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Chapter One 

Revision on Numerical Integration 

This chapter is highly devoted to find the numerical integration for a 

given set of data points. The topics covered here are 

     -    Numerical Integration 

- Newton-Cote’s quadrature formula 

      -   Trapezoidal Rule 

      -   Simpson’s one-third Rule 

     -   Simpson’s three-eighths Rule  

       -    Weddle’s rule 

    Consider the definite integral . 

This integral represents the area between , the  –axis and the lines  & . 

This integration is possible as far as  is explicitly given and the function is integrable. 

     Now suppose set of (n+ 1) paired values are given.  First as we did in the case of numerical 

differentiation, we find by an interpolating polynomial and obtain  which 

can approximate the value for   . 

   A General Quadrature Formula for Equidistant Spacing (Newton-Cote’s Formula) 

     For equally spaced intervals, we have Newton’s forward difference formula as 
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    Here,        is the interval of differencing. 

Now, instead of , we will replace it by this interpolating polynomial  of Newton. 

      Since  

Thus,            

     . Where  is interpolating polynomial of degree n. 

      

      

      

      

     This equation is called Newton-cote’s quadrature formula and is a general quadrature 

formula. 

     By taking different values for n we get a number of special formulas. Here we try to look for 

some values of n for which their practical application is very important in different disciplines of 

science. Detail information and results are explained below. 
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  Trapezoidal Rule 

     Put n = 1, in the quadrature formula 

  

 Since other differences do not exist if n = 1. 

                                               

                                

 

            

            

             

     This is known as a trapezoidal rule. 

     Even though this method is very simple for calculation, the error in this case is significant. 

    Truncation Error in Trapezoidal Rule 

     In the neighborhood of , we can expand  by Taylor series in powers of .  

That is, 
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                 (2) 

     If  is the equidistant length, then also 

       Area of the first trapezium = A0 say  

     Putting  in (1), we get 

 

        

 

                    

     Subtracting A0 from (2), we obtain 
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 The error made in the first interval  is  

    Similarly the error in the i
th

 interval   

Hence, the total cumulative error E is 

      

     

              if the interval is  and  

 The error in the trapezoidal rule is of order .  

     The accuracy of the result can be improved by increasing the number of intervals and 

decreasing the value of . 

 

Simpson’s One-Third Rule 

       Setting n = 2 in Newton-cotes quadrature formula, we have 

     since the other terms vanish (become zero).  

            

                

...
2

1 ''

0

3  yh

 ),( 10 xx ...
2

1 ''

0

3  yh

''

1

3

2

1
 iyh

 ''

1

''

2

''

1

''

0

3 ...
2

1
 nyyyyhE

 ,...,,max
12

''
2

''
1

''
0

3

yyyMwhereM
nh

E 

 
M

hab

12

2
 ),( ba

n

ab
h





2h

h

  















 0

2

00
2

4

3

8

2

1
42

2

yyyhdxxf
x

x

    







 0

2

010 1
3

1
22 yEyyyh

 







 012010 2

3

1
222 yyyyyyh



  7 

 

                    

                     

Similarly,  and   

If n is an even integer, then the last integral will be  

    

     Adding all these integrals, if n is even positive integer, then  are odd in 

number; we have 

 

              

               

Simpson’s Three-Eighths Rule  

    Putting n = 3 in Newton-cotes formula, we get 
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If n is a multiple of 3, 

 

           

           

     This is Simpson’s three-eighths rule and is applicable only when n is a multiple of 3. 

   Weddle’s Rule 

 

       Putting n = 6 in Newton-cotes formula 

 

 

Now replace the term  by doing this, the error introduced is only  

which is negligible when  and  are small. 

     Using  and replacing all differences in terms of ’s,  

we get  

       

Similarly,  

and   

    Adding all these integrals, we get 
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    This equation is called Weddle’s rule. 

Truncation Error in Simpson’s Formula 

     By Taylor expansion of  in the neighborhood of , we obtain 

    

 

 

         

         

         

   Now let , by Simpson’s rule  

      Putting  in (1), to get 

        

        

    Putting  in (1), we have 
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                  Omitting the remaining terms involving  and higher powers of .  

This means that the error made in  is  

Similarly, the error made in  and so on. 

Hence the total error E is  

 , where M is the maximum value of  

     Since  is the last paired value because we require odd number of ordinates to apply 

Simpson’s one-third rule. 

     If the interval is , then , using this  

         

     Hence, the error in Simpson’s one-third rule is of the order . 
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1. Evaluate   by using    

a) Trapezoidal rule 

b) Simpson’s rule and verify your results by actual integration 

                  Solution 

     Here and the interval length is 7-1 = 6 so we divide this interval into 6 equal parts 

with  

:     1       2       3       4       5       6       7 

:     1       4       9      16     25     36     49 

a) By Trapezoidal rule 

 

          

b) By Simpson’s one-third rule 

 

            

           =  

     Since n = 6, we can also use Simpson’s three-eighth rule. 

So  
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              =  

 

 

2.  Evaluate  using Trapezoidal rule with , and hence    

      obtain an approximate value of . 

                  Solution 

          

:          0            0.2                  0.4                0.6                 0.8                  1 

:          1     0.961538461  0.862068965  0.735294117   0.609756097      0.5 

 

           

          =  

But by actual integration 

 

       

             

    To compare this approximated value of  with its actual value using calculator , 

the error is  which is . 
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3.  From the table below, find the area bounded by the curve and    

      the -axis from  to  

 

:       

:       

                  Solution 

     Let us compare the results obtained by different methods  

i)  By Trapezoidal rule 

      

                   =  

ii)  By Simpson’s one-third rule 

      

                     

iii)  By Simpson’s three-eighths rule 

        

                      

iv) By Weddle’s rule 

       

                     

    As we can see from these rules the area is  (correct to four decimal places) 

x 47.7x 53.7x

x 7.53          7.52           7.51           7.50          7.49           7.48           7.47

y 2.08          2.06          2.03            2.01          1.98            1.95           1.93

      06.203.201.298.195.1208.293.1
2

01.053.7

47.7
 dxxf

0.12035

        06.201.295.14403.298.1208.293.1
3

01.053.7

47.7
 dxxf

 70.12036666

        01.2206.203.298.195.1308.293.1
8

)01.0(353.7

47.7
 dxxf

1203375.0

      08.2)06.2(503.201.2698.195.1593.1
10

)01.0(353.7

47.7
 dxxf

12039.0

0.1203
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4. Evaluate the integral  using the rules so far developed. 

                   Solution 

      Since  let us divide the interval into 6 equal parts, i.e.;    

                                                            

 

i)  By Trapezoidal rule 

      

                             =  

ii)  By Simpson’s one-third rule 

       

                                

iii)  By Simpson’s three-eighths rule 

         

                     

iv) By Weddle’s Rule 
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4
nxdxI 

2.142.5 ab 2.0
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h

x xln x xln
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21.60943791        5.0                        11.48160454        4.4

81.56861591        4.8                        51.43508452        4.2

31.52605630        4.6                         11.38629436          4
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By actual integration, 

 

  Here Weddle’s rule best approximates the exact value. 

5. Evaluate  by Simpson’s one-third rule correct to five decimal places. 

                  Solution 

     The interval  

Since error  where M = Max  in the range  

                        

     Now we require  

             

              

Hence we take  
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By the actual integration, 

          

    Correct to five decimal places  which is the same as the exact value. 

6. A curve passes through the points  

and .  Obtain the area bounded by the curve, the -axis,  and . 

       Area =  

                

               sq. units 

Volume =  

              

             = 64.1041981 cubic units.  

7. A river is 80 meters wide.  The depth ‘d’ in meters at a distance  

          meters from one bank is given by the following table. 

:       0       10       20      30     40     50     60     70     80 

:       0        4         7        9      12     25    14       8       3 

    Calculate the area of cross-section of the river using Simpson’s rule. 

      

718282782.1
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                  Solution 

Area of cross-section =  

          = sq. meters 

8. The table below gives the velocity  of a moving particle at time  second.  Find the 

distance (S) covered by the particle in 12 seconds and also the acceleration at  

seconds. 

          :     0    2     4      6    8     10      12 

         :     4    6    16    34   60    94    136 

                  Solution 

We know that and  

To get S 

      

      =  meters 

To find  first form the difference table 

t           v                                     

0          4 

2          6 

4         16                                                

6             34 

8             60 


80

0
ydx

  )81594(4)14127(230
3

10
 710

v t

2t

t

v

dt

ds
v 

dt

dv
a 

      943464601621364
3

212

0
  vdtS

552

2

     ,












tdt

dv
aa

v v2 v3
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10 

18 

26 

34 
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8 

8 

8 
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 0 

 0 

 0 
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10           94 

12          136   

      

Taking = 6 

              

Exercise 

1. Evaluate  taking , using Trapezoidal rule. Can you use  

      Simpson’s rule? Justify your reasons. 

2. Compute the value of  correct to four decimal places      

      taking . 

3.  Find the value of from  using Simpson’s one-third rule          

      with .  

4. When a train is moving at steam is shut off and brakes are applied. The speed of the 

train per second after  seconds is given by  

Time :                                                       

Speed :                                           

Using Simpson’s rule, determine the distance moved by the train in seconds. 

5. Evaluate  a) dividing the range into four equal parts 
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                               b) dividing the range into ten equal parts by  

   i) Trapezoidal rule and 

  ii) Simpson’s one-third rule  

6. Evaluate  taking . 

7. Calculate  taking . 

8. Evaluate  taking four strips. 

9. Calculate taking 5 ordinates by Simpson’s rule. 

10. Evaluate  by Weddle’s rule, dividing the range into six    

      parts. 

11. Evaluate   dividing into six equal parts using Simpson’s rule,   

     Weddle’s rule and Trapezoidal rule. 
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Chapter Two 

Curve Fitting 

 Fitting of curves to a set of numerical data is of considerable importance- theoretical as well as 

practical. Theoretically it is useful in the study of correlation and regression. In practice it 

enables us to represent the relationship between two variables by simple algebraic expressions 

(polynomials, exponential or logarithmic functions or any). Besides, it may be used to estimate 

the values of one variable which would correspond to the specified values of the other 

variable(s).       

This chapter covers how to fit a curve for a given set of data points using different methods and 

it focuses on  the following points: 

  Regression   

      - Linear regression 

- quadratic regression 

- polynomial regression 

- multiple regression 

- fitting an exponential curve 

- curve fitting with Sinusoidal Functions 

 In most of the fields of engineering and science, we come across experiments which 

involve many variables, and most of the time data is collected or given for discrete values 

along a continuum; the relation between these variables can be discussed so easily and for 

many of these variables it is very difficult to identify the relation unless we can model the 

system mathematically. When the system is explained in terms of mathematical models we 

have the following relationships about the variables: 

1. The relationship between these variables is given in terms of  
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   mathematical rules, formulae if any, to determine the quantities of these variables. Actually 

    it is simple to use these rules for application. 

2. The quantities/ variables are given so that we will be interested in finding the 

relationships between these variables. This process is a little bit difficult because to write 

one variable in terms of the other variables (called empirical equation). Most of the time 

we may not be able to get an exact relation between these variables and we may get only 

an approximate relation or curve. 

This approximating curve is an empirical equation and the method of finding such an 

approximating curve is called curve fitting.     

                   Suppose ,  be  sets of observations and the law relating  and 

 can be determined by different mathematical systems that clearly explains the relationship 

between these sets of  observations . Actually, here we may have different approaches to 

fit the given data, and one system may approximate better than the other system on the same given 

set of data points. 

Now we will see some of these different approaches: 

REGRESSION   

1. LINEAR REGRESSION 

  Suppose that the relationship is given  

                                           ,  .                                                    (1) 

Equation (1) represents a family of straight lines for different values of the arbitrary constants ' ' 

and ' '. The problem now is to determine ' ' and ' ' so that the line (1) is the line of "best fit". 

The term best fit is interpreted in accordance with the Legendre's principle of least squares which 

consists of the deviations of the actual values as given by the line of best fit. As a matter of 

 ii yx , ni ,...,3,2,1 n x

y

n  ii yx ,
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chance all the points may lie on a straight line and in this case the line is a 'perfect fit' and the 

sum of the squares of the deviations is zero. 

 

Let be any point in the scatter diagram. Draw perpendicular to the x-axis meeting 

the line  in . The coordinates of  are . 

    

PiHi is called the error of estimates or the residual for . 

According to the principle of least squares, we have to determine a and b so that  

            is the minimum. 

Using the principle of maxima and minima what we have studied in calculus, the partial 

derivatives of E with respect to  and should vanish separately. 

That is,  
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.   

Equations (i) and (ii) are called normal equations. 

Solving for  and  from (i) and (ii), we get the values of  and , and with these values of  

and  so obtained, equation (1) is the line of best fit to the given set of points   ,

. 

Now let us see some examples to illustrate the above discussion.  

 

Example 1. By the method of least squares find the best fitting  

                   straight line to the data given below: 

                       :      5      10       15       20         25 

                       :     15     19       23       26         30 

                   Solution 

Let the line of best be  

The normal equations are  

                              

                                

We calculate  and form the table below  
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5             15           25            75   

10           19           100         190  

15           23           225         345 

20           26           400         520 

25           30           625         750    

 75         114         1375       1885 

Using these values in the normal equations, we get  

 

Solving for  and we get a=12.3 and b=0.7 and thus the line of best fit is  

Example 2. Find the best fitting straight line to the data given below  

                  by the method of least squares and also estimate when 

                   is 70. 

                   :   71    68    73    69    67    65     66    67 

                   :   69    72    70    70    68     67    68    64 

                  Solution 

First transform the values of  and to  

and the normal equations are  

        

Calculations: 

 

71        69        3         -1           9          -3    

68        72          0          2            0          0 

xyxyx 2
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 73       70          5          0           25         0          

 69       70          1          0            1          0    

 67       68         -1         -2            1         2   

 65       67         -3         -3            9         9 

 66       68         -2          -2           4         4  

 67       64         -1          -6           1         6 

                          2          -12        50        18 

Substituting these values in the normal equations, we get 

 

Solving for and , we get  

Thus the line of best fit is of the form  

This implies  

                     

When  

1. Quadratic Regression (Fitting Of Second Degree Parabola) 

    Let  be the second degree parabola of best fit to set of  points ,   

          .  

     Using the principle of least squares, we have to determine  and  so that   

                                    is minimum. 
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    Equating to zero the partial derivatives of E with respect to   and  separately, we get the 

normal equations for estimating   and as  

  

…………………. (1) 

  

 

  

 

 Solving for   and  from (1), (2) and (3), we get with these values of   and  the 

parabola of best fit. 

Example 1 Fit a parabola of second degree to the following data 

                   X:   0       1        2       3        4 

                   Y:   1     1.8     1.3     2.5     6.3 

                  Solution 

X Y    XY Y 

0 1 0 0 0 0 0 

1 1.8 1 1 1 1.8 1.8 

2 1.3 4 8 16 2.6 5.2 
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3 2.5 9 27 81 7.5 22.5 

4 6.3 16 64 256 25.2 100.8 

10 12.9 30 100 354 37.1 130.3 

Substituting these values in the normal equations, we get 

 

    Solving for   and , we get 

     , and         

 is the best fit. 

Exercise  

1. Find the best fitting parabola to the data given below by the 

              method of least squares and also estimate when  is 70. 

                :   71    68    73    69    67    65     66    67 

               :   69    72    70    70    68     67    68    64 

2.    Polynomial Regression Fitting Of A Polynomial Of k
th

 Degree 

     If  is the k
th

 degree polynomial of best fit to the set of points

;  the constants  are to be obtained so that 

                is minimum. 

    Thus the normal equations for estimating  are obtained on equating to zero the 

partial derivatives of E with respect to  separately. 
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             … 

 

 

Exercise  

1.  Find the polynomial of degree three that best fits the data  given below by the method of 

least squares and also estimate when  is 70. 

               :   71    68    73    69    67    65     66    67 

               :   69    72    70    70    68     67    68    64 

4. Multiple Regressions 

There are different multiple regression forms. For the sake of discussion let us see the following 

regression type. 

Suppose we want to fit the set of data points by the relation 

, here we need the points to be of the form .  

We determine the values of  and , from  
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By solving (1), (2) and (3) for  and , we get the best approximation. 

5. Fitting an Exponential Curve 

 Let ,  be the  sets of observations of related data and let  be the 

best fit for the data. 

Then taking logarithm on both sides, 

                                    (*) 

     Let  and , then (*) reduces to   

 which is linear in  and , we can find since  and  are known, and from 

 we can get and hence is found out. 

Fitting a curve of the form  

          

 

  

Using this linear fit, we find . 
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 are known and thus  is found out. 

Example 1.  From the table given below, find the best values of                      

                 a and b in the law  by the method of least squares. 

                   :    0       5        8       12        20 

                  :   3.0    1.5     1.0     0.55     0.18 

                  Solution 

   Let  be the approximating curve. 

 where B = b  

So the normal equations are 

 

 y Y  Y 

0 3.0 0.4771 0 0 

5 1.5 0.1761 25 0.8805 

8 1.0 0 64 0 

12 0.55 -0.2596 144 -3.1152 

20 0.18 -0.7447 400 -14.894 

45  -0.3511 633 -17.1287 

Substituting these values, we get 

         

Solving for and , we get 
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So  

        

    

Hence the curve is  

 

Exercise 

1. Fit a straight line to the following data and hence find  

 :   0       5       10      15      20 

 :   7      11      16      20      26 

2. Fit a straight line to the data 

 :    0.5       1.0      1.5      2.0       2.5       3.0 

 :   0.31     0.82    1.29     1.85      2.51    3.02   

3. Fit a parabola to the data  

 :    1       2      3      4       5 

 :    2       3      5       8      10   

 

4. Fit a curve of the form  to the data given below: 

 :       1       2         3        4         5       6         7          8 

 :    15.3   20.5   27.4    36.6   49.1    65.6   87.8   117.6 

5. Fit a curve of the form  to the data given below 
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(0,0,1), (0,1,2), (1,0,4), (1,1,1), (2,0,4), (1,2,5) 

6. It is given that , and  are related by  to the data  below and obtain the best 

values of a and b. 

         :      1          2             4            6            8 

         :    5.43      6.28       10.32     14.86      19.5 
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Chapter Three 

Numerical Solution of Ordinary Differential Equations 

In this chapter we are highly interested in finding the solution of ordinary differential 

equation numerically using different methods. 

The topics covered here is  

  -   Taylor series method 

  -   Taylor series method for simultaneous first order DE 

  -   Taylor series method for second order differential equation 

  -   Picard’s method of successive approximations 

  -   Euler’s Method 

  -   Runge-Kutta method 

   -   Predictor-corrector method 

 

   

In the fields of Engineering and Science, we come across through the natural phenomena that can 

be represented by mathematical models which happen to be in the form of differential equations; 

for instance, the equation of motion, the equation of deflection of a beam, etc.  The solution of 

these differential equations is very essential in the studies of such phenomena. 

While finding the solution of these differential equations there are number of differential 

equations that we cannot solve analytically; however, in such situations, depending on the nature 

of the model, we go for numerical solutions of these differential equations. In many researches, 

especially after the advent of modern computers, the numerical solutions of the differential 

equations have become very easy for manipulation. 
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 Thus, in this part we try to look some of the methods of numerical solutions that are 

approximate solutions and in many cases these solutions are in the required (desired) degree of 

accuracy and are quite sufficient. 

   Suppose we want to solve  with the initial condition  .  

           Let , , , … be the solution of at  

    Let  be the exact solution.  If we plot and draw the graph of 

 , (the exact curve) and also draw the approximate curve by plotting 

(the approximated solution graph) we get two curves. 

 

 

 

 

 

 

 

          Suppose  

                          The equation  subject to the initial condition  

     is called an initial-value problem. 

                       Using Taylor series we can expand  in the neighborhood of  as a power 

series of .  That is, if  is close to , then by Taylor’s series, we have 
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QM = approximate value 

PM = exact value at x = xi 

Then QP = QM-PM 

              = yi – y(xi) =  is called  
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     where  etc 

       If  is close to , substitute  in (*) and get  

   Again starting from , express  in a power series of  and then substitute  to 

get .  In this way we can get the sequence of  values  

       If , we get the Maclaurin’s series expansion, 

     

Example 1.  Evaluate the solution of the differential equation  

                    by taking four terms of its Maclaurin’s series for , ,  

                    given   and compare this result with its exact  

                    solution. 

                  Solution 

                                                   

                                                    

                                          

                                      

By Maclaurin’s series, we have 
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Exact solution  

        

Let us compare the actual value with the approximate value 

Values of x                          0       0.2        0.4         0.6 

Actual value of y                 0    0.2027   0.4228    0.6841 

Approximate value of y       0     0.2027   0.4213   0.6720 

Error                                  0         0        0.0015   0.0121 

Percentage of error             0         0          0.35       1.77 

       This table shows that when the distance of  from  increases the error also increases. 

     In this example, we have expanded  in the neighborhood of  and used the same 

result to find  when , and . 

    Now instead of doing this, after getting , expand  again in the 

neighborhood of  and use this result to get .  In doing so, we can minimize the 

error. 

     Thus in the neighborhood of  
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 =  = (0.2027)
2
 + 1 = 1.0411 

 

 

           …, etc. 

Putting these values and using  in (1), we get 

 

          

           

When we compare this value with the actual one i.e. 0.4228, we see that the error is only 0.0003, 

nearly 0.07% 

     The error has decreased from 0.35% to 0.07% 

Therefore, to reduce the error, each time obtain the power series of  at  and use this 

to get  and so on. 

     This method is called the method of starting the solution. 

          

 Point Wise Methods            

Consider the previous example  

First we got  in terms of x and then we substituted  
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.  Instead, without getting  as a function of  we can directly get =  

as 

 

That is we get directly.  So, a point wise solution is a series of points 

 which satisfy approximately a pre-assigned but not known particular solution. 

                   

    Solution Using Taylor Series 

AIM- To find the numerical solution of the equation 

            given the initial condition ……….. (1) 

     Now, we expand  about the point  using Taylor’s series in powers of .   

That is,  

                   

 Where  

 

      , where  or  

     To find  we use (1) and its derivatives at . 

Even though the series in (2) is an infinite series, we can truncate it at any convenient term, if h 

is small, and the accuracy can be obtained. 
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     Now, once if we get , we can calculate  etc by using 

                           

     Again, expanding , in a Taylor’s series about the point  

, we get 

                  

Proceeding in the same way, we get 

               

Since this is an infinite series, to get an approximate value we have to truncate it at some term to 

have a calculated numerical value. 

Now, let us consider the terms up to and including  and neglect terms involving 
 
and 

higher powers of .  The Taylor algorithm used this way is said to be of n
th

 order. 

     Thus, the truncation error is .  If h is small enough we can neglect terms after the n
th

 

term and get the error as  

            where  

Example 1. Solve  given , and find  by using 

                  Taylor’s method. 

                  Solution 

Here   and  
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Thus by Taylor’s method, we have 

 

 

         

         

Now again take  and  

 

 

 

 

      

      

    Let us check for its exact solution 
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  Let  

          and    

Integrating both sides, 

      

   

   

Since  

 

 

 

Hence  

             

Example 2. Using Taylor series method, compute  correct to  

                  four decimal places, given  and . 

                  Solution 

 here  and  

 

 

yx
dx

dy


dx

dy

dx

dv
vyx  1

1 v
dx

dv

1


v

dv
dx

1 vncx 

1 yxncx 

cxeyx  1

0)1( y

102  ce

1221  ncnc 

121  xexy

60.11034183 211.1)1.1( 11.1  ey

60.24280551 212.1)2.1( 12.1  ey

)1.0(y

22 yx
dx

dy
   10 y

22' yxy
dx

dy
 00 x 1.0,10  hy

  1100' 22 y

222'' '

000  yyxy



  42 

 

 

 

 

          

         

Example 3.  Using Taylor method, compute  and  

                   correct to four decimal places given 

                       and  

                  Solution 
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By Taylor’s series, we have 
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Now again starting with , we have 

            ,  

 

 

.  

       

 

 

           

 

Example 4. Using Taylor series method, find at    

           and  given  (correct to five decimal places) 

                  Solution 

       Here  
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       = 1+ (-0.1) + 0.005 + 0.0001666 + (-0.0000416) +… 

       = 0.905125 

Now again using  and , we have 

 

 

 

etc. 

 

                          = 0.821235167 
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Taylor series method for simultaneous first order differential equations 

 The equation of the type  
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       can be solved by Taylor series method as given below: 

Example 5. Solve  with by taking 

                    , to get  and . 

                  Solution 

                    and               

     and                         and  

                                  

                                         

                                         

                   

 Using Taylor series, for  and , we have 

                 ……       (1) 

and    

                               

                      

                     

                             

                                           

Substituting these in (1) and (2), we get 
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     = 1+0.1+0.000333+… 

     = 1.1003 

 

   =1+ 0.1 + 0.01+0.0000083+… = 1.1100 

 Example 6.  Find  given 

             and  

                  Solution 

Here and    

                             

                        

                                   

                     etc 
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        = 2.084544167 

 

       = 2.084544167+0.267132966-0.016226621-0.0003105449027 

          - (0.000003091501458) +… 

        =0.152817221  

 

  Taylor series method for second order differential equation 

                Any differential equation of the second order or higher can be solved by reducing it to 

a lower order differential equation.  A second order differential equation can be reduced to a first 

order differential equation by transforming  and then the given equation can be solved so 

easily. 

     Suppose  ……   (1) 

                      is the given differential equation together with the given initial 

conditions 

          and  where ,  are known values at . 

Setting , we get  and (1) becomes 

            

    with initial condition  and =  

Using Taylor series method, we get 

   where ……    (*) 
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becomes 

 

Since  and taking the derivative of again and again with respect to x, we get

, etc. 

Hence  can be solved using (**) and (*), so that we can get  

 & . 

Once knowing  and  we can get  

Again using  

 we get some value for  and using  

   we get still some value for . 

Example 7.  Evaluate the values of  and  given 

                   by using Taylor series method. 

                  Solution  

     First put  and hence the equation reduces to  

                  

Using the initial condition  

Now  can be solved given that  

Here,  

...
!32

'''

0

3
''

0

2
'

001  y
h

y
h

hyyy

...(**)...
!3!2

0

3

0

2

001 





 p
h

p
h

hpyy

),,(' pyxfp  p

pp  ,

,...,, '''

0

''

0

'

0 ppp

1y 1p

1y 1p  11

'''

1

''

1

'

1 ,,...,, yxatppp

...
!3!2

'''

1

3
''

1

2
'

112  p
h

p
h

hppp
2p

...
!3!2

'''

1

3
''

1

2
'

112  y
h

y
h

hyyy
2y

)1.0(y )2.0(y

      00',10,0'''' 22
 yyyyxy

zy  0' 22  yxzz

22' yxzz 

  0,10 '

00  yzy

22' yxzz    0,00 00  xandzz

 1......
2

''

0

2
'

001  z
h

hzzz



  49 

 

                                                                

                                    

 

 

 and    

Substituting, these values in (1), we get 

 

     = -0.0997 

By Taylor series for , we get 
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Using (2), 

    

       = 0.9801 

Example 8.  Solve   and calculate . 

                  Solution 

Here   and  

Differentiating with respect to x, 

                      

                

                                         

                                            

Here  

               

               

               

Exercise 

Using Taylor series method, find the values required in each problem. 

1. Find  given  
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2. Find given  

3. Obtain and given taking . 

4. Find given . 

5. Find given 

                      and  

6. Evaluate given 

                given  at  

7. Solve for x and y  given at . 

8. Find at given  

9. Express as a power series given,  

  Picard’s Method of Successive Approximations 

AIM: To solve  subject to  

            Now  

Integrating,  

Setting , we have 
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         this type of equation is called an integral equation. 

                     As the integration is not possible as it is, we will solve it numerically by successive 

approximation.  Now substitute the initial values of  namely  in the integrand  in 

place of  and then integrate it to get an approximate value of . 

i.e.    

             After getting the first approximation  for , use this value of  in place of  in 

 and then again integrate to get the second approximation of  namely . 

       Thus    

     Repeating this procedure again and again, we eventually get 

           

      This equation is called Picard’s iteration formula.  This formula gives the general iterative 

formula for y. 

     The sequence , ,…,  should converge to ; otherwise the process is not valid. 

     The condition for the convergence of the sequence is both  and  are continuous. 

i.e.  in a region containing the point  where ,  are 

constants. 

 

Example 1. Solve , , by Picard’s method up to the  

               third approximation.  Hence find the value of . 
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                  Solution 

           

      

Hence,   x0 = 0, y0 = 1  and  
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         =  

Note- In getting the value  we could have started with = 0.1 and 

 = 1.104824833 to get a closer value of   

    i.e.   

    

        

        

  

      

       

                                                    

 

Example 2.  Solve  given .  Obtain the values of  

                    and  using Picard’s method and check your  
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                   result with the exact solution. 

                  Solution 

Here  and  
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              =  

To find  we use = and =  
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Solving  analytically, we get  

      =     and 

      =  

Example 3. Solve  by Picard’s method 

                  Solution 

Here    

   =  

Now 

       

        

              

               

Example 4.  Solve , by Picard’s method 

                   Solution 

          By Picard’s method    
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Exercise 

1. Using Picard’s iterative formula,  

a) Solve , given . 

b) Obtain given   and  

c) Solve  given  

2. Find the values of for and given and which passes 

through . 

3. Given and , find  
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Euler’s Method 

     In solving a first order differential equation by numerical methods, we have two types of 

solutions: 

i) Values of  at specified values of  

ii) A series solution of  in terms of , which will yield the value of  at a particular 

value of  by direct substitution in the series solution. 

    Taylor and Picard’s method studied so far belong to the first category in finding the numerical 

solution of differential equations; the methods due to Euler, Runge-kutta, Adam-Bash Forth and 

Milne come under the second category. 

      The methods of second category are called step-by-step methods because the values of  are 

calculated by short steps ahead of equal interval  of the independent variable . 

Euler’s method 

   Suppose we want to solve  with initial conditions  

Let us take the points 

  

                    i.e.   ,    

 

 

 

              

 

Let the actual solution of the differential equation be denoted by the graph  lies on 

the curve.  We require the value of  the curve at . 
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                   =  

            

     In the interval , the curve is approximated by the tangent. 

 The value of  on the curve is approximately equal to the value of  on the tangent 

at  corresponding to . 

                  

             i.e.   

Again, we approximate the curve by the line through  and whose slope is f , we 

get 

          

             

Thus,  

      This formula is called Euler’s algorithm. 

In other words,     

            In this method, the actual curve is approximated by a sequence of short straight lines.  

As the intervals increase the straight line deviates much from the actual curve.  Hence the 

accuracy cannot be obtained as the number of intervals increase. 

Referring to the above graph 
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Example 1.  Given  and , determine the values of  at  

                    and  by Euler method. 

                  Solution 

         and ;    

   Here  

We have to find .  Take  

By Euler algorithm,  

 

 

 

                 

 

     

  Let us compare the results 

                 

              

  
 
     

Example 2.  Using Euler’s method, solve numerically the equation, 

                     for  and . 

                   Check your answer with the exact solution 

yy  1)0( y y

02.0,01.0  xx 04.0x

yy  1)0( y yyxf ),(

04.0,03.0,02.0,01.0,1,0 432100  xxxxyx

4321 ,,, yyyy 01.0h

 nnnnnn yxhfyhyyy ,'

1 

     99.001.01101.01, 0001  yxhfyy
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    9801.001.09801.0, 2223  yxhfyy 0.9606

    9703.001.09703.0, 3334  yxhfyy 0.9606

x 0.04             0.03          0.02          0.01           0

y 0.9606         0.9703      0.9801      0.9900         1

xey  0.9608         0.9704      0.9802      0.9900         1

1)0(,  yyxy 2.0,0  xx 0.1x
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                  Solution 

Here ,  

= , = , = , = , =  

By Euler algorithm, 

 

     =  

 

    =  

 

    =  

 

    =  

=  

Exact solution is  

                   

Euler           

 Exact              

  As you can see from the table, the values of  deviate from the exact values as  increases. To 

avoid this discrepancy we need to improve Euler’s method. 

Improved Euler Method 

      Let the tangent at  to the curve be P0A.  In the interval  by the previous 

Euler’s method, we approximate the curve by the tangent P0A. 

2.0h 1,0    ,),( 00  yxyxyxf
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y 2.94664     2.3472     1.856        1.48        1.2        1

y 3.4366      2.6511     2.0442    1.5836    1.2428      1

y x
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Let Q1C be the line at Q1 whose slope is  

Now take the average of the slopes at P0 and Q1 

      i.e.  

Draw a line P0D through P0  with this as the slope. 

That is, 

            

and this line intersects  at  

       

          

In general, 

      

    This is what is known as improved Euler’s method. 
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                   Notice that the difference between Euler’s method and the improved Euler’s method 

is that in the improved one we take the average of the slopes at  and  instead of 

the slope at  in the former method. 

Modified Euler’s Method 

     In the improved Euler method, we arranged the slopes, whereas in modified Euler method, we 

will average the points. 

     Let P0  be the point on the solution curve 

     Let P0A be the tangent at  to the curve.  Now let this tangent meet the ordinate at 

 and coordinate of . Calculate the slope at N1. i.e. 

.                

 

 

                                                                                                                                     

                                                                     

 

     

 

 Let this line meet  at .   

This  is taken as the approximate value of at  
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In general, 

       

or  

     This is called modified Euler’s formula. 

Note: The Euler predictor is  and the corrector is  in the 

improved Euler method. 

     When you read some literature there is some confusion among the authors.  Some take the 

improved Euler method as the modified Euler method and the modified Euler method is not 

mentioned at all. 

Example 3 Solve numerically  for  by improved 

Euler’s method. 

                  Solution 

 and h = 0.2.  

 By improved Euler method, 
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Here  

      

 

       

   

 

Example 4.  Compute  at  by Modified Euler’s method       

                      , . 

                  Solution 

      

     Take  

By modified Euler method, 

               

              

            

                       

                         =  
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         Using  

                    

                  

 

The error is only . 

Example 5.  Solve the equation  given  using modified  

                and Euler’s method and tabulate the solutions at ,  

                 and .  Compare these results with the exact solutions. 

                  Solution 

Here  

                

        

i) Modified Euler method 
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Now again  = 1- 0.95 = 0.905 

       

           

           

           =  

         

            

            =  

            =  

ii)  Improved Euler method 
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                            =  = 0.8145 

    

   

      

       

       

Exact solution 

            

          

        At   

         

 

     

     

                     Modified                     improved                         exact 

 

 

  905.0095.011, 111  yyxf

      095.011.0905,0,2.0,, 1111  fyxhfyhxf

)1855.0,2.0(f

  180975.0905.08145.0
2

1.0
095.02  y

     22222223 ,,,
2

1
yxfhyhxfyxfhyy 

      180975.011.0180975.0,3.0180975.01
2

1.0
180975.0  f

)2628775.01819025.0(05.0180975.0 

258782375.0

dx
y

dy
y

dx

dy





1
1

  xceycxyn  11 1

101    ,0 0  ccex

xey  1

  095162581.01.0  y

181269246.0)2.0( y

259181779.0)3.0( y

x

10.09516258                           0.095                          0.095                     0.1

60.18126924                        0.180975                    0.180975                  0.2



  70 

 

 

Example 6. Find, correct to four decimal places, the value of   

                   Given  ,  by using improved Euler method. 

                  Solution 

Here,  , , and   

 By the improved Euler method, 

       

         

            

            

 Example 7. Using improved Euler method find y at and at  

                   given  

                  Solution 

By improved Euler theorem, 

       

      Here      
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         =  

    

      

 

 

                             

                             

Thus  

             

Example 8. Using modified Euler method, find  

                   given  

                  Solution 

Here, ,   
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By modified Euler method, 

 

     

=  

 

     

     

Exercise 

1. Use Euler’s method to find  

a)  given  

b) taking  given   

2. Compute taking given using improved Euler 

method. 

3. Find  and  given  taking  by improved 

Euler method. 

4. Use improved Euler method to find  given . 

5. Using improved Euler method find  given . 

6. Use improved Euler method to calculate ,taking  and 
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7. Use modified Euler method and obtain given . 

8. Use improved and modified Euler method, to get  if , if . 

9. Solve  given if  to obtain . 

10. Given  find  if . 

11. Find  by improved Euler method, given  

          if . 

Runge-Kutta Method 

i) Second order Runge-kutta method 

        Suppose  

     By Taylor series, we have 

         

      Differentiating (1) with respect to x, 

           

   Using the values of  and  derived from (1) and (3), in (2) we get  
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and let  where  and are constants to be determined to get the better 

accuracy of  

Now expand  and in powers of h, by Taylor series for two variables, we have 

   

       

       

       =  higher powers of . 

Substituting ,  in  we get   

 

     

Equating (4) and (5), we have 

       

 

 

21 bkaky  ba, m

.y

2k y

 12 , mkymhxfhk 

 

























































 ...

!2
,

2

1

1

f
y

mk
x

mh

f
y

mk
x

mhyxfh








































 ...
!2

2

1 f
y

mk
x

mh

mhffmhffh yx

...22  yx ffmhfhmfh h

1k 2k ,y

    32 hOfffmhhfbahfy yx 

     5.....)( 21

32 bkakhOfffbmhhfba yx 

2

1
,1  mbba

b
mandba

2

1
1 

  211 kbkby 



  75 

 

Where   

           

Now  

      

i.e.   

From this general second order Runge-kutta formula, setting , , , we get the 

second order Runge-kutta algorithm. 

              

     and  where   

ii) Third order Runge-kutta Method 

For n = 3, a similar derivation to the one as the second-order method can be performed.  Since 

the derivation is tedious we state simply the formula. 

       

  , where  

              

             
 

iii)  Fourth Order Runge-kutta method 
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 The most popular and commonly used form is the classical fourth-order Runge-kutta method. 

                     

                          , where  

                                        

                                        

                                        

Note 1.  The second order Runge-kutta method, 

                 

                      

               

                                        this is exactly the Modified Euler method. 

Thus, the second order Runge-kutta method is simply the modified Euler method. 

2. If , a function of  alone, then the fourth order Runge-kutta method 

reduces to 
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           = the area of  between  and  with two equal intervals of 

length  by Simpson’s one-third rule.  i.e. reduces to the area by Simpson’s one-third rule. 

 

Example 1.  Apply the fourth order Runge-kutta method to find  

                    given that  

                  Solution 

     Since h is not mentioned, we can take  

 

By fourth-order Runge-kutta method, for the first interval 
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Now starting from  we get .  Again apply Runge-kutta algorithm replacing 

 by .  

        

        

            

 

           =  

Remember that the exact solution is  

        

    The difference between the exact solution and the fourth order Runge-kutta method is

. 

     As compared to other methods, this method is the best one. 

Example 2.  Find the values of  at  using Runge-kutta  

            method of   i)   second order       ii) third order and 

iii) fourth order for the given that and .                        

                  Solution 

  

i) Second order 
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Again let  

                =  

                

       

 

ii) Third order 
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Now take and repeat the process  
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iii)  Fourth order 

        

        

         

          

    

       

     Again taking and repeating the process, we get  
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 order         3
rd

 order            4
th

 order          exact  

 

      

As we can see from the table fourth order values are closer to the exact values. 

Example 3. Compute  given  by taking   

                using Runge-kutta method of fourth order. 

                  Solution 
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         Now = (0.1) (-1) = -0.1 

                  

                       

                       

                   

                       

                       

                       

                   

                       

                        

 

    

Now again taking  in place of , we get 
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Again, using  =  we find  
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Example 4. Using Runge-kutta method of fourth order, find   

                  if   

                  Solution 
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   Now using =  we continue to find  

   

    

    

       

     

         

 

          

 

Example 5. Using Runge-kutta method of fourth order, solve  

                 given  at  
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To find  we use =  
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Runge-kutta method for simultaneous first order differential equations 

Aim- To solve numerically the simultaneous equations 

          given the initial conditions 

           

    Now starting from  the increments  in and  respectively are given 

by formulae 
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By repeating this algorithm once again we can find starting from . 

Example 6.  Find , from the system of equations, 

                  given  using Runge-kutta     

                 method of fourth order. 

                  Solution 
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 Runge-kutta method for second order differential equation 

Aim – To solve given  

          Now, let and so  

         and are the two simultaneous equations with  

and  itself. 

     Once again by applying Runge-kutta method for solving simultaneous first order differential 

equations we can get the solution of the given problem. 

Example 7. Given  find by using  

                Runge-kutta method of fourth order. 

                  Solution 

      

  Let  
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Exercise 

  In the exercise below, unless specified use fourth order Runge-Kutta method.  

1. Find given  taking . 

2. Obtain the value of at  if satisfies   

taking . 

3. Solve  for , taking . 
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4. Solve  given , to obtain . 

5. Solve the initial-value problem with  on the interval . 

6. Evaluate given . 

7. Solve  for  taking . 

8. Find  given  taking by 

i) second order      ii)  third order 

iii) fourth order Runge-Kutta methods. 

9.  Solve  as given taking . 

10. Solve the system: for  taking 

. 

11. Solve , given  for  to  taking  

12. Evaluate given . 

13. Using Runge-Kutta method determine  

      given . 

14. Solve  using Runge-Kutta method for given 

 taking . 

15. Find  given by Runge-Kutta method. 

16. Find  given . 
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17. Obtain the value of  given . 

18. Compute the value of  given . 

Predictor-Corrector Method 

The methods so far discussed are called single step methods because they use only the 

information from the last step computed. But now we try to discuss multi-step methods. 

     Consider  

 We have used Euler’s formula to solve differential equation of the form      

            

  , and we have improved the Euler method by 

       

     In (2), to get the value of  we require  on the right hand side. 

To overcome this difficulty, we calculate  using Euler’s formula (1) and then we use it on the 

right hand side of (2), to get the left hand side of (2).  This  can be used further to get refined 

 on the left hand side.  Here, we predict the value of  from the rough formula (1) and use 

in (2) to correct the value.  Every time, we improve using (2).  Hence equation (1) Euler’s 

formula is a predictor and (2) is a corrector. 

     A predictor formula is used to predict the value of  at  and a corrector formula is used 

to correct the error and to improve that value of . 

  Milne’s Predictor- Corrector Formulae 

     Suppose our aim is to solve   numerically. 

)1.0(x 0)0(,3)0(,4
2

2

 xxx
dt

tdx

dt

xd

)2.0(y 0)0(,1)0(,  yyyy

    00,, yxyyxf
dx

dy


   1...                               ,2,1,0,,'1  iyxhfyy iiii

      2...                         ,,
2

1
111   iiiiii yxfyxfhyy

1iy 1iy

1iy

1iy

1iy 1iy

y
1iy

1iy

    00,, yxyyxf
dx

dy




  93 

 

   , where  is a suitable 

accepted spacing, which is very small.  

 By Newton’s forward interpolation formula, we have 

      

     , where  

Changing  to  

   

    Integrating both sides from  to , 
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Taking into account only up to the third order equation, (3) gives 

               …………… (4)           

    The error happened in (4) is  and this can be proved to be  , where 

. 

     Since  for small values of . 

 The error is  and hence (3) becomes 

                ……..(5) 

In general, 

,  where    ……(6) 

     This equation is called Milne’s predictor formula. 

     To get Milne’s corrector formula, integrate equation (2) between the limits  to . 
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                                   …….…(7) 

    Again here taking into account only up to third order, we get 

         

Here the error is  and this can be proved to be  

 where  and thus (7) becomes 

            

In general, 

      where . 

     This equation is called Milne’s corrector formula. 
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Solution 

Here  

          

       

By Milne’s predictor formula, 
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Using Milne’s corrector formula, we get, 
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Example 2.  Using Milne’s method find  given   

                    given  and . 

                  Solution 

        

                      

         

          

          

By Milne’s predictor formula, 
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Using the corrector formula, we get 
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Example 3.  Determine the value of  using Milne’s method given  

use Taylor series to get the values of  and  

Solution 

Here  
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6

001.0
3

2

01.0
11.01 

358611111.12

111

'

1  yyxy

28675926.42 1

111

'

11

''

1  yyyyxy

  4113088.16222
2'

1

'1

111

''

11

'''

1  yyyyyxy

  
 

    ...4113088.16
6

001.0
28675926.4

2

01.0
358611111.11.011666667.12  y

31.27669679

885294059.12

222

'

2  yyxy

467653362.62 '

222

'

22

''

2  yyyyxy
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          =  

By Milne’s predictor formula 

    

Since  

           

           

 

       =  

  

Now using Milne’s corrector formula, 

       

           

           

Example 4.  Given  and   ,   

                    evaluate  by Milne’s predictor-corrector method. 

  68725078.28222
2'

2

''

22

'

2

''

22

'''

2  yyyyyxy

      68725078.28
6

001.0
467653362.6

2

01.0
885294059.11.0276696793.13  y

41.50234567

 '

3

'

2

'

104 22
3

4
yyy

h
yy 

358611111.1'

1 y

885294059.1'

2 y

707746226.22

333

'

3  yyxy

 
    70774626.22885294059.1358611111.12

3

1.04
14  y

41.83298942

093046.42

444

1

4  yyxy

 '

4

'

3

'

224 4
3

yyy
h

yy 

  093046.470774626.24885294059.1
3

1.0
276696793.1 

83700763.1

  221
2

1
yx

dx

dy
     21.1)3.0(,12.1)2.0(,06.11.0,10  yyyy

)4.0(y
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                  Solution 

         

          

        

        

        

         

 By Milne’s predictor formula 

         

            

           =  

By Milne’s corrector formula 

              

       

      =  

    Once again if we use this value of , we get 

            

4.0,3.0,2.0,1.0,0 43210  xxxxx

1.0,21.1,12.1,06.1,1 3210  hyyyy

  221
2

1
' yxy 

    
2

1
101

2

1
1

2

1 2

0

2

0

'

0  yxy

     567418.006.11.01
2

1
1

2

1 222

1

22

1

'

1  yxy

7979345.0)21.1)(3.01(
2

1
)1(

2

1 222

3

2

33 


yxy

 '

3

'

2

'

104 22
3

4
yyy

h
yy 

 
    7979345.02652288.0367418.02

3

1.04
1 

71.27712226

 '

4

'

3

'

224 4
3

yyy
h

yy   946003944.0'

4 y

 946003944.0)7979345.0(4652288.0
3

1.0
12.1 

51.27966766

4y

   949778612.0279667665.14.01
2

1 22'

4 y
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      So  

               =  

    If we repeat this procedure once again using this ,  

                 

     By Milne’s corrector formula 

          

             =  

   Continuing this process again and again, after some steps we get   

         

Example 5.  Given , and , and 

i)  by Euler method; using that value obtained 

ii)  by Modified Euler method 

iii) Obtain  by Improved Euler method and find 

iv)  by Milne’s method. 

                  Solution 

By Euler method  

By Modified Euler  

        

            

  949778612.07979345.04652288.0
3

1.0
12.14 y

71.27979348

4y

  949965394.0)279793487.1(4.01
2

1 22'

4 y

  949965394.07979345.04652288.0
3

1.0
12.14 y

31.27979971

71.279800034 y

yy  1 0)0( y

)1.0(y

)2.0(y

)3.0(y

)4.0(y

     1.0011.00, 0001  yxhfyy

 







 111112 ,

2

1
,

2
yxhfy

h
xhfyy

     1855.01.011.0
2

1
1.011.01.0 
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By improved Euler method 

       

           

          =  

Now using Milne’s predictor formula 

          

              

              

              =  

      

By Milne’s corrector formula 

     

         

         

         =  

Exercise 

1. Using Milne’s method, find  given   

     

     22232223 ,,,
2

1
yxhfyxfyxfhyy 

      1855.011.01855.011855.01
2

1.0
1855.0 

0.2628775

 '

3

'

2

'

104 22
3

4
yyy

h
yy 

      3210 12112
3

4
yyy

h
y 

 
    2628775.01(21855.011.012

3

1.04
0 

0.327966

672034.0327966.011 4

'

4  yy

 '

4

'

3

'

224 4
3

yyy
h

yy 

    '

4322 141
3

yyy
h

y 

672034.0)2628775.0(4)1855.01((
3

1.0
1855.0 

30.33333413

)2.0(y

0323.2)15.0(,0211.2)1.0(,0103.2)05.0(,2)0(,1.02.0  yyyyyx
dx

dy
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2. Find  given . 

3. Using Runge-Kutta method of fourth order, find at  given

. Continue your work to get by Milne’s method. 

4. Solve  by Taylor series method at  and 

hence find and  by Milne’s method. 

5. If , find  and 

 by Milne’s method. 

6. Estimate and using Milne’s method correct to three decimal places, given 

. 

7.  Solve  to obtain  by Milne’s method. Obtain the data you 

require by any method you like. 

8. Using both predictor-corrector methods, estimate  if  satisfies , and

. 

9. Given , find 

by Milne’s predictor-corrector method. 

10. Compute  by Milne’s method given  with . Obtain the 

required data by Taylor series method. 

11. Given , find  by Euler method; by Taylor series 

method; by Runge-Kutta method and by Milne’s method. 

)8.0(y 7379.1)6.0(,46820.1)4.0(,12186.1)2.0(,1)0(,2  yyyyxyy

y 3.0,2.0,1.0  xxx

1)0(,2  yyxyy )4.0(y

1)0(,)1(
2

1 2  yyxy 6.0,4.0,2.0  xxx

)8.0(y )1(y

090.2)3.0(,040.2)2.0(,010.2)1.0(,2)0(,2  yyyyye
dx

dy x )4.0(y

)5.0(y

)8.0(y )1(y

6841.0)6.0(,4228.0)4.0(,2027.0)2.0(,0)0(,1 2  yyyyyy

1)0(,2  yyxy )4.0(y

)4.1(y y
2

1

xx

y

dx

dy


972.0)3.1(,986.0)2.1(,996.0)1.1(,1)1(  yyyy

2493.2)6.0(,1755.2)4.0(,0933.2)2.0(,2)0(,
1




 yyyy
yx

y

)8.0(y

)6.0(y 1)0(,  yyxy 2.0h

0)0(,23  yyey x
)1.0(y )2.0(y

)3.0(y )4.0(y
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12. Find by Taylor series method; by modified Euler method; by 

Runge-Kutta method and  by Milne’s method, given . 

13. Given  obtain  by Picard’s method; by modified Euler 

method; by Runge-Kutta method; by Milne’s predictor-corrector method. 

14. Given obtain power series by Picard’s method; using Milne’s 

method, estimate and show that . 

Estimate given  using .   

  Boundary-Value Problem (BVP) 

BVPs can be solved numerically by using either the Shooting Method or the Finite-

Difference Method (FDM). Here we consider the numerical solution of PVP using FDM. The 

former method is left for the students as a reading assignment. 

Some simple examples of two-point linear BVPs are: 

                                  '' 'y x f x y x g x y x r x                                                                  (1) 

with boundary conditions 

                   0y x a  and  ny x b                                                                                        (2) 

 '' 21 1

2

2i i i
i

y y y
y O h

h

  
                      ivy x p x y x q x                                                                                       

(3) 

with boundary conditions  

                   '

0 0y x y x A    and     '

n ny x y x B  .                                                         (4) 

Problems of the type in Eq. (3) and Eq. (4), which involve the fourth-order differential 

equation, are much involved and will not be discussed here. There exist many methods for 

)2.0(y )4.0(y )6.0(y

)8.0(y 0)0(,1 2  yyy

1)0(,1  yxyy )1.0(y )2.0(y

)3.0(y )4.0(y

,10)0(,2 2  yxyy

2.0,6505.1)1(  hy

)4.0(),5.0( yy 1)0(,2  yyxy 1.0h
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solving second-order BVPs of the type in Eq. (1) and Eq. (2). Of these, the Finite-Difference 

Method is popular one and will be discussed. 

Finite-Difference Method (FDM) 

The FDM for the solution for a two-point BVP consists in replacing the derivatives occurring 

in the differential equation (and the boundary conditions as well) by means of their finite-

difference approximations and then solving the resulting linear system of equations by a 

standard procedure. 

To obtain the approximate finite-difference approximations to the derivatives, we proceed as 

follows: 

Expanding  y x h in Taylor’s series, we have 

                              
2 3' '' '''

2 6
...h hy x h y x hy x y x y x                                                  (5) 

from which we obtain 

                          
   

 ' '' ...
2

y x h y x h
y x y x

h

 
    

Thus we have  

                             
   

 '
y x h y x

y x O h
h

 
                                                                        (6) 

Which is forward difference approximation for  'y x . 

Similarly, expansion of  y x h  in Taylor’s series gives 

                              
2 3' '' '''

2 6
...h hy x h y x hy x y x y x                                                   (7) 

from which we obtain 

                            
   

 '
y x y x h

y x O h
h

 
                                                                         (8) 
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Which is the backward difference approximation for  'y x .  

 

A central difference approximation for  'y x  can be obtained by subtracting Eq. (7) from 

Eq. (5). We thus have 

                          
   

 ' 2

2

y x h y x h
y x O h

h

  
                                                                   (9) 

It is clear that Eq. (9) is better approximation to  'y x  than either Eq. (6) or Eq. (8). Again, 

adding Eq. (5) and Eq. (7) we get an approximation for  ''y x as 

                       
     

 '' 2

2

2y x h y x y x h
y x O h

h

   
                                                                (10) 

In a similar manner, it is possible to derive finite-difference approximations to higher 

derivatives.  

To solve the BVP defined by Eq. (1) and Eq. (2), we divide the range  0 , nx x into n equal 

subintervals of width  h  so that  

                                       0 , 0,1,2,..., .ix x ih i n    

The corresponding values of y at these points are denoted by 

                                          0 , 0,1,2,..., .i iy x y y x ih i n     

From Eq. (9) and Eq. (10), values of  'y x  &  ''y x at the point ix x can now be written as 

                                    ' 21

2

i i
i

y y
y O h

h

 
   

and                          '' 21 1

2

2i i i
i

y y y
y O h

h
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In many applied problems; however, derivative boundary conditions may be prescribed, and 

this requires a modification of the procedures described above. The following examples 

illustrate the application of the FDM. 

Example 1: A boundary-value problem is defined by 

  

                        
1 0, 0 1iiy y x     ,  

where 
               

   0 1 0, 0.5y y and h  
 

Use the FDM to determine the value of  y(0.5). Its exact solution is given by  

                   
 

1 cos1
cos sin 1

sin1
y x x x


   , 

from which, we obtain 

                             0.5 0.139493927y  . 

Here 1nh  . The difference equation is approximated as 

                                 1 1

2

2
1 0i i i

i

y y y
y

h

  
    

, and this gives after simplification 

                                  2 2

1 12 , 1,2,..., 1i i iy h y y h i n        , 

which together with the boundary conditions 0 0ny y  , comprises a system of  1n 

equations for  1n  unknowns 
0 1
, ,...,

n
y y y . 

Choosing 
1

2
h   (i.e. 2n  ), the above system becomes  
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                        0 1 2

1 1
2

4 4
y y y

 
     
 

. 

With 0 2 0y y  , this gives 

                                  1 0.5 0.142857142y y  . 

Comparing with exact solution given above shows that the error in the computed solution is 

0.00336 . 

On the other hand, if we choose 
1

4
h  (i.e. n=4), we obtain the three equations: 

                                    

0 1 2

1 2 3

2 3 4

31 1

16 16

31 1

16 16

31 1

16 16

y y y

y y y

y y y

   

   

   

 

Where 0 4 0y y  .  Solving the system we obtain  2 0.5 0.140311804y y  , the error in 

which 0.00082 . Since the ration of the error is about 4 , it follows that the order of 

convergence is 
2h . 

These results show that the accuracy obtained by the finite difference method depends upon the 

width of the subinterval chosen and also on the order of approximations. As h is reduced, the 

accuracy increases but the number equations to be solved also increases. 

Example 2: Solve the boundary-value problem  

                   
2

2
0, 0 2

d y
y x

dx
    , 

with                   0 0 & 2 3,62686y y  . 
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The exact solution of this problem is sinhy x .  The finite-difference approximation is given by  

                            1 12

1
2i i i iy y y y i

h
     

We subdivide the subinterval  0,2 the four equal parts so that 0.5h  . Let the values of y at the 

five points be 0 1 2 3 4, , , ,&y y y y y . We are given that 0 0y  , and 4 3.62686y  . 

Writing the difference equations at the three interval points (which are the unknowns), we obtain  

                                   

 

 

 

 

0 1 2 1

1 2 3 2

2 3 3 3

4 2

4 2

4 2

y y y y

y y y y ii

y y y y

   


   


   

 

, respectively.  Substituting for 0 4&y y and rearranging, we get the system 

                           
1 2

1 2 3

2 3

9 4 0

4 9 4 0

4 9 14.50744

y y

y y y iii

y y

   


   
   

 

The solution of (iii) is given in the table below. 

 x  Computed solution of 

y   

Exact value 

sinhy x  

Error 

    

0.5 0.52635 0.52110 0.00525 

1.0 1.18428 1.17520 0.00908 

1.5 2.13829 2.12928 0.00901 

    

Exercise 

1. Solve the boundary value defined by  

             '' 0, 0 0, 1 1y y y y    , 
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by finite-difference method. Compare the computed solution at  0.5y with the exact 

value. Take 0.25h  . 

2. Project work. Shooting Method. This is a popular method for the solution of two-point 

boundary-value problems. If the problem is defined by  

                          ''

0 1, 0y x f x y x and y x A   , 

Then it is first transformed into the initial value problem  

                     ' ',y x z z x f x   with  0 0y x   and  0 0z x m , where 0m  is a guess 

for the value  '

0y x . Let the solution corresponding to 1x x  be 0Y . If 1Y  is the value 

obtained by another guess 1m for  '

0y x , then 0 1Y and Y  and are related linearly. Thus, 

linear interpolation can be carried out between the values  0 0,x y  and  1 1,m y .  

Obviously, the process can be repeated till we obtain the value for  1y x is close to A . 

Apply the Shooting method to solve the BVP 

                                               '' , 0 0, 1 1y x y x y y    

 

 

  

 

 

   
 

 

 

 


