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Chapter One 

Propositional Logic and Set Theory  
In this chapter, we study the basic concepts of propositional logic and some part of set theory. In 

the first part, we deal about propositional logic, logical connectives, quantifiers and arguments. 

In the second part, we turn our attention to set theory and discus about description of sets and 

operations of sets.    

Main Objectives of this Chapter 

At the end of this chapter, students will be able to:- 

 Know the basic concepts of mathematical logic. 

 Know methods and procedures in combining the validity of statements. 

 Understand the concept of quantifiers.   

 Know basic facts about argument and validity.  

 Understand the concept of set. 

 Apply rules of operations on sets to find the result. 

 Show set operations using Venn diagrams. 

1.1. Propositional Logic 

Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to 

systematize and codify principles of valid reasoning. It has emerged from a study of the use of 

language in argument and persuasion and is based on the identification and examination of those 

parts of language which are essential for these purposes. It is formal in the sense that it lacks 

reference to meaning. Thereby it achieves versatility: it may be used to judge the correctness of a 

chain of reasoning (in particular, a "mathematical proof") solely on the basis of the form (and not 

the content) of the sequence of statements which make up the chain. There is a variety of 

symbolic logics. We shall be concerned only with that one which encompasses most of the 

deductions of the sort encountered in mathematics. Within the context of logic itself, this is 

"classical" symbolic logic. 

Section objectives: 

After completing this section, students will be able to:- 

 Identify the difference between proposition and sentence. 

 Describe the five logical connectives. 

 Determine the truth values of propositions using the rules of logical connectives. 
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 Construct compound propositions using the five logical connectives. 

 Identify the difference between the converse and contrapositive of conditional statements.  

 Determine the truth values of compound propositions. 

 Distinguish a given compound proposition is whether tautology or contradiction. 

1.1.1. Definition and examples of propositions 

Consider the following sentences. 

a. 2 is an even number. 

b. A triangle has four sides. 

c. Athlete Haile G/silassie weighed 45 kg when he was 20 years old. 

d. May God bless you! 

e. Give me that book. 

f. What is your name? 

The first three sentences are declarative sentences. The first one is true and the second one is 

false. The truth value of the third sentence cannot be ascertained because of lack of historical 

records but it is, by its very form, either true or false but not both. On the other hand, the last 

three sentences have no truth value. So they are not declaratives.   

Now we begin by examining proposition, the building blocks of every argument. A proposition 

is a sentence that may be asserted or denied. Proposition in this way are different from questions, 

commands, and exclamations. Neither questions, which can be asked, nor exclamations, which 

can be uttered, can possibly be asserted or denied. Only propositions assert that something is (or 

is not) the case, and therefore only they can be true or false. 

Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or False but 

not both).  

The above definition does not mean that we must always know what the truth value is.  For 

example, the sentence “The 1000
th

 digit in the decimal expansion of  is 7” is a proposition, but 

it may be necessary to find this information in a Web site on the Internet to determine whether 

this statement is true. Indeed, for a sentence to be a proposition (or a statement), it is not a 

requirement that we are able to determine its truth value.  

Every proposition has a truth value, namely true (denoted by ) or false (denoted by ). 

1.1.2. Logical connectives 

In mathematical discourse and elsewhere one constantly encounters declarative sentences which 

have been formed by modifying a statement with the word “not” or by connecting statements 

with the words “and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or 

combinations of words are called propositional connectives.    

Note: Letters such as  etc. are usually used to denote propositions. 
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Conjunction 

When two propositions are joined with the connective “and,” the proposition formed is a logical 

conjunction. “and” is denoted by “ ”.  So, the logical conjunction of two propositions,  and , is 

written: 

  ,      read as “  and ,”  or “  conjunction ”.    

p and q are called the components of the conjunction.  is true if and only if  is true and  is 

true. 

 

The truth table for conjunction is given as follows: 

   

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.1: Consider the following propositions:  

: 3 is an odd number. (True) 

: 27 is a prime number. (False) 

: Addis Ababa is the capital city of Ethiopia. (True) 

a. : 3 is an odd number and 27 is a prime number. (False) 

b. : 3 is an odd number and Addis Ababa is the capital city of Ethiopia. (True) 

Disjunction 

When two propositions are joined with the connective “or,” the proposition formed is called a logical 

disjunction.  “or”  is denoted by “ ”.  So, the logical disjunction of two propositions,  and , is written: 

      read as “  or ”  or “  disjunction .”    

 is false if and only if  both  and  are false. 

The truth table for disjunction is given as follows:   

   

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Example 1.2: Consider the following propositions:  

: 3 is an odd number. (True) 

: 27 is a prime number. (False) 

: Nairobi is the capital city of Ethiopia. (False) 

a. : 3 is an odd number or 27 is a prime number. (True) 

b.  : 27 is a prime number or Nairobi is the capital city of Ethiopia. (False) 

Note: The use of “or” in propositional logic is rather different from its normal use in the English 

language. For example, if Solomon says, “I will go to the football match in the afternoon or I 

will go to the cinema in the afternoon,” he means he will do one thing or the other, but not both.  

Here “or” is used in the exclusive sense.  But in propositional logic, “or” is used in the inclusive 

sense; that is, we allow Solomon the possibility of doing both things without him being 

inconsistent.  

Implication  

When two propositions are joined with the connective “implies,” the proposition formed is called a 

logical implication. “implies” is denoted by “ .” So, the logical implication of two propositions,  and 

, is written: 

                      read as “  implies .” 

The function of the connective “implies” between two propositions is the same as the use of “If … then 

…” Thus  can be read as “if , then .” 

is false if and only if  is true and  is false. 

This form of a proposition is common in mathematics. The proposition  is called the hypothesis 

or the antecedent of the conditional proposition  while  is called its conclusion or the 

consequent. 

The following is the truth table for implication. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Examples 1.3: Consider the following propositions:  

                : 3 is an odd number. (True) 

                : 27 is a prime number. (False) 

                : Addis Ababa is the capital city of Ethiopia. (True) 

     : If 3 is an odd number, then 27 is prime. (False) 

     : If 3 is an odd number, then Addis Ababa is the capital city of Ethiopia. (True) 
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We have already mentioned that  can be expressed as both “If , then ” and “  implies 

. ” There are various ways of expressing the proposition , namely: 

                   If , then . 

                    if . 

                    implies . 

  only if . 

  is sufficient for . 

         is necessary for  

Bi-implication  

When two propositions are joined with the connective “bi-implication,” the proposition formed is called 

a logical bi-implication or a logical equivalence. A bi-implication is denoted by “ ”.  So the logical bi-

implication of two propositions,  and , is written: 

. 

 is false if and only if  and  have different truth values. 

The truth table for bi-implication is given by:  

   

 

 

 

 

 

 

 

 

 

 

 

 

Examples 1.4: 

a. Let : 2 is greater than 3. (False) 

            : 5 is greater than 4. (True) 

Then  

             : 2 is greater than 3 if and only if 5 is greater than 4. (False) 

b. Consider the following propositions: 

      : 3 is an odd number. (True) 

     : 2 is a prime number. (True) 

                 :  3 is an odd number if and only if 2 is a prime number. (True) 

There are various ways of stating the proposition . 

                    if and only if  (also written as  iff ), 

                    implies  and  implies , 

                    is necessary and sufficient for  

                    is necessary and sufficient for  
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                    is equivalent to  

Negation  

Given any proposition , we can form the proposition  called the negation of . The truth value of  

is  if  is  and  if  is . 

We can describe the relation between  and  as follows. 

  

 

 

 

 

Example 1.5: Let : Addis Ababa is the capital city of Ethiopia. (True) 

                           : Addis Ababa is not the capital city of Ethiopia. (False)  

Exercises  

1. Which of the following sentences are propositions? For those that are, indicate the truth 

value. 

a. 123 is a prime number.  

b. 0 is an even number. 

c. . 

d. Multiply  by 3. 

e. What an impossible question! 

2. State the negation of each of the following statements. 

a.  is a rational number. 

b. 0 is not a negative integer. 

c. 111 is a prime number. 

3. Let : 15 is an odd number.  

      : 21 is a prime number. 

State each of the following in words, and determine the truth value of each. 

a. . 

b. .  

c. . 

d. . 

e. . 

f. . 

a. . 

g. . 
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4. Complete the following truth table. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

1.1.3. Compound (or complex) propositions 

So far, what we have done is simply to define the logical connectives, and express them through 

algebraic symbols. Now we shall learn how to form propositions involving more than one 

connective, and how to determine the truth values of such propositions. 

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is called a 

compound statement. 

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For 

example, the expression   will be meaningless unless we know which connective 

should apply first. It could mean  or , which are very different 

propositions. The truth value of such complicated propositions is determined by systematic 

applications of the rules for the connectives. 

The possible truth values of a proposition are often listed in a table, called a truth table. If  and  are 

propositions, then there are four possible combinations of truth values for  and . That is, , ,  

and . If a third proposition  is involved, then there are eight possible combinations of truth values for 

,  and . In general, a truth table involving “ ” propositions , ,…,  contains  possible 

combinations of truth values. So, we use truth tables to determine the truth value of a compound 

proposition based on the truth value of its constituent component propositions.  

Examples 1.6: 

a. Suppose   and  are true and  and  are false. 

           What is the truth value of ? 

i. Since  is true and  is false,  is false.  

ii. Since  is true and  is false,  is true. 

iii. Thus by applying the rule of implication, we get that  is true. 

b. Suppose that a compound proposition is symbolized by  
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and that the truth values of  and  are  and , respectively. Then the truth value of 

 is , that of   is , that of  is . So the truth value of  is .  

Remark: When dealing with compound propositions, we shall adopt the following convention 

on the use of parenthesis. Whenever “ ” or “ ” occur with “ ” or “ ”, we shall assume that 

“ ” or “ ” is applied first, and then “ ” or “ ” is then applied. For example, 

                                       means  

                                       means  

                                     means  

                                    means  

However, it is always advisable to use brackets to indicate the order of the desired operations.  . 

Definition 1.3: Two compound propositions  and  are said to be equivalent if they have the same truth 

value for all possible combinations of truth values for the component propositions occurring in both  and 

. In this case we write . 

Example 1.7:   Let . 

         .  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then,  is equivalent to , since columns 5 and 6 of the above table are identical. 

Example 1.8:   Let .   

                 . 

Then 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at columns 5 and 6 of the table we see that they are not identical. Thus . 

It is useful at this point to mention the non-equivalence of certain conditional propositions. 

Given the conditional , we give the related conditional propositions:- 
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                      :                 Converse of  

                    :             Inverse of   

                    :            Contrapositive of   

As we observed from example 1.7, the conditional  and its contrapositve  are 

equivalent. On the other hand,   and  . 

Do not confuse the contrapositive and the converse of the conditional proposition. Here is 

the difference: 

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement 

and the conclusion of the converse statement is the hypothesis of the conditional statement.   

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of 

the conditional statement and the conclusion of the contrapositive statement is the negation of 

hypothesis of the conditional statement.  

Example 1.9: 

a. If Kidist lives in Addis Ababa, then she lives in Ethiopia. 

Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa. 

Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis 

Ababa. 

Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia. 

b. If it is morning, then the sun is in the east. 

Converse: If the sun is in the east, then it is morning. 

Contrapositive: If the sun is not in the east, then it is not morning. 

Inverse: If it is not morning, then the sun is not the east.  

Propositions, under the relation of logical equivalence, satisfy various laws or identities, which 

are listed below.  

1. Idempotent Laws 

a. . 

b. . 

2. Commutative Laws 

a.  . 

b.  . 

3. Associative Laws 

a. . 

b. . 

4. Distributive Laws 

a. . 

b. . 

5. De Morgan’s Laws 
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a. . 

b.  

6. Law of Contrapositive 

 

7. Complement Law 

. 

1.1.4. Tautology and contradiction 

Definition: A compound proposition is a tautology if it is always true regardless of the truth values of its 

component propositions. If, on the other hand, a compound proposition is always false regardless of its 

component propositions, we say that such a proposition is a contradiction. 

Note: A proposition that is neither a tautology nor a contradiction is called a contingency.  

Examples 1.10: 

a. Suppose  is any proposition. Consider the compound propositions  and .  

    

 

 

 

 

 

 

 

 

                    Observe that  is a tautology while  is a contradiction. 

b. For any propositions  and . Consider the compound proposition .  Let us 

make a truth table and study the situation. 

    

 

 

 

 

 

 

 

 

 

 

 

 

T 

T 

T 

T 

We have exhibited all the possibilities and we see that for all truth values of the constituent 

propositions, the proposition  is always true. Thus,  is a tautology. 

c. The truth table for the compound proposition . 
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In example 1.10(c), the given compound proposition has a truth value  for every possible 

combination of assignments of truth values for the component propositions  and . Thus 

 is a contradiction.  

Remark: 

1. In a truth table, if a proposition is a tautology, then every line in its column has  as its 

entry; if a proposition is a contradiction, every line in its column has  as its entry. 

2. Two compound propositions  and  are equivalent if and only if “ ” is a 

tautology. 

Exercises  

1. For statements  and , use a truth table to show that each of the following pairs of 

statements are logically equivalent. 

a.  and . 

b.  and . 

c.  and . 

d.  and . 

e.  and .  

2. For statements , and , show that the following compound statements are tautology. 

a. . 

b. . 

c. . 

3. For statements  and , show that  is a contradiction. 

4. Write the contrapositive and the converse of the following conditional statements. 

a. If it is cold, then the lake is frozen. 

b. If Solomon is healthy, then he is happy. 

c. If it rains, Tigist does not take a walk.    

5. Let  and  be statements. Which of the following implies that  is false? 

a.  is false. 

b.  is true. 

c.  is true. 

d.  is true. 

e.  is false. 

6. Suppose that the statements  and  are assigned the truth values  and , 

respectively. Find the truth value of each of the following statements. 

a. . 

b. . 

c. . 

f. . 

g. . 

h. . 
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d. . 

e. . 

i. . 

j. . 

7. Suppose the value of  is ; what can be said about the value of ? 

8. a. Suppose the value of  is ; what can be said about the values of  and 

? 

b. Suppose the value of  is ; what can be said about the values of  and 

? 

9. Construct the truth table for each of the following statements. 

a. . 

b. . 

c. . 

d. . 

e. . 

f. . 

10. For each of the following determine whether the information given is sufficient to decide 

the truth value of the statement. If the information is enough, state the truth value. If it is 

insufficient, show that both truth values are possible. 

a. , where . 

b. , where . 

c. , where . 

d. , where . 

e. , where . 

f. , where  and . 

 

 

1.2. Open propositions and quantifiers 
In mathematics, one frequently comes across sentences that involve a variable. For example, 

 is one such. The truth value of this statement depends on the value we assign 

for the variable . For example, if , then this sentence is true, whereas if , then the 

sentence is false.  

Section objectives: 

After completing this section, students will be able to:-  

 Define open proposition. 

 Explain and exemplify the difference between proposition and open proposition. 

 Identify the two types of quantifiers. 

 Convert open propositions into propositions using quantifiers. 

 Determine the truth value of a quantified proposition. 
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 Convert a quantified proposition into words and vise versa. 

 Explain the relationship between existential and universal quantifiers. 

 Analyze quantifiers occurring in combinations.   

Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or more 

variables and whose truth value depends on the values assigned for the variables. We represent an open 

statement by a capital letter followed by the variable(s) in parenthesis, e.g.,  etc. 

Example 1.11: Here are some open propositions: 

a.  is the day before Sunday. 

b.  is a city in Africa.   

c.  is greater than . 

d. . 

It is clear that each one of these examples involves variables, but is not a proposition as we 

cannot assign a truth value to it. However, if individuals are substituted for the variables, then 

each one of them is a proposition or statement. For example, we may have the following.  

a.  Monday is the day before Sunday. 

b. London is a city in Africa. 

c. 5 is greater than 9. 

d. –13 + 4= –9   

Remark 

The collection of all allowable values for the variable in an open sentence is called the universal 

set (the universe of discourse) and denoted by . 

Definition 1.5: Two open proposition  and  are said to be equivalent if and only if  

 for all individual . Note that if the universe  is specified, then  and  are 

equivalent if and only if  for all . 

Example 1.12: Let . 

           . 

Let . 

Then for all ;  and  have the same truth value. 

       ( )                     ( ) 

    ( )                    ( ) 

                  ( )                            ( ) 

                 ( )                             ( ) 

Therefore  for all . 
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Definition 1.6: Let  be the universal set. An open proposition  is a tautology if and only if  is 

always true for all values of .  

Example 1.13: The open proposition  is a tautology. 

As we have observed in example 1.11, an open proposition can be converted into a proposition 

by substituting the individuals for the variables. However, there are other ways that an open 

proposition can be converted into a proposition, namely by a method called quantification. Let 

 be an open proposition over the domain . Adding the phrase “For every ” to  or 

“For some ” to  produces a statement called a quantified statement.     

Consider the following open propositions with universe . 

a.  . 

b. . 

c. . 

Then  is always true for each , 

          is true only for  and , 

          is always false for all values of . 

Hence, given an open proposition , with universe , we observe that there are three 

possibilities. 

a.  is true for all . 

b.  is true for some . 

c.  is false for all . 

Now we proceed to study open propositions which are satisfied by “all” and “some” members of 

the given universe. 

a. The phrase "for every  " is called a universal quantifier. We regard "for every ," "for all ," 

and "for each  " as having the same meaning and symbolize each by “ .” Think of the 

symbol  as an inverted (representing all). If   is an open proposition with universe , then 

 is a quantified proposition and is read as “every  has the property .” 

b. The phrase "there exists an  " is called an existential quantifier. We regard "there exists an ," 

"for some ," and "for at least one  " as having the same meaning, and symbolize each by 

“ .” Think of the symbol  as the backwards capital (representing exists). If   is an 

open proposition with universe , then  is a quantified proposition and is read as “there 

exists  with the property .” 

Remarks: 
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i. To show that  is , it is sufficient to find at least one  such that  is 

.  Such an element  is called a counter example. 

ii.  is  if we cannot find any  having the property . 

Example 1.14: 

a. Write the following statements using quantifiers. 

i. For each real number . 

Solution:  . 

ii. There is a real number  such that . 

Solution: . 

iii. The square of any real number is nonnegative. 

Solution: . 

b.  

i.  Let . The truth value for  [i.e ] is . 

ii. Let . The truth value for  is .   is a 

counterexample since  but  . On the other hand,  is true, since 

 such that . 

iii. Let . The truth value for  is  since there is no real 

number whose absolute value is .  

Relationship between the existential and universal quantifiers 

If  is a formula in , consider the following four statements. 

a. . 

b. .  

c. . 

d. . 

We might translate these into words as follows.  

a. Everything has property . 

b. Something has property . 

c. Nothing has property . 

d. Something does not have property . 

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus, 

for example, the existential quantifier may be defined in terms of the universal quantifier.  

Now we proceed to discuss the negation of quantifiers. Let  be an open proposition. Then 

 is false only if we can find an individual “ ” in the universe such that  is false. If 

we succeed in getting such an individual, then   is true. Hence  will be false 

if  is true. Therefore the negation of  is . Hence we conclude 

that 
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. 

Similarly, we can easily verified that 

. 

Remark: To negate a statement that involves the quantifiers  and , change each  to , 

change each  to , and negate the open statement. 

 

Example 1.15: 

Let .  

a.   

                           . 

b.  

                                 . 

Given propositions containing quantifiers we can form a compound proposition by joining them 

with connectives in the same way we form a compound proposition without quantifiers. For 

example, if we have  and  we can form . 

Consider the following statements involving quantifiers. Illustrations of these along with 

translations appear below.  

a. All rationals are reals.                                    . 

b. No rationals are reals.                                    .  

c. Some rationals are reals.                                . 

d. Some rationals are not reals.                          . 

Example 1.16: 

Let  The set of integers. 

Let :  is a prime number.  

      :  is an even number.  

      :  is an odd number. 

Then  

a.  is ; since there is an , say 2, such that  is . 

b.  is . As a counterexample take 7. Then  is  and  is . 

Hence . 

c.  is . 

d.  is . 

Quantifiers Occurring in Combinations 

So far, we have only considered cases in which universal and existential quantifiers appear 

simply.  However, if we consider cases in which universal and existential quantifiers occur in 

combination, we are lead to essentially new logical structures.  The following are the simplest 

forms of combinations: 
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1.  

“for all  and for all  the relation  holds”;  

2.   

              “there is an  and there is a  for which  holds”; 

3.   

 “for every  there is a  such that  holds”; 

4.  

“there is an  which stands to every  in the relation .” 

Example 1.17: 

Let  The set of integers. 

Let . 

a.  means that there is an integer  and there is an integer  such that 

.  This statement is true when  and , since 4 + 1 = 5.  

Therefore, the statement  is always true for this universe.  There are 

other choices of  and  for which it would be true, but the symbolic statement merely 

says that there is at least one choice for  and  which will make the statement true, and 

we have demonstrated one such choice. 

b.  means that there is an integer  such that for every , .  

This is false since no fixed value of  will make this true for all  in the universe; e.g. if 

, then  is false for some . 

c.  means that for every integer , there is an integer  such that  

.  Let , then  will always be an integer, so this is a true 

statement. 

d.  means that for every integer  and for every integer , .  

This is false, for if  and , we get . 

Example 1.18:  

a. Consider the statement 

For every two real numbers  and , . 

If we let 

                  

where the domain of both  and  is , the statement can be expressed as  

 or as . 
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Since  and  for all real numbers  and , it follows that  and so 

 is true for all real numbers  and . Thus the quantified statement is true. 

b. Consider the open statement  

 

where the domain of the variable  is the set  of even integers and the domain of the variable  

is the set  of odd integers. Then the quantified statement    

 
can be expressed in words as  

There exist an even integer  and an odd integer  such that . 

Since  is true, the quantified statement is true. 

c. Consider the open statement  

 

where the domain of both  and  is the set  of positive rational numbers. Then the quantified 

statement  

 

can be expressed in words as 

For every positive rational number , there exists a positive rational number  such that . 

It turns out that the quantified statement is true. If we replace  by , then we have    

 . 

Since  and for every real number ,  is false. 

d. Consider the open statement 

 is odd 

where the domain of both  and  is the set  of natural numbers. Then the quantified statement  

, 

expressed in words, is  

There exists a natural number  such that for every natural numbers ,  is odd. The statement 

is false. 

In general, from the meaning of the universal quantifier it follows that in an expression 

 the two universal quantifiers may be interchanged without altering the sense of 

the sentence. This also holds for the existential quantifies in an expression such as 

. 

In the statement  , the choice of  is allowed to depend on  - the  that works 

for one  need not work for another . On the other hand, in the statement , the 

 must work for all , i.e.,  is independent of . For example, the expression ,  

where  and  are variables referring to the domain of real numbers, constitutes a true 

proposition, namely, “For every number , there is a number , such that  is less that ,” i.e., 

“given any number, there is a greater number.”  However, if the order of the symbol  and 

 is changed, in this case, we obtain: , which is a false proposition, namely, 
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“There is a number which is greater than every number.”  By transposing  and , 

therefore, we get a different statement. 

 The logical situation here is: 

. 

Finally, we conclude this section with the remark that there are no mechanical rules for 

translating sentences from English into the logical notation which has been introduced. In every 

case one must first decide on the meaning of the English sentence and then attempt to convey 

that same meaning in terms of predicates, quantifiers, and, possibly, individual constants. 

 

Exercises 

1. In each of the following, two open statements  and  are given, where the 

domain of both  and  is . Determine the truth value of  for the 

given values of  and . 

a. . and . . 

b. . and . . 

c. . and . 

. 

2. Let  denote the set of odd integers and let  is even, and  is even. 

be open statements over the domain . State  and  in words. 

3. State the negation of the following quantified statements. 

a. For every rational number , the number  is rational. 

b. There exists a rational number  such that . 

4. Let  is an integer. be an open sentence over the domain . Determine, with 

explanations, whether the following statements are true or false: 

a. . 

b. . 

5. Determine the truth value of the following statements. 

a. . 

b. . 

c. . 

d.   . 

e. . 

f. .   

g. . 

h.         

6. Consider the quantified statement  

                   For every  and ,  is prime. 
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              where the domain of the variables  and  is . 

a. Express this quantified statement in symbols. 

b. Is the quantified statement in (a) true or false? Explain. 

c. Express the negation of the quantified statement in (a) in symbols. 

d. Is the negation of the quantified in (a) true or false? Explain. 

7. Consider the open statement  where the domain of  is  and 

the domain of  is . 

a. State the quantified statement  in words. 

b. Show quantified statement in (a) is true. 

8.   Consider the open statement  where the domain of  is  

and the domain of  is . 

a. State the quantified statement  in words. 

b. Show quantified statement in (a) is true. 

 

 

1. 3.  Argument and Validity 

Section objectives: 

After completing this section, students will be able to:-  

 Define argument (or logical deduction). 

 Identify hypothesis and conclusion of a given argument. 

 Determine the validity of an argument using a truth table. 

 Determine the validity of an argument using rules of inferences. 

Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements 

, called hypotheses or premises, yield another statement , called the conclusion. Such 

a logical deduction is denoted by: 

 or 

 

 

  

 

Example 1.19:  Consider the following argument: 

If you study hard, then you will pass the exam. 

You did not pass the exam. 
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Therefore, you did not study hard. 

Let : You study hard. 

       : You will pass the exam. 

The argument form can be written as: 

                                                                                              

When is an argument form accepted to be correct?  In normal usage, we use an argument in order 

to demonstrate that a certain conclusion follows from known premises.  Therefore, we shall 

require that under any assignment of truth values to the statements appearing, if the premises 

became all true, then the conclusion must also become true.  Hence, we state the following 

definition. 

Definition 1.8: An argument form  is said to be valid if  is true whenever all the 

premises  are true; otherwise it is invalid. 

 

Example 1.20: Investigate the validity of the following argument:  

a.    pqqp      ,           

b.    prqqp     ,   

c. If it rains, crops will be good. It did not rain. Therefore, crops were not good.  

Solution: First we construct a truth table for the statements appearing in the argument forms. 

a.   

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The premises  and  are true simultaneously in row 4 only. Since in this case  is also 

true, the argument is valid. 

b.  

      

      

      

      

      

qp

p 

q   
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The 1
st
, 2

nd
, 5

th
, 6

th
 and 7

th
 rows are those in which all the premises take value .  In the 5

th
, 6

th
 

and 7
th

 rows however the conclusion takes value .  Hence, the argument form is invalid.  

c. Let : It rains. 

      : Crops are good. 

                      : It did not rain. 

                      : Crops were not good. 

The argument form is  

Now we can use truth table to test validity as follows: 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The premises  and  are true simultaneously in row 4 only. Since in this case  is also 

true, the argument is valid. 

Remark: 

1. What is important in validity is the form of the argument rather than the meaning or 

content of the statements involved. 

2. The argument form  is valid iff the statement  

 is a tautology. 

Rules of inferences 

Below we list certain valid deductions called rules of inferences. 

 

1. Modes Ponens 

   

   

       

 

2. Modes Tollens 

 

                         

                          

 

3. Principle of Syllogism  
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4. Principle of Adjunction 

a.        

              

          

b.                 

      

 

5. Principle of Detachment 

             

               

 

6. Modes Tollendo Ponens 

    

                         

    

 

7. Modes Ponendo Tollens 

   

                          

      

 

8. Constructive Dilemma 

 
                                    

                   

 

9. Principle of Equivalence 

 
       

       

 

10. Principle of Conditionalization 

                              

                         

 

  

Formal proof of validity of an argument 

Definition 1.9: A formal proof of a conclusion  given hypotheses  is a sequence of 

stapes, each of which applies some inference rule to hypotheses or previously proven statements 

(antecedent) to yield a new true statement (the consequent). 
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A formal proof of validity is given by writing on the premises and the statements which follows 

from them in a single column, and setting off in another column, to the right of each statement, 

its justification.  It is convenient to list all the premises first. 

Example 1.21: Show that  is valid. 

Solution: 

1.  is true                                                   premise 

2.     is true                                    premise 

3.    is true                                     contrapositive of (2) 

4.       is true                                           Modes Ponens using (1) and (3) 

Example 1.22: Show that the hypotheses  

                     It is not sunny this afternoon and it is colder than yesterday. 

                     If we go swimming, then it is sunny. 

                     If we do not go swimming, then we will take a canoe trip. 

                     If we take a canoe trip, then we will be home by sunset. 

       Lead to the conclusion: 

                     We will be home by sunset. 

 Let : It is sunny this afternoon.  

       : It is colder than yesterday.    

       : We go swimming. 

       : We take a canoe trip. 

       : We will be home by sunset.  

Then  

1.                        hypothesis 

2.                              simplification using (1) 

3.                        hypothesis 

4.                              Modus Tollens using (2) and (3) 

5.                     hypothesis 

6.                                 Modus Ponens using (4) and (5) 

7.                        hypothesis 

8.                                Modus Ponens using (6) and (7) 

Exercises 

1. Use the truth table method to show that the following argument forms are valid. 

i. . 

ii. . 

iii. . 

iv. . 
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v. . 

2. For the following argument given a, b and c below:  

i. Identify the premises. 

ii. Write argument forms. 

iii. Check the validity. 

a.    If he studies medicine, he will get a good job. If he gets a good job, he 

will get a good wage. He did not get a good wage. Therefore, he did not 

study medicine. 

b. If the team is late, then it cannot play the game. If the referee is here, 

then the team is can play the game. The team is late. Therefore, the 

referee is not here. 

c.   If the professor offers chocolate for an answer, you answer the 

professor’s question. The professor offers chocolate for an answer. 

Therefore, you answer the professor’s question 

3. Give formal proof to show that the following argument forms are valid. 

a. . 

b. . 

c. . 

d. . 

e. . 

f. .  

g. . 

h. . 

i. . 

4. Prove the following are valid arguments by giving formal proof. 

a. If the rain does not come, the crops are ruined and the people will starve.  The 

crops are not ruined or the people will not starve.  Therefore, the rain comes. 

b. If the team is late, then it cannot play the game.  If the referee is here then the 

team can play the game.  The team is late.  Therefore, the referee is not here. 

1.4.  Set theory 

In this section, we study some part of set theory especially description of sets, Venn diagrams 

and operations of sets. 

Section objectives: 

After completing this section, students will be able to:-  

 Explain the concept of set. 

 Describe sets in different ways. 
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 Identify operations on sets. 

 Illustrate sets using Venn diagrams. 

 

 

1.4.1. The concept of a set 

The term set is an undefined term, just as a point and a line are undefined terms in geometry. 

However, the concept of a set permeates every aspect of mathematics. Set theory underlies the 

language and concepts of modern mathematics. The term set refers to a well-defined collection 

of objects that share a certain property or certain properties. The term “well-defined” here means 

that the set is described in such a way that one can decide whether or not a given object belongs 

in the set. If  is a set, then the objects of the collection  are called the elements or members of 

the set . If  is an element of the set , we write . If  is not an element of the set , we 

write . 

As a convention, we use capital letters to denote the names of sets and lowercase letters for 

elements of a set. 

Note that for each objects  and each set , exactly one of  or  but not both must be 

true.  

1.4.2. Description of sets 

Sets are described or characterized by one of the following four different ways.  

1.  Verbal Method               

In this method, an ordinary English statement with minimum mathematical symbolization of 

the property of the elements is used to describe a set. Actually, the statement could be in any 

language. 

Example 1.23: 

a. The set of counting numbers less than ten. 

b. The set of letters in the word “Addis Ababa.” 

c.  The set of all countries in Africa. 

2.  Roster/Complete Listing Method 

If the elements of a set can all be listed, we list them all between a pair of braces without 

repetition separating by commas, and without concern about the order of their appearance. 

Such a method of describing a set is called the roster/complete listing method. 

Examples 1.24:  

a.    The set of vowels in English alphabet may also be described as . 

b.   The set of positive factors of 24 is also described as . 

Remark: 
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i. We agree on the convention that the order of writing the elements in the list is 

immaterial. As a result the sets  and  contain the same elements, 

namely  and  

ii.   The set  contains just two distinct elements; namely  and , hence it is the 

same set as  We list distinct elements without repetition. 

Example 1.25:  

a.  Let  Elements of  are  and   

Notice that  and  are different objects. Here  but . 

b. Let . The only element of  is . But .  

c.   Let  Then C has four elements. 

The readers are invited to write down all the elements of C. 

3. Partial Listing Method 

In many occasions, the number of elements of a set may be too large to list them all; and in 

other occasions there may not be an end to the list. In such cases we look for a common 

property of the elements and describe the set by partially listing the elements. More precisely, 

if the common property is simple that it can easily be identified from a list of the first few 

elements, then with in a pair of  braces, we list these few elements followed (or preceded) by 

exactly three dotes and possibly by one last element. The following are such instances of 

describing sets by partial listing method. 

Example 1.26:  

a. The set of all counting numbers is . 

b. The set of non-positive integers is . 

c. The set of multiples of 5 is . 

d. The set of odd integers less than 100 is  

4. Set-builder Method 

When all the elements satisfy a common property , we express the situation as an open 

proposition  and describe the set using a method called the Set-builder Method as 

follows: 

 
We read it as “  is equal to the set of all ’s such that  is true.” Here the bar  and the 

colon “ ” mean “such that.” Notice that the letter  is only a place holder and can be replaced 

throughout by other letters. So, for a property , the set {  and  are 

all the same set.  

Example 1.27: The following sets are described using the set-builder method. 

a. . 

b.  

c.  
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d.  

e.  

Exercise: Express each of the above by using either the complete or the partial listing method. 

Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by  or . 

Example 1.28: The set of  such that  is an empty set. 

Definition 1.11: A set is finite if it has limited number of elements and it is called infinite if it 

has unlimited number of elements. 

 

Relationships between two sets 

Definition 1.12:  Set  is said to be a subset of set  (or is contained in ), denoted by , if every 

element of  is an element of , i.e.,  

. 

It follows from the definition that set  is not a subset of set  if at least one element of  is not an 

element of . i.e., . In such cases we write  or . 

Remarks: For any set  and . 

Example 1.29:  

a. If ,  and , then  and  On the 

other hand, it is clear that: ,  and . 

b. If  and , then  since 

every multiple of 6 is even. However,  while . Thus . 

c. If  then and . On the other hand, since , 

, and . 

Definition 1.13:  

a. Sets  and  are said to be equal if they contain exactly the same elements. In this case, we write 

. That is,  . 

b. Sets  and  are said to be equivalent if and only if there is a one to one correspondence among 

their elements. In this case, we write . 

Example 1.30:              

a. The sets  are all equal. 

b.  
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Definition 1.14: Set  is said to be a proper subset of set  if every element of  is also an element of , 

but  has at least one element that is not in . In this case, we write . We also say  is a proper 

super set of A, and write . It is clear that 

                                         . 

Remark: Some authors do not use the symbol . Instead they use the symbol for both subset 

and proper subset. In this material, we prefer to use the notations commonly used in high school 

mathematics, and we continue using and differently, namely for subset and proper subset, 

respectively. 

Definition 1.15: Let  be a set. The power set of , dented by , is the set whose elements are all 

subsets of . That is, 

. 

Note: If a set  is finite with  elements, then 

a. The number of subsets of  is  and 

b. The number proper subsets of  is . 

Example 1.31: Let . As noted before,  and  are subset of . Moreover, 

 and  are also subsets of . Therefore,  

. 

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and 

regard all sets under consideration as a subset of this fixed set. We call this set the universal set 

or the universe and denoted by . 

Exercises  

1. Which of the following are sets? 

c. 1,2,3 

d. {1,2},3 

e. {{1},2},3 

f. {1,{2},3} 

g. {1,2,a,b}. 

2. Which of the following sets can be described in complete listing, partial listing and/or 

set-builder methods? Describe each set by at least one of the three methods. 

a. The set of the first 10 letters in the English alphabet. 

b. The set of all countries in the world. 

c. The set of students of Addis Ababa University in the 2018/2019 academic year. 

d. The set of positive multiples of 5. 

e. The set of all horses with six legs. 

3. Write each of the following sets by listing its elements within braces. 
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c.  

d.  

e.  

f.  

g. . 

4. Let  be the set of positive even integers less than 15. Find the truth value of each of the 

following. 

a.  

b.  

c.  

d.  

e.  

f.  

g.  

h.  

i.  

 

5. Find the truth value of each of the following and justify your conclusion. 

a.  

b.  

c.  for any set A  

d. , for any set A 

e.  

f.  

g.  For any set  

h.  

6. For each of the following set, find its power set. 

a.  

b.  

c.  

d.  

7. How many subsets and proper subsets do the sets that contain exactly  and 

 elements have? 

8. Is there a set A with exactly the following indicated property? 

a. Only one subset 

b. Only one proper subset 
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c. Exactly 3 proper subsets 

d. Exactly 4 subsets 

e. Exactly 6 proper subsets 

f. Exactly 30 subsets 

g. Exactly 14 proper subsets 

h. Exactly 15 proper subsets 

9. How many elements does A contain if it has: 

a. 64 subsets?  

b. 31 proper subsets? 

c. No proper subset?  

d. 255 proper subsets? 

10. Find the truth value of each of the following. 

a.  

b.  

c. For any set   

d. For any set  

11. For any three sets ,  and , prove that: 

a. If  and , then . 

b. If  and , then . 

 

1.4.3. Set Operations and Venn diagrams 

Given two subsets  and  of a universal set , new sets can be formed using  and  in many 

ways, such as taking common elements or non-common elements, and putting everything 

together. Such processes of forming new sets are called set operations. In this section, three most 

important operations, namely union, intersection and complement are discussed. 

Definition 1.16: The union of two sets  and , denoted by , is the set of all elements that are 

either in  or in  (or in both sets). That is,  

. 

As easily seen the union operator “ ” in the theory of set is the counterpart of the logical 

operator “ ”. 

Definition 1.17: The intersection of two sets  and , denoted by , is the set of all elements that are 

in  and . That is,   

. 
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As suggested by definition 1.17, the intersection operator “ ” in the theory of sets is the 

counterpart of the logical operator “ ”.  

Note: - Two sets  and  are said to be disjoint sets if . 

Example 1.32: 

a. Let  and . Then, 

          and . 

b. Let  = The set of positive even integers, and 

       = The set of positive multiples of 3. Then, 

 

            

 

            

             

Definition 1.18: The difference between two sets  and , denoted by , is the of all elements in  

and not in ; this set is also called the relative complement of  with respect to . Symbolically, 

. 

Note:  is sometimes denoted by .  and  are used interchangeably. 

Example 1.33: If , , then  and . 

Note: The above example shows that, in general,  are  disjoint. 

Definition 1.19: Let  be a subset of a universal set . The absolute complement (or simply 

complement) of , denoted by  (or or , is defined to be the set of all elements of  that are not in 

. That is, 

                      or . 

Notice that taking the absolute complement of  is the same as finding the relative complement 

of  with respect to the universal set . That is, 

. 

Example 1.34:  

a. If , and if , then . 

b. Let  

  

and .  

Then, , , 
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, , 

, and  

c. Let  and 

. Then 

, , , 

, and .  

Find , , . Which of these are equal? 

Theorem 1.1: For any two sets  and , each of the following holds. 

1. . 

2.  . 

3. . 

4. . 

5. . 

6. . 

Now we define the symmetric difference of two sets.  

Definition 1.20: The symmetric difference of two sets  and , denoted by , is the set  

. 

Example 1.35: Let  be the universal set,  and 

. Then  and . Thus  

. 

Theorem 1.2: For any three sets ,  and , each of the following holds. 

a. .                                        ( is commutative)                   

b. .                                        ( is commutative) 

c. .                   ( is associative)      

d. .                   ( is associative) 

e. .         ( is distributive over )     

f. .         ( is distributive over )   

Let us prove property “e” formally. 

                               (definition of ) 

                                                        (definition of ) 

             ( is distributive over ) 

 )                         (definition of ) 
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 (definition of ) 

Therefore, we have . 

The readers are invited to prove the rest part of theorem (1.2). 

Venn diagrams 

While working with sets, it is helpful to use diagrams, called Venn diagrams, to illustrate the 

relationships involved. A Venn diagram is a schematic or pictorial representative of the sets 

involved in the discussion. Usually sets are represented as interlocking circles, each of which is 

enclosed in a rectangle, which represents the universal set .    

 

 

 

 

 

 

 

 

In some 

occasions, we list the elements of set  inside the closed curve representing . 

Example 1.36: 

a. If  and , then a Venn diagram representation 

of these two sets looks like the following. 

 

 

 

 

 

 

 

 

b. Let  

 

.  

A Venn diagram representation of these sets is given below. 
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Example 1.37: Let U = The set of one digits numbers 

                       A = The set of one digits even numbers 

                       B = The set of positive prime numbers less than 10  

We illustrate the sets using a Venn diagram as follows. 

                          
 

a. Illustrate  by a Venn diagram 

                           

b. Illustrate A’  by a Venn diagram 

                                        
c. Illustrate A\B by using a Venn diagram 

A 

  U 

A’  :   The shaded portion 

A B   U 

BA :   The shaded portion 

0 4 

6 
2 

3 

5 
8 

7 

1 

9 

A B   U 
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Now we illustrate intersections and unions of sets by Venn diagram. 

Cases Shaded is  Shaded  

Only some 

common elements 

             

 

 

                     

 

No common 

element 
     

          

 

Exercises  

1. If ,  and , find . 

2. Let , 

       and  

      {  or }. Find  

a. . 

B A 

A  B = 

B A 

A 

B B 

A 

A B A B 

A \ B:   The shaded portion 

A B    U 
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b. Is ? 

3. Suppose  The set of one digit numbers and  

{  is an even natural number less than or equal to 9} 

           Describe each of the sets by complete listing method: 

a. . 

b. . 

c. . 

d.  

e. . 

f.  

g.  

4. Suppose  The set of one digit numbers and  

{  is an even natural number less than or equal to 9} 

           Describe each of the sets by complete listing method: 

h. . 

i. . 

j. . 

k.  

l. . 

m.  

n.  

5. Use Venn diagram to illustrate the following statements: 

a. . 

b. . 

c. If , then . 

d. . 

6. Let  and . Then show that 

.  

7. Perform each of the following operations. 

a.  

b.  

c.  

d.  

8. Let  

{  is a positive prime factor of 66} 

{   is composite number } and . Then find each of 

the following. 
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9.   Let  and . 

a. , then  

b. , then  

c. , then  

10. Let  

 and . Verify each of the following. 

a. . 

b. . 

c.  

d.  

e.  

11. Depending on question No. 10 find. 

a. . 

b. . 

c. . 

d.  

12. For any two subsets  and  of a universal set , prove that: 

a. . 

b. . 

c. . 

d. . 

13. Draw an appropriate Venn diagram to depict each of the following sets. 

a. U = The set of high school students in Addis Ababa. 

A = The set of female high school students in Addis Ababa. 

B = The set of high school anti-AIDS club member students in Addis Ababa. 

C = The set of high school Nature Club member students in Addis Ababa. 

b. U = The set of integers. 

A = The set of even integers. 

B = The set of odd integers. 

C = The set of multiples of 3. 

D = The set of prime numbers. 
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Chapter 2 

The Real and Complex Number Systems 

 

In everyday life, knowingly or unknowingly, we are doing with numbers. Therefore, it will be nice if 

we get familiarized with numbers. Whatever course (which needs the concept of mathematics) we 

take, we face with the concept of numbers directly or indirectly. For this purpose, numbers and their 

basic properties will be introduced under this chapter.  

 

Objective of the Chapter 

At the end of this chapter, students will be able to: 

- check the closure property of a given set of numbers on some operations 

- determine the GCF and LCM of natural numbers 

- apply the principle of mathematical induction to prove different mathematical formulae 

- determine whether a given real number is rational number or not 

- plot complex numbers on the complex plane 

- convert a complex number from rectangular form to polar form and vice-versa 

- extract roots of complex numbers 

2.1 The real number System 

2.1.1 The set of natural numbers 

The history of numbers indicated that the first set of numbers used by the ancient human beings for 

counting purpose was the set of natural (counting) numbers.  

Definition 2.1.1 

The set of natural numbers is denoted by N and is described as N = ,3,2,1  

 

2.1.1.1 Operations on the set of natural numbers 

i) Addition (+) 

If two natural numbers a & b are added using the operation “+”, then the sum a+b is also a natural 

number. If the sum of the two natural numbers a & b is denoted by c, then we can write the operation 

as: c = a+b, where c is called the sum and a & b are called terms. 

Example: 3+8 = 11, here 11 is the sum whereas 3 & 8 are terms. 

ii) Multiplication ( ) 

If two natural numbers a & b are multiplied using the operation “”, then the product ab is also a 

natural number. If the product of the two natural numbers a & b is denoted by c, then we can write 

the operation as: c = ab, where c is called the product and a & b are called factors. 

Example 2.1.3: 34 = 12, here 12 is the product whereas 3 & 4 are factors. 
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Properties of addition and multiplication on the set of natural numbers 

i. For any two natural numbers a & b, the sum a+b is also a natural number. For instance in the    

   above example, 3 and 8 are natural numbers, their sum 11 is also a natural number. In general, we  

   say that the set of natural numbers is closed under addition. 

ii. For any two natural numbers a & b, a + b = b + a.   

Example 2.1.1: 3+8 = 8+3 = 11. In general, we say that addition is commutative on the set of natural   

numbers. 

iii. For any three natural numbers a, b & c, (a+b)+c = a +(b+c).   

Example 2.1.2: (3+8)+6 = 3+(8+6) = 17. In general, we say that addition is associative on the set of 

natural numbers. 

iv. For any two natural numbers a & b, the product ab is also a natural number. For instance in the 

above example, 3 and 4 are natural numbers, their product 12 is also a natural number. In general, we 

say that the set of natural numbers is closed under multiplication. 

v. For any two natural numbers a & b, ab = ba.   

Example 2.1.4: 34 = 43 = 12. In general, we say that multiplication is commutative on the set of 

natural numbers. 

vi. For any three natural numbers a, b & c, (ab) c = a  (bc).   

Example 2.1.5: (24) 5 = 2  (45) = 40. In general, we say that multiplication is associative on 

the set of natural numbers. 

vi.  For any natural number a, it holds that a1 = 1a = a. 

Example 2.1.6: 61 = 16 = 6. In general, we say that multiplication has an identity element on the 

set of natural numbers and 1 is the identity element. 

vii. For any three natural numbers a, b & c, a (b+c) = (ab)+(ac).   

Example 2.1.7: 3 (5+7) = (35)+ (37) = 36. In general, we say that multiplication is distributive 

over addition on the set of natural numbers. 

Note: Consider two numbers a and b, we say a is greater than b denoted by ab if a – b is positive. 

2.1.1.2 Order Relation in N 

i) Transitive property:      

      For any three natural numbers a, b & c, cacbba  &  

ii) Addition property:       

        For any three natural numbers a, b & c, cbcaba   

iii) Multiplication property: 

       For any three natural numbers a, b and c, bcacba   

iv) Law of trichotomy 

        For any two natural numbers a & b we have baorbaorba  . 
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2.1.1.3 Factors of a number 

Definition 2.2  

If Ncba ,,  such that cab  , then a & b are factors (divisors) of c and c is called product 

(multiple) of a & b. 

 

Example 2.8: Find the factors of 15. 

Solution: Factors of 15 are 1, 3, 5, 15.    15,5,3,1: 15 FasitwritecanweOr  

Definition 2.3      A number Na is said to be 

   i. Even if it is divisible by 2. 

   ii. Odd if it is not divisible by 2. 

  iii. Prime if it has only two factors (1 and itself).  

   iv. Composite: if it has three or more factors.      

Example 2.9:   2, 4, 6, . . .   are even numbers 

Example 2.10: 1, 3, 5, . . .   are odd numbers 

Example 2.11:   2, 3, 5, . . .  are prime numbers 

Example 2.12: 4, 6, 8, 9, . . . are composite numbers 

Remark: 1 is neither prime nor composite. 

2.1.1.5 Prime Factorization  

Definition 2.4 

Prime factorization of a composite number is the product of all its prime factors. 

 

Example 2.9:  

326) a    53230) b   3232212) 2 c   
322228) d  532180) 22 e  

Fundamental Theorem of Arithmetic: 

Every composite number can be expressed as a product of its prime factors. This factorization is 

unique except the order of the factors. 
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2.1.1.6 Greatest Common Factor (GCF) 

Definition 2.5 

The greatest common factor (GCF) of two numbers a & b is denoted by GCF (a, b) and is the 

greatest number which is a factor of each of the given number. 

Note: If the GCF of two numbers is 1, then the numbers are called relatively prime. 

Example 2.10: Consider the two numbers 24 and 60. 

 

 

  .1212,6,4,3,2,1

60,30,20,15,12,10,6,5,4,3,2,1

24,12,8,6,4,3,2,1

6024

60

24

greatesttheiswhichfromFFNext

Fand

FNow







 

Therefore, GCF(24, 60) = 12. 

This method of finding the GCF of two or more numbers is usually lengthy and time consuming. 

Hence an alternative method (Prime factorization method) is provided as below: 

Step 1: Find the prime factorization of each of the natural numbers 

Step 2: Form the GCF of the given numbers as the product of every factor that appears in each of the 

prime factorization but take the least number of times it appears. 

Example 2.11: Consider the two numbers 24 and 60. 

53260

3224:1

2

3



Step
 

Step 2: The factors that appear in both cases are 2 and 3, but take the numbers with the least number 

of times. 

1232)60,24( 2  GCF  

Example 2.12: Consider the three numbers 20, 80 and 450. 

22

4

2

532450

5280

5220:1





Step

 

Step 2: The factors that appear in all cases are 2 and 5, but take the numbers with the least number of 

times. 

1052)450,80,20(  GCF  

 

2.1.1.7 Least Common Multiple (LCM) 

Definition 2.6 

The least common multiple (LCM) of two numbers a & b is denoted by LCM (a, b) and is the least 

number which is a multiple of each of the given number. 

 

Example 2.13: Consider the two numbers 18 and 24. 
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  .72,144,72

,144,120,96,72,48,24

,144,126,108,90,72,54,36,18

2418

24

18

leasttheiswhichfromMMNext

Mand

MNow













 

Therefore, LCM (18, 24) = 72. 

This method of finding the LCM of two or more numbers is usually lengthy and time consuming. 

Hence an alternative method (Prime factorization method) is provided as below: 

Step 1: Find the prime factorization of each of the natural numbers 

Step 2: Form the LCM of the given numbers as the product of every factor that appears in any of the 

prime factorization but take the highest number of times it appears. 

Example 2.14: Consider the two numbers 18 and 24. 

3224

3218:1

3

22



Step
 

Step 2: The factors that appear in any case are 2 and 3, but take the numbers with the highest number 

of times. 

7232)24,18( 23  LCM  

 

Example 2.15: Consider the three numbers 20, 80 and 450. 

22

4

2

532450

5280

5220:1





Step

 

Step 2: The factors that appear in any cases are 2 , 3 and 5, but take the numbers with the highest 

number of times. 

3600532)450,80,20( 224  LCM  

2.1.1.8 Well ordering Principle in the set of natural numbers 

Proposition 2.7 

Every non-empty subset of the set of natural numbers has smallest (least) element. 

 

Example 2.16   .2.,4,3,2  AofelementsmallestNA   

 

Note: The set of counting numbers including zero is called the set of whole numbers and is denoted 

by W.    i.e  W  =  ,3,2,1,0  
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2.1.1.9 Principle of Mathematical Induction 

Mathematical induction is one of the most important techniques used to prove in 

mathematics. It is used to check conjectures about the outcome of processes that occur 

repeatedly according to definite patterns. We will introduce the technique with 

examples. 

For a given assertion involving a natural number n, if  

i. the assertion is true for n = 1 (usually). 

ii. it is true for n = k+1, whenever it is true for  n = k (k1), then the assertion is true for every 

natural number n. 

 

The method is used to prove different propositions involving positive integers using three steps: 

Step1: Prove that kT  (usually 1T ) holds true. 

Step 2: Assume that kT  for k = n is true. 

Step 3: Show that kT  is true for k = n+1. 

Example 2.17    Show that .)12(531 2nn    

Proof: 

.

.)1(

12

)12()12()12(531

)1()12()12(531:

.1.3

.)12(531..

.2

.11,1.1

2

2

2

2

2

2

nnumbernaturalanyfortrueisIt

resultrequiredtheiswhichk

kk

kkkkNow

kkkClaim

knfortrueisitthatshowshouldWeStep

kkei

knfortrueisitthatAssumeStep

trueiswhichnForStep

























 

Example 2.18   Show that .
2

)1(
)(321




nn
n  

Proof: 

1.3

.
2

)1(
)(321..

.2

.
2

)11(1
1,1.1











knfortrueisitthatshowshouldWeStep

kk
kei

knfortrueisitthatAssumeStep

trueiswhichnForStep
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.
2

)2)(1(

2

)1(2)1(

)1(
2

)1(
)1()(321

.
2

)2()1(
)1()(321:

nnumbernaturalanyfortrueisIt

resultrequiredtheiswhich
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kkk

k
kk

kkNow
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kkClaim





















 

Example 2.19 Show that .2965  nfornnn
 

Proof: 

.2

.965

9)9(9

)65(9

)65(6

6.65.66.65.565

.965:

1.3

.965..

..2

8161,2.1

111

1

11

111































nnumbernaturalanyfortrueisIt

formatrequiredtheiswhich

Now

Claim

knfortrueisitthatshowshouldWeStep

ei

knfortrueisitthatAssumeStep

trueiswhichnForStep

kkk

kk

kk

kk

kkkkkk

kkk

kkk

 

 

2.1.2 The set of Integers 

 As the knowledge and interest of human beings increased, it was important and obligatory to extend 

the natural number system. For instance to solve the equation x+1= 0, the set of natural numbers was 

not sufficient. Hence the set of integers was developed to satisfy such extended demands.  

Definition 2.8 

The set of integers is denoted by Z and described as Z =   ,2,1,0,1,2,...   

 

2.1.2.1 Operations on the set of integers 

i) Addition (+) 
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If two integers a & b are added using the operation “+”, then the sum a+b is also an integer. If the 

sum of the two integers a & b is denoted by c, then we can write the operation as: c = a+b, where c is 

called the sum and a & b are called terms. 

Example 2.20: 4+9 = 13, here 13 is the sum whereas 4 & 9 are terms. 

ii) Subtraction ( ) 

For any two integers a & b, the operation of subtracting b from a, denoted by ba   is defined by 

)( baba  . This means that subtracting b from a is equivalent to adding the additive inverse 

of b to a. 

Example 2.21: 2)5(757   

iii) Multiplication ( ) 

If two integers a & b are multiplied using the operation “”, then the product ab is also an integer. 

If the product of the two integers a & b is denoted by c, then we can write the operation as: c = ab, 

where c is called the product and a & b are called factors. 

Example 2.22: 47 = 28, here 28 is the product whereas 4 & 7 are factors. 

Properties of addition and multiplication on the set of integers 

i. For any two integers a & b, the sum a+b is also an integer. For instance in the above example, 4 

and 9 are integers, their sum 13 is also an integer. In general, we say that the set of integers is closed 

under addition. 

ii. For any two integers a & b, a+b = b+a.   

Example 2.23: 4+9 = 9+4 = 13. In general, we say that addition is commutative on the set of 

integers. 

iii. For any three integers a, b & c, (a+b)+c = a+(b+c).   

Example 2.24: (5+9)+8 = 5+(9+8) = 22. In general, we say that addition is associative on the set of 

integers. 

iv. For any integer a, it holds that a+0 = 0+a = a. 

Example 2.25: 7+0 = 0+7 = 7. In general, we say that addition has an identity element on the set of 

integers and 0 is the identity element. 

v. For any integer a, it holds that 0)(  aaaa . 

Example 2.26: 4+-4 = -4+4 = 0. In general, we say that every integer a has an additive inverse 

denoted by a . 

vi. For any two integers a & b, the product ab is also an integer. For instance in the above 

example, 4 and 7 are integers, their product 28 is also an integer. In general, we say that the set of 

integers is closed under multiplication. 
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vii. For any two integers a & b, ab = ba.   

Example 2.27: 47 = 74 = 28. In general, we say that multiplication is commutative on the set of 

integers. 

viii. For any three integers a, b & c, (ab) c = a  (bc).   

Example 2.28: (35) 4 = 3  (54) = 60. In general, we say that multiplication is associative on 

the set of integers. 

ix. For any integer a, it holds that a1 = 1a = a. 

Example 2.29: 51 = 15 = 5. In general, we say that multiplication has an identity element on the 

set of integers and 1 is the identity element. 

x. For any three integers a, b & c, a (b+c) = (ab)+(ac).   

Example 2.30: 4 (5+6) = (45)+ (46) = 44. In general, we say that multiplication is distributive 

over addition on the set of integers. 

2.1.2.2 Order Relation in Z 

i) Transitive property:  For any three integers a, b & c, cacbba  &  

ii) Addition property:    For any three integers a, b & c, cbcaba   

iii) Multiplication property:  For any three integers a, b and c, where c>0, bcacba   

iv) Law of trichotomy:    For any two integers a & b we have baorbaorba  . 

 

Exercise 2.1 

1.  Find an odd natural number x such that LCM (x, 40) = 1400. 

2. There are between 50 and 60 number of eggs in a basket. When Loza counts by 3’s, 

there are 2 eggs left over. When she counts by 5’s, there are 4 left over. How many 

eggs are there in the basket? 

3. The GCF of two numbers is 3 and their LCM is 180. If one of the numbers is 45, 

then find the second number. 

4. Using Mathematical Induction, prove the following: 

.1)

0,!)1(2)

.0,516)







nnumbernaturaloddforyxbydivisibleisyxc

nfornb

nforbydivisibleisa

nn

n

n

 

    d) )1(2642  nnn  

    e) 
6

)12)(1(
321 2222 


nnn

n    
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    f) 
4

)1(
321

22
3333 


nn
n    

    g) 
1)1(

1

43

1

32

1

21

1













 n

n

nn
    

 

 

2.1.3 The set of rational numbers 

As the knowledge and interest of human beings increased with time, it was again necessary to extend 

the set of integers. For instance to solve the equation 2x+1= 0, the set of integers was not sufficient. 

Hence the set of rational numbers was developed to satisfy such extended needs.  

Definition 2.9 

Any number that can be expressed in the form
b

a
, where a and b are integers and 0b , is called a 

rational number. The set of rational numbers denoted by Q is described by 

Q = 








 0integers: bandarebanda
b

a
 . 

Notes:  

i. From the expression ,
b

a
 a  is called numerator and b  is called denominator. 

ii. A rational number 
b

a
 is said to be in lowest form if GCF (a, b) = 1. 

2.1.3.1 Operations on the set of rational numbers 

i) Addition (+) 

If two rational numbers ba /  and dc /  are added using the operation “+”, then the sum defined as 

bd

bcad

d

c

b

a 
  is also a rational number.  

Example 2.31: 
10

11

5

3

2

1
  

ii) Subtraction ( ) 

For any two rational numbers ba / & dc / , the operation of subtracting dc /  from ba / , denoted by 

ba / - dc / is defined by ba / - dc /  = ba / +(- dc / ).  

Example 2.32: 
10

1

5

3

2

1 
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iii) Multiplication ( ) 

If two rational numbers ba /  and dc /  are multiplied using the operation “”, then the product 

defined as 
bd

ac

d

c

b

a
  is also a rational number.  

Example 2.33: 
10

3

5

3

2

1
  

 

iv) Division ( ) 

For any two rational numbers ba / & dc / , dividing ba / by dc /  is defined by  

.0,  c
c

d

b

a

d

c

b

a
 

Example 2.34: 
6

5

3

5

2

1

5

3

2

1
  

 

Properties of addition and multiplication on the set of rational numbers 

Let ba / , dc /  and fe /  be three rational numbers, then 

i. The set of rational numbers is closed under addition and multiplication. 

ii. Addition and multiplication are both commutative on the set of rational numbers. 

iii. Addition and multiplication are both associative on the set of rational numbers. 

iv. 0 is the additive identity 

     i.e.,  ba / + 0 = 0+ ba /  = ba / .   

v. Every rational number has an additive inverse. 

     i.e.,  ba / + )/( ba  = ba / + ba /  = 0.   

vi. 1 is the multiplicative identity 

     i.e.,  ba / 1 = 1 ba /  = ba / .   

vii. Every non-zero rational number has a multiplicative inverse. 

     i.e.,  ba /   ab /  = ab /  ba /  = 1.   

2.1.3.2 Order Relation in Q 

i) Transitive property 

For any three rational numbers ba / , dc / & fe /  .////&// febafedcdcba   

ii) Addition property 

For any three rational numbers ba / , dc / & fe /  .////// fedcfebadcba   

iii) Multiplication property 

For any three rational numbers ba / , dc / , fe / and  0/ fe  
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)./()/()/)(/(// fedcfebadcba   

iv) Law of trichotomy 

 For any two rational numbers ba / & dc / we have .////// dcbaordcbaordcba   

 

2.1.3.3 Decimal representation of rational numbers 

A rational number 
b

a
 can be written in decimal form using long division. 

2.1.3.3.1 Terminating decimals 

Example 2.35: Express the fraction number 
4

25
in decimal form. 

25.6
4

25
: Solution  

2.1.3.3.2 Non-terminating periodic decimals 

Example 2.36: Express the fraction number 
3

25
in decimal form. 

333.8
3

25
: Solution  

Now we will see how to convert decimal numbers in to their fraction forms. In earlier mathematics 

topics, we have seen that multiplying a decimal by 10 pushes the decimal point to the right by one 

position and in general, multiplying a decimal by 10
n
 pushes the decimal point to the right by n 

positions. We will use this fact for the succeeding topics. 

 

2.1.3.4 Fraction form of decimal numbers 

A rational number which is written in decimal form can be converted to a fraction 

form as 
b

a
 in lowest (simplified) form, where a and b are relatively prime.  

2.1.3.4.1 Terminating decimals 

Consider any terminating decimal number d. Suppose d terminates n digits after the decimal point. 

d can be converted to its fraction form as below: 

).
10

10
(

1

1
1

n

n

dddd   

 

Example 2.37: Convert the terminating decimal 3.47 to fraction form. 

.
100

347

10

10
47.347.3:

2

2

Solution  
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2.1.3.4.2 Non-terminating periodic decimals 

Consider any non-terminating periodic decimal number d. Suppose d has k non-terminating digits 

and p terminating digits after the decimal point. d can be converted to its fraction form as below: 

.)
1010

1010
(

1

1
1

kpk

kpk

dddd









 

Example 2.38: Convert the non-terminating periodic decimal 385.42  to fraction form. 

Solution: k = 1,  p = 2. 

.
990

42113

101000

38.42538.42538
)

1010

1010
(385.42)

1010

1010
(

1

1
1

3

3





















kpk

kpk

dddd  

Note: From the above two cases, we can conclude that both terminating decimals and non-

terminating periodic decimals are rational numbers. (Why? Justify). 

2.1.3.5 Non-terminating and non-periodic decimals 

Some decimal numbers are neither terminating nor non-terminating periodic. Such types of numbers 

are called irrational numbers. 

Example 2.39: 62.757757775….  

Example 2.40: Show that 2  is an irrational number. 

Proof: 

....(**)..........2

*).........(2

2

1),(,2

2

2

22

2

2

na

evenisa

evenisa

ba

b

a

baGCFwhere
b

a

numberrationalaisSuppose













         

 

    

*)*..(*..........2

2

24

:(*)

2

22

22

mb

evenisb

evenisb

nb

bn

getweinthisPutting
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From (**) and (***) we get a contradiction that GCF (a, b) = 1 which implies that 2  is not a 

rational number. 

 

Therefore, 2  is an irrational number. 

 

2.1.4 The set of real numbers 

Definition 2.10 

A number is called a real number if and only if it is either a rational number or an irrational number. 

The set of real numbers denoted by   can be described as the union of the set of rational and 

irrational numbers. i.e = {x : x is a rational number or an irrational number}. 

There is a 1-1 correspondence between the set of real numbers and the number line (For each point in 

the number line, there is a corresponding real number and vice-versa). 

2.1.4.1 Operations on the set of real numbers 

i) Addition (+) 

If two real numbers are added using the operation “+”, then the sum is also a real number.  

ii) Subtraction ( ) 

For any two real numbers a & b , the operation of subtracting b  from a , denoted by ba  is defined 

by ba   = a +(  b ).  

iii) Multiplication ( )  

If two real numbers a  and b  are multiplied using the operation “”, then the product defined as 

abba   is also a real number.  

iv) Division ( ) 

For any two real numbers a & b , dividing a by b is defined by .0,
1

 b
b

aba  

Properties of addition and multiplication on the set of real numbers 

Let a , b  and c  be three real numbers, then 

i.  The set of real numbers is closed under addition and multiplication. 

ii.  Addition and multiplication are commutative on the set of real numbers. 

iii.  Addition and multiplication are associative on the set of real numbers. 

iv.  0 is the additive identity 

       i.e., a + 0 = 0+ a  = a .   

v.  Every real number has an additive inverse. 



53 

 

      i.e.,  a + )( a  = a + a  = 0.   

vi.  1 is the multiplicative identity 

      i.e.,  a 1 = 1 a  = a .   

vii.  Every non-zero real number has a multiplicative inverse. 

     i.e.,  a   a/1  = a/1  a  = 1.   

2.1.4.2 The real number and the number line 

One of the most important properties of the real number is that it can be represented graphically by 

points on a straight line. The point 0 is termed as the origin. Points to the right of 0 are called 

positive real numbers and points to the left of 0 are called negative real numbers. Each point on the 

number line corresponds a unique real  number and vice-versa.   

 

Geometrically we say a is greater than b if a is located to the right of b on the number line. 

 

2.1.4.3 Order Relation in R 

i) Transitive property:   For any three real numbers a , b & c , .& cacbba   

ii) Addition property:    For any three real numbers a , b & c , .cbcaba   

iii) Multiplication property:  For any three real numbers a , b , c and  0c , we have 

.bcacba   

iv) Law of trichotomy:  For any two real numbers a & b we have .baorbaorba   

             

Summary of the real number system 
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2.1.4.4 Intervals  

Let a and b be two real numbers such that ab, then the intervals which are subsets of 

R with end points a and b are denoted and defined as below: 

 bxaxbai  :),(.  open interval from a to b. 

 bxaxbaii  :],[.  closed interval from a to b. 

 bxaxbaiii  :],(.  open-closed interval from a to b. 

 bxaxbaiv  :),[.  closed-open interval from a to b. 

 

2.1.4.5 Upper bounds and lower bounds 

Definition 2.11 

. AandemptynonbeALet  

i. A point Ra is said to be an upper bound of A iff ax   for all .Ax  

ii. An upper bound of A is said to be least upper bound (lub) iff it is the least of all upper bounds. 

iii. A point Ra is said to be lower bound of A iff ax   for all .Ax  

ii. A lower bound of A is said to be greatest lower bound (glb) iff it is the greatest of all lower bounds. 

  

Example 2.41   .5,2 AsettheConsider  

.5lub

.5

1000,99,20,
3

25
,6,5)

2glb

.2

2,1,
2

1,0,3,9,)







iselementleasttheHere

areboundsupperii

iselementgreatesttheHere

areboundsloweri





 

Example 2.42: Consider the set A = 








n

1
 for n .N  

Solution: 








 ,
3

1
,

2

1
,1A  

.1lub,.1

,50,
2

9
,3,1)

0glb,.0

0,2,3,)







ThusiselementleasttheHere

areboundsupperii

ThusiselementgreatesttheHere

areboundsloweri
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Based on the above definitions, we can define the completeness property of real numbers as below. 

 

 2.1.4.4 Completeness property of real number (R) 

Completeness property of real numbers states that: Every non-empty subset of   that has lower 

bounds has glb and every non-empty subset of  that has upper bounds has a lub. 

 

 

Exercise 2.2 

 1. Express each of the following rational numbers as decimal: 

77

2
)

3

2
5)

7

11
)

25

3
)

9

4
) edcba   

2. Write each of the following as decimal and then as a fraction: 

        a) three tenths   b) four thousands  

3. Write each of the following in meters as a fraction and then as a decimal 

      a) 4mm     b) 6cm and 4mm  c) 56cm and 4mm 

4. Classify each of the following as terminating or non-terminating periodic  

12

5
)

60

11
)

64

69
)

10

7
)

13

5
) edcba  

5. Convert the following decimals to fractions: 

275.0)143.0)52.3) cba  

6. Determine whether the following are rational or irrational: 

2

1
8)272727.0)57.2) cba   

7. Which of the following statements are true and which of them are false? 

a) The sum of any two rational numbers is rational 

b) The sum of any two irrational numbers is irrational 

c) The product of any two rational numbers is rational 

d) The product of any two irrational numbers is irrational 

11. Find two rational numbers between .
2

1
3

1 and  
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2.2 The set of complex numbers 

The positive integers (natural numbers) were invented to count things. The negative integers were 

introduced to count money when we owed more than we had. The rational numbers were invented 

for measuring quantities. Since quantities like voltage, length and time can be measured using 

fractions, they can be measured using the rational numbers. 

The real numbers were invented for wholly mathematical reasons: it was found that there were 

lengths such as the diagonal of the unit square which, in principle, couldn't be measured by the 

rational numbers, instead they can be measured using real numbers. 

The complex numbers were invented for purely mathematical reasons, just like the real numbers and 

were intended to make things neat and tidy in solving equations. They were regarded with deep 

suspicion by the more conservative folk for a century. Complex numbers are points in the plane, 

together with a rule telling you how to multiply them. They are two-dimensional, whereas the real 

numbers are one dimensional. 

Equations of the form 012 x has no solution on the set of real numbers. Therefore, the set of 

complex numbers permits us to solve such equations. 

 

Definition 2.12 

The set of complex numbers is denoted by ℂ and is described by 

ℂ  1,,/ 2  iandyxiyxzz . 

.)Im(

)Re(,exp

Zbydenotedisandpartimaginarythecalledisy

ZbydenotedisandpartrealthecalledisxiyxzressiontheFrom 

 

Note: If x = 0, the number is called purely imaginary and if y = 0, the number is called purely real. 

Complex numbers can be defined as an order pair (x, y) of real numbers that can be interpreted as 

points in the complex plane (z- plane) with coordinates x and y. 

 

Example 2.43: :& numberscomplexfollowingtheofpartimaginaryrealtheFind  

7&3:

73)





partimaginarypartrealSolution

iza
 

1&1:

1)





partimaginarypartrealSolution

izb
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2.2.1 Plotting complex numbers 

:belowasplanecomplextheindrawnbecaniyxznumbercomplexAny   

 

 

Example 2.44:  Draw the complex number z = 2+3i 

Solution: 

  

Equality of Complex numbers 

.&21 dbcaiffequalareidczandibaznumberscomplexTwo   

Example 2.45 .&,62 21 yxofvaluethefindthenequalareiyzandixzIf   

.2,6

:

 yx

Solution
 

 

2.2.2 Operations on Complex numbers 

thennumberscomplextwoanybeidczandibazLet ,21   

.0,
)(

)(
)

)()()()()().(.)

)()()

)()()

2

2

1

21

21

21













z
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z

z
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Example 2.46
2

1
21212121 ).))),432

z

z
dzzczzbzzafindthenizandizIf   

i

i

z

z
d

iiiiizzc

izzb

izzaSol












4

32
)

14531228)4().32(.)

22)

46):

2

1

21

21

21

 

2.2.3 Conjugate of a complex number 

Definition 2.13 

The conjugate of a complex number z = x+iy is denoted by z   and is defined as z  = x-iy. It can be 

represented by the point (x, -y) which is the reflection of the point (x, y) about the x-axis. 

 

 

 

Example 2.47: Find the conjugate of the complex number z = 2+9i. 

 

iz

iz

Solution

92

92

:



  

Properties of Conjugate 

2

1

2

1
21212121

2121

)(.....

.)Im(22.

2
2)Re(22..

z

z

z

z
gzzzzfzzzze

zzzzdziiyzzc

zz
zxzzbzza
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21

2211

21212121221121

222111

222111

)()()()()()(

&

&)

.

):

zz

iyxiyx

yyixxyyixxiyxiyxzzNow

iyxziyxz

iyxziyxzLetd

zz

iyxz

iyxz

iyxzletaproof



















 

The others are left for the reader. 

 

2.2.4 Modulus (Norm) of a complex number 

Definition 2.14 

The modulus of a complex number z = x+iy is a non-negative real number denoted by |z| and is 

defined as |z| = 22 yx  . Geometrically, the number |z| represents the distnce between the point (x, 

y) and the origin. 

 

 

Example 2.48: Find the modulus of the complex number z = 3 – 4i. 

 

525)4()3(

43:

22 



z

izSolution

 

 

Properties of modulus 

2121

2121

2

1

2

1

2121

2

.

.......................

......

zzzzf

inequalitytrianglezzzze
z

z

z

z
d

zzzzczzzbzza
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.

)(

2222

zz

yxzyxz

iyxzwhichfromiyxzletaproof







 

zzz

yxiyxiyxzzNow

yxz

iyxzwhichfromiyxzletbproof
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21
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1

221121212121

2

21
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.

...).)(.().)(.(.)(
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zzzzzzzzzzzzzzcproof
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1

2

1

2

2

1
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2

1

22

11

2

2

1

z

z

z

z

z

z

z

z

zz

zz

z

z
dproof


















 

The others are left for the reader. 

2.2.5 Additive and multiplicative inverses 

Let z = x+iy be a complex number, then 

.
1

:)

.)(:)()

2222

11

yx

yi

yx

x

iyx
zbygiveniszbydenotedinversetivemultiplicaitsii

iyxiyxzbygiveniszbydenotedinverseadditiveitsi












  

Example 2.49: Find the additive and the multiplicative inverse of z = 3+4i. 

 

.
25

4

25

3

43

43
.

43

1

43

1
)

43)

43:

1 i

i

i

ii
zii

izi

izSolution


















 

 

Exercise 2.3 

1. Verify that 

iiidc

biiiia

91)63()32())1,2()
10

1
,

5

1
()1,3()1,3()

)8,1()1,2()3,2()2)21()2()

2 
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2. Show that  

12)1())Re()Im())Im()Re() 22  zzzczizbziza  

3. Do the following operations and simplify your answer. 

3)1()
)3()2()1(

5
)

5

2

43

21
) ic

iii

i
b

i

i

i

i
a 









 

4. Locate the complex numbers z1+z2 and z1-z2, as vectors where 

ibazibazdzzc

zzbiziza





2121

2121

,))4,1(,)1,3()

)0,3(,)1,3()
3

2
,2)

 

5. Sketch the following set of points determined by the condition given below: 

4|4|)3||)1|1|)  izcizbiza  

6. Using properties of conjugate and modulus, show that 

iicziizbiziza 43)2())33) 2   

7. Show that ).1(8)1( 7 ii   

8. Using mathematical induction, show that (when n = 2, 3, . . . ,)  

nnnn zzzzzzbzzzzzza  21212121 ))   

9. Show that the equation rzz  || 0  which is a circle of radius r centered at 0z  can be written 

as .||)Re(2|| 22

0

2 rzzzz   

 

2.2.6 Argument (Amplitude) of a complex number 

Definition 2.15 

Argument of a complex number z = x+iy is the angle formed by the complex number z = x+iy 

with the positive x-axis. The argument of a complex number z  = x+iy is deonted by argz and is 

given by arg(z) = ).(tan 1

x
y

 

The particular argument of z that lies in the range    is called the principal argument of 

z and is dented by Argz. 

 

 
.,,0)

.,):

directionotherthemovenotifdirectionwiseclockcountermoveArgzIfii

ArgziNotes
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Example 2.50: Find the principal argument of the following complex numbers: 

izcizbiza  3)322)1)  

3

2
)3(tan)

2
32(tan

322)

4
)1(tan)

1
1(tan

1):

11

11




















Argz

izb

Argz

izaSol

 

6

5
)

3
1(tan)

3
1(tan

3)

11 







Argz

izc

 

Properties of Arguments 

21

2

1
2121 arg)()).() zArgz

z

z
ArgiiArgzArgzzzArgi   

Example 2.51: Find the principal argument of  )
1

22
())1()1()

i

i
biia




  












4
4)

4
(

4
3)1()22()

1

22
()

2
)

4
3(

4
)1()1()1()1()

:

iArgiArg
i

i
Argb

iArgiArgiiArga

Solution

 

 

2.2.7 Polar form of a complex number 

Definition 2.16 

Let r and  be polar coordinates of the point (x, y) of the complex number z = x+iy. Since x = 

cosr and y = sinr , then the complex number can be written as : )sin(cos  irz   which is 

called polar form, where r is modulus of z and  is principal argument of z. 

 

Example 2.52: Express the following complex numbers in polar form: 

 

).
4

sin
4

(cos2,.
4

)1(tan2:

1)

1  izThusandrsolution

iza
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).
4

sin
4

(cos18)
4

sin
4

(cos18,

.
4

)1(tan18:

33)

1





iizThus

andrsolution

izb







  

 

Multiplication and division in polar forms 

)).sin()(cos()))sin()(cos(..)

,)sin(cos)sin(cos

2121

2

1

2

1
21212121

22221111
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r

r
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z
birrzza
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Proof:  

)]sin()[cos(.

)]cossinsin(cossinsincos[cos.

]sinsincossinsincoscos[cos.

)]sin(cossin)sin(cos[cos.

)sin(cos).sin(cos.)

212121
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22122121

22211121
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.
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sincos

)sin(cos
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Example 2.53: findthenizandizIf ),
3

sin
3

(cos2)
2

sin
2

(cos6 21
   

        
2

1
21 ).)

z

z
bzza  

]
6

5sin
6

5cos[12

)]
32

sin()
32

[cos(2.6.)

:
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i
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Solution
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 Argument of a product 

The argument of the product of two complex numbers is the sum of their arguments. 

 

 

 

Proof:  

.)sin(cos)sin(cos
22221111

 irzandirzLet   

 

)]sin()[cos(.

)]cossinsin(cossinsincos[cos.

]sinsincossinsincoscos[cos.

)]sin(cossin)sin(cos[cos.

)sin(cos).sin(cos.

212121

2121212121

2121212121

22122121

22211121





















irr

irr

iirr

iiirr

irirzzNow

 

 

21

21

1

21

211

21

))(tan(tan

)cos(

)sin(
tan).arg(





























zz

 

    Argument of a quotient 

The argument of the quotient of two complex numbers is the difference of their arguments. 

 

Proof:  

)arg()arg()(arg)arg()arg()arg().arg()arg( 2121
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Example 2.54: 
3

2
3

)31arg()4arg()
31

4
arg(  




i

i
 

De Moivre’s Formula 

 

.']sin[cos

)]sin()[cos(

)].sin()[cos(......,

)].sin()[cos(..:

21212121

21212121

formulasMoivreDecallediswhichninr

irzthatgeneralizecanweNow
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Example 2.55: Express 100)22( i  in polar form. 

 

.]25sin25cos[8
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4

(100sin)
4

(100[cos8

)22(

4
,8,.22:
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Example 2.56: Express 60)3( i  in polar form. 

 

.]10sin10cos[2

)]
6

(60sin)
6

(60[cos2

)3(

.
6

,2,.3:

60

60

6060







i

i
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rThenizLetSolution









 

 

Euler’s formula 

The complex number )sin(cos  irz   can be written in exponential form as: 
irez   which 

is called Euler’s formula.   

 
)()sin(cos:  ninnn erninrzNote   

 

Example 2.57: Express the complex number z = 1+i using Euler’s formula. 

 

42
4

&2

1:

i
i erezrNow

izSolution


 



        

 

Example 2.58: Express the complex number iz 31  using Euler’s formula. 
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32
3
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i
i erezrNow

izSolution


 


 

 

Example 2.59: Express the complex number 7)3( iz   using Euler’s formula. 
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2.2.8 Extraction of roots 
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Example 2.60: Find the square roots of the complex number .31 iz   
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Example 2.61: Find the cube roots of the complex number .8 iz   

 

)(2

)()8(

)()(,

.2,1,0,3,
2

,8.8:

)
3

2

6
(

)
3

2

3

2(
3

1

)
2

(1










k
i

k

k
i

k

n

k

n
i

n
k

eC

eC

erCHence

knrHereizhaveWeSolution















 

 

iiieCkIfiii

i
i

ieCkIfii

i
i

ieCkIfi

i

i

i

o

2)0(2)
2

3sin
2

3(cos2)(2,2)

3)
22

3
(2)

6
5sin

6
5(cos2)(2,1)

3)
22

3
(2)

6
sin

6
(cos)(2,0)

)
3

4
6

(

2

)
3

2
6

(

1

)
6

(


























 

 

.2&3,38 21 iCiCiCareiofrootscubeThe o   

 

Exercise 2.4 

      1.  Find the argument of the following complex numbers: 

6)3()
1

3
) izb

i

i
za 


  

     2.  Show that  iii eebea  )1||)  

      3. Using mathematical induction, show that  
,3,2,...

)( 121 


neeee nnn iiii 
 

      4. Show that  3223 sinsincos33sin)sincos3cos3cos)  ba  

     5. Show that .1,
1

1
1

1
2 








zfor
z

z
zzz

n
n  

      6. Find the square roots of z = 9i 

      7. Find the cube roots of z =   8i  

      8. Solve the following equations: 

        iza 8) 2
3

    04) 2  izb    04) 2  izc    
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Chapter 3 

Functions 
 
Our everyday lives are filled with situations in which we encounter relationships between two 

sets. For example,  

 To each automobile, there corresponds a license plate number 

 To each circle, there corresponds a circumference 

 To each number, there corresponds its square 

In order to apply mathematics to a variety of disciplines, we must make the idea of a 

“relationship” between two sets mathematically precise. 

On completion of this chapter students will be able to: 

 understand the notion of relation and function 

 determine the domain and range of relations and functions  

 find the inverse of a relation 

 define polynomial and rational functions 

 perform the fundamental operations on polynomials 

 find the inverse of an invertible function 

 apply the theorems on polynomials to find the zeros of polynomial functions 

 apply theorems on polynomials to solve related problems 

 sketch and analyze the graphs of rational functions  

 define exponential, logarithmic, trigonometric and hyperbolic functions 

 sketch the graph of exponential, logarithmic, trigonometric and hyperbolic functions 

 use basic properties of logarithmic, exponential, hyperbolic and trigonometric functions 

to solve physical problems 

In this chapter, we first look at the definitions of relations and functions, and study real valued 

functions and their properties, types of functions, polynomial functions, zeros of polynomial 

functions, rational functions and their graphs, logarithmic, exponential, trigonometric and 

hyperbolic functions and their graphs. Let‟s begin with the review of relations and functions. 

 

3.1. Review of relations and functions  

 

After completing this section, the student should be able to: 

 define Cartesian product of two sets 

 understand the notion of relation and function 

 know the difference between relation and function 

 determine the domain and range of relations and functions  

 find the inverse of a relation 
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The student is familiar with the phrase ordered pair. In the ordered pair )4,2(),3,2(   and ),( ba ; 

2,2   and a  are the first coordinates while 4,3  and b  are the second coordinates.  

 

 Cartesian Product 

Given sets }4,3{A  and }5,4,2{B . Then, the set )}5,4(),4,4(),2,4(),5,3(),4,3(),2,3{(  is the 

Cartesian product of A  and B ,  and  it is denoted  by BA . 

 

Definition 3.1: Suppose A  and B  are sets. The Cartesian product of A  and B , denoted by 

BA , is the set which contains every ordered pair whose first coordinate is an element of A  

and second coordinate is an element of B , i.e. 

                    AabaBA  :),{(  and }Bb . 

 

Example 3.1: For }4,2{A  and }3,1{A , we have  

a) )}3,4(),1,4(),3,2(),1,2{( BA , and  

b) )}4,3(),2,3(),4,1(),2,1{(  AB . 

Example 3.2: Let }3,2,1{A  and },,{ cbaB  . Then,  
)},3(),,3(),,3(),,2(),,2(),,2(),,1(),,1(),,1{( cbacbacbaBA  . 

From example 3.1, we can see that BA  and AB  are not equal. Recall that two sets are equal 

if one is a subset of the other and vice versa. To check equality of Cartesian products we need to 

define equality of ordered pairs.  

 

Definition 3.2: (Equality of ordered Pairs) 

Two ordered pairs ),( ba   and ),( dc  are equal if and only if ca   and db  . 

 

 

Definition 3.3: (Relation from A  into B ) 

If A  and B  are sets, any subset of BA  is called a relation from  A into  B.     

 

Suppose  R is a relation from a set A to a set  B. Then,  R A×B  and hence for each 

BAba ),( , we have either Rba ),(  or Rba ),( . If Rba ),( , we say “a is R-related (or 

simply related) to b”,  and  write aRb . If Rba ),( , we say that “a is not related to b”. 

In particular if R is a relation from a set A to itself, then we say that R is a relation on A. 

 

Example 3.3: 

1. Let }7,5,3,1{A  and }8,6{B . Let R  be the relation “less than” from A  to B . Then, 

)}8,7(),8,5(),6,5(),8,3(),6,3((),8,1(),6,1{(R . 

2. Let }5,4,3,2,1{A  and },,{ cbaB  . 

a) The following are relations from A  into B ; 
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i) )},1{(1 aR   

ii) )},5(),,4(),,3(),,2{(2 acbbR   

iii) )},3(),,2((),,1{(3 cbaR   

b) The following are relations from B  to A ; 

i) )}1,(),3,{(4 baR   

ii) )}3,(),2,(),4,(),2,{(5 bacbR   

iii) )}5,{(6 bR   

Definition 3.4: Let R  be a relation from A  into B . Then,  

a) the domain of R , denoted by )(RDom ,  is the set of first coordinates of the elements of 

R , i.e 

}),(:{)( RbaAaRDom   

b) the range of R , denoted by )(RRange , is the set of second coordinates of elements of R , 

i.e 

}),(:{)( RbaBbRRange   

 

Remark: If R  is a relation from the set A  to the set B , then the set B  is called the codomain of 

the relation R . The range of relation is always a subset of the codomain. 

 

Example 3.4: 

1. The set )}10,6(),8,5(),7,4{(R  is a relation from set }6,5,4,3,2,1{A  to set 

}10,9,8,7,6{B . The domain of R  is }6,5,4{ , the range of R  is }10,8,7{  and the 

codomain of R  is }10,9,8,7,6{ . 

2. The set of ordered pairs )}3,5(),7,5(),3,6(),2,8{( R  is a relation between the sets 

}8,6,5{  and }7,3,2{  , where }7,6,5{  is the domain and }7,3,2{   is the range. 

Remark:  

1. If Rba ),(  for a relation R , we say a  is related to (or paired with) b . Note that a  may 

also be paired with an element different from b . In any case, b  is called the image of a  

while a  is called the pre-image of b under R . 

2. If the domain and/or range of a relation is infinite, we cannot list each element 

assignment, so instead we use set builder notation to describe the relation. The situation 

we will encounter most frequently is that of a relation defined by an equation or formula. 

For example, 

},,32:),{(  yxxyyxR  

is a relation for which the range value is 3 less than twice the domain value. Hence, 

)2,5.0(),3,0(  and )7,2(   are examples of ordered pairs that are of the assignment.  
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Example 3.5: 

1. Let }6,4,3,2,1{A                                                                                                                   

Let R  be the relation on A  defined by aAbabaR ,,:),{(  is a factor of }b . Find the 

domain and range of R . 

Solution: We have 

 )}6,6(),4,4(),6,3(),3,3(),6,2(),4,2(),2,2(),6,1(),4,1(),3,1(),2,1(),1,1{(R . 

Then, }6,4,3,2,1{)( RDom  and }6,4,3,2,1{)( RRange . 

2. Let }5,4,3,2,1{A  and }67,,3,2,1{ B . 

Let xBAyxR :),{(  is cube root of y  . Find a) R       b) )(RDom  c) )(RRange  
 

Solution: We have 3333,3
1255,644,273,82,11    and 27,8,1  and 64 are in B  

whereas 125 is not in B . Thus, )}64,4(),27,3(),8,2(),1,1{(R , }4,3,2,1{)( RDom  and 

}64,27,8,1{R . 

 

Remark:  

1. A relation R  on a set A  is called  

i) a universal relation if AAR   

ii) identity relation if }:),{( AaaaR   

iii) void or empty relation if R  

2. If R is a relation from A  into B , then the inverse relation of R , denoted by 
1R , is a 

relation from B  to A  and is given by: 

}),(:),{(1 RyxxyR  . 

Observe that )()( 1 RRangeRDom  and )()( 1 RDomRRange . For instance, if 

)}2,10(),15,9(),4,1{(R  is a relation on a set }20,,3,2,1{ A , then )}10,2(),9,15(),1,4{(1 R  

 

Example 3.6: Let R  be a relation defined on IN  by }112,,:),{(  baINbabaR .  

Find  a) R   b) )(RDom   c) )(RRange   d) 
1R  

 

Solution: The smallest natural number is 1. 

 1b    911)1(2  aa  

 711)2(22  aab  

 511)3(23  aab  

 311)4(24  aab  

 111)5(25  aab  

 INaab  111)6(26  

Therefore, )}5,1(),4,3(),3,5(),2,7(),1,9{(R , }9,7,5,3,1{)( RDom , }5,4,3,2,1{)( RRange  and 

)}1,5(),3,4(),5,3(),7,2(),9,1{(1 R . 
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 Functions 

Mathematically, it is important for us to distinguish among the relations that assign a unique 

range element to each domain element and those that do not. 

 

Definition 3.5: (Function) 

A function is a relation in which each element of the domain corresponds to exactly one 

element of the range. 

 

Example 3.7: Determine whether the following relations are functions. 

a) )}7,3(),5,3(),2,5{( R  b) R {(2,4),(3,4),(6,-4)} 

Solution:  

a) Since the domain element 3 is assigned to two different values in the range, 5 and 7, it is 

not a function. 

b) Each element in the domain, }6,3,2{ , is assigned no more than one value in the range, 2 is 

assigned only 4, 3 is assigned only 4, and 6 is assigned only – 4. Therefore, it is a 

function. 

Remark: Map or mapping, transformation and correspondence are synonyms for the word 

function. If f  is a function and fyx ),( , we say x is mapped to y by f. 

 

Definition 3.6: A relation f from A into B is called a function from A into B, denoted by  

                BAf :     or BA f  

if and only if 

(i) AfDom )(  

(ii) No element of A is mapped by f  to more than one element in B, i.e. if fyx ),(  

and fzx ),( , then zy  . 

 

Remark: 1. If to the element x of A  corresponds )( By   under the function f , then we write 

yxf )(  and y  is called the image of x under y  and x is called a pre-image of y  under f .       

      2. The symbol )(xf  is read as “ f  of x” but not “ f  times x”. 

3. In order to show that a relation f  from  A into B  is a function, we first show that the 

domain of f  is A and next we show that f  well defined or single-valued, i.e. if yx   in 

A, then )()( yfxf   in B for all Ayx , . 

Example 3.8: 

1. Let }4,3,2,1{A  and }15,11,8,6,1{B . Which of the following are functions from A to 

B .  

a) f  defined by 8)4(,8)3(,6)2(,1)1(  ffff  
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b) f  defined by 15)3(,6)2(,1)1(  fff  

c) f  defined by 6)4(,6)3(,6)2(,6)1(  ffff  

d) f  defined by 11)4(,8)3(,8)2(,6)2(,1)1(  fffff  

e) f  defined by 15)4(,11)3(,8)2(,1)1(  ffff  

Solution:  

a) f  is a function because to each element of A there corresponds exactly one element of 
B . 

b) f  is not a function because there is no element of B which correspond to 4(A). 

c) f  is a function because to each element of A there corresponds exactly one element         

    of B. In the given function, the images of all element of A are the same. 

d) f  is not a function because there are two elements of B  which correspond to 2.         

     In other words, the image of 2 is not unique. 

e) f  is a function because to each element of A  there corresponds exactly one element      

    of .B  
 

As with relations, we can describe a function with an equation. For example, y=2x+1 is a 

function, since each x will produce only one y . 

 

2. Let }:),{( 2xyyxf  . Then, f  maps: 

 

1 to 1  -1 to 1 

2 to 4  -2 to 4 

3 to 9  -3 to 9 

 

More generally any real number x is mapped to its square. As the square of a number is unique, 

f  maps every real number to a unique number. Thus, f  is a function from   into  . 

We will find it useful to use the following vocabulary: The independent variable refers to the 

variable representing possible values in the domain, and the dependent variable refers to the 

variable representing possible values in the range. Thus, in our usual ordered pair notation 

),( yx , x is the independent variable and y  is the dependent variable. 

3. Let f  be the subset of  ZQ  defined by 
















 0,,:, qZqpp

q

p
f . Is f a function? 

Solution: First we note that QfDom )( . Then, f  satisfies condition (i) in the 

definition of a function. Now,   f2,
3
2

,   f4,
6
4

 and 6
4

3
2   but    

6
4

3
2 42 ff  . 

Thus f  is not well defined. Hence, f  is not a function from Q  to Z . 

 

4. Let f  be the subset of ZZ   defined by },:),{( Znmnmmnf  . Is f  a function? 

 

Solution: First we show that f  satisfies condition (i) in the definition. Let x  be any 

element of Z . Then, 1 xx . Hence, fxxxx  )1,1()1,( . This implies 
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that )( fDomx . Thus, )( fDomZ  . However, ZfDom )(  and so ZfDom )( . 

Now, Z4  and 22144  . Thus, )14,14(   and )22,22(   are in f . Hence we 

find that 2214   and )22(45)14(  ff . This implies that f  is not well 

defined, i.e, f  does not satisfy condition (ii). Hence, f  is not a function from Z  to Z . 

 

 Domain, codomain and range of a function 

For a function BAf :  

(i) The set A is called the domain of f  

(ii) The set B is called the codomain of f  

(iii) The set }:)({ Axxf   of all image of elements of A is called the range of f  

Example 3.9: 

1. Let }3,2,1{A  and }10,,3,2,1{ B . Let BAf :  be the correspondence which 

assigns to each element in A , its square. Thus, we have 9)3(,4)2(,1)1(  fff . 

Therefore, f  is a function and }3,2,1{)( fDom , }9,4,1{)( fRange  and codomain of 

f  is }10,,3,2,1{  . 

 

2. Let INBA  },9,7,6,4,2{ . Let x  and y  represent the elements in the sets A  and B , 

respectively. Let BAf :  be a function defined by Axxxf  ,1715)( . 

     The variable x  can take values 2, 4, 6, 7, 9. Thus, we have  

  152)9(,122)7(,107)6(,77)4(,4717)2(15)2(  fffff . 

 This implies that }152,122,107,77,47{)(},9,7,6,4,2{)(  fRangefDom  and codomain      

       of f is IN. 

 

3. Determine whether the following equations determine y  as a function of x , if so, find 

the domain of the function. 

a) 53  xy  b) 
53

2




x

x
y   c) xy 2

 

Solution: 

a) To determine whether 53  xy  gives y  as a function of x , we need to know 

whether each x-value uniquely determines a y-value. Looking at the equation 

53  xy , we can see that once x  is chosen we multiply it by – 3 and then add 5. 

Thus, for each x there is a unique y . Therefore, 53  xy  is a function. It domain 

is the set of all real numbers. 
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b) Looking at the equation 
53

2




x

x
y  carefully, we can see that each x-value  uniquely 

determines a y-value (one x-value can not produce two different y-values). Therefore, 

53

2




x

x
y  is a function. 

As for its domain, we ask ourselves. Are there any values of x  that must be excluded? Since 

53

2




x

x
y  is a fractional expression, we must exclude any value of x  that makes the 

denominator equal to zero. We must have  

  
3

5
053  xx  

Therefore, the domain consists of all real numbers except 
3

5
. Thus, )( fDom }

3

5
:{ xx . 

c) For the equation xy 2
, if we choose 9x  we get 92 y , which gives 3y . In 

other words, there are two y values associated with 9x . Therefore, xy 2
 is not 

a function. 

4. Find the domain of the function 
23 xxy  . 

 

Solution: Since y  is defined and is real when the expression under the radical is non-

negative, we need x  to satisfy the inequality  

 0)3(03 2  xxxx  

This is a quadratic inequality, which can be solved by analyzing signs: 

 

Sign of 
23 xx    

30

 


 

Since we want )3(3 2 xxxx   to be non-negative, the sign analysis shows us that the domain 

is }30:{  xx  or ]3,0[ . 

 

Exercise 3.1 

1. Let R be a relation on the set }6,5,4,3,2,1{A  defined by }9:),{(  babaR . 

i) List the elements of R  

ii) Is 
1 RR  

2. Let R be a relation on the set }7,6,5,4,3,2,1{A  defined by 4:),{( baR   divides ba  . 

i) List the elements of R  

ii) Find  )(&)( RRangeRDom  

iii) Find the elements of 
1R  

iv) Find )(&)( 11  RRangeRDom  
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3. Let }6,5,4,3,2,1{A . Define a relation on A  by }1:),{(  xyyxR . Write down the 

domain, codomain and range of R . Find 
1R . 

4. Find the domain and range of the relation }2:),{(  yxyx . 

5. Let }3,2,1{A  and }8,6,5,3{B . Which of the following are functions from A  to B ? 

a) )}3,3(),3,2(),3,1{(f   c) )}5,2(),8,1{(f  

b) )}6,1(),5,2(),3,1{(f   d) )}3,3(),5,2(),6,1{(f  

6. Determine the domain and range of the following relations. Which relation a function? 

a) )}0,2(),6,4(),5,2(),3,4{(    d) )},(),1,1(),,{(
8
1

3
1

6
1

2
1   

b) )}5,1(),,6(),2,8{(
2
3     e) )}5,5(),5,4(),5,3(),5,2(),5,1(),5,0{(  

c) )}3,3(),1,1(),0,0(),1,1(),3,3{(   f) {(5,0),(5,1),(5,2),(5,3),(5,4),(5,5)} 

7. Find the domain and range of the following functions. 

a) 
2281)( xxxf    c) 86)( 2  xxxf  

b) 
65

1
)(

2 


xx
xf   d) 










52,1

21,43
)(

xx

xx
xf  

8. Given 









1,1

1,53
)(

2 xx

xx
xf . 

Find  a) )3(f  b) )1(f   c) )6(f  
 

 

3.2 Real Valued functions and their properties 

 

After completing this section, the student should be able to: 

 

 perform the four fundamental operations on polynomials 

 compose functions to get a new function 

 determine the domain of the sum, difference, product and quotient of two functions 

 define equality of two functions 

 

Let f  be a function from set A  to set B . If B  is a subset of the set of real numbers  , then f  

is called a real valued function, and in particular if A  is also a subset of  , then BAf :  is 

called a real function. 

 

Example 3.10: 1. The function :f  defined by 73)( 2  xxxf , x  is a real 

function. 

2. The function :f  defined as xxf )(  is also a real valued function. 
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 Operations on functions 

Functions are not numbers. But just as two numbers a  and b  can be added to produce a new 

number ba  , so two functions f  and g  can be added to produce a new function gf  . This 

is just one of  the several operations on functions that we will describe in this section. 

Consider functions f  and g  defined by 
2

3
)(




x
xf  and xxg )( . We can make a new 

function gf   by having it assign to x the value x
x




2

3
, that is, 

 x
x

xgxfxgf 



2

3
)()())((  . 

Definition 3.7: Sum, Difference, Product and Quotient of two functions 

 

Let )(xf  and )(xg  be two functions. We define the following four functions: 

 

1. )()())(( xgxfxgf                 The sum of the two functions 

2. )()())(( xgxfxgf                 The difference of the two functions 

3. )()())(( xgxfxgf                      The product of the two functions 

4. 
)(

)(
)(

xg

xf
x

g

f









                              The quotient of the two functions (provided )0)( xg  

 

Since an x value must be an input into both f  and g , the domain of ))(( xgf   is the set of all 

x  common to the domain of f  and g . This is usually written as 

)()()( gDomfDomgfDom  . Similar statements hold for the domains of the difference and 

product of two functions. In the case of the quotient, we must impose the additional restriction 

that all elements in the domain of g   for which 0)( xg  are excluded. 

 

 

Example 3.11:  

1. Let 23)( 2  xxf  and 45)(  xxg . Find each of the following and its domain 

a) ))(( xgf   b) ))(( xgf    c) ))(.( xgf   d) )(x
g

f








 

Solution:  

a)  )45()23()()())(( 2 xxxgxfxgf 253 2  xx  

b)  )45()23()()())(( 2 xxxgxfxgf 653 2  xx  

c)  )45)(23())(( 2 xxxgf 8101215 23  xxx  

d) 








)(

)(
)(

xg

xf
x

g

f

45

23 2





x

x
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We have  

  )()()()()( gDomfDomfgDomgfDomgfDom  

 

















4

5
\}0)(:{\)()( xgxgDomfDom

g

f
Dom   

 

2. Let 4 1)(  xxf  and 
29)( xxg  , with respective domains ),1[   and ]3,3[ . 

Find formulas for 
g

f
gfgfgf ,,,   and 3f  and give their domains. 

Solution: 

Formula                                                            Domain 

24 91)()())(( xxxgxfxgf                                 ]3,1[  

24 91)()())(( xxxgxfxgf                                 ]3,1[  

24 91)()())(( xxxgxfxgf                                     ]3,1[  

2

4

9

1

)(

)(
)(

x

x

xg

xf
x

g

f













                                                        )3,1[  

     4

3

11)()(
3

433  xxxfxf                                          ),1[   

 

There is yet another way of producing a new function from two given functions. 

  

Definition 3.8: (Composition of functions) 

 

Given two functions )(xf  and )(xg , the composition of the two functions is denoted by gf   

and is defined by: 

                        )]([))(( xgfxgf  . 

))(( xgf   is read as f"  composed with g  of "x . The domain of gf   consists of those x s 

in the domain of g  whose range values are in the domain of f , i.e. those x s for which )(xg  

is in the domain of f . 

 

 

Example 3.12:  

1. Suppose )},3(),,2{( qzf   and )}5,(),3,(),2,{( cbag  . The function 

))(())(( xgfxgf   is found by taking elements in the domain of g  and evaluating as 

follows: 

qfbgfbgfzfagfagf  )3())(())((,)2())(())((   
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If we attempt to find ))(( cgf  we get )5(f , but 5 is not in the domain of )(xf  and so we cannot 

find ))(( cgf  . Hence, )},(),,{( qbzagf  . The figure below illustrates this situation. 

                   
 

 

2. Given 235)( 2  xxxf  and 34)(  xxg , find  

a) )2)(( gf   b) )2)(( fg    c) ))(( xgf     d) ))(( xfg   

Solution:  

a) ))2(()2)((  gfgf  …… First evaluate 53)2(4)2( g  

       )5( f  

       1422)5(3)5(5 2   

b) ))2(()2)(( fgfg  …….First evaluate 162)2(3)2(5)2( 2 f  

                 )16(g  

      673)16(4   

c) ))(())(( xgfxgf  ……. But 34)(  xxg  

     )34(  xf  

     2)34(3)34(5 2  xx  

     3810880 2  xx   

d) ))(())(( xfgxfg  ……. But 235)( 2  xxxf  

     )235( 2  xxg  

     3)235(4 2  xx  

     111220 2  xx   

3. Given 
1

)(



x

x
xf  and 

1

2
)(




x
xg , find 

a) ))(( xgf   and its domain  b) ))(( xfg   and its domain 

Solution: a) 
1

2

1
1

2
1

2

1

2
))((



















x

x

x

x
fxgf  . Thus, }1:{)(  xxgfDom  . 

g 

a 

b 

c 

   2 

Domain 

of   f 

5 

   3 z 

q 

f 

Domain of g Range of  g Range of  f 
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b) 22

1
1

2
))(())(( 




 x

x

x
xfgxfg  .  Since x  must first be an input into )(xf  

and so must be in the domain of f , we see that }1:{)(  xxfgDom  . 

4. Let 
9

6
)(

2 


x

x
xf  and xxg 3)(  . Find )12)(( gf   and ))(( xfg   and its domain. 

Solution: We have 
3
4

27
36)6()36())12(()12)((  ffgfgf  . 

  
3

32

93

36

9)3(

36
)3())(())((

2 








x

x

x

x

x

x
xfxgfxgf  . 

The domain of gf   is ),3()3,0[  . 

 

We now explore the meaning of equality of two functions. Let BAf :  and BAg :  be two 

functions. Then, f  and g  are subsets of BA . Suppose gf  . Let x  be any element of A . 

Then, gfxfx ))(,(  and thus gxfx ))(,( . Since g  is a function and 

)),(,( xfx gxgx ))(,( , we must have ).()( xgxf   Conversely, assume that )()( xfxg   for 

all Ax . Let fyx ),( . Then, )()( xgxfy  . Thus, gyx ),( , which implies that gf  . 

Similarly, we can show that fg  . It now follows that gf  . Thus two functions BAf :  

and BAg :  are equal if and only if )()( xgxf   for all Ax . In general we have the 

following definition. 

 

Definition 3.9: (Equality of functions) 

Two functions are said to be equal if and only if the following two conditions hold: 

i) The functions have the same domain; 

ii) Their functional values are equal at each element of the domain. 

 

Example 3.13:  

1. Let }0{:  ZZf  and }0{:  ZZg  be defined by }:),{( 2 Znnnf   and 

}:),{(
2

Znnng  . Now, for all Zn , )()(
22 ngnnnf  . Thus, gf  . 

 

2. Let }5{\,
5

25
)(

2





 x

x

x
xf , and  xxxg ,5)( . The function f  and g  are not 

equal because ).()( gDomfDom   

Exercise 3.2 

1. For xxxf  2)(  and 
3

2
)(




x
xg , find each value: 

a) )2)(( gf    c) )3(2g   e) )1)(( fg   
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b) )1(








g

f
   d) )1)(( gf    f) )3)(( gg   

2. If 2)( 3  xxf  and 
1

2
)(




x
xg , find a formula for each of the following and state its 

domain. 

a) ))(( xgf    c) )(x
f

g








 

b) ))(( xgf     d) ))(( xfg   

3. Let 2)( xxf   and xxg )( . 

a) Find ))(( xgf   and its domain. 

b) Find ))(( xfg   and its domain 

c) Are ))(( xgf   and ))(( xfg   the same functions? Explain. 

4. Let 35)(  xxf . Find )(xg  so that 72))((  xxgf  . 

5. Let .12)(  xxf  Find )(xg  so that 13))((  xxgf  . 

6. If f  is a real function defined by 
1

1
)(






x

x
xf . Show that 

3)(

1)(3
)2(






xf

xf
xf . 

7. Find two functions f  and g  so that the given function ))(()( xgfxh  , where  

a) 3)3()(  xxh   c) 6
1

)( 
x

xh  

b) 35)(  xxh   d) 
6

1
)(




x
xh  

8. Let 
x

xgxxf
1

)(,34)(   and xxxh  2)( . Find 

a) )75( xf    c) )))3((( hgf    e) )( axf   

b) 7)(5 xf    d) )3()2()1( hgf    f) axf )(  

 

3.3 Types of functions and inverse of a function 

 
After completing this section, the student should be able to: 

 

 define one to oneness and ontoness of a function 

 check invertibility of a function 

 find the inverse of an invertible function 

 

In this section we shall study some important types of functions. 
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 One to One functions 

Definition 3.10: A function BAf :  is called one to one, often written 1 – 1, if and only 

if  for all Axx 21, , )()( 21 xfxf   implies 21 xx  . In words, no two elements of A  are 

mapped to one element of B . 

 

Example 3.14: 

1. If we consider the sets }6,,3,2,1{ A  and },8,,,,,7{ edcbaB   and if 

),7,1{(f ),,2( a ),3( b , )}8,6(),,5(),,4( cb  and )},6(),8,5(),,4(),,3(),,2(),7,1{( dcbag  , 

then both f  and g  are functions from A  into B . Observe that f  is not a 1 – 1 function 

because )4()3( ff   but 43 . However, g  is a 1 – 1 function. 

 

2. Let }4,3,2,1{A  and }8,7,4,1{B . Consider the functions  

i) BAf :  defined as 8)4(,4)3(,4)2(,1)1(  ffff  

ii) BAg :  defined as 8)4(,1)3(,7)2(,4)1(  ffff  

Then, f  is not 1 – 1, but g  is a 1 – 1 function. 

 

 Onto functions 

Definition 3.11: Let f  be a function from a set A  into a set B . Then f  is called an onto 

function(or f maps onto )B  if every element of B  is an image of some element in A , i.e, 

.)( BfRange   

 

Example 3.15:  

1. Let }3,2,1{A and }5,4,1{B . The function BAf :  defined by 1)1( f , 5)2( f , 

1)3( f  is not onto because there is no element in A , whose image under f  is  4. The 

function BAg :  given by )}1,3(),5,2(),4,1{(g  is onto because each element of B  is 

an image of at least one element of A  . 

 

Note that if A  is a non-empty set, the function AAiA :  defined by xxiA )(  for all 

Ax  is a 1 – 1 function from A  onto A . Ai  is called the identity map on A . 

 

2. Consider the relation f  from Z  into Z  defined by 2)( nnf   for all Zn . Now, 

domain of f  is Z . Also, if nn  , then 22 )(nn  , i.e. )()( nfnf  . Hence, f  is well 

defined and is a function. However, )1(1)1(  ff  and 11  , which implies that f  

is not 1 – 1. For all Zn , )(nf  is a non-negative integer. This shows that a negative 

integer has no preimage. Hence, f  is not onto. Note that f  is onto },9,4,1,0{  . 
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3. Consider the relation f  from Z  into Z  defined by nnf 2)(   for all Zn . As in the 

previous example, we can show that f  is a function. Let Znn ,  and suppose that 

)()( nfnf  . Then nn  22  and thus nn  . Hence, f  is 1 – 1. Since for all Zn , 

)(nf  is an even integer; we see that an odd integer has no preimage. Therefore, f  is not 

onto. 

 

 1 – 1 Correspondence 

 

Definition 3.12: A function BAf :  is said to be a 1 – 1 correspondence if f  is both 1 – 

1 and onto. 

 

Example 3.16: 

1. Let }5,4,3,2,1,0{A  and }25,20,15,10,5,0{B . Suppose BAf :  given by 

xxf 5)(   for all Ax . One can easily see that every element of B  has a preimage in 

A  and hence f  is onto. Moreover, if )()( yfxf  , then yx 55  , i.e. yx  . Hence, f  

is 1 – 1. Therefore, f  is a 1 – 1 correspondence between A  and B . 

2. Let A  be a finite set. If AAf :  is onto, then it is one to one. 

Solution: Let },,,{ 21 naaaA  . Then )}(,),(),({)( 21 nafafaffRange  . Since f  is onto 

we have AfRange )( .Thus, )}(,),(),({ 21 nafafafA  , which implies that )( 1af , )( 2af , 

 , )( naf  are all distinct. Hence, ji aa   implies )()( ji afaf   for all nji  ,1 . Therefore, 

f  is 1 – 1. 

 

 Inverse of a function 

Since a function is a relation , the inverse of a function f  is denoted by 1f  and is defined by:  

  }),(:),{(1 fyxxyf   

For instance, if )}7,1(),6,3(),4,2{(f , then )}1,7(),3,6(),2,4{(1 f . Note that the inverse of a 

function is not always a function. To see this consider the function ),6,3(),4,2{(f )}4,5( . 

Then, )}5,4(),3,6(),2,4{(1 f , which is not a function.  

 

As we have seen above not all functions have an inverse, so it is important to determine whether 

or not a function has an inverse before we try to find the inverse. If the function does not have an 

inverse, then we need to realize that it does not have an inverse so that we do not waste our time 

trying to find something that does not exist.  

 

A one to one function is special because only one to one functions have inverse. If a function is 

one to one, to find the inverse we will follow the steps below:  

 

1. Interchange x  and y  in the equation )(xfy   
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2. Solving the resulting equation for y , we will obtaining the inverse function. 

Note that the domain of the inverse function is the range of the original function and the range of 

the inverse function is the domain of the original function. 

 

Example 3.17:  

1. Given 3)( xxfy  . Find 1f  and its domain. 

Solution: We begin by interchanging x  and y , and we solve for y . 
3xy   Interchange x  and y  

3yx   Take the cube root of both sides 

yx 3  This is the inverse of the function 

Thus, 31 )( xxf  . The domain of 1f  is the set of all real numbers. 

2. Let 
2

)(



x

x
xfy . Find )(1 xf  . 

Solution: Again we begin by interchanging x  and y , and then we solve for y . 

 
2


x

x
y   Interchange x  and y  

 
2


y

y
x   Solving for y  

 
x

x
yxyxyxxyyyx




1

2
)1(22)2(  

Thus, 
x

x
xf




1

2
)(1

. 

 

Remark: Even though, in general, we use an exponent of  1  to indicate a reciprocal, inverse 

function notation is an exception to this rule. Please be aware that )(1 xf   is not the reciprocal of 

f . That is,  

  
)(

1
)(1

xf
xf 

 

If we want to write the reciprocal of the function )(xf  by using a negative exponent, we must 

write 

    1
)(

)(

1 
 xf

xf
. 

Exercise 3.3 

 

1. Consider the function }:),{( 2 Sxxxf   from }3,2,1,0,1,2,3{ S  into Z . Is f  one 

to one? Is it onto? 

2. Let }3,2,1{A . List all one to one functions from A  onto A . 
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3. Let BAf : . Let f  be the inverse relation, i.e. })(:),{( yxfABxyf  . 

a) Show by an example that f  need not be a function. 

b) Show that f  is a function from )( fRange  into A  if and only if f  is 1 – 1. 

c) Show that f  is a function from B  into A  if and only if f  is 1 – 1 and onto. 

d) Show that if f  is a function from B  into A , then   ff 1 . 

 

4. Let }10:{  xxA  and }85:{  xxB . Show that BAf :  defined by 

xxf )58(5)(   is a 1 – 1 function from A  onto B . 

 

5. Which of the following functions are one to one? 

a) :f  defined by  xxf ,4)(  

b) :f  defined by  xxxf ,16)(  

c) :f  defined by  xxxf ,7)( 2  

d) :f  defined by  xxxf ,)( 3  

e)  }7{\:f  defined by }7{\,
7

12
)( 




 x

x

x
xf  

6. Which of the following functions are onto? 

a) :f  defined by  xxxf ,49115)(  

b) :f  defined by  xxxf ,)(  

c) :f  defined by  xxxf ,)( 2
 

d) :f  defined by  xxxf ,4)( 2  

7. Find )(1 xf   if 

a) 67)(  xxf   d) 
x

x
xf

3

4
)(


   g) 1)2()( 2  xxf  

b) 
4

92
)(




x
xf   e) 

x

x
xf

21

35
)(




   h)  

x

x
xf




1

2
)(  

c) 
x

xf
3

1)(    f) 3 1)(  xxf  

 

3.4 Polynomials, zeros of polynomials, rational functions and their graphs 

 

After completing this section, the student should be able to: 

 

 define polynomial and rational functions 
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 apply the theorems on polynomials to find the zeros of polynomial functions 

 use the division algorithm to find quotient and remainder 

 apply theorems on polynomials to solve related problems 

 sketch and analyze the graphs of rational functions  

 

The functions described in this section frequently occur as mathematical models of real-life 

situations. For instance, in business the demand function gives the price per item, p , in terms of 

the number of items sold, x . Suppose a company finds that the price p (in Birr) for its model 

GC-5 calculator is related to the number of calculators sold, x (in millions), and is given by the 

demand function .80 2xp   

The manufacturer‟s revenue is determined by multiplying the number of items sold ( x ) by the 

price per item ( p ). Thus, the revenue function is  

 

 32 80)80( xxxxxpR   

 

These demand and revenue functions are examples of polynomial functions.  The major aim of 

this section is to better understand the significance of applied functions (such as this demand 

function). In order to do this, we need to analyze the domain, range, and behavior of such 

functions. 

 

 Polynomial functions 

 

Definition 3.13: A polynomial function is a function of the form       

                                 .0,01

1

1  

 n

n

n

n

n aaxaxaxay    

Each ia  is assumed to be a real number, and n  is a non-negative integer, na  is called the 

leading coefficient. Such a polynomial is said to be of degree n. 

 

Remark: 

1. The domain of a polynomial function is always the set of real numbers. 

2. (Types of polynomials) 

- A polynomial of degree 1 is called a linear function. 

- A polynomial of degree 2 is called quadratic function. 

- A polynomial of degree 3 is called a cubic function. 

        i.e .0,)( 301

2

2

3

3  aaxaxaxaxp
 

 

Example 3.18: 12)( 2  xxp ,  xxxq 23)( 4  and 32)( xxf   are examples of 

polynomial functions. 
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 Properties of polynomial functions 

 

1. The graph of a polynomial is a smooth unbroken curve. The word smooth means that the 

graph does not have any sharp corners as turning points. 

2. If p  is a polynomial of degree n , then it has at most n  zeros. Thus, a quadratic 

polynomial has at most 2 zeros. 

3. The graph of a polynomial function of degree n  can have at most 1n turning points. 

Thus, the graph of a polynomial of degree 5 can have at most 4 turning points. 

4. The graph of a polynomial always exhibits the characteristic that as x  gets very large, 

y  gets very large. 

 

 Zeros of a polynomial 

 

The zeros of a polynomial function provide valuable information that can be helpful in sketching 

its graph. One can find the zeros by factorizing the polynomial. However, we have no general 

method for factorizing polynomials of degree greater than 2. In this subsection, we turn our 

attention to methods that will allow us to find zeros of higher degree polynomials. To do this, we 

first need to discuss about the division algorithm. Recall that a number a  is a zero of a 

polynomial function p  if 0)( ap . 

 

Division Algorithm 

Let )(xp  and )(xd  be polynomials with 0)( xd , and with the degree of )(xd  less than or 

equal to the degree of )(xp . Then there are polynomials )(xq  and )(xR  such that  

  
remainderquotientdivisordividend

xRxqxdxp )()(.)()(  , where either 0)( xR  or the degree of )(xR  is less than degree 

of )(xd . 

 

Example 3.19: Divide 
xx

x

2

1
4

4




. 

Solution: Using long division we have  

18

)84(

04

)42(

02

)2(

42

10002

2

2

23

23

34

2

2342

















x

xx

xx

xx

xx

xx

xx

xxxxxx
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This long division means 


remainderquotientdivisordividend

xxxxxx )18()42(.)2(1 224  . 

 

With the aid of the division algorithm, we can derive two important theorems that will allow us 

to recognize the zeros of polynomials.  

If we apply the division algorithm where the divisor, )(xd , is linear (that is of the form rx  ), 

we get  

Rxqrxxp  )()()(     

 

Note that since the divisor is of the first degree, the remainder R , must be a constant. If we now 

substitute rx  , into this equation, we get     

RrqRrqrrrP  )(0)()()(  

Therefore, Rrp )( . 

 

The result we just proved is called the remainder theorem. 

 

The Remainder Theorem 

When a polynomial )(xp  of degree at least 1 is divided by rx  , then the remainder is )(rp . 

 

Example 3.20: The remainder when 13)( 23  xxxxP  is divided by 2x  is 9)2( p . 

As a consequence of the remainder theorem, if rx   is a factor of )(xp , then the remainder must 

be 0. Conversely, if the remainder is 0, then rx  , is a factor of )(xp . This is known as the 

Factor Theorem. 

 

The Factor Theorem 

rx   is a factor of )(xp  if and only if 0)( rp . 

 

The next theorem, called location theorem, allows us to verify that a zero exists somewhere 

within an interval of numbers, and can also be used to zoom in closer on a value. 

 

Location theorem 

Let f  be a polynomial function and a  and b  be real numbers such that ba  . If 

0)()( bfaf , then there is at least one zero of f  between a  and b . 

 

The Factor and Remainder theorems establish the intimate relationship between the factors of a 

polynomial )(xp  and its zeros. Recall that a polynomial of degree n can have at most n zeros. 

Does every polynomial have a zero? Our answer depends on the number system in which we are 

working. If we restrict ourselves to the set of real number system, then we are already familiar 

with the fact that the polynomial 1)( 2  xxp  has no real zeros. However, this polynomial does 

have two zeros in the complex number system. (The zeros are i  and i ). Carl Friedrich Gauss 
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(1777-1855), in his doctoral dissertation, proved that within the complex number system, every 

polynomial of degree 1  has at least one zero. This fact is usually referred to as the 

Fundamental theorem of Algebra. 

Fundamental Theorem of Algebra 

If )(xp  is a polynomial of degree 0n whose coefficients are complex numbers, then )(xp  

has at least one zero in the complex number system. 

 

Note that since all real numbers are complex numbers, a polynomial with real coefficients also 

satisfies the Fundamental theorem of Algebra. As an immediate consequence of the Fundamental 

theorem of Algebra, we have 

 

The linear Factorization Theorem 

If 
01

1

1)( axaxaxaxp n

n

n

n  

  , where 1n  and 0na , then  

)()()()( 21 nn rxrxrxaxp   , where the ir  are complex numbers (possible real and not 

necessarily distinct). 

 

From the linear factorization theorem, it follows that every polynomial of degree 1n  has 

exactly n  zeros in the complex number system, where a root of multiplicity k  counted k  times. 

 

Example 3.21: Express each of the polynomials in the form described by the Linear 

Factorization Theorem. List each zero and its multiplicity. 

a) xxxxp 166)( 23   

b) 8103)( 2  xxxq  

c) 234 1082)( xxxxf   

Solution: 

a) We may factorize )(xp  as follows: 

))2()(8(

)2)(8(

)166(166)( 223







xxx

xxx

xxxxxxxp

 

The zeros of )(xp  are 0, 8, and – 2 each of multiplicity one. 

b) We may factorize )(xq  as follows: 

)2)(
3

4
(3

)2()43(8103)( 2





xx

xxxxxq

 

Thus, the zeros of )(xq  are 
3

4
 and 2, each of multiplicity one. 

c) We may factorize )(xf  as follows: 
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))2())(2((2

)54(21082)(

2

22234

ixixx

xxxxxxxf




 

Thus, the zeros of f(x) are 0 with multiplicity two and  i2  and  i2  each with multiplicity 

one. 

 

Example 3.22:  

1.  Find a polynomial )(xp  with exactly the following zeros and multiplicity. 

 

zeros multiplicity 

1  3 

2 4 

5 2 

Are there any other polynomials that give the same roots and multiplicity? 

2. Find a polynomial f (x) having the zeros described in part (a) such that f(1) = 32. 

 

Solution: 

1. Based on the Factor Theorem, we may write the polynomial as: 

          243243 )5()2()1()5()2())1(()(  xxxxxxxp   

which gives the required roots and multiplicities. 

Any polynomial of the form )(xkp , where k  is a non-zero constant will give the same 

roots and multiplicities. 

2. Based on part (1), we know that 243 )5()2()1()(  xxxkxf . Since we want 

32)( xf , we have  

4
1

243

)16)(1)(8(32

)51()21()11()1(





kk

kf
 

Thus, 243

4
1 )5()2()1()(  xxxxf . 

 

Our experience in using the quadratic formula on quadratic equations with real coefficients has 

shown us that complex roots always appear in conjugate pairs. For example, the roots of  

0522  xx  are i21  and i21 . In fact, this property extends to all polynomial equations 

with real coefficients. 

 

Conjugate Roots Theorem 

Let )(xp  be a polynomial with real coefficients. If complex number bia  (where a  and b  

are real numbers) is a zero of )(xp , then so is its conjugate bia  . 

 

Example 3.23: Let .202692)( 234  xxxxxr  Given that i31  is a zero, find the other 

zero of )(xr . 

Solution: According to the Conjugate Roots Theorem, if  i31  is a zero, then its conjugate, 

i31  must also be a zero. Therefore, )31( ix  and )31( ix   are both factors of 
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)(xr , and so their product must be a factor of )(xr . That is, 

)]31([ ix   )]31([ ix 422  xx is a factor of )(xr . Dividing )(xr  by 422  xx , 

we obtain 

).1()5()42()54)(42()( 222  xxxxxxxxxr  

Thus, the zeros of )(xr  are i31 , i31 , 5  and 1. 

The theorems we have discussed so far are called existence theorems because they ensure the 

existence of zeros and linear factors of polynomials. These theorems do not tell us how to find 

the zeros or the linear factors. The Linear Factorization Theorem guarantees that we can factor a 

polynomial of degree at least one into linear factors, but it does not tell us how. 

 

We know from experience that if )(xp  happens to be a quadratic function, then we may find the 

zeros of CBxAxxp  2)(  by using the quadratic formula to obtain the zeros 

                                 .
2

42

A

ACBB
x


  

The rest of this subsection is devoted to developing some special methods for finding the zeros 

of a polynomial function. 

 

As we have seen, even though we have no general techniques for factorizing polynomials of 

degree greater than 2, if we happen to know a root, say r , we can use long division to divide 

)(xp  by rx   and obtain a quotient polynomial of lower degree. If we can get the quotient 

polynomial down to a quadratic, then we are able to determine all the roots. But how do we find 

a root to start the process? The following theorem can be most helpful. 

 

The Rational Root Theorem 

Suppose that  
01

1

1)( axaxaxaxf n

n

n

n  

  , where 0,1  nan  is an 
thn degree 

polynomial with integer coefficients. If 
q

p
 is a rational root of 0)( xf , where p  and q  have 

no common factor other than 1 , then p  is a factor of 0a  and q  is a factor of na . 

 

To get a feeling as to why this theorem is true, suppose 
2

3
 is a root of                                   

001

2

2

3

3  axaxaxa .  

Then, 0
2

3

2

3

2

3
01

2

2

3

3 

























aaaa  which implies that  

                      0
2

3

4

9

8

27
0

123  a
aaa

                   multiplying both sides by 8 

                     

)2.(..................................................8121827

)1.(..................................................8121827

0123

0123

aaaa

aaaa





 



92 

 

 

If we look at equation (1), the left hand side is divisible by 3, and therefore the right hand side 

must also be divisible by 3. Since 8 is not divisible by 3, 0a  must be divisible by 3. From 

equation (2), 3a  must be divisible by 2. 

 

 

Example 3.24: Find all the zeros of the function .122332)( 23  xxxxp   

Solution: According to the Rational Root Theorem, if 
q

p
 is a rational root of the given equation, 

then p  must be a factor of 12  and q  must be a factor of 2. Thus, we have  

possible values of p : 12,6,4,3,2,1   

possible values of q : 2,1   

possible rational roots 
q

p
: 12,6,4,

2

3
,3,2,

2

1
,1   

We may check these possible roots by substituting the value in )(xp . Now 30)1( p  and 

12)1( p . Since )1(p  is negative and )1(p  is positive, by location theorem, )(xp  has a zero 

between 1  and 1. Since   0
2
1 P , then  

2
1x  is a factor of )(xp . Using long division, we 

obtain 

                 
)3)(4)((2

)2422)((122332)(

2
1

2

2
123





xxx

xxxxxxxp
 

Therefore, the zeros of p(x) are 
2
1 , 4  and 3. 

 

 Rational Functions and their Graphs  

 

A rational function is a function of the form 
( )

( )
( )

n x

d x
f x    where both n(x) and d(x) are 

polynomials and 0)( xd .   

 

Example 3.25: The functions 
5

3
)(




x
xf , 

4

1
)(

2 




x

x
xf  and 

xx

xxx
xf

5

12
)(

35




  are 

examples of rational function. 

 

Note that the domain of the rational function 
( )

( )
( )

n x

d x
f x   is }0)(:{ xdx  

 

Example 3.26: Find the domain and zeros of the function 
12

53
)(

2 




xx

x
xf . 

Solution: The values of x  for which 0122  xx  are excluded from the domain of .f Since 

)3)(4(122  xxxx , we have }4,3:{)(  xxfDom . To find the zeros of )(xf , we 

solve the equation 
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                      0)(&0)(0
)(

)(
 xqxn

xd

xn
 

Therefore, to find the zeros of )(xf , we solve 053 x , giving 
3

5
x . Since 

3

5
 does not make 

the denominator zero, it is the only zero of )(xf . 

 

The following terms and notations are useful in our next discussion.   

 

Given a number a,  

 x  approaches  a from the right means x takes any value near and near to a  but x  a.  This is 

denoted by:     xa
+
     (read: „x approaches a from the right‟ ).  

      For instance, x 1
+ 

  means x can be 1.001,  1.0001, 1.00001,  1.000001,  etc.  

 x  approaches a from the left means x takes any value near and near to a  but x  a.   

      This is denoted by:     xa
–  

   (read: „x approaches a from the left‟ ).  

      For instance, x1
–   

means x can be 0.99,  0.999,  0.9999,   0.9999,  etc.  

 x  (read: „x approaches or tends to infinity‟) means the value of x  gets indefinitely larger 

and larger in magnitude (keep increasing without bound).  For instance, x can be 10
6
, 10

10
,  

10
12

, etc.   

 x –  (read: „x approaches or tends to negative infinity‟) means the value of x is negative 

and gets indefinitely larger and larger negative in magnitude (keep decreasing without bound).  

For instance, x can be –10
6
,  –10

10
,  –10

12
, etc.   

The same meanings apply also for the values of a function f  if we wrote  f(x) or  f(x).    

The following figure illustrates these notion and notations.    

 

 

 

 

 

 

                     

 

 

 

                      Fig. 2.1.  Graphical illustration of the idea of xa
+
,  f(x),  etc.     

 

We may also write  f(x)b  (read: „f(x) approaches b‟) to mean the function values, f(x), 

becomes arbitrarily closer and closer to  b (i.e., approximately b) but not exactly equal to b.  For 

instance, if 
1

( )
x

f x  , then f(x)0 as x;  i.e., 
1

x
 is approximately 0 when x is arbitrarily large.   

a 

y 

x 

y 

x   xa
–      

xa
+
 

 

x – 

y f(x), 

asxa

 

a 

y 

=f(x) 

   f(x) –, asxa
+
 

  f(x) –, 

asx– 

f(x), 

asx 
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The following steps are usually used to sketch (or draw) the graph of a rational function f(x). 

1. Identify the domain and simplify it.  

2. Find the intercepts of the graph whenever possible.  Recall the following: 

 y–intercept is the point on y-axis where the graph of y = f(x) intersects with the y-axis. At 

this point x=0.  Thus,  y = f(0),  or  (0, f(0) ) is the y-intercept if  0Dom(f).   

 x–intercept is the point on x-axis where the graph of y = f(x) intersects with the x-axis. At 

this point y=0.  Thus, x=a or (a, 0) is x-intercept if f(a)=0.  

3. Determine the asymptotes of the graph.  Here, remember the following.  

 Vertical Asymptote:  The vertical line x=a is called a vertical asymptote(VA) of f(x) if  

i)  adom(f), i.e., f  is not defined at x=a;   and  

ii) f(x)  or f(x) –  when xa
+ 

or xa
–
 .  In this case, the graph of f is almost 

vertically rising upward (if f(x)) or sinking downward (if f(x)) along with the 

vertical line x=a when x approaches a either from the right or from the left.  

 

Example 3.27: Consider  
1

( )
( ) ,

n
x a

f x


   where a  0 and n is a positive integer.  

Obviously aDom(f).  Next, we investigate the trend of the values of f(x) near a. To do this, we 

consider two cases,  when n is even or odd:  

Suppose n is even:  In this case (x – a)
n 
 0  for all x\{a}; and since  (x – a)

n 
0 as xa

+ 
 or 

xa
–
 . Hence, 

1

( )
( )

n
x a

f x


   as xa
+
 or xa

–
 . Therefore, x=a is a VA of f(x).  

Moreover, y=  1/a
n
  or (0, 1/a

n
 )  is its y-intercept since  f(0)=1/a

n
. However, it has no x-intercept 

since f(x) 0 for all x in its domain (See, Fig. 2.2 (A)).  

 

Suppose n is odd:  In this case (x – a)
n
 0  for all xa and 1/ (x – a)

n 
  when xa

+ 
  as in the 

above case. Thus, x=a is its VA. However, 1/(x–a)
n
 – when xa

–
 since (x – a)

n
< 0  for xa.  

Moreover, y= –1/a
n
  or (0, –1/a

n
 )  is its y-intercept since  f(0) = –1/a

n
.  However, it has no x-

intercept also in this case. (See, Fig. 2.2 (B)).  

Note that in both cases,  
1

( )
( ) 0

n
x a

f x


  as  xor x –.  
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Remark:  Let 
( )

( )
( )

n x

d x
f x    be a rational function. Then, 

1.  if ( ) 0d a  and ( ) 0n a  ,  then x=a is a VA of f  .    

2.  if ( ) 0 ( )d a n a  , then x=a  may or may not be a VA of f . In this case, simplify f(x) and look 

for VA of the simplest form of f.   

 Horizontal Asymptote:  A horizontal line y=b is called horizontal asymptote (HA) of f(x) if the 

value of the function becomes closer and closer to b (i.e., f(x)b)as  x  or as  x –.    

In this case, the graph of f becomes almost a horizontal line along with (or near) the line y=b 

as x and as x–.    For instance, from the above example, the HA of 
1

( )
( )

n
x a

f x


 is  

y=0 (the x-axis) , for any positive integer n (See, Fig. 2.2).  

Remark:   A rational function 
( )

( )
( )

n x

d x
f x   has a HA only when degree(n(x)) degree(d(x)).    

In this case,  (i)   If degree(n(x)) degree(d(x)),  then  y = 0 (the x-axis) is the HA of f.  

                    (ii)  If  degree(n(x)) =degree(d(x))=n, i.e., 
1

1 1 0

1

1 1 0

( )
n n

n n

n n

n n

a x a x

b x b x

a x a
f x

b x b













  


  
,  

            then n

n

a

b
y   is the HA of f.  

 Oblique Asymptote: The oblique line y=ax+b,   a0, is called an oblique asymptote (OA) of f  

if the value of the function, f(x), becomes closer and closer to ax+b(i.e., f(x) becomes 

approximately ax+b) as either x  or x –.   In this case, the graph of f  becomes almost a 

straight line along with (or near) the oblique line y=ax+b as x and as x –.   

Note:  A rational function 
( )

( )
( )

n x

d x
f x   has an OA only when degree(n(x)) = degree(d(x)) + 1. In 

this case, using long division, if the quotient of   n(x) ÷d(x) is ax +b,   then  y=ax+b   is the OA of  

f.   

Example 3.28:  Sketch the graphs of  
2

2

2 3 2
(a)  ( )            (b)  ( )       

1 1

x x x
f x g x

x x

  
 

 
 

1

( )
n

x a
y




n-even 

Fig. 2.2 (A) 

a 

1/a
n
 

1/a
n
 

x=a 

VA 

1

( )
n

x a
y




n-odd 

x=a 

VA 

a x 

y 

x 

y 

Fig. 2.2 (B) 
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Solution: (a) Since x1=0  at x=1,   dom(f) = \{1}.       

 Intercepts:   y-intercept:   x=0 y=f (0) = –2.  Hence,  (0, – 2) is y-intercept. 

x-intercept:  y=0  x+2=0  x= –2. Hence,  (–2, 0) is x-intercept. 

 Asymptotes:   

 VA:   Since x1=0  atx=1 and x+20 at x=1,  x=1 is VA of f.   In fact, if x1
+
 ,  then x+2 

3 but the denominator x–1 is almost 0 (but positive).  

Consequently, f(x) as  x1
+
.  

Moreover,  f(x) – as  x1
–
  (since , if  x1

–
  then x–1 is almost 0 but negative ) .       

           (So, the graph of f  rises up to + at the right side of x=1, and sink down to  at the left 

side of x=1)  

 HA:  Note that if you divide x+2 by x–1, the quotient is 1 and remainder is 3. Thus, 

2 3
( ) 1

1 1

x
f x

x x


  

 
.  Thus, if  x  (or x –), then 

3

1x 
0  so that f(x)1.   

Hence, y=1 is the HA of f.   

      Using these information, you can sketch the graph of f as displayed below in Fig. 2.3 (A).   

  (b)  Both the denominator and numerator are 0 at x=1. So, first factorize and simplify them:  

         x
2
+3x+2=(x+2)(x+1)    and    x

2
–1 = (x –1)( x+1) .  Therefore,  

       

2

2

3 2 ( 2)( 1
 ( )    

1

x x x x
g x

x

   
 



)

( 1)( 1x x  )
,        x –1 

                                     

2

1

x

x





.              (So,      dom(g) =  \{1, –1} )  

       This implies that only x=1 is VA.    

Hence, the graph of 
2

 ( ) ,    1,
1

x
g x x

x


  


 is exactly the same as that of 

2
( )

1

x
f x

x





 except 

that g(x)  is not defined at x= –1.   Therefore, the graph of g and its VA are the same as that of f 

except that there should be a „hole‟ at the point corresponding to x= –1 on the graph of g as 

shown on Fig. 2.3(B) below. 
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Exercise 3.4 

 

1. Perform the requested divisions. Find the quotient and remainder and verify the 

Remainder Theorem by computing )(ap . 

a) Divide 485)( 2  xbyxxxp  

b) Divide 4472)( 23  xbyxxxxp  

c) Divide 11)( 4  xbyxxp  

d) Divide 132)( 25  xbyxxxp  

2. Given that 0)4( p , factor 810112)( 23  xxxxp as completely as possible. 

3. Given that 9364)( 23  xxxxr and   0
4
1 r , find the remaining zeros of )(xr . 

4. Given that 3 is a double zero of 9087193)( 234  xxxxxp , find all the zeros of 

)(xp . 

5. a) Write the general polynomial )(xp  whose only zeros are 1, 2 and 3, with multiplicity 

3, 2 and 1 respectively. What is its degree? 

b) Find )(xp  described in part (a) if 6)0( p . 

6. If i32  is a root of ,391452)( 23  xxxxp find the remaining zeros of p(x). 

7. Determine the rational zeros of the polynomials 

a) 1074)( 23  xxxxp  

b) 152852)( 23  xxxxp  

c) 146)( 23  xxxxp  

8. Find the domain and the real zeros of the given function. 

y=1 (HA) 

2

1

x
y

x





 2

,   1
1

x
y x

x


  



 

x=1 

VA                         
x=1 

 

              (B)
 

2
,   1

1

x
y x

x


  


 Fig 2.3  (A) 2

( )
1

x
f x

x





 

„hole‟ 

atx=1 

 

y=1  

2 

 

2 

 

2 

 

2 

 

1  
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a) 
25

3
)(

2 


x
xf  b) 

124

3
)(

2 




xx

x
xg  c) 

xxx

x
xf

23

)3(
)(

23

2




   d) 

4

16
)(

2

2






x

x
xf  

9. Sketch the graph of  

a)
3

1
)(






x

x
xf  b) 

x

x
xf

1
)(

2 
  c) 2

1
)( 

x
xf  d) 

4
)(

2

2




x

x
xf  

10. Determine the behavior of 
3

38
)(

3






x

xx
xf  when x  is near 3. 

11. The graph of any rational function in which the degree of the numerator is exactly one 

more than the degree of the denominator will have an oblique (or slant) asymptote. 

a) Use long division to show that  

2

8
1

2

6
)(

2









x
x

x

xx
xfy  

b) Show that this means that the line 1 xy  is a slant asymptote for the graph and 

sketch the graph of )(xfy  . 

 

3.5 Definition and basic properties of logarithmic, exponential, trigonometric 

and hyperbolic functions and their graphs 

 

After completing this section, the student should be able to: 

 

 define exponential, logarithmic, trigonometric and hyperbolic functions 

 understand the relationship of the exponential and logarithmic functions 

 define the hyperbolic functions and be familiar with their properties 

 sketch the graph of exponential, logarithmic, trigonometric and hyperbolic functions 

 use basic properties of logarithmic, exponential, hyperbolic and trigonometric functions 

to solve problems 

 

 Exponents and radicals 

 

Definition 3.14: For a natural number n  and a real number x , the power 
nx , read “ the 

thn  

power of x ” or  “ x  raised to n ”, is defined as follows: 

                             
xtoequaleachfactorsn

n xxxx   

In the symbol
nx , x  is called the base and n  is called the exponent. 

 

For example, 322222225  . 
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Based of the definition of 
nx , n  must be a natural number. It does not make sense for n  to be 

negative or zero. However, we can extend the definition of exponents to include 0 and negative 

exponents. 

 

Definition 3.15: (Zero and Negative Exponents) 

Definition of zero Exponent                             Definition of Negative Exponent 

        )0(10  xx                                                   0
1

 x
x

x
n

n
 

Note: 
00  is undefined. 

 

As a result of the above definition, we have 
n

n
x

x




1
. We have the following rules of exponents 

for integer exponents: 

 

Rules for Integer Exponents 

1. mnmn xxx                                   4. nnn yxxy )(  

2. nmmn xx )(                                     5. 
mn

m

n

x
x

x   

3.  0







y

y

x

y

x
n

nn

 

 

Next we extend the definition of exponents even further to include rational number exponents. 

To do this, we assume that we want the rules for integer exponents also to apply to rational 

exponents and then use the rules to show us to define a rational exponent. For example, how do 

we define 2

1

a ? Consider 2

1

9 . 

 

If we apply rule 2 and square 2

1

9 , we get   999 2

1

2

1 2

 . Thus, 2

1

9  is a number that, when 

squared, yields 9. There are two possible answers: 3 and – 3, since squaring either number will 

yield 9. To avoid ambiguity, we define 2

1

a (called the principal square root of a ) as the non-

negative quantity that, when squared, yield a . Thus, 39 2

1

 . 

 

We will arrive at the definition of 3

1

a  in the same way as we did for 2

1

a . For example, if we cube 

3

1

8 , we get   888 3

3

3

1 3

 . Thus, 3

1

8  is the number that, when cubed, yields 8. Since 823   we 

have 283

1

 . Similarly,   327 3

1

 . Thus, we define 3

1

a (called the cube root of a ) as the 

quantity that, when cubed yields a . 
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Definition 3.16: (Rational Exponent na
1

)  

If n  is an odd positive integer, then ba n 
1

 if and only if abn   

If n  is an even positive integer and 0a , then ba n 
1

 if and only if abn   

 

We call na
1

 the principal 
thn  root of a . Hence, na

1

 is the real number (nonnegative when n  is 

even) that, when raised to the 
thn  power, yields a . Therefore, 

    416 2

1

   since 1642   

    5125 3

1

  since 125)5( 3   

  
3

1

81

1 4

1









 since 

81

1

3

1
4









 

  3273

1

  since 2733   

   4

1

16  is not a real number 

 

Thus far, we have defined na
1

, where n  is a natural number. With the help of the second rule for 

exponent, we can define the expression n

m

a , where m  and n  are natural numbers and 
n
m  is 

reduced to lowest terms. 

 

Definition 3.17: (Rational Exponent n

m

a ) 

If na
1

 is a real number, then  mnn

m

aa
1

 (i.e. the 
thn  root of a raised to the 

thm  power) 

 

 

 

 

We can also define negative rational exponents: 

 

  0
1




a
a

a
n

m

n

m

 

 

Example 3.29: Evaluate the following 

a) 3

2

27   b) 2

1

36


  c) 5

3

)32(


  

Solution: We have  

a)   932727 2
2

3

1

3

2

  

b) 
6

1

36

1
36

2

1

2

1
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c) 

  8

1

)2(

1

)32(

1

)32(

1
)32(

33
5

1
5

3

5

3














 

Radical notation is an alternative way of writing an expression with rational exponents. We 

define for real number a , the 
thn  root of a  as follows: 

 

Definition 3.18 (
thn  root of a ): n a = na

1

, where n  is a positive integer. 

 

The number n a  is also called the principal 
thn  root of a . If the 

thn  root of a  exists, we have: 

 

 

 

For example, 553 3   and 3)3(4 4  . 

 

 Exponential Functions 

In the previous sections we examined functions of the form nxxf )( , where n  is a constant. 

How is this function different from xnxf )( . 

 

Definition 3.19: A function of the form xbxfy  )( , where 0b  and 1b , is called an 

exponential function. 

Example 3.30: The functions xxf 2)(  , xxg 3)(   and 

x

xh 









2

1
)(  are examples of 

exponential functions.  

As usual the first question raised when we encounter a new function is its domain. Since rational 

exponents are well defined, we know that any rational number will be in the domain of an 

exponential function. For example, let xxf 3)(  . Then as x  takes on the rational values ,4x  

– 2 , 
2
1  and 

5
4 , we have  

 

 8133333)4( 4 f   9
1

3

12
23)2(  f  

 33)( 2

1

2
1 f    55 4

5
4 8133)( 5

4

f  

 

Note that even though we do not know the exact values of 3  and 5 81 , we do know exactly 

what they mean. However, what about )(xf  for irrational values of x ? For instance, 

?3)2( 2 f  

For a  a real number  and n  a positive integer, 

        





oddisnifa

evenisnifa
an n

,

,
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We have not defined the meaning of irrational exponents. In fact, a precise formal definition of 
xb  where x  is irrational requires the ideas of calculus. However, we can get an idea of what 23  

should be by using successive rational approximations to 2 . For example, we have   

    

                                             415.12414.1   

 

Thus, it would seem reasonable to expect that 415.12414.1 333  . Since 1.414 and 1.415 are 

rational numbers, 
414.13  and 

415.13  are well defined, even though we cannot compute their values 

by hand. Using a calculator, we get 7328918.437276950.4 2  . If we use better 

approximations to 2 , we get 4143.124142.1 333  . Using a calculator again, we get 

7292535.437287339.4 2  . Computing 
23 directly on a calculator gives 7288044.43 2  . 

This numerical evidence suggests that as x  approaches 2 , the values of 
x3  approach a unique 

real number that we designate by 
23 , and so we will accept without proof, the fact that the 

domain of the exponential function is the set of real numbers. 

 

The exponential function xby  , where 0b  and 1b , is defined for all real values of x . 

In addition all the rules for rational exponents hold for real number exponents as well. 

 

Before we state some general facts about exponential functions , let‟s see if we can determine 

what the graph of an exponential function will look like. 

 

Example 3.31: 

1. Sketch the graph of the function xy 2  and identify its domain and range. 

Solution: To aid in our analysis, we set up a short table of values to give us a frame of       

reference.  

 

 

 

    

       
                        

 

x  y  

3  
8
132   

2  
4
122   

1  
2
112   

0 120   

1 221   

2 422   

3 823   

O 

(1,2) 

1 

1 

2 

x 

y 

y = 2
x
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With these points in hand, we draw a smooth curve through the points obtaining the graph 

appearing above. Observe that the domain of xy 2  is IR , the graph has no x intercepts, as  

x , the y  values are increasing very rapidly, whereas as x , the y values are getting 

closer and closer to 0. Thus, axisx   is a horizontal asymptote, the y intercept is 1 and the 

range of xy 2  is the set of positive real numbers. 

2. Sketch the graph of 

x

xfy 









2

1
)( . 

Solution: It would be instructive to compute a table of values as we did in example 1 above (you 

are urged to do so). However, we will take a different approach. We note that 

x

x

x

xfy 







 2

2

1

2

1
)( . If xxf 2)(  , then xxf  2)( . Thus by the graphing principle for 

)( xf  , we can obtain the graph of xy  2  by reflecting the graph of xy 2  about the axisy  . 

                                     
Here again the axisx   is a horizontal asymptote, there is no x intercept, 1 is y intercept and 

the range is the set of positive real numbers. However, the graph is now decreasing rather than 

increasing. 

 

The following box summarizes the important facts about exponential functions and their graphs. 

 

The Exponential function 
xbxfy  )(  

1. The domain of the exponential function is the set of real numbers 

2. The range of the exponential function is the set of positive real numbers 

3. The graph of xby   exhibits exponential growth if 1b  or exponential decay if 

10  b . 

4. The y intercept is 1. 

5. The x intercept is a horizontal asymptote 

6. The exponential function is 1 – 1. Algebraically if 
yx bb  , then yx   

 

Example 3.32: Sketch the graph of each of the following. Find the domain, range, intercepts, and 

asymptotes. 

O 

(1,2) 

1 

      1 

     2 

x 

y 

 xy
2
1

   

1 
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a) 13  xy   b) 13  xy   c) 39   xy  

Solution:  

a) To get the graph of 13  xy . We start with the graph of xy 3 , which is the basic 

exponential growth graph, and shift it up 1 unit. 

 

      

From the graph we see that  

- )( fDom  

- ),1()( fRange  

- The y intercept is 2 

- The line 1y  is a horizontal 

asymptote 

 

b) To get the graph of 13  xy , we start with the graph of xy 3 , and shift 1 unit to the left. 

 

         

From the graph we see that  

- )( fDom  

- ),0()( fRange  

- The y intercept is 3 

- The line 0y  is a horizontal 

asymptote 

 

c) To get the graph of 39   xy , we start with the basic exponential decay xy  9 . We 

then reflect it with respect to the axisx  , which gives the graph of xy  9 . Finally, 

we shift this graph up 3 units to get the required graph of 39   xy . 

1 

y=3
x+1

 

  9 

10 

2 

1 

1 2 

y=3
x
+1 

y = 1 
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From the graph of 39   xy , we can see that )(hDom , )3,()( hRange , the line 

3y  is a horizontal asymptote, 2 is the y intercept and 
2
1x  is the x intercept. 

Remark: When the base b  of the exponential function xbxf )(  equals to the number e , 

where 7182.2e , we call the exponential function the natural exponential function. 

 

 

 Logarithmic Functions 

In the previous subsection we noted that the exponential function xbxf )(  (where 0b  and 

1b ) is one to one. Thus, the exponential function has an inverse function. What is the inverse 

of xbxf )( ? 

 

To find the inverse of xbxf )( , let‟s review the process for finding an inverse function by 

comparing the process for the polynomial function 3xy   and the exponential function xy 3 . 

Keep in mind that x  is our independent variable and y  is the dependent variable and so 

whenever possible we want a function solved explicitly for y . 

 

To find the inverse of 
3xy   To find the inverse of 

xy 3  

3xy         Interchange x  and y  

3yx         solve for y  

3 xy   

xy 3       Interchange x  and y  

yx 3       solve for y  

??y  

 

There is no algebraic procedure we can use to solve 
yx 3  for y . By introducing radical 

notations we could express the inverse of 3xy   explicitly in the form 3 xy  . In words, 

xy 3  and 3 xy   both mean exactly the same thing: y  is the number whose cube is x . 

Similarly, if we want to express 
yx 3  explicitly as a function of x , we need to invent a special 

notation for this. The key idea is to take the equation 
yx 3  and express it verbally. 

x 

(1,9) 

1 

      1 

y 

y = 9
 x 

 

1 

    

9 

      

1 

x O 

(1,9) 

1 

      

1 

    9 

y 

y = 9
 

x 
 

1 

x 

1 

      

3 

y 

y = 9
 x 

+3 

1 

      2 

     y = 3 
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yx 3  means y  is the exponent to which 3 must be raised to yield x  

 

We introduce the following notation, which expresses this idea in a much more compact form. 

 

Definition 3.20: For 0b  and 1b , we write xy blog  to mean y  is the exponent to 

which b  must be raised to yield x . In other words,  

                                     xybx b

y log  

 

We read xy blog  as “ y  equals the logarithm of x  to the base b ”. 

 

REMEMBER: xy blog  is an alternative way of writing 
ybx   

 

When an expression is written in the form 
ybx  , it is said to be in exponential form. When an 

expression is written in the form xy blog , it is said to be in logarithmic form. The table below 

illustrates the equivalence of the exponential and logarithmic forms. 

 

Exponential form Logarithmic form 

1642   

1624   

125
135   

66 2

1

  

170   

216log4   

416log2   

3log
125

1
5   

2
1

6 6log   

01log7   

 

Example 3.33: 

1. Write each of the following in exponential form. 

a) 2log 9

1

3    b) 
4
1

16 2log   

             Solution: We have  a) 2log 9

1

3   means 
9
123   and b) 

4
1

16 2log    means 2164

1

  

2. Write each of the following in logarithmic form. 

a) 001.010 3 
 b) 9273

2

  

Solution: We have   a) 001.010 3 
 means 3001.0log10   

    b) 9273

2

  means 3
2

27 9log   

3. Evaluate each of the following. 

a) 81log3   b) 
64
1

8log  
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Solution:  

a) To evaluate 81log3 , we let 81log3t , and then rewrite the equation in exponential 

form, 813 t
. Now, if we can express both sides in terms of the same base, we can 

solve the resulting exponential equation, as follows: 

Let  81log3t           Rewrite in exponential form 

  813 t
  Express both sides in terms of the same base 

   
433 t
   Since the exponential function is 1 – 1  

   4t  

 Therefore, 481log3  . 

b) We apply the same procedure as in part (a). 

Let  
64
1

8logt           Rewrite in exponential form 

  
64
18 t    Express both sides in terms of the same base 

   
288 t
  Since the exponential function is 1 – 1  

   2t  

 Therefore, 2log
64
1

8  .  

 

As was pointed out at the beginning of this subsection, logarithm notation was invented to 

express the inverse of the exponential function. Thus, xblog  is a function of x . We usually 

write xxf blog)(   rather than writing )(log)( xxf b  and use parenthesis only when needed to 

clarify the input to the log function. For example,  

 

If )4(log)( 5 xxf  , then 15log))1(4(log)1( 55 f , whereas if xxf 5log4)(  , 

then )1(log4)1( 5 f , which is undefined. 

 

Example 3.34: Given xxf 5log)(   , find  

a) )25(f      b) )(
25
1f  c) )0(f   d) )125(f  

Solution:  

a) 225log)25( 5 f  (since 2552  ) 

b) 2log)(
25
1

525
1 f  (since 

25
125  ) 

c) 0log)0( 5f  is not defined  (what power of 5 will yield 0?). We say that 0 is not in 

the domain of f . 

d) )125(log)125( 5 f  is not defined (what power of 5 will yield -125?). We say that -

125 is not in the domain of f . 

Acknowledging that the logarithmic and exponential functions are inverses, we can derive a 

great deal of information about the logarithmic function and its graph from the exponential 

function and its graph. 
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Example 3.35: Sketch the graph of the following functions. Find the domain and range of each. 

a) xy 3log  b) xy
2

1log  

Solution: a)  Since xy 3log  is the inverse of xy 3 , we can obtain the graph of xy 3log  by 

reflecting the graph of xy 3  about the line xy  , as shown below. 

 

 

b) To get the graph of xy
2

1log , we reflect the graph of  x
y

2
1  about the line xy  as 

shown below. 

                                           
Taking note of the features of the two graphs we have the following important informations 

about the graph of the log function: 

 

 

The Logarithmic Function xy blog  

1. Its domain is the set of positive real numbers 

2. Its range is the set of real numbers. 

3. Its graph exhibits logarithmic growth if 1b  and logarithmic decay if 10  b . 

4. The x  intercept is 1. There is no y intercept. 

5. The axisy   is a vertical asymptote. 

1 

1 

x 

y 
y = 3

x
 

y = x 

y = log3x 

1 

      1 

x 

y 

 xy
2
1

   

xy
2
1log    

y=x 
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Example 3.36: 

1. Sketch the graph of )2(log1)( 3  xxf . Find the domain, range, asymptote and 

intercepts. 

 

Solution: We can obtain the graph of )2(log1 3  xy  by applying the graphing 

principle to shift the basic logarithmic growth graph 2 units to the right and 1 unit up. 

 

                                               
We have }2:{)(  xxfDom , )( fRange  and the graph has the line 2x  as a 

vertical asymptote. To find the intercept, we set 0y  and solve for x . Setting 0y  

and solving for x , we will obtain 
3
7x . Thus, the x intercept is 

3
7 . 

2. Find the inverse function for  

a) 43)(  xxfy  b) )2(log)( 3  xxgy  

Solution: Following the procedure for finding an inverse function, we have  

(a)   43  xy        Interchange x  and y  

       43  yx        solve explicitly for y  

       
yx 34         Write in logarithmic form 

       )4(log3  xy  

      Thus, )4(log)( 3

1  xxf  

(b) )2(log3  xy     Interchange x  and y  

      )2(log3  yx    Write in logarithmic form     

      xy 32              solve explicitly for y  

      23  xy  

     Thus, 23)(1  xxg  

 

The following table contains the basic properties of logarithm: 

 

Properties of logarithm 

Assume that ub,  and v  are positive and 1b . Then 

1. vuuv bbb loglog)(log   

In words, logarithm of a product is equal to the sum of the logs of the factors. 

2. vu bbv
u

b loglog)(log   

In words, the log of a quotient is the log of the numerator minus the log of the 

1 

1 

x 

y 

x= 2 

y = 1+ log3(x2) 

2 3 
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denominator. 

3.   uru b

r

b loglog   

In words, the log of a power is the exponent times the log. 

4. xbxb b

x

b  log)(log  

5. xb
xb 

log
 

6. 
b

c
c

a

a
b

log

log
log   if a is positive and 1a . 

 

Example 3.37: 

1. Express in terms of simpler logarithms. 

a) )(log 3 yxb  b) )(log 3 yxb    c)  3log
z

xy

b  

Solution:  

a) yxyxyx bbbbb loglog3loglog)(log 33   

b) Examining the properties of logarithms, we can see that they deal with log of a 

product, quotient and power. Thus, )(log 3

3 yx   which is the log of a sum cannot be 

simplified using log properties. 

c) We have  

  )(logloglog 3
3 zxy bbz

xy

b  =   zyxzxy bbbbb log3)log(log
2

1
log3log 2

1

 . 

 

2. Show that 2loglog
2
1

bb  . 

 

Solution: We have 2log2log02log1loglog
2
1

bbbbb  . 

The logarithmic function was introduced without stressing the particular base chosen. However, 

there are two bases of special importance in science and mathematics, namely, 10b  and eb  . 

 

Definition 3.21: (Common Logarithm) 

xxf 10log)(   is called the common logarithm function. We write xx loglog10  . 

 

The inverse of the natural exponential function is called the natural logarithmic function and has 

its own special notation. 

 

Definition 3.22: (Natural Logarithm) 

xxf elog)(   is called the natural logarithmic function. We write xxe lnlog  . 

 

Example 3.38: 

1. Evaluate 1000log  

Solution: Let 1000loga . Then, 3)10(log1000log 3

1010 a . 
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2. Find the inverse function of 1)(  xexf . 

Solution: Let      1 xey    Interchange x  and y  

                        1 yex          Solve for y  

                        
yex 1   Rewrite in logarithmic form 

                        )1ln(  xy  

Thus, )1ln()(1  xxf . 

 

 Trigonometric functions and their graphs 

For the functions we have encountered so far, namely polynomial, rational and exponential 

functions, as the independent variable goes to infinity the graph of each of these three functions 

either goes to infinity(very quickly) for exponential functions or approaches a finite horizontal 

asymptote. None of these functions can model the regular periodic patterns that play an 

important role in the social, biological, and physical sciences: business cycles, agricultural 

seasons, heart rhythms, and hormone level fluctuations, and tides and planetary motions. The 

basic functions for studying regular periodic behaviour are the trigonometric functions. The 

domain of the trigonometric functions is more naturally the set of all geometric angles.  

 

Angle Measurement 

 

An angle is the figure formed by two half-lines or rays with a common end point. The common 

end point is called the vertex of the angle.  

 

 

 

 

 

In forming the angle, one side remains fixed and the other side rotates. The fixed side is called 

the initial side and the side that rotates is called the terminal side. If the terminal side rotates in a 

counter clockwise direction, we call the angle positive angle, and if the terminal side rotates in a 

clockwise direction, we call the angle negative angle. 

   

 

 

What attribute of an angle are we trying to measure when we measure the size of an angle? A 

moment of thought will lead us to the conclusion that when we measure an angle we are trying to 

answer the question: Through what part of a complete rotation has the terminal side rotated? 

We will use degree () as the unit of measurement for angles. Recall that the measure of a full 

round angle (full circle) is 360, straight angle is 180, and right angle is 90.  

 

B 
B 

A 
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An alternative unit of measure for angles which will indicate their size is the radian measure. To 

see the connection between the degree measure and radian measure of an angle, let us consider 

an angle    and draw a circle of radius r  with the vertex of   at its center O . Let s  represent 

the length of the arc of the circle intercepted by  (as shown below). 

 

 

 

 

 

 

 

 

 

 

Basic geometry tells us that the central angle   will be the same fractional part of one complete 

rotation as s  will be of the circumference of the circle. For example, if   is 10
1  of a complete 

rotation, then s  will be 10
1  of the circumference of the circle. In other words, we can set up the 

following proportion: 

 

 
r

s

circleofncecircumfere

s

rotationcomplete 



21
  

 

Thus, we have the following conversion formula: 

 



 radiansinreesin


180

deg
 

 

Example 3.39: 

1. Convert each of the following radian measures to degrees. 

a) 6
    b) 5

3  

     Solution: a) By the conversion formula, we have 


 
6

180



, which implies that 

30 . 

b) Again using the conversion formula, we get 


 
5

3

180



, which implies that 

108 . 

 

2. Convert to radian measures  

a) 
90   b) 

270  
 

Solution: a) Let   represent the radian measure of 
90 . Using the conversion formula, we 

obtain: 




180

90





, which implies that 

2


  . 

O 
r 

  

s 
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b) Rather than using the conversion formula, we notice that )90(3270   . In part (a) we found 

that 
2

90


 , and so we have 
2

3
270


 . 

 

To define the trigonometric functions, we will view all angles in the context of a Cartesian 

coordinate system: that is, given an angle  , we begin by putting   in standard position, 

meaning that the vertex of   is placed at the origin and initial side of   is placed along the 

positive axisx  . Thus the location of the terminal side of   will, of course, depend on the size 

of  . 

 

 

 

 

 

 

 

 

 

 

We then locate a point( other than the origin) on the terminal side of   and identify its 

coordinates ),( yx  and its distance to the origin, dented by r . Then, r  is positive. 

With   in standard position, we define the six trigonometric functions of  as follows: 

 

Definition 3.23 

Name of function                     Abbreviation                             Definition 

Sine                                              sin                                            
r

y
sin  

Cosine                                          cos                                           
r

x
cos  

Tangent                                        tan                                           
x

y
tan  

Cosecant                                       csc                                           
y

r
csc  

Secant                                           sec                                           
x

r
sec  

Cotangent                                     cot                                           
y

x
cot     

Recall that the radian measure of an angle is defined as 
r

s
 , where   is angle in radians 

s  is the length of the arc intercepted by   and r  is the length of the radius. Since s  and r  are 

both lengths, the quotient 
r

s
 is a pure number without any units attached. Thus, any angle can be 

interpreted as a real number. Conversely, any real number can be interpreted as an angle. Thus, 

ϴ 

 

X 

Y 

r 

P(x,y) 

 

X 

Y 
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we can describe the domains of the trigonometric functions in the frame work of the real number 

systems. If we let  sin)( f , the domain consists of all real numbers   for which sin  is 

defined. Since 
r

y
sin  and r  is never equal to zero, the domain for sin  is the set of all real 

numbers. Similarly, the domain of 
r

x
f   cos)(  is also the set of all real numbers. 

 

 The graph of siny  

To analyze  sin)( f , we keep in mind that once we choose a real number  , we draw the 

angle, in standard position, that corresponds to  . To simplify our analysis, we choose the point 

),( yx  on the terminal side so that 1r . That is, ),( yx  is a point on the unit circle 122  yx . 

Note that y
y


1
sin . 

 

 

 

 

 

 

 

 

 

 

As the terminal side of   moves through the first quadrant, y  increases from 0 (when 0 ) to 

1(when 2
  ). Thus, as   increases from 0 to 2

 , siny  steadily increases from 0 to 1. 

As   increases from 2
  to  , siny  decreases form 1 to 0. A similar analysis reveals that as 

  increases from   to 2
3 , sin  decreases from 0 to – 1; and as   increases from 2

3  to 2 , 

sin  increases from – 1 to 0.  

 

Based on this analysis, we have the graph of  sin)( f  in the interval ]2,0[   as show below. 

 

 

 

 

 

Since the values of  sin)( f  depend only 

on the position of the terminal side, adding or 

subtracting multiples of 2  to   will leave the 

value of  sin)( f  unchanged. Thus, the 

values of  sin)( f  will repeat every 2 units. The complete graph of  sin)( f  appears 

below. 

y = sin x  

x  

(0,1) 

(x,y) 

(1,0) 

(0,-1) 

(-1,0) 

θ 
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                 The graph of xy sin , which is called the basic sine curve. 

 

 The graph of cosy  

Applying the same type of analysis to  cos)( f , we will able to get a good idea of what its 

graph looks like. The figure below shows the angle corresponding to  as it increases through 

quadrant I, II, III and IV.  

 

Keeping in mind that x
x


1
cos , we have the following: 

 

1. As   increases from 0 to 2
 , cosx  decreases from 1 to 0. 

2. As   increases from 2
  to  , cosx  decreases from 0 to – 1. 

3. As   increases from   to 2
3 , cosx  increases from – 1 to 0. 

4. As   increases from 2
3  to 2 , cosx  increases from 0 to 1. 

Based on this analysis, we have the graph of  cos)( f  as shown below: 

 

 

 

 

 

 The graph of tany  

Since 
x

y
tan  is undefined whenever 0x , tan  is undefined whenever the terminal side of 

the angle corresponding to   falls on the axisy  . This happens for 2
  , to which we can add 

or subtract any multiple of   that will again bring the terminal side back to the axisy  . Thus, 

domain of tan  is }:{
2

  n , where n  is an integer. 

 

1. As  increases from 0 to 2
 , x  decreases from 1 to 0 and y  increases from 0 to 1; 

therefore, 
x

y
tan  increases from 0 to  . 
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2. As   increases from 2
  to  , x  decreases from 0 to – 1  and y  decreases from 1 to 0; 

therefore, 
x

y
tan  increases from   to 0. 

3. As   increases from   to 2
3 , x  increases from – 1 to 0 and y  decreases from 0 to – 1; 

therefore, 
x

y
tan  increases from 0 to  . 

4. As   increases from 2
3  to 2 , x  increases from 0  to 1 and y  increases from – 1 to 0; 

therefore, 
x

y
tan  increases from   to 0. 

You may want to add some more specific values to this analysis. In any case, we get the 

following as the graph of the tangent function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 3.24: (Periodic Function) 

 

A function )(xfy   is called periodic if there exists a number p  such that )()( xfpxf   

for all x  in the domain of f . The smallest such number p  iscalled the period of the 

function 

 

A periodic function keeps repeating the same set of valuesy  over and over again. The graph of 

a periodic function shows the same basic segment of its graph being repeated. In the case of sine 

and cosine functions, the period is 2 . The period of the tangent function is  . 

 

Definition 3.25: (Amplitude of a periodic function) 

 

The amplitude of a periodic function )(xf  is 

                       [
2

1
A maximum value of )(xf minimum value of )](xf  

 

Thus, the amplitude of the basic sine and cosine function is 1. 

The portion of the graph of a sine or cosine function over one period is called a complete cycle 

of the graph. In other words, the minimal portion of a sine or cosine graph that keeps repeating 

itself is called a complete cycle of the graph.  
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Definition 3.26: (Frequency of a periodic function) 

 

The number of complete cycles a sine or cosine graph makes on an interval of length equal to 

2  is called its frequency. 

 

The frequency of the basic sine curve xy sin  and the basic cosine curve xy cos is 1, 

because each graph makes 1 complete cycle in the interval ]2,0[  . 

If a sine function has period of 2
 (see the figure below), then the number of complete cycles its 

graph will make in an interval of length 2  is 4

2

2





.  

 

 

 

 

 

 

 

 

 

 

                                                  A sine graph of period 2
  and frequency 4 

 

Thus if a sine function has a period of 2
 , its frequency is 4 and its graph will make 4 complete 

cycles in an interval of length 2 . 

 

Example 3.40: Sketch the graph of xy 2sin  and find its amplitude, period and frequency. 

 

Solution: We can obtain this graph by applying our knowledge of the basic sine graph. For the 

basic curve, we have  

 

00sin    1sin
2
  0sin   1sin

2
3   02sin   

 

These quadrantal values serve as guide points, which help us draw the graph. To obtain similar 

guide points for xy 2sin , we ask for what values of x  is  

02 x   2
2 x   x2  2

32 x  22 x  

and we get 

       0x   4
x   2

x   2
3x   x  

Thus, xy 2sin  will have the values 0, 1, 0, 1 , 0 at ,,,,0
4

3
24

x and  , respectively. The 

graph of xy 2sin  will thus complete one cycle in the interval ],0[  , and will repeat the same 

values in the interval ]2,[  . 

 

 

  

 

   

Y 

X 
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Y 

X 

 

 

 

 

 

 

 

 

 

 

 

 

From this graph we see that xy 2sin has an amplitude of 1, a period  , and a frequency of 2. 

 

For convenience we summarize our discussion on the domains of the trigonometric functions in 

the table. 

 

1. xxf sin)(   

2. xxf cos)(   

3. xxf tan)(   

4. xxf csc)(   

5. xxf sec)(   

6. xxf cot)(   

Domain = All real numbers 

Domain = All real numbers 

Domain = }:{
2

 nxx   

Domain = { nxx : } 

Domain = }:{
2

 nxx   

Domain = }:{ nxx   

where n  is an integer 

 

In the course of our discussion of the trigonometric functions, we have discussed two types of 

trigonometric relationships: the reciprocal and quotient relationships. These relationships are 

examples of trigonometric identities. In the table below we list identities that are satisfied by the 

trigonometric functions. 

 

The reciprocal Identities         1. 
x

x
sin

1
csc   

                                                   2. 
x

x
cos

1
sec   

                                                   3. 
x

x
tan

1
cot   

The quotient Identities            4. 
x

x
x

cos

sin
tan   

                                                   5. 
x

x
x

sin

cos
cot   

The Pythagorean Identities            6. 1cossin 22  xx  

                                               7. xscex 22 1tan    

                                               8. xx 22 csccot1   
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The addition formula                       9. (a) yxyxyx sincoscossin)sin(   

                                                               (b) yxyxyx sincoscossin)sin(   

                                                           10. (a) yxyxyx sinsincoscos)cos(   

                                                                 (b) yxyxyx sinsincoscos)cos(   

                                                           11. (a) 
yx

yx
yx

tantan1

tantan
)tan(




  

                                                                 (b) 
yx

yx
yx

tantan1

tantan
)tan(




  

 

The double angle formula               12. xxx cossin22sin   

                                                           13. 1cos2sin21sincos2cos 2222  xxxxx  

                                                           14. 
x

x
x

2tan1

tan2
2tan


  

 

The half-angle formula                   15.  
2

cos1

2
sin

xx 
   

                                                           16. 
2

cos1

2
cos

xx 
  

                                                           17. 
x

xx

cos1

cos1

2
tan




  

 

 

 Hyperbolic functions and their graphs 

The hyperbolic functions are certain combinations of exponential functions, that occur in various 

applications, with properties similar to those of the trigonometric functions. Among many other 

applications they are used to describe the formation of satellite rings around the planets, to 

describe the shape of a rope hanging from two points, and have application in relativity theory. 

The two basic hyperbolic functions are the hyperbolic sine and hyperbolic cosine functions. They 

are defined as follows: 

 

Definition 3.27: 

1. The hyperbolic sine function is 

defined by: 

        
2

sinh
xx ee

x


  

The domain of xsinh  is  . 

2. The hyperbolic cosine function is 

defined by: 

        
2

cosh
xx ee

x


  

The domain of xcosh  is also .  

 

Remark:  

1. xcosh  is pronounced xkosh""  and xsinh  is pronounced as xcinch"" . 

2. Since 0 xe  for all x , we see that xx sinhcosh   for every x . 
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3. If 
2

)(
xx ee

xf


 , then )(
22

)( xf
eeee

xf
xxxx










. Thus, xcosh  is an even       

   function.  

4. Sinhx is an odd function. 

3. In contrast to sine and cosine, the hyperbolic functions are not periodic. 

 

Example 3.28: Using the above definitions, show that 

1. 1sinhcosh 22  xx  

2. yxyxyx coshsinhsinhcosh)sinh(   

3. yxyxyx sinhcoshcoshsinh)sinh(   

Solution:  

1. We have 

1
4

2

4

2

22

2222
22








 








 








 








   xxxxxxxx eeeeeeee
 

2. 
4

22

22
)sinh(

yxyxyxyxyxyx eeeeeeeeee
yx

 






  







4

yxyxyxyx eeeeeeee

4

yxyxyxyx eeeeeee  
 








 







 








 







 




2222

yyxxyyxx eeeeeeee
 

yxyx coshsinhsinhcosh   

3. Left as an exercise. 

 

 The graph of xy cosh  

 

Since xcosh  is an even function, its graph is symmetric about the axisy  . Its 

y intercept is )1,0( , because 1)0cosh(  . As x  tends to infinity, 
22

cosh
xx ee

x


  

tends to infinity because 
2

xe
 goes to infinity and 

2

xe 

 approaches to 0. When x  is a large 

negative number xcosh   acts like 
2

xe 

, because 
2

xe
 gets close to 0. Thus the graph of 

xy cosh looks like: 
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This graph can also be obtained by geometrically adding the two curves 
xey   and 

xey  ,  

and taking half of each resulting valuey  . Observe that range of xcosh  is ),1[  . 

 

 The graph of xy sinh  

Since xsinh  is an odd function, its graph is symmetric about the origin. The graph passes 

through the origin because 0)0sinh(  . As x  gets large xsinh  acts like 
2

xe
 and when x  is a 

large negative number, xsinh  acts like 
2

xe

 . Thus, the graph of xy sinh  looks like: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The remaining four hyperbolic functions are defined in terms of xcosh  and xsinh  by   

analogy with trigonometry. 

 

xx

xx

ee

ee

x

x
x










cosh

sinh
tanh  (The domain of xtanh  is ) . 

xx

xx

ee

ee

x

x
x










sinh

cosh
coth            (The domain of xcoth  is }0{\ ) 

xx eex
xh




2

cosh

1
sec           (The domain of hxsec is  ) 

xx eex
xh




2

sinh

1
csc           (The domain of xhcsc  is }0{\ ) 
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You may sketch the graphs of these four hyperbolic functions (see exercise 19).  

 

The trigonometric terminology and notation for the hyperbolic functions stem from the fact that 

they satisfy a list of identities that much resemble the familiar trigonometric identities, apart 

from an occasional difference of sign. 

 

1sinhcosh 22  xx                                                     (1) 

xhx 22 sectanh1                                                      (2) 

xhx 22 csc1coth                                                      (3) 

yxyxyx sinhcoshcoshsinh)sinh(                     (4) 

yxyxyx sinhsinhcoshcosh)cosh(                    (5) 

 

The trigonometric functions are sometimes called circular functions because the point 

)sin,(cos   lies on the circle 122  yx  for all  . Similarly, identity (1) tells us that the point 

)sinh,(cosh   lies on the hyperbola 122  yx , and this is the reason for the name hyperbolic 

functions. 

 

Exercise 3.5 

 

1. Find the domain of the given function. 

a) 
x

xf
6

1
)(         b) 13)(  xxg   c) 82)(  xxh  d) 

22

1
)(

3 


x
xf  

2. Sketch the graph of the given function. Identify the domain, range, intercepts, and 

asymptotes. 

a) xy  5              b) xy 39     c) xey 1   d) 2 xey  

3. Solve the given exponential equation. 

a) 82 1 x
            b) 24332 x

   c) 28 x
  d) 

4
12316 a  

4. Let xxf 2)(  . Show that )(8)3( xfxf  . 

5. Let xxg 5)(  . Show that )(
25

1
)2( xgxg  . 

6. Let xxf 3)(  . Show that )3(4
2

)2()2( xfxf



. 

 

 

7. Evaluate the given logarithmic expression (where it is defined). 

a) 32log2  c) )9(log3     e) )243(loglog 35  

b) 9log
3

1  d) 
6

1
6log    f) 

5log22  
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8. If )4(log)( 2

2  xxf , find )6(f  and the domain of f . 

9. If )34(log)( 2

3  xxxg , find )4(f  and the domain of g . 

10. Show that xx 6loglog
6

1   

11. Sketch the graph of the given function and identify the domain, range, intercepts and 

asymptotes. 

a) )3(log)( 2  xxf     b) xxf 2log3)(      c) )(log)( 3 xxf    d) xxf 5log3)(   

12. Find the inverse of )13()(  xexf . 

13. Let xexf )( . Find a function so that xxfgxgf  ))(())((  . 

14. Convert the given angle from radians to degrees 

a) 3
    b) 2

5    c) 3
4  

15. Convert the given angle from degrees to radians 

a) 315   b) 
40   c) 

330  

16. Sketch the graph of  

a)  sec)( f   c)  csc)( f   e)  cot)( f   

b) xxf cos1)(    d) )sin()(
2
 xxf   f) xxf 2tan)(   

17.  Verify the following identities: 

a) xxxxxx cottan)sec)(csccos(sin   

b) xxxx 2222 cottancscsec   

18. Given 2
1tan   and 0sin  , find cos . 

19. Sketch the graphs of  

a) xxf tanh)(    c) hxxf csc)(   

b) hxxf sec)(     d) xxf coth)(   

20. Prove the identities (2) and (3).  

21. Find the exact numerical value of  

a) )2sinh(ln   b) )3lncosh(    c) )3ln2tanh(  

22. Prove the following identities: 

a) yxyxyx sinhcoshcoshsinh)sinh(   

b) yxyxyxy sinhsinhcoshcosh)(cosh   
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Chapter 4:      Analytic Geometry  
 

The main topics of study in analytic geometry are  straight lines and conic sections. Accordingly, 

by the end of this chapter you must   

 be  able to derive basic equations that are representing straight lines, circles, parabolas, 

ellipses, and hyperbola.   

 know the main (important) properties of each of these five geometric objects.   

 be able to identify equations of straight lines, circles, parabolas, ellipses, hyperbolas and 

sketch their graphs.  

More specific objectives are given in each section.  

 

The major part of this chapter is conic sections. Conic sections  are circles, parabolas, ellipses 

and hyperbolas. They are called conic sections because they are generated when a plane cuts a 

right circular double cone. Depending on how the plane cuts the cone the intersection forms a 

curve called a circle, an ellipse,  a parabola or a hyperbola (See, Figure 4.1).    

 
We will see that a conic section is described by a second degree  equation  in x and y of  the form   

                    0FEDCA 22  yxyx ,   

when A, C, D, E and F are constant real numbers.  In the analysis of such equations we will 

frequently need the method of completing the square.  Recall that completing the square is the 

method of converting an equation of the form 

  x2 + ax = b    to     (x+ h)2 = c     (Can you establish the relationships between a,b and h,c ?) 

To do this :-  Add   2
2
a  to both sides of the former equation.  

                -   Then complete the square of the resulting expression to get the later form. 

Here  recall that:      
222 )(2  axaaxx       and       

222 )(2 axaaxx   . 

 Figure 4.1:  (a) circle (b) ellipse  (c)  parabola (d)  hyperbola 
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 4.1   Distance Formula and Equation of Lines  

By the end of this section, you should  

 be able to find the distance between two points in the coordinate plane. 

 be able to find the coordinates of a point that divides a line segment in a given ratio. 

 know different forms of basic equations of a line   

 be able to find equation of a line and draw the line. 

 know when two lines are parallel. 

 know when two lines are perpendicular.  

 be able to find the distance between a point and a line in the coordinate plane. 

4.1.1   Distance between two points  and division of segments  

If P  and Q   are two points on the coordinate plane,  then PQ  represents the line segment joining 

P and Q  and  d(P,Q)  or  |PQ|   represents the distance between P and Q.     

Recall that the distance between points a and b on a number line  is |a b| = |b a|.  Thus, the 

distance between two points  P(x1, y1) and R(x2, y1) on a horizontal line must be  |x2 x1|  and the 

distance between  Q(x2, y2) and R(x2, y1) on a vertical line must be |y2 y1|. (See Figure 4.2).   

                                
To find distance  |PQ| between any two points P(x1, y1) and Q(x2, y2), we note that triangle PRQ 

in Figure 4.2 is a right triangle, and so by Pythagorean Theorem we get:   

     )()(  PQ       || ||  PQ 2
12

2
12

2
12

2
12

2
yyxxyyxx    

Therefore, we have the following: 

Distance Formula: The distance between the points P(x1, y1) and Q(x2, y2)  is 

                   
  )()(  PQ   2

12
2

12 yyxx   

 

Figure 4.2 

 x1 

  P(x1, y1) 

 |x2  x1| 

x1 

 

 y2 

 y1 

 x2 

 

 

 

   Q(x2, y2) 

  R(x2, y1) 

|PQ|  |y2  y1| 

x1 

 

x 

y 
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Note that, from the distance formula, the distance between the origin O(0,0) and a point P(x, y) is 

 22OP yx 
 

Example 4.1: (i)  The distance between   O(0,0) and P(3,4) is   

                                      52423OP  .   

                     (ii)  The distance between  P(1,2) and Q(3,6) is  

                                         202)26(2)13(PQ  .    

                    (iii)  The distance between  P(1,2) and Q(5,6) is 

                                        102)26(2)15(PQ  .    

 

Division point of a line segment:  Given two distinct points P(x1, y1) and Q(x2, y2) in the 

coordinate plane,  we want to find the coordinates (x0, y0) of the point R that lies on the segment  

PQ and  divides the segment in the ratio  r1 to r2 ;   that  is  

                          
2

1

RQ

PR

r

r
 ,  

where r1 and r2 are given positive numbers. (See Figure 4.3).   

                                             

To determine (x0, y0), we construct two right triangles PSR  and RTQ  as in Figure 4.3. We then 

have |PS| = x0 x1 , |SR| = y0y1 , |RT| = x2 x0 , and  |TQ| = y2 y0 .  Now since PSR  is similar 

to RTQ, we have that  

             
2

1

02

10

r

r

xx

xx





                 and       

2

1

02

10

r

r

yy

yy




  

  or      r2(x0 x1)   = r1 (x2 x0)    and    r2(y0 y1)   = r1 (y2 y0) .    

  Solving  for  x0  and y0 ,  we obtain  
21

1221
0

rr

rxrx
x




           and      

21

1221
0

rr

ryry
y




  

Therefore, we have shown the following.  

Figure  4.3 
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Theorem 4.1:   Let  P(x1, y1) and Q(x2, y2) be distinct points in the coordinate plane.  

   If R(x0, y0) is a point on the line segment PQ that divides the segment in the ratio                   

|PR| : |RQ| = r1: r2,   then the coordinates of R is given by  

                    
  


















21

1221

21

1221
00   , ,

rr

ryry

rr

rxrx
yx  

     In particular,   the midpoint of  PQ  is given by  






 

2
  ,

2

2121 yyxx   
                  

 

Example 4.2:   Given  P(3, 3)  and  Q(7,8 ),    

     (i)  find the coordinates of the point R on  the line segment PQ such that |PR| : |RQ| = 2 : 3. 

     (ii)  find the coordinates of the midpoint of PQ.    

  Solution:  (i)  Obviously R(x0,y0) is given by   

                                 5 ,1
32

2833
  ,

32

2733
 , 00 
















yx  

                   (ii)  The coordinates of the midpoint is   1/21  ,2
2

83
  ,

2

73








  . 

Exercise 4.1.1  

1.  Find the distance between the following pair of points. 

     (a)    (1, 0)   and   (3, 0).                 (d)  The origin and )( 6,3 .                   

      (b)    (1, 2)  and   (1, 4).                  (e)   (a, a)   and  (a, a)           

      (c)    (2, 3)   and  (2, 0)                   (f)   (a, b)  and  (a, b)     

2.  If the vertices of ABC are A(1,1),  B(4,5) and C(7, 1),  find the perimeter of the triangle.    

3.   Let P = (3,0)  and Q be a point on the positive y-axis.  Find the coordinates of Q if |PQ| =5.     

4.  Suppose the endpoints of a line segment AB are A(1,1) and B(5, 10).  Find the coordinates of 

point P and Q  if       

            (a)  P is the midpoint of AB.  

            (b)  P divides AB in the ratio 2:3    (That is,   |AP|: |PB| = 2:3  ). 

            (c)  Q divides AB in the ratio 3:2.    

            (d)  P and Q trisect AB (i.e., divide it  into  three equal parts).  

5.   Let M(1,3) be the midpoint of a line segment PQ.  If the coordinates of P is (5, 7), then 

what is the coordinates of Q? 

6.   Let A(a, 0),  B(0,b) and  O(0,0)  be the vertices of a right triangle.  Show that the midpoint of  

AB is equidistant from the vertices of the triangle  
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4.1.2   Equations of lines  

An equation of a line l is an equation which must be satisfied by the coordinates (x, y) of every 

point on the line. A line can be vertical, horizontal or oblique. The equation of a vertical line that 

intersects the x-axis at (a, 0) is x=a because the x-coordinate of every point on the line is a.  

Similarly, the equation of a horizontal line that intersects the y-axis at (0, b) is y=b because the y-

coordinate of every point on the line is b.   

 An oblique line is a straight line which is neither vertical nor horizontal.  To find equation of an 

oblique line we use its slope which is the measure of the steepness of the line.  In particular, the 

slope of a line is defined as follows.  

Definition 4.1.  The slope of a non-vertical line that passes through the points 

      P1(x1, y1) and P2(x2, y2)  is  

                                       
12

12

xx

yy

x

y
m











 

     The slope of a vertical line is not defined.  Note that the slope of horizontal line is 0.  

                              

Thus the slope of a line l  is the ratio of the change in y,  y, to the change in x,  x (see Figure 

4.4).  Hence, slope is the rate of change of y with respect x. The slope depends also on the angle 

of inclination of the line. Note that the angle of inclination   is the angle between x-axis and the 

line (measured counterclockwise from the direction of positive x-axis to the line).  Observe that   

x

y




tan  

Therefore, if   is the angle of inclination of a line, then its slope is  m = tan.  

Now let us find an equation of the line that passes through a point P1(x1, y1) and has slope m.  A 

point P(x, y) with xx1 lies on this line if and only if  the slope of the line though P1 and P is m;  

that is  

m
xx

yy






1

1  

Figure 4.4    

 x1 

  P1(x1, y1) 

x= x2  x1 

 

 y2 

 y1 

 x2 

P2(x2, y2) 
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This leads to the  following equation of the line:   

  )( 11 xxmyy          ( called  point-slope form of equation of a line).   

In general, depending on the given information, you can show that the equations of oblique lines 

can be obtained using the following formulas.  

         Given Information  X    Formula for  Equation of the Line  

Slope m and its y-intercept  (0,b)                 V   Slope-Intercept-Form:     y = mx + b 

  

 Slope m and a point (x1, y1) on l 

B    Point-Slope-Form:     y – y1= m(x –x1) 

                       Or             y   = m(x –x1) + y1 

 

 Two points (x1, y1) and (x2, y2)  on l 
      Two-Point Form:    2 1

1 1

2 1

( )
y y

y y x x
x x


  


    

x-intercept (a,0)  and y-intercept (0,b)  Intercept Form:            1
b

y

a

x
 

Example 4.3: Find an equation  of the line l   if   

    (i)  the line passes through  (3, 2) and  its angle of inclination  is 135.  

    (ii)  the line passes through the points (1, 2) and (4, 2) 

Solution: (i) The slope of l  is  m= tan(135) = 1;  and it passes through point (3, 2).  Thus, 

using the point-slope form with x1= 3 and y1= 2, we obtain the equation of the line as  

          y – (2)= 1(x –3)    which simplifies to   y = x + 1.  

  (ii)  Given the line passes through (1, 2) and (4, 2) , the slope of the line is 

         
3

4

14

22

12

12 












xx

yy
m .  

        So, using the point-slope form with x1= 1 and y1= 2, we obtain the equation of the line as  

                )1(2
3
4   xy   which simplifies to  4x + 3y =10. 

           (Note that it is possible to use the two-point form to find the equation of this line) 

General Form:   In general, the equation of a straight line can be written as  

ax + by + c = 0, 

for constants a, b, c with a and b not both zero.  Indeed, if a=0  the line is a horizontal line given 

by y = c/b,  if b=0  the line is a vertical line given by x = c/a, and if both a, b 0  it is the 

oblique  line given by  y = –(a/b)x  c/b  with slope m = –a/b and y-intercept  c/b .  
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Parallel and Perpendicular lines: slopes can be used to check whether lines are parallel, 

perpendicular or not. In particular, let l1 and l2 be non-vertical lines with slope m1 and  m2, 

respectively.  Then, 

. (i)  l1 and l2   are parallel, denoted by l1 || l2,   iff  m1 = m2.   

(ii)  l1 and l2  are perpendicular, denoted by l1 l2 ,  iff    m1m2= 1    (or  
1

2

1

m
m  )                  

Moreover, if l1 and l2 are both vertical lines then they are parallel. However, if one of them is 

horizontal and the other is vertical, then they are perpendicular.  

Example 4.4:  Find an equation  of the line through the point (3,2) that is parallel to the line 

                       2x + 3y +5=0. 

 Solution:  The given line can be written in the form  
3
5

3
2   xy  which is the slope-intercept 

form; that is, it has slope m = 2/3.  So, as parallel lines have the same slope, the required line 

has slope 2/3.  Therefore, its equation in point-slope form is  )3(2
3
2   xy   which can be 

simplified to  2x + 3y =12. 

Example 4.5:  Show that the lines  2x + 3y +5=0 and 3x2y  4 = 0 are perpendicular.   

 Solution:  The equations can be written as  
3
5

3
2   xy   and 2

2
3  xy   from which we can 

see that  m1= 2/3 and m2= 3/2 .  Since  m1m2= 1,  the lines are perpendicular. 

 

Exercise 4.1.2  

1.   Find the slope and equation of the line determined by the following pair of points.  Also  

find the y-  and x-  intercepts, if any, and  draw each line.   

       (a)    (0, 2) and (3, 2)                (e) The origin and (1,2)             (i)   (1, 3) and  (1, 6 )                

       (b)    (2, 0) and (2, 3)                (f)   The origin and (1,3)         (j)   (3, 2) and (2, 2)          

       (c)    The origin and (1,0)          (g)   (1,2)  and  (3, 4)                (k)   (0, 3) and (3, 0) 

       (d)   The origin and (1, 0)        (h)   (2, 3),    (2, 5)               (l)   (1, 0) and (0, 2) 

2.   Find the slope and equation of the line whose angle of inclination is   and passes through 

the point P,  if          

          (a)   = 
4
1 ,   P = (1,1).               (d)    = 0,        P = (0, 1). 

          (b)   = 
4
1 ,   P = (0,1).               (e)    = 

3
1 ,    P = (1, 3).    

          (c)   = 
4
3 ,   P = (0,1).     (f)    = 

3
1 ,    P = (1,3).   

3.   Find the x-and y-intercepts and slope  of the line given by 1
32


yx , and draw the line.  
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4.   Draw the triangle with vertices A(2,4),  B(1,1) and C(6,2)  and find the following. 

         (a)  Equations of the sides.                   

         (b)  Equations of the medians.  

         (c)  Equations of the perpendicular bisectors of the sides.  

 (d) Equation of the lines through the vertices parallel to the opposite sides.  

5.   Find the equation of the line that passes through (2, 1) and perpendicular to  3x + 4y = 6.  

6.  Suppose 1  and 2  are perpendicular lines intersecting at (1, 2).  If the angle of inclination 

of 1  is 45, then find an equation of 2 .       

7.  Determine which of the following pair of lines are parallel, perpendicular or neither.  

        (a)   2x  y + 1 = 0    and   2x + 4y  = 3             (d)   y = 3x +2    and   3x +  y =  2     

        (b)   3x 6 y +1 = 0   and   x  2y  = 3               (e)   2x  3y = 5  and  3x + 2y  3= 0   

         (c)  2x +5y +3 = 0    and   5x + 3y +2 =0           (f)   1
23


yx
   and   2x +3y 6 = 0                       

8.   Let L1 be the line passing through P(a, b) and Q(b, a)  such that ab .  Find an  equation of 

the  line  L2  in terms of a and b  if  

 (a)  L2  passes through P  and perpendicular to L1 .      

 (b)  L2 passes through ) ,( aa   and parallel  to L1 .      

9.   Let L1 and  L2  be given by 2x + 3y 4= 0  and  x +3y 5= 0, respectively.   A third line L3  is 

perpendicular to L1.  Find an equation of  L3 if the three lines intersect at the same point.  

10.  Determine the value(s) of  k for which  the line 

                        0583)9()2( 22  kkykxk  

            (a)  is parallel to the x-axis.                  

            (b)  is parallel to the y-axis.   

            (c)  passes through the origin              

            (d)  passes through the point (1,1). 

         In each case write the equation of the line. 

11.  Determine the values of a  and b for which the two lines 12  yax  and byx  46  

           (a)  have exactly one intersection point.           

           (b)  are distinct parallel lines.                          

           (c) coincide. 

           (d) are perpendicular. 
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4.1.3   Distance  between  a point and a  line  

Suppose a line l  and  a point P(x,y) not on the line are given. The distance from P to l,  d(P, l), is 

defined as the perpendicular distance between P and l .  That is,  

  d(P, l) = |PQ|,   where  Q is the point on l  such that  PQ⊥ l.  (See Figure 4.5) 

              
If P is on l, then d(P, l) = 0.  Moreover, given a point  P(h,k) observe that  

(i)  if the line  l  is a  horizontal line y=b, then  d(P, l) = |k – b|.   

   (ii)  if the line  l  is a  vertical line x=a, then  d(P, l) =  |h – a| 

In general, however, to find the distance between a point P(x0, y0)  and an arbitrary line l given 

by  ax + by +c = 0, we have to first get a point Q on l such that PQ⊥ l  and then  compute |PQ|. 

This yields  the formula given in the following Theorem.  

Theorem 4.2:   The distance between a point P(x0, y0)  and a line L:  ax + by +c = 0  is given by 

22

00
),P(

ba

cbyax
Ld




  

In particular, if we take (x0,y0)=(0,0)  in this formula, we obtain the distance between the origin 

O(0,0) and a line L :  ax + by +c = 0  which is given  by  

      
22

||
),O(

ba

c
Ld


  

  

Example 4.6: Show that the origin and  P(6,4) are equidistant from the line L:  y = – (3/2)x+13/2.  

Solution:   By equidistant we mean equal distance.  So, we need to show  d(O, L) = d(P, L).    

 To use the above formula, we first write the equation of the line L in the general form which is     

3x + 2y –13 = 0.  Thus,  a =3,  b =2  and c = –13.     

  

    13

13

49

|13|||
),O(

22










ba

c
Ld  

  and    
13

13

23

|134263|
),P(

22





Ld     

  Therefore,  d(O, L) = d(P, L)   =  13/13 .    

  Thus,  O(0,0) and  P(6,4)  are equidistant from the given line L.   

 P 

l 
  

 Figure 4.5:    |PQ| = d(P, l)    

Q 

y 

x 
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Exercise 4.1.3  

1.  Find the distance between the line L  given by y = 2x +3  and each of the following points. 

      (a) The origin             (b)  (2, 3)             (c)  (1, 5)          (d)   ( 1, 1)    

2.  Suppose L is the  line through  (1, 2) and  (3, 2).  What is the  distance between L and  

       (a)    The origin        (b)  (2, 3)        (c)   (a, 0)           (d)  (a, b)         (e)  (a, 2)      

3.  Suppose L is the vertical line that crosses the x-axis at  (5, 0).  Find  d(P, L), when P is  

       (a)   The origin        (b)  (2, 4)         (c)   (0, b)          (d)  (5, b)          (e)   (a, b)         

4.  Suppose L is the line that passes through (0, 3)  and (4, 0).  Find the distance between  L and 

each of the following points.  

        (a) The origin               (b)  (1, 4)                (c)    (1, 0)                 (d)  (8, 3)                          

         (e)  (0, 1)                     (f)   (4, 2)             (g)    (1, 9/4)              (h)  (7, 4) 

5.  The vertices of ABC are given below. Find the length of the side BC, the height of the 

altitude from vertex A to BC, and  the area of the triangle when its  vertices are 

        (a)   A(3, 4),   B(2, 1),  and   C(6, 1).  

        (b)   A(3, 4),   B(1, 1),  and   C(5, 2). 

6.  Consider the quadrilateral whose vertices are A(1,2), B(2,6), C(6,8) and D(5,4).  Then, 

        (a)  Show that the quadrilateral is a parallelogram.  

        (b)  How long is the side AD? 

        (c)  What is the height of the altitude of the quadrilateral from vertex A to the side AD.  

        (d)  Determine the area of the quadrilateral.       

4.2   Circles  

By the end of this section, you should  

 know the geometric definition of a circle. 

 be able to identify whether a given point is on, inside or outside a circle.  

 be able to construct equation of a circle.  

 be able to identify equations that represent circles 

 be able to find the center and radius of a circle and sketch its graph if its equation is given. 

 be able to identify whether a given circle and a line intersect at two points, one points or 

never intersect  at all. 

 know the properties of a tangent line to a circle. 

 be able to find equation of a tangent line to a circle.    
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4.2.1  Definition of a Circle 

Definition 4.2.  A circle is the locus of points (set of points) in a plane each of which is 

equidistant from a fixed point in the plane.  The fixed point is called the center of the circle  

and the constant distance is called its radius.    

Definition 4.2 is illustrated by Figure 4.6 in which the center of the circle is denoted by ''C'' and 

its radius is denoted by r.                    

                                     

Observe that a circle is symmetric with respect its center. Based on the definition,  a point P is on 

the circle if and only if its distance to C is r, that is |CP| = r.  A point in the plane is said to be 

inside the circle if its distance to the center C is less than r.  Similarly,  a point in the plane is said 

to be outside the circle if its distance  to  C is greater than r.   Moreover, a chord of the circle is a 

line segment whose endpoints are on the circle.  A diameter is a chord of the circle through the 

center C.  Consequently, C is the midpoint of a diameter  and the length of a diameter is 2r.  For 

example, AB and QR are diameters of the circle in Figure 4.6.  

Example 4.7:  Consider a circle of radius 5 whose center is at C(2,1). Determine whether each of 

the following points is on the circle, inside the circle or outside the circle:  

     P1(5, 5),     P2(4, 5),     P3(2, 5),     P4(1, 2),     P5(2,4),      P6(7, 0). 

Solution:  The distance between  a given point P(x,y) and the center C(2,1) is given by  

     |PC| = 22 )1()2(  yx  or 222
)1()2(PC  yx .   We need to compare  |PC| with the 

radius 5.  Note that   |PC| =5      |PC|2= 25,        |PC| 5   |PC|2
 25 ,   

                         and      |PC| 5      |PC|2  25.   

    Thus,  P is on the circle if  |PC|2 =25,  inside the circle if  |PC|2  25 and outside the circle if       

|PC|
2
  25.  So,  we can use the square distance to answer the question. Thus, as 

     |P1C|2 = (52)2+(51)2 = 25,   |P2C|2 = (42)2+(51)2 = 20 and  |P3C|2 = (22)2+(51)2 = 32,   

     P1 is on the circle,  P2 is inside the circle,  and  P3 is outside the circle.  Similarly, you can 

show that  P4 is inside the circle,  P5  is on the circle,  and  P6  is outside the circle.   

 

Figure 4.6.  Circle with center  C,  radius r 

C 
         

   

   
   
P 

A B 
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r 
r r 
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Exercise 4.2.1  

1.  Suppose the center of a circle is C(1,2) and  P(7, 6) is a point on the circle. What is the  

radius of the circle?   

2.   Let A(1, 2)  and  B(5, 2) are endpoints of  a diameter of a circle.  Find the center and radius 

of the circle. 

3. Consider a circle whose center is the origin and radius is 5 . Determine whether or not the 

circle contains the following point.    

   (a)   (1, 2)                     (b)   (0,0)                     (c)   5,0               (d)     (3/2,    3/2)   

   (e)   (5, 0)                     (f)  (1, 2),                 (g)   2,3             (h)   (5/2,  5/2) 

4.  Consider a circle of radius 5 whose center is at C(3,4). Determine whether each of the 

following points is on the circle, inside the circle or outside the circle:  

   (a)   (0, 9)                     (b)   (0,0)                     (c)   (1,6)                (d)      (1,  0)   

   (e)   (7, 1)                   (f)  (1, 1),                 (g)  (2,4)               (h)   (5/2,  5/2) 

 

4.2.2  Equation of a Circle 

We now construct an equation that the coordinates (x,y) of the points on the circle should satisfy. 

So, let P(x,y) be any point on a circle of radius r and center C(h,k)  (see, Figure 4.7).  Then, the 

definition of a circle requires that 

                         |CP| = r     

                    2 2( ) ( )x h y k r   
 

           or       

      
2 2 2( ) ( )x h y k r     

    (Standard equation of  a circle with 

        center (h,k)  and radius r. 

 

In particular, if the center is at origin, i.e., (h,k) = (0,0),  the equation is   

      
2 2 2x y r     (Standard Equation of a circle of radius r centered at origin) 

 

 

C(h,k) 

P(x,y) 

r 
 

h 

k 

x 

y y 

O 
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r 

r 
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x 

Figure 4.7  circles   (a) center at C(h,k)                     (b)  center at origin    
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Example 4.8:  Find an equation of the circle with radius 4 and center  (2, 1).  

Solution:   Using the standard equation of a circle in which  the  center (h, k) = (2, 1) and 

radius  r = 4  we obtain the equation 

16)1()2( 22  yx . 

Example 4.9:  Find the equation of a circle with endpoints of a diameter at P(–2, 0) and Q(4, 2).  

Solution:   The center of the circle C(h,k) is the mid-point of the diameter.  Hence,    

 
2 4 0 2

( , ) , 1,1
2 2

h k
   

  
 

.   Also, for its radius r,   r2 = |CP|2=(1+2)2+(1 – 0)2=10.  

Thus, the equation of the circle is  (x – h)2+(y –k)2 = r2
  .   That is, 

                                                       (x – 1)2+(y –1)2 = 10 .       

 

Example 4.10:   Suppose  P(2,4) and Q(5,3) are points on a circle whose center is on x-axis. 

Find the equation of the circle.  

Solution: We need to obtain the center C and radius r of the circle to construct its equation.  As 

the center is on x-axis, its second coordinate is 0.  Therefore, let  C(h,0) be the center of the  

circle.  Note that   |PC|2  = |QC|2   = r2   
 as both P and Q are on the circle.  So, from the first 

equality we get   (2h)2 + 42  =  (5h)2 + 32
 . Solving this for h we get h=1.  Hence, the center is 

at C(1, 0) and  r2 = |QC|2 = (51)2 + 32 =25.    Therefore, the equation of the circle is  

   (x1)2 + y2 =25.  

 

Example 4.11: Determine whether the given equation  represents a circle. If it does,  identify its 

center and radius and sketch its graph.  

         (a)    2 2 2 6 7 0x y x y      

         (b)    x
2
 +  y

2 
+ 2x   6y +10  = 0 

         (c)    x
2
 +  y

2 
+ 2x   6y + 11 = 0 

Solution:  We need to rewrite each equation in standard form to identify its center and radius. 

We do this by completing the square on the x-terms and y-terms of the equation as follows: 

 (a)        2 2( 2 ) ( 6 ) 7.x x y y                                          (Grouping x-terms and y-terms)         

           2 22 2( 2 ) ( 61 3 17 9) .x x y y                  (Adding 1
2
 and 3

2
 to both sides) 

            ( x + 1)
2
 + (y – 3)

2 
= 3.    

       Comparing this with the standard equation of circle this is equation of a circle with center           

(h, k) = (–1, 3)  and radius 3r  . The graph of the circle is sketched in Figure 4.8 
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   (b)  Following  the same steps as in (a), you can see that  x2 +  y2 + 2x   6y +10  = 0   is 

equivalent to   ( x + 1)2 + (y – 3)2 = 0.    

         This is satisfied by the point (1, 3) only.  The locus of  this equation is considered as a 

point-circle, circle of zero radius (sometimes called degenerated circle). 

     (c)  Again following  the same steps as in (a), you can see that  x2 +  y2 + 2x   6y +11  = 0   is 

equivalent to   ( x + 1)2 + (y – 3)2 = 1.   

             Note that this does not represent a circle; in fact it has no locus at all (Why? ).   

Remark:      Consider  an equation of  the form  

                                     x2 + y2 + Dx + Ey + F = 0.      

                   By completing the square you can show the following:   

 If    D2 + E2  4F  0 ,  then the equation represents a circle with  

      center  
2
E

2
D  ,    and  radius   F42E2D

2
1 r . 

 If    D2 + E2  4F  = 0 ,  then the equation is satisfied by the point  
2
E

2
D  ,   only. In 

this case the locus of the equation is called point-circle (circle of zero radius).   

 If    D2 + E2  4F    0 ,  then the equation has no locus.  

 

Exercise 4.2.2  

1. Determine whether each of the following points is inside, outside or on the circle with equation 

522  yx .  

   (a)  (1, 2),          (b)  (3/2, 2)          (c)  )5,0(            (d)   (1,  3/2 )  

2.   Find an equation of the circle whose endpoints of a diameter are (0, 3) and (3, 3).   

3.   Determine an equation of a circle whose center is on y-axis and radius is 2. 

4.   Find an equation of the circle passing through (1, 0) and (0, 1)  which has its center on the 

line  2x + 2y =5.   

5.   Find the  value(s) of k for which the equation 2x2 + 2y2 + 6x – 4y + k = 0 represent a circle.                                            

 (1,3) 

1 x 

y 

1 

1 Figure 4. 8   
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6.   An equation of a circle is 0622  kyyx .  If the radius of the circle is 2, .then what is 

the coordinates of its center?  

7.   Find equation of the circle passing through (0,0),  (4, 0)  and  (2, 2).  

8.  Find equation of the circle inscribed in the triangle with vertices (7, 10),  (7, 15), and     

(5,1). 

9.   In each of the following, check whether or not the given equation represents a circle. If the 

equation represents a circle, then identify its center and the length of its diameter.  

           (a)    0241822  yxyx                      (d)   01006012555 22  yxyx  

            (b)   054222  yxyx                   (e)   013924123636 22  yxyx  

            (c)   0112422  yxyx                  (f)   064233 22  yxyx    

10.  Show that  x2 + y2 + Dx + Ey + F = 0  represents a circle of positive radius iff  D2 + E2  4F  0.    

 

4.2.3   Intersection of a circle with a line  and  tangent line to a circle  

The number of intersection points of a given line and a circle is at most two; that is, either no 

intersection point, or only one intersection point, or two intersection points. For instance,  in 

Figure 4.9, the line l1 has no intersection with the circle, l2 has two intersection points with the 

circle, namely, Q1 and Q2, and l3 has only one intersection point with the circle, namely, P.  

 A line which intersects a circle at one and only one point is called a tangent line to the circle. In 

this case, the intersection point is called the point of tangency. Thus, l3 a tangent line to the 

circle in Figure 4.9 and P is the point of tangency. 

                     

In Figure 4.9,  observe that every point on l1 are outside of the circle. Hence, d(C,Q)  r   for 

every point Q on l1.  Consequently,  d(C, l1)  r.  On the other hand, there is a point on l2  which 

is inside the circle. Hence, d(C, l2)  r.    

Figure 4.9:  Intersection of a line and circle    

C  

P 

r 

l1 

x 

y 

 l2 

l3 

Q1   

Q2  
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For the tangent line l3, the point of  tangency P is on the circle implies that |CP| = r  and P is the 

point on l3 closest to C. Therefore, d(C, l3) = |CP| = r. This shows also that CP l3.    

In general, given a circle of radius r with center C(h,k)  and a line l ,  by computing the distance  

d(C, l)  between C and l  we can conclude the following. 

(i).  If d(C, l)  r,  then  the line does not intersect with the circle.  

(ii)   If d(C, l)  r,  then the line is a secant of the circle; that is, they have two intersection points.  

(iii)  If d(C, l) = r,  then l  is a tangent line to the circle.  The point of tangency is the point P on 

the line (and on the circle) such that CP  l .  This means the product of the slopes of l and 

CP  must be  1.  

 

Example  4.12  Write the equation of the circle tangent to the x-axis at (6,0) whose center is on 

the line   x 2y = 0.    

Solution:   The circle in the question is as in Figure 4.10. 

          

Let C(h, k) be the center of the circle.  (h, k) is on the line y =(1/2)x    k =(1/2)h ;   and 

  the circle is tangent to x-axis at P(6,0)  CP  should be perpendicular to the x-axis.  

    h = 6   k= 3 and the radius  is r = |CP| = k0 =3.    

Hence, the circle is centered at (6, 3) with radius r =3. Therefore,  the equation of the circle is  

(x – 6)
2 

+ (y3)
2
 = 9 .   

Example  4.13  Suppose the line y=x is tangent to a circle at point P(2,2).  If the center of the 

circle is on the x-axis, then what is the equation of the circle?                                                     

Solution:   The circle in the question is as in Figure 4.11. 

                              
Figure 4.11 

P(2,2) 

 
C(h,0) 

 y = x 

 

l 

 x 

y 

P(6,0) 

 
C(h,k) 

y  = (1/2) x 

Figure 4.10 
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 Let the center of the circle be  C(h,0).   We need to find h.  The slope of the line l : y=x is 1 and   

l  is  perpendicular to CP.   Hence the slope of CP is –1.     

 So, the slope of CP =  2 0
1  

2 h


 


  2 2   or   4.h h     

 The center of the circle is C(4,0);  and   r2 = |CP|2 = (2– 0)2 + (2– 4)2 = 4+4= 8. 

Therefore,  the equation of the circle is  (x – 4)
2 

+ y
2
= r

2  
= 8.  

Exercise 4.2.3  

1.  Find the equation of the line tangent to the circle with the center at (1, 1) and point of 

tangency at (1, 3). 

2.  The center of a circle is on the line y =2x and the line x=1 is tangent to the circle  at  (1, 6). 

Find the center and radius of the circle.                                           

3..  Suppose  two lines xy   and 4 xy   are tangent to a circle at  (2, 2) and (4, 0), 

respectively.  Find equation of the circle.                                                           

4.    Find an equation of the line  tangent to the circle 22222  yxyx  at  (1,1).  

5.     Find equation of the line through )0 ,32( and tangent to the circle with equation 

            1622  yx . 

6.  Suppose  P(1,2) and  Q(3, 0) are the endpoints of a diameter of  a circle  and L is the line 

tangent to the circle at Q.    

         (a)  Show that  R(5, 2) is on L.  

         (b)  Find the area of PQR,   when R is the point given in (a).   

   

           

4.3   Parabolas  

By the end of this section, you should   

 know the geometric definition of a parabola.  

 know the meaning of vertex, focus,  directrix, and axis  of a parabola.  

 be able to find  equation of a parabola whose axis is horizontal or vertical.    

 be able to identify equations representing parabolas.  

 be able to find the vertex, focus, and directrix of a parabola and sketch the parabola.        
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4.3.1    Definition of a Parabola   

Definition 4.3:   Let  L  be a fixed line and F be a fixed point not on the line, both lying on the 

plane. A parabola is a set of points equidistant from L and F.  The line L  is  called the 

directrix and the fixed point F is called the focus of the parabola.   

This definition is illustrated by Figure 4.12.  

 Note that the point halfway between the 

focus F and directrix  L  is on the parabola; 

it is called the vertex,  denoted by V.  

 |VF|  is called the focal length.  

 The line through F perpendicular to the 

directrix is called the axis of the parabola. It 

is  the line of symmetry for the parabola. 

  The chord BB through F perpendicular to 

the axis is called latus rectum.   

 The length of the latus rectum, i.e,  |BB|, is 

called focal width.  

 

 Letting  |VF | = p,  you may show that  |BB| = 4p;  i.e.,  focal width is 4 times focal length.  

 If P(x,y)  is any point on the parabola, then by the definition,  the distance of P from the directrix 

is equal to the distance between P and the focus F.  This is used to determine an equation of a 

parabola. To do this, we consider first the cases when the axis of the parabola is parallel to  one 

of the coordinate axes.   

Exercise 4.3.1  

     Use the definition of parabola and the given information to answer or solve each of the 

following problems.    

1.  Suppose the focal length of a parabola is p,  for some p  0. Then, show that the focal width 

(length of the latus rectum) of the parabola is  4p.  

2.  Suppose the vertex of a parabola is the origin  and its focus is F(0,1). Then,  

       (a)   What is the focal length of the parabola.  

       (b)   Find the equations of the axis and directrix of the parabola.  

       (c)   Find the endpoints of the latus rectum of the parabola.  

       (d)   Determine whether each of the following point is on the parabola or not.    

                 (i)  (4, 4)       (ii)  (2, 2)        (iii)  (4, 4)       (iv)   (4, 4)         (v)  (1, 1/4) 

           (Note:   By the definition, a point is on the parabola iff its distances from the focus and from the directrix are equal. )   

L 

 
axis 

 

B 

F 

V 
 

 

P 

Q

d

1 

d(P,L)  = |PF| 
 

directrix 
 

Parabola 

 

B 

x 

 

y 

 

Figure 4.12:   Parabola, 

 



                                                                  4. Analytic Geometry 
 

141 

 

3.  Suppose the vertex of a parabola is V(0, 1) and its directrix is the line x = 2. Then,  

         (a)   Find the equation  of the axis of the parabola.  

         (b)   Find the focus of the parabola.  

          (c)   Find the length  and endpoints of the latus rectum of the parabola.  

          (d)   Determine whether each of the following point is on the parabola or not.    

                   (i)  (1, 0)       (ii)  (3, 0)        (iii)  (8, 9)       (iv)   (8, 7)         (v)  (8, 8)         

 

4.3.2    Equation of  Parabolas  

I:  Equation of a parabola whose axis is parallel to the y-axis:   

 A parabola whose axis is parallel to y-axis is called vertical parabola. A vertical parabola is 

either open upward (as in Figure 4.13 (a) )  or  open downward  (as in Figure 4.13 (b)). 

 

Let p be the distance from vertex V(h,k) to the focus F of the parabola, i.e.,|VF| = p.   Then, by 

the definition, F is located p units  above V  if the parabola opens upward and it is located p units 

below V  if the parabola opens downward  as indicated on Figure 4.13(a) and (b), respectively.  

To determine the desired equation, we first consider the case when the parabola opens upward. 

Therefore, considering a vertical parabola with vertex V(h,k)  that opens upward (Figure 4.13a),  

its focus is at F(h, k+p).    The  equation of its directrix  is y = kp.   

 Then, for any point P(x,y) on the parabola,  |PF|  is equal to the distance between P and the 

directrix  if and only if   

2 2( ) ( )x h y k p y k p        

  Upon simplification, this becomes 

    
2( ) 4 ( )x h p y k    

   called standard equation of a vertical parabola,   

      vertex  (h, k),     focal length  p,   open upward.    

p 

y=k+p 

p 
 

 F (h,kp) 

V(h,,k) 
 

directrix 

y 

x 
 x=h 

 (b) parabola  open downward 

    Axis  

x 

p 

y=kp 

  P(x,y) 

p 

 
   F (h ,k+p) 

V(h,,k) 
 

directrix 

  

 y 

 x=h 

(x, kp) 

Figure 4.13:  (a) parabola  open upward 
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In particular, if the vertex of a vertical parabola is at origin, i.e.,  (h, k) =(0,0) and opens upward, 

then its equation is    

                     
2 4x py                ( In this case,  its focus is at  F(0, p), and its directrix is  y =p )   

If a vertical parabola with vertex V(h, k)  opens downward, then its directrix is above the 

parabola and its focus lies below the vertex (see Figure 4.13(b).    In this case,  

the  focus is  at  F(h, kp), and  its directrix is given by  y=k+p.   Moreover, following the same 

steps as above ,  the equation of this parabola becomes 

       2( ) 4 ( )x h p y k     
  ( Standard equation of a vertical parabola,   

    open  downward,    vertex  (h, k) , and    focal length p .  )  

In particular, if the vertex of a vertical parabola is at origin, i.e., (h, k) =(0,0) and opens 

downward, then its equation is    

                      2 4x py               ( In this case,  its focus is at  F(0,p), and its directrix is y = p )   

 

Example 4.14:   Find the vertex,  focal length, focus and directrix of the parabola  y = x
2
.    

Solution:   The given equation,  x
2
 = y, is the standard equation of the parabola with vertex at 

origin (0,0) and  4p =1    its focal length is  p = 1/4.  Since the parabola opens upward, its 

focus is p units above its vertex   its focus is at F(0,1/4);  and its directrix is horizontal line p 

units  below its vertex    its directrix is  y = 1/4.   You may sketch this parabola.  

  

Example 4.15:  If a parabola opens upward and the endpoints of its latus rectum are at A(4, 1)  

and B(2, 1), then  find the equation of the parabola, its directrix and sketch it.  

Solution:  Since the focus F of the  parabola is at the midpoint of its latus rectum AB, we have  

  )1 ,1(,
2
11

2
24  F ,  and  focal width  6)4(24  ABp   focal length  p = 3/2.  

Moreover, as the parabola opens upward  its vertex is  p units below its focus. That is, 

V (h, k) = ( 1,  13/2) =  ( 1, 1/2).  Therefore, the equation of the parabola is  

                                 
2
12 6)1(  yx . 

 And its directrix is horizontal line p units below its vertex, which is  y = 1/2 3/2 = 2.       

  The parabola is sketch in the Figure 4.14 .  
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II:  Equation of a parabola whose axis is parallel to the x-axis.   

A parabola whose axis is parallel to x-axis is called horizontal parabola. Such parabola opens 

either to the right or to the left as shown in Figure 4.15 (a) and (b), respectively.    

 

The equations of such parabolas can be obtained by interchanging the role of x and y in the 

equations of the parabolas discussed previously. These equations are stated below.  In both cases, 

let the vertex of the parabola be at  V(h,k).    

 If a horizontal parabola opens to the right (as in Fig.4.15(a) ), then its focus is to the right of 

V at  F(h+p, k),   its directrix is x =hp, and  its equation is  

2( ) 4 ( )y k p x h    

 If a parabola opens to the left (as in Figure 4.15 (b) ), then its focus is to the left of V at  

F(hp,k),  its directrix is x=h+p , and  its equation is:    

2( ) 4 ( )y k p x h     

If the vertices of these parabolas are  at the origin (0,0),  then you can obtain their corresponding 

equations by setting h=0 and k=0 in the above equations.  

 

  Axis 

x=hp 

p 
 

 F(h+p,k) V (h,k) 
 

directrix y 

x 

p y=k 

Figure 4.15:  (a)  Parabola open to the right 

x=h+p 

p 
 

 F(hp,k) V (h,k) 
 

y 

x 

p 

y=k 

(b)  Parabola open to the left 

x 

  

directrix y=2 

F(1,1) 
A(4,1

) 

2 

B(2,1) 

V(1,1/2

) 

  

 
2
12 6)1(  yx  

y 

Figure 4.14 
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Example 4.16: Find the focus and directrix of the parabola 2 10 0y x   and sketch its graph.  

Solution: The equation is 
2 10y x  ; and   comparing  this with the above equation, it is an 

equation of a parabola  whose vertex is at (0,0), axis of symmetry is the  x-axis, open to the left 

and 4p=10,  i.e., p=5/2. Thus, the focus is  F=(–5/2,0) and its directrix is x =5/2.  Its graph is 

sketched in Figure 4.16. 

                  
 

 Example 4.17:  Find the focus and directrix of the parabola y
2
 + 4y + 8x – 4 = 0 and sketch it.  

Solution:  The eaquation is  y
2
 +4y = –8x +4.    ( Now  complete the square of y-terms)  

    y
2
 + 4y+2

2
 = –8x +4+4 

    (y +2)
2
 = –8x +8 

    (y + 2)
2
 = –8(x –1) 

This is equation of a parabola with vertex at (h, k)=(1,–2),  open to the left  and focal length p, 

where 4p=8   p=2.   Therefore,  its focus is                                                        

 F= (h–p, k) = (–1, –2),   and  directrix  x=h+p =3.    The parabola is sketched in Figure 4.17. 

                       

Remark:-  An equation given as:        Ax2 + Dx + Ey  + F = 0  

                                                     or     Cy2 + Dx + Ey +  F = 0  

            may represent a parabola whose axis is parallel to the y-axis or parallel to the x-axis, 

respectively. The vertex, focal length and focus for such parabolas can be identified 

after converting the equations into one of the standard forms by completing the square.   

 

Figure 4.16: 2 10 0y x   

directrix 

 x= 5/2
 

F(–5/2,0) 
O

 
5/2

 
x 

y  

    Figure 4.17:   y
2
 +4y +8x–4 = 0 

   

y= 2 

 
     x= 3

 

    directrix 

x 

y  
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Exercise 4.3.2  

    For questions 1 to 8,  find an equation of the parabola with the given properties and sketch 

its graph.  

1.  Focus  (0, 1) and directrix  y = 1.                   5.   Vertex  (3, 2 )  and  Focus (3, 3). 

2.   Focus  (1, 2) and directrix  y =2.                 6.    Vertex (5, 2 )  and  Focus (5, 2). 

3.   Focus  (3/2, 0) and directrix  x = 3/2.             7.   Vertex (1, 0)   and  directrix x = 2. 

4.    Focus  (1,2) and directrix  x = 0.                 8.   Vertex (0, 2)   and  directrix y = 4. 

      For questions 9 to 17  find the vertex, focus and directrix of the parabola and sketch it.  

9.     22xy                    12.   02  yx                      15.    2 8 6 25 0y x y                               

10 .   yx 28               13.   2)2(1  yx               16.     y
2
 – 2y – 4x + 9= 0       

11.     4x  y
2
 = 0           14.  248)2( 2  yx           17.   144

2
12  yxx                                                                         

18.  Find an equation of the parabola that has a vertical axis, its  vertex  at (1, 0) and passing 

through (0,1).  

19.  The vertex and endpoints of the latus rectum  of the parabola yx 362  forms a triangle. 

Find the area of the triangle.   

20.   P(4, 6) is a point on a parabola whose focus is at (0, 2) and directrix is parallel to  x-axis. 

(a)   Find an equation of the parabola, its vertex and directrix.     

         (b)  Determine the distance from P to the directrix.                                            

21.   An iron wire bent in the shape of a parabola has latus rectum of length 60cm. What is its 

focal length?     

22.   A cross-section of a parabolic reflector is shown in the figure below. A bulb is located at 

the focus and the opening at the focus, AB, is 12 cm. What is the diameter of the 

opening, CD, 8 cm from the vertex?                                                                                                                                      

                                                   

 

     D      B 

     C 

      A 

     8cm 
V 

     6cm 

     6cm 
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4.4  Ellipses  

By the end of this section, you should   

 know the geometric definition of an ellipse.  

 know the meaning of the center, vertices, foci, major axis and minor axis of an ellipse.  

 be able to find  equation of an ellipse whose major axis is horizontal or vertical.     

 be able to identify equations representing ellipses.  

 be able to find the center, foci and  vertices of an ellipse and sketch the ellipse.        

 

4.4.1    Definition of an Ellipse  

Definition 4.4:  Let F and F be two fixed  points in the plane.  An ellipse is the locus or set of all 

points  in the plane such that the sum of the distances from each point  to  F and F is constant.  

That is,  a point P is on the ellipse if and only if  |PF|+ |PF| = constant. (See Figure 4.18).  

The two fixed points, F and F, are called foci (singular- focus) of the ellipse.    

                                     
Note also the following terminologies and relationships about ellipse.  

 The midpoint C between the foci F  and F  is called the center of the ellipse.  

 The longest diameter (longest chord)  VV  through F and F  is called the major axis of the 

ellipse; and the chord  BB  through C which is perpendicular to VV is called minor axis.  

 The endpoints of the major axis, V and V, are called the vertices of the ellipse.   

 From the definition,  |VF|  + |VF| = |VF|  + |VF|    |VF|  = |VF|   |CV| = |CV|.  Hence,   

C is the midpoint of  VV.   We denote the length  of the major axis by 2a.  That is,  |CV|  = a.  

         |VF|  + |VF| = |VV|  = 2a.         

        |PF|  + |PF| = 2a,    for any point P on the ellipse.  

  We let   |BC| = b.  (You can show that C is the midpoint of BB.  So,   |BC| = b. ) 

 The distance from the center C to a focus F (or F) is denoted by c,   i.e., |CF| = c = |CF|.   

Figure  4.18:  Ellipse:    |PF|  + |PF| = constant 
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 Now, since |BF|+ |BF| = 2a and BC is a perpendicular bisector of FF,  we obtain that      

|BF| =  |BF|= a .  Hence, using the Pythagoras Theorem on BCF, we obtain 

                           
2 2 2b c a      or       b

2
 =  a

2
 c

2
. 

(Note:  a  b.   If  a=b,  the ellipse would be a circle with radius r =a =b ).    

 The ratio of the distance between the two foci to the length of the major axis is called the 

eccentricity of the ellipse, and denoted by  e.  That is, 

                      e = 
a
c

VV

 FF 

'

'
.               (Note that  0  e  1    because   0  c  a )  

Exercise 4.4.1  

     Use the definition of ellipse and the given information to answer or solve each of the 

following problems.   

1.  Suppose  F and F are the foci of an ellipse  and B and B are the endpoints of the minor axis 

of the ellipse, as in Figure 4.18.  Then, show that each of the followings hold.  

        (a)   BFF is isosceles triangle.   

        (b)   The quadrilateral   BFBF  is a rhombus.    

        (c)    FF is perpendicular bisector of BB ; and  also BB is perpendicular bisector of  FF. 

         (d)   If the length of the major axis is 2a, length of minor axis  is |BB| = 2b, and |FF|=2c, 

for some positive a, b, c,  then  

               (i)   |BF| = a                       (ii)   a2 = b2 + c2
         

2.   Suppose the vertices of an ellipse are (2, 0)  and its foci are (1, 0).      

           (a)   Where is the center of the ellipse? 

           (b)   Find the endpoints of its minor axis.  

           (c)    Find the lengths  of the major and minor axes.  

           (d)   Determine whether each of the following points is on the ellipse or not.    

                 (i)  (1, 3/2)      (ii)  (3/2, 1)        (iii)   (1, 3/2)        (iv)  (1, 3/2)       (v)  (1,  1)                             

                 (Note:   By the definition, a point is on the ellipse iff  the sum of its distances to the two foci is 2a )           

3.   Suppose the endpoints of the major axis of an ellipse are (0, 2)  and the end points of its 

minor axis are (1, 0).      

           (a)  Where is the center of the ellipse? 

           (b)   Find the coordinates of the foci.  

           (c)   Determine whether each of the following points is on the ellipse or not.    

                    (i)   3,2/1          (ii)   1 ,2         (iii)   3 ,2/1           (iv)     1 ,2/3           

4.   Suppose the endpoints of the minor axis of an ellipse are (1, 3) and its eccentricity is 0.8.  

Find  the coordinates of  (a) the center,     (b) the foci ,    (c)  the vertices  of the ellipse.        
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4.4.2    Equation of  an Ellipse  

In order to obtain the simplest equation for an ellipse, we  place the ellipse at standard position. 

An ellipse is said to be at standard position when its center is at the origin and its major axis lies 

on either the x-axis or y-axis.   

I.  Equation of an ellipse at standard position:  

There are two possible situations, namely, when the major axis lies on x-axis (called horizontal 

ellipse) and when the major axis lies on y-axis (called vertical ellipse). We first consider a 

horizontal ellipse as in Figure  4.19 

                        

Let the center of the ellipse be at the origin, C(0,0)  and  foci at F(c,0),   F (c,0) and vertices at  

(a,0)  and (a,0)  (see Figure 4.19).  Then, a point P(x,y) is on the ellipse iff 

                |PF| + |PF| = 2a . 

That is,    aycxycx 2)()( 2222   

      or      2222 )(2)( ycxaycx   

Squaring both sides we get 

           222222222 2)(442 yccxxycxaayccxx     

which simplifies to       cxaycxa  222)(  

Again squaring both sides, we get     22242222 2)2( xccxaayccxxa   

which becomes     )()( 22222222 caayaxca   

Now recalling that  
222 cab   and dividing both sides by a

2
b

2
,  the equation becomes  

                1
2

2

2

2


b

y

a

x  
 (Equation of horizontal ellipse at standard position,  

   vertices (a, 0),  foci (c, 0),  where c
2 

= a
2
 b

2
 ) 

For a vertical ellipse at standard position, the same procedure gives the equation 

               1
2

2

2

2


a

y

b

x
 

  (Equation of vertical ellipse at standard position,  

   vertices (0, a),  foci (0, c ),  where c
2 

= a
2
 b

2
 ) 

Note:   Notice that here, for vertical ellipse, the larger denominator a
2
 is under y

2
.  

y 

 
P(x,y) 

       F(-c,0)        F(c,0) C x 

 

       (a,0)        (-a,0) 

       (0,-b) 

       (0,b) 

Figure 4.19:  Horizontal ellipse at standard position  
  



                                                                  4. Analytic Geometry 
 

149 

 

Example 4.18:  Locate the vertices and foci of 16x
2 

+ 9y
2
 =144  and sketch its graph. 

Solution:  Dividing both sides of the equation by 144, we get:  

1
169

22


yx

     or        1
43 2

2

2

2


yx

. 

This is equation of a vertical ellipse at standard position with a=4, so vertices at (0, 4),   and  

b=3;  i.e., endpoints of the minor axis at (3, 0).  Since c
2
 = a

2
b

2
 =7    7c ,  the  foci are 

 7 ,0  . The graph is sketched in Figure 4.20. 

                            

 (II)  Equation of shifted Ellipses:  

When an ellipse is not at standard position but with center at a point C(h,k), then we can still 

obtain its equation by considering translation of the xy-axes in such a way that its origin 

translated to the point C(h,k). This result in a new XY coordinate system whose origin O is at 

C(h,k) so that the ellipse is at standard position relative to the XY system( see, Figure 4.21) 

   

Consequently, the equation of the horizontal and vertical ellipses relative to the new XY 

coordinate system with (x, y) coordinate points are 

                          1
''
2

2

2

2


b

y

a

x
     and      1

''
2

2

2

2


a

y

b

x
,           .   .    .   .     .    .    .   . (I). 

O 

y 

  x 

C(h,k) V V 

B 

F 

 B  
         a 

       b         c 

F  X 

Y 

Fig. 4.21:  (a)  horizontal ellipse,  center  C(h,k) 

O 

c 
a 

C (h,k) 

 y 

b  V 

V 

B B 

x 

F  

 F 

X 

 Y 

   (b)  vertical ellipse,  center  C(h,k) 

y 

 

       (-3,0) 

C(0,0) x 

 

       (0, 4) 

Figure  4.20:   16x
2 
+ 9y

2
 

=144   
  

 

  

  

  
            (0 ,-4) 

        (3,0) 

       )  ,(  70  

       )  ,(  70   

    



                                                                  4. Analytic Geometry 
 

150 

 

respectively.  Since the origin of the new coordinate system is at the point (h,k) of the xy-

coordinate system, the relationship between a point (x,y) of the xy-coordinate system and (x,y) 

of the new coordinate system is given by   (x, y) =  (x,y) + (h, k).    That is, 

x =  x  h,     and   y = y  k . 

Thus, in the original xy-coordinate system the equations of the horizontal and vertical ellipses 

with center C(h, k), lengths of major axis = 2a  and  minor axis = 2b  are, respectively, given by  

      1
)()(

2

2

2

2







b

ky

a

hx
 

   (Standard equation of horizontal ellipse with  center  C(h,k)  ) 

and 

     1
)()(

2

2

2

2







a

ky

b

hx
     (Standard equation of vertical ellipse with  center  C(h,k)  ) 

Example 4.19:  The endpoints of the  major axis of an ellipse are at (3,4)  and (7,4)  and its 

eccentricity is  0.6. Find the equation of the ellipse and its foci.  

Solution:  The given vertices are at V(3,4)  and V(7,4) implies that 2a = |VV| = 10   a = 5; 

and the center C(h,k) is the midpoint of VV  )4,2(),(),(
2

44
2

73  kh . Moreover,    

eccentricity = c/a = 0.6    c = 50.6 = 3.  Hence,   b
2
 = a

2 
 c

2 
= 259 = 16.  Note that the major 

axis V'V is horizontal.  Therefore, using the standard equation of a horizontal ellipse, the 

equation of the ellipse is   

1
16

)4(

25

)2( 22





 yx . 

Now, as the center (h,k) = (2,4),  c=3 and VV is 

horizontal, the foci are at (h  c, k) = (2  3, 4). 

 That is, the foci are  at F(1, 4) and F(5, 4).   

Moreover, the endpoints of major axis are at  

(h, k b) = (2, 4 4)   B=(2,0) and  B=(2,8). 

The graph of the ellipse is sketched in Figure 4.22. 
 

Example 4.20: Find the center, foci and vertices of  2 24 8 0x y x    and sketch its graph 

Solution: Group the x-terms of the equation and complete the square: 

            
2 24( 2 ) 0x x y    

        4(x
2
+2x+1) + y 

2
= 4   (divide both sides by 4) 

         
2

2( 1) 1
4

y
x       

This is equation of a vertical ellipse (major axis parallel to the y-axis), center C=(h,k) = (–1,0),   

C(2,4) 

 

 V(7,4)   
V (-3,4 

 F(5,4) 
 

B (2,0) 

 
F 

B (2,8) 

Figure 4.22 
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a =2,  b=1.  
2 2 2 4 1  3c a b c         

Thus, foci :   F(–1, –√3 ) and  F(–1, √3 ) ,    

 Vertices:   V = (–1, 2),   V= (–1,  –2); 

Endpoints of minor axis: B=(0,0),  B=(–2,0); 

The graph of the ellipse is sketched  in 

 Figure 4.23.  

 

      
 

 

Remark:   Consider the equation:   Ax2 + Cy2 + Dx + Ey + F = 0,      

          when A and C have the same sign.  So, without lose of generality, let A 0 and C 0.     

          By completing the squares you can show that this equation is equivalent to  

   
4AC

ACF4AECD2

C2
E2

A2
D

22
CA  yx . 

           From this you can conclude that the given equation represents:-  

 an ellipse with center  
C2
E

A2
D  ,    if    D

2
C + E

2
A  4ACF  0.  

 If    D2C + E2A  4ACF = 0,  the equation is satisfied by the point  
C2
E

A2
D  ,   only.  In 

this case, the locus of the equation is called a point-ellipse (degenerate ellipse).   

 If  D2C + E2A  4ACF   0 ,  then the equation has no locus.   

 

 

Exercise 4.4.2   

   For questions 1 to 13,  find an equation of the ellipse with the given properties and sketch its 

graph.  

1.     Foci at  ( 2, 0)  and   a vertex at (5, 0)                   

2.     A focus at (0, 3)   and  vertices  at (0, 5)                     

3.      Foci  at (2, 3) , (2,7) and  a vertex at (2, 0)             

4.     Foci at  (0, 1) , (8,1) and  a vertex at  (9, 1)             

5.    Center at  (6,1) , one focus at (3,1) and one vertex at (10, 1)  

6.     Foci  at (2, 1)  and the  length of the major axis is  4. 

7.     Foci  at (2, 0), (2, 6)  and the length of the minor axis is  5. 

Figure 4.23:  4x
2
+ y

2 
+ 8x =0 

C   F     

F  

C (–1,0)  

C   V (–1,2)  

  B  
     (–2,0)  

C   B 
      (0.,0)  

C   V(–1, –2)  
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8.    The distance between its foci is 52  and the endpoints of its minor axis are (–1, –2)  and  

(3,–2). 

9.   Vertices at  (5, 0) and the ellipse passes through (3, 4). 

10.    Center  at (1, 4), a vertex at (10, 4) , and one of the endpoints of the minor axis is (1, 2).  

11.    The ellipse passes through (1, 1) and   2,
2
1   with center at origin. 

12.   The endpoints of the major axis are (3, 4) and (3, 4) , and the ellipse passes through the 

origin 

13.   The endpoints of the minor axis are (3, 2) and (3, 2) , and the ellipse passes through the 

origin 

        For questions 14 to 22 find the center,  foci and vertices of the ellipse having the given 

equation and sketch its graph. 

14.    1
59

22


yx

               17.   1
16

)3(

9

)2( 22





 yx                  20.   271849 22  xyx                            

15.     255 22  yx           18.   3)2(2)1( 22  yx             21.   7462 22  yxyx  

16.     99 22  yx            19.  011829 22  yxyx         22.   61024 22  yxyx    

23.   Consider the equation  016842 22  Fyxyx .  Find all values of F  such that the 

graph of the equation  

         (a)  is an ellipse.           (b)  is a point.              (c) consists of no points at all. 

 

4.5  Hyperbolas   
  

By the end of this section, you should  

 know the geometric definition of a hyperbola.  

 know the meaning of the center, vertices, foci and transverse axis of a hyperbola.  

 be able to find  equation of a hyperbola whose transverse axis is horizontal or vertical.     

 be able to identify equations representing  hyperbolas.  

 be able to find the center, vertices, foci, and asymptotes of a hyperbola and sketch the 

hyperbola.        
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4.5.1    Definition of a  hyperbola  

Definition 4.5:  Let F and F be two fixed  points in the plane.  A hyperbola is the set of all 

points in the plane such that the difference of the distance of each point from F and F is constant. 

We shall denote the constant by 2a, for some a  0. That is, a point P is on the hyperbola if and 

only if  |PF| –  |PF| = 2a  (or |PF|– |PF|  = 2a , whichever is positive) . The two fixed points F and 

F  are called the foci of the hyperbola.   

                          

Figure 4.24 illustrates the definition of hyperbola.  Notice that the definition of hyperbola is 

similar to that of an ellipse, the only change is that the sum of distances has become the 

difference of distances.  Here, for the difference of any two unequal values, we take  the higher 

value minus the smaller so that a  0 in the definition. The following terminologies, notations 

and relationships are also important with regard to a hyperbola. Refer to Figure 4.24 for the 

following discussion.   

 The line through the two foci F and F  is called the principal axis of the hyperbola. The point 

on the principal axis at halfway between the two foci, that is, the midpoint of FF, is called the  

center of the hyperbola and represented by C.  We denote  the distance between the two foci 

by 2c. That is,  |FF| = 2c  or   |CF| = c = |CF|.    Noting also  that  |PF|   |FF| + |PF|  in        

 PFF     and    |PF| – |PF| = 2a , you can show that  a  c.      

 The points V and V where the hyperbola crosses the principal axis are called vertices of the 

hyperbola.  The line segment VV  is called the transverse axis of the hyperbola.  So, as  V  

and V are on the hyperbola, the definition requires that |VF| – |VF| = |VF| – |VF|.  From 

this, you can obtain that  |VF| = |VF|.  Consequently,   

     (i)  C is the midpoint of also VV;   that is,     |CV | = |CV| . 

     (ii)  |VV|  = |VF|   |VF| =  |VF|   |VF| =  2a .   (The length of the transverse axis is 2a)  

     (iii)  |VC| = a = |CV|      (This follows from (i) and (ii). )   

Figure  4.24:   Hyperbola 
  

x 

 

V   

V  F   

 P  

V   

V 
 C  

 c  
 F  

  hyperbola  

y 

 |PF|  |PF| = 2a 
  

Principal  

axis 

    
    

    

 a  
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  The eccentricity e  of a hyperbola  is defined to be the ratio of the distance between its foci to 

the length of its transverse axis. That is,  similar to the definition of eccentricity of an ellipse, 

the eccentricity  of a hyperbola is  

               
a
ce 

V'V

FF'
              (But here,     e  1     because   c  a )     

 

Exercise 4.5.1  

     Use the definition of hyperbola and the given information to answer or solve each of the 

following problems.   

1.  Suppose  C is the center,  F and F are the foci,  and V and V are the vertices of the 

hyperbola,  as in Figure 4.24, with  |CV| = a and  |CF| = c.  Then, show that each of the 

followings hold.  

        (a)   If P is any point on the hyperbola, then  |PF| – |PF| = 2a.  

               (Note:  Taking that  |PF| – |PF| = k, a constant,   show that  k=2a .) 

        (b)   a  c .    

2.   Consider a hyperbola whose foci are  (2, 0)  and contains the point P(2, 3).  

           (a)   Where is the center of the hyperbola? 

           (b)    Determine the principal axis of the hyperbola. 

           (c)    Find the length of  the transverse axis of the hyperbola. 

           (d)    Find the coordinates of the vertices of the hyperbola. 

           (e)   Determine whether each of the following points is on the hyperbola or not.    

                 (i)  (2, 3)      (ii)  (2, 3)      (iii)   (2, 3)        (iv)   (3, 4)         (v)   6 ,13  

3.  Suppose the vertices of a hyperbola are at  (0, 2)  and its eccentricity is 1.5. Then, 

            (a)    Find the foci of the hyperbola. 

            (b) )  Determine whether each of the following points is on the hyperbola or not.    

                      (i)   3 ,5        (ii)  (2, 3)         (iii)    3 ,5            (iv)    5 ,3            
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4.5.2    Equation of a  hyperbola 

We are now ready to derive equation of a hyperbola. But, for simplicity, we consider first the 

equation of a standard hyperbola with center at origin. A standard hyperbola is the one whose 

principal axis (or transverse axis)  is  parallel to either of the coordinate axes. 

I.  Equation of a standard hyperbola with center at origin.   

There are two possible situations, namely, when the transverse axis lies on x-axis (called 

horizontal hyperbola) and when the transverse axis lies on y-axis (called vertical hyperbola). We 

first consider a horizontal hyperbola with center C(0,0),  vertices V(a, 0), V (a, 0) and foci 

F(c, 0), F (c, 0).       

                        

Notice that c
2
  a

2
  0  as c  a . Hence, we can put 

222 acb   for some  positive b.  That is,  

222 cba   so that a, b, c are sides of a right triangle (see, Figure 4.25). The line segment BB 

perpendicular to the transverse axis at C and with endpoints B(0,b) and B(0,b) is called 

conjugate axis of the hyperbola. Observe that the midpoint of the conjugate axis is C and its 

length is  |BB| = 2b.  ( b will play important role in equation of the hyperbola and its graph).  

Now,  for any point P(x,y) on the hyperbola it holds  that  |PF|   |PF| = 2a . 

That is,    aycxycx 2)()( 2222   

      or      
2222 )(2)( ycxaycx   

Squaring both sides we get 

           
222222222 2)(442 yccxxycxaayccxx     

which simplifies to    
222)( acxycxa   

Again squaring both sides and rearranging, we get  )()( 22222222 yacayxac  .         

Recall that we set 
222 acb  .  So, using this in the above equation and  dividing both sides by 

a
2
b

2
,  the equation becomes  

Figure  4.25:   Horizontal hyperbola  centered at origin  
  

y 

 

P(x,y) 

O x 

 

       a 
V(a,0)    

V 
F(c,0)    

V 

F(-c,0)    

V 

V(-a,0)           b 
       c 

B (0,b)    

V 

B (0,-b)    

V 

xy
a
b  xy

a
b  
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         1
2

2

2

2


b

y

a

x
 

 (Equation of horizontal hyperbola with center C(0,0),  

   vertices (a, 0),  foci (c, 0),  where c
2 

= a
2 

+ b
2
 ) 

Note that  this hyperbola has no y-intercept because if x = 0, then   y
2
 = b

2
 which is not possible. 

The hyperbola is symmetric with respect to both x-and y- axes.   

 Also, from this equation we get   

         11
2

2

2

2


b

y

a

x
    implies that   

22 ax   .   So,   aaxx  22 .  

Therefore, we have  x  a  or  x   a.   This means that the hyperbola consists of two parts, 

called its branches. Moreover, if we solve for y from the equation  we get  

x
a
bax

a
by    22  as x  .   

This means the hyperbola will approach (but never reaches) the line x
a
by    as x gets larger 

and larger.  That is, the lines  x
a
by    are the asymptotes of the hyperbola.  

In sketching a hyperbola, it is best to draw the rectangle formed by the line y = b and  x = a  

and the to draw the asymptotes which are along the diagonals of the rectangle (as shown by the 

dashed lines in  Figure 4.25). The  hyperbola lies outside the rectangle and inside the asymptotes. 

It opens around the foci.   

Example 4.21: Find an equation of the hyperbola whose foci are F(5, 0) and F(5, 0) and 

contains point P(5, 16/3).   

Solution:  It is horizontal hyperbola  with center (0,0) and  c = 5. In addition,  as  P(5, 16/3)  is 

on the hyperbola we have that  |PF|   |PF| = 2a.   That is,  

            a2)55()55(
2

3
1622

3
162    

       a =3.    (So, its vertices are (3, 0) and  (3, 0)  ). 

  Now, using the relationship   
222 acb  , we get  169252 b .  

  Therefore, the equation of the hyperbola is   1
169

22


yx

.    

  You may find the asymptotes  and sketch the hyperbola.   
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For a vertical hyperbola with center at origin (i.e., when transverse axis lies on y-axis),  by 

reversing the role of x and y  we obtain the following equation which is illustrated in Figure 4.26.  

            1
2

2

2

2


b

x

a

y
 

  ( Equation of vertical hyperbola with center C(0,0),  

   foci (0, c),  vertices (0, a),   where c
2 

= a
2 

+ b
2
  

    and asymptotes   y = (a/b)x    ) 

Note:    For a vertical hyperbola, the coefficient of  y
2
  is positive and that of  x

2
   is  negative .  

     a
2
  is  always the denominator of  the positive term. 

                

 

Example 4.22: Find the foci and equation of the hyperbola with vertices  V(0,1) and V(0, 1)   

and an asymptote y =2x.   

Solution:  It is a vertical hyperbola  with center C(0,0) and  a = |CV| = 1.  Since an asymptote of 

such vertical hyperbola is  y = (a/b)x and the slope of the given asymptote is 2, we have  a/b =2 

  1/b =2   b = 1/2. Thus, c2 = a2 +b2 = 1 + 1/4 = 5/4 . 

 So, the foci are  2/5 ,0   and the equation of the hyperbola is   y
2 
 4x

2
 = 1.   

  (You may sketch the hyperbola) 

 

 

 

 

 

 

Figure 4.26:   Vertical hyperbola  centered at origin  
  

y 

 

O x 

 

        a   (0,a)     

(c,0)    

 (-c,0)     

  (0,-a)   

        b  (b,0)           (-b,0)     
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b
a  

  xy
b
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(II)  Equation of shifted hyperbolas:   

The center of a horizontal or vertical hyperbola may be not at origin but at some other point    

C(h,k) as shown in Figure 4.27. In this case, we form the equation of the hyperbolas by using the 

translation of the xy-coordinate system that shifts its origin to the point C(h, k).   As discussed in 

Section 4.4,  the effect of this translation  is just replacing x  and y by  xh  and yk, respectively,  

in the equation of the desired hyperbola.    

     
Therefore, the standard equation of a horizontal hyperbola (transverse axis parallel to x-axis)  

with center C(h,k),  length of transverse axis =2a,  and  length of conjugate axis =2b   is 

        

2 2

2 2

( ) ( )
1

x h y k

a b

 
   

    Center:   C(h,k),   

    Vertices:  V (h–a,k),  V(h+a, k),   

     Foci :    F(h–c, k),  F(h+c, k),   where  c2 = a2 +b2   

     Asymptotes:  )( hxky
a
b 

 

Similarly, the standard equation of a vertical hyperbola (transverse axis parallel to y-axis)  with 

center C(h,k),  length of transverse axis =2a,  and  length of conjugate axis =2b   is 

       
1

)()(
2

2

2

2







b

hx

a

ky
 

     Center:   C(h,k),   

      Vertices:  V (h,k–a),  V(h, k+a),   

       Foci :    F(h, k–c),  F(h, k+c),   where  c2 = a2 +b2 
  

       Asymptotes:  )( hxky
b
a 

 
 

 

Example 4.23:  Find the foci, vertices and the asymptotes of the hyperbola whose equation is  

4(x+1)2  (y2)2 = 4 

                         and sketch the hyperbola.  

Figure 4.27:  (a) Horizontal hyperbola   

                        with center C(h,k)   

  

   (b) Vertical hyperbola   

         with center C(h,k)   

  

)( hxky
b
a  

 

)( hxky
b
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y 
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(0,

a)     

   C  (h,k) 

 F(h,k-c)      

 F(h,k+c)      

V(h,k+a)      

V(h,k-a)      

y 

 

C(h,k) 

x 

 

      a 
V(h+a,k)     

F(h+c,k)    
F(h-c,k)      

V(h-a,k)           b        c 

)( hxky
a

b    

O 

)( hxky
a
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Solution: Dividing both sides of the equation by 4 yields 

                     1
4

)2(
)1(

2
2 




y
x . 

This is equation of a hyperbola with center C(1, 2). Note that the  'x
2
-term' is positive indicates 

that the hyperbola is horizontal (principal axis y=2), a=1,  b=2, and  c
2
= a

2
+b

2
   5c . As a 

result  the foci are at   2 ,51  and  2 ,51 ,  vertices are at (2,2) and (0,2)  and the 

asymptotes are the lines y2=2(x+1), that is,   y=2x+4 and  y=2x.  Consequently, the 

hyperbola is sketched as in Figure 4.28. 

                         

Example 4.24: Find the foci of the conic  2 29 4 72 8 176 0x y x y      and sketch its graph.  

Solution:  Group the x-terms and y-terms of the equation  and complete their squares: 

    2 29 72 4 8 176x x y y             (Multiply both sides by 1) 

    2 29 72 4 8 176x x y y            

   2 24( 2 )  9( 8 ) 176y y x x     

   2 22 24( 2 )  9( 8 ) 176y y x x     1 4 4 144  

   2 24( 1)  9( 4) 36y x        (Next, divide each by 36)  

   
2 2( 1) ( 4)

 1
9 4

y x 
   

This is standard equation of a hyperbola whose transverse axis is parallel to the y-axis (as its 'y
2
 

term' is positive)  with center C (4,1),  a
2
=9   and  b

2
=4 .   

2 2 2 13  13c a b c     .   

Thus, foci are  F )131 ,4(   and F )131 ,4(  ,  and  vertices (4, 13),   i.e,,    V(4,–2)  and  

V(4, 4).  Moreover, the asymptotes are )( hxky
b
a  . Hence, the asymptotes  are      

  l1:  )4(1
2
3  xy   and  l2:  )4(1

2
3  xy .    The hyperbola is sketched in Figure 4.29  

        Figure 4.28:    4(x+1)
2
  (y2)

2
 = 4 

 

  

y 

 

   (1,2) 

x 

 

      y=2 
V(0,2)     

O 

 )2 ,51(F   

V(-2,2)     

        
)2 ,51(' F        

xy 2  

42  xy  
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Example 4.25:  Determine the locus or type of  the conic section given by the equation   

                          32422  yxyx .  

Solution:  Grouping the x-terms and y-terms of the equation  and completing their squares yield 

                0)2()1( 22  xy                              

             
22 )2()1(  xy           

              
2)2(1  xy  = )2(  x  

  This represents pair of two lines intersecting at (2, 1), namely,  y = x1 and  y = x+3.   

 

Remark:   Consider the equation:   Ax2 + Cy2 + Dx + Ey + F = 0    when  AC   0;  

            (i.e., A and C have opposite signs).  Then, by completing the squares of x-terms and y-

terms you can  convert the equation to the following form:     

                        
4AC

ACF4AECD2

C2
E2

A2
D

22
CA  yx .          

           Now,   letting ACF,4AECD 22   you can conclude the following:  

 If    0,  the equation represents a hyperbola  with center  
C2
E

A2
D  ,  .   

 If  = 0,  the equation becomes  
A2

D
C
A

C2
E  xy   which are two lines 

intersecting at   
C2
E

A2
D  ,  .  In this case,  it is called degenerate hyperbola. 

  

 

 

 

Figure 4.29:   
2 2( 1) ( 4)

 1
9 4

y x 
   

 l1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 l2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C    V(4,4)  

   C  (4,1)  

C      V(4,–2)  

asymptote 

asymptote 
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Exercise 4.5.2   

    For questions 1 to 9,  find an equation of the hyperbola having the given properties and 

sketch its graph.  

1.     Center at the origin, a focus at (5, 0),  and  a vertex at (3, 0)   

2.     Center at the origin,  a focus at (0,5),  and  a vertex at (0, 3). 

3.     Center at the origin,  x-intercepts  3,  an asymptote  y = 2x.     

4.    Center at the origin,  a vertex at (2, 0) , and passing through )3,4( . 

5.    Center at (4, 2),  a vertex at (7, 2) , and an asymptote  3y = 4x10. 

6.    Foci at  (–2, –1)  and   F2(–2, 9),  length of transverse axis 6.  

7.    Foci at (1, 3) and (7, 3), and vertices at  (2,3)  and (6, 3). 

8.    Vertices at  (3, 0), and asymptotes  y = 2x 

 9.   Eccentricity e=1.5,   endpoints of transversal axis at )2 ,2(  and )2 ,6( .  

       For questions 10 to 17 find the center,  foci, vertices and asymptotes  of the hyperbola 

having the given equation and sketch its graph. 

10.    1
3664

22


yx

                                 14.   1
16

)3(

9

)2( 22





 yx

         

11.    922  xy                                 15.    0524 22  yyx        

12.     922  yx                                16.   0812432 22  yxyx        

13.   8)2(4)1( 22  yy                17.  03059064916 22  yxyx                            

18.  Find an equation of hyperbola whose major axis is parallel to the x-axis,  has a focus at  

)1 ,2(  and its vertices are at the endpoints of a diameter of the circle 0222  yyx .                                                                             

 19.  A satellite moves along a hyperbolic curve whose horizontal transverse axis is 24 km and 

an asymptote 5
12

2y x  .  Then what is the eccentricity of the hyperbola? 

20  Two regions A and B are separated by a sea. The shores are roughly in a shape of 

hyperbolic curves with asymptotes 3y x   and a focus at (30,0) taking a coordinate 

system with origin at the center of the hyperbola. What is the shortest distance between 

the regions in kms? 

21.  Determine the type of curve represented by the equation  

                        1
16

22





k

y

k

x
 

       In each of the following cases:    ( a)  0k ,         (b)  0  k  16,         (c)  16k  

 



                                                                  4. Analytic Geometry 
 

162 

 

 

4.6  The  General Second Degree Equation  

  

By the end of this section, you should  

 know the general form of second degree equation representing conic sections whose lines 

of symmetry are not necessarily parallel to the coordinate axes.    

 know the rotation formula for rotating the coordinate axes.  

 be able to find equivalent equation of a conic section under rotation of the reference axes.  

 be able to apply the rotation formula to find a suitable coordinate system in which a given 

general second degree equation is converted to a simpler standard form.       

 be able to convert a given general second degree equation to an equivalent simpler 

standard form of equation of a conic section.  

 be able to identify a conic section that a given general second degree equation represents 

and sketch the corresponding conic section.        

 

In the previous sections we have seen that, except in degenerate cases, the graph of the equation  

                      Ax2 + Cy2 + Dx + Ey + F = 0     

is a circle, parabola, ellipse or hyperbola.  The construction of these equations was based on the 

assumption that the axis of symmetry of a conic section is parallel to one of the coordinate axes. 

The assumption seems to be quite restrictive because the axis of symmetry  for a parabola, 

ellipse, or hyperbola can be any oblique line as indicated in their corresponding definitions (See 

Figures 4.12,  4.18 and 4.24).  

 However, the reason why we have assumed that is not only for simplicity but there is always a 

coordinate system whose one of the axes is parallel to a desired line of symmetry. In particular, 

we can rotate the axes of our xy-coordinate system, whenever needed, so as to form a new x'y'-

coordinate system such that either the x'- axis  or y'-axis is parallel to the desired line of 

symmetry.  Toward this end, let us review  the notion of rotation of axes.  
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4.6.1  Rotation of Coordinate Axes  

A rotation of the x and y coordinate axes by an angle   about the origin O(0,0) creates a new 

x'y'-coordinate system whose x'-axis is the line obtained by rotating the x-axis by angle   about 

O and y'-axis is the line obtained by rotating the y-axis in the same way.  This makes a point P   

to have two sets of coordinates denoted by (x,y) and (x,y)  relative to the xy- and xy-coordinate 

axes, respectively.(See Figure  4.30).   

                                

The angle  considered in the above discussion is called the angle of rotation.  Our aim is to find 

the relationships between the coordinates (x,y) and the coordinates (x,y) of the same point P.  

To find this relationships, let P(x,y) be any point in xy-plane,    be an angle of rotation (i.e.,   is 

angle between x and x' axes )  and   be the angle between OP and x'-axis (See Figure 4.31). 

So,  letting |OP| = r  observe that  

       sin '        ,cos'  ryrx   .  .  .  .  .   .    .    (1) 

and 

    )sin(          ),cos(   ryrx   .  .  . .   (2) 

 Then, using the trigonometric identities    

       



sincoscossin )sin(

sinsincoscos )cos(




 

  and (1), the equations  in  (2) become     

 
 

       



cos'sin'

sin'cos'

yxy

yxx




    .   .   .    (3) 

  Moreover, these equations can be solved for x  and  y in terms of x and y  to obtain 

     



cossin '

sincos    '

yxy

yxx




 

  .   .   .    (4) 

r 

Figure:  4.31   

x 

 

 

x 

y 

y 
 

P (x,y) 
(x,y) 
 

x 

x 

y 

y 

O 

 

y 

y 

Figure:  4.30   

x 

 

 

x 

y 

y P 
 

(x,y) 
(x,y) 
 

x 

x 

y 

y 

O 
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The Equations (3) and (4) are called  rotation formulas.  It follows that if the angle of rotation  

is given, then  Equation (3) can be used to determine the x and y coordinates of a point P if  we 

know its x and y coordinates. Similarly, Equation (4) can be used to determine the  x and y 

coordinates of P if we know its x and y coordinates. 

Example 4.26:  Suppose the x and y coordinate axes are rotated by /4 about the origin.    

      (a)  Find the coordinates of P(1, 2) relative to the new x' and y' axes. 

      (b) Find the equation of the curve  xy = 1 relative to the new x'y'-coordinate system and 

sketch its graph.   

Solution: The given information about P and the curve are relative to the xy-coordinate system  

and we need to express them in terms of x' and y' coordinates relative to the new xy-coordinate 

system obtained under the rotation of the original axes by  = /4 rad about the origin.  Thus, we  

use 
2
2

44
sincos    in the relevant rotation formula to obtain the following. 

(a)  Since P(1,2) has the coordinates x=1 and y=2,  its x' and y' coordinates are, using formula (4) 

                

2
2

2
2

2
2

2
23

2
2

2
2

)2()1( '

)2()1( '





y

x
 

       Therefore, the coordinates of P relative to the new x' and y' axes are  
2
2

2
23 , .  

(b)  We need to express x and y in the equation xy =1 in terms of x' and y' using the rotation 

formula (3).  So,  again since 
2
2

44
sincos   , we obtain from  formula (3):     

            ''    and   ''
2
2

2
2

2
2

2
2 yxyyxx   

        Therefore,   xy =1           1''  ''
2
2

2
2

2
2

2
2  yxyx  

                                                1''
2

2
2

2

2
2  yx  

                                            1
2

'

2

' 22


yx

 

         Note that this is an equation of a hyperbola with center at origin vertices )0,2(  and 

)0,2(  in the x'y'-coordinate system with principal axis on x'-axis. Since the x and y- axes 

were rotated though an angle of /4 to obtain x' and y'-axes, the hyperbola can be sketched 

as in Figure  4.32. (You may use Formula (3) to show that the vertices )0,2(  and 

)0,2(  are   )1,1(   and )1 ,1( , respectively,  relative to the x and y-axes).    
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Example 4.27:  Find an equation of the ellipse whose center is the origin, vertices are (4,3) 

and (4, 3), and  length of  minor axis is 6.  

Solution: The position of  the ellipse is as shown in Figure 4.33.  

                                     

To apply the standard equation of ellipse we use the x'y'-coordinate system such that the x'-axis 

coincide with the major axis of the ellipse.  Therefore, the equation of the ellipse relative to the 

x'y'  system is  

1
'

''
2

2

2

2


b

y

a

x
. 

 Moreover, from the given information, a
2
 = |OV|

2
 = 3

2
+4

2
 =25;     and 

                 length of minor axis = 2b = 6     b= 3.  So, b
2
= 9 .     

Hence, the equation of the ellipse relative to the x'y' -coordinate system is  

             1
9

'

25

' 22


yx

           or        225'25'9 22  yx   .   .   .   .   .   .  .   .  .  (1) 

Now we use the rotation formula to  express the equation relative to our xy-coordinate system.  

So, let   the angle between x-axis and x'-axis.  Then, observe that 

cos = 4/5    and   sin = 3/5. 

Figure 4.33:      

 

x 
 y 

y 

(4,3) 

O 

 

 

 (-4,-3) 

V 

4 

3 

Figure 4.32:    xy = 1  

x 

/4 

x 

 y 

y 

 

1 O 
 

1 

-1 

-1 
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Thus, using rotation formula (4) we get: 

yxyxy

yxyxx

5
4

5
3

5
3

5
4

cossin '

sincos    '








 

Now we substitute these for x  and y  in (1) to obtain  

                  225259
2

5
4

5

32

5

3

5
4   yxyx  

 And  simplifying this we get     

               369x
2
  384xy + 481y

2
  5625 = 0 

   which is the equation of the ellipse in the xy- coordinate system. 

 

Exercise 4.6.1 

 1. Suppose the xy-coordinate axes are rotated 60 counterclockwise about the origin to obtain 

the new x'y'-coordinate system.   

     (a)  If each of the following are coordinates of points relative to the xy-system, find the 

coordinates of the points relative to the xy- system. 

              (i)  (5, 0)          (ii)  (1, 4)          (iii)  (0, 1)          (iv)  (1/2, 5/2)       (v)  (2, 1) 

       (b)   Find the equation of the following lines and conics relative to the new xy- system. 

               (i)      x =5                      (iv)    (x 1)
2
 + y

2
 = 4               (vii)   x

2 
+ 4y

2 
 4x = 0 

                (ii)    x 2y = 1              (v)     x
2
  4y = 1                     (viii)    x

2 
 4y

2  
= 1 

                (iii)    x 
2
 + y

2
 = 1          (vi)    4x

2
 + (y2)

2
 = 4               (ix)   x

2
  + y

2
 2y = 0   

2   Suppose the xy-coordinate axes are rotated 30 counterclockwise about the origin to obtain 

the new x'y'-coordinate system.  If the following points are with respect to the new x'y'- 

system, what is the coordinates of each point with respect to the old xy-system? 

     (a)   (0, 2)            (b)  (2, 4)          (c)  (1, 3)                (d)   3,3   

 

4.6.2   Analysis of the General Second Degree Equations   

In the previous sections we have seen that the equation of the form 

             Ax2 + Cy2 + Dx + Ey + F = 0,        .   .   .   .   .   .   .   .   .   .   .   .   .   .     (1) 

represents a conic section (a parabola, ellipse or hyperbola)  whose axis of symmetry is parallel 

to one of the coordinate axes except in degenerate cases. In Subsection 4.6.1 we have also seen 

some examples of conic sections whose equations involve xy term when their lines of symmetry 

are not parallel to either of the axes.   Now we would like to analyze the graph of any quadratic 

(second degree) equation  in x and y of the form  

             Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,        .   .   .   .   .   .   .   .   .   .   .   .   (2)   
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 where  B0.  In order to analyze the graph of Equation (2), we usually need to convert it into an 

equation of type (1) in certain suitable reference system.  To this end, we first prove the 

following Theorem.  

Theorem 4.3:   Consider a general second degree equation   of the form (2), i..e.,   

                     Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,     where B0,    .   .   .   .   .   .   .   .   .   (2)   

there is a rotation angle  (0,/2) through which the xy-coordinate system rotates  to a new 

xy-coordinate system in which  Equation (2) reduces to the form 

                 Ax2 + Cy2 + Dx + Ey + F = 0.            .    .    .    .    .    .   .   .   .   .   .   .  (3)       

 

Proof:  Let the xy-coordinate system rotated by an angle  about the origin to form a new xy-

coordinate system.  Then, from rotation formula (3),  we have 

             sin'cos' yxx     and   cos'sin' yxy  . 

  We can now substitute these for  x and y in Equation (2)  so that 

     A(  sin'cos' yx  )2 + B(  sin'cos' yx  )(  cos'sin' yx  ) + C(  cos'sin' yx  )2  

                                                                                     + D(  sin'cos' yx  ) + E(  cos'sin' yx  ) + F = 0.  

After some calculations, combining like terms (those involving x'
2
,  x'y' ,  y'

2
,  and so on ), we get 

equation of the form  

                 Ax2  +   Bxy +  Cy2 + Dx + Ey + F = 0   .   .   .   .   .   .   .   .   .  (4) 

where     B' = 2(CA) sin cos  + B( cos2   sin2 ) .  

Here the exact expressions  for A',  C', D',  E' and F' are omitted as they are irrelevant. What we 

need is to get the angle of rotation   for which Equation (4) has no  xy term,  that is,  B' = 0.  

This means that,   

         2(CA) sin cos  + B( cos2   sin2 ) = 0 .   

Since  2sin cos  = sin2   and  cos2   sin2  =  cos2 ,   this  equation is equivalent to  

           (CA) sin2   + B cos2  = 0      

  or     
B

CA

2sin

2cos 





,      since  B0. 

  or      
B

CA
2cot


                   .       .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  (5).  

That is, if we choose the angle of rotation  satisfying (5),  then B' = 0 in Equation (4) so that the 

resulting equation in xy-coordinate system is in the form of  Equation (3).  Moreover, we can 

always find an  angle that satisfies cot(2) = (AC)/B  for any A, C, B  ,  B0  since the range 

of the cotangent function is the entire set of real numbers.   Note also that since 2 (0, ), the 

angel of rotation  can always be chosen  so that 0    /2.   So, the Theorem is proved.  
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Remark:     If  A = C,  then   02cot
B

CA



      2 = /2     =/4.    

Therefore,   we can rewrite the result of the above Theorem as follows:    

The  rotation of the xy-coordinate system  by angle   creates an xy-coordinate system in 

which a general second degree equation      Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,     B0,   

is converted  to  an equation          Ax2  +   Cy2  +  Dx +  Ey +  F = 0     (with no xy term)  

if  we choose   (0, /2)  such that  

     

CA  if         ,
4

         

CA  if      ,
CA

B
2tan











 

 

Example 4.28:  Use rotation of axes to eliminate the xy term in each of the following equations, 

describe the locus (type of conic section) and sketch the graph of the equation     

    a)    03228282 22  yxyxyx  

    (b)   73x
2
   72xy +

 
52y

2
 + 30x +

 
40y

 
 75= 0         

Solution:   

 (a)  Given: 03228282 22  yxyxyx      A= C=1.  So, from the above Remark,  the 

rotation angle is  =/4     
2

1sincos   ,   
2

'' yx
x


    and  

2

'' yx
x


 . 

Now we substitute these for x and y  in the given equation: 

      032)(28)(282
2

''

2

''
2

2

''

2

''

2

''
2

2

''






























  yxyxyxyxyxyx
 

 Expanding the squared expressions, combining like terms and simplifying, we obtain    

              016'82'  yx       or,     )2'(82'  yx  

This is an equation of a parabola.  Its vertex is (h,k) = (0,2) relative to the x'y'-system, principal 

axis is on y'-axis  and open towards negative y' direction. (You can show that  its vertex is  (h, k) 

= 







2

2

2

2  ,  relative to the xy-system).   The graph of the equation is sketched in Figure 4.34.  

            
Figure 4.34:   03228282 22  yxyxyx    

y 

O 

/4   )(
2

2

2

2 ,  

x 

x  
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 (b)  Given:  73x
2
   72xy +

 
52y

2
 + 30x +

 
40y

 
 75= 0        A =73,   B = 72  and  C=52.    

Hence,   

      
7

24

21

72

CA

B
2tan 


      The terminal side of  2 is through (7, 24) since 0 2  .  

       
25

7
2cos


 .  Now as  0   /2,  both cos and sin are positive. Hence,  

    
5

3

2

25/71

2

2cos1
cos 








       and     

5

4

2

25/71

2

2cos1
sin 








  

This implies the x'-axis is through the coordinate point (3,4), that is the line y = (4/3)x. 

Therefore, using the  rotation formula (3), we get 

                       
5

'4'3 yx
x


  and      

5

'3'4 yx
y


  

Now we substitute these for x and y in the given equation to obtain  

                     075'3'4'4'3'3'4'3'4'4'34'3
5
40

5
302

25
52

25
722

25
73  yxyxyxyxyxyx . 

Expanding the squared expressions, combining like terms and simplifying, we obtain  

           075'50'1002'25 2  xyx  

 Completing the square for  x terms and divide by 100  to get  

             1'
4

)1'( 2
2




y
x

  

 which is an ellipse with center  at (h,k)= (1, 0) relative to the x'y'-system,  major  axis on x'-

axis  (which is the line y=(4/3)x ), length of major axis =4  and length of minor axis =2.  (You 

can show that  the center is (h, k) =  
5
4

5
3  ,   relative to the xy-system).    The graph of the 

equation is sketched in Figure 4.35. 

            

 

 

 

Figure 4.35:   73x
2
   72xy +

 
52y

2
 + 30x +

 
40y

 
 75=0    

y 

O 

x 

x

  

3 

4 

 C 
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Exercise 4.6.2 

1.   Find an equation of the conic section having the given properties and  sketch its graph.  

       (a)   Ellipsi with center at origin, foci at (2,2)  and (2, 2), and length of major axis  82  . 

       (b)   Parabola whose vertex is at (3, 4) and focus (5,2)   

       (c)  Hyperbola  whose foci are (2, 2)  and (2, 2), and length of transverse axis 22 .  

2.  Use rotation of axes to eliminate the xy term in each of the following equations, describe the 

locus (type of conic section) and sketch the graph of the equation. 

        (a)   17x
2
  12xy  + 8y

2
  36 = 0                

        (b)    8x
2
  + 24xy  +  y

2
  1 =  0          

        (c)    x
2
   2xy  +  y

2
  5y  = 0         

        (d)    2x
2
   + xy   = 0                        

         (e)    5x
2
 +  6xy  + 5y

2
  4x + 4y  4 = 0      

         (f)      x
2
  +  4xy  + 4y

2
 + 2x  2y  + 1 = 0       

3.   Show that if  B  0, then   the graph of  

                        FBxyx 2 ,     

        is a hyperbola if  F  0, and two intersecting lines if  F = 0.   
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