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Chapter One
Propositional Logic and Set Theory

In this chapter, we study the basic concepts of propositional logic and some part of set theory. In
the first part, we deal about propositional logic, logical connectives, quantifiers and arguments.
In the second part, we turn our attention to set theory and discus about description of sets and
operations of sets.

Main Objectives of this Chapter
At the end of this chapter, students will be able to:-
% Know the basic concepts of mathematical logic.
% Know methods and procedures in combining the validity of statements.
¢+ Understand the concept of quantifiers.
“+ Know basic facts about argument and validity.
%+ Understand the concept of set.
% Apply rules of operations on sets to find the result.

%+ Show set operations using Venn diagrams.

1.1. Propositional Logic
Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to

systematize and codify principles of valid reasoning. It has emerged from a study of the use of
language in argument and persuasion and is based on the identification and examination of those
parts of language which are essential for these purposes. It is formal in the sense that it lacks
reference to meaning. Thereby it achieves versatility: it may be used to judge the correctness of a
chain of reasoning (in particular, a "mathematical proof") solely on the basis of the form (and not
the content) of the sequence of statements which make up the chain. There is a variety of
symbolic logics. We shall be concerned only with that one which encompasses most of the
deductions of the sort encountered in mathematics. Within the context of logic itself, this is
"classical™ symbolic logic.
Section objectives:
After completing this section, students will be able to:-

v'Identify the difference between proposition and sentence.

v" Describe the five logical connectives.

v" Determine the truth values of propositions using the rules of logical connectives.
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v Construct compound propositions using the five logical connectives.
v Determine the truth values of compound propositions.

v" Distinguish a given compound proposition is whether tautology or contradiction.

1.1.1. Definition and examples of propositions
Consider the following sentences.
a. 2isaneven number.
A triangle has four sides.
Emperor Menelik ate chicken soup the night after the battle of Adwa.
May God bless you!
Give me that book.
. What is your name?
The first three sentences are declarative sentences. The first one is true and the second one is
false. The truth value of the third sentence cannot be ascertained because of lack of historical
records but it is, by its very form, either true or false but not both. On the other hand, the last
three sentences have not truth value. So they are not declaratives.

T oo o

—h

Now we begin by examining proposition, the building blocks of every argument. A proposition
IS a sentence that may be asserted or denied. Proposition in this way are different from questions,
commands, and exclamations. Neither questions, which can be asked, nor exclamations, which
can be uttered, can possibly be asserted or denied. Only propositions assert that something is (or
is not) the case, and therefore only they can be true or false.

Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or False but
not both).

The above definition does not mean that we must always know what the truth value is. For
example, the sentence “The 1000™ digit in the decimal expansion of 7 is 7” is a proposition, but
it may be necessary to find this information in a Web site on the Internet to determine whether
this statement is true. Indeed, for a sentence to be a proposition (or a statement), it is not a
requirement that we be able to determine its truth value.

Remark: Every proposition has a truth value, namely true (denoted by T) or false (denoted by
F).

1.1.2. Logical connectives

In mathematical discourse and elsewhere one constantly encounters declarative sentences which
have been formed by modifying a sentence with the word “not” or by connecting sentences with
the words “and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or
combinations of words are called propositional connectives.

Note: Letters such as p, g, 7, s etc. are usually used to denote actual propositions.




Conjunction

When two propositions are joined with the connective “and,” the proposition formed is a logical
conjunction. “and” is denoted by “A”. So, the logical conjunction of two propositions,  and g, Is
written:

pAg, readas“pandg,” or “pconjunction g”.

p and q are called the components of the conjunction. p A g is true if and only if p is true and q is
true.

The truth table for conjunction is given as follows:

oM NN
MmN MmN R
momom N>

Example 1.1: Consider the following propositions:
p: 3is an odd number. (True)
q: 27 is a prime number. (False)
r: Addis Ababa is the capital city of Ethiopia. (True)
a. pAg:3isanodd number and 27 is a prime number. (False)
b. p Ar:3isanodd number and Addis Ababa is the capital city of Ethiopia. (True)

Disjunction

When two propositions are joined with the connective “or,” the proposition formed is called a logical
disjunction. “or” is denoted by “v”’. So, the logical disjunction of two propositions, 3z and g, is written:
» Vg readas “porg” or‘“pdisjunction g.”

p V q is false if and only if both p and g are false.

The truth table for disjunction is given as follows:

m oM NN
m NN R
MmN NN <




Example 1.2: Consider the following propositions:
p: 3is an odd number. (True)
q: 27 is a prime number. (False)
s: Nairobi is the capital city of Ethiopia. (False)

a. pVq:3isanodd number or 27 is a prime number. (True)

b. pVs:27isaprime number or Nairobi is the capital city of Ethiopia. (False)
Note: The use of “or” in propositional logic is rather different from its normal use in the English
language. For example, if Solomon says, “I will go to the football match in the afternoon or I
will go to the cinema in the afternoon,” he means he will do one thing or the other, but not both.
Here “or” is used in the exclusive sense. But in propositional logic, “or” is used in the inclusive
sense; that is, we allow Solomon the possibility of doing both things without him being
inconsistent.

Implication

When two propositions are joined with the connective “implies,” the proposition formed is called a
logical implication. “implies” is denoted by “=.” So, the logical implication of two propositions, 3+ and
g, is written;

p =g read as “pimplies q.”
The function of the connective “implies” between two propositions is the same as the use of “If ... then
...” Thus p = g can be read as “if p, then g.”

» = g is false if and only if 3 is true and g is false.

This form of a proposition is common in mathematics. The proposition p is called the hypothesis
or the antecedent of the conditional proposition p = ¢ while g is called its conclusion or the
consequent.

The following is the truth table for implication.

mom NN T
m N oM N R
NN mN

Examples 1.3: Consider the following propositions:
p: 3is an odd number. (True)
q: 27 is a prime number. (False)
r: Addis Ababa is the capital city of Ethiopia. (True)
p = q: If 3is an odd number, then 27 is prime. (False)
p = r: If 3is an odd number, then Addis Ababa is the capital city of Ethiopia. (True)
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We have already mentioned that the implication p = g can be expressed as both “If p, then g”
and “p implies q.” There are various ways of expressing the proposition p = g, namely:

If p, then gq.

q if p.

p implies g.

ponlyifg.

p is sufficient for q.

q is necessary for p

Bi-implication

When two propositions are joined with the connective “bi-implication,” the proposition formed is called
a logical bi-implication or a logical equivalence. A bi-implication is denoted by “<". So the logical bi-
implication of two propositions, y and g, is written:

P = q.
P < q is false if and only if @ and g have different truth values.

The truth table for bi-implication is given by:

p

- om NN
LT R -
N mom N

Examples 1.4:
a. Let p: 2 is greater than 3. (False)
q: 5 is greater than 4. (True)
Then
p += q: 2 is greater than 3 if and only if 5 is greater than 4. (False)
b. Consider the following propositions:
p: 3is an odd number. (True)
g: 2 is a prime number. (True)
p < g: 3isan odd number if and only if 2 is a prime number. (True)
There are various ways of stating the proposition p < 4.
p if and only if g (also written as p iff g),
p implies g and g implies p,
p is necessary and sufficient for g
g is necessary and sufficient for p




p is equivalent to gq

Negation

Given any proposition g, we can form the proposition —p called the negation of . The truth value of —p
iSFifpisTandTifpisF.

We can describe the relation between p and —p as follows.

p | —p
T F
F T

Example 1.5: Let p: Addis Ababa is the capital city of Ethiopia. (True)
—p: Addis Ababa is not the capital city of Ethiopia. (False)

Exercises
1. Which of the following sentences are propositions? For those that are, indicate the truth
value.
123 is a prime number.
0 is an even number.
x*—4=0,
Multiply 5x + 2 by 3.
What an impossible question!
2. State the negation of each of the following statements.

® oo o

a. /2 is arational number.
b. 0is not a negative integer.
c. 111 isaprime number.
3. Letp: 15 isan odd number.
q: 21 is a prime number.
State each of the following in words, and determine the truth value of each.

a. pvaqg. e. p=q.
b. »Aqg. f. g=np.
c. —pVaqg. a. —p = —q.
d pA—g. g —q = —p.




4. Complete the following truth table.

—q | pA—q

m oM N N
MmN N R

1.1.3. Compound (or complex) propositions

So far, what we have done is simply to define the logical connectives, and express them through
algebraic symbols. Now we shall learn how to form propositions involving more than one
connective, and how to determine the truth values of such propositions.

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is called a
compound statement.

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For
example, the expression » = g Ar will be meaningless unless we know which connective
should apply first. It could mean (p = g)Ar or p = (gAr), which are very different
propositions. The truth value of such complicated propositions is determined by systematic
applications of the rules for the connectives.

The possible truth values of a proposition are often listed in a table, called a truth table. If i and g are
propositions, then there are four possible combinations of truth values for i and g. That is, TT, TF, FT
and FF. If a third proposition r is involved, then there are eight possible combinations of truth values for
p,q and r. In general, a truth table involving “n” propositions P, P.,...,P,, contains 2" possible
combinations of truth values for these propositions and a truth table showing these combinations would
have n columns and 2" rows. So, we use truth tables to determine the truth value of a compound
proposition based on the truth value of its constituent component propositions.

Examples 1.6:
a. Suppose p and r are true and g and = are false.
What is the truth value of (p A q) = (rv s)?
i. Since pistrue and g is false, p A q is false.
ii. Since ris true and s is false, r V s is true.
iii. Thus by applying the rule of implication, we get that (p A g) = (rV 5) is true.
b. Suppose that a compound proposition is symbolized by
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(pVa) = (r = —s)
and that the truth values of p.q.r, and s are T, F, F, and T, respectively. Then the truth value of
pVqisT,that of —sisF, thatof r &< —s isT. So the truth value of (pV q) = (r = —s) isT.

Remark: When dealing with compound propositions, we shall adopt the following convention

on the use of parenthesis. Whenever “v” or “A” occur with “=" or “<”, we shall assume that

“V” or “A” is applied first, and then “=" or “<" is then applied. For example,
phg=rmeans(pAg)=r

pVge rmeans (pVg) & r
—q = —p means (—q) = (—p)
— = permeans ((—g) =p) T

However, it is always advisable to use brackets to indicate the order of the desired operations. .

Definition 1.3: Two compound propositions F and ¢ are said to be equivalent if they have the same truth
value for all possible combinations of truth values for the component propositions occurring in both P and
@. In this case we write P = (.

Example 1.7: Let P:p = q.

Q:—q = —p.
P q —p —q |p=q |—-qg=—p
T T F F T T
T F F T F F
F T T F T T
F F T T T T

Then, P is equivalent to @, since columns 5 and 6 of the above table are identical.
Example 1.8: Let P:p = q.

Q:—p = —q.
Then
p q —p g p=q  —p=—q
T T F F T T
T F F T F T
F T T F T F
F F T T T T

Looking at columns 5 and 6 of the table we see that they are not identical. Thus P = @.




It is useful at this point to mention the non-equivalence of certain conditional propositions.
Given the conditional » = g, we give the related conditional propositions:-

q = p: Converse of p = gq
—p = —q. Inverse of p = g
— = —p! Contrapositive of p = g

As we observed from example 1.7, the conditional p = g and its contrapositve —q = —p are
equivalent. On the other hand, p = ¢ g=pandp=qZ—p = —q.

Do not confuse the contrapositive and the converse of the conditional proposition. Here is
the difference:

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement
and the conclusion of the converse statement is the hypothesis of the conditional statement.

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of
the conditional statement and the conclusion of the contrapositive statement is the negation of
hypothesis of the conditional statement.

Example 1.9:
a. If Kidist lives in Addis Ababa, then she lives in Ethiopia.
Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa.
Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis
Ababa.
Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia.
b. If it is morning, then the sun is in the east.
Converse: If the sun is in the east, then it is morning.
Contrapositive: If the sun is not in the east, then it is not morning.
Inverse: If it is not morning, then the sun is not the east.
Propositions, under the relation of logical equivalence, satisfy various laws or identities, which
are listed below.

1. Idempotent Laws
a. p=pvp.
b. p =pAp.

2. Commutative Laws

a. phAg=qghp.
b. pVg=qVp.
3. Associative Laws
a. pA(gAr)=(pAg)Ar,
b. pVv(gvr)=(pVag)Vvr.
4, Distributive Laws
a. pV(gar)=(pVva)a(pVvr).
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b. pA(gVr)=(pAq)V(pAr).
o. De Morgan’s Laws

a. —(phg)=—pV—q.

b. —(pVaq)=-prA—q

6. Law of Contrapositive
p=q=-—q=—p

7. Complement Law
—(—p) =p.

1.1.4. Tautology and contradiction

Definition: A compound proposition is a tautology if it is always true regardless of the truth values of its
component propositions. If, on the other hand, a compound proposition is always false regardless of its
component propositions, we say that such a proposition is a contradiction.

Examples 1.10:
a. Suppose p is any proposition. Consider the compound propositions p V —p and p A —p.

P |—p |pPV—DP PA—P
T F T F
F T T F

Observe that p v —p is a tautology while p A —p is a contradiction.
b. For any propositions » and g. Consider the compound proposition p = (g = p). Letus
make a truth table and study the situation.

P g gq=p p=I(g=p)
T T T T
T F |T T
F T F T
F F T T

We have exhibited all the possibilities and we see that for all truth values of the constituent
propositions, the proposition p = (g = p) is always true. Thus, » = (g = p) is a tautology.
c. The truth table for the compound proposition (p = g) = (p A —q).

p q |—q pA—q p=q (p=4q)=((pA-q)

T T F F T F
T F T T F F

10




F T F F T F
F F T F T F

In example 1.10(c), the given compound proposition has a truth value F for every possible
combination of assignments of truth values for the component propositions » and g. Thus
(p = q) & (p A—q) is a contradiction.
Remark:
1. In atruth table, if a proposition is a tautology, then every line in its column has T as its
entry; if a proposition is a contradiction, every line in its column has F as its entry.
2. Two compound propositions P and @ are equivalent if and only if “P < @ is a
tautology.
Exercises
1. For statements p. g and 7, use a truth table to show that each of the following pairs of
statements is logically equivalent.
a. (pAg)=pandp =q.
b. p=(gvr)and—g = (—pVvr).
c. (pvg)=rand(p=q)n(g=r).
d p=(gVvr)and(—r)= (p = q).
e. p=(gvr)and ((—r)Ap) = q.
2. For statements p. g, and , show that the following compound statements are tautology.
a. p=(pVvyg).
b. (pAlp=1q))=aq.
C. [[pz:-q]ﬂ[q:,-r]):‘-[p:‘-r].
3. For statements p and g, show that (p A —g) A (p A gq) is a contradiction.
4. Write the contrapositive and the converse of the following conditional statements.
a. Ifitiscold, then the lake is frozen.
b. If Solomon is healthy, then he is happy.
c. Ifitrains, Tigist does not take a walk.
5. Let p and g be statements. Which of the following implies that » Vv q is false?
a. —p VvV —q is false. d. p = qistrue.
b. —p Vg is true. e. p Mg isfalse.
C. —p A—q is true.

6. Suppose that the statements p. g, 7, and s are assigned the truth values T, F, F,and T,
respectively. Find the truth value of each of the following statements.

f. (pvr)e (rA—s).

g (se=p)=(-pvs).

h. (gA—s) = (p = s).

a. (pvg)vr,
b. pv(gvr).
c. = (sAp).
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d p=(r=s). i. (ras)=((p=(—gqVvs)).
e. p=(rvs). j. (pv—g)Vr= (sA-s)

7. Suppose the value of » = g is T'; what can be said about the value of —p A g = p Vv g?
8. a. Suppose the value of p = g is T; what can be said about the values of p < —g and

—p = g?
b. Suppose the value of » < q is F; what can be said about the values of p < —q and
—p = q7?
9. Construct the truth table for each of the following statements.
a p=(p=aq). d (p=4q)e=(—pVva).
b. (pVaq) = (qVp). e. (p=(aAr))v(-pAraq).
c. p=—(gAr). f. (prg)= ((gr—q)= (rAq)).

10. For each of the following determine whether the information given is sufficient to decide
the truth value of the statement. If the information is enough, state the truth value. If it is
insufficient, show that both truth values are possible.

(p = q) =r,wherer=T.

pA(g=r),whereqg =r=T,.

pV(g=r),whereq =r=T,

—(pvg) = (—pA—q), wherepvg=T.

(p = q) = (—g = —p), wheregq =T.

(pAq)= (pvs),wherep =Tands=F.

-~ D® o0 T e

1.2. Open propositions and quantifiers

In mathematics, one frequently comes across sentences that involve a variable. For example,
x*+ 2x — 3 =0 is one such. The truth value of this statement depends on the value we assign
for the variable x. For example, if x = 1, then this sentence is true, whereas if x = —1, then the
sentence is false.

Section objectives:
After completing this section, students will be able to:-
v Define open proposition.
Analyze the difference between proposition and open proposition.
Differentiate the two types of quantifiers.

Convert open propositions into propositions using quantifiers.

AN NN

Determine the truth value of a quantified proposition.
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v Convert a quantified proposition into words and vise versa.
v" Explain the relationship between existential and universal quantifiers.

v" Analyze quantifiers occurring in combinations.

Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or more
variables and whose truth value depends on the values assigned for the variables. We represent an open
statement by a capital letter followed by the variable(s) in parenthesis, e.g., P{x ), @{x) etc.

Example 1.11: Here are some open propositions:

a. x is the day before Sunday.

b. wisacity in Africa.

c. xisgreater than v.

d x+4=-9
It is clear that each one of these examples involves variables, but is not a proposition as we
cannot assign a truth value to it. However, if individuals are substituted for the variables, then
each one of them is a proposition or statement. For example, we may have the following.

a. Monday is the day before Sunday.

b. London is a city in Africa.

c. 5isgreater than 9.

d -13+4=-9
Remark
The collection of all allowable values for the variable in an open sentence is called the universal
set (the universe of discourse) and denoted by U.

Definition 1.5: Two open proposition P(x ) and (x ) are said to be equivalent if and only if

P{a) = @(a) for all individual a. Note that if the universe U is specified, then P(x) and Q(x) are
equivalent if and only if P{a) = @(a) foralla € U.

Example 1.12: Let P(x):x* —1 =0,
Q(x):|x| = 1.
LetU = {—1,—=,0,1}.

Then for all @ € U; P(a) and @(a) have the same truth value.

P(—1):(-1)*—1=0 (T) Q(—1):l-1l=1 (T
P(-2): im0 @ e(=)f-=r @
P(0):0—1=0 (F) g(0):10l =1 (F)
P(1):1—1=0 (T) Q(1):11] =1 (T)

Therefore P(a) = @(a) forall a € U.

13




Definition 1.6: Let II be the universal set. An open proposition P{x) is a tautology if and only if P{a) is
always true for all values of a € U.

Example 1.13: The open proposition P(x):x* = 0 is a tautology.

As we have observed in example 1.11, an open proposition can be converted into a proposition
by substituting the individuals for the variables. However, there are other ways that an open
proposition can be converted into a proposition, namely by a method called quantification. Let
P(x) be an open proposition over the domain 5. Adding the phrase “For every x € 5 to P(x) or
“For some x € 5” to P(x) produces a statement called a quantified statement.

Consider the following open propositions with universe K.
a. R(x):x*=z=0,
b. P(x):(x+2){(x—3)=0.
c. Q(x):x* <0.
Then R(x) is always true for each x € R,
P(x) is true only for x = —2 and x = 3,
Q(x) is always false for all values of x € R,
Hence, given an open proposition P(x), with universe U, we observe that there are three
possibilities.
a. P(x)istrueforall x € U,
b. P(x) is true for some x € U,
c. P(x)isfalse forall x € U.
Now we proceed to study open propositions which are satisfied by “all” and “some” members of
the given universe.

a. The phrase "for every x " is called a universal quantifier. We regard "for every x," "for all x,"
and "for each x " as having the same meaning and symbolize each by “{%x).” Think of the
symbol ¥ as an inverted A(representing all). If P{x) is an open proposition with universe [7, then
(¥x) P(x) is a quantified proposition and is read as “every x £ U has the property P.”

b. The phrase "there exists an x " is called an existential quantifier. We regard "there exists an x,"
"for some x," and "for at least one x " as having the same meaning, and symbolize each by
“{3x).” Think of the symbol 3 as the backwards capital E(representing exists). If P{x) is an
open proposition with universe I7, then {3x)P(x) is a quantified proposition and is read as “there
exists x £ I with the property P.”

Remarks:
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i. To show that (¥x)P(x) is F, it is sufficient to find at least one a € U such that 2(a) is
F. Such an element a € U is called a counter example.
ii. (3x)P(x) is F if we cannot find any a € U having the property P.

Example 1.14:
a. Write the following statements usmg quantifiers.

i. Foreach real number x > 0,x* 4+ x —6 = 0.
Solution: (¥x = 0)(x*+x —6 = 0).

ii. Thereis a real number x > 0 such that x* + x — 6 = 0,
Solution: (3x = 0)(x* + x — 6 = 0).

iii. The square of any real number is nonnegative.
Solution: (¥x € R)(x* = 0).

i. LetP(x):x*+1= 0. The truth value for (¥x)P(x) [i.e (Wx)(x*+ 1= 0)]isT.
ii. Let P(x):x < x=. The truth value for (¥x)(x < x*)isF.x = f is a

counterexample since i € I but f < f On the other hand, (3x)P(x) is true, since

—1 e Rsuchthat —1 < 1.
iii. Let P(x):|x| = —1. The truth value for (3x)P(x) is F since there is no real
number whose absolute value is —1.

Relationship between the existential and universal quantifiers

If P(x) is a formula in x, consider the following four statements.
a. (vx)P(x).
b. (Jx)P(x).
c. (vx)—P(x).
d. (Ix)—P(x).
We might translate these into words as follows.
a. Everything has property P.
b. Something has property P.
c. Nothing has property P.
d. Something does not have property P.

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus,
for example, the existential quantifier may be defined in terms of the universal quantifier.

Now we proceed to discuss the negation of quantifiers. Let P(x) be an open proposition. Then
(vx)P(x) is false only if we can find an individual “a” in the universe such that P(a) is false. If
we succeed in getting such an individual, then (3x)—P(x) is true. Hence (¥x)P(x) will be false
if (3x)—P(x) is true. Therefore the negation of (vx)P(x) is (3x)—P(x). Hence we conclude
that
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—(¥x)P(x) = (3x)=P(x).
Similarly, we can easily verified that

—(3x)P(x) = (vx)—P(x).
Remark: To negate a statement that involves the quantifiers ¥ and 3, change each ¥ to 3,
change each 3 to ¥, and negate the open statement.

Example 1.15:
Let U = R,

a. —(3x)(x < x?) = (Vx)=(x < x?)

= (vx)(x = x7).
b. —(vx)(4x+1=0)=(3x)—(4x+1=10)
= (3x)(4x+ 1= 0).

Given propositions containing quantifiers we can form a compound proposition by joining them
with connectives in the same way we form a compound proposition without quantifiers. For
example, if we have (vx)P(x) and (3x)Q(x) we can form (¥Vx)P(x) < (3x)Q(x).
Consider the following statements involving quantifiers. Illustrations of these along with
translations appear below.

a. All rationals are reals. (Vx)(Q(x) = R(x)).

b. No rationals are reals. (Vx)(@(x) = —R(x)).

c. Some rationals are reals. (Fx) (Q@(x) A R(x)).

d. Some rationals are not reals. (Fx)(Q(x) A =R (x)).
Example 1.16:

Let U = The set of integers.
Let P(x): x is a prime number.
Q(x): x is an even number.
R(x): x is an odd number.
Then
a. (3x)[P(x)= Q(x)]is T; since there is an x, say 2, such that P(2) = Q(2) isT.
b. (¥x)[P(x) = @(x)]is F. As a counterexample take 7. Then P(7) is T and @(7) is F.
Hence P(7) = Q(7).
¢. (VO[R(E)AP(X)]isF.
d. (vx)[(R(x) A P(x)) = Q(x)]isF.

Quantifiers Occurring in Combinations

So far, we have only considered cases in which universal and existential quantifiers appear
simply. However, if we consider cases in which universal and existential quantifiers occur in
combination, we are lead to essentially new logical structures. The following are the simplest
forms of combinations:

16



1. (vx)(vy)P(x,y)

“for all x and for all ¥ the relation P(x, y) holds”;
2. (3)(3IV)P(x,y)

“there is an x and there is a v for which P(x, ¥) holds”;

3. (Vx)(3y)P(x.¥)

“for every x there is a v such that P(x, y) holds”;
4. (3x)(vy)P(x,y)

“there is an x which stands to every v in the relation P(x, y).”

Example 1.17:

Let U = The set of integers.
Let P(x,v):x + v = 5,

a. (3x) (3y) P(x.v) means that there is an integer x and there is an integer ¥ such that
x + v = 5 This statement is true when x = 4 and ¥ = 1, since 4 + 1 = 5.
Therefore, the statement (3x) (3¥) P(x, v) is always true for this universe. There are
other choices of x and ¥ for which it would be true, but the symbolic statement merely
says that there is at least one choice for x and ¥ which will make the statement true, and
we have demonstrated one such choice.

b. (3x) (¥vy) P(x,¥) means that there is an integer x, such that for every v, x, + ¥ = 5.
This is false since no fixed value of x; will make this true for all ¥ in the universe; e.g. if
x, = 1,thenl + ¥ = 5is false for some v.

c. (¥x) (3y) P(x,¥) means that for every integer x, there is an integer ¥ such that
x + v =5 Letx = a, then ¥y = 5—a will always be an integer, so this is a true
statement.

d.  (¥x) (Vy) P(x.¥) means that for every integer x and for every integer v, x + y = 5.
Thisis false, forifx = Zandy =7, weget2+7 =9 # 5,
Example 1.18:

a. Consider the statement

For every two real numbers x and ¥,x* + y* = 0.
If we let
Plx,y):x*+vy* =0

where the domain of both x and v is IR, the statement can be expressed as

(vx € R)(Vy € R)P(x,y)oras (vx € R)(Vye R)(x* + ¥y = 0).
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Since x* = 0 and ¥* = 0 for all real numbers x and v, it follows that x* + y* = 0and so
P(x,y) is true for all real numbers x and . Thus the quantified statement is true.

b. Consider the open statement

Plx,y):lx—1l+ly—-2|=2
where the domain of the variable x is the set E of even integers and the domain of the variable ¥
is the set @ of odd integers. Then the quantified statement
(3x € E)(3y € O)P(x,¥)

can be expressed in words as
There exist an even integer x and an odd integer v such that |x — 1| + |y — 2| < 2,
Since P(2,3):1 + 1 < 2 is true, the quantified statement is true.

c. Consider the open statement

P(x,v):xy=1
where the domain of both x and ¥ is the set @* of positive rational numbers. Then the quantified
statement
(vx € @7)(3y € Q)P(x,¥)
can be expressed in words as
For every positive rational number x, there exists a positive rational number ¥ such that xy = 1.
It turns out that the quantified statement is true. If we replace @* by R, then we have
(vx € B)(Iy e R)P(x,¥y) .

Since x = 0 and for every real number ¥, xv =0 # 1, (vx € R)(3y € R)P(x,¥) is false.

d. Consider the open statement

P(x,v):xvis odd
where the domain of both x and ¥ is the set M of natural numbers. Then the quantified statement
(3x € M)(¥vE N)P(x,v),

expressed in words, is
There exists a natural number x such that for every natural numbers v, xy is odd. The statement
is false.
In general, from the meaning of the universal quantifier it follows that in an expression
(vx)(vv)P(x,v) the two universal quantifiers may be interchanged without altering the sense of
the sentence. This also holds for the existential quantifies in an expression such as
(3x)(3y)P(x, ).

In the statement (¥x)(3y)P(x.¥) , the choice of ¥ is allowed to depend on x - the ¥ that works
for one x need not work for another x. On the other hand, in the statement (3¥)(¥x)P(x,¥), the
v must work for all x, i.e., ¥ is independent of x. For example, the expression (vx)(3y) (x < ¥),
where x and v are variables referring to the domain of real numbers, constitutes a true
proposition, namely, “For every number x, there is a number v, such that x is less that v,” i.e.,
However, if the order of the symbol (¥x) and
(3v) is changed, in this case, we obtain: (3¥)(¥x)(x < ¥}, which is a false proposition, namely,

b

“given any number, there is a greater number.’
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“There is a number which is greater than every number.” By transposing (¥x) and (3v),
therefore, we get a different statement.
The logical situation here is:

(3y)(¥x)P(x,y) = (¥x)(3y)P(x.y).
Finally, we conclude this section with the remark that there are no mechanical rules for
translating sentences from English into the logical notation which has been introduced. In every
case one must first decide on the meaning of the English sentence and then attempt to convey
that same meaning in terms of predicates, quantifiers, and, possibly, individual constants.

Exercises

1. In each of the following, two open statements P(x, ¥) and @(x, ) are given, where the
domain of both x and v is Z. Determine the truth value of P(x,¥) = @(x,y) for the
given values of x and v.
a. Plx,y):x*—y*=0.and Q(x,¥):x=v. (x,y) € {(1,—1),(3,4), (55)}.
b. P(x,v):|x| = |yl.and @(x,v):x = v. (x,¥) € {(1,2).(2,—2),(6.6)].
c. Plx,viix*+v*=1.andQ(x,v):ix+vy=1,

(x,¥) € {(1,—1),(—=3,4),(0,—1),(1,0)}.

2. Let O denote the set of odd integers and let P(x):x* + 1 is even, and @(x):x* is even.
be open statements over the domain O. State (vx € 0)P(x) and (3y € 0)Q(x) in words.

3. State the negation of the following quantified statements.

. 1. .
a. For every rational number r, the number ~ls rational.

b. There exists a rational number * such that r* = 2.
4. Let P(n): 5”3—_6 IS an integer. be an open sentence over the domain Z. Determine, with

explanations, whether the following statements are true or false:
a. (vneZ)P(n).
b. (3In € Z)P(n).
5. Determine the truth value of the following statements.
(3x € B)(x* — x = 0).
(VvxE M)(x+1=2).
(Vx € R)(Vx2 = x),
(3x € @)(3x>— 27 = 0).
(IxeR)(IveER)(x+v+3=28)
(Ix € B)(Iy € B) (x> +y* =9).
(vx e R)(Iy € R)(x + v = 5).
h. (Ixe R)(vyeR)(x+y =15)
6. Consider the quantified statement
Foreveryx € Aand v € 4, xy — 2 is prime.

@ +~® oo T
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where the domain of the variables x and v is 4 = {3,5,11}.
a. Express this quantified statement in symbols.
b. Isthe quantified statement in (a) true or false? Explain.
c. Express the negation of the quantified statement in (a) in symbols.
d. Is the negation of the quantified in (a) true or false? Explain.

7. Consider the open statement F(x,_v):f_ < 1. where the domain of x is 4 = {2,3,5} and

the domain of v is B = {2,4,6}.
a. State the quantified statement (vx € A)(3y € B)P(x,v) in words.
b. Show quantified statement in (a) is true.
8. Consider the open statement P(x,v): x — v < 0. where the domain of x is A = {3,5,8}
and the domain of v is B = {3.6,10}.
a. State the quantified statement (3y € B)(¥x € A)P(x,v) in words.
b. Show quantified statement in (a) is true.

1. 3. Argument and Validity

Section objectives:

After completing this section, students will be able to:-
v Define argument (or logical deduction).
v ldentify hypothesis and conclusion of a given argument.
v Determine the validity of an argument using a truth table.

v Determine the validity of an argument using rules of inferences.

Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements
Py PaPg 0 P, called hypotheses or premises, yield another statement @, called the conclusion. Such
a logical deduction is denoted by:

PyPyiPy oo, FQor
Py
P,

Py
Q

Example 1.19: Consider the following argument:
If you study hard, then you will pass the exam.
You did not pass the exam.
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Therefore, you did not study hard.
Let p: You study hard.

q: You will pass the exam.
The argument form can be written as:

pP=q

4

- P
When is an argument form accepted to be correct? In normal usage, we use an argument in order
to demonstrate that a certain conclusion follows from known premises. Therefore, we shall
require that under any assignment of truth values to the statements appearing, if the premises
became all true, then the conclusion must also become true. Hence, we state the following

definition.

Definition 1.8: An argument form p,, p..P5. ... 2, = @issaid to be valid if @ is true whenever all the
Premises 2, .. Pg: - P,, are true; otherwise it is invalid.

Example 1.20: Investigate the validity of the following argument:
a.  p=>0q-q-=p
b. p=q-q=r}p

c. Ifitrains, crops will be good. It did not rain. Therefore, crops were not good.
Solution: First we construct a truth table for the statements appearing in the argument forms.

a.
p q | —p| —q pP=4q
T T F F T
T F F T F
F T T F T
F F T T T

The premises p = g and —q are true simultaneously in row 4 only. Since in this case p is also
true, the argument is valid.

b.
P | q | r|—-q p=q|-q=r
T | T|T)|F T T
T | T|F|F T T
T | F|T|T F T
T | F|F|T F F




F r T | F T T
F r \F | F T T
F F | T | T T T
F F F T T F

The 1%, 2" 5™ 6™ and 7™ rows are those in which all the premises take value 7. In the 57, 6™
and 7™ rows however the conclusion takes value F. Hence, the argument form is invalid.
c. Letp: Itrains.
q: Crops are good.

—p: It did not rain.

—q: Crops were not good.
The argument form is p = q,—p F—q
Now we can use truth table to test validity as follows:

p q | —p| —q pP=4q
T T F F T
T F F T F
F T T F T
F F T T T

The premises p = g and —p are true simultaneously in row 4 only. Since in this case —g is also
true, the argument is valid.
Remark:
1. What is important in validity is the form of the argument rather than the meaning or
content of the statements involved.
2. The argument form py, pa. p3. ... P, t @ is valid iff the statement
(py AP, APy A AP, ) = @ is atautology.

Rules of inferences
Below we list certain valid deductions called rules of inferences.

1. Modes Ponens
p
pP=4q
o
2. Modes Tollens

3. Principle of Syllogism
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p=4q
g=r
p=r
4. Principle of Adjunction
a. p
I
pAg
b. _a
pVyg
5. Principle of Detachment
bhAg
p.q
6. Modes Tollendo Ponens
—p
bVag
q
7. Modes Ponendo Tollens
—(p A q)
_b
—g
8. Constructive Dilemma
(p=q)A(r=s5s)
pVT
gvs
9. Principle of Equivalence
pegq
_p
q
10.  Principle of Conditionalization
_p
q=p

Formal proof of validity of an argument

Definition 1.9: A formal proof of a conclusion @ given hypotheses p,. P,.P;. ... 2, is a sequence of

stapes, each of which applies some inference rule to hypotheses or previously proven statements
(antecedent) to yield a new true statement (the consequent).
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A formal proof of validity is given by writing on the premises and the statements which follows
from them in a single column, and setting off in another column, to the right of each statement,
its justification. It is convenient to list all the premises first.

Example 1.21: Show that p = —q. q F—p is valid.

Solution:
1. gqistrue premise
2. p=—q premise
3. gq=—p contrapositive of (2)
4. —p Modes Ponens using (1) and (3)

Example 1.22: Show that the hypotheses
It is not sunny this afternoon and it is colder than yesterday.
If we go swimming, then it is sunny.
If we do not go swimming, then we will take a canoe trip.
If we take a canoe trip, then we will be home by sunset.
Lead to the conclusion:
We will be home by sunset.
Let p: It is sunny this afternoon.
q: It is colder than yesterday.
r: We go swimming.
s: We take a canoe trip.
: We will be home by sunset.

e

Then
1. —pAg hypothesis
2. —p simplification using (1)
3. r=p hypothesis
4, —r Modus Tollens using (2) and (3)
5, —r =5 hypothesis
6. = Modus Ponens using (4) and (5)
7. s=t hypothesis
8. t Modus Ponens using (6) and (7)
Exercises

1. Use the truth table method to show that the following argument forms are valid.
i. —p=—q.q Fpn
ii. p=-ppr=gqg F-r.
iii.p=q,—1r=—g —r= —p.
iv. =rV—s,(—s = p)=r F—p.
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V. p=g,—p=rr=st-g=s.
2. For the following argument given a, b and ¢ below:
I. ldentify the premises.
ii. Write argument forms.
iii. Check the validity.

a. If he studies medicine, he will get a good job. If he gets a good job, he
will get a good wage. He did not get a good wage. Therefore, he did not
study medicine.

b. If the team is late, then it cannot play the game. If the referee is here,
then the team is can play the game. The team is late. Therefore, the
referee is not here.

c. If the professor offers chocolate for an answer, you answer the
professor’s question. The professor offers chocolate for an answer.
Therefore, you answer the professor’s question

3. Give formal proof to show that the following argument forms are valid.
a. —p=-—q.q Fp.

p = —q,p.7r =g F—r.

P = q,—r = —ff F—r = —p.

—rA—s,(—s=p)=T F—p.

p=—p=rr=slL-g=-s

—pVgr=pr Fq.

—pA—q.(qgVr)= p F-r.

p=(gvr),—rp tq.

—f = —p, " = p,—q LT,

S@ oo a0 o

[e—p

4.Prove the following are valid arguments by giving formal proof.
a. If the rain does not come, the crops are ruined and the people will starve. The
crops are not ruined or the people will not starve. Therefore, the rain comes.
b. If the team is late, then it cannot play the game. If the referee is here then the
team can play the game. The team is late. Therefore, the referee is not here.

1.4. Set theory
In this section, we study some part of set theory especially description of sets, Venn diagrams
and operations of sets.

Section objectives:
After completing this section, students will be able to:-

v" Explain the concept of set.
v" Describe sets in different ways.
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v Identify operations of sets.
v lllustrate sets using Venn diagrams.

1.4.1. The concept of a set

The term set is an undefined term, just as a point and a line are undefined terms in geometry.
However, the concept of a set permeates every aspect of mathematics. Set theory underlies the
language and concepts of modern mathematics. The term set refers to a well-defined collection
of objects that share a certain property or certain properties. The term “well-defined” here means
that the set is described in such a way that one can decide whether or not a given object belongs
in the set. If A is a set, then the objects of the collection A are called the elements or members of
the set A. If x is an element of the set A, we write x € A. If x is not an element of the set 4, we
write x € A,

As a convention, we use capital letters to denote the names of sets and lowercase letters for
elements of a set.

Note that for each objects x and each set 4, exactly one of x €4 or x £4 but not both must be
true.

1.4.2. Description of sets
Sets are described or characterized by one of the following four different ways.

1. Verbal Method
In this method, an ordinary English statement with minimum mathematical symbolization of
the property of the elements is used to describe a set. Actually, the statement could be in any
language.
Example 1.23:
a. The set of counting numbers less than ten.
b. The set of letters in the word “Addis Ababa.”
c. The set of all countries in Africa.
2. Roster/Complete Listing Method
If the elements of a set can all be listed, we list them all between a pair of braces without
repetition separating by commas, and without concern about the order of their appearance.
Such a method of describing a set is called the roster/complete listing method.

Examples 1.24:
a. The set of vowels in English alphabet may also be described as {a. e, i, 0,1},
b. The set of positive factors of 24 is also described as {1. 2,3, 4,6, 8,12, 24},
Remark:
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i. We agree on the convention that the order of writing the elements in the list is
immaterial. As a result the sets {a, b, c}.{b,c,a} and {c, a, b} contain the same elements,
namely a, b and c.

ii. Theset{a,a,b,b,b} contains just two distinct elements; namely a and b, hence it is the
same set as {a,b}. We list distinct elements without repetition.

Example 1.25:

a. Let4 = {a,b,{c}}. Elements of 4 are a, b and {c}.

Notice that ¢ and {c} are different objects. Here {c} € A but ¢ & A.

b. Let B = {{a}}. The only element of B is {a}. But a € B.

c. LetC = {a,b,{a, b} {a,{a}}}. Then C has four elements.

The readers are invited to write down all the elements of C.
3. Partial Listing Method

In many occasions, the number of elements of a set may be too large to list them all; and in
other occasions there may not be an end to the list. In such cases we look for a common
property of the elements and describe the set by partially listing the elements. More precisely,
if the common property is simple that it can easily be identified from a list of the first few
elements, then with in a pair of braces, we list these few elements followed (or preceded) by
exactly three dotes and possibly by one last element. The following are such instances of
describing sets by partial listing method.

Example 1.26:
a. The set of all counting numbersis M = {1,2,3,4,...}.
b. The set of non-positive integers is {..., —4,—3,—2,—1, 0},
c. The set of multiples of 5is {...,—15,—10,—5,0 5,10,15, ... }.
d. The set of odd integers less than 100 is {...,—3,—1,1,3,5, ... 99}.
4. Set-builder Method
When all the elements satisfy a common property P, we express the situation as an open
proposition P(x) and describe the set using a method called the Set-builder Method as
follows:
A= {x|P(x)}orAd = {x:P(x)}
We read it as “4 is equal to the set of all x’s such that P(x) is true.” Here the bar “| " and the
colon “:” mean “such that.” Notice that the letter x is only a place holder and can be replaced
throughout by other letters. So, for a property P, the set {x | P(x)}.{t | P(t)} and {v |P(¥)} are
all the same set.
Example 1.27: The following sets are described using the set-builder method.
a. A =/{x|xisavowelin the English alphabet],
b. B ={t]|tisaneveninteger}

C. C ={n|nisanatural numberand 2n - 15 is negative}.
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d D={y|y*-y-6 = 0}
e. E={x|xisanintegerandx-1 < 0= x"- 4 > 0}
Exercise: Express each of the above by using either the complete or the partial listing method.

Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by ¢ or {}.

Example 1.28: The set of x € & such that x* + 1 = 0 is an empty set.

Relationships between two sets

Definition 1.11: Set E is said to be a subset of set 4 (or is contained in 4), denoted by B € A4, if every
element of E is an element of 4, i.e.,

(Vx)(x € B = x € 4).
It follows from the definition that set E is not a subset of set 4 if at least one element of E is not an
elementof 4.ie, B € 4 < (Fx){x € B = x & A). Insuch cases we write B € Aor 4 2 B.

Remarks: Forany set 4,¢¢ = 4 and 4 € A.

Example 1.29:
a. IfA = {a,b},B = {a,b,c}and C = {a,b,d}, thenA S Band A S C. On the
other hand, itis clearthat: B € A B € Cand C € B.
b. If 5= {x|xisamultiple of 6}and T = {x | x is even integer], then S € T since
every multiple of 6 is even. However, 2 € T while 2 € 5. Thus T € S.
c. IfA = {a,{b}} then{a} € Aand {{b}} S A. On the other hand, since b € 4,
{b} € A, and {a, b} € A.

Definition 1.12: Sets 4 and E are said to be equal if they contain exactly the same elements. In this case,
we write 4 = B. That s,
(Vx)(x E B < x € 4).

Example 1.30:
a. Thesets{1,2,3}{2,1,3},{1,3,2} are all equal.
b. {x|=xis acounting number} = {x|x isa positive integer}

Definition 1.13: Set A is said to be a proper subset of set E if every element of 4 is also an element of E,
but B has at least one element that is not in A. In this case, we write A = B. We also say E is a proper
super set of A, and write B = A. It is clear that

AcBe [(Vxl(xE A= x€E€B)A (A= B)].

Remark: Some authors do not use the symbol <. Instead they use the symbol < for both subset
and proper subset. In this material, we prefer to use the notations commonly used in high school
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mathematics, and we continue using < and < differently, namely for subset and proper subset,
respectively.

Definition 1.14: Let 4 be a set. The power set of 4, dented by P{ 4}, is the set whose elements are all
subsets of 4. That is,
P{A) = {B:B € A}.

Example 1.31: Let A ={x,y,z}. As noted before, ¢ and A are subset of A. Moreover,
{x}, {3} {z}. {x. v}, {x. 2} and {v, =} are also subsets of A. Therefore,

P(4) = {¢.{x}. U} {z}. {x. ¥} {x. 2}, Iy, 23, A}

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and
regard all sets under consideration as a subset of this fixed set. We call this set the universal set
or the universe and denoted by U.

Exercises
1. Which of the following are sets?
a. 1,23
b. {1,2}3
. {{1}.2}.3
d. {1,{2}3}
e. {1,2,a,b}.
2. Which of the following sets can be described in complete listing, partial listing and/or
set-builder methods? Describe each set by at least one of the three methods.
a. The set of the first 10 letters in the English alphabet.
b. The set of all countries in the world.
c. The set of students of Addis Ababa University in the 2018/2019 academic year.
d. The set of positive multiples of 5.
e. The set of all horses with six legs.
3. Write each of the following sets by listing its elements within braces.
a. A={xel:—4<x =4}

(@]

b. B = {x € Z:x* < 5}
c. C={xeN:x*<5}
d D={xeR:x*—x=0}
e. E={xeR:x*+1=0}

4. Let A be the set of positive even integers less than 15. Find the truth value of each of the
following.
a. 154
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b.

i

5. Find

a.

S Mmoo a0

Se@ "o a0 o

—-16€ A4
pEA
12c A
{2,8,14} A4
{234} A
{24} A
g C A
{246} A

the truth value of each of the following and justify your conclusion.
P

{1,2} €{1,2}

¢ € A for any set A

{@} € A, forany set A

57¢<€{56,7,8}

¢ € {{¢}}

Foranyset4,4A c A

{¢} =9¢

6. For each of the following set, find its power set.

a
b

C.

d
7. How

. {ab}
. {1,1.5}
{a,b}
. {a,0.5,x}
many subsets and proper subsets do the sets that contain exactly 1,2, 3,4, 8, 10 and

20 elements have?

8. Ifni

s a whole number, use your observation in Problems 6and 7 to discover a formula

for the number of subsets of a set with n elements. How many of these are proper subsets
of the set?
9. Isthere a set A with exactly the following indicated property?

h.

10. How

@ +o o0 T

Only one subset
Only one proper subset
Exactly 3 proper subsets
Exactly 4 subsets
Exactly 6 proper subsets
Exactly 30 subsets
Exactly 14 proper subsets
Exactly 15 proper subsets
many elements does A contain if it has:
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64 subsets?

31 proper subsets?

No proper subset?
d. 255 proper subsets?

11. Find the truth value of each of the following.
a. ¢ EP(¢)
b. For any set A,¢p € P(4)
c. ForanysetA A€ P(A4)
d. For anyset 4,4 c P(4).

12. For any three sets 4, B and C, prove that:
a. fASBandB S C,thendESC,
b. fAcBandB c C,thenAd cC.

© T w

1.4.3. Set Operations and Venn diagrams

Given two subsets A and B of a universal set U, new sets can be formed using A and B in many
ways, such as taking common elements or non-common elements, and putting everything
together. Such processes of forming new sets are called set operations. In this section, three most
important operations, namely union, intersection and complement are discussed.

Definition 1.15: The union of two sets 4 and E, denoted by 4 U B, is the set of all elements that are
either in 4 or in B (or in both sets). That is,
AUB={x:(x€d)Vv(x€B)].

As easily seen the union operator “U” in the theory of set is the counterpart of the logical
operator “V”’.

Definition 1.16: The intersection of two sets 4 and E, denoted by 4 n E, is the set of all elements that are
in 4 and B. That is,
AnB={x:(x€ A)A(x € B)].

As suggested by definition 1.15, the intersection operator “M” in the theory of sets is the
counterpart of the logical operator “/”.
Note: - Two sets 4 and B are said to be disjoint sets if AN E = ¢,
Example 1.32:
a. Letd = {0,1,3,5,6}and B = {1,2,3,4,6,7}. Then,
AUB = {0,1,2,3,4,5,6,7}and ANB = {1,3,6}.
b. Let A =The set of positive even integers, and
B = The set of positive multiples of 3. Then,
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AUBE = {x:x is a positive intger that is either even or a multiple of 3}
= {2,3,4,6,8,9,10,12,14,15,16, ...}

A N B = {x|xis a positive integer that is both even and multiple of 3}
= {6,12,18,24,...}

= {x | x is a positive multiple of 6.}

Definition 1.17: The difference between two sets 4 and E, denoted by 4 — E, is the of all elements in 4
and not in B; this set is also called the relative complement of E with respect to 4. Symbolically,
A—-B={x:xe AAx &€ B},

Example 1.33: If ={1,3,5}, B = {1,2},then A — B ={3,5} and B — 4 = {2}.
Note: The above example shows that, in general, A — B are B — A disjoint.

Definition 1.18: Let 4 be a subset of a universal set 7. The absolute complement (or simply
complement) of 4, denoted by A’ (or A or A ), is defined to be the set of all elements of I7 that are not in
A. That is,

A ={x:xEUﬂxEA}oerﬂl =xgEA e - (x€A).

Notice that taking the absolute complement of 4 is the same as finding the relative complement
of A with respect to the universal set U. That is,
A'=U—A,
Example 1.34:
a. IfU=1{0,1234} andif 4 ={3,4},then 4" = {3,4}.
b. LetU = {1,2,3,..,12}
A ={x | x is a positive factor of 12}
and B = {x | x is an odd integer in U},
Then, A"= {5,7,8,9,10,11}, B'= {2,4,6,8,10,12},
(AU B)'= (8,10}, A'UB'= {2,4,5,6,...,12},
A’'nB’= {8,10},and (A\B) ‘= {1,3,5,7.8,9,10,11}.
c. LetU = {a,b,c,d,ef,g,h},A = {a,e g h}and
B = {b,c,e, f,h}. Then
A’={b,c,d,f},B’= {a,d,g},B- A = {b,c,f},
A-B = {a,g},and (AU B)' = {d}.
Find (An B)', A‘n B', A"V B'. Which of these are equal?

Theorem 1.1: For any two sets 4 and B, each of the following holds.
1. (A0'= A
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A'=U- A
A-B = AnB"
. (A LB)'= AB'
. (A~B)'= ALB'

o v A W N

ACB=ECA

Now we define the symmetric difference of two sets.

Definition 1.17: The symmetric difference of two sets 4 and E, denoted by 4AAB, is the set
AAB=(A—B)U (B —A).

Example 1.35: Let U = {1,2,3,...,10} be the universal set, 4 = {2,4,6,8,9,10} and
B={3579} ThenB—A={357}and 4 — B ={2,4,6,8,10}. Thus
AAB ={2,3,45,6,7,8,10}.

Theorem 1.2: For any three sets 4, B and C, each of the following holds.

a. AUB = BUA. (v is commutative)

b. ANB = BnA. (M is commutative)

c. (AuB)UC = AU(BUDC). (Y is associative)

d (AnB)NnC = An(BnC). (N is associative)

e. AU(BNC) = (AUB)Nn(AUC). (v is distributive over )
f. An(BUC) = (AnB)U(ANnC). (N is distributive over U)

Let us prove property “e” formally.

xEAU(BNC)= (xeA)V(xeEBNC) (definition of L)
=SxedV(reEBAxECD) (definition of N)
= (xEAVXEB)A(xEAVXECD) (V is distributive over /)
= (x€EAUB)A(xEA UCD) (definition of V)
= xE(AUB)N(AU0) (definition of )

Therefore, we have A U (BN C)= (AU B)N(4AUC).
The readers are invited to prove the rest part of theorem (1.2).

Venn diagrams

While working with sets, it is helpful to use diagrams, called Venn diagrames, to illustrate the
relationships involved. A Venn diagram is a schematic or pictorial representative of the sets
involved in the discussion. Usually sets are represented as interlocking circles, each of which is
enclosed in a rectangle, which represents the universal set L.
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(O

occasions, we list the elements of set 4 inside the closed curve representing A.

In some

Example 1.36:

a. IfU = {1,2,3,4,5,6,7}and 4 = {2,4, 6}, then a Venn diagram representation

of these two sets looks like the following.

U

b. LetU = {x| x is apositive integer less than 13}
A = {x|x €U and x is even}
B = {x|x € U and x is a multiple of 3}
A Venn diagram representation of these sets is given below.

U

1 5 7 11

Example 1.37: Let U = The set of one digits numbers
A = The set of one digits even numbers
B = The set of positive prime numbers less than 10

We illustrate the sets using a Venn diagram as follows.
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A B U
0 4 1
6 8 9
a. Illustrate 4 n B by a Venn diagram

@ |

AN B: The shaded portion

b. Illustrate 4° by a Venn diagram

7 U

N

A’ . The shaded portion

c. [Ilustrate A\B by using a Venn diagram

=

A\ B: The shaded portion
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Now we illustrate intersections and unions of sets by Venn diagram.

Cases Shaded is AU E Shaded 4 N E
Only some A A B
common elements
B B

ACE
No common
element

ANnB=g
Exercises

1. IfBS A ANB ={1,45}and AUB = {1,2,3,4,5,6}, find B.

2. LetA={24,6789),
B = {1,3,5,6,10} and
C={x:3x+6 =0o0r2x+ 6 = 0}. Find

a. AUBE,

b. Is(AUB)UC=AU(BUC)?

3. Suppose U = The set of one digit numbers and
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4.

o1

~N o

A ={x:x is an even natural number less than or equal to 9}
Describe each of the sets by complete listing method:

a. A

b. AnA"
c. AuA'
d. [HJ)J
e. ¢p—U,
f. o

g U

Suppose U = The set of one digit numbers and
A ={x:x is an even natural number less than or equal to 9}
Describe each of the sets by complete listing method:
h. 4.
AnA
AuA,
(A"’
¢ —U.
quﬂ
n. U

3.-_;:‘.-.-

. Use Venn diagram to illustrate the following statements:

a. (AuB) =A"nB'
b.(AnB) =A"UB"
c. If A € B, then A\B # ¢.
d AuvAd' =U.
Let 4 = {5,7,8,9} and C = {6,7,8}. Then show that (4\B)\c = A(B\C).
Perform each of the following operations.
a. ¢n{g}
b. {e.{e}}- {{e}}
{&.{e}} - {¢}

d {{{¢#}}}- ¢
LetU = {2,3,6,8,9,11,13,15]},

A = {x|x is a positive prime factor of 66}
B ={x € U| x is composite number } and C = {x € U| x - 5 € U}. Then find each of
the following.

o

ANB,(AUB)NC,(A- B)UC,(A-B)-CA-(B-C),(A-C)-(B-A),ANB'NC

9.

LetAUB = {a,b,c,d,ex,y.z}and ANB = {bey}.
a. IfB-A = {x,z},thenA =
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b. IfA-B =¢,then B =
C.

If B = {b,eyz}thend-B =

10. LetU = {1,2,..,10},A ={3,5,6,8,10},B = {1,2,4,5,8,9},
C = {1,2,3,4,5,6,8}and D = {2,3,5,7,8,9}. Verify each of the following.

a
b.
C

d.

e.

(AUB)UC = AU(BU ).

An(BucCcuD) = (AnNB)U(AnC)u (An D),
(AnNBNCND)'= A'UB'UC'UD".
C-D=CnD-"

An(BnC)'= (A-B)u(4A-0O).

11. Depending on question No. 10 find.

a.
b.
C.
d.

AAB.

CAD.
(AAC)AD,
(AU B)\ (AAB).

12. For any two subsets 4 and E of a universal set U, prove that:

a.
b.

C.

d.

AAB = BAA

AAB = (AUB)- (AN B).
ANgp= A

AMNA = ¢

13. Draw an appropriate Venn diagram to depict each of the following sets.

a.

U = The set of high school students in Addis Ababa.

A = The set of female high school students in Addis Ababa.

B = The set of high school anti-AIDS club member students in Addis Ababa.
C = The set of high school Nature Club member students in Addis Ababa.

U = The set of integers.

A = The set of even integers.

B = The set of odd integers.

C = The set of multiples of 3.

D = The set of prime numbers.
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Chapter Two
Functions

Our everyday lives are filled with situations in which we encounter relationships between two
sets. For example,
e To each automobile, there corresponds a license plate number

e To each circle, there corresponds a circumference
e To each number, there corresponds its square

In order to apply mathematics to a variety of disciplines, we must make the idea of a
“relationship” between two sets mathematically precise.

On completion of this chapter students will be able to:
» understand the concept of real numbers
use properties of real numbers to solve problems
determine whether a given real number is rational number or not
solve linear equations and inequalities
solve quadratic equations and inequalities
understand the notion of relation and function
determine the domain and range of relations and functions
find the inverse of a relation
define polynomial and rational functions
perform the fundamental operations on polynomials
find the inverse of an invertible function
apply the theorems on polynomials to find the zeros of polynomial functions

apply theorems on polynomials to solve related problems
sketch and analyze the graphs of rational functions
define exponential, logarithmic, and trigonometric functions

sketch the graph of exponential, logarithmic, and trigonometric functions
use basic properties of logarithmic, exponential and trigonometric functions to solve
problems

VVYVY VY VYV V V V V V V VYV V V V

In this chapter, before discussing the idea of relations and functions we first review the system of
real numbers, linear and quadratic equations and inequalities.
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1.1 The real number systems

At the end of this section, students will be able to:

» understand the concept of real numbers

» use properties of real numbers to solve problems

» determine whether a given real number is rational number or not
In this section we will define what the real numbers are and what are their properties? To answer,
we start with some simpler number systems.

e The integers and the rational numbers

The simplest numbers of all are the natural numbers,
1,2,34,5,6, -

With them we can count: our books, our friends, and our money. If we adjoin their negatives
and zero, we obtain the integers;

~,=-3-2,-1,0,12,3,-
When we try to measure length, weight, or voltage, the integers are inadequate. They are spaced
too far apart to give sufficient precision. Thus, we are led to consider quotients (ratios) of
integers, numbers such as:

3 -7 21 19 16 3 -17

Note that we included £ and =i, though we would normally write them as 8 and — 17, since
they are equal to the latter by the ordinary meaning of division. We did not include 3 or 3,

since it is impossible to make sense out of these symbols. In fact, let us agree once and for all to

banish division by zero from this section. Numbers which can be written in the form 2, where

n !

m and n are integers with n =0, are called rational numbers.

Do the rational numbers serve to measure all lengths? No. This surprising fact was discovered by

the ancient Greeks long ago. They showed that while V2 measures the hypotenuse of a right

triangle with sides of length 1, it cannot be written as a quotient of two integers(see exercise...).

Thus, Thus, ~/2 is an irrational (not rational) number. So are V3,+/5,3/7, = and a host of other

numbers.
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e The real numbers

Consider the set of all numbers (rational and irrational) that can measure lengths, together with
their negatives and zero. We call these numbers the real numbers.

The set of real numbers denoted by R can be described as the union of the set of rational and
irrational numbers. i.e R = {x : x is a rational number or an irrational number}.

The real numbers may be viewed as labels for points along a horizontal line. There they measure
the distance to the right or left (the directed distance) from a fixed point called the origin and
labeled 0. Each point on the number line corresponds a unique real number and vice-versa.

3

4 25 4.75

&

[ i . i 1 ' d =
-5 -4 -3 -2 -1 a 1 2 3 4 5

Most students will remember that the number system can be enlarged still more to the so-called

complex numbers. These are numbers of the form a+b+/—1 , where a and b are real numbers.

e The four arithmetic operations

Give two real numbers x and y, we may add or multiply them to obtain two new real numbers
x+y and x-y (also written simply as xy). The real numbers along with the operations of
addition (+) and multiplication (-), obey the 11 properties listed below. Most of these properties

are straightforward and may seem trivial. Nevertheless, we shall see that these 11 basic

properties are quite powerful in that they are the basis for simplifying algebraic expressions.

The commutative Properties
1. For addition: a+b=b+a
2. For multiplication: ab=ba

The associative properties
3. For addition: a+(b+c)=(a+b)+c

4. For multiplication: a(bc) = (ab)c

The distributive property
5. a(b+c)=ab+acor (b+c)a=ba+ca
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Identities

6. For addition: There is a unique number called the additive identity, represented by O,
which has the property that a+0=a =0+a for all real numbers a.

7. For multiplication: There is a unique real number called the multiplicative identity,
represented by 1, which has the property that a-1=a =1-a for all real numbers a.

Inverses

8. For addition: Each real number a has a unique additive inverse, represented by —a,
which has the property that a+ (-a) =0=(-a) +a

9. For multiplication: Each real number a, except 0, has a unique multiplicative inverse,
represented by %, which has the property that a-(3) =1=({)a.

Closure properties
10. For addition: The sum of two real numbers is a real number.
11. For multiplication: The product of two real numbers is a real number.
Subtraction and division are defined by:

X—y=X+(-y) and Xx+y=x-4,where y=0.

In the product ab, a and b are called factors, in the sum a+b, a and b are called terms.

Example 2.1: The set of irrational numbers is not closed under addition and multiplication,
because /2 + (—v/2) =0 and +/2+/8 = /16 = 4, which are rational numbers.

e The order relation on the set of real numbers

The nonzero real numbers separate nicely into two disjoint sets — the positive real numbers and
the negative real numbers. This fact allows us to introduce the order relation < (read “is less
than”) by

X <Y< y—X is positive

We agree that x <y and y > x will mean the same thing. The order relation < (read”is less
than or equal to”) is a first cousin of <. It is defined by

X<y &y — X is positive or zero

The order relation < has the following properties:

42



The order property
1. Trichotomy: If x and y are numbers, exactly one of the following

holds:
X<yorx=yorx>y

2. Transitivity: x<y and y<z=Xx<1zZ

3. Addition:<y < x+z<y+z

4. Multiplication: When z is positive, X <y <> Xz < yz,
When z is negative, X <y <> Xz > yz

e Intervals

Let a and b be two real numbers such that a<b, then the intervals which are subsets of R with
end points a and b are denoted and defined as below:

i) (a,b)={x:a<x<b} open interval from a
to b.
i) [a,b]={ x:a < x <D} closed interval from a
to b.
iii) (a,b]={x:a<x<b} open-closed interval
from ato b.
iv) [a,b)={x:a<x<b} closed-open interval
from ato b.
Exercise 2.1
1. Simplify as much as possible:
a) 4-3(8-12)-6 ) 2-(F+%)
13,71
b) 2[3-2(4-8)] Q) it
2 4 8
2. Which of

the following statements are true and which of them are false?
a) The sum of any two rational numbers is rational.
b) The sum of any two irrational numbers is irrational.
c) The product of any two rational numbers is rational.
d) The product of any two irrational numbers is irrational.
3. Find the value of each of the following, if undefined, say so.

a) 0-0 c) e) §
b) & d) 8° f) 0°

4. Show that division by 0 is meaningless as follows: Suppose a=0. If 2=Db, then
a=0-b =0, which is a contradiction. Now find a reason why ¢ is also meaningless.
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5. Proveeachifa>0,b>0

a) a<boa’<b? bya<beoi>1
6. Which of the following are always correct if a<b?

Q) a—4<b-4 b) —a<-b c) a®*<ab d) a® <a’b
2.2 Equations and Inequalities: Linear and Quadratic

At the end of this section, students will be able to:
> solve linear equations and inequalities
» solve quadratic equations and inequalities identify the notions of the common sets of
numbers

e Linear Equations and inequalities

An equation is a symbolic statement of equality. That is, rather than writing “twice a number is
four less than the number,” we write 2x=x—4. Our goal is to find the solution to a given
equation. By solution we mean the value or values of the variable that make the algebraic
statement true.

Definition 2.1: (Linear Equation)

A linear equation in one variable is an equation that can be put in the form ax+b =0, where a
and b are constants, and a = 0.

Equations that have the same solutions are called equivalent equations. For example, 3x—1=5
and 3x = 6are equivalent equations because the solution set of both equations is {2}. Our goal
here is to take an equation and with the help of a few properties, gradually, change the given
equation into an equivalent equation of the form x =a, where x is the variable for which we are
solving. These properties are:

1. The addition property
If a=Db, then a+c=b+c. That is, adding the same quantity to both sides of an
equation will produce an equivalent equation.

2. The multiplication property
If a=b, then ac=bc. That is, multiplying both sides of an equation by the same
nonzero quantity will produce an equivalent equation.

Example 2.2:
1. Solve for x
a) 820x =10x + 30(50— x) b) 3(2x+1) =2(1-5x) +6x+11
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Solution:
a) 820x =10x +30(50— x) Simplify the right hand side

820x =10x +1500— 30x
820x =1500— 20x Applying the addition property (add 20xto both sides)
840x =1500

1500 25

840 14

Remember to check by substituting 2 for x in the original equation.

Thus, X

b) 3(2x+1)=2@1-5x)+6x+11 (The given equation)

6X+3=2-10x+6x+11 (Removing parentheses by distribution)
6X+10x—6x=2+11-3 (Collecting like terms: ‘variables to the left and
numbers to the right’ )
10x =10
x=1 (Dividing both sides by 10)

Therefore, the solution set (S.S) is {1}.

2. Find the solution set of 8x+3

—-5(x+2)=-3(x+ g)

Solution: % —5(x+2)=-3(x+ %) (The given equation)

This gives us:
4x+§—5x—10 = —3x—E
2 2
5 3 . ..
4X —5x+3x = _E_EHO Using addition property
2X=6

Hence, x=3. Thatis, the solution set is {3}.

3. A computer discount store held an end of summer sale on two types of computers. They
collected Birr 41,800 on the sale of 58 computers. If one type sold for Birr 600 and the
other type sold for Birr 850, how many of each type were sold?

Solution: If we let x to be the number of Birr 600 computers sold, then 58— x = the number of
computers that are sold for Birr 850 (since 58 were sold all together).
Our equation involves the amount of money collected on the sale of each type of computer that
is, the value of computers sold). Thus we have:
600x + 850(58 — x) = 41,800, which yields
x =30
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Hence, there were 30 computers sold at Birr 600 and 28 computers sold at 850.

Remark: The solution set of some equation can be the set of all rational numbers. This is the
case when the equation is satisfied by every rational number.

Example 2.3: Find the solution set of 5x —2(x—-1)+4 =3(x+ 2)

Solution: 5x—-2(x—-1)+4=3(x+2) (The given equation)
S5X—2X+2+4=3Xx+6 (Removing parentheses by distribution)
3X+6=3x+6 (Combining like terms)

This is always true whatever the value of x is. In fact, subtracting 3x from both sides of the last
equation we get 6=6 which is always true. This means the given equation is satisfied if you take
any number for x as you wish. Thus, S.S = R.

Remark: There are also some equations which cannot be satisfied by any number. For example,
the equation x+10 = x says ‘If you increase a number x by 10, the result is x itself (unchanged)’.
Obviously, there is no such a number. The solution set of such equation is empty set. If you try
to solve such equation, you end up with a false statement (false equality). For example, an
attempt to solve x+10 = x leads to the following:
10+Xx — X =X —X (Subtracting x from both sides of the equation)
10 =0, which is false.
Hence, the solution set of x+10 = x is & (empty set).

Example 2.4: Find the solution set of 6+ 3(1— x) = 2(1—5x) + 7x
Solution: 6+3(1—x)=2(1-5x)+7x (The given equation)
6+3-3x=2-10x+7x  (Removing parentheses by distribution)
9-3x=2-3X (Combining like terms)
9—-3x+3x=2-3x+3X (Adding 3x to both sides)
9 =2, whichis false.
This means the solution set of the given equation is empty, <.

Example 2.5: A man has a daughter and a son. The man is five times older than his daughter.
Moreover, his age is twice of the sum of the ages of his daughter and son. His daughter is 3 years
younger than his son. How old is the man and his children?

Solution: The unknowns in the problem are age of the man, age of his daughter, and age of his
son. So, let m = Age of the man; d = Age of the daughter; and s = Age of the son. Then, ‘The
man is 5 times older than his daughter’ means m=5d . Moreover, ‘Age of the man is twice the
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sum of the ages of his daughter and son’ means m=2(d+s) . ‘His daughter is 3 years younger

than his son” meansd = s —3.

Now, from the last (3 ) equation you can get s = d +3. Substitute this in the 2" equation to get
m=2(d +d+3) = 2(2d+3). Thais is, m=4d+6. Next substitute this in the 1% equation to get

4d+6 =5d or 6 =5d-4d=d. Hence, d= 6. From this, s =d +3 = 6+3 =9, and m=5d =5x6= 30.
Therefore, the age of the man is 30, age of his daughter is 6 and age of his son is 9.

Definition 2.2: (Linear Inequalities)

A linear inequality is an inequality that can be put in the form ax+b <0, where a and b are
constants with a = 0. (The < symbol can be replaced with >,< or >)

To solve inequalities, we will need the following properties of inequalities.

For a,b,ceR,if a<b, then
1) a+c<b+c 2) ac<bc, when ¢c>0 3) ac>bc, when ¢ <0

Thus, to produce an equivalent inequality, we may add (subtract) the same quantity to (from)
both sides of an inequality, or multiply (divide) both sides by the same positive quantity. On the
other hand, we must reverse the inequality symbol to produce an equivalent inequality if we
multiply (divide) both sides by the same negative quantity.

Example 2.6:
1. Solve the linear inequality 5x +8(20—x) > 2(x—5) .
Solution: 5x +8(20—x) > 2(x—5) Simplify each side
5x +160—8x > 2x—-10
160—3x >2x—-10 Now apply the inequality property
—b5x>-170 Divide both sides by — 5
Xx<34 Note that the inequality symbol is reversed

Thus, the solution set is {x € R : x <34} = (—0,34].

Example 2.7: Find the solution set of the inequality 3x —5(x+2) > 0.
Solution: 3x -5(x-2) >0 (The given inequality)
3x-5x+10>0 (Removing the parentheses by distribution)
-2x+10>0 (Combining like terms)

-2x >-10 (Subtracting 10 from both sides)

x < —10 (Dividing both sides by —2 reverse the inequality)

Thatis, x<5. Therefore, S.S = {x: x <5}, the set of all real numbers less 5.
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The solution of an inequality is sometimes required to be only in a given domain (set). If so, a
solution set should contain only those solutions that belong to the specified domain.
Example 2.8: Find the solution set of x—4(x+1) >-13—-(x—2) in the set of natural numbers, N.
Solution: x—4(x+1) >-13—(x—2) (The given inequality)

X—4x—-4>-13-x+2 (Removing parentheses by distribution)

—-3X—4>-11-X (Combining like terms; i.e., x—4x=-3x and —13+2=-11)
-3X+x>-11+4 (Collecting like terms)
—2X>—7 (Next, division of both sides of this by —2 reverses the
inequality)
xsg; ie, x<35

Thus, the solution of the given inequality in N is {1, 2, 3}. (Recall: N={1,2,3,...})
Some inequalities may have no solution in the specified domain as in the following example.

Example 2.9: Find the solution set of 7x+6 <3x+2 in the set of whole numbers, W.
Solution: 7x—-2<3x-6 (The given inequality)
7X—3x<—-6+2 (Collecting like terms)
dx <4

ﬁs_—d' or x<-1
A4

However, there is no negative whole number. Therefore, the solution set of the given inequality
inWis &, emptyset.  (Recal: W=1{0,1,2,3,...} )

Example 2.10: Find the solution set of the inequality %(x+3)+%x—g < g(x+1) in Q.

Solution: The inequality involves fractional numbers. Thus, like for the case of linear equations,
clear the denominators by multiplying both sides of the inequality by the LCM of the
denominators. The denominators in this equation are 6 and 2; and their LCM is 6. Thus,

multiply every term in both sides of the given inequality by 6. That is,
6{% (x+ 3)} + 6(% xj - 6(%} < 6B (x +1)} (The inequality is not reversed because 6>0)

X+3+3x—9 < 9(x+1) (Simplifying/clear denominators)
4X—6 < 9x+9
4x—9x < 9+6 (Collecting like terms)
-5x <15 (Next, division of both sides by —5)
x> or x>-3
-5

Therefore, S.S={xeQ| x>-3}.
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e Quadratic Equations and Inequalities

A quadratic equation is a polynomial equation in which the highest degree of the variable is 2.

We define the standard form of a quadratic a quadratic equation as Ax® +Bx +¢ =0, where
A=0.

As with linear equations, the solutions of quadratic equations are values of the variable that make
the equation a true statement. The solutions of Ax* + Bx +C =0 are also called the roots of the
polynomial equation Ax* +Bx +C =0.

In solving the equation Ax* + Bx +C =0, if the polynomial Ax®+ Bx +C can be factored, the
we can use the zero product rule (which is stated below) to reduce the problem to that of solving

two linear equations. For example, to solve the equation x* +x —6=0, we van factor the left
hand side to get (x—2)(x+3) =0. Hence, we can conclude thatx—2=0 or x+3=0, which
yields x =2 or x =-3.

The Zero-Product Rule: If a-b=0,then a=0o0or b=0
Another method is to apply the Square Root Theorem.

The Square Root Theorem: If X2 =d , then x = +/d .

Example 2.11: Solve the following

a) 4x°+10x=6 b) 5x* -6=8 c) (x—=2)°=6
Solution: a) 4x* +10x =6 Put into standard form
4x* +10x-6=0 Factor the left hand side
2(2x-1)(x+3)=0 Hence we have
2x—1=0or x+3=0 Solving each linear equation, we get

X=30r x=-3
b) We note that there is no first-degree term, so our approach will be to apply the Square

Root Theorem.
5x*-6=8 Isolate x* on the left-hand side before applying the
square root theorem
5x* =14
x* = & Applying the square root theorem we get
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c) Since it is in the form of a squared quantity equal to a number, we will apply the
Square Root Theorem to get x =2+ J6 .

Part (c) of the above example illustrates that if we can construct a perfect square binomial from a
quadratic equation (i.e., get the equation in the form (x + p)* =d), then we can apply the Square

Root Theorem and solve for x to get x =—p++/d .
The method of constructing a perfect square is called completing the square. It is based on the
fact that in multiplying out the perfect square (x + p)? , with p a constant, we get

(x+ p)? =x* +2px+ p?
Notice the relationship between the constant term, p”, and the coefficient of the middle term,
2p : The constant term is the square of half the coefficient of the middle term.

Example 2.12: Solve by completing the square: 2x* —8x +4 =6,

Solution: 2x* —8x+4="6 Divide both sides by 2, the coefficient of x*

x> —4x+2=3 Isolate the constant term on the right-hand side

x?—4x=1 Take half the middle term coefficient, square it
(2 (-4)) =4, we add 4 to both sides of the
equation

X —4x+4=1+4 Factor the left hand side

(x-2)* =5 Solve for x using the Square Root Theorem

Xx=2+4/5.

Unlike the factoring method, all quadratic equations can be solved by completing the square. If
we were to complete the square for the general quadratic equation Ax* +Bx+C =0,A=0 , we

would arrive at the formula given below.
B++B?-4AC
2A

The Quadratic Formula: If Ax? +Bx+C =0 and A#0, then x = —

Example 2.13: Solve the following using the quadratic formula: x* —8 = —6x .

Solution: Writing the equation in standard form we get, x*+6x—-8=0. By the quadratic
formula we have:

_—6+\6"-4(1)(-8) _-6+68 _-6+2V17 _ .

2(1) 2 2
Thus, the solution set is {—3— \/ﬁ, -3+ \/ﬁ}
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A quadratic inequality is in standard form if it is in the form Ax*+Bx+C <0. (We can
replace < with >, <, or >.)

If we keep in mind that u>0 means u is positive, then solving an inequality such as
2x* +5x —3>0 means we are interested in finding the values of x that will make 2x*+5x —3
positive. Or, since 2x* +5x —3=(2x—-1)(x+3), we are looking for values of x that make
(2x-1)(x+3) positive. For (2x—-1)(x+3) to be positive, the factors must be either both

positive or both negative. To determine when this happens, we first find the values of x for
which (2x —1)(x + 3) is equal to 0; we call these the cut points of (2x —1)(x +3). The cut points

are 7+ and —3.

Thus, our approach in solving quadratic inequalities will be primarily algebraic. After putting the
inequality in standard form, we will determine the sign of each factor of the expression for
various values of x. Then, we determine the solution by examining the sign of the product. This
process is called a sign analysis.

Returning to the problem 2x” +5x —3> 0, we draw a number line and examine the sign of each
factor as x takes on various values on the number line, especially around the cut points.

Sign of x+3 - - — - — —|++++ [+ +++

Sign of 2x -1 - - - - - = = - |+ttt +H+

v

A

-6 -5 -4 -3 -2 -1 012 3 4 5 6

The above figure illustrates that the factor x +3 is negative when x < -3 and positive when
x>=3. It is also shown that 2x —1 is negative when x <  and positive when X > 1. Thus the

product of the two factors is positive when x <—3 and x> 4. Therefore, the solution set is
(_001_3) o (% ! OO) :

Remark: 1. The cut points of the inequalities will break up the number line into intervals.
2. The sign of the product does not change within an interval, i.e., if the expression is
positive (or negative) for one value within the interval, it is positive (or negative) for all
values within the interval.

Example 2.14: Solve the quadratic inequality x* —2x—-2<0.
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Solution: Since we cannot factor x* —2x — 2, we use the quadratic formula to find that its roots
are 1+ /3. This gives the cut points for the polynomial x> —2x—2. We use the sign analysis
(see the figure below) with the test points given. Note: 1+ V3~27&1J3~-07.
Sign of x* —2x -2 + 0 - 0 +
¥=_10 1-V3 x=1 1+v3 x=100
Substituting the test values — 10, 1, and 100 for x in the expression x> —2x -2, we find that
x? —2x — 2 is negative only when x is in the interval (1— J31+ \/§).

Exercise 2.2
1. Solve the linear equations
a) 2-3(x—4)=2(x—-1) d) 2 44-2"X
X+3 X+3
6 12 1
b) 3x-[2+3(2-x)]=5-(3—x e —=c4 -
) 3x—-[2+3(2-x)]=5-(3-X) ) =t
C) 2(2x-3)=4x+5
2. Solve the linear inequalities
a) 4x+2<2x—(3x+1)  b)5x—2>3x—(x-1 c) SX=2, X+3

3 4
3. A truck carries a load of 50 boxes; some are 20 kg boxes and the rest are 25 kg boxes. If
the total weight of all boxes is 1175 kg, how many of each type are there?
4. The product of two numbers is 5. If their sum 2, find the numbers.

5. Solve
a) 2x°-7x=15 c) x> +2x-4=0 e) 3x* —6x+5=0
b) Xx-3=——_ I R
X+3 X—=5 X+2
6. Solve the quadratic inequalities
a) x*+2x-24>0 d) 2x* —x-2>0
b) x?-5x<24 e) x> <16

c) x*-3x-3<0

7. A student was given the inequality: >4 . The first step the student took in solving

this inequality was to transform it into 3 > 4(x — 2). Explain what the student did wrong.
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2.3. Review of relations and functions

After completing this section, the student should be able to:
» define Cartesian product of two sets
» understand the notion of relation and function
» know the difference between relation and function
» determine the domain and range of relations and functions
» find the inverse of a relation

The student is familiar with the phrase ordered pair. In the ordered pair (2,3),(-2,4) and (a,b);
2,—2 and a are the first coordinates while 3,4 and b are the second coordinates.
e Cartesian Product

Given sets A={3,4} and B ={4,5,9}. Then, the set {(3,4),(3,5),(3,9),(4,4),(4,5),(4,9)} is the
Cartesian product of A and B, and itis denoted by AxB.

Definition 2.3: Suppose A and B are sets. The Cartesian product of A and B, denoted by
Ax B, is the set which contains every ordered pair whose first coordinate is an element of A
and second coordinate is an element of B, i.e.

AxB={(a,b):ac A and be B}.

Example 2.15: For A={2,4} and A={-1,3}, we have
a) AxB={(2,-1),(2,3),(4,-1),(4,3)}, and
b) BxA={(-12),(-14),(3,2),(3,4)}.

From this example, we can see that AxB and B x A are not equal. Recall that two sets are equal
if one is a subset of the other and vice versa. To check equality of Cartesian products we need to
define equality of ordered pairs.

Definition 2.4: (Equality of ordered Pairs)
Two ordered pairs (a,b) and (c,d) are equal ifandonlyif a=c and b=d.

Example 2.16: Let A={1,2,3} and B ={a,b,c}. Then,
AxB={(,a),(b),(1c),(2,a),(2,b),(2c),(3,a),(3Db),(3c)}.

Definition 2.5: (Relation)
If A and B are sets, any subset of AxB js called a relation from A into B.
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Suppose R is a relation from a set A to a set B. Then, Rc AxB and hence for each
(a,b) e AxB | we have either (&,0)eR or (a,b)2R . If (a,b)eR we say “a is R-related (or
simply related) to b”, and write @Rb . If (&,b) € R we say that “a is not related to b”.
In particular if R is a relation from a set A to itself, then we say that R is a relation on A.

Example 2.17:
1. Let A={1,357} and B={6,8}. Let R be the relation “less than” from A to B. Then,

R={(16).(18).((36).(38).(56).(58),(7.8)}.
2. Let A={1,2,34,5} and B ={a,b,c}.

a) The following are relations from A into B;
) R ={Ta)}
i) R, ={(2,b).(3b),(4,0),(52a)}
i) Ry ={(1a),((2,b),(3,c)}

b) The following are relations from B to A;
) R,={(a?3).(b1)}
i) Rs={(b2),(c,4).(a:2),(b,3)}
iii) Ry ={(b,5)}

Definition 2.6: Let R be a relation from A into B. Then,
a) the domain of R, denoted by Dom(R), is the set of first coordinates of the elements of
R,ie
Dom(R)={a < A:(a,b) e R}
b) the range of R, denoted by Range(R), is the set of second coordinates of elements of R,
i.e
Range(R) ={b e B:(a,b) e R}

Remark: If R is a relation form the set A to the set B, then the set B is called the codomain of
the relation R. The range of relation is always a subset of the codomain.

Example 2.18:
1. The set R={(4,7),(58),(6,L0)} is a relation from the set A=4{1,2,3,4,5,6} to the set
B ={6,7,8,9,10]. The domain of R is {4,556}, the range of R is {7,810} and the
codomain of R is {6,7,8,9,10}.
2. The set of ordered pairs R ={(8,2),(6,-3),(5,7),(5-3)} is a relation between the sets
{5,6,8} and {2,-3,7}, where {5,6,7} is the domain and {2,—3,7} is the range.
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Remark:
1. If (a,b) e R forarelation R, we say a is related to (or paired with) b. Note that a may

also be paired with an element different from b. In any case, b is called the image of a
while a is called the pre-image of b.

2. If the domain and/or range of a relation is infinite, we cannot list each element
assignment, so instead we use set builder notation to describe the relation. The situation
we will encounter most frequently is that of a relation defined by an equation or formula.
For example,

R={(x,y):y=2x-3,x,ye IR}
is a relation for which the range value is 3 less than twice the domain value. Hence,
(0,—3),(0.5,—2)and (—2,—7) are examples of ordered pairs that are of the assignment.

Example 2.19:
1. Let A={1,2,34,6}

Let R be the relation on A defined by R ={(a,b):a,be A aisa factor of b}. Find the
domain and range of R.

Solution: We have
R={(11),12),(13),(1,4),(16),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)}.
Then, Dom(R) ={1,2,3,4,6} and Range(R) ={1,2,3,4,6}.

2. Let A={1,2,34,5} and B={1,2,3,---,67}.
Let R={(x,y) e AxB: xis cube root ofy} .Finda) R b) Dom(R) c) Range(R)

Solution: We have 1=3/1,2=3/8,3=3/27,4=3/64,5=3/125 and 18,27 and 64 are in B
whereas 125 is not in B. Thus, R={(11),(28),(327),(4,64)}, Dom(R)={1,2,3,4} and
R={18,27,64}.

Remark:
1. Arrelation R onaset A is called
i) auniversal relation if R=AxA
ii) identity relation if R={(a,a):a e A}
iii) void or empty relation if R=¢
2. If Ris a relation from A to B, then the inverse relation of R, denoted by R, is a
relation from B to A and is defined as:

R™ ={(y.x):(x,y) eR}.
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Observe that Dom(R)=Range(R™) and Range(R)=Dom(R™). For instance, if
R={(14),(9,15),(10,2)} is a relation on a set A={1,2,3,---,20}, then R™* ={(4,1),(15,9),(2,10)}

Example 2.20: Let R be a relation defined on IN by R={(a,b):a,beIN, a+2b=11}.
Find a) R b) Dom(R) ¢) Range(R) d R

Solution: The smallest natural number is 1.

b=1 = a+2()=11 = a=9
b=2 = a+2(2)=11 =a=7
b=3 = a+2(3)=11 =a=>5
b=4 = a+2(4)=11 =a=3
b=5 = a+2(5)=11 =a=1
b=6 = a+2(6)=11 —a=-1¢IN

Therefore, R={(9,1),(7,2),(5,3),(3,4),(1,5)}, Dom(R)={1!3!5!719}, Range(R)={112!3!4!5} and
R™ ={(19).(27).(35).(43),(51}.

e Functions

Mathematically, it is important for us to distinguish among the relations that assign a unique
range element to each domain element and those that do not.

Definition 2.7: (Function)
A function is a relation in which each element of the domain corresponds to exactly one
element of the range.

Example 2.21: Determine whether the following relations are functions.

a) R={(5-2),(3%),37)} b) {(2,4),(3,4),(6,-4)}

Solution:

a) Since the domain element 3 is assigned to two different values in the range, 5 and 7, it is
not a function.

b) Each element in the domain, {2.3,6}, is assigned no more than one value in the range, 2 is
assigned only 4, 3 is assigned only 4, and 6 is assigned only — 4. Therefore, it is a
function.

Remark: Map or mapping, transformation and correspondence are synonyms for the word
function. If  isafunctionand (X,¥) € f  we say x is mapped toy.
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Definition 2.8: A relation f from A into B is called a function from A into B, denoted by
f:A>B or A—>B
if and only if
(i) Dom(f)=A
(i)  No element of A is mapped by f to more than one element in B, i.e. if (X,y) € f
and (X,2) e f then Y=12.

Remark: 1. If to the element x of A corresponds Y (€ B) under the function f, then we write
f(X)=Y and Y is called the image of x under Y and x is called a pre-image of ¥ under f .
2. The symbol f(X) isread as “f of x” but not «“ f times x”.
3. In order to show that a relation f from A into B is a function, we first show that the
domain of f is A and next we show that f well defined or single-valued, i.e. if X=Y in
A then f(X)=T(y) inBforall X, yeA,

Example 2.22:
1. Let A={1,234} and B={1681115} which of the following are functions from A to
B.

a) T definedby f(1)=11f(2)=6, f(3)=8, f(4)=8

b) f definedby f(1)=1 f(2)=6, f(3)=15

c) f definedby f(1)=6, f(2)=6, f(3)=6,f(4)=6

d) f definedby f()=1 f(2)=6, f(2)=8, f(3)=8, f(4)=11
e) f definedby f(1)=1 f(2)=8, f(3)=11 f(4)=15

Solution:
a) T isa function because to each element of A there corresponds exactly one element of
B.
b) f isnota function because there is no element of B which correspond to 4( € A).

c¢) T isafunction because to each element of A there corresponds exactly one element
of B. In the given function, the images of all element of A are the same.

d) f is not a function because there are two elements of B which are corresponding to 2.
In other words, the image of 2 is not unique.

e) T isafunction because to each element of A there corresponds exactly one element
of B.

As with relations, we can describe a function with an equation. For example, y=2x+1 is a
function, since each x will produce only one Y.
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2. Let f={(xy):y=x?} Then, f maps:

1to1l -1tol
2to4 -2to4
3to9 -3to9

More generally any real number x is mapped to its square. As the square of a number is unique,

f maps every real number to a unique number. Thus, f is a function from R into R .

We will find it useful to use the following vocabulary: The independent variable refers to the
variable representing possible values in the domain, and the dependent variable refers to the
variable representing possible values in the range. Thus, in our usual ordered pair notation

(X,¥), x is the independent variable and Y is the dependent variable.

e Domain, Codomain and range of a function

For the function f :A—>B
(i) The set A is called the domain of f

(i)  Theset B is called the codomain of f
(iiiy  Theset {f(X):X e A} of all image of elements of A is called the range of f

Example 2.23:
1. Let A={123} and B={123---10} Let f:A—>B be the correspondence which

assigns to each element in A, its square. Thus, we have f(1)=1 f(2)=4,f(3)=9,
Therefore, f is a function and Dom(f)={1,2,3} Range(f)={14,9} and codomain of

fis {12,3,--- 10},

2. Let A={24,6,79},B=IN_Let X and ¥ represent the elements in the sets A and B,
respectively. Let f : A— B pe a function defined by f(x)=15x+17,xe A,

The variable X can take values 2, 4, 6, 7, 9. Thus, we have
f(2)=15(2) +17=47, f(4) =77, (6) =107, f(7)=122, f(9) =152,

This implies that Dom(f) ={2,4,6,7,9}, Range(f) ={47,77,107122152} and codomain

of f is IN.
3. Let f bethe subset of QxZ defined by fZ{(E,p>i p,qu,q;«tO}, Is f afunction?
Solution: First we note that Dom(f)=Q_ Then, f satisfies condition (i) in the

definition of a function. Now, (2.2)e f (44)ef and 2=% put f(2)=2=4=1(¢).

Thus f is not well defined. Hence, f is not a function from Q to Z .
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4. Let T bethesubsetof ZxZ defined by f ={(mn,m+n):mneZ} |s f afunction?
Solution: First we show that f satisfies condition (i) in the definition. Let X be any
element of Z. Then, X=X-1, Hence, (X,X+1)=(x-Lx+1)ef  This implies
thatX € Dom(f) . Thus, Z = Dom(f). However, Dom(f)=Z and so Dom(f)=2.
Now, 4€Z and 4=4-1=2-2 Thus, (4-14+1) and (2-22+2) are in f. Hence we
find that 4-1=2-2 and f(4-1)=5=#4=1(2-2). This implies that f is not well
defined, i.e, f does not satisfy condition (ii). Hence, f is not a function from Z to Z.

5. Determine whether the following equations determine ¥ as a function of X, if so, find
the domain.

a) Yy=-3X+5 b) ¥ = c) Y2 =X

X
3x-5

Solution:

a) To determine whether Y =-3X+5 gives Y as a function of X, we need to know
whether each x-value uniquely determines a y-value. Looking at the equation

y =-3X+3, we can see that once X is chosen we multiply it by — 3 and then add 5.
Thus, for each x there is a unique Y . Therefore, Y =—3X+5 js a function.

b) Looking at the equation Y = carefully, we can see that each x-value uniquely

3x-5
determines a y-value (one x-value can not produce two different y-values). Therefore,
y= * functi
3x_5 154 unction.

As for its domain, we ask ourselves. Are there any values of X that must be

X
3x_5 is a fractional expression, we must exclude any value of
X that makes the denominator equal to zero. We must have

excluded? Since Y =

IX-5#0 < x;tg

5
Therefore, the domain consists of all real numbers except for 3 Thus,

Dom(f):{x:x;t%}_

c) For the equation Y =X, if we choose X=9 we get Y* =9, which gives ¥ ==%3. In

other words, there are two Y — values associated with X =9 Therefore, y2 =X s not
a function.
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6. Find the domain of the function ¥ = v3X —x? )

Solution: Since Y is defined and real when the expression under the radical is non-
negative, we need X to satisfy the inequality

3x-x>>20 < x(3-x)=0
This is a quadratic inequality, which can be solved by analyzing signs:

e B

& N
7

Sign of 3x—x?
0 3

Since we want 3x—x* = x(3-X) to be non-negative, the sign analysis shows us that the
domain is {X:0<x <3} or [0,3].

Exercise 2.3
1. LetR be arelation on the set A=1{1,2,3,4,5,6} defined by R={(a,b):a+b <9}
i) List the elements of R
i) IsR=R™
2. LetR be a relation on the set A={12,3456,7} defined by R ={(a,b):4 divides a—b}.
i) List the elements of R
i)  Find Dom(R) & Range(R)

iiiy  Find the elements of R™
iv)  Find Dom(R™) & Range(R™)

3. Let A={12,34,56} Define a relation on A by R={(X,y):y=x+1} Write down the
domain, codomain and range of R. Find R,

4. Find the domain and range of the relation {(X,y):[X|+y =2}

5. Let A={12,3} and B ={356,8}. Which of the following are functions from A to B?

a) f={(13).(23).(33)} c) F={18).(25)}
b) f={13).(25),(16)} d) f={(16).(25),(33)}
6. Determine the domain and range of the given relation. Is the relation a function?
a) {(-4-3).(2-5),(46),(2.0)} d) {(-2.9).(-11.G.3)}
b) {B-2).(6-3).(-15)} e) {(0.5).(15).(2,5),(3,5),(4.5).(55)}

) {(—33),(-11),00),0),(v33)} £ {(5,0),(5.1),(5.2),(5,3),(5.4),(5,5)}
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7. Find the domain and range of the following functions.
a) f(x)=1+8x-2x? c) f(x)=vx*-6x+8
1 3X+4,-1<x<?2
x> —5X +6 9 f(x):{ux, 2<x<5
8. Given f(X)={3)2(_5’ X<t
X =1, x=1

Find a) f(-3) b) f (D) c) F(6)

by f(x)=

2.4 Real Valued functions and their properties
After completing this section, the student should be able to:

» perform the four fundamental operations on polynomials

» compose functions to get a new function

» determine the domain of the sum, difference, product and quotient of two functions
> define equality of two functions

Let f be a function from set A to set B. If B is a subset of real number system R, then f is
called a real valued function, and in particular if A is also a subset of R, then f: A— B is
called a real function.

Example 2.24: 1. The function f:R —> R defined by f(x)=x*+3x+7, xeR is a real
function.
2. The function f :R — R defined as f (x) =|x| is also a real valued function.

e Operations on functions

Functions are not numbers. But just as two numbers a and b can be added to produce a new
number a+b, so two functions f and g can be added to produce a new function f +g . This

is just one of the several operations on functions that we will describe in this section.

Consider functions f and g with formulas f(x):XT_S, g(x):\/;. We can make a new

function f +g by having it assign to x the value XT_?’J”/;’ that is,

(f +g)(x) = f(x)+g(x)=XT_3+& .
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Definition 2.9: Sum, Difference, Product and Quotient of two functions

Let f(x) and g(x) be two functions. We define the following four functions:

1. (f+g9)(x)=f(x)+9(x) The sum of the two functions
2. (f-9)(x)=1(x)-g(x) The difference of the two functions
3. (f-g)(x)=f(x)g(x) The product of the two functions
[éj(x) = % The quotient of the two functions (provided g(x) = 0)

Since an X —value must be an inout into both f and g, the domain of (f + g)(x) is the set of all
X common to the domain of f and g. This is usually written as
Dom(f +g) = Dom(f)( Dom(g). Similar statements hold for the domains of the difference and

product of two functions. In the case of the quotient, we must impose the additional restriction
that all elements in the domain of g for which g(x) =0 are excluded.

Example 2.25:
1. Let f(x)=3x*+2 and g(x) =5x—4. Find each of the following and its domain
f
a) (f+9)x) b) (f-9)(x) c) (f.9)(x) d) (EJ(X)
Solution:

a) (f+9)(x)=f(X)+g(x)=(3x*+2)+(5x—4) = 3x* +5x -2
b) (f-g)(x)=f(X)—g(x)=(3x*+2)—(5x—4) = 3x* -5x+6
c) (f-9)(x)=(3x?+2)(5x—4)=15x>-12x* +10x -8

f Cf(x) 3x*+2
) (E)(X)‘ g(x)  5x-4

We have
Dom(f +g)=Dom(f —g)=Dom(fg)=Dom(f)Dom(g)=RNR=NR

Dom@: [Dom(f) NDom(g)]\Mx: g(x) :0}=m\{%}

2. Let f(x)=%4x+1 and g(x)=v9-x>, with respective domains [-1,00) and [-3,3].

Find formulas for f +g,f —g, f -g,é and f? and give their domains.
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Solution:

Formula Domain

(f+9)00) = f () +9(x) =4x+1+/9- x> [-13]
(f—g)(0) = f()—g(x) =4x+1-9-x* [-1,3]
(f-9)(0=f(x)-g(x) =¥x+1-v9-x* [-13]
(tfo-s0- 2
£ = (F () = ({x+1f = (x+2) [-1,)

There is yet another way of producing a new function from two given functions.

Definition 2.10: (Composition of functions)

Given two functions f (x) and g(x), the composition of the two functions is denoted by f og
and is defined by:

(fo9)(x) = flg(x)].
(fog)(x) isread as " f composed with g of x". The domain of f og consists of those x's
in the domain of g whose range values are in the domain of f , i.e. those x's for which g(x)
is in the domain of f .

Example 2.26:
1. Suppose f ={(2,2),(3,9)} and g ={(a,2),(b,3),(c,5)}. The function
(fog)(x)= f(g(x)) is found by taking elements in the domain of g and evaluating as

follows: (f-g)(a)=f(g(a))=f(2)=z (f-g)(b)="T(g(0)=1(3)=q

If we attempt to find f(g(c)) we get f(5), but 5 is not in the domain of f(x) and so we cannot
find (f og)(c).Hence, fog={(a,z),(b,q)}. The figure below illustrates this situation.

Domain of Range of Range of f
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2. Given f(x)=5x*-3x+2 and g(x) =4x+3, find

a) (fo9)(-2) b) (9° f)(2) c) (fog)(x) d) (g0 f)(x)
Solution:
a) (fog)(-2)="f(g(-2)...... First evaluate g(-2) =4(-2)+3=-5
= 1(-5)

=5(-5)* —3(-5) +2 =142
b) (gof)2)=g(f(2)....... First evaluate f(2)=5(2)° -3(2)+2=16

= g(16)
= 4(16) +3=67

c) (feg)(x)="1(g(x))....... But g(x) =4x+3
= f (4x +3)
=5(4x+3)* —3(4x +3) +2
=80x* +108x + 38

d) (gof)(X)=9g(f(x)....... But f(x)=5x%—3x+2
= g(5x* —3x+2)
=4(5x* —3x+2)+3
=20x* —12x+11

3. Given f(x):L and g(x)=i,find
x+1 x—1

a) (feg)(x) and its domain b) (geo f)(x) and its domain
2
- 2 x—1 2 :
Solution: a) (fog)(x)=f = = . Thus, Dom(f og)={x:x = +1}.
x—1 2 X+1

——+1

X—-1

2

=—-2X—2. Since X must first be an input into f(x)

b) (9o f)(x)=9(f(x))=—
A |

X+1
and so must be in the domain of f , we see that Dom(go f)={x: x = —1}.

4. Let f(x)=

X26i9 and g(x)=+/3x. Find (f >g)(L2) and (g f)(x) and its domain.
Solution: We have (f og)(12) = f(g(12)) = f(v36) = f (6) =& = 4.
6v3x  B3x _ 243x

(fog)(x)=f(g(x)=f(3x)= 59 39 x3

The domain of fog is [0,3)U(3,x).
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We now explore the meaning of equality of two functions. Let f : A— B and g: A— B be two
functions. Then, f and g are subsets of AxB. Suppose f =g. Let x be any element of A.
Then, (x,f(x))ef=g and thus (x,f(x))eg. Since g is a function and
(x, T(x)), (x,9(x)) € g, we must have f(x)=g(x). Conversely, assume that g(x)= f(x) for
all xeA. Let (x,y)e f.Then, y=f(x)=9g(x). Thus, (x,y)e g, which implies that f = g.
Similarly, we can show that g < f . It now follows that f =g . Thus two functions f: A— B
and g:A— B are equal if and only if f(x)=g(x) for all xe A. In general we have the
following definition.

Definition 2.11: (Equality of functions)

Two functions are said to be equal if and only if the following two conditions hold:
i) The functions have the same domain;
i) Their functional values are equal at each element of the domain.

Example 2.27:
1. Let f:Z—Z"U{0} and g:Z —Z"U{0} be defined by f ={(n,n*):neZ} and

g={(n|n"):neZ}. Now, forall nez, f(n)=n®=[n" =g(n). Thus, f =g.

2_
X éS,XE‘R\{S},and g(x)=x+5,xeR. The function f and g are not

2. Let f(x)=

equal because Dom( f) = Dom(g).

Exercise 2.4

1. For f(x)=x*+x and g(x)= xi:% find each value:
+

a) (f-9)2) c) 9°(3) e) (9o )
b) @(1) Q) (f20)®) N (g°9)3)
2. If f(x)=x+2 and g(x) =%1, find a formula for each of the following and state its
domain.
a) (f+g)(x) c) (%j(x)
b) (fg)(x) d) (g f)()

3. Let f(x)=x%and g(x)=+/x.
a) Find (f og)(x) and its domain.
b) Find (geo f)(x) and its domain
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c) Are (fog)(x) and (geo f)(x) the same functions? Explain.
4. Let f(x)=5x-3.Find g(x) sothat (f og)(x)=2x+7.
5. Let f(x)=2x+1. Find g(x) sothat (f og)(x)=3x-1.
3f(x)+1
f(X)+3
7. Find two functions f and g so that the given function h(x) =(f o g)(x), where

6. If f isa real function defined by f(x)=§—_i.8how that f(2x) =
+

a) h(x)=(x+3)? c) h(x)=§+6
b) h(x)=+5x—3 d) h(x):ﬁ
8. Let f(x)=4x—3,g(x):§ and h(x) = x* —x. Find
a) f(x+7) c) f(g(h(3))) e) f(x+a)
b) 5f(x)+7 d) f(1)-9(2)-h(3) f) f(x)+a
2.5 Types of functions

After completing this section, the student should be able to:

» define one to oneness and ontoness of a function
» check invertibility of a function
» find the inverse of an invertible function

In this section we shall study some important types of functions.

e One to One functions

Definition 2.12: A function f : A— B is called one to one, often written 1 — 1, if and only
if forall x;,x, €A, f(x)=f(x,) implies x, =X,. In words, no two elements of A are
mapped to one element of B.

Example 2.28:
1. If we consider the sets A={,23:--6} and B={7,a,b,cd8e} and if
f ={(17), (2,a), (3,b), (4,b),(5.c),(6,8)} and g={(17).(2,a),(3,b),(4,¢),(58),(6,d)},
then both f and g are functions from A into B. Observe that f isnota 1 — 1 function
because f(3)= f(4) but 3=+4. However, g isal- 1 function.

2. Let A={1,2,34} and B ={1,4,7,8}. Consider the functions
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i) f:A—B definedas f(1)=1 f(2)=4, f(3)=4, f(4)=8
i) g:A— B definedas f(1)=4,f(2)=7,f(3)=1 f(4)=8

Then, f isnot1-1, but g isal-1 function.

Onto functions

Definition 2.13: Let f be a function from a set A into aset B. Then f is called an onto
function(or f maps onto B) if every element of B is image of some element in A, i.e,

Range( f) =B.
Example 2.29:
1. Let A={1,2,3}and B ={14,5}. The function f: A— B defined as f(1)=1, f(2)=5,

f(3) =1 is not onto because there is no element in A, whose image under f is 4. The
function g: A— B given by g ={(14),(2,5),(31)} is onto because each element of B is
the image of at least one element of A .

Note that if A is a non-empty set, the function i, : A— A defined by i,(x) =x for all
xe Aisal-1function from A onto A. i, is called the identity map on A.

Consider the relation f from Z into Z defined by f(n)=n? for all neZ. Now,
domain of f is Z. Also, if n=n’, then n> =(n)?,i.e. f(n)=f(n").Hence, f iswell
defined and a function. However, f(1)=1= f(-1) and 1+ -1, which implies that f is
not 1 — 1. Forall neZ, f(n) is a non-negative integer. This shows that a negative
integer has no preimage. Hence, f is not onto. Note that f is onto {0,1,4,9,---}.
Consider the relation f from Z into Z defined by f(n)=2n forall neZ. As in the
previous example, we can show that f is a function. Let n,n'eZ and suppose that
f(n)=f(n'). Then 2n=2n" and thus n=n". Hence, f is 1 — 1. Since forall neZ,
f (n) is an even integer; we see that an odd integer has no preimage. Therefore, f is not
onto.

1 -1 Correspondence

Definition 2.14: A function f : A— B issaid to be a1 — 1 correspondence if f isboth1-1
and onto.
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Example 2.30:
1. Let A={0,1,2,3/4,5} and B={0,510,15 20,25}. Suppose f:A—>B given by

f(x)=5x for all xe A. One can easily see that every element of B has a preimage in
A and hence f is onto. Moreover, if f(x)= f(y), then 5x =5y, i.e. x=y. Hence, f
is1—1. Therefore, f isa1— 1 correspondence between A and B.

2. Let A beafiniteset. If f:A— A isonto, then it is one to one.

Solution: Let A={a,,a,,---,a,}. Then Range(f)={f(a,),f(a,),---, f(a,)}. Since f is onto
we have Range(f)=A.Thus, A={f(a,), f(a,),---, f(a,)}, which implies that f(a,), f(a,),
-+, f(a,) areall distinct. Hence, a; =a; implies f(a;)= f(a;) forall 1<i, j<n. Therefore,
fisl-1.

e Inverse of a function

Since a function is a relation , the inverse of a function f is denoted by f ™ and is defined by:
f={(y,¥):(xy) e f}

For instance, if f ={(2,4),(3,6),(1,7)}, then f*={(4,2),(6,3),(7,1)}. Note that the inverse of a

function is not always a function. To see this consider the function f ={(2,4),(3,6), (54)}.

Then, f*={(4,2),(6,3),(4,5)}, which is not a function.

As we have seen above not all functions have an inverse, so it is important to determine whether

or not a function has an inverse before we try to find the inverse. If the function does not have an

inverse, then we need to realize that it does not have an inverse so that we do not waste our time

trying to find something that does not exist.

A one to one function is special because only one to one functions have inverse. If a function is

one to one, to find the inverse we will follow the steps below:
1. Interchange x and y in the equation y = f(x)

2. Solving the resulting equation for y , we will obtaining the inverse function.

Note that the domain of the inverse function is the range of the original function and the range of
the inverse function is the domain of the original function.

Example 2.31:
1. Given y= f(x)=x>.Find f* and its domain.

Solution: We begin by interchanging x and y, and we solve for y.
y=x° Interchange x and vy

x=y? Take the cube root of both sides
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3/x = y This is the inverse of the function

Thus, f *(x)=3%/x. The domain of f* is the set of all real numbers.

2. Let y=f(x)=—— Find f(x).
X+ 2

Solution: Again we begin by interchanging X and y, and then we solve for vy .

y= X Interchange x and y
X+2

X = y Solving for y
y+2

X(y+2)=y © xy+2x=y < 2x=y(l-Xx) <:>y:12_xx

2X

Thus, f™*(x)= I
—X

Remark: Even though, in general, we use an exponent of —1 to indicate a reciprocal, inverse
function notation is an exception to this rule. Please be aware that f ~*(x) is not the reciprocal of
f . Thatis,

f(x)# L
f(x)
If we want to write the reciprocal of the function f(x) by using a negative exponent, we
must write
1 _
— =TI
f(x)
Exercise 2.5

1. Consider the function f ={(x,x*):xeS} from S ={-3,-2,-1,01,2,3} into Z.Is f one
to one? Is it onto?

2. Let A={1,2,3}. List all one to one functions from A onto A.

3. Let f:A—B.Let f" betheinverse relation, i.e. f*={(y,x)eBxA: f(x)=y}.
a) Show by an example that f* need not be a function.
b) Show that f* isa function from Range(f) into A ifandonlyif f is1-1.
c) Showthat f* isa function from B into A ifandonlyif f is1 -1 and onto.
d) Showthatif f* isa function from B into A, then f'=1f".
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4. Let A={xeR:0<x<1} and B={xeR:5<x<8}. Show that f: A— B defined by
f(x)=5+(8-5)x isal-1 function from A onto B.

5. Which of the following functions are one to one?
a) f:R—>N definedby f(x)=4,xeR
b) f:R—>N definedby f(x)=6x-1,xeR
c) f:R—NR definedby f(x)=x*+7,xeR
d f:R— R definedby f(x)=x> xeR
2x+1

e) f:R\{7}—> R defined by f(x)= .

, Xxe R\{7}

6. Which of the following functions are onto?
a) f:R— N definedby f(x)=115x+49, xeR

b) f:R—> R defined by f(x)=|x, xeR

¢) f:R— R definedby f(x)=vx?, xeR

d) f:R—>R defined by f(x)=x*+4,xeR
7. Find f(x) if

a) f(x)=7x-6 d) f(x)=43_—xX 9) f(x)=-(x+2)"-1
2X—9 5x+3 2X

b) f(x)= e) f(x):1—2x h) f(x):m

0 f(x):l—g f) F(x)=x+1

2.6 Polynomials, zeros of polynomials, rational functions and their graphs

After completing this section, the student should be able to:

define polynomial and rational functions
apply the theorems on polynomials to find the zeros of polynomial functions

use the division algorithm to find quotient and remainder

apply theorems on polynomials to solve related problems

YV V VY V

sketch and analyze the graphs of rational functions
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The functions described in this section frequently occur as mathematical models of real-life
situations. For instance, in business the demand function gives the price per item, p, in terms of

the number of items sold, x. Suppose a company finds that the price p (in Birr) for its model
GC-5 calculator is related to the number of calculators sold, x (in millions), and is given by the
demand function p =80- x°.

The manufacturer’s revenue is determined by multiplying the number of items sold ( X) by the
price per item ( p ). Thus, the revenue function is

R = xp = x(80— x?) =80x — x°
These demand and revenue functions are examples of polynomial functions. The major aim of
this section is to better understand the significance of applied functions (such as this demand

function). In order to do this, we need to analyze the domain, range, and behavior of such
functions.

e Polynomial functions

Definition 2.15: A polynomial function is a function of the form

y=ax"+a X" +---+ax+a,, a, =0.
Each a, is assumed to be a real number, and n is a non-negative integer, a, is called the
leading coefficient. Such a polynomial is said to be of degree n.

Remark:
1. The domain of a polynomial function is always the set of real numbers.
2. (Types of polynomials)
- A polynomial of degree 1 is called a linear function.
- A polynomial of degree 2 is called quadratic function.
- A polynomial of degree 3 is called a cubic function.

i.e p(x)=a,x’+a,x* +a,x+a,, a, #0.

Example 2.32: p(x)=2x*+1, q(x)=+3x*+2x—xz and f(x)=2x° are examples of
polynomial functions.

e Properties of polynomial functions

1. The graph of a polynomial is a smooth unbroken curve. The word smooth means that the
graph does not have any sharp corners as turning points.
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2. If p is a polynomial of degree n, then it has at most n zeros. Thus, a quadratic
polynomial has at most 2 zeros.

3. The graph of a polynomial function of degree n can have at most n—21turning points.
Thus, the graph of a polynomial of degree 5 can have at most 4 turning points.

4. The graph of a polynomial always exhibits the characteristic that as |x| gets very large,

|y| gets very large.

e Zeros of a polynomial

The zeros of a polynomial function provide valuable information that can be helpful in sketching
its graph. One can find the zeros by factorizing the polynomial. However, we have no general
method for factorizing polynomials of degree greater than 2. In this subsection, we turn our
attention to methods that will allow us to find zeros of higher degree polynomials. To do this, we
first need to discuss about the division algorithm.

Division Algorithm
Let p(x) and d(x) be polynomials with d(x) =0, and with the degree of d(x) less than or

equal to the degree of p(x). Then there are polynomials q(x) and R(x) such that

p(x) =d(x).q(x) + R(x) , where either R(x) =0 or the degree of R(x) is less than degree

dividend divisor quotient  remainder

of d(x).

x* -1
Example 2.33: Divide —; :
X" +2X

Solution: Using long division we have
x> —2x+4
x° +2x> x* +0x3+0x* +0x+1

—(x*+2x%
—2x* +0x?
—(-2x° —4x?)
4x? +0x
—(4x* +8x)
-8x-1
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This long division means x* —1=(x* +2x).(x* —2x +4) +(-8x -1).
S —

dividend divisor quotient remainder

With the aid of the division algorithm, we can derive two important theorems that will allow us
to recognize the zeros of polynomials.
If we apply the division algorithm where the divisor, d(x), is linear (that is of the form x—r),

we get

p(x)=(x-n)ag(x)+R

Note that since the divisor is of the first degree, the remainder R, must be a constant. If we now
substitute X = r, into this equation, we get

P(r)=(r-r)g(r)+R=0-q(r)+R
Therefore, p(r)=R.

The result we just proved is called the remainder theorem.

The Remainder Theorem

When a polynomial p(x) of degree at least 1 is divided by X—r, then the remainder is p(r).

Example 2.34: The remainder when P(x) = x* —x* +3x—1 is divided by x—2 is p(2)=9.

As a consequence of the remainder theorem, if x—r is a factor of p(x), then the remainder must
be 0. Conversely, if the remainder is 0, then X—r, is a factor of p(x). This is known as the
Factor Theorem.

The Factor Theorem

X—r is a factor of p(x) ifandonlyif p(r)=0.

The next theorem, called location theorem, allows us to verify that a zero exists somewhere
within an interval of numbers, and can also be used to zoom in closer on a value.

Location theorem

Let f be a polynomial function and a and b be real numbers such that a<b. If
f (a) f (b) <0, then there is at least one zero of f between a and b.

The Factor and Remainder theorems establish the intimate relationship between the factors of a
polynomial p(x) and its zeros. Recall that a polynomial of degree n can have at most n zeros.
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Does every polynomial have a zero? Our answer depends on the number system in which we are
working. If we restrict ourselves to the set of real number system, then we are already familiar

with the fact that the polynomial p(x) = x* +1 has no real zeros. However, this polynomial does
have two zeros in the complex number system. (The zeros are i and —i). Carl Friedrich Gauss
(1777-1855), in his doctoral dissertation, proved that within the complex number system, every
polynomial of degree >1 has at least one zero. This fact is usually referred to as the

Fundamental theorem of Algebra.

Fundamental Theorem of Algebra

If p(x) is a polynomial of degree n>0whose coefficients are complex numbers, then p(x)
has at least one zero in the complex number system.

Note that since all real numbers are complex numbers, a polynomial with real coefficients also
satisfies the Fundamental theorem of Algebra. As an immediate consequence of the Fundamental
theorem of Algebra, we have

The linear Factorization Theorem

If p(x)=a,x"+a, X" +---+a,Xx+a,, where n>1 and a, =0, then

p(x)=a,(x—r) (x—r,)---(x—r,), where the r, are complex numbers (possible real and not

necessarily distinct).

From the linear factorization theorem, it follows that every polynomial of degree n>1 has
exactly n zeros in the complex number system, where a root of multiplicity k counted k times.

Example 2.35: Express each of the polynomials in the form described by the Linear
Factorization Theorem. List each zero and its multiplicity.

a) p(x)=x®-6x*-16x
b) q(x)=3x*-10x+8
c) f(x)=2x"+8x>+10x*
Solution:
a) We may factorize p(x) as follows:

p(x) = x* —6x* —16x= X(X* —6x—16)
=X(Xx=8)(x+2)
=X(x=8)(x—(-2))
The zeros of p(x) are 0, 8, and — 2 each of multiplicity one.
b) We may factorize q(x) as follows:
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q(x) =3x* —10x +8=(3x —4) (x-2)
~3(x- )(x-2)

Thus, the zeros of q(x) are % and 2, each of multiplicity one.

c) We may factorize f(x) as follows:
f(X)=2x" +8x>+10x* = 2x*(x* +4x+5)
=2x*(x=(=2+1)(x=(=2-1))

Thus, the zeros of f(x) are 0 with multiplicity two and —2+i and —2—i each with multiplicity
one.

Example 2.36:
1. Find a polynomial p(x) with exactly the following zeros and multiplicity.

zZeros multiplicity
-1 3
2 4
5 2

Avre there any other polynomials that give the same roots and multiplicity?
2. Find a polynomial f (x) having the zeros described in part (a) such that f(1) = 32.

Solution:
1. Based on the Factor Theorem, we may write the polynomial as:

pP()=(x=(-1)° (x-2)*(x-5)* = (x+1)° (x-2)*(x-5)*
which gives the required roots and multiplicities.
Any polynomial of the form kp(x), where k is a non-zero constant will give the same
roots and multiplicities.
2. Based on part (1), we know that f(x)=k(x+1)?*(x-2)*(x-5)°. Since we want
f(x) =32, we have
f(1)=k@+1)°*@1-2)*(1-5)
32=k(8)(1)(16) = k=1

Thus, f(x)=2(x+1)°*(x-2)*(x-5).

Our experience in using the quadratic formula on quadratic equations with real coefficients has
shown us that complex roots always appear in conjugate pairs. For example, the roots of

x> —2x+5=0 are 1+2i and 1—2i. In fact, this property extends to all polynomial equations
with real coefficients.
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Conjugate Roots Theorem

Let p(x) be a polynomial with real coefficients. If complex number a-+bi (where a and b
are real numbers) is a zero of p(x), then so is its conjugate a—bi.

Example 2.37: Let r(x) = x* + 2x* —9x? + 26x — 20. Given that 1—+/3 i is a zero, find the other
zero of r(x).

Solution: According to the Conjugate Roots Theorem, if 1—+/3 i is a zero, then its conjugate,
1++/3 i must also be a zero. Therefore, x—(1—~/3i)and x—(1++/3 i) are both factors of
r(x), and so their product must be a factor of r(x). That s,
[x—(l—\/§ i)] [x—(1+\/§ i)]= x> —2x+4is a factor of r(x). Dividing r(x) by x*-2x+4,
we obtain

r(x) = (x*> —2x +4)(x* + 4x = 5) = (x* = 2x + 4) (x + 5) (x - 1).
Thus, the zeros of r(x) are 1—+/3i, 1++/3i, =5 and 1.

The theorems we have discussed so far are called existence theorems because they ensure the
existence of zeros and linear factors of polynomials. These theorems do not tell us how to find
the zeros or the linear factors. The Linear Factorization Theorem guarantees that we can factor a
polynomial of degree at least one into linear factors, but it does not tell us how.

We know from experience that if p(x) happens to be a quadratic function, then we may find the

zeros of p(x) = Ax? + Bx +C by using the quadratic formula to obtain the zeros

~-B+,/B?-4AC

2A

X =

The rest of this subsection is devoted to developing some special methods for finding the zeros
of a polynomial function.

As we have seen, even though we have no general techniques for factorizing polynomials of
degree greater than 2, if we happen to know a root, say r, we can use long division to divide
p(x) by x—r and obtain a quotient polynomial of lower degree. If we can get the quotient
polynomial down to a quadratic, then we are able to determine all the roots. But how do we find
a root to start the process? The following theorem can be most helpful.

The Rational Root Theorem

Suppose that  f(x)=a,x"+a, X" +---+a,x+a,, where n>1, a =0 is an n"degree
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polynomial with integer coefficients. If g is a rational root of f(x)=0, where p and g have

no common factor other than 1, then p is a factor of a, and q is a factor of a, .

To get a feeling as to why this theorem is true, suppose g is a root of

a,x® +a,x* +ax+a, =0.

3 (3) . (3
Then, a{zj +a2(5) +a1(§)+ao =0 which implies that
27;‘3 +%+3—21+a0 0 multiplying both sides by 8
278, +18a, +128;, = —88,.....cces ceererre et s i, (D)
27a; =—18a, =128, —88,.....cccecovrriris i s (2)

If we look at equation (1), the left hand side is divisible by 3, and therefore the right hand side
must also be divisible by 3. Since 8 is not divisible by 3, a, must be divisible by 3. From

equation (2), a, must be divisible by 2.

Example 2.38: Find all the zeros of the function p(x) = 2x® +3x* —23x —12.

Solution: According to the Rational Root Theorem, if P is a rational root of the given equation,

q
then p must be a factor of —12 and g must be a factor of 2. Thus, we have

possible values of p: +1, £2, +3, +4, £6, £12
possible values of q: £1, £2

, 4,16, £12

N | w

. . 1
possible rational roots B: +1, iE, +2,+3, +
q

We may check these possible roots by substituting the value in p(x). Now p(1)=-30 and
p(-1) =12. Since p(1) is negative and p(—1) is positive, by intermediate value theorem, p(x)
has a zero between —1 and 1. Since P(-1)=0, then (x+1) is a factor of p(x). Using long
division, we obtain
P(X) = 2x* +3x* = 23x —12 = (X + 1)(2x* + 2x — 24)
=2(x+3)(x+4)(x-3)
Therefore, the zeros of p(x) are —%, —4 and 3.

e Rational Functions and their Graphs
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A rational function is a function of the form f(x)=% where both n(x) and d(x) are
X

polynomials and d(x) = 0.

. _ 5 2 3_ 1
Example 2.39: The functions f(x):i, f(x) = i 1 and f(x):x T2x° x4l
X+5 X -4 X +5x

examples of rational function.

Note that the domain of the rational function f(x) = % is {x:d(x) = 0}
X

3x—-5
x*—x-12°
Solution: The values of x for which x* —x-12=0 are excluded from the domain of f.Since
x> —x—12=(x-4)(x+3), we have Dom(f)={x:x=-34}. To find the zeros of f(x), we
solve the equation

Example 2.40: Find the domain and zeros of the function f (x) =

n(x) _ _
W_OQn(x)_O&q(x);tO

Therefore, to find the zeros of f(x), we solve 3x—-5=0, giving x = g Since 2 does not make

the denominator zero, it is the only zero of f(x).

The following terms and notations are useful in our next discussion.
Given a number a,

e X approaches a from the right means x takes any value near and near to a but x > a. This is
denoted by: x—a® (read: ‘x approaches a from the right’ ).

For instance, x— 1° means x can be 1.001, 1.0001, 1.00001, 1.000001, etc.

e X approaches a from the left means x takes any value near and near to a but x < a.
This is denoted by: x—a  (read: ‘x approaches a from the left’ ).
For instance, x—1" means x can be 0.99, 0.999, 0.9999, 0.9999, etc.

e Xx—oo (read: ‘x approaches or tends to infinity’) means the value of X gets indefinitely larger
and larger in magnitude (keep increasing without bound). For instance, x can be 10°, 10",
10" etc.

e X— —o (read: ‘x approaches or tends to negative infinity’) means the value of x IS negative
and gets indefinitely larger and larger negative in magnitude (keep decreasing without bound).
For instance, x can be —10°, —10%°, —10", etc.
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The same meanings apply also for the values of a function f if we wrote f(x)—o0 or f(x)—>—co.
The following figure illustrates these notion and notations.

A i
A f(x)—>o0, i
—>00 ’
Y Ty asx—a /! X)—>,
! aSX—»0
1
i
X—> —o0 x—a , x—oa' X—00 i y
— —>| e — | R
I X a >
a i
i
1
(X)_) —00, '
ly%—w asx——oo ! f(x)—> —o0, asx—a"

Fig. 2.1. Graphical illustration of the idea of x—a*, f(x)—, etc.

We may also write f(x)—>b (read: ‘f(x) approaches b’) to mean the function values, f(X),
becomes arbitrarily closer and closer to b (i.e., approximately b) but not exactly equal to b. For

instance, if f(x)= 1 , then f(x)—0 as x—x; i.e., Lis approximately 0 when x is arbitrarily large.
X X

The following steps are usually used to sketch (or draw) the graph of a rational function f(x).
1. Identify the domain and simplify it.

2. Find the intercepts of the graph whenever possible. Recall the following:
e y-intercept is the point on y-axis where the graph of y = f(x) intersects with the y-axis. At
this point x=0. Thus, y =f(0), or (0, f(0)) is the y-intercept if 0eDom(f).
e Xx—intercept is the point on x-axis where the graph of y = f(x) intersects with the x-axis. At
this point y=0. Thus, x=a or (a, 0) is x-intercept if f(a)=0.

3. Determine the asymptotes of the graph. Here, remember the following.

o Vertical Asymptote: The vertical line x=a is called a vertical asymptote(VA) of f(x) if
i) agdom(f), i.e., f is not defined at x=a; and
ii) f(x)—>o or f(x)—> —o when x—a" or x—»a . In this case, the graph of f is almost
vertically rising upward (if f(x)—>o0) or sinking downward (if f(x)—>—) along with the
vertical line x=a when x approaches a either from the right or from the left.

Example 2.41: Consider f(x)= % where a > 0 and n is a positive integer.

Obviously agDom(f). Next, we investigate the trend of the values of f(x) near a. To do this, we
consider two cases, when n is even or odd:
Suppose n is even: In this case (x —a)"> 0 for all xe®R\{a}; and since (x —a)" —0 as x—a" or

Xx—a . Hence, f(x)zﬁ—mO as x—>a' or x—>a . Therefore, x=a is a VA of f(x).
X—a
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Moreover, y= 1/a" or (0, 1/a") is its y-intercept since f(0)=1/a". However, it has no x-intercept
since f(x) >0 for all x in its domain (See, Fig. 2.2 (A)).

Suppose n is odd: In this case (x —a)™> 0 for all x>a and 1/ (x —a)" - when x—a" as in the
above case. Thus, x=a is its VA. However, 1/(x—a)"— —o when x—a_ since (x — a)"< 0 for x<a.
Moreover, y= —1/a" or (0, -1/a" ) is its y-intercept since f(0) = —1/a". However, it has no x-
intercept also in this case. (See, Fig. 2.2 (B)).

Note that in both cases, f(x)= ﬁ —0as X—»o00r X— —o0.
X—a
A A
y y
1/a"]
_/
: ~1/a" i
'x=a | x=a
VA | VA
Fig. 2.2 (A) Fig. 2.2 (B)

Remark: Let f(x) =% be a rational function. Then,
X

1. if d(a) =0and n(a) # 0, thenx=aisa VA of f .

2. if d(a) =0=n(a), then x=a may or may not be a VA of f. In this case, simplify f(x) and look
for VA of the simplest form of f.

e Horizontal Asymptote: A horizontal line y=b is called horizontal asymptote (HA) of f(x) if the
value of the function becomes closer and closer to b (i.e., f(x)—b)as x—o oras x— —o.

In this case, the graph of f becomes almost a horizontal line along with (or near) the line y=b

as Xx—oo and as x—»>—o.  For instance, from the above example, the HA of f(x)= ( ! v is
X—a

y=0 (the x-axis) , for any positive integer n (See, Fig. 2.2).

Remark: A rational function f(x) = % has a HA only when degree(n(x)) <degree(d(x)).
X

In this case, (i) If degree(n(x)) <degree(d(x)), then y =0 (the x-axis) is the HA of f.
ax"+a X"+ +aX+a,

(1) 17 degree(n(x)) =degree(d())=n. te.. 1) =y - +hxrb,
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theny = % is the HA of f.

e Oblique Asymptote: The oblique line y=ax+b, a=0, is called an oblique asymptote (OA) of f
if the value of the function, f(x), becomes closer and closer to ax+b(i.e., f(xX) becomes
approximately ax+b) as either x—o or x— —o. In this case, the graph of f becomes almost a
straight line along with (or near) the oblique line y=ax+b as x—o and as x— —o.

Note: A rational function f(x) = ") has an OA only when degree(n(x)) = degree(d(x)) + 1. In
() 10
X

this case, using long division, if the quotient of n(x) +d(x) is ax +b, then y=ax+b isthe OA of
f.
X+2 x* +3x+2

Example 2.42: Sketch the graphs of (a) f(x):—1 (b) g(x)= )
X— X2 —

Solution: (a) Since x-1=0 atx=1, dom(f) = R\{1}.

e Intercepts: y-intercept: x=0 =y=f (0) =-2. Hence, (0, —2) is y-intercept.
x-intercept: y=0 =x+2=0 =x=-2. Hence, (-2, 0) is x-intercept.
e Asymptotes:
» VA: Since x-1=0 atx=1 and x+2+0 at x=1, x=1is VA of f. In fact, if x>1", then x+2
~3 but the denominator x—1 is almost 0 (but positive).
Consequently, f(x)—>o as x—1".
Moreover, f(x)— —as x—1" (since, if x—>1" then x-1 is almost 0 but negative ) .

(So, the graph of f rises up to +oo at the right side of x=1, and sink down to —co at the left

side of x=1)
= HA: Note that if you divide x+2 by x—1, the quotient is 1 and remainder is 3. Thus,
F)=2"2_14-3  Thus, if x—»0 (or x> ), then —— 0 50 that f(x)>1.
x—-1 x—-1 x—-1

Hence, y=1 is the HA of f.
Using these information, you can sketch the graph of f as displayed below in Fig. 2.3 (A).

(b) Both the denominator and numerator are 0 at x=1. So, first factorize and simplify them:
X2+3x+2=(x+2)(x+1) and x*-1= (x-1)( x+1) . Therefore,
X +3x+2 _ (x+2)(x+1) ot 1
=1 (x-Dx+T)
X+ 2
Cox-1"
This implies that only x=1 is VA.

9(x) =

(So, dom(g) = R\Y1,-1})
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Hence, the graph of g(x) :XLi, x #—1, is exactly the same as that of f(x)= XL? except

X— X—

that g(x) is not defined at x= —1. Therefore, the graph of g and its VA are the same as that of f
except that there should be a ‘hole’ at the point corresponding to x= —1 on the graph of g as
shown on Fig. 2.3(B) below.

A A

y=1 (HA) 5 y=1 |
N , 1 ,
) ! g —2\0'\ g

™ ; /AN

'x=1 ‘hole’ 1x=1
VA atx=-1 !
- X+2 X* +3X+2  X+2
Fig2.3 (A) f(x) = 1 (B)g(x) = 1 "y 1 X#=-1

Exercise 2.6

1.

Perform the requested divisions. Find the quotient and remainder and verify the
Remainder Theorem by computing p(a).

a) Divide p(x) = x*-5x+8 by x+4

b) Divide p(x) =2x>-7x*+x+4 by x—4

¢) Divide p(x)=1-x* by x-1

d) Divide p(x) =x>—-2x*—-3 by x+1

Given that p(4) =0, factor p(x) = 2x® —11x? +10x + 8 as completely as possible.

Given that r(x) = 4x® —x* —36x+9 and r(1)=0, find the remaining zeros of r(x).
Given that 3 is a double zero of p(x) = x* —3x® —19x* +87x—90 , find all the zeros of
p(x).

a) Write the general polynomial p(x) whose only zeros are 1, 2 and 3, with multiplicity

3, 2 and 1 respectively. What is its degree?
b) Find p(x) described in part (a) if p(0)=6.

If 2—3i isarootof p(x)=2x>—-5x*+14x + 39, find the remaining zeros of p(x).

7. Determine the rational zeros of the polynomials
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a) p(x)=x®-4x>-7x+10
b) p(x) =2x®-5x*-28x+15
c) p(x)=6x>+x*—4x+1
8. Find the domain and the real zeros of the given function.

3 X-3 (x—3)? x? -16
a) f(x)= b) g(x)=——— ¢) f(X)=———— d) f(X)=
Y x? -25 ) 909 x24x —12 ) T x® —3x% + 2x ) T x> +4
9. Sketch the graph of
2 2
a) f(x) = =X ) f0=""  grm=ts2 &) Fx)=—
X—3 X X —4
. . x> —8x-3 .
10. Determine the behavior of f(x) :—3 when X is near 3.

11. The graph of any rational function in which the degree of the numerator is exactly one
more than the degree of the denominator will have an oblique (or slant) asymptote.
a) Use long division to show that

x> —X+6 8
=f(X)=—=x+1+—
y () X—2 X—2
b) Show that this means that the line y = x+1 is a slant asymptote for the graph and

sketch the graph of y = f(x).

2.7 Definition and basic properties of logarithmic, exponential, and
trigonometric functions and their graphs

After completing this section, the student should be able to:

define exponential, logarithmic and trigonometric functions

understand the relationship between exponential and logarithmic functions

sketch the graph of exponential, logarithmic, and trigonometric functions

use basic properties of logarithmic, exponential and trigonometric functions to solve
problems

YV VYV

e Exponents and radicals

Definition 2.16: For a natural number n and a real number x, the power X", read « the n"
power of X or “X raised to n”, is defined as follows:

n

X = XeXooono X
%/_J
n factorseach equal to x

In the symbol x", x is called the base and n is called the exponent.
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For example, 2° =2x2x2x2x2=32.

Based of the definition of x", n must be a natural number. It does not make sense for n to be
negative or zero. However, we can extend the definition of exponents to include 0 and negative
exponents.

Definition 2.17: (Zero and Negative Exponents)

Definition of zero Exponent Definition of Negative Exponent
x° =1 (x#0) x‘“:in (x=0)
X

Note: 0° is undefined.

o 1 .
As a result of the above definition, we have — = x". We have the following rules of exponents
X

for integer exponents:

Rules for Integer Exponents

1. x"-x"=x"" 4. (xy)" =x"y"
2. (x")"=x" 5.X—m=x”’m
X
x) X"
3. | =] == (y=0)
5=

Next we extend the definition of exponents even further to include rational number exponents.
To do this, we assume that we want the rules for integer exponents also to apply to rational
exponents and then use the rules to show us to define a rational exponent. For example, how do

. 1 . 1
we define a2 ? Consider 9:.

If we apply rule 2 and square 9%, we get (9%)2 =9: =9, Thus, 9° is a number that, when
squared, yields 9. There are two possible answers: 3 and — 3, since squaring either number will

yield 9. To avoid ambiguity, we define a: (called the principal square root of a) as the non-

negative quantity that, when squared, yield a. Thus, 9: =3,

We will arrive at the definition of a° in the same way as we did for a:. For example, if we cube

8%, we get (8%)3 -8 =8, Thus, 8 is the number that, when cubed, yields 8. Since 2° =8 we
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have 8% =2. Similarly, (—27)% =-3. Thus, we define as (called the cube root of a) as the
quantity that, when cubed yields a.

Definition 2.18: (Rational Exponent a%)
If n is an odd positive integer, then a" =b ifand only if b" =a

If n is an even positive integer and a>0, then a" = lb| if and only if b" =a

1 . . 1., . .
We call a" the principal n" root of a. Hence, a" is the real number (nonnegative when n is

even) that, when raised to the n™ power, yields a . Therefore,
(16): =4 since 42 =16
(-125): = -5 since (-5)® =-125

(1)1 1. 11
— | =Zsince [ = | ==
81) 3 3) 81

27¢ =3 since 3° =27
(~16)¢ is not a real number
Thus far, we have defined a%, where n is a natural number. With the help of the second rule for

exponent, we can define the expression a", where m and n are natural numbers and o is
reduced to lowest terms.

Definition 2.19: (Rational Exponent a%)

If a~ is a real number, then a" =(a$)n(i-e- the n root of a raised to the m* power)

We can also define negative rational exponents:

a’ = (a=0)
a?
Example 2.43: Evaluate the following
a) 27° b) 36 ¢) (-32)

Solution: We have
g 27 =7f =3 =9
1

b) 36F =t -1
36: 6
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1 _ 1 _ 1 =_1
(—32)% ((_32)%)3 (-2 8

Radical notation is an alternative way of writing an expression with rational exponents. We

0) (-32)°=

define for real number a, the n" root of a as follows:

Definition 2.20 (n™ root of a): ¥a = a", where n isa positive integer.

The number ¥a is also called the principal n™ root of a. If the n™ root of a exists, we have:
For a areal number and n a positive integer,

W_{|a|, if niseven

a, if nisodd

For example, 3/5° =5 and 4/(-3)* =3.

e Exponential Functions

In the previous sections we examined functions of the form f(x)=x", where n is a constant.

How is this function different from f(x)=n".

Definition 2.21: A function of the form y= f(x)=b*, where b>0 and b#1, is called an
exponential function.

Example 2.44: The functions f(x)=2", g(x)=3* and h(x):(%j are examples of

exponential functions.

As usual the first question raised when we encounter a new function is its domain. Since rational
exponents are well defined, we know that any rational number will be in the domain of an

exponential function. For example, let f(x) =3". Then as X takes on the rational values x =4,
-2, 3 and ¢, we have

f(4)=3"=3.3.3.3=81 f(-2)=3°=%=%
f()=3 =43 f(4) =3 =3/3* =%/81
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Note that even though we do not know the exact values of V3 and ¥/81, we do know exactly
what they mean. However, what about f(x) for irrational values of x? For instance,

f(J2)=3"7%=2

We have not defined the meaning of irrational exponents. In fact, a precise formal definition of
b* where x is irrational requires the ideas of calculus. However, we can get an idea of what 3”2
should be by using successive rational approximations to V2 . For example, we have

1.414<+/2 <1.415

Thus, it would seem reasonable to expect that 3 <3'2 <3 Since 1.414 and 1.415 are
rational numbers, 3"*** and 3'** are well defined, even though we cannot compute their values

by hand. Using a calculator, we get 4.7276950< 32 <4.7328918. If we use better
approximations to /2, we get 3'*%<3%2 <3 Using a calculator again, we get
4.7287339< 3" < 4.7292535, Computing 3“2 directly on a calculator gives 3*2 ~4.7288044.
This numerical evidence suggests that as x approaches V2, the values of 3* approach a unique

real number that we designate by 3¥2, and so we will accept without proof, the fact that the
domain of the exponential function is the set of real numbers.

The exponential function y =b*, where b>0 and b1, is defined for all real values of x.
In addition all the rules for rational exponents hold for real number exponents as well.

Before we state some general facts about exponential functions , let’s see if we can determine
what the graph of an exponential function will look like.

Example 2.45:
1. Sketch the graph of the function y =2* and identify its domain and range.

Solution: To aid in our analysis, we set up a short table of values to give us a frame of

reference.

X y

-3 2% =1
-2 27 =1
-1 2t=1
0 20 =1
1 2t=2
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With these points in hand, we draw a smooth curve through the points obtaining the graph
appearing above. Observe that the domain of y =2" is IR, the graph has no X —intercepts, as

X — +0, the y values are increasing very rapidly, whereas as x — —o, the y values are getting
closer and closer to 0. Thus, x—axis is a horizontal asymptote, the y — intercept is 1 and the

range of y =2" is the set of positive real numbers.

2. Sketch the graph of y = f(x) =Gj .

Solution: It would be instructive to compute a table of values as we did in example 1 above (you

are urged to do so). However, we will take a different approach. We note that
y= f(x):(%] :2—1X:2‘X. If f(x)=2",then f(—x)=27". Thus by the graphing principle for

f (—x), we can obtain the graph of y =27" by reflecting the graph of y =2* about the y —axis.

A

\-\——>

19 1 X

Here again the x —axis is a horizontal asymptote, there is no x —intercept, 1 is y — intercept and
the range is the set of positive real numbers. However, the graph is now decreasing rather than
increasing.

The following box summarizes the important facts about exponential functions and their graphs.
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The Exponential function y = f(x) =b”*

1. The domain of the exponential function is the set of real numbers
2. The range of the exponential function is the set of positive real numbers

3. The graph of y=Db* exhibits exponential growth if b>1 or exponential decay if

O<b<1.
4. The y—interceptis 1.

5. The X —intercept is a horizontal asymptote

6. The exponential function is 1 — 1. Algebraically if b* =

bY, then x=1y

Example 2.46: Sketch the graph of each of the following. Find the domain, range, intercepts, and

asymptotes.

a) y=3"+1 b) y=3"

Solution:

c) y=-9"+3

a) To get the graph of y=3"+1. We start with the graph of y =3, which is the basic

exponential growth graph, and shift it up 1 unit.

y=3"+1

10

A From the graph we see that

Dom(f)="R

Range(f)=(1,)

The y —intercept is 2

The line y=1 is a horizontal
asymptote

b) To get the graph of y =3**", we start with the graph of y =3, and shift 1 unit to the left.

y:3x+l

v
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4 From the graph we see that

Dom(f)=%R

Range( f) = (0,)

The y —interceptis 3

The line y=0 is a horizontal
asymptote




c) To get the graph of y=-97" +3, we start with the basic exponential decay y=9". We
then reflect it with respect to the x —axis, which gives the graph of y=-97". Finally,
we shift this graph up 3 units to get the required graph of y=-97"+3.

A A

A y y
y
(_119)A """" T y= 3 3
2N
: y=-9"+43
1
g _1| |-

From the graph of y=-9""+3, we can see that Dom(h) =%, Range(h) = (—x,3), the line
y =3 is a horizontal asymptote, 2 is the y —intercept and x =—3 is the X —intercept.

Remark: When the base b of the exponential function f(x)=b* equals to the number e,
where e =2.7182-- -, we call the exponential function the natural exponential function.

e Logarithmic Functions

In the previous subsection we noted that the exponential function f(x)=b* (where b>0 and
b=1) is one to one. Thus, the exponential function has an inverse function. What is the inverse
of f(x)=b*?

To find the inverse of f(x)=b", let’s review the process for finding an inverse function by
comparing the process for the polynomial function y = x* and the exponential function y = 3*.
Keep in mind that x is our independent variable and y is the dependent variable and so
whenever possible we want a function solved explicitly for vy .

To find the inverse of y = x° To find the inverse of y =3*
y=x° Interchange x and y y=3" Interchange x and y
x=y° solve for y x=3"  solve for y

y = 3/x y="7??
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There is no algebraic procedure we can use to solve x=3" for y. By introducing radical
notations we could express the inverse of y=x* explicitly in the form yzi/;. In words,
y®=x and y:i/; both mean exactly the same thing: y is the number whose cube is x.

Similarly, if we want to express x =3” explicitly as a function of x, we need to invent a special
notation for this. The key idea is to take the equation x =3” and express it verbally.

x =3 means y is the exponent to which 3 must be raised to yield x

We introduce the following notation, which expresses this idea in a much more compact form.

Definition 2.22: For b>0 and b=1, we write y =1log, x to mean Yy is the exponent to
which b must be raised to yield Xx. In other words,
x=b¥ < y=log, x

Weread y =log, x as “y equals the logarithm of X to the base b .
REMEMBER: y =log, x is an alternative way of writing x =b”

When an expression is written in the form x =b”, it is said to be in exponential form. When an
expression is written in the form y =log, x, it is said to be in logarithmic form. The table below
illustrates the equivalence of the exponential and logarithmic forms.

Exponential form | Logarithmic form
4% =16 log,16=2
2 =16 log,16=4
5° =L log, 5s =3
6 = J6 log, V6 = 2
7° =1 log,1=0
Example 2.47:
1. Write each of the following in exponential form.
a) Iogsé =-2 b) l0g,s 2 =7

Solution: We have  a) log,® = —2 means 3 =1.
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2.

b) log,,2=% means 16 =2
Write each of the following in logarithmic form.
a) 107 =0.001 b) 27 =9

Solution: We have  a)10~° =0.001 means log,,0.001=-3

b) 27¢ =9 meanslog,, 9 —2
Evaluate each of the following.
a) log,81 b) log, &

Solution:

a) To evaluate log,81, we let t =10g,81, and then rewrite the equation in exponential

form, 3' =81. Now, if we can express both sides in terms of the same base, we can
solve the resulting exponential equation, as follows:

Let t=1og,81 Rewrite in exponential form
3'=81 Express both sides in terms of the same base
3' =3 Since the exponential functionis 1 -1
t=4

Therefore, log,81=4.
b) We apply the same procedure as in part (a).

Let t=10g, & Rewrite in exponential form
8 =4 Express both sides in terms of the same base
8' =87 Since the exponential functionis1 -1
t=-2

Therefore, log, & =—-2.

As was pointed out at the beginning of this subsection, logarithm notation was invented to
express the inverse of the exponential function. Thus, log, X is a function of x. We usually

write f(x)=1log, x rather than writing f(x)=1og,(x) and use parenthesis only when needed to
clarify the input to the log function. For example,

If f(x)=log,(4—x), then f(-1)=Ilog,(4—-(-1))=1Ilog,5=1, whereas if f(x)=4-log, X,
then f(-1) =4-log,(-1), which is undefined.

Example 2.48: Given f(x)=1log, x , find
a)

f(25) b) f(L) ¢) (0) d) f(~125)
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Solution:
a) f (25) = log, 25=2 (since 5% = 25)
by  f(%)=log,£=-2 (since 5% =1)
C) f(0) =log. 0 is not defined (what power of 5 will yield 0?). We say that 0 is not in
the domain of f .

d) f (-125) =log,(-125) is not defined (what power of 5 will yield -125?). We say that -
125 is not in the domain of f .

Acknowledging that the logarithmic and exponential functions are inverses, we can derive a
great deal of information about the logarithmic function and its graph from the exponential
function and its graph.

Example 2.49: Sketch the graph of the following functions. Find the domain and range of each.
a) y =log, X b) y=log, x

Solution: a) Since y =log, x is the inverse of y =3, we can obtain the graph of y =log, x by
reflecting the graph of y =3* about the line y = x, as shown below.

yl

-— -

b) To get the graph of y =1log, x, we reflect the graph of y = (l)X about the line y = xas

2

shown below.
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Taking note of the features of the two graphs we have the following important informations
about the graph of the log function:
The Logarithmic Function y = log, x

Its domain is the set of positive real numbers

Its range is the set of real numbers.

Its graph exhibits logarithmic growth if b >1 and logarithmic decay if 0<b<1.
The x — interceptis 1. There is no y — intercept.

5. The y—axis is a vertical asymptote.

Example 2.50:
1. Sketch the graph of f(x)=1+log,(x—2). Find the domain, range, asymptote and

A owdeE

intercepts.
Solution: We can obtain the graph of y=1+log,(x—2) by applying the graphing
principle to shift the basic I?/gﬁrithmic growth graph 2 units to the right and 1 unit up.

/=1+ 10g:(x-2)

[ SRR N
+ ' / >

3 X

We have Dom(f)={x:x>2}, Range(f)=R and the graph has the line x=2 as a
vertical asymptote. To find the intercept, we set y =0 and solve for x. Setting y=0
and solving for x, we will obtain x =Z. Thus, the X —interceptis %.

2. Find the inverse function for
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a) y="Ff(x)=3"+4 b) y =g(x) =log,(x -2)

Solution: Following the procedure for finding an inverse function, we have
(@ y=3"+4 Interchange x and y (b) y=1log,(x—2) Interchange x and y

x=3"+4 solve explicitly for y X =10g,(y—2) Write in logarithmic form
x—4=3" Write in logarithmic form y—-2=3" solve explicitly for y
y =log;(x—4) y=3"+2

Thus, f*(x)=log,(x—4) Thus, g7 (x)=3" +2

The following table contains the basic properties of logarithm:

Properties of logarithm
Assume that b,u and v are positive and b=1. Then
1. log, (uv) =log, u+log, v
In words, logarithm of a product is equal to the sum of the logs of the factors.
2. log, (%) =log,u—log, v
In words, the log of a quotient is the log of the numerator minus the log of the
denominator.
3, Iogb(ur)z rlog, u
In words, the log of a power is the exponent times the log.
4. log, (b*) = xlog, b=x

5. b'Ong =X
Example 2.51:
1. Express in terms of simpler logarithms.
a) 10g, (x°y) b) log, (x + y) 0) log, %)
Solution:

a) log, (x*y) =log, x* +log, y =3log, x+log, y
b) Examining the properties of logarithms, we can see that they deal with log of a
product, quotient and power. Thus, log,(x®+Yy) which is the log of a sum cannot be

simplified using log properties.
c) We have
1 1
|09b(g): log, \/X_y—|09b(23) =log, (xy): —3log, z = §(|09b x+log, y)-3log, z.

2. Show that log, 5 =—log, 2.
Solution: We have log, 3+ =log,1-log,2=0-1log, 2=—log, 2.
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The logarithmic function was introduced without stressing the particular base chosen. However,
there are two bases of special importance in science and mathematics, namely, b=10 and b=e.

Definition 2.23: (Common Logarithm)
f(x) =log,, x is called the common logarithm function. We write log,, x = logx.

The inverse of the natural exponential function is called the natural logarithmic function and has
its own special notation.

Definition 2.24: (Natural Logarithm)
f (x) =log, x is called the natural logarithmic function. We write log, x =Inx..

Example 2.52:
1. Evaluate 1091000

Solution: Let a =10g1000. Then, a = log,;1000=log,,(10%) = 3.

2. Find the inverse function of f(x)=e" +1.

Solution: Let y=e"+1 Interchange x and y
x=e’+1 Solve for y
x—1=¢’ Rewrite in logarithmic form
y=In(x-1)

Thus, f(x)=In(x-1).
e Trigonometric functions and their graphs

For the functions we have encountered so far, namely polynomial, rational and exponential
functions, as the independent variable goes to infinity the graph of each of these three functions
either goes to infinity(very quickly) for exponential functions or approaches a finite horizontal
asymptote. None of these functions can model the regular periodic patterns that play an
important role in the social, biological, and physical sciences: business cycles, agricultural
seasons, heart rhythms, and hormone level fluctuations, and tides and planetary motions. The
basic functions for studying regular periodic behaviour are the trigonometric functions. The
domain of the trigonometric functions is more naturally the set of all geometric angles.

Angle Measurement

An angle is the figure formed by two half-lines or rays with a common end point. The common
end point is called the vertex of the angle.
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In forming the angle, one side remains fixed and the other side rotates. The fixed side is called
the initial side and the side that rotates is called the terminal side. If the terminal side rotates in a
counter clockwise direction, we call the angle positive angle, and if the terminal side rotates in a
clockwise direction, we call the angle negative angle.

> Terminal Side

Initial Side

What attribute of an angle are we trying to measure when we measure the size of an angle? A
moment of thought will lead us to the conclusion that when we measure an angle we are trying to
answer the question: Through what part of a complete rotation has the terminal side rotated?

We will use degree (°) as the unit of measurement for angles. Recall that the measure of a full
round angle (full circle) is 360°, straight angle is 180°, and right angle is 90°.

An alternative unit of measure for angles which will indicate their size is the radian measure. To
see the connection between the degree measure and radian measure of an angle, let us consider
an angle & and draw a circle of radius r with the vertex of & at its center O. Let S represent
the length of the arc of the circle intercepted by 26 (as shown below).

Basic geometry tells us that the central angle & will be the same fractional part of one complete
rotation as s will be of the circumference of the circle. For example, if @ is & of a complete

rotation, then s will be 5 of the circumference of the circle. In other words, we can set up the

following proportion:
0 3 S s
1completerotation circumference of circle 2ar
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Thus, we have the following conversion formula:
@indegrees @inradians

180° Va
Example 2.53:
1. Convert each of the following radian measures to degrees.
a) % b) %

Solution: a) By the conversion formula, we have i =2, which implies that 8 =30°.

&

T
0 i

b) Again using the conversion formula, we get 80 - -2 which implies that & =108".

2. Convert to radian measures
a) 90° b) 270°
Solution: a) Let @ represent the radian measure of 90°. Using the conversion formula, we

obtain: Qzﬂ which implies that 6 =T
7 180 2

b) Rather than using the conversion formula, we notice that 270° = 3(90°). In part (a) we found

that 90° = % and so we have 270" = 37”

To define the trigonometric functions, we will view all angles in the context of a Cartesian
coordinate system: that is, given an angle &, we begin by putting & in standard position,
meaning that the vertex of & is placed at the origin and initial side of & is placed along the

positive x —axis. Thus the location of the terminal side of @ will, of course, depend on the size
of 6.

A Y A Y
P(x.,y)

A

v

v v

We then locate a point (other than the origin) on the terminal side of @ and identify its
coordinates (X, y) and its distance to the origin, dented by r. Then, r is positive.
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With @ in standard position, we define the six trigonometric functions of & as follows:

Definition 2.25
Name of function Abbreviation Definition
Sine @ sing siné?z%
. X
Cosine @ cosé@ cosd = ?
Tangent @ tan@ tané = %
Cosecant @ cscé cscl = 5
Secant @ secd secd = £
Cotangent & cotg cotd = %

: . . s . : .

Recall that the radian measure of an angle is defined as 6 = P where & is angle in radians

S is the length of the arc intercepted by & and r is the length of the radius. Since S and r are
both lengths, the quotient ; is a pure number without any units attached. Thus, any angle can be

interpreted as a real number. Conversely, any real number can be interpreted as an angle. Thus,
we can describe the domains of the trigonometric functions in the frame work of the real number
systems. If we let f(8) =siné, the domain consists of all real numbers @ for which sin@ is

defined. Since sing = % and r is never equal to zero, the domain for sin@ is the set of all real

numbers. Similarly, the domain of f(8)=cosé = % is also the set of all real numbers.
e The graph of y=siné

To analyze f(8)=sind, we keep in mind that once we choose a real number &, we draw the

angle, in standard position, that corresponds to & . To simplify our analysis, we choose the point

(X,y) on the terminal side so that r =1. That is, (x,y) is a point on the unit circle
A

x* +y? =1. Note that sinez%:y. 0,1
(xy)

)

(-1,0)&}/(1,0)

(O!'l)

A

v




As the terminal side of & moves through the first quadrant, y increases from 0 (when 6 =0) to
1(when & =1%). Thus, as _, increases from0to %, y =sin@ steadily increases from 0 to 1.
As @ increases from % to 7, y =siné decreases form 1 to 0. A similar analysis reveals that as

@ increases from 7 to ¥, sin@ decreases from 0 to — 1; and as & increases from ¥ to 27,
sin@ increases from —1to 0.

Based on this analysis, we have the graph of f () =sin@ in the interval [0,27] as show below.

/y:sinx

1+ X

‘L_.l

14

Since the values of f (&) =sin& depend only on the position of the terminal side, adding or
subtracting multiples of 2z to @ will leave the value of f (&) =siné unchanged. Thus, the
values of f (&) =sind will repeat every 2 units. The complete graph of f (&) =siné appears
below.

~A_ AN A,
AN O

The graph of y =sinx, which is called the basic sine curve.

e Thegraphof y=cosé
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Applying the same type of analysis to f (8) =cosé, we will able to get a good idea of what its

graph looks like. The figure below shows the angle corresponding to & as it increases through
quadrant I, I1, 111 and 1V.

L X :
Keeping in mind that cosé = 1 X, we have the following:

. As @ increases from0to %, x=cosé decreases from 1 to 0.

. As @ increases from Z to 7, x =cosd decreases from 0 to — 1.

1
2
3. As @ increases from 7 to 3£, x =cosé increases from -1 to 0.
4

. As @ increases from £ to 2, x =c0s@ increases from 0 to 1.
2

Based on this analysis, we have the graph of f(8)=cosé as shown below:

~_ A A AL
ar \/ \/‘ll \/ \_/ M

e Thegraphof y=tané

Since tan @ = Y is undefined whenever x =0, tan @ is undefined whenever the terminal side of

X
the angle corresponding to @ falls on the y —axis. This happens for & = %, to which we can add
or subtract any multiple of 7 that will again bring the terminal side back to the y —axis. Thus,
domain of tan@ is {0:0 = Z+nx}, where n is an integer.
1. As@ increases from 0to %, X decreases from 1to 0and y increases from O to 1;
therefore, tan@ =~ increases from 0 to oo.
2. As 0 increases from 5 to 7, X decreases from0Oto—1 and y decreases from 1 to 0;
therefore, tan@ =~ increases from —oo to 0.
3. As @ increases from 7 to 3£, X increases from —1to0and y decreases from 0 to — 1;
therefore, tan@ == increases from 0 to «.
4. As @ increases from ¥ to 2z, X increases from 0 to 1and y increases from —1 to 0;

therefore, tan@ =< increases from —oo to 0.

X

A
You may want to add some more specific vplues to this analysis. In any case, we get the

following as the graph of the tangent functipn.
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YA

Vv =tan x

Definition 2.26: (Periodic function)
A function y = f(x) is called periodic if there exists a number p such that f(x+ p)= f(x)
for all X in the domain of f . The smallest such number p is called the period of the function.

A periodic function keeps repeating the same set of y —valuesover and over again. The graph of

a periodic function shows the same basic segment of its graph being repeated. In the case of sine
and cosine functions, the period is 27 . The period of the tangent function is .

Definition 2.27: (Amplitude of a periodic function)
The amplitude of a periodic function f(x) is

A= %[ maximum value of f (x)—minimum value of f(x)]

Thus, the amplitude of the basic sine and cosine function is 1.

The portion of the graph of a sine or cosine function over one period is called a complete cycle
of the graph. In other words, the minimal portion of a sine or cosine graph that keeps repeating
itself is called a complete cycle of the graph.

Definition 2.28: (Frequency of a periodic function)

The number of complete cycles a sine or cosine graph makes on an interval of length equal to
27 is called its frequency.

The frequency of the basic sine curve y =sinx and the basic cosine curve y =cosxis 1,
because each graph makes 1 complete cycle in the interval [0,27].

If a sine function has period of % (see the figure below), then the number of complete

cycles its graph will make in an interval of length 27 is 27 =4,

%
New N\ N\
vvvv

A




Thus if a sine function has a period of %, its frequency is 4 and its graph will make 4 complete
cycles in an interval of length 2.

Example 2.54: Sketch the graph of y =sin2x and find its amplitude, period and frequency.

Solution: We can obtain this graph by applying our knowledge of the basic sine graph. For the
basic curve, we have

sin0=0 sinz=1 sinz=0 sin¥=-1  sin2z=0
These quadrantal values serve as guide points, which help us draw the graph. To obtain similar
guide points for y =sin2x, we ask for what values of X is

2x=0 2x =% 2X =7 2x =3¢ 2X =21
and we get
x=0 X=2Z X=% Xx=3 X=rm

Thus, y =sin2x will have the values 0, 1,0, —1,0at x=0,%,%,3%, and 7, respectively. The
graph of y =sin2x will thus complete one cycle in the interval [0, 7], and will repeat the same
values in the interval [z,27].

A

Y

A

v

From this graph we see that y =sin2x has an amplitude of 1, a period 7, and a frequency of 2.

For convenience we summarize our discussion on the domains of the trigonometric functions in
the table.
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1. f(x)=sinx Domain = All real numbers

2. f(x)=cosx Domain = All real numbers

3. f(x)=tanx Domain ={X: X # Z+nrx}

4. f(x)=cscx Domain = {x:x=nx}

5. f(x)=secx Domain = {X: X # % +n7x}

6. f(x)=cotx Domain = {x: x #nx}
where n is an integer

We have the following trigonometric identities
1. sin®x+cos’x=1
2. tan®x+1=sce’x
3. l+cot®x=csc’x

Exercise 2.7
1. Find the domain of the given function.
a) f(x)=6iX b) g(x)=v3" +1 c) h(x)=v2" -8 d) f(x)=23X—12
2. Sketch the graph of the given function. Identify the domain, range, intercepts, and
asymptotes.
a) y=5" b) y=9-3 c) y=1-e~* d) y=e*?

3. Solve the given exponential equation.
a) 2X—l =8 b) 32X — 243 C) 8X =\/§ d) 163a—2 :%
4, Let f(x)=2".Showthat f(x+3)=8f(x).

5. Let g(x)=5". Show that g(x—2):%g(x).

6.  Let f(x)=3*.Show that f(x+22)— ) =4(3).

7. Evaluate the given logarithmic expression (where it is defined).
a) log, 32 c) log,(-9) e) log;(log, 243)
b) log, 9 d) log, - f) 21005

©

If f(x)=1log,(x*—-4),find f(6) and the domain of f .
9. If g(x)=log,(x*—4x+3),find f(4) and the domain of g.
10.  Show that log, x = —log, x
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11.

12.

13.
14.

15.

16.

17.

18.

Sketch the graph of the given function and identify the domain, range, intercepts and
asymptotes.

a) f(x)=log,(x-3) b) f(x)=-3+log,x c) f(x)=-log,(—x) d) f(x)=3log;x

Find the inverse of f(x)=e®™,

Let f(x)= e”* . Find a function so that (fog)(X)=(geo f)(x)=x.
Convert the given angle from radians to degrees
a) % b) -5 ) —%
Convert the given angle from degrees to radians
a) 315 b) —40° c) 330°
Sketch the graph of
a) f(0)=seco c) f(@)=csco e) f(@)=cotd
b) f(x)=1+cosx d) f(x)=sin(x+%) f) f(x)=tan2x
Verify the following identities:

a) (sinx—cosx)(cscx +secx) = tan X —cotx
b) sec’ x—csc® x = tan® x —cot’ x
Given tanéd =5 and sind <0, find cosé.
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Chapter Three

Matrices, Determinant and Systems of Linear Equation

Matrices, which are also known as rectangular arrays of numbers or functions, are the main
tools of linear algebra. Matrices are very important to express large amounts of data in
an organized and concise form. Furthermore, since matrices are single objects, we denote
them by single letters and calculate with them directly. All these features have made matri-
ces very popular for expressing scientific and mathematical ideas. Moreover, application of
matrices are found in most scientific fields; such as economics, finance, probability theory
and statistics, computer science, engineering, physics, geometry, and other areas.

Main Objectives of this Chapter
At the end of this chapter, students will be able to:-

* Understand the notion of matrices and determinants
* Use matrices and determinants to solve system of linear equations

* Apply matrices and determinants to solve real life problems

3.1 Definition of Matrix

Consider an automobile company that manufactures two types of vehicles, Trucks and
Passenger cars in two different colors, red and blue. The company’s sales for the month of
January are 15 Trucks and 20 Passenger cars in red color, and 10 Trucks and 16 Passenger
cars in blue color. This data is presented in Table 1.

Table 1
Trucks Passenger Cars
Red 15 20
Blue 10 16

The information in the table can be given in the form of rectangular arrays of numbers as

1 Co
Ry | 15 20
R, | 10 16 |

In this arrangement, the horizontal and vertical lines of numbers are called rows (R, R>)
and columns (C', Cy), respectively. The columns C; and C; represent the Trucks and
Passenger cars, respectively, which are sold in January. And the rows 1?; and R, represent
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the red and blue colored vehicles, respectively. An arrangement of this type is called a
matrix. Note that the above matrix has two rows and two columns. This shows us the

usefulness of matrix to organize information.

R

R3

Rm

columns, respectively.

C1
a1
21
a3

Am1

Ca
a2
22
asz2

Am2

Definition 3.1 (Definition of Matrix). If m and n are positive integers, then by a
matrix of size m by n, or an m X n matrix, we shall mean a rectangular array
consisting of mn numbers, or symbols, or expressions in a boxed display consisting
of m rows and n columns. This can be denoted by

Cs
a3
23
ass

Qm3

where (Rq, Ry, R3, ..., R,,) and (C1,C5,Cs, ...

Cn
Ain
A2p,
A3n

amn

,C,) represent the m rows and n

Remark.

1. Note that the first suffix denotes the number of a row (or position) and the second
suffix that of a column, so that a,; appears at the intersection of the i-th row and the

7-th column.

2. Matrix A of size m x n may also be expressed by

A= [aij]mxn7

where a;; represents the (4, j)-th entry of the matrix [a;;].

Example 3.1. The following are matrices of different size.

A= {a b] is a 2 X 2 matrix
c d

1 2
2 3. )
C = 3 4 is 4 X 2 matrix
(4 5
E = a b d} is 2 X 4 matrix,
b c e

B:

a

b

%w[\’)lﬂﬁ

b ¢
¢ d| is 3 X 3 matrix
d e

is 4 x 1 matrix

F:[b c d e]islx4matrix
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Definition 3.2. Matrices which are n x 1 or 1 x n are called vectors. Thus, the n X 1 matrix

A2n,

is called a column vector, and the 1 X n matrix

B = [bll blg bln]

is called a row vector.

Definition 3.3 (Submatrix). Let A be an m x n matrix. A submatrix of matrix A is

any matrix of size r X s with r < m and s < n, which is obtained by deleting any
collection of rows and/or columns of matrix A.

1 2 3
Example 3.2. For the given matrix A = |2 3 4],
3 4 5
{1 2 3]. . L . . .
(1) 9 3 4 is a submatrix of A, which is obtained by deleting the third row of A.
[1 3
(i) |2 4| is a submatrix of A, which is obtained by deleting the second column of A.
(3 5
L3 4] . ) L . .
(iii) 45 is a submatrix of A, which is obtained by deleting the first column and first
row of A.

Definition 3.4 (Equality of Matrices). Two matrices of the same size, A = [a;;]mxn
and B = [b;j|mxn, are said to be equal (and write A = B) if and only if

Q5 = bij7 fOl" all ’L]

Example 3.3.

(a) Determine the values of a, b, ¢ and d for which the matrices A and B are equal:
5 4 a b
ol

Solution: By Definition 3.4, we have ay; = by, implies a = 5, a;o = byo implies
b =4, as; = byy implies ¢ = 0 and asy = byy implies d = 2.
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(b) Find the values of o and 3 for which the given matrices A and B are equal.

1 2 a—pF 2
A p— B pr—
F R
Solution: Similarly, we have a;; = by, implies o — 5 = 1, ao; = bg; implies @ = 3,
and hence § = 2.

Definition 3.5 (Zero Matrix). An m X n matrix A = [a;;] is said to be the zero
matrix if a;; = 0 for all 1j.

Example 3.4. The following are zero matrices.

b i)

o O O
o o O
o o O
o O O O

Exercise 3.1.
1. Write out the matrix of size 3 x 3 whose entries are given by x;; = 1 + j.

2. Write out the matrix of size 4 x 4 whose entries are given by

1 ifi>j
1 ifi<j.

3. For the matrix A =

W N =
ENUCE V)

3
41, give all the submatrices of size 2 x 2.
5

3.2 Matrix Algebra

In this section, we discuss addition of matrices, scalar multiplication, and matrix multipli-
cation.

3.2.1 Addition and Scalar Multiplication

Addition and scalar multiplication are the basic matrix operations. To see the usefulness of
these operations, let us observe the following simple application.
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Consider again an automobile company that manufactures two types of vehicles, Trucks
and Passenger cars in two different colors, red and blue. If the sales for the months of
January and February, respectively, are given by

15 20 12 28
1= [10 16} and F= [20 14]’

then the total sales for two months can be given as follows. The total number of red Trucks
sold in two months is 15 4+ 12 = 27. Similarly, the total number of blue Trucks, red Pas-
senger cars and blue Passenger cars sold in the two months are given by 10 4 20 = 30,
20 + 28 = 48 and 16 4 14 = 30, respectively.

The preceding computations are examples of matrix addition. We can write the sum of two
2 x 2 matrices indicating the sales of January and February as

ser=|

15 20 12 28|  [156+12 20+28| |27 48
10 16 20 14| [10+20 14+16] |30 30|°

Definition 3.6. Let A = [aij]mxn and B = [bij|mxn be two matrices of the same
size. Then the sum of A and B, denoted by A + B, is the m x n matrix defined by
the formula

A+ B = [a;; + bj].

The sum of two matrices of different sizes is undefined.

. J

Example 3.5. For the given matrices A, B, C', D compute A + B and C + D.

a b w T 1 0 4 1 1 0
a=led sy o=l V] el L]

Solution: Using Definition 3.6, we have

A+B:[‘Z b%lw x}:{a%—w b—i—x}

d y oz c+y d+=z
and

2 0 4 1 1 0 3 1 4
C+D_{—11J+{o —2 3]_[—1 -1 4]'
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Theorem 3.1 (Laws of Matrix Addition ). Let A, B, C' be matrices of the same size
m X n, 0 the m X n zero matrix. Then

1. Closure Law of Addition: A + B is an m X n matrix.
2. Associative Law: (A+ B) +C = A+ (B+C).

3. Commutative Law : A+ B = B + A.

4. Identity Law : A+ 0 = A.

5. Inverse Law : A+ (—A) = 0.

Definition 3.7 (Scalar Multiplication). Let A = [a;;| be an m X n matrix, and o a
scalar. Then the product of the scalar o with matrix A, denoted by oA, is defined by

aA = [aij]lmxn-

Example 3.6. Consider the automobile manufacturing company once again. Suppose the
company’s sales for the months of January and March, respectively, are given by

15 20 18 22
/= Lo 16} , and M = [14 20} '

(a) If the sales of January is to be doubled in February, then the sales of February should

be
er [ 2] [ ]

(b) If the sales of March is to be declined by 50% in April, then the sales of April should
be )
1 S(1 22 11
o[ 131-6 3]
2 5(14)  5(20) 7 10
Example 3.77. Given the matrices A and B, compute 4A and A + (—1)B.
1 2 2 4
= o=l
Solution: Using Definition 3.7, we have

= B ﬂ h [ig; iiﬂ - {142 186] ‘

And, from the definitions 3.6 and 3.7, we have
1 2 2 4 1 2 -2 —4 -1 =2
A+<_1)B_[3 4]+(_1)[1 3]_{3 4}+L1 —3}_{2 1]‘
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From this example, we observe that the difference of two matrices A and B, which is
denoted by A — B, can be defined by the formula

A—B=A+ (—1)B = [aij — bij|mxn-

Theorem 3.2 (Laws of Scalar Multiplication). Let A, B be matrices of the same
size m X n, and o and 3 scalars. Then

1. Closure Law of Scalar Multiplication: oA is an m X n matrix.
2. Associative Law: «(fA) = (af)A.

3. Distributive Law: o(A + B) = oA + aB.

4. Distributive Law: (o + f)A = aA + SA.

5. Monoidal Law: 1A = A.

P IR N R

be the given matrices. Then,

2(A+B)=2F+2 2”}:2[3 21:[(2)3 (2)2]:[6 4}

Example 3.8. Let

0+1 141 1 2

and

o [gh 12 8- 9091

Thus, we have 2(A + B) = 2A + 2B.
Example 3.9. Solve for X in the matrix equation 2X + A = B, where

4 0 6 —4
A—{_2 2},andB—{8 0].

Solution: We begin by solving the equation for X to obtain
1
2X = B — Aimplies X = (5)(B —A).

Thus, we have the solution

L[ 6-4 —4-0] _1[2 —4] 1 -2
S 2(8—(-2) 0-2] 2|10 =2 |b —1]°
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3.2.2 Matrix Multiplication

An other important matrix operation is matrix multiplication. To see the usefulness of this
operation, consider the application below, in which matrices are helpful for organizing in-
formation.

A football stadium has three concession areas, located in South, North and West stands.
The top-selling items are, peanuts, hot dogs and soda. Sales for one day are given in the
first matrix below, and the prices (in dollar) of the three items are given in the second matrix
(note that the price per Peanuts, Hot dogs and Soda are given by $2.00, $3.00 and $2.75,
respectively).

Peanuts Hot dogs Sodas

South Stand 120 250 305 2.00
North Stand 207 140 419 3.00
West Stand 29 120 190 2.75

To calculate the total sales of the three top-selling items at the South stand, multiply each
entry in the first row of the matrix on the left by the corresponding entry in the price column
matrix on the right and add the results. Thus, we have

120(2.00) + 250(3.00) + 305(2.75) = 1828.75$ (South stand sales).
Similarly, the sales for the other two stands are given below:
207(2.00) + 140(3.00) + 419(2.75) = 1986.25$ (North stand sales).

29(2.00) 4 120(3.00) + 190(2.75) = 940.5% (West stand sales).

The preceding computations are examples of matrix multiplication. We can write the prod-
uct of the 3 x 3 matrix indicating the number of items sold and the 3 x 1 matrix indicating
the selling prices as shown below.

120 250 305 2.00 1828.75
207 140 419 3.00 | = 1986.25
29 120 190 2.75 940.5

The product of these matrices is the 3 X 1 matrix giving the total sales for each of the three
stands.
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Definition 3.8 (Matrix Multiplication). Let A = [a;;]nxn and B = [b;;],x, be two
matrices. Then the product of A and B, denoted by AB, is an m X p matrix whose
(i, 7)-th entry is defined by the formula

[AB;; = Z Qikbrj = @itbij + aigbaj + aizbs; + ... + Ainbn;.
k=1

In the other words, the (i, j)-th entry of the product AB is obtained by summing the
products of the elements in the i-th row of A with corresponding elements in the j-th
column of B.

The above definition can be understood as follows. If

A= [an aio ...aln}
has only one row (%), and
bi1
5o |™
bus

AB = [R,Cy] = [an aig .. -a1n] | = aribi + aiobor + ... + a1,y
bnl

If A has m rows Ry, Ry, ..., R,,, and B has n columns C, Cs, ..., C,, then the product AB
can be given by the formula

RiC; RiCy, ... RC,
RyCi RyCy ... RyC
AB - 2.1 2.2 2'p
RnCi RuCy ... R,C,

That is, the (4, j)-th entry of AB is R;C;.

Remark. The product AB of two matrices A and B is defined only if the number of
columns in A and the number of rows in B are equal.
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bii bio
Example 3.10. Let A = {all @12 al?’} and B = |[by; bgo| be two matrices. Clearly,
(21 Ag2 (23
b31 b3z
the product AB is defined in this case, since the number of column of A and the number of
rows of B are equal. Thus, we have

AB — {Rlcl R102:| _ {Clnbn + aigba; + a13bzr  a11012 + a12bag + ai3bsy

RyCy RyCy ag1b11 + agboy + assbsr  a21bia + asnbos + agsbsa|

In this example, the matrices A and B, respectively, are 2 x 3 and 3 x 2 matrices, whereas
the product AB is a 2 X 2 matrix.

Example 3.11. Compute the product AB of the given matrices

11
A=[1 2 3] and B= |1 -1
1 2

Solution: The product AB is defined since the number of columns in matrix A and the
number of rows in matrix B are equal. Thus, we have AB is given by

11
(12 3] |1 =1 =[(M)1)+ @)D +E)1) (D) +@(=1)+B)2)] =[6 5].
1 2

Note that the product B A is not defined in this case.

Example 3.12. Let A = {8 (1)} and B = Ll) 8} be the given matrices. Then, we have

0 1{ (1 0 0 0 1 00 1 01
AB = = BA = = .
[0 0] [0 0] [o 0] , and [0 0] [0 0} [0 0]
In this example, we observe that both the products AB and B A are defined. This is true in
general i.e., the products AB and BA are defined for any two square matrices A and B of

the same size. For the matrices A and B given above, we have AB # BA. Hence, matrix
multiplication is not commutative.

Example 3.13. Consider the following diagonal matrices.

ai 0 0 b11 0 0
A= 0 ag9 0 s and B = 0 b22 0
0 0 ass 0 0 b33

The product AB is given by

a1 0 0 b11 0 0 a1 b11 0 0
AB = 0 929 0 0 bQQ 0 = 0 (lggbgg 0
0 0 ass 0 0 b33 0 0 CL33Z733
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Similarly, we have

b11 a1 0 0
BA = 0 b22&22 0
0 0 b3zass

In this case, we have AB = BA , and hence the given matrices A and B commute. More
generally, if A and B are any two diagonal matrices of the same size, then AB = BA.

Theorem 3.3. Matrix multiplication is associative, i.e., whenever the products are
defined, we have A(BC') = (AB)C.

From Theorem 3.3, we shall write ABC' for either A(BC') or (AB)C. Also, for every
positive integer n, we shall write A" for the product AAA...A (n terms).

Theorem 3.4. If all multiplications and additions make sense, the following hold for
matrices, A, B, C' and «, 3 scalars.

1. A(aB + BC) = a(AB) + B(AQC).

2. (@B + BC)A = a(BA) + B(CA).

Exercise 3.2.
1. Find your own examples:

(1) 2 x 2 matrices A and B such that A # 0, B # 0 with AB # BA.
(i1) 2 x 2 matrices A and B such that A # 0, B # 0 but AB = 0.
(iii) 2 x 2 matrix A such that A2 = I, and yet A # I, and A # —1I,.

-1 -1

2. Let A =
© {3 3

} . Find all 2 x 2 matrices, B such that AB = 0.

3. Let A = B ﬂ and B = E ﬂ Is it possible to choose ¢ so that AB = BA? If

so, what should be the value of ¢?

4. Given the matrices A = [1 3] , B = [_1 2] ,and C = [2

1
5 4 0 1 4 0] and « a scalar

i. Compute the products A(BC'), (AB)C, and verify that A(BC') = (AB)C.
ii. Compute the products a(AB), (0A)B, A(aB)), and verify that

a(AB) = (aA)B = A(aB).
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5. Consider the automobile producer whose agency’s sales for the month of January

were given by
15 20
/= {10 16} '
Suppose that the price of a Truck is $200 and that of a Passenger car is $100. Use

matrix multiplication to find the total values of the red and blue vehicles for the
month of January.

3.3 Types of Matrices

There are certain types of matrices that are so important that they have acquired names

of their own. In this section we are going to discuss some of these matrices and their
properties.

Definition 3.9 (Square Matrix). A matrix A is said to be square if it has the same

number of rows and columns. If A has n-rows and n-columns, we call it a square
matrix of size n.

Example 3.14. The following are square matrices.

A= CCL J (Square matrix of size 2)
[1 2 -1
B=10 1 3| (Square matrix of size 3)
4 2 -2
_Cll Cig2 ... Cip
Co1 C2a ... C2p
C= ?l ?2 ) 2 (Square matrix of size n)
_Cnl Cn2 ... Cpn

Definition 3.10 (Identity Matrix). A square matrix A = [a;j|nxn is called an iden-
tity matrix if

o
w={ b Hi=g

0, otherwise

and it is denoted by I,,.

Example 3.15. The following are identity matrices.

I = [(1) (1)] (Identity matrix of size 2)
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1 00

I;= |0 1 0] (Identity matrix of size 3)
0 0 1
10 0
0o 1 ...

IL=1. . | .| (Identity matrix of size n)
0 0 . 1

Definition 3.11 (Diagonal Matrix). A square matrix D = [d;;]nx, is said to be

diagonal if d;; = 0 whenever i # j. Less formally, D is said to be diagonal when all

the entries off the main diagonal are 0.

Example 3.16. The following are diagonal matrices.

D= Ll) (1)} (Diagonal matrix of size 2)
200

D=0 4 0| (Diagonal matrix of size 3)
0 0 5
00 O

D= {0 3 0| (Diagonal matrix of size 3)
0 0 -2
000

D= |0 0 0| (Diagonal matrix of size 3)
000

Note that the identity matrix is the special case of diagonal matrix where all the entries in

the main diagonal are 1.

Definition 3.12 (Scalar Matrix). A diagonal matrix in which all diagonal entries

are equal is called a scalar matrix.

Example 3.17. The following are scalar matrices.

3 0

1 0 0
<a>[03]<b>8 ol @ {010

Definition 3.13 (Triangular Matrix). A square matrix A = [a;;]nxy is said to be
lower triangular if and only if a;; = 0 whenever i < j. A is said to be upper

triangular if and only if a;; = 0 whenever 1 > j.
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Example 3.18.

3 2 1 0 —1 1 000
i (o 2 7|, 0O 0 0}, 0 4 0| (Upper triangular matrices).
0 0 3 0 0 0] 0 0 0]
3 0 0 0 0 0] (1 0 O]
) |1 2 0}, 1 0 0f, 0 2 0| (Lower triangular matrices).
-2 4 3 0 2 0] 0 0 3]
Remark.

(a) Inthe lower triangular matrix all the entries above the main diagonal are zero, whereas
in the upper triangular matrix all the entries below the main diagonal are zero.

(b) Any diagonal matrix is both upper and lower triangular.

Definition 3.14 (Transpose of Matrix). Let A = [a;;] be an m x n matrix . Then by
the transpose of A we mean the n X m matrix, denoted by A', whose (i, j)-th entry
is the (j,1)-th entry of A. More precisely, if A = [a;;]mxn, then A® = [aj;]nxm. That
is,

a1 a1 ... Qip a1 a1 ... Ami

921 929 ce Aoy, 12 A2 ... Am2
A= | . ) |, then A'= | |

AQm1 Am2 ... Omn A1p A2, ... Apm

Note that the k-th row of matrix A becomes k-th column of A?, and the k-th column of A
becomes k-th row of Af.

Example 3.19. Compute the transposes of the following matrices.

2 1 3
A:E _21 _31} B=|1 5 -3
3 -3 7

Solution: First let us consider matrix A. Now, row 1 of matrix A becomes column 1 of A?,
and row 2 of A becomes column 2 of A?. Thus, we have

Similarly,
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Definition 3.15 (Symmetric Matrix). A square matrix A is said to be Symmetric if
A=Al

Example 3.20. Distinguish whether the given matrix is symmetric or not.

2 1 3 1 1 3
(a) A=1|1 5 =3 (b)) B=1|1 2 2
3 -3 7 3 2 3
Solution:
0 1 3 0 -1 -3
(a) For the matrix A = |{—-1 0 2|,A'= |1 0 —2|. Thus, we have A # A?,
-3 =2 0 3 2 0

and hence A is not symmetric.

(b) For the matrix B =

W =

1 3 1 1 3
2 2|,B"= |1 2 2|. Thus, we have B = B?, and
2 3 3 2 3

hence B is symmetric.

Theorem 3.5 (Properties of Matrix Transpose). When the relevant sums and prod-
ucts are defined, and « is a scalar. Then

1.

3.

3.

(

2. (A+ B)t = A + Bt.
(
(

Exercise 3.3.

. ) 1 -1 3 -2
For the given matrices A = [3 5 } and B = [0 1 }

(a) Show that (A")" = A.

(b) Show that (A + B)" = A" + B'.
(c) Show that (4A4)" = 4(A?).

(d) Show that(AB)" = B A",
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3.4 Elementary row operations

Elementary row operations are useful to find the rank of a matrix (see Section 3.6), to com-
pute the determinants of matrices (see Section 3.7), and to find the inverse of a matrix (see
Section 3.8). Furthermore, elementary row operations are widely used in solving systems
of linear equations (see Section 3.9).

In this section, we introduce the elementary row operations and apply these operations to
transform the given matrix into different form.

Definition 3.16 (Elementary Row Operations).
Let A be an m x n matrix. The following are known as elementary row operations.

1. Interchanging two rows: R; <+ R;.(Rule of Interchanging)

2. Multiplying a row by a nonzero scalar: R; — aR; (« is a nonzero scalar).
(Rule of Scaling)

3. Adding a multiple of one row to another: R, — R; + oR; (o is a nonzero
scalar). (Rule of Replacement)

Example 3.21. Use elementary row operations to transform the given matrix A into, (a) an
upper triangular matrix, (b) an identity matrix.

—_

2 6
-1

3
A=1|1 1
1 2 3

Solution: Consider the given matrix A:

(a) First let us transform the matrix A into an upper triangular. This can be done as fol-

lows:
3 12 6 1 4 2
A=1|1 1 —1| Ri— (3)R |1 1 —1|(Scaling R)
1 2 3 1 2 3
1 4 2
Ry — Ry + (—1)Ry, R3 — R3+ (—=1)R; |0 —3 —3| (Replacing R» and R3)
0 -2 1
1 2]
Ry — (—3)R2 |0 1 1| (Scaling Ry)
0 —2 1]
1 4 2]
Rs — Rs+2R, [0 1 1| (Replacing R3)
00 3
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(b)

1 4 2
Hence, the matrix (0 1 1| is an upper triangular, which is obtained from A by

00 3
elementary row operations.

To transform the matrix A into a diagonal matrix, we simply change all the entries
above the main diagonal into zeros and the entries in the main diagonal into 1. Let
us denote the above upper triangular matrix by B. Then we have

1 4 2 1 4 2
B=10 1 1| Ry— (5)R3 |0 1 1| (Scaling Rs)

0 0 3 0 01

1
Rg — RQ + (—1)R3, Rl — R1 + (—Q)Rg 0
0

[

0
0| (Replacing R, and R»)
1

1 0 1 00
Ry — Ry + (—4)Rs |0 0| (Replacing Ry). Thus, I3 = |0 1 0] is the
0 1 0 0 1

B oro

identity matrix obtained from A.

Definition 3.17. Two matrices are said to be raw equivalent if one can be obtained
from the other by a sequence of elementary row operations.

Example 3.22. Let A, B, I3 be the matrices in Example 3.21. Then, A is row equivalent
to both B and the identity matrix /5. Also the matrix B is row equivalent to the identity
matrix Is.

1.

2.

3.5

Exercise 3.4.

. . 4 3 . .
Given the matrix A = { 5 J , use elementary row operations to find the lower trian-

gular matrix which are row equivalent to A.

011
Given the matrix B = [1 0 1], use elementary row operations to find an identity
110

matrix which is row equivalent to 5.

Row Echelon Form and Reduced Row Echelon Form of a Matrix

In order to find the rank, or to compute the inverse of a matrix, or to solve a linear system,
we usually write the matrix either in its row echelon form or reduced row echelon form.
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Definition 3.18. An m X n matrix is said to be in echelon form (or row echelon
Jorm) if the following conditions are satisfied:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it. (A leading entry refers to the left most nonzero entry in a
nonzero row)

3. All entries in a column below a leading entry are zeros.

If a matrix in row echelon form satisfies the following additional conditions, then it
is in reduced echelon form (or reduced row echelon form)

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

A matrix in row echelon form is said to be in reduced row echelon when every

column that has a leading 1 has zeros in every position above and below the leading
entry.

Example 3.23. The given matrices A, B, C, D are in row echelon form

1 -1 0 4 00 1 20
A=10 5 0, B=1|0 0 0|, C= Ll) 8 51) ;} , D=10 51
0 0 1 0 00 00 0
and the following are in reduced row echelon form.

1 00 2

1 00 1 00 110
P:010,Q2014,R:[ },S:()Ol
1 2
0 01 000 00 000
Theorem 3.6 (Uniqueness of the Reduced Echelon Form). Each matrix is row equivalent
to one and only one reduced echelon matrix.

Definition 3.19. A pivot position in a matrix A is a location in A that corresponds
to a leading 1 in the reduced row echelon form of A. A pivot column is a column
of A that contains a pivot position. A pivot element is a nonzero number in a pivot
position that is used as needed to create zeros via row operations.
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To write a matrix in reduced echelon form:

1. Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

2. Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

3. Use row replacement operations to create zeros in all positions below the pivot.

4. Cover (or ignore) the row containing the pivot position and cover all rows,
if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the
process until there are no more nonzero rows to modify.

5. Beginning with the rightmost pivot column and working upward and to the
left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling
operation.

Example 3.24. Find the reduced row echelon form of the matrix A.

A:

o O O

0 2 3
2 01
1 15

Solution:
Step 1: Here, the left most nonzero column is the second column.
Step 2: By row interchanging rule, we can obtain the pivot position as follows;

00 2 3 0115
0 20 1| [y« Rs |0 2 0 1
0115 0023

Step 3:
Now, the leading entry is 1, and to create zeros in all positions below the pivot, we use the
replacement rule:

01 1 5
Rg — RQ + (—2)R1 00 -2 -9
00 2 3

Step 4:
Now we proceed to the second row. Here, the leading entry is —2. Using a scaling rule we
obtain a leading 1:

) 0115
R2—>(—§)R2 00132
00 2 3
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And applying row replacement rule:

01 1 5
Ry — Rs+(-2)R, [0 0 1 2
00 0 —6
And scaling Rs,
1 01 15
Rﬂeepm 00132
0001

Step 5: Beginning with the rightmost pivot column, we create zeros above each pivot
element. That is, we start from the fourth column:

9
Rl — R1 + (—5)R3 ,RQ — RQ + (—§>R3

o O O

110
010
001
And using row replacement (to create zeros above the pivot element in the third column),

Rl — R1 + (-1)R27

o O O

1 00
010
0 01
Thus, the required matrix in reduced row echelon form is given by

. 0
A= 10
0

o O =
O = O
_ o O

Exercise 3.5.

1. Determine which matrices are in reduced row echelon form.

1000 11
A:E ?ﬂ,B: 0012,C=100
0000 00

S = O
SN O
— O O
W = Ot

2. Give the row echelon form and also the reduced row echelon form of the following

matrices.
; f _32 1 2 1 3 1 2 0 3
A= a0 ol B=|-3210,C=1|21 2 2
3 9 1 3 211 1 1 0 3
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3.6 Rank of matrix using elementary row operations

The ranks of matrices are useful in determining the number of solutions for linear systems.

Definition 3.20 (Rank of Matrix). Rank of an m xn matrix A, denoted by rank(A),
is the number of nonzero rows of the reduced row echelon form of A.

Example 3.25. Determine the ranks of the following matrices which, are in reduced row
echelon form.

1 00 1 110

A=10 1 0f, B=10 ,C—[1002},D—000

00 1 0 00
Solution: Clearly, all the matrices are in reduced row echelon form. Hence, by Definition
3.20, we have rank(A) = 3 (since the number of nonzero rows in matrix A is 3). Similarly,
rank(B) = 2 (since the number of nonzero rows in matrix B is 2), rank(C) = 2 (since the
number of nonzero rows in matrix C'is 2), and rank(D) = 1 (since the number of nonzero
rows in matrix D is 1).

11 2

Example 3.26. Find rank(A), where A= |2 2 5|.

3 3 2
Solution: After a sequence of elementary row operations, we obtain the reduced echelon

form of A, which is given by

N

I
o O =
o O =
o = O

Thus, rank(A) = 2.

Remark. The matrix A and its transpose A’ have the same rank. That is

rank(A) = rank(A").

Example 3.27. Verify that the given matrix A and its transpose A’ have the same rank.

11 2 1 00
A=1(0 1 1|, andA'=1|1 1 0
0 0 0— 210

Solution: Observe that the matrix A is in its row echelon form, and hence its rank is 2.
Now, we apply elementary row operations to reduce matrix A’ into its row echelon form,
and and we get that

110

010

000
Thus, rank(A') = 2 = rank(A).
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Exercise 3.6. Determine the rank of the following matrices.

Lo o 1000 110005
A—{017},B—0012,C:001204
0000 000013

;?_32 1 21 3 120 3
P=134 ol @=|3210,R=2122
S 3 211 110 3

3.7 Determinant and its properties

The determinant is a function that takes a square matrix as an input and produces a scalar
as an output. It has many beneficial properties for studying, matrices and systems of equa-
tions.

Definition 3.21 (Determinant of 2 x 2 matrix). The determinant of a 2 X 2 matrix

A= B z] , denoted by det(A) (or |A|), is defined by the formula

a ¢

det(A) = J b

= ab — cd.

Example 3.28. Find the determinant of a matrix A = [2 ﬂ .

Solution: Using Definition 3.21, the determinant of matrix A is given by

5 2
S =W -EE =1

The determinant of a 3 X 3 matrix can be defined using the determinants of 2 x 2 matrices.

det(A) =

Definition 3.22 (Determinant of 3 x 3 Matrix). Let

@11 Qa2 Q13
Al = 21 Ag2 A3

@31 daz2 G33

be a 3 x 3 matrix, and A;; (for i,j = 1,2,3) be the 2 X 2 submatrix of A obtained
by deleting the i""-raw and the j""-column of A. Then determinant of A is denoted
by det(A) (or |Al), and is defined as:

Al = (=1)"ayi A | + (1) Paiz| Arz] + (—1)Pags| A

o Q22 (23 21 (23 21 (22
= a1 — a2 + a3

a32 a3z @31 Aass a31 as2
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2 4 0
Example 3.29. Compute the determinant of a matrix A = |3 —1 2|.

2 1 1
Solution: Using Definition 3.22, the determinant is given by

2 4 0
det(A) = |3 —1 2 —2‘
2 1 1

-1 2
1 1

3 2

3 —1
—4
S

2 1

=2(-1-2)—4(3—-4)+03+2)=—-6+4+0=—-2.

So far we discussed the determinants of 2 x 2 and 3 x 3 matrices. Next we define the
determinant of an n X n matrix for each positive integer n.

Definition 3.23 (Minors and Cofactors).
Let A = (aij)nxn, and A;; be the submatrix of A obtained by deleting the i""-raw
and j*"-column of A fori,j = 1,2,3,...,n. Then

(a) The minor for A at location (i, j), denoted by M;;(A), is the determinant of
the submatrix A;j. That is, M;;(A) = det(A;;).

(b) The cofactor, denoted by C;;(A), for A at location (i, j) is the sighed determi-
nant of the submatrix A;;. That is, Ci;(A) = (—1)"det(A;).

Remark. In Definition 3.23, the cofactor C;;(A) at location (4, j) can be computed
using the following formula:

Cii(A) = { det(A;;),if i+ j iseven

. J

Example 3.30. Compute the matrix of cofactors for the given matrix.

1 0 2
(a)A:{_l 2} (b) B = ; (1]:13

Solution: (a) The minors of A are
Mi1(A) =2, My (A) =1, Mps(A) =—1, Mxp(A) =1,
and the cofactors are
Cu(A) = (=)' Mu(4) = (1)(2) =2, Cn(A4) = (1) M (4) = (-1)(1) = —1,

Cia(A) = (=1)"2Mip(A) = (—1)(=1) = 1, Can(A) = (=1)*Mi5(A) = (1)(1) = L.



Thus, the matrix of cofactors for A is
2 1
AV

(b) The minors of B are

1 3 0 2 0 2
Mll(B) = O 1 = 1’ M21<B> = ‘0 1' = O’ M31(B) = ‘1 3‘ == _29
1 3 1 2 1 2
Mlg(B) == 2 1 == —5, Mgg(B) - ’2 1' - —3, M32(B> = ‘1 3‘ = 1,
1 1 10 1 0
Mlg(B) = 2 0 = —2, MQg(B) = ‘2 O‘ = 0 and M33<B) = ‘1 1‘ = 1,
and the confactors are
Cn(B) = (=D)"'M(B) = 1, Cn(B) = (-1)*"' Mz (B) =0,
C31(B) = (—1)*™ M3 (B) = =2, C15(B) = (—1)'"M5(B) = 5,
Caa(B) = (—=1)*Myy(B) = =3, Csp(B) = (—1)*"?Ma,(B) = —1,

013(B) - (—1>1+3M13(B) = —2, CQg(B) - (-1)2+3M23(B) == 0,
and 033(3) = (—1)3+3M33(B) =1.

Thus, the matrix of cofactors for B is

1 5 =2

-2 -1 1

Definition 3.24 (Determinants of n x n Matrix). The determinant of a square
matrix A = [a;;| of size n X n, denoted by det(A) (or |A|), is defined recursively as
follows: if n = 1 then det(A) = ay;; otherwise, we suppose that determinants are
defined for all square matrices of size less than n and specify that

det(A) = Z alekl (A) = auCH(A) + CL21021 (A) + ...+ anlCnl (A), (31)
k=1

where C;;(A) is the (i, j)-th cofactor of A. The formula (3.1) is called a cofactor
expansion across the 15 column of A.

.

Example 3.31. Consider the matrices given in Example 3.30,

N = =

0 2
A:[_ll ;} and B = 1 3
01
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The cofactors of matrices A and B, respectively, are given by
1 5 =2
[_2 1 ﬂ and |0 -3 O
-2 -1 1
Now, using Definition 3.24, we have

det(A) = CLHCH + 0,21021 = (1)(2) + (—1)(—1) = 3, and

det(B) = b11C11 + ba1 Co1 + b3:C31 = (1)(1) 4+ (1)(0) + (2)(—2) = —3.

Example 3.32. Compute the determinant of matrix A:
1 10
A=10 2 1
1 20

(a) by expanding the cofactrs across the 15 row
(b) by expanding the cofactrs across the 15! column

Solution: We have the matrix of cofactors C;;(A), given by

(a) Now, expanding the cofactors across the 1% row, we have
det(A) = a11C11(A)+a12C12(A)+a13C13(A) = (1)(=2)+(1)(1)+(0)(—2) = —1.
(b) Similarly, expanding cofactors across the 15 column, we have
det(A) = a11C11(A) 4+ a21Co1(A) + a31C51(A) = (1)(—2) + (0)(0) + (1)(1) = —1.
Observe that the determinant has the same value for expansions of cofactors across the 1°
row as well as the 1% column. This is true in general, i.e., the determinant value is the same

for the expansions of cofactors across any row or any column. This is briefly stated in the
following theorem.
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Theorem 3.7. The determinant of an n X n matrix A can be computed by cofactor

th

expansion across any row or any column. The expansion across i'" row is

J=1

= (=) aulAin] + (=1)Papn|Ai] + ... + (=1)" ", | Al

and the expansion across 7™ column is
det(A) = Z aijC’ij(A) = CLUCU(A) -+ ang'Qj(A) + ...+ ananj(A)
i=1

= (=) ay;|Ay] + (—1)*Hag;|Agj| + ... + (—1)"Hay;|Anj]

Remark. In Theorem 3.7, if the matrix A (for instance) is of size 3 x 3, then the
determinants can be easily computed as follows.

(i) The expansion across 2" row is

|A| = —CL21|A21| + (122|A22| + a23|A23|'

(ii) The expansion across 3" column is

|A| = a13|A13| — aos|Aas| + ass|Ass|.

(i1i1)) The sign + or — can be determined using the pattern.

(iv) The computation of determinants becomes easier by expanding the cofactors
across a row or column with the most zero entries.

Example 3.33. Compute the determinant of matrix A by expanding the cofactors across an
appropriate row or column.

A:

— O

10
21
20

Solution: Here, we observe that the 3¢ column has more number of zero entries than any
other columns and rows. Thus, the determinant of A (by expanding the cofactors across the
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374 column) is given by

det(A) = CL13|A13| — CL23|A23| + CL33|A33| = 0 — 1 —f- O = —1

Properties of determinats: Let A be the square matrix of size n.
1. If an entire row (or an entire column) consists of zeros, then det(A) = 0.
2. If two rows (or columns) are equal, then det(A) = 0.

3. If one row (or column) is a scalar multiple of another row (or column), then
det(A) = 0.

4. If A, B and C, respectively, are the upper triangular, lower triangular, and
diagonal matrices, given by

11 Q12 Q13 b;; O 0 di; 0 0
A= 0 az as|, B = |by by O ) D= 0 dyy O )
0 0 ass b31 b3z bss 0 0 dss

then
det(A) = 11092033, det(B) = b11b22b33, and d€t(D) = d11d22d33.

That is, the determinants of the triangular and diagonal matrices are simply
the products of the entries in the main diagonal.

Example 3.34. Determine the determinants of the following matrices.

123 110 1 10 1 1 3
A=10 0 0|.,B=020|,C=|-2 2 1|,D=|-1 -1 -3
120 120 1 10 1 2 0

Solution: We have, det(A) = 0 (since the entire second row of matrix A consists of zeros),
det(B) = 0 (since the entire third column of matrix A consists of zeros), det(C') = 0 (since
the first and third rows of C' are equal), and det(D) = 0 (since the second row of D is a
scalar multiple of the first row).

Example 3.35. Compute the determinants of the following matrices.

4 3 —6 300 4 00
A=10 2 9|,B=1|3 4 0[{,D=1{0 6 0
00 3 2 15 0 05

Solution: Using the properties of determinants, we have

43 —6 30 0
det(A) =10 2 9| =(4)(2)(3) =24, det(B) =3 4 0| = (3)(4)(5) = 60, and
00 3 2 1 5
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2
det(D) = |0 = (2)(3)(5) = 30.
0

S W O
o O O

Theorem 3.8. For any square matrix A, det(A) = det(A") (Transposition doesn’t
alter determinants).

Example 3.36. For the given matrix A, verify that det(A) = det(A").

1 0
A=12 -1 1
1 1

1 2 1
At=10 -1 1
2 1 3

Now, we have the determinants of A and A’ are
det(A) =2, and det(A") = 2.
Thus, det(A) = det(AY).

7~

Theorem 3.9 (Effects of elementary row operations).

L. If matrix B is obtained from a square matrix A by interchanging any two rows
(i.e., R; <+ R;), then det(B) = —det(A). (Interchanging)

II. If matrix B is obtained from a square matrix A by multiplying the i'" row by a
nonzero scalar « (i.e., R; — aR;), then det(B) = adet(A). (Scaling)

Il If matrix B is obtained from a square matrix A by adding scalar multiple of
one row to the other (i.e., R; — R; + aR;), then det(B) = det(A). (Replace-

ment)
31 0
Example 3.37. Let A= |1 0 1 | be the given matrix with det(A4) = —2.
01 -1

(a) If a matrix B is obtained from A by interchanging the first and second rows
(i.e., R1 <+ Rs), then we have

10 1
det(B)=13 1 0]=2.
01 —1
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Thus, det(B) = —det(A). Here, we observe that if the row interchanging has been
made two times, then det(B) = (—1)%det(A) = det(A). In general, if the row
interchanging has been made n times, then det(B) = (—1)"det(A). Thus, det(B) =
det(A) if n is even, and det(B) = —det(A) if n is odd.

(b) If a matrix B is obtained from A by multiplying the second row by 4
(i.e., Ry — 4R5), then we have

B =

O =~ W

1 0

0 4|=-8

1 -1

Thus, det(B) = 4det(A). If each row of matrix A is multiplied by 4, then we have
det(B) = 43det(A).

More generally, if A is an n X n matrix, and B is obtained by multiplying each row
of A by a nonzero scalar ¢, then we have det(B) = det(cA) = c"det(A).

(c) If a matrix B is obtained by replacing row 2 (i.e., Ry — R + 2R;), then

31 0
det(B) = |7 2 1 | =2.Thus,det(B) = det(A).
01 -1

Remark. Property (III) of determinants in Theorem 3.9 is particularly more inter-
esting, since it doesn’t change the determinant of the original matrix. This property
can be used to transform the given matrix into triangular matrix (upper or lower) for
which the computation of determinants is much easier than computing the determi-
nant of the original matrix directly, which is tedious and computationally inefficient.

Example 3.38. Compute the determinants of the matrices A and B using elementary row
operations.

— = N
_ W W =
w Ot Ot N
D W DN

Solution:

(a) Consider the given matrix A. Applying the row replacement; Ry — Ry — 2R; and
then R3 — R3 — R», we obtain the following upper triangular matrix.

11 2
A= |0 1 -3
00 7

Therefore, by Theorem 3.9 we have det(A) = det(A) = (1)(1)(7) = 7.
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(b) Similarly, by applying the row replacement
Ry — Ry —2R1, Rs — Rs —Rl,R4 — R4—R1,

we obtain the following row equivalent matrix.

wo]l
|
IS S )

2
1
3
1

o O O =
O N =

Now, the determinant of the matrix B (by expanding the cofactors across the 1%
column and using the determinant of matrix A computed above) is given by

ool
I

(7)) =7.

o o o
SN ==
— W = N
= =N DN
I
—
O N =
e
=~ = N
I

Therefore, by Theorem 3.9 we have det(B) = det(B) = 7.

Theorem 3.10 (Product Rule).
If A and B are two matrices for which the product AB is defined, then

det(AB) = det(A)det(B).

Example 3.39. Let A = B _2 J and B = E 2] be the given matrices. Then verify that

det(AB) = det(A)det(B).
Solution: Here, we have

4 8
5 —4

1 2
3 —1

2 0

AB:{ 1 4

[ aettam) = =0, qerty = |y 2| =<7 anadert) = [} | =5

Thus,
det(A)det(B) = (=7)(8) = —56 = det(AB).

Definition 3.25 (Definition of rank using Determinant). Ler A be an m x n matrix.
Then rank(A) = r, where r is the largest number such that some r X r submatrix of
A has a nonzero determinant.
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1 0 2 -1
2 =3 2 0
Solution: Observe that, the largest possible size of any square submatrix of A is 2 x 2. We

Example 3.40. Compute the the rank of matrix A = [ } using determinants.

have (say) a submatrix B _03} (which is obtained by deleting the last two columns of A)

with ; = —3 # 0. Therefore, rank(A) = 2.

0
-3
Exercise 3.7.

1. Compute the determinants of the following matrices using elementary row opera-

tions.
1 0 =2
A:[; ﬂ,B: 5 -3 -1
-2 0 1

2. Compute the determinants of the following matrices by expanding cofactors across
any appropriate row or column.

0 3 0 2
1 30 _11 ;) 8 1 0 2 0 2
A:—120,B:5OOO,C:51—133
6 1 2 411 9 00 1 00
4 1 1 01
3. Compute the matrix of cofactors for the given matrices.
3 2 1 1
1 0 -2
1 -2 10 2 0
A_[Q 3}’3_ _211 ;l O 1 21 o
3 0 1 0

SN W =
N = NN
O N = =
N = = O
S O = O

3.8 Adjoint and Inverse of a Matrix

The inverses of matrices are useful to solve linear systems. In this section, we define the
inverse of a matrix, we discuss different methods to compute an inverse, and the properties
of inverses.
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Definition 3.26 (Adjoint of a Matrix). Let A be an nxn matrix. If [C;;(A)] denotes
the matrix of cofactors for A, then the adjugate (or adjoint) matrix of A, denoted by
Adj(A), is defined by the formula

Adj(A) = [Ci;(A)]'

That is, adjoint of matrix A is the transpose of the matrix of cofactors for A.

.

Example 3.41. Compute the adjoints of the given matrices.

1 0
A= [_1 2], and B =

N = =
O = O
— W N

Solution: The matrix of cofactors for A is

Thus, the adjoint of matrix A is
. 2 0
agia) = = 7]

The matrix of cofactors for B is given by

1 5 =2
-2 -1 1
Thus, the adjoint of matrix B is
1 0 -2
Adj(B) = [Cii(B)]'= | 5 -3 —1
-2 0 1

Definition 3.27 (Inverse of a Matrix). Let A be an n x n square matrix. The inverse
of matrix A is ann X n matrix B such that

AB =1, = BA,

where [, is the n X n identity matrix. If such a Matrix B exists, then the matrix
A is said to be invertible (or nonsingular), and its inverse is denoted by A~ (i.e.
B = A7'). A matrix that does not have an inverse is said to be noninvertible (or
singular).
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Example 3.42. Consider the following matrices:

2 31 2 -3 -2
A:E ﬂ B:h1 _32],02 1 20/, D=|-1 2 1
001 0 0 1

Then we have

2 3| |—-1 3 10 -1 3112 3
e o et R P P R R
That is, the products AB and BA give us the identity matrix /5. Therefore, matrix B is the
inverse of Ai.e., A~! = B.

Similarly, we have
1 00
CD= |01 0| =DC.
0 0 1

Thus, the matrix D is the inverse of C'i.e., C~' = D.

Theorem 3.11. Let A be an n X n matrix. If A is invertible (non singular) then
det(A) # 0, and the inverse A~ is given by the formula

o1 .
A fmAdj(A).

Example 3.43. Compute the inverse of the given matrix A.
1 00
A=10 2 0
00 3

Solution: We have, det(A) = 6,

6 0 0 6 0 0
[C;;(A)] = [0 3 0], and Adj(A) = [C;(A)] = |0 3 0
0 0 2 00 2
Therefore, by Theorem 3.11, we have
. L [6 00 10 0
A= ——Adj(A)==10 3 0| =10 1 0O
det(A) 6 00 9 03 %
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Theorem 3.12 (Laws of Inverse). Let A, B, C' be matrices of appropriate sizes so
that the following multiplications make sense, I is a suitably sized identity matrix,
and o a nonzero scalar. Then

i. If the matrix A is invertible, then it has one and only one inverse, A~".
ii. If A is invertible matrix of size n X n, then so is A~' and hence, (A™')™1 = A.

iii If any two of the three matrices A, B, AB are invertible, then so is the third,
and moreover, (AB)™! = B~1A~L,
iv If the matrix A is invertible, then so is aA. Moreover, (aA)™" = LA™,

v If the matrix A is invertible, then so is A'. Moreover (A")™1 = (A71)".

vi Suppose A is invertible. If AB = AC or BA= CA, then B = C.

Example 3.44. Let A = E 0

] be the given matrix. Then we have

Now,

2

(a) 24 = [2 _02} and (24)1 = [

} = 1A~'. Thus, we have (24) ™' = A1,

0 -1

(b) A = {_11 (ﬂ and (A")1 = [ D ] Thus, we have (A%)~1 = (A1)

Computation of Inverse Using Elementary Row Operations: Gauss-Jordan Elimina-
tion

Let A be an n x n invertible matrix and /,, be the identity matrix of size n X n.

ay; Q12 ... Qip 1 0 ... 0
A= 21 Q99 ... QA9pn 7 In _ 0 1 0
Apl Gp2 ... Qpp 00 ... 1

Then the inverse A~! can be obtained using elementary row operations as follows.
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Finding the Inverse of a Matrix by Gauss-Jordan Elimination

1. Write the n x 2n matrix that consists of A on the left and the n x n identity
matrix [,, on the right to obtain [A|[,,]. This process is called adjoining matrix
I,, to matrix A.

2. If possible, row reduce A to [,, using elementary row operations on the entire
matrix [A|l,,]. The result will be the matrix [I,,|A~!]. If this is not possible,
then A is noninvertible (or singular).

3. Check your work by multiplying to see that AA™! = [, = A1 A.

Example 3.45. Compute the inverses of the given matrices using Gauss-Jordan Elimination.

100
A:B _21],32020
00 3

1
lution: Let A =
Solution: Let { —

} . Then we have

1 —1|1 0 1 —-111 0
[A|I2]—{3 2‘0 J Ry — Ry + (=3) Ry [0 5'_3 J
1 1 -1l1 0 1 0[2 1
Therefore, the transformed matrix is
1 02 I
A
0 1f=5 3
2 1
and hence, the inverse of matrix A is given by A™! = [ 5, ?] .
5 5
1 00
Similarly, for B = [0 2 0],
00 3
1 0 01 00 1 1 0 0/1 0 0
[A|I5]=10 2 0[0 1 0 Rg—>§R2 01 0/0 10
0 0 30 01 0 0 310 0 1
| 1 0 01 00
Ry — 3Ry |0 1 0]0 10
0 10 0 %
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Therefore, the transformed matrix is

[I5|A™1] =

o O =
O = O
o O
O~ O
w= o O

Thus, A~! =

o O
O wi= O
w= o O

Exercise 3.8.

1. For the given matrices A and B, compute the adjoint matrices.

2. Compute the inverse of the given matrix (if it exists).
-2

10
A:[}L _22],3:01 2
01 3

3. Compute the inverse (if it exists) of the given matrix using elementary row opera-

tions.
112 1
1 2 3
41 020 0
A_[23}’B_1Zi’0_021—2
032 1

3.9 System of Linear Equations

Consider an oil refinery that produces gasoline, kerosene and jet fuel form light crude oil
and heavy crude oil. The refinery produces 0.3, 0.2 and 0.4 of gasoline, kerosene and jet
fuel, respectively, per barrel of light crude oil. And it produces 0.2, 0.4 and 0.3 of gasoline,
kerosene and jet fuel, respectively, per barrel of heavy crude oil. This is shown in Table 2.
Note that 10% of each of the crude oil is lost during the refining process.

Table 2

‘ Gasoline Kerosene Jet fuel
0.3 0.2 0.4
0.2 04 0.3

Light crude oil

Heavy crude oil
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Suppose that the refinery has contracted to deliver 550 barrels of gasoline, 500 barrels of
kerosene, and 750 barrels of jet fuel. The problem is to find the number of barrels of each
crude oil that satisfies the demand.

If [ and h represent the number of barrels of light and heavy crude oil, respectively, then
the given problem can be expressed as a system of linear equations

0.30 4+ 0.2h = 550
0.20 4+ 0.4h = 500
0.4l 4+ 0.3h = 750

The given linear system has three equations and two unknowns. The matrix

04 0.2
02 04
04 04

is known as the coefficient matrix of the system, and the right side of the system is a matrix

950
200
750

. l . . . .
With the column vector of unknowns [ h} , the above information can be organized in

matrix form

0.3 0.2 ] 950
0.2 04 [h] = 1500
0.4 0.3 750

Example 3.46. Consider the following system of two equations and two unknowns z, y

ax + by = by
cr +dy = by

If we interpret (x, y) as coordinates in the xy-plane, then each of the two equations repre-
sents a straight line, and (z*, y*) is a solution if and only if the point P with coordinates
xz*,y* lies on both lines. In this case, there are three possible cases: there exists only one
solution if the lines intersect (see Figure 1 a), there are infinitely many solutions if the lines
coincide (see Figure 1 b) and the system has no solution if the lines are parallel (see Figure
1c).
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(a) (b) (c)

X+y=1 X+y=1 X+y=1
2x—y=0 2X+2y=2 X+y=0

Figure 1: In this figure: (a) represents the case where the lines intersect (b) represents the
case where the lines coincide (c) represents the case where the lines are parallel

Let us briefly discuss the three different cases: In part (a) the linear system is given by

r+y=1
20 —y = 0.

This system has only solution, namely (, y)=(3, 2).

In part (b) the linear system is given by

r+y=1
2 4 2y = 2.

This system has infinitely many solutions. In fact, the point («, 1 — ) is a solution for each
real number «.

And finally, in part (c) the linear system is given by

r+y=1
4y =0,

which has no solutions, since the expressions in the left side of the two equations are the
same, but different values in the right side of the two equations.
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Definition 3.28. A linear system (or system of linear equations) of m-equations in
n-unknowns x,,rs, x3, ..., T, is a set of equations of the form

111 + A19T9 + ... + ATy = bl
2121 -+ 29X T oo IAF AonLy — bg

(3.2)

A1 T1 + ApaZo + ... + App®p = by,

where a;;’s (for i = 1,2,3,....mand j = 1,2,3,...,n), are given numbers, called
the coefficients of the system, and by, by, bs, ..., b, on the right side are also numbers.

A solution of (3.2) is a set of numbers x4, x5, z3, ..., T, that satisfies all the m-equations
simultaneously.

Matrix Form of a Linear System
From the definition of matrix multiplication, we see that the m-equations of (3.2) may be
written as a single vector equation

Ax = b, 3.3)
where
a1 a2 Q1n T by
Q21 Q22 A2p, X2 by
A= |, = and b= ,
Am1 Am2 ... Gmp T bm

are known as the coefficient matrix, the column vector of unknowns and the column vector
of numbers, respectively. We assume that the coefficients a;; are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components.

For the system of linear equations in (3.2), precisely one of the statements below is true:

1. It admits a unique Solution: There is one and only one vector z = (x4, x9, T3, ..., Tp,)
that satisfies all the m-equations simultaneously (the system is consistent).

2. It has infinitely Many Solutions: There are infinitely many different values of x
that satisfy all the m-equations simultaneously (the system is said to be consistent).

3. Has no Solution: There is no vector x that satisfies all equations simultaneously, or
the solution set is empty (the system is said to be inconsistent).

3.9.1 Gaussian Elimination

Gaussian elimination, also known as row reduction, is used for solving a system of linear
equations. It is usually understood as a sequence of elementary row operations performed
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on the corresponding matrix of coefficients.

Consider the linear system given in (3.2). The augmented matrix which represents the
system is given by

a1 19 Ce QA1np bl

Q21 A22 Ay, | b2
[A[b] =

Aml Qma -+ Qyn |Om

Then, the idea here is, we solve the linear system whose augmented matrix is in row echelon
form, which is row equivalent to the original system. And, we have the following theorem
on the row equivalent linear systems.

Theorem 3.13. Row-equivalent linear systems have the same set of solutions.

Thus, if the augmented matrix is initially in row echelon form, then we simply solve it by
using back substitution. If it is not, then first rewrite it as a row equivalent system whose
augmented matrix is in its row echelon form, and then apply Theorem 3.13.

Example 3.47. Rewrite the following linear system as a row equivalent system, and then

solve it.
1 — T = 1
T+ 21‘2 =4.

Solution: Here, the augmented matrix of the given system is

A= |} ‘;'ﬂ ,

which has row echelon form (after a sequence of elementary operations)

=y )

Thus, the row equivalent system is

1'1—.772:1
1'2:]_.

Clearly, solving the above linear system (whose augmented matrix is in row echelon form)
is much easier than solving the original system. The only solution of the linear system
(represented by an augmented matrix in row echelon form) is (21, x2) = (2, 1). And, hence
by Theorem 3.13, a vector (z1, z3) = (2, 1) also solves the original linear system.

144



Gaussian Elimination:
(a) Write the augmented matrix for the linear system.
(b) Use elementary row operations to rewrite the matrix in row echelon form.

(c) Write the system of linear equations corresponding to the matrix in row eche-
lon form, and use back-substitution to find the solution.

Example 3.48. Consider an oil refinery’s problem which is given as a system of linear
equations

0.3l + 0.2h = 550

0.2l + 0.4~ = 500

0.4l 4+ 0.3h = 750

where [ and h represent the number of barrels of light and heavy crude oil, respectively.
The augmented matrix of the given linear system is

0.3 0.2[550
[Alb] = 0.2 0.4/500] ,
0.4 0.3]750

where
0.3 0.2 550

A=102 04|, and b= [500
04 0.3 750

And the matrix in row echelon form is given by

0.1 0.2[250
(A= | 0 0.150
0 0]0

Now, rewriting the given linear system as row equivalent system we have

0.1l 4+ 0.2h = 250
0.1~ = 50.

The only solution of the above system (in row echelon form) is (I, 2) = (1500, 500), which
is also a solution for the original system. Thus, an oil refinery needs 1500 barrels of light
crude oil and 500 barrels of heavy crude oil in order to satisfy the demand.

Example 3.49. Solve the given linear system by using the method of Gaussian elimination.

1+ 229 + 13 = 2
371—.1'2—2373:—1.
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Solution: The augmented matrix representing the given system is
1 2 112
Alb] =
(A1 {1 —1 —2‘—11

Now, by replacing R; (i.e., Rs — Ry — R;), we obtain

1 2 112
0 -3 —3|-3

and by Scaling R; (i.e., Ry — (—3)Ry), we have

1 2 1)2
0 1 141]°
The last matrix is in its row echelon form, and hence the row equivalent system is

$1—|—2$2—|—5L‘3:2
$2+I3:1.

In this case, the system has infinitely many solutions, and the set of solutions is be given by
{1-a,a0,1—a):a€ R}

Example 3.50. Solve the following system of linear equations using the method of Gaussian
elimination.

4I2+3JJ3:8
21’1—ZE3:2
31’1—|—2£L'2:5

Solution: The augmented matrix of the given system is

04 3|8
[A]p] = |2 0 —1|2
3 2 015
Applying the following elementary row operations:
R, <+ R3 (Interchanging R; and R3)
3 2 015
2 0 —1)2
04 3|8
Ry <+ R3 (Interchanging R, and R3)
3 2 015
0 4 3|8
2 0 —1)2
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Rs — Rs + (—%)Rl (Replacing R3)

3 2 015
0 4 3|8
4 4
0 -3 —1l—3
Rs — Rs + %RQ (Replacing R3)
3 2 0/5
0 4 3|8
0 0 03

The last matrix is in row echelon form, and hence the row equivalent system is given by

3r1+ 229 =5
41’2 +3$3 =8
4

3

We observe that the last equation in the linear system above is a contradiction to the fact
that 0 # %. Consequently, the given linear system has no solution.

Theorem 3.14. Consider the system of linear equations in (3.2). If A and b are the

matrices of coefficients and the column vector of numbers, respectively. Then the
following statements are true.

(i) Ifrank(A) = rank([A|b]) = number of unknowns, then the linear system has
only one solution.

(ii) Ifrank(A) = rank([A|b]) < number of unknowns, then the linear system has
infinitely many solutions.

(iii) If rank(A) < rank([A|b]), then the linear system has no solution.

Remark.

(a) From Theorem 3.14, we observe that the linear system (3.2) has no solution if an

echelon form of the augmented matrix has a row of the form [0,0,...,0 b] with b
nonzero.

(b) A linear system has unique solution when there are no free variable, and it has in-
finitely many solutions when there is at least one free variable.

Example 3.51. Use matrix rank to determine the number of solutions for the system.

T+ a9 +a3=1 T1+ 2o+ 223 =3 r1 4 2294+ 33 =1

(@)  2z9+4x3=2 , (b) 2wy + 213 =4 (c) 2wy + 223 = —2

2$1+7Q?3:5 $2+3§'3:2 —2.]72—2333:3
Solution:
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(a)

(b)

We have a linear system
T + ) —I— T3 = 1
209 + 43 =2
21‘1 + 7ZL’3 =5

and the augmented matrix given by

[AJb] =

o O =
N DN =

111
412
715
After a sequence of elementary row operations, we obtain its row echelon form
- 11 1)1
[Alb] = [0 1 2]1
0 0 1)1
From the transformed matrix, we can see that the matrix A in its row echelon form is

A:

o O =

11
1 2
01
Thus, we have rank(A) = rank([A|b]) = number of unknowns. Hence, the given

linear system has only one solution.

We have a linear system
T+ xo + 21’3 =3

209 + 223 =4
Ty + T3 = 2
In this case, the augmented matrix and its row echelon form, respectively, are given
by
11 23 - 11 2[3
[A]b] = [0 2 2]4| and [A]D)= |0 1 1|2
0 1 1|2 0 0 0]0

The matrix A in its row echelon form is

A=

o O =

1
1
0

O =N

Here, the matrices A, and [1/4\@ have only two nonzero rows. Thus,
rank(A) = rank([A|b]) < number of unknowns. Therefore, by Theorem 3.14, the
given system has infinitely many solutions.
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(c) Here, we have a linear system

l‘1+2$2+3l’3: 1
21’2 + 21’3 =-2
—2332 — 233‘3 = 3.

The augmented matrix [A|b] and its row echelon form [Zﬁ], respectively, are given

by
1 2 311 - 1 2 31
[Alp)=10 2 2 |-2| and [A]p]= [0 1 1|-1
0 —2 —2|3 00 01

Here, the number of nonzero rows of the row echelon form of A and that of [A|b] are
2 and 3, respectively. Therefore, the given linear system has no solution.

Exercise 3.9. Solve the following linear systems using the method of Gaussian elimination.

(CZ) —T1 + X9 = 4

—21’1+I2:0

1+ 29 = —1
(b) ZL‘l—l'QZO

—2$1+3§'2:3

T +2I2 + a3 = 0
(C) 4%1 + 5272 + 6333 =3
Tx1 4+ 8x9 + 923 = 6.

(d) x1+2$2+x320
209 + 313 — 223 =10

3.9.2 Cramer’s rule

Cramer’s Rule is a method for solving linear systems where the number of equations and
the number of unknowns are equal. Cramer’s rule relies on determinants. Consider the
following linear system of n-equations in n-unknowns z, s, x3, ..., T,

a11T1 + a12T2 + ...+ ATy = b1

911 + Q229 + ... + aopnxy = by (3.4)

Ap1T1 + ApaT2 + ... + AppTy = bn

which has a matrix notation
Ax = b.
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Let us define the determinants

a1 a2 ... QAip ai; a2 ... al(j—l) b1 (11(]‘+1) ... Qp

g1 Q22 ... Q9p 21 G2 ... Q(2(j-1) bz az0j+1) --- Qin

A1 Gma - Gmn Ap1 A2 .. Gp(ji—1) bn Gp@s1) . Gnn
(3.5)

for j =1,2,3,...,n. Here, D is the determinant of the coefficient matrix A, and for each j
D, represents the determinant of a matrix which is obtained from A after replacing the j-th
column by the column vector b.

Theorem 3.15 (Cramer’s rule).

(a) If a linear system (3.4) of n-equations in the same number of unknowns
X1, T2, T3, ..., Ty, has a nonzero coefficient determinant D = |A|, then the
system has precisely one solution. This solution is given by

D, Dy D,

57952 = 3,--~7$n = )

where D and D; for j = 1,2, 3, ...,n are defined in (3.5).

T =

(b) If the system (3.4) is homogeneous and D # 0, then it has only the trivial
solution v; = 0,29 = 0,23 = 0,...,x, = 0. If D = 0 the homogeneous
system also has nontrivial solutions.

Example 3.52. Use Cramer’s rule to solve the system of linear equations.

4ZL'1 - 21‘2 =10
3.1’1 — 5£E2 =11

Solution: Here, the coefficient matrix A and the column vector b, respectively, are

4 =2 10
[3 _5}, and Ll}.

And the determinants D, Dy, D, are

4 =2 10 —2
b= ‘3 —5‘ N (_20) N (_6) =-l4, D= ‘11 _5‘ - (_50) - (_22) = —28,
4 10
Dy = 5 11 = (44) — (30) = 14.

Therefore, by Theorem 3.15, the unique solution of the given linear system is



Example 3.53. Solve the following system of linear equations using Cramer’s rule

21’1—{[‘2:0
—T1+ 229 —23=0
—LL’2+JI3:1

Solution: With the coefficient matrix

2 =1 0 0
A=1|-1 2 —1|, andcolumn vector b= |0] ,
0 -1 1 1

the determinants D, Dy, Dy and D3 are computed as follows;

2 -1 0 0 -1 0 2 0 0
D=|-1 2 —-1|=1, D=0 2 —-1|=1, Dy=|-1 0 —1|=2
0o -1 1 1 -1 1 0 1 1
and
2 -1 0
Ds=|-1 2 0|=3.
0 -1 1

Thus, by Theorem 3.15, the only solution of the given linear system is

_ (Dy Dy Ds\
(x17$27x2) - (D7 D7 D) - (1a273)

Remark. Cramer’s rule doesn’t work if the determinant of the coefficient matrix is zero or
the coefficient matrix is not square.

Exercise 3.10. Solve the following linear systems using Cramer’s rule (if possible).

(a) 4.1'1 — 2552 =10
3r; — dwg = 11

- + 21’2 - 3I3 =1
(b) 21’1 + 23 = 0
31}1 — 4.1'2 + 4.1'3 = 2.

T =7
(C) 2332 =38
31’3 = 24.
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3.9.3 Inverse method

The Inverse method is one of the important methods to solve a linear system with n equa-
tions in n unknowns.

Example 3.54. Consider a linear system

r—y=1
T+y=3.

Using matrix notation, it can be rewritten as

1 —1] |z 1

LB L) e
And if we denote the coefficient matrix by A, then we have

_ 1 1

A:{1 1},andA_1:{21 %]
L1 ~2 2

Now, multiplying (from the left) both sides of equation (3.6) by A~!, we have
BRI IR F]
And using the fact A™' A = I,, we have

o 3] )= ] msimones = ]

Thus, (x,y) = (2,1) is the only solution of the given system of linear equations. This
shows the usefulness of the matrix inverse to solve linear systems.

N[

Consider the following linear system with n-equations in n-unknowns x, s, z3, ..., Tp;

a1 + a1pT2 + ... + a1, = by
211 + Q999 + ... + A9 T, = b2 (3 7)

Ap1T1 + ApoXa + ... + AppXy = by,

The matrix notation of the linear system (3.7) is

Ax =0,
where
aj; a2 ... Q1n gl by
A - Q21 Q2 ... Q2 ’ v — T2 and b — ba
ap1 QAp2 ... Qnpp Tn bn
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Theorem 3.16 (Inverse Method). If A is an invertible matrix, then for each b € R",
the linear system Ax = b has a unique solution, which is given by

r=A"1b.

Example 3.55. Solve the following system of linear equations using matrix inverse method.

21’1 — X9 = 1
333’1 +21‘2 =12

Solution: The matrix of coefficients A, the inverse A=, and the column vector b, respec-

’ ’ 12 '

3 2
Thus, by Theorem 3.16, the only solution of the given linear system is
2 1
:Cl —1 = = 1 2
==Ly )=

Example 3.56. Use matrix inversion to solve the following linear system.

Do~

2[E1+3I2+l’3:1
£L’1—|—2$2:—2
I3:3

Solution: The coefficient matrix A, the column vector b and the inverse A~!, respectively,
are given by

2 31 1 2 -3 -2
A=1|1 2 0|, b=1|-2|, A't=|-1 2 1
00 1 3 0 0 1

Thus, by Theorem 3.16, the unique solution of the given linear system is

1 2 -3 -2 1 2
ol =A7=1]-1 2 1 21 =10
T3 0 0 1 3 3

Exercise 3.11. Solve the following linear systems using the method of matrix inversion (if
possible).

3I‘1 + 4$2 =—4
521 + 319 =4

(a)
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41 — 19 — 23 =1
(b) 2x1 4 2z9+ 3x3 =10

51‘1 - 21’2 - 2l’3 = —1.
31}1 =12
(C) 4.7)2 =16
51’3 = 20.

Review exercises

1. For every square matrix A, show that A + A’ is symmetric.

2. Given matrices

30
4 —1 1 4 2
A= _11?’3_[0 2}’ C‘[315}

(i) Compute the products A(BC'), (AB)C, and verify that A(BC) = (AB)C.
(ii) Compute the products a(AB), (0A) B, A(aB), and verify that

a(AB) = (e¢A)B = A(aB).

3. A fruit grower raises two crops, apples and peaches. The grower ships each of these
crops to three different outlets. In the matrix

125 100 75
~ 100 175 125

a;; represents the number of units of crop 7 that the grower ships to outlet j. The
matrix B = [$3.5 $6.00} represents the profit per unit. Find the product BA and
state what each entry of the matrix represents.

4. A corporation has three factories, each of which manufactures acoustic guitars and
electric guitars. In the matrix

Ao 70 50 25
135 100 70

a;; represents the number of guitars of type ¢ produced at factory j in one day. Find
the production levels when production increases by 20%.

5. Find the value of z for which the matrix is equal to its own inverse

(a) [_32 _353] (b) [_21 i} (c) [_:53 ﬂ

154



10.

11.

A= |

cos(0)  sin(0)

—sin(0) cos(eﬂ then

i. showthat A = A1
cos(nd) sin(nQ)l

ii. show that A" = {_Sm(ng) cos(nb)

| cos(8)  sin(0) an _ cos(¢)  sin(o)
A= [—sin(e) 003(9)}’ 45 [—sz’n(gb) cos(p)

| cos(B+¢)  sin(0+ o)
AB = {—sz‘n(@ +¢) cos( + ¢)1 .

} , then show that

1 10
. Determine the values of « for which the matrix A = |1 0 0] is invertible and
1 2 «

find A~1.

. Show that if A is invertible, then so is A™ for every positive integer m; moreover,

(Am)—l _ (A_l)m.
If A and B are n x n matrices with A is invertible, then show that

(A+ B)A™(A— B) = (A— B)A" (A + B).

Solve the following systems of linear equations using Gaussian elimination

$1—l’2+2£[)3:4
131+ZE3:6

(a) N _
21‘1 3[E2+5[E3—4
3x1+2x2—x3:1

ZE1—2£L‘2+3I3:9
(b) -1 + 3.’13'2 =—4
21’1 — 5%2 + 5l‘3 =17

201 + X9 — 23+ 224 = —6
3r1+4ro+ax,=1=2
$1+5$2+2$3+6!E4:—3
501+ 219 —x3— x4 =1

(¢)

12. Use Cramer’s rule (if possible) to solve the following linear systems.

131+2.§L’2:5
—r1+ a2 =1

(a)
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41’1 — L9 — T3 = 1
(b) 21‘1 + 233'2 + 3.1'3 =10
51‘1 - 2.1}2 - 21173 =—-1

45[51 — 2.1'2 + 3.’133 =-2
(C) 2%1 + 2I2 + 51‘3 =16
81‘1 — 51’2 — 2233 =4

13. Use matrix inversion method (if possible) to solve the following linear systems.

2x1 + 319 + 23 = —1
(a) 3.751 —|—3$2 +x3 = 1
21‘1 +4ZL‘2 +l‘3 = -2

21‘1+3$2+$3:4
(b) 3.T1+3[L’2+I‘3:8
21‘1+4$2+$3:5

41‘1 — 2.%’2 + 3.773 =0
(C) 21’1 + 21‘2 + 51’3 =0
8131 — 5372 — 2.’153 =0
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Chapter Four

Introduction to calculus

Chapter Objectives
At the end of this chapter you should be able to:
e become familiar with the concept of limits.
e explain the intuitive meaning of limit of a function.
e evaluate limits of a function at given points.
e identify and evaluate one-sided limits.
e have an understanding of the basic limit theorems.
e acquire basic knowledge on infinite limits and limits at infinity to find asymptotes.
e et acquainted with the concept of continuity of a function.
e apply the intermediate value theorem to locate roots of equations.
e become familiar with the derivative of a function.
e find the slope and equation of a tangent line to a curve.
e et basic knowledge on the techniques of differentiation.
e evaluate the derivative of polynomial, rational and composite functions.
e find the derivatives of the exponential and logarithmic functions.
e develop an appreciation of higher derivatives of functions.
e apply the concepts of the derivative to find rates of change of variable quantities.
e evaluate maximum and minimum values of functions.
e use the concepts of the derivative to sketch the graph of a function.
e get acquainted with related rate problems.
e define an anti-derivative of a continuous function.
o find indefinite integrals of some elementary functions.
e evaluate the integrals of functions using the techniques of substitution, integration by parts
and integration by partial fractions.
e solve integrals involving trigonometric functions.
e find the definite integral of continuous functions.
e apply the concepts of definite integrals to find areas of regions bounded by continuous
functions.
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4.1. Limits and continuity

At the end of this section you should be able to
e become familiar with the concept of limits.
e explain the intuitive meaning of limit of a function.
e evaluate limits of elementary functions at given points.
e identify right-hand limit from left-hand limit.
e evaluate one-sided limits.
e become aware of the relationship between one-sided limits and the existence of limit of a
function.
e find limit of a function in terms of its one-sided limits.
e describe the basic limit theorems.
e find limits of functions given in terms of combinations of function.
e evaluate limit of powers of functions.
e evaluate the limit of composite functions.
e apply the squeeze theorem to evaluate limits.
e gain an understanding of the relationship between infinite limits and vertical asymptotes.
e describe horizontal asymptotes in terms of limits at infinity.
e see the relationship between infinite limits at infinity and oblique asymptotes.
e give the definition of continuous function.
e identify the difference between continuous and discontinuous functions.
e state the theorems on continuity.

In this section we study the concepts of limits and continuity of functions. The concept of limit is
fundamental to our main subjects of the branch of mathematics called differential and integral
calculus. When we ask about the limit of a function at a point c, we are to ask about tendencies of
the values of f(x) as x gets arbitrarily closer and closer to c.

Consider the function f(x) = 2x and find values of f for values of x close to 3 (but not necessarily
equal to 3).

e values of x to the left of 3 X 21251291299 |2.999

f(x) |[4| 5 |5.85.98]5.998 ...

e values of x to the right of 3 x |4]135(3.1]3.01]3.001

fx) 8] 7 |6.2]6.02]6.002]..
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As you can see from the above two tables, the values of f(x) = 2x tend to approach to 6 as x gets
closer and closer to 3 from both sides of 3.
Intuitively, we say “6 is the limit of f(x) = 2x as x approaches 3”” and we write

lim(2x) = 6.

x—3
In general, if for a given real number c, the values of a function f(x) approaches a number L as x
gets close to ¢, we write

Iimf(x) =L

X—>C

We may sometimes write this as f(x) > L as x — c.

Suppose f is a function and c is a fixed real number. When one ask for the behavior (approximate
value) of f(x) for x near ¢, normally one is not interested about the value f(c). Instead, one is
asking about values of fat x e(c- 6,c + &) for x #c, with & >0 (5 - delta). We call the
interval (c - &, ¢ + &) a neighborhood of c. When we exclude ¢ from the neighborhood, we
obtain a union of two disjoint intervals.
ie, (c-o8,c)u(c,ct+ o).

Such a set is called a deleted neighborhood of c. For &5 > 0, the interval (c - &, c) may be called
a left neighborhood of ¢ while (c, ¢ + &) a right neighborhood of c. Thus when we talk of f near
c, we are interested in the function values only in a deleted neighborhood of c.

Therefore, when our interest is to know limit of f at ¢, we are mainly curious to know about the
tendencies of f(x) for x in a deleted neighborhood of c.

&—=a Ly S+
il "y " Y
A

Left neighborhood of ¢ Right neighborhood of ¢
Graph of deleted neighborhood of ¢

Figure 4.1: Deleted neighborhood of c

F s

Y

Similarly, if x gets close to 2, the function f(x) = x + 3 gets close to 5, so that Iin;(x +3)=5
and if x gets close to 1, f(x) = x* — 3 approaches —2, so that Iirrl1(x2 -3)=-2.
You can also see that

lim(x* +1) =9, limJx+1=3 and lim——=—2
xX—2 x—8 x>l X —5 4

In the above examples we were able to find the limits without much difficulty. However, finding
certain limits are not so immediate. For example consider
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Here both x> — 4 and x — 2 approach to 0 as x approaches to 2, and 0/0is not determined. But note
that
x> -4 _ (x-2)(x+2)

=x+2, forx=2.

X—2 X—2
2
. . =4 . .
Thus, for x close to 2 (but not necessarily equal to 2), the behavior of 5 is similar to that of x
X —
+ 2 and it seems reasonable to conclude that
x> —4
lim = lim(x+2) =4.
x>2 X —2 X—2

In the same manner, we have
Iim(x+2)2—4 . X +4x+4-4 X(X +4)

lim = lim
x—0 X x—0 X x—0 X

Iim\/;_lzlim\/;_l \/;Jrl:Iim 21 im—t -t
ol x—1 ot x=1 x4l ot (x-DWx+1) Vx4l x4l
Even though standard textbooks of calculus give the formal (analytic) definition of limit of a

function using the notion of neighborhoods, we shall give here a working definition in terms of
what we call one-sided limits.

= Iirg(x+4):4, (for x = 0)

:%, (forx #1)

Definition 4.1:
Suppose f is a function and c is a fixed real number.

1. Areal number L is called the left-hand limit of f at c, writtenas lim f(x) =L

X—C~

if and only if for all values of x sufficiently close to ¢ from the left side of c, the
corresponding values of fapproach to L.
2. Areal number R is called the right-hand limit of f at c, writtenas lim f(x) =R

x—>c*

if and only if for all values of x sufficiently close to ¢ from the right side of c, the
corresponding values of f approach to R.

Note that, if the set (c- &, ¢c) U (c,c+ &) is a deleted neighborhood of c, then for left-hand limit
we take xe(c - 9, ¢), i.e. x < ¢, and for right-hand limit we take x(c, ¢ + 9), i.e. x > ¢ (but not
necessarily x = c).

x*, for x<1

Then lim f(x) = limx* =1, while lim f(x) = lim2x=2

Example 4.1: Let f(x) =
2x, for x>1 x—1 X1 x—>1" x—>1"
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X -1, for x<0
Example 4.2: Letf(x) = U = y 1
X 1, for x>0
Iirp f(x) = lim(-1)=-1 »X
x—0" x—1"
and limf(x) =1 - |1 Figure 4.1
x—0"
y A
2x+1, for x <0 )
Example 4.3: Letf(x) =+ . y=Xx+1
x“+1. for x>0
The lim f(x) = lim (2x+1)=1 X
x—0" X
and lim f(x) = lim (¢ +1) =1 y=2x+1 Figure 4.2
x—0* x—0*

Note that in this example Iirg] f(x) = Iirg}f(x)

Definition 4.2:

Suppose f is function and c is a fixed real number. A real number L is called the limit of f at c if
and only if the left-and right-hand limits exist and are both equal to L;

ie. Liirgf(x) =L ifand only if XIchn f(x) =L= XILT f(x)

Thus for lim f (x) to exist, the following conditions must be satisfied:
i) lim f(x) must exist

i) lim f(x) must exist
i) lim f(x) =lim f(x)
Otherwise, we say lim f (x) does not exist.

) 2x+1, forx <0
Thus in Example 4.3, where f(x) =< |,
x“+1, forx>0

we have seen above that lim f(x) =1= lim f(x) Thus, Iingf(x) =1
x—0* X—

x—0"

Example 4.4: Letf(x) =2° forx € R. Then
nmf@)znT2X=f=2 and Hmf@)=ﬁm2xzf:2

x—1" x—1"

Since lim2* = lim2*=2, we have lim2* =2

x—0" x—1* x—1
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In fact, ifa >0, a =1, then lima* =a°, forany ceR

X—>C

Similarly, you can show that limlog; = log} = log;, forc>0and limsinx =sinc, Vc.
X—>C X—>C
x*, for x <1

Example 4.5: Let f(x) =
3, forx>1

Then lim f(x) = limx* =1 while lim f(x) = lim3 = 3. Since 1 # 3, Iinl1f(x) does not exist.

x—1" x—1" x—1" x—1" X

Example 4.6:  Let f(x) = ~/x , for x> 0. Then lim f (x) = 0. But since f(x) =/x is not defined

to the left of 0, lim Jx does not exist. Hence lim+/x does not exist.

x—0" x—0

Remark: If a function f has a limit as x approaches a number c, then the limit is unique; i.e.
if limf(x) =Lyand lim f(x)=L,, thenL; = L,.

e Basic Limit Theorems

Theorem 4.1: Suppose IXLrTC] f(x) =L, IXLrTC] g(x) = M and k is a constant.

Then i) IXerg kf(x) = k Iang f(x) =KL ... Constant Rule
i) lim (f + g)(x) = limf(x) + limg(x) =L +M ... Addition Rule
iii) leig f-9)x) = leirg f(x) - leig g(x) =L -M ... Difference Rule

Example 4.7: Iin/12 5sinx =5 Iin72 sinx =5(1)=5

Example 4.8: Let f(x) =2xand g(x) =5x—1. Then

IXirr11 f+9)x) = IXinl1f(x) + IXirrl1 g(x) = IXirrll (2x) + IXin; bx-1)=2(1)+5(1)-1 =2+5-1=6

lim (f - g)(x) = lim (9 — limg(x) = lim (2x) - lim (5x - 1) = 2(3) - [5(3) ~ 1] = 6 14 =8

Theorem 4.2:  Assume that limf(x) = L and limg(x) = M.
Then lim (fg)(x) = (lim f (x)) limg(x))=L.M ... Product Rule

X—C

Example 4.9: limxcos x = limx.limcos x = x. cos © = n(-1) = -m.

X—>7r X—>7r X—>7r

It follows from Theorem 4.2 that limx% =limx.x= limx. limx =c.c =¢°

X—>C X—C X—>C X—C
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In general, if n is a positive integer, Iirxrl>c<n =c".
Thus, if P(x) = anx" + an1x™ + ... + aox® + a;x + ap is any polynomial function of degree n and ¢
is any real number, then from Theorems 4.1 and 4.2, we get
M P(X) = lim (axX" + ana X" + ... + axx® + aix + ag)
x> X—>c
= limanx" + limag X" +...+limax® + lima;x +limag

X—>C X—C X—>C X—>C X—C

= a, limx" + a1 limx™ 4 ...+ a limx? + a;limx + ag

= A" + apC"t + L.+ apC? + aic + ag = P(C)
Example 4.10: Let P(x) = 2x® + 4x* — 3x + 1. Then
lim P(x) = Iim1(2x3 +4x°—3x+1) =2(-1)°+4(-1)*-3(-1)+1= 2+4+3+1=6

Theorem 4.3: Assume that limf(x) =L, limg(x) = M and suppose M = 0

f limf(x) |
Then lim| —|(X) = =5—— = — ... Quotient Rule
e | g limg(x) M
limlogx
Example 4.11: lim logx = X210 = i.
x>10 X lim x 10
x—10
lim p(x)
If f(x) = PG is a rational function, then limf(x) = lim P(x) = X2¢ = p(c) = f(c) if
a(x) e e q(x)  limg(x)  q(c)

f(c)#0.

3 lim(x® —4x+1) EETa B
Example 4.12:  lim > _ ax+l _ s _ (=2 : 4(-2)+1 _ -8+8+1 _
x>-2 4X° + X -6 I|rp2(4x +X—-6) 4(-2)°*+(-2)-6 16-2-6

1
2

Theorem 4.4: Suppose limf(x) =L, L # 0 and aeR such that L?cR

Then, lim(f(x))*=L% .............. Power Rule

I
Example 4.13: limVsinx = lim(sin X)? = {Iim(sinx)} =12=41=1

T
X—>—
2

7
X—>= X>=
2 2

Example 4.14: |in2§/(x2 +2x+3)% = IirE](xz +2x+3)%: (16+4+3)% = (27)% =32=9
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Theorem 4.5 (The Squeezing Theorem). Suppose f, g and h are functions such that f(x) < h(x)
< g(x) for all x in some deleted neighborhood of c. If limf(x) =L = limg(x), then limh(x) = L.

Example 4.14: Evaluate lim xzsinl

x—0 X

. . . .1 .1
Solution: It may be tempting to consider x* sin= as the product of x* and sin = and then use the
X X

. .1 .
Product Rule. Unfortunately it can be shown that Ilng sin= does not exist. Thus we cannot use
X— X
the Product Rule to evaluate the given limit. However since the sine function has range [-1, 1], it

follows that -1 < sin1 <1, forx=0.Multiplying both sides by x*, we get
X

1 . .
X2 < x%sin= < x? with lim (-x%) =0 = limx?
X x—0 x—0

Thus, by the Squeeze Theorem, we get Iing X sinl =0.
X—> X

Remark: One of the most important applications of the Squeezing Theorem is evaluating
sinx

Iing—. We cannot apply the Quotient Rule to evaluate this limit since the limit of the
X— X

denominator is 0. But using some geometric constructions and the Squeeze Theorem it can be
shown that

. sinx
lim—— =1
x=>0 X

Remark: The above result has important consequences especially in the evaluation of some

limits involving trigonometric functions.

Example 4.15: Find Iirrg Sinox

X—> X
Solution: lim SM>X = |im 25IM2X _ g, SINSX

x=0 X x—0 5x x=0 By
If we put y = 5x, we have as x — 0, 5x — 0 so that y — 0. Thus Iing SRR 5|irr01 sy -
X X y= y
In general, for any ae R, “”J sinax _
X—> X

Example 4.16: Find Iirg tanx

X—> X
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Solution: lim ™% = jim (ﬂij = lim [ﬂj-lim(ij = 1.% -1,

x—0 X x=>0 \ COSX X x—0 X x—=0\ COSX

. cosx-1
Example 4.17: Evaluate lim

x—0 X
Solution: By multiplying both numerator and denominator by cos x + 1 we get
. cosx—1 _ .. (cosx—1) cosx+1 _cos®x-1
lim = lim =lim ——
x>0 X x—0 X cosx+1 x>0 X(cosx +1)

Th2

: —sin® x . .
= lim ————— (since sin®x + cos’x = 1)

x>0 X(COoSX +1)

. sinx ) —sinXx . sinx .. —=sinx 0
= lim = lim im =1.—=10=0.
x>0 X cosx+1 x>0 X x>0 COSX+1 1

e Infinite Limits, Limits at Infinity and Asymptotes
When lim f(x) does not exist, it may happen that as x approaches ¢ from right, the value of f(x)
becomes indefinitely large or becomes negative and indefinitely large in absolute value. The
value of f(x) may behave similarly when the left-hand limit at ¢ does not exist. We shall use the

symbols oo (infinity) and - co to express these cases, respectively.
. . . 1
To explain these concepts consider the function f(x) = —, forx =0
X
As x gets close to 0 from right, the values of 47

f(x) = % become arbitrarily large positive.

) ) .1
In this case we write lim = =
x—0" X 14

¥

and when x gets close to 0 from left, I

1 L .
the values of f(x) = — become arbitrarily small negative.
X

In this case we write Iirg] % = -0, See Figure 4.3. Figure 4.3
Definition 4.3:
Let f be a function defined in a deleted neighborhood of c.

) We say that the left-hand limit of f(x) at c is infinity, and write lim f(x) = o

X—>C"

if for every real number M, we have f(x) > M for every x close to ¢ from the left side of
i) We say that the right-hand limit of f(x) at ¢ is infinity, and write lim f(x) = o

if for every real number M, we have f(x) > M for every x close to ¢ from the right side if c.
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iii)  We say that the limit of f(x) at c is infinity and write limf(x) =«

ifand only if  lim f(x) = o and I|mf(x) 0

X—C

Definition 4.4:
Let f be a function defined in a deleted neighborhood of c.
)} We say that the left-hand limit of f(x) at c is negative infinity, and write lim f(x) = -0

if for every real number M, we have f(x) < M for every x close to ¢ from the left side of c.

i) We say that the right-hand limit of f(x) at c is negative infinity, and write lim f(x) = -0

x—c*

if for every real number M, we have f(x) < M for every x close to ¢ from the right side if c.
i)  We say that the limit of f(x) at c is negative infinity and write lim f(x) = -co

if and only if lim f(x) =-00 and lim f(x) = -0

Example 4.18: For f(x) = l, for x #0, lim 1. o and lim 1. -0, Hence lim 1 does not
X

x—=0" X x=0 X x—=>0 X
: 1 1 1 1
exist. Whereas for f(x) = —-, x#0, lim — == lim —-. Hence lim — =o.
X x—0" X x—0~ X x=>0 X
1 1
In general, for any real number c and f(x) = —— we have limf(x) = lim ——=o0and
X—C x—c* x=>c" X —C
. . 1
limf(x) = lim —— = -,
X—C~ x=>¢~ X—0C
Definition 4.5:

Suppose f is a function and c is a fixed real number. We say that the line x = c is a vertical
asymptote of the graph of f if and only if either
lim f(x) =00 or limf(x) = +o0

X—C

Remark: From the above examples, we can see that the line x = 0 (i.e. the y-axis) is a vertical

asymptote of the graphs of the functions f(x) = 1 and f(x) = iz , While the line x = c is a vertical
X X

asymptote of the graph of f(x) = Lc :
X —

x+2

Example 4.19: Find all the vertical asymptotes of f(x) =

Solution: If ¢ is any number different from 1 or -1, then by the Quotient Rule,
Ilmf(x)- lim X+2 _ Cz+2 eR
x-c x> -1 ¢*-1

Thus any line x = ¢ for ¢ # £ 1 cannot be a vertical asymptote.
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For ¢=1, lim f(x)= lim <% = jim [**2] L
x—1* -1 X4 =1 -\ x+1 N\ x=1

(x+2Y,. (1 Y_3, .
lim im = — ()=
-1\ Xx4+1 ) -1 x=1 2

Similarly, forc = -1, lim f(x)= lim [EJ(LJ
x—1" x»>-1"{ x=1 X+1

= lim [XLZ}nm(L):(_EJ (20) = o0
x>-1" \ X=1 ) %1 X +1 2

Hence the lines x = 1 and x = -1 are vertical asymptotes of the graph of the function f(x) =

X+2

x? -1
Next, we try to investigate the behavior of a function f as x increases (or decreases) indefinitely,
and try to see if we have lew f(x) or Xlirgo f(x). Such limits, if they exist, are in general called

limits at infinite.

Definition 4.6:

i) Suppose f is a function defined on an interval of the form (c, «), for some ceR. We say that
the limit of f(x) as x approaches to infinity is the number L, and write lim f(x) = L if when

X—>00

x is assigned sufficiently large positive values, the corresponding values of f approach to L.
i) Suppose f is a function defined on an interval of the form (-0, ¢) for some ceR. We say that
the limit of f(x) as x approaches to negative infinity is the number L, and write lim f(x) = L

X—>—o0

if when x is assigned sufficiently small negative values, the corresponding values of f
approach to L.

Example 4.20: Let f(x) = % , forx #0.
When x is assigned sufficiently large positive values, the values of f(x) = % become close to 0.

Similarly for values of x sufficiently small negative values, f(x) = 1 becomes close to 0. Hence
X

lim 1. O0and lim 1. 0. See Figure 4.3 above.
X—00 X X—>—00 X
- .1 1 : : 1
Similarly, lim = =0, lim — =0and in general, |im =0.
x—o X X—-0 X X>w X—C)2

Definition 4.7:
If for a function f and a real number L, limf(x) =L or lim f(x) =L, then the line y = L is called

a horizontal asymptote to the graph of f.
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Thus the line y = 0 (i.e. the x-axis) is a horizontal asymptote for both the function f(x) = % and

f(x) = % See Figure 4.3 above.
- : 3 —x+1
Example 4.21: Find a horizontal asymptote to the graph of f(x) = VT
X* +

Solution: Since we are interested with the behavior of f for large values of |x|, we divide both
numerator and denominator of f by the leading exponent (i.e.x?) to get

x> x 1 3 1 1
o= Lo e T
2x° +5 2x* 5 ) 5
x? X2 X
. 1 1
I|m(3—+J
2— X—>00 2 — —
Then limf(x) = lim 3 2X+1: x x7)_38-0-0_3
X300 x>0 2X° 45 . 5 240 2
lim 2+—
X—00 X

Thus limf(x) = 3 and the liney = g is a horizontal asymptote to the graph of f.

X—>0 2

Similarly, lim f(x) =

X—>—o0

N | w

Remark: For a rational function f(x) = % with deg(p)<deg(q), we find a horizontal asymptote

by applying the above technique.
As a combination of the above two subsections, it may happen that as the values of |x| increase
without bound, the corresponding values of |f(x)| also increases without bound leading to what are
generally called infinite limits at infinity.

Definition 4.8:
Let f be defined on an interval of the form (c, ), for ceR. We say that the limit of f(x) as
x approaches to infinity is infinity, written lim f(x) = co whenever x is assigned sufficiently

large positive values, the corresponding values of f(x) increase without bound.

Remark: Analogous definitions can be given for
limf(x) = -0, lim f(x) = 0 and lim f(x) = -

X—>00

Example 4,22: For f(x) = x%, we have limx®=o  and lim x®= -

X—>00 X—>—00
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4 _ st
Example 4.23: lim w = lim 2X 1X =, (Bydividing by x*).
X—>00 2X +1 X—>00 72+74
GRS

Definition 4.9:
If for a function f and for two real numbers a and b Iimﬁo [f(x) — (ax + b)] = 0, then the line

y = ax + b is called an oblique (or a skew) asymptote to the graph of f.

p()

In general, for a rational function f(x) = m we have
X

i) When degree(p) < degree (q), “rll f(x) = 0 and the x-axis is a horizontal asymptote of f.

i) When degree(p) = degree(q), then f has a horizontal asymptote given by the quotient of
the leading coefficients of p and g.
iii) When degree(p) > degree(q), then lim f(x) = #o0, and in particularly if

degree(p) = degree(q)+1, then f has an oblique asymptote obtained as a quotient when we

divide p by g.
2 J—
Example 4.24: Let f(x) = 4’(%;‘1, find all asymptotes of f.
2 _—
Solution: Since Iirr31 f(x) = Iirr3| 4)(;—5;(1 = oo, the line x = -3 is a vertical asymptote.
x—>-3" x—>-3* +
2 —
By the long division method, we get f(x) = drox=1 (4x-7)+ x203
+

. . 20
= lim[f(x)-(4x-7)] = lim—— =0

X—>00 X—wo X 4 3

Therefore, the line y = 4x — 7 is an oblique asymptote of f.

e A special Limit in Exponential Function

Consider the function f(x) = (1+ 1) with domain (-o0, -1) U (0, o)
X

The following two tables indicate the behavior of the values of f(x) as x approaches to positive
and negative infinity, respectively,

X 2 10 100 1000 10,000 100,000

f(x) 2.75 | 2593743 | 2.704814 | 2.716924 | 2.718146 | 2.718268
X -2 -10 -100 -1000 -10,000 | -100,000
f(x) 4 2.867972 | 2.731999 | 2.719642 | 2.718418 | 2.718295
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As is tried to be indicated from the above tables, the values of (1+ 1) tend to approach to an
X

irrational number whose value is 2.7182818.... This number, denoted by e, is called the base of
the natural logarithm, and plays an important role in calculus.
Remark: The natural logarithmic function (with base e) is given by f(x) = log, x and is denoted

by f(x) = /nx. Its inverse, the natural exponential function is given by f(x) = exp(x) = e”.
Thus from the above constructions, we have 1V 1)
lim (1+—j =e= lim (1+—) .
X—>00 X X—>—0 X

This limit has important consequences.

X+3 X 3
Example 4.25: lim (1+ 1) = lim [1+ 1} .(1+ 1) - Rule of exponents
X—>00 X X—>00 X X
. 1\ . 1y’
=lim|{1+=|.lim|1+= - Product Rule
X—>00 X X—00 X
—el’=e

X+a
In general, for any real number a, lim (1+—) =e.

X—>300 X

Example 4.26: Show that lim L+t)t =e

Solution: We prove this by showing that lim L+t)% = e = lim (1+t)%. First use the

t—0" t—0"

substitution t = 1, so that x = %and as x — oo, t — 0", Hence, lim (1+t)% = lim (1+ 1) =e.
X t—>0* X—>0 X

Similarly, as x — -0, t — 0" . Hence, lim (1+t)% = lim (1+1j =
X

t—>0" X—>—0

Therefore, lim (L+t)% =e= lim (L+t)% = lim @+t)% =e.

t—>0" t—0" t—0

Example 4.27: Evaluate lim (1—§j

X—>00 X

Solution: Lett= _—5. Then x = _TS and

X
X ~ 5 -5
lim (1-§j = lim @+0¥ = lim (104 ] = limarn* ] = e®=
X—>0 X t—0" t—0" t—>0 €
In general, for any real number a, Iir+noc (1+ Ej = e
X—>I X
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e Continuity of a Function

In our everyday usage, the word continuity refers to something that happens without any

interruption. In calculus, the term continuity is used to describe functions whose graphs can be

traced without any break. We shall give its formal definition using the concept of limits.

Definition 4.10:

- Let f be a function and ¢ be a number in the domain of f. fis said to be continuous at ¢ if

Ithcw f(x) =1(c)

- If ffails to be continuous at c, then we say that f is discontinuous (or not continuous) at c.

- fissaid to continuous if it is continuous at each point of its domain.

Example 4.28: Letf(x)=2xandc=1
Then Iirr11f(x): Iinl12x =2
and f(1) =2(1) =2.
Since Iin;2x =2 =1(1), fis continuous at 1.

In fact f is a continuous function. See Figure 4.4.

Figure 4.4

Remark: For a function f to be continuous at c, the following conditions must be satisfied

A

A

a. f(c) must be defined
b. lim f(x) must exist
C. limf(x) =f(c)
Otherwise if one of the above conditions is not satisfied, then f is discontinuous at c.
3x, for x <0
Example 4.29: Letf(x)=<2, forx=0
x%, for x>0

Then f(0) = 2 so that f(0) is defined . lim f(x) = lim3x =0
x—0"

x—0"

and lim f(x) = limx*=0. Thus lim f(x) =0

x—0" x—0* X

But since Iirrg f (x) = f(0), fis not continuous at 0. .

v =x

v

y = 3X

Figure 4.5

Example 4.30: Let f(x) = sinx. Then, |ir9 f(x) = limsinx =1=sinz/2= f(z/2)

x—>ﬂ2 x—>%

Hence f(x) = sinx is continuous at 7/2.
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In fact f(x) = sinx is a continuous function. Similarly, the functions f(x) = cosx, the exponential
function with base a, f(x) = a*, the logarithmic function with base a, f(x) = log, x, the natural

exponential function f(x) = & and the natural logarithmic function f(x) = ¢nx are all continuous
functions in their respective domains.

Theorem 4.6: Suppose f and g are functions with common domain such that both f and g are
continuous at ¢. Then

1) f+ gis continuous at c.

2) f—giscontinuous at c.

3) if kisa scalar, kf is continuous at c.

4) fg is continuous at c.

5) ifg(c) =0, i is continuous at c.
g

Example 4.31: Let P(X) = apX" + an.aX"™ + ... + aox? + a1x + ag be any polynomial of degree n, and
let ceR, arbitrary. Then,
mP(X) = 1im (anX" + an1X™* + ...+ apx? + a1X + ag)= anC" + an1C™* + ...+ a,c% + a;¢ + ap = P(C)
X—>C X—>C

Hence, P(x) is continuous at ¢, and since ¢ was taken arbitrarily, every polynomial function is
continuous.

Example 4.32: Let f(x) = PG be any rational function. Then if ¢ is any real number such that

q(x)

o PO PO pee)
g(c) # 0, then leﬂgf(x)— leirg a0 = UEC‘Q(X) = 1) =f(c)

Thus any rational function is continuous in its domain.

x}+x-1

From the above theorem we can see that f(x) = 5x* — 4x + 7 is continuous in R, g(x) = T2
X —

is continuous in R\{-2, 2}, h(x) = |x| cos x - % is continuous for x = 0 and f(x) = il + /nx is
X X —

continuous for xe(0, 1) U (1, «).

As a generalization of the Power Rule for limits, we have the following theorem

Theorem 4.7 (Substitution Rule): Suppose f and g are real valued functions such that limf(x) =

L and g is continuous at L. Then limg(f(x)) =g (Iim f(x)) =g(L)

Example 4.33: For f(x) = sinx, g(x) = v/x, and ¢ = 7/2, we have lim f(x) =1 and g is

X—)%

continuous at 1. Thus limg(f(x)) = lim +/sinx = V1=1.
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Using Substitution Rule we have continuity of the composite of two functions as given by the
following theorem.

Theorem 4.8: Suppose f and g are functions such that f is continuous at ¢ and g is continuous at
f(c). Then, gof is continuous at c.

Proof: Since f is continuous at ¢, limf(x) = f(c). Now lim (gof)(x) = limg(f(x)) = gllim f (x)) =

g(f(c)) = (gof)(c). Therefore, gof is continuous at c.

Example 4.34: For f(x) = x? + 5, g(x) = e and ¢ = 1, we have (gof)(x) = g(f(x)) = e**° and

lim (gof)(x) = Iirrgexz”’ =e%= "5 = €% Thus, (gof)(x) = e *° is continuous at 1.

e Intermediate Value Theorem

Recall that for a function f continuous on a closed interval [a, b] its graph can be traced between
the points (a, f(a)) and (b, f(b)) without any break or interruption. In this section we shall see an
important application of continuous functions: namely, the Intermediate Value Theorem, and

some of its consequences. y

A
For a function continuous on [a, b], the f
intermediate value property asserts that if L f(b) [
is any number between (intermediate to) f(a ) L

and f(b), then there is at least one number c
between a and b whose image under f is L. 5
See Figure 4.6. a c b X
f(a) Figure 4.6

v

Theorem 4.9: (Intermediate Value Theorem)
Suppose f is continuous on a closed interval [a, b]. Let L be any number between f(a) and f(b),
(either f(a) < L < f(b), or f(b) < L <f(a). Then there exists a number c in [a, b] such that f(c) = L.

Example 4.35: Let f(x) = x2. Then f is continuous on [0, 3] with f(0) = 0 and f(3) = 9. By the
Intermediate Value Theorem f assumes (takes on) every value between 0 and 9. For instance for L

=4, we have 2 €0, 3] with f(2) =4, and for L=7, we have /7 €[0, 3] with f(ﬁ) =T7.

Example 4.36: Let f(x) = x* + 2x* + x = 4 on [-2, 1]. Show that there exists some ¢ €[-2, 1]
such that f(c) = 4.
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Solution: fis continuous on [-2, 1] with f(-2) = 2 and f(10 = 8. Since 2 <4 < 8, it follows, by the
Intermediate Value Theorem that there exists ¢ [-2, 1] such that f(c) = 4. i.e. f(c) = ¢ + 2¢* + ¢ +
4 = 4. In this case we can find such ¢ by solving
c+2c’+c+4=4

o AB+2ct+c=0

o c(®+2c+1)=0

& ¢ (¢ + 1)* =0 which gives eitherc=0orc=-1
Since both of these values are in [-2, 1], for this particular case we have two values in [-2, 1] with
image under f equal to 4.

One of the most important applications of the Intermediate Value Theorem is given in the
following theorem.

Theorem 4.10: Suppose f is continuous on a closed interval [a, b] and assume that f(a) and f(b)
have opposite signs. Then there is at least one ¢ (a, b) such that f(c) = 0.

Proof: Without loss of generality, assume that f(a) < 0 and f(b) > 0. Then choose L = 0, between
f(a) and f(b). By the Intermediate VValue Theorem, there is at least one ¢ between a and b such
that f(c) =L =0.

Remark: This means that the equation f(x) = 0 has at least one root in the interval (a, b).
Example 4.37: The function f(x) = x® — x — 2 is continuous on [1, 2]. f(1) = -2 <0 and f(2) =4 >
0. Thus there is a number ¢ in (1, 2) such that f(c) =0 orc®~c—-2=0.

Example 4.38: Show that the graphs of y = ¢* and y = 3x intersect in the interval [0, 1]

Solution: Define the function f(x) = e* -3x. Then f is continuous on [0, 1] with f(0) = e° -3(0) = 1
-0=1>0and f(1) =e*—3(1) =e—3<0. Thus there is a number ¢ (0, 1) such that f(c) = e° —
3c = 0 and the graphs of y = ¢* and y = 3x intersect at ce(0, 1).

Exercise 4.1
1. Evaluate the following limits, if they exist.
2x -1 J
a  lim(7-2%) b, lim =X c. lim XX+
Xx—4 x—2 3X+1 x-3 2x—1
1
-1
2 — —
d lim X2t e lim—=22_ o imX_
x>-1 X+1 =2 Ix+4+2 -2 x->1 x—1
2. Find lim f(x), lim f(x) and lim f (x), if it exists, for
a. f(x)=cosx, atc= /6

b. f(x)=vx+3,atc=-3
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X, for x <2

C. f(x):{ at c=2

2x—2, for x > 2’

x+1|, forx>-2
d. f(x)= | | : atc=-2
1 , forx<2
3. Evaluate each of the following limits, if it exists.
a. lim(2x*-3x + 5) b. lim 2*sinx c. lim (cos x)*
x—3 x—0 xﬁ%
2 f—
d. lim 3 X=X +3 e, lim [x% —x%) £ lim 47 +9
x—263 X—3 x—4 x—1
lim sinx ho lim SII’](ZX)SZII’](3X) i lim s_|n3x
x=>0 tan X x>0 5X x=0 Sin4x
4. Evaluate the following limits, if they exist
a lim—2_ b lim = ¢ lim—t
x>3” X—3 x—1 (X—l) x—0o X —1
3 _ 3 _
d. limcosx e. lim% 21 f. Iimw
X—>—0 x—o 22X X—>o0 5x° +1
5. Find all the asymptotes, if any, for the following functions
2 _ 3
a. f(x) = tanx b, fx)= X ¢ fx)= X Fxl
X+4 (x+1)
6. Evaluate the following limits, if they exist.
X+4 X x-1
a lim [1+1 b, lim |14 ¢ lim|2X3
t—o0 X t——0 X+1 towo | 2X+1
7. Check whether or not the following functions are continuous at the indicated points.
a. f(x)=x*+1, atc=2 b. fx)=|x*~ 1], atc=-1,0,1
x?, for x =1
C. f(x):i,atc:Z d. f(x) = ” ,atc=1
X—2 3, forx=1

8.Show that the following equations have roots in the indicated intervals.
P x P A
a) logx=0,in [5,2} b) 2°-2=0,in[0,2] ©¢) cos X —x =0, in [O%J

9. Using the Intermediate Value Theorem show that the graphs of f and g intersect in the

given interval.
a. f(x)=x®+4x+2andg(x)=-1, in[-1, O]
b. f(x) =2sinx and g(x) =1 —x, in [0, 2]

c. f(x) =x /nxand g(x) =sinx, in F,e}
e
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4.2. Derivatives

Objectives
At the end of this section you should be able to

get acquainted with the concept of the derivatives of a function.

evaluate the derivative of elementary functions using the definition.

find the slope and equation of a tangent line to a curve at a given point.

evaluate the derivatives of combinations of functions.

find the derivatives of polynomial and rational functions.

have a good understanding of the Chain Rule.

apply the Chain Rule to evaluate derivatives of composite functions and algebraic
functions.

find the derivative of the logarithmic function.

find the derivative of the exponential function.

apply the above derivatives to the natural logarithmic and natural exponential functions as
special cases.

evaluate derivatives of composite functions with the logarithmic and exponential
functions.

have an understanding of the derivative of a derivative.

Using the concepts discussed in section 4.1, we are now ready to study one of the central concepts

of calculus: the derivative of a function. Even though the derivative is connected with finding the

tangent lines to curves at a point, its main applications are in finding rates of change of variable

quantities relative to the change in another quantity.

Consider a function f continuous at a point c in its domain.
Then, by definition of continuity lim f (x) = f(c) Ya f

This means for x close to c, f(x) is f(x)
close to f(c). If we denote the f(c)

increment (or change) x — c in the /

x-direction by h = x —c (so that x = ¢ + h) as

is seen in Figure 4.7, /

then the corresponding change in the y-direction

v

c X X

is given by Figure 4.7

f(x) — f(c) = f(c + h) — f(c).

The ratio of these two increments is given by

f(x) - f(c)

X—C
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and is called the difference quotient of f at c.
For instance, if f(x) =x*+ 2 and ¢ = 3, then
f(x)-f(3) _ (x*+2)-(3*+2) _ x*-9
X—3 - X—3 ~ x-3
We shall define the derivative of a function of f at ¢ as the limit of the above difference quotient,
if the limit exists.
Definition 4.11
Let ¢ be a number in the domain of a function f. If
lim f(x)— f(c)
x->c X—C
exists, we call this limit the derivative of f at ¢, and denote it by f'(c), so that
£ = lim 1 =€)
X—C

X—>C

If this limit exists we say that f has a derivative at c, or f is differentiable at c or f’(c) exists.
Remarks: 1. Observe that we can alternatively write

_ o fc+h)y—f(c)
/1c) = lim h

h—0

since forh=x-c,wehavex =c+handasx —»c,h -0.
2. The notation /c) is read as “the derivative of f at ¢” or for short “'f prime at ¢”.

Other notations are given by %(c) or Df(c)

3. The quantity f{c) describes the rate of change of the function f around the point (c, f(c)).
Example 4.39: Let f(x) = 2x + 3. Then, for any ¢ €R, the point (c, f(c)), we have

71(c) = Iimw = Jim I+ i 222 o 1im X2C Zglim) = 2.

X—C X—C X—C X—C X—C Xx=>¢ X —C X—C

Since ceR is arbitrarily taken, we have for f(x) = 2x + 3, f'(x) =2 for all xeR.
In fact for any linear function f(x) = ax + b, we have

s i F(X)—f(c) _ (ax+b)—(ac+b) _ X—C
f(C)—lxlgg—X_C

lim alim—— =a
x->c X—cC x>t X —C
forany c eR. Thus f'(x) = a
Note that the graph of a linear function is a straight line and the rate of change (a constant) is
measured by the slope of the line.
Example 4.40: Let f(x) = 3x? + 5. Then for any xeR
f(x + h) = 3(x + h)> + 5 = 3x? + 6xh + 3h’ + 5 and

_ 2 2 _ 2
F(x) = lim f(x+h)-f(x) _ lim (3x° +6xh+3h° +5)—(3x° +5)
h—0 h h—0 h
2
= im DN _ iy SNEXEN _ gyi ox + 1) = 6.
h—0 h h—0 h—0

Thus, for f(x) = 3x* + 5, f'(x) = 6x for any xeR.
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In particular, when ¢ = 1, f'(1) = 6(1) =. 6 is the slope of the tangent line to the graph of f at (1,8)
Example 4.41: Let f(x) = c, where c is a constant.
Then for any xeR,

PN =T _ i €€ ~ limo = 0.
h h—0 h h—0

£ =lim
Thus, for f(x) = ¢, a constant, f'(x) = 0 for all xeR.
Hence, for f(x) = 15, /'(x) = 0, for f(x) = -~/2, f/(x) = 0, and so on.

Applying the above definition, we can get the following derivatives.

/) f'(x) f () f'(X)
f(x) = % f'(x)= ;—21 forall x =0 fx) = sinx f'(x) = cosx, for all xeR
f(x) = Vx £ = 1 for x > 0 f(x) = cosx F'(x) = -sinx, for all xeR,
2Jx’

Using the definition to evaluate the derivative of more complicated combinations and
compositions of functions becomes cumbersome. At this stage the student must be able how to
find the derivatives of various types of functions quickly and efficiently without always resorting
to the definition. In the table below we list some techniques of differentiation which can be
proved using the definition.

Theorem 4.11: Suppose f and g are differentiable at ¢, and Kk is a constant, then

a) (kf)'(c) =k f'(c) Constant Rule

b) (F+9)'(c)=f'(c) +g'(c) Addition Rule

C) (F-9)'(c)=f'(c)—d'(c) Difference Rule

d) f(x) = x", nan integer, f'(x) =nx"* ... Power Rule

d) (fg9)'(c)=f'(c)g(c) + f(c)g'(c) ... Product Rule

e) (ij (c)= r9)g(0) - fz(c)g’(c) provided g(c) #0 ... Quotient Rule
g [9(c)]

f) (gof)'(c) = g'(f(c)). f'(c) The Chain Rule

Thus, if £(x) =x* then f/(x) = 4x3 and if g(x) = x*?, then #'(x) = 12x™, and so on.

Example 4.42: Let f(x) = x* + 3 and g(x) = sinx. Then

(f+o)xX)=f(x+gKx) = %(x2 +3) +% (sinx) =2x + 0 + cosx = 2X + cOS X

i(g(x) —4f(x)) = i(sinx) - 4i(x2 + 3) = cosx — 4(2x + 0) = cos x — 8x.
dx dx dx

Since polynomials are sums or differences of constant multiples of powers of x, the first four rules

help us to evaluate their derivatives.
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Remark: Given a polynomial of degree n, P(x) = anx" + an1x™ + ... + ax® + a;x + ag

d }
P'(x) = &(anx” +anX™ + L+ aox® + ax + ag)

d . d , 1 d , d d
=a,—(X)+ap1— X )+ ... Fa—X)+a —XxX)+ —(ag).
ndx() nldx( ) azdx( ) 1dx() dx(o)

= napX™ + (N-1)an1X"2+ ... + 2aX + ay
Example 4.43: For p(x) = 5x* — 2x% + x* + 7x — 1, we have p'(x) = 20x° — 6x* + 2x + 7.
For q(x) = 6x° + /2 x> — 3x + 1, we have q'(x) = 18x> + 2+/2 x — 3.

As an application of the product rule, we have the following examples.

Example 4.44: Let k(x) = 2x sinx. Find k’(x).

Solution: If we put f(x) = 2x and g(x) = sinx, then f'(x) = 2 and g'(x) = cosx.
Thus, k'(x) = f'(X)g(x) + f(X)g'(X) = 2sinx + 2XCOSX.

Remark: In practice, to evaluate the derivative of a product of two functions, we do not need to
identify which one is f and which one is g.
Example 4.45: Let h(x) = x® cosx. Then

h'(x) = (x%) cosx + x*(cosx)'= 3x*cosx + x*(-sinx) = 3x%cosx —x* sinx.
For the derivative of the product of three functions f, g and h, we have

(fgh) (x) = £ (x)g(x)h(x) + f(x)g ()h(x) + f(x)g(x)h (x).
Example 4.46: Let k(x) = x® sinx cosx. Find k’(x).
Solution: Put f(x) = x3, g(x) = sinx and h(x) = cosx in the above statement with 7'(x) = 3x?, g'(x)
= cosx and h'(x) = -sinx. Then k’(x) = 3x? sinx cosx + x> cosx.cosx + X>sinx(-sinx)= 3x? sinx cosx
+ x? cos’x — x> sin’x.

p(x)

The Quotient Rule is used to find the derivative of any rational function. If f(x) = W

for p, q

mj _ P90 - POIT) oo o,

q(x) (a(x))’

polynomials, we then have f{x) = [

Example 4.47: Let f(x) = 2 =2 Find /(x)
2x+1
Solution: Putting p(x) = 3x*—5 and q(x) = 2x + 1, we get
£ = 6x(2x+1) - (3x* =5)(2) _ 12x* +6x—6x*+10 _ 6x* +6x+10
(2x+1) (2x+1)? (2x+1)?
As an important consequence of the Quotient Rule, we can now find the derivatives of the
remaining four trigonometric functions.
Example 4.48: Let f(x) = tanx. Show that f'(x) = sec®x
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. sin x
Solution: f(x) =tanx = ——. Then
COSX

sinx\"_ (sinx)' cosx —sinx(cosx)*
COSX (cosx)?

709= 2 (amy) = [

_ COSX.COSX —sinXx(—sinx)

cos’ x
_cos’x+sin°x 1,
= ) = ——— = sec’x.

cos® X cos® X

In the same manner, we can show that
d d d
— (cotx) = -csc®x, — (secx) = secxtanx and — (CSCX) = -CSCX.COtX.
dx dx dx

The Chain Rule states that (gof)’(x) = g'(f(x)) f'(x), for all x such that f is differentiable at x and g
is differentiable at f(x).

Example 4.49: Find the derivative of h(x) = cos(x* + 1)

Solution: Let f(x) = x* + 1 and g(x) = cosx. Then, h(x) = (gof)(x) = g(f(x)) = g(x* + 1) = cos(x* +
1) and h'(x) = g'(f(x)). f(X) = -sin(x* + 1) . (x* + 1)’ = 2xsin(x? + 1).

If a and b are any real numbers, we can easily show that

a (sinax) =acosax and a (cosbx) = -bsinbx
dx dx

Thus, % (sin4x) = 4 cos4x and % (cos5x) = -5 sinbx

Example 4.50: Find the derivative of h(x) = (1+3x -5x)*
Solution: Let f(x) = 1 + 3x —x° and g(x) = x*2. Then h = gof and

h'(x) = di (1+3x — ) = 12(1 + 3x — )M (1 + 3x — x°)’ = 12(3 - 5x*) (1 + bx — x°)™.
X
Example 4.51: Find the equations of tangent and normal lines to the semicircle

y=1f(x) = V1-x* at (%g]

Solution: The slope of the tangent line T is given by the derivative of y = f(x) = V1-x* atx =
%. Thus, by Chain Rule,

f’(x :%:i :I__)(2 =
X

dx 24/1— X2 241— X2 1—x?

—2X —X

so that the slope of T is

m:f’(%j: _]7/2 :-%.%:__1




and since the tangent line passes through the point L%?j , its equation in slope-point form is

\/§ 1( 1)
-— =-—= | X—= or X+~3y-2=0
SEFRNE ’

2
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The slope of the normal line at (§7j is /3 and its equation is

y-g = ﬁ[x—%J or y-+/3x=0.

Remark: The Chain Rule can be extended to more than two functions.
Suppose k(x) = (hogof)(x) = h(g(f(x))) and let f be differentiable at x, g be differentiable at f(x)
and h be differentiable at g(f(x)). Then k{x) = (hogof) (x) = h{g(f(x)).g f(x)). f(x)
Similarly, if Ax) = (kohogof)(x) = k(h(g(f(x)))), then
'(x) = (kogohof) (x) =k (h(g(f(x)))). h (a(f(x)).g (f(x)).f (x).
You can now see why this method is called the Chain Rule!
Example 4.52: Find the derivative of the function

k(x) = cos/2x* -3
Solution: Let k(x) = cosxv2x* —3 = h(g(f(x))) with
f(x) =2x>—3, g(X) = v/x and h(x) =cosx. Then

k'(x) = %(COS\/ 2x’° —3) =h'(9(f(x). g'(f(x)) f'(x)
— _sinV2x’ _3 _ —2xsin/2x* -3

1
3, ——— 4AX
2+/2x% -3 J2x? -3

Example 4.53: Let f(x) = sin(tanx?). Find f'(x)
Solution: f'(x) = %(Sin(tanxz))

= cos (tanx?) sec’x?(2x) = 2x.cos(tanx?) sec’x’.
e Derivatives of Logarithmic and Exponential Function

Recall that for a > 0, and a = 1, the logarithmic function with base a is given by
f(x) = log, X for x > 0.
In particular, when a = e, we get the natural logarithmic function
f(x) = log, x =/nx for x > 0.
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Theorem 4.12: Leta>0,a=1and letf(x) = log, x. Then

£1) = Slog, x
X

From Theorem 4.12, when the base a = e, it follows that

| A .1
(log, x) = (¢nx)’ = ;Ioge e= ;.1 =2 ie (Inx) ==
Also, by applying change of base of logarithms, we get
1 llog.e 1 1 . '
log, x) = =log,e = ——=— = =, S l.e. _ 1
(log, ) x o xlog,a x'Ina (log, x) ~XIna
Example 4.54: For f(x) = log; x, we have f'(x) = %IogSe = ﬁ
Example 4.55: Find the derivative of the following
a) f(x) = |093(x2 +x—1) b) g(x) = %
Solution: a) f'(x) = %.Iogse 6 +x—1) = 22X+1 Jlog, e
X“+x-1 X" +x-1
, 1
5 900 - s 1.Inx—x.; _Inx-1
Inx (Inx)? In? x
Theorem 4.13: Leta>0,a=1andletf(x) =a". Then, f'(x)=(") = I a_
0g, e
By applying change of base we also have
@)= =dlna
log, e
When the base a = e, we get (¢°) = Ie— =e'me=x"1=¢e"ie | ()=¢"
0g, e
Example 4.56: For f(x) = 3%, we have f'(x) = =3*/n3.
3
Example 4.57: Find the derivative of the following
a)  f)=e" b)  g(x)=3"™
) fX)= Jx+e d  g(x)= e /nx
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Solution: a) By using the Chain Rule, we get

= 1 _ e
R e e R e e

b) (3™ = 3™ /n3. (sinx)’ = /n3.cosx.3"™
d ™ 1 ax 1+ 4e*
C) —Vx+e' = ——— (x+e7) = —F/——
dx 24 % + e 24 % + e

d) By the Product Rule and Chain Rule we get:
gx) = (eX2 In x) = 2xe* Inx + eX .l:exz (2x|nx+£j
X X

e Higher Derivatives

If a function f is differentiable at a point x in its domain, we denote its derivative by f'(x), where
_ f(x+h)=f(x)
f'(x) = lim .

This derivative is usually called the first derivative of f at x.
If the new function f’ is differentiable at a point x, then we can repeat the process and find its

derivative as
(760y = 509 =lim D=L

we call f”’(x) the second derivative of f at X, and it is often read as “f double prime of x”.
Observe that #”(x) is simply the derivative of the function / at x and is no more difficult than
finding the first derivative.

, provided the limit exists.

provided the limit exists.

Example 4.58: If f(x) = /nx, then f'(x) = 1 and hence f"'(x) = i(i} = _—21
X dx\ x X
We can similarly find the derivative of f"'(x) to get
. f'"(x+h)—f"(x
(f!r(x))! :fr!r(x) — !]IJI)] ( }: ( )

and call this the third derivative of f at x.

, and so on,

Thus, for f(x) = ¢nx, f'(X) = f”(x) = _— and f'"'(x) = %

These derivatives when they exist are called higher derivatives (or derivatives of derivatives)

th
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2f

Thus the second derivative is f”'(x) or f2(x) or c(isz (x) and the third derivative is f"''(x) or

3
709 or <09,
Example 4.59: Find the higher derivatives of the following
a) fx) =4 +x2—3x +7 b) g(x) = e*
C) f(x) = sinx d) g(x) = /n(3x)

Solution: a) For f(x) = 4x® + x* — 3x + 7, we have

() =12x*+2x -3

f'(x)=24x + 2

f'(x) = 24

Mx)=0 andforn>4, fM(x)=0

b) For g(x) = €%, g'(x) = €%, g”"(x) = €, and in general for n > 1, g!"(x) = &*
C) f(x) = sinx , f'(x) = cos x

f""(X) = -sinx , f""(x) = -cosx

(%) = sinx and soon
d) g(x) = ¢n(3x) , gXx) = % = % by Chain Rule

r —_ 1 " —_ 2 —_ 3'2

g (X)_'F ) g (X)_F ) 9[4]()()__79"'
Exercise 4.2
1. For each of the following functions, find f'(c) using the definition

a. f(x) = 2x — 4, atc=1 b. f(x) =x* +3, atc=-1

c. fx) =x3-2 atc=0 d. f(x) =[x + 2|, atc=2
2. Find the equations of the tangent and normal lines to the graph of f at the given point.

a.  fx)=x*+x-1,  at(2,5) b.  fx)= x, at (4, 2)

C. f(x) = 2cosx, at(z/2,0) d. f(x) = % at (2, %)
3. Find the derivative of the following functions

a.  f(x) = (x*-5) cosx b.  g(X)= +/x secx

2x° —5x 2X
C. d. X)= ——
x> +3 909 tan x

4. Find the equations of the tangent and normal lines to the functions at the indicated point.

a. f(x) = sinx cosx, at (z/4,1/2)

X at (1,/2)

x2+1"'

b.  f(X)
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5. Find the derivative of the following functions.

a. f(x)=tan’x b. g(x) = xv1-x? c. f(x)= /x sinx?

d. g(x)= ﬁ e. f{(xX) = Vx> +vVx*+1 . g(x) =xcosx + 3/5x—4
X =X
9. f(x)=sinv2x+1 h g(x)= 2% i f(x) = e
X+
j. g(x) = n(¢nx) k. f(x)=(x+ e 1 f(x) = in’x + inx?
6. Find the first, second and third derivatives of the following function
a. f(x) = e b. g(x) = secx
C. f(x) = sin(2x) + cos(3x) d. g(x) = /n(sinx)

4.3. Applications of the derivative

At the end of this section you should be able to:
e define maximum and minimum values of a function on a given interval.
e explain the fundamental theorem of local extrema values.
e identify the regions where a function is increasing and decreasing.
e apply the first and second derivative tests to find local extrema values of a function.
e solve practical problems related to extrema.
e state the important points that are necessary to sketch the graph of a function.
e sketch the graph of a function applying the above concepts.
e solve related rates problems.

At the beginning of this unit we have mentioned that the derivative of a function at a point c in its
domain measures the rate of change of the function around that point. In this section we shall see
how the derivative can be applied to solve a variety of problem in the areas of engineering, the
natural sciences, business and the social sciences. We see how it can be used to solve maximum
and minimum values of a function (i.e., where it has “peaks” and where it has “valleys”), where it
curves upward and where it curves downward, and in general, to sketch the graph of the function.
At the end we shall introduce related rates problems and see how to solve them using the
derivative.

a)  Extrema of a Function

Definition. Let f be a function defined on an interval I. If there is a number d in | such that f(x)
<f(d) for all x in I, then f(d) is called the maximum value of f

on I. Similarly, if there is a number c in | such that f(x) > f(c) for all x in I, then f(c) is called the
minimum value of f on I. (See Figure 4.8) A value of f that is either a maximum value or a
minimum value of f on I is called an extreme value of fon I.
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Remark: If the set | is the domain of the function f and if f has a maximum value on I, then
this maximum value is called the (absolute or global) maximum of f.

Similar for minimum value of f.

Example 4.60: Let f(x) = x® on | = [-2, 4]. Then

f has the maximum value of 16 = f(4) and

the minimum value of 0 = f(0). Both 0 and

16 are extreme values of f.

- On the interval [-2, 4), the minimum value of
fis 0 but f has no maximum.

- On the interval (0, 4) f has neither a maximum
nor a minimum. See Figure 4.8.

Example 4.61: Let f(x) = % for x # 0.

The domain of fis | = (-0, 0) U (0, «) and

f has neither a maximum nor a minimum

value on I. See Figure 4,10

- On the interval [-1, 0] f has the maximum
value -1 = f(-1), but no minimum.

- On the interval (0, 2] f has the minimum value %

but has no maximum.
- On the interval [-1, 2], f has no extrema.

* 4
16+

Figure 4.8

f(2),

Graph of f(x)= i

Figure 4.9

Note that in the first example when the interval is open we have no extrema, while in the second
example, when the function is not continuous, we had no extrema. Continuity of a function on a
closed interval gives us a sufficient condition for the existence of both extreme values.

Theorem 4.14: (Maximum-Minimum Theorem). Let f be continuous on a closed
bounded interval [a, b]. Then f has a maximum and a minimum value on [a, b].

Hence the function f(x) = x* for -2 < x < 4 has both extreme values on [-2, 4].

Similarly, the function f(x) = x> —4x +5  for

0 <x <2 which is continuous on [0, 2] has a

maximum and a minimum value on [0, 2], by Theorem 4.14. Even though the above theorem
tells us about the existence of extreme values on [a, b], it does not tell us where they occur or how
to find them. The following theorem will help us in determining such values.

Theorem 4.15: Let f be defined and continuous on [a, b]. If f has an extreme value
at cin (a, b) and f is differentiable at c, then f'(c) = 0.
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Example 4.62: Let f(x) = x* - 3x + 1. .
Then f is differentiable and the
critical points of f are the values

3
of x for which f'(x) =0,
But f'(x)=3x*-3=0 ]

<3x-1)(x+1)=0 / 1 1 2 =
= x =1and x = -1 are critical points of f.

]

Figure 4.10

If we want to find extreme values of f on, say, the interval [-3, 3] we compute and compare the
values of fat -3, -1, 1 and 3 to get f(-3) = 17, f(-1) = 3, f(1) = -1 and f(3) = 109.
Thus the minimum value of f on [-3, 3] is -17 which occurs at -3 and the maximum value of f is
19 which occurs at 3.

e Monotonic Functions
One of the important points needed to sketch the graph of a function is to find the regions in
which the graph slopes upward to the right (increases) or it slopes downward to the right
(decreases) as seen in Figure 4.11 (a) and (b), respectively.

Ay yA
X X
(a) (b)
Figure 4.11
Definition 4.12: Suppose f is a function defined on an interval I.
)] f is said to be increasing on I if f(x;) < f(x2) whenever x; < X,

i) f is said to be decreasing on I if f(x;) > f(x2) whenever x; < X,
iii)  fissaid to be monotonic on I if f is either increasing or decreasing on I.
Remark: we can similarly define the terms strictly increasing, strictly decreasing and strictly

monotonic by replacing < by < and > by >.

Example 4.63: Let f(x) = x*-1. ¥
Find the intervals of monotonicity of f.
Solution: For Xy, X2 €(-o0, 0) with X; < X2, we have
f(x1) = xZ -1> x2 -1 = f(xp)
= f is strictly decreasing on (-, 0).

For X1, X2 €(0, o) with X1 < X,, we have - / >
f(Xl) = X12 -1< X22 -1= f(Xz) \T‘l/
= f is strictly increasing on (0, o). Figure 4. 12
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The derivative of a function gives us a test for monotonicity as is indicated in the following theorem.

Theorem: 4.16 Suppose f is continuous and differentiable on an interval 1.
)} If f/(x) >0, for every x €l, then f is strictly increasing on I.

i) If f'(X) <0, for every x el, then f is strictly decreasing on 1.

Example 4.64: Find the intervals over which the following function f(x) = x* — 3x + 1lis
monotonic.

Solution: For f(x) =x3—3x + 1, f/(x) =3x* —3=3(x — 1) (x + 1)

To find the intervals over which f is increasing and decreasing we find the sign of f'(x) using the
critical points x = 1 and x = -1 and the Sign Chart Method.

-1 1
X=1 -----mmmmmm o - O+++++++++
X+1 ------- O+++++++++++++++
f'x) +++++0------ O+++++++++

From the above “sign chart” we can see that
f'(X) >0 for x e(-o, -1) U (1, «) and f'(x) < 0 for x e(-1, 1).
Thus f is strictly increasing on (-oo, -1) U (1, ) and strictly decreasing on [-1, 1].See Figure 4.10.

e The First and Second Derivative Tests for Relative Extrema

If f is a differentiable function, we have seen that at relative extreme values

f'(c) = 0. Thus in order to locate relative extreme values of f we find the values of x for which
f'(x) = 0 or f'(x) does not exist. But this method does not help us to determine which of these
values of x give relative extreme values (or which value is a maximum or which is a minimum).
The next two theorems will provide us with conditions that guarantee that f has relative extreme
values. These conditions will also help in sketching the graphs of functions and in solving
applied problems.

Theorem 4.17: (The First Derivative Test)
Let f be continuous on an interval 1, and let ¢ l.
a) If f'(x) changes its sign from positive to negative at c
i.e. if f/(x) > 0 to the left of ¢ and f'(x) < O to the right of c, then f has a
relative maximum value at c.
b) If f'(x) changes its sign from negative to positive at c, then f has a relative
minimum value at c.
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Example 4.65: Consider again the function f(x) = x* — 3x + 1.

F'(x) =3x* =3 =3(x—1) (x + 1) = 0 gives the critical points x =1 and x = -1

For the critical point x = -1 check the sign of f" at -2 and 0 with f'(-2) =9 >0and f'(0) =-3 < 0.
Thus f'(-1) = 3 is a relative maximum value of f.

Similarly taking the critical point x = 1 between 0 and 2, we get f'(0) =-3<0and f'(2) =9 >0.
Thus f(1) = -1 is a relative minimum value of f. (See Figure 4.11 above)

The above theorem needs to check the signs of two distinct points to the left and to the right of
each critical point. The next theorem makes use of the sign of the second derivative directly at
the critical points.

Theorem: 4.18 (The Second Derivative Test)

Let f be differentiable in an interval | and let ¢ 1 with f'(c) = 0.
a) If '(c) <0, then f(c) is a relative maximum value of f.
b) If f''(c) > 0, then f(c) is a relative minimum value of f.

If ”'(c) =0, then we can not draw any conclusion about f(c).

Example 4.66: Consider again the function f(x) = x* — 3x + 1 with f'(x) = 3x* —3=3(x - 1) (x +
1). We have f'(1) = f'(-1) = 0 and f"'(x) = 6x. Since f"'(-1) = -6 <0, f(-1) = 3 is a local maximum
value of f. Since f"'(1) =6 >0, f(1) = -1 is a local minimum values of f.

Example 4.67: Let f(x) = % Find the local extreme values of f.
+

A(X% + 4) — 4x(2X)

Solution: f'(x) = Quotient Rule.

(X* + 4)? '
_ 4x* +16—8x° _ 16— 4x°
(X% + 4)? (X* + 4)?

f(X)=0=16-4x*=0=x=20rx=-2
—8X(X? +4)* — (16—4x2)2(x* + 4)(2x)

"(x) = - Quotient Rule and Chain Rule
f"(x) (X% 1 2)" Q
2
= 8)((2(—_132) - Simplification.
(x*+4)
Thus f''(2) = 162(3;8) = _Tl <0 = f(2) =1 is a local maximum value of f and
f(-2) = _122_8) = % >0 = f(-2) = -1 a local minimum value of f.
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e Practical Applications of the Extrema

A lot of practical problems can be expressed as a continuous function on a closed and bounded
interval we may be interested to find points where f attains its maximum or its minimum values.
For instance we may be interested in finding the maximum area of a region to be enclosed by a
fixed perimeter; the minimum distance from a fixed point to a curve. In economics a function
may represent a profit or cost function and we may want to find the value of x to find maximum
profit and minimum cost, and so on. The Maximum — Minimum Theorem and the first and
second derivative test will be crucial in finding such points as are illustrated in the following
examples.

Example 4.68: A landowner wishes to use 2000 meters of fencing to enclose a rectangular
region. Suppose one side of the land lies along a river and does not need fencing. What should
be the sides of the region in order to maximize the area?

Solution: Suppose the rectangle is to have length x and width y meters as seen in Figure 4.13.

X
Since the length of the fencing is
2000 meters, we have y
X + 2y =2000
= 2y =2000-x = y=1000 - x/2
Figure 4.13

The area of the rectangle is A = xy which can be written as a function of x alone as

X2

A(X) = xy =x(1000 - x/2) = 1000x - > for 0 < x <2000
Thus we find the maximum value of A on [0, 2000].

A'(x)=1000-x=0 = x = 1000 is a critical point.
Comparing the value of A at the critical point and at the endpoints 0 and 2000, we get

A(0) =0, A(1000) = 500,000 and A(2000)=0 (check!)
Thus the maximum value of A occurs when x = 1000 so that

y =1000 - x/2 = 1000 — 500 = 500.
Consequently, to enclose maximum area, the fence should have a length of 1000 mts and a width
of 500 mts.
Example 4.69: Ethiopian Airlines offers a round trip discount on group flight from Addis Ababa
to Lalibela. If x people sign up for the flight, the cost of each ticket is to be 1000 — 2x Birr. Find
the number of people the airline gets maximum revenue from the sales of tickets for the flight,
Solution: Since individual cost of a ticket is 1000 — 2x, the total cost of the group will be

C(X) = (1000 — 2x)x = 1000x — 2X°.
To find a critical point, we solve C’(x) = 1000 — 4x = 0, which gives the only critical point
x = 250 of C(x).
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You can easily check that for x < 250, C'(x) > 0 and for x > 250, C'(x) < 0. Thus by the First
Derivative Test C has an (absolute) maximum value at x = 250.
The maximum revenue the airline gets from the sales of 250 tickets is then

C(250) = 1000(250) — 2(250)% = 125,000 Birr.
Example 4.70: A manufacturer wishes to produce rectangular containers with square bottom and
top each of which is to have a capacity of 1000 cubic inches. If the cost of production of each
container is proportional to its surface area, what should be the dimensions so as to minimize the
cost of production?
Solution: Let x be the side of the base
and h be the height of the container as seen in Figure 4.15.

Then the volume is h
V = x*h = 1000
= h:%:logo for x>0 X
X X
Figure 4.15

To find the surface area, we have the area of the top and bottom as 2x* and the area of the four
sides as

Axh = 4){10(2)0) _ 4000
X X
Hence the total surface area is given by
s(x) = 2x° + 4000 for x > 0.
X

Since the cost of production is proportional to the surface area, to minimize cost, we find the
minimum value of s.
4000 _ 4x®—4000 _
x> x° -
= 4x*-4000=0 = x*=1000
= x =10 is the only critical point.
By the Second Derivative Test, we have

s'(X) = 4x - 0

s"(X) =4+ 80?0 with §"(10)=4+8=12>0
X
Thus x = 10 gives the minimum value s(10) = 600 sq. in.
The heightish = @) 1000 _ 10 in.
X 100

Hence the manufacturer would minimize the cost of production by manufacturing cubes of side
10 inches.

Curve Sketching
As a second application of the derivative we shall see here sketching the graphs of functions.
You have been sketching the graphs of polynomial and rational functions starting from your high
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school mathematics. Here we systematically apply the notions of differential calculus to give
precise meaning to the asymptotes, intervals of increase and decrease, the turning points and find
the range of the functions.
First we shall list the important items that will help us in sketching the graph of a function y = f(x).
1) Determine the domain of the function f.
2) Find the intercepts of the function f.
- X-intercepts are points of the form (x, 0)
- y-intercepts are points of the form (0, y)
3) Determine the asymptotes, if any, of the function f.
- Aline x = c is a vertical asymptote of the graph of f iff
limf(x) =+ o0 or lim f(x) = +oo.

- Aliney =L is ahorizontal asymptote of the graph of f iff
limf(x) =L or lim f(x) = L.

- Aliney=ax+bisan oblique (or skew) asymptote of the graph of f iff
Iirlnm [f(x) - (ax +b)] =L

4) Determine the intervals of monotonicity of the function f.
- fisincreasing for all x at which f'(x) >0
- fis decreasing for all x at which f'(x) <0
5) Find extreme values of f, if any.
Find the critical points of f and apply the first or second derivative tests to determine
whether they are relative extreme points or not.
6) If necessary plot some additional points to help you see the behavior of the function.
X—2
X+2
Solution. 2.1 The domain of f is R\{-2} and the x-intercept is the value of x for which

Example 4.71: Sketch the graph of f(x) =

f(x) = z;; =0 = x = 2. Hence x-intercept at (2, 0)
+

The y-intercept is the value of y when x = 0, i.e. f(0) = 8_—; =-1. Hence y-intercept at (0, -1).
+

Since Iinzw f(x) = Iirr21 i_i = -oo, the line x = -2 is a vertical asymptote to the graph of f.
x—-2" x—>-2" X+

Also you can check that lim f(x) =

X—>—-2"
Since limf(x) =lim x=2 = X—2/x = 1, the line y = 1 is a horizontal asymptote for the
X—>00 x>0 X+ 2 X—>0 X+2/X

graph of f.
To find the intervals of monotonicity, let us first find f '(x).
By the Quotient Rule for Differentiation,
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(x+2)(X=2) —(Xx=2)(x+2) _ X+2-(X-2) _ 4
(x+2)2 - (x+2)2 - (x+2)2 '

Hence f '(x) > O for every element x in the domain of f. It follows that f is strictly increasing on (-

o0, -2) and on (-2, o).

f has no critical number and hence no local extrema.

Additional points: f(-1) = -3, f(1) =-1/3 \

= (2 =

aphof 7
The graph of f is given in Figure 4.16. Figure 4.16
Example 4.72: Sketch the graph of f(x) =x + % ,forx =0

2
Solution: Since f(x) =x + = = X1
X

# 0 and since x # 0 f has no intercepts.

limf(x) = lim (x+%) =ooand limf(x) = lim [x+§j = -0

x—0* x—0* x—0" x—0"

The line x = 0 (the y-axis) is a vertical asymptote of f.

im £ —x] = lim ~ =0

X—o X

Hence the line y = x is an oblique asymptote of the graph of f.

2
fx)=1- x_12 = Xx2_1 = (X_liEXH) = 0 gives two critical points x =1 and x = -1.
Using a sign chart to find the intervals of monotonicity:
-1 1
D R O+++++++++
X+1 ------- O+++++++++++++++
f'x) +++++0------- O+++++++++

f'(x) >0 in the interval (-o0, -1) U (1, ) so that it is strictly increasing in (-, -1) U (1, «).
f'(x) <0 inthe interval (-1, 1) \ {0} so that f is strictly decreasing in (-1, 1) \{0}.
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Using the first derivative test, you can see that f(-1) = -2 is a local maximum and f(1) = 2 is a
local minimum. You can also apply the second derivative test to see this.

Additional points: f(-2) = —5/2, f(~1/2) = _75 f(1/2) = 5/2,f(2) = %

.Ily

(1,2}

-1.-2

Graph of f(x) = x+§

The graph is given in Figure 4.17. Figure 4.17

Related Rates

One of the most important applications of the derivative is to solve problems involving rates of
change. As was mentioned at the beginning of this section the derivative measures the rate of
change of a variable quantity (which is the independent variable x) with respect to another
variable (which is the dependent variable y = f(x)). Here we shall apply this to solve some
practical related rates problems.

Example 4.73: Suppose a particle P starts from a point 0 and moves along a straight line in the
positive direction as See in Figure 4.18

Let s(t) devote the distance traveled from _
0 in t seconds. If we assume that the speed 0 P
is constant, then we  can compute the speed as Figure 4.18
distancetraveled
speed = —
time elapsed

If we are interested to find the average speed of the particle between two times t; and t;
(with t; <tp), we get

Average speed = change in_ di§tanoe _ s(t,) —s(t,)
change in time t, -t
In particular if t; is any time t and t, is a short time later say t, =t + h for h > 0, then we have
s(t+h)—s(t) _ s(t+h)—s(t)
t+h—t h

Approximate speed (att =t;) =
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If the speed is not even constant, by taking h smaller and smaller we can approximate the speed of
the particle at time t, to get what is called the (instantaneous) velocity of the particle as
V(D) = lim s(t+h)—s(t)
h—0 h
Thus, if s(t) denotes the position function of the particle its velocity is given by
v(t) =s'(t) = % - rate of change of position.
Similarly, the acceleration of the particle can be obtained by

a(t) =v'(t) = % - rate of change of velocity
= i V) V() =5t = d_zzs
h—0 h d
For instance if s(t) = t* — 6t + 20 for 0 <t < 6,
then v(t) = s'(t) = 3t? — 12t
and a(t) =v'(t) =s"(t) = 6t — 12
In general, if any quantity g is a function of time t, then the rate of change of the quantity with
respect to time is given by the derivative g {t).

Example 4.74 : Water is flowing into a vertical cylindrical tank of radius 2 feet at the rate of 8
ft®min. How fast is the water level rising after t minutes? <

< =
Figure 4.19

Solution:  Let v(t) denote the volume of water in the tank after t minutes and let h(t) denote the
height of water in the tank after t minutes. See Figure 4.19.
Since the rate at which water is flowing into the tank is 8 ft/min. the volume of water in the tank
after t minutes is

v(t) = 8t
On the other hand since the base of the cylinder is 2 feet and height in h minutes is h(t), we have
the volume

v(t) = nr?h(t) = 4zh(t)
Thus 4zh(t) =8t = h(t) = %t
The rate at which the water level is rising in then

h'(t) = 2 ftjmin, aconstant!  (why?)
T
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Example 4.75: Two automobiles start from a point A at the same time. One travels west at 60
km/hr and the other travels north at 35 km/hr. How fast is the distance between them increasing 3
hrs later?

Solution: Let s(t) denote the distance

between the two cars after t hrs. In s(t)

t hrs the car due north travels 35t kms 35t

and the car due west travels 60t kms A

as seen in Figure 4.20 60t
Figure 4.20.

Hence the distance s(t) between the two cars in t hrs is
s(t) = 4/(35t)? + (60t)>
The rate of change of the distance between the cars is
_ 2(35)°t +2(60)°t
2/(35t)% + (60t)2
Hence after 3 hrs the distance between the two cars is increasing at the rate of

2 2
s(3)= >3 +360) _ 5 793 kmihr

3,/(35)2 + (60)>

s'(t) ... How ?

Exercise 4.3

1. Find relative extrema and the intervals in which the given function is increasing or

decreasing
a) f(x) =5 — 4x — X by  gX)=x}+x*—x-4
X > 1
c) fx) = — d g =x"+—=
X +1 X

2. Use the First or Second Derivative Test to determine relative extreme values of the function

a) f(x) = 5x? —2x + 1 b) g(x) = XT: + %
_4, 1 _ 1

c) f(x) =x" + 5 X d) g(X) ]

0 ()= ) gx)=0C+2)°

1+sinx

3. Sketch the graph of the following functions
x* —3x° +4

a) f(x) = (x*-1)° b) 9= 67 c) 9(x) = NS
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4. A menu of total area of 100 sg. in. is printed with 2 in. margins at the top and bottom and
1in. margins at the sides. For what dimensions of the menu is the printed area largest?

5. A rectangle of perimeter p is rotated about one of its sides so as to from a cylinder. Of all
such possible rectangles, which generated a cylinder of maximum volume?

6.  The volume of a spherical balloon is increasing at a constant rate of 8 cubic feet per minute.
How fast is the radius of the sphere increasing when the radius is exactly 10 feet?

7. At midnight ship B was 90 miles due south of ship A. Ship A sailed east at 15 m/hr and
ship B sailed north at 20 m/hr. At what time were they closest to each other?

4.4. Integrals and their applications

In this section we shall introduce the second major part of calculus known as integral calculus.
Just like subtraction is the inverse process of addition, integration is the inverse process of taking
the derivative of a function. Historically, integral calculus was developed in solving problems
connected with finding areas of regions with curved boundaries.

Section Objectives

At the end of this section you should be able to:
e define an anti-derivative of a continuous function.
e state properties of anti-derivatives.
e find indefinite integrals of some elementary functions.
e evaluate the integrals of functions using the techniques of integration.
e solve integrals involving trigonometric functions.
o find the definite integral of continuous functions.
e apply the concepts of definite integrals to find areas of regions bounded by continuous
functions.

The Indefinite Integral

As is mentioned above the process of integration is the inverse process of differentiation and
hence is sometimes called taking anti-derivatives.

Definition 4.13: A function F(x) is called an anti-derivative of a continuous function f(x) if and
only if F'(x) = f(x) for every x in the domain of f.
Example 4.76: Let f(x) = 3x? + 4x. Then the function Fy(x) = x* + 2x is an anti-derivative of

f(x), since F'(x) = %(x3 + 2x%) = 3x% + 4x = f(x).

Note that F; is not the only anti-derivative of f(x). You can also check that Fa(x) = x> + 2x*> +5
and F3(x) = x* + 2x* — 7 are also anti-derivatives of f.
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In fact, if ¢ is any real number, then F(x) = x> + 2x? + ¢ is an anti-derivative of f(x) = 3x? + 4x

since F'(x) = % O+ 2x% +¢) = 3x% + 4x = f(x)

Theorem 4.19: If F(x) is an anti-derivative of f(x), then F(x) + ¢, where c is an arbitrary
constant, is also an anti-derivative of f(x).

Notation and terminologies: Given a function f, the symbol _[ f (x)dx stands for any (and
hence all) anti-derivatives of f. i.e. if F(x) is an anti-derivative of f(x), we write j f (xX)dx = F(x)

+ ¢, for any constant c. The symbol j is called the integral sign. The function f(x) is called the

integrand, x is called the variable of integration, and c is called a constant of integration.
I f (x)dx is also called the indefinite integral of f with respect to x.

Examples 4.77: We have

a) J' dx =x*+c¢ d) J' sinxdx = -CosX + C; g)I cosx dx = sinx + ¢
b) j dx = eX + ¢ e) j%dx:€n|x|+c
C) j sec?xdx = tanx + ¢ f) .[ Cscx cotxdx = -cscx + ¢

e Properties of the Indefinite Integral

Suppose F and G are antiderivatives of f and g, respectively, and k is a constant. Then
1) j kf(x)dx = k j f(x)dx = kF(X) + C.

2) j (f(x) + g(x))dx = j f(x)dx + j g(X)dx = F(x) + G(X) + c.
3) j (F(x) — g(x))dx = j f(x)dx - j g(x)dx = F(x) — G(X) + c.

Examples 4.78:
1) J' 4 cosxdx =4 I cosxdx = 4sinx + ¢

2) I(ex—adx:j e"dx - Jédx:ex—ﬁn|x|+c

3) If f(x) = x, for any rational r = -1, then
r+1
[ foodx= [ xax=*—+c (verify!)
r+l1
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_y "X

4) I(X—lg +2sec? xjdx = jx‘3dx + 2J'sec2 xdx

Thus, j xSdx = 2 - +c and J.x 2dx =

+C.

1
=—-— %t 2tanx + c.
2X

5) If P(X) = anX" + anaxX™ + ... +axx® + a;x + ag is a polynomial, then its anti-derivative is

given by
n+1 n 3 )
PO = [P(dx = Xy GaX &K LA
n+1 n 3
Thus,J' (3X4+‘/§X3—5X+Z)dxz3j. X4dX+\/§_[ X3dx-5_[ xdx+J. 2dx
=25+ QX" BN
5 4" 2

e Some Techniques of Integration

In the previous section we were trying to find anti-derivatives of some functions whose
derivatives can easily be found from the previous unit on differentiation. But there are various
functions such as

)= (x+3)° . gx)=xe* and h(x)= — 22X
x(x* —4)

whose anti-derivatives are not readily found. In this section we shall see some techniques to find
the integrals of such functions.

a) Integration by Substitution
This technique is basically developed by reversing the Chain Rule. It is very helpful in finding

the integrals of functions that appear as the composite of two functions.
Suppose we want to find the indefinite integral

J. (x+3)°dx
we may expand (x + 3)° and then integrate term by term using the formula
Ix dx = —x +cC.
r+1

But this would obviously be very tedious and cumbersome. On the other hand if we replace or
substitute u for x + 3, we get

(x+3)5=u5andd—“=i(x+3)=1 = dx = du.
dx  dx
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Thus, j(x+3)5dx = .[usdu = %us + ¢. Hence, '[(x +3)dx = %(x +3)° + ¢, for some constant c.

Theorem 4.20: If g'(x) is continuous Vxe[a, b] and f is continuous at g(x), then
j f(g(x))g'(x)dx = j f(u)du - Integration by Substitution

Example 4.79: Evaluate j 2x(x? — 5)°dx

Solution: Letu=x?—5. Then, g_u = 2x which implies that du = 2xdx. Thus,
X

j 2X(x? — 5)°dx = j ubdu® %u7 + ¢ and hence j 2x(x? - 5)%dx = %(x2—5)7 +cC.
X
Example 4.80: Integrate | ——dx
J.\/1+ x°

Solution: Letu =1+ x2 Then, (;_u = 2x which implies that xdx = %du . Therefore,
X

Ide: J'id—u -1 u 2du = l.z.u% +c=Ju+c = V1+ %% +c.
V1+x2 Juz2 2 2

Example 4.81: Integrate jsin4xdx

Solution: Letu=4x. Then d_u =4 =dx= ldu. Thus Isin4xdx = l J.sinudu: -l cosu +c
dx 4 4 4

=- l COos4x+ c.
4

. 1 1 .
In general _[sm axdx =-—cosax + ¢, and |cosbxdx = o sinbx + ¢
a

These two formulas can be used to find integrals involving trigonometric functions together with
trigonometric identities.

Example 4.82: Integrate Isinz xcos® xdx

Solution: From trigonometric identities we have
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1-co0s2x 1+ cos2x

sin?x = and cos’x =

Thus J'sinz Xc0os” xdx = j%(l—cost)%(H cos2x)dx

1 1 1
= 2 (@-cos’2x)dx = = || 1-=(1+cos4x) [dx
AL ) 41{ 1 )}
= 1_|.dx—l.[cos4xdx = 1x—isin4x+c.
8 8 8 32

Example 4.83: Find jtan xax

Solution: jtan xdx = J'ﬂdx Letu =cos x. Then d_u = -sinx = sinx dx = -du.
COSX dx
—du 1
Hence, jtan xdx = [—— = -I—du = -/n|u| + ¢ = -/n|cosX| + c.
u u

You can similarly find Icotxdx.

Example 4.84: Integrate Ie’zxdx

Solution: Letu=-2x. Then du =-2=dx= 1 du.
dx 2
So that J.efzxdx = —lje“du = leu +c= le'2X+ C
2 2 2
In general since dief(x) = /(%) ™, we have If'(x)ef(x’dx =ef'® 4¢.
X

Thus jxexzdx = %ex2+ ¢ and j3x2eX3dx =eX +c.

b) Integration by Parts

The method of integration by parts is basically developed from the Product Rule for
differentiation. If fand g are differentiable functions, we have

(FO)g(x)) = f'(x) 9(x) + g'(x) f(x)
Integrating on both sides with respect to x, we get

f6) 90 = [ £'09g(dx + [g'(x) f (x)dx
If one of the integrals on the right can be easily evaluated, we can find the other integral using the
following theorem

Theorem 4.21: If f and g are differentiable functions, then
j f(x)g'(x)dx = f(x)g(X) - j g(x)f'(x)dx - Integration by parts




Example 4.85: Find jxe*dx
Solution: Let f(x) = x and g'(x) = €*. Then f'(x) = 1 and g(x) = €*. Therefore,
Ixexdx =xe* - _[ex.l.dx = xe* — " + ¢, for some constant c.

Integration by parts can be easily remembered using the following substitutions.
Let u = f(x) and v=g(x)
Then du = f'(x)dx and dv = g'(x)dx

Sothat [ f(x)g'(x)dx = [udv=f(x)g(x) - [ g(x) f'(x)dx = uv- [vdu

Thus, J'udv= uv—J'vdu - Integration by Parts.

Example 4.86: Find Ixfnxdx

2
Solution: Let u=¢nx, dv=xdx.Then,du= %dx, V= X?

2 2 2
X

2 2
Thus J.xﬁnxdx = X?Enx- J‘X?ldx = X?Enx- J%dx=x?£nx-7+ C.
X

Example 4.87: Find jfnxdx

Solution: Let u=¢nx anddv=dx. Then, du= %dx and v =x

Hence Iznxdx = X/nx -jx.ldx: X /nx - _[dx =x/nx —X+c=x(/nx—1) +c.
X
Example 4.88: Find the integral Ixzexdx
. 2 X X 2 X 2.X X
Solution: Letu=x"and dv =¢" dx. Then, du = 2xdx, v =¢”" and _[x e*dx = x%e -j2xe dx.
But we have seen above thatJ.xede = xe? - e + ¢. Hence,
2 X 2.X X X X(\,2 -
'[x e'dx =x%e" —2(xe” —e" +c) =e"(x“—2x + 1) + ¢; where c; = -2c is a constant.

In some cases we may have to apply integration by parts more than once to arrive at the required
result as in the following example.

Example 4.89: Find Iexcosxdx
Solution: Let u=¢* and dv = cosxdx. Then, du = e*dx and v = sinx. Thus,
Iexcosxdx = e”sinx -Iexsin xdx .

To evaluate the integral on the right, we again use integration by parts.
Let u =€° anddv=sinxdx. Then, du=e*dx and v = -cosx.
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Thus, Iex sinxdx = -e*cosx + jex cosxdx which implies ZjeX cosxdx = e”sinx + e*cosx + C.

Therefore, .[excosxdx = %ex(sinx + COSX) + C.

C) Integration by the Method of Partial Fractions

The method of Partial Fractions is used for rational functions
()_pw)
q(x)
where degree of p(x) is less than degree of q(x). (If not we can apply long division to write f(x)
as a sum of a polynomial and a rational function with the desired property.) The first step in this
method is to factorize the denominator q(x) into linear factors, if possible. (The case where we
have irreducible quadratic factors of q(x) will not be treated here.) Now with each linear factor
(ax + b)™ (of multiplicity m) we associate constants Aj;, A, ...,An and write
A LA
ax+b (ax+b)
expressed as a sum of simple rational functions and can be easily integrated.

> +...with the Aj’s to be determined. Then, the rational function f(x) is then

Example 4.90: Find Iﬁdx

Solution: By factorizing x> — 4 as (x — 2) (x + 2), we have
1 _ 1 _ A N B _ A(x+2)+B(x-2)
X* =4  (x=2)(x+2) X-2 Xx+2 (X—2)(x+2)

Since the denominators are equal, we equate the numerators as A(x+2) + B(x - 2) = 1.
From equality of polynomials, we get

A+B=0 _
=A=14and B= -1
2A-2B=1 4
Hence,j 21 dx :_[ ﬂ -y dx :lj' dx 1 dx l(n|x—2|-££n [x+2| + C.
X —4 X—2 X+2 4°x-2 47x+2 4 4
Example 4.91: Find Ide
X7 — X" —2X
Solution: The denominator x> — x? — 2x = x(X* — X — 2) = x(X + 1) (x — 2) has three roots 0, -1 and
2.
3x°+x-1 3x°+x-1 A B C

32 = =7 +
X*=x"=2x x(x+D)(x-2) x x+1 x-2

_ A(X-1)(x—2) +Bx(x—2)+Cx(x-1)
- X(X +1)(x - 2)
=  AX+1) (x-2) +Bx(x-2) + Cx(x+1) =3x* +x — 1
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This equation is true for all xeR. In particular,

whenx =0, A(1)(-2)=-1 =>A=12

whenx =-1, B(-1)(-3)=1 =B=13

whenx=2, C(2)(3)=13 —~C= 13/6

Hence, j+—X1dx -1 I% M J.———ﬁ IX| + l€n|x +1]+ 1—3€n|x -2+c.
—2X 279 X X +1 3 6

e The Definite Integral

For a very long time, mathematicians have struggled with the problem of finding areas of plane
regions. Until the invention of the integral calculus, however, the regions considered were mostly
those regions bounded by straight lines, called polygons, with a few exceptions such as the circle
and the ellipse. The Greek mathematicians found the area of a polygon by first finding the area of
a rectangle, then finding the area a parallelogram, and then finding the area of a triangle. The area
of a polygon can be used to approximate the area of a region bounded by curved boundaries. For
instance, the area of a circle can be found by drawing a sequence of inscribed polygons

P4, Pg, P1s, ...,Pn, and then taking limit as n — oo.

To develop the idea for more general regions, consider the region bounded by the graphs of
y=2x+1, x=0, x=6 and x-axis.

To find the area of the region, let us identify the region S by drawing its boundaries, namely the

graphs of y=f(x)=2x*+1,x=0,x=6 and the x-axis as shown in Figure 4.21.

(6. 73)

froh=2x%4 1

Figure 4.21
Unfortunately, since f(x) = 2x* + 1 is a curve that is not a line segment, we cannot find the area of
the region by the elementary methods. So, it is necessary to develop a stronger technique that also
generalizes the elementary method and enables us to find the area of such regions.
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Let A(S) denote the area of the region S. It is not difficult to give lower and upper bounds of
A(S). For instance, we consider the rectangle r that is enclosed by the boundaries of S and the
rectangle R that encloses S, as shown in Figure 4.22.

1y
E
(&, 73)
fix) = Zx94 1
1
X=n oS
Figure 4.22

Then A(r)=6 and A(R) =6x73=438. Hence 6< A(S) <438, which gives a wide range
of bounds of A(S).
Better bounds of A(S) can be obtained if we consider the finer rectangles r,, r,, s, 4,

s and re that are enclosed by the boundaries of S and R;, R», R3, R4, Rs and Rg that enclose S as
shown in Figure 4.23.

ks)/
R4/r6

E~ 15

ks
R1 g
I3

r | &2

 J

1 2 3 4 5x=6

Figure 4.23
Evidently, each of the rectangles has base 1 unit but varying heights. It follows that
A(r)+tA(r) + ... + A(rs) SA(S)<AR1) + AR2) + ... + A(Rs)

6 6
ie, Y A() < AS) < D A(Rj)whichgives 116 < A(S) < 188,
i=1 i=1
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To give a formal definition of the subdivisions, for any positive integer n, divide [a, b] into
subintervals by introducing points of subdivision X, X1, ...Xn
Definition 4.14: A partition of [a, b] is a finite set P of points Xg, Xu, ..., X, such that
a=Xo<X1<Xz<...<x,=bh. We describe P by writing P = { Xo, X1, ...Xn}
By definition, any partition of [a, b] must contain a and b.
The length of any subinterval [x;.1, xi] of a partition P is defined and given by
AXi = Xi — Xi1
In particular, when the lengths of each subintervals are equal, it is called a regular partition.
In this section we shall consider only regular partitions, so that the length of each subinterval is
AXi =X — Xj1 = b_—a
n
Having chosen a partition P of [a, b], we inscribe and circumscribe rectangles on the region R
using the division points of P as seen in Figure 7.3(a) and (b). Since f is continuous on [a, b], by
the Maximum-Minimum Theorem, for each i between 1 and n, there is a minimum value m; and a
maximum value M; of f on the subinterval [xi1, Xi]. If r; and R; denote the inscribed and
circumscribed rectangles on [Xi.1 xi], respectively, then the area of r; is A(r;) = m;Ax; and the area
of R;j is A(R;) = MjAX;, since the base of both r; and R; is AX; = X; - X;.1. From our observation in
Figure 7.3 (a) and (b) we see that the area of the region R is between the sum of the inscribed
rectangles and the sum of the circumscribed rectangles.
Definition 4.15: Let f be continuous on [a, b] and P be any partition of [a, b].
The sum  L¢(P) = miAX; + MpAX; + ...+ mpAX;
is called the lower sum of f associated with P and the sum
Ut(P) = M1AX; + MAX; + ... + M AX,

is called the upper sum of f associated with P.

From our construction we see that if P is any partition of [a, b], then the area of R should be

between L«(P) and Us(P) i.e.

L«(P) <Area (R) <U¢(P)

Example 4.92: Let f(x) = x*foro<x<2andletP = {0,%,1,;,2} be a partition of [0, 2].

Then the subdivision of [0, 2] associated with P are [Oﬂ B ,1] [1, %} EZ} Since x? is an

increasing function on [0, 2], the minimum value of f on each subinterval is at the left end point
and the maximum value of f at the right end point. Thus

1 1 3) 9
m; = f(0) =0, m=fl=|==, my3=f(1)=1, mi=fl = |==
1210 i (Zj 4 »=1) ) [2) 4
1 1 3) 9
and M;=fl=|==, My,=1(1)=1, My=f| — |=—, My, =1(2) =4
1 (2j 2 2= (1) 3 (2) 1 4+=1(2)

] ; 2— 1 ] ] )
The base of each subinterval is Ax; = TO = > Thus the lower sum of f associated with P is
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Ley=o L4t L1917
2 4 2 2 4 2 4
and the upper sum of f associated with P is
Uf(P):£-£+1.l+g.l+4,l:1_
4 2 2 4 2 2 4

Therefore the area of the region R below the graph of f(x) = x* above the x-axis on [0, 2] is
between ! and E, le. ! < Area(R) < E.
4 4 4 4

Definition 4.16: Let f be continuous on [a, b]. The definite integral of f from a to b is the
unique number I satisfying L¢(P) < I < Ug(P) for every partition P of [a, b].
This integral is denoted by

b

1= [ f(xdx

a
The numbers a and b are called the lower and upper limits of integration, respectively.
Note that as the number of subdivisions of an interval [a, b] increases, the minimum and the
maximum values of f on [X.1, Xj] are close to each other. For each i from 1 to n if we take an
arbitrary number t; in [Xi.1, Xi], then we get the sum

D (t)AX = f(t)Axg + f(t2)Axp + ..+ f{tn) AXq
i=1
This sum is called a Riemann sum or an Integral sum.

b
Even though it is sometimes possible to calculate Jf(x)dx by finding formulas for lower and

upper sum we are to evaluate it here by the use of the Fundamental Theorem of Calculus.
For the moment we can conclude that if f is continuous and nonnegative on [a, b], then the area of
the region R between the graph of f and the x-axis on [a, b] is given by

Area(R) = j)‘ f(x)dx.

Remark: The definite integral has the following properties.
If f and g are integrable over [a, b] and k is a constant, then

a) j-kf (x)dx = kj'f(x)dx

b) j(f(x)ig(x))dx: '[f(x)dx ijg(x)dx

a

b
c) Iff(x) >0, fora <x <b, then I f(x)dx >0 and
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if f(x) <0, for a <x <b, then T f(x)dx <0.
d) Ifm<f(x) <Mforallx €[a, :)], then
m(b — a) _<.T f(x)dx < M(b —a)
e) Ifcisany numbear in (a, b), then

b c b
jf(x)dx = jf(x)dx + jf(x)dx - Additive Property
f) _[ f(x)dx =0 for any number a.

9) T f(x)dx = T f(x)dx.

b
To develop a general method for evaluating j f (x)dx without computing lower and upper sums

we shall state the most important theorem in calculus: The Fundamental Theorem of Calculus.
To this end let f(t) be continuous on [a, b]. Then f is integrable on [a, b] and for any x e[a, b] the

definite integral j f (x)dt exists. Define a function F on [a, b] as F(x) = j f (t)dt

In effect the Fundamental Theorem of Calculus states that the function F(x) is differentiable with
derivative f(x) thereby eliminating the integral by the derivative. It also shows us how to evaluate
the definite integral.

Theorem 4.22: (Fundamental Theorem of Calculus)
Let f(t) be continuous on [a, b] and for each x €[a, b] let

F(x) = jf(t)dt

Then (i) F(x) is a differentiable function with F'(x) = f(x)

b
(ii) If F is any anti-derivative of f on [a, b], thenJ- f (t)dt = F(b) — F(a).

b
Remarks: a) From (ii) to evaluate j f (x)dx all we have to do is to find an anti-derivative of F

of f and find the difference of its values at a and at b. This is usually denoted by

[F(x)] or F(x):l to mean F(b) — F(a).
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b) If F is an anti-derivative of f, then F(x) + c, for any constant c is also an anti-derivative of
f. Butsince [F(x)+c] = (F(b) + c) — (F(a) + ¢) = F(b) - F(a) = F(x)°

the constant ¢ does not play any role in evaluating the definite integral. Thus we can
always take ¢ = 0.

Example 4.93: Let f(x) = x* for 0 < x < 2. Then F(x) = %x3 is an anti-derivative of f, so that by

the Fundamental Theorem of Calculus.

2

2
[xdx =L =ro)-Fo= 12 - Lor=2 028
O 3" o 37 737 T30 73

From our previous discussion, the area of the region R under the graph of f(x) = x* on [0, 2] above

2
the x-axis is thus Ixzdx = 8/3 sq. units.
0

Example 4.94: Evaluate each of the following definite integrals

4 n

a) I&/de b) jsin xdx
1 0
/2 1

c) j(x+cosx)dx d) I(Sx3 +2x —e*)dx
0 0

Solution: a)  Since F(x)=3. % .x¥? = 2x+/x is an anti-derivative of f(x) = 3+/x , we have

fs&dx = F(4) - F(1) =2(4)V4 - 2(1)V1 = 16-2=14

b) An anti-derivative of sinx is —cosx. Thus

T

jsin Xdx = -cosx 0 =-cosm- (-cos 0) =-(-1) +1=2.
0

/2 2 m/2 2 2
o x+cosx)dx = | = tsinx| =% +1 -(0+0):n—+1
)« ) > 5 5+l

0 0

1 1
d) I(5x3+2x—ex)dx: Sytpxt—e| = Sii-e -(0+0—l):£3—e
0 4 0 4 4

Remark: For functions that are given by more than one formula we evaluate the definite integral
using the additive property.

1
Example 4.95: Evaluate J|x +1idx
-2
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X+1 for x>-1

Solution: By definition |x + 1| =
—(x+1), forx<-1

Then by Additive Property, we have

1 -1 1
J.|x+]4dx = J.—(x+1)dx + J.(x+1)dx /
-2 -2 -1
xx T 2 T
= —+X| + |—=—+X X
ol
Figure 4.23
= (1— j—(2—2) + [1+lj—[1—j :l+2=5/2
\2 2 2 2
From the method of Integration by Substitution we have
j f(g(x))g'(X)dx = j f (u)du where u = g(x)

If we are to evaluate this integral between a and b, we have,
when x = a, u = g(a) and when x = b, u = g(b). Thus it follows

v

9(b)

J f@0g'(xdx= [ f(u)du

g(a)

- Change of Variable.

3
Example 4.96: Evaluate Ix\/ x? — 4dx
2

Solution: We have two possibilities to evaluate such a definite integral. One way is to find an

anti-derivative of xvx*—4 and evaluate it between 2 and 3 by the Fundamental Theorem of
Calculus. The other is to use the change of variable formula and change the limits of integration
before integrating.

To this end, let u = g(x) = x> — 4. Then du = 2xdx.
Whenx=2,u=g(2)=0andwhenx=3,u=9g(3) =5

3 3 5
Thus jx\/x2—4dx = j\/ﬁd—zu = %ju”du
2 0 0

5

u\/U %.5,\@-0:%.

0 3

o Application of the Definite Integral: Area
The definite integral has several applications such as finding areas of regions, arc length
of curves, surface areas and volumes of solids of revolution. In this section we shall see
how to find areas of plane regions with curved boundaries using the definite integrals.

wilinN

-1
>

210



In the previous section we have seen that if f(x) > 0 for all x €[a, b] and if f is continuous on [a,

b
b], then If(x)dx gives the area of the region R below the graph of f, above the x-axis, between
the lines x = a and x = b. For instance, if f(x) = x* for 0 < x < 2, then the area of R as given in is

2 3 2
given by A(R) = Ixzdx: X?O =8/3 sq. units.
0

- If f(x) <0 on [a, b], then taking g(x) = -f(x) > 0 for a < x < b, the area of the region R below the
x-axis, above the graph of f on [a, b] is given by A(R) = j‘g(x)dx = T— f(x)dx = j' f (x)dx.

For instance, if f(x) = 2x for -2 < x <0, then the area of the region R below the x-axis, above the
graph of fon [-2, 0] is given by

?2 = -[0 - 4] = 4 sq. units.

AR) = - ]Z f(x)dx = - j)'Zxdx = -x?

Now let f and g be continuous on [a, b], and assume that f(x) > g(x) for a < x <b. Then the area
of the region R below the graph of f, above the graph of g, and between the linesx =aand x=Db
is given by

b

AR) = [[f () - g(xkix

a

Example 4.97: Find the area of the region bounded by f(x) = 2+/x , g(x) = -x and line x = 9.
Solution. Sketching the graphs of y = f(x), y = g(x) and x = 9, the region R can be identified as
shown in Figure 4.24.

Ay
y=2+x -
rv 9 X=
y=-x
Figure 4.24

It follows that
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X2 +XTo:76'5'

A(R) = jj (f(x)-g(x))dx:js (2% + x)dx =

Wl

Exercise 4.4

1. Evaluate the following indefinite integrals

a) j (x° + 5)dx d) j (4 — x + 3x% — 2x°%)dx
b) I 2x8dx e) j (cosx — 4€*)dx
0 [ 3sinxix N "S‘X—fﬁdx

2. Find the following integrals by substitution

dx . 2
a — o sin“ xcosxdx
) X—3 ) -[
4
b) I e 3dx d) I N Xy
X
3. Find the following integrals by the method of Integration by Parts.
a) jxcosxdx c) I%dx
b) I(x +1)3%dx d) J.x2 sinxdx

4. Integrate the following by the method of Partial Fractions

dx dx
Y . |
(X+2)(3x+4) (x=D(x-2)(x—3)
X 2X
b —_ d —d
) Ixz—x—G ) I(x—z)z X
5. Find the area of the region R between the graph of f and the x-axis on the given interval
a) fx)=x*+1, on[1, 3]
b)  f(x) =2+ cosx, on [0,37/2]
0 f0=1, on 1, 4
d) f(x) = |x| - 1, on[-1, 2]

6. Find the area of the region between the graphs of the following functions.
a) f(x) = x* and g(x) = 2 — x

b) f(x) = &*, x = -1, x = 3 and the x-axis

c) f(x) =x*— 4 and g(x) = 4 — x*
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