
right-hand side with nonzero exponent.  

 

So consider again equation (2.6). What is missing in our assumption concerning the wind force? 
Wouldn't the strength of the wind be affected by its density? 

 

After some reflection we would probably agree that density does have an effect. If we include 

the density   as a factor, then our refined model becomes 

A v k F variable 

L2 LT -1 M0L0T0 MLT -2 Dimension 
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                                                                                            (2.7) 

 

Because density is mass per unit volume, the dimension of density is ML-3. Therefore, 
dimensionally, equation (2.7) becomes 

 

                                   

 

 Equating the exponents on both sides of this last   equation leads to the system of linear 
equations: 

 

                                                                               (2.8) 

 

   Solution of the system (2.8) gives a=2, b=1, and c=1. When substituted into equation (2.7) 
these values give the model 

                                                               

 

At this point we make an important observation. When it was assumed that F=kvaAb, the 
constant was assumed to be dimensionless. Subsequently, our analysis revealed that for a 

particular medium (so  is constant) 

 

                                                          

   

 giving   . However,k1 does have a dimension associated with it and is called a 

dimensional constant.  In particular, the dimension of k1 is 
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Dimensional constants contain important information and must be considered when a 
dimensional analysis. We consider dimensional constants again in section 2.3 when we 

investigate a damped pendulum. If we assume the density  is constant, our model shows that the 

force of the wind is proportional to the square of the speed of the van times its surface area 
directly exposed to the wind. We can test the model by collecting data and plotting the wind 
force F versus v2A to determine if the graph approximates a straight line through the origin. This 
example illustrates one of the ways dimensional analysis can be used to test our assumptions and 
check whether we have a faulty list of variables identifying the problem. Table 2.1 gives a 
summary of the dimensions of some common physical entities. 

 

    Table 2.1 Dimensions of physical entities in the MLT system 

          

MLT -1 Momentum M Mass 

ML2T-2 Work L Length 

ML -3 Density T Time 

ML -1T-1 Viscosity LT-1 Velocity 

ML -1T-2 Pressure LT-2 Acceleration 

MT-2 Surface tension ML -2T-2 Specific weight 

ML2T-3 Power MLT -2 Force 

ML2 Rotational inertia T-1 Frequency 

ML2T-2 Torque T-1 Angular velocity 

ML2T-2 Entropy T-2 Angular acceleration 

ML2T-2 Heat ML2T-1 Angular momentum 

  ML2T-2 Energy 
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Problems 2.1 

 

1. Determine whether the equation 

                            

 is dimensionally compatible, if s is the position (measured vertically from a fixed reference 
point) of a body at time t, s0 is the initial velocity, and g is the acceleration caused by gravity.  

 .   

2.  The various constants of physics often have physical dimensions (dimensional constants) 
because their values depend on the system in which they are expressed. For example, Newton's 
law of gravitation asserts that the attractive force between two bodies is proportional to the 
product of their masses divided by the square of the distance between them, or symbolically,  

                                                 

where G is the gravitational constant. Find the dimension of G so that Newton's law is 
dimensionally Acompatible. 

 

3. Certain stars, whose light and radial velocities undergo periodic vibrations, are thought to be 
pulsating. It is hypothesized that the period t of pulsation depends on the star's radius r, its mass 
m, and the gravitational constant G, (see problem 3 for the dimension of G.) Express t as a period 
of m, r, and G, so the equation 

 

                                    

 

 is dimensionally compatible. 

 

4. In checking the dimensions of an equation, you should note that derivatives also p 
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for the time rate of total energy E in a pendulum system with damping force is dimensionally 
compatible. 

 

5. For a body moving along a straight-line path, if the mass of the body is changing over time, 
then an equation governing its motion is given by  

                                                              

where m is the mass of the body, v is the velocity of the body, F is the total force acting on the 
body, dm is the mass joining or leaving the body in the time interval dt, and u is the velocity of 
dm at the moment it joins or leaves the body (relative to an observer stationed on the body). 
Show that the preceding equation is dimensionally compatible. 

6. In humans, the hydrostatic pressure of blood contributes to the total blood pressure.  The 
hydrostatic pressure P is a product of blood density, height h of the blood column between the 
heart and some lower point in the body, and gravity g. Determine 

                    

where k is a dimensionless constant. 

7. Assume the force F opposing the fall of a raindrop through air is a product of viscosity , 

velocity v, and the diameter r of the drop.  Assume that density is neglected. Find 

                          

   where k is a dimensionless constant. 
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2.3   The process of the Dimensional Analysis 

 

Activity 2.3:- 

� What are dimensionally homogeneous equations? 

� How can you use dimensionless products to determine dimensionally 

homogeneous equations? 

� When is an equation dimensionally homogeneous? 

� What are the basic steps in dimensional analysis process? 

 

 

 

In the preceding section we learned how to determine all dimensionless products among the 

variables selected in the problem under investigation. Now we investigate how to use the 

dimensionless products to find all possible dimensionally homogeneous equations among the 

variables. The key result is Buckingham's theorem, which summarizes the entire theory of 

dimensional analysis. 

Example 1 in the preceding section shows that in general many dimensionless products may be 

formed from the variables of a given system. In that example we determined every dimensionless 

product to be of the form  

                                                                                                  (2.9) 
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where b and e are arbitrary real numbers. Each one of these products corresponds to a solution of 

the homogenous system of linear algebraic equations given by Equation (2.5). The two products 

             

obtained when b=0, e=1, and b=1, e=0, respectively, are special in the sense that any of the 

dimensionless products (2.9) can be given as a product of some power of     times some power 

of      . Thus, for instance,  

                   

This observation follows from the fact that b=0, e=1, and b=1, e=0 represent, in some sense, 
independent solutions of the system (8.5). Let's explore these ideas further. 

Consider the following system of m linear algebraic equations in the n unknowns x1, x2, . . ., xn: 

                                                    (2.10) 

 

The numbers aij and bi denote real numbers for each i=1, 2, . . ., m and j=1, 2, . . ., n. The 
numbers aij are called the coefficients of the system and the bi are referred to as the constants. 
The subscript i in the symbol aij refers to the ith equation of the system (2.10) and the subscript j 
refers to the jth unknown xj to which aij belongs. Thus, the subscripts serve to locate aij. It is 
customary to read a13 as "a, one, three" and a42 as "a, four, two," for example, rather than "a, 
thirteen" and "a, fourty-two". 

A solution to the system (8.10) is a sequence of numbers s1, s2, . . ., sn for which x1=s1, x2=s2, . . ., 
xn=sn solves each equation in the system. If b1=b2= . . . =bm=0, the system (8.10) is said to be 
homogeneous.  The solution s1=s2= . . .=sn =0 always solves the homogeneous system and is 
called the trivial solution . For a homogeneous system there are two solution possibilities: Either 
the trivial solution is the only solution or there are infinitely many solutions. 

Whenever s1, s2, . . ., sn and s'1, s'2,. . ., s'n are solutions to the homogeneous system, the 
sequences s1+s'1, s2+s'2, . . ., sn+s'n, and cs1 , cs2, . . ., csn are also solutions for any constant c. 
These solutions are called the sum and scalar multiple of the original solutions, respectively. If 
S and S' refer to the original solutions, 
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then we use the notations S+S' to refer to their sum and cS to refer to a scalar multiple of the first 
solution. If S1, S2, . . ., Sk is a collection of k solutions to the homogeneous system, then the 
solution  

                c1S1+c2S2+ . . . +ckSk 

is called a linear combination of the k solutions, where c1, c2, . . . ,ck are arbitrary real numbers. 
It is an easy exercise to show that any linear combination of solutions to the homogeneous 
system is still another solution to the system. 

A set of solutions to a homogeneous system is said to be independent if no solution in the set is 
a linear combination of the remaining solutions in the set. A set of solutions is complete if it is 
independent and every solution is expressible as a linear combination of solutions in the set. For 
a specific homogeneous system, we seek some complete set of solutions because all other 
solutions are produced from them using linear combinations. For example, the two solutions 
corresponding to the two choices b=0, e=1 and b=1, e=0 form a complete set of solutions to the 
homogeneous system (2.5).  

It is not our intent to present the theory of linear algebraic equations. Such a study is appropriate 
for a course in linear algebra. We do point out that there is an elementary algorithm known as 
Gaussian elimination for producing a complete set of solutions to a given system of linear 
equations. Moreover, Gaussian elimination is readily implemented on computers and handheld 
programmable calculators. The system of equations we will encounter in this book are simple 
enough to be solved by the elimination method learned in intermediate algebra. 

How does our discussion relate to dimensional analysis? Our basic goal thus far has been to find 
all possible dimensionless products among the variables that influence the physical phenomenon 
under investigation. We developed a homogeneous system of linear algebraic equations to help 
us determine these dimensionless products. This system of equations usually has infinitely many 
solutions. Each solution product among the variables. If we sum two solutions, we produce 
another solution that yields the same dimensionless product as does multiplication of the 
dimensionless products corresponding to the original two solutions. For example, the sum of the 
solutions corresponding to b=0, e=1 and b=1, e=0 for equation (2.5) yields the solution 
corresponding to b=1, e=1 with the corresponding dimensionless product from equation (8.9) 
given by  

                        

The reason for this result is that the system of equations is the exponents in the dimensionless 
products, and addition of exponents algebraically corresponds to multiplication of numbers 
having the same base: xm+n=xmxn. Moreover, multiplication of a solution by a constant produces 
a solution that yields the same dimensionless product as does raising the product corresponding 
to the original solution to the power of the constant. For example, -1 times the solution 
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corresponding to b=1, e=0 yields the solution corresponding to b=-1, e=0 with the corresponding 
dimensionless product  

                             

The reason for this last result is that algebraic multiplication of an exponent by a constant 
corresponds to raising a power to a power,  xmn=(xm)n. 

In summary, addition of solutions to the homogeneous system of equations results in 
multiplication of their corresponding dimensionless products and multiplication of a solution by 
a constant results in raising the corresponding product to the power given by that constant. Thus, 
if S1 and S2 are two solutions corresponding to the dimensionless products and , 

respectively, then the linear combination aS1+bS2 corresponds to the dimensionless product 

                          

It follows from our preceding discussion that a complete set of solutions to the homogeneous 
system of equations produces all possible solutions through linear combination.The 
dimensionless products corresponding to a complete set of solutions are therefore called a 
complete set of dimensionless products. All dimensionless products can be obtained by forming 
powers and products of the members of a complete set. 

Next, let's investigate how these dimensionless products can be used to produce all possible 
dimensionally homogeneous equations among the variables. In section 2.1 we defined an 
equation to be dimensionally homogeneous if it remains true regardless of the system of units in 
which the variables are measured. The fundamental result in dimensional analysis that provides 
for the construction of all dimensionally homogeneous equations from complete sets of 
dimensionless products is the following theorem. 

Theorem 1   

Buckingham's Theorem 

An equation is dimensionally homogeneous if and only if it can be put into the form 

 

                                                     (2.11) 

 

where f is some function of n arguments and  

is a complete set of dimensionless products. 
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 Let's apply Buckingham's theorem to the simple pendulum discussed in the preceding sections. 
The two dimensionless products 

                 

  form a complete set for the pendulum problem. Thus, according to Buckingham's theorem, 
there is a function f such that 

                                                 

Assuming we can solve this equation for   as a function of , it follows that 

                                                                                       (2.12)  

where h is some function of the single variable. Notice that this last result agrees with our 

intuitive formulation for the simple pendulum presented in section2.1. Observe that Equation 

(2.12) represents only a general form for the relationship among the variables m, g, t, r, and . 

However, it can be concluded from this expression that t does not depend on the mass m and is 

related to r1/2 and g-1/2 by some function of the initial angle of displacement . Knowing this 

much, we can determine the nature of the function h experimentally or approximate it, as 
discussed in section 2.1. 

Consider equation (2.11) in Buckingham's theorem. For the case in which a complete set consists 
of a single dimensionless product, for example, , the equation reduces to the form 

                                              

 In this case we assume that the function f has one real root at k (to assume otherwise has little 
physical meaning). Hence, the solution    is obtained. 

Using Buckingham's theorem, let's reconsider the example from section 2.1 of the wind force on 
a van driving down a highway. Because the four variables F, v, A, and   were selected and all 
three equations in (2.8) are independent, a complete set of dimensionless products consists of a 
single                

                                               

Application of Buckingham's theorem gives 
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which implies from the preceding discussion that  , or 

                                                

where k is a dimensionless constant as before. Thus, when a complete set consists of a single 
dimensionless product, as is generally the case when we begin with four variables, the 
application of Buckingham's theorem yields the desired relationship up to a constant of 
proportionality. Of course, the predicted proportionality must be tested to determine the 
adequacy of our list of variables. If the list does prove to be adequate, then the constant of 
proportionality can be determined by experimentation, thereby completely defining the 
relationship.  

For the case n=2, Equation (2.11) in Buckingham's theorem takes the form 

                                                                                                           (2.13) 

  If we choose the products in the complete set  so that the dependent variable appears in 

only one of them, for example, , we can proceed under the assumption that equation (2.13) can 

be solved for that chosen product   in terms of the remaining product . Such a solution takes 

the form 

                                                                                         

  and then this latter equation can be solved for the dependent variable. Note that when a 
complete set consists of more than one dimensionless product, the application of Buckingham's 
theorem determines the desired relationship up to an arbitrary function. After Verifying the 
adequacy of the list variables, we may be lucky enough to recognize the underlying functional 
relationship. However, in general we can expect to construct an empirical model, although the 
task has been eased considerably. 

For the general case of n dimensionless products in the complete set for Buckingham's theorem, 
we again choose the products in the complete set  so that the dependent variable 

appears in only one of them, say  for definiteness. Assuming we can solve equation (2.11) for 

that product  in terms of the remaining ones, we have the form 

                                                  

We then solve this last equation for the dependent variable. 
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Summary of Dimensional Analysis Methodology 

STEP 1 Decide which variables enter the problem under investigation. 

STEP 2 Determine a complete set of dimensionless products   among the 

variables. Make sure the dependent variable of the problem appears in only one of the 
dimensionless products. 

STEP 3   Check to ensure that the products found in the previous step are dimensionless and 
independent. Otherwise you have an algebra error. 

STEP 4 Apply Buckingham's theorem to produce all possible dimensionally homogeneous 
equations among the variables. This procedure yields an equation of the form (2.11). 

STEP 5 Solve the equation in Step 4 for the dependent variable. 

STEP 6 Test to ensure that the assumptions made in Step 1 are reasonable. Otherwise the list of 
variables is faulty. 

STEP 7 Conduct the necessary experiments and present the results in a useful format. 

 

Let's illustrate the first five steps of this procedure. 

Example 1 Terminal Velocity of a Raindrop 

Consider the problem of determining the terminal velocity v of a raindrop falling from a 
motionless cloud. We examined this problem from a very simplistic point of view in chapter 2, 
but let's take another look using dimensional analysis. 

What are the variables influencing the behaviour of the raindrop? Certainly the terminal velocity 

will depend on the size of the raindrop given by, say, its radius r. The density  of the air and the 

viscosity  of the air will also affect the behaviour. (Viscosity measures resistance to motion---a 

sort of internal molecular friction. In gases this resistance is caused by collisions between fast-
moving molecules.) The acceleration due to gravity g is another variable to consider. Although 
the surface tension of the raindrop is a factor that does influence the behaviour of the fall, we 
will ignore this factor. If necessary, surface tension can be taken into account in a later, refined 
model. These considerations give the following table relating the selected variables to their 
dimensions: 
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g r v Variable 

ML -1T-1 ML -3 LT -2 L LT-1 Dimension 

 Next we find all the dimensionless products among the variables. Any such product must be of 
the form 

                                                                                                                   (2.14) 

 

and hence must have dimension 

 

                              

 

Therefore, a product of the form (2.14) is dimensionless if and only if the following system of 
equations in the exponents is satisfied: 

                                                                                         (2.15) 

Solution of the system (2.15) gives b=(3/2)d-(1/2)a, c=(1/2)d-(1/2)a, and e=-d, where a and d are 
arbitrary. One dimensionless product  is obtained by setting a=1, d=0; another, independent 

dimensionless product is obtained when a=0, d=1. These solutions give 

                              

 

Next, we check the results to ensure that the products are indeed dimensionless: 

 

                           and                  

Thus, according to Buckingham's theorem, there is a function f such that 
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Assuming we can solve this last equation for    as a function of the second product  

 , it follows that 

                                      

where h is some function of the single product.   

The preceding example illustrates a characteristic future of dimensional analysis. Normally the 
modeler studying a given physical system has an intuitive idea of variables involved and has a 
working knowledge of general principles and laws (such as Newton’s second law) but lacks the 
precise laws governing the interaction of the variables. Of course, the modeler can always 
experiment with each independent variable separately, holding the other constant and the effect 
on the system. Often, however, the efficiency of the experimental work can be improved through 
an application of dimensional analysis. Although we did not illustrate steps 6 and 7 of the 
dimensional analysis process for the preceding example, these steps will be illustrated in section 
2.3. 

We now make some observations concerning the dimensional analysis process. Suppose n 
variables have been identified in the physical problem under investigation. When determining a 
complete set of dimensionless products, we form a system of three linear algebraic equations by 
equating the exponents for M, L, and T to zero. That is, we obtain a system of three equations in 
n unknowns (the exponents). If the three equations are independent, we can solve the system for 
three of the unknowns in terms of the remaining n-3 unknowns (declared to be arbitrary). In this 
case, we find n-3 independent dimensionless products that make up the complete set seek. For 
instance, in the preceding example, there are five unknowns, a, b, c, d, e, and we determined 
three of them (b, c, and e) in terms of the remaining (5-3) two arbitrary ones (a and d).  Thus, we 
obtained a complete set of two dimensionless products. When choosing the n-3 dimensionless 
products, we must be sure that the dependent variable appears in only one of them. We can then 
solve equation (2.11) guaranteed by Buckingham’s theorem for the dependent variable, at least 
under suitable assumption on the function f in that equation. (The full story telling when such a 
solution is possible is the content of an important result in advanced calculus known as the 
implicit function theorem.) 

We acknowledge that we have been rather sketchy in our presentation for solving the system of 
linear algebraic equations that results in the process of determining all dimensionless products. 
Recall how to solve simple linear systems by the method of elimination of variables. We 
conclude this section with another example. 
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Example 2 Automobile Gas Mileage Revisited. 

Consider again the automobile gasoline mileage problem presented in Chapter 1. One of our 
submodels in that problem was for the force of propulsion Fp. The variables we identified that 
affect the propulsion force are Cr, the amount of fuel burned per unit time, the amount K of 
energy contained in each gallon of gasoline, and the speed v. Let’s perform a dimensional 
analysis. The following table relates the variables to their dimensions: 

 

Variable Fp Cr K v 

Dimension MLT-2 L3T-1 ML -1T-2 LT-1 

 

  Thus, the product 

                                    (2.16) 

Must have the dimension 

                                   

 

The requirement for a dimensionless product leads to the system  

                                                                                       (2.17) 

 

Solution of the system (8.17) gives b=-a, c=-a, and d=a, where a is arbitrary. Choosing a=1, we 
obtain the dimensionless product  

 

                                   

From Buckingham’s theorem there is a function f with , so   equals a constant. 

Therefore, 
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In agreement with the conclusion reached in Chapter 1. 

 

Problems2.2 

1.Predict the time of revolution for two bodies of mass m1 and mass m2 in empty space revolving 
about each other under their mutual gravitational attraction. 

2. A projectile is fired with initial velocity v at an angle  with the horizon. Predict the range R. 

3. Consider an object falling under the influence of gravity. Assume that air resistance is 
negligible. Using dimensional analysis, find the speed v of the object after it has fallen a distance 
s. Let v=f(m,g,s), where m is the mass of the object and g is the acceleration due to gravity. Does 
yor answer agree with your knowledge of the physical situation? 

4. One would like to know the nature of the drg forces experienced by a sphere as it passes 
through a fluid,. It is assumed that the sphere has a law speed. Therefore, the drag force is highly 
dependent on the viscosity of the fluid. The fluid density is to be neglected. Use the dimensional 
anlysis process to develo a model for drag force F as a function of the radius r and velocity m of 
the sphere and the viscosity  of the flid. 

5. The volume flow rate q for laminar flow in a pipe depends on the pipe radius r, the viscosity  

of the fluid; and the pressure drop per unit length   . develop a model for the flow rate q as a 

function of r,  and    .  

6. In fluid mechanics, the Reynold number is a dimensionless number involving the fluid 
velocity v, density , viscosity , and a characteristic length r. Use dimensional analysis to find 

the Reynolds number. 

 

 

2.4 A Damped Pendulum 

 

Activity 2.4:- 

� Can you apply dimensional analysis process on a pendulum problem? 
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In section 2.1 we investigated the pendulum problem under the assumptions that the hinge is 
frictionless, the mass is concentrated at one end of the pendulum, and the drag force is neglijible. 
Suppose we are not satisfied with the results predicted by the concentrated model. Then we can 
refine the model by incorporating drag forces. If F represnts the total drag force, the problem 
now is to determine the function  

                                    

 

 

Figure 2.7 Possible submodels for the drag force 

 

 

Let’s consider a submodel for the drag force. As we have seen in previous examples, the modeler 
is usually faced with a trade-off between simplicity and accuracy. For the pendulum it might 
seem reasonable to expect the drag force to be proportional to some positive power of the 
velocity. To keep our model simple, we assume that F is proportional to either v or v2, as 
depicted in Figure 2.7. 

Now we can experiment to determine directly the nature of the drag force. However, we will first 
perform a dimensional analysis because we expect it to reduce our experimental effort. Assume 
F is proportional to v so that . For convenience we choose to work with the dimensional 
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constant  , which has dimension , or simply . Notice that the dimensional 

constant captures the assumption about the drag force. Thus, we apply dimensional analysis to 
the model 

                                    

An analysis of the dimensions of the variables gives 

  

Variable t r m g  k 

Dimension T L M LT-2 M0L0T0 MT-1 

 

Any product of the variables must be of the form 

                                                                                        (2.18) 

And hence must have dimension 

 

                           

 

Therefore, a product of the form (8.18) is dimensionless if and only if  

 

                                                                                     (2.19) 

 

The equations in the system (2.19) are independent, so we know we can solve for three of the 
variables in terms of the remaining (6-3) three variables. We would like to choose the solutions 
in such a way that t appears in only one of the dimensionless products. Thus, we choose a, e, and 
f as the arbitrary variables with 
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Setting a=1, e=0, and f=0, we obtain c=0, b=-1/2, and d=1/2 with the corresponding 

dimensionless product  . Similarly, choosing a=0, e=1, and f=0, we get c=0, b=0, and d=0, 

corresponding to the dimensionless product . Finally, choosing a=0, e=0, and f=1, we obtain 

c=-1, b=1/2, and d=-1/2, corresponding to the dimensionless product    . Notice that t appears 

in only the first of these products. From Buckingham’s theorem, there is a function h with  

 

                                                 

 

Assuming we can solve this last equation for  , we obtain  

 

                                                                               

for some function H of two arguments. 

 

Testing the Model (Step 6) 

Given   , our model predicts that      if the parameters of the function 

H (namely,   and   ) could be held constant. Now there is no difficulty in keeping  and k 

constant. However, varying r while simultaneously keeping   constant is more complicated. 

Because g is constant, we could try to vary r and m in such a manner that   remains constant. 
This might be done using a pendulum with a hollow mass to vary m without altering the drag 
characteristics. Under these conditions we would expect the plot in figure 2.8. 
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Figure 2.8 A plot of t versus  keeping the variables k, , and /m constant 

 

 

 

Presenting the Results (Step 7) 

 

was suggested in predicting the period of the undamped pendulum, we can plot 

  However, because H is here a function of two arguments, this would yield 

a three-dimensional figure that is not easy to use. An alternative technique is to plot   

versus   for various values of. This is illustrated in figure 2.9. To be safe in predicting t over 

the range of interest for representative values of, it would be necessary to conduct sufficient 

experiments at various values of   . Note that once data are collected, various empirical 

models could be constructed using an appropriate interpolating scheme for each value of .  
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Figure 2.9 presenting the results 

 

 

Choosing Among Competing Models 

Because dimensional analysis involves only algebra, one is tempted to develop several models 
under different assumptions before proceeding with, perhaps quite costly, experimentation.  In 
the case of the pendulum, under different assumptions, we can develop the following three 
models (see Problem 1 in the 2.3 problem set): 

A:                            No drag forces 

B:                   Drag forces proportional to v: F=kv 

C:                        Drag forces proportional to v2:  F=k1v
2 
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Because all the preceding models are approximations, it is reasonable to ask which, if any, is 
suitable in a particular situation. We now describe the experimentation necessary to distinguish 
among these models, and we present some experimental results. 

Model A predicts that when the angle of displacement   is held constant, the period t is 

proportional to  . Model B predicts that when   and    are both held constant, while 

maintaining the same drag characteristics k, t is proportional to  . Finally, Model C predicts 

that if   and k1 are held constant, then t is proportional to .  

 

The following discussion describes our experimental results for the pendulum. Various types of 
balls were suspended from a string in such a manner as to minimize the friction at the hinge. The 
kinds of balls included tennis balls and various types and sizes of plastic balls. A hole was made 
in each ball to permit variations in the mass without altering appreciably the aerodynamic 
characteristics of the ball or the location of the center of mass. The models were then compared 
with one another. In the case of the tennis ball, Model A proved to be superior. The period was 

independent of the mass, and a plot of t versus   for constant   is shown in figure 2.10. 

  

Figure 2.10  Figure 2.11  

Model for a tennis ball Isolating the effect of  
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Having decided that    is the best of the models for the tennis ball, we isolated the 

effect of    by holding r constant to gain insight into the nature of the function h. A plot of t 

versus   for constant r is shown in figure 2.11. 

Note from figure 2.11 that for small angles of initial displacement  , the period is virtually 

independent of  . However the displacement effect becomes more noticeable as  is increased. 

Thus, for small angles we might hypothesize that   for some constant c. If one plots t 

versus   for small angles, the slope of the resulting straight line should be constant. 

For larger angles, the experiment demonstrates that the effect of  needs to be considered. In 

such cases, one may desire to estimate the period for various angles. For example, if    

and we know a particular value of  , we can estimate t from Figure 2.10. Although not shown, 

plots for several different angles can be graphed in the same figure. 

 

 

2.5 Dimensional Analysis in the Model-Building Process 

 

Activity 2.5:- 

� In what ways is dimensional analysis useful in the model building process? 

� Describe the basic steps of model-building using dimensional analysis. 

 

 

Let’s summarize how dimensional analysis assists in the model-building process. In the 
determination of a model we must first decide which factors to neglect and which to include. A 
dimensional analysis provides additional information on how the included factors are related. 
Moreover, in large problems, we often determine one or more submodels before dealing with the 
larger problem. For example, in the pendulum problem we had to develop a submodel for drag 
forces. A dimensional analysis helps us choose among the various submodels. 
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A dimensional analysis is also useful for obtaining an initial test of the assumptions in the model. 
For example, suppose we hypothesize that the dependent variable y is some function of five 
variables: 

 

.A dimensional analysis in the MLT system in general yields  

, where each   is a dimensionless product. The model predicts that   will 

remain constant if   and    are held constant, even though the components of   and  may 

vary. Because there are, in general, an infinite number of ways of choosing  , we should 

choose those that can be controlled in laboratory experiments. Having determined that  
,  we can isolate the effect of  by holding   constant and vice versa. This can 

help explain the functional relationship among the variables. For instance, we say in our example 
that the period of the pendulum did not depend on the initial displacement for small 
displacements. 

Perhaps the greatest contribution of dimensional analysis is that it reduces the number of 
experiments required to predict the behavior. If we wanted to conduct experiments required to 
predict values of y for the assumed relationship  and it was decided that 

5 data points would be necessary over the range of each variable, 55 or 3125 experiments would 
be necessary. Because a two-dimensional chart is required to interpolate conveniently, y might 
be plotted against x1 for five values of x1, holding x2, x3, x4, x5 constant. Because x2, x3, x4, and 
x5 must vary as well, 54 or 625 charts would be necessary. However, after a dimensional analysis 
yields , only 25 data points would be required. Moreover,  can be plotted 

versus , for various values of  on a single chart. Ultimately, the task is far easier after 

applying a dimensional analysis. Finally dimensional analysis helps in presenting the results. It is 
usually best to present experimental results using those  that are classical representations 

within the field of study. For instance, in the field of fluid mechanics there are eight factors that 
might be significant in a particular situation: velocity v, length r, mass density  , viscosity   , 

acceleration of gravity g, speed of sound c, surface tension  , and pressure p. Thus, a 

dimensional analysis could require as many as five independent dimensionless products. The five 
generally used are the Reynolds number, Froude number, Mach number, Weber number, and the 
pressure coefficient. These numbers are defined as follows.  

 

                                           Reynolds number               

                                            Froude number                  
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                                            Mach number                     

                                            Weber number                  

                                             Pressure coefficient                

 

Thus, the application of dimensional analysis becomes quite easy. Depending on which of the 
eight variables are considered in a particular problem, the following steps are performed:  

 

                  1. Choose an appropriate subset from the preceding five dimensionless products. 

      2. Apply Buckingham’s theorem. 
3. Test the reasonableness of the choices of variables. 
4. Conduct the necessary experiments and present the results in a useful format. 

 

Problems2.3 

1. For the damped pendulum, 

(a) Assume that F is proportional to v2 and use dimensional analysis to show that 

                                   . 

(b) Assume that F is proportional to v2 and describe an experiment to test the model 

                                    . 

2. Under appropriate conditions, all three models for the pendulum imply that t is proportional to 
. Explain how the conditions distinguish between the three models by considering how m 

must vary in each case. 

 

3. Use a model employing a differential equation to predict the period of a simple frictionless 
pendulum for small initial angles of displacement. (Hint: Let .) Under these conditions, 

what should be the constant of proportionality? Compare your results with those predicted by 
Model A in the text. 
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2.6 Examples Illustrating Dimensional Analysis 

Example 1 Explosion Analysis 

 In excavation and mining operations it is important to be able to predict the size of a crater 
resulting from a given explosive such as TNT in some particular soil medium. Direct 
experimentation is often impossible or too costly. Thus, it is desirable to use small laboratory or 
field tests and then scale this up in some manner to predict the results for explosions far greater 
in magnitude.  

 

We may wonder how the modeler determines which variables to include in the initial list. 
Experience is necessary to intelligently determine which variables can be neglected. Even with 
experience, however, the task is usually difficult in practice, as this example will illustrate. It 
also illustrates that the modeler must often change the list of variables to get usable results. 

 

Problem Identification  Predict the crater volume V produced by a spherical explosive located 
at some depth d in a particular soil medium. 

 

Assumptions and Model Formulation initially, let’s assume that the craters are geometrically 
similar (see chapter 1), where the crater size depends on three variables: the radius r of the crater, 
the density  of the soil, and the mass W of the explosive. These variables are composed of only 

two primary dimensions, length L and mass M, and the dimensional analysis results in only one 
dimensionless product (see problem 1 a in 2.4 problem set): 

 

                                                      

 

 According to Buckingham’s theorem, must equal a constant. Thus, the crater dimensions of 

radius or depth vary with the cube root of the mass of the explosive.  Because the crater volume 
is proportional to r3, it follows that the volume of the crater is proportional to the mass of the 
explosive for constant soil density. Symbolically we have  
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                                                                                                       (2.20) 

 

Experiments have shown that the proportionality (2.20) is satisfactory for small explosions (less 
than 300lb of TNT) at zero depth in soils, such as moist alluvium, that have good cohesion. For 
larger explosions, however, the rule proves unsatisfactory. Other experiments suggest that 
gravity plays a key role in the explosion process, and because we want to consider extraterrestrial 
craters as well, we need to incorporate gravity as a variable. 

 

If gravity is taken into account, then we assume crater size to be dependent on four variables: 
crater radius r, density of soil , gravity g, and charge density E. Here, the charge energy is the 

mass W of the explosive times its specific energy. Applying a dimensional analysis to these four 
variables again leads to a single dimensionless product (see problem 1 b in the 2.4 problem set): 

 

                                                     

Thus,  equals a constant and the linear crater dimensions (radius or depth of the crater) vary 

with the one-fourth root of the energy (or mass) of the explosive for a constant soil density. This 
leads to the following proportionality known as the quarter-root scaling and is a special case of 
gravity scaling: 

 

                                                                                                   (2.21) 

 

Experimental evidence indicates that gravity scaling holds for large explosions (more than 100 
tons of TNT) where the stresses in the cratering process are much larger than the material 
strengths of the soil. The proportionality (2.21) predicts that crater volume decreases with 
increased gravity. The effect of gravity on crater formation is relevant in the study of 
extraterrestrial craters. Gravitational effects can be tested experimentally using a centrifuge to 
increase gravitational accelerations. 

 

A question of interest on explosion analysts is whether the material properties of the soil do 
become less important with increased charge size and increased gravity. Let’s consider the case 
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in which the soil medium is characterized only by its density . Thus, the crater volume V 

depends on the explosive, soil density , gravity g, and the depth of burial d of the charge.  In 

addition, the explicit role of material strength or cohesion has been tested and the strength—
gravity transition is shown to be a function of charge size and soil strength. 

 

We now describe our explosive in more detail than in previous models. To characterize an 
explosive, three independent variables are needed: size, energy field, and explosive density. 

The size can be given as charge mass W, as charge energy E, or as the radius  of the spherical 

explosive. The energy yield can be given as a measure of the specific energy  or the energy 

density per unit volume   . The following equations relate the variables:  

 

            

       

      

One choice of these variables leads to the model formulation  

 

                                            

 

Because there are seven variables under consideration and the MLT system is being used, a 
dimensional analysis generally will result in four (7-3) dimensionless products. The dimensions 
of the variables are: 

 

Variable V W Qe   g d 

Dimension L3 M L2T-2 ML -3 ML -3 LT-2 L 

Any product of the variables must be of the form 

 

                                                                                (2.22) 
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and hence have dimensions 

 

                              

 

Therefore, a product of the form ( 2.22) is dimensionless if and only if the exponents satisfy the 
following homogeneous system of equations: 

 

                                   

 

Solution to this system produces 

 

                 

where a, f, k, and m are arbitrary. By setting one of these arbitrary exponents equal to 1 and the 
other three equal to 0, in succession, we obtain the following set of dimensionless products: 

 

                  

 

(Convince yourself that these are dimensionless.) Because the dimensions of   and   are equal, 

we can rewrite these dimensionless products as follows: 
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So   is consistent with the dimensionless product implied by equation (2.20). Then applying 

Buckingham’s theorem, we obtain the model 

 

                                                                                (2.23) 

or 

                            

 

Presenting the Results    

 For oil-base clay the value of  is approximately 1.53g/cm2; for wet sand, 1.65; and for desert 

alluvium,1.60, For TNT,  has the value 2.23g/cm3. Thus, , so for simplicitywe 

can assume for these soils and TNT that  is constant. Then, equation (8.23) becomes  

 

                                                                                     (2.24) 

 

R.M.Schmidt gathered experimental data to plot the surface described by equation (2.24). A plot 
of the surface is depicted in figure 8.12, showing the crater and volume parameter as a 

function of the scaled energy charge  and the depth of the burial parameter . Cross-sectional 

data for the surface parallel to the   plane when  are depicted in figure 2.13. 
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Figure 2.12 A plot of the surface , showing the crater volume parameter  as a 

function of gravity- scaled yield  and depth of burial parameter . 

Experiments have shown that the physical effect of increasing gravity is to reduce crater volume 
for a given charge yield. This suggests that increased gravity can be compensated for by 
increasing the size of the charge to maintain the same cratering efficiency. Note also that Figures 
2.12 and 2.13 can be used for prediction once an empirical interpolating model is constructed 
from the data. Holsapple and Schmidt (1982) extend these methods to impact cratering., and 
Housen, Schmidt, and Holsapple (1983) extend them to crater ejecta scaling. 

 



 

 

86 

 

 

Figure 2.13 

Data values for a cross section of the surface depicted in figure 2.12 

 

 

Example 2 How Long Should You Roast a Turkey? 

 

One general for roasting a turkey is the following: Set the oven to4000F and allow 20min per 
pound for cooking. How good is this rule? 
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Assumptions  Let t denote the cooking time for the turkey. Now, on what variables does t 
depend? Certainly the size of the turkey is a factor that must be considered. Let’s assume that 
turkeys are geometrically similar and use l to denote some characteristic dimension of the 
uncooked meat; specifically, we assume that l represents the length of the turkey. Another factor 
is the difference between the temperature of the raw meat and the oven . (We know from 

experience that it takes longer to cook a bird that is nearly frozen than it does to cook one that is 
initially at room temperature.) Because the turkey will have to reach a certain interior 
temperature before it is considered fully cooked, the difference   between the temperature of 

the cooked meat and the oven is a variable determining the cooking time. Finally, we know that 
different foods require different cooking times independent of size; it takes only 10min or so to 
bake a pan of cookies, whereas a roast beef or turkey requires several hours. A measure of the 
factor representing the differences between foods is the coefficient of heat conduction for a 
particular uncooked food. Let k denote the coefficient of heat conduction for a turkey. Thus, we 
have the following model formulation for the cooking time: 

 

                                            

 

Dimensional Analysis    Consider the dimensions of the independent variables. The temperature 
variables  and   measure the energy per volume and therefore have the dimension  

, or simply . Now, what about the heat conduction variable k? Thermal 

conductivity k is defined by the amount of energy crossing one unit cross-sectional area per 
second divided by the gradient perpendicular to the area. That is, 

 

                                     

Accordingly, the dimension of k is  , or simply L2T-1. Our analysis gives the 

following table: 

         

Variable   k l t 

Dimension ML-1T-2 ML -1 T-2 L2T-1 L T 

Any product of the variables must be of the form 
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                                                                                       (2.25) 

 

and hence have dimension 

                              

 

Therefore, a product of the form (8.25) is dimensionless if and only the exponents satisfy 

 

                                  

 

Solution of this system of equations gives 

                                  

where b and e are arbitrary. If we set b=1, e=0, we obtain a=-1, c=0, and d=0; likewise, b=0, e=1 
produces a=0, c=1, and d=-2. These independent solutions yield the complete set of 
dimensionless products: 

 

                            

 

From Buckingham’s theorem, we obtain 

 

                     

 or  

                                                                                         (2.26) 
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The rule stated in our opening remarks gives the roasting time for the turkey in terms of its 
weight w. Let’s assume the turkeys are geometrically similar, or . If we assume the turkey 

is of constant density (which is not quite correct because the bones and flesh differ in density), 
then because weight is density times volume and volume is proportional to l3, we get . 

Moreover, if we set the oven to a constant baking temperature and specify that the turkey must 

initially be near room temperature (650F), then   is a dimensionless constant. Combining these 

results with Equation (8.26), we get the proportionality 

 

                                                                                               (2.27) 

 

because k is constant for turkeys. Thus, the required cooking time is proportional to weight 
raised to the two-thirds power. Therefore, if t1 hours are required to cook a turkey weighing w1 
pounds and t2 is the time for a weight of w2 pounds, 

 

                         

 

it follows that a doubling of the weight of a turkey increases the cooking time by the factor 
.  

How does our result (8.27) compare to the rule stated previously? Assume that , , and k 

are independent of the length or weight of the turkey, and consider cooking a 23-lb turkey versus 
an 8-lb bird. According to our rule, the ratio of cooking times is given by 

 

                      

 

On the other hand, from dimensionless analysis and equation (8.27), 

                      



 

 

90 

 

Thus, the rule predicts it will take nearly three times as long to cook a 23-lb bird as it will to 
cook an 8-lb turkey.  Dimensional analysis predicts it will take only twice as long. Which rule is 
correct? Why have so many cooks overcooked a turkey? 

 

Testing the results Suppose that various sized turkeys are cooked in an oven preheated to 3250F. 
The initial temperature of the turkeys is 650F. All the turkeys are removed from the oven when 
their internal temperature, measured by a meat thermometer, reaches 1950F. The (hypothetical) 
cooking times for the various turkeys are recorded as follows: 

               

W(lb) 5 10 15 20 

t(hr) 2 3.4 4.5 5.4 

 

  A plot of t versus w2/3 is shown in Figure 2.14. Because the graph approximates a straight line 
through the origin, we conclude that  , as predicted by our model.  

 

 

Figure 2.14 Plot of cooking times versus weight to the two-thirds power reveals the predicted 
proportionality 
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Problems2.4 

1. (a) Use dimensional analysis to establish the cube-root law 

                                                

 for scaling of explosions, where r is the radius or depth of the crater,  is the density of the soil 

medium, and W the mass of the explosive. 

 

(b) Use dimensional analysis to establish the one-fourth root law  

                                           

for scaling explosions, where r is the radius or depth of the crater,  is the density of the soil 

medium, g is gravity, and E is the charge energy of the explosive. 

 

2. (a) Show that the products , , ,  for the refined explosion model in the module are 

dimensionless products. 

 (b) Assume  is essentially constant for the soil being used and restrict the explosive to a 

specific type, say TNT. Under these conditions,  is essentially constant, yielding . 

You have collected the following data with : 

  

 0 2 4 6 8 10 12 14 

 15 150 425 750 825 425 250 90 

i. Construct a scatterplot of  versus . Does a trend exist? 

ii. How accurate do you think the data are? Find an empirical model that captures the 
trend of the data with accuracy commensurate with your appraisal of the data. 
 

iii.  Use your empirical model to predict the volume of a crater using TNT in desert 

alluvium with (CGS system) . 

 
1. Consider a zero-depth burst, spherical explosive in a soil medium. Assume the value of 

the crater volume V depends on the explosive, energy yield, and explosive energy, as 
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well as on the strength Y of the soil (considered a resistance to pressure with dimensions 
ML -1T-2), soil density , and gravity g. In this problem assume 

 

                                 

 

 

And use the following mass set of dimensionless products: 

                        

                    

 

Self Test Exercises 2 

 

I. Definitions and Terminologies 
 
1. Define each of the following terms: 

(a) Dimensional analysis method 
(b) Dimensional compatibility 
(c) Dimensional constant 
(d) Complete set of solutions 
(e) Dimensionless products 
(f) Dimensionally homogeneous equation 

2. If a function f under an investigation has n arguments, how many 
dimensionless products will be considered in MLT system of units, where 
(a) n=5? 
(b) n=7? 
(c) n=k? (k is a positive integer) 

3. State Buckingham’s theorem. 
4. Describe the seven basic steps in the dimensional analysis methodology. 

 
II.  True/false items 

1. A dimensional analysis provides qualitative information about the model. 
2. Dimensional analysis is helpful in testing the validity of including or 

neglecting a particular factor. 
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3. Dimension representations in dimensional analysis are dependent on 
particular system of measurement. 
 

III.  Problems. 
1. Find a dimensionless product relating the torque    (ML2T-2) produced 

by an automobile engine, the engine's rotation rate  ψ (T-1), the volume V 

of air displaced by the engine, and the air density.  

2. Using dimensional analysis, find a proportinality relationship for the 
centrifugal force F of a particle in terms of its mass m, velocity v, and 
radius r of the curvature of its path. 

3. The power P delivered to a pump depends on the specific weight w of 
the fluid pumped, the height h to which the fluid is pumped, and the fluid 
flow rate q in cubic feet per second. Use dimensional analysis to 
determine an equation for power. 
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Chapter 3 

GRAPHICAL METHODS 

 

Objective:- at the end of this chapter student able to  

• Know graphs to model real life activity 

• Identify comparative statistics 

• Answer stability question 

 
 

 
 

3.1Using Graphs in Modeling 

 
Graphs can be very useful in modeling if you are aware of their uses and limitations. Since many 
people expect either too much or too little from them, we discuss their uses and limitations 
before going into specific models. 
             People can take in an entire picture rather quickly and then deduce consequences by 
using their geometric intuition. It follows that graphs should be useful in conveying information. 
Those wonderful analog computers people carry in their skulls can rapidly locate certain patterns 
in visually presented data. One of the easiest to spot is a straight line. For this reason a variety of 
forms of graph paper (rectangular, polar, log-log, normal probability, etc.)  are marketed so that 
plotted data will appear linear if the anticipated relationship exists. 
               Graphs are most useful in conveying qualitative relationships or approximate data 
which involve only a few variables. A graphical approach to a problem is most likely to be useful 
when not much information is available or when it is given in a rather imprecise form. Analytical 
methods are usually more appropriate when more precise information is available. In complex 
simulation models, graphs are frequently used to illustrate the qualitative behavior of several 
time varying endogenous variables simultaneously. This helps one obtain a qualitative feel for 
the behavior of a complicated simulation model. 
               So far we have talked about graphs primarily as a way of presenting data. Now let's 
consider some major roles graphs play in model formulation.  
               Since our imagination is limited to three dimensions, graphical representations of the 
interrelations of more than three variables are not directly useful. However, it is often possible to 
graph a function with most variables held fixed and then determine how the graph will change 
when one of the fixed variables is changed. This is the heart of the geometric approach to 
comparative statics which is discussed in Section 3.2. The differential calculus approach parallels 
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the geometric arguments and provides a firm foundation for making statements when any 
number of variables is involved. The basic 
problem of comparative statics can be stated as follows : How does the equilibrium point of a 
system move when certain exogenous variables are changed ? For example, how will the output 
of a firm be affected by a higher tax rate?  
              Graphical methods are also useful in studying stability questions. The analytical 
treatment of local and global stability theory is not easy. Therefore it is desirable to use graphical 
methods whenever possible to suggest and perhaps prove results. Section 3.3 touches on this 
approach.  
             As a glance at the figures in this chapter shows, the intersections of curves are of major 
importance in comparative statics. This is because they determine the equilibrium points. A 
subtler observation is that slopes of curves play a central role in stability questions. The slope of 
a curve is a rate, and rates play a crucial role in stability theory. 
 Finally, graphical arguments are useful in optimization problems especially if the model 
is not quantitative.  
 

3. 2. COMPARATIVE STATICS 

The Nuclear Missile Arms Race 
 
The United States and the U. S.S.R. both feel that they require a certain minimum number of 
intercontinental ballistic missiles (ICBMs) to avoid “nuclear blackmail." The idea is to ensure 
that enough missiles will survive a sneak attack so that “unacceptable damage " can be inflicted 
on the attacker.  Given this philosophy, it is claimed by some and denied by others that the 
introduction of antiballistic missiles (ABMs) and/or multiple warheads on each missile (MIRVs) 
will cause both nations to increase their stock of missiles. Is this true? What about making 
missiles less vulnerable to attack by hardening silos or building missile firing submarines? The 
wrong answers to these questions could have drastic consequences. Who is right? 

Obviously we cannot hope to settle the debate. However, a simple graphical model can 
shed some light on the problems involved and hopefully help lead to more intelligent debate. The 
following discussion is adapted from T. L. Saaty (1968, pp. 22-25). 

We deal with two countries which we call country 1 and country 2. 
Let x and y be the number of missiles possessed by countries 1 and 2, respectively. W e treat x 
and y as real numbers. O f course they are actually integers; but since they are large, the relative 
errors introduced by treating them as real numbers will be small; for example, the percentage 
difference between 500 and 500. 5 is quite small. For the time being we assume that all missiles 
are the same and are equally protected. From the above discussion 
it follows that there exist continuous, increasing functions f and g such that country 1 feels safe if 
and only if x>f(y) and country 2 feels safe if and only if y > g(x). These functions are plotted in 
Figure 1. The shaded region is the area in which armaments are stable, since both countries feel 
they have sufficient weapons to prevent a sneak attack. We consider questions such as: Does 
such a region actually exist? What effects do such things as ABMs, 
MIRVs, and so on, have on the point ?),( mm yxA =  

First we show that the solid curves in Figure 1 are qualitatively correct. Let's look at 
things from the point of view of country 1. A certain number of missiles 0x is needed to inflict 
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what is considered unacceptable damage on country 2. When country 2 has no missiles, country 
1 requires 0x . 

We show that for any r > 0 the curve x = f(y) crosses the line y = rx. It suffices to show that there 
is a function x(r) such that, whenever )(rxx ≥ and y = rx, country 1 believes that it has enough 
missiles so that the number surviving a sneak attack by country 2 will be able to inflict 
unacceptable damage on country 2. In other words, country 1 wants to be practically certain of at 
least 0x of its missiles surviving a sneak attack by country 2. Suppose that y = rx. To destroy the 

most missiles, country 2 should aim about r missiles at each of country 1 's missiles. Since a 
warhead may fail to reach and destroy its target, there is some probability, p(r) > 0, that a given 
missile belonging to country I will survive a sneak attack. 

 

 

 

Figure1: Country 1 introduces ABMs. A = initial status (shaded area stable); B = 
Country 1 protects its missiles; C = country 1protects its cities. Axes show number of missiles. 
Thus country 1 can expect )(rxp  missiles to survive. For large enough )(rxx = , this will exceed 

0x by an amount large enough to allow for uncertainties. This completes the proof that the curves 
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intersect. Thus the curve x = f(y) starts at (0x , 0) and curves upward with a slope increasing to∞  

. By a symmetry argument, y = g(x) has the form shown, with a slope decreasing to 0. 
Two such curves meet at exactly one point which we call ),( mm yx , the minimum stable values 

for x and y. 
This analysis applies to all the situations discussed below, so there is always a unique 

minimum stable point. We want to know how its position compares with ),( mm yx . 

Suppose the missiles of country 1 are made less vulnerable to sneak attack by the use of 
hardened silos, ABM protection, or some other means. This increases p(r), the probability that 
any given missile belonging to country 1 will survive a sneak attack. Hence the curve f(y) moves 
to the left with the point 0x fixed. The shape of the curve is altered somewhat in the process. The 

new curve is shown dashed in Figure 1. We can see that both countries require fewer missiles for 
stability. 

Suppose that country 1 protects its cities by some device such as ABMs. Country 2 now 
requires more than 0y missiles to inflict unacceptable destruction on country 1 . Thus the curve 

g(x) moves upward as shown by the x - x - x curve in Figure 1. Both countries require more 
missiles for stability. 

What happens if multiple warheads are installed? This situation is more complicated than 
the previous two. Suppose country 1 replaces the single warheads on each of its missiles with N 
warheads. It will then require that fewer of its missiles survive a sneak attack. (The number 
required is about Nx /0 .) Thus )(yfx = moves to the left as in Figure 2. Country 2 will be faced 

with N times as many warheads in a sneak attack, so from its point  of view the scale of the x 
axis has changed by about a factor of N, as shown in Figure 2. It appears that country 2 will 
require more missiles, and country 1 will require fewer; however, this depends on the detailed 
shape of the curves. 
Therefore probabilistic models should be used instead of, or in conjunction with, graphical ones. 
This would require us to make more precise assumptions regarding the capabilities of the 
missiles, so we do not go into it here. 

It seems unreasonable to assume that country 2 will not also develop and deploy multiple 
warheads if country 1 does. Therefore we should analyze the situation in which both countries 
deploy multiple warheads. There are two conflicting effects: 
1. Since the axes measure missiles, the points [f(0), 0] and [0, g(O)] will move toward the origin, 
tending to decrease ),( mm yx  

2. f(y) becomes more horizontal and g(x) becomes more vertical, tending to increase ),( mm yx  
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Figure 2 Country 1 introduces MIRVs. Axes show number of missiles. 

We cannot decide without further information which effect will dominate.  
In the above discussion, we assumed that all missiles were the same. This is unrealistic. If 

we drop this assumption, each country will change its strategy by aiming different numbers of 
missiles at the various enemy missiles. Of these, some targeting makes the expected surviving 
firepower a minimum. This targeting gives the curves for Figure 1, and the analysis proceeds as 
before. 
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Activity  

1. Suppose that both countries install N warheads in each missile and that the new warheads 
are as effective as the old ones. Show that both countries will require more warheads. 

2. Suppose a country is able to retarget missiles in flight so as to aim for missiles that 

previous warheads have failed to destroy. Discuss the effect. 

 

3.3 STABILITY QUESTIONS 

Cobweb Models in Economics 
Definition:-The cobweb model is a graphical method for finding and testing fixed points for 
stability. Its graphs are called cobweb diagrams. This method is exceptional for the degree of 
visual insight that it gives, although to find a fixed point this way requires very precisely drawn 
graphs. 
 
We consider the dynamics of supply and demand when there is a fairly constant time lag in 
production as, for example, in agriculture. It has been observed that there are fairly regular price 
fluctuations in such situations. This situation was studied by economists in the 1920s and 1930s.  

 
When a commodity is marketed, the selling price is determined by the demand curve. This 

price is one of the factors producers use in determining how to alter production. In a " pure " 
situation, they produce the amount on the supply curve that corresponds to the present price. 
There we were interested in the intersection point of the curves. Thus (see 
The following figure)  
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Figure3 The cobweb model 
 
if the amount of potatoes produced in year 1 is ,1q  the price per bushel will be ,1p  As a result, 

farmers will decide to produce the amount,2q  in year 2, the market will set a price2p  per bushel 
for this crop, and so on. Because of the picture, this idea is referred to as the cobweb theorem. In 
practice one does not know the supply and demand curves, but the above model predicts that the 
demand curve can be obtained by plotting ),( nn pq and the supply curve by plotting ),( 1−nn pq . 

How realistic is this model? The existence of a supply curve assumes that producers can 
control output perfectly. This is not true in the agricultural sector where weather is very 
important, but it may be a reasonable approximation. If the supply and demand curves move 
erratically, the model will be upset. Changes in prices for other goods the supplier may produce, 
sudden changes in demand (e.g., the sale of wheat by the United States to the U. S.S.R. in 1972), 
and sudden changes in supply (e.g., crop blights) may cause this to happen. If the suppliers have 
some understanding of price fluctuations, they will not raise production levels much in spite of 
higher prices. However, this does not wreck the model. In this case the supply curve will be 
nearly independent of price near the equilibrium price, but the model will still apply. It predicts 
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small fluctuations in supply and a rapid approach to stability. Plot this. Ezekiel presented the 
material on U.S. potato production contained 
in Table 1 . He obtained it from the Bureau of Agricultural Economics. 
 

Discuss what should be used as "quantity" and what should be used as "price" in a cobweb plot 
and construct the plot. Should the model be modified because the yield per acre is not constant? 
What about the effect of population growth during the 15 year period? What about the effect of 
the Depression? Clearly there is a lot of noise (i.e., disturbances we can't hope to take into 
account in a simple model) in the data. Thus we should see if the data fit the model better than a 
random set of data would. Can you propose a method for doing this? 

From the supply and demand curves near equilibrium it is easy to make a prediction 
concerning stability. If the negative of the demand curve's slope exceeds the slope of the supply 
curve, there will be instability; if it is less, stability. Convince yourself of this. Demand for some 
agricultural products is rather inflexible. When production is sensitive to price, the model 
predicts instability. The government can attempt to eliminate this by controlling production or 
prices. The former causes the supply curve to become vertical (or nearly so) above (and/or 
below) certain ranges of quantity. This keeps the instability from growing further.  
Activity 
Discus on the effect of price control on cobweb models 
Phase planes 
The previous model dealt with the stability of a difference equation. A similar procedure is used 
for differential equations. This requires the notion of a phase plane, suppose we are dealing with 
the two equations 
                        ),('),,(' yxgyyxfx ==        (1) 
At each point (x, y) in the x - y plane we can plot a vector proportional to (x', y'). This is called 
the direction field of (1). To graph a solution of (1) we then start at an initial point and follow a 
path parallel to the direction field. (Since the direction field varies from point to point, the path is 
usually curved.) The speed is determined by the magnitude of the vector tangent to the path at 
that point. If we start at a point with If=g=0, we will not move from it. Such points are called 
equilibrium points. 

Since we have only crude information about f and g, our phase plane diagrams cannot be 
this detailed. To answer stability questions it is often sufficient to plot the two curves f = 0 and g 
= 0 and indicate roughly the vectors (x', y') in the neighborhood of these curves. The 
intersections of the curves are the equilibrium points of (1). The curve f = 0 divides space into 
two regions such that x' > 0 in one and x' < 0 in the other. If you determine which region is 
which for f = 0, and likewise for g = 0, the rest will be easy. 
The vectors cross f = 0 vertically, and the direction will be upward if and only if g > O. 
Similarly, they cross g = 0 horizontally, and the direction will be rightward if and only if f> o. 
See Figure  for an example. In plotting f = 0 and g = 0, it is helpful to determine the slopes of the 
curves. 
This can be done by implicit differentiation: For f = 0, 

,
/

/

yf

xf

dx

dy

∂∂
∂∂−= and similarly for g = O. It is important to remember that the partial derivatives 

for the slope of f= 0 are evaluated at values of x and y at which x is at equilibrium; that is, 
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x’=0O. (This is important in determining the sign of xf ∂∂ / ).The partial derivatives also help 
decide which region corresponds to f > 0 and which to f < 0 : f > 0 to the right of (or above) f = 0 
if and only if 0/ >∂∂ xf  (or ).0/ >∂∂ yf ). 
Small - Group Dynamics 
 
You wish to set up a local committee to help elect a candidate to office. What keeps a group 
together and working? Does more work improve a task oriented group or harm it? Very little 
mathematical modeling has been done in this area and, unfortunately, the following is rather 
crude and lacking in practical advice. 

We want to study the stability and comparative statics of a group which has a required 
activity imposed from the outside (a task). The model is taken from H. Simon (1952), who based 
it on a nonmathematical model proposed by G. C. Homans (1950). 
There are four basic functions of time: 
I(t), the intensity of interaction among the group members. 
F(t), the level of friendliness among the group members . 
A(t), the amount of activity within the group. 
E(t), the amount of activity imposed on the group by the external environment. The variables can 
be treated as averages over all group members or as some overall measure for the entire group. 
We regard I, F, and A as endogenous variables and E as an exogenous variable which we 
generally treat as being constant. 
 

To make the concepts more concrete, let's consider an example. The imposed activity E is 
the laying in of firewood. The group may be engaged in this for wages, or they may be friends 
preparing for winter. The various activities A include locating wood sources, sawing logs, 
stacking logs, and setting up a football pool. Note that some activities may not be directed 
toward the externally imposed task. G. C. Homans says, “By our definition interaction takes 
place when the action of one man sets off the action of another.”  "Action" here refers to activity, 
so that activity is required for interaction, but not conversely-a person can work alone. The many 
situations in our example that involve interaction include discussing where to obtain wood, 
working opposite ends of a saw while cutting logs, passing wood from one person to another in 
stacking, and conversing idly. Some of the interaction is necessary, but a lot of it can be reduced 
considerably. The same is true of activity, as any efficiency expert knows ; however, this may 
involve changes in habit patterns and so require more time. 
There are three relations on which the model is based: 
1. I(t) depends on A(t) and F(t) in such a way that it increases if either A or F does. The 
adjustment is practically instantaneous. 
2. F(t) depends on l(t). It tends to increase when it is too low for the present level of interaction 
and to decrease if there is not enough interaction to sustain its present level. This adjustment 
requires time, and the rate 
of adjustment is greater when the discrepancy between present and equilibrium levels is greater. 
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Chapter 4 

Application of Mathematical Modeling 

                    

Introduction 

How can we construct and use models in the mathematical world to help us better understand 

real-world system? Before discussing how we link the two worlds together, let’s consider what 

we mean by a real-world system and why we would be interested in constructing a mathematical 

model for a system in the first place. 

A system is an assemblage of objects joined in some regular interaction or independence. The 

modeler is interested in understanding how a particular system works, what causes changes in 

the system, and how sensitive the system is to certain changes.  

In this section we will discuss different applications of modeling process to express real world 

phenomenon. 

Objectives  

At the end of this chapter you will be able to: 

� apply proportionality concept in mathematical model forming 

� apply similarity concept in mathematical model forming 

� form mathematical model by using differential equation 

� form mathematical model by using system of differential equations 

4.1 Modeling using Proportionality 

We introduced the concept of proportionality in chapter one in this section we use the concept of 

proportionality in model formation. 

Example1: Testing for Proportionality 
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Consider a spring-mass system, such as the one showing in figure 1.2. We conduct an 

experiment to measure the stretch of the spring as a function of the mass (measured as weight) 

placed on the spring. Consider the data collected for this experiment, dis playing in the table 

below a scatter plot graph of the stretch or elongation of the spring versus the mass or weight 

placed on it reveals an approximate straight line passing through the origin. 

The data appear to follow the proportionality rule that elongation e is proportional to the mass m, 

or symbolically, .meα the straight line appears to pass through the origin. 

Figure 4.1 spring-mass system 
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This geometric understanding allows us to look at the data to determine if proportionality is a 

reasonable simplifying assumption and, if so, to estimate the slope k. In this case, the assumption 

is valid, so we estimate the constant of proportionality by picking the two points (200, 3.25) and 

(300, 4.875) as lying along the straight line. We calculate the slope of the line joining this points 

as   01625.0
200300

25.3875.4 =
−
−=slope  

 

Figure 4.2Data from spring-mass system 

 

Thus the constant of proportionality is approximately 0.0163 and we estimate our model as  

 me 0163.0=  

Now xyα if and only if y=kx for some constant k>0 (1) 

Of course, if xyα , then yxα  because the constant k in equation (1) is greater than zero and then 

y
k

x
1= . The following are other examples of proportionality relationships: 

2xyα if and only if 2
1xky =  for k1 a constant   (2) 

xy lnα if and only if xky ln2= for k2 a constant  (3) 

xeyα if and only if xeky 3= for k3 a constant  (4) 
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In equation (2), 2kxy = , k>0, so we also have 21yxα  because 21)
1

( y
k

x= . This leads us to 

consider how to link proportionalities together, a transitive rule for proportionality: 

  xyα and ,zxα then zyα  

    

Figure 4.3 Geometrical interpretation of xyα  

Thus, any variables proportional to the same variables are proportional to one another. 

Now let’s explore a geometric interpretation of proportionality.  In equation (1), kxy =  yields 

.xyk = Thus, k may be interpreted as the tangent of the angle θ depicted in Figure 4.3, and the 

relation xyα defines a set of points along a line in the plane with angle of inclinationθ . 

Comparing the general form of a proportionality relationship kxy =  with the equation for a 

straight line ,bmxy += we can see that the graph of a proportionality relationship is a line 

(possibly extended) passing through the origin. If we plot the proportionality variables for 

Models (2)-(4), we obtain the straight line graphs presented in Figure 4.4. 

 

Figure 4.4 Geometrical interpretations of models (a) (2), (b) (3), (c) (4) 
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Remark:-it is important to note that not just any straight line represents a proportionality 

relationship: the y- intercept must be zero so that the line passes through the origin. 

Example: suppose we are interested in predicting the volume of water displaced by a boat as it is 

loaded with cargo. Because a floating object displaces a volume of water equal to its weight, we 

might be tempted to assume that the total volume y of displaced water is proportional to the 

weight x of the added cargo. However, there is a flaw with that assumption because the unloaded 

boat already displaces a volume of water equal to its weight.  Although the graph of total volume 

of displaced water versus weight of added cargo is given by a straight line, it is not given by a 

line passing through the origin (Figure 4.5), so the proportionality assumption is incorrect. 

 

 

 

 

Figure 4.5 A straight –line relationship between displaced volume and total weight, but it is not a 

proportionality because the line fails to pass through the origin. 

 

Example: Kepler’s Third Law 

To assist in further understanding the idea of proportionality, let’s examine one of the famous 

proportionalities from Table 1, Kepler’s third law. In 1601, the German astronomer Johannes 

Kepler became director of the Prague Observatory. 

Kepler’s had formulated his first two laws on the relative motion of the planet: 

i) Each planet moves along an ellipse with the sun at one focus. 

ii)  For each planet, the line from the sun to the planet sweeps areas in equal times. 
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Activity 

1. Show graphically the meaning of the proportionality vuy ∝   

2. If an architectural drawing is scaled so that 0.75cm represents 4m, what length represents 

27m? 

3. Determine whether the following data support a proportionality argument for  21zy ∝ . If so, 

estimate the slope. 

y 3.5 5 6 7 8 

z 3 6 9 12 15 

4. A new planet is discovered beyond Pluto at a mean distance to sun of 4004 millions 

miles. Using Kepler’s third law, determine an estimate for the time T to travel a round the 

sun in an orbit. 

4.2 Modeling Using Geometric Similarity 

Geometric similarity is a concept related to proportionality and can be useful to simplify the 

mathematical modeling process. 

Definition: -  Two objects are said to be geometrically similar if there is a one to one 

correspondence between points of the objects such that the ratio of distance between 

corresponding points is constant for all possible pair’s points. 

For example, consider the two boxes depicted in Figure 2.2.1. Let l denote the distance between 

the points A and B in (a), and Let l’ be the distance between the corresponding points A’ and B’ 

in (b).Other corresponding points in the two figure, and associated distance between the points, 

are marked the same way. For the boxes to be geometrically similar, it must be true that  

                                    .
'''

k
h

h

w

w

l

l === for some constant k>0 
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Figure4.6 Two geometrically similar objects 

Let’s interpret the last result geometrically. In Figure 4.6, consider the triangles ABC and 

A’B’C’. If the two boxes are geometrically similar, this triangle must be similar. The same 

argument can be applied to any corresponding triangles, such as CBD and C’B’D’. Thus, 

corresponding angles are equal for objects that are geometrically similar. In other words the 

shape is the same for two geometrically similar objects, and one object is simply an enlarged 

copy of the other.  

One advantage that results when two objects are similar is a simplification in certain 

computations, such as volume and surface area. 

For example for the boxes in Figure 2.2.1, consider the following argument for the ratio of the 

volumes V and V’: 

 3

''''
k

hwl

lwh

V

V ==                                      (5) 

Similarly, the ratio of their total surface areas S and S’ is given by 

 

2

''2''2''2

222

'
k

lwhwhl

wlwhlh

S

S =
++
++=                                      (6) 

Not only are these ratios immediately known once the scaling factor k has been specified but also 

the surface area and volume may be expressed as proportionality in terms of some selected 
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characteristic dimensions. Let’s select the length l as the characteristic dimension. Then with 

,' kll = we have  

  
2

2
2

'' l

l
k

S

S ==  

Therefore, tcons
l

S

l

S
tan

'

'
2

2

2
==  holds for any two geometrically similar objects. This is, 

surface area is always proportional to the square of the characteristic dimension length: 

2lS ∝  

Likewise, volume is proportional to the length cubed: 

3lV ∝  

Thus, if we are interested in some function depending on an object’s length, surface area, and 

volume, for example: 

),,( VSlfy =  

We could express all the function arguments in terms of some selected characteristic 

dimension, such as length, giving 

),,( 32 llly =  

Geometric similarity is a powerful simplifying assumption. 

Example: Raindrops from a Motionless Cloud 
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Suppose we are interested in the terminal velocity of a raindrop from a motionless cloud. 

Examining the free-body diagram, the only force acting on the raindrop are gravity and drag. 

Assume that the atmospheric drag on the raindrop is proportional to its surface area S times the 

square of its speed v. The mass m of the raindrop is proportional to the weight of the raindrop 

(assuming constant gravity in Newton’s second law) 

maFFF dg =−=       (7) 

Under terminal velocity ( tvv = ), we have a=0 so equation (7) reduced to  

 

0=− dg FF  

Or   

dg FF =  

We are assuming that 2SvFd ∝ and that gF is proportional to weightw  . Since wm∝ , we have 

.mFg ∝  

Next we assume all the raindrops are geometrically similar. This assumption allows us to relate 

area and volume so that  

2lS ∝  and 3lV ∝  

For any characteristic dimension l. Thus, ,3121 VSl ∝∝  which implies 

32VS ∝  

Because weight and mass are proportional to volume, the transitive rule for proportionality gives 

32mS ∝  

From the equation dg FF = , we now have 232
tvmm∝ . Solving for the terminal velocity, we have 
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23

1

tvm ∝ or tvm ∝6

1

 

Therefore, the terminal velocity of the raindrop is proportional to its mass raised to the one-sixth 

power. 

Activity  

1. Consider a 20-kg pink flamingo that stands 3 m in height and has legs that are 2m in 

length. Model the height and leg length of a 100kg flamingo. What assumption is 

necessary? Are they reasonable assumptions? 

2. A circle of radius r increases by 5% by what percentage the area of the circle increases? 

3. How fast is the volume of a rectangle box changing when the length is 6cm, the width is 

5cm, and the depth is 4cm, if the length and depth are both increasing at a rate of 1cm/s 

and the width is decreasing at a rate of 2cm/s? 

4. How fast is the surface area of a cube changing when the volume of the cube is 64m2and 

is increasing at 2m3/s?    

  

4.3 Modeling Using Differential Equations 

Introduction 

Many phenomena can be described in a general way by saying that rates of change of the 

endogenous variables depend on past and present values of the variables. These situations lead to 

models involving differential and difference equations. 
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Section objectives 

At the end of this section you will able to: 

� Apply derivatives as a rate change means 

� Apply derivatives as a slope of the tangent line 

� Apply First order differential equation in modeling real world phenomenon 

� Use higher order differential equations in mathematical modeling 

 

 

On this section we have information relating a rate of change of a dependent variable with 

respect to one or more independent variables and are interested in discovering the function 

relating the variables. For example, if P represents the number of people in a large population 

with respect to time t then it is reasonable to assume that the rate of change of the population 

with respect to time depends on the current size of P as well as other factors like immigration, 

emigration, age, gender and so on. For ecological, economical, and other importance reasons, it 

is desirable to determine a relation between P and t to make prediction about P. If the present 

population size is denoted by P(t) and the population size at time tt ∆+ is ),( ttP ∆+ then the 

change in population P∆  during that time period t∆ is given by  

)()( tPttPP −∆+=∆      (1) 

By assuming all other factors listed above neglected: .PP ∝∆ and we can assume that during a 

unit time period a certain percentage of the population reproduces while a certain percent age 

dies. Suppose the constant of proportionality k is expressed as a percentage per unit time. Then 

our proportionality assumption gives 

 tkPtPttPP ∆=−∆+=∆ )()(    (2) 

Equation (2) is a difference equation in which we are treating a discrete set of time period rather 

than allowing t to vary continuously over some interval. 
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Assume that t does vary continuously so that we can take advantage of the calculus. Division of 

equation (2) by t∆  gives 

kP
t

tPttP

t

P =
∆

=∆+=
∆
∆ )()(

    (3) 

Next, allow t∆ to approach zero. The definition of the derivatives gives the differential equation 

kP
dt

dP

t

P
t

==
∆
∆

→∆ 0
lim  

Where dtdP represents the instantaneous rate of change. 

In modeling the derivatives is used in two distinct roles: 

1. To represent the instantaneous rate of change in continuous problems. 

2. To approximate an average rate of change in discrete problems. 

The advantage of approximating an average rate of change by a derivative is that the calculus 

often helps in uncovering a functional relationship between the variables under investigation. 

The interpretation of the derivatives as an instantaneous rate of change is useful in many 

modeling applications. The geometrical interpretation of the derivative as the slope of the line 

tangent to the curve is useful for constructing numerical solutions.  

Activity: 

1. Let’s briefly review the derivatives as the slope of the tangent line to the curve from the 

calculus. 

4.3.1 The Derivative as a Rate of Change 

The origin of the derivative lies in human kind’s curiosity about motion and our need to develop 

a deeper understanding of motion. The search for the laws governing planetary motion, the study 

of the pendulum and its application to clock building, and the law governing the flight of a 

cannonball and so on. 
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Consider a particle whose distance s from a fixed position depends on time t. Let the graph in 

Figure 4.7 represent the distance s as a function of time t, and let (t1, s1) and (t2, s2) denotes two 

points on the graph  

 

Figure 4.7 Graph of distance s as a function of time t 

Define  12 ttt −=∆  , ,12 sss −=∆  and from the ratio ts ∆∆  Note that this ratio represents a rate: 

an increment of distance traveled s∆ over some increment of timet∆ . That is, the ratio 

ts ∆∆ represents the average velocity during the time period in question. Now the derivatives 

dtds  evaluated at t=t1 is defined as 

  
t

s

dt

ds
t

tt ∆
∆=

→∆=
0

lim
1

     (4) 

Discuss on what occurs as ?0→∆t  

Using the interpretation of average velocity, we can see that at each state of using a smaller 

t∆ we are computing the average velocity over smaller and smaller intervals with left endpoints 

at t1 until, in the limit, we have the instantaneous velocity at t=t1. If we think of the motion of a 

moving vehicle, this instantaneous velocity would correspond to the exact reading of its 

speedometer at the instant t1. 

4.3.2The Derivatives as the Slope of the Tangent Line  

Let’s consider another interpretation of the derivative. We consider s(t) simply as a curve. Let 

examine a set of secant lines each emanating from the point A= (t1, s(t1)) on the curve. To each 

secant there corresponds a pair of increments ),( ii st ∆∆  as shown in Figure 4.8 
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Figure 4.8 The slope of each secant line approximates the slope of the tangent line to the curve at 

the point A. 

The lines AB, AC, and AD are secant lines. As ,0→∆t these secant lines approach the line 

tangent to the curve at the point A. Because the slope of each secant is ts ∆∆ , we may interpret 

the derivative as the slope of the line tangent to the curve s(t) at the point A. 

4.3.3 Some Mathematical Models Related to first order differential 

equations 

I. Newton’s Law of Cooling 

According to Newton’s empirical law of cooling, “the rate at which a body cools is proportional 

to the difference between the temperature of the body and the temperature of the surrounding 

medium.”  

To model this physical law if we let T(t) represent the temperature of the body at any time t, Tm 

represent the constant temperature of the surrounding medium, and dtdT  represent the rate at 

which a body cools, then Newton’s law of cooling translates into the mathematical statement  
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mTT
dt

dT −∝  or )( mTTk
dt

dT −=    (5) 

 where k is a constant of proportionality. Since we have assumed the body is cooling, we must 

have ,mTT > and so it stands to reason that k<0. 

Example :- Cooling of a cake 

When a cake is removed from an oven, its temperature is measured at F0300 . Three minute later 

its temperature is F0200 . How long will it take for the cake to cool off to a room temperature of 

?700F  

Solution:- In (5) we make the identification .70=mT  We must then solve the initial-value 

problem  

300)0(),70( =−= TTk
dt

dT
    (6) 

And determine the value of k so that .200)3( =T   

Equation (6) is both linear and separable. Separating variables,  

kdt
T

dT =
− 70

  

yields ,70ln 1cktT +=−  and so .70 2
ktecT +=  When t=0,T=300. So that 270300 c+= gives  

2302 =c  and, therefore, .23070 kteT +=  

Finally, the measurement .200)3( =T leads to 
23

133 =ke  or .19018.0
23

13
ln

3

1 −==k  

Thus  

.23070)( 1918.0 tetT −+=      (7) 

We note that (7) furnishes no finite solutions to .70)( =tT since .70)(lim =
∞→

tT
t
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Activity 

1. A thermometer is taken from an inside room to the outside, where the air temperature is 

.50F After 1 minute the thermometer reads .550F and after 5 minute the reading is .300F  

What is the initial temperature of the room? 

2. A thermometer is removed from a room where the air temperature is .700F to the outside, 

where the temperature is .100F After ½ minute the thermometer reads .500F What is the 

reading at t=1min? how long will it take for the thermometer to reach ?150F   

II.  Population Growth 

How many people will there be in the population of a certain country in n years? How many 

births? In this section we build the simplest possible model for answering these questions. 

Problem Identification: suppose we know the population at some given time, for example,P0 at 

time t=t0, and we are interested in predicting the population P at some future time t=t1. In other 

words, we want to find a population function P(t) for 10 ttt ≤≤  satisfying 00 )( PtP = .  

Assumptions: Consider some factors that pertain to population growth. Two obvious ones are 

the birthrate and the death rate. The birth rate and death rate are determined by different factors. 

The birth rate is influenced by infant mortality rate, attitude toward and availability of 

contraceptives, attitudes toward abortion, health care during pregnancy, and so forth. The death 

rate is affected by sanitations and public health, wars, pollutions, medicines, diet, psychological 

stress and anxiety, and so forth. Other factors that influence population growth in a given region 

are immigration and emigration, living space restrictions, availability of food and water, and 

epidemics.  

For our model, let’s neglect all these latter factors. Now we will consider only the birthrate and 

death rate. Because knowledge and technology have helped humankinds diminish the death rate 

below the birthrate, human populations have tended to grow. 

Let’s begin by assuming that a small unit time period a percentage b of the population is newly 

born. And a percentage c of the population dies. 
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So the new population )( ttP ∆+ is the old population P(t) plus the number of birth minus the 

number of death during the time period t∆ . 

Symbolically ttcPttbPtPttP ∆−∆+=∆+ )()()()(  or 

kPPcbcPbP
t

P =−=−=
∆
∆

)(  

From our assumptions the average rate of change of the population over an interval is 

proportional to the size of the population. 

Using the instantaneous rate of change to approximate the average rate of change, we have the 

following differential equation model: 

1000 ,)(, tttPtPkP
dt

dP ≤≤==     (8) 

 where (for growth) k is a positive constant. 

Solving the Model:- We can separate the variables and rewrite equation (8) by moving all terms 

involving P and dP  to one side of the equation and all terms in t and dt to the other. This gives 

,kdt
P

dP =  

Integration of both sides of this last equation yields 

CktP +=ln       (9)  

For some constant C. applying the condition 00 )( PtP =  to equation (9) to find C results in 

00ln ktPC −=  

Then, substitution for C in to equation (9) gives  

ktPktP −+= 0lnln    

Or, simplifying algebraically, 
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 )(ln 0
0

ttk
P

P −=  

Finally, we obtain the solution  

)(
0

0)( ttkePtP −=        (10) 

 

Equation (10), known as the Malthusian model of population growth, predicts that the population 

grows exponentially with time. 

Verifying the Model:-  Because )(ln 0
0

ttk
P

P −= , our model predicts that if we plot 

,/ln 00 ttversusPP − a straight line passing through the origin with slope k should result. 

However, if we plot the population data for the United States for several years, the model does 

not fit very well, especially in the later years. In fact, the 1990 census for the population of the 

US was 248,710,000, and in 1970 it was 203,211,926. Substituting this values in equation (10)  

we can get the value of k as 

)19701990(

926,211,203

000,710,248 −= ke  

Thus,  

01.0
926,211,203

000,710,248
ln)

20

1
( ≈=k  

That is during the 20-year period from 1970-1990, population in the US was increasing at 

average rate of 1%per year. We can use this information together with equation (10) to predict 

the population for 2000, in this case t0=1990, P0=248,710,000 and k=0.01 yields 

080,775,303000,710,248)2000( )19902000(01.0 == −eP  

The 2000 census for the population of the US was 281,400,000. Thus our prediction is off the 

mark by approximately 8%. We can probably live with that magnitude of error, but let’s look 
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into the disaster future. Our model predicts that the population of the US will be 55,209 billion in 

the year 2300, a population that far exceed current estimates of the maximum sustainable 

population of the entire planet. 

We are forced to conclude that our model is unreasonable over the long term. 

Activity 

Based on Malthusian model of population growth do the following activities  

1. The population of a certain community is known to increase at a rate proportional to the 

number of people present at any time, if the population is doubled in 5 years, how long 

will it take to triple? To quadruple? 

2. Suppose it is known that the population of the community in problem 1 is 10,000 after 3 

years. What was the initial population? What will be the population in 10 years? 

3. The population of Ethiopia increase at a rate proportional to the number of its inhabitant 

present at any time t. If the population of Ethiopia was 40 million in 1980 and 52 million 

in 1990, what will be the population of Eth. In 2010? 

Refining the Model to Reflect Limited Growth 

Let’s consider that the proportionality factor k, measuring the rate of population growth in 

equation (8)is now no longer constant but a function of the population. As the population 

increases and gets closer to the maximum population M, the rate k decreases. One simple sub-

model for k is the linear one 

k=r(M-P),  r>0 where r is a constant.  

Substitution in to equation (8) leads to  

,)( PPMr
dt

dP −=      (11)* 

Or rdt
PMP

dP =
− )(

      (12) 
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Again we assume the initial condition P(t0)=P0. And Equation (11) is referred to logistic growth. 

By using partial fraction  










−
+=

− PMPMPMP

111

)(

1
 

Thus, Equation (12) can be rewritten as  

rMdt
PM

dP

P

dP =
−

+  

 which integrates to   

CrMtPMP +=−− lnln      (13) 

For some arbitrary constant C. Using the initial condition, we evaluate C in the case P<M:  

    0
0ln rMt

PM

P
C −

−
=  

Substituting in to Equation (13) and simplifying gives 

)(lnln 0
0 ttrM

PM

P

PM

P −=
−

−
−

 

Or               )(
)(

)(
ln 0

0

0 ttrM
PMP

PMP
−=

−
−

 

Exponentiation both  sides of this equation gives  

)(

0

0 0

)(

)( ttrMe
PMP

PMP −=
−

−
 

Then,      

                                                   )(
00

)(
0

00 )( ttrMttrM PePPMPMeP −= +−=  

So that solving for the population P gives 
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)(

00

)(
0

0

0

)(
ttrM

ttrM

ePPM

MeP
tP −

−

+−
=  

To estimate P as ,∞→t we rewrite this last equation as  

])([
)(

)(
00

0

0ttrMePMP

MP
tP −−−+

=     (14) 

The graph of the limited growth Equation (14) is shown in Figure 4.9 for the case P<M. Such a 

curve is called a logistic curve.                                                      

  

  

Figure 4.9 Graph of the limited growth model. 

Activity  

Based on logistic growth Equation (11) and its limiting solution Equation (14) answer the 

following question. 

1. For what value of P the maximum rate of growth occur?  

2. Show that the population P in the logistic equation reaches half the maximum population 

M at time t* given by  

                                       )](ln[)1( 000
* PMPMrtt −−=  

3. Consider the solution of Equation (11) evaluate the constant C in Equation (13) in the 

case that P>M for all t.  
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III.  Prescribing Drug Dosage 

The problem of how much a drug dosage to prescribe and how often the dosage should be 

administered is an important one in pharmacology. For most drugs there is a concentration below 

which the drug is ineffective and a concentration above which the drug is dangerous. 

Problem Identification:-  How can the doses and the time between doses be adjusted to maintain 

a safe but effective concentration of the drug in the blood. 

The concentration in the blood resulting from a single dose of a drug normally decreases with 

time as the drug is eliminated from the body (Figure 4.10).  

 

Figure 4.10The concentration of a drug in the bloodstream decreases with time 

 

We are interested in what happens to the concentration of the drug in the blood as doses are 

given at regular intervals.  

Now our aim is to Model this pharmacological idea in to Mathematical concept as follow 

Let H denotes the highest save level of the drug in the bloodstream and 
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L denotes the lowest effective level of the drug in the bloodstream; it would be desirable to 

prescribe a dosage C0 with time T between doses so that the concentration of the drug in the 

blood stream remains between L and H over each dose period. 

Let’s consider several ways in which the drugs might be administered. In Figure 4.11a the time 

between doses is such that effectively there is no buildup of the drug in the system. On the other 

hand in Figure 4.11b the interval between doses relative to the amount administered and the 

decay rate of the concentration is such that a residual concentration exists at each time the drug is 

taken.   

 

                                 

Figure 4.11 Residual build up depends on the time interval between administrations of drug 

doses 

Our ultimate goal in prescribing drugs is to determine dose amounts and intervals between doses 

and thereafter the concentration is maintained between L and H, as shown in Figure 4.12 

 

Figure 4.12 Safe but effective levels of drug in the blood: C0 is the change in 

concentration produced by one dose and T is the time interval between doses 
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 Assumption:-To solve the problem we have identified, let’s consider the factors that determine 

the concentration C(t) of the drug in the blood stream at any time t. 

We begin with  

      ,...)int,,,()( ervaldosageamountdosagerateonassimilatidecayrateftC =  

And various other factors, including body weight and blood volume. To simplify our 

assumptions, let’s assume body weight and blood volume are constants. 

Next we determine sub models for decay rate and assimilation rate. 

Sub-model for Decay Rate:-Consider the elimination of the drug from the bloodstream. This is 

probably a discrete phenomenon, but let’s approximates it by a continuous function. Clinical 

experiments have revealed that the decrease in the concentration of a drug in the blood stream 

will be proportional to the concentration.  

Mathematically this assumption means:            )()(' tkCtC −=          (15) 

In this formula k is a positive constant called the elimination constant of the drug. Notice 

)(' tC is negative; it is to describe the decreasing concentration. In equation (15) the quantities 

measured as follows: time t in hours, C(t) is (mg/ml), )(' tC is mg/ml.hr, and k is hr-1. 

Assume that the concentration H and L can be determined experimentally for a given population, 

such as an age group. Then set the drug concentration for a single dose at the level 

 LHC −=0         (16) 

If we assume that 0C is the concentration at t=0, then we have the model  

0)0(, CCkC
dt

dC =−=       (17) 

The variables can be separable in Equation (17). The solution of the model gives 

kteCtC −= 0)(        (18) 
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The graph of C(t) looks like the one in Figure 4.13  

Figure 4.13 Exponential model for decay of drug concentration with time 

Sub-model for Assimilation Rate:-Having made an assumption about how drug concentration 

decreases with time, let’s consider how they increase again when drugs are administered. Our 

initial assumption is that when a drug is taken, it is diffused rapidly throughout the blood that the 

graph looks vertical. That is, we assume an instantaneous rise in concentration whenever a drug 

is administered. 

Now let’s see how the drug accumulates in the bloodstream with repeated doses. 

Drug Accumulation with Repeated Doses:- Consider what happens to the concentration C(t) 

when a dose that is capable of raising the concentration by C0 mg/ml each time it is given is 

administered regularly at fixed time intervals of length T.  

Suppose at time t=0 the first dose is administered. According to model (18),  

 After T hours have elapsed, the residual kTeCR −= 01 remains in the blood, and then the 

second dose is administered. Because of our assumption concerning the increase in drug 

concentration, the level jumps to kTeCCC −+= 001 then after T hours elapse again, the residual 

kTkTkT eCeCeCR 2
0012

−−− +== remains in the blood. In similar fashion this continues for n 

successive time we determine a formula for the nth residual Rn.  

)...1(

...
12

0

0
2

00

−−

−−−

++++=

+++=
nkT

nkTkTkT
n

rrreC

eCeCeCR
    (19) 

Where .kTer −=   
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Figure 4.14 One possible effect of repeating equal doses. 

 Algebraically, 

r

r
rrr

n
n

−
−=++++ −

1

1
...1 12  

So substitution for r in Equation (19)gives the result 

kT

nkTkT

n
e

eeC
R −

−−

−
−

=
1

)1(0     (20)  

                

When  ∞→n , the number nkTe−  is close to 0. As a result, the sequence of Rn’s  has a limiting 

value, which we call R: 

kT

kT

n
n e

eC
RR −

−

∞→ −
==

1
lim 0  

or                         
1

0

−
=

kTe

C
R        (21) 

In summary, if a dose is capable of raising the concentration by C0 mg/ml is repeated at intervals 

of T hours, then the limiting value R of the residual concentration is given by Equation (21) 

Determining the Dose Schedule:-  The concentration Cn-1 at the beginning of the nth interval is 

given by  

  101 −− += nn RCC      (22) 
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Cn-1 to approach H as n becomes large. That is, 

  RCRCCH n
n

n
n

+=+== −∞→−∞→ 0101 )(limlim  

Combining this last result with LHC −=0  yields 

LR =        (23) 

A meaningful way to examine what happens to the residual concentration R for different 

intervals T between doses is to examine R in comparison with 0C , the change in concentration to 

each dose. To make this comparison, we form the dimensionless ratio 

1

1

0 −
=

kTeC

R
      (24) 

 

Then substitution of LR = and LHC −=0 in Equation (21) yields 

1−
−=

kTe

LH
L  

We then solve the preceding equation for kTe to obtain 

LHekT /=  

Taking the logarithm of both sides of this last equation and dividing the result by k gives the 

desired dose schedule: 

L

H

k
T ln

1=       (25) 

To reach an effective level rapidly, administer a dose, often called a loading dose, which will 

immediately produce a blood concentration of H mg/ml. This medication can be followed every 

L

H

k
T ln

1= hour by a dose that raises the concentration by LHC −=0 mg/ml. 
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Activity  

Based on Prescribing Drug Dosage model try to answer the following 

1. Discuss how the elimination constant k in Equation (15) could be obtained 

experimentally for a given drug. 

2.  (a) If k=0.05hr-1and the highest safe concentration is e times the lowest effective 

concentration, find the length of time between repeated doses that will ensure safe but 

effective concentrations. 

(b) Does part a give enough information to determine the size of each dose? 

3. Suppose k=0.01hr-1 and T=10hr.Find the smallest n such that Rn>0.5R. 

4. Given H=2mg/ml, L=05mg/ml, and k=0.02hr-1, suppose concentration below L are not 

only ineffective but also harmful. Determine a scheme for administering this drug (in 

terms of concentration and times of dosages). 

 

4.4 Modeling with Higher-order differential Equations 

In this section we are going to consider several linear dynamical systems in which each 

mathematical model is a second order differential equation with constant coefficients 
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).(012

2

2 tgya
dt

dy
a

dt

yd
a =++  

Recall that the function g is the input or forcing function of the system. A solution of the 

differential equation on an interval containing t0 and satisfying prescribed initial conditions 

y(t0)=y0, y’(t0)=y1 is the output or response of the system. 

4.4.1 Spring/Mass Systems: Free Un-damped Motion 

Hooke's Law:  Suppose, as in Figure 4.15, that a mass m1 is attached to a flexible spring 

suspended from a rigid support. When m1 is replaced with a different mass m2, the amount of 

stretch, or elongation, of the spring will of course be different.  

 

 

Figure 4.15 

By Hooke's law the spring itself exerts a restoring force F opposite to the direction of elongation 

and proportional to the amount s of elongation.  

Simply stated, ,ksF = where k is a constant of proportionality called the spring constant. 

Although masses with different weights stretch a spring by different amounts, the spring is 

essentially characterized by the number k. For example, if a mass weighing 10kg stretches a 

spring 2/1 cm, then 10 = k(1/2) implies k = 20 kg/cm. Necessarily then, a mass weighing, say, 8 

kg stretches the same spring 2/5cm.  
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Newton's Second Law After a mass m is attached to a spring; it stretches the spring by an 

amount s and attains a position of equilibrium at which its weight W is balanced by the restoring 

force .ks Recall that weight is defined by W = mg, where mass is measured in slugs, kilograms,or 

grams and g = 32 ft/s 2 , 9.8 m/s 2 , or 980 cm/s 2 , respectively. As indicated in Figure 2.4.2(b), 

the condition of equilibrium is .ksmg = or .0=− ksmg If the mass is displaced by an amount x 

from its equilibrium position, the restoring force of the spring is then k(x + s). Assuming that 

there are no retarding forces acting on the system and assuming that the mass vibrates free of 

other external forces-free motion-we can equate Newton's second law with the net, or resultant, 

force of the restoring force and the weight:  

kxksmgkxmgxsk
dt

xd
m

zero

−=−+−=++−=
43421

)(
2

2

  (1) 

The negative sign in (1) indicates that the restoring force of the spring acts opposite to the 

direction of motion. Furthermore, we can adopt the convention that displacements measured 

below the equilibrium position are positive. See Figure 4.16 

 

 

 

 

Figure 4.16 Mass spring system 

Differential Equation of Free Undamped Motion:  By dividing (1) by the mass m we obtain 

the second-order differential equation 0)/(22 =+ xmkdtxd  or 
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02
2

2

=+ x
dt

xd ω      (2) 

Where ./2 mk=ω . Equation (2) is said to describe simple harmonic motion or free undamped 

motion. Two obvious initial conditions associated with (2) are α=)0(x , the amount of initial 

displacement, and β=)0('x , the initial velocity of the mass. For example, if  ,0,0 >> βα  the 

mass starts from a point below the equilibrium position with an imparted upward velocity. If 

,0,0 =< βα  the mass is released from rest from a point α  units above the equilibrium 

position, and so on.  

Solution and Equation of Motion: To solve equation (2) we note that the solutions of the 

auxiliary equation 022 =+ ωm are the complex numbers imim ωω === 21 , . We find the general 

solution of (2) to be  

.sincos)( 21 tctctx ωω +=     (3) 

The period of free vibrations described by (3) is ωπ /2=T , and the frequency is 

πω 2//1 == Tf . For example, for .3sin43cos2)( tttx −= the period is 3/2π  and the 

frequency is .2/3 π .  The former number means that the graph of x(t) repeats every 3/2π  units; 

the latter number means that there are 3 cycles of the graph every π2 units or, equivalently, that  

the mass undergoes .2/3 π complete vibrations per unit time. In addition, it can be shown that the 

period 3/2π   is the time interval between two successive maxima of x(t). Keep in mind that a 

maximum of x(t) is a positive displacement corresponding to the mass's attaining a maximum 

distance below the equilibrium position, whereas a minimum of x(t) is a negative displacement 

corresponding to the mass's attaining a maximum height above the equilibrium position. We 

refer to either case as an extreme displacement of the mass. Finally, when the initial conditions 

are used to determine the constants c1 and c2 in (3), we say that the resulting particular solution 

or response is the equation of motion.  

Example 1 Interpretation of an IVP  

Solve and interpret the initial-value problem 
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.0)0(',10)0(,016
2

2

===+ xxx
dt

xd
 

SOLUTION The problem is equivalent to pulling a mass on a spring down 10 units below the 

equilibrium position, holding it until t=0, and then releasing it from rest. Applying the initial 

conditions to the solution  

.4sin4cos)( 21 tctctx +=  

gives 0.1.)0( 21 ccx += so that c1=10. Hence  

  tcttx 4sin4cos10)( 2+=  

From tcttx 4cos44sin40)(' 2+−= we see that 1.40)0(' 2cx ==  and so c2=0. Therefore the 

equation of motion is .4cos10)( ttx =  

The solution clearly shows that once the system is set in motion, it stays in motion, with the mass 

bouncing back and forth 10 units on either side of the equilibrium position x=0. As shown in 

Figure 4.17 the period of oscillation is 2/4/2 ππ = s.  

 

 

Figure 4.17 

EXAMPLE2      Free Un-damped Motion 

A mass weighing 2 pounds stretches a spring 6 inches. At t= 0 the mass is released from a point 

8 inches below the equilibrium position with an upward velocity of 4/3ft/s. Determine the 

equation of free motion.  
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SOLUTION Because we are using the engineering system of units, the measurements given in 

terms of inches must be converted into feet: 6 in. = 1/2ft; 8 in. = 2/3ft. In addition, we must 

convert the units of weight given in pounds into units of mass. From m = W/g we have 

16

1

32

2 ==m  slug. Also, from Hooke's law, 2 = k(1/2) implies that the spring constant is k = 4 

lb/ft. Hence (1) gives 

0644
16

1
2

2

2

2

=+−= x
dt

xd
orx

dt

xd
 

The initial displacement and initial velocity are ,
3

4
)0(',

3

2
)0( −== xx where the negative sign in 

the last condition is a consequence of the act that the mass is given an initial velocity in the 

negative, or upward, direction.  

Now 16642 == ωω or , so that the general solution of the differential equation is  

.8sin8cos)( 21 tctctx +=      (4)  

Applying the initial conditions to x(t) and x' (t) gives 
6

1

3

2
21 −== candc . Thus the equation of 

motion is  

.8sin
6
1

8cos
3
2

)( tttx −=    (5) 

Alternative Form of x(t)  When, ,00 21 ≠≠ candc the actual amplitude A of free vibrations is 

not obvious from inspection of Equation(3). For example, although the mass in Example 2 is 

initially displaced 2/3 foot beyond the equilibrium position, the amplitude of vibrations is a 

number larger than 2/3. Hence it is often convenient to convert a solution of form (3) to the 

simpler form  

),sin()( φω += tAtx      (6) 
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where 2
2

2
1 ccA += and φ is a phase angle defined by   

   ,tan

cos

sin

2

1

2

1

c

c

A

c
A

c

=










=

=
φ

φ

φ
    (7) 

To verify this we expand (6) by the addition formula for the sine function:  

.sin)cos(cos)sin(sincoscossin tAtAtAtA ωφωφφωφω +=+    (8)  

It follows from Figure 2.4.5 that if φ is defined by  

 ,cos,sin 2

2
2

2
1

21

2
2

2
1

1

A

c

cc

c

A

c

cc

c
=

+
==

+
= φφ then (8) becomes  

).(sincossincos 21
21 txtctct

A

c
At

A

c
A =+=+ ωωωω  

4.4.2 Spring/Mass Systems: Free Damped Motion  

The concept of free harmonic motion is somewhat unrealistic since the motion described by 

equation (1) assumes that there are no retarding forces acting on the moving mass. Unless the 

mass is suspended in a perfect vacuum, there will be at least a resisting force due to the 

surrounding medium. As Figure 4.18 shows, the mass could be suspended in a viscous medium 

or connected to a dashpot damping device.  

Differential Equation of Free Damped Motion In the study of mechanics, damping forces 

acting on a body are considered to be proportional to a power of the instantaneous velocity. In 

particular, we shall assume throughout the subsequent discussion that this force is given by a 

constant multiple of ./ dtdx When no other external forces are impressed on the system, it 

follows from Newton's second law that  

,
2

2

dt

dx
kx

dt

xd
m β−−=      (9) 
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where β is a positive damping constant and the negative sign is a consequence of the fact that 

the damping force acts in a direction opposite to the motion.  

Dividing (10) by the mass m, we find the differential equation of free damped motion is  

.0)/(/)/(/ 22 =++ xmkdtdxmdtxd β or 

,02 2
2

2

=++ x
dt

dx

dt

xd ωλ     (10) 

Where      
m

k

m
== 2,2 ωβλ      (11) 

The symbol λ2  is used only for algebraic convenience since the auxiliary equation is 

02 22 =++ ωλmm and the corresponding roots are then ,22
1 ωλλ −+−=m  

,22
2 ωλλ −−−=m . 

We can now distinguish three possible cases depending on the algebraic sign of 22 ωλ − . Since 

each solution contains the damping factor .0, >− λλte the displacements of the mass become 

negligible for large time.  

CASE I: 022 >− ωλ  In this situation the system is said to be over-damped since the damping 

coefficient β  is large when compared to the spring constant k. The corresponding solution of 

(10) is tmtm ecectx 21
21)( += or  

).()(
2222

21
ttt ececetx ωλωλλ −−−− +=      (12) 

This equation represents a smooth and non oscillatory motion. Figure 4.19 shows two possible 

graphs of x(t). 
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Figure 4.18 mass suspended in a viscous medium  

 

Figure 4.19  two possible graphs of x(t) in Equation (12) 

Case II: 022 =− ωλ The system is said to be critically damped since any slight decrease in the 

damping force would result in oscillatory motion. The general solution of (10) is 

tmtm tecectx 11
21)( +=  or 

).()( 21 tccetx t += −λ       (13) 

Notice that the motion is quite similar to that of an over damped system. It is also apparent from 

(13) that the mass can pass through the equilibrium position at most one time. 

CASE III: 022 <− ωλ  In this case the system is said to be under- damped since the damping 

coefficient is small compared to the spring constant. The roots ml and m2 are now complex:  

im 22
1 λωλ −+−= ,  im 22

1 λωλ −−−= . 

Thus the general solution of Equation (10) is  
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).sincos()( 22
2

22
1 tctcetx t λωλωλ −+−= −    (14) 

As indicated in Figure 2.4.8 the motion described by (15) is oscillatory; but because of the 

coefficient te λ− , the amplitudes of vibration .0 ∞→→ tas   

 

Figure 4.20 

 

EXAMPLE 4  Over-damped Motions  

It is readily verified that the solution of the initial-value problem  

                          1)0(',1)0(,045
2

2

===++ xxx
dt

dx

dt

xd
   

tt eetx 4

3

2

3

5
)( −− −=     (15) 

The problem can be interpreted as representing the over-damped motion of a mass on a spring. 

The mass starts from a position 1 unit below the equilibrium position with a downward velocity 

of 1 ft/s.  

 

To graph x(t) we find the value of t for which the function has an extremum-that is, the value of 

time for which the first derivative (velocity) is zero. Differentiating (15) gives 

tt eetx 4

3

8

3

5
)(' −− +−=  so that 0)(' =tx implies 157.0

5

8
ln

3

1

5

83 === tore t . It follows from the 

first derivative test, as well as our physical intuition, that x(0.157)=1.069 ft is actually a 

maximum. In other words, the mass attains an extreme displacement of 1.069 feet below the 

equilibrium position.  
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EXAMPLE 5 Critically Damped Motions  

An 8-pound weight stretches a spring 2 feet. Assuming that a damping force numerically equal to 

2 times the instantaneous velocity acts on the system, model the equation of motion if the weight 

is released from the equilibrium position with an upward velocity of 3 ft/s.  

SOLUTION  From Hooke's law we see that 8=k(2)gives k=4 lb/ft and that W=mg gives 

slugsm
4

1

32

8 == . The differential equation of motion is then  

016824
4

1
2

2

2

2

=++−−= x
dt

dx

dt

xd
or

dt

dx
x

dt

xd
   (16) 

The auxiliary equation for (16) is 0)4(168 22 =+=++ mmm so that 421 −== mm . Hence the 

system is critically damped and  

.)( 4
2

4
1

tt tecectx −− +=        (17) 

Applying the initial conditions x(0)=0 and x’(0)=-3, we find, in turn, that Cl =0 and C2=- 3. Thus 

the equation of motion is modeled as  

.3)( 4ttetx −−=      (18) 

Example 6 Under-damped Motion  

A 16-pound weight is attached to a 5-foot-Iong spring. At equilibrium the spring measures 8.2 

feet. If the weight is pushed up and released from rest at a point 2 feet above the equilibrium 

position, find the displacements x(t) if it is further known that the surrounding medium offers a 

resistance numerically equal to the instantaneous velocity.  

SOLUTION The elongation of the spring after the weight is attached is 8.2-5=3.2ft, so it 

follows from Hooke's law that 16=k(3.2) or k =5 lb/ft. In addition, m=16/32=1/2 slug so that the 

differential equation is given by  
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01025
2

1
2

2

2

2

=++−−= x
dt

dx

dt

xd
or

dt

dx
x

dt

xd
   (19) 

Proceeding, we find that the roots of imandimaremm 31310162 21
2 −−=+−==++  

which then implies the system is under damped and  

).3sin3cos()( 21 tctcetx t += −     (20) 

Finally, the initial conditions x(0)=-2 and x’(0)=0 yields c1=-2 and c2=-2/3, so the equation of 

motion is  

)3sin
3

2
3cos2()( ttetx t −−= −     (21) 

4.4.3 Spring/Mass Systems: Driven Motion                           

Differential Equation of Driven Motion with Damping  Suppose we now take into 

consideration an external force f(t) acting on a vibrating mass on a spring. For example, f(t) 

could represent a driving force causing an oscillatory vertical motion of the support of the spring. 

See Figure 4.18. The inclusion of f(t) in the formulation of Newton's second law gives the 

differential equation of driven or forced motion:  

)(
2

2

tf
dt

dx
kx

dt

xd
m +−−= β     (22) 

Dividing (24) by m gives  

)(2 2
2

2

tFx
dt

dx

dt

xd =++ ωλ     (23) 

where F(t) == f(t)/m and, as in the preceding section, mkm /,/2 2 == ωβλ .  

To solve the latter non homogeneous equation we can use either the method of undetermined 

coefficients or variation of parameters.  

EXAMPLE 7 Interpretation of an Initial-Value Proble m  

Interpret and solve the initial-value problem I 
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1)0(',
2

1
)0(,4cos522.1

5

1
2

2

===++ xxtx
dt

dx

dt

xd
  (24) 

SOLUTION We can interpret the problem to represent a vibrational system consisting of a mass 

(m=1/5slug or kilogram) attached to a spring (k = 2 lb/ft or N/m). The mass is released from 

rest1/2 unit (foot or meter) below the equilibrium position. The motion is damped )2.1( =β  and 

is being driven by. An external periodic ( sT 2/π= ) force beginning at t = 0. Intuitively we 

would expect that even with damping the system would remain in motion until such time as the 

forcing function was "turned off," in which case the amplitudes would diminish.  

However, as the problem is given, ttf 4cos5)( =  will remain "on" forever.  

We first multiply the differential equation in (24) by 5 and solve  

,0106
2

2

=++ x
dt

dx

dt

xd
 

by the usual methods. Since imandim −−=+−= 33 21 , it follows that  

).sincos()( 21
3 tctcetx t

c −= −  

Using the method of undetermined coefficients, we assume a particular solution of the form 

).4sin4cos)( tBtAtxp +=  Now  

             ,4cos44sin4)(' tBtAtx p +−= .4sin164cos16)('' tBtAtx p −−=  

so that ttBAtBAxxx ppp 4cos254sin)624(4cos)246(10'6'' =−−++−=++  

The resulting system of equations -6A + 24B = 25, - 24A - 6B = 0  

yields A = -25/102 and B = 50/51 . It follows that  

tttctcetx t 4sin
51

50
4cos

102

25
)sincos()( 21

3 +−−= −  
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When we set t = 0 in the above equation, we obtain
51

38
1 =c . By differentiating the expression 

and then setting t = 0, we also find that  
51

86
2 −=c  

 Therefore the equation of motion is ttttetx t 4sin
51

50
4cos

102

25
)sin

51

86
cos

51

38
()( 3 +−−= −  

 

 

 

 

Activity 

1.  A 1-kilogram mass is attached to a spring whose constant is 16 N/m,and the entire system 

is then submerged in a liquid that imparts a damping force numerically equal to 10 times 

the instantaneous velocity. Model equations of motion if   

(a) the weight is released from rest 1 meter below the equilibrium position and                            

(b) the weight is released 1 meter below the equilibrium position with an upward velocity 

of 12 m/s. 

2. A 4-foot spring measures 8 feet long after an 8-pound weight is attached to it. The 

medium through which the weight moves offers a resistance numerically equal to 

2 times the instantaneous velocity. Model equation of motion if the weight is released 

from the equilibrium position with a downward velocity of 5 ft/s. Find the time at which 

the weight attains its extreme displacement from the equilibrium position. What is the 

position of the weight at this instant? 
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CHAPTER 5 

Basic optimization 

 

Introduction 

In the previous Chapters we used calculus to solve the optimization problem 
related to modeling. Although we formulated several optimization problems 
resulting from the first criterion to minimize the sum of the absolute deviations, we 
were unable to solve the resulting mathematical problem. In this chapter we study 
several search techniques that allow us to find good solutions, and we examine 
many other optimization problems as well.  

For example, given a collection of m data points (xi,  yi) , i = 1,2 ,…,m ,  fit the 
collection to that line y = ax + b (determined by the parameters a and b) that 
minimizes the greatest distance  rmax  between any data point (xi,  yi) and its 
corresponding point (xi, axi + b) on the line. That is, the largest absolute deviation, 
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is minimized over the entire collection of data points. This criterion defines the 
optimization problem to ,   

0
: 1,2,...,

0
i

i

Minimize r

r r
Subjectto for i m

r r

− ≥ 
=+ ≥ 

 

which is a linear program for many applications. You will learn how to solve 
linear programs geometrically and algebraically in this chapter. We begin by 
providing a general classification of discrete optimization problems. Our emphasis 
is on model formulation, which will allow you additional practice on the first 
several steps of the modeling process while simultaneously providing a preview of 
the kinds of problems you will learn to solve in advanced mathematics courses.  

5.1 An Overview of Discrete Optimization Modeling 

To provide a framework for discussing a class of discrete optimization problems, 
we offer a basic model for such problems. The problems are classified according to 
the various characteristics of the basic model that are possessed by the particular 
problem. We also discuss variations from the basic model.  The basic model is 

                (5.1) 

   Now let’s explain the notation. To optimize means to maximize or 
minimize. The subscript j indicates that there may be one or more functions to 
optimize. The functions are distinguished by the integer subscripts that belong to 
the finite set J.  We seek the vector X0 giving the optimal value for the set of 
functions f j(X). The various components of the vector X are called the decision 
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variables of the model. Whereas the functions fj (X) are called the objective 
functions. By subject to, we connote that there may be certain side conditions that 
must be met. For example, if the objective is to minimize costs of producing a 
particular product, it might be specified that all contractual obligations for the 
product be met as side conditions. Side conditions are typically called constraints. 
The integer subscript i indicates that there may be one or more constraint 
relationships that must be satisfied. A constraint may be an equality (such as 
precisely meeting the demand for a product) or inequality (such as not exceeding 
budgetary limitations or providing the minimal nutritional requirements in a diet 
problem). Finally, each constant bi represents the level that the associated 
constraint function gj(X) must achieve and, because of the way optimization 
problems are typically written, is often called the right-hand side in the model. 
Thus, the solution vector X0 must optimize each of the objective functions    fj(X) 
and simultaneously satisfy each constraint relationship. We now consider one 
simplistic problem illustrating the basic ideas.  

EXAMPLE 1 Determining a Production Schedule 

A carpenter makes tables and bookcases. He is trying to determine how many of 
each type of furniture he should make each week. The carpenter wishes to 
determine a weekly production schedule for tables and bookcases that maximizes 
his profits. It costs $5 and $7 to produce tables and bookcases, respectively. The 
revenues are estimated by the expressions 

  
2

1 150 0.2x x− ,where x1 is the number of tables produced per week  

and  

  
2

2 265 0.3x x− , where x2 is the number of bookcases produced per week  

  In this example, the problem is to decide how many tables and bookcases to 
make every week. Consequently, the decision variables are the quantities of tables 
and bookcases to be made per week. We assume this is a schedule so non integer 
values of tables and bookcases make sense. The objective function is a nonlinear 
express ion representing the net weekly profit to be realized from selling the tables 
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and bookcases. Profit is revenue minus costs. The profit function is,            

( ) 2 2
1 2 1 1 2 2 1 2, 50 0.2 65 0.3 5 7f x x x x x x x x= − + − − −   

There are no constraints in this problem. 

  Let’s consider a variation w the previous scenario. The carpenter realizes a 
net unit profit of $25 per table and $30 per bookcase. He is trying to determine 
how many of each piece of furniture he should make each week He has up to 600 
board feet of lumber to devote weekly to the project and up to 40 hr of labor. He 
can use lumber and labor productively elsewhere if they are not used in the 
production of tables and bookcases. He estimates that it requires 20 board feet of 
lumber and 5 hr of labor to complete a table and 30 board feet of lumber and 4 hr 
of labor for a bookcase. Moreover, he has signed contracts to deliver four tables 
and two bookcases every week. The carpenter wishes to determine a weekly 
production schedule for tables and bookcases that maximizes his profits. The 
formulation yields  

  

   5.1.1  Classifying Some Optimization Problems  

There are various ways of classifying optimization problems. These classifications 
are not meant to be mutually exclusive but to describe certain mathematical 
characteristics possessed by the problem under investigation. We now describe 
several of these classifications.  

 An optimization problem is said to be unconstrained if there are no 
constraints and constrained if one or more side conditions are present. The first 
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production schedule problem described in Example 1 illustrates an unconstrained 
problem.  

  An optimization problem is said to be a linear program if it satisfies the 
following properties: 
 
1.    There is a unique objective function. 
2.    Whenever a decision variable appears in either the objective function or   
       one of the constraint functions, it must appear only as a power term with    
       an exponent of 1, possibly multiplied by a constant. 
3.    No term in the objective function or in any of the constraints can contain   
       products of the decision variables.  
4.   The coefficients of the decision variables in the objective function and each    
      constraint are constant. 
5. The decision variables are permitted to assume fractional as well as integer   
     values.  
  These properties ensure, among other things, that the effect of any decision 
variable is proportional to its value. Let’s examine each property more closely.  
   Property 1  limits the problem to a single objective function. Problems with 
more than one objective function are called multi objective or goal programs. 
Properties 2 and 3 are self-explanatory, and any optimization problem that fails to 
satisfy either one of them is said to be nonlinear. The first production schedule 
objective function had both decision variables as squared terms and thus violated 
Property 2.  Property 4 is quite restrictive for many scenarios you might wish to 
model. Consider examining the amount of board feet and labor required to make 
tables and bookcases. It might be possible to know exactly the number of board 
feet and labor required to produce each item and incorporate these into constraints. 
Often, however, ills impossible to predict precisely the required values in advance 
(consider trying to predict the market price of corn), or the coefficients represent 
average values with rather large deviations from the actual values occurring in 
practice. The coefficients may be time dependent as well; lime-dependent 
problems in a certain class are called dynamic programs. If the coefficients are not 
constant but instead are probabilistic in nature, the problem is classified as a 
stochastic prog ram. Finally, if one or more of the decision variables are restricted 
to integer values (hence violating Property 5). The resulting problem is called an 
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integer program (or a mixed integer program if the integer restriction applies to 
only a subset of the decision variables). In the variation of the production 
scheduling  problem. It makes sense to allow fractional numbers of tables and 
bookcases in determining a weekly schedule because they can be completed during 
the following week.  
 

   5.1.2 Unconstrained Discrete Optimization Problem  

A criterion considered for fitting a model to data points is minimizing the sum of 
absolute deviations. For the model y = f(x), if y(xi) represents the function 
evaluated  at x =xi,  and (xi , yi) denotes the corresponding data point for i = 1,2.... 
,m  points, then this criterion can be formulated as follows: Find the parameters of 
the model y= f(x) to  

                   
This last condition illustrates an unconstrained Optimization problem. Because the 
derivative of the function being minimized fails to be continuous (because of the 
presence of the absolute value), it is impossible to solve this problem with a 
straightforward application of the elementary calculus.   

     In the next several sections we focus our attention on solving linear 
programming problems, first geometrically and then by the Simplex Method.  

  Use the model-building process described in the previous chapters to 
analyze the following scenarios. You may find it helpful to answer the following 
questions in words before formulating the optimization model:  

(a) Identify the decision variables: What decision is to be made?  
(b) Formulate the objective function: How do these decisions affect the   

objective?  

      c)  Formulate the constraint set: What constraints must be satisfied? Be   
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             sure to consider whether negative values of the decision variables are  

            allowed by the problem, and ensure they are so constrained if required.  

 After constructing the model, check the assumptions for a linear program 
and compare the form of the model to the examples in this section. Try to 
determine which method of optimization may be applied to obtain a solution.  

  1. Nutritional Requirements—A rancher has determined that the 
minimum weekly nutritional requirements for an average-sized horse 
include 40 lb of protein, 20 lb of carbohydrates, and 45 lb of roughage. 
These are obtained from the following sources in varying amounts at the 
prices indicated:  

  

  Formulate a mathematical model to determine how to meet the minimum 
nutritional requirements at minimum cost. 

5.2   Linear Programming I: Geometric Solutions 

Consider using the Chebyshev criterion to fit the model y = cx to the 
following data set:  
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The optimization problem that determines the parameter c to minimize 

the largest absolute deviation ( )i i ir y y x= −  (residual or error) is 

the linear program  

      (5.2) 
In this section we solve this problem geometrically.  

5.2.1 Interpreting a Linear Program Geometrically  

Linear programs can include a set of constraints that are linear equations or linear 
inequalities. Of course, in the case of two decision variables, equality requires that 
solutions to the linear program lie precisely on the line representing the equality. 
What about inequalities? To gain some insight, consider the constraints  

                                                          (5.3) 

The non negativity constraints  1 2, 0x x ≥  mean that possible solutions lie in the 

first quadrant. The inequality 1 22 4x x+ ≤  divides the first quadrant into two 

regions. The feasible region is the half-space in which the constraint is satisfied. 

The feasible region can be found by graphing the equation 1 2 4x x+ =  and 

determining which half-plane is feasible, as shown in Figure 5.1.  
  If the feasible half-plane fails to be obvious, choose a convenient point (such 
as the origin) and substitute it into the constraint to determine if it is satisfied. If it 
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is, then all points on the same side of the line as this point will also satisfy the 
constraint.  

  

  

  A linear program has the important property that the points satisfying the 
constraints form a convex set, which is a set in which any two of its points are 
joined by a straight line segment, all of whose points lie within the set. The set 
depicted in Figure 5.2a fails to be convex, whereas the set in Figure 5.2b is convex.  

 
  An extreme point (corner point) of a convex set is any boundary point in the 
convex set that is the unique intersection point of two of the (straight line) 
boundary segments. In Figure 5.2b, points A—F are extreme points. Let’s now 
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find the feasible region and the optimal solution for the carpenter’s problem 
formulated in Example 1 in Section 5.1.  

  EXAMPLE 1    The Carpenter’s Problem  

The convex set for the constraints in the carpenter’s problem is graphed and given 
by the polygon region ABCD in Figure 5.3. Note that there are six intersection 
points of the constraints, but only four of these points (namely, A-D) satisfy all of 
the constraints and hence belong to the convex set. The points A - D are the 
extreme points of the polygon. The variables y1 and y2 will be explained later.  

  If an optimal solution to a linear program exists, it must occur among the 
extreme points of the convex set formed by the set of constraints. The values of the 
objective function (profit for the Carpenter’s problem) at the extreme points are  
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Thus, the carpenter should make 12 tables and is bookcases each week to earn a 
maximum weekly profit of $750. We provide further geometrical evidence later in 
this section that extreme point C is optimal.  

  Before considering a second example, let’s summarize the ideas presented 
thus far. The constraint set to a linear program is a convex set, which generally 
contains an infinite number of feasible points to the linear program. If an optimal 
solution to the linear program exists, it must be taken on at one or more of the 
extreme points. Thus, to find an optimal solution, we choose from among all the 
extreme points the one with the best value for the objective function.  

EXAMPLE 2 A Data-Fitting Problem 

Let’s now solve the linear program represented by Equation (5.2). Given the model 
y = cx and the data set  

                

 
we wish to find a value for c such that the resulting largest absolute deviation r is 
as small as possible. In Figure 5.4 we graph the set of six constraints 
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We note that constraints 1,3, and 5 are satisfied above and to the right of the graph 
of their boundary equations. Similarly, constraints 2, 4, and 6 are satisfied above 
and to the left of their boundary equations. To convince your self, pick a point 
(such as the origin) and determine if the point satisfies the constraint. If it does, it 
must be in the feasible region determined by the constraint.  
  The intersection of all the feasible regions for constraints 1—6 form a 
convex set in the c, r plane, with extreme points labeled A—C in Figure 5.4. The 
point A is the intersection of constraint 5 and the r axis: r - (8 - 3c) = 0 and c = 0, or 
A = (0, 8). Similarly, B is the intersection of constraints 5 and 2:  

                             

   Finally, C is the intersection of 
constraints 2 and 4 yielding C = (3, 1). Note that the set is unbounded. If an 
optimal solution to the problem exists, at least one extreme point must take on the 
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optimal solution. We now evaluate the objective function f(r) = r at each of the 
three extreme points. 

Figure  5.5  

 

  The extreme point with the smallest value of r is the extreme point B with 

coordinates  
5 1

,
2 2
 
 
 

 . Thus, c = 1 225 30x x+ is the optimal value of c. No other 

value of c will result in a largest absolute deviation as small as  max

1

2
r =

 

 . 
  5.2.2 Empty and Unbounded Feasible Regions  

We have been careful to say that if an optimal solution to the linear program exists, 
at least one of the extreme points must lake on the optimal value for the objective 
function. When does an optimal solution fail to exist? Moreover, when does more 
than one optimal solution exist? 

  If the feasible region is empty, no feasible solution can exist. For example, 
given the constraints  

                         1 13 & 5x x≤ ≥  

there is no value of x1 that satisfies both of them. We say that such constraint sets 
are inconsistent. 
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  There is another reason an optimal solution may fail to exist, that is when the 
feasible region is unbounded (in the sense that either x1 or x2 can become 
arbitrarily large). Then it would be impossible to  

          
over the feasible region because x1 and x2 can take on arbitrarily large values. 
Note, however, that even though the feasible region is unbounded, an optimal 
solution does exist for the objective function we considered in Example 2. So it is 
not necessary for the feasible region to be bounded for an optimal solution to exist.  

  Level Curves of the Objective Function  

Consider again the carpenter’s problem. The objective function is 1 225 30x x+ and 

in Figure 5.6 we plot the lines 

  
in the first quadrant  

  Note that the objective function has constant values along these line 
segments. The line segments are called level curves of the objective function. As 
we move in a direction perpendicular to these line segments, the objective function 
either increases or decreases.  
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THEOREM 1  

Suppose the feasible region of a linear program is a nonempty and bounded convex 
set. Then the objective function must attain both a maximum and mini mum value 
occurring at extreme points of the region. If the feasible region is unbounded, the 
objective function need not assume its optimal values. If either a maximum or 
minimum does exist, ii must occur at one of the extreme points.  

  The power of this theorem is that it guarantees an optimal solution to a linear 
program from among the extreme points of a bounded nonempty convex set.  

Problems 

 1.  Consider a company that carves wooden soldiers. The company specializes in 
two main types: Confederate and Union soldiers. The profit for each is $28 and 
$30, respectively. It requires 2 units of lumber, 4 hr of carpentry, and 2 hr of 
finishing completing a Confederate soldier. It requires 3 units of lumber, 3.5 hr of 
carpentry, and 3 hr of finishing completing a Union soldier. Each week the 
company has 100 Units of lumber delivered. There are 120 hr of carpenter machine 
time available and 90 hr of finishing time available. Determine the number of each 
wooden soldier to produce to maximize weekly profits.  

2.    Solve the following problems using graphical analysis:  
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1 2

1 2

1 2 1 2

) 25 30

: 20 30 690

5 4 120 & , 0

c Maximize x x

Suject to x x

x x x x

+
+ ≤

+ ≤ ≥
 

5.3   Linear Programming II: Algebraic Solutions  

The graphical solution to the carpenter’s problem suggests a rudimentary 
procedure for finding an optimal solution to a linear program with a nonempty 
and bounded feasible region:  
 

1. Find all intersection points of the constraints. 
2.    Determine which intersection points, if any, are feasible to obtain the      
          extreme points. 
2. Evaluate the objective function at each extreme point.  
3. Choose the extreme point(s) with the largest (or smallest) value for the 

objective function.  

  To implement this procedure algebraically, we must characterize the 
intersect ion points and the extreme points. 

  The convex set depicted in Figure 5.7 consists of three linear constraints 
(plus the two non negativity constraints).The nonnegative variables y1,  y2 & y3 
indicated in the figure measure the degree by which a point satisfies each of the 
constraints I, 2, and 3, respectively. The variable yi  is added to the left side of 
inequality constraint i to convert it to an equality. Thus, y2 = 0 characterizes those 
points that lie precisely on constraint 2, and a negative value for y2 indicates the 
violation of constraint 2. Likewise, the decision variables x1 and x2 are constrained 
to nonnegative values. Thus, the values of the decision variables x1 & x2 measure 
the degree of satisfaction of the non negativity constraints, 1 2,0 0x x≥ ≥ . Note that 
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along the x1 axis, the decision variable x2 is 0. Now consider the values for the 
entire set of variables { x1,x2,y1,y2,y3}. If two of the variables simultaneously have 
the value 0, then we have characterized an intersection point in the xIx2 plane. All 
(possible) intersection points can be determined systematically by setting all 
possible distinguishable pairs of the five variables to zero and solving for the 
remaining three dependent variables. If a solution to the resulting system of 
equations exists, then it must be an intersection point, which may or may not be a 
feasible solution. A negative value for any of the five variables indicates that a 
constraint is not satisfied. Such an intersection point would be infeasible.  For 
example, the intersection point B, where y2=0 and x1=0, gives a negative value for 
y1 and hence is not feasible. Let’s illustrate the procedure by solving the 
carpenter’s problem algebraically.  

 

 EXAMPLE 1 Solving the Carpenters Problem Algebraically 

The carpenter’s model is : 

                   

( )
( ) ( )

1 2

1 2

1 2 1 2

25 30

: 20 30 690 u b

5 4 120 & , 0

Maximize x x

Suject to x x l m er

x x labor x x nonnegativity

+
+ ≤

+ ≤ ≥
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  We convert each of the first two inequalities to equations by adding new 
nonnegative “slack” variables y1 & y2. If either y1 or y2 is negative, the constraint is 
not satisfied. Thus, the problem becomes  

1 2

1 2 1

1 2 2 1 2 1 2

25 30

: 20 30 690

5 4 120 & , , , 0

Maximize x x

Suject to x x y

x x y x x y y

+
+ + ≤

+ + ≤ ≥
 

  We now consider the entire set of four variables {x 1,x2,x3,x4}, which are 
interpreted geometrically in Figure 5.8. To determine a possible intersection point 
in the x1x2 plane, assign two of the four variables the value zero. There are    

4!
6

2!2!
=

 

possible intersection points to consider in this way (four variables taken 

two at a time). Let’s begin by assigning the variables x1 and x2 the value zero, 
resulting in the following set of equations:  

                                1 2690, 120y y= =  

 
which is a feasible intersection point  A(0,0) because all four variables are 
nonnegative.  
  For the second intersection point we choose the variables x and y and set 
them to zero, resulting in the system 
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that has solution x2 = 23 and y2 = 28, which is also a feasible intersection point  
D(0, 23).  

  For the third intersection point we choose x1 and y2 and set them to zero, 
yielding the system 

 
2 1

2

30 690

4 120

x y

x

+ =
=  

with solution x2 = 30 and y1 = -210. Thus, the first Constraint is violated by 210 
units, indicating that the intersection point (0, 30) is infeasible.  
        In a similar manner, choosing y1 and y2 and setting them to zero gives x1=12 
and x2 = 15, corresponding to the intersection point  C (12, 15), which is feasible. 
Our fifth choice is to choose the variables x2 and y1 and set them to zero, giving 
values of x1, = 34.5 and y2 = -52.5, so the second constraint is not satisfied. Thus, 
the intersection point (34.5, 0) is infeasible. 

        Finally we determine the sixth intersection point by setting the variables x2 
and y2 zero to determine x1 = 24 and y1 = 210: therefore, the intersection point 
B(24, 0) is feasible.  

       In summary, of the six possible intersection points in the xIx2 plane, four were 
found to be feasible. For the four we find the value of the objective function by 
substitution: 

  
Our procedure determines that the optimum solution w maximize the profit is x1 = 
12 and x2 = 15. That is, the carpenter should make 12 tables and is  
bookcases for a maximum profit of $750.  
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  Problems  

1.    How many possible intersection points are there in the following cases?  

       (a)   2 decision variables and 5≤

 

inequalities  

       (b)   2 decision variables and 10 ≤  inequalities  

       (c)    25 decision variables and 50≤  inequalities 

5.4  Linear Programming Ill: The Simplex Method 

So far we have learned to find an optimal extreme point by searching among all 
possible intersection points associated with the decision and slack variables. Can 
we reduce the number of intersection points we actually consider in our search? 
Certainly, once finding an initial feasible intersection point, we need not consider a 
potential intersection point that fails to improve the value of the objective function. 
Can we test the optimality of our current solution against other possible if 
intersection points? Even if an intersection point promises to be more optimal than 
the current extreme point, it is of no interest if it violates one or more of the 
constraints. Is there a test to determine if a proposed intersection point is feasible? 
The Simplex Method, developed by George Dantzig, incorporates both optimality 
and feasibility tests to find the optimal solution(s) to a linear program (if one 
exists).  

 An optimality test shows whether or not an intersection point corresponds to a 
value of the objective function better than the best value found so far.  
A feasibility test determines whether the proposed intersection point is feasible.  
  To implement the Simplex Method we first separate the decision and slack 
variables into two non overlapping sets that we call the independent and dependent 
sets. For the particular linear programs we consider, the original independent set 
will consist of the decision variables, and the slack variables will belong to the 
dependent set.  
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   5.4.1 Steps of the Simplex Method  

 
1. Tableau Format: Place the linear program in Tableau Format, as explained 

later.  
2. Initial Extreme Point : The Simplex Method begins with a known extreme 

point, usually the origin (0, 0). 
3. Optimality Test: Determine if an adjacent intersection point improves the 

value of the objective function. If not, the current extreme point is optimal. 
If an improvement is possible, the optimality test determines which variable 
currently in the independent set (having value zero) should enter the 
dependent set and become nonzero.  

4.  Feasibility Test: To find a new intersection point, one of the variables in 
the dependent se must exit to allow the entering variable from Step 3 to 
become dependent. The feasibility test determines which current dependent 
variable to choose for exiting, ensuring feasibility.  

 
5. Pivot: Form a new equivalent system of equations by eliminating the new 

dependent variable from the equations that do not contain the variable that 
exited in Step 4. Then set the new independent variables to zero in the new 
system to find the values of the new dependent variables, thereby 
determining an intersection point.  

 
6. Repeat Steps 3 - 5 until an optimal extreme point is found.  

 
  Before detailing each of the preceding steps, let’s examine the 
carpenter’s problem (Figure 5.9). The origin is an extreme point, so we 
choose it as our starting point. Thus, x1 and x2 are the current arbitrary 
independent variables and assigned the value zero, whereas y1 and Y2 are 
the current dependent variables with values of 690 and 120, respectively. 
The optimality test determines if a current independent variable assigned 
the value zero could improve the value of the objective function if it is 
made dependent and positive.  For example, either x1 or x2, if made 
positive, would improve the objective function value. (They have positive 
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coefficients in the objective function we are trying to maximize.) Thus, the 
optimality test determines a promising variable to enter the dependent set. 
Later, we give a rule of thumb for choosing which independent variable to 
enter when more than one candidate exists. In the carpenter’s problem at 
hand, we select x2 as the new dependent variable. 

 

  The variable chosen for entry into the dependent set by the optimality 
condition replaces one of the current dependent variables. The feasibility condition 
determines which exiting variable this entering variable replaces. Basically, the 
entering variable replaces whichever current dependent variable can assume a zero 
value while maintaining nonnegative values for all the remaining dependent 
variables. That is, the feasibility condition ensures that the new intersection point 
will be feasible and hence an extreme point. In Figure 5.9, the feasibility test would 
lead us to the intersection point (0,23), which is feasible, and not to (0, 30), which 
is infeasible. Thus, 2 replace y1 as a dependent or nonzero variable. Therefore, x2 
enters and y1 exits the set of dependent variables.  

5.4.2 Computational Efficiency  

The feasibility test does not require actual computation of the values of the 
dependent variables when selecting an exiting variable for replacement. Instead, 
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we will see that an appropriate exiting variable is selected by quickly determining 
whether any variable becomes negative if the dependent variable being considered 
for replacement is assigned the value zero (a ratio test that will be explained later). 
If any variable would become negative, then the dependent variable under 
consideration cannot be replaced by the entering variable if feasibility is to be 
maintained. Once a set of dependent variables corresponding to a more optimal 
extreme point is found from the optimality and feasibility tests, the values of the 
new dependent variables are determined by pivoting. The pivoting process 
essentially solves an equivalent system of equations for the new dependent 
variables after the exchange of the entering and exiting variables in the dependent 
set. The values of the new dependent variables are obtained by assigning the 
independent variables the value zero. Note that only one dependent variable is 
replaced at each stage. Geometrically, the Simplex Method proceeds from an initial 
extreme point to an adjacent extreme point until no adjacent extreme point is more 
optimal. At that time, the current extreme point is an optimal solution. We now 
detail the steps of the Simplex Method.  

  STEP  1     Tableau Format Many formats exist for implementing the 
Simplex Method. The format we use assumes the objective function is to be 
maximized and that the constraints are less than or equal to inequalities. (If the 
problem is no expressed initially in this format it can easily be changed to this 
format.)  For the carpenter’s example, the problem is to 

  
  Next we adjoin a new constraint to ensure that any solution improves the 
best value of the objective function found so far. Take the initial extreme point as 
the origin, where the value of the objective function is zero. We want to constrain 
the objective function to be better than its current value, so we require                       
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  Because all the constraints must be ≤  inequalities, multiply the new 
constraint by -1 and adjoin it to the original constraint set:  

 

  The Simplex Method implicitly assumes that all variables are nonnegative, 
so we do not repeat the non negativity constraints in the remainder of the 
presentation. 

  Next, we convert each inequality to equality by adding a nonnegative new 
variable yi (or z) called a slack variable because it measures the slack or degree of 
satisfaction of the constraint. A negative value for yi  indicates the constraint is not 
satisfied. (We use the variable z for the objective function constraint to avoid 
confusion with the other constraints.) This process gives the augmented constraint   

                        

1 2 1

1 2 2

1 2

20 30 690

5 4 120

25 30 0

x x y

x x y

x x z

+ + =
+ + =

− − + =
 

where the variables x1,x2,y1,y2 are nonnegative. The value of the variable z  
represents the value of the objective function, as we shall see later. (Note from the 
last equation, z = 25x1 + 30x2 is the value of the objective function.)  

   STEP 2 Initial extreme  point Because there are two decision variables, all 
possible intersection points lie in the x1x2 plane and can he determined by setting 
two of the variables {x1,x2,y1,y2}  to zero. (The variable z is always a dependent 
variable and represents the value of the objective function at the extreme point in 
question.) The origin is feasible and corresponds to the extreme point characterized 
by    x1= x2 = 0, y1 = 690, and y2 = 120. Thus, x1 and x2 are independent variables 
assigned the value 0;  y1, y2,  and z are dependent variables whose values are then 
determined. As we will see, conveniently records the current value of the objective 
function at the extreme points of the convex set in the x1x2 plane as we compute 
them by elimination.  
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  STEP 3  The optimality test for choosing an entering variable In the 
preceding form at, a negative coefficient in the last (or objective function) equation 
indicates that the corresponding variable could improve the current objective 
function value. Thus, the coefficients -25 and -30 indicate that either x1 or x2 could 
enter and improve the current objective function value of z = 0. (The current 

constraint corresponds to  1 225 30 0z x x= + ≥ , with x1 and x2 currently 

independent and 0.) When more than one candidate exists for the entering variable, 
a rule of thumb for selecting the variable to enter the dependent set is to select that 
variable with the largest (in absolute value) negative coefficient in the objective 
function row. If no negative coefficients exist, the current solution is optimal. In 
the case at hand, we choose x2 as the new entering variable. (The procedure is 
inexact because at this stage we do not know what values the entering variable can 
assume.)  
 
  STEP 4   The feasibility condition for choosing an exiting variable The 
entering variable x2 (in our example) must replace either y1, or y2 as a dependent 
variable (because  z always remains the third dependent variable). To determine 
which of these variables is to exit the dependent set, first divide the right-hand side 
values 690 and 120 (associated with the original constraint inequalities) by the 
components for the entering variable in each inequality (30 and 4, respectively, in 

our example) to obtain the ratios 690 120
23 & 30

30 4
= = . From the subset of ratios that 

arc positive (both in this case), the variable corresponding to the minimum ratio is 
chosen for replacement (y1, which corresponds to 23 in this case). The ratios 
represent the value the entering variable would obtain if the corresponding exiling 
variable were assigned the value 0. Thus, only positive values are considered and 
the smallest positive value is chosen so as no to drive any variable negative. For 
instance, if y2 were chosen as the exiting variable and assigned the value 0, then x2 
would assume a value 30 as the new dependent variable. However, then y1 would 
be negative, indicating that the intersection point (0,30) does not satisfy the first 
constraint. Note that the intersection point (0,30) is not feasible in Figure 5.9. The 
minimum positive ratio rule illustrated previously obviates enumeration of any 
infeasible intersection points. In the case at hand, the dependent variable 
corresponding to the smallest ratio 23 is y1, so it becomes the exiting variable. 
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Thus, x2, y2 and z form the new set of dependent variables and x1 and y1form the 
new set of independent variables.  
  STEP 5   Pivoting to solve for the new dependent variable values Next we 
derive a new (equivalent) system of equations by eliminating the entering variable 
x2 in all the equations of the previous system that do not contain the exiting 
variable y1. There are numerous gays to execute this step, such as the method of 
elimination used in Section 5.3. Then we find the values of the dependent 
variables, x2, y2 ,  and z when the independent variables x1 and y1 are assigned the 
value 0 in the new system of equations. This is called the pivoting procedure. The 
values of x1 and x2 give the new extreme point (x1,x2), and z is the (improved) 
value of the objective function at that point.  
  After performing the pivot, the optimality test is applied again to determine 
if another candidate entering variable exists. If so, choose an appropriate one and 
apply the feasibility lest to choose an exiting variable. Then the pivoting procedure 
is performed again. The process is repeated until no variable has a negative 
coefficient in the objective function row. We now summarize the procedure and 
use it to solve the carpenter’s problem.  
 

  Summary of the Simplex Method 
  STEP 1   Place the problem in Tableau Format. Adjoin slack variables as 
needed to convert inequality constraints to equalities. Remember that all variables 
are nonnegative. Include the objective function constraint as the last constraint, 
including its slack variable z.  
 
  STEP 2   Find one initial extreme point. (For the problems we consider, the 
origin will be an extreme point.)  
 
  STEP 3   Apply the optimality test. Examine the last equation (which 
corresponds to the objective function).  If all its coefficients are nonnegative, then 
stop; The current extreme point is optimal. Otherwise, some variables have 
negative coefficients, so choose the variable with the largest (in absolute value) 
negative coefficient as the new entering variable.  
 
  STEP 4   Apply the feasibility test. Divide the current right-hand-side values 
by the corresponding coefficient values of the entering variable in each equation. 
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Choose the exiting variable to be the one corresponding to the smallest positive 
ratio after this division.  
 
  STEP 5   Pivot.  Eliminate the entering variable from all the equations that 
do not contain the exiting variable. Then assign the value 0 to the variables in the 
new independent set (consisting of the exited variable and the variables remaining 
after the entering variable has left to become dependent). The resulting values give 
the new extreme point (x1. x2) and objective function value z for that point.  
 
  STEP 6   Repeat Steps 3 - 5 until an optimal extreme point is found.  
 
  EXAMPLE 1 The Carpenter’s Problem Revisited  
STEP 1   The Tableau Format gives  

1 2 1

1 2 2

1 2

20 30 690

5 4 120

25 30 0

x x y

x x y

x x z

+ + =
+ + =

− − + =
 

STEP 2   The origin (0,0) is an initial extreme point for which the independent 
variables are x1 =x2 = 0, and the dependent variables are y1= 690, y2 = 120, and z = 
0.  

STEP 3   We apply the optimality test to choose 2 as the variable entering the 
dependent set because it corresponds to the negative coefficient with the largest 
absolute value.  

STEP 4    Applying the feasibility test, we divide the right-hand-side values  690 
and 120 by the components for the entering variable x2 in each equation (30 and 

4,respectively), yielding the ratios690 120
23 & 30.

30 4
= =  & z= 0. The smallest positive 

ratio is 23, corresponding to the first equation that has the slack variable y1. Thus, 
we choose y1 as the exiting dependent variable.  

STEP 5    We pivot to find the values of the new dependent variables x2, y2 and z 
when the independent variables x1 and y1 are set to the value 0. After eliminating 
the new dependent variable x2 from each previous equation that does not contain 
the exiting variable y1 we obtain the equivalent system  
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Setting  x1=y1=0, we determine x2 = 23, y2 = 28, and z = 690. These results give 
the extreme point (0, 23) where the value of the objective function is  z = 690.  
  Applying  the optimality test again, we set that the current extreme point 
(0,23) is not optimal (because there is a negative coefficient -5 in the last equation 
corresponding to the variable x1). Before continuing, observe that we really do not 
need to write out the entire symbolism of the equations in each step. We merely 
need to know the coefficient values associated with the variables in each of the 
equations together with the right-hand side. A table format, or tableau, is 
commonly used to record these numbers. We illustrate the completion of the 
carpenter’s problem using this format, where the headers of each column designate 
the variables; the abbreviation RHS is the value of the right-hand side. We begin 
with Tableau 0, corresponding to the initial extreme point at the origin.  

 
Optimality Test The entering variable is x2 (corresponding to -30 in the last row).  

 Feasibility Test   Compute the ratios for the RHS divided by the coefficients in 
the column labeled x2 to determine the minimum positive ratio.  
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Choose y1, corresponding to the minimum positive ratio 23 as the exiting variable.  

Pivot    Divide the row containing the exiting variable (the first row in this case) by 
the coefficient of the entering variable in that row (the coefficient of x2 in this 
case), giving a coefficient of 1 for the entering variable in this row. Then eliminate 
the entering variable x2 from the remaining rows (which do not contain the exiting 
variable y1 and have 0 coefficient for it). The results are summarized in the next 
tableau, where we use five-place decimal approximations for the numerical values.  

 

The pivot determines that the new dependent variables have the values , x2 = 23, 
y2= 28, and z =690.  

Optimality Test   The entering variable is x1(corresponding to the coefficient  
-5 in the last row).  

Feasibility Test    Compute the ratios for the RHS.  
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Choose y2 as the exiting variable because it corresponds to the  minimum positive  
ratio 12.  

Pivot    Divide the row containing the exiting variable (the second row in this case) 
by the coefficient of the entering variable in that row (the coefficient of x1 in this 
case), giving a coefficient of 1 for the entering variable in this row. Then eliminate 
the entering variable x1 from the remaining rows (which do not contain the exiting 
variable y2 and have a zero coefficient for it). The results are summarized in the 
next tableau.  

 

Optimality Test    Because there are no negative coefficients in the bottom row, 
x1= 12 and x2 = 15 gives the optimal solution z = $750 for the objective  
function. Note that starting with an initial extreme point; we had to enumerate only 
two of the possible six intersection points. The power of the Simplex Method is its 
reduction of the computations required to find an optimal extreme point.  

EXAMPLE 2 Using the Tableau Format  
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Solve the problem  

1 2

1 2

1 2

1 2

3

: 2 6

3 9

, 0

Maximize x x

Suject to x x

x x

x x

+
+ ≤

+ ≤
≥

 

The problem in Tableau Format is 

1 2 1

1 2 2

1 2 1 2 1 2

2 6

3 9

3 0 , , , , & 0.

x x y

x x y

x x z wherex x y y z

+ + =
+ + =

− − + = ≥
 

 
Optimality Test    The entering variable is x1 (corresponding to -3 in the bottom 
row).  

Feasibility Test Compute the ratios of the RHS divided by the column labeled x1 
to determine the minimum positive ratio.  
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Choose y1 corresponding to the minimum positive ratio 3 as the exiting variable.  

Pivot    Divide the row containing the exiting variable (the first row in this case) by 
the coefficient of the entering variable in that row (the coefficient of x1 in this 
case), giving a coefficient of 1 for the entering variable in this row. Then eliminate 
the entering variable x1 from the remaining rows (which do not contain the exiting 
variable y1 and have a zero coefficient for it).The results are summarized in the 
next tableau.  

 
The pivot determine that the dependent variables have the values x1= 3 , y2=6 , &  
z=9.  

Optimality Test    There are no negative coefficients in the bottom row. Thus, 
x1=3 , x2=0  is an extreme point giving the optimal objective function value  
z=9. 
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Remarks    We have assumed that the origin is a feasible extreme point. If it is not, 
then some extreme point must be found before the Simplex Method can be used as 
presented. We have also assumed that the linear program is not degenerate in the 
sense that no more than two constraints intersect at the same point. These 
restrictions and other topics are studied in more advanced discrete optimization 
courses. 

          Self  Test  Exercises. 

1.    Use the Simplex Method to resolve Problems 1 &2 in Section 5.2. 

2.    Solve the following. (Use simplex method) 

           
1 2

1 2 1 2 1 2 1 2

. . 2 2

: 2 4 1, 2 1,2 1 , 0

a Min z x x

subject to x x x x x x and x x

= +
+ ≥ + ≥ + ≥ ≥  

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

. . 3 4 7

subjects to:- 8 3 4 7, 2 6 5 3

4 5 2 8, , , , , 0

b Max Z x x x x

x x x x x x x x

x x x x and x x x x

= + + +
+ + + ≤ + + + ≤

+ + + ≤ ≥
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1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 4

1 2 3 4 1 3 4

. . 8 19 7

:3 4 25, 3 3 50 , , 0

. . 3

:3 2 3,2 2 2 , , 0

. . 4 3 4 6

: 2 2 4 80,2 2 60,

c Maxz x x x

subject to x x x x x x and x x x

d Maxz x x x

subject to x x x x x x and x x x

e Maxz x x x x

subject to x x x x x x x

= + +

+ + ≤ + + ≤ ≥

= + +

+ + ≤ + + ≤ ≥

= + + +

+ + + ≤ + + ≤ 1 2 3 4 1 2 3 4

1 2 3 4

1 2 4 1 2 2 3 4 1 2 3 4

1 2

1 2 1 2 1 2

3 3 80 , , , 0

. . 2 4 4

: 3 4,2 3, 4 3 , , , 0

. . 8 11

:3 7, 3 8, , 0

x x x x and x x x x

f Maxz x x x x

subject to x x x x x x x x and x x x x

g Maxz x x

subject to x x x x and x x

+ + + ≤ ≥

= + + +

+ + ≤ + ≤ + + ≤ ≥

= +

+ ≤ + ≤ ≥
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