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Chapter One 

Propositional Logic and Set Theory  
In this chapter, we study the basic concepts of propositional logic and some part of set theory. In 

the first part, we deal about propositional logic, logical connectives, quantifiers and arguments. 

In the second part, we turn our attention to set theory and discus about description of sets and 

operations of sets.    

Main Objectives of this Chapter 

At the end of this chapter, students will be able to:- 

 Know the basic concepts of mathematical logic. 

 Know methods and procedures in combining the validity of statements. 

 Understand the concept of quantifiers.   

 Know basic facts about argument and validity.  

 Understand the concept of set. 

 Apply rules of operations on sets to find the result. 

 Show set operations using Venn diagrams. 

1.1. Propositional Logic 

Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to 

systematize and codify principles of valid reasoning. It has emerged from a study of the use of 

language in argument and persuasion and is based on the identification and examination of those 

parts of language which are essential for these purposes. It is formal in the sense that it lacks 

reference to meaning. Thereby it achieves versatility: it may be used to judge the correctness of a 

chain of reasoning (in particular, a "mathematical proof") solely on the basis of the form (and not 

the content) of the sequence of statements which make up the chain. There is a variety of 

symbolic logics. We shall be concerned only with that one which encompasses most of the 

deductions of the sort encountered in mathematics. Within the context of logic itself, this is 

"classical" symbolic logic. 

Section objectives: 

After completing this section, students will be able to:- 

 Identify the difference between proposition and sentence. 

 Describe the five logical connectives. 

 Determine the truth values of propositions using the rules of logical connectives. 
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 Construct compound propositions using the five logical connectives. 

 Determine the truth values of compound propositions. 

 Distinguish a given compound proposition is whether tautology or contradiction. 

1.1.1. Definition and examples of propositions 

Consider the following sentences. 

a. 2 is an even number. 

b. A triangle has four sides. 

c. Emperor Menelik ate chicken soup the night after the battle of Adwa. 

d. May God bless you! 

e. Give me that book. 

f. What is your name? 

The first three sentences are declarative sentences. The first one is true and the second one is 

false. The truth value of the third sentence cannot be ascertained because of lack of historical 

records but it is, by its very form, either true or false but not both. On the other hand, the last 

three sentences have not truth value. So they are not declaratives.   

Now we begin by examining proposition, the building blocks of every argument. A proposition 

is a sentence that may be asserted or denied. Proposition in this way are different from questions, 

commands, and exclamations. Neither questions, which can be asked, nor exclamations, which 

can be uttered, can possibly be asserted or denied. Only propositions assert that something is (or 

is not) the case, and therefore only they can be true or false. 

Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or False but 

not both).  

The above definition does not mean that we must always know what the truth value is.  For 

example, the sentence “The 1000
th

 digit in the decimal expansion of  is 7” is a proposition, but 

it may be necessary to find this information in a Web site on the Internet to determine whether 

this statement is true. Indeed, for a sentence to be a proposition (or a statement), it is not a 

requirement that we be able to determine its truth value.  

Remark: Every proposition has a truth value, namely true (denoted by ) or false (denoted by 

). 

1.1.2. Logical connectives 

In mathematical discourse and elsewhere one constantly encounters declarative sentences which 

have been formed by modifying a sentence with the word “not” or by connecting sentences with 

the words “and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or 

combinations of words are called propositional connectives.    

Note: Letters such as  etc. are usually used to denote actual propositions. 
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Conjunction 

When two propositions are joined with the connective “and,” the proposition formed is a logical 

conjunction. “and” is denoted by “ ”.  So, the logical conjunction of two propositions,  and , is 

written: 

  ,      read as “  and ,”  or “  conjunction ”.    

p and q are called the components of the conjunction.  is true if and only if  is true and  is 

true. 

 

The truth table for conjunction is given as follows: 

   

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.1: Consider the following propositions:  

: 3 is an odd number. (True) 

: 27 is a prime number. (False) 

: Addis Ababa is the capital city of Ethiopia. (True) 

a. : 3 is an odd number and 27 is a prime number. (False) 

b. : 3 is an odd number and Addis Ababa is the capital city of Ethiopia. (True) 

Disjunction 

When two propositions are joined with the connective “or,” the proposition formed is called a logical 

disjunction.  “or”  is denoted by “ ”.  So, the logical disjunction of two propositions,  and , is written: 

      read as “  or ”  or “  disjunction .”    

 is false if and only if  both  and  are false. 

The truth table for disjunction is given as follows:   
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Example 1.2: Consider the following propositions:  

: 3 is an odd number. (True) 

: 27 is a prime number. (False) 

: Nairobi is the capital city of Ethiopia. (False) 

a. : 3 is an odd number or 27 is a prime number. (True) 

b.  : 27 is a prime number or Nairobi is the capital city of Ethiopia. (False) 

Note: The use of “or” in propositional logic is rather different from its normal use in the English 

language. For example, if Solomon says, “I will go to the football match in the afternoon or I 

will go to the cinema in the afternoon,” he means he will do one thing or the other, but not both.  

Here “or” is used in the exclusive sense.  But in propositional logic, “or” is used in the inclusive 

sense; that is, we allow Solomon the possibility of doing both things without him being 

inconsistent.  

Implication  

When two propositions are joined with the connective “implies,” the proposition formed is called a 

logical implication. “implies” is denoted by “ .” So, the logical implication of two propositions,  and 

, is written: 

                      read as “  implies .” 

The function of the connective “implies” between two propositions is the same as the use of “If … then 

…” Thus  can be read as “if , then .” 

is false if and only if  is true and  is false. 

This form of a proposition is common in mathematics. The proposition  is called the hypothesis 

or the antecedent of the conditional proposition  while  is called its conclusion or the 

consequent. 

The following is the truth table for implication. 

   

 

 

 

 

 

 

 

 

 

 

 

 

Examples 1.3: Consider the following propositions:  

                : 3 is an odd number. (True) 

                : 27 is a prime number. (False) 

                : Addis Ababa is the capital city of Ethiopia. (True) 

     : If 3 is an odd number, then 27 is prime. (False) 

     : If 3 is an odd number, then Addis Ababa is the capital city of Ethiopia. (True) 
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We have already mentioned that the implication  can be expressed as both “If , then ” 

and “  implies .” There are various ways of expressing the proposition , namely: 

                   If , then . 

                    if . 

                    implies . 

  only if . 

  is sufficient for . 

         is necessary for  

Bi-implication  

When two propositions are joined with the connective “bi-implication,” the proposition formed is called 

a logical bi-implication or a logical equivalence. A bi-implication is denoted by “ ”.  So the logical bi-

implication of two propositions,  and , is written: 

. 

 is false if and only if  and  have different truth values. 

The truth table for bi-implication is given by:  

   

 

 

 

 

 

 

 

 

 

 

 

 

Examples 1.4: 

a. Let : 2 is greater than 3. (False) 

             : 5 is greater than 4. (True) 

Then  

             : 2 is greater than 3 if and only if 5 is greater than 4. (False) 

b. Consider the following propositions: 

      : 3 is an odd number. (True) 

     : 2 is a prime number. (True) 

                 :  3 is an odd number if and only if 2 is a prime number. (True) 

There are various ways of stating the proposition . 

                    if and only if  (also written as  iff ), 

                    implies  and  implies , 

                    is necessary and sufficient for  

                    is necessary and sufficient for  
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                    is equivalent to  

Negation  

Given any proposition , we can form the proposition  called the negation of . The truth value of  

is  if  is  and  if  is . 

We can describe the relation between  and  as follows. 

  

 

 

 

 

Example 1.5: Let : Addis Ababa is the capital city of Ethiopia. (True) 

                           : Addis Ababa is not the capital city of Ethiopia. (False)  

Exercises  

1. Which of the following sentences are propositions? For those that are, indicate the truth 

value. 

a. 123 is a prime number.  

b. 0 is an even number. 

c. . 

d. Multiply  by 3. 

e. What an impossible question! 

2. State the negation of each of the following statements. 

a.  is a rational number. 

b. 0 is not a negative integer. 

c. 111 is a prime number. 

3. Let : 15 is an odd number.  

      : 21 is a prime number. 

State each of the following in words, and determine the truth value of each. 

a. . 

b. .  

c. . 

d. . 

e. . 

f. . 

a. . 

g. . 
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4. Complete the following truth table. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

1.1.3. Compound (or complex) propositions 

So far, what we have done is simply to define the logical connectives, and express them through 

algebraic symbols. Now we shall learn how to form propositions involving more than one 

connective, and how to determine the truth values of such propositions. 

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is called a 

compound statement. 

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For 

example, the expression   will be meaningless unless we know which connective 

should apply first. It could mean  or , which are very different 

propositions. The truth value of such complicated propositions is determined by systematic 

applications of the rules for the connectives. 

The possible truth values of a proposition are often listed in a table, called a truth table. If  and  are 

propositions, then there are four possible combinations of truth values for  and . That is, , ,  

and . If a third proposition  is involved, then there are eight possible combinations of truth values for 

,  and . In general, a truth table involving “ ” propositions , ,…,  contains  possible 

combinations of truth values for these propositions and a truth table showing these combinations would 

have  columns and  rows. So, we use truth tables to determine the truth value of a compound 

proposition based on the truth value of its constituent component propositions.  

Examples 1.6: 

a. Suppose   and  are true and  and  are false. 

           What is the truth value of ? 

i. Since  is true and  is false,  is false.  

ii. Since  is true and  is false,  is true. 

iii. Thus by applying the rule of implication, we get that  is true. 

b. Suppose that a compound proposition is symbolized by  
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and that the truth values of  and  are  and , respectively. Then the truth value of 

 is , that of   is , that of  is . So the truth value of  is .  

Remark: When dealing with compound propositions, we shall adopt the following convention 

on the use of parenthesis. Whenever “ ” or “ ” occur with “ ” or “ ”, we shall assume that 

“ ” or “ ” is applied first, and then “ ” or “ ” is then applied. For example, 

                                       means  

                                       means  

                                     means  

                                    means  

However, it is always advisable to use brackets to indicate the order of the desired operations.  . 

Definition 1.3: Two compound propositions  and  are said to be equivalent if they have the same truth 

value for all possible combinations of truth values for the component propositions occurring in both  and 

. In this case we write . 

Example 1.7:   Let . 

         .  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then,  is equivalent to , since columns 5 and 6 of the above table are identical. 

Example 1.8:   Let .   

                 . 

Then 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at columns 5 and 6 of the table we see that they are not identical. Thus . 
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It is useful at this point to mention the non-equivalence of certain conditional propositions. 

Given the conditional , we give the related conditional propositions:- 

                      :                 Converse of  

                    :             Inverse of   

                    :            Contrapositive of   

As we observed from example 1.7, the conditional  and its contrapositve  are 

equivalent. On the other hand,   and  . 

Do not confuse the contrapositive and the converse of the conditional proposition. Here is 

the difference: 

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement 

and the conclusion of the converse statement is the hypothesis of the conditional statement.   

Contrapositive: The hypothesis of a contrapositive statement is the negation of conclusion of 

the conditional statement and the conclusion of the contrapositive statement is the negation of 

hypothesis of the conditional statement.  

Example 1.9: 

a. If Kidist lives in Addis Ababa, then she lives in Ethiopia. 

Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa. 

Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis 

Ababa. 

Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia. 

b. If it is morning, then the sun is in the east. 

Converse: If the sun is in the east, then it is morning. 

Contrapositive: If the sun is not in the east, then it is not morning. 

Inverse: If it is not morning, then the sun is not the east.  

Propositions, under the relation of logical equivalence, satisfy various laws or identities, which 

are listed below.  

1. Idempotent Laws 

a. . 

b. . 

2. Commutative Laws 

a.  . 

b.  . 

3. Associative Laws 

a. . 

b. . 

4. Distributive Laws 

a. . 
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b. . 

5. De Morgan’s Laws 

a. . 

b.  

6. Law of Contrapositive 

 

7. Complement Law 

. 

1.1.4. Tautology and contradiction 

Definition: A compound proposition is a tautology if it is always true regardless of the truth values of its 

component propositions. If, on the other hand, a compound proposition is always false regardless of its 

component propositions, we say that such a proposition is a contradiction. 

Examples 1.10: 

a. Suppose  is any proposition. Consider the compound propositions  and .  

    

 

 

 

 

 

 

 

 

                    Observe that  is a tautology while  is a contradiction. 

b. For any propositions  and . Consider the compound proposition .  Let us 

make a truth table and study the situation. 

    

 

 

 

 

 

 

 

 

 

 

 

 

T 

T 

T 

T 

We have exhibited all the possibilities and we see that for all truth values of the constituent 

propositions, the proposition  is always true. Thus,  is a tautology. 

c. The truth table for the compound proposition . 
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In example 1.10(c), the given compound proposition has a truth value  for every possible 

combination of assignments of truth values for the component propositions  and . Thus 

 is a contradiction.  

Remark: 

1. In a truth table, if a proposition is a tautology, then every line in its column has  as its 

entry; if a proposition is a contradiction, every line in its column has  as its entry. 

2. Two compound propositions  and  are equivalent if and only if “ ” is a 

tautology. 

Exercises  

1. For statements  and , use a truth table to show that each of the following pairs of 

statements is logically equivalent. 

a.  and . 

b.  and . 

c.  and . 

d.  and . 

e.  and .  

2. For statements , and , show that the following compound statements are tautology. 

a. . 

b. . 

c. . 

3. For statements  and , show that  is a contradiction. 

4. Write the contrapositive and the converse of the following conditional statements. 

a. If it is cold, then the lake is frozen. 

b. If Solomon is healthy, then he is happy. 

c. If it rains, Tigist does not take a walk.    

5. Let  and  be statements. Which of the following implies that  is false? 

a.  is false. 

b.  is true. 

c.  is true. 

d.  is true. 

e.  is false. 

6. Suppose that the statements  and  are assigned the truth values  and , 

respectively. Find the truth value of each of the following statements. 

a. . 

b. . 

c. . 

f. . 

g. . 

h. . 
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d. . 

e. . 

i. . 

j. . 

7. Suppose the value of  is ; what can be said about the value of ? 

8. a.  Suppose the value of  is ; what can be said about the values of  and 

? 

b.  Suppose the value of  is ; what can be said about the values of  and 

? 

9. Construct the truth table for each of the following statements. 

a. . 

b. . 

c. . 

d. . 

e. . 

f. . 

10. For each of the following determine whether the information given is sufficient to decide 

the truth value of the statement. If the information is enough, state the truth value. If it is 

insufficient, show that both truth values are possible. 

a. , where . 

b. , where . 

c. , where . 

d. , where . 

e. , where . 

f. , where  and . 

 

 

1.2. Open propositions and quantifiers 
In mathematics, one frequently comes across sentences that involve a variable. For example, 

 is one such. The truth value of this statement depends on the value we assign 

for the variable . For example, if , then this sentence is true, whereas if , then the 

sentence is false.  

Section objectives: 

After completing this section, students will be able to:-  

 Define open proposition. 

 Analyze the difference between proposition and open proposition. 

 Differentiate the two types of quantifiers. 

 Convert open propositions into propositions using quantifiers. 

 Determine the truth value of a quantified proposition. 
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 Convert a quantified proposition into words and vise versa. 

 Explain the relationship between existential and universal quantifiers. 

 Analyze quantifiers occurring in combinations.   

Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or more 

variables and whose truth value depends on the values assigned for the variables. We represent an open 

statement by a capital letter followed by the variable(s) in parenthesis, e.g.,  etc. 

Example 1.11: Here are some open propositions: 

a.  is the day before Sunday. 

b.  is a city in Africa.   

c.  is greater than . 

d. . 

It is clear that each one of these examples involves variables, but is not a proposition as we 

cannot assign a truth value to it. However, if individuals are substituted for the variables, then 

each one of them is a proposition or statement. For example, we may have the following.  

a.  Monday is the day before Sunday. 

b. London is a city in Africa. 

c. 5 is greater than 9. 

d. –13 + 4= –9   

Remark 

The collection of all allowable values for the variable in an open sentence is called the universal 

set (the universe of discourse) and denoted by . 

Definition 1.5: Two open proposition  and  are said to be equivalent if and only if  

 for all individual . Note that if the universe  is specified, then  and  are 

equivalent if and only if  for all . 

Example 1.12: Let . 

           . 

Let . 

Then for all ;  and  have the same truth value. 

       ( )                     ( ) 

    ( )                    ( ) 

                  ( )                            ( ) 

                 ( )                             ( ) 

Therefore  for all . 
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Definition 1.6: Let  be the universal set. An open proposition  is a tautology if and only if  is 

always true for all values of .  

Example 1.13: The open proposition  is a tautology. 

As we have observed in example 1.11, an open proposition can be converted into a proposition 

by substituting the individuals for the variables. However, there are other ways that an open 

proposition can be converted into a proposition, namely by a method called quantification. Let 

 be an open proposition over the domain . Adding the phrase “For every ” to  or 

“For some ” to  produces a statement called a quantified statement.     

Consider the following open propositions with universe . 

a.  . 

b. . 

c. . 

Then  is always true for each , 

          is true only for  and , 

          is always false for all values of . 

Hence, given an open proposition , with universe , we observe that there are three 

possibilities. 

a.  is true for all . 

b.  is true for some . 

c.  is false for all . 

Now we proceed to study open propositions which are satisfied by “all” and “some” members of 

the given universe. 

a. The phrase "for every  " is called a universal quantifier. We regard "for every ," "for all ," 

and "for each  " as having the same meaning and symbolize each by “ .” Think of the 

symbol  as an inverted (representing all). If   is an open proposition with universe , then 

 is a quantified proposition and is read as “every  has the property .” 

b. The phrase "there exists an  " is called an existential quantifier. We regard "there exists an ," 

"for some ," and "for at least one  " as having the same meaning, and symbolize each by 

“ .” Think of the symbol  as the backwards capital (representing exists). If   is an 

open proposition with universe , then  is a quantified proposition and is read as “there 

exists  with the property .” 

Remarks: 
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i. To show that  is , it is sufficient to find at least one  such that  is 

.  Such an element  is called a counter example. 

ii.  is  if we cannot find any  having the property . 

Example 1.14: 

a. Write the following statements using quantifiers. 

i. For each real number . 

Solution:  . 

ii. There is a real number  such that . 

Solution: . 

iii. The square of any real number is nonnegative. 

Solution: . 

b.  

i.  Let . The truth value for  [i.e ] is . 

ii. Let . The truth value for  is .   is a 

counterexample since  but  . On the other hand,  is true, since 

 such that . 

iii. Let . The truth value for  is  since there is no real 

number whose absolute value is .  

Relationship between the existential and universal quantifiers 

If  is a formula in , consider the following four statements. 

a. . 

b. .  

c. . 

d. . 

We might translate these into words as follows.  

a. Everything has property . 

b. Something has property . 

c. Nothing has property . 

d. Something does not have property . 

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus, 

for example, the existential quantifier may be defined in terms of the universal quantifier.  

Now we proceed to discuss the negation of quantifiers. Let  be an open proposition. Then 

 is false only if we can find an individual “ ” in the universe such that  is false. If 

we succeed in getting such an individual, then   is true. Hence  will be false 

if  is true. Therefore the negation of  is . Hence we conclude 

that 
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. 

Similarly, we can easily verified that 

. 

Remark: To negate a statement that involves the quantifiers  and , change each  to , 

change each  to , and negate the open statement. 

 

Example 1.15: 

Let .  

a.   

                           . 

b.  

                                 . 

Given propositions containing quantifiers we can form a compound proposition by joining them 

with connectives in the same way we form a compound proposition without quantifiers. For 

example, if we have  and  we can form . 

Consider the following statements involving quantifiers. Illustrations of these along with 

translations appear below.  

a. All rationals are reals.                                    . 

b. No rationals are reals.                                    .  

c. Some rationals are reals.                                . 

d. Some rationals are not reals.                          . 

Example 1.16: 

Let  The set of integers. 

Let :  is a prime number.  

      :  is an even number.  

      :  is an odd number. 

Then  

a.  is ; since there is an , say 2, such that  is . 

b.  is . As a counterexample take 7. Then  is  and  is . 

Hence . 

c.  is . 

d.  is . 

Quantifiers Occurring in Combinations 

So far, we have only considered cases in which universal and existential quantifiers appear 

simply.  However, if we consider cases in which universal and existential quantifiers occur in 

combination, we are lead to essentially new logical structures.  The following are the simplest 

forms of combinations: 
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1.  

“for all  and for all  the relation  holds”;  

2.   

              “there is an  and there is a  for which  holds”; 

3.   

 “for every  there is a  such that  holds”; 

4.  

“there is an  which stands to every  in the relation .” 

Example 1.17: 

Let  The set of integers. 

Let . 

a.  means that there is an integer  and there is an integer  such that 

.  This statement is true when  and , since 4 + 1 = 5.  

Therefore, the statement  is always true for this universe.  There are 

other choices of  and  for which it would be true, but the symbolic statement merely 

says that there is at least one choice for  and  which will make the statement true, and 

we have demonstrated one such choice. 

b.  means that there is an integer  such that for every , .  

This is false since no fixed value of  will make this true for all  in the universe; e.g. if 

, then  is false for some . 

c.  means that for every integer , there is an integer  such that  

.  Let , then  will always be an integer, so this is a true 

statement. 

d.  means that for every integer  and for every integer , .  

This is false, for if  and , we get . 

Example 1.18:  

a. Consider the statement 

For every two real numbers  and , . 

If we let 

                  

where the domain of both  and  is , the statement can be expressed as  

 or as . 
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Since  and  for all real numbers  and , it follows that  and so 

 is true for all real numbers  and . Thus the quantified statement is true. 

b. Consider the open statement  

 

where the domain of the variable  is the set  of even integers and the domain of the variable  

is the set  of odd integers. Then the quantified statement    

 
can be expressed in words as  

There exist an even integer  and an odd integer  such that . 

Since  is true, the quantified statement is true. 

c. Consider the open statement  

 

where the domain of both  and  is the set  of positive rational numbers. Then the quantified 

statement  

 

can be expressed in words as 

For every positive rational number , there exists a positive rational number  such that . 

It turns out that the quantified statement is true. If we replace  by , then we have    

 . 

Since  and for every real number ,  is false. 

d. Consider the open statement 

 is odd 

where the domain of both  and  is the set  of natural numbers. Then the quantified statement  

, 

expressed in words, is  

There exists a natural number  such that for every natural numbers ,  is odd. The statement 

is false. 

In general, from the meaning of the universal quantifier it follows that in an expression 

 the two universal quantifiers may be interchanged without altering the sense of 

the sentence. This also holds for the existential quantifies in an expression such as 

. 

In the statement  , the choice of  is allowed to depend on  - the  that works 

for one  need not work for another . On the other hand, in the statement , the 

 must work for all , i.e.,  is independent of . For example, the expression ,  

where  and  are variables referring to the domain of real numbers, constitutes a true 

proposition, namely, “For every number , there is a number , such that  is less that ,” i.e., 

“given any number, there is a greater number.”  However, if the order of the symbol  and 

 is changed, in this case, we obtain: , which is a false proposition, namely, 
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“There is a number which is greater than every number.”  By transposing  and , 

therefore, we get a different statement. 

 The logical situation here is: 

. 

Finally, we conclude this section with the remark that there are no mechanical rules for 

translating sentences from English into the logical notation which has been introduced. In every 

case one must first decide on the meaning of the English sentence and then attempt to convey 

that same meaning in terms of predicates, quantifiers, and, possibly, individual constants. 

 

Exercises 

1. In each of the following, two open statements  and  are given, where the 

domain of both  and  is . Determine the truth value of  for the 

given values of  and . 

a. . and . . 

b. . and . . 

c. . and . 

. 

2. Let  denote the set of odd integers and let  is even, and  is even. 

be open statements over the domain . State  and  in words. 

3. State the negation of the following quantified statements. 

a. For every rational number , the number  is rational. 

b. There exists a rational number  such that . 

4. Let  is an integer. be an open sentence over the domain . Determine, with 

explanations, whether the following statements are true or false: 

a. . 

b. . 

5. Determine the truth value of the following statements. 

a. . 

b. . 

c. . 

d.   . 

e. . 

f. .   

g. . 

h.         

6. Consider the quantified statement  

                   For every  and ,  is prime. 
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              where the domain of the variables  and  is . 

a. Express this quantified statement in symbols. 

b. Is the quantified statement in (a) true or false? Explain. 

c. Express the negation of the quantified statement in (a) in symbols. 

d. Is the negation of the quantified in (a) true or false? Explain. 

7. Consider the open statement  where the domain of  is  and 

the domain of  is . 

a. State the quantified statement  in words. 

b. Show quantified statement in (a) is true. 

8.   Consider the open statement  where the domain of  is  

and the domain of  is . 

a. State the quantified statement  in words. 

b. Show quantified statement in (a) is true. 

 

 

1. 3.  Argument and Validity 

Section objectives: 

After completing this section, students will be able to:-  

 Define argument (or logical deduction). 

 Identify hypothesis and conclusion of a given argument. 

 Determine the validity of an argument using a truth table. 

 Determine the validity of an argument using rules of inferences. 

Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements 

, called hypotheses or premises, yield another statement , called the conclusion. Such 

a logical deduction is denoted by: 

 or 

 

 

  

 

Example 1.19:  Consider the following argument: 

If you study hard, then you will pass the exam. 

You did not pass the exam. 
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Therefore, you did not study hard. 

Let : You study hard. 

       : You will pass the exam. 

The argument form can be written as: 

                                                                                              

When is an argument form accepted to be correct?  In normal usage, we use an argument in order 

to demonstrate that a certain conclusion follows from known premises.  Therefore, we shall 

require that under any assignment of truth values to the statements appearing, if the premises 

became all true, then the conclusion must also become true.  Hence, we state the following 

definition. 

Definition 1.8: An argument form  is said to be valid if  is true whenever all the 

premises  are true; otherwise it is invalid. 

 

Example 1.20: Investigate the validity of the following argument:  

a.    pqqp      ,           

b.    prqqp     ,   

c. If it rains, crops will be good. It did not rain. Therefore, crops were not good.  

Solution: First we construct a truth table for the statements appearing in the argument forms. 

a.   

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The premises  and  are true simultaneously in row 4 only. Since in this case  is also 

true, the argument is valid. 

b.  

      

      

      

      

      

qp

p 

q   
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The 1
st
, 2

nd
, 5

th
, 6

th
 and 7

th
 rows are those in which all the premises take value .  In the 5

th
, 6

th
 

and 7
th

 rows however the conclusion takes value .  Hence, the argument form is invalid.  

c. Let : It rains. 

      : Crops are good. 

                      : It did not rain. 

                      : Crops were not good. 

The argument form is  

Now we can use truth table to test validity as follows: 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The premises  and  are true simultaneously in row 4 only. Since in this case  is also 

true, the argument is valid. 

Remark: 

1. What is important in validity is the form of the argument rather than the meaning or 

content of the statements involved. 

2. The argument form  is valid iff the statement  

 is a tautology. 

Rules of inferences 

Below we list certain valid deductions called rules of inferences. 

 

1. Modes Ponens 

   

   

       

 

2. Modes Tollens 

 

                         

                          

 

3. Principle of Syllogism  
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4. Principle of Adjunction 

a.        

              

          

b.                 

           

 

5. Principle of Detachment 

             

               

 

6. Modes Tollendo Ponens 

    

                         

    

 

7. Modes Ponendo Tollens 

   

                          

      

 

8. Constructive Dilemma 

 
                       

       

 

9. Principle of Equivalence 

 
      

       

 

10. Principle of Conditionalization 

                              

                         

 

  

Formal proof of validity of an argument 

Definition 1.9: A formal proof of a conclusion  given hypotheses  is a sequence of 

stapes, each of which applies some inference rule to hypotheses or previously proven statements 

(antecedent) to yield a new true statement (the consequent). 
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A formal proof of validity is given by writing on the premises and the statements which follows 

from them in a single column, and setting off in another column, to the right of each statement, 

its justification.  It is convenient to list all the premises first. 

Example 1.21: Show that  is valid. 

Solution: 

1.  is true                                                   premise 

2.                                                   premise 

3.                                                   contrapositive of (2) 

4.                                                              Modes Ponens using (1) and (3) 

Example 1.22: Show that the hypotheses  

                     It is not sunny this afternoon and it is colder than yesterday. 

                     If we go swimming, then it is sunny. 

                     If we do not go swimming, then we will take a canoe trip. 

                     If we take a canoe trip, then we will be home by sunset. 

       Lead to the conclusion: 

                     We will be home by sunset. 

 Let : It is sunny this afternoon.  

       : It is colder than yesterday.    

       : We go swimming. 

       : We take a canoe trip. 

       : We will be home by sunset.  

Then  

1.                        hypothesis 

2.                              simplification using (1) 

3.                        hypothesis 

4.                              Modus Tollens using (2) and (3) 

5.                     hypothesis 

6.                                 Modus Ponens using (4) and (5) 

7.                        hypothesis 

8.                                Modus Ponens using (6) and (7) 

Exercises 

1. Use the truth table method to show that the following argument forms are valid. 

i. . 

ii. . 

iii. . 

iv. . 
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v. . 

2. For the following argument given a, b and c below:  

i. Identify the premises. 

ii. Write argument forms. 

iii. Check the validity. 

a.    If he studies medicine, he will get a good job. If he gets a good job, he 

will get a good wage. He did not get a good wage. Therefore, he did not 

study medicine. 

b. If the team is late, then it cannot play the game. If the referee is here, 

then the team is can play the game. The team is late. Therefore, the 

referee is not here. 

c.   If the professor offers chocolate for an answer, you answer the 

professor’s question. The professor offers chocolate for an answer. 

Therefore, you answer the professor’s question 

3. Give formal proof to show that the following argument forms are valid. 

a. . 

b. . 

c. . 

d. . 

e. . 

f. .  

g. . 

h. . 

i. . 

4. Prove the following are valid arguments by giving formal proof. 

a. If the rain does not come, the crops are ruined and the people will starve.  The 

crops are not ruined or the people will not starve.  Therefore, the rain comes. 

b. If the team is late, then it cannot play the game.  If the referee is here then the 

team can play the game.  The team is late.  Therefore, the referee is not here. 

1.4.  Set theory 

In this section, we study some part of set theory especially description of sets, Venn diagrams 

and operations of sets. 

Section objectives: 

After completing this section, students will be able to:-  

 Explain the concept of set. 

 Describe sets in different ways. 
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 Identify operations of sets. 

 Illustrate sets using Venn diagrams. 

 

 

1.4.1. The concept of a set 

The term set is an undefined term, just as a point and a line are undefined terms in geometry. 

However, the concept of a set permeates every aspect of mathematics. Set theory underlies the 

language and concepts of modern mathematics. The term set refers to a well-defined collection 

of objects that share a certain property or certain properties. The term “well-defined” here means 

that the set is described in such a way that one can decide whether or not a given object belongs 

in the set. If  is a set, then the objects of the collection  are called the elements or members of 

the set . If  is an element of the set , we write . If  is not an element of the set , we 

write . 

As a convention, we use capital letters to denote the names of sets and lowercase letters for 

elements of a set. 

Note that for each objects  and each set , exactly one of  or  but not both must be 

true.  

1.4.2. Description of sets 

Sets are described or characterized by one of the following four different ways.  

1.  Verbal Method               

In this method, an ordinary English statement with minimum mathematical symbolization of 

the property of the elements is used to describe a set. Actually, the statement could be in any 

language. 

Example 1.23: 

a.  The set of counting numbers less than ten. 

b.  The set of letters in the word “Addis Ababa.” 

c.   The set of all countries in Africa. 

2.  Roster/Complete Listing Method 

If the elements of a set can all be listed, we list them all between a pair of braces without 

repetition separating by commas, and without concern about the order of their appearance. 

Such a method of describing a set is called the roster/complete listing method. 

Examples 1.24:  

a.    The set of vowels in English alphabet may also be described as . 

b.   The set of positive factors of 24 is also described as . 

Remark: 
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i. We agree on the convention that the order of writing the elements in the list is 

immaterial. As a result the sets  and  contain the same elements, 

namely  and  

ii.   The set  contains just two distinct elements; namely  and , hence it is the 

same set as  We list distinct elements without repetition. 

Example 1.25:  

a.  Let  Elements of  are  and   

Notice that  and  are different objects. Here  but . 

b. Let . The only element of  is . But .  

c.   Let  Then C has four elements. 

The readers are invited to write down all the elements of C. 

3. Partial Listing Method 

In many occasions, the number of elements of a set may be too large to list them all; and in 

other occasions there may not be an end to the list. In such cases we look for a common 

property of the elements and describe the set by partially listing the elements. More precisely, 

if the common property is simple that it can easily be identified from a list of the first few 

elements, then with in a pair of  braces, we list these few elements followed (or preceded) by 

exactly three dotes and possibly by one last element. The following are such instances of 

describing sets by partial listing method. 

Example 1.26:  

a. The set of all counting numbers is . 

b. The set of non-positive integers is . 

c. The set of multiples of 5 is . 

d. The set of odd integers less than 100 is  

4. Set-builder Method 

When all the elements satisfy a common property , we express the situation as an open 

proposition  and describe the set using a method called the Set-builder Method as 

follows: 

 
We read it as “  is equal to the set of all ’s such that  is true.” Here the bar  and the 

colon “ ” mean “such that.” Notice that the letter  is only a place holder and can be replaced 

throughout by other letters. So, for a property , the set {  and  are 

all the same set.  

Example 1.27: The following sets are described using the set-builder method. 

a. . 

b.  

c.  
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d.  

e.  

Exercise: Express each of the above by using either the complete or the partial listing method. 

Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by  or . 

Example 1.28: The set of  such that  is an empty set. 

Relationships between two sets 

Definition 1.11:  Set  is said to be a subset of set  (or is contained in ), denoted by , if every 

element of  is an element of , i.e.,  

. 

It follows from the definition that set  is not a subset of set  if at least one element of  is not an 

element of . i.e., . In such cases we write  or . 

Remarks: For any set  and . 

Example 1.29:  

a. If ,  and , then  and  On the 

other hand, it is clear that: ,  and . 

b. If  and , then  since 

every multiple of 6 is even. However,  while . Thus . 

c. If  then and . On the other hand, since , 

, and . 

Definition 1.12: Sets  and  are said to be equal if they contain exactly the same elements. In this case, 

we write . That is,  

. 

Example 1.30:              

a. The sets  are all equal. 

b.  

Definition 1.13: Set  is said to be a proper subset of set  if every element of  is also an element of , 

but  has at least one element that is not in . In this case, we write . We also say  is a proper 

super set of A, and write . It is clear that 

                                         . 

Remark: Some authors do not use the symbol . Instead they use the symbol for both subset 

and proper subset. In this material, we prefer to use the notations commonly used in high school 
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mathematics, and we continue using and differently, namely for subset and proper subset, 

respectively. 

Definition 1.14: Let  be a set. The power set of , dented by , is the set whose elements are all 

subsets of . That is, 

. 

Example 1.31: Let . As noted before,  and  are subset of . Moreover, 

 and  are also subsets of . Therefore,  

. 

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and 

regard all sets under consideration as a subset of this fixed set. We call this set the universal set 

or the universe and denoted by . 

Exercises  

1. Which of the following are sets? 

a. 1,2,3 

b. {1,2},3 

c. {{1},2},3 

d. {1,{2},3} 

e. {1,2,a,b}. 

2. Which of the following sets can be described in complete listing, partial listing and/or 

set-builder methods? Describe each set by at least one of the three methods. 

a. The set of the first 10 letters in the English alphabet. 

b. The set of all countries in the world. 

c. The set of students of Addis Ababa University in the 2018/2019 academic year. 

d. The set of positive multiples of 5. 

e. The set of all horses with six legs. 

3. Write each of the following sets by listing its elements within braces. 

a.  

b.  

c.  

d.  

e. . 

4. Let  be the set of positive even integers less than 15. Find the truth value of each of the 

following. 

a.  
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b.  

c.  

d.  

e.  

f.  

g.  

h.  

i.  

 

5. Find the truth value of each of the following and justify your conclusion. 

a.  

b.  

c.  for any set A  

d. , for any set A 

e.  

f.  

g.  For any set  

h.  

6. For each of the following set, find its power set. 

a.  

b.  

c.  

d.  

7. How many subsets and proper subsets do the sets that contain exactly  and 

 elements have? 

8. If  is a whole number, use your observation in Problems 6and 7 to discover a formula 

for the number of subsets of a set with  elements. How many of these are proper subsets 

of the set? 

9. Is there a set A with exactly the following indicated property? 

a. Only one subset 

b. Only one proper subset 

c. Exactly 3 proper subsets 

d. Exactly 4 subsets 

e. Exactly 6 proper subsets 

f. Exactly 30 subsets 

g. Exactly 14 proper subsets 

h. Exactly 15 proper subsets 

10. How many elements does A contain if it has: 
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a. 64 subsets?  

b. 31 proper subsets? 

c. No proper subset?  

d. 255 proper subsets? 

11. Find the truth value of each of the following. 

a.  

b.  

c.  

d.  

12. For any three sets ,  and , prove that: 

a. If  and , then . 

b. If  and , then . 

 

1.4.3. Set Operations and Venn diagrams 

Given two subsets  and  of a universal set , new sets can be formed using  and  in many 

ways, such as taking common elements or non-common elements, and putting everything 

together. Such processes of forming new sets are called set operations. In this section, three most 

important operations, namely union, intersection and complement are discussed. 

Definition 1.15: The union of two sets  and , denoted by , is the set of all elements that are 

either in  or in  (or in both sets). That is,  

. 

As easily seen the union operator “ ” in the theory of set is the counterpart of the logical 

operator “ ”. 

Definition 1.16: The intersection of two sets  and , denoted by , is the set of all elements that are 

in  and . That is,   

. 

As suggested by definition 1.15, the intersection operator “ ” in the theory of sets is the 

counterpart of the logical operator “ ”.  

Note: - Two sets  and  are said to be disjoint sets if . 

Example 1.32: 

a. Let  and . Then, 

          and . 

b. Let  = The set of positive even integers, and 

       = The set of positive multiples of 3. Then, 
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Definition 1.17: The difference between two sets  and , denoted by , is the of all elements in  

and not in ; this set is also called the relative complement of  with respect to . Symbolically, 

. 

Example 1.33: If , , then  and . 

Note: The above example shows that, in general,  are  disjoint. 

Definition 1.18: Let  be a subset of a universal set . The absolute complement (or simply 

complement) of , denoted by  (or or , is defined to be the set of all elements of  that are not in 

. That is, 

                      or . 

Notice that taking the absolute complement of  is the same as finding the relative complement 

of  with respect to the universal set . That is, 

. 

Example 1.34:  

a. If , and if , then . 

b. Let  

  

and .  

Then, , , 

, , 

, and  

c. Let  and 

. Then 

, , , 

, and .  

Find , , . Which of these are equal? 

Theorem 1.1: For any two sets  and , each of the following holds. 

1. . 
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2.  . 

3. . 

4. . 

5. . 

6. . 

Now we define the symmetric difference of two sets.  

Definition 1.17: The symmetric difference of two sets  and , denoted by , is the set  

. 

Example 1.35: Let  be the universal set,  and 

. Then  and . Thus  

. 

Theorem 1.2: For any three sets ,  and , each of the following holds. 

a. .                                        ( is commutative)                   

b. .                                        ( is commutative) 

c. .                   ( is associative)      

d. .                   ( is associative) 

e. .         ( is distributive over )     

f. .          ( is distributive over )   

Let us prove property “e” formally. 

                               (definition of ) 

                                                        (definition of ) 

             ( is distributive over ) 

 )                         (definition of ) 

 (definition of ) 

Therefore, we have . 

The readers are invited to prove the rest part of theorem (1.2). 

Venn diagrams 

While working with sets, it is helpful to use diagrams, called Venn diagrams, to illustrate the 

relationships involved. A Venn diagram is a schematic or pictorial representative of the sets 

involved in the discussion. Usually sets are represented as interlocking circles, each of which is 

enclosed in a rectangle, which represents the universal set .    
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In some 

occasions, we list the elements of set  inside the closed curve representing . 

Example 1.36: 

a. If  and , then a Venn diagram representation 

of these two sets looks like the following. 

 

 

 

 

 

 

 

 

b. Let  

 

.  

A Venn diagram representation of these sets is given below. 

 

 

 

 

 

 

 

 

 

Example 1.37: Let U = The set of one digits numbers 

                       A = The set of one digits even numbers 

                       B = The set of positive prime numbers less than 10  

We illustrate the sets using a Venn diagram as follows. 
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a. Illustrate  by a Venn diagram 

                           

b. Illustrate A’  by a Venn diagram 

                                        
c. Illustrate A\B by using a Venn diagram 

                                    

 

A \ B:   The shaded portion 

A B    U 

A 

  U 

A’  :   The shaded portion 

A B   U 

BA :   The shaded portion 

0 4 

6 
2 

3 

5 
8 

7 

1 

9 

A B   U 



36 

 

 

 

 

 

 

 

 

 

Now we illustrate intersections and unions of sets by Venn diagram. 

Cases Shaded is  Shaded  

Only some 

common elements 

             

 

 

                     

 

No common 

element 
     

          

 

Exercises  

1. If ,  and , find . 

2. Let , 

       and  

      {  or }. Find  

a. . 

b. Is ? 

3. Suppose  The set of one digit numbers and  

B A 

A  B = 

B A 

A 

B B 

A 

A B A B 
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{  is an even natural number less than or equal to 9} 

           Describe each of the sets by complete listing method: 

a. . 

b. . 

c. . 

d.  

e. . 

f.  

g.  

4. Suppose  The set of one digit numbers and  

{  is an even natural number less than or equal to 9} 

           Describe each of the sets by complete listing method: 

h. . 

i. . 

j. . 

k.  

l. . 

m.  

n.  

5. Use Venn diagram to illustrate the following statements: 

a. . 

b. . 

c. If , then . 

d. . 

6. Let  and . Then show that .  

7. Perform each of the following operations. 

a.  

b.  

c.  

d.  

8. Let  

{  is a positive prime factor of 66} 

{   is composite number } and . Then find each of 

the following. 

 
9.   Let  and . 

a. , then  
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b. , then  

c. , then  

10. Let  

 and . Verify each of the following. 

a. . 

b. . 

c.  

d.  

e.  

11. Depending on question No. 10 find. 

a. . 

b. . 

c. . 

d.  

12. For any two subsets  and  of a universal set , prove that: 

a. . 

b. . 

c. . 

d. . 

13. Draw an appropriate Venn diagram to depict each of the following sets. 

a. U = The set of high school students in Addis Ababa. 

A = The set of female high school students in Addis Ababa. 

B = The set of high school anti-AIDS club member students in Addis Ababa. 

C = The set of high school Nature Club member students in Addis Ababa. 

b. U = The set of integers. 

A = The set of even integers. 

B = The set of odd integers. 

C = The set of multiples of 3. 

D = The set of prime numbers. 
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Chapter Two 

Functions 
 
Our everyday lives are filled with situations in which we encounter relationships between two 

sets. For example,  

 To each automobile, there corresponds a license plate number 

 To each circle, there corresponds a circumference 

 To each number, there corresponds its square 

In order to apply mathematics to a variety of disciplines, we must make the idea of a 

“relationship” between two sets mathematically precise. 

 

On completion of this chapter students will be able to: 

 understand the concept of real numbers 

 use properties of real numbers to solve problems 

 determine whether a given real number is rational number or not 

 solve linear equations and inequalities 

 solve quadratic equations and inequalities  

 understand the notion of relation and function 

 determine the domain and range of relations and functions  

 find the inverse of a relation 

 define polynomial and rational functions 

 perform the fundamental operations on polynomials 

 find the inverse of an invertible function 

 apply the theorems on polynomials to find the zeros of polynomial functions 

 apply theorems on polynomials to solve related problems 

 sketch and analyze the graphs of rational functions  

 define exponential, logarithmic, and trigonometric functions 

 sketch the graph of exponential, logarithmic, and trigonometric functions 

 use basic properties of logarithmic, exponential and trigonometric functions to solve 

problems 

In this chapter, before discussing the idea of relations and functions we first review the system of 

real numbers, linear and quadratic equations and inequalities.  

 

 

 

 



40 

 

1.1 The real number systems 

 
At the end of this section, students will be able to: 

 understand the concept of real numbers 

 use properties of real numbers to solve problems 

 determine whether a given real number is rational number or not 

In this section we will define what the real numbers are and what are their properties? To answer, 

we start with some simpler number systems. 

 

 The integers and the rational numbers 

The simplest numbers of all are the natural numbers,  

  1, 2, 3, 4, 5, 6,   

With them we can count: our books, our friends, and our money. If we adjoin their negatives  

and zero, we obtain the integers; 

  ,3,2,1,0,1,2,3,   

When we try to measure length, weight, or voltage, the integers are inadequate. They are spaced 

too far apart to give sufficient precision. Thus, we are led to consider quotients (ratios) of 

integers, numbers such as: 

 
2

16
,

2

19
,

5

21
,

8

7
,

4

3




 and 

1

17
 

Note that we included 2
16  and 1

17 , though we would normally write them as 8 and – 17, since 

they are equal to the latter by the ordinary meaning of division. We did not include 0
5  or 0

9 , 

since it is impossible to make sense out of these symbols. In fact, let us agree once and for all to 

banish division by zero from this section.  Numbers which can be written in the form n
m , where 

m  and n  are integers with 0n , are called rational numbers. 

 

Do the rational numbers serve to measure all lengths? No. This surprising fact was discovered by 

the ancient Greeks long ago. They showed that while 2  measures the hypotenuse of a right 

triangle with sides of length 1, it cannot be written as a quotient of two integers(see exercise…). 

Thus, Thus, 2  is an irrational (not rational) number. So are ,7,5,3 3  and a host of other 

numbers. 
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 The real numbers 

Consider the set of all numbers (rational and irrational) that can measure lengths, together with 

their negatives and zero. We call these numbers the real numbers. 

The set of real numbers denoted by   can be described as the union of the set of rational and 

irrational numbers. i.e = {x : x is a rational number or an irrational number}. 

The real numbers may be viewed as labels for points along a horizontal line. There they measure 

the distance to the right or left (the directed distance) from a fixed point called the origin and 

labeled 0. Each point on the number line corresponds a unique real number and vice-versa.   

 

Most students will remember that the number system can be enlarged still more to the so-called 

complex numbers. These are numbers of the form 1 ba  , where a  and b  are real numbers.  

 The four arithmetic operations 

Give two real numbers x  and y , we may add or multiply them to obtain two new real numbers 

yx   and yx   (also written simply as xy ). The real numbers along with the operations of 

addition (+) and multiplication ( ) , obey the 11 properties listed below. Most of these properties 

are straightforward and may seem trivial. Nevertheless, we shall see that these 11 basic 

properties are quite powerful in that they are the basis for simplifying algebraic expressions. 

 

            The commutative Properties 

1. For addition: abba   

2. For multiplication: baab  

 

            The associative properties 

3. For addition: cbacba  )()(  

4. For multiplication: cabbca )()(   

 

            The distributive property 

5. acabcba  )(  or cabaacb  )(  

 

 



42 

 

Identities 

6. For addition: There is a unique number called the additive identity, represented by 0, 

which has the property that aaa  00  for all real numbers a . 

7. For multiplication: There is a unique real number called the multiplicative identity, 

represented by 1, which has the property that aaa  11  for all real numbers a . 

 

Inverses 

8. For addition: Each real number a  has a unique additive inverse, represented by a , 

which has the property that aaaa  )(0)(  

9. For multiplication: Each real number a , except 0, has a unique multiplicative inverse, 

represented by a
1 , which has the property that aa

aa
)(1)( 11  . 

 

            Closure properties 

10. For addition: The sum of two real numbers is a real number. 

11. For multiplication: The product of two real numbers is a real number. 

 

Subtraction and division are defined by: 

 

 )( yxyx   and 
y

xyx 1 , where 0y . 

 

In the product ab , a  and b  are called factors, in the sum ba  , a  and b  are called terms. 

 

Example 2.1: The set of irrational numbers is not closed under addition and multiplication, 

because 0)2(2   and 41682  , which are rational numbers. 

 

 The order relation on the set of real numbers 

The nonzero real numbers separate nicely into two disjoint sets – the positive real numbers and 

the negative real numbers. This fact allows us to introduce the order relation < (read “is less 

than”) by 

xyyx   is positive 

 

We agree that yx   and xy   will mean the same thing. The order relation   (read”is less 

than or equal to”) is a first cousin of <. It is defined by  

xyyx   is positive or zero 

 

The order relation  <  has the following properties: 
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The order property 

1. Trichotomy: If x  and y  are numbers, exactly one of the following 

holds: 

                          yx   or yx   or yx   

2. Transitivity: yx   and zy   zx   

3. Addition: zyzxy   

4. Multiplication: When z  is positive, yzxzyx  , 

                           When z  is negative, yzxzyx   

 

 Intervals  

Let a and b be two real numbers such that a b, then the intervals which are subsets of R with 

end points a and b are denoted and defined as below: 

i)  bxaxba  :),(  open interval from a 

to b. 

ii)  bxaxba  :],[  closed interval from a 

to b. 

iii)  bxaxba  :],(  open-closed interval 

from a to b. 

iv)  bxaxba  :),[  closed-open interval 

from a to b. 

Exercise 2.1 

1. Simplify as much as possible: 

a) 6)128(34    c) )(
3
2

4
1

6
5   

b) )]84(23[2       d) 
8
7

4
3

2
1

8
7

4
3

2
1




 

2. Which of 

the following statements are true and which of them are false? 

a) The sum of any two rational numbers is rational. 

b) The sum of any two irrational numbers is irrational. 

c) The product of any two rational numbers is rational. 

d) The product of any two irrational numbers is irrational. 

3. Find the value of each of the following, if undefined, say so. 

a) 00     c) 0
0    e) 8

0  

b) 0
8     d) 

08    f) 
80  

4. Show that division by 0 is meaningless as follows: Suppose 0a . If ba 
0 , then 

00  ba , which is a contradiction. Now find a reason why 0
0  is also meaningless. 
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5. Prove each if 0a , 0b  

a) 22 baba    b) ba
ba 11   

6. Which of the following are always correct if ba  ? 

a) 44  ba  b) ba    c) aba 2
  d) baa 22   

2.2  Equations and Inequalities: Linear and Quadratic 

 

At the end of this section, students will be able to: 

 solve linear equations and inequalities 

 solve quadratic equations and inequalities identify the notions of the common sets of 

numbers 

 

 Linear Equations and inequalities 

An equation is a symbolic statement of equality. That is, rather than writing “twice a number is 

four less than the number,” we write 42  xx . Our goal is to find the solution to a given 

equation. By solution we mean the value or values of the variable that make the algebraic 

statement true. 

 

Definition 2.1: (Linear Equation) 

 

A linear equation in one variable is an equation that can be put in the form 0 bax , where a  

and b  are constants, and 0a . 

 

Equations that have the same solutions are called equivalent equations. For example, 3 1 5x    

and 3 6x  are equivalent equations because the solution set of both equations is {2}. Our goal 

here is to take an equation and with the help of a few properties, gradually, change the given 

equation into an equivalent equation of the form ax  , where x  is the variable for which we are 

solving. These properties are: 

 

1. The addition property 

If ba  , then cbca  . That is, adding the same quantity to both sides of an 

equation will produce an equivalent equation. 

 

2. The multiplication property 

If ba  , then bcac  . That is, multiplying both sides of an equation by the same 

nonzero quantity will produce an equivalent equation. 

 

Example 2.2: 

1. Solve for x  

a) )50(3010820 xxx     b) 3(2 1) 2(1 5 ) 6 11x x x      
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Solution:  

a) )50(3010820 xxx       Simplify the right hand side 

xxx 30150010820   

xx 201500820        Applying the addition property (add x20 to both sides) 

1500840 x  

Thus, 
14

25

840

1500
x . 

Remember to check by substituting 14
25  for x  in the original equation. 

 

b) 3(2 1) 2(1 5 ) 6 11x x x           (The given equation)     

6 3 2 10 6 11x x x          (Removing parentheses by distribution)         

6 10 6 2 11 3x x x                       (Collecting like terms:  „variables to the left and   

                                                               numbers to the right‟ )       

 10 10x                                           

     1x               (Dividing both sides by 10)   

             Therefore, the solution set (S.S) is {1}.    

2. Find the solution set of   
8 3 5

5( 2) 3( )
2 6

x
x x


       

Solution:   
5

6

8 3
5( 2) 3( )

2

x
x x


         (The given equation)   

This gives us: 

3 5

2 2
4 5 10 3x x x     

     
  
 

            

5 3

2 2
4 5 3 10x x x     

      
Using addition property       

                           
2 6x 

       
 

        Hence,   3x  .   That is, the solution set is {3}.  

 

3. A computer discount store held an end of summer sale on two types of computers. They 

collected Birr 41,800 on the sale of 58 computers. If one type sold for Birr 600 and the 

other type sold for Birr 850, how many of each type were sold? 

Solution: If we let x  to be the number of Birr 600 computers sold, then x58 = the number of 

computers that are sold for Birr 850 (since 58 were sold all together). 

Our equation involves the amount of money collected on the sale of each type of computer that 

is, the value of computers sold). Thus we have: 

  800,41)58(850600  xx , which yields 

   30x  
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Hence, there were 30 computers sold at Birr 600 and 28 computers sold at 850. 

Remark: The solution set of some equation can be the set of all rational numbers.  This is the 

case when the equation is satisfied by every rational number.  

Example 2.3:  Find the solution set of  5 2( 1) 4 3( 2)x x x      

Solution:     5 2( 1) 4 3( 2)x x x        (The given equation) 

                    5 2 2 4 3 6x x x            (Removing parentheses by distribution)  

                     3 6 3 6x x                          (Combining like terms) 

This is always true whatever the value of x is. In fact, subtracting 3x from both sides of the last 

equation we get 6=6 which is always true.   This means the given equation is satisfied if you take 

any number for x as you wish. Thus, S.S =  . 

Remark: There are also some equations which cannot be satisfied by any number. For example, 

the equation  x+10 = x  says „If you increase a number x by 10, the result is x itself (unchanged)‟. 

Obviously, there is no such a number.  The solution set of such equation is empty set.  If you try 

to solve such equation, you end up with a false statement (false equality). For example, an 

attempt to solve  x+10 = x leads to the following:  

                        10+x  x = x  x          (Subtracting  x  from both sides of the equation) 

                              10 = 0,  which is false.    

Hence, the solution set of x+10 = x  is  (empty set).      

Example 2.4:  Find the solution set of 6 3(1 ) 2(1 5 ) 7x x x       

Solution:    6 3(1 ) 2(1 5 ) 7x x x          (The given equation)     

                   6 3 3 2 10 7x x x            (Removing parentheses by distribution) 

                         9 3 2 3x x                     (Combining like terms)       

                        9 3 3 2 3 3x x x x            (Adding 3x to both sides) 

                                 9 = 2,   which is false.                      

This means the solution set of the given equation is empty,  .    

 

Example 2.5:  A man has a daughter and a son. The man is five times older than his daughter. 

Moreover, his age is twice of the sum of the ages of his daughter and son. His daughter is 3 years 

younger than his son. How old is the man and his children?  

 

Solution:  The unknowns in the problem are age of the man, age of his daughter, and age of his 

son.  So, let m = Age of the man; d = Age of the daughter; and s = Age of the son. Then, „The 

man is 5 times older than his daughter‟ means m=5d . Moreover, „Age of the man is twice the 
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sum of the ages of his daughter and son‟ means   m=2(d+s) . „His daughter is 3 years younger 

than his son‟ means d = s 3.  

 Now, from the last (3
rd

 ) equation you can get  s = d +3.  Substitute this in the 2
nd

 equation to get 

m=2(d +d+3) = 2(2d+3). Thais is, m=4d+6. Next substitute this in the 1
st
 equation to get  

 4d+6 = 5d  or  6 = 5d4d=d. Hence, d= 6. From this, s = d +3 = 6+3 = 9, and  m=5d =56= 30.   

  Therefore, the age of the man is 30, age of his daughter is 6 and age of his son is 9.  

 

Definition 2.2: (Linear Inequalities) 

 

A linear inequality is an inequality that can be put in the form 0bax , where a  and b  are 

constants with 0a . (The   symbol can be replaced with ,  or  ) 

 

To solve inequalities, we will need the following properties of inequalities. 

 

For cba ,, , if ba  , then 

1) cbca            2) ,bcac   when 0c          3) ,bcac   when 0c  

 

Thus, to produce an equivalent inequality, we may add (subtract) the same quantity to (from) 

both sides of an inequality, or multiply (divide) both sides by the same positive quantity. On the 

other hand, we must reverse the inequality symbol to produce an equivalent inequality if we 

multiply (divide) both sides by the same negative quantity. 

 

Example 2.6: 

1. Solve the linear inequality )5(2)20(85  xxx  . 

Solution:  )5(2)20(85  xxx   Simplify each side 

  10281605  xxx  

   1023160  xx   Now apply the inequality property 

   1705  x     Divide both sides by – 5  

        34x    Note that the inequality symbol is reversed 

Thus, the solution set is ]34,(}34:{  xx . 

 

Example 2.7:   Find the solution set of the inequality 3x 5(x+2)  0.  

Solution:   3x 5(x 2)  0        (The given inequality)  

                  3x 5x + 10  0        (Removing the parentheses by distribution)  

                      2x + 10  0         (Combining like terms)  

                      2x    10           (Subtracting 10 from both sides)  

                           x   10

2




         (Dividing both sides by 2 reverse the inequality)  

That is,   x  5.   Therefore, S.S = {x:  x  5}, the set of all real numbers less 5.  
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The solution of an inequality is sometimes required to be only in a given domain (set). If so, a 

solution set should contain only those solutions that belong to the specified domain.  

Example 2.8: Find the solution set of 4( 1) 13 ( 2)x x x       in the set of natural numbers, ℕ.  

Solution:   4( 1) 13 ( 2)x x x       (The given inequality)     

                  4 4 13 2x x x           (Removing parentheses by distribution) 

                     3 4 11x x                (Combining like terms; i.e., 4 3x x x    and  13+2= 11)       

                     3 11 4x x                (Collecting like terms) 

                          2 7x                      (Next, division of both sides of this by 2 reverses the              

                                                                inequality) 

                             
7

2
x  ;      i.e.,  3.5x   

Thus, the solution of the given inequality in ℕ is {1, 2, 3}.   (Recall: ℕ = {1, 2, 3, … }) 

Some inequalities may have no solution in the specified domain as in the following example.    

Example 2.9:  Find the solution set of  7 6 3 2x x     in the set of whole numbers, W. 

Solution:     7 2 3 6x x           (The given inequality)     

                   7 3 6 2x x            (Collecting like terms) 

                          4 4x                

                         
4

4

x 4

4


        or  1x        

However, there is no negative whole number.  Therefore, the solution set of the given inequality 

in W is , empty set.      (Recall: W = {0, 1, 2, 3, … }  ) 

Example 2.10:   Find the solution set of the inequality 
1 1 3 3

6 2 2 2
( 3)   ( 1)x x x       in ℚ.

 
Solution: The inequality involves fractional numbers. Thus, like for the case of linear equations, 

clear the denominators by multiplying both sides of the inequality by the LCM of the 

denominators.  The denominators in this equation are 6 and 2; and their LCM is 6.  Thus, 

multiply every term in both sides of the given inequality by 6. That is,    

         
1 1 3 3

6  
6 2 2 2

( 3) 6 6  6 ( 1)x x x
       

      
       

             (The inequality is not reversed because 60)     

                3 3 9  9( 1)x x x                         (Simplifying/clear denominators)     

                       
   4 6  9 9x x                          

                        4 9   9 6x x                          (Collecting like terms)                   

                               5 15x                      (Next, division of both sides by 5)     

                                   
15

5
x 


   or  3x   .    

Therefore, S.S = { x ℚ |  x  3 }. 
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 Quadratic Equations and Inequalities 

A quadratic equation is a polynomial equation in which the highest degree of the variable is 2. 

We define the standard form of a quadratic a quadratic equation as 02  cBxAx , where 

0A . 

As with linear equations, the solutions of quadratic equations are values of the variable that make 

the equation a true statement. The solutions of 02  CBxAx  are also called the roots of the 

polynomial equation 02  CBxAx . 

 

In solving the equation 02  CBxAx , if the polynomial CBxAx 2
 can be factored, the 

we can use the zero product rule (which is stated below) to reduce the problem to that of solving 

two linear equations. For example, to solve the equation 062  xx , we van factor the left 

hand side to get 0)3)(2(  xx . Hence, we can conclude that 02 x  or 03x , which 

yields 2x  or 3x . 

 

The Zero-Product Rule: If 0ba , then 0a  or 0b  

 

Another method is to apply the Square Root Theorem. 

 

The Square Root Theorem: If dx 2
, then dx  . 

 

Example 2.11: Solve the following 

a) 6104 2  xx   b) 865 2 x    c) 6)2( 2 x  

Solution: a)  6104 2  xx    Put into standard form 

  06104 2  xx   Factor the left hand side 

  0)3)(12(2  xx   Hence we have  

  012 x  or 03x  Solving each linear equation, we get 

  2
1x  or 3x  

b) We note that there is no first-degree term, so our approach will be to apply the Square 

Root Theorem.  

865 2 x    Isolate 
2x  on the left-hand side before applying the    

                                                square root theorem 

145 2 x  

5
142 x    Applying the square root theorem we get 
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5
14x  

c) Since it is in the form of a squared quantity equal to a number, we will apply the 

Square Root Theorem to get 62 x . 

Part (c) of the above example illustrates that if we can construct a perfect square binomial from a 

quadratic equation (i.e., get the equation in the form ))( 2 dpx  , then we can apply the Square 

Root Theorem and solve for x  to get dpx  . 

The method of constructing a perfect square is called completing the square. It is based on the 

fact that in multiplying out the perfect square 2)( px   , with p  a constant, we get 

   222 2)( ppxxpx   

Notice the relationship between the constant term, 2p , and the coefficient of the middle term, 

p2 : The constant term is the square of half the coefficient of the middle term. 

 

Example 2.12: Solve by completing the square: 6482 2  xx . 

Solution:  6482 2  xx   Divide both sides by 2, the coefficient of 
2x  

  3242  xx   Isolate the constant term on the right-hand side 

  142  xx    Take half the middle term coefficient, square it 

                   4)4(
2

2
1  , we add 4 to both sides of the    

                                                                          equation 

  41442  xx   Factor the left hand side  

  5)2( 2 x    Solve for x  using the Square Root Theorem 

  52 x . 

 

Unlike the factoring method, all quadratic equations can be solved by completing the square. If 

we were to complete the square for the general quadratic equation 0,02  ACBxAx  , we 

would arrive at the formula given below. 

The Quadratic Formula: If 02  CBxAx  and 0A , then 
A

ACBB
x

2

42 
  

 

Example 2.13: Solve the following using the quadratic formula: xx 682  . 

Solution: Writing the equation in standard form we get, 0862  xx . By the quadratic 

formula we have: 

 173
2

1726

2

686

)1(2

)8)(1(466 2










x  

Thus, the solution set is  173,173  . 
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A quadratic inequality is in standard form if it is in the form 02  CBxAx . (We can 

replace   with ,,  or  .) 

 

If we keep in mind that 0u  means u  is positive, then solving an inequality such as 

0352 2  xx  means we are interested in finding the values of x  that will make 
22x + x5 3  

positive. Or, since )3)(12(352 2  xxxx , we are looking for values of x  that make 

)3)(12(  xx   positive. For )3)(12(  xx  to be positive, the factors must be either both 

positive or both negative. To determine when this happens, we first find the values of x   for 

which )3)(12(  xx  is equal to 0; we call these the cut points of )3)(12(  xx . The cut points 

are 2
1  and 3 . 

 

Thus, our approach in solving quadratic inequalities will be primarily algebraic. After putting the 

inequality in standard form, we will determine the sign of each factor of the expression for 

various values of x . Then, we determine the solution by examining the sign of the product. This 

process is called a sign analysis. 

 

Returning to the problem 0352 2  xx , we draw a number line and examine the sign of each 

factor as x  takes on various values on the number line, especially around the cut points. 

 

Sign of 3x       + +  +  +  +  +   +  +  +  +  +  +  + 

Sign of 12 x        +  +  +  +  +  +  + 

                             

                 6543210123456            

 

The above figure illustrates that the factor 3x  is negative when 3x  and positive when 

3x . It is also shown that 12 x  is negative when 2
1x  and positive when 2

1x . Thus the 

product of the two factors is positive when 3x  and 2
1x . Therefore, the solution set is 

),()3,(
2
1  . 

 

Remark: 1. The cut points of the inequalities will break up the number line into intervals. 

2. The sign of the product does not change within an interval, i.e., if the expression is 

positive (or negative) for one value within the interval, it is positive (or negative) for all 

values within the interval. 

Example 2.14: Solve the quadratic inequality 0222  xx . 
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Solution: Since we cannot factor 222  xx , we use the quadratic formula to find that its roots 

are 31 . This gives the cut points for the polynomial 222  xx . We use the sign analysis 

(see the figure below) with the test points given. Note: 7.031&7.231  .  

Sign of 222  xx              +             0            –              0                 + 

         10x         31     1x        31     100x  

Substituting the test values – 10, 1, and 100 for x  in the expression 222  xx , we find that 

222  xx  is negative only when x  is in the interval )31,31(  . 

 

Exercise 2.2 

1. Solve the linear equations 

a) )1(2)4(32  xx    d) 
3

5
4

3

2






 x

x

x
 

b) )3(5)]2(32[3 xxx    e) 
3

112

3

6
2 


 xxxx

 

c) 5)32(
3
2

4
3  xx  

2. Solve the linear inequalities 

a) )13(24
3
2  xxx  b) )(325

5
1 xxx  c) 

4

3

3

25 


 xx
 

3. A truck carries a load of 50 boxes; some are 20 kg boxes and the rest are 25 kg boxes. If 

the total weight of all boxes is 1175 kg, how many of each type are there? 

4. The product of two numbers is 5. If their sum 2
9 , find the numbers. 

5. Solve 

a) 1572 2  xx   c) 0422  xx   e) 0563 2  xx  

b) 
3

1
3




x
x   d) 4

2

3

5

1





 xx
 

6. Solve the quadratic inequalities 

a) 02422  xx   d) 022 2  xx  

b) 2452  xx   e) 162 x  

c) 0332  xx  

7. A student was given the inequality: 4
2

3


x
. The first step the student took in solving 

this inequality was to transform it into )2(43  x . Explain what the student did wrong. 
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2.3. Review of relations and functions  

 

After completing this section, the student should be able to: 

 define Cartesian product of two sets 

 understand the notion of relation and function 

 know the difference between relation and function 

 determine the domain and range of relations and functions  

 find the inverse of a relation 

The student is familiar with the phrase ordered pair. In the ordered pair )4,2(),3,2(   and ),( ba ; 

2,2   and a  are the first coordinates while 4,3  and b  are the second coordinates.  

 

 Cartesian Product 

Given sets }4,3{A  and }9,5,4{B . Then, the set )}9,4(),5,4(),4,4(),9,3(),5,3(),4,3{(  is the 

Cartesian product of A  and B ,  and  it is denoted  by BA . 

 

Definition 2.3: Suppose A  and B  are sets. The Cartesian product of A  and B , denoted by 

BA , is the set which contains every ordered pair whose first coordinate is an element of A  

and second coordinate is an element of B , i.e. 

                    AabaBA  :),{(  and }Bb . 

 

Example 2.15: For }4,2{A  and }3,1{A , we have  

a) )}3,4(),1,4(),3,2(),1,2{( BA , and  

b) )}4,3(),2,3(),4,1(),2,1{(  AB . 

From this example, we can see that BA  and AB  are not equal. Recall that two sets are equal 

if one is a subset of the other and vice versa. To check equality of Cartesian products we need to 

define equality of ordered pairs.  

 

Definition 2.4: (Equality of ordered Pairs) 

Two ordered pairs ),( ba   and ),( dc  are equal if and only if ca   and db  . 

 

Example 2.16: Let }3,2,1{A  and },,{ cbaB  . Then,  

 )},3(),,3(),,3(),,2(),,2(),,2(),,1(),,1(),,1{( cbacbacbaBA  . 

 

Definition 2.5: (Relation) 

If A  and B  are sets, any subset of BA  is called a relation from  A into  B.     

 



54 

 

Suppose  R is a relation from a set A to a set  B. Then,  R A×B  and hence for each 

BAba ),( , we have either Rba ),(  or Rba ),( . If Rba ),( , we say “a is R-related (or 

simply related) to b”,  and  write aRb . If Rba ),( , we say that “a is not related to b”. 

In particular if R is a relation from a set A to itself, then we say that R is a relation on A. 

 

Example 2.17: 

1. Let }7,5,3,1{A  and }8,6{B . Let R  be the relation “less than” from A  to B . Then, 

)}8,7(),8,5(),6,5(),8,3(),6,3((),8,1(),6,1{(R . 

2. Let }5,4,3,2,1{A  and },,{ cbaB  . 

a) The following are relations from A  into B ; 

i) )},1{(1 aR   

ii) )},5(),,4(),,3(),,2{(2 acbbR   

iii) )},3(),,2((),,1{(3 cbaR   

b) The following are relations from B  to A ; 

i) )}1,(),3,{(4 baR   

ii) )}3,(),2,(),4,(),2,{(5 bacbR   

iii) )}5,{(6 bR   

Definition 2.6: Let R  be a relation from A  into B . Then,  

a) the domain of R , denoted by )(RDom ,  is the set of first coordinates of the elements of 

R , i.e 

}),(:{)( RbaAaRDom   

b) the range of R , denoted by )(RRange , is the set of second coordinates of elements of R , 

i.e 

}),(:{)( RbaBbRRange   

 

Remark: If R  is a relation form the set A  to the set B , then the set B  is called the codomain of 

the relation R . The range of relation is always a subset of the codomain. 

 

Example 2.18: 

1. The set )}10,6(),8,5(),7,4{(R  is a relation from the set }6,5,4,3,2,1{A  to the set 

]10,9,8,7,6{B . The domain of R  is }6,5,4{ , the range of R  is }10,8,7{  and the 

codomain of R  is }10,9,8,7,6{ . 

2. The set of ordered pairs )}3,5(),7,5(),3,6(),2,8{( R  is a relation between the sets 

}8,6,5{  and }7,3,2{  , where }7,6,5{  is the domain and }7,3,2{   is the range. 
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Remark:  

1. If Rba ),(  for a relation R , we say a  is related to (or paired with) b . Note that a  may 

also be paired with an element different from b . In any case, b  is called the image of a  

while a  is called the pre-image of b . 

2. If the domain and/or range of a relation is infinite, we cannot list each element 

assignment, so instead we use set builder notation to describe the relation. The situation 

we will encounter most frequently is that of a relation defined by an equation or formula. 

For example, 

},,32:),{( IRyxxyyxR   

is a relation for which the range value is 3 less than twice the domain value. Hence, 

)2,5.0(),3,0(  and )7,2(   are examples of ordered pairs that are of the assignment.  

 

Example 2.19: 

1. Let }6,4,3,2,1{A                                                                                                                   

Let R  be the relation on A  defined by aAbabaR ,,:),{(  is a factor of }b . Find the 

domain and range of R . 

Solution: We have 

 )}6,6(),4,4(),6,3(),3,3(),6,2(),4,2(),2,2(),6,1(),4,1(),3,1(),2,1(),1,1{(R . 

Then, }6,4,3,2,1{)( RDom  and }6,4,3,2,1{)( RRange . 

 

2. Let }5,4,3,2,1{A  and }67,,3,2,1{ B . 

Let xBAyxR :),{(  is cube root of y  . Find a) R       b) )(RDom  c) )(RRange  

 

Solution: We have 3333,3
1255,644,273,82,11    and 27,8,1  and 64 are in B  

whereas 125 is not in B . Thus, )}64,4(),27,3(),8,2(),1,1{(R , }4,3,2,1{)( RDom  and 

}64,27,8,1{R . 

 

Remark:  

1. A relation R  on a set A  is called  

i) a universal relation if AAR   

ii) identity relation if }:),{( AaaaR   

iii) void or empty relation if R  

2. If R is a relation from A  to B , then the inverse relation of R , denoted by 
1R , is a 

relation from B  to A  and is defined as: 

}),(:),{(1 RyxxyR  . 
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Observe that )()( 1 RRangeRDom  and )()( 1 RDomRRange . For instance, if 

)}2,10(),15,9(),4,1{(R  is a relation on a set }20,,3,2,1{ A , then )}10,2(),9,15(),1,4{(1 R  

 

Example 2.20: Let R  be a relation defined on IN  by }112,,:),{(  baINbabaR .  

Find  a) R   b) )(RDom   c) )(RRange   d) 
1R  

 

Solution: The smallest natural number is 1. 

 1b    911)1(2  aa  

 711)2(22  aab  

 511)3(23  aab  

 311)4(24  aab  

 111)5(25  aab  

 INaab  111)6(26  

Therefore, )}5,1(),4,3(),3,5(),2,7(),1,9{(R , }9,7,5,3,1{)( RDom , }5,4,3,2,1{)( RRange  and 

)}1,5(),3,4(),5,3(),7,2(),9,1{(1 R . 

 

 Functions 

Mathematically, it is important for us to distinguish among the relations that assign a unique 

range element to each domain element and those that do not. 

 

Definition 2.7: (Function) 

A function is a relation in which each element of the domain corresponds to exactly one 

element of the range. 

 

Example 2.21: Determine whether the following relations are functions. 

a) )}7,3(),5,3(),2,5{( R  b) {(2,4),(3,4),(6,-4)} 

Solution:  

a) Since the domain element 3 is assigned to two different values in the range, 5 and 7, it is 

not a function. 

b) Each element in the domain, }6,3,2{ , is assigned no more than one value in the range, 2 is 

assigned only 4, 3 is assigned only 4, and 6 is assigned only – 4. Therefore, it is a 

function. 

Remark: Map or mapping, transformation and correspondence are synonyms for the word 

function. If f  is a function and fyx ),( , we say x is mapped to y. 



57 

 

Definition 2.8: A relation f from A into B is called a function from A into B, denoted by  

                BAf :     or BA f  

if and only if 

(i) AfDom )(  

(ii) No element of A is mapped by f  to more than one element in B, i.e. if fyx ),(  

and fzx ),( , then zy  . 

 

Remark: 1. If to the element x of A  corresponds )( By   under the function f , then we write 

yxf )(  and y  is called the image of x under y  and x is called a pre-image of y  under f .       

      2. The symbol )(xf  is read as “ f  of x” but not “ f  times x”. 

3. In order to show that a relation f  from  A into B  is a function, we first show that the 

domain of f  is A and next we show that f  well defined or single-valued, i.e. if yx   in 

A, then )()( yfxf   in B for all Ayx , . 

Example 2.22: 

1. Let }4,3,2,1{A  and }15,11,8,6,1{B . Which of the following are functions from A  to 

B .  

a) f  defined by 8)4(,8)3(,6)2(,1)1(  ffff  

b) f  defined by 15)3(,6)2(,1)1(  fff  

c) f  defined by 6)4(,6)3(,6)2(,6)1(  ffff  

d) f  defined by 11)4(,8)3(,8)2(,6)2(,1)1(  fffff  

e) f  defined by 15)4(,11)3(,8)2(,1)1(  ffff  

Solution:  

a) f  is a function because to each element of A there corresponds exactly one element of     

B . 

b) f  is not a function because there is no element of B which correspond to 4(A). 

c) f  is a function because to each element of A there corresponds exactly one element         

    of B. In the given function, the images of all element of A are the same. 

d) f  is not a function because there are two elements of B  which are corresponding to 2.         

     In other words, the image of 2 is not unique. 

e) f  is a function because to each element of A  there corresponds exactly one element      

    of .B  

 

As with relations, we can describe a function with an equation. For example, y=2x+1 is a 

function, since each x will produce only one y . 
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2. Let }:),{( 2xyyxf  . Then, f  maps: 

 

1 to 1  -1 to 1 

2 to 4  -2 to 4 

3 to 9  -3 to 9 

 

More generally any real number x is mapped to its square. As the square of a number is unique, 

f  maps every real number to a unique number. Thus, f  is a function from   into  . 

We will find it useful to use the following vocabulary: The independent variable refers to the 

variable representing possible values in the domain, and the dependent variable refers to the 

variable representing possible values in the range. Thus, in our usual ordered pair notation 

),( yx , x is the independent variable and y  is the dependent variable. 

 

 Domain, Codomain and range of a function 

For the function BAf :  

(i) The set A  is called the domain of f  

(ii) The set B  is called the codomain of f  

(iii) The set }:)({ Axxf   of all image of elements of A  is called the range of f  

Example 2.23: 

1. Let }3,2,1{A  and }10,,3,2,1{ B . Let BAf :  be the correspondence which 

assigns to each element in A , its square. Thus, we have 9)3(,4)2(,1)1(  fff . 

Therefore, f  is a function and }3,2,1{)( fDom , }9,4,1{)( fRange  and codomain of 

f  is }10,,3,2,1{  . 

 

2. Let INBA  },9,7,6,4,2{ . Let x  and y  represent the elements in the sets A  and B , 

respectively. Let BAf :  be a function defined by Axxxf  ,1715)( . 

     The variable x  can take values 2, 4, 6, 7, 9. Thus, we have  

  152)9(,122)7(,107)6(,77)4(,4717)2(15)2(  fffff . 

 This implies that }152,122,107,77,47{)(},9,7,6,4,2{)(  fRangefDom  and codomain      

       of f is .IN  

3. Let f  be the subset of ZQ   defined by   0,,:,  qZqppf
q

p
. Is f  a function? 

Solution: First we note that QfDom )( . Then, f  satisfies condition (i) in the 

definition of a function. Now,   f2,
3
2

,   f4,
6
4

 and 6
4

3
2   but    

6
4

3
2 42 ff  . 

Thus f  is not well defined. Hence, f  is not a function from Q  to Z . 
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4. Let f  be the subset of ZZ   defined by },:),{( Znmnmmnf  . Is f  a function? 

Solution: First we show that f  satisfies condition (i) in the definition. Let x  be any 

element of Z . Then, 1 xx . Hence, fxxxx  )1,1()1,( . This implies 

that )( fDomx . Thus, )( fDomZ  . However, ZfDom )(  and so ZfDom )( . 

Now, Z4  and 22144  . Thus, )14,14(   and )22,22(   are in f . Hence we 

find that 2214   and )22(45)14(  ff . This implies that f  is not well 

defined, i.e, f  does not satisfy condition (ii). Hence, f  is not a function from Z  to Z . 

 

5. Determine whether the following equations determine y  as a function of x , if so, find 

the domain. 

a) 53  xy  b) 
53

2




x

x
y   c) xy 2

 

 

Solution: 

a) To determine whether 53  xy  gives y  as a function of x , we need to know 

whether each x-value uniquely determines a y-value. Looking at the equation 

53  xy , we can see that once x  is chosen we multiply it by – 3 and then add 5. 

Thus, for each x there is a unique y . Therefore, 53  xy  is a function. 

b) Looking at the equation 
53

2




x

x
y  carefully, we can see that each x-value  uniquely 

determines a y-value (one x-value can not produce two different y-values). Therefore, 

53

2




x

x
y  is a function. 

 

As for its domain, we ask ourselves. Are there any values of x  that must be 

excluded? Since 
53

2




x

x
y  is a fractional expression, we must exclude any value of 

x  that makes the denominator equal to zero. We must have  

  
3

5
053  xx  

Therefore, the domain consists of all real numbers except for 
3

5
. Thus, 

)( fDom }
3

5
:{ xx . 

c) For the equation xy 2
, if we choose 9x  we get 92 y , which gives 3y . In 

other words, there are two y values associated with 9x . Therefore, xy 2
 is not 

a function. 
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6. Find the domain of the function 
23 xxy  . 

 

Solution: Since y  is defined and real when the expression under the radical is non-

negative, we need x  to satisfy the inequality  

 0)3(03 2  xxxx  

This is a quadratic inequality, which can be solved by analyzing signs: 

 

Sign of 
23 xx    

30

 


 

Since we want )3(3 2 xxxx   to be non-negative, the sign analysis shows us that the 

domain is }30:{  xx  or ]3,0[ . 

 

 

Exercise 2.3 

1. Let R be a relation on the set }6,5,4,3,2,1{A  defined by }9:),{(  babaR . 

i) List the elements of R  

ii) Is 
1 RR  

2. Let R be a relation on the set }7,6,5,4,3,2,1{A  defined by 4:),{( baR   divides ba  . 

i) List the elements of R  

ii) Find  )(&)( RRangeRDom  

iii) Find the elements of 
1R  

iv) Find )(&)( 11  RRangeRDom  

 

3. Let }6,5,4,3,2,1{A . Define a relation on A  by }1:),{(  xyyxR . Write down the 

domain, codomain and range of R . Find 
1R . 

4. Find the domain and range of the relation }2:),{(  yxyx . 

5. Let }3,2,1{A  and }8,6,5,3{B . Which of the following are functions from A  to B ? 

a) )}3,3(),3,2(),3,1{(f   c) )}5,2(),8,1{(f  

b) )}6,1(),5,2(),3,1{(f   d) )}3,3(),5,2(),6,1{(f  

6. Determine the domain and range of the given relation. Is the relation a function? 

a) )}0,2(),6,4(),5,2(),3,4{(    d) )},(),1,1(),,{(
8
1

3
1

6
1

2
1   

b) )}5,1(),,6(),2,8{(
2
3     e) )}5,5(),5,4(),5,3(),5,2(),5,1(),5,0{(  

c) )}3,3(),1,1(),0,0(),1,1(),3,3{(   f) {(5,0),(5,1),(5,2),(5,3),(5,4),(5,5)} 

 



61 

 

7. Find the domain and range of the following functions. 

a) 
2281)( xxxf    c) 86)( 2  xxxf  

b) 
65

1
)(

2 


xx
xf   d) 










52,1

21,43
)(

xx

xx
xf  

8. Given 









1,1

1,53
)(

2 xx

xx
xf . 

Find  a) )3(f  b) )1(f   c) )6(f  
 

 

2.4  Real Valued functions and their properties 

 

After completing this section, the student should be able to: 

 

 perform the four fundamental operations on polynomials 

 compose functions to get a new function 

 determine the domain of the sum, difference, product and quotient of two functions 

 define equality of two functions 

 

Let f  be a function from set A  to set B . If B  is a subset of real number system , then f  is 

called a real valued function, and in particular if A  is also a subset of  , then BAf :  is 

called a real function. 

 

Example 2.24: 1. The function :f  defined by 73)( 2  xxxf , x  is a real 

function. 

2. The function :f  defined as xxf )(  is also a real valued function. 

 

 Operations on functions 

Functions are not numbers. But just as two numbers a  and b  can be added to produce a new 

number ba  , so two functions f  and g  can be added to produce a new function gf  . This 

is just one of  the several operations on functions that we will describe in this section. 

Consider functions f  and g  with formulas  
2

3
)(




x
xf , xxg )( . We can make a new 

function gf   by having it assign to x the value x
x




2

3
, that is, 

 x
x

xgxfxgf 



2

3
)()())((  . 
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Definition 2.9: Sum, Difference, Product and Quotient of two functions 

 

Let )(xf  and )(xg  be two functions. We define the following four functions: 

 

1. )()())(( xgxfxgf                 The sum of the two functions 

2. )()())(( xgxfxgf                 The difference of the two functions 

3. )()())(( xgxfxgf                      The product of the two functions 

4. 
)(

)(
)(

xg

xf
x

g

f









                              The quotient of the two functions (provided )0)( xg  

 

Since an x value must be an inout into both f  and g , the domain of ))(( xgf   is the set of all 

x  common to the domain of f  and g . This is usually written as 

)()()( gDomfDomgfDom  . Similar statements hold for the domains of the difference and 

product of two functions. In the case of the quotient, we must impose the additional restriction 

that all elements in the domain of g   for which 0)( xg  are excluded. 

 

Example 2.25:  

1. Let 23)( 2  xxf  and 45)(  xxg . Find each of the following and its domain 

a) ))(( xgf   b) ))(( xgf    c) ))(.( xgf   d) )(x
g

f








 

Solution:  

a)  )45()23()()())(( 2 xxxgxfxgf 253 2  xx  

b)  )45()23()()())(( 2 xxxgxfxgf 653 2  xx  

c)  )45)(23())(( 2 xxxgf 8101215 23  xxx  

d) 








)(

)(
)(

xg

xf
x

g

f

45

23 2





x

x
 

We have  

  )()()()()( gDomfDomfgDomgfDomgfDom  

 

















4

5
\}0)(:{\)()( xgxgDomfDom

g

f
Dom   

 

2. Let 4 1)(  xxf  and 
29)( xxg  , with respective domains ),1[   and ]3,3[ . 

Find formulas for 
g

f
gfgfgf ,,,   and 3f  and give their domains. 
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Solution: 

Formula                                                            Domain 

24 91)()())(( xxxgxfxgf                                  ]3,1[  

24 91)()())(( xxxgxfxgf                                   ]3,1[  

24 91)()())(( xxxgxfxgf                                        ]3,1[  

   
2

4

9

1

)(

)(
)(

x

x

xg

xf
x

g

f













                                                           )3,1[  

     4

3

11)()(
3

433  xxxfxf                                               ),1[   

 

There is yet another way of producing a new function from two given functions. 

 

Definition 2.10: (Composition of functions) 

 

Given two functions )(xf  and )(xg , the composition of the two functions is denoted by gf   

and is defined by: 

                        )]([))(( xgfxgf  . 

))(( xgf   is read as f"  composed with g  of "x . The domain of gf   consists of those x s 

in the domain of g  whose range values are in the domain of f , i.e. those x s for which )(xg  

is in the domain of f . 

 

 

Example 2.26:  

1. Suppose )},3(),,2{( qzf   and )}5,(),3,(),2,{( cbag  . The function 

))(())(( xgfxgf   is found by taking elements in the domain of g  and evaluating as 

follows: qfbgfbgfzfagfagf  )3())(())((,)2())(())((   

 

If we attempt to find ))(( cgf  we get )5(f , but 5 is not in the domain of )(xf  and so we cannot 

find ))(( cgf  . Hence, )},(),,{( qbzagf  . The figure below illustrates this situation. 

                   

g 

a 

b 

c 

   2 

Domain 

of   f 

5 

   3 z 

q 

f 

Domain of 

g 

Range of  

g 
Range of  f 
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2. Given 235)( 2  xxxf  and 34)(  xxg , find  

a) )2)(( gf   b) )2)(( fg    c) ))(( xgf     d) ))(( xfg   

Solution:  

a) ))2(()2)((  gfgf  …… First evaluate 53)2(4)2( g  

       )5( f  

       1422)5(3)5(5 2   

b) ))2(()2)(( fgfg  …….First evaluate 162)2(3)2(5)2( 2 f  

                 )16(g  

      673)16(4   

c) ))(())(( xgfxgf  ……. But 34)(  xxg  

     )34(  xf  

     2)34(3)34(5 2  xx  

     3810880 2  xx   

d) ))(())(( xfgxfg  ……. But 235)( 2  xxxf  

     )235( 2  xxg  

     3)235(4 2  xx  

     111220 2  xx   

3. Given 
1

)(



x

x
xf  and 

1

2
)(




x
xg , find 

a) ))(( xgf   and its domain  b) ))(( xfg   and its domain 

Solution: a) 
1

2

1
1

2
1

2

1

2
))((



















x

x

x

x
fxgf  . Thus, }1:{)(  xxgfDom  . 

b) 22

1
1

2
))(())(( 




 x

x

x
xfgxfg  .  Since x  must first be an input into )(xf  

and so must be in the domain of f , we see that }1:{)(  xxfgDom  . 

4. Let 
9

6
)(

2 


x

x
xf  and xxg 3)(  . Find )12)(( gf   and ))(( xfg   and its domain. 

Solution: We have 
3
4

27
36)6()36())12(()12)((  ffgfgf  . 

  
3

32

93

36

9)3(

36
)3())(())((

2 








x

x

x

x

x

x
xfxgfxgf  . 

The domain of gf   is ),3()3,0[  . 
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We now explore the meaning of equality of two functions. Let BAf :  and BAg :  be two 

functions. Then, f  and g  are subsets of BA . Suppose gf  . Let x  be any element of A . 

Then, gfxfx ))(,(  and thus gxfx ))(,( . Since g  is a function and 

)),(,( xfx gxgx ))(,( , we must have ).()( xgxf   Conversely, assume that )()( xfxg   for 

all Ax . Let fyx ),( . Then, )()( xgxfy  . Thus, gyx ),( , which implies that gf  . 

Similarly, we can show that fg  . It now follows that gf  . Thus two functions BAf :  

and BAg :  are equal if and only if )()( xgxf   for all Ax . In general we have the 

following definition. 

 

Definition 2.11: (Equality of functions) 

Two functions are said to be equal if and only if the following two conditions hold: 

i) The functions have the same domain; 

ii) Their functional values are equal at each element of the domain. 

 

Example 2.27:  

1. Let }0{:  ZZf  and }0{:  ZZg  be defined by }:),{( 2 Znnnf   and 

}:),{(
2

Znnng  . Now, for all Zn , )()(
22 ngnnnf  . Thus, gf  . 

2. Let }5{\,
5

25
)(

2





 x

x

x
xf , and  xxxg ,5)( . The function f  and g  are not 

equal because ).()( gDomfDom   

Exercise 2.4 

1. For xxxf  2)(  and 
3

2
)(




x
xg , find each value: 

a) )2)(( gf    c) )3(2g   e) )1)(( fg   

b) )1(








g

f
   d) )1)(( gf    f) )3)(( gg   

2. If 2)( 3  xxf  and 
1

2
)(




x
xg , find a formula for each of the following and state its 

domain. 

a) ))(( xgf    c) )(x
f

g








 

b) ))(( xgf     d) ))(( xfg   

3. Let 2)( xxf   and xxg )( . 

a) Find ))(( xgf   and its domain. 

b) Find ))(( xfg   and its domain 
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c) Are ))(( xgf   and ))(( xfg   the same functions? Explain. 

4. Let 35)(  xxf . Find )(xg  so that 72))((  xxgf  . 

5. Let .12)(  xxf  Find )(xg  so that 13))((  xxgf  . 

6. If f  is a real function defined by 
1

1
)(






x

x
xf . Show that 

3)(

1)(3
)2(






xf

xf
xf . 

7. Find two functions f  and g  so that the given function ))(()( xgfxh  , where  

a) 3)3()(  xxh   c) 6
1

)( 
x

xh  

b) 35)(  xxh   d) 
6

1
)(




x
xh  

8. Let 
x

xgxxf
1

)(,34)(   and xxxh  2)( . Find 

a) )75( xf    c) )))3((( hgf    e) )( axf   

b) 7)(5 xf    d) )3()2()1( hgf    f) axf )(  

 

2.5  Types of functions 

 

After completing this section, the student should be able to: 

 

 define one to oneness and ontoness of a function 

 check invertibility of a function 

 find the inverse of an invertible function 

In this section we shall study some important types of functions. 

 

 One to One functions 

Definition 2.12: A function BAf :  is called one to one, often written 1 – 1, if and only 

if  for all Axx 21, , )()( 21 xfxf   implies 21 xx  . In words, no two elements of A  are 

mapped to one element of B . 

 

Example 2.28: 

1. If we consider the sets }6,,3,2,1{ A  and },8,,,,,7{ edcbaB   and if 

),7,1{(f ),,2( a ),3( b , )}8,6(),,5(),,4( cb  and )},6(),8,5(),,4(),,3(),,2(),7,1{( dcbag  , 

then both f  and g  are functions from A  into B . Observe that f  is not a 1 – 1 function 

because )4()3( ff   but 43 . However, g  is a 1 – 1 function. 

 

2. Let }4,3,2,1{A  and }8,7,4,1{B . Consider the functions  
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i) BAf :  defined as 8)4(,4)3(,4)2(,1)1(  ffff  

ii) BAg :  defined as 8)4(,1)3(,7)2(,4)1(  ffff  

Then, f  is not 1 – 1, but g  is a 1 – 1 function. 

 

 Onto functions 

Definition 2.13: Let f  be a function from a set A  into a set B . Then f  is called an onto 

function(or f maps onto )B  if every element of B  is image of some element in A , i.e, 

.)( BfRange   

 

Example 2.29:  

1. Let }3,2,1{A and }5,4,1{B . The function BAf :  defined as 1)1( f , 5)2( f , 

1)3( f  is not onto because there is no element in A , whose image under f  is  4. The 

function BAg :  given by )}1,3(),5,2(),4,1{(g  is onto because each element of B  is 

the image of at least one element of A  . 

 

Note that if A  is a non-empty set, the function AAiA :  defined by xxiA )(  for all 

Ax  is a 1 – 1 function from A  onto A . Ai  is called the identity map on A . 

 

2. Consider the relation f  from Z  into Z  defined by 2)( nnf   for all Zn . Now, 

domain of f  is Z . Also, if nn  , then 22 )(nn  , i.e. )()( nfnf  . Hence, f  is well 

defined and a function. However, )1(1)1(  ff  and 11  , which implies that f  is 

not 1 – 1. For all Zn , )(nf  is a non-negative integer. This shows that a negative 

integer has no preimage. Hence, f  is not onto. Note that f  is onto },9,4,1,0{  . 

3. Consider the relation f  from Z  into Z  defined by nnf 2)(   for all Zn . As in the 

previous example, we can show that f  is a function. Let Znn ,  and suppose that 

)()( nfnf  . Then nn  22  and thus nn  . Hence, f  is 1 – 1. Since for all Zn , 

)(nf  is an even integer; we see that an odd integer has no preimage. Therefore, f  is not 

onto. 

 

 1 – 1 Correspondence 

 

Definition 2.14: A function BAf :  is said to be a 1 – 1 correspondence if f  is both 1 – 1 

and onto. 
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Example 2.30: 

1. Let }5,4,3,2,1,0{A  and }25,20,15,10,5,0{B . Suppose BAf :  given by 

xxf 5)(   for all Ax . One can easily see that every element of B  has a preimage in 

A  and hence f  is onto. Moreover, if )()( yfxf  , then yx 55  , i.e. yx  . Hence, f  

is 1 – 1. Therefore, f  is a 1 – 1 correspondence between A  and B . 

2. Let A  be a finite set. If AAf :  is onto, then it is one to one. 

Solution: Let },,,{ 21 naaaA  . Then )}(,),(),({)( 21 nafafaffRange  . Since f  is onto 

we have AfRange )( .Thus, )}(,),(),({ 21 nafafafA  , which implies that )( 1af , )( 2af , 

 , )( naf  are all distinct. Hence, ji aa   implies )()( ji afaf   for all nji  ,1 . Therefore, 

f  is 1 – 1. 

 

 Inverse of a function 

Since a function is a relation , the inverse of a function f  is denoted by 1f  and is defined by:  

  }),(:),{(1 fyxxyf   

For instance, if )}7,1(),6,3(),4,2{(f , then )}1,7(),3,6(),2,4{(1 f . Note that the inverse of a 

function is not always a function. To see this consider the function ),6,3(),4,2{(f )}4,5( . 

Then, )}5,4(),3,6(),2,4{(1 f , which is not a function.  

As we have seen above not all functions have an inverse, so it is important to determine whether 

or not a function has an inverse before we try to find the inverse. If the function does not have an 

inverse, then we need to realize that it does not have an inverse so that we do not waste our time 

trying to find something that does not exist.  

A one to one function is special because only one to one functions have inverse. If a function is 

one to one, to find the inverse we will follow the steps below:  

1. Interchange x  and y  in the equation )(xfy   

2. Solving the resulting equation for y , we will obtaining the inverse function. 

Note that the domain of the inverse function is the range of the original function and the range of 

the inverse function is the domain of the original function. 

 

Example 2.31:  

1. Given 
3)( xxfy  . Find 1f  and its domain. 

Solution: We begin by interchanging x  and y , and we solve for y . 

3xy   Interchange x  and y  

3yx   Take the cube root of both sides 
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yx 3  This is the inverse of the function 

Thus, 31 )( xxf  . The domain of 1f  is the set of all real numbers. 

2. Let 
2

)(



x

x
xfy . Find )(1 xf  . 

Solution: Again we begin by interchanging x  and y , and then we solve for y . 

 
2


x

x
y   Interchange x  and y  

 
2


y

y
x   Solving for y  

 
x

x
yxyxyxxyyyx




1

2
)1(22)2(  

Thus, 
x

x
xf




1

2
)(1

. 

 

Remark: Even though, in general, we use an exponent of  1  to indicate a reciprocal, inverse 

function notation is an exception to this rule. Please be aware that )(1 xf   is not the reciprocal of 

f . That is,  

  
)(

1
)(1

xf
xf 

 

If we want to write the reciprocal of the function )(xf  by using a negative exponent, we 

must write 

    1
)(

)(

1 
 xf

xf
. 

Exercise 2.5 

1. Consider the function }:),{( 2 Sxxxf   from }3,2,1,0,1,2,3{ S  into Z . Is f  one 

to one? Is it onto? 

 

2. Let }3,2,1{A . List all one to one functions from A  onto A . 

 

3. Let BAf : . Let f  be the inverse relation, i.e. })(:),{( yxfABxyf  . 

a) Show by an example that f  need not be a function. 

b) Show that f  is a function from )( fRange  into A  if and only if f  is 1 – 1. 

c) Show that f  is a function from B  into A  if and only if f  is 1 – 1 and onto. 

d) Show that if f  is a function from B  into A , then   ff 1 . 
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4. Let }10:{  xxA  and }85:{  xxB . Show that BAf :  defined by 

xxf )58(5)(   is a 1 – 1 function from A  onto B . 

 

5. Which of the following functions are one to one? 

a) :f  defined by  xxf ,4)(  

b) :f  defined by  xxxf ,16)(  

c) :f  defined by  xxxf ,7)( 2  

d) :f  defined by  xxxf ,)( 3  

e)  }7{\:f  defined by }7{\,
7

12
)( 




 x

x

x
xf  

 

6. Which of the following functions are onto? 

a) :f  defined by  xxxf ,49115)(  

b) :f  defined by  xxxf ,)(  

c) :f  defined by  xxxf ,)( 2
 

d) :f  defined by  xxxf ,4)( 2  

7. Find )(1 xf   if 

a) 67)(  xxf   d) 
x

x
xf

3

4
)(


   g) 1)2()( 2  xxf  

b) 
4

92
)(




x
xf   e) 

x

x
xf

21

35
)(




   h)  

x

x
xf




1

2
)(  

c) 
x

xf
3

1)(    f) 3 1)(  xxf  

 

2.6 Polynomials, zeros of polynomials, rational functions and their graphs 

 

After completing this section, the student should be able to: 

 

 define polynomial and rational functions 

 apply the theorems on polynomials to find the zeros of polynomial functions 

 use the division algorithm to find quotient and remainder 

 apply theorems on polynomials to solve related problems 

 sketch and analyze the graphs of rational functions  
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The functions described in this section frequently occur as mathematical models of real-life 

situations. For instance, in business the demand function gives the price per item, p , in terms of 

the number of items sold, x . Suppose a company finds that the price p (in Birr) for its model 

GC-5 calculator is related to the number of calculators sold, x (in millions), and is given by the 

demand function .80 2xp   

The manufacturer‟s revenue is determined by multiplying the number of items sold ( x ) by the 

price per item ( p ). Thus, the revenue function is  

 32 80)80( xxxxxpR   

These demand and revenue functions are examples of polynomial functions.  The major aim of 

this section is to better understand the significance of applied functions (such as this demand 

function). In order to do this, we need to analyze the domain, range, and behavior of such 

functions. 

 

 Polynomial functions 

 

Definition 2.15: A polynomial function is a function of the form       

                                 .0,01

1

1  

 n

n

n

n

n aaxaxaxay    

Each ia  is assumed to be a real number, and n  is a non-negative integer, na  is called the 

leading coefficient. Such a polynomial is said to be of degree n. 

 

Remark: 

1. The domain of a polynomial function is always the set of real numbers. 

2. (Types of polynomials) 

- A polynomial of degree 1 is called a linear function. 

- A polynomial of degree 2 is called quadratic function. 

- A polynomial of degree 3 is called a cubic function. 

        i.e .0,)( 301

2

2

3

3  aaxaxaxaxp  

 

Example 2.32: 12)( 2  xxp ,  xxxq 23)( 4  and 32)( xxf   are examples of 

polynomial functions. 

 

 Properties of polynomial functions 

 

1. The graph of a polynomial is a smooth unbroken curve. The word smooth means that the 

graph does not have any sharp corners as turning points. 
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2. If p  is a polynomial of degree n , then it has at most n  zeros. Thus, a quadratic 

polynomial has at most 2 zeros. 

3. The graph of a polynomial function of degree n  can have at most 1n turning points. 

Thus, the graph of a polynomial of degree 5 can have at most 4 turning points. 

4. The graph of a polynomial always exhibits the characteristic that as x  gets very large, 

y  gets very large. 

 

 Zeros of a polynomial 

 

The zeros of a polynomial function provide valuable information that can be helpful in sketching 

its graph. One can find the zeros by factorizing the polynomial. However, we have no general 

method for factorizing polynomials of degree greater than 2. In this subsection, we turn our 

attention to methods that will allow us to find zeros of higher degree polynomials. To do this, we 

first need to discuss about the division algorithm. 

 

Division Algorithm 

Let )(xp  and )(xd  be polynomials with 0)( xd , and with the degree of )(xd  less than or 

equal to the degree of )(xp . Then there are polynomials )(xq  and )(xR  such that  

  
remainderquotientdivisordividend

xRxqxdxp )()(.)()(  , where either 0)( xR  or the degree of )(xR  is less than degree 

of )(xd . 

 

Example 2.33: Divide 
xx

x

2

1
4

4




. 

 

Solution: Using long division we have  

18

)84(

04

)42(

02

)2(

42

10002

2

2

23

23

34

2

2342

















x

xx

xx

xx

xx

xx

xx

xxxxxx
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This long division means 


remainderquotientdivisordividend

xxxxxx )18()42(.)2(1 224  . 

 

With the aid of the division algorithm, we can derive two important theorems that will allow us 

to recognize the zeros of polynomials.  

If we apply the division algorithm where the divisor, )(xd , is linear (that is of the form rx  ), 

we get  

Rxqrxxp  )()()(     

 

Note that since the divisor is of the first degree, the remainder R , must be a constant. If we now 

substitute rx  , into this equation, we get     

RrqRrqrrrP  )(0)()()(  

Therefore, Rrp )( . 

 

The result we just proved is called the remainder theorem. 

 

The Remainder Theorem 

When a polynomial )(xp  of degree at least 1 is divided by rx  , then the remainder is )(rp . 

 

Example 2.34: The remainder when 13)( 23  xxxxP  is divided by 2x  is 9)2( p . 

As a consequence of the remainder theorem, if rx   is a factor of )(xp , then the remainder must 

be 0. Conversely, if the remainder is 0, then rx  , is a factor of )(xp . This is known as the 

Factor Theorem. 

 

The Factor Theorem 

rx   is a factor of )(xp  if and only if 0)( rp . 

 

The next theorem, called location theorem, allows us to verify that a zero exists somewhere 

within an interval of numbers, and can also be used to zoom in closer on a value. 

 

Location theorem 

Let f  be a polynomial function and a  and b  be real numbers such that ba  . If 

0)()( bfaf , then there is at least one zero of f  between a  and b . 

 

The Factor and Remainder theorems establish the intimate relationship between the factors of a 

polynomial )(xp  and its zeros. Recall that a polynomial of degree n can have at most n zeros. 
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Does every polynomial have a zero? Our answer depends on the number system in which we are 

working. If we restrict ourselves to the set of real number system, then we are already familiar 

with the fact that the polynomial 1)( 2  xxp  has no real zeros. However, this polynomial does 

have two zeros in the complex number system. (The zeros are i  and i ). Carl Friedrich Gauss 

(1777-1855), in his doctoral dissertation, proved that within the complex number system, every 

polynomial of degree 1  has at least one zero. This fact is usually referred to as the 

Fundamental theorem of Algebra. 

 

Fundamental Theorem of Algebra 

If )(xp  is a polynomial of degree 0n whose coefficients are complex numbers, then )(xp  

has at least one zero in the complex number system. 

 

Note that since all real numbers are complex numbers, a polynomial with real coefficients also 

satisfies the Fundamental theorem of Algebra. As an immediate consequence of the Fundamental 

theorem of Algebra, we have 

 

The linear Factorization Theorem 

If 
01

1

1)( axaxaxaxp n

n

n

n  

  , where 1n  and 0na , then  

)()()()( 21 nn rxrxrxaxp   , where the ir  are complex numbers (possible real and not 

necessarily distinct). 

 

From the linear factorization theorem, it follows that every polynomial of degree 1n  has 

exactly n  zeros in the complex number system, where a root of multiplicity k  counted k  times. 

 

Example 2.35: Express each of the polynomials in the form described by the Linear 

Factorization Theorem. List each zero and its multiplicity. 

a) xxxxp 166)( 23   

b) 8103)( 2  xxxq  

c) 234 1082)( xxxxf   

Solution: 

a) We may factorize )(xp  as follows: 

))2()(8(

)2)(8(

)166(166)( 223







xxx

xxx

xxxxxxxp

 

The zeros of )(xp  are 0, 8, and – 2 each of multiplicity one. 

b) We may factorize )(xq  as follows: 
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)2)(
3

4
(3

)2()43(8103)( 2





xx

xxxxxq

 

Thus, the zeros of )(xq  are 
3

4
 and 2, each of multiplicity one. 

c) We may factorize )(xf  as follows: 

))2())(2((2

)54(21082)(

2

22234

ixixx

xxxxxxxf




 

Thus, the zeros of f(x) are 0 with multiplicity two and  i2  and  i2  each with multiplicity 

one. 

 

Example 2.36:  

1.  Find a polynomial )(xp  with exactly the following zeros and multiplicity. 

 

zeros multiplicity 

1  3 

2 4 

5 2 

Are there any other polynomials that give the same roots and multiplicity? 

2. Find a polynomial f (x) having the zeros described in part (a) such that f(1) = 32. 

 

Solution: 

1. Based on the Factor Theorem, we may write the polynomial as: 

          243243 )5()2()1()5()2())1(()(  xxxxxxxp   

which gives the required roots and multiplicities. 

Any polynomial of the form )(xkp , where k  is a non-zero constant will give the same 

roots and multiplicities. 

2. Based on part (1), we know that 243 )5()2()1()(  xxxkxf . Since we want 

32)( xf , we have  

4
1

243

)16)(1)(8(32

)51()21()11()1(





kk

kf
 

Thus, 243

4
1 )5()2()1()(  xxxxf . 

 

Our experience in using the quadratic formula on quadratic equations with real coefficients has 

shown us that complex roots always appear in conjugate pairs. For example, the roots of  

0522  xx  are i21  and i21 . In fact, this property extends to all polynomial equations 

with real coefficients. 
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Conjugate Roots Theorem 

Let )(xp  be a polynomial with real coefficients. If complex number bia  (where a  and b  

are real numbers) is a zero of )(xp , then so is its conjugate bia  . 

Example 2.37: Let .202692)( 234  xxxxxr  Given that i31  is a zero, find the other 

zero of )(xr . 

 

Solution: According to the Conjugate Roots Theorem, if  i31  is a zero, then its conjugate, 

i31  must also be a zero. Therefore, )31( ix  and )31( ix   are both factors of 

)(xr , and so their product must be a factor of )(xr . That is, 

)]31([ ix   )]31([ ix 422  xx is a factor of )(xr . Dividing )(xr  by 422  xx , 

we obtain 

).1()5()42()54)(42()( 222  xxxxxxxxxr  

Thus, the zeros of )(xr  are i31 , i31 , 5  and 1. 

 

The theorems we have discussed so far are called existence theorems because they ensure the 

existence of zeros and linear factors of polynomials. These theorems do not tell us how to find 

the zeros or the linear factors. The Linear Factorization Theorem guarantees that we can factor a 

polynomial of degree at least one into linear factors, but it does not tell us how. 

We know from experience that if )(xp  happens to be a quadratic function, then we may find the 

zeros of CBxAxxp  2)(  by using the quadratic formula to obtain the zeros 

                                 .
2

42

A

ACBB
x


  

 

The rest of this subsection is devoted to developing some special methods for finding the zeros 

of a polynomial function. 

 

As we have seen, even though we have no general techniques for factorizing polynomials of 

degree greater than 2, if we happen to know a root, say r , we can use long division to divide 

)(xp  by rx   and obtain a quotient polynomial of lower degree. If we can get the quotient 

polynomial down to a quadratic, then we are able to determine all the roots. But how do we find 

a root to start the process? The following theorem can be most helpful. 

 

The Rational Root Theorem 

Suppose that  
01

1

1)( axaxaxaxf n

n

n

n  

  , where 0,1  nan  is an 
thn degree 
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polynomial with integer coefficients. If 
q

p
 is a rational root of 0)( xf , where p  and q  have 

no common factor other than 1 , then p  is a factor of 0a  and q  is a factor of na . 

 

To get a feeling as to why this theorem is true, suppose 
2

3
 is a root of                                   

001

2

2

3

3  axaxaxa .  

Then, 0
2

3

2

3

2

3
01

2

2

3

3 

























aaaa  which implies that  

                      0
2

3

4

9

8

27
0

123  a
aaa

                   multiplying both sides by 8 

                     

)2.(..................................................8121827

)1.(..................................................8121827

0123

0123

aaaa

aaaa





 

If we look at equation (1), the left hand side is divisible by 3, and therefore the right hand side 

must also be divisible by 3. Since 8 is not divisible by 3, 0a  must be divisible by 3. From 

equation (2), 3a  must be divisible by 2. 

 

Example 2.38: Find all the zeros of the function .122332)( 23  xxxxp   

Solution: According to the Rational Root Theorem, if 
q

p
 is a rational root of the given equation, 

then p  must be a factor of 12  and q  must be a factor of 2. Thus, we have  

possible values of p : 12,6,4,3,2,1   

possible values of q : 2,1   

possible rational roots 
q

p
: 12,6,4,

2

3
,3,2,

2

1
,1   

We may check these possible roots by substituting the value in )(xp . Now 30)1( p  and 

12)1( p . Since )1(p  is negative and )1(p  is positive, by intermediate value theorem, )(xp  

has a zero between 1  and 1. Since   0
2
1 P , then  

2
1x  is a factor of )(xp . Using long 

division, we obtain 

                 
)3)(4)((2

)2422)((122332)(

2
1

2

2
123





xxx

xxxxxxxp
 

Therefore, the zeros of p(x) are 2
1 , 4  and 3. 

 

 Rational Functions and their Graphs  
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A rational function is a function of the form 
( )

( )
( )

n x

d x
f x    where both n(x) and d(x) are 

polynomials and 0)( xd .   

Example 2.39: The functions 
5

3
)(




x
xf , 

4

1
)(

2 




x

x
xf  and 

xx

xxx
xf

5

12
)(

35




  are 

examples of rational function. 

Note that the domain of the rational function 
( )

( )
( )

n x

d x
f x   is }0)(:{ xdx  

 

Example 2.40: Find the domain and zeros of the function 
12

53
)(

2 




xx

x
xf . 

Solution: The values of x  for which 0122  xx  are excluded from the domain of .f Since 

)3)(4(122  xxxx , we have }4,3:{)(  xxfDom . To find the zeros of )(xf , we 

solve the equation 

                      0)(&0)(0
)(

)(
 xqxn

xd

xn
 

Therefore, to find the zeros of )(xf , we solve 053 x , giving 
3

5
x . Since 

3

5
 does not make 

the denominator zero, it is the only zero of )(xf . 

The following terms and notations are useful in our next discussion.   

Given a number a,  

 x  approaches  a from the right means x takes any value near and near to a  but x  a.  This is 

denoted by:     xa
+
     (read: „x approaches a from the right‟ ).  

      For instance, x 1
+ 

  means x can be 1.001,  1.0001, 1.00001,  1.000001,  etc.  

 x  approaches a from the left means x takes any value near and near to a  but x  a.   

      This is denoted by:     xa
–  

   (read: „x approaches a from the left‟ ).  

      For instance, x1
–   

means x can be 0.99,  0.999,  0.9999,   0.9999,  etc.  

 x  (read: „x approaches or tends to infinity‟) means the value of x  gets indefinitely larger 

and larger in magnitude (keep increasing without bound).  For instance, x can be 10
6
, 10

10
,  

10
12

, etc.   

 x –  (read: „x approaches or tends to negative infinity‟) means the value of x is negative 

and gets indefinitely larger and larger negative in magnitude (keep decreasing without bound).  

For instance, x can be –10
6
,  –10

10
,  –10

12
, etc.   
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The same meanings apply also for the values of a function f  if we wrote  f(x) or  f(x).    

The following figure illustrates these notion and notations.    

 

 

 

 

 

 

                     

 

 

              Fig. 2.1.  Graphical illustration of the idea of xa
+
,  f(x),  etc.     

We may also write  f(x)b  (read: „f(x) approaches b‟) to mean the function values, f(x), 

becomes arbitrarily closer and closer to  b (i.e., approximately b) but not exactly equal to b.  For 

instance, if 
1

( )
x

f x  , then f(x)0 as x;  i.e., 
1

x
 is approximately 0 when x is arbitrarily large.   

The following steps are usually used to sketch (or draw) the graph of a rational function f(x). 

1. Identify the domain and simplify it.  

2. Find the intercepts of the graph whenever possible.  Recall the following: 

 y–intercept is the point on y-axis where the graph of y = f(x) intersects with the y-axis. At 

this point x=0.  Thus,  y = f(0),  or  (0, f(0) ) is the y-intercept if  0Dom(f).   

 x–intercept is the point on x-axis where the graph of y = f(x) intersects with the x-axis. At 

this point y=0.  Thus, x=a or (a, 0) is x-intercept if f(a)=0.  

3. Determine the asymptotes of the graph.  Here, remember the following.  

 Vertical Asymptote:  The vertical line x=a is called a vertical asymptote(VA) of f(x) if  

i)  adom(f), i.e., f  is not defined at x=a;   and  

ii) f(x)  or f(x) –  when xa
+ 

or xa
–
 .  In this case, the graph of f is almost 

vertically rising upward (if f(x)) or sinking downward (if f(x)) along with the 

vertical line x=a when x approaches a either from the right or from the left.  

 

Example 2.41: Consider  
1

( )
( ) ,

n
x a

f x


   where a  0 and n is a positive integer.  

Obviously aDom(f).  Next, we investigate the trend of the values of f(x) near a. To do this, we 

consider two cases,  when n is even or odd:  

Suppose n is even:  In this case (x – a)
n 
 0  for all x\{a}; and since  (x – a)

n 
0 as xa

+ 
 or 

xa
–
 . Hence, 

1

( )
( )

n
x a

f x


   as xa
+
 or xa

–
 . Therefore, x=a is a VA of f(x).  

a 

y 

x 

y 

x   xa
–      

xa
+
 

 

x – 

y f(x), 

asxa

 

a 

y 

=f(x) 

   f(x) –, asxa
+
 

  f(x) –, 

asx– 

f(x), 

asx 
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Moreover, y=  1/a
n
  or (0, 1/a

n
 )  is its y-intercept since  f(0)=1/a

n
. However, it has no x-intercept 

since f(x) 0 for all x in its domain (See, Fig. 2.2 (A)).  

Suppose n is odd:  In this case (x – a)
n
 0  for all xa and 1/ (x – a)

n 
  when xa

+ 
  as in the 

above case. Thus, x=a is its VA. However, 1/(x–a)
n
 – when xa

–
 since (x – a)

n
< 0  for xa.  

Moreover, y= –1/a
n
  or (0, –1/a

n
 )  is its y-intercept since  f(0) = –1/a

n
.  However, it has no x-

intercept also in this case. (See, Fig. 2.2 (B)).  

Note that in both cases,  
1

( )
( ) 0

n
x a

f x


  as  xor x –.  

 

Remark:  Let 
( )

( )
( )

n x

d x
f x    be a rational function. Then, 

1.  if ( ) 0d a  and ( ) 0n a  ,  then x=a is a VA of f  .    

2.  if ( ) 0 ( )d a n a  , then x=a  may or may not be a VA of f . In this case, simplify f(x) and look 

for VA of the simplest form of f.   

 Horizontal Asymptote:  A horizontal line y=b is called horizontal asymptote (HA) of f(x) if the 

value of the function becomes closer and closer to b (i.e., f(x)b)as  x  or as  x –.    

In this case, the graph of f becomes almost a horizontal line along with (or near) the line y=b 

as x and as x–.    For instance, from the above example, the HA of 
1

( )
( )

n
x a

f x


 is  

y=0 (the x-axis) , for any positive integer n (See, Fig. 2.2).  

 

Remark:   A rational function 
( )

( )
( )

n x

d x
f x   has a HA only when degree(n(x)) degree(d(x)).    

In this case,  (i)   If degree(n(x)) degree(d(x)),  then  y = 0 (the x-axis) is the HA of f.  

                    (ii)  If  degree(n(x)) =degree(d(x))=n, i.e., 
1

1 1 0

1

1 1 0

( )
n n

n n

n n

n n

a x a x

b x b x

a x a
f x

b x b













  


  
,  

1

( )
n

x a
y




n-even 

Fig. 2.2 (A) 

a 

1/a
n
 

1/a
n
 

x=a 

VA 

1

( )
n

x a
y




n-odd 

x=a 

VA 

a x 

y 

x 

y 

Fig. 2.2 (B) 
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            then n

n

a

b
y   is the HA of f.  

 Oblique Asymptote: The oblique line y=ax+b,   a0, is called an oblique asymptote (OA) of f  

if the value of the function, f(x), becomes closer and closer to ax+b(i.e., f(x) becomes 

approximately ax+b) as either x  or x –.   In this case, the graph of f  becomes almost a 

straight line along with (or near) the oblique line y=ax+b as x and as x –.   

Note:  A rational function 
( )

( )
( )

n x

d x
f x   has an OA only when degree(n(x)) = degree(d(x)) + 1. In 

this case, using long division, if the quotient of   n(x) ÷d(x) is ax +b,   then  y=ax+b   is the OA of  

f.   

Example 2.42:  Sketch the graphs of  
2

2

2 3 2
(a)  ( )            (b)  ( )       

1 1

x x x
f x g x

x x

  
 

 
 

Solution: (a) Since x1=0  at x=1,   dom(f) = \{1}.       

 Intercepts:   y-intercept:   x=0 y=f (0) = –2.  Hence,  (0, – 2) is y-intercept. 

x-intercept:  y=0  x+2=0  x= –2. Hence,  (–2, 0) is x-intercept. 

 Asymptotes:   

 VA:   Since x1=0  atx=1 and x+20 at x=1,  x=1 is VA of f.   In fact, if x1
+
 ,  then x+2 

3 but the denominator x–1 is almost 0 (but positive).  

Consequently, f(x) as  x1
+
.  

Moreover,  f(x) – as  x1
–
  (since , if  x1

–
  then x–1 is almost 0 but negative ) .       

           (So, the graph of f  rises up to + at the right side of x=1, and sink down to  at the left 

side of x=1)  

 HA:  Note that if you divide x+2 by x–1, the quotient is 1 and remainder is 3. Thus, 

2 3
( ) 1

1 1

x
f x

x x


  

 
.  Thus, if  x  (or x –), then 

3

1x 
0  so that f(x)1.   

Hence, y=1 is the HA of f.   

      Using these information, you can sketch the graph of f as displayed below in Fig. 2.3 (A).   

  (b)  Both the denominator and numerator are 0 at x=1. So, first factorize and simplify them:  

         x
2
+3x+2=(x+2)(x+1)    and    x

2
–1 = (x –1)( x+1) .  Therefore,  

       

2

2

3 2 ( 2)( 1
 ( )    

1

x x x x
g x

x

   
 



)

( 1)( 1x x  )
,        x –1 

                                     

2

1

x

x





.              (So,      dom(g) =  \{1, –1} )  

       This implies that only x=1 is VA.    
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Hence, the graph of 
2

 ( ) ,    1,
1

x
g x x

x


  


 is exactly the same as that of 

2
( )

1

x
f x

x





 except 

that g(x)  is not defined at x= –1.   Therefore, the graph of g and its VA are the same as that of f 

except that there should be a „hole‟ at the point corresponding to x= –1 on the graph of g as 

shown on Fig. 2.3(B) below. 

 
 

Exercise 2.6 

1. Perform the requested divisions. Find the quotient and remainder and verify the 

Remainder Theorem by computing )(ap . 

a) Divide 485)( 2  xbyxxxp  

b) Divide 4472)( 23  xbyxxxxp  

c) Divide 11)( 4  xbyxxp  

d) Divide 132)( 25  xbyxxxp  

2. Given that 0)4( p , factor 810112)( 23  xxxxp as completely as possible. 

3. Given that 9364)( 23  xxxxr and   0
4
1 r , find the remaining zeros of )(xr . 

4. Given that 3 is a double zero of 9087193)( 234  xxxxxp , find all the zeros of 

)(xp . 

5. a) Write the general polynomial )(xp  whose only zeros are 1, 2 and 3, with multiplicity 

3, 2 and 1 respectively. What is its degree? 

b) Find )(xp  described in part (a) if 6)0( p . 

6. If i32  is a root of ,391452)( 23  xxxxp find the remaining zeros of p(x). 

7. Determine the rational zeros of the polynomials 

y=1 (HA) 

2

1

x
y

x





 2

,   1
1

x
y x

x


  



 

x=1 

VA                         
x=1 

 

(B)

2

2

3 2 2
( ) ,  1

11

x x x
g x x

xx

  
   


 Fig 2.3  (A) 2

( )
1

x
f x

x





 

„hole‟ 

atx=1 

 

y=1  

2 

 

2 

 

2 

 

2 

 

1  



83 

 

a) 1074)( 23  xxxxp  

b) 152852)( 23  xxxxp  

c) 146)( 23  xxxxp  

8. Find the domain and the real zeros of the given function. 

a) 
25

3
)(

2 


x
xf  b) 

124

3
)(

2 




xx

x
xg  c) 

xxx

x
xf

23

)3(
)(

23

2




   d) 

4

16
)(

2

2






x

x
xf  

9. Sketch the graph of  

a)
3

1
)(






x

x
xf  b) 

x

x
xf

1
)(

2 
  c) 2

1
)( 

x
xf  d) 

4
)(

2

2




x

x
xf  

10. Determine the behavior of 
3

38
)(

3






x

xx
xf  when x  is near 3. 

11. The graph of any rational function in which the degree of the numerator is exactly one 

more than the degree of the denominator will have an oblique (or slant) asymptote. 

a) Use long division to show that  

2

8
1

2

6
)(

2









x
x

x

xx
xfy  

b) Show that this means that the line 1 xy  is a slant asymptote for the graph and 

sketch the graph of )(xfy  . 

 

2.7  Definition and basic properties of logarithmic, exponential, and 

trigonometric functions and their graphs 

 

After completing this section, the student should be able to: 

 

 define exponential, logarithmic and trigonometric functions 

 understand the relationship between exponential and logarithmic functions 

 sketch the graph of exponential, logarithmic, and trigonometric functions 

 use basic properties of logarithmic, exponential and trigonometric functions to solve 

problems 

 

 Exponents and radicals 

 

Definition 2.16: For a natural number n  and a real number x , the power 
nx , read “ the 

thn  

power of x ” or  “ x  raised to n ”, is defined as follows: 

                             
xtoequaleachfactorsn

n xxxx   

In the symbol
nx , x  is called the base and n  is called the exponent. 
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For example, 322222225  . 

Based of the definition of 
nx , n  must be a natural number. It does not make sense for n  to be 

negative or zero. However, we can extend the definition of exponents to include 0 and negative 

exponents. 

 

Definition 2.17: (Zero and Negative Exponents) 

Definition of zero Exponent                             Definition of Negative Exponent 

        )0(10  xx                                                   0
1

 x
x

x
n

n
 

Note: 
00  is undefined. 

 

As a result of the above definition, we have 
n

n
x

x




1
. We have the following rules of exponents 

for integer exponents: 

 

Rules for Integer Exponents 

1. mnmn xxx                                   4. nnn yxxy )(  

2. nmmn xx )(                                     5. 
mn

m

n

x
x

x   

3.  0







y

y

x

y

x
n

nn

 

 

Next we extend the definition of exponents even further to include rational number exponents. 

To do this, we assume that we want the rules for integer exponents also to apply to rational 

exponents and then use the rules to show us to define a rational exponent. For example, how do 

we define 2

1

a ? Consider 2

1

9 . 

 

If we apply rule 2 and square 2

1

9 , we get   999 2

1

2

1 2

 . Thus, 2

1

9  is a number that, when 

squared, yields 9. There are two possible answers: 3 and – 3, since squaring either number will 

yield 9. To avoid ambiguity, we define 2

1

a (called the principal square root of a ) as the non-

negative quantity that, when squared, yield a . Thus, 39 2

1

 . 

 

We will arrive at the definition of 3

1

a  in the same way as we did for 2

1

a . For example, if we cube 

3

1

8 , we get   888 3

3

3

1 3

 . Thus, 3

1

8  is the number that, when cubed, yields 8. Since 823   we 
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have 283

1

 . Similarly,   327 3

1

 . Thus, we define 3

1

a (called the cube root of a ) as the 

quantity that, when cubed yields a . 

 

Definition 2.18: (Rational Exponent na
1

)  

If n  is an odd positive integer, then ba n 
1

 if and only if abn   

If n  is an even positive integer and 0a , then ba n 
1

 if and only if abn   

 

We call na
1

 the principal 
thn  root of a . Hence, na

1

 is the real number (nonnegative when n  is 

even) that, when raised to the 
thn  power, yields a . Therefore, 

    416 2

1

   since 1642   

    5125 3

1

  since 125)5( 3   

  
3

1

81

1 4

1









 since 

81

1

3

1
4









 

  3273

1

  since 2733   

   4

1

16  is not a real number 

Thus far, we have defined na
1

, where n  is a natural number. With the help of the second rule for 

exponent, we can define the expression n

m

a , where m  and n  are natural numbers and 
n
m  is 

reduced to lowest terms. 

 

Definition 2.19: (Rational Exponent n

m

a ) 

If na
1

 is a real number, then  mnn

m

aa
1

 (i.e. the 
thn  root of a raised to the 

thm  power) 

 

We can also define negative rational exponents: 

  0
1




a
a

a
n

m

n

m

 

 

Example 2.43: Evaluate the following 

a) 3

2

27   b) 2

1

36


  c) 5

3

)32(


  

Solution: We have  

a)   932727 2
2

3

1

3

2

  

b) 
6

1

36

1
36

2

1

2

1



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c) 

  8

1

)2(

1

)32(

1

)32(

1
)32(

33
5

1
5

3

5

3














 

Radical notation is an alternative way of writing an expression with rational exponents. We 

define for real number a , the 
thn  root of a  as follows: 

 

Definition 2.20 (
thn  root of a ): n a = na

1

, where n  is a positive integer. 

 

The number n a  is also called the principal 
thn  root of a . If the 

thn  root of a  exists, we have: 

 

 

For example, 553 3   and 3)3(4 4  . 

 

 Exponential Functions 

In the previous sections we examined functions of the form nxxf )( , where n  is a constant. 

How is this function different from xnxf )( . 

 

Definition 2.21: A function of the form xbxfy  )( , where 0b  and 1b , is called an 

exponential function. 

Example 2.44: The functions xxf 2)(  , xxg 3)(   and 

x

xh 









2

1
)(  are examples of 

exponential functions.  

 

As usual the first question raised when we encounter a new function is its domain. Since rational 

exponents are well defined, we know that any rational number will be in the domain of an 

exponential function. For example, let xxf 3)(  . Then as x  takes on the rational values ,4x  

– 2 , 
2
1  and 

5
4 , we have  

 8133333)4( 4 f   9
1

3

12
23)2(  f  

 33)( 2

1

2
1 f    55 4

5
4 8133)( 5

4

f  

 

For a  a real number  and n  a positive integer, 

        





oddisnifa

evenisnifa
an n

,

,
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Note that even though we do not know the exact values of 3  and 5 81 , we do know exactly 

what they mean. However, what about )(xf  for irrational values of x ? For instance, 

?3)2( 2 f  

 

We have not defined the meaning of irrational exponents. In fact, a precise formal definition of 

xb  where x  is irrational requires the ideas of calculus. However, we can get an idea of what 
23  

should be by using successive rational approximations to 2 . For example, we have      

                                             415.12414.1   

Thus, it would seem reasonable to expect that 415.12414.1 333  . Since 1.414 and 1.415 are 

rational numbers, 
414.13  and 

415.13  are well defined, even though we cannot compute their values 

by hand. Using a calculator, we get 7328918.437276950.4 2  . If we use better 

approximations to 2 , we get 
4143.124142.1 333  . Using a calculator again, we get 

7292535.437287339.4 2  . Computing 
23 directly on a calculator gives 7288044.43 2  . 

This numerical evidence suggests that as x  approaches 2 , the values of 
x3  approach a unique 

real number that we designate by 
23 , and so we will accept without proof, the fact that the 

domain of the exponential function is the set of real numbers. 

 

The exponential function xby  , where 0b  and 1b , is defined for all real values of x . 

In addition all the rules for rational exponents hold for real number exponents as well. 

 

Before we state some general facts about exponential functions , let‟s see if we can determine 

what the graph of an exponential function will look like. 

 

 

Example 2.45: 

1. Sketch the graph of the function xy 2  and identify its domain and range. 

Solution: To aid in our analysis, we set up a short table of values to give us a frame of       

reference.  

x  y  

3  
8
132   

2  
4
122   

1  
2
112   

0 120   

1 221   
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With these points in hand, we draw a smooth curve through the points obtaining the graph 

appearing above. Observe that the domain of xy 2  is IR , the graph has no x intercepts, as  

x , the y  values are increasing very rapidly, whereas as x , the y values are getting 

closer and closer to 0. Thus, axisx   is a horizontal asymptote, the y intercept is 1 and the 

range of xy 2  is the set of positive real numbers. 

2. Sketch the graph of 

x

xfy 









2

1
)( . 

Solution: It would be instructive to compute a table of values as we did in example 1 above (you 

are urged to do so). However, we will take a different approach. We note that 

x

x

x

xfy 







 2

2

1

2

1
)( . If xxf 2)(  , then xxf  2)( . Thus by the graphing principle for 

)( xf  , we can obtain the graph of xy  2  by reflecting the graph of xy 2  about the axisy  . 

 

 

 

 

 

 

 

 

 

Here again the axisx   is a horizontal asymptote, there is no x intercept, 1 is y intercept and 

the range is the set of positive real numbers. However, the graph is now decreasing rather than 

increasing. 

 

The following box summarizes the important facts about exponential functions and their graphs. 

 

2 422   

3 823   

O 

(1,2) 

1 

1 

2 

x 

y 

y = 2
x
 

O 

(1,2

) 

1 

      1 

     2 

x 

y 

 xy
2
1

   

1 
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The Exponential function xbxfy  )(  

1. The domain of the exponential function is the set of real numbers 

2. The range of the exponential function is the set of positive real numbers 

3. The graph of xby   exhibits exponential growth if 1b  or exponential decay if 

10  b . 

4. The y intercept is 1. 

5. The x intercept is a horizontal asymptote 

6. The exponential function is 1 – 1. Algebraically if 
yx bb  , then yx   

 

Example 2.46: Sketch the graph of each of the following. Find the domain, range, intercepts, and 

asymptotes. 

a) 13  xy   b) 13  xy   c) 39   xy  

Solution:  

a) To get the graph of 13  xy . We start with the graph of xy 3 , which is the basic 

exponential growth graph, and shift it up 1 unit. 

 

      

From the graph we see that  

- )( fDom  

- ),1()( fRange  

- The y intercept is 2 

- The line 1y  is a horizontal 

asymptote 

b) To get the graph of 13  xy , we start with the graph of xy 3 , and shift 1 unit to the left. 

 

         

From the graph we see that  

- )( fDom  

- ),0()( fRange  

- The y intercept is 3 

- The line 0y  is a horizontal 

asymptote 

 
1 

y=3
x+1

 

10 

2 

1 

1 2 

y=3
x
+1 

y = 1 

  9 
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c) To get the graph of 39   xy , we start with the basic exponential decay xy  9 . We 

then reflect it with respect to the axisx  , which gives the graph of xy  9 . Finally, 

we shift this graph up 3 units to get the required graph of 39   xy . 

 

From the graph of 39   xy , we can see that )(hDom , )3,()( hRange , the line 

3y  is a horizontal asymptote, 2 is the y intercept and 
2
1x  is the x intercept. 

Remark: When the base b  of the exponential function xbxf )(  equals to the number e , 

where 7182.2e , we call the exponential function the natural exponential function. 

 

 Logarithmic Functions 

In the previous subsection we noted that the exponential function xbxf )(  (where 0b  and 

1b ) is one to one. Thus, the exponential function has an inverse function. What is the inverse 

of xbxf )( ? 

To find the inverse of xbxf )( , let‟s review the process for finding an inverse function by 

comparing the process for the polynomial function 3xy   and the exponential function xy 3 . 

Keep in mind that x  is our independent variable and y  is the dependent variable and so 

whenever possible we want a function solved explicitly for y . 

 

 

To find the inverse of 
3xy   To find the inverse of 

xy 3  

3xy         Interchange x  and y  

3yx         solve for y  

3 xy   

xy 3       Interchange x  and y  

yx 3       solve for y  

??y  

 

x 

(1,9) 

1 

      1 

y 

y = 9
 x 

 

1 

    

9 

      

1 

x O 

(1,9) 

1 

      

1 

    9 

y 

y = 9
 

x 
 

1 

x 

1 

      

3 

y 

y = 9
 x 

+3 

1 

      2 

     y = 3 
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There is no algebraic procedure we can use to solve 
yx 3  for y . By introducing radical 

notations we could express the inverse of 3xy   explicitly in the form 3 xy  . In words, 

xy 3  and 3 xy   both mean exactly the same thing: y  is the number whose cube is x . 

Similarly, if we want to express 
yx 3  explicitly as a function of x , we need to invent a special 

notation for this. The key idea is to take the equation 
yx 3  and express it verbally. 

 
yx 3  means y  is the exponent to which 3 must be raised to yield x  

 

We introduce the following notation, which expresses this idea in a much more compact form. 

 

Definition 2.22: For 0b  and 1b , we write xy blog  to mean y  is the exponent to 

which b  must be raised to yield x . In other words,  

                                     xybx b

y log  

 

We read xy blog  as “ y  equals the logarithm of x  to the base b ”. 

 

REMEMBER: xy blog  is an alternative way of writing 
ybx   

 

When an expression is written in the form 
ybx  , it is said to be in exponential form. When an 

expression is written in the form xy blog , it is said to be in logarithmic form. The table below 

illustrates the equivalence of the exponential and logarithmic forms. 

 

Exponential form Logarithmic form 

1642   

1624   

125
135   

66 2

1

  

170   

216log4   

416log2   

3log
125

1
5   

2
1

6 6log   

01log7   

 

Example 2.47: 

1. Write each of the following in exponential form. 

a) 2log 9

1

3    b) 4
1

16 2log   

             Solution: We have  a) 2log 9

1

3   means 
9
123  . 
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       b) 
4
1

16 2log    means 2164

1

  

2. Write each of the following in logarithmic form. 

a) 001.010 3 
 b) 9273

2

  

Solution: We have   a) 001.010 3 
 means 3001.0log10   

    b) 9273

2

  means
3
2

27 9log   

3. Evaluate each of the following. 

a) 81log3   b) 
64
1

8log  

Solution:  

a) To evaluate 81log3 , we let 81log3t , and then rewrite the equation in exponential 

form, 813 t
. Now, if we can express both sides in terms of the same base, we can 

solve the resulting exponential equation, as follows: 

Let  81log3t           Rewrite in exponential form 

  813 t
  Express both sides in terms of the same base 

   
433 t
   Since the exponential function is 1 – 1  

   4t  

 Therefore, 481log3  . 

b) We apply the same procedure as in part (a). 

Let  
64
1

8logt           Rewrite in exponential form 

  
64
18 t    Express both sides in terms of the same base 

   
288 t
  Since the exponential function is 1 – 1  

   2t  

 Therefore, 2log
64
1

8  .  

 

As was pointed out at the beginning of this subsection, logarithm notation was invented to 

express the inverse of the exponential function. Thus, xblog  is a function of x . We usually 

write xxf blog)(   rather than writing )(log)( xxf b  and use parenthesis only when needed to 

clarify the input to the log function. For example,  

 

If )4(log)( 5 xxf  , then 15log))1(4(log)1( 55 f , whereas if xxf 5log4)(  , 

then )1(log4)1( 5 f , which is undefined. 

 

Example 2.48: Given xxf 5log)(   , find  

a) )25(f      b) )(
25
1f  c) )0(f   d) )125(f  
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Solution:  

a) 225log)25( 5 f  (since 2552  ) 

b) 2log)(
25
1

525
1 f  (since 

25
125  ) 

c) 0log)0( 5f  is not defined  (what power of 5 will yield 0?). We say that 0 is not in 

the domain of f . 

d) )125(log)125( 5 f  is not defined (what power of 5 will yield -125?). We say that -

125 is not in the domain of f . 

Acknowledging that the logarithmic and exponential functions are inverses, we can derive a 

great deal of information about the logarithmic function and its graph from the exponential 

function and its graph. 

 

Example 2.49: Sketch the graph of the following functions. Find the domain and range of each. 

a) xy 3log  b) xy
2

1log  

Solution: a)  Since xy 3log  is the inverse of xy 3 , we can obtain the graph of xy 3log  by 

reflecting the graph of xy 3  about the line xy  , as shown below. 

 

 

b) To get the graph of xy
2

1log , we reflect the graph of  x
y

2
1  about the line xy  as 

shown below. 

1 

1 

x 

y 
y = 3

x
 

y = x 

y = log3x 

1 

      1 

x 

y 

 xy
2
1

   

xy
2
1log    

y=x 
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Taking note of the features of the two graphs we have the following important informations 

about the graph of the log function: 

The Logarithmic Function xy blog  

1. Its domain is the set of positive real numbers 

2. Its range is the set of real numbers. 

3. Its graph exhibits logarithmic growth if 1b  and logarithmic decay if 10  b . 

4. The x  intercept is 1. There is no y intercept. 

5. The axisy   is a vertical asymptote. 

Example 2.50: 

1. Sketch the graph of )2(log1)( 3  xxf . Find the domain, range, asymptote and 

intercepts. 

Solution: We can obtain the graph of )2(log1 3  xy  by applying the graphing 

principle to shift the basic logarithmic growth graph 2 units to the right and 1 unit up. 

 
We have }2:{)(  xxfDom , )( fRange  and the graph has the line 2x  as a 

vertical asymptote. To find the intercept, we set 0y  and solve for x . Setting 0y  

and solving for x , we will obtain 
3
7x . Thus, the x intercept is 

3
7 . 

 

2. Find the inverse function for  

1 

1 

x 

y 

x= 2 

y = 1+ log3(x2) 

2 3 
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a) 43)(  xxfy  b) )2(log)( 3  xxgy  

Solution: Following the procedure for finding an inverse function, we have  

(a)   43  xy        Interchange x  and y  

       43  yx        solve explicitly for y  

       
yx 34         Write in logarithmic form 

       )4(log3  xy  

      Thus, )4(log)( 3

1  xxf  

(b) )2(log3  xy     Interchange x  and y  

      )2(log3  yx    Write in logarithmic form     

      xy 32              solve explicitly for y  

      23  xy  

     Thus, 23)(1  xxg  

 

The following table contains the basic properties of logarithm: 

 

Properties of logarithm 

Assume that ub,  and v  are positive and 1b . Then 

1. vuuv bbb loglog)(log   

In words, logarithm of a product is equal to the sum of the logs of the factors. 

2. vu bbv
u

b loglog)(log   

In words, the log of a quotient is the log of the numerator minus the log of the 

denominator. 

3.   uru b

r

b loglog   

In words, the log of a power is the exponent times the log. 

4. xbxb b

x

b  log)(log  

5. xb
xb 

log
 

Example 2.51: 

1. Express in terms of simpler logarithms. 

a) )(log 3 yxb  b) )(log 3 yxb    c)  3log
z

xy

b  

Solution:  

a) yxyxyx bbbbb loglog3loglog)(log 33   

b) Examining the properties of logarithms, we can see that they deal with log of a 

product, quotient and power. Thus, )(log 3

3 yx   which is the log of a sum cannot be 

simplified using log properties. 

c) We have  

  )(logloglog 3
3 zxy bbz

xy

b  =   zyxzxy bbbbb log3)log(log
2

1
log3log 2

1

 . 

2. Show that 2loglog
2
1

bb  . 

Solution: We have 2log2log02log1loglog
2
1

bbbbb  . 



96 

 

 

The logarithmic function was introduced without stressing the particular base chosen. However, 

there are two bases of special importance in science and mathematics, namely, 10b  and eb  . 

 

Definition 2.23: (Common Logarithm) 

xxf 10log)(   is called the common logarithm function. We write xx loglog10  . 

 

The inverse of the natural exponential function is called the natural logarithmic function and has 

its own special notation. 

 

Definition 2.24: (Natural Logarithm) 

xxf elog)(   is called the natural logarithmic function. We write xxe lnlog  . 

 

Example 2.52: 

1. Evaluate 1000log  

Solution: Let 1000loga . Then, 3)10(log1000log 3

1010 a . 

2. Find the inverse function of 1)(  xexf . 

Solution: Let      1 xey    Interchange x  and y  

                        1 yex          Solve for y  

                        
yex 1   Rewrite in logarithmic form 

                        )1ln(  xy  

Thus, )1ln()(1  xxf . 

 Trigonometric functions and their graphs 

For the functions we have encountered so far, namely polynomial, rational and exponential 

functions, as the independent variable goes to infinity the graph of each of these three functions 

either goes to infinity(very quickly) for exponential functions or approaches a finite horizontal 

asymptote. None of these functions can model the regular periodic patterns that play an 

important role in the social, biological, and physical sciences: business cycles, agricultural 

seasons, heart rhythms, and hormone level fluctuations, and tides and planetary motions. The 

basic functions for studying regular periodic behaviour are the trigonometric functions. The 

domain of the trigonometric functions is more naturally the set of all geometric angles.  

 

Angle Measurement 

 

An angle is the figure formed by two half-lines or rays with a common end point. The common 

end point is called the vertex of the angle.  

 

A 
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In forming the angle, one side remains fixed and the other side rotates. The fixed side is called 

the initial side and the side that rotates is called the terminal side. If the terminal side rotates in a 

counter clockwise direction, we call the angle positive angle, and if the terminal side rotates in a 

clockwise direction, we call the angle negative angle. 

   

 

    

What attribute of an angle are we trying to measure when we measure the size of an angle? A 

moment of thought will lead us to the conclusion that when we measure an angle we are trying to 

answer the question: Through what part of a complete rotation has the terminal side rotated? 

We will use degree () as the unit of measurement for angles. Recall that the measure of a full 

round angle (full circle) is 360, straight angle is 180, and right angle is 90.  

 

An alternative unit of measure for angles which will indicate their size is the radian measure. To 

see the connection between the degree measure and radian measure of an angle, let us consider 

an angle    and draw a circle of radius r  with the vertex of   at its center O . Let s  represent 

the length of the arc of the circle intercepted by  (as shown below). 

 

 

 

 

 

 

 

 

 

 

Basic geometry tells us that the central angle   will be the same fractional part of one complete 

rotation as s  will be of the circumference of the circle. For example, if   is 10
1  of a complete 

rotation, then s  will be 10
1  of the circumference of the circle. In other words, we can set up the 

following proportion: 

   
r

s

circleofncecircumfere

s

rotationcomplete 



21
  

 

B 

O 
r 

  

s 

B 
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Thus, we have the following conversion formula: 



 radiansinreesin


180

deg
 

 

Example 2.53: 

1. Convert each of the following radian measures to degrees. 

a) 6
    b) 5

3  

 Solution: a) By the conversion formula, we have 


 
6

180



, which implies that 

30 . 

b) Again using the conversion formula, we get 


 
5

3

180



, which implies that 

108 . 

 

2. Convert to radian measures  

a) 
90   b) 

270  

Solution: a) Let   represent the radian measure of 
90 . Using the conversion formula, we 

obtain: 




180

90





, which implies that 

2


  . 

 

b) Rather than using the conversion formula, we notice that )90(3270   . In part (a) we found 

that 
2

90


 , and so we have 
2

3
270


 . 

 

To define the trigonometric functions, we will view all angles in the context of a Cartesian 

coordinate system: that is, given an angle  , we begin by putting   in standard position, 

meaning that the vertex of   is placed at the origin and initial side of   is placed along the 

positive axisx  . Thus the location of the terminal side of   will, of course, depend on the size 

of  . 

 

 

 

 

 

 

 

 

 

We then locate a point (other than the origin) on the terminal side of   and identify its 

coordinates ),( yx  and its distance to the origin, dented by r . Then, r  is positive. 

ϴ 

 

X 

Y 

r 

P(x,y) 

 

X 

Y 
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With   in standard position, we define the six trigonometric functions of  as follows: 

Definition 2.25 

Name of function                     Abbreviation                             Definition 

Sine                                              sin                                            
r

y
sin  

Cosine                                          cos                                           
r

x
cos  

Tangent                                        tan                                           
x

y
tan  

Cosecant                                       csc                                           
y

r
csc  

Secant                                           sec                                           
x

r
sec  

Cotangent                                     cot                                           
y

x
cot     

 

Recall that the radian measure of an angle is defined as 
r

s
 , where   is angle in radians 

s  is the length of the arc intercepted by   and r  is the length of the radius. Since s  and r  are 

both lengths, the quotient 
r

s
 is a pure number without any units attached. Thus, any angle can be 

interpreted as a real number. Conversely, any real number can be interpreted as an angle. Thus, 

we can describe the domains of the trigonometric functions in the frame work of the real number 

systems. If we let  sin)( f , the domain consists of all real numbers   for which sin  is 

defined. Since 
r

y
sin  and r  is never equal to zero, the domain for sin  is the set of all real 

numbers. Similarly, the domain of 
r

x
f   cos)(  is also the set of all real numbers. 

 The graph of siny  

To analyze  sin)( f , we keep in mind that once we choose a real number  , we draw the 

angle, in standard position, that corresponds to  . To simplify our analysis, we choose the point 

),( yx  on the terminal side so that 1r . That is, ),( yx  is a point on the unit circle 

122  yx . Note that y
y


1
sin . 

 

 

 

(0,1) 

(x,y) 

(1,0) 

(0,-1) 

(-1,0) 

θ 
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As the terminal side of   moves through the first quadrant, y  increases from 0 (when 0 ) to 

1(when 2
  ). Thus, as   increases from 0 to 2

 , siny  steadily increases from 0 to 1. 

As   increases from 2
  to  , siny  decreases form 1 to 0. A similar analysis reveals that as 

  increases from   to 2
3 , sin  decreases from 0 to – 1; and as   increases from 2

3  to 2 , 

sin  increases from – 1 to 0.  

 

Based on this analysis, we have the graph of  sin)( f  in the interval ]2,0[   as show below. 

 

 

 

 

 

 

 

 

Since the values of  sin)( f  depend only on the position of the terminal side, adding or 

subtracting multiples of 2  to   will leave the value of  sin)( f  unchanged. Thus, the 

values of  sin)( f  will repeat every 2 units. The complete graph of  sin)( f  appears 

below. 

 

 

 

 

                   

 

                      The graph of xy sin , which is called the basic sine curve. 

 

 The graph of cosy  

y = sin x  

x  
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Applying the same type of analysis to  cos)( f , we will able to get a good idea of what its 

graph looks like. The figure below shows the angle corresponding to  as it increases through 

quadrant I, II, III and IV.  

Keeping in mind that x
x


1
cos , we have the following: 

1. As   increases from 0 to 2
 , cosx  decreases from 1 to 0. 

2. As   increases from 2
  to  , cosx  decreases from 0 to – 1. 

3. As   increases from   to 2
3 , cosx  increases from – 1 to 0. 

4. As   increases from 2
3  to 2 , cosx  increases from 0 to 1. 

Based on this analysis, we have the graph of  cos)( f  as shown below: 

 

 

 

 

 

 

 The graph of tany  

Since 
x

y
tan  is undefined whenever 0x , tan  is undefined whenever the terminal side of 

the angle corresponding to   falls on the axisy  . This happens for 2
  , to which we can add 

or subtract any multiple of   that will again bring the terminal side back to the axisy  . Thus, 

domain of tan  is }:{
2

  n , where n  is an integer. 

1. As  increases from 0 to 2
 , x  decreases from 1 to 0 and y  increases from 0 to 1; 

therefore, 
x

y
tan  increases from 0 to  . 

2. As   increases from 2
  to  , x  decreases from 0 to – 1  and y  decreases from 1 to 0; 

therefore, 
x

y
tan  increases from   to 0. 

3. As   increases from   to 2
3 , x  increases from – 1 to 0 and y  decreases from 0 to – 1; 

therefore, 
x

y
tan  increases from 0 to  . 

4. As   increases from 2
3  to 2 , x  increases from 0  to 1 and y  increases from – 1 to 0; 

therefore, 
x

y
tan  increases from   to 0. 

You may want to add some more specific values to this analysis. In any case, we get the 

following as the graph of the tangent function. 

 



102 

 

 

 

 

 

 

 

 

 

 

Definition 2.26: (Periodic function) 

A function )(xfy   is called periodic if there exists a number p  such that )()( xfpxf   

for all x  in the domain of f . The smallest such number p  is called the period of the function. 

 

A periodic function keeps repeating the same set of valuesy  over and over again. The graph of 

a periodic function shows the same basic segment of its graph being repeated. In the case of sine 

and cosine functions, the period is 2 . The period of the tangent function is  . 

 

Definition 2.27: (Amplitude of a periodic function) 

The amplitude of a periodic function )(xf  is 

                       [
2

1
A maximum value of )(xf minimum value of )](xf  

 

Thus, the amplitude of the basic sine and cosine function is 1. 

The portion of the graph of a sine or cosine function over one period is called a complete cycle 

of the graph. In other words, the minimal portion of a sine or cosine graph that keeps repeating 

itself is called a complete cycle of the graph.  

 

Definition 2.28: (Frequency of a periodic function) 

 

The number of complete cycles a sine or cosine graph makes on an interval of length equal to 

2  is called its frequency. 

 

The frequency of the basic sine curve xy sin  and the basic cosine curve xy cos is 1, 

because each graph makes 1 complete cycle in the interval ]2,0[  . 

 

has period of 2
 (see the figure below), then the number of complete If a sine function 

will make in an interval of length 2  is 4

2

2





.  cycles its graph 

 

  

 

   

Y 

X 
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Y 

X 

 

 

 

 

 

 

 

 

 

Thus if a sine function has a period of 2
 , its frequency is 4 and its graph will make 4 complete 

cycles in an interval of length 2 . 

 

Example 2.54: Sketch the graph of xy 2sin  and find its amplitude, period and frequency. 

 

Solution: We can obtain this graph by applying our knowledge of the basic sine graph. For the 

basic curve, we have  

00sin    1sin
2
  0sin   1sin

2
3   02sin   

These quadrantal values serve as guide points, which help us draw the graph. To obtain similar 

guide points for xy 2sin , we ask for what values of x  is  

02 x   2
2 x   x2  2

32 x  22 x  

and we get 

       0x   4
x   2

x   2
3x   x  

Thus, xy 2sin  will have the values 0, 1, 0, 1 , 0 at ,,,,0
4

3
24

x and  , respectively. The 

graph of xy 2sin  will thus complete one cycle in the interval ],0[  , and will repeat the same 

values in the interval ]2,[  . 

 

 

 

 

 

 

 

 

 

From this graph we see that xy 2sin has an amplitude of 1, a period  , and a frequency of 2. 

 

For convenience we summarize our discussion on the domains of the trigonometric functions in 

the table. 
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1. xxf sin)(   

2. xxf cos)(   

3. xxf tan)(   

4. xxf csc)(   

5. xxf sec)(   

6. xxf cot)(   

Domain = All real numbers 

Domain = All real numbers 

Domain = }:{
2

 nxx   

Domain = { nxx : } 

Domain = }:{
2

 nxx   

Domain = }:{ nxx   

where n  is an integer 

 

We have the following trigonometric identities 

1. 1cossin 22  xx  

2. xscex 22 1tan   

3. xx 22 csccot1   

  Exercise 2.7 

 

1. Find the domain of the given function. 

a) 
x

xf
6

1
)(         b) 13)(  xxg   c) 82)(  xxh  d) 

22

1
)(

3 


x
xf  

2. Sketch the graph of the given function. Identify the domain, range, intercepts, and 

asymptotes. 

a) xy  5              b) xy 39     c) xey 1   d) 2 xey  

 

3. Solve the given exponential equation. 

a) 82 1 x
            b) 24332 x

   c) 28 x
  d) 

4
12316 a  

4. Let xxf 2)(  . Show that )(8)3( xfxf  . 

5. Let xxg 5)(  . Show that )(
25

1
)2( xgxg  . 

6. Let xxf 3)(  . Show that )3(4
2

)2()2( xfxf



. 

7. Evaluate the given logarithmic expression (where it is defined). 

a) 32log2  c) )9(log3     e) )243(loglog 35  

b) 9log
3

1  d) 
6

1
6log    f) 

5log22  

8. If )4(log)( 2

2  xxf , find )6(f  and the domain of f . 

9. If )34(log)( 2

3  xxxg , find )4(f  and the domain of g . 

10. Show that xx 6loglog
6

1   
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11. Sketch the graph of the given function and identify the domain, range, intercepts and 

asymptotes. 

a) )3(log)( 2  xxf     b) xxf 2log3)(      c) )(log)( 3 xxf    d) xxf 5log3)(   

12. Find the inverse of )13()(  xexf . 

13. Let xexf )( . Find a function so that xxfgxgf  ))(())((  . 

14. Convert the given angle from radians to degrees 

a) 
3
    b) 

2
5    c) 

3
4  

15. Convert the given angle from degrees to radians 

a) 315   b) 
40   c) 

330  

16. Sketch the graph of  

a)  sec)( f   c)  csc)( f   e)  cot)( f   

b) xxf cos1)(    d) )sin()(
2
 xxf   f) xxf 2tan)(   

17.  Verify the following identities: 

a) xxxxxx cottan)sec)(csccos(sin   

b) xxxx 2222 cottancscsec   

18. Given 
2
1tan   and 0sin  , find cos . 

 

 

 



Chapter Three

Matrices, Determinant and Systems of Linear Equation
Matrices, which are also known as rectangular arrays of numbers or functions, are the main
tools of linear algebra. Matrices are very important to express large amounts of data in
an organized and concise form. Furthermore, since matrices are single objects, we denote
them by single letters and calculate with them directly. All these features have made matri-
ces very popular for expressing scientific and mathematical ideas. Moreover, application of
matrices are found in most scientific fields; such as economics, finance, probability theory
and statistics, computer science, engineering, physics, geometry, and other areas.

Main Objectives of this Chapter
At the end of this chapter, students will be able to:-

• Understand the notion of matrices and determinants

• Use matrices and determinants to solve system of linear equations

• Apply matrices and determinants to solve real life problems

3.1 Definition of Matrix

Consider an automobile company that manufactures two types of vehicles, Trucks and
Passenger cars in two different colors, red and blue. The company’s sales for the month of
January are 15 Trucks and 20 Passenger cars in red color, and 10 Trucks and 16 Passenger
cars in blue color. This data is presented in Table 1.

Table 1

Trucks Passenger Cars

Red 15 20

Blue 10 16

The information in the table can be given in the form of rectangular arrays of numbers as

[ C1 C2

R1 15 20

R2 10 16

]
.

In this arrangement, the horizontal and vertical lines of numbers are called rows (R1, R2)
and columns (C1, C2), respectively. The columns C1 and C2 represent the Trucks and
Passenger cars, respectively, which are sold in January. And the rows R1 and R2 represent
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the red and blue colored vehicles, respectively. An arrangement of this type is called a
matrix. Note that the above matrix has two rows and two columns. This shows us the
usefulness of matrix to organize information.

Definition 3.1 (Definition of Matrix). If m and n are positive integers, then by a
matrix of size m by n, or an m × n matrix, we shall mean a rectangular array
consisting of mn numbers, or symbols, or expressions in a boxed display consisting
of m rows and n columns. This can be denoted by



C1 C2 C3 Cn

R1 a11 a12 a13 . . . a1n
R2 a21 a22 a23 . . . a2n
R3 a31 a32 a33 . . . a3n
...

...
...

...
...

Rm am1 am2 am3 . . . amn


where (R1, R2, R3, ..., Rm) and (C1, C2, C3, ..., Cn) represent the m rows and n

columns, respectively.

Remark.

1. Note that the first suffix denotes the number of a row (or position) and the second
suffix that of a column, so that aij appears at the intersection of the i-th row and the
j-th column.

2. Matrix A of size m× n may also be expressed by

A = [aij]m×n,

where aij represents the (i, j)-th entry of the matrix [aij].

Example 3.1. The following are matrices of different size.

A =

[
a b

c d

]
is a 2× 2 matrix B =

a b c

b c d

c d e

 is 3× 3 matrix

C =


1 2

2 3

3 4

4 5

 is 4× 2 matrix D =


1

2

3

4

 is 4× 1 matrix

E =

[
a b c d

b c d e

]
is 2× 4 matrix, F =

[
b c d e

]
is 1× 4 matrix
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Definition 3.2. Matrices which are n×1 or 1×n are called vectors. Thus, the n×1 matrix

A =


a11
a21

...
a2n


is called a column vector, and the 1× n matrix

B =
[
b11 b12 . . . b1n

]
is called a row vector.

Definition 3.3 (Submatrix). Let A be an m× n matrix. A submatrix of matrix A is
any matrix of size r × s with r ≤ m and s ≤ n, which is obtained by deleting any
collection of rows and/or columns of matrix A.

Example 3.2. For the given matrix A =

1 2 3

2 3 4

3 4 5

 ,
(i)
[
1 2 3

2 3 4

]
is a submatrix of A, which is obtained by deleting the third row of A.

(ii)

1 3

2 4

3 5

 is a submatrix of A, which is obtained by deleting the second column of A.

(iii)
[
3 4

4 5

]
is a submatrix of A, which is obtained by deleting the first column and first

row of A.

Definition 3.4 (Equality of Matrices). Two matrices of the same size, A = [aij]m×n

and B = [bij]m×n, are said to be equal (and write A = B) if and only if

aij = bij, for all ij.

Example 3.3.

(a) Determine the values of a, b, c and d for which the matrices A and B are equal:

A =

[
5 4

0 2

]
, B =

[
a b

c d

]
.

Solution: By Definition 3.4, we have a11 = b11 implies a = 5, a12 = b12 implies
b = 4, a21 = b21 implies c = 0 and a22 = b22 implies d = 2.
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(b) Find the values of α and β for which the given matrices A and B are equal.

A =

[
1 2

3 −1

]
, B =

[
α− β 2

α −1

]
Solution: Similarly, we have a11 = b11 implies α− β = 1, a21 = b21 implies α = 3,
and hence β = 2.

Definition 3.5 (Zero Matrix). An m × n matrix A = [aij] is said to be the zero
matrix if aij = 0 for all ij.

Example 3.4. The following are zero matrices.

[
0 0

0 0

]
,

0 0 0

0 0 0

0 0 0

 ,

0 0

0 0

0 0

0 0

 , [0 0 0 0

0 0 0 0

]

Exercise 3.1.

1. Write out the matrix of size 3× 3 whose entries are given by xij = i+ j.

2. Write out the matrix of size 4× 4 whose entries are given by

xij =


1 if i > j

0 if i = j

−1 if i < j.

3. For the matrix A =

1 2 3

2 3 4

3 4 5

, give all the submatrices of size 2× 2.

3.2 Matrix Algebra

In this section, we discuss addition of matrices, scalar multiplication, and matrix multipli-
cation.

3.2.1 Addition and Scalar Multiplication

Addition and scalar multiplication are the basic matrix operations. To see the usefulness of
these operations, let us observe the following simple application.
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Consider again an automobile company that manufactures two types of vehicles, Trucks
and Passenger cars in two different colors, red and blue. If the sales for the months of
January and February, respectively, are given by

J =

[
15 20

10 16

]
and F =

[
12 28

20 14

]
,

then the total sales for two months can be given as follows. The total number of red Trucks
sold in two months is 15 + 12 = 27. Similarly, the total number of blue Trucks, red Pas-
senger cars and blue Passenger cars sold in the two months are given by 10 + 20 = 30,
20 + 28 = 48 and 16 + 14 = 30, respectively.

The preceding computations are examples of matrix addition. We can write the sum of two
2× 2 matrices indicating the sales of January and February as

J + F =

[
15 20

10 16

]
+

[
12 28

20 14

]
=

[
15 + 12 20 + 28

10 + 20 14 + 16

]
=

[
27 48

30 30

]
.

Definition 3.6. Let A = [aij]m×n and B = [bij]m×n be two matrices of the same
size. Then the sum of A and B, denoted by A + B, is the m × n matrix defined by
the formula

A+B = [aij + bij].

The sum of two matrices of different sizes is undefined.

Example 3.5. For the given matrices A,B,C,D compute A+B and C +D.

A =

[
a b

c d

]
, B =

[
w x

y z

]
, C =

[
1 0 4

−1 1 1

]
, D =

[
1 1 0

0 −2 3

]
Solution: Using Definition 3.6, we have

A+B =

[
a b

c d

]
+

[
w x

y z

]
=

[
a+ w b+ x

c+ y d+ z

]
and

C +D =

[
2 0 4

−1 1 1

]
+

[
1 1 0

0 −2 3

]
=

[
3 1 4

−1 −1 4

]
.
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Theorem 3.1 (Laws of Matrix Addition ). LetA,B,C be matrices of the same size
m× n, 0 the m× n zero matrix. Then

1. Closure Law of Addition: A+B is an m× n matrix.

2. Associative Law: (A+B) + C = A+ (B + C).

3. Commutative Law : A+B = B + A.

4. Identity Law : A+ 0 = A.

5. Inverse Law : A+ (−A) = 0.

Definition 3.7 (Scalar Multiplication). Let A = [aij] be an m× n matrix, and α a
scalar. Then the product of the scalar α with matrix A, denoted by αA, is defined by

αA = [αaij]m×n.

Example 3.6. Consider the automobile manufacturing company once again. Suppose the
company’s sales for the months of January and March, respectively, are given by

J =

[
15 20

10 16

]
, and M =

[
18 22

14 20

]
.

(a) If the sales of January is to be doubled in February, then the sales of February should
be

2J =

[
2(15) 2(20)

2(10) 2(16)

]
=

[
30 40

20 32

]
.

(b) If the sales of March is to be declined by 50% in April, then the sales of April should
be

(
1

2
)J =

[
1
2
(18) 1

2
(22)

1
2
(14) 1

2
(20)

]
=

[
9 11

7 10

]
.

Example 3.7. Given the matrices A and B, compute 4A and A+ (−1)B.

A =

[
1 2

3 4

]
, B =

[
2 4

1 3

]

Solution: Using Definition 3.7, we have

4A = 4

[
1 2

3 4

]
=

[
4(1) 4(2)

4(3) 4(4)

]
=

[
4 8

12 16

]
.

And, from the definitions 3.6 and 3.7, we have

A+ (−1)B =

[
1 2

3 4

]
+ (−1)

[
2 4

1 3

]
=

[
1 2

3 4

]
+

[
−2 −4
−1 −3

]
=

[
−1 −2
2 1

]
.
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From this example, we observe that the difference of two matrices A and B, which is
denoted by A−B, can be defined by the formula

A−B = A+ (−1)B = [aij − bij]m×n.

Theorem 3.2 (Laws of Scalar Multiplication). Let A,B be matrices of the same
size m× n, and α and β scalars. Then

1. Closure Law of Scalar Multiplication: αA is an m× n matrix.

2. Associative Law: α(βA) = (αβ)A.

3. Distributive Law: α(A+B) = αA+ αB.

4. Distributive Law: (α + β)A = αA+ βA.

5. Monoidal Law: 1A = A.

Example 3.8. Let

A =

[
1 2

0 1

]
, B =

[
2 0

1 1

]
, C =

[
a b

c d

]
be the given matrices. Then,

2(A+B) = 2

[
1 + 2 2 + 0

0 + 1 1 + 1

]
= 2

[
3 2

1 2

]
=

[
(2)3 (2)2

(2)1 (2)2

]
=

[
6 4

2 4

]
and

2A+ 2B =

[
(2)1 (2)2

(2)0 (2)1

]
+

[
(2)2 (2)0

(2)1 (2)1

]
=

[
2 4

0 2

]
+

[
4 0

2 2

]
=

[
6 4

2 4

]
.

Thus, we have 2(A+B) = 2A+ 2B.

Example 3.9. Solve for X in the matrix equation 2X + A = B, where

A =

[
4 0

−2 2

]
, and B =

[
6 −4
8 0

]
.

Solution: We begin by solving the equation for X to obtain

2X = B − A implies X = (
1

2
)(B − A).

Thus, we have the solution

X =
1

2

[
6− 4 −4− 0

8− (−2) 0− 2

]
=

1

2

[
2 −4
10 −2

]
=

[
1 −2
5 −1

]
.
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3.2.2 Matrix Multiplication

An other important matrix operation is matrix multiplication. To see the usefulness of this
operation, consider the application below, in which matrices are helpful for organizing in-
formation.

A football stadium has three concession areas, located in South, North and West stands.
The top-selling items are, peanuts, hot dogs and soda. Sales for one day are given in the
first matrix below, and the prices (in dollar) of the three items are given in the second matrix
(note that the price per Peanuts, Hot dogs and Soda are given by $2.00, $3.00 and $2.75,
respectively).


Peanuts Hot dogs Sodas

South Stand 120 250 305

North Stand 207 140 419

West Stand 29 120 190

  2.00

3.00

2.75

.
To calculate the total sales of the three top-selling items at the South stand, multiply each
entry in the first row of the matrix on the left by the corresponding entry in the price column
matrix on the right and add the results. Thus, we have

120(2.00) + 250(3.00) + 305(2.75) = 1828.75$ (South stand sales).

Similarly, the sales for the other two stands are given below:

207(2.00) + 140(3.00) + 419(2.75) = 1986.25$ (North stand sales).

29(2.00) + 120(3.00) + 190(2.75) = 940.5$ (West stand sales).

The preceding computations are examples of matrix multiplication. We can write the prod-
uct of the 3× 3 matrix indicating the number of items sold and the 3× 1 matrix indicating
the selling prices as shown below.

 120 250 305

207 140 419

29 120 190

  2.00

3.00

2.75

 =

 1828.75

1986.25

940.5


The product of these matrices is the 3× 1 matrix giving the total sales for each of the three
stands.
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Definition 3.8 (Matrix Multiplication). Let A = [aij]m×n and B = [bij]n×p be two
matrices. Then the product of A and B, denoted by AB, is an m × p matrix whose
(i, j)-th entry is defined by the formula

[AB]ij =
n∑
k=1

aikbkj = ai1b1j + ai2b2j + ai3b3j + ...+ ainbnj.

In the other words, the (i, j)-th entry of the product AB is obtained by summing the
products of the elements in the i-th row of A with corresponding elements in the j-th
column of B.

The above definition can be understood as follows. If

A =
[
a11 a12 . . . a1n

]
has only one row (R1), and

B =


b11
b21
...
bn1


has only one column (C1), then product AB is given by

AB = [R1C1] =
[
a11 a12 . . . a1n

]

b11
b21
...
bn1

 = a11b11 + a12b21 + ...+ a1nbn1.

If A has m rows R1, R2, ..., Rm, and B has n columns C1, C2, ..., Cp, then the product AB
can be given by the formula

AB =


R1C1 R1C2 . . . R1Cp
R2C1 R2C2 . . . R2Cp

...
... . . .

...
RmC1 RmC2 . . . RmCp

 .
That is, the (i, j)-th entry of AB is RiCj .

Remark. The product AB of two matrices A and B is defined only if the number of
columns in A and the number of rows in B are equal.
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Example 3.10. Let A =

[
a11 a12 a13
a21 a22 a23

]
and B =

b11 b12
b21 b22
b31 b32

 be two matrices. Clearly,

the product AB is defined in this case, since the number of column of A and the number of
rows of B are equal. Thus, we have

AB =

[
R1C1 R1C2

R2C1 R2C2

]
=

[
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

]
.

In this example, the matrices A and B, respectively, are 2× 3 and 3× 2 matrices, whereas
the product AB is a 2× 2 matrix.

Example 3.11. Compute the product AB of the given matrices

A =
[
1 2 3

]
and B =

1 1

1 −1
1 2

 .
Solution: The product AB is defined since the number of columns in matrix A and the
number of rows in matrix B are equal. Thus, we have AB is given by

[
1 2 3

] 1 1

1 −1
1 2

 =
[
(1)(1) + (2)(1) + (3)(1) (1)(1) + (2)(−1) + (3)(2)

]
=
[
6 5

]
.

Note that the product BA is not defined in this case.

Example 3.12. Let A =

[
0 1

0 0

]
and B =

[
1 0

0 0

]
be the given matrices. Then, we have

AB =

[
0 1

0 0

] [
1 0

0 0

]
=

[
0 0

0 0

]
, and BA =

[
1 0

0 0

] [
0 1

0 0

]
=

[
0 1

0 0

]
.

In this example, we observe that both the products AB and BA are defined. This is true in
general i.e., the products AB and BA are defined for any two square matrices A and B of
the same size. For the matrices A and B given above, we have AB 6= BA. Hence, matrix
multiplication is not commutative.

Example 3.13. Consider the following diagonal matrices.

A =

a11 0 0

0 a22 0

0 0 a33

 , and B =

b11 0 0

0 b22 0

0 0 b33


The product AB is given by

AB =

a11 0 0

0 a22 0

0 0 a33

b11 0 0

0 b22 0

0 0 b33

 =

a11b11 0 0

0 a22b22 0

0 0 a33b33


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Similarly, we have

BA =

b11a11 0 0

0 b22a22 0

0 0 b33a33

 .
In this case, we have AB = BA , and hence the given matrices A and B commute. More
generally, if A and B are any two diagonal matrices of the same size, then AB = BA.

Theorem 3.3. Matrix multiplication is associative, i.e., whenever the products are
defined, we have A(BC) = (AB)C.

From Theorem 3.3, we shall write ABC for either A(BC) or (AB)C. Also, for every
positive integer n, we shall write An for the product AAA...A (n terms).

Theorem 3.4. If all multiplications and additions make sense, the following hold for
matrices, A, B, C and α, β scalars.

1. A(αB + βC) = α(AB) + β(AC).

2. (αB + βC)A = α(BA) + β(CA) .

Exercise 3.2.

1. Find your own examples:

(i) 2× 2 matrices A and B such that A 6= 0, B 6= 0 with AB 6= BA.

(ii) 2× 2 matrices A and B such that A 6= 0, B 6= 0 but AB = 0.

(iii) 2× 2 matrix A such that A2 = I2 and yet A 6= I2 and A 6= −I2.

2. Let A =

[
−1 −1
3 3

]
. Find all 2× 2 matrices, B such that AB = 0.

3. Let A =

[
1 2

3 4

]
and B =

[
1 2

1 c

]
. Is it possible to choose c so that AB = BA? If

so, what should be the value of c?

4. Given the matrices A =

[
1 3

2 4

]
, B =

[
−1 2

0 1

]
, and C =

[
2 1

4 0

]
and α a scalar

i. Compute the products A(BC), (AB)C, and verify that A(BC) = (AB)C.

ii. Compute the products α(AB), (αA)B, A(αB)), and verify that

α(AB) = (αA)B = A(αB).
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5. Consider the automobile producer whose agency’s sales for the month of January
were given by

J =

[
15 20

10 16

]
.

Suppose that the price of a Truck is $200 and that of a Passenger car is $100. Use
matrix multiplication to find the total values of the red and blue vehicles for the
month of January.

3.3 Types of Matrices

There are certain types of matrices that are so important that they have acquired names
of their own. In this section we are going to discuss some of these matrices and their
properties.

Definition 3.9 (Square Matrix). A matrix A is said to be square if it has the same
number of rows and columns. If A has n-rows and n-columns, we call it a square
matrix of size n.

Example 3.14. The following are square matrices.

A =

[
a b

c d

]
(Square matrix of size 2)

B =

1 2 −1
0 1 3

4 2 −2

 (Square matrix of size 3)

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

... . . . ...
cn1 cn2 . . . cnn

 (Square matrix of size n)

Definition 3.10 (Identity Matrix). A square matrix A = [aij]n×n is called an iden-
tity matrix if

aij =

{
1, if i = j

0, otherwise

and it is denoted by In.

Example 3.15. The following are identity matrices.

I2 =

[
1 0

0 1

]
(Identity matrix of size 2)

116



I3 =

1 0 0

0 1 0

0 0 1

 (Identity matrix of size 3)

In =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 (Identity matrix of size n)

Definition 3.11 (Diagonal Matrix). A square matrix D = [dij]n×n is said to be
diagonal if dij = 0 whenever i 6= j. Less formally, D is said to be diagonal when all
the entries off the main diagonal are 0.

Example 3.16. The following are diagonal matrices.

D =

[
1 0

0 1

]
(Diagonal matrix of size 2)

D =

2 0 0

0 4 0

0 0 5

 (Diagonal matrix of size 3)

D =

0 0 0

0 3 0

0 0 −2

 (Diagonal matrix of size 3)

D =

0 0 0

0 0 0

0 0 0

 (Diagonal matrix of size 3)

Note that the identity matrix is the special case of diagonal matrix where all the entries in
the main diagonal are 1.

Definition 3.12 (Scalar Matrix). A diagonal matrix in which all diagonal entries
are equal is called a scalar matrix.

Example 3.17. The following are scalar matrices.

(a)

[
3 0

0 3

]
(b)

2 0 0

0 2 0

0 0 2

 (c)

1 0 0

0 1 0

0 0 1


Definition 3.13 (Triangular Matrix). A square matrix A = [aij]n×n is said to be
lower triangular if and only if aij = 0 whenever i < j. A is said to be upper
triangular if and only if aij = 0 whenever i > j.
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Example 3.18.

(i)

3 2 1

0 2 7

0 0 3

 ,
0 −1 1

0 0 0

0 0 0

 ,
0 0 0

0 4 0

0 0 0

 (Upper triangular matrices).

(ii)

 3 0 0

1 2 0

−2 4 3

 ,
0 0 0

1 0 0

0 2 0

 ,
1 0 0

0 2 0

0 0 3

 (Lower triangular matrices).

Remark.

(a) In the lower triangular matrix all the entries above the main diagonal are zero, whereas
in the upper triangular matrix all the entries below the main diagonal are zero.

(b) Any diagonal matrix is both upper and lower triangular.

Definition 3.14 (Transpose of Matrix). Let A = [aij] be an m×n matrix . Then by
the transpose of A we mean the n ×m matrix, denoted by At, whose (i, j)-th entry
is the (j, i)-th entry of A. More precisely, if A = [aij]m×n, then At = [aji]n×m. That
is,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 , then At =


a11 a21 . . . am1

a12 a22 . . . am2

...
... . . .

...
a1n a2n . . . anm

 .

Note that the k-th row of matrix A becomes k-th column of At, and the k-th column of A
becomes k-th row of At.

Example 3.19. Compute the transposes of the following matrices.

A =

[
1 −1 −1
1 2 3

]
, B =

2 1 3

1 5 −3
3 −3 7


Solution: First let us consider matrix A. Now, row 1 of matrix A becomes column 1 of At,
and row 2 of A becomes column 2 of At. Thus, we have

At =

 1 1

−1 2

−1 3

 .
Similarly,

Bt =

2 1 3

1 5 −3
3 −3 7

 .
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Definition 3.15 (Symmetric Matrix). A square matrix A is said to be Symmetric if
A = At.

Example 3.20. Distinguish whether the given matrix is symmetric or not.

(a) A =

2 1 3

1 5 −3
3 −3 7

 (b) B =

1 1 3

1 2 2

3 2 3


Solution:

(a) For the matrix A =

 0 1 3

−1 0 2

−3 −2 0

, At =

0 −1 −31 0 −2
3 2 0

. Thus, we have A 6= At,

and hence A is not symmetric.

(b) For the matrix B =

1 1 3

1 2 2

3 2 3

, Bt =

1 1 3

1 2 2

3 2 3

. Thus, we have B = Bt, and

hence B is symmetric.

Theorem 3.5 (Properties of Matrix Transpose). When the relevant sums and prod-
ucts are defined, and α is a scalar. Then

1. (At)t = A.

2. (A+B)t = At +Bt.

3. (αA)t = α(At).

3. (AB)t = BtAt.

Exercise 3.3.

For the given matrices A =

[
1 −1
3 2

]
, and B =

[
3 −2
0 1

]
:

(a) Show that (At)t = A.

(b) Show that (A+B)t = At +Bt.

(c) Show that (4A)t = 4(At).

(d) Show that(AB)t = BtAt.
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3.4 Elementary row operations

Elementary row operations are useful to find the rank of a matrix (see Section 3.6), to com-
pute the determinants of matrices (see Section 3.7), and to find the inverse of a matrix (see
Section 3.8). Furthermore, elementary row operations are widely used in solving systems
of linear equations (see Section 3.9).

In this section, we introduce the elementary row operations and apply these operations to
transform the given matrix into different form.

Definition 3.16 (Elementary Row Operations).
Let A be an m× n matrix. The following are known as elementary row operations.

1. Interchanging two rows: Ri ↔ Rj .(Rule of Interchanging)

2. Multiplying a row by a nonzero scalar: Ri → αRi (α is a nonzero scalar).
(Rule of Scaling)

3. Adding a multiple of one row to another: Ri → Ri + αRj (α is a nonzero
scalar). (Rule of Replacement)

Example 3.21. Use elementary row operations to transform the given matrix A into, (a) an
upper triangular matrix, (b) an identity matrix.

A =

3 12 6

1 1 −1
1 2 3


Solution: Consider the given matrix A:

(a) First let us transform the matrix A into an upper triangular. This can be done as fol-
lows:

A =

3 12 6

1 1 −1
1 2 3

 R1 → (1
3
)R1

1 4 2

1 1 −1
1 2 3

(Scaling R1)

R2 → R2 + (−1)R1, R3 → R3 + (−1)R1

1 4 2

0 −3 −3
0 −2 1

 (Replacing R2 and R3)

R2 → (−1
3
)R2

1 4 2

0 1 1

0 −2 1

 (Scaling R2)

R3 → R3 + 2R2

1 4 2

0 1 1

0 0 3

(Replacing R3)
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Hence, the matrix

1 4 2

0 1 1

0 0 3

 is an upper triangular, which is obtained from A by

elementary row operations.

(b) To transform the matrix A into a diagonal matrix, we simply change all the entries
above the main diagonal into zeros and the entries in the main diagonal into 1. Let
us denote the above upper triangular matrix by B. Then we have

B =

1 4 2

0 1 1

0 0 3

 R3 → (1
3
)R3

1 4 2

0 1 1

0 0 1

 (Scaling R3)

R2 → R2 + (−1)R3, R1 → R1 + (−2)R3

1 4 0

0 1 0

0 0 1

 (Replacing R1 and R2)

R1 → R1 + (−4)R2

1 0 0

0 1 0

0 0 1

 (Replacing R1). Thus, I3 =

1 0 0

0 1 0

0 0 1

 is the

identity matrix obtained from A.

Definition 3.17. Two matrices are said to be raw equivalent if one can be obtained
from the other by a sequence of elementary row operations.

Example 3.22. Let A,B, I3 be the matrices in Example 3.21. Then, A is row equivalent
to both B and the identity matrix I3. Also the matrix B is row equivalent to the identity
matrix I3.

Exercise 3.4.

1. Given the matrix A =

[
4 3

2 1

]
, use elementary row operations to find the lower trian-

gular matrix which are row equivalent to A.

2. Given the matrix B =

0 1 1

1 0 1

1 1 0

, use elementary row operations to find an identity

matrix which is row equivalent to B.

3.5 Row Echelon Form and Reduced Row Echelon Form of a Matrix

In order to find the rank, or to compute the inverse of a matrix, or to solve a linear system,
we usually write the matrix either in its row echelon form or reduced row echelon form.
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Definition 3.18. An m × n matrix is said to be in echelon form (or row echelon
form) if the following conditions are satisfied:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it. (A leading entry refers to the left most nonzero entry in a
nonzero row)

3. All entries in a column below a leading entry are zeros.

If a matrix in row echelon form satisfies the following additional conditions, then it
is in reduced echelon form (or reduced row echelon form)

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

A matrix in row echelon form is said to be in reduced row echelon when every
column that has a leading 1 has zeros in every position above and below the leading
entry.

Example 3.23. The given matrices A,B,C,D are in row echelon form

A =

1 −1 0

0 5 0

0 0 1

 , B =

4 0 0

0 0 0

0 0 0

 , C =

[
1 0 5 2

0 0 1 3

]
, D =

1 2 0

0 5 1

0 0 0


and the following are in reduced row echelon form.

P =

1 0 0

0 1 0

0 0 1

 , Q =

1 0 0

0 1 4

0 0 0

 , R =

[
1 0 0 2

0 0 1 2

]
, S =

1 1 0

0 0 1

0 0 0


Theorem 3.6 (Uniqueness of the Reduced Echelon Form). Each matrix is row equivalent
to one and only one reduced echelon matrix.

Definition 3.19. A pivot position in a matrix A is a location in A that corresponds
to a leading 1 in the reduced row echelon form of A. A pivot column is a column
of A that contains a pivot position. A pivot element is a nonzero number in a pivot
position that is used as needed to create zeros via row operations.
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To write a matrix in reduced echelon form:

1. Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

2. Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

3. Use row replacement operations to create zeros in all positions below the pivot.

4. Cover (or ignore) the row containing the pivot position and cover all rows,
if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the
process until there are no more nonzero rows to modify.

5. Beginning with the rightmost pivot column and working upward and to the
left, create zeros above each pivot. If a pivot is not 1, make it 1 by a scaling
operation.

Example 3.24. Find the reduced row echelon form of the matrix A.

A =

0 0 2 3

0 2 0 1

0 1 1 5

 .
Solution:
Step 1: Here, the left most nonzero column is the second column.
Step 2: By row interchanging rule, we can obtain the pivot position as follows;0 0 2 3

0 2 0 1

0 1 1 5

 R1 ↔ R3

0 1 1 5

0 2 0 1

0 0 2 3


Step 3:
Now, the leading entry is 1, and to create zeros in all positions below the pivot, we use the
replacement rule:

R2 → R2 + (−2)R1

0 1 1 5

0 0 −2 −9
0 0 2 3


Step 4:
Now we proceed to the second row. Here, the leading entry is −2. Using a scaling rule we
obtain a leading 1:

R2 → (−1

2
)R2

0 1 1 5

0 0 1 9
2

0 0 2 3


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And applying row replacement rule:

R3 → R3 + (−2)R2

0 1 1 5

0 0 1 9
2

0 0 0 −6


And scaling R3,

R3 ↔ (−1

6
)R3

0 1 1 5

0 0 1 9
2

0 0 0 1


Step 5: Beginning with the rightmost pivot column, we create zeros above each pivot
element. That is, we start from the fourth column:

R1 → R1 + (−5)R3 , R2 → R2 + (−9

2
)R3

0 1 1 0

0 0 1 0

0 0 0 1


And using row replacement (to create zeros above the pivot element in the third column),

R1 → R1 + (−1)R2,

0 1 0 0

0 0 1 0

0 0 0 1

 .
Thus, the required matrix in reduced row echelon form is given by

Ã =

0 1 0 0

0 0 1 0

0 0 0 1

 .
Exercise 3.5.

1. Determine which matrices are in reduced row echelon form.

A =

[
1 2 0

0 1 7

]
, B =

1 0 0 0

0 0 1 2

0 0 0 0

 , C =

1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3


2. Give the row echelon form and also the reduced row echelon form of the following

matrices.

A =


1 2 3

2 1 −2
3 0 0

3 2 1

 , B =

 1 2 1 3

−3 2 1 0

3 2 1 1

 , C =

1 2 0 3

2 1 2 2

1 1 0 3


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3.6 Rank of matrix using elementary row operations

The ranks of matrices are useful in determining the number of solutions for linear systems.

Definition 3.20 (Rank of Matrix). Rank of anm×nmatrixA, denoted by rank(A),
is the number of nonzero rows of the reduced row echelon form of A.

Example 3.25. Determine the ranks of the following matrices which, are in reduced row
echelon form.

A =

1 0 0

0 1 0

0 0 1

 , B =

1 0 0

0 1 4

0 0 0

 , C =

[
1 0 0 2

0 0 1 2

]
, D =

1 1 0

0 0 0

0 0 0


Solution: Clearly, all the matrices are in reduced row echelon form. Hence, by Definition
3.20, we have rank(A) = 3 (since the number of nonzero rows in matrixA is 3). Similarly,
rank(B) = 2 (since the number of nonzero rows in matrixB is 2), rank(C) = 2 (since the
number of nonzero rows in matrix C is 2), and rank(D) = 1 (since the number of nonzero
rows in matrix D is 1).

Example 3.26. Find rank(A), where A =

1 1 2

2 2 5

3 3 2

.

Solution: After a sequence of elementary row operations, we obtain the reduced echelon
form of A, which is given by

Ã =

1 1 0

0 0 1

0 0 0

 .
Thus, rank(A) = 2.

Remark. The matrix A and its transpose At have the same rank. That is

rank(A) = rank(At).

Example 3.27. Verify that the given matrix A and its transpose At have the same rank.

A =

1 1 2

0 1 1

0 0 0−

 , and At =

1 0 0

1 1 0

2 1 0


Solution: Observe that the matrix A is in its row echelon form, and hence its rank is 2.
Now, we apply elementary row operations to reduce matrix At into its row echelon form,
and and we get that 1 1 0

0 1 0

0 0 0


Thus, rank(At) = 2 = rank(A).
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Exercise 3.6. Determine the rank of the following matrices.

A =

[
1 2 0

0 1 7

]
, B =

1 0 0 0

0 0 1 2

0 0 0 0

 , C =

1 1 0 0 0 5

0 0 1 2 0 4

0 0 0 0 1 3



P =


1 2 3

2 1 −2
3 0 0

3 2 1

 , Q =

 1 2 1 3

−3 2 1 0

3 2 1 1

 , R =

1 2 0 3

2 1 2 2

1 1 0 3



3.7 Determinant and its properties

The determinant is a function that takes a square matrix as an input and produces a scalar
as an output. It has many beneficial properties for studying, matrices and systems of equa-
tions.

Definition 3.21 (Determinant of 2× 2 matrix). The determinant of a 2× 2 matrix

A =

[
a c

d b

]
, denoted by det(A) (or |A|), is defined by the formula

det(A) =

∣∣∣∣a c

d b

∣∣∣∣ = ab− cd.

Example 3.28. Find the determinant of a matrix A =

[
5 2

3 4

]
.

Solution: Using Definition 3.21, the determinant of matrix A is given by

det(A) =

∣∣∣∣5 2

3 4

∣∣∣∣ = (5)(4)− (3)(2) = 14.

The determinant of a 3× 3 matrix can be defined using the determinants of 2× 2 matrices.

Definition 3.22 (Determinant of 3× 3 Matrix). Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


be a 3 × 3 matrix, and Aij (for i, j = 1, 2, 3) be the 2 × 2 submatrix of A obtained
by deleting the ith-raw and the jth-column of A. Then determinant of A is denoted
by det(A) (or |A|), and is defined as:

|A| = (−1)1+1a11|A11|+ (−1)1+2a12|A12|+ (−1)1+3a13|A13|

= a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣ .
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Example 3.29. Compute the determinant of a matrix A =

∣∣∣∣∣∣
2 4 0

3 −1 2

2 1 1

∣∣∣∣∣∣.
Solution: Using Definition 3.22, the determinant is given by

det(A) =

∣∣∣∣∣∣
2 4 0

3 −1 2

2 1 1

∣∣∣∣∣∣ = 2

∣∣∣∣−1 2

1 1

∣∣∣∣− 4

∣∣∣∣3 2

2 1

∣∣∣∣+ 0

∣∣∣∣3 −12 1

∣∣∣∣
= 2(−1− 2)− 4(3− 4) + 0(3 + 2) = −6 + 4 + 0 = −2.

So far we discussed the determinants of 2 × 2 and 3 × 3 matrices. Next we define the
determinant of an n× n matrix for each positive integer n.

Definition 3.23 (Minors and Cofactors).
Let A = (aij)n×n, and Aij be the submatrix of A obtained by deleting the ith-raw
and jth-column of A for i, j = 1, 2, 3, ..., n. Then

(a) The minor for A at location (i, j), denoted by Mij(A), is the determinant of
the submatrix Aij . That is, Mij(A) = det(Aij).

(b) The cofactor, denoted by Cij(A), for A at location (i, j) is the sighed determi-
nant of the submatrix Aij . That is, Cij(A) = (−1)i+jdet(Aij).

Remark. In Definition 3.23, the cofactor Cij(A) at location (i, j) can be computed
using the following formula:

Cij(A) =

{
det(Aij), if i+ j is even
−det(Aij), if i+ j is odd.

Example 3.30. Compute the matrix of cofactors for the given matrix.

(a) A =

[
1 1

−1 2

]
(b) B =

1 0 2

1 1 3

2 0 1


Solution: (a) The minors of A are

M11(A) = 2, M21(A) = 1, M12(A) = −1, M22(A) = 1,

and the cofactors are

C11(A) = (−1)1+1M11(A) = (1)(2) = 2, C21(A) = (−1)2+1M21(A) = (−1)(1) = −1,

C12(A) = (−1)1+2M12(A) = (−1)(−1) = 1, C22(A) = (−1)2+2M12(A) = (1)(1) = 1.
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Thus, the matrix of cofactors for A is

[Cij(A)] =

[
2 1

−1 1

]
.

(b) The minors of B are

M11(B) =

∣∣∣∣1 3

0 1

∣∣∣∣ = 1, M21(B) =

∣∣∣∣0 2

0 1

∣∣∣∣ = 0, M31(B) =

∣∣∣∣0 2

1 3

∣∣∣∣ = −2,

M12(B) =

∣∣∣∣1 3

2 1

∣∣∣∣ = −5, M22(B) =

∣∣∣∣1 2

2 1

∣∣∣∣ = −3, M32(B) =

∣∣∣∣1 2

1 3

∣∣∣∣ = 1,

M13(B) =

∣∣∣∣1 1

2 0

∣∣∣∣ = −2, M23(B) =

∣∣∣∣1 0

2 0

∣∣∣∣ = 0 and M33(B) =

∣∣∣∣1 0

1 1

∣∣∣∣ = 1,

and the confactors are

C11(B) = (−1)1+1M11(B) = 1, C21(B) = (−1)2+1M21(B) = 0,

C31(B) = (−1)3+1M31(B) = −2, C12(B) = (−1)1+2M12(B) = 5,

C22(B) = (−1)2+2M22(B) = −3, C32(B) = (−1)3+2M32(B) = −1,

C13(B) = (−1)1+3M13(B) = −2, C23(B) = (−1)2+3M23(B) = 0,

and C33(B) = (−1)3+3M33(B) = 1.

Thus, the matrix of cofactors for B is

[Cij(B)] =

 1 5 −2
0 −3 0

−2 −1 1

 .
Definition 3.24 (Determinants of n × n Matrix). The determinant of a square
matrix A = [aij] of size n× n, denoted by det(A) (or |A|), is defined recursively as
follows: if n = 1 then det(A) = a11; otherwise, we suppose that determinants are
defined for all square matrices of size less than n and specify that

det(A) =
n∑
k=1

ak1Ck1(A) = a11C11(A) + a21C21(A) + ...+ an1Cn1(A), (3.1)

where Cij(A) is the (i, j)-th cofactor of A. The formula (3.1) is called a cofactor
expansion across the 1st column of A.

Example 3.31. Consider the matrices given in Example 3.30,

A =

[
1 1

−1 2

]
and B =

1 0 2

1 1 3

2 0 1

 .
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The cofactors of matrices A and B, respectively, are given by

[
2 1

−1 1

]
and

 1 5 −2
0 −3 0

−2 −1 1

 .
Now, using Definition 3.24, we have

det(A) = a11C11 + a21C21 = (1)(2) + (−1)(−1) = 3, and

det(B) = b11C11 + b21C21 + b31C31 = (1)(1) + (1)(0) + (2)(−2) = −3.

Example 3.32. Compute the determinant of matrix A:

A =

1 1 0

0 2 1

1 2 0


(a) by expanding the cofactrs across the 1st row

(b) by expanding the cofactrs across the 1st column

Solution: We have the matrix of cofactors Cij(A), given by

[Cij(A)] =

−2 1 −2
0 0 −1
1 −1 2

 .
(a) Now, expanding the cofactors across the 1st row, we have

det(A) = a11C11(A)+a12C12(A)+a13C13(A) = (1)(−2)+(1)(1)+(0)(−2) = −1.

(b) Similarly, expanding cofactors across the 1st column, we have

det(A) = a11C11(A) + a21C21(A) + a31C31(A) = (1)(−2)+ (0)(0) + (1)(1) = −1.

Observe that the determinant has the same value for expansions of cofactors across the 1st

row as well as the 1st column. This is true in general, i.e., the determinant value is the same
for the expansions of cofactors across any row or any column. This is briefly stated in the
following theorem.
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Theorem 3.7. The determinant of an n × n matrix A can be computed by cofactor
expansion across any row or any column. The expansion across ith row is

det(A) =
n∑
j=1

aijCij(A) = ai1Ci1(A) + ai2Ci2(A) + ...+ ainCin(A)

= (−1)i+1ai1|Ai1|+ (−1)i+2ai2|Ai2|+ ...+ (−1)i+nain|Ain|

and the expansion across jth column is

det(A) =
n∑
i=1

aijCij(A) = a1jC1j(A) + a2jC2j(A) + ...+ anjCnj(A)

= (−1)1+ja1j|A1j|+ (−1)2+ja2j|A2j|+ ...+ (−1)n+janj|Anj|

Remark. In Theorem 3.7, if the matrix A (for instance) is of size 3 × 3, then the
determinants can be easily computed as follows.

(i) The expansion across 2nd row is

|A| = −a21|A21|+ a22|A22|+ a23|A23|.

(ii) The expansion across 3rd column is

|A| = a13|A13| − a23|A23|+ a33|A33|.

(iii) The sign + or − can be determined using the pattern.+ − +

− + −
+ − +


(iv) The computation of determinants becomes easier by expanding the cofactors

across a row or column with the most zero entries.

Example 3.33. Compute the determinant of matrix A by expanding the cofactors across an
appropriate row or column.

A =

1 1 0

0 2 1

1 2 0


Solution: Here, we observe that the 3rd column has more number of zero entries than any
other columns and rows. Thus, the determinant of A (by expanding the cofactors across the
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3rd column) is given by

det(A) = a13|A13| − a23|A23|+ a33|A33| = 0− 1 + 0 = −1.

Properties of determinats: Let A be the square matrix of size n.

1. If an entire row (or an entire column) consists of zeros, then det(A) = 0.

2. If two rows (or columns) are equal, then det(A) = 0.

3. If one row (or column) is a scalar multiple of another row (or column), then
det(A) = 0.

4. If A,B and C, respectively, are the upper triangular, lower triangular, and
diagonal matrices, given by

A =

a11 a12 a13
0 a22 a23
0 0 a33

 , B =

b11 0 0

b21 b22 0

b31 b32 b33

 , D =

d11 0 0

0 d22 0

0 0 d33

 ,
then

det(A) = a11a22a33, det(B) = b11b22b33, and det(D) = d11d22d33.

That is, the determinants of the triangular and diagonal matrices are simply
the products of the entries in the main diagonal.

Example 3.34. Determine the determinants of the following matrices.

A =

1 2 3

0 0 0

1 2 0

 , B =

1 1 0

0 2 0

1 2 0

 , C =

 1 1 0

−2 2 1

1 1 0

 , D =

 1 1 3

−1 −1 −3
1 2 0


Solution: We have, det(A) = 0 (since the entire second row of matrixA consists of zeros),
det(B) = 0 (since the entire third column of matrixA consists of zeros), det(C) = 0 (since
the first and third rows of C are equal), and det(D) = 0 (since the second row of D is a
scalar multiple of the first row).

Example 3.35. Compute the determinants of the following matrices.

A =

4 3 −6
0 2 9

0 0 3

 , B =

3 0 0

3 4 0

2 1 5

 , D =

4 0 0

0 6 0

0 0 5


Solution: Using the properties of determinants, we have

det(A) =

∣∣∣∣∣∣
4 3 −6
0 2 9

0 0 3

∣∣∣∣∣∣ = (4)(2)(3) = 24, det(B) =

∣∣∣∣∣∣
3 0 0

3 4 0

2 1 5

∣∣∣∣∣∣ = (3)(4)(5) = 60, and
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det(D) =

∣∣∣∣∣∣
2 0 0

0 3 0

0 0 5

∣∣∣∣∣∣ = (2)(3)(5) = 30.

Theorem 3.8. For any square matrix A, det(A) = det(At) (Transposition doesn’t
alter determinants).

Example 3.36. For the given matrix A, verify that det(A) = det(At).

A =

1 0 2

2 −1 1

1 1 3


Solution: The transpose of matrix A is given by

At =

1 2 1

0 −1 1

2 1 3

 .
Now, we have the determinants of A and At are

det(A) = 2, and det(At) = 2.

Thus, det(A) = det(At).

Theorem 3.9 (Effects of elementary row operations).

I. If matrix B is obtained from a square matrix A by interchanging any two rows
(i.e., Ri ↔ Rj), then det(B) = −det(A). (Interchanging)

II. If matrix B is obtained from a square matrix A by multiplying the ith row by a
nonzero scalar α (i.e., Ri → αRi), then det(B) = αdet(A). (Scaling)

III If matrix B is obtained from a square matrix A by adding scalar multiple of
one row to the other (i.e., Ri → Ri + αRj), then det(B) = det(A). (Replace-
ment)

Example 3.37. Let A =

3 1 0

1 0 1

0 1 −1

 be the given matrix with det(A) = −2.

(a) If a matrix B is obtained from A by interchanging the first and second rows
(i.e., R1 ↔ R2), then we have

det(B) =

∣∣∣∣∣∣
1 0 1

3 1 0

0 1 −1

∣∣∣∣∣∣ = 2.
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Thus, det(B) = −det(A). Here, we observe that if the row interchanging has been
made two times, then det(B) = (−1)2det(A) = det(A). In general, if the row
interchanging has been made n times, then det(B) = (−1)ndet(A). Thus, det(B) =

det(A) if n is even, and det(B) = −det(A) if n is odd.

(b) If a matrix B is obtained from A by multiplying the second row by 4
(i.e., R2 → 4R2), then we have

B =

∣∣∣∣∣∣
3 1 0

4 0 4

0 1 −1

∣∣∣∣∣∣ = −8.
Thus, det(B) = 4det(A). If each row of matrix A is multiplied by 4, then we have

det(B) = 43det(A).

More generally, if A is an n × n matrix, and B is obtained by multiplying each row
of A by a nonzero scalar c, then we have det(B) = det(cA) = cndet(A).

(c) If a matrix B is obtained by replacing row 2 (i.e., R2 → R2 + 2R1), then

det(B) =

∣∣∣∣∣∣
3 1 0

7 2 1

0 1 −1

∣∣∣∣∣∣ = 2. Thus, det(B) = det(A).

Remark. Property (III) of determinants in Theorem 3.9 is particularly more inter-
esting, since it doesn’t change the determinant of the original matrix. This property
can be used to transform the given matrix into triangular matrix (upper or lower) for
which the computation of determinants is much easier than computing the determi-
nant of the original matrix directly, which is tedious and computationally inefficient.

Example 3.38. Compute the determinants of the matrices A and B using elementary row
operations.

A =

1 1 2

2 3 1

0 1 4

 , B =


1 1 2 2

2 3 5 6

1 3 5 3

1 1 3 6


Solution:

(a) Consider the given matrix A. Applying the row replacement; R2 → R2 − 2R1 and
then R3 → R3 −R2, we obtain the following upper triangular matrix.

Ã =

1 1 2

0 1 −3
0 0 7


Therefore, by Theorem 3.9 we have det(A) = det(Ã) = (1)(1)(7) = 7.
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(b) Similarly, by applying the row replacement

R2 → R2 − 2R1, R3 → R3 −R1, R4 → R4 −R1,

we obtain the following row equivalent matrix.

B̃ =


1 1 2 2

0 1 1 2

0 2 3 1

0 0 1 4


Now, the determinant of the matrix B̃ (by expanding the cofactors across the 1st

column and using the determinant of matrix A computed above) is given by

B̃ =

∣∣∣∣∣∣∣∣
1 1 2 2

0 1 1 2

0 2 3 1

0 0 1 4

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣∣
1 1 2

2 3 1

0 1 4

∣∣∣∣∣∣ = (1)(7) = 7.

Therefore, by Theorem 3.9 we have det(B) = det(B̃) = 7.

Theorem 3.10 (Product Rule).
If A and B are two matrices for which the product AB is defined, then

det(AB) = det(A)det(B).

Example 3.39. Let A =

[
1 2

3 −1

]
and B =

[
2 0

1 4

]
be the given matrices. Then verify that

det(AB) = det(A)det(B).

Solution: Here, we have

AB =

[
4 8

5 −4

]
, det(AB) = −56, det(A) =

∣∣∣∣1 2

3 −1

∣∣∣∣ = −7, and det(B) =

∣∣∣∣2 0

1 4

∣∣∣∣ = 8.

Thus,
det(A)det(B) = (−7)(8) = −56 = det(AB).

Definition 3.25 (Definition of rank using Determinant). LetA be anm×nmatrix.
Then rank(A) = r, where r is the largest number such that some r× r submatrix of
A has a nonzero determinant.
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Example 3.40. Compute the the rank of matrix A =

[
1 0 2 −1
2 −3 2 0

]
using determinants.

Solution: Observe that, the largest possible size of any square submatrix of A is 2× 2. We

have (say) a submatrix
[
1 0

2 −3

]
(which is obtained by deleting the last two columns of A)

with
∣∣∣∣1 0

2 −3

∣∣∣∣ = −3 6= 0. Therefore, rank(A) = 2.

Exercise 3.7.

1. Compute the determinants of the following matrices using elementary row opera-
tions.

A =

[
1 2

3 4

]
, B =

 1 0 −2
5 −3 −1
−2 0 1


2. Compute the determinants of the following matrices by expanding cofactors across

any appropriate row or column.

A =

 1 3 0

−1 2 0

6 1 2

 , B =


1 3 0 1

−1 2 0 1

5 0 0 0

4 1 1 2

 , C =


0 3 1 0 2

0 2 1 0 2

5 1 −1 3 3

0 0 1 0 0

4 1 1 0 1


3. Compute the matrix of cofactors for the given matrices.

A =

[
1 −2
2 3

]
, B =

 1 0 −2
−1 1 4

2 0 3

 , C =


3 2 1 1

−1 0 2 0

4 1 −1 0

3 0 1 0


4. Determine the ranks of the following matrices using determinants.

A =

 1 2 3 0 1

2 1 3 2 4

−1 2 1 3 1

 , B =


1 2 0

3 2 1

2 1 0

0 2 1

 , C =


1 0 0

4 1 1

2 1 0

0 2 0


3.8 Adjoint and Inverse of a Matrix

The inverses of matrices are useful to solve linear systems. In this section, we define the
inverse of a matrix, we discuss different methods to compute an inverse, and the properties
of inverses.
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Definition 3.26 (Adjoint of a Matrix). LetA be an n×nmatrix. If [Cij(A)] denotes
the matrix of cofactors for A, then the adjugate (or adjoint) matrix of A, denoted by
Adj(A), is defined by the formula

Adj(A) = [Cij(A)]
t

That is, adjoint of matrix A is the transpose of the matrix of cofactors for A.

Example 3.41. Compute the adjoints of the given matrices.

A =

[
1 0

−1 2

]
, and B =

1 0 2

1 1 3

2 0 1


Solution: The matrix of cofactors for A is

[Cij(A)] =

[
2 1

0 1

]
.

Thus, the adjoint of matrix A is

Adj(A) = [Cij(A)]
t =

[
2 0

1 1

]
.

The matrix of cofactors for B is given by

[Cij(B)] =

 1 5 −2
0 −3 0

−2 −1 1

 .
Thus, the adjoint of matrix B is

Adj(B) = [Cij(B)]t =

 1 0 −2
5 −3 −1
−2 0 1

 .
Definition 3.27 (Inverse of a Matrix). LetA be an n×n square matrix. The inverse
of matrix A is an n× n matrix B such that

AB = In = BA,

where In is the n × n identity matrix. If such a Matrix B exists, then the matrix
A is said to be invertible (or nonsingular), and its inverse is denoted by A−1 (i.e.
B = A−1). A matrix that does not have an inverse is said to be noninvertible (or
singular).
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Example 3.42. Consider the following matrices:

A =

[
2 3

1 1

]
, B =

[
−1 3

1 −2

]
, C =

2 3 1

1 2 0

0 0 1

 , D =

 2 −3 −2
−1 2 1

0 0 1

 .
Then we have

AB =

[
2 3

1 1

] [
−1 3

1 −2

]
=

[
1 0

0 1

]
=

[
−1 3

1 −2

] [
2 3

1 1

]
= BA

That is, the products AB and BA give us the identity matrix I2. Therefore, matrix B is the
inverse of A i.e., A−1 = B.

Similarly, we have

CD =

1 0 0

0 1 0

0 0 1

 = DC.

Thus, the matrix D is the inverse of C i.e., C−1 = D.

Theorem 3.11. Let A be an n × n matrix. If A is invertible (non singular) then
det(A) 6= 0, and the inverse A−1 is given by the formula

A−1 =
1

det(A)
Adj(A).

Example 3.43. Compute the inverse of the given matrix A.

A =

1 0 0

0 2 0

0 0 3


Solution: We have, det(A) = 6,

[Cij(A)] =

6 0 0

0 3 0

0 0 2

 , and Adj(A) = [Cij(A)]
t =

6 0 0

0 3 0

0 0 2

 .
Therefore, by Theorem 3.11, we have

A−1 =
1

det(A)
Adj(A) =

1

6

6 0 0

0 3 0

0 0 2

 =

1 0 0

0 1
2

0

0 0 1
3

 .
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Theorem 3.12 (Laws of Inverse). Let A,B,C be matrices of appropriate sizes so
that the following multiplications make sense, I is a suitably sized identity matrix,
and α a nonzero scalar. Then

i. If the matrix A is invertible, then it has one and only one inverse, A−1.

ii. If A is invertible matrix of size n×n, then so is A−1 and hence, (A−1)−1 = A.

iii If any two of the three matrices A,B,AB are invertible, then so is the third,
and moreover, (AB)−1 = B−1A−1.

iv If the matrix A is invertible, then so is αA. Moreover, (αA)−1 = 1
α
A−1.

v If the matrix A is invertible, then so is At. Moreover (At)−1 = (A−1)t.

vi Suppose A is invertible. If AB = AC or BA = CA, then B = C.

Example 3.44. Let A =

[
1 −1
1 0

]
be the given matrix. Then we have

A−1 =

[
0 1

−1 1

]
, and (A−1)t =

[
0 −1
1 1

]
.

Now,

(a) 2A =

[
2 −2
2 0

]
and (2A)−1 =

[
1
2

1
2

−1
2

0

]
= 1

2
A−1. Thus, we have (2A)−1 = 1

2
A−1.

(b) At =
[
1 1

−1 0

]
and (At)−1 =

[
0 −1
1 1

]
. Thus, we have (At)−1 = (A−1)t.

Computation of Inverse Using Elementary Row Operations: Gauss-Jordan Elimina-
tion

Let A be an n× n invertible matrix and In be the identity matrix of size n× n.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .

an1 an2 . . . ann

 , In =


1 0 . . . 0

0 1 . . . 0

. . . . . .

0 0 . . . 1


Then the inverse A−1 can be obtained using elementary row operations as follows.
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Finding the Inverse of a Matrix by Gauss-Jordan Elimination

1. Write the n × 2n matrix that consists of A on the left and the n × n identity
matrix In on the right to obtain [A|In]. This process is called adjoining matrix
In to matrix A.

2. If possible, row reduce A to In using elementary row operations on the entire
matrix [A|In]. The result will be the matrix [In|A−1]. If this is not possible,
then A is noninvertible (or singular).

3. Check your work by multiplying to see that AA−1 = In = A−1A.

Example 3.45. Compute the inverses of the given matrices using Gauss-Jordan Elimination.

A =

[
1 −1
3 2

]
, B =

1 0 0

0 2 0

0 0 3


Solution: Let A =

[
1 −1
3 2

]
. Then we have

[A|I2] =
[
1 −1
3 2

∣∣∣∣1 0

0 1

]
R2 → R2 + (−3)R1

[
1 −1
0 5

∣∣∣∣ 1 0

−3 1

]

R2 →
1

5
R2

[
1 −1
0 1

∣∣∣∣ 1 0

−3
5

1
5

]
R1 → R1 +R2

[
1 0

0 1

∣∣∣∣ 2
5

1
5

−3
5

1
5

]
.

Therefore, the transformed matrix is

[I2|A−1] =

[
1 0

0 1

∣∣∣∣ 2
5

1
5

−3
5

1
5

]

and hence, the inverse of matrix A is given by A−1 =

[
2
5

1
5

−3
5

1
5

]
.

Similarly, for B =

1 0 0

0 2 0

0 0 3

,

[A|I3] =

1 0 0

0 2 0

0 0 3

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

R2 →
1

2
R2

1 0 0

0 1 0

0 0 3

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1



R3 →
1

3
R3

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1
3


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Therefore, the transformed matrix is

[I3|A−1] =

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

0 1
2

0

0 0 1
3



Thus, A−1 =

1 0 0

0 1
2

0

0 0 1
3

.

Exercise 3.8.

1. For the given matrices A and B, compute the adjoint matrices.

A =

[
1 −2
2 3

]
, B =

 1 0 −2
−1 1 4

2 0 3


2. Compute the inverse of the given matrix (if it exists).

A =

[
1 2

4 −2

]
, B =

1 0 −2
0 1 2

0 1 3


3. Compute the inverse (if it exists) of the given matrix using elementary row opera-

tions.

A =

[
4 1

2 3

]
, B =

1 2 3

1 3 4

1 4 4

 , C =


1 1 2 1

0 2 0 0

0 2 1 −2
0 3 2 1


3.9 System of Linear Equations

Consider an oil refinery that produces gasoline, kerosene and jet fuel form light crude oil
and heavy crude oil. The refinery produces 0.3, 0.2 and 0.4 of gasoline, kerosene and jet
fuel, respectively, per barrel of light crude oil. And it produces 0.2, 0.4 and 0.3 of gasoline,
kerosene and jet fuel, respectively, per barrel of heavy crude oil. This is shown in Table 2.
Note that 10% of each of the crude oil is lost during the refining process.

Table 2

Gasoline Kerosene Jet fuel

Light crude oil 0.3 0.2 0.4

Heavy crude oil 0.2 0.4 0.3
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Suppose that the refinery has contracted to deliver 550 barrels of gasoline, 500 barrels of
kerosene, and 750 barrels of jet fuel. The problem is to find the number of barrels of each
crude oil that satisfies the demand.

If l and h represent the number of barrels of light and heavy crude oil, respectively, then
the given problem can be expressed as a system of linear equations

0.3l + 0.2h = 550

0.2l + 0.4h = 500

0.4l + 0.3h = 750

The given linear system has three equations and two unknowns. The matrix0.4 0.2

0.2 0.4

0.4 0.4


is known as the coefficient matrix of the system, and the right side of the system is a matrix550500

750

 .
With the column vector of unknowns

[
l

h

]
, the above information can be organized in

matrix form 0.3 0.2

0.2 0.4

0.4 0.3

[ l
h

]
=

550500

750

 .
Example 3.46. Consider the following system of two equations and two unknowns x, y

ax+ by = b1
cx+ dy = b2

.

If we interpret (x, y) as coordinates in the xy-plane, then each of the two equations repre-
sents a straight line, and (x∗, y∗) is a solution if and only if the point P with coordinates
x∗, y∗ lies on both lines. In this case, there are three possible cases: there exists only one
solution if the lines intersect (see Figure 1 a), there are infinitely many solutions if the lines
coincide (see Figure 1 b) and the system has no solution if the lines are parallel (see Figure
1 c).
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x+y=1
2x+2y=2

x+y=1
x+y=0

x+y=1
2x−y=0

(a) (c)(b)

Figure 1: In this figure: (a) represents the case where the lines intersect (b) represents the
case where the lines coincide (c) represents the case where the lines are parallel

Let us briefly discuss the three different cases: In part (a) the linear system is given by

x+ y = 1

2x− y = 0.

This system has only solution, namely (x, y)=(1
3
, 2
3
).

In part (b) the linear system is given by

x+ y = 1

2x+ 2y = 2.

This system has infinitely many solutions. In fact, the point (α, 1−α) is a solution for each
real number α.

And finally, in part (c) the linear system is given by

x+ y = 1

x+ y = 0,

which has no solutions, since the expressions in the left side of the two equations are the
same, but different values in the right side of the two equations.
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Definition 3.28. A linear system (or system of linear equations) of m-equations in
n-unknowns x1, x2, x3, ..., xn is a set of equations of the form

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

am1x1 + am2x2 + ...+ amnxn = bm,

(3.2)

where aij’s (for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n), are given numbers, called
the coefficients of the system, and b1, b2, b3, ..., bm on the right side are also numbers.

A solution of (3.2) is a set of numbers x1, x2, x3, ..., xn that satisfies all the m-equations
simultaneously.

Matrix Form of a Linear System
From the definition of matrix multiplication, we see that the m-equations of (3.2) may be
written as a single vector equation

Ax = b, (3.3)

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bm

 ,
are known as the coefficient matrix, the column vector of unknowns and the column vector
of numbers, respectively. We assume that the coefficients aij are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components.

For the system of linear equations in (3.2), precisely one of the statements below is true:

1. It admits a unique Solution: There is one and only one vector x = (x1, x2, x3, ..., xn)

that satisfies all the m-equations simultaneously (the system is consistent).

2. It has infinitely Many Solutions: There are infinitely many different values of x
that satisfy all the m-equations simultaneously (the system is said to be consistent).

3. Has no Solution: There is no vector x that satisfies all equations simultaneously, or
the solution set is empty (the system is said to be inconsistent).

3.9.1 Gaussian Elimination

Gaussian elimination, also known as row reduction, is used for solving a system of linear
equations. It is usually understood as a sequence of elementary row operations performed
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on the corresponding matrix of coefficients.

Consider the linear system given in (3.2). The augmented matrix which represents the
system is given by

[A|b] =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .

am1 am2 . . . amn

∣∣∣∣∣∣∣∣
b1
b2
.

bm

 .
Then, the idea here is, we solve the linear system whose augmented matrix is in row echelon
form, which is row equivalent to the original system. And, we have the following theorem
on the row equivalent linear systems.

Theorem 3.13. Row-equivalent linear systems have the same set of solutions.

Thus, if the augmented matrix is initially in row echelon form, then we simply solve it by
using back substitution. If it is not, then first rewrite it as a row equivalent system whose
augmented matrix is in its row echelon form, and then apply Theorem 3.13.

Example 3.47. Rewrite the following linear system as a row equivalent system, and then
solve it.

x1 − x2 = 1

x1 + 2x2 = 4.

Solution: Here, the augmented matrix of the given system is

[A|b] =
[
1 −1
1 2

∣∣∣∣14
]
,

which has row echelon form (after a sequence of elementary operations)

˜[A|b] = [1 −1
0 1

∣∣∣∣11
]
.

Thus, the row equivalent system is

x1 − x2 = 1

x2 = 1.

Clearly, solving the above linear system (whose augmented matrix is in row echelon form)
is much easier than solving the original system. The only solution of the linear system
(represented by an augmented matrix in row echelon form) is (x1, x2) = (2, 1). And, hence
by Theorem 3.13, a vector (x1, x2) = (2, 1) also solves the original linear system.
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Gaussian Elimination:

(a) Write the augmented matrix for the linear system.

(b) Use elementary row operations to rewrite the matrix in row echelon form.

(c) Write the system of linear equations corresponding to the matrix in row eche-
lon form, and use back-substitution to find the solution.

Example 3.48. Consider an oil refinery’s problem which is given as a system of linear
equations

0.3l + 0.2h = 550

0.2l + 0.4h = 500

0.4l + 0.3h = 750

where l and h represent the number of barrels of light and heavy crude oil, respectively.
The augmented matrix of the given linear system is

[A|b] =

0.3 0.2

0.2 0.4

0.4 0.3

∣∣∣∣∣∣
550

500

750

 ,
where

A =

0.3 0.2

0.2 0.4

0.4 0.3

 , and b =

550500

750

 .
And the matrix in row echelon form is given by

˜[A|b] =
0.1 0.2

0 0.1

0 0

∣∣∣∣∣∣
250

50

0

 .
Now, rewriting the given linear system as row equivalent system we have

0.1l + 0.2h = 250

0.1h = 50.

The only solution of the above system (in row echelon form) is (l, h) = (1500, 500), which
is also a solution for the original system. Thus, an oil refinery needs 1500 barrels of light
crude oil and 500 barrels of heavy crude oil in order to satisfy the demand.

Example 3.49. Solve the given linear system by using the method of Gaussian elimination.

x1 + 2x2 + x3 = 2

x1 − x2 − 2x3 = −1.
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Solution: The augmented matrix representing the given system is

[A|b] =
[
1 2 1

1 −1 −2

∣∣∣∣ 2−1
]
.

Now, by replacing R2 (i.e., R2 → R2 −R1), we obtain[
1 2 1

0 −3 −3

∣∣∣∣ 2−3
]

and by Scaling R2 (i.e., R2 → (−1
3
)R2), we have[

1 2 1

0 1 1

∣∣∣∣21
]
.

The last matrix is in its row echelon form, and hence the row equivalent system is

x1 + 2x2 + x3 = 2

x2 + x3 = 1.

In this case, the system has infinitely many solutions, and the set of solutions is be given by

{(1− α, α, 1− α) : α ∈ R}.

Example 3.50. Solve the following system of linear equations using the method of Gaussian
elimination.

4x2 + 3x3 = 8

2x1 − x3 = 2

3x1 + 2x2 = 5

Solution: The augmented matrix of the given system is

[A|b] =

0 4 3

2 0 −1
3 2 0

∣∣∣∣∣∣
8

2

5


Applying the following elementary row operations:
R1 ↔ R3 (Interchanging R1 and R3) 3 2 0

2 0 −1
0 4 3

∣∣∣∣∣∣
5

2

8


R2 ↔ R3 (Interchanging R2 and R3) 3 2 0

0 4 3

2 0 −1

∣∣∣∣∣∣
5

8

2


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R3 → R3 + (−2
3
)R1 (Replacing R3)3 2 0

0 4 3

0 −4
3
−1

∣∣∣∣∣∣
5

8

−4
3


R3 → R3 +

1
3
R2 (Replacing R3) 3 2 0

0 4 3

0 0 0

∣∣∣∣∣∣
5

8
4
3

 .
The last matrix is in row echelon form, and hence the row equivalent system is given by

3x1 + 2x2 = 5

4x2 + 3x3 = 8

0 = 4
3

We observe that the last equation in the linear system above is a contradiction to the fact
that 0 6= 4

3
. Consequently, the given linear system has no solution.

Theorem 3.14. Consider the system of linear equations in (3.2). If A and b are the
matrices of coefficients and the column vector of numbers, respectively. Then the
following statements are true.

(i) If rank(A) = rank([A|b]) = number of unknowns, then the linear system has
only one solution.

(ii) If rank(A) = rank([A|b]) < number of unknowns, then the linear system has
infinitely many solutions.

(iii) If rank(A) < rank([A|b]), then the linear system has no solution.

Remark.

(a) From Theorem 3.14, we observe that the linear system (3.2) has no solution if an
echelon form of the augmented matrix has a row of the form [0, 0, ..., 0 b] with b
nonzero.

(b) A linear system has unique solution when there are no free variable, and it has in-
finitely many solutions when there is at least one free variable.

Example 3.51. Use matrix rank to determine the number of solutions for the system.

(a)

x1 + x2 + x3 = 1

2x2 + 4x3 = 2

2x1 + 7x3 = 5

, (b)

x1 + x2 + 2x3 = 3

2x2 + 2x3 = 4

x2 + x3 = 2

(c)

x1 + 2x2 + 3x3 = 1

2x2 + 2x3 = −2
−2x2 − 2x3 = 3

Solution:
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(a) We have a linear system
x1 + x2 + x3 = 1

2x2 + 4x3 = 2

2x1 + 7x3 = 5

and the augmented matrix given by

[A|b] =

1 1 1

0 2 4

0 2 7

∣∣∣∣∣∣
1

2

5

 .
After a sequence of elementary row operations, we obtain its row echelon form

˜[A|b] =
1 1 1

0 1 2

0 0 1

∣∣∣∣∣∣
1

1

1

 .
From the transformed matrix, we can see that the matrix A in its row echelon form is

Ã =

1 1 1

0 1 2

0 0 1

 .
Thus, we have rank(A) = rank([A|b]) = number of unknowns. Hence, the given
linear system has only one solution.

(b) We have a linear system
x1 + x2 + 2x3 = 3

2x2 + 2x3 = 4

x2 + x3 = 2

In this case, the augmented matrix and its row echelon form, respectively, are given
by

[A|b] =

1 1 2

0 2 2

0 1 1

∣∣∣∣∣∣
3

4

2

 and ˜[A|b] =
1 1 2

0 1 1

0 0 0

∣∣∣∣∣∣
3

2

0


The matrix A in its row echelon form is

Ã =

1 1 2

0 1 1

0 0 0

 .
Here, the matrices Ã, and ˜[A|b] have only two nonzero rows. Thus,
rank(A) = rank([A|b]) < number of unknowns. Therefore, by Theorem 3.14, the
given system has infinitely many solutions.
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(c) Here, we have a linear system

x1 + 2x2 + 3x3 = 1

2x2 + 2x3 = −2
−2x2 − 2x3 = 3.

The augmented matrix [A|b] and its row echelon form ˜[A|b], respectively, are given
by

[A|b] =

1 2 3

0 2 2

0 −2 −2

∣∣∣∣∣∣
1

−2
3

 and ˜[A|b] =
1 2 3

0 1 1

0 0 0

∣∣∣∣∣∣
1

−1
1

 .
Here, the number of nonzero rows of the row echelon form of A and that of [A|b] are
2 and 3, respectively. Therefore, the given linear system has no solution.

Exercise 3.9. Solve the following linear systems using the method of Gaussian elimination.

(a)
−x1 + x2 = 4

−2x1 + x2 = 0

(b)

x1 + x2 = −1
x1 − x2 = 0

−2x1 + x2 = 3

(c)

x1 + 2x2 + x3 = 0

4x1 + 5x2 + 6x3 = 3

7x1 + 8x2 + 9x3 = 6.

(d)
x1 + 2x2 + x3 = 0

2x2 + 3x2 − 2x3 = 0

3.9.2 Cramer’s rule

Cramer’s Rule is a method for solving linear systems where the number of equations and
the number of unknowns are equal. Cramer’s rule relies on determinants. Consider the
following linear system of n-equations in n-unknowns x1, x2, x3, ..., xn

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

an1x1 + an2x2 + ...+ annxn = bn

(3.4)

which has a matrix notation
Ax = b.
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Let us define the determinants

D =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣ , Dj =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1(j−1) b1 a1(j+1) . . . a1n
a21 a22 . . . a2(j−1) b2 a2(j+1) . . . a1n

...
... . . .

...
...

... . . .
...

an1 an2 . . . an(j−1) bn an(j+1) . . . ann

∣∣∣∣∣∣∣∣∣
(3.5)

for j = 1, 2, 3, ..., n. Here, D is the determinant of the coefficient matrix A, and for each j
Dj represents the determinant of a matrix which is obtained from A after replacing the j-th
column by the column vector b.

Theorem 3.15 (Cramer’s rule).

(a) If a linear system (3.4) of n-equations in the same number of unknowns
x1, x2, x3, ..., xn, has a nonzero coefficient determinant D = |A|, then the
system has precisely one solution. This solution is given by

x1 =
D1

D
, x2 =

D2

D
, ..., xn =

Dn

D

where D and Dj for j = 1, 2, 3, ..., n are defined in (3.5).

(b) If the system (3.4) is homogeneous and D 6= 0, then it has only the trivial
solution x1 = 0, x2 = 0, x3 = 0, ..., xn = 0. If D = 0 the homogeneous
system also has nontrivial solutions.

Example 3.52. Use Cramer’s rule to solve the system of linear equations.

4x1 − 2x2 = 10

3x1 − 5x2 = 11

Solution: Here, the coefficient matrix A and the column vector b, respectively, are[
4 −2
3 −5

]
, and

[
10

11

]
.

And the determinants D,D1, D2 are

D =

∣∣∣∣4 −23 −5

∣∣∣∣ = (−20)− (−6) = −14, D1 =

∣∣∣∣10 −211 −5

∣∣∣∣ = (−50)− (−22) = −28,

D2 =

∣∣∣∣4 10

3 11

∣∣∣∣ = (44)− (30) = 14.

Therefore, by Theorem 3.15, the unique solution of the given linear system is

(x1, x2) =

(
D1

D
,
D2

D

)
= (2,−1).
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Example 3.53. Solve the following system of linear equations using Cramer’s rule

2x1 − x2 = 0

−x1 + 2x2 − x3 = 0

−x2 + x3 = 1

Solution: With the coefficient matrix

A =

 2 −1 0

−1 2 −1
0 −1 1

 , and column vector b =

00
1

 ,
the determinants D,D1, D2 and D3 are computed as follows;

D =

∣∣∣∣∣∣
2 −1 0

−1 2 −1
0 −1 1

∣∣∣∣∣∣ = 1, D1 =

∣∣∣∣∣∣
0 −1 0

0 2 −1
1 −1 1

∣∣∣∣∣∣ = 1, D2 =

∣∣∣∣∣∣
2 0 0

−1 0 −1
0 1 1

∣∣∣∣∣∣ = 2

and

D3 =

∣∣∣∣∣∣
2 −1 0

−1 2 0

0 −1 1

∣∣∣∣∣∣ = 3.

Thus, by Theorem 3.15, the only solution of the given linear system is

(x1, x2, x2) =

(
D1

D
,
D2

D
,
D3

D

)
= (1, 2, 3).

Remark. Cramer’s rule doesn’t work if the determinant of the coefficient matrix is zero or
the coefficient matrix is not square.

Exercise 3.10. Solve the following linear systems using Cramer’s rule (if possible).

(a)
4x1 − 2x2 = 10

3x1 − 5x2 = 11

(b)

−x1 + 2x2 − 3x3 = 1

2x1 + x3 = 0

3x1 − 4x2 + 4x3 = 2.

(c)

x1 = 7

2x2 = 8

3x3 = 24.
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3.9.3 Inverse method

The Inverse method is one of the important methods to solve a linear system with n equa-
tions in n unknowns.

Example 3.54. Consider a linear system

x− y = 1

x+ y = 3.

Using matrix notation, it can be rewritten as[
1 −1
1 1

] [
x

y

]
=

[
1

3

]
. (3.6)

And if we denote the coefficient matrix by A, then we have

A =

[
1 −1
1 1

]
, and A−1 =

[
1
2

1
2

−1
2

1
2

]
.

Now, multiplying (from the left) both sides of equation (3.6) by A−1, we have[
1
2

1
2

−1
2

1
2

] [
1 −1
1 1

] [
x

y

]
=

[
1
2

1
2

−1
2

1
2

] [
1

3

]
.

And using the fact A−1A = I2, we have[
1 0

0 1

] [
x

y

]
=

[
2

1

]
. This implies

[
x

y

]
=

[
2

1

]
Thus, (x, y) = (2, 1) is the only solution of the given system of linear equations. This
shows the usefulness of the matrix inverse to solve linear systems.

Consider the following linear system with n-equations in n-unknowns x1, x2, x3, ..., xn;

a11x1 + a12x2 + ...+ a1nxn = b1
a21x1 + a22x2 + ...+ a2nxn = b2
................................................

an1x1 + an2x2 + ...+ annxn = bn.

(3.7)

The matrix notation of the linear system (3.7) is

Ax = b,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bn

 .
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Theorem 3.16 (Inverse Method). IfA is an invertible matrix, then for each b ∈ Rn,
the linear system Ax = b has a unique solution, which is given by

x = A−1b.

Example 3.55. Solve the following system of linear equations using matrix inverse method.

2x1 − x2 = 1

3x1 + 2x2 = 12

Solution: The matrix of coefficients A, the inverse A−1, and the column vector b, respec-
tively, are given by

A =

[
2 −1
3 2

]
, A−1 =

[
2
7

1
7

−3
7

2
7

]
, and b =

[
1

12

]
.

Thus, by Theorem 3.16, the only solution of the given linear system is[
x1
x2

]
= A−1b =

[
2
7

1
7

−3
7

2
7

] [
1

12

]
=

[
2

3

]
.

Example 3.56. Use matrix inversion to solve the following linear system.

2x1 + 3x2 + x3 = 1

x1 + 2x2 = −2
x3 = 3

Solution: The coefficient matrix A, the column vector b and the inverse A−1, respectively,
are given by

A =

2 3 1

1 2 0

0 0 1

 , b =

 1

−2
3

 , A−1 =

 2 −3 −2
−1 2 1

0 0 1

 .
Thus, by Theorem 3.16, the unique solution of the given linear system isx1x2

x3

 = A−1b =

 2 −3 −2
−1 2 1

0 0 1

 1

−2
3

 =

20
3

 .
Exercise 3.11. Solve the following linear systems using the method of matrix inversion (if
possible).

(a)
3x1 + 4x2 = −4
5x1 + 3x2 = 4
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(b)

4x1 − x2 − x3 = 1

2x1 + 2x2 + 3x3 = 10

5x1 − 2x2 − 2x3 = −1.

(c)

3x1 = 12

4x2 = 16

5x3 = 20.

Review exercises
1. For every square matrix A, show that A+ At is symmetric.

2. Given matrices

A =

 3 0

−1 2

1 1

 , B =

[
4 −1
0 2

]
, C =

[
1 4 2

3 1 5

]

(i) Compute the products A(BC), (AB)C, and verify that A(BC) = (AB)C.

(ii) Compute the products α(AB), (αA)B, A(αB), and verify that

α(AB) = (αA)B = A(αB).

3. A fruit grower raises two crops, apples and peaches. The grower ships each of these
crops to three different outlets. In the matrix

A =

[
125 100 75

100 175 125

]
aij represents the number of units of crop i that the grower ships to outlet j. The
matrix B =

[
$3.5 $6.00

]
represents the profit per unit. Find the product BA and

state what each entry of the matrix represents.

4. A corporation has three factories, each of which manufactures acoustic guitars and
electric guitars. In the matrix

A =

[
70 50 25

35 100 70

]
aij represents the number of guitars of type i produced at factory j in one day. Find
the production levels when production increases by 20%.

5. Find the value of x for which the matrix is equal to its own inverse

(a)

[
3 x

−2 −3

]
(b)

[
2 x

−1 −2

]
(c)

[
x 2

−3 4

]
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6. If A =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
, then

i. show that A = A−1

ii. show that An =

[
cos(nθ) sin(nθ)

−sin(nθ) cos(nθ)

]
.

7. If A =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
, and B =

[
cos(φ) sin(φ)

−sin(φ) cos(φ)

]
, then show that

AB =

[
cos(θ + φ) sin(θ + φ)

−sin(θ + φ) cos(θ + φ)

]
.

8. Determine the values of α for which the matrix A =

1 1 0

1 0 0

1 2 α

 is invertible and

find A−1.

9. Show that if A is invertible, then so is Am for every positive integer m; moreover,
(Am)−1 = (A−1)m.

10. If A and B are n× n matrices with A is invertible, then show that

(A+B)A−1(A−B) = (A−B)A−1(A+B).

11. Solve the following systems of linear equations using Gaussian elimination

(a)

x1 − x2 + 2x3 = 4

x1 + x3 = 6

2x1 − 3x2 + 5x3 = 4

3x1 + 2x2 − x3 = 1

(b)

x1 − 2x2 + 3x3 = 9

−x1 + 3x2 = −4
2x1 − 5x2 + 5x3 = 17

(c)

2x1 + x2 − x3 + 2x4 = −6
3x1 + 4x2 + x4 = 1 = 2

x1 + 5x2 + 2x3 + 6x4 = −3
5x1 + 2x2 − x3 − x4 = 1

12. Use Cramer’s rule (if possible) to solve the following linear systems.

(a)
x1 + 2x2 = 5

−x1 + x2 = 1
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(b)

4x1 − x2 − x3 = 1

2x1 + 2x2 + 3x3 = 10

5x1 − 2x2 − 2x3 = −1

(c)

4x1 − 2x2 + 3x3 = −2
2x1 + 2x2 + 5x3 = 16

8x1 − 5x2 − 2x3 = 4

13. Use matrix inversion method (if possible) to solve the following linear systems.

(a)

2x1 + 3x2 + x3 = −1
3x1 + 3x2 + x3 = 1

2x1 + 4x2 + x3 = −2

(b)

2x1 + 3x2 + x3 = 4

3x1 + 3x2 + x3 = 8

2x1 + 4x2 + x3 = 5

(c)

4x1 − 2x2 + 3x3 = 0

2x1 + 2x2 + 5x3 = 0

8x1 − 5x2 − 2x3 = 0
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Chapter Four 

Introduction to calculus 

Chapter Objectives  
At the end of this chapter you should be able to: 

 become familiar with the concept of limits. 

 explain the intuitive meaning of limit of a function. 

 evaluate limits of a function at given points. 

 identify and evaluate one-sided limits. 

 have an understanding of the basic limit theorems. 

 acquire basic knowledge on infinite limits and limits at infinity to find asymptotes. 

 get acquainted with the concept of continuity of a function. 

 apply  the intermediate value theorem to locate roots of equations. 

 become familiar with the derivative of a function. 

 find the slope and equation of a tangent line to a curve. 

 get basic knowledge on the techniques of differentiation. 

 evaluate the derivative of polynomial, rational and composite functions. 

 find the derivatives of the exponential and logarithmic functions. 

 develop an appreciation of higher derivatives of functions.    

 apply the concepts of the derivative to find rates of change of variable quantities. 

 evaluate maximum and minimum values of functions. 

 use the concepts of the derivative to sketch the graph of a function. 

 get acquainted with related rate problems. 

 define an anti-derivative of a continuous function. 

 find indefinite integrals of some elementary functions. 

 evaluate the integrals of functions using the techniques of substitution, integration by parts 

and integration by partial fractions. 

 solve integrals involving trigonometric functions. 

 find the definite integral of continuous functions. 

 apply the concepts of definite integrals to find areas of regions bounded by continuous 

functions. 

 

 

 

 

 

 

 



158 

 

4.1. Limits and continuity  

At the end of this section you should be able to  

 become familiar with the concept of limits. 

 explain the intuitive meaning of limit of a function. 

 evaluate limits of elementary functions at given points. 

 identify right-hand limit from left-hand limit. 

 evaluate one-sided limits.  

 become aware of the relationship between one-sided limits and the existence of limit of a 

function. 

 find limit of a function in terms of its one-sided limits.   

 describe the basic limit theorems. 

 find limits of functions given in terms of combinations of function. 

 evaluate limit of powers of functions. 

 evaluate the limit of composite functions. 

 apply the squeeze theorem to evaluate limits.  

 gain an understanding of the relationship between infinite limits and vertical asymptotes. 

 describe horizontal asymptotes in terms of limits at infinity. 

 see the relationship between infinite limits at infinity and oblique asymptotes. 

 give the definition of continuous  function. 

 identify the difference between continuous and discontinuous functions. 

 state the theorems on continuity. 

 

In this section we study the concepts of limits and continuity of functions.  The concept of limit is 

fundamental to our main subjects of the branch of mathematics called differential and integral 

calculus. When we ask about the limit of a function at a point c, we are to ask about tendencies of 

the values of f(x) as x gets arbitrarily closer and closer to c. 

Consider the function f(x) = 2x and find values of f for values of x close to 3 (but not necessarily 

equal to 3). 

 values of x to the left of 3 

  

 

 

 

 values of x to the right of 3 

 

 

x 2 2.5 2.9 2.99 2.999 … 

f(x) 4 5 5.8 5.98 5.998 ..   … 

x 4 3.5 3.1 3.01 3.001 … 

f(x) 8 7 6.2 6.02 6.002 ..   … 
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As you can see from the above two tables, the values of f(x) = 2x tend to approach to 6 as x gets 

closer and closer to 3 from both sides of 3. 

Intuitively, we say “6 is the limit of f(x) = 2x as x approaches 3” and we write  

  )2(lim
3

x
x

 = 6. 

In general, if for a given real number c, the values of  a function f(x) approaches a number L as x 

gets close to c, we write                  

  )(lim xf
cx

 = L 

We may sometimes write this as f(x)  L as x  c.   

 

Suppose f is a function and c is a fixed real number. When one ask for the behavior (approximate 

value) of f(x) for x near c, normally one is not interested about the value f(c). Instead, one is 

asking about values of f at x (c -  , c +  ) for x ≠ c, with   > 0 ( - delta).   We call the 

interval (c -  , c +  ) a neighborhood of c. When we exclude c from the neighborhood, we 

obtain a union of two disjoint intervals. 

i.e.,      (c -  , c)   (c, c +  ). 

Such a set is called a deleted neighborhood of c. For   > 0, the interval (c -  , c) may be called 

a left neighborhood of c while (c, c +  ) a right neighborhood of c. Thus when we talk of f near 

c, we are interested in the function values only in a deleted neighborhood of c.  

Therefore, when our interest is to know limit of f at c, we are mainly curious to know about the 

tendencies of f(x) for x in a deleted neighborhood of c.   

 

 

 

Figure 4.1: Deleted neighborhood of c 

Similarly, if x gets close to 2, the function f(x) = x + 3 gets close to 5, so that  5)3(lim
2




x
x

 

and if x gets close to 1, f(x) = x
2
 – 3 approaches –2, so that 2)3(lim 2

1



x

x
. 

You can also see that  

      9)1(lim 3

2



x

x
,            1lim

8



x

x
 = 3,      and        

4

1

5

1
lim

1


 xx
 

 

In the above examples we were able to find the limits without much difficulty.  However, finding 

certain limits are not so immediate.  For example consider  

  
2

4
lim

2

2 



 x

x

x
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Here both x
2
 – 4 and x – 2 approach to 0 as x approaches to 2, and 00 is not determined.  But note 

that  

  
2

42





x

x
 = 

2

)2)(2(





x

xx
 = x + 2,     for x  2. 

Thus, for x close to 2 (but not necessarily equal to 2), the behavior of 
2

42





x

x
 is similar to that of x 

+ 2 and it seems reasonable to conclude that  

  
2

4
lim

2

2 



 x

x

x
 = )2(lim

2



x

x
 = 4. 

 

In the same manner, we have  

x

x

x

4)2(
lim

2

0




 = 

x

xx

x

444
lim

2

0




 = 

x

xx

x

)4(
lim

0




 = 4)4(lim

0



x

x
, (for x  0) 

1

1
lim

1 



 x

x

x
 = 

1

1
lim

1 



 x

x

x
, 

1

1





x

x
 = 

 1)1(

1
lim

1 



 xx

x

x
= 

1

1
lim

1  xx
 = 

1

1

x
 =

2

1
,   (for x  1)  

Even though standard textbooks of calculus give the formal (analytic) definition of limit of a 

function using the notion of neighborhoods, we shall give here a working definition in terms of 

what we call one-sided limits.  

Definition 4.1: 

Suppose f is a function and c is a fixed real number. 

1.   A real number L is called the left-hand limit of f at c, written as    )(lim xf
cx 

 = L  

 if and only if for all values of x sufficiently close to c from the left side of c, the 

corresponding values of  f approach to L. 

2.   A real number R is called the right-hand limit of f at c, written as   )(lim xf
cx 

 = R 

       if and only if for all values of x sufficiently close to c from the right side of c, the 

corresponding values of f approach to R. 

 

Note that, if the set (c -  , c)   (c, c +  ) is a deleted neighborhood of c, then for left-hand limit 

we take x(c – , c), i.e. x < c, and for right-hand limit we take x(c, c + ), i.e. x > c   (but not 

necessarily x = c). 

Example 4.1: Let  f(x) = 








1,2

1,2

xforx

xforx
 Then )(lim

1
xf

x 
 = 

2

1
lim x
x 

 = 1, while )(lim
1

xf
x 

 = x
x

2lim
1

= 2                                                                               
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Example 4.2:   Let f(x) = 
x

x
 = 









0,1

0,1

xfor

xfor
                               y                                                                              

)(lim
0

xf
x 

 = )1(lim
1


x
= –1                                                x 

and   )(lim
0

xf
x 

 =  1                                                         –1        Figure 4.1                             

                                             y                                                                                                 

Example 4.3 :    Let f(x) = 








0.1

0,12

2 xforx

xforx
                                           y = x

2
+1 

The )(lim
0

xf
x



 = 
0

lim
x

(2x + 1) = 1                                                                          x 

and 
0

lim
x

f(x) = 
0

lim
x

(x
2
 + 1)   = 1                              y = 2x + 1             Figure 4.2 

  Note that in this example )(lim
0

xf
x 

 = 
0

lim
x

f(x) 

Definition 4.2: 

Suppose   is function and c is a fixed real number.  A real number L is called the limit of f at c if 

and only if the left-and right-hand limits exist and are both equal to L; 

i.e. )(lim xf
cx

  = L if and only if  )(lim xf
cx 

 = L = )(lim xf
cx 

 

  

Thus for )(lim xf
cx

 to exist, the following conditions must be satisfied: 

       i) )(lim xf
cx 

 must exist 

      ii) )(lim xf
cx 

 must exist   

     iii)  )(lim xf
cx 

 = )(lim xf
cx 

   

Otherwise, we say )(lim xf
cx

 does not exist. 

Thus in Example 4.3, where  f(x) = 








0,1

0,12

2 xforx

xforx
 

we have seen above that )(lim
0

xf
x 

 = 1 = )(lim
0

xf
x    

Thus, )(lim
0

xf
x

 = 1. 

Example 4.4:    Let f(x) = 2
x
   for x  .  Then  

)(lim
1

xf
x 

 = 
x

x
2lim

1
 = 2

1
 = 2      and      )(lim

1
xf

x 
 = 

x

x
2lim

1
 = 2

1
 = 2 

Since 
x

x
2lim

0
 = 

x

x
2lim

1
= 2, we have 

x

x
2lim

1
 = 2 
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In fact, if a > 0, a  1, then 
x

cx
a


lim  = a

c
, for any cR 

Similarly, you can show that 
x

a
cx
loglim


 = x

alog  = c

alog ,  for c > 0 and x
cx
sinlim


 = sin c, c. 

Example 4.5:   Let f(x) = 








1,3

1,2

xfor

xforx
 

Then )(lim
1

xf
x 

 = 
2

1
lim x
x 

 = 1 while )(lim
1

xf
x 

 = 3lim
1x

 = 3. Since 1  3, )(lim
1

xf
x

 does not exist. 

Example 4.6:    Let f(x) = x , for x  0.  Then )(lim
0

xf
x 

 = 0.  But since f(x) = x is not defined 

to the left of 0,  x
x 0
lim  does not exist. Hence x

x 0
lim


 does not exist. 

Remark: If a function f has a limit as x approaches a number c, then the limit is unique; i.e. 

       if )(lim xf
cx

 = L1 and )(lim xf
cx

= L2, then L1 = L2. 

 

 Basic Limit Theorems 

 

Theorem 4.1:   Suppose 
cx

lim f(x) = L, 
cx

lim g(x) = M and k is a constant. 

Then   i) 
cx

lim kf(x) = k
cx

lim f(x) = KL …            Constant Rule  

 ii) 
cx

lim (f + g)(x) = 
cx

lim f(x) + 
cx

lim g(x) = L + M …  Addition Rule  

 iii) 
cx

lim (f – g)(x) = 
cx

lim f(x) - 
cx

lim g(x) = L – M …  Difference Rule  

 

Example 4.7:   
2

lim
x

5sin x = 5
2

lim
x

sin x  = 5(1) = 5   

Example 4.8:   Let  f(x) = 2x and  g(x) = 5x – 1.  Then 

1
lim
x

(f + g)(x) = 
1

lim
x

f(x) + 
1

lim
x

g(x) = 
1

lim
x

(2x) + 
1

lim
x

(5x – 1) = 2(1) + 5(1) – 1   =  2 + 5 – 1 = 6 

 
3

lim
x

(f – g)(x) = 
3

lim
x

f(x) – 
3

lim
x

g(x) = 
3

lim
x

(2x) – 
3

lim
x

(5x – 1) = 2(3) – [5(3) – 1] = 6 –14 = –8 

Theorem 4.2:    Assume that 
cx

lim f(x) = L and 
cx

lim g(x) = M.   

 Then 
cx

lim (fg)(x) =  )(lim xf
cx

  )(lim xg
cx

 = L.M  …   Product Rule 

 

Example 4.9:  
x

lim x cos x = 
x

lim x.
x

lim cos x = . cos  = (-1) = -.   

It follows from Theorem 4.2 that 
cx

lim x
2
 =

cx
lim x.x= 

cx
lim x. 

cx
lim x  = c.c  = c

2
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In general, if n is a positive integer,  n

cx

n cx 


lim . 

Thus, if P(x) = anx
n
 + an-1x

n-1
 + … + a2x

2
 + a1x + a0 is any polynomial function of degree n and c 

is any real number, then from Theorems 4.1 and 4.2, we get 

 
cx

lim P(x) = 
cx

lim ( anx
n
 + an-1 x

n-1
 + … + a2x

2
 + a1x + a0)  

   = 
cx

lim anx
n
 + 

cx
lim an-1x

n-1
 +…+

cx
lim a2x

2
 + 

cx
lim a1x +

cx
lim a0 

   = an
cx

lim x
n
 + an-1

cx
lim x

n-1
+ …+ a2

cx
lim x

2
 + a1

cx
lim x + a0  

   = anc
n
 + an-1c

n-1
 + …+ a2c

2
 + a1c + a0  = P(c) 

Example 4.10: Let P(x) = 2x
3
 + 4x

2
 – 3x + 1.  Then 

  
1

lim
x

P(x) = 
1

lim
x

(2x
3
 + 4x

2
 – 3x + 1)  = 2(–1)

3
 + 4(–1)

2
 – 3(–1) + 1 =  –2 + 4 + 3 + 1 = 6 

 

   Theorem 4.3:  Assume that 
cx

lim f(x) = L, 
cx

lim g(x) = M and suppose M  0 

Then 
cx

lim 








g

f
(x) = 

)(lim

)(lim

xg

xf

cx

cx



  = 
M

L
 …     Quotient Rule  

 

Example 4.11:   
10

lim
x x

xlog
 = 

x

x

x

x

10

10

lim

loglim



  = 
10

1
. 

   If f(x) = 
)(

)(

xq

xp
 is a rational function, then 

cx
lim f(x) = 

cx
lim

)(

)(

xq

xp
 = 

)(lim

)(lim

xq

xp

cx

cx



  = 
)(

)(

cq

cp
= f(c) if 

0)( cf . 

Example 4.12:   
2

lim
x 64

14
2

3





xx

xx
 = 

)64(lim

)14(lim

2

2

3

2









xx

xx

x

x = 
6)2()2(4

1)2(4)2(
2

3




 = 

6216

188




 = 

8

1
.                                           

      

Theorem 4.4:   Suppose 
cx

lim f(x) = L, L  0 and aR such that L
a
R  

Then, 
cx

lim (f(x))
a
 = L

a
   …………...   Power Rule  

 

Example 4.13: x
x

sinlim

2




 =   2
1

2

sinlim x
x




   =  
2

1

2

sinlim
















x
x


 = 2

1

1  = 1  = 1. 

Example 4.14:  3 22

4
)32(lim 


xx

x
 =   3

2
2

4
32lim 


xx

x
=   3

2

3416   =   3
2

27  = 3
2
 = 9 
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Theorem 4.5 (The Squeezing Theorem).   Suppose f, g and h are functions such that f(x)  h(x) 

 g(x) for all x in some deleted neighborhood of c. If 
cx

lim f(x) = L = 
cx

lim g(x), then 
cx

lim h(x) = L. 

Example 4.14:    Evaluate 
0

lim
x

x
2
sin

x

1
 

Solution:   It may be tempting to consider x
2
 sin

x

1
 as the product of x

2
 and sin

x

1
 and then use the 

Product Rule.  Unfortunately it can be shown that 
0

lim
x

sin
x

1
 does not exist.  Thus we cannot use 

the Product Rule to evaluate the given limit.  However since the sine function has range [–1, 1], it 

follows that –1  sin
x

1
  1,    for x  0. Multiplying both sides by x

2
, we get   

   –x
2
  x

2
sin

x

1
  x

2
  with 

0
lim
x

(–x
2
) = 0 = 

0
lim
x

x
2
 

Thus, by the Squeeze Theorem, we get   
0

lim
x

x
2
 sin

x

1
 = 0. 

     Remark: One of the most important applications of the Squeezing Theorem is evaluating 

x

x

x

sin
lim

0
.  We cannot apply the Quotient Rule to evaluate this limit since the limit of the 

denominator is 0. But using some geometric constructions and the Squeeze Theorem it can be 

shown that  

   

 

                                                     

Remark: The above result has important consequences especially in the evaluation of some     

limits involving trigonometric functions. 

Example 4.15:   Find 
0

lim
x x

x5sin
 

Solution:   
0

lim
x x

x5sin
 = 

0
lim
x x

x

5

5sin5
 = 5

0
lim
x x

x

5

5sin
 

If we put y = 5x, we have as x  0, 5x  0 so that y  0. Thus 
0

lim
x x

x5sin
 = 5

0
lim
y y

ysin
 = 5. 

In general, for any a , 
0

lim
x x

axsin
 = a.  

Example 4.16:  Find  
0

lim
x x

xtan
 

x

x

x

sin
lim

0
 = 1 
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Solution:  
0

lim
x x

xtan
 = 

0
lim
x










xx

x 1
.

cos

sin
  = 

0
lim
x

















 xx

x

x cos

1
lim

sin

0
  = 1.

1

1
 = 1. 

Example 4.17:  Evaluate 
0

lim
x x

x 1cos 
 

Solution:   By multiplying both numerator and denominator by cos x + 1 we get  

0
lim
x x

x 1cos 
 = 

0
lim
x




















 

1cos

1cos1cos

x

x

x

x
  = 

0
lim
x )1(cos

1cos2





xx

x
 

   = 
0

lim
x )1(cos

sin 2





xx

x
  (since sin

2
x + cos

2
x = 1) 

                        = 
0

lim
x






















1cos

sinsin

x

x

x

x
  = 

0
lim
x x

xsin
.

0
lim
x 1cos

sin





x

x
 = 1.

1

0
 = 1.0 = 0. 

 

 Infinite Limits, Limits at Infinity and Asymptotes 

When 
cx

lim f(x) does not exist, it may happen that as x approaches c from right, the value of f(x) 

becomes indefinitely large or becomes negative and indefinitely large in absolute value.  The 

value of f(x) may behave similarly when the left-hand limit at c does not exist.  We shall use the 

symbols  (infinity) and -   to express these cases, respectively.  

To explain these concepts consider the function f(x) = 
x

1
, for x  0 

As x gets close to 0 from right, the values of 

f(x) = 
x

1
 become arbitrarily large positive.                     

In this case we write 
0

lim
x x

1
 =  

    

and when x gets close to 0 from left,  

the values of f(x) = 
x

1
 become arbitrarily small negative.   

In this case we write 
0

lim
x x

1
 = -. See Figure 4.3.                                        Figure 4.3 

Definition 4.3: 

Let f be a function defined in a deleted neighborhood of c. 

i) We say that the left-hand limit of f(x) at c is infinity, and write 
cx

lim f(x) =  

     if for every real number M, we have f(x) > M for every x close to c from the left side of   

ii)    We say that the right-hand limit of f(x) at c is infinity, and write  
cx

lim f(x) =  

     if for every real number M, we have f(x) > M for every x  close to c from the right side if c. 
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iii) We say that the limit of f(x) at c is infinity and write 
cx

lim f(x) =  

      if and only if     
cx

lim f(x) =   and 
cx

lim f(x) =  

 

Definition 4.4: 

Let f be a function defined in a deleted neighborhood of c. 

i) We say that the left-hand limit of f(x) at c is negative infinity, and write 
cx

lim f(x) = - 

    if for every real number M, we have f(x) < M for every x close to c from        the left side of c. 

  

ii)     We say that the right-hand limit of f(x) at c is negative infinity, and write 
cx

lim f(x) = - 

     if for every real number M, we have f(x) < M for every x  close to c from the right side if c. 

iii)    We say that the limit of f(x) at c is negative infinity and write 
cx

lim f(x) = - 

       if and only if
cx

lim f(x)  = -  and 
cx

lim f(x) = - 

Example 4.18: For f(x) = 
x

1
, for x  0, 

0
lim
x x

1
 =    and   

0
lim
x x

1
 = -. Hence 

0
lim
x x

1
 does not 

exist. Whereas for f(x) = 
2

1

x
, x  0, 

0
lim
x

2

1

x
 =  = 

0
lim
x

2

1

x
. Hence 

0
lim
x 2

1

x
 = .   

In general, for any real number c and f(x) = 
cx 

1
 we have 

cx
lim f(x) = 

cx
lim

cx 

1
=  and  

cx
lim f(x)  = 

cx
lim

cx 

1
 = -.       

Definition 4.5:  

Suppose f is a function and c is a fixed real number.  We say that the line x = c is a vertical 

asymptote of the graph of f if and only if either  

   
cx

lim f(x) =      or   
cx

lim f(x) =  

    

Remark: From the above examples, we can see that the line x = 0 (i.e. the y-axis) is a vertical 

asymptote of the graphs of the functions f(x) = 
x

1
 and f(x) = 

2

1

x
, while the line x = c is a vertical 

asymptote of the graph of  f(x) =
cx 

1
. 

Example 4.19:  Find all the vertical asymptotes of f(x) = 
1

2
2 



x

x
 

Solution:   If c is any number different from 1 or -1, then by the Quotient Rule,  

       )(lim xf
cx

 = 
cx

lim
1

2
2 



x

x
 = 

1

2
2 



c

c
 R 

Thus any line x = c for c   1 cannot be a vertical asymptote.  
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For  c = 1, )(lim
1

xf
x 

= 
1

lim
x 1

2
2 



x

x
 = 

1
lim
x
























1

1

1

2

xx

x
 

           = 
1

lim
x























 1

1
lim.

1

2

1 xx

x

x

 = 
2

3
() =  

Similarly, for c = -1, )(lim
1

xf
x 

= 
 1

lim
x
























1

1
.

1

2

xx

x
 

       = 
 1

lim
x
































 2

1

1

1
lim.

1

2

1 xx

x

x

 () = - 

Hence the lines x = 1 and x = -1 are vertical asymptotes of the graph of the function f(x) = 
1

2
2 



x

x
. 

Next, we try to investigate the behavior of a function f as x increases (or decreases) indefinitely, 

and try to see if we have 
x

lim f(x) or 
x

lim f(x). Such limits, if they exist, are in general called 

limits at infinite.  

Definition 4.6: 

i) Suppose f is a function defined on an interval of the form (c, ), for some  cR.  We say that 

the limit of f(x) as x approaches to infinity is the number L, and write 
x

lim f(x) = L if when 

      x is assigned sufficiently large positive values, the corresponding values of f approach to L.  

ii)  Suppose f is a function defined on an interval of the form (-, c) for some cR.  We say that 

the limit of f(x) as x approaches to negative infinity is the number L, and write
x

lim f(x) = L 

      if when x is assigned sufficiently small negative values, the corresponding values of f    

approach to L. 

 

Example 4.20:  Let f(x) = 
x

1
, for x  0. 

When x is assigned sufficiently large positive values, the values of f(x) = 
x

1
 become close to 0.  

Similarly for values of x sufficiently small negative values, f(x) = 
x

1
 becomes close to 0.  Hence  

x
lim

x

1
 = 0 and 

x
lim

x

1
 = 0. See Figure 4.3 above.  

Similarly,   
x

lim
2

1

x
 = 0, 

x
lim

2

1

x
 = 0 and in general, 

x
lim

  2  

1

cx
 = 0. 

 

Definition 4.7: 

If for a function f and a real number L,  
x

lim f(x) = L  or  
x

lim f(x) = L, then the line y = L is called 

a horizontal asymptote to the graph of f. 
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Thus the line y = 0 (i.e. the x-axis) is a horizontal asymptote for both the function f(x) = 
x

1
 and 

f(x) =  
2

1

x
.  See Figure 4.3 above. 

Example 4.21:  Find a horizontal asymptote to the graph of f(x) = 
52

13
2

2





x

xx
 

Solution:   Since we are interested with the behavior of f for large values of |x|, we divide both 

numerator and denominator of f by the leading exponent (i.e.x
2
) to get  

 f(x) =  
52

13
2

2





x

xx
 = 

22

2

222

2

52

13

xx

x
xx

x

x

x





 = 

2

2

5
2

11
3

x

xx





 

Then 
x

lim f(x) = 
x

lim
52

13
2

2





x

xx
= 

























2

2

5
2lim

11
3lim

x

xx

x

x

 = 
02

003




 = 

2

3
 

Thus 
x

lim f(x) = 
2

3
 and the line y = 

2

3
is a horizontal asymptote to the graph of f. 

Similarly, 
x

lim f(x) = 
2

3
. 

Remark: For a rational function f(x) = 
)(

)(

xq

xp
, with deg(p)<deg(q), we find a horizontal asymptote 

by applying the above technique. 

As a combination of the above two subsections, it may happen that as the values of |x| increase 

without bound, the corresponding values of |f(x)| also increases without bound leading to what are 

generally called infinite limits at infinity. 

Definition 4.8: 

Let f be defined on an interval of the form (c, ), for cR.  We say that the limit of f(x) as           

x approaches to infinity is infinity, written 
x

lim f(x) =  whenever x is assigned sufficiently 

large positive values, the corresponding values of f(x) increase without bound. 

 

Remark:  Analogous definitions can be given for  

   
x

lim f(x) = -,  
x

lim f(x) =   and 
x

lim f(x) = -. 

Example 4,22:   For f(x) = x
3
, we have 

x
lim x

3
 =        and 

x
lim x

3
 = -   
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Example 4.23: 
x

lim
12

23
2

4





x

xx
 = 

x
lim

42

43

12

23
1

xx

xx





 = .       (By dividing by ). 

Definition 4.9: 

If for a function f and for two real numbers a and b 
x

lim [f(x) – (ax + b)] = 0, then the line  

y = ax + b is called an oblique (or a skew) asymptote to the graph of f. 

  In general, for a rational function f(x) = 
)(

)(

xq

xp
, we have  

i) When degree(p) < degree (q), 
x

lim f(x) = 0 and the x-axis is a horizontal asymptote of f. 

ii) When degree(p) = degree(q), then f has a horizontal asymptote given by the quotient of 

the leading coefficients of p and q. 

iii) When degree(p) > degree(q), then 
x

lim f(x) = , and in particularly if  

degree(p) = degree(q)+1, then f has an oblique asymptote obtained as a quotient when we 

divide p by q.  

Example 4.24:  Let f(x) = 
3

154 2





x

xx
, find all asymptotes of f. 

Solution:  Since )(lim
3

xf
x 

 = 
 3

lim
x 3

154 2





x

xx
 = , the line x = -3 is a vertical asymptote. 

By the long division method, we get f(x) = 
3

154 2





x

xx
 = (4x – 7) + 

3

20

x
   

  
x

lim [f(x) – (4x – 7)] = 
x

lim
3

20

x
 = 0 

Therefore, the line y = 4x – 7 is an oblique asymptote of f. 

 A special Limit in Exponential Function 

Consider the function f(x) = 

x

x










1
1   with domain (-, -1)  (0, )      

The following two tables indicate the behavior of the values of f(x) as x approaches to positive 

and negative infinity, respectively,  

 

x 2 10 100 1000 10,000 100,000 

)(xf  2.75 2.593743 2.704814 2.716924 2.718146 2.718268 

 

x -2 -10 -100 -1000 -10,000 -100,000 

)(xf  4 2.867972 2.731999 2.719642 2.718418 2.718295 
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As is tried to be indicated from the above tables, the values of 

x

x










1
1 tend to approach to an 

irrational number whose value is 2.7182818…. This number, denoted by e, is called the base of 

the natural logarithm, and plays an important role in calculus. 

Remark: The natural logarithmic function (with base e) is given by f(x) = xelog  and is denoted 

 by f(x) = nx. Its inverse, the natural exponential function is given by f(x) = exp(x) = e
x
. 

Thus from the above constructions, we have  

   

This limit has important consequences. 

Example 4.25:  
x

lim

3
1

1













x

x
 = 

x
lim

x

x










1
1 .

3
1

1 









x
              - Rule of exponents    

           = 
x

lim

x

x










1
1 . 

x
lim

3
1

1 









x
               - Product Rule  

            = e.1
3
 = e  

In general, for any real number a, 
x

lim

ax

x













1
1  = e.   

Example 4.26:   Show that 
0

lim
t

  tt
1

1  = e 

Solution:  We prove this by showing that 
0

lim
t

  tt
1

1  = e = 
0

lim
t

  tt
1

1 . First use the 

substitution t = 
x

1
, so that x = 

t

1
and as x  , t  0

+
. Hence, 

0
lim
t

  tt
1

1  = 
x

lim

x

x










1
1 = e. 

Similarly, as x  -, t  0
-
 . Hence, 

0
lim
t

  tt
1

1  = 
x

lim

x

x










1
1 = e 

Therefore, 
0

lim
t

  tt
1

1  = e =  
0

lim
t

   tt
1

1  
0

lim
t

  tt
1

1 = e. 

Example 4.27:   Evaluate  
x

lim

x

x










5
1  

Solution:  Let t = 
x

5
.  Then x = 

t

5
 and 

  
x

lim

x

x










5
1  = 

0
lim
t

   tt
5

1


   = 
0

lim
t

   51

1


 tt = 
5

1

0
)1(lim



 



  t

t
t =  e

-5
 = 

5

1

e
. 

In general, for any real number a, 
x

lim

x

x

a








1  = e

a
. 

 

x
lim

x

x










1
1  = e = 

x
lim

x

x










1
1 . 
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 Continuity of a Function  

 

In our everyday usage, the word continuity refers to something that happens without any 

interruption.  In calculus, the term continuity is used to describe functions whose graphs can be 

traced without any break.  We shall give its formal definition using the concept of limits. 

Definition 4.10: 

- Let f be a function and c be a number in the domain of f.  f is said to be continuous at c  if 

    )(lim xf
ct

  = f(c)  

- If  f fails to be continuous at c, then we say that f is discontinuous (or not continuous) at c. 

- f is said to continuous if it is continuous at each point of its domain.  

 

Example 4.28:   Let f(x) = 2x and c = 1                                                          y 

Then )(lim
1

xf
x

= 
1

lim
x

2x  = 2                                                                             y = 2x 

and f(1) = 2(1)  = 2.                                                2 

Since x
x

2lim
1

 = 2 = f(1), f is continuous at 1.                                    

                                                                                                                    1                             x                              

In fact f is a continuous function.  See Figure 4.4.                                        

                                                                                                                            Figure 4.4 

Remark:  For a function f to be continuous at c, the following conditions must be satisfied 

a. f(c) must be defined 

b. 
cx

lim f(x) must exist 

c.  
cx

lim f(x) = f(c) 

   Otherwise if one of the above conditions is not satisfied, then f is discontinuous at c. 

Example 4.29:   Let f(x) = 














0,

0,2

0,3

2 xforx

xfor

xforx

 

Then f(0) = 2 so that f(0) is defined . )(lim
0

xf
x 

 = x
x

3lim
0

 = 0                        2              

and )(lim
0

xf
x 

 = 0lim 2

0



x

x

.  Thus )(lim
0

xf
x

 = 0 

But since )(lim
0

xf
x

  f(0) , f is not continuous at 0. .               y = 3x  

                                                                                                                                   Figure 4.5 

Example 4.30:  Let f(x) = sinx. Then, )(lim
2

xf
x 

 = x
x

sinlim
2


 = 1 = 2sin =  2f  

 Hence f(x) = sinx is continuous at 2 .  
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In fact f(x) = sinx is a continuous function.  Similarly, the functions f(x) = cosx, the exponential 

function with base a, f(x) = a
x
, the logarithmic function with base a, f(x) = xalog , the natural 

exponential function f(x) = e
x
 and the natural logarithmic function f(x) = nx are all continuous 

functions in their respective domains. 

Theorem 4.6: Suppose f and g are functions with common domain such that both f and g are 

continuous at c.  Then  

1) f + g is continuous at c.  

2) f – g is continuous at c. 

3) if k is a scalar, kf is continuous at c. 

4) fg is continuous at c. 

5) if g(c)  0, 
g

f
 is continuous at c. 

 

Example 4.31: Let P(x) = anx
n
 + an-1x

n-1
 + … + a2x

2
 + a1x + a0 be any polynomial of degree n, and 

let cR, arbitrary. Then, 

 
cx

lim P(x) = 
cx

lim (anx
n
 + an-1x

n-1
 + …+ a2x

2
 + a1x + a0)= anc

n
 + an-1c

n-1
 + …+ a2c

2
 + a1c + a0 = P(c) 

Hence, P(x) is continuous at c, and since c was taken arbitrarily, every polynomial function is 

continuous. 

Example 4.32: Let f(x) = 
)(

)(

xq

xp
 be any rational function. Then if c is any real number such that 

q(c)  0, then    
cx

lim f(x) = 
cx

lim
)(

)(

xq

xp
 = 

)(lim

)(lim

xq

xp

cx

cx



  = 
)(

)(

cq

cp
 = f(c) 

Thus any rational function is continuous in its domain.   

From the above theorem we can see that f(x) = 5x
2
 – 4x + 7  is continuous in R, g(x) = 

4

1
2

3





x

xx
 

is continuous in R\{-2, 2}, h(x) = |x| cos x - 
2

3

x
 is continuous for x  0 and f(x) = 

1

5

x
 + nx is 

continuous for x(0, 1)  (1, ). 

 

As a generalization of the Power Rule for limits, we have the following theorem  

Theorem 4.7 (Substitution Rule):  Suppose f and g are real valued functions such that 
cx

lim f(x) = 

L and g is continuous at L. Then 
cx

lim g(f(x)) = g  )(lim xf
cx

 = g(L) 

Example 4.33:  For f(x) = sinx, g(x) = x , and c = 2 , we have )(lim
2

xf
x 

 = 1 and g is 

continuous at 1. Thus 
cx

lim g(f(x)) = 
cx

lim xsin  = 1  = 1. 
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Using Substitution Rule we have continuity of the composite of two functions as given by the 

following theorem.  

 

Theorem 4.8:  Suppose f and g are functions such that f is continuous at c and g is continuous at 

f(c).  Then, gof is continuous at c. 

 

Proof:   Since f is continuous at c, 
cx

lim f(x) = f(c). Now 
cx

lim (gof)(x) = 
cx

lim g(f(x)) = g  )(lim xf
cx

  = 

g(f(c)) = (gof)(c). Therefore, gof is continuous at c.  

 

Example 4.34:  For f(x) = x
2
 + 5, g(x) = e

x
 and c = 1, we have (gof)(x) = g(f(x)) = 52 xe  and   

1
lim
x

(gof)(x) = 5

1

2

lim 



x

x
e  = e

6 
= 512 e  = e

6
. Thus, (gof)(x) = 52 xe  is continuous at 1. 

 

 Intermediate Value Theorem   

Recall that for a function f continuous on a closed interval [a, b] its graph can be traced between 

the points (a, f(a)) and (b, f(b)) without any break or interruption.  In this section we shall see an 

important application of continuous functions: namely, the Intermediate Value Theorem, and 

some of its consequences.                                                              y 

For a function continuous on [a, b], the                                                                  f 

intermediate value property asserts that if L                              f(b) 

is any number between (intermediate to) f(a )                               L                  

and f(b), then there is at least one number c              

between a and b whose image under f is L.                        

See Figure 4.6.                                                               a           c         b              x 

                                                                                                            f(a)                        Figure 4.6 

 

Theorem 4.9:   (Intermediate Value Theorem) 

Suppose f is continuous on a closed interval [a, b].  Let L be any number between f(a) and f(b), 

(either f(a)  L  f(b), or f(b)  L  f(a).  Then there exists a number c in [a, b] such that f(c) = L. 

 

Example 4.35:  Let f(x) = x
2
.  Then f is continuous on [0, 3] with f(0) = 0 and f(3) = 9.  By the 

Intermediate Value Theorem f assumes (takes on) every value between 0 and 9. For instance for L  

= 4, we have 2 [0, 3] with f(2) = 4, and for L = 7, we have 7  [0, 3] with f  7  = 7. 

Example 4.36:   Let f(x) = x
3
 + 2x

2
 + x = 4 on [-2, 1].  Show that there exists some c [-2, 1] 

such that f(c) = 4. 
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Solution:  f is continuous on [-2, 1] with f(-2) = 2 and f(10 = 8.  Since 2  4  8, it follows, by the 

Intermediate Value Theorem that there exists c [-2, 1] such that f(c) = 4. i.e. f(c) = c
3
 + 2c

2
 + c + 

4 = 4. In this case we can find such c by solving  

  c
3
 + 2c

2
 + c + 4 = 4 

 c
3
 + 2c

2
 + c = 0 

 c(c
2
 + 2c + 1) = 0 

 c ( c + 1)
2
 = 0 which gives  either c = 0 or c = -1 

Since both of these values are in [-2, 1], for this particular case we have two values in [-2, 1] with 

image under f equal to 4. 

 

One of the most important applications of the Intermediate Value Theorem is given in the 

following theorem. 

 

Theorem 4.10:  Suppose f is continuous on a closed interval [a, b] and assume that f(a) and f(b) 

have opposite signs.  Then there is at least one c (a, b) such that f(c) = 0. 

 

Proof:   Without loss of generality, assume that f(a) < 0 and f(b) > 0.  Then choose L = 0, between 

f(a) and f(b).  By the Intermediate Value Theorem, there is at least one c between a and b such 

that f(c) = L = 0. 

Remark:   This means that the equation f(x) = 0 has at least one root in the interval (a, b). 

Example 4.37:  The function f(x) = x
3
 – x – 2 is continuous on [1, 2]. f(1) = -2 < 0 and  f(2) = 4 > 

0. Thus there is a number c in (1, 2) such that f(c) = 0 or c
3
 – c – 2 = 0. 

Example 4.38:   Show that the graphs of y = e
x
 and y = 3x intersect in the interval [0, 1] 

Solution:  Define the function f(x) = e
x
 -3x. Then f is continuous on [0, 1] with f(0) = e

0
 -3(0) = 1 

-  0 = 1 > 0 and f(1) = e
1
 – 3(1) = e – 3 < 0.  Thus there is a number c (0, 1) such that f(c) = e

c
 – 

3c = 0 and the graphs of y = e
x
 and y = 3x intersect at c(0, 1). 

 

Exercise 4.1 

1. Evaluate the following limits, if they exist. 

a. 
4

lim
x

(7-2x)  b. 
2

lim
x 13

12





x

x
           c. 

3
lim
x 12

1





x

x
  

d. 
1

lim
x 1

12





x

x
                 e. 

2
lim
x 22

2





x

x
 f.         

 1
lim
x 1

1
1





x

x    

2. Find )(lim xf
cx 

, )(lim xf
cx 

 and )(lim xf
cx

, if it exists, for  

a. f(x) = cos x ,             at c = 6  

b. f(x) = 3x , at c = -3 
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c. f(x) = 








2,22

2,

xforx

xforx
,   at  c = 2 

d. f(x) = 








2,1

2|,1|

xfor

xforx
,   at c = -2 

3.  Evaluate each of the following limits, if it exists. 

a. 
3

lim
x

(2x
2
 -3x + 5)          b. 

0
lim
x

2
x
sinx            c. 

4

lim
x

(cos x)
4  

 

d. 
263

lim
x

3

2

3

34





x

xx
               e.         

4
lim
x






  2

3
2

1

xx       f.     
1

lim
x

4 3 97 x  

g. 
0

lim
x x

x

tan

sin
          h.      

0
lim
x 25

)3sin()2sin(

x

xx
      i. 

0
lim
x x

x

4sin

3sin
     

4. Evaluate the following limits, if they exist  

a. 
3

2
lim

3  xx
                          b.      

 21 1
lim

 x

x

x
       c. 

1

4
lim

 xx
  

d. x
x

coslim


                        e.      
2

3

2

1
lim

x

x

x




  f.       

15

532
lim

3

3





 x

xx

x
 

  5.        Find all the asymptotes, if any, for the following functions  

             a.  f(x) = tanx       b.    f(x) = 
4

92





x

x
                c. f(x) = 

2

3

)1(

123





x

xx
 

 6.       Evaluate the following limits, if they exist. 

             a. 
t

lim

4
1

1













x

x
       b. 

t
lim

x

x












1

4
1            c. 

t
lim

1

12

32














x

x

x
 

7. Check whether or not the following functions are continuous at the indicated points. 

a. f(x) = x
2
 + 1,  at c = 2  b. f(x) = |x

2
 – 1|, at c = -1, 0, 1 

          c. f(x) = 
2

3

x
, at c = 2   d. f(x) = 









1,3

1,2

xfor

xforx
 , at c = 1 

8.Show that the following equations have roots in the indicated intervals. 

  a) logx = 0, in 







2,

2

1
  b) 2

x
 – 2 = 0, in [0, 2]  c) cos x – x = 0, in  

2
,0   

9.   Using the Intermediate Value Theorem show that the graphs of f and g intersect in the    

given interval. 

a. f(x) = x
3
 + 4x + 2 and g(x) = -1, in [-1, 0] 

b. f(x) = 2sinx and g(x) = 1 – x, in [0, 2] 

c. f(x) = x nx and g(x) = sinx, in 







e

e
,

1
 



176 

 

4.2. Derivatives  

Objectives  

At the end of this section you should be able to  

 get acquainted with the concept of the derivatives of a function. 

 evaluate the derivative of elementary functions using the definition. 

 find the slope and equation of a tangent line to a curve at a given point. 

 evaluate the derivatives of combinations of functions. 

 find the derivatives of polynomial and rational functions. 

 have a good understanding of the Chain Rule.  

 apply the Chain Rule to evaluate derivatives of composite functions and algebraic 

functions.  

 find the derivative of the logarithmic function. 

 find the derivative of the exponential function. 

 apply the above derivatives to the natural logarithmic and natural exponential functions as 

special cases.  

 evaluate derivatives of composite functions with the logarithmic and exponential 

functions. 

 have an understanding of the derivative of a derivative. 

 

Using the concepts discussed in section 4.1, we are now ready to study one of the central concepts 

of calculus: the derivative of a function.  Even though the derivative is connected with finding the 

tangent lines to curves at a point, its main applications are in finding rates of change of variable 

quantities relative to the change in another quantity. 

Consider a function f continuous at a point c in its domain. 

Then, by definition of continuity )(lim xf
cx

 = f(c)                          y                f 

This means for x close to c, f(x) is                                           f(x)                        

close to f(c).  If we denote the                                                 f(c) 

increment (or change) x – c in the   

x-direction by h = x – c (so that x = c + h) as  

is seen in Figure 4.7,                                                                     

then the corresponding change in the y-direction      

                                                                                                                   c    x           x                                                                                                     

is given by                                                                                         Figure  4.7 

  f(x) – f(c) = f(c + h) – f(c). 

The ratio of these two increments is given by  

  
cx

cfxf



 )()(
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and is called the difference quotient of f at c. 

For instance, if f(x) = x
2
 + 2   and c = 3, then  

  
3

)3()(





x

fxf
 = 

3

)23()2( 22





x

x
 = 

3

92





x

x
 

We shall define the derivative of a function of f at c as the limit of the above difference quotient, 

if  the limit exists. 

Definition 4.11  

Let c be a number in the domain of a function f.  If  

  
cx

lim
cx

cfxf



 )()(
 

exists, we call this limit the derivative of f at c, and denote it by (c), so that  

  (c) = 
cx

lim
cx

cfxf



 )()(
 

If this limit exists we say that  has a derivative at c, or  is differentiable at c or (c) exists.  

Remarks: 1.   Observe that we can alternatively write  

 (c) = 
0

lim
h h

cfhcf )()( 
 

 since for h = x – c, we have x = c + h and as x  c, h  0. 

2. The notation (c) is read as “the derivative of f at c” or for short “f prime at c”.   

           Other notations are given by )(c
dx

df
 or Df(c) 

3. The quantity f(c) describes the rate of change of the function f around the point (c, f(c)). 

Example 4.39:   Let f(x) = 2x + 3.  Then, for any c R, the point (c, f(c)), we have  

(c) = 
cx

lim
cx

cfxf



 )()(
 = 

cx
lim

cx

cx



 )32()32(
= 

cx
lim

cx

cx



 22
 = 2

cx
lim

cx

cx




 = 2

cx
lim (1) = 2. 

Since cR is arbitrarily taken, we have for f(x) = 2x + 3, (x) =2  for all xR. 

In fact for any linear function f(x) = ax + b, we have 

                     (c) = 
cx

lim
cx

cfxf



 )()(
 = 

cx
lim

cx

bacbax



 )()(
 = a 

cx
lim

cx

cx




 = a 

for any c R.  Thus (x) = a 

Note that the graph of a linear function is a straight line and the rate of change (a constant) is 

measured by the slope of the line. 

Example 4.40:   Let f(x) = 3x
2
 + 5.  Then for any xR  

  f(x + h) = 3(x + h)
2
 + 5 = 3x

2
 + 6xh + 3h

2
 + 5 and  

  (x) = 
0

lim
h h

xfhxf )()( 
  = 

0
lim
h h

xhxhx )53()5363( 222 
 

   = 
0

lim
h h

hxh 236 
 = 

0
lim
h h

hxh )2(3 
 = 3

0
lim
h

(2x + h) = 6x. 

Thus, for f(x) = 3x
2
 + 5,   (x) = 6x for any xR. 
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In particular, when c = 1, (1) = 6(1) =. 6 is the slope of the tangent line to the graph of f at (1,8) 

Example 4.41: Let f(x) = c, where c is a constant. 

Then for any xR, 

 (x) = 
0

lim
h h

xfhxf )()( 
= 

0
lim
h h

cc 
 = 

0
lim
h

0 = 0.        

Thus, for f(x) = c, a constant, (x) = 0 for all xR. 

Hence, for f(x) = 15, (x) = 0, for f(x) = - 2 , (x) = 0, and so on. 

Applying the above definition, we can get the following derivatives. 

 (x) (x)  (x) (x) 

f(x) = 
x

1
 (x) = 

2

1

x


, for all x  0 

f(x) = sinx (x) = cosx, for all xR 

f(x) = x  (x) = 
x2

1
, for x > 0 

(x) = cosx (x) = -sinx, for all xR, 

Using the definition to evaluate the derivative of more complicated combinations and 

compositions of functions becomes cumbersome.  At this stage the student must be able how to 

find the derivatives of various types of functions quickly and efficiently without always resorting 

to the definition. In the table below we list some techniques of differentiation which can be 

proved using the definition.  

 

 

 

 

 

 

 

 

 

Thus, if (x) = x
4
,   then (x) = 4x

3
 and if g(x) = x

12
, then (x) = 12x

11
, and so on. 

 

Example 4.42:  Let f(x) = x
2
 + 3 and g(x) = sinx.  Then  

 ( + g)(x) = (x) + g(x) = 
dx

d
(x

2
 + 3) +

dx

d
 (sinx) = 2x + 0 + cosx   = 2x + cos x  

  
dx

d
(g(x) – 4(x)) = 

dx

d
(sinx) - 4

dx

d
(x

2
 + 3) = cosx – 4(2x + 0) = cos x – 8x. 

Since polynomials are sums or differences of constant multiples of powers of x, the first four rules 

help us to evaluate their derivatives. 

Theorem 4.11: Suppose  and g are differentiable at c, and k is a constant, then  

a) (kf)(c) = k (c)  …                        Constant Rule  

b) (f + g)(c) = (c) + g(c)  …    Addition Rule  

c) (f – g)(c) = (c) – g(c) …    Difference Rule 

d)  f(x) = x
n
, n an integer, (x) = n x

n-1
  …    Power Rule

 

d)         (g)(c) = (c) g(c) + (c) g(c)     …     Product Rule 

e) 
2)]([

)()()()(
)(

cg

cgcfcgcf
c

g

f 












 provided g(c)  0 …  Quotient Rule 

f) (gof)(c) = g(f(c)). (c)   …..    The Chain Rule 
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Remark:    Given a polynomial of degree n, P(x) = anx
n
 + an-1x

n-1
 + … + a2x

2
 + a1x + a0 

 P(x) = 
dx

d
(anx

n
 + an-1x

n-1
 + … + a2x

2
 + a1x + a0) 

        = an
dx

d
(x

n
) + an-1

dx

d
(x

n-1
) + … + a2

dx

d
(x

2
) + a1

dx

d
(x) + 

dx

d
(a0). 

        = nanx
n-1

 + (n-1)an-1x
n-2

+ … + 2a2x + a1 

Example 4.43:  For p(x) = 5x
4
 – 2x

3
 + x

2
 + 7x – 1, we have p(x) = 20x

3
 – 6x

2
 + 2x + 7. 

 For q(x) = 6x
3
 + 2 x

2
 – 3x + , we have q(x) = 18x

2
 + 2 2 x – 3. 

 

As an application of the product rule, we have the following examples. 

Example 4.44:  Let k(x) = 2x sinx.  Find k(x). 

Solution:  If we put f(x) = 2x and g(x) = sinx, then (x) = 2 and g(x) = cosx. 

 Thus, k (x) = (x)g(x) + (x)g(x) = 2sinx + 2xcosx. 

 

Remark: In practice, to evaluate the derivative of a product of two functions, we do not need to     

identify which one is f and which one is g. 

Example 4.45:  Let h(x) = x
3
 cosx.  Then 

  h(x) = (x
3
) cosx + x

3
(cosx)= 3x2cosx + x3(-sinx)   = 3x2cosx – x3 sinx.   

For the derivative of the product of three functions f, g and h, we have  

  (fgh)(x) = f(x)g(x)h(x) + f(x)g(x)h(x) + f(x)g(x)h(x). 

Example 4.46:   Let k(x) = x
3
 sinx cosx.  Find k(x). 

Solution: Put f(x) = x
3
, g(x) = sinx and h(x) = cosx in the above statement with (x) = 3x

2
, g(x) 

= cosx and h(x) = -sinx. Then k(x)  = 3x
2
 sinx cosx + x

3
 cosx.cosx + x

3
sinx(-sinx)= 3x

2
 sinx cosx 

+ x
2
 cos

2
x – x

3
 sin

2
x. 

 

The Quotient Rule is used to find the derivative of any rational function. If f(x) = 
)(

)(

xq

xp
, for p, q 

polynomials, we then have f(x) = 

1

)(

)(









xq

xp
 = 

2))((

)()()()(

xq

xqxpxqxp 
, for q(x)  0. 

Example 4.47:  Let f(x) = 
12

53 2





x

x
.  Find (x) 

Solution:    Putting p(x) = 3x
2
 – 5  and q(x) = 2x + 1, we get  

 (x) = 
 2

2

12

)2)(53()12(6





x

xxx
 = 

 2

22

12

106612





x

xxx
 = 

 2

2

12

1066





x

xx
 

As an important consequence of the Quotient Rule, we can now find the derivatives of the 

remaining four trigonometric functions.  

Example 4.48:   Let f(x) = tanx.  Show that (x) = sec
2
x 



180 

 

Solution:   (x) = tanx = 
x

x

cos

sin
.  Then  

(x) = 
dx

d
(tanx) = 

1

cos

sin









x

x
= 
 

2

11

)(cos

)(cossincossin

x

xxxx 
 

        = 
x

xxxx
2cos

)sin(sincos.cos 
 

         = 
x

xx
2

22

cos

sincos 
 = 

x2cos

1
 =  sec

2
x.                               

In the same manner, we can show that  

 
dx

d
(cotx) = -csc

2
x, 

dx

d
(secx) = secxtanx   and 

dx

d
(cscx) = -cscx.cotx. 

The Chain Rule states that (gof)(x) = g(f(x)) (x), for all x such that f is differentiable at x and g 

is differentiable at f(x). 

Example 4.49:  Find the derivative of h(x) = cos(x
2
 + 1) 

Solution:  Let f(x) = x
2
 + 1 and g(x) = cosx. Then, h(x) = (gof)(x) = g(f(x)) = g(x

2
 + 1) = cos(x

2
 + 

1) and h(x) = g(f(x)). (x) = -sin(x
2
 + 1) . (x

2
 + 1) = 2xsin(x

2
 + 1). 

           

If a and b are any real numbers, we can easily show that 

 
dx

d
(sinax) = a cosax     and 

dx

d
(cosbx) = -bsinbx 

Thus, 
dx

d
(sin4x) = 4 cos4x and 

dx

d
(cos5x) = -5 sin5x 

Example 4.50: Find the derivative of h(x) = (1+3x -5x)
12

 

Solution:  Let f(x) = 1 + 3x – x
5
 and g(x) = x

12
.  Then h = gof and  

h(x) = 
dx

d
(1+3x – x

5
)
12

 = 12(1 + 3x – x
5
)
11

 (1 + 3x – x
5
) = 12(3 – 5x

4
) (1 + bx – x

5
)
11

. 

Example 4.51:  Find the equations of tangent and normal lines to the semicircle  

                 y = f(x) = 21 x  at 














2

3
,

2

1
 

Solution: The slope of the tangent line T is given by the derivative of y = f(x) = 
21 x  at x = 

2

1
.  Thus, by Chain Rule,  

                     (x) = 
dx

dy
 = 

dx

d 21 x  = 
212

1

x
(1- x

2
) =

212

2

x

x




 = 

21 x

x




 

so that the slope of T is  

m =  








2

1
 = 

411

21




  = -

2

1
.

3

2
 = 

3

1
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and since the tangent line passes through the point 














2

3
,

2

1
, its equation in slope-point form is  

 y - 
2

3
 = -

3

1










2

1
x      or        x + 3 y – 2 = 0 

The slope of the normal line at 














2

3
,

2

1
 is 3  and its equation is  

 y - 
2

3
 = 3 










2

1
x      or   y - 3 x = 0.   

Remark: The Chain Rule can be extended to more than two functions. 

Suppose   k(x) = (hogof)(x) = h(g(f(x))) and let f be differentiable at x, g be differentiable at   f(x) 

and h be differentiable at g(f(x)).  Then k(x) = (hogof)(x) = h(g(f(x)).gf(x)).  f(x) 

Similarly, if (x) = (kohogof)(x) = k(h(g(f(x)))), then  

        (x) = (kogohof)(x) = k(h(g(f(x)))). h(g(f(x)).g(f(x)).f(x). 

You can now see why this method is called the Chain Rule! 

Example 4.52:   Find the derivative of the function  

  k(x) = cos 32 2 x   

Solution:   Let k(x) = cosx 32 2 x  = h(g(f(x))) with 

 f(x) = 2x
2
 – 3,    g(x) = x  and h(x) =cosx.  Then  

 k(x) =  32cos 2 x
dx

d
 = h(g((x)). g((x)) (x)  

         = - sin 32 2 x  . 
322

1

2 x
.4x  = 

32

32sin2

2

2





x

xx
 

 

Example 4.53:   Let f(x) = sin(tanx
2
).  Find (x) 

Solution:   (x) = 
dx

d
(sin(tanx

2
)) 

       = cos (tanx
2
) sec

2
x

2
(2x) = 2x.cos(tanx

2
) sec

2
x

2
. 

  

 Derivatives of Logarithmic and Exponential Function  

 

Recall that for a > 0, and a  1, the logarithmic function with base a is given by  

   f(x) = xalog     for x > 0. 

In particular, when a = e, we get the natural logarithmic function  

  f(x) = xalog  = nx  , for x > 0. 
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 From Theorem 4.12, when the base a = e , it follows that  

 xelog = (nx) = e
x

elog
1

 = 1.
1

x
 = 

x

1
 :  i.e. 

Also, by applying change of base of logarithms, we get  

 xalog  = e
x

alog
1

 = 
a

e

x e

e

log

log1
 = 

ax ln

1
.

1
: i.e. 

Example 4.54: For (x) = x5log , we have (x) = e
x

5log
1

 = 
5ln

1

x
 

Example 4.55:  Find the derivative of the following  

a) f(x) = log3(x
2
 + x – 1)  b) g(x) = 

x

x

ln
 

            

       

Solution:  a) (x) = e
xx

32
log.

1

1


 (x

2
 + x – 1) = e

xx

x
32

log.
1

12




 

b) g(x) = 












x

x

ln
 = 

2)(ln

1
.ln.1

x

x
xx 

= 
x

x
2ln

1ln 
 

Theorem 4.13:   Let a > 0, a  1 and let f(x) = a
x
.  Then, (x) = (a

x
) = 

e

a

a

x

log
. 

 

By applying change of base we also have  

 

 

 

When the base a = e, we get (e
x
) = 

e

e

e

x

log
 = e

xne = x
x
.1 = e

x
: i.e. 

  Example 4.56:  For f(x) = 3
x
, we have (x) = 

e

x

3log

3
 = 3

x
 n3. 

Example 4.57: Find the derivative of the following  

a) f(x) = 
1xe    b) g(x) = 3

sinx
 

c) f(x) = 
xex 4   d) g(x) = 

2xe nx 

Theorem 4.12:   Let a > 0, a  1 and let f(x) = xalog .  Then  

          (x) = x
x

alog
1

 

 
x

x
1

ln 


 

 
ax

xa
ln

1
log 


 

(ax) = 
e

a

a

x

log
 = ax n a 

(ex)= ex 
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Solution:   a)    By using the Chain Rule, we get  

 (x) =  1xe  = 1xe .  1x   = 1xe , 
1

1

x
 = 

1

1





x

e x

  

b) (3
sinx

) = 3
sinx

, n3. (sinx) = n3.cosx.3
sinx

   

c) xex
dx

d 4  =  
xex 42

1


 (x + e

4x
)  = 

x

x

ex

e
4

4

2

41




 

d) By the Product Rule and Chain Rule we get:  

 g(x) =  xe x ln
2

 = 
2

2 xxe nx + 
2xe .

x

1
=

2xe 









x
xx

1
ln2  

 

 Higher Derivatives 

          

If a function f is differentiable at a point x in its domain, we denote its derivative by (x), where  

  (x) = 
h

xfhxf

h

)()(
lim

0




 , provided the limit exists. 

This derivative is usually called the first derivative of f at x.  

If the new function  is differentiable at a point x, then we can repeat the process and find its 

derivative as  

 ((x)) = (x) =
h

xfhxf

h

)()(
lim

0




,      provided the limit exists. 

we call (x) the second derivative of f at x, and it is often read as “ double prime of x”. 

 Observe that (x) is simply the derivative of the function  at x and is no more difficult than 

finding the first derivative.  

Example 4.58:  If (x) = nx, then (x) = 
x

1
 and hence (x) = 









xdx

d 1
 = 

2

1

x


.  

 We can similarly find the derivative of (x) to get  

  ((x)) = (x) = 
h

xfhxf

h

)()(
lim

0




, and so on, 

and call this the third derivative of f at x. 

Thus, for f(x) = nx, (x) = 
x

1
, (x) = 

2

1

x


 and (x) =

3

2

x
     

These derivatives when they exist are called higher derivatives (or derivatives of derivatives)  

The n
th

 derivative 
[n]

(x) can also be denoted by )(x
dx

fd
n

n

. 
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Thus the second derivative is (x) or 
[2]

(x) or )(
2

2

x
dx

fd
 and the third derivative is (x) or 


[3]

(x) or )(
3

3

x
dx

fd
. 

Example 4.59:  Find the higher derivatives of the following  

a) f(x) = 4x
3
 + x

2
 – 3x + 7  b) g(x) = e

x
 

c) f(x) = sinx    d) g(x) = n(3x) 

Solution:   a)   For f(x) = 4x
3
 + x

2
 – 3x + 7, we have  

 (x) = 12x
2
 + 2x – 3 

 (x) = 24x + 2 

 (x) = 24 

 
[4]

(x) = 0 and for n  4,  
[n]

(x) = 0 

b) For g(x) = e
x
, g(x) = e

x
, g(x) = e

x
, and in general for n > 1, g

[n]
(x) = e

x
 

c) f(x) = sinx  , (x) = cos x 

 (x) = -sinx  , (x) = -cosx 

 
[4]

(x) = sinx  and  so on   

d) g(x) = n(3x)        , g(x) = 
xx

1

3

3
         by Chain Rule 

 g(x) = -
2

1

x
      , g(x) = 

3

2

x
  ,  g

[4]
(x) = 

4

2.3

x
 , … 

 

Exercise 4.2 

1. For each of the following functions, find (c) using the definition 

a. f(x) = 2x – 4,   at c = 1  b.  f(x) = x
2
 + 3,  at c = -1 

c. f(x) = x
3
 – 2  at c = 0  d.  f(x) = |x + 2|,  at c = 2 

2. Find the equations of the tangent and normal lines to the graph of f at the given point. 

a. f(x) = x
2
 + x – 1, at (2, 5)  b. f(x) = x ,  at (4, 2)  

c. f(x) = 2cosx,  at ( 2 , 0)  d. f(x) = 
x

1
,  at (2, 

2

1
) 

3. Find the derivative of the following functions  

a. f(x) = (x
2
 – 5) cosx   b. g(x) = x  secx     

c.   
3

52
2

3





x

xx
     d. g(x) =  

x

x

tan

2
     

4. Find the equations of the tangent and normal lines to the functions at the indicated point. 

a. f(x) = sinx cosx,  at  21,4  

b. f(x) 
12 x

x
 ,     at  21,1         
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5. Find the derivative of the following functions. 

a.    f(x) = tan
3
x             b.  g(x) = x 21 x             c.    f(x) = x  sin x

2
 

d.    g(x) = 
 42

1

xx 
      e.  f(x) = 122  xx   f.    g(x) = xcosx + 3 45 x  

g.    f(x) = sin 12 x      h.    g(x) = 
xx

x

1

cot


 i.    f(x) = e

tanx
 

 j.    g(x) = n(nx)               k.    f(x) = (nx + 
xe )

3
       l.   f(x) = n

2
x + nx

2
 

6. Find the first, second and third derivatives of the following function  

   a.  f(x) = 
2xe             b. g(x) = secx 

   c.  f(x) = sin(2x) + cos(3x)          d. g(x) = n(sinx) 

 

4.3. Applications of the derivative  

At the end of this section you should be able to:  

 define maximum and minimum values of a function on a given interval. 

 explain the fundamental theorem of local extrema values. 

 identify the regions where a function is increasing and decreasing. 

 apply the first and second derivative tests to find local extrema values of a function.  

 solve practical problems related to extrema.  

 state the important points that are necessary to sketch the graph of a function. 

 sketch the graph of a function applying the above concepts. 

 solve related rates problems. 

 

At the beginning of this unit we have mentioned that the derivative of a function at a point c in its 

domain measures the rate of change of the function around that point.  In this section we shall see 

how the derivative can be applied to solve a variety of problem in the areas of engineering, the 

natural sciences, business and the social sciences.  We see how it can be used to solve maximum 

and minimum values of a function (i.e., where it has “peaks” and where it has “valleys”), where it 

curves upward and where it curves downward, and in general, to sketch the graph of the function.  

At the end we shall introduce related rates problems and see how to solve them using the 

derivative.  

a) Extrema of a Function  

Definition.  Let    be a function defined on an interval I.  If there is a number d in I such that f(x) 

 f(d) for all x in I, then f(d) is called the maximum value of f  

on I. Similarly, if there is a number c in I such that f(x)  f(c) for all x in I, then f(c) is called the 

minimum value of f on I.  (See Figure 4.8)  A value of f that is either a maximum value or a 

minimum value of f on I is called an extreme value of f on I. 
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Remark: If the set I is the domain of the function f and if f has a maximum value on I, then 

this maximum value is called the (absolute or global) maximum of f.   

Similar for minimum value of f. 

  Example 4.60:  Let f(x) = x
2
 on I = [-2, 4].  Then 

f has the maximum value of 16 = f(4) and  

the minimum value of 0 = f(0).  Both 0 and  

16 are extreme values of f.  

- On the interval [-2, 4), the minimum value of     Figure 6.6 

   f is 0 but f has no maximum.  

- On the interval (0, 4) f has neither a maximum  

   nor a minimum. See Figure 4.8.                                                      Figure 4.8   

Example 4.61:  Let f(x) = 
x

1
 for x  0. 

The domain of f is I = (-, 0)  (0, ) and  

f has neither a maximum nor a minimum  

value on I.  See Figure 4,10         

- On the interval [-1, 0] f has the maximum  

value -1 = f(-1), but no minimum.      

-  On the interval (0, 2] f has the minimum value )2(
2

1
f ,                            

but has no maximum.  

- On the interval [-1, 2], f has no extrema.                                               Figure 4.9 

  Note that in the first example when the interval is open we have no extrema, while in the second 

example, when the function is not continuous, we had no extrema.  Continuity of a function on a 

closed interval gives us a sufficient condition for the existence of both extreme values. 

 

 

 

Hence the function f(x) = x
2
 for -2  x  4 has both extreme values on [-2, 4].   

Similarly, the function f(x) = x
3
 – 4x + 5     for     0  x  2   which is continuous on [0, 2] has a 

maximum and a minimum value on [0, 2], by Theorem 4.14.  Even though the above theorem 

tells us about the existence of extreme values on [a, b], it does not tell us where they occur or how 

to find them.  The following theorem will help us in determining such values.  

 

 

 

Theorem 4.14: (Maximum-Minimum Theorem).  Let f be continuous on a closed 

bounded interval [a, b].  Then f has a maximum and a minimum value on [a, b]. 

Theorem 4.15:   Let f be defined and continuous on [a, b].  If f has an extreme value 

at c in (a, b) and f is differentiable at c, then (c) = 0. 

x
xf 1)( ofGraph 
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Example 4.62: Let f(x) = x
3
 - 3x + 1.   

Then  is differentiable and the  

critical points of   are the values  

of x for which (x) = 0, 

         But  (x) = 3x
2
 – 3 = 0 

  3(x – 1) (x + 1) = 0 

  x = 1 and x = -1 are critical points of  f.  

                                                                                                               Figure 4.10 

If we want to find extreme values of f on, say, the interval [-3, 3] we compute and compare the 

values of f at -3, -1, 1 and 3 to get f(-3) = 17 , f(-1) = 3, f(1) = -1 and f(3) = 19. 

Thus the minimum value of f on [-3, 3] is -17 which occurs at -3 and the maximum value of f is 

19 which occurs at 3.  

 Monotonic Functions  

One of the important points needed to sketch the graph of a function is to find the regions in 

which the graph slopes upward to the right (increases) or it slopes downward to the right 

(decreases) as seen in Figure 4.11 (a) and (b), respectively.  

                                  y                                                    y 

 

 

                                                     x                                                        x 

 

 

(a)            (b) 

    Figure 4.11 

Definition 4.12:  Suppose f is a function defined on an interval I. 

i) f is said to be increasing on I if f(x1)  f(x2) whenever x1 < x2 

ii) f is said to be decreasing on I if f(x1)  f(x2) whenever x1 < x2 

iii)       f is said to be monotonic on I if f is either increasing or decreasing on I. 

Remark: we can similarly define the terms strictly increasing, strictly decreasing and strictly 

monotonic by replacing   by < and   by >. 

Example 4.63:  Let f(x) = x
2
-1.   

Find the intervals of monotonicity of f. 

Solution:   For x1, x2 (-, 0) with x1 < x2, we have  

  f(x1) = 2

1x  -1 > 2

2x  -1 = f(x2) 

 f is strictly decreasing on (-, 0). 

For x1, x2 (0, ) with x1 < x2, we have  

  f(x1) = 2

1x  -1 < 2

2x  -1 = f(x2) 

  f is strictly increasing on (0, ).                                           Figure 4. 12                                                                        
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The derivative of a function gives us a test for monotonicity as is indicated in the following theorem. 

 

 

 

 

Example 4.64: Find the intervals over which the following function f(x) = x
3
 – 3x + 1is 

monotonic. 

Solution:  For f(x) = x
3
 – 3x + 1, (x) = 3x

2
 – 3 = 3(x – 1) (x + 1) 

To find the intervals over which  is increasing and decreasing we find the sign of (x) using the 

critical points x = 1 and x = -1 and the Sign Chart Method. 

 

                                      -1                 1 

 x – 1   - - - - - - - - - - - - - - - 0 + + + + + ++ + +  

 x + 1   - - - - - - -  0 + ++ + + + + + + + + + + + + 

 (x)    + + + + +  0 - - - - - -  0 + + + + + + + + + 

 

From the above “sign chart” we can see that  

(x) > 0 for x (-, -1)  (1, ) and (x) < 0 for x (-1, 1).   

Thus  is strictly increasing on (-, -1)  (1, ) and strictly decreasing on [-1, 1].See Figure 4.10. 

 The First and Second Derivative Tests for Relative Extrema  

 

If  is a differentiable function, we have seen that at relative extreme values  

(c) = 0.  Thus in order to locate relative extreme values of  we find the values of x for which 

(x) = 0 or (x) does not exist.  But this method does not help us to determine which of these 

values of x give relative extreme values (or which value is a maximum or which is a minimum).  

The next two theorems will provide us with conditions that guarantee that  has relative extreme 

values.  These conditions will also help in sketching the graphs of functions and in solving 

applied problems.  

  

 

 

 

 

 

 

 

 

 

Theorem: 4.16   Suppose f is continuous and differentiable on an interval I. 

i) If (x) > 0, for every x I, then  is strictly increasing on I. 

ii) If (x) < 0, for every x I, then  is strictly decreasing on I.   

Theorem 4.17:  (The First Derivative Test)  

Let f be continuous on an interval I, and let c I. 

a) If (x) changes its sign from positive to negative at c 

i.e. if (x) > 0 to the left of c and (x) < 0 to the right of c, then  has a 

relative maximum value at c. 

b) If (x) changes its sign from negative to positive at c, then  has a relative 

minimum value at c. 
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Example 4.65:  Consider again the function f(x) = x
3
 – 3x + 1. 

(x) = 3x
2
 – 3 = 3(x – 1) (x + 1) = 0 gives the critical points x = 1 and x = -1  

For the critical point x = -1 check the sign of  at -2 and 0 with (-2) = 9 > 0 and (0) = -3 < 0.  

Thus (-1) = 3 is a relative maximum value of f. 

Similarly taking the critical point x = 1 between 0 and 2, we get (0) = -3 < 0 and (2) = 9 > 0.  

Thus f(1) = -1 is a relative minimum value of f. (See Figure 4.11 above) 

  

The above theorem  needs to check the signs of two distinct points to the left and to the right of 

each critical point. The next theorem  makes use of the sign of the second derivative directly at 

the critical points. 

 

 

 

 

 

 

 

 

Example 4.66:  Consider again the function f(x) = x
3
 – 3x + 1 with (x) = 3x

2
 – 3 = 3(x – 1) (x + 

1). We have (1) = (-1) = 0 and (x) = 6x. Since (-1) = -6 < 0, (-1) = 3 is a local maximum 

value of f. Since (1) = 6 > 0, (1) = -1 is a local minimum values of f. 

 

Example 4.67: Let  f(x) = 
4

4
2 x

x
,  Find the local extreme values of f. 

Solution: (x) = 
22

2

)4(

)2(4)4(4





x

xxx
,   Quotient Rule. 

     = 
22

22

)4(

8164





x

xx
 = 

22

2

)4(

416





x

x
 

(x) = 0  16 – 4x
2
 = 0  x = 2 or x = -2 

(x) = 
42

2222

)4(

)2)(4(2)416()4(8





x

xxxxx
 - Quotient Rule and Chain Rule  

 = 
32

2

)4(

)12(8





x

xx
     - Simplification. 

Thus (2) = 
38

)8(16 
 = 

4

1
 < 0   f(2) = 1 is a local maximum value of f and  

(-2) = 
38

)8(16 
 = 

4

1
 > 0    f(-2) = -1 a local minimum value of f. 

 

Theorem: 4.18  (The Second Derivative Test) 

Let f be differentiable in an interval I and let c I with (c) = 0. 

a) If (c) < 0, then (c) is a relative maximum value of f. 

b) If (c) > 0, then (c) is a relative minimum value of f. 

If (c) = 0, then we can not draw any conclusion about f(c). 
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 Practical Applications of the Extrema  

 

A lot of practical problems can be expressed as a continuous function on a closed and bounded 

interval we may be interested to find points where f attains its maximum or its minimum values.  

For instance we may be interested in finding the maximum area of a region to be enclosed by a 

fixed perimeter; the minimum distance from a fixed point to a curve.  In economics a function 

may represent a profit or cost function and we may want to find the value of x to find maximum 

profit and minimum cost, and so on.  The Maximum – Minimum Theorem and the first and 

second derivative test will be crucial in finding such points as are illustrated in the following 

examples. 

Example 4.68: A landowner wishes to use 2000 meters of fencing to enclose a rectangular 

region.  Suppose one side of the land lies along a river and does not need fencing.  What should 

be the sides of the region in order to maximize the area?  

Solution:  Suppose the rectangle is to have length x and width y meters as seen in Figure 4.13.                                                                                                           

x 

Since the length of the fencing is                                      

2000 meters, we have                                                                                                 y 

 x + 2y = 2000                                                  

 2y = 2000 – x     y = 1000 - 2x                            

                                                                                                      Figure 4.13 

 

The area of the rectangle is A = xy which can be written as a function of x alone as  

 A(x) = xy = x(1000 - 2x ) = 1000x - 
2

2x
  for 0  x  2000 

Thus we find the maximum value of A on [0, 2000]. 

 A(x) = 1000 – x = 0   x = 1000 is a critical point. 

Comparing the value of A at the critical point and at the endpoints 0 and 2000, we get  

 A(0) = 0, A(1000) = 500,000  and   A(2000) = 0  (check!) 

Thus the maximum value of A occurs when x = 1000 so that  

 y = 1000 - 2x  = 1000 – 500 = 500. 

Consequently, to enclose maximum area, the fence should have a length of 1000 mts and a width 

of 500 mts.   

Example 4.69:   Ethiopian Airlines offers a round trip discount on group flight from Addis Ababa 

to Lalibela. If x people sign up for the flight, the cost of each ticket is to be 1000 – 2x Birr. Find 

the number of people the airline gets maximum revenue from the sales of tickets for the flight,  

Solution:  Since individual cost of a ticket is 1000 – 2x, the total cost of the group will be 

   C(x) = (1000 – 2x)x = 1000x – 2x
2
.  

To find a critical point, we solve  C(x) = 1000 – 4x = 0, which gives the only critical point 

       x = 250 of C(x). 
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You can easily check that for x < 250, C(x) > 0 and for x > 250, C(x) < 0.  Thus by the First 

Derivative Test C has an (absolute) maximum value at x = 250.  

The maximum revenue the airline gets from the sales of 250 tickets is then 

      C(250) = 1000(250) – 2(250)
2
 = 125,000 Birr. 

Example 4.70:  A manufacturer wishes to produce rectangular containers with square bottom and 

top each of which is to have a capacity of 1000 cubic inches.  If the cost of production of each 

container is proportional to its surface area, what should be the dimensions so as to minimize the 

cost of production? 

Solution:  Let x be the side of the base  

and h be the height of the container as seen in Figure 4.15. 

Then the volume is                                                                                         h         h 

  V = x
2
h = 1000                         

  h = 
2x

V
 =

2

1000

x
   for   x > 0                                          x               x          

                                                                                                          Figure 4.15           

To find the surface area, we have the area of the top and bottom as 2x
2
 and the area of the four 

sides as  

   4xh = 4x 







2

1000

x
 = 

x

4000
 

Hence the total surface area is given by  

  s(x) = 2x
2
 + 

x

4000
  for x > 0. 

Since the cost of production is proportional to the surface area, to minimize cost, we find the 

minimum value of s. 

  s(x) = 4x - 
2

4000

x
 = 

2

3 40004

x

x 
 = 0 

     4x
3
 – 4000 = 0   x

3 
= 1000 

  x = 10 is the only critical point. 

By the Second Derivative Test, we have  

 s(x) = 4 + 
3

8000

x
   with   s(10) = 4 + 8 = 12 > 0 

Thus x = 10 gives the minimum value s(10) = 600 sq. in. 

The height is h = 
2

1000

x
 =

100

1000
  = 10 in. 

Hence the manufacturer would minimize the cost of production by manufacturing cubes of side 

10 inches. 

Curve Sketching  

As a second application of the derivative we shall see here sketching the graphs of functions.  

You have been sketching the graphs of polynomial and rational functions starting from your high 
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school mathematics.  Here we systematically apply the notions of differential calculus to give 

precise meaning to the asymptotes, intervals of increase and decrease, the turning points and find 

the range of the functions. 

First we shall list the important items that will help us in sketching the graph of a function y = f(x).  

1) Determine the domain of the function f. 

2) Find the intercepts of the function f. 

- x-intercepts are points of the form (x, 0) 

      -    y-intercepts are points of the form (0, y) 

3) Determine the asymptotes, if any, of the function f. 

- A line x = c is a vertical asymptote of the graph of f iff  

   
cx

lim f(x) =   or 
cx

lim f(x) = . 

- A line y = L is a horizontal asymptote of the graph of f iff  

   
x

lim f(x) = L  or 
x

lim f(x) = L. 

-   A line y = ax + b is an oblique (or skew) asymptote of the graph of f   iff  

    
x

lim [f(x) – (ax + b)] = L 

4) Determine the intervals of monotonicity of the function f.  

- f is increasing for all x at which  (x) > 0 

- f is decreasing for all x at which (x) < 0 

5)  Find extreme values of , if any. 

Find the critical points of f and apply the first or second derivative tests to determine 

whether they are relative extreme points or not. 

6) If necessary plot some additional points to help you see the behavior of the function.  

Example 4.71:    Sketch the graph of f(x) = 
2

2





x

x
. 

Solution. 2.1 The domain of f is R\{-2} and the x-intercept is the value of x for which  

 f(x) = 
2

2





x

x
 = 0  x = 2.  Hence x-intercept at (2, 0)  

The y-intercept is the value of y when x = 0, i.e. f(0) = 
20

20




 = -1.  Hence y-intercept at (0, -1).   

Since 
 2

lim
x

 f(x) = 
 2

lim
x 2

2





x

x
 = -, the line x = -2 is a vertical asymptote to the graph of f. 

Also you can check that 
 2

lim
x

f(x) =  

Since 
x

lim f(x) =
x

lim
2

2





x

x
 = 

x
lim

xx

xx

2

2




 = 1, the line y = 1 is a horizontal asymptote for the 

graph of f. 

To find the intervals of monotonicity, let us first find f '(x).  

By the Quotient Rule for Differentiation,  
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   f '(x) = 
2

'')(2(

2
2

)2(

)2)(2()2')(










x

xxxx
x
x = 

2

(2

)2(

)2





x

xx
 = 

2
4

)2( x
. 

Hence f '(x) > 0 for every element x in the domain of f. It follows that f is strictly increasing on (-

 , -2) and on (-2,  ).  

 has no critical number and hence no local extrema.  

Additional points: f(-1) = -3, f(1) = - 31  

 

 

 

 

 

 

 

 

 

The graph of f is given in Figure 4.16.                                                    Figure 4.16 

Example 4.72: Sketch the graph of f(x) = x + 
x

1
, for x  0 

Solution:   Since f(x) = x + 
x

1
 = 

x

x 12 
  0 and since x  0 f has no intercepts.  

0
lim
x

f(x) = 
0

lim
x











x
x

1
 =  and 

0
lim
x

f(x) = 
0

lim
x











x
x

1
 = -  

The line x = 0 (the y-axis) is a vertical asymptote of f. 

x
lim [f(x) – x] = 

x
lim

x

1
 = 0 

Hence the line y = x is an oblique asymptote of the graph of f. 

(x) = 1 - 
2

1

x
 = 

2

2 1

x

x 
 = 

2

)1)(1(

x

xx 
 = 0 gives two critical  points x = 1 and x = -1. 

Using a sign chart to find the intervals of monotonicity: 

                                      -1                 1 

 x – 1   - - - - - - - - - - - - - - - - 0 + + + + + ++ + +  

 x + 1   - - - - - - -  0 + ++ + + + + + + + + + + + + 

 (x)    + + + + +  0 - - - - - - - 0 + + + + + + + + + 

 

(x) > 0 in the interval (-, -1)  (1, ) so that it is strictly increasing in (-, -1)  (1, ). 

(x) < 0 in the interval (-1, 1) \ {0} so that f is strictly decreasing in (-1, 1) \{0}. 
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Using the first derivative test, you can see that f(-1) = -2 is a local maximum and f(1) = 2 is a 

local minimum.  You can also apply the second derivative test to see this.   

Additional points: f(-2) = 25 , f  21  = 
2

5
, f  21  = 25 , f(2) = 

2

5
. 

 

 

 

 

 

 

 

 

 

 

 

 

             

The graph is given in Figure 4.17.                                      Figure 4.17 

 

      Related Rates  

One of the most important applications of the derivative is to solve problems involving rates of 

change.  As was mentioned at the beginning of this section the derivative measures the rate of 

change of a variable quantity (which is the independent variable x) with respect to another 

variable (which is the dependent variable y = f(x)).  Here we shall apply this to solve some 

practical related rates problems.  

Example 4.73:  Suppose a particle P starts from a point 0 and moves along a straight line in the 

positive direction as See in Figure 4.18 

Let s(t) devote the distance traveled from 

0 in t seconds.  If we assume that the speed                                     0                   P 

is constant, then we  can compute the speed as     Figure 4.18       

speed = 
elapsedtime

traveledcetandis
                 

If we are interested to find the average speed of the particle between two times t1 and t2  

(with t1 < t2),  we get  

 Average speed = 
timeinchange

etancdisinchange
  = 

12

12 )()(

tt

tsts




 

In particular if t1 is any time t and t2 is a short time later say t2 = t + h for h > 0, then we have  

Approximate speed (at t = t1) = 
tht

tshts



 )()(
 = 

h

tshts )()( 
 

x
xxf 1)( ofGraph 
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If the speed is not even constant, by taking h smaller and smaller we can approximate the speed of 

the particle at time t, to get what is called the (instantaneous) velocity of the particle as  

  v(t) = 
0

lim
h h

tshts )()( 
  

Thus, if s(t) denotes the position function of the particle its velocity is given by  

 v(t) = s(t) = 
dt

ds
  - rate of change of position.  

Similarly, the acceleration of the particle can be obtained by  

  a(t) = v(t) = 
dt

dv
 - rate of change of velocity  

                  = 
0

lim
h h

tvhtv )()( 
 = s(t) = 

2

2

dt

sd
 

For instance if s(t) = t
3
 – 6t

2
 + 20 for 0  t  6,  

then v(t) = s(t) = 3t
2
 – 12t 

and a(t) = v(t) = s(t) = 6t – 12 

    In general, if any quantity q is a function of time t, then the rate of change of the quantity with 

respect to time is given by the derivative q(t). 

 

Example 4.74 :  Water is flowing into a vertical cylindrical tank of radius 2 feet at the rate of 8 

ft
3
/min.  How fast is the water level rising after t minutes?  

                                                                                                                              h(t)                

 

 

 

Solution:    Let v(t) denote the volume of water in the tank  after t minutes and let h(t) denote the 

height of water in the tank after t minutes.  See Figure 4.19. 

Since the rate at which water is flowing into the tank is 8 ft
3
/min. the volume of water in the tank 

after t minutes is  

   v(t) = 8t 

On the other hand since the base of the cylinder is 2 feet and height in h minutes is h(t), we have 

the volume  

   v(t) = r
2
h(t) = 4h(t)  

Thus 4h(t) = 8t     h(t) = t


2
 

The rate at which the water level is rising in then  

  h(t) = 


2
 ft|min, a constant!  (why?) 

       Figure 4.19 
  v(t)        
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Example 4.75:  Two automobiles start from a point A at the same time.  One travels west at 60 

km/hr and the other travels north at 35 km/hr.  How fast is the distance between them increasing 3 

hrs later? 

Solution:  Let s(t) denote the distance  

between the two cars after t hrs.  In                                                  s(t) 

t hrs the car due north travels 35t  kms                                                              35t   

and the car due west travels 60t kms         A  

as seen in Figure 4.20                                                            60t                          

Figure 4.20. 

Hence the distance s(t) between the two cars in t hrs is  

   s(t) = 22 )60()35( tt   

The rate of change of the distance between the cars is  

   s(t) = 
22

22

)60()35(2

)60(2)35(2

tt

tt




       … How ? 

Hence after 3 hrs the distance between the two cars is increasing at the rate of  

   s(3) = 
22

22

)60()35(3

)60(3)35(3




 = 5 193  km/hr 

Exercise 4.3 

1. Find relative extrema and the intervals in which the given function is increasing or 

decreasing  

a) f(x) = 5 – 4x – x
2
  b) g(x) = x

3
 + x

2
 – x – 4 

c) f(x) = 
12 x

x
   d) g(x) = x

2
 + 

2

1

x
 

2. Use the First or Second Derivative Test to determine relative extreme values of the function  

a) f(x) = 5x
2
 – 2x + 1  b) g(x) = 

4

2x
+ 

x

4
 

c) f(x) = x
4
 + x

2

1
  d) g(x) = 

1

1
2 x

 

e) f(x) = 
x

x

sin1

cos


  f) g(x) = (x

2
 + 2)

6
 

3. Sketch the graph of the following functions 

a) f(x) =  (x
2
 – 1)

2
 b) g(x) = 

x

e x

       c)  g(x) = 
1

43
2

23





x

xx
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4.  A menu of total area of 100 sq. in. is printed with 2 in. margins at the top and bottom and 

1in. margins at the sides.  For what dimensions of the menu is the printed area largest?  

5. A rectangle of perimeter p is rotated about one of its sides so as to from a cylinder.  Of all 

such possible rectangles, which generated a cylinder of maximum volume? 

6. The volume of a spherical balloon is increasing at a constant rate of 8 cubic feet per minute.  

How fast is the radius of the sphere increasing when the radius is exactly 10 feet?   

7. At midnight ship B was 90 miles due south of ship A.  Ship A sailed east at 15 m/hr and 

ship B sailed north at 20 m/hr.  At what time were they closest to each other? 

     

4.4. Integrals and their applications 

In this section we shall introduce the second major part of calculus known as integral calculus.  

Just like subtraction is the inverse process of addition, integration is the inverse process of taking 

the derivative of a function.  Historically, integral calculus was developed in solving problems 

connected with finding areas of regions with curved boundaries. 

Section Objectives  

At the end of this section you should be able to:  

 define an anti-derivative of a continuous function. 

 state properties of anti-derivatives. 

 find indefinite integrals of some elementary functions. 

 evaluate the integrals of functions using the techniques of integration. 

 solve integrals involving trigonometric functions. 

 find the definite integral of continuous functions. 

 apply the concepts of definite integrals to find areas of regions bounded by continuous 

functions. 

 

    The Indefinite Integral 

  

As is mentioned above the process of integration is the inverse process of differentiation and 

hence is sometimes called taking anti-derivatives.   

 

Definition 4.13:   A function F(x) is called an anti-derivative of a continuous function f(x) if and 

only if  F(x) = f(x) for every x in the domain of f. 

Example 4.76:  Let f(x) = 3x
2
 + 4x.  Then the function F1(x) = x

3
 + 2x

2
 is an anti-derivative of 

f(x), since F(x) = 
dx

d
(x

3
 + 2x

2
) = 3x

2
 + 4x = f(x). 

Note that F1 is not the only anti-derivative of f(x).  You can also check that F2(x) = x
3
 + 2x

2
  + 5 

and F3(x) = x
3
 + 2x

2
 – 7 are also anti-derivatives of f.   
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In fact, if c is any real number, then F(x) = x
3
 + 2x

2
 + c is an anti-derivative of f(x) = 3x

2
 + 4x 

since F(x) = 
dx

d
 (x

3
 + 2x

2
 + c) = 3x

2
 + 4x = f(x)  

     

Theorem 4.19:   If F(x) is an anti-derivative of f(x), then F(x) + c, where c is an arbitrary 

constant, is also an anti-derivative of f(x). 

 

Notation and terminologies:   Given a function f, the symbol  dxxf )(  stands for any (and 

hence all) anti-derivatives of f. i.e.  if F(x) is an anti-derivative of f(x), we write  dxxf )(  = F(x) 

+ c,  for any constant c. The symbol  is called the integral sign. The function f(x) is called the 

integrand, x is called the variable of integration, and c is called a constant of integration.  

 dxxf )(  is also called the indefinite integral of f with respect to x. 

 

Examples 4.77:  We have   

a)  3x
2
dx = x

3
 + c  d)  sinxdx = -cosx + c; g)  cosx dx = sinx + c 

b)  e
x
dx = e

x
 + c  e)  x

1
dx = n|x| + c 

c)  sec
2
xdx = tanx + c  f)  cscx cotxdx = -cscx + c 

 

 Properties of the Indefinite Integral  

 

Suppose F and G are antiderivatives of f and g, respectively, and k is a constant. Then  

1)  kf(x)dx = k  f(x)dx = kF(x) + c. 

2)  (f(x) + g(x))dx =  f(x)dx +  g(x)dx = F(x) + G(x) + c. 

3)  (f(x) – g(x))dx =  f(x)dx -  g(x)dx = F(x) – G(x) + c. 

 

Examples 4.78:   

1)   4 cosxdx = 4  cosxdx = 4sinx + c 

2)  









x
e x 1

dx =  e
x
dx - dx

x
1

= e
x
 – n|x| + c 

3) If f(x) = x
r
, for any rational r  -1, then  

  f(x)dx =  x
r
dx = c

r

x r






1

1

   (verify!) 
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 Thus,  x
5
dx = c

x


6

6

 and 


2
3

x dx = c
x






2
1

2
1

 = c
x


 2
. 

4) dxx
x 








 2

3
sec2

1
 = 

 dxx 3  + 2  xdx2sec  

           = 
22

1

x
  + 2tanx + c. 

5) If P(x) = anx
n
 + an-1x

n-1
 + … + a2x

2
 + a1x + a0 is a polynomial, then its anti-derivative is 

given by  

P(x) =  dxxP )(  = 
1

1





n

xa n

n  + 
n

xa n

n 1  + …+ 
3

3

2 xa
 +

2

2

1xa
 + a0x 

Thus,  (3x
4
 + 2 x

3
 – 5x + 2)dx = 3  x

4
dx + 2  x

3
dx - 5  xdx +  2dx 

  = 
5

5

3
x  + 4

4

2
x  - 

2

2

5
x + 2x + c 

 

 Some Techniques of Integration 

  

In the previous section we were trying to find anti-derivatives of some functions whose 

derivatives can easily be found from the previous unit on differentiation.  But there are various 

functions such as  

 f(x) = (x + 3)
5
 , g(x) = xe

-x
    and      h(x) = 

)4(

2
2 xx

x
 

whose anti-derivatives are not readily found.  In this section we shall see some techniques to find 

the integrals of such functions. 

 

a) Integration by Substitution 

  

This technique is basically developed by reversing the Chain Rule.  It is very helpful in finding 

the integrals of functions that appear as the composite of two functions. 

Suppose we want to find the indefinite integral   

    dxx 5)3(  

we may expand (x + 3)
5
 and then integrate term by term using the formula 

 dxx r  = cx
r

r 


1

1

1
. 

But this would obviously be very tedious and cumbersome.  On the other hand if we replace or 

substitute u for x + 3, we get  

 (x + 3)
5
 = u

5
 and 

dx

du
 = 

dx

d
(x + 3) = 1    dx = du. 
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Thus,   dxx
5

3   = duu
5  = 

6

1
u

6
 + c. Hence,   dxx

5

3   = 
6

1
(x + 3)

6
 + c, for some constant c. 

 

Theorem 4.20:   If g(x) is continuous x[a, b] and f is continuous at g(x), then  

  f(g(x))g(x)dx =  f(u)du                -    Integration by Substitution   

 

Example 4.79:  Evaluate  2x(x
2
 – 5)

6
dx 

Solution:   Let u = x
2
 – 5.  Then, 

dx

du
 = 2x  which implies that du = 2xdx. Thus,  

  2x(x
2
 – 5)

6
dx =  u

6
du

 = 

7

1
u

7
 + c and hence  2x(x

2
 – 5)

6
dx = 

7

1
(x

2
 – 5)

7
 + c. 

Example 4.80:  Integrate dx
x

x


 21
 

Solution:  Let u = 1 + x
2
.  Then, 

dx

du
 = 2x which implies that xdx = du

2

1
. Therefore, 

 dx
x

x


 21
 = 

2

1 du

u
  = duu


2

1

2

1
= 2

1

.2.
2

1
u  + c = cu   = 

21 x  + c. 

Example 4.81:  Integrate  xdx4sin  

Solution:   Let u = 4x.  Then 
dx

du
 = 4    dx = 

4

1
du. Thus  xdx4sin  = 

4

1
 udusin = -

4

1
 cosu +c  

= -
4

1
 cos4x+ c. 

In general  axdxsin  = -
a

1
cosax + c,    and  bxdxcos  = 

b

1
sinbx + c 

These two formulas can be used to find integrals involving trigonometric functions together with 

trigonometric identities. 

Example 4.82:   Integrate  xdxx 22 cossin  

Solution: From trigonometric identities we have  
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 sin
2
x = 

2

2cos1 x
  and   cos

2
x = 

2

2cos1 x
 

Thus  xdxx 22 cossin  = dxxx )2cos1(
2

1
)2cos1(

2

1
  

= dxx  )2cos1(
4

1 2
 = dxx 








 )4cos1(

2

1
1

4

1
            

=   xdxdx 4cos
8

1

8

1
 = .4sin

32

1

8

1
cxx   

Example 4.83:   Find  xdxtan  

Solution:  xdxtan  = dx
x

x
 cos

sin
. Let u = cos x.  Then 

dx

du
 = -sinx  sinx dx = -du. 

Hence,  xdxtan  = 


u

du
 = - du

u
1

 = -n|u| + c =  -n|cosx| + c. 

You can similarly find  xdxcot . 

 

Example 4.84:   Integrate 
 dxe x2  

Solution:  Let u = - 2x.  Then 
dx

du
 = -2  dx = -

2

1
du.  

So that 
 dxe x2  =  dueu

2

1
 = 

2

1
e

u
 + c = 

2

1
e

-2x
 + c 

In general since 
dx

d
e

f(x)
 = (x) e

f(x)
, we have   dxexf xf )()(  = 

)( xfe  
+ c. 

Thus  dxxex2

 = 
2

1 2xe + c and 
dxxex

323  = 
2xe + c. 

 

b) Integration by Parts  

 

The method of integration by parts is basically developed from the Product Rule for 

differentiation.  If f and g are differentiable functions, we have  

 (f(x)g(x)) = (x) g(x) + g(x) (x) 

Integrating on both sides with respect to x, we get  

 f(x) g(x) =   dxxgxf )()(  +   dxxfxg )()(  

If one of the integrals on the right can be easily evaluated, we can find the other integral using the 

following theorem  

 
Theorem 4.21:   If f and g are differentiable functions, then  

    dxxgxf )()(  = f(x)g(x) -    dxxfxg )()(      - Integration by parts  
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Example 4.85:   Find  dxxex  

Solution:    Let f(x) = x and g(x) = e
x
. Then (x) = 1 and g(x) = e

x
. Therefore, 

  dxxex  = xe
x
 -  dxex .1.  = xe

x
 – e

x
 + c, for some constant c. 

Integration by parts can be easily remembered using the following  substitutions. 

 Let  u = f(x)  and   v = g(x) 

 Then  du = (x)dx  and  dv = g(x)dx 

So that   dxxgxf )()(  = udv= f(x)g(x) -   dxxfxg )()(  = uv- vdu  

Thus,   vduuvudv            - Integration by Parts. 

 

Example 4.86:  Find  nxdxx  

Solution:   Let      u = nx, dv = xdx. Then, du = 
x

1
dx,    v = 

2

2x
. 

Thus  nxdxx  = 
2

2x
nx -  dx

x

x 1

2

2

 = 
2

2x
nx - dx

x
 2

=
2

2x
nx -

4

2x
+ c. 

 Example 4.87:  Find  nxdx  

Solution:   Let      u = nx and dv = dx. Then, du = 
x

1
dx    and v = x 

Hence  nxdx  = xnx -  dx
x

x
1

. = x nx - dx  = xnx – x + c = x(nx – 1) + c. 

Example 4.88:   Find the integral dxex x
2

  

Solution:    Let u = x
2
 and dv = e

x
 dx. Then, du = 2xdx, v = e

x
 and dxex x

2

  = x
2
e

x
 - dxex x

2 . 

But we have seen above that dxex x

  = xe
2
 - e

x
 + c. Hence, 

 dxex x
2

  = x
2
e

x
 – 2(xe

x
 – e

x
 + c) = e

x
(x

2
 – 2x + 1) + c1 where c1 = -2c is a constant. 

 

In some cases we may have to apply integration by parts more than once to arrive at the required 

result as in the following example. 

  

Example 4.89:  Find dxxex

 cos   

Solution:  Let  u = e
x
      and dv = cosxdx. Then, du = e

x
dx and v = sinx. Thus,  

dxxex

 cos  = e
x
sinx - dxxex

 sin .  

To evaluate the integral on the right, we again use integration by parts. 

Let   u   = e
x
      and dv = sinx dx. Then, du = e

x
dx and v = -cosx. 
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Thus, dxxex

 sin  = -e
x
cosx + dxxex

 cos  which implies 2 dxxex

 cos  = e
x
sinx + e

x
cosx + c. 

Therefore, dxxex

 cos  = 
xe

2

1
(sinx + cosx) + c. 

c) Integration by the Method of Partial Fractions  

 

The method of Partial Fractions is used for rational functions  

  f(x) = 
)(

)(

xq

xp
  

where degree of p(x) is less than degree of q(x).  (If not we can apply long division to write f(x) 

as a sum of a polynomial and a rational function with the desired property.) The first step in this 

method is to factorize the denominator q(x) into linear factors, if possible.  (The case where we 

have irreducible quadratic factors of q(x) will not be treated here.)  Now with each linear factor 

(ax + b)
m

 (of multiplicity m) we associate constants A1, A2, …,Am and write 

2

21

)( bax

A

bax

A





+…with the Ai’s to be determined. Then, the rational function f(x) is then 

expressed as a sum of simple rational functions and can be easily integrated. 

 

Example 4.90:  Find dx
x  4

1
2

 

Solution:  By factorizing x
2
 – 4 as (x – 2) (x + 2), we have  

 
4

1
2 x

 = 
)2)(2(

1

 xx
 = 

2x

A
+

2x

B
 = 

)2)(2(

)2()2(





xx

xBxA
 

          

Since the denominators are equal, we equate the numerators as  A(x+2) + B(x - 2) = 1. 

From equality of polynomials, we get 

 








122

0

BA

BA
  A = 41  and  B = 

4

1
 

Hence, dx
x  4

1
2

 = dx
xx 














 2

41

2

41
  = 

4

1
  2x

dx
-

4

1
  2x

dx
= 

4

1
n|x – 2| -

4

1
n |x+2| + c. 

Example 4.91:  Find dx
xxx

xx
 



2

13
23

2

 

Solution:  The denominator x
3
 – x

2
 – 2x = x(x

2
 – x – 2) = x(x + 1) (x – 2) has three roots 0, -1 and 

2. 

xxx

xx

2

13
23

2




 = 

)2)(1(

13 2





xxx

xx
 = 

x

A
+

1x

B
+

2x

C
 

            = 
)2)(1(

)1()2()2)(1(





xxx

xCxxBxxxA
 

 A(x+1) (x - 2) + B x(x - 2) + Cx(x+1) = 3x
2
 + x – 1 
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This equation is true for all xR.  In particular, 

when x = 0,  A(1)(-2) = -1   A = 21  

when x = -1, B(-1)(-3) = 1   B = 31  

when x = 2, C(2)(3) = 13   C = 613  

Hence, dx
xxx

xx
 



2

13
23

2

 = 
2

1
 x

dx
 + 

3

1
 1x

dx
 + 

6

13
  2x

dx
=

2

1
n|x| + 

3

1
n|x + 1| + 

6

13
n|x-2|+c. 

 

 The Definite Integral 

 

For a very long time, mathematicians have struggled with the problem of finding areas of plane 

regions.  Until the invention of the integral calculus, however, the regions considered were mostly 

those regions bounded by straight lines, called polygons, with a few exceptions such as the circle 

and the ellipse.  The Greek mathematicians found the area of a polygon by first finding the area of 

a rectangle, then finding the area a parallelogram, and then finding the area of a triangle.  The area 

of a polygon can be used to approximate the area of a region bounded by curved boundaries.  For 

instance, the area of a circle can be found by drawing a sequence of inscribed polygons  

P4, P8, P16, …,Pn, and then taking limit as n  . 

 

To develop the idea for more general regions, consider the region bounded by the graphs of 

y = 2x
2
 + 1,     x = 0,     x = 6    and     x-axis. 

To find the area of the region, let us identify the region S by drawing its boundaries, namely the 

graphs of     y = f(x) = 2x
2
 + 1, x = 0, x = 6   and the x-axis as shown in Figure 4.21. 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 4.21 

Unfortunately, since f(x) = 2x
2
 + 1 is a curve that is not a line segment, we cannot find the area of 

the region by the elementary methods. So, it is necessary to develop a stronger technique that also 

generalizes the elementary method and enables us to find the area of such regions. 
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Let A(S) denote the area of the region S. It is not difficult to give lower and upper bounds of 

A(S). For instance, we consider the rectangle r that is enclosed by the boundaries of S and the 

rectangle R that encloses S, as shown in Figure 4.22. 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 4.22 

 

      Then   A(r) = 6   and   A(R) = 673 = 438. Hence 6   A(S)  438, which gives a wide range 

of bounds of A(S). 

Better bounds of A(S) can be obtained if we consider the finer rectangles r1 , r2 , r3 , r4 , 

r5  and r6  that are enclosed by the boundaries of S and R1, R2, R3, R4, R5 and R6 that enclose S as 

shown in Figure 4.23. 

 

 

 

 

 

 

 

 

                                  Figure 4.23 

 

 

 

                                              Figure 4.23 

Evidently, each of the rectangles has base 1 unit but varying heights. It follows that 

                A( r1 )+A( r2 ) + … + A( r6 )A(S)A(R1) + A(R2) + … + A(R6) 

i.e.,  


6

1

)(A r
i

i     A(S)     


6

1

)(A

i

Ri which gives   116       A(S)       188. 
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To give a formal definition of the subdivisions, for any positive integer n, divide [a, b] into 

subintervals by introducing points of subdivision  x0, x1, …xn  

Definition 4.14:  A partition of [a, b] is a finite set P of points x0, x1, …, xn such that  

a = x0 < x1 < x2 < … < xn = b.  We describe P by writing P = { x0, x1, …xn}    

By definition, any partition of [a, b] must contain a and b. 

The length of any subinterval [xi-1, xi] of a partition P is defined and given by  

  xi = xi – xi-1 

In particular, when the lengths of each subintervals are equal, it is called a regular partition.  

 In this section we shall consider only regular partitions, so that the length of   each subinterval is  

    xi = xi – xi-1 = 
n

ab 
 

Having chosen a partition P of [a, b], we inscribe and circumscribe rectangles on the region R 

using the division points of P as seen in Figure 7.3(a) and (b).  Since f is continuous on [a, b], by 

the Maximum-Minimum Theorem, for each i between 1 and n, there is a minimum value mi and a 

maximum value Mi of f on the subinterval [xi-1, xi].  If ri and Ri denote the inscribed and 

circumscribed rectangles on [xi-1,xi], respectively, then the area of ri is A(ri) = mixi and the area 

of Ri is A(Ri) = Mixi, since the base of both ri and Ri is xi = xi - xi-1.  From our observation in 

Figure 7.3 (a) and (b) we see that the area of the region R is between the sum of the inscribed  

rectangles and the sum of the circumscribed rectangles. 

Definition 4.15:  Let f be continuous on [a, b] and P be any partition of [a, b].   

The sum     Lf(P) = m1x1 + m2x2 + …+ mnxn 

is called the lower sum of f associated with P and the sum  

  Uf(P) = M1x1 + M2x2 + … + Mnxn 

is called the upper sum of f associated with P. 

   From our construction we see that if P is any partition of [a, b], then the area of R should be 

between Lf(P) and Uf(P) i.e. 

              

Example 4.92:   Let f(x) = x
2
 for o  x  2 and let P = 









2,
2

3
,1,

2

1
,0 be a partition of [0, 2]. 

Then the subdivision of [0, 2] associated with P are 








2

1
,0 , 








1,

2

1
, 









2

3
,1 , 








2,

2

3
.  Since x

2
 is an 

increasing function on [0, 2], the minimum value of f on each subinterval is at the left end point 

and the maximum value of f at the right end point.  Thus 

 m1 = f(0) = 0,         m2 = f
4

1

2

1









,      m3 = f(1) = 1,           m4 = f

4

9

2

3









 

and M1 = f
4

1

2

1









,      M2 = f(1) = 1,          M3 = f

4

9

2

3









,       M4 = f(2) = 4 

The base of each subinterval is xi = 
4

02 
 = 

2

1
.  Thus the lower sum of f associated with P is  

Lf(P)  Area (R)  Uf(P) 
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  Lf(P) = 0. 
2

1
 +

4

1
 . 

2

1
+ 1.

2

1
 + 

4

9
.

2

1
 = 

4

7
 

and the upper sum of f associated with P is  

  Uf(P) = 
4

1
.

2

1
 + 1.

2

1
 + 

4

9
.

2

1
 + 4.

2

1
 = 

4

15
 

Therefore the area of the region R below the graph of f(x) = x
2
 above the x-axis on [0, 2] is 

between 
4

7
 and 

4

15
, i.e. 

4

7
  Area(R)  

4

15
.  

Definition 4.16:  Let f be continuous on [a, b].  The definite integral of f from a to b is the 

unique number I satisfying Lf(P)  I  Uf(P) for every partition P of [a, b].   

This integral is denoted by  

  I = 
b

a

dxxf )(      

The numbers a and b are called the lower and upper limits of integration, respectively.  

 Note that as the number of subdivisions of an interval [a, b] increases, the minimum and the 

maximum values of f on [xi-1, xi] are close to each other.  For each i from 1 to n if we take an 

arbitrary number ti in [xi-1, xi], then we get the sum  

  



n

i

ii xtf
1

)( = f(t1)x1 + f(t2)x2 + …+ f(tn)xn 

This sum is called a Riemann sum or an Integral sum.  

Even though it is sometimes possible to calculate 
b

a

dxxf )( by finding formulas for lower and 

upper sum we are to evaluate it here by the use of the Fundamental Theorem of Calculus. 

For the moment we can conclude that if f is continuous and nonnegative on [a, b], then the area of 

the region R between the graph of f and the x-axis on [a, b] is given by  

   Area(R) = 
b

a

dxxf )( . 

Remark:   The definite integral has the following properties. 

       If f and g are integrable over [a, b] and k is a constant, then  

    a) 
b

a

dxxkf )(  = k 
b

a

dxxf )(  

 b)  

b

a

dxxgxf ))()(( = 
b

a

dxxf )(   
b

a

dxxg )(  

 c) If f(x)  0, for a  x  b, then 
b

a

dxxf )(   0 and   
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  if f(x)  0, for a  x  b, then 
b

a

dxxf )(   0. 

 d) If m  f(x)  M for all x  [a, b], then  

                  m(b – a)  
b

a

dxxf )(   M(b – a) 

e) If c is any number in (a, b), then  

  
b

a

dxxf )(  = 
c

a

dxxf )(  + 
b

c

dxxf )(    - Additive Property  

 f) 
a

a

dxxf )(  = 0  for any number a.  

 g) 
a

b

dxxf )(  = - 
b

a

dxxf )( . 

To develop a general method for evaluating 
b

a

dxxf )(  without computing lower and upper sums 

we shall state the most important theorem in calculus: The Fundamental Theorem of Calculus.  

To this end let f(t) be continuous on [a, b].  Then f is integrable on [a, b] and for any x[a, b] the 

definite integral 
x

a

dtxf )(  exists.  Define a function F on [a, b] as F(x) =  
x

a

dttf )(  

In effect the Fundamental Theorem of Calculus states that the function F(x) is differentiable with 

derivative f(x) thereby eliminating the integral by the derivative.  It also shows us how to evaluate 

the definite integral. 

 

 

 

 

Remarks:  a)  From (ii) to evaluate 
b

a

dxxf )(  all we have to do is to find an anti-derivative of F 

of f and find the difference of its values at a and at b.  This is usually denoted by  

 b
axF )(  or 

a

b
xF )(  to mean F(b) – F(a). 

Theorem 4.22:  (Fundamental Theorem of Calculus)  

Let f(t) be continuous on [a, b] and for each x [a, b] let  

  F(x) = 
x

a

dttf )(   

Then (i)    F(x) is a differentiable function with F(x) = f(x)  

(ii) If F is any anti-derivative of f on [a, b], then 
b

a

dttf )(  = F(b) – F(a). 
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b) If F is an anti-derivative of f, then F(x) + c, for any constant c is also an anti-derivative of 

f.  But since  b
acxF )(  = (F(b) + c) – (F(a) + c) = F(b) – F(a) = b

axF )(  

          the constant c does not play any role in evaluating the definite integral.  Thus we can 

always take c = 0. 

Example 4.93:   Let f(x) = x
2
 for 0  x  2.  Then F(x) = 

3

3

1
x  is an anti-derivative of f, so that by 

the Fundamental Theorem of Calculus. 

   
2

0

2dxx  = 
3

3

1
x

0

2
 = F(2) – F(0) = 

32
3

1
 - 

30.
3

1
 = 0

3

8
  = 

3

8
 

From our previous discussion, the area of the region R under the graph of f(x) = x
2
 on [0, 2] above 

the x-axis is thus   
2

0

2dxx  = 38  sq. units. 

Example 4.94:   Evaluate each of the following definite integrals  

a) dxx
4

1

3      b) dxx


0

sin  

c) 




2

0

)cos( dxxx    d)  

1

0

3 )25( dxexx x
 

Solution:  a)   Since  F(x) = 3.
3

2
.

23x  = 2x x  is an anti-derivative of f(x) = 3 x , we have  

 
4

0

3 dxx  = F(4) – F(1) = 2(4) 4  - 2(1) 1  = 16-2 = 14 

b) An anti-derivative of sinx is –cosx.  Thus 

 


0

sin xdx  = -cosx
0


 = -cos - (-cos 0) = -(-1) + 1 = 2. 

c)  

2

0

)cos(



dxxx  = 

2

0

2

sin
2











 x

x
= 











1

8

2

 - (0 + 0) = 1
8

2




. 

d) dxexx x )25(

1

0

3

   = 

1

0

24

4

5








 xexx = 








 e1

4

5
 - (0 + 0 – 1) = e

4

13
 

Remark:  For functions that are given by more than one formula we evaluate the definite integral 

using the additive property. 

Example 4.95: Evaluate dxx




1

2

1  
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Solution:  By definition |x + 1| = 








1),1(

1,1

xforx

xforx
 

                                                                                       y 

Then by Additive Property, we have                                   

dxx




1

2

1  = dxx






1

2

)1(  + dxx




1

1

)1(  

= -

1

2

2

2













 x

x
 +  

1

1

2

2










 x

x
                                                                               x 

           Figure  4.23 

= - 
















 )22(1

2

1
 + 

























 1

2

1
1

2

1
= 2

2

1
  = 25  

            

From the method of Integration by Substitution we have  

    dxxgxgf )())((  =  duuf )(  where u = g(x) 

If we are to evaluate this integral between a and b, we have,  

when x = a, u = g(a) and when x = b, u = g(b).  Thus it follows  

   

        - Change of Variable. 

 

 

Example 4.96:  Evaluate dxxx 

3

2

2 4  

Solution: We have two possibilities to evaluate such a definite integral.  One way is to find an 

anti-derivative of 42 xx  and evaluate it between 2 and 3 by the Fundamental Theorem of 

Calculus.  The other is to use the change of variable formula and change the limits of integration 

before integrating.   

To this end, let u = g(x) = x
2
 – 4.  Then du = 2xdx. 

When x = 2, u = g(2) = 0 and when x = 3, u = g(3) = 5 

Thus dxxx 

3

2

2 4  = 
2

3

0

du
u  = 

5

0

21

2

1
duu  

 = 
5

03

2
.

2

1
uu  = 5,5.

3

1
 - 0 = 

3

55
. 

 Application of the Definite Integral:  Area 

The definite integral has several applications such as finding areas of regions, arc length 

of curves, surface areas and volumes of solids of revolution.  In this section we shall see 

how to find areas of plane regions with curved boundaries using the definite integrals. 

 
b

a

bg

ag

duufdxxgxgf

)(

)(

)()())((  
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In the previous section we have seen that if f(x)  0 for all x [a, b] and if f is continuous on [a, 

b], then 
b

a

dxxf )(  gives the area of the region R below the graph of f, above the x-axis, between 

the lines x = a and x = b. For instance, if f(x) = x
2
 for 0  x  2, then the area of R as given in is 

given by A(R) = 38
0

2

3

2

0

3
2 

x
dxx  sq. units. 

- If f(x)  0 on [a, b], then taking g(x) = -f(x)  0 for a  x  b, the area of the region R below the 

x-axis, above the graph of f on [a, b] is given by A(R) = 
b

a

dxxg )(  = 
b

a

dxxf )(  = - 
b

a

dxxf )( . 

For instance, if f(x) = 2x for -2  x  0, then the area of the region R below the x-axis, above the 

graph of f on [-2, 0] is given by  

 A(R) = - 


0

2

)( dxxf  = - 


0

2

2xdx  = -x
2

2

0


 
= -[0 - 4] = 4 sq. units. 

Now let f and g be continuous on [a, b], and assume that f(x)  g(x) for a  x  b.  Then the area 

of the region R below the graph of f, above the graph of g, and between the lines x = a and x = b 

is given by  

  A(R) =  dxxgxf

b

a

  )()(          

 

Example 4.97: Find the area of the region bounded by f(x) = x2 , g(x) = -x and line x = 9. 

Solution. Sketching the graphs of y = f(x), y = g(x) and x = 9, the region R can be identified as 

shown in Figure 4.24. 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 4.24 

It follows that 

y 

x 9 

y = 2 x  

R 

y = -x 
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       A(R) =     
9

0

9

0
2)()( dxxxdxxgxf 2

3

3
4 x  + 5.76|

9

02

2
x . 

 

Exercise 4.4 

1. Evaluate the following indefinite integrals  

a)  (x
3
 + 5)dx   d)     (4 – x + 3x

2
 – 2x

5
)dx 

b)  2x
-8

dx    e)     (cosx – 4e
x
)dx  

c)  3 sinxdx   f)    dx
x

xx



2

3 4
 

2. Find the following integrals by substitution  

a)   3x

dx
    c)     dxxx cossin2  

b) dxe x


3      d)    dx

x

xn


4
 

3. Find the following integrals by the method of Integration by Parts. 

a)  dxxx cos    c) dx
x

nx
 2


 

b) dxx x

  3)1(     d)  dxxx sin2       

 

4. Integrate the following by the method of Partial Fractions 

a)   )43)(2( xx

dx
   c)   )3)(2)(1( xxx

dx
 

b)   62 xx

x
    d) 

 
dx

x

x



2

2

2
 

5. Find the area of the region R between the graph of f and the x-axis on the given interval  

a) f(x) = x
2
 + 1 ,   on [1, 3] 

b) f(x) = 2 + cosx,   on  23,0   

c) f(x) = 
x

1
,    on [1, 4] 

d) f(x) = |x| - 1,   on [-1, 2] 

6. Find the area of the region between the graphs of the following functions. 

. a) f(x) = x
2
 and g(x) = 2 – x 

 b) f(x) = e
x
, x = -1, x = 3 and the x-axis  

 c) f(x) = x
2
 – 4 and g(x) = 4 – x

2
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