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Preface 

Computational Intelligence (CI) is one of the most important powerful tools for 
research in the diverse fields of engineering sciences ranging from traditional 
fields of civil, mechanical engineering to vast sections of electrical, electronics 
and computer engineering and above all the biological and pharmaceutical 
sciences. The existing field has its origin in the functioning of the human brain in 
processing information, recognizing pattern, learning from observations and 
experiments, storing and retrieving information from memory, etc. In particular, 
the power industry being on the verge of epoch changing due to deregulation, the 
power engineers require Computational intelligence tools for proper planning, 
operation and control of the power system. Most of the CI tools are suitably 
formulated as some sort of optimization or decision making problems. These CI 
techniques provide the power utilities with innovative solutions for efficient 
analysis, optimal operation and control and intelligent decision making. 
Due to the nonlinear, interconnected and complex nature of Power System 
networks and the proliferation of power electronics devices (STATCOM, UPFC, 
TCSC etc), the CI techniques become the promising candidates for optimal 
planning, intelligent operation and automatic control of the power system. Neural 
Network (NN), Fuzzy logic (FL) as well as the derivative free optimization 
techniques like Genetic Algorithm (GA), Simulated Annealing (SA) and the 
Swarm Intelligence (SI) techniques like Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO) play an important role in power industry for 
decision-making, modeling, and control problems. Due to the nonlinear nature of 
Power System networks and industrial electric systems (FACTS, HVDC etc), 
fuzzy logic and neural networks are promising candidates for planning, fault 
detection, automatic control, system identification, load and load/weather 
forecasting, etc. Distribution system routing and loss minimization are dealt with 
effectively using evolutionary algorithms and Swarm intelligence techniques.  

This edited volume deals with different CI techniques for solving real world 
Power Industry problems. The technical contents will be extremely helpful for the 
researchers as well as the practicing engineers in the power industry. 
 
 
 Bjaya Ketan Panigrahi, IIT Delhi, India 

Ajith Abraham, MIR Labs, USA 
Swagatam Das, Jadavpur University, India 
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Robust Design of Power System Stabilizers for 
Multimachine Power Systems Using Differential 
Evolution 

M. A. Abido1 

Abstract. In this chapter, an evolutionary algorithm based approach to multima-
chine Power System Stabilizer (PSS) design is presented. This approach employs 
Differential Evolution (DE) technique to search for optimal settings of PSS pa-
rameters. An eigenvalue-based objective function to enhance system damping for 
electromechanical modes is considered. The robustness of the proposed approach to 
the initial population is demonstrated. The performance of the proposed DE based 
PSS (DEPSS) under different disturbances, loading conditions, and system con-
figurations is investigated and examined for different multimachine power systems. 
The eigenvalue analysis and the nonlinear simulation results show the robustness 
and the effectiveness of the DEPSSs to damp out the local as well as the interarea 
modes of oscillations and work effectively over a wide range of loading conditions. 

1   Introduction 

Power systems are experiencing low frequency oscillations due to disturbances. 
The oscillations may sustain and grow to cause system separation if no adequate 
damping is available. To enhance system damping, the generators are equipped 
with power system stabilizers (PSSs) that provide supplementary feedback stabi-
lizing signals in the excitation systems [1-3]. DeMello and Concordia [3] pre-
sented the concepts of synchronous machine stability as affected by excitation 
control. They established an understanding of the stabilizing requirements for 
static excitation systems. In recent years, several approaches based on modern 
control theory have been applied to PSS design problem. These include optimal 
control, adaptive control, variable structure control, and intelligent control [4-8].  

Despite the potential of modern control techniques with different structures, 
power system utilities still prefer the conventional lead-lag power system stabi-
lizer structure [9-11]. The reasons behind that might be the ease of tuning of con-
ventional stabilizer parameters during commissioning and the lack of assurance of 
the stability related to some adaptive or variable structure techniques. 
                                                           
M.A. Abido 
Electrical Engineering Department 
King Fahd University of Petroleum & Minerals 
Dhahran 31261, Saudi Arabia 
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Kundur et al [11] have presented a comprehensive analysis of the effects of the 
different CPSS parameters on the overall dynamic performance of the power sys-
tem. It is shown that the appropriate selection of CPSS parameters results in satis-
factory performance during system upsets.  

A lot of different techniques has been reported in the literature pertaining to co-
ordinated design problem of CPSS. Different techniques of sequential design of 
PSSs are presented [12-13] to damp out one of the electromechanical modes at a 
time. However, the stabilizers designed to damp one mode can produce adverse 
effects in other modes. The sequential design of PSSs is avoided in [14-16] where 
various methods for simultaneous tuning of PSSs in multimachine power systems 
are proposed. Unfortunately, the proposed techniques are iterative and require 
heavy computation burden due to system reduction procedure. In addition, the ini-
tialization step of these algorithms is crucial and affects the final dynamic re-
sponse of the controlled system. A gradient procedure for optimization of PSS pa-
rameters is presented in [17]. Unfortunately, the problem of the PSS design is a 
multimodal optimization problem, i.e., there exist more than one local optimum. 
Hence, local optimization techniques are not suitable for such a problem. More-
over, there is no local criterion to decide whether a local solution is also the global 
solution. Therefore, conventional optimization methods that make use of deriva-
tives and gradients, in general, not able to locate or identify the global optimum.  

Recently, heuristic search algorithms such as genetic algorithm (GA) [18-19], 
tabu search algorithm [20], simulated annealing [21], and particle swarm optimi-
zation (PSO) [22] have been applied to the problem of PSS design. The results are 
promising and confirming the potential of these algorithms for optimal PSS de-
sign. Unlike other optimization techniques, heuristic search algorithms are popula-
tion-based search algorithm, which work with a population of strings that repre-
sent different potential solutions. Therefore, these algorithms have implicit 
parallelism that enhances their search capability and the optima can be located 
more quickly when applied to complex optimization problems. Unfortunately, re-
cent research has identified some deficiencies in their performance [23]. This deg-
radation in efficiency is apparent in applications with highly epistatic objective 
functions, i.e., where the parameters being optimized are highly correlated. In ad-
dition, the premature convergence of some of these algorithms degrades their per-
formance and reduces their search capability.  

More recently, a new evolutionary computation technique, called differential 
evolution (DE) algorithm, has been proposed and introduced [24-30]. The algo-
rithm is inspired by biological and sociological motivations and can take care of 
optimality on rough, discontinuous and multi-modal surfaces. The DE has three 
main advantages: it can find near optimal solution regardless the initial parameter 
values, its convergence is fast and it uses few number of control parameters. In 
addition, DE is simple in coding and easy to use. It can handle integer and discrete 
optimization [24-30].  

The performance of DE algorithm was compared to that of different heuristic 
techniques. It is found that, the convergence speed of DE is significantly better 
than that of GA [31]. In [31], the performance of DE was compared to PSO and 
evolutionary algorithms (EAs). The comparison was performed on a suite of 34 
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widely used benchmark problems. It was found that, DE is the best performing al-
gorithm as it finds the lowest fitness value for most of the problems considered in 
that study. Also, DE is robust; it is able to reproduce the same results consistently 
over many trials, whereas the performance of PSO is far more dependent on the 
randomized initialization of the individuals [31]. In addition, the DE algorithm has 
been used to solve high-dimensional function optimization (up to 1000 dimen-
sions) [32]. It is found that, it has superior performance on a set of widely used 
benchmark functions. Therefore, the DE algorithm seems to be a promising ap-
proach for engineering optimization problems. It has successfully been applied 
and studied to many artificial and real optimization problems [33-44]. 

In this study, DE based approach to PSS design is proposed. The problem of 
PSS design is formulated as an optimization problem with mild constraints and an 
eigenvalue-based objective function. Then, DE algorithm is employed to solve this 
optimization problem. To investigate the potential of the proposed approach, two 
different examples of multimachine power systems have been considered. Eigen-
value analysis and nonlinear simulation results have been carried out to assess the 
effectiveness of the proposed PSSs under different disturbances. In addition, the 
performance of the proposed DEPSS is compared to that of recent approaches re-
ported in the literature. 

2   Problem Statement 

2.1   System Model and PSS Structure 

A power system can be modeled by a set of nonlinear differential equations as: 

),( UXfX =
•

     (1) 

where X is the vector of the state variables and U is the vector of input variables. 
In this study, the two-axis model [2] given in Appendix is used for nonlinear time 
domain simulations. 

In the design of PSSs, the linearized incremental models around an equilibrium 
point are usually employed [1-3]. Therefore, the state equation of a power system 
with n machines and nPSS stabilizers can be written as: 

UBXAX   +Δ=Δ
•

     (2) 

where A is 4n×4n matrix and equals Xf ∂∂ /  while B is 4n× nPSS matrix and 

equals Uf ∂∂ / . Both A and B are evaluated at a certain operating point. ΔX is 

4n×1 state vector while U is nPSS ×1 input vector. 
A widely used conventional lead-lag PSS is considered in this study. It can be 

described as 
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where Tw is the washout time constant, Ui is the PSS output signal at the ith ma-
chine, and Δωi is the ith machine speed deviation from the synchronous speed. The 
time constants Tw, T2, and T4 are usually prespecified [14]. The stabilizer gain Ki 
and time constants T1i and T3i are remained to optimize. 

2.2   Objective Functions 

To increase the system damping to electromechanical modes, the following eigen-
value-based objective function is considered. 
 

J=min{ζI : ζi∈ζs of electromechanical modes}  (4) 
 

where ζI is the damping ratio of the ith electromechanical mode eigenvalue respec-
tively. In the optimization process, it is aimed to Maximize J in order to increase 
the damping of electromechanical modes. The problem constraints are the opti-
mized parameter bounds. Therefore, the design problem can be formulated as the 
following optimization problem. 
 

Maximize J      (5) 
  Subject to 
Ki

min ≤ Ki ≤  Ki
max     (6) 

T1i
min ≤ T1i ≤  T1i

max     (7) 
T2i

min ≤ T2i ≤  T2i
max     (8) 

T3i
min ≤ T3i ≤  T3i

max     (9) 
  T4i

min ≤ T4i ≤  T4i
max     (10) 

 
Typical ranges of the optimized parameters are [0.001-50] for Ki, [0.06-1.5] for T1i 
and T3i, and [0.01-0.1] for T2i and T4i [2]. The time constant Tw is set as 5s [19]. 

Considering the objective functions given in (4), the proposed approach em-
ploys DE algorithm to solve this optimization problem and search for optimal set 
of PSS parameters, {Ki, T1i, T2i, T3i, T4i, i=1,2,…,nPSS}. 

3   Differential Evolution 

3.1   Overview 

To overcome the difficulties in traditional optimization techniques, new evolu-
tionary population based searching techniques were proposed with promising suc-
cess. In this paper, an approach based on a technique called "Differential Evolu-
tion" is presented and will be used to solve PSS design problem.  
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3.2   Differential Evolution Algorithm 

Between the years 1994 to 1996, an optimization technique called Differential 
Evolution (DE) is introduced. The DE is a population based searching optimiza-
tion technique and is characterized by its simplicity, robustness, few control vari-
ables and fast convergence [24-29]. Comparison between DE and the well known 
Particle Swarm Optimization technique in reference [30] indicated that DE has 
better performance. The steps of DE algorithm can be described as follows: 
 

• Step-1 (Initialization): 
As any evolutionary algorithm, the DE works using set of candidate solutions 
forming the problem population. An initial population of NP candidate 
solutions is randomly generated over the problem space: 
 

xij = x
j-lower limit 

+ r * (x
j-upperr limit  

- 
 
x

j-lower limit 
)  (11) 

 

where r is the rondom number r∈[0,1]. 

• Step-2 (Objective Evaluation):  
The objective of each solution is computed.  

• Step-3 (Stopping Criteria):  
The stopping criteria are checked. These are the conditions under which the 
search process will terminate. In this study, the search will terminate if one of 
the following criteria is satisfied: (a) the number of iterations since the last 
change of the best solution is greater than a prespecified number; or (b) the 
number of iterations reaches the maximum allowable number.  

• Step-4 (Mutation): 
For each vector xi in the population, a mutant vector is created by randomly 
selecting three vectors (R1, R2, R3), different from xi and different from  
each other. 
 

x’ = x
R1 

+ F* (x
R3  

- 
 
x

R2 
)     (12) 

 

where, F is a mutation factor between [1,0] and it controls the solution 
variation in the mutation stage.  

• Step-5 (Crossover): 
To further perturb the mutant vector, a trial vector is generated by copying 
parameters from the parent solution Xi and the mutant vector X'

i in a 
probabilistic manner to generate a Trail Vector X''

i  to be used in the selection 
stage. This is accomplished by comparison between a randomly generated 
number and a specified crossover factor (CR) between [1, 0], as explained in 
Fig. 1. However, in case CR=0, then all parameters are copied from parent 
vector Xi except one, randomly selected from the mutant vector X'i. Whereas, 
if CR=1 then all parameters are copied from mutant vector X'i except one, 
randomly selected from the parent vector Xi. 
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Fig. 1. Crossover Process 

• Step-6 (Selection): 
Selection is performed using the objectiv values. To keep the population size 
constant over subsequent generations, the selection process is carried out to 
determine which one of the child and the parent will survive in the next gen-
eration. If the child yields a better value of the fitness function, it replaces its 
parent in the next generation; otherwise, the parent is retained in the popula-
tion. Hence the population either gets better in terms of the fitness function or 
remains constant but never deteriorates. 

3.3   DE Implementation 

The proposed DE based approach was implemented using the FORTRAN lan-
guage and the developed software program was executed on a 2.66-GHz PC. Ini-
tially, several runs have been done with different values of DE key parameters 
such as differentiation (or mutation) constant F, crossover constant CR, and size of 
population NP. In this paper, the following values are selected: 

 

F=0.9; CR=0.5; NP=100; the search will be terminated if (a) the number of itera-
tions since the last change of the best solution is greater than 100; or (b) the num-
ber of iterations reaches 5000.  

To demonstrate the effectiveness of the proposed design approach, two differ-
ent examples of multimachine power systems are considered. In both examples, 
PSS parameters are optimized at several operating condition to ensure the robust-
ness of the proposed PSSs. These conditions represent different loading conditions 
and system configurations. It is worth mentioning that the nonlinear system model 
is used in time-domain simulations. 
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4   Example 1: Three Machine Power System 

4.1   Test System and PSS Design 

In this example, the 3-machine 9-bus system shown in Fig. 2 is considered. The 
rated MVA of G1, G2, and G3 are 247.5, 192, and 128 respectively. Details of the 
system data are given in [1]. The participation factor method shows that the genera-
tors G2 and G3 are the optimum locations for installing PSSs. Hence, the optimized 
parameters are Ki, T1i, and T3i, i=2,3. The optimization process was carried out at the 
operating points specified as base case, case 1, and case 2. The system and genera-
tor loading levels at this case are given in Table 1 and Table 2 respectively. 

To demonstrate the robustness of the proposed approach to the initial solution, 
different initializations have been considered. The final values of the optimized 
parameters are given in Table 3. The convergence of objective functions is shown 
in Fig. 3. It is clear that, unlike the conventional methods [12-16], the proposed 
approach finally leads to the optimal solution regardless the initial one. There-
fore, the proposed approach can be used to improve the solution quality of classi-
cal methods. 

 
Load C

Load BLoad A

2 7 8 9 3

65

4

1

1G

2G 3G

 
Fig. 2. Three-machine nine-bus power system 

Table 1. Loads in pu on system 100-MVA base 
 

Base Case Case 1 Case 2 Load 
P Q P Q P Q 

A 1.250 0.500 2.000 0.800 1.500 0.900 
B 0.900 0.300 1.800 0.600 1.200 0.800 
C 1.000 0.350 1.500 0.600 1.000 0.500 
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Table 2. Generator loadings in pu on the generator own base 
 

Base Case Case 1 Case 2 Gen. 
P Q P Q P Q 

G1 0.289 0.109 0.892 0.440 0.135 0.453 
G2 0.849 0.035 1.000 0.294 1.042 0.296 
G3 0.664 -0.085 1.000 0.280 1.172 0.298 

Table 3. The optimal parameters of the proposed DEPSSs 
 

 k T1 T2 T3 T4 

G2 20.000 0.125 0.028 0.100 0.010 
G3 0.490 0.701 0.087 0.166 0.010 
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Fig. 3. Convergence of objective function with different initializations 

4.2   Eigenvalue Analysis and Simulation Results 

To assess the effectiveness and robustness of the proposed DEPSS over a wide 
range of loading conditions, two different cases designated as case 1 and case 2 
are considered. The generator and system loading levels at these cases are given in 
Table 1 and Table 2 respectively. The electromechanical mode eigenvalues and 
the corresponding damping ratios without PSSs for all cases are given in Table 4. 
This table shows that the system has two local modes with frequencies of 1.44 Hz 
and 2.21 Hz in the base case. It is clear that these modes are poorly damped and 
some of them are unstable. The electromechanical mode eigenvalues and the  
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corresponding damping ratios with the proposed DEPSSs settings are given in  
Table 5. It is obvious that the electromechanical mode eigenvalues have been 
shifted to the left in s-plane and the system damping with the proposed DEPSSs is 
greatly improved and enhanced.  

For further illustration, a 6-cycle three-phase fault disturbance at bus 7 at the 
end of line 5-7 is considered for the nonlinear time simulations. The speed devia-
tions are shown in Fig. 4 with base case. The performance of the proposed DEPSS 
is compared to that of GA based PSS (GAPSS) given in [45]. It is clear that the 
proposed DEPSSs outperform the GAPSSs and provide good damping character-
istics to low frequency oscillations and enhance greatly the dynamic stability of 
power systems. 

 
Table 4. Eigenvalues and damping ratios without PSSs 

 

Base Case Case 1 Case 2 
-0.01 ±j 9.07, 0.001 -0.02±j 8.91, 0.002 0.38 ±j 8.87, -0.034 

-0.78 ±j 13.86, 0.056 -0.52 ±j 13.83, 0.038 -0.34 ±j 13.69, 0.025 

Table 5. Eigenvalues and damping ratios with the proposed DEPSSs 

Base Case Case 1 Case 2 
-3.81 ±j 8.11, 0.427 -2.98 ±j 6.73, 0.405 -3.52 ±j 7.04, 0.447 

-6.41 ±j 13.70, 0.424 -5.39 ±j 8.91, 0.517 -4.04 ±j 9.17, 0.403 

 
 

0.00 1.00 2.00 3.00 4.00

Time (s)

-0.004

-0.002

0.000

0.002

0.004

0.006

Δω
1  (

pu
)

DEPSSs

PSOPSSs

GAPSSs

No PSSs

 
Fig. 4. System response to 6-cycle fault 
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Fig. 4. (Continued) 

5   Example 2: New England Power System 

5.1   Test System and PSS Design 

In this example, the 10-machine 39-bus New England power system shown in Fig. 5 
is considered. Generator G1 is an equivalent power source representing parts of the 
U.S.-Canadian interconnection system. Details of the system data are given in [46].  
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Fig. 5. Single line diagram for New England system 

 
For illustration and comparison purposes, it is assumed that all generators ex-

cept G1 are equipped with PSSs. Hence, the optimized parameters are Ki, T1i, and 
T3i, i=2,3,…,10 i.e., the number of optimized parameters is 27 in this example. 
DE algorithm has been applied to search for settings of these parameters so as to 
optimize the objective function considered. The final values of the optimized pa-
rameters are given in Table 6. The convergence of objective functions is shown 
in Fig. 6. 

Table 6. The optimal parameters of the proposed DEPSSs 
 

 k T1 T2 T3 T4 

G2 48.430    0.336    0.045    0.546    0.027 
G3 22.915    0.915    0.038    0.556    0.052 
G4 47.778     0.682    0.019    0.397    0.042 
G5 48.795 0.132    0.030    0.241    0.036 
G6 49.346    0.157    0.059    0.690    0.063 
G7   7.254    0.186    0.058    0.194    0.035 
G8 13.329 0.662    0.035   1.272    0.025 
G9 21.098    0.314    0.049    0.159    0.079 
G10 17.019 1.054 0.024   1.049    0.015 
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Fig. 6. Objective function convergence 

5.2   Eigenvalue Analysis and Simulation Results 

To demonstrate the effectiveness and robustness of the proposed DEPSSs under 
severe conditions and critical line outages, two different operating conditions in 
addition to the base case are considered. They can be described as: Case 1; outage 
of line 21-22; and Case 2; outage of line 14-15. 

The electromechanical modes without PSSs for the three cases are given in  
Table 7. This table shows that the system has one interarea mode with frequency 
of o.64 Hz and eight local modes with frequencies ranging from 0.92 Hz to 1.54 
Hz in the base case. It is clear that these modes are poorly damped and some of 
them are unstable. The electromechanical mode eigenvalues and the correspond-
ing damping ratios with the proposed DEPSSs settings are given in Table 8. It can 
be seen that the electromechanical mode eigenvalues with the proposed DEPSSs 
have been shifted to the left in s-plane. It is obvious that the system damping is 
greatly improved and enhanced for all cases.  

For time-domain simulations, a 6-cycle three-phase fault at bus 29 at the end of 
line 26-29 has been applied to demonstrate the effectiveness and the robustness of 
the proposed DEPSSs.  

The performance of the proposed DEPSSs is compared to that of GAPSSs 
given in [19] and PSO-based PSSs given in [22]. Due to space limitations, only 
the speed deviations of G8 and G10 are shown in Fig. 7.  It is clear that the system 
performance with the proposed DEPSSs is much better than that of GAPSSs and 
PSOPSSs and the oscillations are damped out much faster. In addition, the pro-
posed DEPSSs are quite efficient to damp out the local modes as well as the inter-
area modes of oscillations. This illustrates the potential and superiority of the pro-
posed design approach to get optimal set of PSS parameters. 
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Table 7. Eigenvalues and damping ratios without PSSs 
 

Base Case Case 1 Case 2 
 0.191 ±j 5.808, -0.033   0.195 ±j 5.716, -0.034   0.152 ±j 5.763, -0.026 
 0.088 ±j 4.002, -0.022   0.121 ±j 3.798, -0.032   0.095 ±j 3.837, -0.025 
-0.028 ±j 9.649, 0.003   0.097 ±j 6.006, -0.016   0.033 ±j 6.852, -0.005 
-0.034 ±j 6.415, 0.005 -0.032 ±j 9.694, 0.003 -0.026 ±j 9.659, 0.003 
-0.056 ±j 7.135, 0.008 -0.104 ±j 8.015, 0.013 -0.094 ±j 8.120, 0.012 
-0.093 ±j 8.117, 0.011 -0.109 ±j 6.515, 0.017 -0.100 ±j 6.038, 0.017 
-0.172 ±j 9.692, 0.018 -0.168 ±j 9.715, 0.017 -0.171 ±j 9.696, 0.018 
-0.220 ±j 8.013, 0.027 -0.204 ±j 8.058, 0.025 -0.219 ±j 8.000, 0.027 
-0.270 ±j 9.341, 0.029 -0.250 ±j 9.268, 0.027 -0.259 ±j 9.320, 0.028 

  
Table 8. Eigenvalues and damping ratios with the Proposed DEPSSs 

 

Base Case Case 1 Case 2 
-1.279±j 7.929, 0.159 -1.307±j 6.666, 0.192 -1.301 ±j 9.174, 0.140 
-1.326 ±j 8.467, 0.155 -1.321 ±j 9.170, 0.143 -1.309 ±j 3.719, 0.332 
-1.359 ±j 9.165, 0.147 -1.495 ±j 8.282, 0.178 -1.370 ±j 6.551, 0.205 
-1.667 ±j 9.877, 0.166 -1.589 ±j 3.628, 0.401 -1.486 ±j 8.271, 0.177 
-1.713 ±j 3.474, 0.442 -1.699 ±j 10.007, 0.167 -1.668 ±j 10.013, 0.164 
-1.791 ±j 10.279, 0.172 -1.733 ±j 10.287, 0.166 -1.699 ±j 10.291, 0.163 
-1.885 ±j 9.626, 0.192 -1.763 ±j 4.108, 0.394 -1.857 ±j 3.895, 0.430 
-2.337 ±j 4.451, 0.465 -1.862 ±j 9.754, 0.188 -1.872 ±j 9.737, 0.189 
-2.740 ±j 10.579, 0.251 -2.601 ±j 10.333, 0.244 -2.538 ±j 10.292, 0.239 
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Fig. 7. System response with 6-cycle 3-phase fault disturbance 
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Fig. 7. (Continued) 

For completeness and clear perceptiveness about the system response, two per-
formance indices that reflect the settling time and overshoots are introduced and 
evaluated. These indices are defined as 
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where n is the number of machines and tsim is the simulation time. The values of 
these indices with the disturbances considered are given in Table 9. It is clear that 
the values of these indices with the proposed DEPSSs are much smaller compared 
to both PSOPSSs and GAPSSs. This demonstrates that the settling time and the 
speed deviations of all units are much reduced by applying the proposed DEPSSs. 
Additionally, the proposed DEPSSs provide good damping characteristics and 
outperform PSOPSSs and GAPSSs. 

Table 9. Performance indices with different systems 
 

PI1 PI2
No 

PSSs
GA-
PSSs

PSO-
PSSs

DE-
PSSs

No 
PSSs

GA-
PSSs

PSO-
PSSs

DE-
PSSs

3-
machine 3.669 0.207 0.224 0.191 1.739 0.580 0.596 0.558

10-
machine 194.410 1.451 1.696 1.581 10.402 1.011 1.062 1.056
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Appendix 

In this work, the i-th machine model is given as follows. 

   )1( −=
•

ibi ωωδ                (A1) 

iiieimii MDTT /))1(( −−−=
•

ωω    (A2) 

'''' /))(( doiqidididifdiiq TEixxEE −−−=
•

  (A3) 

'''' /))(( qoidiqiqiqiid TEixxE −−−=
•

   (A4) 

aifdiiirefiaiifd TEUVVKE /))(( −−−=
•

 (A5) 

qididiqiqiqididiei iixxiEiET )( '''' −−+=  (A6) 
 

where d and q refer to the direct and quadrature axes respectively.  δ is the rotor 
angle; ω is rotor speed; '

qE  and '
dE  are the internal voltages behind '

dx  and '
qx  

respectively; Efd is the equivalent excitation voltage; Te is the electric torque; 
'

doT and '
qoT are time constants of excitation circuit; Ka is the regulator gain; Ta is 

the regulator time constant.  
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An AIS-ACO Hybrid Approach for  
Multi-Objective Distribution System 
Reconfiguration 

A. Ahuja, S. Das, and A. Pahwa 

Abstract. This work proposes a hybrid algorithm based on artificial immune sys-
tems and ant colony optimization for distribution system reconfiguration, which is 
formulated as a multi-objective optimization problem. The algorithm maintains a 
population of candidate solutions called antibodies. The search space is explored 
by means of the hypermutation operator that perturbs existing antibodies to pro-
duce new ones. A table of pheromones is used to reinforce better edges during hy-
permutation. An added innovation is the use of the pheromones to obtain quick so-
lutions to restore the distribution system under contingency situations. The hybrid 
approach has been successfully implemented on two test networks. The results ob-
tained demonstrate the efficacy of the algorithm. 

1   Introduction 

Distribution Systems deliver electric power from transmission system to customers. 
They undergo different loading patterns at different times during a typical 24-hour pe-
riod. In addition, the loading patterns change by the day of the week and by the season. 
Load on the feeders of a distribution system is generally a combination of industrial, 
commercial, residential and lighting load. Substation transformers and feeders undergo 
peak loading at different times of the day, and therefore the distribution system be-
comes heavily loaded at certain times in a day, and lightly loaded at others. This varia-
tion of load is detrimental to the operating conditions of the network and leads to high 
real losses, poor voltage profile, unbalanced loading on the substation transformers and 
feeders, and reduction in reserve capacity of transformers and feeders. High real losses 
on the distribution network mean revenue loss for the utility; poor voltage profile 
means poor power quality at the customer’s premises, which in turn poses a threat to 
the reliability of the system and credibility of the utility. Low reserve capacity and un-
balanced loading on transformers and feeders drastically affect the systems capability 
to restore power to disrupted customers under contingencies like faults, which effec-
tively means reliability of the distribution system is compromised. Thus, formulation 
of a strategy that can simultaneous optimize multiple objectives like minimization of 
real losses, improvement of voltage profile and balancing of load on transformers and 
feeders holds a lot of promise and is of prime importance for a utility to maximize its 
revenue and improve its credibility in today’s competitive market. 

Distribution Systems are structurally meshed but are operated in a radial con-
figuration. They use a set of switches, called sectionalizing-switches, that remain 
normally closed, and another set of switches, called tie-switches, that remain nor-
mally open. Changing the status of these switches can change the topology of a dis-
tribution network. The process of changing the topology of distribution systems by 
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altering the open/closed status of the switches is called Distribution System Recon-
figuration and can be used to improve the operating conditions of the system. 
(Note: In this work, the term Distribution Network Reconfiguration has also been 
used in place of Distribution System Reconfiguration. Both mean the same thing.) 

With the advancement in automation of distribution network, it has become 
possible to automate all the switches in a distribution network such that their 
open/closed status can be changed quickly from a remote location without any 
human intervention. This makes possible a near real time change in the network 
topology, which brings about a fast transfer of load from heavily loaded feeders to 
lightly loaded feeders, resulting in improvement of the operational state of the 
network. Thus the problem of network reconfiguration can be defined as the 
search of a feasible network topology that satisfies all the operational constraints 
like capacity constraint, voltage constraint and simultaneously optimizes multiple 
objectives like minimization of real losses on the network and balancing the load 
on the transformers and feeders. In addition to this, network reconfiguration can 
also be used during contingencies for restoring power to as many customers as 
possible and also for system expansion and planning purposes. Thus it is ex-
tremely promising to devise an effective solution methodology that could search 
for a network topology that simultaneously optimizes the objectives mentioned 
above and hence taps into the benefits offered by distribution network reconfigu-
ration. This has been the prime motivation behind proposing a multi-objective op-
timization framework for distribution network reconfiguration problem. 

Mathematically, distribution system reconfiguration problem is a complex, com-
binatorial, constrained optimization problem. The complexity of the problem arises 
from the fact that distribution network topology has to be radial and power flow 
constraints are non-linear in nature. A distribution system can be modeled as an un-
directed graph with a set of edges and nodes, where nodes correspond to the buses 
and edges correspond to the lines between the buses. The search for the ‘optimal’ 
network topology can then be formulated as a search for quadratic minimum span-
ning tree problem (q-MST). And it has been shown in [1] that quadratic minimum 
spanning tree (q-MST) problem is NP-hard [2], which means it is very difficult to 
find the optimal solution in polynomial time. Thus it is extremely hard for exact al-
gorithms such as branch and bound, branch and cut, which assume the constraints to 
be linear, to solve a problem of this complexity. And algorithms based on problem 
specific heuristics are greedy in nature and explore only a very narrow region of the 
search space and thus have a tendency of getting stuck into locally optimal solutions. 
Above all, it is extremely tough to solve the reconfiguration problem for simultane-
ous optimization of multiple objectives using exact algorithms or heuristics-based 
algorithms. Recently, algorithms inspired from nature like Genetic Algorithm [3], 
Ant Colony Optimization [4], Particle Swarm Optimization [5] have been success-
fully applied for simultaneous optimization of multiple objectives for various NP-
hard combinatorial problems like Traveling Salesman Problem (TSP), Quadratic 
Assignment Problem (QAP) with linear/non linear constraints. Also, these algo-
rithms are population-based approaches. So instead of just one solution, a set of op-
timal solutions, based on Pareto Optimality [6], is obtained. These observations have  
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inspired the use of nature-based algorithms for solving multi-objective Distribution 
System Reconfiguration problem in this work. 

Till now researchers have predominantly modeled the reconfiguration problem 
as a single objective optimization problem only; primarily minimizing real losses 
on the feeders subject to operational constraints like voltage deviation, line and 
transformer capacity constraints etc [7-12]. This work proposes a multi-objective 
framework for distribution network reconfiguration problem, based on Pareto Op-
timality, where objectives like minimization of real losses and transformer load 
balancing are simultaneously optimized. Moreover, the philosophy behind the op-
timization methods used so far in literature has been to search for a solution in a 
narrow region of the search space only, which means finding network topologies 
that do not violate any operational constraints. Formulation of operational con-
straints such as voltage deviation as objectives in the multi-objective framework, 
is such that the search for a solution is not just limited to a narrow region of the 
search space, but is extended to other regions as well. The inspiration behind this 
approach is the fact that there could be certain solutions that optimize the primary 
objective function (like loss minimization) better than good feasible solutions but 
violate the constraints just by a small margin. Solutions like these can be useful 
for distribution system planning and expansion purposes. Hence search for good 
‘infeasible’ solutions seems useful. The concept of Pareto Optimality has been 
used to qualify the solutions in multi-objective optimization framework.   

The second contribution of this work is the development of nature-inspired al-
gorithm to effectively solve this NP hard, discrete optimization problem. A novel 
hybrid algorithm has been proposed to solve multi-objective reconfiguration prob-
lem. This algorithm combines concepts from Artificial Immune Systems (AIS) 
and Ant Colony Optimization (ACO). Artificial Immune System uses random mu-
tation as its search mechanism, which makes the search process too exploratory 
and thus the convergence to a good solution is slow. To improve the convergence 
characteristics, a pheromone-based mutation has been used in AIS algorithm.   

Furthermore, distribution network reconfiguration problem has been expanded 
to incorporate issues related to restoration of power during contingencies. Contin-
gency in a distribution system could be an occurrence of a fault on a feeder, on a 
transformer at the substation or occurrence of a sustained interruption due to fail-
ure of any component of the system. The severity of a fault primarily depends on 
the number of customers affected by the fault and the minimum amount of time 
necessary to restore the faulted part of the system. Thus the primary objective of 
energy restoration, after a fault has been cleared, is to supply power to as many 
disrupted customers as possible and as fast as possible. This is achieved by chang-
ing the topology of the network such that faulted part of the network can be fed 
power from unfaulted part of the network. So, mathematically energy restoration 
problem is equivalent to a constrained distribution reconfiguration problem, where 
the additional constraint, apart from the operational constraints, is that the faulted 
component of the network will always be open till the time it is repaired and re-
stored.  The new hybrid AIS-ACO framework makes it possible to use the infor-
mation stored in pheromones, which they gather while searching for a solution for 
loss minimization, for solving energy restoration problem during contingencies. 
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Finally, some test cases have been presented to illustrate and validate the effec-
tiveness of the algorithm.  

The earliest work reported in literature on distribution network reconfiguration 
dates back to 1975 proposed by Merlin and Back [7]. The technique proposed by 
Merlin and Back exploited the radial topology of a distribution network and was 
used for minimizing the real losses on the network. Since then researchers have 
proposed several categories of network reconfiguration techniques for power loss 
minimization.  

The simplest and a brute-force method would be to search through all the feasi-
ble configurations of the system and choose whichever optimizes the objective 
function to the maximum while staying within the operational constraints. Since a 
typical distribution system may have hundreds of switches, a combinatorial analy-
sis of all possible options, as done in [13], is a not a practical proposition. The ra-
diality constraint and the discrete nature of the switch values prevent the use of 
classical optimization techniques to solve the reconfiguration problem. Therefore, 
most of the algorithms in literature are based on heuristic search techniques. 
Civanlar et al. [14] suggested a branch-exchange type algorithm, where a simple 
formula has been derived to determine how a branch exchange affects the losses. 
In [8], Baran et al. have modeled reconfiguration problem for loss minimization 
and load balancing as an integer-programming problem. In a variation of switch 
exchange approach [9], a piecewise quadratic problem is solved to find the opti-
mum tie switch in a loop. In Shirmohammadi and Hong [10], the solution method 
starts with a meshed distribution system obtained by considering all switches 
closed. Then, the switches are opened successively to eliminate the loops. 
Goswami and Basu [11] report a heuristic algorithm that is based on the concept 
of optimum flow pattern that is determined by using a power flow program. The 
optimum flow pattern of a single loop formed by closing a normally open switch 
is found out, and this flow pattern is established in the radial network by opening a 
closed switch. This procedure is repeated until the minimum loss configuration is 
obtained. McDermott et al. [12] proposed a heuristic constructive algorithm that 
starts with all maneuverable/tie switches open, and at each step, the switch that re-
sults in the least increase in the objective function is closed. The objective func-
tion is defined as the incremental losses divided by incremental load served. Re-
cently Gomes et al. [15] have proposed a heuristic based algorithm that starts with 
the system in a meshed status with all switches closed. Switches are opened one 
by one based on the calculation of the minimum total system loss using a load 
flow program. In Ramos et al. [16], a new path-to-node based modeling for distri-
bution system has been proposed. They have used this model with Mixed Integer 
Programming and Genetic algorithm for solving reconfiguration problem for loss 
minimization. Schmidt et al. [17] have proposed a method for loss minimization 
based on standard Newton method. 

The other class of approaches for solving distribution system reconfiguration 
problem for loss minimization has been based on techniques from Artificial Intel-
ligence. Momoh et al. [18] have proposed a method based on artificial neural net-
work for loss reduction and voltage deviation minimization. In Kim et al. [19],  
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Kagan et al. [20], the authors have employed methods based on Genetic Algo-
rithms. Jeon et al. [21] have used simulated annealing and tabu search for solving 
network reconfiguration for loss minimization. Recently, Delbem et al. [22] have 
combined concepts from graph theory and evolutionary algorithms for solving re-
configuration problem. In Chiou et al. [23] an algorithm based on differential evo-
lution has been proposed for solving reconfiguration. In Ahuja and Pahwa [24], 
ant colony optimization (ACO) technique has been proposed for loss minimiza-
tion.  In Jin et al. [25], a method based on particle swarm optimization has been 
proposed.  

All of the above mentioned works have modeled the reconfiguration problem as 
a single objective optimization problem, primarily minimization of real losses.  
Only some researchers [26-27] have formulated the reconfiguration problem as a 
multi-objective optimization problem. But none of them have used the idea of 
Pareto Optimality in their multi-objective framework. In [26] Roytelman et al. 
have proposed simultaneously optimizing multiple objectives through reconfigura-
tion. But they combined all the objectives into one single objective by taking a 
weighted sum of different objectives.   In [27], Hsiao has proposed a similar multi 
objective approach for feeder reconfiguration based on Evolution Programming. 
He uses fuzzy membership functions for all the objectives considered and searches 
for a solution that matches the predefined fuzzy membership values. This ap-
proach, in effect, is equivalent to the approach proposed by Roytelman et al [26]. 
The only difference is that objective values have been replaced by fuzzy member-
ship values; but the search process is guided by predefined fuzzy membership 
value of the objectives in the same manner as weights guide the search process in 
[26]. The problem with these approaches is that the search process explores only a 
narrow region of the search space, which is dependent on the set of weights used 
(or the set of predefined fuzzy membership values). Also, only a single solution is 
produced during the search process. This could limit the choice for the final solu-
tion, if for instance, inappropriate set of weights or fuzzy membership functions 
were used, which might result in undesired or sub optimal solution. And if more 
than one solution is desired, the search process has to be performed as many times 
as the number of solutions desired, which could be computationally infeasible for 
large real systems. The details of the shortcomings of this approach have been 
elaborated in [28]. These observations motivated the use of the concept of Pareto 
Optimality for multi-objective framework for distribution network reconfigura-
tion, in which, instead of just one optimal solution, the set of all optimal solutions 
is preserved.  

Section 2 presents the formal definition of Pareto Optimality and explains the 
multi-objective framework used. Further it presents the mathematical formulation 
for multi-objective distribution system reconfiguration problem. Section 3 de-
scribes the theoretical basis of Artificial Immune System and Ant Colony Optimi-
zation and presents the AIS-ACO hybrid algorithm.  Section 4 explains the solu-
tion methodology used for solving multi-objective reconfiguration problem. 
Section 5 presents the results obtained on the test cases.  
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2   Problem Formulation 

This section describes the multi-objective framework used for distribution net-
work reconfiguration problem. It also gives a detailed explanation of the mathe-
matical formulation used for the multi-objective reconfiguration problem and the 
graphical model used to represent a distribution system.  

2.1   Distribution System Modeling 

The most intuitive way of representing a distribution network is by a graph. A lot 
of researchers have adopted this method of representation, for example [29]. In 
general, a distribution network is represented by an undirected graph { , }G V E=  

with a nonempty set of nodes V representing buses and a set of edges E  repre-
senting the lines between the buses. As mentioned in section 1.1, distribution  
systems are structurally meshed but are operated in a radial configuration. Radial 
operation basically means that for every bus in the system there is just one unique 
path from substation to that bus and there are no loops in the system. This in effect 
means that every bus is fed power from just one substation. On a graph, the radial 
configuration of a distribution system is equivalent to a spanning tree. A spanning 
tree of a graph is defined as a subgraph that connects all the nodes of the graph to 
the root node such that there are no cycles in the graph. Consider the small three-
feeder distribution system [23] given ahead.  As defined in the earlier, distribution 
network reconfiguration problem is a search for a network topology that simulta-
neously optimizes multiple objectives like minimization of real losses on the sys-
tem, balancing of loads on the substation transformers etc., while satisfying opera-
tional constraints like staying within voltage deviation limit and staying within 
line and transformer capacity limit. Thus, in the context of a graphical model of a 
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Fig. 1. A small three-feeder distribution system [23] 
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distribution network, reconfiguration problem is the search for a spanning tree of 
the graph that achieves simultaneous optimization of these objectives. This entails 
use of a multi objective framework for solving distribution network reconfigura-
tion problem. The next subsection describes the multi-objective optimization 
framework in detail based on the work of Coello Coello [6]. 

The graphical model for this small system is obtained by replacing substation buses 
with root nodes. The Figure 2. below shows the graphical model for this system. 
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Fig. 2. Graphical model of the three-feeder system 

2.2   Multi-objective Optimization Framework 

Multi-objective optimization is defined as the problem of finding a vector of deci-
sion variables that satisfies all the constraints and simultaneously optimizes a vec-
tor function whose elements represent the objective functions. These objective 
functions are a mathematical description of the performance measure for a prob-
lem and are usually in conflict with each other.  

Mathematically, it can be stated as finding a vector * * * *
1 2[ , ,....... ]T

nx x x x= that 

will satisfy the m  inequality constraints ( ) 0ig x ≥ , where 1, 2,.....,i m= , the p  

equality constraints ( ) 0jh x =  where 1, 2,.....,j p=  and simultaneously opti-

mizes the vector function 1 2( ) [ ( ), ( ),...... ( )]T
kf x f x f x f x= where 

1 2[ , ,....... ]T
nx x x x= is the vector of decision variables. It is not often the case 

that there is a single point that optimizes all the objective functions simultaneously 
for a multi-objective optimization problem. Therefore, the search process is normally 
directed towards finding trade-offs among the objective functions, rather than a single 
globally optimal solution. The concept of optimality for multi-objective problems is 
therefore different. The most prevalent notion of optimality was originally proposed 
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by Edgeworth [30], and later generalized by Pareto [31]. Some authors call it Edge-
worth-Pareto optimum, but the commonly accepted term for it is Pareto Optimum. 

Without loss of generality, if we assume that the optimization problem involves 
minimization of the objectives functions, then a vector of decision variables 

*x ∈Ω , where Ω  is the set of all x that satisfy all constraints, is said to be 

Pareto Optimal if and only if there does not exist another x ∈Ω  such that 
*( ) ( )i if x f x≤  for all 1,.....,i k= and *( ) ( )i if x f x<  for at least one i .  This 

means that there is no other decision vector that has any of the objective values 
better than objective values of vector x . 

When comparing two decision vectors, a vector u  is said to dominate vector v  
if and only if all objective values of u  are less than or equal to the objective val-
ues of v  and there exists at least one objective whose value is less for u  than v . 
This basically means that u  dominates v  when it is better than v  in at least one 
objective.  The set of solution vectors that are not dominated by any other vectors 
in the decision space is called non-dominated solutions or Pareto solutions. Any 
optimization algorithm aims to find the Pareto solution set for a problem.  When 
plotted in the objective space, the surface that the Pareto solutions generate is 
called Pareto Front. 

The Pareto Optimality framework described in this section has been used for solv-
ing multi-objective distribution system reconfiguration problem. The next section 
presents the multi-objective distribution system reconfiguration problem in detail. 

2.3   Multi-objective Reconfiguration Problem 

Distribution Network Reconfiguration can be used to simultaneously optimize 
several objectives like minimization of real loss, load balancing on transformers 
and feeders. Moreover, the information gained from optimizing these objectives 
can be used for restoration during contingencies and can also be used for distribu-
tion planning and expansion purposes. Specifically, the methodology provides a 
feasible solution very quickly for restoration of power to the disrupted sections 
following a fault and isolation of the faulted section. Quick restoration decreases 
the duration of outages to customers and thus increases reliability. 

In this work, distribution network reconfiguration problem is solved for simul-
taneous minimization of real loss, balancing of load on transformers and minimi-
zation of voltage drop. Mathematically, the multi-objective distribution system re-
configuration problem can be defined as: 

 

Minimize  1 2 3( ) [ ( ), ( ), ( )]TF G f G f G f G= where 1( )f G represent real 

losses, 2 ( )f G  represents unbalance in transformer loading and 3 ( )f G repre-

sents deviation of voltage magnitude from 1 per unit. These functions are  
described in detail below.   
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1) Minimization of Real Loss: For a given configuration G  of the distribution 
network, Total Real Loss is defined as: 

 

2
1( ) i i

i

f G I r= ∗∑ , where {1,2,..... }i NumberOfConnectedBranches=  and 

iI , is current (in per unit) in the thi  connected branch; 

ir , is resistance (in per unit) of the thi  connected branch. 

2) Transformer Load Balancing: Loading on the substation transformers is bal-
anced only when the load shared by each transformer in a distribution system is 
proportional to the capacity of that transformer. The higher the transformer capac-
ity, the more should be the load fed by it. This loading is called ideal loading of the 
transformer and is calculated by multiplying the fractional capacity of the trans-
former with the sum of total loss and load (in MVA) on the network. Fractional ca-
pacity of a transformer is equal to the ratio between transformer capacity and the 
sum of capacities of all transformers in the system. For a given configuration G  of 
the network, unbalance in transformer loading is measured by calculating the linear 
sum of absolute value of per unit deviation from the ideal loading for each trans-
former. Mathematically, unbalance in transformer loading is defined as: 

2 ( ) j
j

f G deviation=∑ , where {1, 2,..... }j NumberOfTransformers=  

jdeviation , for any thj transformer is defined as the percentage deviation of 

transformer loading from its ideal loading jIL , as shown below: 

{ ( )}/j j j jdeviation abs LoadOnTransformer IL IL= − , where 

(...)abs , is the absolute value function and Ideal Loading, jIL  is defined as: 

ndLoadTotalLossAityTrafoCapacityTrafoCapacIL
k

kjj *)/( ∑=  

where {1,2,..... }k NumberOfTransformers= and 
 

p q
p q

TotalLossAndLoad Load Loss= +∑ ∑ , such that  

                        {1, 2,...., }p NumberOfBuses= and  

{1,2,...., }q NumberOfConnectedBranches=  
 

And jLoadOnTransformer  is the actual load (in MVA) on the thj  trans-

former for the given configuration G  of the distribution system. 

3) Minimization of Voltage Deviation: Ideally, for any configuration G  of the 
distribution system, the magnitude of voltage at each bus should be as close to 1  
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per unit as possible. Under normal operating conditions, the maximum deviation 
that is allowed in the voltage magnitude is ±  5% . Thus, the voltage at every bus 
should always lie in the range from 0.95 per unit to 1.05 per unit. Generally, in the 
literature, restriction of the voltage magnitude in this range has been considered as 
a constraint, which should always be satisfied during the optimization process. As 
explained in section 1, this approach is very conservative and searches only a nar-
row region of the search space. In this work, restriction of voltage deviation has 
been considered as an objective and the optimization method proposed here simul-
taneously optimizes it with other objectives. Mathematically, voltage deviation 
from 1 per unit is defined as: 

3 ( ) max{ (1 min( )), (1 max( ))}f G VoltageDeviation abs V abs V= = − − ,  

where 

1 2[ , ........, ]
bnV V V V=  is a vector containing magnitude of voltage at every 

bus in the system. 
Another objective in the multi-objective reconfiguration problem could be the 

minimization of maximum current through the feeder branches. We did not con-
sider this objective in our multi-objective framework because during the search 
process it was observed that the maximum current in any feeder branch for any 
configuration did not exceed the line capacity limit for the test systems consid-
ered. So adding this objective would not have brought any additional advantage, 
but would have just increased the computational expense of the algorithm.  How-
ever, for implementing the proposed AIS-ACO algorithm on any other system, 
this objective and any other objective can be included in the multi-objective 
framework.  

Section 3 describes the approach used for solving this multi-objective optimiza-
tion problem and presents the details of the AIS-ACO hybrid algorithm.  

3   Nature-Inspired Computation 

Nature-Inspired Computation comprises of the various computational techniques 
and algorithms that are based on heuristics derived from nature.  These algorithms 
stand for a class of stochastic optimization methods that simulate the process of 
natural evolution. They have become immensely popular for solving optimization 
problems in the last decade. These stochastic methods are derivative-free and are 
less likely to get trapped in local minima. They could be applied on any type of 
search space (multimodal, discontinuous, discrete) and can be easily tailored to 
specifically suit a given problem. Moreover, they sample a wide region of the 
search space and can be hybridized with other algorithms for improving their per-
formance. The work here combines ideas derived from two algorithms, namely 
Artificial Immune System and Ant Colony Optimization, belonging to the class of 
Nature - Inspired Computation. The theory behind these algorithms has been ex-
plained in the following sections.  
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3.1   Immune System 

This section provides some insights into the workings of the biological immune 
system. The ideas presented in this section have been extracted from [32] and 
[33]. The Immune System is considered to be one of the most important biological 
mechanisms that humans possess. Recently, researchers have made significant 
breakthroughs in understanding the workings of the immune system [34]. The 
primary goal of the immune system is to keep a human healthy. It is equipped with 
the capability of recognizing and combating infectious foreign elements, called 
pathogens, which attack the human body. The pathogens contain certain molecular 
patterns on them, which are called antigens (Ag). In general, an antigen is any 
molecule that can provoke the immune system to respond. This immune system 
response is specific to a type of antigen. The manner in which the immune system 
responds is governed by the clonal selection principle [35]. The section ahead ex-
plains the clonal selection principle in detail. 

3.1.1   Clonal Selection Principle 

The cells that play the key role in the immune system operation are called B lympho-
cytes (or B cells). These cells have a molecule attached to their surface called anti-
body (Ab). Each B cell secretes a single type of antibody, which is relatively specific 
for an antigen. The primary purpose of an antibody is to recognize and bind to an an-
tigen for marking it for elimination by other cells of the immune system.  Those B 
cells, whose antibodies best recognize and bind the antigen, are cloned into a number 
of copies. This step is called proliferation or cloning. Some of these clones finally 
maturate into terminal (non-dividing) antibody secreting cells called plasma cells. 
Plasma cells are capable of secreting only one type of antibodies relatively specific 
for an antigen. The rest of the clones eventually differentiate into long-lived B mem-
ory cells. Memory Cells circulate through the blood and when exposed again to the 
same antigen, come in and convert into plasma cells. These plasma cells are capable 
of producing high affinity antibodies that were pre-selected for this specific antigen 
during its first encounter. The response of an immune system, when stimulated by an 
antigen for the first time, is called primary response. When the same antigen pro-
vokes the immune system again, then the response is called secondary response.  

The following figure demonstrates the concepts of clonal selection principle. 
In summary, the main features of the clonal selection principle are: 

 

1) Proliferation and differentiation on stimulation of B cells with antigens. 
2) Generation of new random genetic changes in the antibodies by a process called 
affinity maturation.  

 

In order to further improve the affinity between the antibody and the antigen, all 
the memory B cells undergo a process called affinity maturation. Section 3.3 given 
ahead explains this concept in detail. 

3.1.2   Affinity Maturation in Immune System 

Immune system subjects some of the memory B cells’ antibodies to a process 
called affinity maturation in an attempt to increase the antibody-antigen affinity  
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Fig. 3. Concept of the clonal selection principle 

via genetic variation. This process is primarily accomplished by employing hyper-
mutation, in which random changes are introduced into the genes responsible for 
the antigen-antibody interactions. Occasionally, one such change leads to an in-
crease in the affinity of the antibody towards the antigen. These higher affinity 
variants are then selected to enter the pool of memory cells. The result, of having 
such a mechanism within the immune system, is that the responses of the immune 
system become faster and better.  

However, the majority of the changes brought about during hyper-mutation 
may lead to poorer or nonfunctional antibodies. If a cell that has just picked up a 
useful mutation undergoes mutation at the same rate, then the possibility of losing 
the advantageous mutation by accumulating bad mutations is high. Thus, a selec-
tion mechanism is provided in which the regulation of hyper-mutation rate is made 
dependent on the affinity of the antibody. B cells with low affinity antibodies keep 
on undergoing hyper-mutation at a high rate, and as a result, they die off if their 
affinity does not improve. For cells with high affinity antibodies, the hyper-
mutation becomes inactive in a gradual manner.  

In addition to employing hyper-mutation on the existing memory B cells, a 
fraction of new B cells are added to the existing population of the memory B cells. 
The idea behind this is to increase the diversity of the population. 

Using the ideas of clonal selection and affinity maturation described above, re-
searchers have proposed an optimization algorithm called Artificial Immune System.  

3.2   Artificial Immune System (AIS) 

In recent years, several researchers have developed computational models of the 
immune system [36] that attempt to capture some of its features like clonal selec-
tion and affinity maturation. The algorithm derived from these models is called 
Artificial Immune System (AIS).  

The immune system can be seen as a parallel and distributed adaptive system from 
an information processing perspective [37]. The ideas of the immune system have  
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been combined with a genetic algorithm (GA) to solve multimodal optimization 
problems [38]. The approach is to construct a population of antigens and a population 
of antibodies. Antibodies are then matched with antigens and a fitness value is as-
signed to each antibody based on this matching. Finally, a conventional genetic algo-
rithm is used to replicate the antibodies that better match the antigens. Smith et al. 
[39] implements the ideas of immune system in such a way that fitness sharing 
emerges in their algorithm.  

Yoo and Hajela [40] proposed the use of AIS for solving multi-objective opti-
mization problems. Their approach uses a linear aggregating function to combine 
objective function and constraint information into a scalar value.  This value is 
then used as a fitness function of a genetic algorithm. The best designs, according 
to this fitness value, are designated as antigens and the rest of the population is 
termed as antibodies. The authors then simulate an algorithm that they proposed in 
[41]. In [33], Coello Coello et al. proposed another implementation of the ideas 
derived from clonal selection principles for multi-objective optimization prob-
lems. Antibodies are represented by binary strings, which encode the decision 
variables of the problem to be solved. They do not use a separate set of antigens, 
but instead use the concept of Pareto dominance and feasibility of antibodies as a 
measure of affinity toward antigens. This information is used for determining the 
number of clones for antibodies. Mutation is then applied to the clones of good an-
tibodies. The authors use a secondary population to store the non-dominated solu-
tions/antibodies found along the search process. This secondary population is the 
elitist mechanism most commonly employed in the evolutionary multi-objective 
optimization literature.  

In this work, ideas inspired from clonal selection principle and affinity matura-
tion have been combined with ideas derived from ant colony optimization to pro-
pose an AIS-ACO hybrid algorithm for solving discrete multi-objective optimiza-
tion problems. The formulation of AIS for multi-objective optimization in AIS-
ACO hybrid is similar to the one proposed in [33].  

Solutions to the multi-objective optimization problem in the AIS-ACO hybrid 
are equivalent to antibodies. There is no explicit population of antigens. The 
measure of antibody-antigen affinity is determined by calculating Pareto domi-
nance among solutions/antibodies and is used for the cloning of solutions. The 
clones produced undergo the affinity maturation process through mutation. Instead 
of mutating the clones randomly (as done in clonal selection principle), mutation 
in our algorithm is carried out by using concepts derived from Ant Colony Opti-
mization (ACO). The sections ahead explain the principle behind ant colony opti-
mization and the motivation behind using concepts derived from ACO for muta-
tion in AIS.  

3.3   Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is one of the population based meta-heuristic op-
timization methods for finding approximate solutions to discrete optimization prob-
lems. It has been derived from the foraging behavior or stigmergic communication 
– a form of indirect communication – of natural ant colonies [42-43]. ACO is  
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basically a solution-construction heuristic. The procedure for solution construction 
is based on mutual interactions among elementary agents, called artificial ants. 

Any discrete optimization problem can be formulated as comprising of compo-
nents derived from the problem domain. A solution to this problem is a certain 
combination of these components. The presence and absence of a component in a 
solution can be encoded by using a binary variable; where a value of 1 means that 
the corresponding component is present in the solution and a value of 0 means that 
the corresponding component is absent. For example, the components of a mini-
mum spanning tree problem are the edges present in the graph. The solution to the 
minimum spanning tree problem can be formulated as a string of binary variables 
corresponding to the edges in the graph. A value of 1 represents the corresponding 
edge being connected and a value of 0 represents the corresponding edge being 
disconnected. 

While solving a discrete optimization problem with ACO, the problem is for-
mulated as a construction graph. The construction graph is a completely con-
nected graph, where the nodes in the graph represent the problem components 
and the edges represent the transition between the components.  Ants move on 
the construction graph to generate a solution. They lay a chemical substance, 
called pheromone, on the edges between the nodes of the graph, as they move 
along. The amount of pheromone deposited on the edges is a function of the  
quality of the solution that is produced. Ants’ solution construction consists of 
transitions from node to node in a step-by-step manner. These transitions are de-
termined by a probabilistic selection rule, based on the value of pheromones de-
posited on the edges between the nodes by other ants. So using the information 
stored in pheromone intensity, ants traverse a path in the construction graph.  
This path is a solution to the discrete optimization problem. Over a period of 
time, the path that corresponds to the optimal solution for the optimization prob-
lem gets high pheromone deposition. Any ant traversing the construction graph at 
this point will choose this path. In addition to pheromone intensity, some  
problem-specific local heuristic are also used to guide the ants through the con-
struction graph.  

ACO has been successfully applied to a large number of combinatorial optimi-
zation problems, including traveling salesman problems [42-43]; vehicle routing 
problems [44], [45]; and quadratic assignment problems [46]. ACO also has been 
applied successfully to the scheduling problems, such as single machine problems 
[47]; flow shop problems [48]; and graph coloring problems [49]. The section 
ahead presents the generic mathematical model used for ACO. 

3.3.1   Mathematical Model of ACO 

Let us consider that an ant has completed a partial sequence, that is, it has visited a 

set ξ of the nodes. Now the probability for this ant to select the node jO , where 

jO belongs to the set of the unvisited nodes, is defined as: 
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ijτ is the amount of pheromone trail in between the nodes i and j  

ijη is the attractiveness of the solution (heuristic information) for transition  

between the nodes i and j  

iN  is the neighborhood of node i  

ijP is the probability of transition between nodes i and j  

And, α and β , the parameters of the ACO, determines the relative information 

between the pheromone information and the heuristic information.  
The heuristic is usually problem specific and its design depends upon the prob-

lem formulation and availability of information on various system parameters at a 
given partial solution state. Ants change the pheromone values associated with the 
edges in the construction graph. The pheromone updating employed by ants is one 
of two types: local updating and global updating. 

3.3.1.1   Local Updating  
While building a solution, ants visit edges and change their pheromone level by 
applying the local updating rule before moving to the next edge. The advantage of 
this method is that the ant is able to propagate the information about the quality of 
the edge, whose pheromone is being updated, at the same instant to the ants fol-
lowing it. The pheromone value corresponding to an edge is updated by applying 
the following updating rule. 

( 1) (1 ) ( )ij ijτ ξ ρ τ ξ+ = − ⋅  

3.3.1.2   Global Updating  
Global updating is performed after all the ants have completed their tour. The 
most common strategy is to allow the best ant to lay pheromones. This scheme is 
known as elitist strategy in evolutionary algorithm literature. There is no dynamic 
information transfer in global updating. The same updating rule, as used for local 
updating, is used for global updating as well.   

Pheromone updating marks the end of iteration. The ACO algorithm is ran 
until some stopping criterion is satisfied, e.g., the average quality solutions 
found by the ants in a generation has not significantly improved for several gen-
erations or the algorithm has been executed for a prior specified number of gen-
erations. The next section explains the inspiration behind combining ideas de-
rived from AIS and ACO.  
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3.4   AIS-ACO Hybrid Algorithm 

The performance of any Nature - Inspired Algorithm is extremely sensitive to the 
amount of exploration and exploitation it possess. Exploration is defined as the 
ability of an algorithm to search new unvisited parts of the search space whereas 
exploitation is defined as the ability of an algorithm to capitalize on the informa-
tion gained from the already visited parts of the search space. If an algorithm has 
too much exploration then it will just keep roaming in the search space, without 
exploiting the possibility of finding better solutions in the vicinity of already 
found good solutions. This will result in slower convergence of the algorithm. On 
the other hand, if an algorithm has too much exploitation then it will not explore 
well enough to find a good solution and will get trapped in local minima. Thus, for 
any successful implementation of an evolutionary algorithm for solving any prob-
lem, there should be a right balance between exploration and exploitation in the 
algorithm.  

The most common way of mutating a solution in AIS is by randomly comple-
menting a solution component, if the solution representation is binary; or by add-
ing/subtracting a small random number to the solution component, if the solution 
representation is real. The main drawback of such a mechanism is that the search 
process is too exploratory and lacks sufficient exploitation. Generally, to over-
come this problem, some problem specific heuristics are used for directing the 
search. But often it is difficult to define a heuristic for a multi-objective optimiza-
tion problem that can simultaneously direct the search along all objectives. There-
fore, we propose a pheromone-based mutation framework in this work to improve 
the balance between exploration and exploitation for the AIS algorithm. Thus we 
call our algorithm as AIS-ACO hybrid algorithm. The main inspiration behind us-
ing pheromones for mutation is the fact that they can store information within 
them about the effectiveness of solutions components in improving the objective 
functions. Pheromones learn this information as the algorithm explores the search 
space during the initial stage of the search process and as the algorithm goes 
along, this information is used to guide the search process to improve the solution 
quality. Thus, by using pheromones, it is possible to learn the probabilistic distri-
bution over the solution components, where the probability values indicate the de-
sirability of solution components to be present in a solution.  This hypothesis was 
experimentally tested and it was confirmed that pheromones do speed up the con-
vergence. The results of these experiments, as shown in Section 5, demonstrate the 
effect of pheromones on convergence of the algorithm.  

In summary, we have used the concept of pheromones derived from Ant Col-
ony Optimization algorithm for directing the mutation process in Artificial Im-
mune System towards optimal solutions for a discrete optimization problem. This 
approach has been applied to solve the multi-objective distribution system recon-
figuration problem. The implementation details for the AIS-ACO hybrid for solv-
ing multi-objective distribution system reconfiguration problem are explained in 
section 4.  
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4   Solution Methodology 

In this section, the solution methodology adopted for solving the multi-objective 
distribution system reconfiguration problem is described. As defined in section 2, 
the multi-objective distribution system reconfiguration problem is a search for a 
network topology that simultaneously minimizes real loss on the network, balances 
the load on the transformers and minimizes the deviation of voltage magnitude 
from 1 per unit, while satisfying the radiality constraint. On a graphical model of a 
distribution system, this problem is similar to a search for a quadratic minimum 
spanning tree that simultaneously optimizes all the objectives. In the literature it 
has been shown that quadratic minimum spanning tree (q-MST) problem is NP 
hard, which means that it is not possible to find an exact solution to the problem in 
polynomial time. In this work we propose using AIS-ACO hybrid algorithm for 
solving the multi-objective distribution system reconfiguration problem. 

4.1   Using the AIS-ACO Hybrid Algorithm 

Distribution System Reconfiguration problem is a combinatorial optimization 
problem and could be solved by various multi-objective evolutionary algorithms 
like SPEA-2 [50], NSGA-II [51] etc. Since the solution to the reconfiguration 
problem is a spanning tree, the use of any of these multi-objective evolutionary 
algorithms would require a design of a crossover mechanism that could produce a 
feasible spanning tree as an offspring, when applied to any two solutions from 
the parent population. But the design of such an operator is inherently compli-
cated. The standard crossover techniques like one point crossover, two point 
crossover result in infeasible configurations that violate the radiality constraint. 
So for using crossover a mechanism to check the feasibility of the generated solu-
tions needs to be designed and this would be computationally expensive for a 
large system. This discourages the use of these algorithms. On the other hand, 
Artificial Immune System uses only mutation within the feasible solution space 
as its primary search mechanism, so there is no need to design such an operator 
for it. This makes AIS the preferred choice over other multi-objective evolution-
ary algorithms. 

Further, using the pheromones for directing search processes in AIS-ACO hy-
brid brings about another advantage for the multi-objective distribution system 
reconfiguration problem. The information learned by pheromones while solving 
the reconfiguration problem can also be used for restoring the distribution net-
work under contingencies. Section 4.3 describes in detail the methodology em-
ployed for using the pheromone information for solving restoration problem un-
der contingencies.   

These observations combined together justify the use of AIS-ACO hybrid algo-
rithm for solving multi-objective distribution system problem. Section 4.2 ex-
plains the details for implementing AIS-ACO algorithm for solving the reconfigu-
ration problem.  
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4.2   Implementation Details of the Algorithm 

A solution to the multi-objective distribution system reconfiguration problem is re-
ferred to as an antibody. We do not use any population for antigens. The equiva-
lence of antibody-antigen affinity in this case is the concept of Pareto dominance 
among solutions as explained in section 2. This antibody-antigen affinity provides 
information about the solution quality. We use a separate pheromone table for rep-
resenting information related to each objective. All the non-dominated solutions are 
then subjected to cloning, which is analogous to proliferation in Immune System. 
We have kept the number of clones produced for each non-dominated solution 
equal to the number of objectives being optimized. Thus, for multi-objective distri-
bution system reconfiguration problem, the number of clones is equal to three, one 
clone for each objective.  The clone of a non-dominated solution, corresponding to 
an objective, undergoes a pheromone-based mutation using the pheromone table 
associated with that objective. This step is analogous to the affinity maturation 
stage of Immune System. This process goes on for a certain number of iterations. 
Sections given ahead explain the different parts of the algorithm in detail.  

4.2.1   Solution Representation 

The solution for multi-objective distribution system reconfiguration problem is a 
network topology that optimizes all the objectives and satisfies the operational 
constraint. As explained in Section 2, a graphical model is used to represent a dis-
tribution system. Consider, once again, the three-feeder test network shown in 
Section 2. 
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Fig. 4. A small three-feeder distribution system [23] 

The figure above shows one of the feasible topology of this distribution system 
that satisfies the radiality constraint. For a graphical model of the network, which 
looks exactly the same as the figure above (with substations replaced by root 
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nodes as shown in Figure 2), this topology is equivalent to a spanning tree. Using 
the definition of a spanning tree, it can be easily seen in the figure above that  
some of the edges are connected and some are disconnected in a spanning tree of 
this system. This information could be used to represent a spanning tree in a 
unique way. One way could be to use the set of edges that are connected in the 
spanning tree and the other way could be to use the set of edges that are not con-
nected in the spanning tree. In this work we have used the set of edges that are 
disconnected to represent a spanning tree. For pheromone-based mutation, this is 
the correct choice for solution representation. The justification behind this choice 
has been presented in the section on pheromone reinforcement later in this section. 

So for the configuration of the system shown in the figure above, the represen-
tation of the solution is: 

 

 
 

4.2.2   Initial Solution Generation 

The AIS-ACO hybrid algorithm proposed in this work for multi objective distribu-
tion network reconfiguration starts with an initial population of randomly gener-
ated network topologies. The algorithm used to generate this initial set of solutions 
has been derived from graph theory and is called Prim’s Algorithm [52]. It is a 
very well known algorithm and uses a set of weights attached to the edges to gen-
erate a spanning tree. In this work we do not use weights for generating a spanning 
tree. Instead we grow a spanning tree by randomly picking edges to connect in a 
partial tree.  The following figure and the discussion given after it will explain the 
way this algorithm works. 

At the start of this algorithm, the graphical model of the system is completely 
disconnected. Iteration begins by randomly choosing one of the root nodes, where 
each root node has equal probability of selection. The next step is to choose one 
edge at random from the set of edges emanating from this root node, which are 
currently disconnected. Again the probability of selection of each edge is the 
same. If connecting this edge in the graph doesn’t create any cycle then it is  
 
 

 

Fig. 5. Application of Prim’s Algorithm to the graphical model of the three-feeder network 
 

15 21 26
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connected in the graph. This marks the end of iteration. The algorithm then chooses 
a root node again for further expansion of the graph. This process goes on till all 
the nodes are connected in the graph.  Figure 5 shows this process. The number of 
times this algorithm is run is equal to the number of solutions in the initial popula-
tion. For reconfiguration problem, number of initial solutions in the population is 
50. The next step in the AIS-ACO algorithm is pheromone table initialization. 

4.2.3   Pheromone Initialization 

A separate pheromone table is initialized for each objective. It was observed ex-
perimentally that a single pheromone table was not able to store information for 
all the three objectives simultaneously. Hence we chose to use a separate phero-
mone table for each objective.  For each edge in the graphical model of a network, 
there is a corresponding pheromone value in all pheromone tables. These phero-
mone values in all tables are initialized with equal value, meaning that every edge 
is equally likely for selection. Since a solution is represented by the set of edges 
that are disconnected, so the pheromone value corresponding to each edge repre-
sents the desirability of that edge to be disconnected in a solution. Figure 6  
given below shows this for the three-feeder system that has 16 edges.  

 Edge/branch 

Pheromone table for Objective # 1 (Loss Minimization) 

Pheromone table for Objective # 2 (Voltage Deviation Minimization) 

Pheromone table for Objective # 3 (Transformer Load Balancing) 

 - - - - - - - - 1 4 2 3 65 87 1615109

 - - - - - - - - 100 100 100 100 100100 100100 100100100100

 - - - - - - - - 100 100 100 100 100100 100100 100100100100

 - - - - - - - - 100 100 100 100 100100 100100 100100100100
 

Fig. 6. Initialization of pheromone tables corresponding to three objectives 

 

It has been shown in [53] that the performance of Ant Colony Optimization de-
pends on the ratio of initial pheromone value and the pheromone deposition than 
just on the initial pheromone value. Thus pheromones can be initialized to any 
reasonable value (reasonable here means that the value is high enough so that it 
remains within necessary data type bounds for computation on a computer as the 
algorithm progresses) as long as the ratio of pheromone initial value and phero-
mone deposition can be controlled. In this work we initialized all pheromones at 
100 and the ratio of initial pheromone value and pheromone deposition was set to 
0.1. The next step in the AIS-ACO algorithm is fitness evaluation of each solution, 
which is explained in the next section. Once the fitness of all the initial solutions 
has been determined, the set of non-dominated solutions is extracted using  
the definition of Pareto Dominance, as explained in Section 2. The extracted  
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non-dominated solution set is then subjected to cloning and mutation. The process 
of cloning and mutation is explained in detail in Section 4.2.5. 

4.2.4   Fitness Evaluation 

The fitness of the solutions is evaluated using a load flow algorithm. For a given 
network configuration, a load flow algorithm calculates the currents and voltages 
in all parts of the network. This information is then used to compute the losses on 
the network, loading on the substation transformers and maximum deviation of 
voltage magnitude from 1 per unit. The equations representing the relationship be-
tween the bus voltages and the bus power flows are nonlinear algebraic equations. 
In this work, backward-forward sweep method has been used for load flow [54].  

4.2.5   Cloning and Pheromone Based Mutation 

Every edge in the graphical model of the network has a pheromone value attached 
to it in the pheromone tables. The pheromone values in the tables represent the de-
sirability of an edge to be disconnected in the solution. For mutation, each non-
dominated solution is cloned and the number of copies produced for each solution 
is equal to the number of objectives being optimized. For the multi-objective dis-
tribution system reconfiguration problem considered in this work the number of 
objectives is equal to three, so each solution here is cloned three times, one corre-
sponding to each objective. Figure 7 given below shows this process.  

 
 

 15 21 26  15 21 26

 15 21 26

 15 21 26  

Fig. 7. Cloning process of a non-dominated solution 

The first clone is mutated using pheromone table associated with loss minimi-
zation, second clone is mutated using pheromone table associated with voltage  
deviation and the third clone is mutated using pheromone table associated with 
transformer load balancing. Mutation of each clone is carried out by selecting an 
edge from the set of all edges for disconnection from the clone solution. This 
edge, which is to be disconnected in the clone, is selected by applying a roulette 
wheel on the pheromone table. Roulette wheel selection is a probabilistic selection 
mechanism where the probability of selection of an edge depends on its phero-
mone value. The higher the pheromone value corresponding to an edge in the ta-
ble, the more is its probability of selection through roulette wheel.  The following 
figure shows the idea behind roulette wheel selection. E#1, E#2 etc. represent the 
edges that are currently connected in the graph.  
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Fig. 8. Pie chart representing the effect of pheromone values on roulette wheel selection 
 
The pheromone values in a table are normalized using the following equation. 
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  where {1, 2...... }j NumberofEdges= ,
i

p is the normalized 

value (also called the probability value) and iτ  is the pheromone value associated 

with the thi edge. These normalized values are represented on a pie chart as shown 
in Figure 8. A random number with uniform distribution between 0 and 1 is then 
generated and is compared to the values in the pie chart. The edge corresponding 
to the sector where random number falls in the pie chart is selected for disconnect-
ing. Once the selected edge is opened in the clone solution, a part of the spanning 
tree gets disconnected as shown in the Figure 9 below.  

 
 Edge to open 

Disconnected  
    subgraph 

Roulette Wheel
     Selection 

Clone Solution 

Mutant Solution 

 
Fig. 9. Mutation process using roulette wheel selection 
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The next step is to find an edge that could be connected in the solution so that 
the disconnected part of the graph is reconnected. The choice of this edge is de-
termined by the radiality constraint, which requires the mutant solution to be a 
spanning tree. All those edges are gathered that are currently open (other than the 
one chosen by roulette wheel) in the solution being mutated and could be con-
nected so that the mutant solution would be a spanning tree. From this set of 
edges, an edge is chosen randomly with equal probability and is connected in the 
solution to generate the final mutant solution. For example, in Figure 9 above 
there are two disconnected edges that can be connected to reconnect the discon-
nected subgraph. Out of these one is chosen at random and final mutant solution is 
generated as shown.  All the clones are subjected to mutation in this way and then 
fitness of all the mutant solutions is evaluated using the load flow algorithm. Once 
the fitness of all the mutants has been determined, they are combined with the par-
ent solutions (the non-dominated set of previous iteration) and this combined set is 
subjected to non-dominated solution extraction. The set of non-dominated solu-
tions is extracted for the current iteration using the definition of Pareto Domi-
nance. The next step in the algorithm is to determine the diversity of the extracted 
non-dominated set.   

4.2.6   Diversity Measurement 

Diversity of the set of non-dominated solutions is measured in terms of the ex-
tent to which the set of non-dominated solutions is spread over in the search 
space. This measure can be obtained in both objective function space,  
also called phenotype space, and solution space, also called genotype space.  
However, it is preferred to calculate diversity in phenotype space, as the dimen-
sionality of phenotype space is generally less than genotype space, so the com-
putational effort required for diversity calculation is comparatively less. The two 
popular methods of measuring diversity in evolutionary multi-objective optimi-
zation literature are: 1) adaptive grid method [55] and 2) crowding distance 
method [51]. We have chosen crowding distance as a diversity measure in this 
work since it is simpler to implement and has equivalent performance when 
compared to adaptive grid method. The figure given below presents the basic 
idea behind this diversity metric. This figure represents a sample Pareto front for 
two objectives. The crowding distance for each solution in the front is calculated 
by finding the perimeter of the smallest enclosing rectangle. With three objec-
tives, the enclosing rectangle is equivalent to a cuboid in three dimensions. 
Based on this value, all the Pareto solutions are sorted. Low value of this metric 
represents that a solution is located in a crowded area and high value represents 
that a solution is in less crowded area.  

In this work, the diversity measure is used to trim the non-dominated solution 
set. We have fixed the maximum number of non-dominated solutions that will be 
preserved during iterations to 50. It was observed that a large number of non-
dominated solutions were being found during the middle stages of the algorithm  
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Fig. 10. The plot above shows the idea behind crowding distance metric  

that were close to each in the objective space. The common belief in evolutionary 
multi-objective optimization community is that preserving all the closely spaced 
non-dominated solutions does not necessarily improve the performance of the al-
gorithm, but instead makes the algorithm computationally expensive.  So based on 
the position in the objective function space, non-dominated solutions are chosen 
for cloning in the next iteration. More solutions are selected from less populated 
region of the objective space and vice versa. The solutions having minimum value 
along each objective in the current iteration are always chosen for the next itera-
tion. Once the non-dominated solution set has been trimmed, the next step in the 
algorithm is to update the pheromone tables.   

4.2.7   Pheromone Reinforcement 
Each pheromone table, corresponding to each objective, is updated by the solution 
components (edges) of the non-dominated set of solutions in all iterations. Phero-
mone is deposited only on those edges that show up in the non-dominated solution 
set. The following update rule is used for the edges of non-dominated  
solution set.  

))(/))((min(*)(*)1()( 1 GfGFQ jj
i

j
ki

j
k +−= −τρτ  

where j={1,2,....,NumberofObjectives} , k={1,2,....NumberofEdges} , 

i  is the iteration counter, ( )j
k iτ  is the pheromone value of the thk edge in the 

thj pheromone table at the thi  iteration, ρ  is the evaporation rate, Q  is the 

pheromone deposition constant, G  is the graphical representation of the current 

solution, ( )jf G  is the objective value of the current solution along thj  objec-

tive, ( )jF G  is the set of objective values of all the non-dominated solutions 

along thj  objective and min(..)  is the function that returns minimum value of its 

argument.  The advantage of this pheromone reinforcement rule is that it is invari-
ant to the scale of the objective values. When a pheromone table is updated using 
a non-dominated solution, the pheromone deposition factor Q is multiplied with 
the ratio of minimum value along that objective and the objective value of that  
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solution. This makes pheromone deposition independent of the absolute value of 
the objective and thus provides scale invariance.  

The pheromone value for the edges that are not the part of non-dominated solu-
tion set just undergoes evaporation, without any deposition. The following update 
rule is used. 

1)(*)1()( −−= i
j

ki
j

k τρτ  

Pheromone reinforcement marks the end of iteration. The AIS-ACO algorithm is 
set to run for a certain number of iterations. At the end of the algorithm, the final 
non-dominated set is reported as the solution to multi-objective distribution sys-
tem reconfiguration problem.  

We can now explain the reason for choosing the set of edges that are discon-
nected in a spanning to represent a solution. For any spanning tree of a graph, the 
number of edges that are disconnected is always less than the number of edges that 
are connected. So if a solution is represented using the set of connected edges then 
pheromone will be deposited on a lot of edges. This way the difference between 
the maximum and minimum of the pheromone values may not be high enough, 
even after considerable number of iterations and pheromones may not be able to 
guide the roulette wheel selection well enough during the search process. But if a 
spanning tree is represented by the set of edges that are disconnected then this 
problem does not come up as the number of disconnected edges in a spanning tree 
is always less than the number of connected edges. So as the algorithm progresses, 
pheromones start to learn the probability distribution over the edges and thus are 
able to guide the search process. Also for a large system, representing a solution 
with the set of disconnected edges would be computationally less expensive com-
pared to solution representation with the set of connected edges as the number of 
disconnected edges is always less compared to the number of connected edges. 
Thus choosing the set of disconnected edges to represent a solution for the multi-
objective distribution system reconfiguration problem is the logical choice.  As 
mentioned before in Section 4.1, pheromones in AIS-ACO hybrid algorithm also 
help in solving the restoration problem under contingencies. The section ahead de-
scribes this idea in detail. 

4.3   Restoration Using Pheromones 

Using pheromones in the AIS-ACO hybrid algorithm brings about two advan-
tages. First, it improves the exploration-exploitation balance of algorithm and sec-
ond, it provides a way to learn about relative performance of different edges in op-
timizing the objectives. This knowledge can be very useful in dealing with 
contingency situations. As mentioned in Section 1, contingency in a distribution 
system could be an occurrence of a fault on a feeder, on a transformer or occur-
rence of a sustained interruption due to failure of any component of the system. 
Thus, the primary objective of restoration, after the faulted section has been iso-
lated, is to supply power to as many disrupted customers as possible and as fast as 
possible. This is generally achieved, before the faulted part of the network is  
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repaired, by changing the topology of the network such that parts without power 
can be fed power from unfaulted part of the network. In the AIS-ACO hybrid al-
gorithm, pheromones provide a means by which a network can be reconfigured 
very quickly for supplying power to the interrupted customers. This is made pos-
sible by using the information that pheromones gather while solving reconfigura-
tion problem under normal conditions.  

Restoration problem under contingencies can be viewed as a constrained net-
work reconfiguration problem. The feasible region of the search space for this 
problem contains all those network topologies that have the faulted edges open. 
The search for the optimum solution in the feasible region for the restoration prob-
lem, which could supply power to the interrupted customers (if possible) while 
staying within voltage deviation constraint and transformer and feeder capacity 
limit, should be as fast as possible. In literature, various methods have been pro-
posed based on heuristics and AI based approaches [56], [57]. All these methods 
initially explore the feasible search space before finally converging to the opti-
mum solution. This initial exploration for the optimal solution takes time and de-
pending on the size of the network and location of the fault, this time delay could 
be too long for the utility to restore network. Thus even if the configuration  
obtained using these methods is optimal under contingency, but it may not be 
worthwhile because the fault might be cleared by that time. Moreover, quick resto-
rations will lead to higher reliability since interruptions of less than five minutes 
are not counted in statistics for sustained interruptions. In the AIS-ACO hybrid al-
gorithm, acceptable solutions to the restoration problem can be quickly generated 
using the information stored in the pheromones.  

4.3.1   Solution Generation under Contingencies 

We regenerate the network topology under contingency using the pheromones ta-
bles previously converged for network reconfiguration under normal conditions. 
This is a one step process and takes considerably less time compared to other ap-
proaches presented in the literature. To achieve this, the whole network is discon-
nected initially. The network is grown by adding edges one by one using Kruskal 
Algorithm [58]. Figure 10 given ahead presents the idea behind the Kruskal Algo-
rithm. In this algorithm the choice of an edge to be connected in the network de-
pends on the weight associated with the edge. In our problem the weights are 
analogous to the pheromone values corresponding to an edge. Since the values in 
the pheromone tables represent the desirability of an edge to be disconnected in 
the network topology (while here we are connecting edges one by one), so we use 
inverse roulette wheel to select an edge to connect in the network. In inverse rou-
lette wheel the probabilistic selection is made on the reciprocal of the pheromone 
values. For solving multi-objective distribution system reconfiguration, we used a 
separate pheromone table for each objective. So each edge in the graph has three 
pheromone values associated with it, one in each table. For the restoration prob-
lem, we combined all the pheromone tables into one by multiplying together the 
corresponding pheromone values associated with an edge in the tables. The idea is  
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Fig. 11. Kruskal Algorithm coupled with inverse roulette wheel for generating network to-
pology under contingencies 

 
to use information about all the three objectives present in the pheromone tables 
for restoring the network. 

Kruskal algorithm begins by completely disconnecting the graph. The next step 
is to select an edge using inverse roulette wheel on pheromones. If connecting the 
selected edge in the graph does not create any cycles then it is connected. This 
process goes on till all the nodes in the graph are not connected. The spanning tree 
finally obtained is the solution to the restoration problem. 

The generated solution may not be the optimum under the contingency as the 
pheromone values were converged under normal operating conditions but never-
theless, the solution generated is locally optimal and provides a good immediate 
solution for restoring power. Moreover, the AIS-ACO hybrid algorithm is run in 
parallel to find the optimal solution under contingency. We also compared the 
quality of solutions produced using pheromones with the quality of solutions pro-
duced using impedance of the edges as a heuristic under contingency. The idea 
behind using impedance heuristic is that the real loss and voltage drop in a system 
are directly proportional to the impedance of the edges. So edges with high im-
pedance should be kept disconnected. 

4.4   Flowcharts for the Proposed Algorithm 

This section provides flowchart for the proposed AIS-ACO hybrid algorithm 
and the algorithm for energy restoration using information stored in phero-
mones. The proposed AIS-ACO hybrid algorithm has been tested on two sys-
tems that have already been published in the literature. Section 5 ahead presents 
the results obtained. 
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Fig. 12. Flowchart for the proposed AIS-ACO hybrid algorithm 
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Fig. 13. Flowchart for solving Restoration problem using pheromones 

5   Test Cases And Results 

The first system [17] (referred to as System #1 from here on) has a total of 86 
buses with three substations, 83 load buses and 96 switches and the second system 
[23] (referred to as System #2) has a total of 94 buses with two substations, 92 
load buses and 96 switches. Data for peak loading condition was used for simula-
tion. MATLAB software package was used for implementation and the code was 
run on a Pentium IV, 2.4 GHz processor.   

5.1   Justification for Hybridizing AIS with ACO 

The motivation behind proposing pheromone - based mutation framework for AIS 
is to provide direction to the search process. This hypothesis was tested experi-
mentally. The AIS-ACO algorithm was run to optimize each objective separately. 
Ant colony parameter alpha, which governs the effect of pheromones on the prob-
abilistic selection during mutation, was varied. All the other ant colony parameters 
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were kept constant. Even though all the parameters of ACO affect the probabilistic 
selection of solution components directly or indirectly, the choice of varying alpha 
only was based on the fact that alpha directly affects the amount of pheromone in-
formation used, as it appears as an exponent to the pheromone value during the rou-
lette wheel selection. The values used for other ant colony parameters are Q = 10, 

0τ = 100 and ρ  = 0.05. The following figures show the result obtained through 

these experiments.  
 

 
Fig. 14. Sensitivity of Real Loss (in per unit) with alpha for the System #1 

The plot shown in the figure above has been obtained after averaging the results 
of 5 runs of the algorithm. The plot shows loss value for different values of alpha 
at different stages of the algorithm. The points along the x-axis represent different 
values of alpha and points along y-axis represent real loss values in per unit. The 
idea behind generating such a plot is to see the effect of pheromones on the con-
vergence of the algorithm. Value of alpha equal to zero means the probabilistic se-
lection in roulette wheel is independent of the value of pheromones. Hence, all the 
solution components (edges) have equal probability of being selected and hence 
the selection is basically random. As the value of alpha increases from zero, the 
effect of pheromones in the probabilistic selection increases as well. It is easy to 
observe the effect of alpha on convergence. After 50 iterations the best value 
found for loss is with alpha equal 0.25. This pattern continues in rest of the itera-
tions. The conclusion drawn from this plot is that pheromones are definitely help-
ing in finding better solutions. Thus using a pheromone based framework for mu-
tation in AIS algorithm is justified. Same experiment was performed on remaining 
objectives and on the other system as well. Similar results were obtained for all 
the experiments. The following figures present the results obtained.  
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Fig. 15. Sensitivity of Deviation of Voltage Magnitude from 1 per unit with alpha for System #1 

 

 
Fig. 16. Sensitivity of Unbalance in Transformer Loading with alpha for System #1 

From Figure 15 and Figure 16 it can be seen that the optimum value of alpha 
for minimization of voltage deviation and transformer load balancing is 0.5 and 
0.25 respectively. The proposed AIS-ACO hybrid algorithm was then applied to 
both the test systems, System # 1 and System #2, for solving the multi-objective 
distribution system reconfiguration problem using the methodology described in 
Section 4. The following section presents the results obtained for it.  
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5.2   AIS-ACO Hybrid Applied to the Multi-Objective Distribution 
System Reconfiguration Problem 

Three pheromone tables were used with one corresponding to each objective. The 

values of ACO parameters Q = 10, 0τ = 100 and ρ  = 0.05 were the same as used 

for single objective optimization. The optimum values of alpha for loss minimiza-
tion, voltage deviation minimization and transformer load balancing were chosen 
to be 0.25, 0.5 and 0.25 respectively. These values were taken from results shown 
in the previous section. The following figure shows convergence of the objectives 
function for the test system # 1.  

 
Fig. 17. Convergence Plot of the objective functions for System #1 

The AIS-ACO algorithm was run for 100 iterations. This number was deter-
mined experimentally. It was observed that algorithm did not find better solutions 
in iterations after 100. So the AIS-ACO algorithm was stopped after 100th itera-
tion. Figure 17 shows the improvement in each of the objective function value as 
the algorithm progresses. These plots show the fitness value of the best non-
dominated solution obtained along each objective in a given iteration. The set of 
non-dominated solutions obtained at the end of the 100th iteration was reported as 
the final solution. The following section presents the Pareto solutions (final non-
dominated set) obtained for System #1.    

5.2.1   Pareto Solutions  

The total number of non-dominated solutions was restricted to 50 (based on the  
explanation of diversity metric given in Section 4.2.6 in Section 4). Figure 18  
presents a scatter plot of the Pareto solutions in three dimensions for System #1. 
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Fig. 18. Pareto solutions obtained for System #1 

The Pareto solutions shown in Figure 18 are grouped into two groups in the  
objective space.  These solutions represent the different trade-offs obtained be-
tween objective values while optimizing the objective functions simultaneously. 
For group 1 solutions, real loss (in per unit) ranges from 0.3919 to 0.49488; volt-
age deviation is less than 0.05 per unit and per unit unbalance in transformer load-
ing varies from 0.00576 to 0.54358. So the system operator, depending on the  
utility priorities, can choose any solution from this group. For example, if the 
probability of occurrence of fault on the system is low and the utility is trying to 
cut the operating cost of the network then the system operator can choose a con-
figuration that minimizes the losses the most. On the other extreme, if the main 
focus of the utility is to provide maximum reliability without worrying about the 
operational cost, then the configuration that minimizes unbalance in transformer 
loading to the maximum can be chosen. And if the utility wants to achieve a bal-
ance between reliability and operational cost then the system operator can choose 
a configuration from the rest of the solutions. 

The solutions in group 2 are not dominated by group 1 solutions because they 
have unbalance in transformer loading lower than solutions in group 1. But losses 
and voltage deviation for solutions in group 2 are on the higher side. The voltage 
deviation is more than 0.05 per unit and loss is around 0.75 per unit. Since voltage 
deviation is out of the desired range, these solutions cannot be used without 
switching capacitors in the system.  
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In Figure 19 Pareto solutions have been plotted in two dimensions, with x-y  
axes representing different combinations of the objectives, to show the relation 
among various objectives. Specifically, plots of real loss versus unbalance in trans-
former loading, voltage deviation versus unbalance in transformer loading and real 
loss versus voltage deviation have been shown. It can be easily observed from the 
plots of real loss versus unbalance in transformer loading and voltage deviation 
versus unbalance in transformer loading that these objectives are in conflict with 
each other. This means that decreasing one objective increases the other objective. 
The plot of real loss versus voltage deviation shows that voltage deviation and real 
loss are not in direct conflict with each other. In fact they seem to be proportional 
to each other, which means that decreasing one decreases the other as well.  

 
Fig. 19. Conflict among objectives for System #1 

Table 1 given below presents the numerical values of the objectives for these 
solutions and Table 2 presents the set of switches that are open in the Pareto  
solutions.  

 

L  - Total Real Loss in the system (in per unit). 
VΔ - Maximum of deviation of voltage magnitude from 1 per unit at all buses. 

bTΔ - Sum of percentage deviation of loads on transformers from ideal load in 

a configuration. 
 T1 – Loading on Transformer (in per unit) at Substation 1 (Bus # 1)  
 T2 – Loading on Transformer (in per unit) at Substation 2 (Bus # 71)  
 T3 – Loading on Transformer (in per unit) at Substation 3 (Bus # 53)  
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Table 1. Pareto Solutions found for System #1 

L  VΔ  bTΔ  T1 T2 T3 

Group 1 Solutions 

0.39179 0.030265 0.54358 10.995 16.808 17.493 

0.39201 0.030129 0.58888 10.653 16.808 17.836 

0.39224 0.030129 0.58883 10.654 16.808 17.836 

0.39253 0.029969 0.6181 10.433 16.808 18.057 

0.39335 0.028633 0.61626 10.447 16.808 18.045 

0.39373 0.028633 0.54314 11 16.808 17.493 

0.39427 0.032139 0.52835 11.112 16.355 17.836 

0.39467 0.030265 0.4296 11.857 15.953 17.493 

0.39489 0.030129 0.4749 11.516 15.953 17.836 

0.39512 0.030129 0.47485 11.516 15.953 17.836 

0.39541 0.029969 0.50412 11.295 15.953 18.057 

0.39623 0.028633 0.50228 11.31 15.953 18.045 

0.39661 0.028633 0.42918 11.862 15.953 17.493 

0.39771 0.032687 0.41427 11.975 15.499 17.836 

0.39967 0.033507 0.3685 12.322 15.499 17.493 

0.40019 0.030129 0.40326 12.06 15.42 17.836 

0.40191 0.028633 0.35755 12.406 15.42 17.493 

0.404 0.035152 0.31577 12.864 14.967 17.493 

0.4069 0.033643 0.28193 12.98 15.42 16.93 

0.4073 0.030503 0.34266 12.522 15.417 17.393 

0.40812 0.033507 0.29717 12.866 15.417 17.051 

0.41045 0.032498 0.28066 12.992 15.953 16.394 

0.41186 0.035843 0.20533 13.562 15.953 15.827 

0.41474 0.031682 0.21007 13.528 15.993 15.827 

0.4159 0.034194 0.20449 13.571 15.953 15.827 

0.41716 0.035843 0.13382 14.106 15.42 15.827 

0.41964 0.030265 0.30821 12.79 16.808 15.761 

0.42501 0.030129 0.23919 13.315 15.953 16.104 

0.42702 0.030129 0.16839 13.852 15.42 16.104 

0.42828 0.038585 0.092664 14.584 14.967 15.827 

0.4301 0.040918 0.092476 14.589 14.967 15.827 

0.43031 0.030129 0.16771 13.859 15.42 16.104 

0.43105 0.032471 0.12229 14.203 15.42 15.761 

0.43207 0.029969 0.26699 13.109 15.953 16.325 

0.43321 0.034161 0.12123 14.213 15.42 15.757 

0.4341 0.043219 0.071397 14.59 15.417 15.384 
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L  VΔ  bTΔ  T1 T2 T3 

0.43676 0.036953 0.12051 14.221 15.42 15.757 

0.4389 0.037525 0.04626 14.784 15.42 15.198 

0.44102 0.033643 0.045837 14.789 15.42 15.198 

0.44225 0.033507 0.061068 14.674 15.417 15.319 

0.4445 0.040344 0.045145 14.797 15.42 15.198 

0.44733 0.042507 0.022886 15.256 14.967 15.198 

0.45405 0.030811 0.10336 15.755 14.363 15.319 

0.4544 0.030192 0.10339 15.192 14.363 15.883 

0.45686 0.033814 0.027566 15.185 14.939 15.319 

0.46853 0.033889 0.0078396 15.121 15.216 15.132 

0.4735 0.037351 0.0073492 15.132 15.216 15.132 

0.47629 0.034903 0.0070732 15.138 15.216 15.132 

0.49488 0.040171 0.0057671 15.18 15.216 15.132 

Group 2 Solutions 

0.76804 0.09544 0.0055037 15.337 15.417 15.384 

0.77726 0.11351 0.0039605 15.358 15.417 15.384 

0.77902 0.09927 0.0037895 15.362 15.417 15.384 

0.79324 0.10406 0.0024109 15.393 15.417 15.384 

0.79324 0.10406 0.0024109 15.393 15.417 15.384 

0.7966 0.10365 0.0021176 15.401 15.417 15.384 

Table 2. Open Switches corresponding to solutions in Table 1 

Open Switches 

Group 1 Solutions 

13 27 31 35 39 45 49 55 57 58 66 68 72 

13 27 31 35 39 45 49 55 57 58 67 68 72 

13 27 31 35 39 45 49 54 57 58 67 68 72 

13 27 31 35 39 45 49 55 56 58 66 68 72 

13 27 31 35 39 46 48 55 57 58 66 68 72 

13 27 31 35 39 46 49 55 57 58 66 68 72 

14 27 31 35 39 45 49 55 57 58 67 68 72 

13 27 31 35 45 49 55 57 58 66 68 72 96 

13 27 31 35 45 49 55 57 58 67 68 72 96 

13 27 31 35 45 49 54 57 58 67 68 72 96 

13 27 31 35 45 49 55 56 58 66 68 72 96 

13 27 31 35 46 48 55 57 58 66 68 72 96 

13 27 31 35 46 49 55 57 58 66 68 72 96 
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Open Switches 

14 27 31 35 45 49 54 57 58 67 68 72 96 

14 27 31 35 46 49 55 57 58 66 68 72 96 

13 27 31 35 45 49 55 57 58 67 68 72 90 

13 27 31 35 46 49 55 57 58 66 68 72 90 

14 27 31 35 45 49 55 57 58 66 68 72 90 

13 27 31 35 46 49 55 57 58 65 68 72 90 

14 27 31 35 47 49 55 57 58 67 68 70 90 

14 27 31 34 47 49 55 57 58 66 68 70 90 

13 27 31 35 45 49 54 56 59 64 65 72 96 

13 27 31 35 45 49 54 57 60 65 68 72 96 

12 27 31 35 45 49 54 57 60 65 68 72 90 

13 27 31 35 47 49 54 57 60 65 68 72 96 

13 27 31 35 45 49 54 57 60 65 68 72 90 

13 27 31 35 39 45 55 57 58 66 68 72 84 

13 27 31 35 47 52 57 58 67 68 72 84 96 

13 27 31 35 45 54 57 58 67 68 72 84 90 

14 27 31 35 46 49 55 57 60 65 68 72 90 

14 27 31 35 46 49 55 57 60 66 68 72 90 

13 27 31 34 46 53 57 58 67 68 72 84 90 

13 27 31 34 46 53 57 58 66 68 72 84 90 

13 27 31 39 45 55 56 58 66 68 72 84 96 

13 27 31 34 46 53 56 58 65 68 72 84 90 

14 27 31 35 45 49 55 56 59 66 68 70 90 

13 27 31 34 46 51 56 58 65 68 72 84 90 

13 27 31 34 46 53 57 58 65 68 72 84 90 

13 27 31 34 46 55 57 58 65 68 72 84 90 

14 27 31 34 47 55 57 58 66 68 70 84 90 

13 27 31 34 46 51 57 58 65 68 72 84 90 

14 27 31 34 46 53 57 58 65 68 72 84 90 

13 26 31 35 45 54 57 58 66 68 71 84 96 

13 26 31 35 45 54 56 58 66 68 71 84 96 

12 26 31 35 45 54 57 58 66 68 71 84 96 

13 27 29 36 45 54 57 60 64 67 70 84 96 

13 27 29 36 45 54 60 64 67 70 84 95 96 

13 27 29 36 46 54 57 60 64 67 70 84 96 

13 27 29 39 46 54 56 60 64 67 70 84 96 

Group 2 Solutions 

2 5 14 27 31 35 49 59 67 68 70 90 95 

8 14 27 31 34 44 49 55 59 65 68 70 90 

2 5 11 14 27 31 35 49 57 59 68 70 90 
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2 5 10 14 27 31 35 49 59 68 70 90 95 

2 5 10 14 27 31 34 49 59 68 70 90 95 

2 5 14 27 31 35 49 57 59 65 68 70 90 

 
In this work we have assumed that all the switches in the distribution system 

are automated such that all of them could be remotely opened or closed. However, 
in [17], from where System #1 has been taken, the authors have assumed only a 
set of switches to be automated. Thus direct comparison of the results obtained 
here with the results given in [17] was not possible. 

The use of pheromones was extended to solve the restoration problem as well 
for both the test systems, using the methodology described in Section 4.3. The 
minimum loss configuration, obtained from Table 5.1, was used as the base con-
figuration for simulating contingencies.  We refer to this minimum loss configura-
tion as ‘before-contingency’ configuration ahead in the section on restoration. The 
results of solving restoration problem using pheromones for System #1 are pre-
sented in the next section. 

5.2.2   Restoration Analysis for System #1 

As explained in Section 4, the pheromone tables can be reused to reconfigure the 
distribution network for restoring power to the interrupted part of the system under 
contingency. In any distribution system, the worst-case contingency could be fail-
ure of an entire substation, even though the likelihood of this happening is pretty 
low. We simulated this worst-case contingency on the test system and generated 
network topologies using previously converged pheromone tables. Also to show 
the effectiveness of pheromones in finding good network topologies under contin-
gency, we generated network topologies under contingency using impedance heu-
ristic and compared them with the topologies generated using pheromones. Since 
desirability of an edge staying disconnected is dependent on their impedance, the 
network configuration was generated by using inverse roulette wheel selection 
based on the impedance value of the edges (same as done with pheromone values 
as explained in Section 4.3 of Section 4, with impedance replacing pheromones in 
this case). The higher the impedance valued, the more is the probability of it being 
disconnected.  

Ten solutions each were generated with pheromones and impedance heuristic. 
The execution time to generate the set of ten solutions each was around 10 sec-
onds for both pheromones and impedance heuristic. The best three solutions out of 
the ten solutions have been selected. The following tables present the results ob-
tained for System #1.   

5.2.2.1   Substation Failure  
NSwt – Number of Switching Operations to reach this configuration from before-
contingency configuration. 
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Table 3. Contingency Solutions Generated Using Pheromones and Impedance Heuristic for 
substation failures on System #1 

 

L  VΔ  bTΔ  T1 T2 T3 NSwt 

Using Pheromones      

Substation # 1 Failure      

0.8092 0.081126 0.39671 0 18.53 27.7 7 

0.91104 0.096324 0.50248 0 29.065 17.393 9 

1.0705 0.11184 0.33934 0 19.436 27.379 7 

Substation # 71 Failure      

1.838 0.19283 0.51312 18.04 0 30.491 6 

1.8831 0.19283 0.34274 20.149 0 28.483 8 

1.959 0.2 0.41208 19.373 0 29.428 8 

Substation # 53 Failure      

1.6151 0.1303 0.3329 28.014 20.019 0 9 

1.9739 0.16427 0.44325 29.829 19.006 0 9 

2.1227 0.17488 0.45376 30.161 19.006 0 11 

       

Using Impedance Heuristic      

Substation # 1 Failure      

1.3422 0.12598 0.72169 0 32.267 15.155 17 

2.1325 0.16359 1.3305 0 40.957 8.2329 23 

1.9994 0.16492 0.83556 0 34.659 14.233 17 

Substation # 71 Failure      

2.1995 0.13937 0.80646 34.617 0 14.722 24 

2.4619 0.15093 0.45595 19.272 0 30.654 22 

6.7306 0.38252 0.95317 15.564 0 43.907 20 

Substation # 53 Failure      

3.3554 0.2656 0.10045 27.266 24.658 0 17 

4.0607 0.27001 0.57012 34.376 19.125 0 21 

5.0265 0.37107 0.99748 41.71 13.95 0 17 

 
The following table presents the switches that are open corresponding to the  

solutions given Table 3. 
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Table 4. Switches open in Solutions corresponding to Table 3 

 

Open Switches 

Using Pheromones          

Substation # 1 Failure          

1 14 27 31 35 41 42 45 55 58 67 68 72 

1 14 27 31 41 42 49 55 57 58 67 68 70 

1 13 27 31 35 41 42 45 49 57 67 68 70 

Substation # 71 Failure          

14 27 31 35 45 49 55 57 58 67 68 85 86 

14 27 31 35 45 49 55 58 60 64 68 85 86 

13 27 31 35 45 54 57 58 67 68 84 85 86 

Substation # 53 Failure          

13 27 31 35 45 54 58 65 68 76 77 81 96 

14 27 31 35 45 55 57 65 68 76 77 81 90 

14 27 31 35 45 54 57 67 68 76 77 81 90 

Using Impedance  
Heuristic 

        

Substation # 1 Failure          

1 5 8 34 41 42 49 57 64 67 72 80 90 

1 11 23 36 41 42 53 54 64 69 74 80 84 

1 6 11 36 41 42 49 57 64 65 72 80 88 

Substation # 71 Failure          

17 30 36 44 47 53 59 64 69 70 85 86 95 

11 23 36 40 44 49 51 54 64 67 85 86 95 

2 5 11 23 27 44 51 58 70 80 84 85 86 

Substation # 53 Failure          

4 11 27 30 36 39 51 57 62 70 76 77 81 

11 14 30 34 40 45 54 70 76 77 81 90 95 

Open Switches 

12 25 36 40 45 53 54 57 72 76 77 81 90 

5.2.2.2   Random Failure 
Previous analysis considered the worst-case contingencies, that is, failure of any 
substation. However, contingency could occur in any part of the system. Keeping 
this in mind we used pheromone tables to generate solutions for some random 
contingencies as well. The following tables present the results obtained for System 
#1. NSwt – Number of Switching Operations to reach this configuration from be-
fore-contingency configuration. 
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Table 5. Solutions generated for failure of Switch #1 and #77 using Pheromones and 
Impedance Heuristic on System #1 

L  VΔ  bTΔ  T1 T2 T3 NSwt 

Using Pheromones     

1.3269 0.13594 0.83319 22.3 15.873 9.2155 10 

1.5926 0.14732 1.0089 19.603 20.453 7.9259 10 

2.1073 0.17979 1.2035 26.233 15.417 7.4833 12 

Using Impedance Heuristic     

3.7929 0.20485 1.7591 2.1239 33.062 17.716 20 

4.1235 0.29932 0.6440 0 18.185 35.457 22 

3.6751 0.30058 0.63533 23.12 14.838 14.68 24 

 
The following table presents the switches that are open corresponding to the  

solutions given Table 5. 

Table 6. Switches open in Solutions corresponding to Table 5 

Open Switches 

Using Pheromones 

1 13 27 31 46 49 55 57 67 68 70 77 90 

1 27 31 35 46 55 57 67 68 72 77 84 90 

1 14 27 31 35 55 57 65 68 70 77 84 90 

Using Impedance Heuristic 

1 5 11 20 21 39 43 51 54 64 72 77 82 

1 5 9 17 34 40 43 54 57 65 69 77 88 

1 11 17 29 36 40 51 54 64 70 77 84 88 

 
The restoration problem under contingency is actually a constraint satisfaction 

problem. For a constraint satisfaction problem the search process tries to find as 
fast as possible a solution that satisfies all the constraints. More emphasis is given 
to the speed of the search process than to the quality of the solution. A solution 
which may not be the global optimum but satisfies all the constraints is an accept-
able solution. For the restoration problem, there are two main constraints. The first 
one is to supply power to the entire disrupted network as fast as possible and the 
second one is to keep the voltage deviation under certain limits. For contingencies 
higher voltage drop is acceptable. In our analysis we considered maximum voltage 
drop in the system not to be more than 0.1 per unit from the nominal value of 1 
per unit. Also, the number of switching operations should be kept as low as possi-
ble. Real losses on the system are not given that much priority at this point, but it 
is a bonus if losses are also minimized simultaneously. 



60 A. Ahuja, S. Das, and A. Pahwa
 

The configurations generated by pheromones during substation failure and ran-
dom failure, as reported in Table 5.3 and Table 5.5 presented above, seem promis-
ing when compared to the configurations generated by impedance heuristic. The 
maximum voltage deviation for all the configurations generated using impedance 
heuristic under all substation failure as well as random failure is greater than 0.1 
per unit. And to reach these configurations from the ‘before-contingency’ configu-
ration (minimum loss configuration with no contingency), the number of switch-
ing operations required is more compared to the contingencies generated using 
pheromones.  While, for substation #1 failure, pheromones generated a configura-
tion where maximum voltage deviation was less that 0.1 per unit. However, for 
substation # 53 failure the best configuration generated by the pheromones has 
voltage deviation of 0.13 per unit and for substation # 71 it is 0.19. Even though 
the voltage deviation is greater than 0.1 per unit for both, these configurations are 
still good and acceptable as the number of switching operations required to reach 
these configurations is less compared to the configurations generated by imped-
ance heuristic. Moreover, the voltage deviation for these configurations can be 
improved to some extent by switching capacitors in the network.  

Thus, pheromones can provide good and acceptable configurations almost im-
mediately so that the system can be restored within short time.  The AIS-ACO hy-
brid algorithm can be rerun to find the optimal configuration under contingency. 
The AIS-ACO algorithm was reapplied for system # 1 under substation # 1 failure 
to obtain the optimal solution. The result obtained is presented in the table ahead 
and is compared to the configurations previously generated using pheromones. 

Table 7. Optimal Solution obtained for Substation #1 failure in System # 1 

L  VΔ  bTΔ  T1 T2 T3 

0.57533 0.036748 0.0218 0 23.103 22.604 

 
The voltage deviation in the optimal configuration for substation #1 as given in 

Table 5.7 above is 0.03 per unit. The voltage deviation for the best configuration 
generated using pheromones is 0.08 per unit given in Table 5.3.  Comparing these 
two configurations we can conclude that pheromones can generate locally optimal 
and acceptable configurations under contingencies for fast recovery of the system.  
Thus the proposed AIS-ACO algorithm provides triple advantage. Firstly, it can 
solve multi-objective distribution system reconfiguration problem without any 
contingency. Secondly, the information stored in the pheromones can be used to 
obtain acceptable configurations for restoring power under contingencies. And 
thirdly, the algorithm can be applied again to find optimal configuration under 
contingencies. 

The AIS-ACO hybrid algorithm was applied to System #2 as well.  Restoration 
analysis, as done for system #1, was also performed for this system. The following 
section provides the results obtained for it.   
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5.3   AIS-ACO Algorithm Applied to System #2 

The parameter settings of the algorithm were same as used for System #1. The fol-
lowing figure shows the convergence of the objective functions for System # 2.  

 
Fig. 20. Convergence Plot of the objective functions for System #2 

 

 
Fig. 21. Pareto solutions obtained for System #2 
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5.3.1   Pareto Solutions  

This section presents the Pareto solutions (final non-dominated set) obtained for 
System #2. The total number of non-dominated solutions was restricted to 50. The 
following figure presents a scatter plot of the Pareto solutions in three dimensions. 

Comparing Figure 18 and Figure 21, it can be observed that the Pareto solutions 
obtained for System #2 are located in a small region of the objective space, except 
for one solution which is at the corner. The reason for the clustering of solutions is 
related to the structure of this system. The structure is not too complex, as it does not 
have a lot of interconnecting lines among feeders (can be seen in Appendix A), so 
the search space is not very large. This means that there are not many configurations 
that are not dominated by other solutions. And the corner solution represents the to-
pology that minimizes voltage deviation to the maximum but has maximum losses 
and poorest load distribution on the transformers.  

Figure 22 below shows the conflict among objectives for System #2. Similar pat-
tern is observed in this figure for System #2 as observed for System #1 in Figure 19. 

 

 

Fig. 22. Conflict among objectives for System #2 

The Table 8 given ahead presents the numerical values of the objectives for 
these solutions and Table 9 presents the set of switches that are open in the Pareto 
solutions.  

 

L  - Total Real Loss in the system (in per unit). 
VΔ - Maximum of deviation of voltage magnitude from 1 per unit at all buses. 
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bTΔ - Sum of percentage deviation of loads on transformers from ideal load in 

a configuration. 
A,B…..K – Loads on Transformers (in per unit) supplying power to A,B….K 

feeders respectively. 

Table 8. Pareto Solutions found for System #2 

Solution 1 2 3 4 5 6 7 

L  0.4373 0.4375 0.4381 0.4383 0.4401 0.4403 0.4415 

ΔV  0.0468 0.0483 0.0468 0.0483 0.0468 0.0483 0.0552 

bΔT  1.587 1.421 1.585 1.42 1.583 1.418 1.353 

A 2.834 2.834 2.834 2.834 2.834 2.834 2.603 

B 2.603 2.603 2.603 2.603 2.603 2.603 2.603 

C 4.545 4.545 4.545 4.545 4.545 4.545 4.545 

D 2.922 2.922 2.922 2.922 3.186 3.186 2.922 

E 2.924 2.924 2.699 2.699 2.442 2.442 2.924 

F 2.932 2.932 3.162 3.162 3.162 3.162 2.932 

G 4.214 3.95 4.214 3.95 4.214 3.95 3.76 

H 2.58 2.843 2.58 2.843 2.58 2.843 3.275 

I 3.267 3.267 3.267 3.267 3.267 3.267 3.267 

J 2.989 2.989 2.989 2.989 2.989 2.989 2.989 

K 3.252 3.252 3.252 3.252 3.252 3.252 3.252 

 
 

Solution 8 9 10 11 12 13 14 

L  0.4423 0.4424 0.4432 0.4439 0.4439 0.4447 0.4452 

ΔV  0.0552 0.0552 0.0552 0.0519 0.0519 0.0519 0.0552 

bΔT  1.352 1.208 1.207 1.384 1.369 1.367 1.205 

A 2.603 2.834 2.834 3.487 3.487 3.487 2.834 

B 2.603 2.603 2.603 2.603 2.603 2.603 2.603 

C 4.545 4.545 4.545 4.545 4.545 4.545 4.545 

D 2.922 2.922 2.922 2.922 2.922 2.922 3.186 

E 2.699 2.924 2.699 2.924 2.924 2.699 2.442 

F 3.162 2.932 3.162 2.932 2.932 3.162 3.162 

G 3.76 3.529 3.529 3.598 3.574 3.574 3.529 

H 3.275 3.275 3.275 2.556 2.58 2.58 3.275 

I 3.267 3.267 3.267 3.267 3.267 3.267 3.267 

J 2.989 2.989 2.989 2.989 2.989 2.989 2.989 

K 3.252 3.252 3.252 3.252 3.252 3.252 3.252 
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Solution 15 16 17 18 19 20 21 

L  0.4457 0.4465 0.4486 0.4532 0.454 0.456 0.4747 

ΔV  0.0519 0.0519 0.0519 0.0552 0.0552 0.0552 0.0451 

bΔT  1.205 1.203 1.201 1.174 1.173 1.171 2.858 

A 3.487 3.487 3.487 3.487 3.487 3.487 2.834 

B 2.603 2.603 2.603 2.603 2.603 2.603 4.383 

C 4.545 4.545 4.545 4.545 4.545 4.545 5.477 

D 2.922 2.922 3.186 2.922 2.922 3.186 2.922 

E 2.924 2.699 2.442 2.924 2.699 2.442 2.924 

F 2.932 3.162 3.162 2.932 3.162 3.162 2.932 

G 3.314 3.314 3.314 2.9 2.9 2.9 4.214 

H 2.843 2.843 2.843 3.275 3.275 3.275 2.58 

I 3.267 3.267 3.267 3.267 3.267 3.267 0.6 

J 2.989 2.989 2.989 2.989 2.989 2.989 2.989 

K 3.252 3.252 3.252 3.252 3.252 3.252 3.252 

Table 9. Open Switches corresponding to solutions in Table 8 

Open Switches

7 13 34 39 42 55 62 72 86 89 90 91 92 

7 13 34 39 42 55 63 72 86 89 90 91 92 

7 13 33 39 42 55 62 72 86 89 90 91 92 

7 13 33 39 42 55 63 72 86 89 90 91 92 

7 13 32 33 39 42 55 62 72 86 89 90 91 

7 13 32 33 39 42 55 63 72 86 89 90 91 

7 13 34 39 42 64 72 84 86 89 90 91 92 

7 13 33 39 42 64 72 84 86 89 90 91 92 

7 13 34 39 42 55 64 72 86 89 90 91 92 

7 13 33 39 42 55 64 72 86 89 90 91 92 

7 13 34 39 42 54 61 72 86 89 90 91 92 

7 13 34 39 42 54 62 72 86 89 90 91 92 

7 13 33 39 42 54 62 72 86 89 90 91 92 

7 13 32 33 39 42 55 64 72 86 89 90 91 

7 13 34 39 42 54 63 72 86 89 90 91 92 

7 13 33 39 42 54 63 72 86 89 90 91 92 

7 13 32 33 39 42 54 63 72 86 89 90 91 

7 13 34 39 42 54 64 72 86 89 90 91 92 

7 13 33 39 42 54 64 72 86 89 90 91 92 

7 13 32 33 39 42 54 64 72 86 89 90 91 

7 13 14 34 39 42 55 62 70 86 90 91 92 
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The solutions given in Table 5.8 provide the different trade-offs that can be ob-
tained while simultaneously optimizing three objectives for system #2. A solution 
could be chosen depending on the utility preference. We have chosen the mini-
mum loss configuration for the system before simulating contingencies. The re-
sults of solving restoration problem for this system using pheromones are given in 
the next section. 

System #2 has been taken from [23]. The authors there have solved reconfigu-
ration problem only for loss minimization. So direct comparison of results ob-
tained using the AIS-ACO hybrid is again not possible. However, the final mini-
mum loss configuration that the authors publish is dominated by the minimum loss 
configuration generated by our AIS-ACO algorithm. The result published [23] is 
given below: 

 
Solution 1 

L  0.4419 

ΔV  0.0468 

bΔT  1.91 

A 2.834 

B 2.603 

C 5.127 

D 3.193 

E 2.924 

F 2.664 

G 4.214 

H 2.58 

I 3.267 

J 2.989 

K 2.684 

 
And the switches that are open in this configuration are: 
 

Open Switches

7 13 34 39 41 55 62 72 83 86 89 90 92 

 
The minimum loss configuration found by the AIS-ACO hybrid has loss equal 

to 0.4373 per unit. Clearly, the AIS-ACO hybrid algorithm beats the results pub-
lished in [23]. 

5.3.2   Restoration Analysis for System #2 

The following tables present the results obtained for restoration analysis on  
System #2.   



66 A. Ahuja, S. Das, and A. Pahwa
 

5.3.2.1   Substation Failure  
NSwt – Number of Switching Operations to reach this configuration from before-
contingency configuration. 

Table 10. Contingency Solutions Generated Using Pheromones and Impedance Heuristic 
for substation failures on System #2 

Using Pheromones 

Substation C 
Failure  

Substation G Fail-
ure 

Solution 1 2 3  1 2 3 

L  0.503 0.534 0.563  0.793 0.865 0.838 

ΔV  0.051 0.054 0.064  0.138 0.145 0.145 

bΔT  3.0036 3.1778 4.5033  4.0345 5.1393 3.8181 

A 2.834 2.834 2.834  7.531 7.875 7.875 

B 2.34 1.71 4.64  2.6 5.31 5.31 

C 0 0 0  4.54 4.54 3.37 

D 8.1 6.29 9.72  0.3 0.3 2.92 

E 2.44 5.68 2.44  5.94 5.94 2.92 

F 2.93 3.02 0  2.64 2.64 2.93 

G 4.21 4.21 4.21  0 0 0 

H 2.58 2.58 2.58  2.843 2.58 2.58 

I 3.55 3.27 3.27  3.27 0.6 0.6 

J 2.99 2.99 2.99  2.99 2.99 2.99 

K 3.25 2.68 2.68  3.25 3.25 4.48 

NSwt 5 9 13  7 7 5 

Using Impedance 
Heuristic 

Substation C 
Failure  

Substation G Fail-
ure 

Solution 1 2 3  1 2 3 

L  1.004 1.19 1.132  1.684 1.832 1.65 

ΔV  0.127 0.137 0.152  0.194 0.207 0.216 

bΔT  5.6569 3.8066 7.5601  10.28 12.574 9.6489 

A 7.507 0.912 0.112  0.912 11.59 0.112 

B 9.2 9.51 7.03  3.39 0 7.42 

C 0 0 0  17 0 5.25 

D 3.56 5.33 6.42  0.06 14.6 0.06 

E 2.44 0 7.75  0 0 0 

F 6.36 0 1.1  1.1 9.52 9.26 
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Table 10. (Continued) 
 

G 1.87 4.18 10.7  0 0 0 

H 0.824 4.709 0  10.32 0 11.64 

I 0.06 7.74 0.06  3.55 0.06 0.06 

J 0 1.92 1.92  1.92 0 1.56 

K 4.48 2.68 1.8  0 2.68 2.68 

NSwt 19 23 19  17 21 19 
 

The following table presents the switches that are open corresponding to the  
solutions given Table 10. 

Table 11. Switches open in Solutions corresponding to Table 10 

Open Switches 

Using Pheromones          

Substation C Failure          

7 13 15 32 34 39 42 55 62 86 87 89 91 

7 13 14 15 27 34 39 40 55 62 72 83 86 

7 13 14 15 32 33 39 41 43 55 62 72 83 

Substation G Failure          

7 13 28 34 38 42 47 63 72 86 89 90 91 

7 13 28 34 38 42 47 62 70 86 89 90 91 

Open Switches 

7 13 20 34 39 42 47 62 69 86 89 90 92 

Using Impedance Heuris-
tic         

Substation C Failure          

15 20 27 29 32 40 53 62 68 75 85 86 89 

5 12 15 27 31 36 40 43 63 83 84 88 89 

3 15 27 36 42 46 56 63 68 80 86 88 89 

Substation G Failure          

5 26 30 34 40 46 47 55 77 86 87 88 89 

11 14 15 31 36 39 46 47 57 62 68 73 83 

3 26 27 30 36 47 55 68 76 83 86 89 95 

5.3.2.2   Random Failure 
The following tables present the results obtained for random contingencies on 
System #2. 

NSwt – Number of Switching Operations to reach this configuration from be-
fore-contingency configuration. 
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Table 12. Solutions generated for Feeder G, J and E failure using Pheromones and 
Impedance Heuristic on System #2 

Using Pheromones  
Using Impedance Heu-
ristic 

Solution 1 2 3  1 2 3 

L  0.843 0.844 0.929  2.021 2.045 1.711 

ΔV  0.127 0.134 0.145  0.207 0.22 0.251 

bΔT  2.2441 2.1538 2.6899  9.9019 6.4647 5.8271 

A 6.995 3.487 7.875  11.59 11.57 12.02 

B 5.71 5.71 5.71  0 0 9.27 

C 4.54 4.54 4.54  8.06 5.13 5.13 

D 5.81 5.81 2.92  0.18 8.14 6.53 

E 0 0 0  0 0 0 

F 3.162 3.162 6.067  18.92 1.104 2.498 

G 0 0 0  0 0 0 

H 3.275 6.807 2.58  0 0 0 

I 3.267 3.267 3.267  0.058 10.81 0 

J 0 0 0  0 0 0 

K 3.25 3.25 3.25  0 2.68 2.68 

NSwt 7 7 3  17 13 13 

 
The following table presents the switches that are open corresponding to the so-

lutions given Table 12. 

Table 13. Switches open in Solutions corresponding to Table 12 

Open Switches 

Using Pheromones          

7 30 33 39 42 47 64 72 73 86 89 90 91 

7 30 33 39 42 47 54 72 73 86 89 90 91 

7 30 39 42 47 62 72 73 86 89 90 91 92 

Using Impedance Heuris-
tic 

        

11 27 29 30 41 47 57 62 67 73 77 89 90 

12 30 34 42 46 47 57 63 73 83 86 89 90 

Open Switches 

30 34 36 41 47 55 57 66 73 83 86 89 90 
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The configurations generated by pheromones during substation failure and ran-
dom failure for System #2 as well are better than those produced by impedance 
heuristic. This confirms that pheromones can provide good and acceptable con-
figurations for restoring power very quickly.   

The AIS-ACO algorithm was reapplied for System # 2 with Feeder G, J and E 
failure to obtain the optimal solution. The results obtained are presented in Table 
5.14 and compared to the configurations generated using pheromones. 

Table 14. Optimal Solution obtained for Feeder G, J and E failure in System #2 

Solution 1 

L  0.7809 

ΔV  0.0903 

bΔT  1.5236 

A 4.821 

B 4.773 

C 5.477 

D 5.442 

E 0 

F 3.518 

G 0 

H 5.325 

I 3.267 

J 0 

K 3.252 

 
The voltage deviation in the optimal configuration for Feeder G, J and E failure 

as given in Table 5.12 above is 0.127 per unit. The voltage deviation for the best 
configuration generated using pheromones is 0.09 per unit given in Table 5.14. 
Comparing these two configurations we can conclude that pheromones can gener-
ate locally optimal and acceptable configurations under contingencies for fast re-
covery of the system.   

6   Conclusion 

Distribution systems are the tail end of a power system. They are that part of a 
power system that finally delivers power to the customer premises. As the load de-
mands of various customers change during a 24-hour period, the loading pattern of 
the distribution network also varies with time. At some part of the day the feeders 
are heavily loaded while at some other part the feeders are lightly loaded. Such 
variation in load is detrimental to operating conditions of the network. For example 
it could result in high losses on the network; voltage profile could get out of pre-
scribed limits etc. However, with the advancement of automation in distribution 
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network it has become possible to automate all the switches in a network. The 
open/close status of these switches can now be changed in almost real time to im-
prove operating conditions on a network. In literature, this problem is commonly re-
ferred to as Distribution System Reconfiguration.  The structure of a distribution 
system is generally meshed but they are operated in a radial configuration. On a 
graphical model of a distribution network, this radial configuration is equivalent to a 
spanning tree.  

In this work we formulated the reconfiguration problem in a multi-objective 
framework using the concept of Pareto Optimality. The objectives considered in 
the multi-objective framework were minimization of real loss, minimization of 
unbalance in transformer loading and minimization of deviation of voltage magni-
tude from 1 per unit. The set of non-dominated solutions obtained presented the 
trade-offs in objective values while optimizing these objectives simultaneously. 
Distribution system reconfiguration is an NP-hard problem, so exact method like 
branch and bound cannot solve it in polynomial time. In recent past, evolutionary 
algorithms like genetic algorithm, ant colony optimization etc. have been success-
fully applied to solve various classical NP-hard problems like Traveling Salesman 
Problem, Quadratic Assignment Problem etc. Inspired by this fact, we proposed a 
hybrid algorithm combining concepts from Artificial Immune System (AIS) and 
Ant Colony Optimization (ACO). The primary search mechanism in AIS is ran-
dom mutation of genes of antibodies that affect antibody-antigen affinity. Being 
random, this mechanism is too exploratory and lacks sufficient exploitation of the 
already visited parts of the search space. To improve exploration-exploitation bal-
ance in AIS, we proposed a pheromone based mutation framework. This idea was 
derived from the principles of ant colony optimization. Thus we call our algorithm 
as AIS-ACO hybrid. Pheromones have an inherent property of storing the infor-
mation gathered by the algorithm about the search space within them. This infor-
mation can be used to direct the search process towards good solutions. This hy-
pothesis was tested by experiments. It was found that pheromones do help in the 
search process and help the algorithm to converge faster. In addition to this, 
pheromones provide another advantage for solving reconfiguration problem. The 
information gained by pheromones while solving distribution system reconfigura-
tion problem under normal conditions can be used to find reasonably acceptable 
solutions to restoration problem under contingencies. These ideas were tested on 
two test systems already published in the literature. The first test system has 86 
buses with three substations, 83 load buses and 96 switches while the second sys-
tem has 94 buses, 11 substations, 83 load buses and 94 switches. The results ob-
tained verify the ideas and hypothesis present above.  

This work proposes a generic multi-objective framework for distribution net-
work reconfiguration. In our formulation we considered three objectives, namely, 
minimization of real loss, minimization of unbalance in transformer loading and 
minimization of voltage deviation from 1 per unit. However, this framework can 
include more objectives like feeder load balancing; reconfiguration for improve-
ment of reliability indices (SAIFI, SAIDI) etc. Thus future work could include 
solving the reconfiguration problem with more than three objectives. Also the 
AIS-ACO hybrid algorithm proposed can be implemented on bigger systems to 
further test its efficacy. 



An AIS-ACO Hybrid Approach for Multi-objective Distribution System  71
 

References 

1. Xu, W.: On the quadratic minimum spanning tree problem. In: Schaffer, J. (ed.) Proc. 
3rd Int. Conf. Genetic Algorithms, pp. 141–148 (1995) 

2. NP Hard, http://en.wikipedia.org/wiki/NP-hard 
3. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning. 

Addison-Wesley Longman Publishing Co., Inc., Boston 
4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of coop-

erating agents. IEEE Trans. Syst., Man, and Cybernetics— Part B: Cybernetics 26(1), 
29–41 (1996) 

5. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability and convergence in a 
multi-dimensional complex space. IEEE Trans. on Evolutionary Computation 6, 58–73 
(2002) 

6. Coello Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: 
Procs. 1st Int. Conf. Evolutionary Multi-objective Optimization (2001) 

7. Merlin, A., Back, H.: Search for Minimal-Loss Spanning Tree Configuration for an 
Urban Power Distribution System. In: Proceedings of the 5th Power System Confer-
ence (PSCC), Cambridge, pp. 1–18 (1975) 

8. Baran, M.E., Wu, F.F.: Network Reconfiguration in Distribution Systems for Loss Re-
duction and Load Balancing. IEEE Trans. on Power Delivery 4(2), 1401–1407 (1989) 

9. Aoki, K., Ichimori, T., Kanezashi, M.: Normal State Optimal Load Allocation in Dis-
tribution Systems. IEEE Trans. on Power Delivery 2(1), 147–155 (1987) 

10. Shirmohammadi, D., Hong, H.W.: Reconfiguration of Electric Distribution Networks 
for Resistive Line Loss Reduction. IEEE Trans. on Power Delivery 4(2), 1492–1498 
(1989) 

11. Goswami, S.K., Basu, S.K.: A new Algorithm for the Reconfiguration of Distribution 
Feeders for Loss Minimization. IEEE Trans. on Power Delivery 7(3), 1484–1491 
(1992) 

12. McDermott, T.E., Drezga, I., Broadwater, R.P.: A heuristic non-linear constructive 
method for distribution system reconfiguration. IEEE Trans. Power Syst. 14(2), 478–
483 (1999) 

13. Morton, A.B., Mareels, I.M.Y.: An efficient brute-force solution the network recon-
figuration problem. IEEE Trans. Power Del. 15(3), 996–1000 (2000) 

14. Civanlar, S., Grainger, J.J., Yin, H., Lee, S.S.H.: Distribution feeder reconfiguration 
for loss reduction. IEEE Trans. Power Del. 142(3), 1217–1223 (1988) 

15. Gomes, F.V., Carneiro Jr., S.: A new heuristic reconfiguration algorithm for large dis-
tribution systems. IEEE Trans. Power Syst. 20(3), 1373–1378 (2005) 

16. Ramos, E.R., Exposito, A.G.: Path-based distribution network modeling: application to 
reconfiguration for loss reduction. IEEE Trans. Power Syst. 20(2), 556–564 (2005) 

17. Schmidt, H.P., Kagan, N.: Fast reconfiguration of distribution systems considering loss 
minimization. IEEE Trans. Power Syst. 20(3), 1311–1319 (2005) 

18. Momoh, J.A., Yawo, A., Arunsi, C.: Reconfiguration of Distribution Feeders for Volt-
age Deviation Minimization with Feasibility of ANN. In: ICPSOP 1997 Conference 
Proceedings, January 14-17, pp. 378–383 (1997) 

19. Choi, J.H., Kim, J.C.: Network Reconfiguration at the Power System with Dispersed 
Generations for Loss Reduction. In: IEEE Power Engineering Society Meeting, vol. 4, 
pp. 2363–2367 (2000) 



72 A. Ahuja, S. Das, and A. Pahwa
 

20. Kagan, N., de Oliveira, C.C.B.: Fuzzy decision model for the reconfiguration of distri-
bution networks using genetic algorithms. In: Proc. 13th Power Syst. Comput. Conf., 
Trondheim, Norway (1999) 

21. Jeon, Y.J., Kim, J.C., Kim, J.O., Shin, J.R., Lee, K.Y.: An efficient simulated anneal-
ing algorithm for network reconfiguration in large-scale distribution sytems. IEEE 
Trans. Power Del. 17(4), 1070–1078 (2002) 

22. Delbem, A.C.B., de Carvalho, A.C.P.L.F., Bretas, N.G.: Main chain representation for 
evolutionary algorithms applied to distribution system reconfiguration. IEEE Trans. 
Power Syst. 20(1), 425–436 (2005) 

23. Chiou, J.P., Chang, C.-F., Su, C.-T.: Variable scaling hybrid differential evolution for 
solving network reconfiguration of distribution systems. IEEE Trans. Power 
Syst. 20(2), 668–674 (2005) 

24. Ahuja, A., Pahwa, A.: Using ant colony optimization for loss minimization in distribu-
tion networks. In: Proc. 37th North American Power Symposium, October 2005, pp. 
470–474 (2005) 

25. Jin, X., Zhao, J., Sun, Y., Li, K., Zhang, B.: Distribution network reconfiguration for 
load balancing using binary particle swarm optimization. In: Proc. Int. Conf. on Power 
Syst. Tech. (November 2004) 

26. Roytelman, I., Melnik, V., Lee, S.S.H., Lugtu, R.L.: Multi-objective feeder reconfigu-
ration by distribution management system. IEEE Trans. Power Syst. 11(2), 661–667 
(1996) 

27. Hsiao, Y.-T.: Multi-objective evolution programming method for feeder reconfigura-
tion. IEEE Trans. Power Syst. 19(1), 594–599 (2004) 

28. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of ob-
jectives for Pareto set generation in multicriteria optimization problems. Structural Op-
timization 14, 63–69 (1997) 

29. Delbem, A.C.B., de Carvalho, A.C.P.L.F., Bretas, N.G.: Main chain representation for 
evolutionary algorithms applied to distribution system reconfiguration. IEEE Trans. 
Power Syst. 20(1), 425–436 (2005) 

30. Edgeworth, F.Y.: Mathematical Physics. P. Keagan, London (1881) 
31. Pareto, V.: Cours D’Economie Politiqur, vols. I, II, F. Rouge, Lausanne (1896) 
32. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization using the Clonal selec-

tion principle. IEEE Trans. Evolutionary Computation 6(3), 239–251 (2002) 
33. Coello Coello, C.A., Cortes, N.C.: Solving multiobjective optimization problems using 

an artificial immune system. Genetic Programming and Evolvable Machines 6, 163–
190 (2005) 

34. Janeway, C.A., Travers, P., Walport, M., Capra, J.D.: Immunobiology: The Immune 
System In Health and Disease, 4th edn. Garland, New York (1999) 

35. Burnet, F.M.: Clonal selection and after. In: Bell, G.I., Perelson, A.S., Pimbley Jr., 
G.H. (eds.) Theoretical Immunology, pp. 63–85. Marcel Dekker, New York (1978) 

36. Hunt, J.E., Cooke, D.E.: An adaptative, distributed learning systems based on the im-
mune system. In: Procs. IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 2494–
2499 (1995) 

37. Dasgupta, D. (ed.): Artificial Immune Systems and their Applications. Springer, Berlin 
(1999) 

38. Forrest, S., Perelson, A.S.: Genetic algorithms and the immune system. In: Schwefel, 
H.-P., Manner, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 320–325. Springer, Heidel-
berg (1991) 



An AIS-ACO Hybrid Approach for Multi-objective Distribution System  73
 

39. Smith, R.E., Forrest, S., Perelson, A.S.: Population diversity in an immune system 
model: Implications for genetic search. In: Whitley, L.D. (ed.) Foundations of Genetic 
Algorithms, vol. 2, pp. 153–165. Morgan Kaufmann Publishers, San Mateo (1993) 

40. Yoo, J., Hajela, P.: Immune network simulations in multicriterion design. Structural 
Optimization 18, 85–94 (1999) 

41. Hajela, P., Lee, J.: Constrained genetic search via schema adaptation. An immune net-
work solution. Structural Optimization 12, 11–15 (1996) 

42. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. Bio-
Systems 43, 73–81 (1997) 

43. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of coop-
erating agents. IEEE Trans. Syst., Man, and Cybernetics— Part B: Cybernetics 26(1), 
29–41 (1996) 

44. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the ant system to the vehicle rout-
ing problem. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 
285–296. Kluwer, Dordrecht (1999) 

45. Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW a multiple ant colony sys-
tem for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, 
F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, New York (1999) 

46. Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment prob-
lem. IEEE Trans. Knowledge and Data Engineering 11(5), 769–778 (1999) 

47. Bauer, A., Bullnheimer, B., Hartl, R.F., Strauss, C.: Minimizing total tardiness on a 
single machine using ant colony optimization. Central Eur. J. Oper. Res. 8(2), 125–141 
(2000) 

48. Stützle, T.: An ant approach for the flow shop problem. In: Proc. 6th Eur. Congr. Intel-
ligent Techniques and Soft Computing, Aachen, Germany, vol. 3, pp. 1560–1564 
(1998) 

49. Costa, D., Hertz, A.: Ants can color graphs. J. Oper. Res. Soc. 48, 295–305 (1997) 
50. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case 

study and the strength pareto approach. IEEE Trans. on Evolutionary Computa-
tion 2(4), 257–272 (1999) 

51. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective ge-
netic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computations 6 (2002) 

52. Prim’s Algorithm, http://en.wikipedia.org/wiki/Prim’s_algorithm 
53. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric study for an ant 

algorithm applied to water distribution system optimization. IEEE Trans. on Evolu-
tionary Computation 9(2), 175–191 (2005) 

54. Ranjan, R., Venkatesh, B., Das, D.: Load-Flow Algorithm of Radial Distribution Net-
works Incorporating Composite Load Model. International Journal of Power and En-
ergy Systems 23(1) (2003) 

55. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing non-
dominated vectors. IEEE Trans. on Evolutionary Computation 7(2), 100–117 (2003) 

56. Hsu, Y.Y., Huang, H.M., Kuo, H.C., Peng, S.K., Chang, C.W., Chang, K.J., Yu, H.S., 
Chow, C.E., Kuo, R.T.: Distribution system service restoration using a heuristic search 
approach. IEEE Trans. on Power Delivery 7, 734–740 (1992) 

57. Chen, W.-H., Tsai, M.-S., Kuo, H.-L.: Distribution system restoration using the hybrid 
fuzzy-grey method. IEEE Trans. on Power Syst. 20(1) (February 2005) 

58. Kruskal’s Algorithm,  
http://en.wikipedia.org/wiki/Kruskal’s_algorithm 



B.K. Panigrahi et al. (Eds.): Computational Intelligence in Power Engineering, SCI 302, pp. 75 – 101. 
springerlink.com                                                                  © Springer-Verlag Berlin Heidelberg 2010 

Intelligent Techniques for Transmission Line 
Fault Classification 

A.K. Pradhan1 

Abstract. Transmission line protection is one of the challenging functions in 
power system protection. The methods employed for transmission line protection 
in digital form include distance, current differential, phase comparison, directional 
comparison and travelling wave protection schemes. The transmission system 
protection techniques in general are involved in defining the system’s state 
through identifying the pattern of the associated voltage and current waveforms. 
This means that the development a good protection scheme can be treated as a 
problem of pattern classification. Intelligent techniques have been successfully 
applied to problem of fault diagnosis, fault classification for power system 
protection, pattern classification/recognition in signal processing etc. Out of the 
artificial intelligent (AI) techniques used to solve such problems: symbolic expert 
system, neural network (NN) and fuzzy logic system (FLS) are the highlighted 
ones. The expert systems have been criticized for requiring a great effort to build 
(knowledge acquisition) and maintain the knowledge base. The NNs, on the other 
hand, offer a simple and more robust solution to pattern classification problems 
due to their noise suppression capacity, training power, adaptability etc. The 
system development time is very small in NN approach as the network parameters 
are mostly obtained by supervised training.  On the other hand the FLS possesses 
the properties of being subjective and heuristic. Fuzzy-neuro technique, an 
integrated system enjoys the advantages of both NN and FLS. These  techniques 
are potential candidates in pattern recognition/classification problems including 
that for transmission line protection.  

Fault classification is essential for reliable protection of transmission lines. 
There are different issues of fault classification. Fault type like line-to-ground 
or line-to-line fault is one aspect and the other important one is fault direction 
estimation. Importantly the classification of fault area in a series compensated 
line is another challenging task. Different neural network structures and types 
are available in the literature for classification task. In this chapter besides 
monolithic structure, modular neural networks are applied for the classification 
of transmission faults. The classification task is divided into number of 
subtasks where each is accomplished by a separate network. The inputs to the 
various networks are provided with the current and voltage samples of the 
respective phase/ground. The output corresponds to the type of fault associated 
at that instant.  

                                                           
A.K. Pradhan  
Indian Institute of Technology Kharagpur, India-721302 
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1   Introduction 

A transmission system faces different types of fault during its operation. There are 
varieties of protection schemes available for line protection and distance relaying 
is common either as primary or backup. Fault classification is an essential step in 
distance relaying based on which the distance calculation is accomplished and 
overall decision is derived (including that for autoreclosing). A number of 
methods are available for fault classification for transmission systems and the 
phasor based techniques are common. Conventional techniques find limitation due 
to the presence of fault resistance, influence of prefault load condition and signal 
contamination due to noise. Neural networks have been applied for classification 
of transmission line faults. Different types of neural networks (supervised and 
unsupervised) that are being applied for fault classification include multi-layered 
perceptron, radial basis functional networks, neuro-fuzzy, fuzzy ARTmap, Elman, 
Wavelet and Probabilistic networks. These supervised networks are trained by 
different algorithms i.e. back propagation, orthogonal least square, Extended 
Kalman Filter (EKF) etc. Such neural fault classifiers can be divided into two 
groups based on the input vectors one dealing with the sampled values of current 
and voltage and the other using phasors. The former approach provides very fast 
classification whereas the latter would be more reliable. A neural network 
structure available for fault classification of transmission line considers all the 
three phase voltage and current samples for input vector and the network has 11 
outputs representing for all types of faults. Another NN approach has been shown 
using voltage and current samples of three phases as input for 5 outputs showing 
the state of three phases, ground and direction. In this network the output is 
assigned to 1 if the corresponding phase is involved with the fault else it is 0 and 
for forward direction (say) 1 is assigned otherwise for reverse fault it will be 0. 
Such an approach reduces the number of outputs.  

Distributed representation and strong learning capabilities are the major 
features of neural network. Fuzzy logic systems (FLS), on the other hand, base 
their decisions on inputs in the form of linguistic variables derived from 
membership functions. The variables are then matched with the specific linguistic 
IF-THEN rules and the response of each rule is obtained through fuzzy 
implication. NN has the shortcoming of implicit knowledge representation, 
whereas, FLS is subjective and heuristic. The major limitations of FLS are the 
lack of a general systematic procedure for rule learning and tuning and 
determining the best shape of membership functions. As NN and FLS have 
different advantages and drawbacks, it is quite reasonable to consider the 
possibility of integrating the two parade gms into the same system in order to 
benefit from both of them. One such approach is integrating the learning 
capabilities of neural network to the robustness of fuzzy logic systems in the 
sense that fuzzy logic concepts are embedded in the network structure. It also 
provides a natural framework for combining both numerical information in the 
form of input/output pairs and linguistic information in the form of IF-THEN 
rules in a uniform fashion. Similar to the neural network for fault classification, 
with fuzzy-neuro systems is shown  using voltage and current sampled values as 
input and 4 outputs corresponding to  three phases and one ground.  
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The series capacitor in  a compensated line introduces further problem due to 
reduction in effective reactance and functioning of metal oxide varistor (MOV) 
during fault. In a series compensated transmission line load current level may be 
of the order of fault current toward boundary of a zone which will lead to wrong 
classification and malfunction of the conventional relay. Further in the presence of 
a series capacitor at the midpoint the current level may be of the same order at two 
different fault points of the transmission line (one in front of the capacitor and the 
other behind it) for the same type of fault. This will result in more complexity 
while locating the fault point on a transmission system. Therefore, in a series 
compensated line a more reliable fault classification approach is necessary for 
identifying the type of fault and the fault section; behind or in front of the 
capacitor. Wavelet transform which is powerful in capturing information on 
different frequency bands is suitably applied for series compensated line fault 
classification in conjunction with fuzzy logic.  

Majority of the faults in a transmission line are of line-to-ground fault type and 
the voltage and current waveforms of that faulty phase are best representative of 
its state. In case of a monolithic structure (conventional neural network classifiers) 
all the signals being taken as input, signals of sound phases will be redundant at 
that situation and this introduces unwanted complexity to classification. Therefore, 
the available techniques with single neural network (monolithic structure) have 
limited performance capability.  

Modularity substantially reduces the complexity of the problem by decoupling 
the unnecessary information sharing between various units. Especially for neural 
networks the problem of over-fitting, under-fitting and the problems associated 
with large training data are almost eliminated. The modular concept for neural 
network has been borrowed from the principle of divide and conquer. In this 
approach any task is divided into number of possible subtasks where each one is 
accomplished by an individual neural network. Finally all network outputs are 
integrated to achieve the overall task.  Obviously the approach has the advantages 
of simplicity, accuracy, less training sets and time, with easier interpretation. For 
the transmission line fault classification, there is separate network for each phase 
and ground and the individual network takes corresponding line current and line 
voltage samples only. Each network indicates the state of that phase (or ground); 
involved with the fault (or not). Overall the 10-class (LG, LL, LLG, and LLL 
faults with all phases) classification task is divided into four 2-class problems and 
instead of a single network four networks have been designed. Finally all network 
outputs are integrated to achieve the overall task. 

In this chapter different transmission line fault classifiers are presented which 
includes conventional neural network structure to recently introduced modular 
neural network and wavelet-fuzzy combined approach. 

2   Radial Basis Function Neural Network 

Multilayered feedforward neural network (MFNN) is widely used model for signal 
classifications. This is because the structure of the MFNN allows it to generate 
internal representations directed to classify the input regions that may be either 



78 A.K. Pradhan
 

disjointed or intersecting. The hidden layer nodes in the MFNN can generate 
hyperplanes to partition the input space into various regions and the output nodes 
can select and combine the regions that belong to the same class. There are 
varieties of MFNN including adaline, multi-layered back propagation NN, Radial 
basis function NN (RBFNN), wavelet network etc. RBFNN has the advantages of 
fast training and clustering action of its hidden layer which provides a way to good 
initialization  for the training of output layer. The second point provides the 
benefit of avoiding local minima. In this section RBFNN based transmission line 
fault classification is described. 

The RBFNN consists of an input layer consisting of source nodes and a hidden 
layer of enough dimension for nonlinear mapping. The output layer supplies the 
required response of the network to the activation patterns applied to the input 
layer. The nodes within each layer are fully connected to the previous layer as 
shown in the Fig.1. The input variables are each assigned to a node in the input 
layer and pass directly to the hidden layer without weights. The hidden nodes or 
units contain the radial basis functions (RBFs). 

10

20

m0  
Fig. 1. The Radial Basis Neural Network Structure 

Each hidden unit in the network has two parameters called a center (μ), and a 
width (σ) associated with it. The activation function of the hidden units is 
Gaussian function in this case. The response of each hidden unit is scaled by its 
connecting weights (α’s) to the output units and then summed to produce the 
overall network output. The overall  network output is therefore 
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For each input xn, n represents the time index, K=number of hidden units, αmk= 
connecting weight of the  kth hidden unit to output layer, αmo=bias term, m is the 
number of output. 
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The value of φk(xn) is given by 
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Where μk is the centre vector for the kth hidden unit and σk is the width of the 

Gaussian function;  denotes the Euclidean norm. 

The network starts with no hidden unit and as training sets are received, new  
units are added. The network parameters are updated by the EKF training method. 
The pruning strategy removes those hidden units which contribute insignificantly 
to the overall network output consistently. A sequential growth and the pruning 
strategy provides a compact network structure, therefore, this form of RBF neural 
network is termed as minimal RBF neural network (MRBFNN). 

Application of Minimal RBF Neural Network to Fault Classification 
To obtain an accurate classification in distance relaying scheme using MRBFNN 
for any power system (say, for a system as in Fig.2) following steps are to be 
carried out. 
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Fig. 2. The transmission system 

Feature Extraction 
Neural Networks learn the desired input-output mapping using the training examples 
without looking for an exact mathematical model. Once an appropriate neural 
network is designed, the weights of the network represents for the non-linearity of 
the desired mapping between the inputs and outputs. One of the important issue in 
pattern recognition is to reduce the size of the input data;  known as feature 
extraction. In distance protection scheme, few parameters of the identified 
characteristics must be extracted to  represent the state of the transmission line. This 
preprocessing stage can significantly reduce the size of the neural classifier which 
also improves the performance and speed of the design process. 

The voltage and current data are the common information in the power systems. 
The fault voltage and current signals are often noisy. In addition, when a fault 
occurs on a transmission line, voltage and current signals develop a decaying dc 
component along with different harmonics whose magnitudes depend on many 
factors that are random in nature. Thus the input data must be preprocessed before 
being used by the network. For a protection application there are two options to 
feed the voltage and current information to the network; (i) a sampled data 
window or (ii) extracted fundamental and/or non-fundamental components. Out of 
these two the former approach requires more number of inputs to the network and 
vis-à-vis the classification task seems to be more complex in comparison to the 
latter. This implies that the former approach would require a larger structure but 
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faster in operation. Again from dependability and security aspects of relaying the 
trip decision should be as accurate as possible, therefore, the fundamental 
components will be a secured choice for the network input in the classification 
task without much compromising the speed of operation. The inherent benefit in 
this choice is that the conventional relaying scheme extracts the fundamental 
components from noisy data during fault conditions to take the decision of trip. 
Further without waiting till the filter output converges to estimate fundamental 
component, an alternative approach would be to consider the filter output during 
its transient condition as input to the neural network. This approach is supported 
by the fact that a neural network provides a special kind of flexible filtering.  

Network Input Selection 

During a power system fault it is expected that the current level of the faulty phase 
would be too high, however this may not happen in high fault resistance situation 
towards the line end. Again the distance estimation, which reflects the impedance 
up to the fault point, will be a tough task if only current information is fed to the 
network. A series of study reveals that both current and voltage information of 
each phase (in combination) reflect the state of that phase more transparently. On 
the occurrence of a fault the current of the faulty phase goes up and the voltage 
goes down. At the initial stage of the fault the signals contain high frequency 
components and current waveform is modulated by decaying dc component. 

When only one phase is involved with fault, it is obvious that ground is also 
associated. However for the case of double line and double line-to-ground faults the 
fundamental magnitudes information is not sufficient to distinguish. Therefore zero 
sequence component of current, as conventionally used, could be suitably opted for 
ground detection in the event of a fault. Further for estimation of fault distance only 
magnitudes of phasors information will not be sufficient and all fault types do not 
contain zero sequence component. To solve this negative sequence substitutes the 
zero sequence component of current. Finally, from the above discussions it is 
concluded that the input vectors to the networks should constitute of all fundamental 
current and voltage magnitudes (as estimated by a filter in its transient mode), 
sequence component of current and the system frequency estimated at the relaying 
point. Kalman filtering techniques or other suitable methods can be utilized to 
estimate the above inputs where frequency is obtained by the model-1 as mentioned. 
The current signals being distorted by decaying dc component an extended Kalman 
filter model can be chosen. The sequence components are then derived from these 
current phasors. A Kalman filter is selected for fundamental voltage estimation 
where harmonics are also modeled. A sampling rate of 1-3 kHz would be typical 
choice for modern relaying applications. Though the phasor values can be directly 
fed to the neural structure, to reduce the complexity preprocessing like sequence 
components is advantageous.  Another important feature for distance relaying is 
system-operating-frequency which not only modulates the impedance of the line and 
affects the level of fault current and voltage at the relaying point. 

The Distance protection Scheme  
 

On a three phase power system, there are 10 distinct types of possible fault. As the 
equations that govern the relationship between currents and voltages at the relay 
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location are different for each of the fault type, a conventional scheme uses 
number of distance relays energized by different pair of voltage and current 
signals. This implies that the current and voltage patterns of 3 phases are different 
for different types of fault. Therefore in applying pattern recognition techniques to 
transmission line protection a single distance estimator for all types of fault will be 
inappropriate. However it is expected that there is a close relationship between 
waveforms of faulty phases in case of each category of fault (phase to ground or 
phase to phase or double phase to ground faults). 

On the basis of the above discussion, four RBFNNs, one network each for the 
four categories of fault (LG, LL, LLG, LLL), are shown in the distance protection 
scheme. This will ensure convergence while training the networks for the above 
purpose. Further, a fault classification unit consisting of a RBFNN is designed to 
select the phases and ground involved with the fault. Based on the output of the 
classifier the control unit fires the proper RBFNN in the fault location block. The 
diagram showing the major blocks of such a scheme is presented in Fig. 3 . 
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Fig. 3. The distance relaying scheme 

The task of the distance protection is to command the trip signal only when a fault 
occurs within 80% of the transmission line length in the forward direction. The 
direction away from the busbar and towards the overhead line is considered as forward 
direction. This direction needs to be identified so that the relay does not respond for 
faults occurring at the bus or the line behind the relay. A fault detection unit registers a 
fault in the line within around 3ms (three samples in an 1kHz sampling rate) and 
triggers the fault classification unit to select the faulty phases/ground.  

Design of MRBFNN classifier  
 

The distance protection scheme needs a fault type identification unit to select the 
proper fault location unit. A MRBFNN is designed for the purpose. The algorithm 
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provides a sequential growth of the network and vis-a-vis the pruning strategy 
facilitate for a compact structure. The design of the RBFNN consists of two parts; 
training and testing of the network and is outlined below. 

Training  
 

In order to learn a specific relationship, a neural network must be exposed to 
proper data sets while training. These sets consisting of input and associated 
output vectors should cover the whole range of expected situations. Since fault is 
detected by a separate unit the training and testing of the network are 
accomplished using data during faulty condition of the network. In this case the 
output of the network should indicate the type of fault. In the present case, the 
MRBFNN has four outputs representing ‘a’, ‘b’, ‘c’ phases and ‘g’ ground (Fig.4). 
During training these outputs are assigned either 1 or 0 considering whether the 
fault is involved with that phase/ground or not. For example, 

 
‘a’ ‘b’ ‘c’ ‘g’

1 0 0  1 -------- a-phase to ground fault (LG)

1 1 0 0 -------- a-phase to b-phase fault (LL)

0 1 1  1 -------- bc-phases to ground fault (LLG)

 
Owing to the lack of field data, normally  simulations using the EMTDC software 
package are used to generate the sample data required for training and testing of 
the network. 
 

Va1 Va2 Va3 ia1 ia1 ia1

A B C G

Input layer

Hidden layer

Output layer

 
Fig. 4. Structure for the neural network classifier 
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Testing 
The performance of the  network is tested using voltage and current data of the 
power system during various types of shunt faults at different situations of the 
system. The objective of the testing is to evaluate the speed, generalization and 
noise immunity of the RBFNN classifier. For this, tests were carried out to see  the 
capability of the MRBFNN in classifying the faults with different prefault 
condition, frequency, fault path resistance, location and inception angle. Thus a 
fast, accurate and robust fault classifier can be designed for any transmission  
network  using MRBFNN. 

3   Fuzzy Neural Network 

A neural network  which can perform pattern matching task has a large number of 
highly interconnected processing nodes that has the ability to learn and generalize 
from training patterns. Distributed representation and strong learning capabilities 
are the major features of neural network. Fuzzy logic systems (FLS), on the other 
hand, base their decisions on inputs in the form of linguistic variables derived 
from membership functions. The variables are then matched with the specific 
linguistic IF-THEN rules and the response of each rule is obtained through fuzzy 
implication.  

NN has the shortcoming of implicit knowledge representation, whereas, FLS is 
subjective and heuristic. The major limitations of FLS are the lack of a general 
systematic procedure for rule learning and tuning, and determining the best shape 
of membership functions. As NN and FLS have different advantages and 
drawbacks, it is reasonable to consider the possibility of integrating the two 
paradigms into the same system in order to benefit from both of them. One such 
approach is integrating the learning capabilities of neural network to the 
robustness of fuzzy logic systems in the sense that fuzzy logic concepts are 
embedded in the network structure. It also provides a natural framework for 
combining both numerical information in the form of input/output pairs and 
linguistic information in the form of IF-THEN rules in a uniform fashion.  

In this section a simple neural network is used to implement a fuzzy-rule-based 
classifier of a power system from input/output data. The FNN model can be 
viewed either as a fuzzy system, a neural network or a fuzzy-neural system. The 
structure is seen in neural viewpoint for training and fuzzy viewpoint is utilized to 
gain inside into the system and to simplify the mode. In this strategy the number 
of rules needed is determined by the data itself and consequently a smaller number 
of rules is produced. The network is trained using back propagation algorithm. To 
have a compact structure, a pruning strategy eliminates the redundant rules and 
fuzzification neurons.  

The input and output vectors can be same as considered in radial basis function 
neural network in the previous section. It is to be noted that the fuzzification 
process in a fuzzy-neuro technique provides a special kind of flexible filtering, 
faster measuring algorithms that speed up the operation of protective relays could 
be used.  
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The Fuzzy Neural Network 
 

Fuzzy neural networks can be divided into two main categories. One group of 
neural networks for fuzzy reasoning uses fuzzy weights in the neural network. 
In the second group, the input data are fuzzified in the first or second layer, but 
the neural network weights are not fuzzy. The latter approach is considered for 
application to transmission line protection as a powerful AI technique. Here, 
the structure can be viewed either in fuzzy or neural network sense and the 
weights and parameters of the network are tuned using neural network learning 
technique. 

Fig.5 shows the architecture of the fuzzy neural network, comprising input, 
fuzzification, inference and defuzzification layers. Further the network can be 
visualized as consisting of N inputs, with N neurons in the input layer and R rules, 
with R neurons in the inference layer. There are NxR neurons in the fuzzification 
layer and K neurons for output layer. The signal propagation and basic function in 
each layer of the FNN is introduced in the following. 

The input layer consists of xi , i = 1,2, …N, along with unity. Each neuron in 
the fuzzification layer represents a fuzzy membership function for one of the input 

variables. The activation function used in this layer is f(netij) = )exp(
ijl

ijnet−  

and the input to these neurons netij =wij1 xi + wij0, with wij1 and wij0 being the 
connecting weights between input layer and fuzzification layer. 

Thus, the output of the fuzzification layer becomes 
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Where μij is the value of fuzzy membership function of the ith input variable 
corresponding to the jth rule. The connections between fuzzification and inference 
layers have unity weights (shown in the figure as I). 

Each node j  in the inference layer is denoted by Π, which multiplies the input 
signals and the output of the node becomes the result of product.  Therefore, the 
output of the layer becomes 
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With vjk being the output action strength of the kth output associated with the jth 

rule and utilizing weighted sum defuzzification, the network output becomes  
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Fig. 5. The fuzzy neural architecture 

Fuzzy view of the FNN 
 

Inputs to the fuzzification layer are the process variables used to define fuzzy 
operating regions. Each of these variables is transformed into several fuzzy sets in 
the fuzzyfication layer. Through changing the weights and parameters, 
appropriately shaped membership function at different positions can be obtained. 
Each neuron in rule layer corresponds to a fuzzy operating region of the particular 
classification objective. Its inputs are the fuzzy acts which determine the 
corresponding operating region.  Its output is the product of its inputs and is the 
membership function of the corresponding fuzzy operating region. There are no 
weights to be estimated in this layer. 

Neural Training of the FNN 
 

Back propagation (BP), by far the most used training algorithm in NN,  can be 
exploited to update parameters of the fuzzy neural network.  

The error function E of the network be,  

∑ −=
k

kk otE 2)(
2

1
                   (6) 

Where tk is the desired output in the kth output node. The design can be 
accomplished by any other alternatives like EKF. The weights between the inference 
and output layers are updated using the BP algorithm. During training, the number 
of rules is increased from 1 till a satisfactory performance of the network is found.  
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The Pruning Strategy 
 

Even if a single fuzzy membership function is near zero over its input range, the output 
of the corresponding rule becomes close to zero. As this rule does not contribute to the 
network performance, the rule should be pruned. Further, with multiple inference a 
fuzzy membership function having close to unity over its input range contributes 
negligibly to the network output. This neuron can be also eliminated without 
hampering the network performance. By removing these redundant rules and neurons 
form the structure a compact form can be achieved. To implement this technique, we 
run the trained network with the same training sets once and see the outputs in 
inference and fuzzification layers. In the event of such situations exist, corresponding 
neurons are pruned and then network performance is studied. 

The FNN Fault-Type Classifier 
 

Using the fundamental or sequence components of voltage and current signals 
available at the relaying point a distance relaying algorithm derives the trip decision 
for faults on a transmission line. The presence of different sequence components of 
current reflect the type of fault, but to derive a correct fault classification out of it is 
a complex and time consuming task. The sequence components of current (if any) 
decrease as the fault point moves away from the relay. The ratios of different 
sequence components of current may provide still a better solution. This is evident 
from Fig.6 where a line to ground fault type is considered for a transmission system 
to compute the  ratio of zero to positive sequence component of current. The ratio 
decreases with distance and with the inclusion of 100 Ω fault path resistance the 
curve becomes a different one. This complex situation therefore, demands for 
technique like fuzzy neural network. Fundamental frequency components of 
current and voltage can be taken into account along with different sequence 
components for a distance protection scheme as they provide more information.  
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Fig. 6. Effect of fault resistance on sequence components (line to ground fault) 
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Training and Testing of FNN Classifier 

For classification of fault normalized values of post fault peaks of fundamental 
components of voltages and currents of the three phases, system frequency and zero 
sequence current are considered as input vector for the FNN. These current and 
voltage peaks are estimated from sampled values of signals by different estimators. 
The FNN consists of four outputs representing ‘a’, ‘b’, ‘c’ (phases) and ‘g’ 
(ground). During training these outputs are assigned ‘1’ or ‘0’ considering whether 
the fault is involved with the phase/ground or not. The training sets include data for 
different fault locations, for different fault inception angles, source impedances, 
fault resistances, different prefault conditions and different operating frequencies of 
the system. The number of rules is increased from 1 during the training process till 
satisfactory response of the network is derived. With BP algorithm the network is 
trained and finally pruning strategy is applied. The network was tested using 
voltage and current data of the power system during various types of shunt faults at 
different locations, inception angles, fault resistances, operating frequencies and 
prefault conditions of the system. This classification approach takes a particular 
phase to be ‘involved’ with fault if its corresponding value is greater than a 
threshold value else it categorizes the phase/ground to be ‘unassociated’ with the 
fault. To show the convergence speed of the network, one example cases is 
presented in Fig.7  for ag-type fault on a sample to sample basis. The faulty 
phase/ground curves reach nearly to 1.0 within half a cycle after fault inception and 
the network consistently provides the accurate result (with 1 kHz sampling rate).  
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Fig. 7. Convergence loci of the FNN1 for ’ag’ fault 

Discussion 

To view the FNN classifier in the fuzzy sense the membership functions of a 
particular input in rule one of the fault classification solution to the system of  
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Fig.2, before training and after training, are plotted in Fig.8. The input to the 
fuzzification neuron is modulated by the wij1 and wij0 terms  which are initialized 
with random values. As these two parameters are updated during training the 
fuzzy membership function varies. Also during training the lij value which affects 
the nature of the curve is tuned with training from an initial value of 2; for  
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Fig. 9. Fuzzy membership functions of one input variable in 4 fuzzification neurons 



Intelligent Techniques for Transmission Line Fault Classification 89
 

example, the l =2 before training is modified to l =3.6 after training in the fault 
classification task.  Another example of the FNN classifier showing the different 
membership functions of the 4th input in the 8 fuzzy-neurons (as an example) are 
depicted in Fig.9. Interestingly, it is to be noted that the learning algorithm 
captures membership functions based on evidence contained in the data, not on 
any a priori choice about its form or shape. 

4   Fault Classification in Series Compensated Network 

Series compensations are widely used today for better utilization of transmission 
systems.  Such compensation possesses a capacitor which is protected by a metal 
oxide varistor (MOV) and an air-gap arrangement.   During a power system fault, 
current level in the circuit increases and voltage across the capacitor may exceed 
the limit when the MOV functions, followed by firing of the air-gap. The non-
linear behavior of a series capacitor arrangement during fault-situations affects the 
current and voltage signals and thus, creates problems to relay functionality.   

Identification and classification of faults on a transmission line are essential for 
relaying decision and auto-reclosing requirements. A conventional approach 
classifies the fault based on fundamental frequency only.  However, in a series 
compensated line load current level may be of the order of fault current toward 
boundary of a zone which will lead to wrong classification and malfunction of the 
relay. Further in the presence of a series capacitor at the midpoint the current level 
may be of the same order at two different fault points of the transmission line (one 
in front of the capacitor and the other behind it) for the same type of fault. This 
will result in more complexity while locating the fault point on a transmission 
system. Therefore, in a series compensated line a more reliable fault classification 
approach is necessary for identifying the type of fault and the fault section; behind 
or in front of the capacitor. 

Wavelet transform is highlighted  for obvious advantages of better time-
frequency localization and providing richer problem-specific information from 
sensor signals. Fault signals in a power system contain fundamental, high frequency 
and decaying dc components. Therefore, wavelet transform can be a good candidate 
for providing more vital information to on-line classification objectives. Fuzzy rule-
based systems are applied to classification problems where non-fuzzy inputs are to 
be assigned to one of a given set of classes. In this section, fault classification of a 
transmission line possessing a series capacitor at midpoint is carried out using fuzzy 
logic systems that consider wavelet coefficients of current signal as inputs.  Meyer 
wavelet, which has very fast decay wavelet function, is considered to extract the 
required information from current signals for the fault classification.  The maximum 
values of wavelet coefficients at three levels are fed to a fuzzy logic system (FLS) 
designed for fault type classification. Considering only two variables derived from 
the wavelet coefficients the faulty section; in front of or behind the series capacitor 
is derived by another fuzzy logic system. Unlike other approaches based on 
sequence components the new method identifies the faulty phase/ground from 
current information of that phase/ground only. The approach uses the different 
frequency components of the fault current signal for successful classification.   
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Two classification problems are attempted for protection of the line (i) 
classification of the fault type and (ii) identification of fault section; F1 or F2 
section of the line as shown in Fig. 10. For a typical transmission line the fault 
current level depends on the fault distance. But it is evident from the figures that 
section identification (F1 and F2)  from amplitude of  fault current is not possible. 
However, for accurate relay decision and exact fault location fault section should 
be identified correctly.  

Gen-1

~
Gen-2

~
capacitor

MOV 

F1 F2

air-gap 

P Q

 

Fig. 10. The series compensated line 

The wavelet fuzzy integrated approach  

The series compensated transmission line fault classification task  can be divided into 
two parts; fault section identification and fault type classification. The flow diagram 
of the fault classification technique is shown in the Fig.11. The classification tasks are 
accomplished by integrating wavelet transform with fuzzy logic system.  Meyer 
wavelet  in discrete form is applied to individual current signal at the relaying 
location and the corresponding maximum value of wavelet coefficients (details and 
approximation) at level-1 and 2 are calculated.  The three indices of such maximum 
values distinctly possess the characteristics of the involvement of that particular 
phase/ ground. To detect involvement of ground with the fault, the sampled current 
signal considered is sum of the sampled values of all three-phase currents at each 
instant. For on-line implementation, a fuzzy classifier is incorporated which further 
improves the performance.  The FLS is of min-max type where the final decision is 
based on the max operation. Similarly identification of the fault section (left/right of 
the series compensation) is done by another FLS designed. This FLS provides output 
by considering wavelet transform of a faulty phase current signal. The input to the 
FLS is different from earlier one and only two inputs, derived from the maximum 
values of the wavelet transform coefficients, are used for the purpose.  

Feature Extraction 
 

The knowledge of fundamental component information of current signals may not 
be sufficient for a secured fault classification. Discrete wavelet transform of 
current signal, which contains information on high frequency components also, 
can be of utility for the task.  Meyer wavelet, in particular is a frequency band-
limited function whose Fourier transform is smooth, unlike the Fourier transform 
of many other wavelets. This smoothness provides a much faster decay in time. 
The feature of Meyer wavelet results in providing high frequency information of 
fault signals with distinctive efficiency for classification purpose. The lower scale 
wavelet coefficients reflect on the high frequency components of the signal,  
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Fig. 11. Flow diagram of the wavelet transform based fault classification scheme 

during fault and that to pre-fault situations. This specialty of Meyer wavelet 
transform is utilized for fault classification of a series compensated line. Different 
fault situations were created for the transmission system and only current signals 
are used in the wavelet transform. Some of the wavelet coefficients are provided 
here which reflect on the involvement of fault. For fault type identification the 
normalized peak values of wavelet coefficients of details at level-1, details at 
level-2, and approximation at level-2 etc are considered as the fuzzy input 
variables. Generally, the normalization is accomplished by dividing the selected 
wavelet coefficients with their corresponding maximum values as obtained from 
the simulation study of the system. For numerous fault conditions these 
coefficients are found suitable as input features for fault type classification. For 
trip decision and fault location requirement, identifying the fault behind and in 
front of the capacitor is essential for which these input variables are not suitable.  
This is because the MOV acts non-linearly during fault situations. 

For fault section identification two ratios; (peak of detail at level-1 to peak of 
approximation at level-1) and (peak of detail at level-2 to peak of approximation at 
level-1) are considered to provide the required information and their normalized 
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values are the inputs to the second FLS. The normalization is carried out by dividing 
the ratio with its corresponding maximum value as obtained for a system. These 
values are higher for fault behind the capacitor than for faults in front of the capacitor. 

Fuzzy Classifier  
 

After obtaining the normalized peak values of the coefficients of wavelet 
transform of fault signals, a fuzzy logic based expert system is used to classify the 
type of fault. In place of FLS neural network or fuzzy-neuro technique can be 
suitably designed, For knowledge on simple FLS a design process is provided 
here.  As power system data are uncertain and fault classification is a pattern 
recognition task, the fuzzy expert system is well suited to this kind of problem. 
The fuzzy expert systems, in this work, are designed using knowledge about 
different kinds of faults occurring both left and right of the series capacitor. FLS 
considered in this section is described below. 

Fuzzy IF-THEN rules for a C-class pattern classification problem with n attributes 
can be written as  

Rule Rj : If x1 is Aj1 and -----xn is Ajn then class Cj, j=1, 2, ., N 

Where x=(x1, …..xn)   n- dimensional pattern vector, Aji   is antecedent linguistic 
value such as small and large (i =1, 2, ….,n), Cj is consequent class (one of the given 
C classes) and N being the number of fuzzy IF-THEN rules. With grid-type fuzzy 
partition (triangular in this case), the antecedent part of each fuzzy IF-THEN rule is 
specified by a combination of linguistic values and total number of possible 
combinations is Kn when each attribute xI has K linguistic values. The compatibility 
grade (μ j(x)) of the fuzzy IF-THEN rule Rj is found out by the minimum operation. 

μ j(x) = min{μ j1(x1), μ j2(x2), …..μ jn(xn)}                            (7) 

where μ ji(xi) is the membership function of the antecedent linguistic value Aji. 
Without considering certainty grade (strength of a rule) a pattern is classified by 

the single winner rule Rj* defined by 

μ j*(x) = max{μ j(x) : j=1,2,….N}                                (8) 

Two fuzzy logic systems designed for the two classification tasks are mentioned 
below. 

A typical fuzzy membership curve for first FLS is shown in Fig.11 and 
corresponding FAM rule is provided in Table1. 

Table 1. FAM rules for phase selection 

Rule 1: If input-1 =L and input2 =L and 
input3 =L then no fault.   
: 
Rule 14: If input 1=H and input2 =H and 
input3 = H then  fault.  

 



Intelligent Techniques for Transmission Line Fault Classification 93
 

L M H

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X1

(x
1)

 
Fig. 12. Fuzzy membership function of input-1 for FLS-1 (phase selection) 

 
Similarly for Fault Section Identification the second FLS is designed and 

corresponding membership curve and FAM rules are provided in Fig 12 and Table 
2 respectively. 
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Fig. 13. Fuzzy membership functions for  second FLS 

Table 2. FAM rules for faulted section  identification 

 
Rule 1: If input4 =L andinput5 =L then 
fault is on the left,  
 :  
Rule 9: If input 4 =H and input 5 =H then 
fault is on the right. 

5    Modular Neural Network Classifier 

The earlier neural network model presented is of monolithic in structure and leads 
to a complex proposition handling all possible fault types. Modular neural concept  
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is a recent proposition which simplifies the complex task by divide and conquer 
principle. The formulation of modularity concept is based on the fact that brain is 
organized into relatively independent functional units which work in parallel to 
accomplish a given task. In a similar fashion a complex task is first divided into 
different subtasks which are solved by a number of specialized computational 
units (modules).  Subsequently, the overall solution is obtained by combining the 
result of each module. In such a process each module is independent of each other, 
responds to specific subtask and each one has a simpler architecture. Further such 
a module can respond to a given input vector faster than a complex monolithic 
system.  A conventionally used monolithic neural network structure is shown in 
Fig.14 where whole task is carried out with one network. One type of modular 
neural network structure is shown in Fig.15 where a number of networks combine 
to solve a task.  

Output

 
Fig. 14. The monolithic neural network structure  

Modular  Neural Fault Classifier Structure 
 

In this section, different structures of modular neural networks are considered for 
fault classification of transmission systems. Two types of classification problem 
are considered to be solved by the approach. The first one is for a simple 
transmission system where different types of faults (ag, ab, abc etc.) are identified. 
In the second case for a series compensated line a classifier is designed to identify 
whether a fault loop encounters the capacitor or not. 
 
Application to a simple power network: A power system as shown in Fig.2  is 
considered for the fault classification objective. The voltage and current signals 
acquired at the relaying point are processed by the neural network to classify the 
faults in the transmission system. A conventional neural network approach to 
classify the fault type is preferred by a single network where all the three phase 
signals are used as input vector. Such an approach is shown in Fig.16. In the  
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Fig. 15. A modular neural network structure 
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Fig. 16. Conventional neural fault classifier 

 
modular structure, the networks are in parallel and their outputs represent the class 
of fault. The network output of a module should be 1 if the corresponding 
phase/ground is associated with ground else it should be 0. Each network takes 
voltage and current samples of that phase only. All the networks combine to 
provide the information on the type of fault and if no network output is 1 the 
classifier declares the state to be normal. This indicates that unlike conventional 
distance relaying scheme there is no requirement of separate fault detector in such 
classifiers. The structure of the classifier is shown in Fig.17  In this case NN-1 is 
for phase and NN-2 represents for ground. 
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Fig. 17. The structure of the neural fault classifier 
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Fig. 18. The neural classifier for series compensated line 

Application to a series compensated line: A series compensated network as 
shown in Fig. is next considered for classification challenge. In a series 
compensated line if the capacitor falls in the fault loop, as in the case of Fig.10, 
the fault distance estimation becomes difficult. There are two sections of the line 
connected through the series capacitor. In this case a different fault classifier is 
essential which discriminates the faults with regard to its originating section; 
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beyond the capacitor or within it. It is to be noted that fault type identification and 
section classification for a series compensated line also can be obtained by a single 
network in the conventional approach. With modular concept the simple solution 
to this classification problem is achieved by a structure as shown in Fig. 18. In this 
approach after fault type is identified a selector switch helps to provide data of any 
faulty phase current to the neural network NN-3 which classifies whether the fault 
is beyond the capacitor or within it. The classification by NN-3 is essential for a 
distance relay to derive the proper trip decision. 

A typical result table for an AG fault in the line is provided in the table. The 
fault inception is at sample number 5 and NN-1 for phase-A and NN-2 provide 
involvement with the fault immediately after a sample which  shows correct 
classification and consistency of the network outputs. 

Table 3. Modular network performance 

Sample no.

NN-1 outputs NN-2 output

(for ground)Phase-APhase-BPhase-C

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

     5 0 0 0 0 

6 1 0 0 1 

7 1 0 0 1 

8 1 0 0 1 

9 1 0 0 1 

10 1 0 0 1 
 

 

Applications to directional relaying 

Directional relaying is widely applied for transmission line and other element 
protection. A directional relay is preferred when high speed relaying is necessary. 
It enhances the sensitivity and reliability of the protection schemes by 
discriminating the fault section with respect to the relay bus. The voltage and 
current waveforms, phasors or the derived sequence components are suitably used 
to estimate the fault direction. The fault currents lie in two distinct regions 
depending on the direction of fault which is shown in Fig. 19. There are number of 
directional relaying algorithms available using voltage and current waveforms and 
in many practical relay algorithms several logics are put together to derive the  
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Fig. 19. Fault current position for different direction of faults 

direction. However conventional algorithms find limitation due to the influence of 
prefault condition, close in fault, presence of decaying dc in the current signal and 
other signal processing issues. Considering fault direction estimation as a pattern 
classification problem, NN is suitably applied.  It is demonstrated that the NN 
approach provides a way to adaptive protection and such a strategy is less affected 
by the presence of fault resistance, source impedance variation etc. A single 
network is used to identify the fault direction and the scheme is shown in Fig.20. 
The network is ANDed with the output of a fault detector for deciding the 
direction. Elman network with recurrent structure is also employed to obtain 
improved performance with time varying signals but with one structure.  

In a three phase transmission system line, most of the faults are of line-to-
ground fault type and the voltage and current signals of that phase are best 
representative for the direction estimation. By applying samples of three phase 
currents and voltages, the corresponding classification task becomes unnecessarily 
complex in most of the time.  In conventional NN based approach direction 
identification is formulated as a 3-class problem; forward fault, reverse fault and  
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Fig. 20. Neural network N based directional relay 
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no fault. In this section a modular neural network  based directional relaying is 
presented to obtain a reliable directional relaying algorithm which simplifies the 
complex task into  number of subtasks. 

The modular concept is introduced to directional relaying where the 3-class 
problem is divided into two 2-class problems. In this approach, a module 
discriminates forward fault only from other states and another module identifies 
reverse fault only, thereby the task is subdivided. Each module uses the 
corresponding phase current and voltage samples ( for example, 5 samples each 
with a signal sampling rate of 1 kHz on a 50Hz system). This simplifies the neural 
network task further with redundant inputs being removed in the process. Further 
no fault detector is necessary.  Thus the approach requires two modules of NN for 
each phase for the relaying algorithm.  

The modular structure of NN for the directional relay is shown in Fig. 21. The 
relay consists of two modules of NN for each phase. Each NN1 module uses 
corresponding phase current and voltage samples to estimate whether the fault is 
in front of the relay or not. Similarly each NN2 module classifies the faults into 
two groups; fault behind the relay or not.  

For each classifier module, several training patterns  are generated by simulating 
normal state and faults in both directions. The fault situations simulated for  
such patterns are obtained by varying the fault location, inception angle, system 
frequency, initial load flow, and fault resistance. Each NN module is trained with 
an output value of ‘1’ if the input vector corresponds to fault in its assigned 
direction else ‘0’. Such an approach reduces the size of the network including 
number of layers. 
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Fig. 21. Structure of the modular directional relay (F- forward, R- reverse) 

6   Conclusions 

Transmission line fault classification task is of more concern today as new 
compensating devices are being introduced and the systems are being operated 
close to their limits in the deregulated environment. This chapter highlights 
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applications of intelligent techniques such as neural network, fuzzy logic and 
neuro-fuzzy techniques for fault classifications of transmission lines. For series 
compensated network a wavelet based technique is also presented to identify the 
fault section using high frequency components of current signals. Each intelligent 
technique has its own merits and disadvantages. An integrated approach fuzzy-
neuro technique is also provided in the text to exploit the advantages of both fuzzy 
logic and neural network.  A modular concept in the neural network approach for 
fault classification in transmission systems is also presented. The modular concept 
simplifies a complex problem by dividing into smaller tasks. Each subtask is being 
accomplished by a neural network and then they being aggregated to provide the 
overall output. The inherent advantages modular structure includes higher 
accuracy, less training data and time and better structural interpretation. AI 
techniques are found to be powerful in classification of transmission line faults. 
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Fuzzy Reliability Evaluations in Electric Power 
Systems 

Dusmanta Kumar Mohanta 1 

1   Introduction 

The fundamental operating feature of the Power system is that the electrical 
energy production and consumption are simultaneous. Therefore, the reliability 
requirement for power system is very high. The classical reliability evaluations of 
Power System adopts the widely accepted definition of reliability as the 
probability of a device performing its purpose adequately for he period of time 
indented under the operating conditions encountered [1]. In essence, for practical 
purpose, it is defined as the probability of a component serving in a given time 
period having a constant failure rate and expressed as exponentially distributed 
function. The classical reliability assessments are based on the probabilistic 
assumptions about state behavior and binary assumptions about state of the 
system, i.e. either in success state or in failed state. Hence classical reliability 
models are also known as probabilistic binary state (PROBIST) model [1-3]. 
In many cases, the classical probabilistic binary state  (PROBIST)  model 
representing binary state reliability indices such as mean time to failure (MTTF) 
and mean time to repair (MTTR) by expected (crisp) values seems to be 
inadequate from pragmatic prospective  [4]-[6]. Most of the reliability data is 
obtained from databases. However, the data associated with equipment may not be 
exactly that exists in the database, either because it was not installed under the 
same conditions or just some new types of equipment are in vogue. Consequently, 
some uncertainties are associated with component indices due to the lack of up 
gradation of data. In addition,  such  failure  and repair rates depend not only the  
component  themselves,  but also on other systematic factors that include  
company efficiency and operation policy. A fuzzy model takes into account both 
non-probabilistic  as  well  probabilistic uncertainties  related  to mean time to 
failure/repair for the generating  units  incorporating  the fuzzy MTTF and fuzzy 
MTTR based on probabilistic fuzzy state (PROFUST) model [4]-[5]. There has 
been a paradigm shift  from  probabilistic reliability assessments towards the 
possibilistic  reliability assessments  to  take into account such uncertainties using 
probabilistic fuzzy state (POSFUST) model. Also the fuzzy Markov model uses 
the probabilistic approach with some enhancement using fuzzy concepts [4-9].  
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The organization of this chapter is as follows. The section 2 depicts basic 
reliability concepts such as general reliability function, its exponential distribution, 
mean time to failure (MTTF), mean time to repair (MTTR), forced outage rat 
(FOR) etc. used in PROBIST model. Section 3 gives a brief overview of fuzzy 
reliability models such type-1 & type-II models in power system perspective. It 
depicts the type-I fuzzy reliability model (fuzzy load model) for hierarchical level 
(HC-1) of power system with case studies. Also it depicts the type-II fuzzy 
reliability models with case studies. Section 4 gives an overall conclusion of the 
chapter followed by references. 

2   Basic Reliability Evaluation Concepts 

For power system reliability evaluations the classical PROBIST model uses the 
general reliability function R(t). This expression is derived below in a more 
fundamental manner so as to have better appreciation of the underlying failure 
density function [1-3]. 

2.1   The General Reliability Function 

Let us consider the case in which a fixed number oN of identical components are 

tested, for which  )(tNs  = number surviving at time t and  )(tN f  = number 

failed at time t. 
At any time t, the reliability R(t) is given by: 
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 is defined as the instantaneous failure density f (t). 

Thus (t)f
dt

R(t)d −=  

The hazard rate (t)λ  is derived below to express reliability R (t) as a function of 
hazard rate. 
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Thus 
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This equation gives the reliability as a function of time where the hazard or failure 
rate is also a function of time. No assumptions regarding the form of the failure 
function have been made in deriving this expression. If λ  is a constant and 

therefore independent of time λte(t)R −= .                                                       

Experience has shown that many components and particularly electronic 
components follow a relatively standard failure rate pattern with time. This 
basic pattern is shown in Figure 1 and is often referred to as the conventional 
bathtub curve. 

REGION 1 REGION 2 REGION 3

DE-
BUGGING

NORMAL OPERATING
OR

USEFUL LIFE

WEAR-OUT

OPERATING
LIFE  

 

Fig. 1. Bathtub Curve 

 
During the useful life or normal operating phase, the failure rate is constant and 

failures are assumed to occur purely by chance. The negative exponential 
distribution is valid in this region only. Region 1 in Figure1 is known as the infant 
mortality or de-bugging phase and could be due to manufacturing errors or 
improper design. The failure rate decreases as a function of time. Region 3 
represents the wear-out or fatigue phase and is characterized by a rapidly 
increasing failure rate with time. The failure density in this region is often 
represented by the Normal Distribution. Other distributions such as the Gamma 
Distribution and the weibull distribution are also often in use [1-3]. 
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Power system components such as generating units, transformers, switchgear, 
etc, can remain within the useful life period for the bulk of their economically 
feasible life by constant and careful preventive maintenance. In this way, 
insulation and mechanical elements are not allowed to enter an advanced wear-out 
state before they are replaced. This is an extremely important assumption, 
however, as reliability prediction based upon useful life rates is invalid and 
extremely optimistic if the system contains components which are operating 
within their wear-out period.  

2.2   The Exponential Distribution 

It has been shown previously that the probability of a component surviving a time 

t in a constant failure rate environment is given by R (t) = te λ− and the failure 
density function  

f(t) = 
dt

tdR )(−
. This is shown graphically in Figure 2. 

 
Fig. 2. Exponential Probability Density function 

The probability of failure in time  
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The probability of survival in time  
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The expected value is often designated as the mean time to failure MTTF and in 
the useful life period is the reciprocal of the failure rate. A slightly different term 
Mean Time between Failure MTBF is used to indicate the cycle time between 
failures for systems that are repairable. The MTBF, therefore, exceeds the MTTF 
by a small margin attributable to the time associated with component repair. It is 
important to realize that the term Mean Time to Failure is normally applied only to 
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the useful life period. A component could be stated to have a mean wear-out life is 
very much less than the MTTF. This can be illustrated by using a numerical 
example. The mean wear-out life of a component is 1000 hours. These two 
statements are not contradictory. The average wear-out life of the component is 
1000 hours. Assuming that the failure density function in the wear-out region is 
normally distributed, the time at which the component actually entered this region 
depends upon the standard deviation of this distribution. The larger the standard 
deviation, the shorter the useful life period. During the useful life period, failures 
occur by chance and the failure rate is constant. The failure density function is an 
exponential distribution with parameter λ , the failure rate. The reciprocal of this 
failure rate is the mean time to failure assuming that the distribution continues to 
be applicable. The MTTF can therefore by very much linger than the mean wear-
out life.  

2.3   Mean Time to Failure (MTTF) 

The expected value of  for a continuous random variable with probability 
distribution function  is given by  
 

∞ 

E(x) =  ∫  x f(x) dx 

0 

∞ 

So MTTF=  ∫  λt  e- λt dt 

0 

= 1/ λ                                                (2.3) 

Similarly mean time to repair (MTTR) = 1/µ            (2.4) 
 

Where µ is the repair rate.  

2.4   Forced Outage Rate (F.O.R.) 

The probability of finding the unit on outage at some future time is known as the 
forced outage rate (F.O.R.) where 

 

 

                        (2.5) 
3   Power System Fuzzy Reliability Models 

Power system fuzzy reliability assessments can be broadly segregated into two 
categories, viz., type I and type II[4-8]. Type I fuzzy reliability calculations 
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are related to the uncertainty in defining the power consumption and therefore 
in the impacts of failures of supply. Fuzziness of a load value will be 
translated into uncertainty about the actual consequences of failures. The 
concept of fuzzy load is the edifice of such calculations, as explained in the 
subsequent section.  

Unlike the classical PROBIST model is based on the probabilistic assumption 
about the system behavior along with the binary state assumption, the fuzzy 
reliability models are based on the fuzzy assumption about the system behavior 
along with either the binary state assumption or fuzzy state assumptions, leading 
to different fuzzy type II reliability models. The probabilistic fuzzy state 
(PROFUST) model assumes the probabilistic assumption state behavior, but 
introduces a fuzzy state assumption. Similarly the possibilistic fuzzy state 
(POSFUST) model combines the possibilistic assumption about state behavior 
with the fuzzy state assumption. On the other hand, the possibilistic binary state 
(POSBIST) model incorporates a possibilistic assumption about state behavior 
together with the binary state assumption. The following section corroborates such 
fuzzy reliability models with relevant case studies. 

3.1   Type I Power System Fuzzy Reliability Evaluation 
Incorporating Load Forecasting Uncertainties 

Power system reliability assessment has for long extended beyond continuity of 
supply. The impact on consumer supply has become an essential way of 
measuring the quality of system design and of comparing the merits of 
alternatives. The most classical measure of reliability is the loss of load 
probability (LOLP) and this reliability index in fuzzy paradigm is represented by 
fuzzy loss of load probability (FLOLP). There are two ideas that justify adopting 
fuzzy representations of loads in power system models for the purpose of 
reliability analysis. The first relates to the evaluation of fuzzy LOLP index of a 
system in order to understand how uncertainty in load prediction affects the 
reliability performance of a system. The second relates to the comparison between 
the alternatives.  

Type I fuzzy calculations [4-9] at the hierarchical level 1(HL-1) are related to 
the uncertainty in defining the power consumption and therefore measuring the 
impacts of failure of supply. Fuzziness of load value is translated into uncertainty 
about the actual consequences of random failures of generating units. Although 
the relation between a changing load and the varying calculated index is far from 
linear, but still its characteristics are well captured by the fuzzy set description. In 
essence, the fuzzy representation of load in power system establishes how the 
uncertainty in load prediction affects the reliability indices of a system. 

A fuzzy description of the load curve would be one that defines, at every 
level α, an interval of confidence for such curve. If, for instance, a crisp load  
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curve is given by , then . A fuzzy load curve could then 
be defined, at a level α, based on the crisp function f  by equation (3.1), given 
below. 
 

Lα  = [(1-∆α - ) f (q); (1-∆α + ) f (q)]                       (3.1) 

with ∆α – and ∆α + being two non-strictly monotonically decreasing functions 
with α. Conversely, there will be a fuzzy description of the probability q through 
the equation (3.2). 
 

qα  = [max {0, f –1 (1/ (1-∆α - ) L )}; min {1, f –1 ( 1/ (1-∆α +) L )}]      (3.2) 
 

where qα is the probability at a confidence level of α. For hierarchical level I 
(HL-I), the fuzzy loss of load probability (FLOLP) is given by equation (3.3). 
 

�
j

FLOLP= p[C-PD(j)]q[PD(j)]∑
                        

(3.3)

 

where C = System effective installed capacity, taking  maintenance of units into 
account; PD(j)= Load demand during jth period; �P[C-PD(j)] = fuzzy probability 
of capacity outage of  [C-PD(j)] for a given period j; q  = probability of load 
exceeding available capacity. For example, a captive power plant having six units, 
each of 120MW has an effective installed capacity of 720 MW when no unit under 
maintenance, but the effective installed capacity reduces to 600 MW when one 
unit is under maintenance. 

3.1.1   Case Studies and Discussion of Results        

Usually the captive power plants are synchronized with local state grid so that 
excess power can be exported to grid and at the time of exigencies, power can be 
imported as well. But during the grid failure, the captive power plants can be 
operated in the islanded condition till the grid revives its healthy state. This 
greatly enhances the reliability of the supply of the utility industries connected to 
captive power plants. For the purpose of stability after islanding, having a system 
frequency lower than the nominal frequency of 50 Hz, a minimum export or 
reserve Ro is maintained and this requirement is incorporated as a constraint in 
the problem formulation. For islanding operation there is a provision of an 
islanding circuit breaker (CB) as depicted in figure 8. In the schematic diagram 
an aluminum smelter is considered as the utility industry for a captive power 
plant consisting of 6 generating units each of 120MW for supplying 
uninterrupted power. Although the smelter is located nearby, there are two very 
short transmission lines (T.R. 1 & 2) as indicated in fig 11. The circuit breakers 
and bus bars are shown at appropriate locations for the case study of the proposed 
research work. 
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Fig. 3. Schematic diagram of a captive power plant 

Legends: 

: Generating Unit 

: Circuit Breaker 

: (T.L.1) Transmission line 1 & (T.L.2) Transmission line 2
: Feeders for State Grid & Aluminum Smelter 

: Bus bar
 

The generating unit data pertaining to maintenance scheduling is given 
table 1.  

Table 1. Optimum Maintenance Scheduling 

Index of 
generating unit 

Starting
period of 
maintenan
ce 
(Week) 

Maintenan
ce 
Class 

Starting
period of 
maintenan
ce 
(Week) 

Maintenan
ce class 

Starting
period of 
maintenan
ce (week) 

Maintenan
ce class 

     1         9         D       89         S        175         D
     2        40         D       144         D        229         S
     3        20         S       77         S        154         D
     4        27         D       97         D        165         D
     5        64         D       108         D        185         D
     6        56         S       119         S        195         D  

 

The type of maintenance is specified as S or D. The D class maintenance is for 
the detailed maintenance of boiler, turbine and generator. The duration of D class 
generator is for ten weeks.  S class maintenance is a simplified maintenance for 
both boiler and generator, and it lasts for six weeks. History of the generating units 
MTTF and MTTR is given in Table 2. 
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Table 2. MTTF and MTTR of Generating Units 

Index of  
Generating 
 Unit 

MTTF (hours) MTTR (hours) 

             1        769         95
             2        828         92
             3        910         90
             4        1156         87
             5        1222         78
             6        1560         65  

 
Table 3 gives the load demand for the captive power plant for the whole 

planning horizon over 260mweeks. 

3.1.2   Maintenance Scheduling: A Review  

The goal of maintenance scheduling for thermal generating units of a captive 
power plant is to allocate a proper timetable for planned outage at a desired 
security level as required by a utility industry. The objective function (F) is 
formulated to minimize the sum of squares of reserve generation as given below. 

unit

i

max

1  

J

j=1    

(3.4)

 
 

Where P[i][j] is the generating capacity of ith unit in the period j, PM [i][j] is the 
power loss due to maintenance of unit I during period j and R0 is the minimum 
reserve requirement. 

The following constraints are considered for the captive power plant 
maintenance-scheduling problem.  
 

Starting Period of Maintenance 

Keeping statutory safety regulations in view, the thermal units must be 
maintenance within a maximum permissible period Qmax [i] [nm]. The earliest 
staring period Qmin [i] [nm] is chosen from the general consideration that the 
thermal unit maintenance must commence within one year plus or minus one 
month from last maintenance.  So in equation (3.5) below, term 48 weeks has 
been added. 
 

Qmin [ i] [nm] = Q [i] [nm-1] + M [(S[i][nm-1])] + 48              (3.5) 

Usually the maximum permissible limits are governed by following statutory norms as 
follows. Unit that has not been maintained over 1.5 years (Turbine over 156 weeks)  
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Table 3. Load demand PD [j] for a planning horizon of 20 weeks 

j
(week) 

PD[j]
(MW) 

j
(week) 

PD[j]
(MW) 

j
(week)

PD[j]
(MW) 

j
(week)

PD[j]
(MW) 

j
(week)

PD[j]
(MW) 

j
(week) 

PD[j]
(MW) 

1 412 45 418 89 437 133 435 177 426 221 416
2 406 46 435 90 413 134 409 178 421 222 425
3 420 47 437 91 416 135 432 179 408 223 433
4 411 48 418 92 439 136 416 180 426 224 422
5 413 49 409 93 407 137 437 181 424 225 411
6 432 50 439 94 440 138 408 182 411 226 425
7 444 51 430 95 424 139 441 183 438 227 436
8 411 52 432 96 414 140 407 184 420 228 415
9 445 53 432 97 449 141 403 185 432 229 411
10 447 54 400 98 424 142 432 186 449 230 422
11 432 55 432 99 429 143 432 187 441 231 433
12 414 56 424 100 426 144 403 188 420 232 444
13 431 57 433 101 419 145 405 189 421 233 425
14 438 58 446 102 415 146 443 190 443 234 422
15 435 59 438 103 424 147 405 191 416 235 412
16 405 60 433 104 413 148 427 192 434 236 413
17 450 61 441 105 425 149 449 193 446 237 412
18 442 62 429 106 432 150 405 194 438 238 422
19 407 63 441 107 431 151 442 195 438 239 422
20 410 64 412 108 447 152 448 196 433 240 433
21 403 65 421 109 424 153 443 197 442 241 415
22 433 66 407 110 444 154 433 198 403 242 412
23 415 67 432 111 407 155 406 199 415 243 426
24 429 68 410 112 428 156 422 200 422 244 433
25 432 69 426 113 420 157 415 201 433 245 415
26 412 70 417 114 437 158 409 202 409 246 416
27 411 71 429 115 429 159 450 203 416 247 425
28 432 72 442 116 405 160 430 204 444 248 422
29 425 73 438 117 418 161 429 205 428 249 444
30 406 74 427 118 447 162 449 206 435 250 433
31 409 75 426 119 413 163 410 207 449 251 411
32 406 76 412 120 408 164 436 208 420 252 415
33 439 77 422 121 421 165 412 209 415 253 418
34 417 78 438 122 407 166 420 210 425 254 422
35 407 79 441 123 412 167 400 211 433 255 417
36 427 80 408 124 414 168 422 212 444 256 411
37 419 81 440 125 404 169 441 213 425 257 408
38 425 82 412 126 426 170 412 214 440 258 421
39 442 83 431 127 412 171 422 215 412 259 428
40 401 84 409 128 425 172 430 216 432 260 415
41 433 85 416 129 437 173 444 217 421  
42 446 86 448 130 417 174 413 218 412  
43 432 87 435 131 400 175 404 219 413  
44 416 88 446 132 433 176 430 220 415   

 
must be maintained through a detailed maintenance and the next maintenance must 
be completed within 1.5 years. Simplified maintenance for boiler and generator 
must be completed within 1.5 years (turbine within 156 weeks). No extensions are 
permitted before or after minor maintenance. The maintenance class adopted before 
or after the minor maintenance must be a detailed one. The minor maintenance 
cannot be adopted continuously for the same unit. The minor maintenance is 
carried out so that more time-consuming maintenance can be postponed. These 
statutory norms are given for calculation of maximum permissible extension 
F[i][nm] . Q[i][nm] is calculated according to the equation given below. 
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Qmax [ i] [nm] = Qmin [i] [nm] + F [i] [nm]                       (3.5.1) 

All the time reserve requirement R [j]  ≥ Ro                       (3.5.2)  

where R0 is the minimum reserve requirement and taken to be 80 MW. 
A captive power plant for an aluminum smelter, represented by Figure 3.8 in 

section 3.5, is chosen for case studies having 6 thermal units, each of 120 MW. 
The maintenance scheduling for optimization of safety and reliability has been 
formulated based on deterministic levelized reserve method, as described in 
Chapter III. The statutory safety norms in terms of extension terms F [i][nm] have 
been specified in Table 1. The data pertaining to generating units has been given 
in Table 2. The load demand PD [j] for each period j has been given for the  
whole planning horizon spanning over 260 weeks in Table 3.6. The optimum  
results obtained for levelized reserve method using hybrid GA/SA is given as 
Table 5.  

The fuzzy load model is basically due to lack of precision in defining the load 
and given as Figure. 
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Fig. 4. Fuzzy load curve 

Since the load variation is between 401 MW to 450 MW, an approximate 
monotonically decreasing crisp cumulative load duration curve is described by 
L=450-49q, where q is the probability of load exceeding available capacity. The 
fuzzy load curve is defined in an interval L ± 8% and the fuzzy load at any 
interval of confidence α, namely L∝, is given by the following equation based on 
equation (5.1). For the case study, the different values of L∝ are found out using  
equation (3.4). 
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L∝ = [(1-(0.08-0.08∝))(450 – 49q) ; (1+(0.08-0.08∝))(450 – 49q)]  …..   (3.4) 

The fuzzy load is computed using equation (3.4) for different values of confidence 
level α, by considering 8% uncertainty in defining the load duration curve and the 
fuzzy load curve as given in Figure 4. For fuzzy load represented by L – 8%, the 
L∝ has two values corresponding to q=0 and q=1 respectively. For example, at ∝ 
= 0.1, the respective values are 417.600006 MW and 372.127991MW. Similarly 
for fuzzy load represented by L + 8%, the L∝ has two values corresponding to 
q=0 and q=1 respectively. For example, at ∝ = 0.1, the respective values are 
482.399994 MW and 429.872009MW. 

The fuzzified load for different confidence levels is given in Table 5.1. The 
contribution of outage stage q∝ is calculated using equation (3.2). This fuzzy 
value q∝ is multiplied with the corresponding capacity outage probability, 
obtained from the capacity outage Tables 3-4, to calculate the fuzzy loss of load 
probability (FLOLP) index based on equation (3.3).  

The FLOLP values computed for the two cases, namely, when no unit is   under 
maintenance as well as when one unit is under maintenance are given in Figure 5 
and Figure 6 respectively. 
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Fig. 5. Fuzzy loss of load (FLOLP) when no unit is under maintenance 
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Fig. 6. Fuzzy loss of load (FLOLP) when one unit is under maintenance 
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When no unit is under maintenance and the effect of uncertainties related to 
load forecasting are considered, the FLOLP has a range of 0.04501 to 0.032639 
for the maximum load uncertainty corresponding to level of confidence α having 
value of zero, as shown in Figure 5. Similarly for α=1, the FLOP has a crisp value 
of 0.00616027 when the uncertainties related to load forecast are considered in 
fuzzy model. When one unit is under maintenance, the uncertainties due to load 
forecasting yield FLOLP having a range of .057766 to 0.305531 when α= 0 and 
0.073 when α= 1, as given in Figure 6. Thus the FLOLP range denotes the risk 
limits associated with the uncertainties.  

The load forecasting uncertainties incorporated through the fuzzy model 
corroborate the fact that a small uncertainty, represented by a linear variation of 
the load predicted, has an ample effect on the reliability index uncertainties. Also 
it is evident that although the relation between predicted load and a varying 
FLOLP is not linear, but the model gives some boundary of variation. Since 
captive power plants cater to power sensitive utilities, the boundary of variation of 
reliability indices is very helpful for user industries to assess risks when the load 
requirements are not properly defined.  But in many cases, the notions of 
component reliability indices such as failure rate or mean repair time by crisp 
numbers are not adequate from pragmatic prospective and therefore the present 
research uses different fuzzy models under type II reliability assessments in 
subsequent sections. 

3.2   Type 2 Power System Fuzzy Reliability Models 

The fuzzy reliability models are based on the fuzzy assumption about the system 
behavior along with either the binary state assumption or fuzzy state assumptions, 
leading to different fuzzy type II reliability models. The probabilistic fuzzy state 
(PROFUST) model assumes the probabilistic assumption state behavior, but 
introduces a fuzzy state assumption. Similarly the possibilistic fuzzy state 
(POSFUST) model combines the possibilistic assumption about state behavior 
with the fuzzy state assumption.  

3.3   Probabilistic Fuzzy State (Profust) Model for Incorporation of 
Uncertainties in Forced Outage Rate of Generating Units 

The classical reliability assessments are based on the probabilistic binary state 
model. Such a model presumes probabilistic assumptions about state behavior and 
binary assumptions about state of the system. The Reliability Test Systems (RTS) 
published by the IEEE Application of Probability Methods (APM) subcommittee 
has been a valuable and consistent reference source [78] in reliability assessment 
of generation systems and composite systems for utilities, consultants and 
universities. But in many cases, the classical probabilistic binary state (PROBIST) 
model [62] representing binary state reliability indices such as forced outage rate 
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(FOR) by crisp number seems to be inadequate from pragmatic perspective. Most 
of the reliability data are obtained from databases. But the data associated with 
equipment may not be exactly that exists in the database; either because it was not 
installed under the same conditions or just some new types of equipment is in 
vogue. Consequently some uncertainties are associated with component indices 
due to lack of upgradation of data. A probabilistic fuzzy state (PROFUST) model 
[62] takes into the account the uncertainties related to forced outage rate by 
considering the uncertainties related to mean time to failure (MTTF) and mean 
time to repair (MTTR) for the generating units. There has been a paradigm shift 
from probabilistic reliability assessments towards the possibilistic reliability 
assessments to take into account such uncertainties in the Risk Analysis paradigm 
[60,61], but type II PROFUST model uses the probabilistic approach about state 
behavior, but fuzzy state of generating units using fuzzy concepts. 

The hybrid fuzzy model seems to be quite promising in reliability analysis of 
captive power plant maintenance scheduling problem. This is a long-term 
scheduling problem of planned outages for regular maintenance [10,16]. For such 
a long term operational planning the uncertainties in the planning variables such as 
forced outage rate (FOR) of generating units have to be considered in order to 
produce a realistic plan [9-16]. In system reliability evaluation it is frequently 
assumed that the failure and repair rates are constant during usual system 
operation without actually substantiating the assumptions.  For a complex problem 
like operation and maintenance of a power station generating unit, constant failure 
and repair rates are inadequate models. Since diagnosis and maintenance tend to 
be experience-based skills, the expert opinion [6-9] is very crucial to assign fuzzy 
values to mean time to failure (MTTF) and mean time to repair (MTTR) for 
generating units in the fuzzy hybrid model to obtain fuzzy FOR. Such fuzzy-FOR 
reflects the condition of operation and maintenance of thermal units more 
realistically for long-term operation planning like maintenance scheduling.  

This section of dissertation corroborates the influences of the uncertainties of 
forced outage rate of generating units as well as that due to load on optimum 
captive power plant maintenance schedules obtained through intelligent 
computational techniques as discussed in Chapter IV. 

The mean-time-to failure (MTTF) of a generating unit usually decreases with 
increase of age of the unit. Also, it depends on the type of previous maintenance 
and the MTTR increases as the time gap increases with respect to previous 
maintenance. But there is inherent uncertainty in defining MTTF and MTTR. In 
order to represent uncertainty in expert system, the analysis begins from a 
fundamental model of uncertainty based fuzzy mathematics [6-9] and leads to a 
rule-based expert system development for effectively extracting information from 
available data that leads to coherent conclusion. The knowledge of the experts is 
represented by a large number of rules so that the overall uncertainty must be 
calculated to reach conclusion. As in any rule-based system, the rules are chained 
together by what is called the inference engine.  The important consideration of 
the inference engine is the methods by which the uncertainties are propagated 
among rules in the reasoning process.  
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The predominant factors leading to uncertainties regarding MTTF as well as 
MTTR are the age of the generating units, type of previous maintenance and time 
gap from previous maintenance. Usually the MTTF decreases with aging of units. 
Also an increase of duration from previous maintenance causes a decrease of 
MTTF. But the MTTF increases after maintenance and the effect is more 
prominent in case of class D maintenance compared to class S maintenance. The 
reverse is the effect in case of MTTR. It increases with the increase of the age as 
well as gap from previous maintenance. The MTTR decreases after maintenance 
and the effect is more prominent in case of class D maintenance compared to class 
S maintenance. The factors affecting MTTR and MTTF are taken as input to the 
fuzzy model. The universe of discourse for each fuzzy variable is quantified into a 
number of overlapping fuzzy sets, known as linguistic variables. For the input 
variable ‘age of the generating units’, the universe of discourse is taken as 20 
years and is quantized into  linguistic variables A1 to A20 for MTTF and A1 to 
A10 for MTTR. Similarly for the second input, ‘number of weeks from previous 
maintenance’, defined over a universe of discourse of 105 weeks is quantized into 
10 linguistic variables, namely from G1 to G10 for both MTTF and MTTR. The 
third input variable ‘type of previous maintenance’ is quantized into 8 linguistic 
variables, namely, D1 to D4 for D class maintenance and S1 to S5 for S class 
maintenance. The output for MTTR is quantized into 8 linguistic variables, 
namely MTTR1 to MTTR8 and output for MTTF from MTTF1 to MTTF18. The 
inputs are combined through the rules given by experts to give fuzzified output 
from the range of values from MTTF1 to MTTF18. For example, when the age 
corresponds to A1, gap to G1 and maintenance type to D1, then output is MTTF2. 
Based on expert opinion, all possible rules are framed and then the output is 
defuzzified using centriod method to get the crisp values of expert FOR. Similarly 
the mean time to repair (MTTR) for a unit increases with aging of units and also 
with progression of gap with respect to the previous maintenance. Also the type of 
previous maintenance affects MTTR. Suitable triangular membership functions 
are ascribed to the input and output variables in fuzzy model to take the 
uncertainties into account and rules have been chained together based on expert 
opinion to obtain MTTR and MTTF. The output fuzzy values are defuzzified 
using centriod method. Based on the values of MTTR and MTTF, the expert fuzzy 
FOR is found using the equation (3.5). 

Expert fuzzy forced outage rate (fz-FOR) = MTTR/(MTTR+MTTF)        (3.5) 

3.3.1   Case Study with Numerical Results 

A captive power plant for an aluminum smelter, represented by Figure ----- is 
chosen for case studies having 6 thermal units, each of 120 MW and the optimum 
maintenance schedule obtained from levelized reserve method using hybrid 
GA/SA is given in Table 4.5. The effect of uncertainties related to forced outage 
rate (FOR) of generating units on the optimum schedule is investigated using the 
PROFUST model and the associated risk even with an optimum schedule is 
quantified as a fuzzy index, known as fuzzy loss of load probability (FLOLP). 
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Fig. 7. A schematic diagram for fuzzy model for MTTR 

Since the gestation period for the thermal power plants cannot be ignored, 
therefore although the units are similar, they differ with respect to age so that the 
MTTF and MTTR are also different for each generating unit.  The data for the age 
of the units given in Table 2 is used in PROFUST model for finding out MTTR 
and MTTF to calculate fuzzy FOR. The values of MTTR and MTTF are found out 
just before maintenance as well immediately after maintenance. For example, ‘the 
periods preceding maintenance count nm=4’ represents the values of MTTR and 
MTTF just before maintenance and similarly ‘the periods following maintenance 
count nm=4’ represents the values immediately after maintenance is carried out. 

A schematic diagram for probabilistic fuzzy state model for MTTR is given in 
Figure 7. The MTTR for a unit increases with aging of units and with progression 
of gap with respect to the previous maintenance. The MTTR decreases after 
maintenance and the effect is more prominent in case of D class maintenance 
compared to S class maintenance. The triangular membership functions with 
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increasing trend are used for two fuzzy input variables ‘age of the generating 
units’ and ‘number of weeks from previous maintenance’.They are quantized from 
A1 to A10 and from G1 to G10 respectively. The third input variable ‘type of 
previous maintenance’ is represented by triangular membership with decreasing 
trend and quantized into D1 to D4 for D class maintenance and S1 to S5 for S 
class maintenance. The output variable MTTR is represented by triangular 
membership with decreasing trend and quantized into MTTR1 to MTTR8. Based 
on expert opinion, rules are framed for the FIS editor (Mamdani type) and the 
output MTTR is obtained. The defuzzification of output is done to get the crisp 
values of MTTR. The MMTF values are obtained for the whole planning horizon 
in the similar manner based on expert opinion. 

Usually six values of FOR are found in the planning horizon that precede and 
follow the 3 scheduled maintenances, i.e., nm=3, 4 and 5. Although ideally there 
should have been 36 case studies corresponding to 18 cases when no unit is under 
maintenance and 18 cases when one unit is under maintenance [20], but the FOR 
values do not differ much for an individual unit compared to change of FOR from 
one unit to another when their effects on outage probabilities are considered. 
Therefore the best estimated value of expert FOR is considered for each unit.   

The outage table for the case having no unit under maintenance is given as 
Table 3 and Table 4 corresponding to cases when no unit is under maintenance 
and one unit is under maintenance respectively, based on classical model. The 
outage table based on expert fuzzy FOR is given as Table 5.4. 

The load forecasting uncertainties are incorporated through the fuzzy load 
model, as corroborated in section 5.1 and fuzzy load curve depicted as Figure 4 in 
section 5.1.1. The fuzzified load for different confidence levels is given in Table 
5.1.The contribution of outage stage q∝ is calculated using equation (3.2). This 
fuzzy value q∝ is multiplied with the corresponding outage stage probability 
based on expert FOR, from Table 5.4, to calculate the fuzzy loss of load 
probability (FLOLP) using equation (3.3). The FLOLP so obtained for the 
optimum schedule obtained using hybrid GA/SA technique based on classical 
constant FOR values are compared with that obtained using expert fuzzy FOR 
values. For both the cases, uncertainties related to load forecasting are taken into 
account. The FLOLP computed for the two cases, viz., when no unit is under 
maintenance as well as when one unit is under maintenance is given in Figure 8 
and Figure 9 respectively. 

When no unit is under maintenance and the effect of uncertainties related to 
FOR are considered, the FLOLP has a range of 0.030761 to 0.131796 for the 
maximum load uncertainty corresponding to level of confidence α having value of 
zero, as shown in Figure 8. But when the uncertainties related to FOR of 
generating units are ignored, for the same value of α, the FLOLP has a range of 
0.04501 to 0.032639 indicating lesser range of LOLP as uncertainties are reduced. 
Similarly, for α=1, the FLOLP has a crisp value of 0.0415125 when the 
uncertainties related to FOR values are considered in fuzzy model. For the same 
case, the crisp value becomes 0.00616027 when the uncertainties related to FOR  
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Fig. 8. Comparison of FLOLP based on expert and classical values of FOR when no unit 
under maintenance 
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Fig. 9. Comparison of FLOLP based on expert and classical values of FOR when one unit 
under maintenance 

are ignored in the classical probabilistic model. Thus, the FLOLP range denotes 
the risk limits associated with the uncertainties and it is seen that more is the 
uncertainty, greater is the range of FLOLP due to greater fuzziness. A similar 
trend is found when one unit is under maintenance, as given in Figure 9. 
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The PROFUS T model seems to be promising compared to classical PROBIST 
model for reliability analysis based on system adequacy for captive power plant 
maintenance scheduling as the uncertainties related to FOR are well captured in 
fuzzy model incorporating expert opinions. The additional impact of the 
uncertainties in the load represented by fuzzy load model is also incorporated in 
hybrid fuzzy model to calculate FLOLP. The reliability index FLOLP reflects 
uncertainties in terms of quantified risk and this is of immense use for planning 
related to captive power plants because the degree of acceptable risk for a captive 
power plant is implicitly related to the requirements of the process industry that is 
serving as the load for the captive plant. Also the advantage of using the 
probabilistic fuzzy model is that it is not exactly the replacement of the old faithful 
classical probabilistic model but an enhancement for better engineering 
approximation of FOR of generating units reflecting the impact of aging of units 
as well as the type of maintenance for getting a realistic schedule. 

3.4   Possibilistic Fuzzy State (Posfust) Model for Incorporation of 
Uncertainties in Forced Outage Rate Of Generating Units 

The standard approaches of reliability engineering rely on the probability model, 
which is often inappropriate for this task [1-3]. Probability based analyses usually 
require more information about the system than is known. Commonly, this results 
in inappropriate assumptions about the original data. Thus, any single value or 
distribution applied to the failure characteristics is likely to give a result that is 
misleading. Fuzzy logic offers an alternative to the probability paradigm using 
possibility paradigm[10-16]. The possibilistic approach for the system behavior 
allows for quantitative reliability evaluations that preserve the uncertainty in 
original data. The possibility model deals with uncertainty in a way that avoids 
making unwarranted conclusions and makes the consequences of the required 
assumptions more clear. The possibilistic approach based on possibility mathematics 
is a special branch of evidence theory and therefore a brief exposition of related 
topics such as fuzzy measures, evidence theory etc. are presented in the subsequent 
sections. 

3.4.1   Fuzzy Measures 

A fuzzy measure describes the vagueness or imprecision in assignment of an 
element to two or more crisp sets. Such a measure tries to describe the vagueness 
or imprecision in assigning an element to any of the crisp sets on the power set. 
This notion is not about the randomness because the crisp sets have no uncertainty 
about them. But the uncertainty is about the assignment. This uncertainty is 
usually associated with evidence to establish an assignment. The evidence can be 
completely lacking for total ignorance or the evidence can be complete for a 
probability assignment. Hence, the difference between a fuzzy measure and a  
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fuzzy set on a universe of elements is that in the former case the imprecision is in 
the assignment of an element to one of two or more crisp sets while for the latter 
the imprecision is in the prescription of the boundaries of a set.  

3.4.2   Fuzzy Sets and Possibility Theory  
 

Possibility theory can be formulated in terms of fuzzy sets. This alternative 
formulation of possibility theory is suggestive since fuzzy sets, similar to 
possibility bodies of evidence, are also based on families of nested sets, the 
appropriate α-cuts.  

Possibility measures are directly connected with fuzzy sets via the associated 
possibility distribution functions. To explain this connection, let v denote a 

variable that takes values in a universal set V, and let the equation v = v, where v 

∈ V, be used for describing the fact that the value of v is ν. 

A fuzzy set F may be considered on V that expresses an elastic constraint on 
values that may be assigned to v. Thus given a particular value v∈v, F (ν) is 

interpreted as the degree of compatibility of ν with the concept described by F. On 
the other hand, given the proposition  “v is F” based upon F, it is more 

meaningful to interpret F (ν) as the degree of possibility that v = ν. That is, given 

a fuzzy set F on V and the proposition  “v is F,” then possibility, rF (ν), of v = ν 

for each ν ∈ V is numerically equal to the degree F (ν) to which ν belongs to F as 
given by equation (3.6).  

                 rF (v) = F (ν)                                        (3.6) 

for all ν ∈ V.    
Function rF : V → [0, 1] defined by (5.23) is clearly a possibility distribution 

function on V. Given rF, the associated possibility measure, PosF, is defined for 
all A ∈ P (V) by   equation (3.7). 
 

                         
Pos ( ) sup ( )F F

v A

A r v
∈

=
                                     

(3.7)
 

This measure expresses the uncertainty regarding the actual value of variable v 
under incomplete information given in terms of the proposition “v is F.” For 
normal fuzzy sets, the associated necessity measure, NecF, is calculated for all A 
∈ P (V) by equation (3.8). 
 

                      NecF(A) = 1 – PosF (Ā)                                          (3.8) 
 

As an example, let variable v be temperature measured in oC and assume that 

only its integer values are recognized (i.e., V = Z). Let information about the 
actual value of v be given in terms of the proposition “v is around 21oC” in 

which the concept around 21oC is expressed by the fuzzy set F. This incomplete  
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information induces a possibility distribution function rF that, according to (3.6), 
is numerically identical with the membership function F. The α-cuts of F, which 
are nested, play the same role as the focal elements in possibilistic bodies of 
evidence formulated within evidence theory. Thus focal element and α-cuts 
correspond to each other in the two formulations of possibility theory. In the given 
example, the α-cuts (or focal elements) are A1 = {21}, A2 = {20, 21, 22}, A3 = 
{19, 20, 21, 22, 23}. Using equation (3.7) it is readily found that Pos (A1) = Pos 
(A2) = Pos (A3) = 1 and Pos (A1) = 2/3, Pos (A2) = 1/3, Pos (A3) = 0. Then, 
using equation (3.8), the results obtained are Nec (A1) = 1/3, Nec (A2) = 2/3and 
Nec (A3) = 1. 

3.5   Possibilistic Approach for Evaluation of Fuzzy Forced 
Outage Rate (FOR) 

The uncertainties related to forced outage rates (FOR) of generating units are 
important for studies related to long term generation cum expansion planning. But 
probability based analyses usually require more information about the system for 
parameters such as mean failure rates, failure distributions etc. Commonly, this 
sort of lack of information results in less appropriate assumptions about the 
original data. Thus, any single value or distribution applied to the failure 
characteristics is likely to give a result that is misleading. Fuzzy logic offers an 
alternative to the probability paradigm by using possibility paradigm. The 
possibilistic approach for the system behavior allows for quantitative reliability 
evaluations that preserve the uncertainty in original data, as explained in the 
previous section. In addition, experts in the field understand these uncertainties 
better. Therefore, the expert evaluation is modeled with fuzzy set theory based on 
possibilistic approach, as depicted below. 

 
Notations: 

t                              time (a discrete variable) in weeks 

T                             fuzzy set whose members are various values of t   

µT(t)                        membership function of T 

rf (t) , rr(t)                possibility distribution function {unit [fails , is repaired]    

                                     at t}, t Є [0, ∞] 

∏f (t) , ∏r (t)       cumulative possibility distribution {unit [fails , is repaired]  

                                     in  [0, t]} 

Kf (t) , Kr (t)         cumulative possibility distribution {unit is [operating, not                                                           

                                     repaired] in [0,t]} 
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Assumptions: 

1. Time t Є N (natural numbers). A similar analysis can be done for t Є R+  

 (positive real numbers). 

2. A generating unit in the example has two states. 

Let there be a fuzzy number T with µT(t) Є [0,1] , t Є [0 ,∞] representing an 
expert’s opinion on the breakdown of generating unit at various values of t . The 
membership function represents rf (t) of a generating unit based on expert opinion, 
or in simple terms, the subjective expert opinion on possibility distribution 
function, e.g., breakdown of a unit at time t. 
 

            rf (t)  =    µT(t)                                                (3.9) 

Such a definition of the relationship between the membership grade of a fuzzy set 
and the possibility distribution function is a relational assignment. 

The values of t chosen to represent the possibility distribution function of failure 
time depend on the choice of the expert e.g. days, weeks, months, or years. Just as 
an expert can give an opinion on the possibility distribution of failure time of a 
generating unit, that expert can give an opinion on the possibility distribution of 
repair completion of a generating unit at various times. The time scales for failure 
time data and repair time data are usually quite different e.g. a generating unit might 
fail after working for months whereas the same unit can be repaired in weeks. 

For the problem considered in the thesis,  rf (t) is evaluated via subjective 
expert opinion which assigns fuzzy numbers to the failure possibility , decreasing 
from maximum 1 over t Є [0,5]. The  ∏f (t) gives a fuzzy measure of the 
possibility of the unit failure at time ≤ t and such a measure differs from 
conventional probability.     

The experts presume that as t increases,  rf (t) decreases from maximum of 1. 
For a new unit the expert might give a possibility distribution by comparison with 
similar generating units under similar conditions. 
 

                ∏f (t) = max (rf  (u): uЄ [0,t])                                       (3.10) 

The max operator has been used in aggregating the possibilities in above equation. 
However any other operator can be used for such aggregation. Kf(t) = 1 - ∏f (t).  
∏r (t) is found in the same manner as  ∏f (t), but by using the values of    rr (t).  
Kr (t) = 1 - ∏r (t) . 
 

       Fuzzy MTTF =   ∑ Kf (t) ,     t Є N                                  (3.11)  
 

The sum represents the area over Kf (t) divided by Kf (t) = 1 which is the height of 
Kf  curve . 

Fuzzy MTTR = ∑ Kr (t), t Є N                                    (3.12)   

Fuzzy MTBF = Fuzzy MTTF + Fuzzy MTTR                        (3.13) 
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Fuzzy FOR is calculated as given in equation                       (3.14)  

Fuzzy FOR = Fuzzy MTTR / Fuzzy MTBF                       (3.14) 

3.5.1   Case Study with Numerical Results 

A captive power plant for an aluminum smelter, represented by Figure ------ is 
chosen for case studies having 6 thermal units, each of 120 MW and the optimum 
maintenance schedule obtained from levelized reserve method using hybrid 
GA/SA is given in Table 4.5. The effect of uncertainties related to forced outage 
rate (FOR) of generating units on the optimum schedule is investigated using the 
PROFUST model and the associated risk even with an optimum schedule is 
expressed as fuzzy loss of load probability (FLOLP), represented by Figures 8 and 
9. The possibilistic fuzzy model assumes possibilistic approach for state behavior, 
instead of probabilistic state behavior, but retains the fuzzy state concept of 
PROFUST model. 

The Fuzzy possibility distribution of MTTF is computed for periods following 
a particular maintenance to periods preceding the subsequent maintenance. The 
periods preceding nm=3 are the periods beginning of the planning horizon up to 
the maintenance nm=3. Since the MTTF decreases with progression of time, 
therefore the possibility distribution is considered  to possess a maximum value of 
1 at the beginning of the planning horizon and gradually decreases to 0.1 just 
before the maintenance nm=3. After the maintenance is carried out, the MTTF 
value increases, but with progression of time, it again decreases. But since nm=3 
is a class S maintenance for maintenance of boiler and generator only, therefore 
the possibility immediately after such maintenance is 0.896 instead of 1. But the 
possibility distribution immediately after nm=4 is considered as 1 and the 
possibility distribution decreases with progression of time, till the next maintenance 
nm=5 is carried out. Similarly, the possibility distribution immediately after nm=5 is 
considered as 1 and decreases with progression of time. The possibility distribution 
increases with increase of time due to the fact that MTTR increases as time duration 
from previous maintenance increases.  

The possibility distribution of MTTR increases as duration from previous 
maintenance increases, but again the value reduces towards zero as maintenance 
reduces the MTTR value. 

Table 4. Comparison of FOR values obtained from PRUFUST and POSFUST models 

Unit 
No 

FOR using PROFUST model FOR using POSFUST model  

1 0.1111 0.1106
2 0.1008 0.1053
3 0.0906 0.0909
4 0.0704 0.0742
5 0.0603 0.0645
6 0.0402 0.0464
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Possibility measures are directly connected with fuzzy sets via the associated 
possibility distribution functions in the POSFUST model. The possibility 
distribution represents the degree of membership for some linguistic variable, but 
the membership values are strictly monotonic as they are for an ordered possibility 
distribution. It is seen that in the POSFUST model, the FOR values are slightly 
greater than those values obtained from PROFUST model (except for unit 1) as 
the possibility distribution is nonprobabilistic. Thus, the PROFUST model is the 
approximation of the POSFUST model, which gives more accurate values of FOR 
when the observations pertaining to failure history of the generating units are a 
few. The comparisons of FLOLP for PROBIST, PROFUST and POSFUST 
models are represented graphically in Figures 10 and 11 respectively 
corresponding to cases when no unit is under maintenance and when one unit is 
under maintenance respectively. 
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Fig. 10. Comparison of FLOLP values for PROBIST, PROFUST and POSFUST models 
when no unit under maintenance 
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Fig. 11. Comparison of FLOLP values for PROBIST, PROFUST and POSFUST models 
when one unit under maintenance 
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When no unit is under maintenance and the effect of uncertainties related to 
FOR are considered in PROFUST and POSFUST models along with load 
forecasting uncertainties, the FLOLP has a range of 0.030761 to 0.131796 and 
0.035519 to 0.145957 respectively for the maximum load uncertainty 
corresponding to level of confidence α having value of zero, as shown in Figure 
10. But when the uncertainty related to FOR of generating units are ignored in 
case of PROBIST model, for the same value of α=0, the FLOLP has a range of 
0.04501 to 0.032639 indicating lesser range of LOLP as uncertainties are reduced. 
Similarly, for α=1, the FLOP has a crisp values of 0.0415125 and 0.046701 
respectively when the uncertainties related to FOR values are considered in 
PROFUST and POSFUST models. For the same case, the crisp value becomes 
0.00616027 when the uncertainties related to FOR are ignored in the classical 
PROBIST model. Thus the FLOLP range denotes the risk limits associated with 
the uncertainties and it is seen that the more the uncertainty the greater is the range 
of FLOLP due to greater fuzziness. The similar trend is found when one unit is 
under maintenance as evidenced in Figure 11. 

POSFUST model that uses possibility theory is a measure-theoretic counterpart 
of fuzzy set theory based upon the standard fuzzy operations. It provides us with 
appropriate tools for processing incomplete information expressed in terms of 
fuzzy propositions and consequently plays a major role in fuzzy logic. Both 
probability and possibility measure are uniquely represented by distribution 
function, but their normalization requirements are very different. Values of each 
probability distribution are required to add to 1, while for possibility distributions 
the largest values are required to be 1. Moreover, the later requirement may even 
be abandoned when possibility theory is formulated in terms of fuzzy sets. 

4   Conclusion  

The fuzzy reliability evaluations for power system are of immense importance 
because of the uncertainty related to load demand and available history of failure 
of components can be taken care using fuzzy models in some suitable way. Some 
representative cases in this chapter prove the efficacy of the fuzzy reliability 
analysis using such models. The following are some of the salient features related 
to these fuzzy models. 

4.1   Type I Fuzzy Reliability Analysis for Incorporating Load 
Forecasting Uncertainties 

Type I fuzzy calculations at the hierarchical level 1(HL-1) are related to the 
uncertainty in defining the power consumption and therefore measuring the 
impacts of failure of supply. Although the relation between a changing load and a 
varying calculated index is far from linear, but still its characteristics are well 
captured by the fuzzy load description in the reported research.  
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The load forecasting uncertainties incorporated through the fuzzy model 
corroborate the fact that a small uncertainty, represented by a linear variation of 
the predicted load, has an ample effect on the reliability index uncertainties. Also 
it is evident that although the relation between predicted load and a varying 
FLOLP is not linear but the model gives some boundary of variation. Since 
captive power plants cater to power sensitive utilities, the boundary of variation of 
reliability indices is very helpful for user industries to assess risks when the load 
requirements are not properly defined. 

4.2   Probabilistic Fuzzy State Model  

In many cases, the classical probabilistic binary state (PROBIST) model 
representing binary state reliability indices such as forced outage rate (FOR) by 
crisp number seems to be inadequate from pragmatic perspective. Most of the 
reliability data are obtained from databases. But the data associated with 
equipment may not be exactly that exists in the database; either because it was not 
installed under the same conditions or just some new types of equipment are in 
vogue. Consequently some uncertainties are associated with component indices 
due to lack of upgradation of data. A probabilistic fuzzy state (PROFUST) model 
takes into account the uncertainties related to forced outage rate by considering the 
uncertainties related to mean time to failure (MTTF) and mean time to repair 
(MTTR) for the generating units.  

The PROFUST model seems to be more promising compared to the classical 
PROBIST model for reliability analysis based on system adequacy for captive 
power plant maintenance scheduling as the uncertainties related to FOR are well 
captured in fuzzy model incorporating expert opinions. The additional impact of 
the uncertainties in the load represented by fuzzy load model has also been 
incorporated in hybrid fuzzy model to calculate FLOLP. The reliability index 
FLOLP reflects uncertainties in terms of quantified risk and this is of immense use 
for planning related to captive power plants because the degree of acceptable risk 
for a captive power plant is implicitly related to the requirements of the process 
industry that is serving as the load for the captive power plant.  

The advantage of using the probabilistic fuzzy model lies in the fact that it is 
not exactly a replacement of the old faithful classical probabilistic model, but its 
enhancement for better engineering approximation of FOR of generating units by 
reflecting the impact of aging of units as well as the type of maintenance for a 
realistic schedule. 

4.3   Possibilistic Fuzzy State Model 

The standard approaches of reliability engineering rely on the probability model 
which is often less appropriate for this task. Probability based analyses usually 
require more information about the system than is known. Fuzzy logic offers an 
alternative to the probability paradigm through the use of possibility paradigm. 
The possibilistic approach for the system behavior allows for quantitative 
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reliability evaluations that preserve the uncertainty in original data. The possibility 
model deals with uncertainty in a way that avoids making unwarranted 
conclusions and makes the consequences of the required assumptions more clear. 

Possibility measures are directly connected with fuzzy sets via the associated 
possibility distribution functions in the POSFUST model. The possibility 
distribution represents the degree of membership for some linguistic variable but 
the membership values are strictly monotonic as they are for an ordered possibility 
distribution. Usually PROFUST model adopts more conservative approach about 
its failure, but POSFUST model gives a realistic value which seems to be less 
compared to those obtained from PROFUST model. Thus the PROFUST model is 
the approximation of the POSFUST model. However, it gives more accurate 
values of FOR when the observations pertaining to failure history of the 
generating units are a few. 
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Load Forecasting and Neural Networks:
A Prediction Interval-Based Perspective

Abbas Khosravi, Saeid Nahavandi, and Doug Creighton

Abstract. Successfully determining competitive optimal schedules for electricity
generation intimately hinges on the forecasts of loads. The nonstationarity and
high volatility of loads make their accurate prediction somewhat problematic. Pres-
ence of uncertainty in data also significantly degrades accuracy of point predictions
produced by deterministic load forecasting models. Therefore, operation planning
utilizing these predictions will be unreliable. This paper aims at developing pre-
diction intervals rather than producing exact point prediction. Prediction intervals
are theatrically more reliable and practical than predicted values. The delta and
Bayesian techniques for constructing prediction intervals for forecasted loads are
implemented here. To objectively and comprehensively assess quality of constructed
prediction intervals, a new index based on length and coverage probability of pre-
diction intervals is developed. In experiments with real data, and through calculation
of global statistics, it is shown that neural network point prediction performance is
unreliable. In contrast, prediction intervals developed using the delta and Bayesian
techniques are satisfactorily narrow, with a high coverage probability.

1 Introduction

Generating optimal schedules for power systems can potentially save millions of
dollars per year for utility companies [1]. To remain competitive in the privatized
and deregulated markets of power generation, it is vital for companies to reduce
their operation cost, through formulating optimal schedules for generating power.
Effectiveness of electricity power generation plans significantly depends on the ac-
curacy of the future load predictions. Both over-forecasting and under-forecasting
may result in financially disastrous circumstances costing millions of dollars for big
utility companies.

Owing to the significant impacts of future demand prediction on reliability of en-
ergy management plans, a variety of methods have been proposed in scientific and
practical literature for precise load forecasting. Broadly speaking, these techniques
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Table 1. Nomenclature and Abbreviations

xi i-th nonrandom m-input vector
Dtrain Training datasets
Dtest Test dataset
Θ Original set of neural network parameters
Θ∗ The true set of NN parameters
Θ̂ The set of NN parameters obtained using least square technique
ŷi Neural network scalar output
Y Vector of outputs
Φ(xi,Θ∗) Nonlinear function of true regression
εi i-th error term associated with modeling function
σ2 Variance of εi

�T
Θ ∗ ŷ Gradient of neural network output with respect to its set of parameters (Θ∗)

J Jacobian matrix of neural network
I Identity matrix
s Standard deviation estimate
λ Regularizer factor

t
1− α

2
d 1− α

2 quantile of a cumulative t-distribution function with d degrees of freedom
M Particular neural network model
ρ and β Hyperparameters in Bayesian technique
Θ MP Neural network parameters computed using Bayesian learning algorithm
HMP Hessian matrix computed for Θ MP

z1− α
2 1− α

2 quantile of a normal distribution function
L(xi) & U(xi) Lower and upper bounds of PI for sample xi
ξ Range of the underlying target
σ(·) Sigmoidal function
η & μ Parameters of the sigmoidal function
nU pper

i Upper bound for the number of neurons in the i-th layer of neural network model
MSE Mean Squared Error
MAPE Mean Absolute Percentage Error
PICP Prediction Interval Coverage Probability
NMPIL Normalized Mean Prediction Interval Length
CLC Coverage Length-based Criterion

can be divided into two categories: parametric models, and artificial intelligence-
based techniques (non-parametric techniques) [1] [2]. Regression models, Kalman
filter, and time-series prediction methods are among the parametric techniques that
have been widely applied for load forecasting [3] [4] [5]. Despite their easy im-
plementation, they have limited power in finding and modeling nonlinear depen-
dencies amongst independent and dependent variables. Furthermore, they require a
priori model needs to be assumed or a priori assumptions on the properties of data
to be made.

It has been shown that artificial intelligence-based methods, such as Neural Net-
works (NNs) outperform their traditional rivals, not only in the area of load forecast-
ing [1] , but also in many other engineering and science domains. Paliwal et al. [6]
comprehensively reviewed comparative studies on applications of NNs in account-
ing and finance, health and medicine, engineering, manufacturing, and marketing.
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After reviewing around 100 comparative studies, they concluded that in the major-
ity of cases, no matter what the type of data or from which domain it comes, NN
models outperform their traditional rivals.

The established reputation of NN in modeling and analysis of complex systems is
due to their nonparametric, adaptive, and noise tolerant properties. As biologically
inspired analytical techniques, they have capability of learning and modeling very
complex nonlinear relationships. Theoretically, multilayered feed forward NNs are
universal approximators, and as such, have excellent capability of approximating
any nonlinear mapping to any degree of accuracy [7]. Their generalization to the
not-yet-observed data is better than other techniques. Furthermore, they require no
a priori assumptions on the properties of data to be made. NNs have been widely
employed, among others, for modeling, prediction, classification, optimization, and
control purposes [8] [9] [10] [11].

Like other areas of science and engineering, reports on successful applications
of NNs for short/medium/long term load forecasting are numerous [1] [2] [12] [13]
[14] [15]. In some cases, fuzzy systems have been integrated into NNs for improving
prediction results [16] [17]. In the majority of studies and research conducted so far
in the area of load forecasting, focus has been on developing NN models for point
prediction, without any indication of its likely accuracy. One should make note of
the fact that loads often show completely nonlinear and in some cases chaotic behav-
iors. Their fluctuations through the time are erratic and influenced by many factors.
These factors may totally or partially be unknown for modelers. Even known, of-
ten information about them is uncertain (e.g., temperature and weather conditions in
the upcoming hours or days). Accompanied with uncertainty are probabilistic events
whose occurrence may result in multiple realities for the future of a system. With
these features, power systems resemble volatile systems whose outcome (load de-
mand in future) depends on many uncertain and unknown factors. A point that often
has been ignored in the conducted studies in literature is that NNs are deterministic
models and their applications for predicting the future of a stochastic system is al-
ways questionable [18]. Uncertainties and probabilistic events highly contribute to
the degradation of performance of NN models for load forecasting. Negative conse-
quences raised from the stochastic nature of power systems cannot be compensated
solely through increasing NN size (neither hidden layers nor neurons) or repeat-
ing its training procedure. As NN load forecasters offer a point estimate without
any measure of its accuracy, making decisions based on such predictions may spell
disaster for different components of a power system. Load forecasting literature is
void of information about incorporating uncertainties of power systems into point
prediction of system future. Part of the literature has materialized into a series of
studies whose objective has been to adopt NNs for prediction of stochastic systems
future [18] [19]. Construction of Prediction Intervals (PIs) has been proposed in
literature to remedy problems of NNs. Mathematically, a prediction interval with
confidence level of (1−α)% is a random interval developed based on past observa-
tions x = (x1,x2, · · · ,xn) and built for unseen observations Xn+h,h ≥ 1,

PI = [L(x),U(x)] (1)
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such that P(L(x) < xn+1 < U(x)) = 1−α . Without construction of prediction inter-
vals, the validity of decisions made based on point prediction is always questionable.
When developing theories for constructing PIs, different sources of uncertainty are
considered. They are practically more useful than confidence intervals and more re-
liable than predicted points. PIs also carry much more meaningful information than
point predictions: they have an indication of their accuracy (level of confidence),
they are constructed after considering and modeling different sources of uncertainty,
and finally, they provide a range of probable futures.

In literature, there are a couple of techniques for creating prediction/confidence
intervals for NNs: (a) the delta method, which is based on a Taylor expansion of
the regression function [20] [21], (b) the bootstrap technique which is essentially a
resampling method [22], and (c) the Bayesian approach, based on Bayesian statistics
[23]. Selection of any of these techniques for constructing PIs depends on problem
domain, computation burden, number of available samples, and analysis purpose.
Comparative studies on useability and practicality of these techniques have been
carried out in literature [24] [25] [26].

Although theories behind PI construction using NNs date back to 90s, their ap-
plication has only recently proliferated. Many have used them instead of point pre-
dictions in different engineering and science fields, among others, including tem-
perature prediction [27], boring process prediction [28], paper curl prediction [25],
watershed simulation [29], modeling of solder paste deposition process [30], bag-
gage handling system [31] [32], and time series forecasting [33].

The main focus of this research is on the delta and Bayesian techniques for PI
construction [23] [27] [28] [30] [34]. Although these techniques have been used in
other areas of engineering, there is no report on their applications in the area of
power engineering, and in particular, load forecasting. A review of the literature
reveals only a limited body of knowledge on PI construction in the area of load
forecasting. As loads many times show volatile behavior, delta and Bayesian tech-
niques can be employed to enhance the reliability of prediction task, and therefore,
the practicality of operation schedules.

In literature many error-related measures, such as Mean Absolute Percentage Er-
ror (MAPE) and Mean Squared Error (MSE), have been proposed for assessment
of point predictions. Needless to say, such measures are not applicable to PIs. To
the best of our knowledge, the main focus of literature is on construction of PIs,
without any objective assessment of their quality in terms of length and coverage
probability [28] [25] [30]. Often the coverage probability of PIs is the main concern
and PIs are judged on the basis of closeness of this index to the nominal confidence
level of PIs ((1−α)%) [25] [35]. One often ignored measure related to the quality
of PIs is length. In this paper, a new assessment measure is developed for PIs for
objective assessment of PIs constructed using different techniques. The proposed in-
dex is composed of both coverage probability and length of PIs. Application of this
new index makes possible to objectively select NN forecaster that yield narrower
PIs with higher coverage probability.

For the first time in the area of power engineering, delta and Bayesian techniques
are used for constricting PIs for outputs of NNs in a load forecasting problem.
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Constructed PIs are then assessed and judged based on the proposed evaluation
index. In the experiments with real data, it is demonstrated that point prediction
error is always big and, therefore, results are unreliable. In contrast, constructed PIs
using delta and Bayesian techniques are satisfactorily narrow with a high coverage
probability close to the nominal confidence level.

The rest of this paper is organized as follows: Section 2 briefly introduces the
delta and Bayesian methods for constructing PIs. In Section 3, a new measure for
comprehensive evaluation of PIs is developed. In Section 4, experimental results
for constricting PIs for a load forecasting problem are represented and discusses.
Section 5 concludes the paper with some remarks and directions for future research
in this domain.

2 Theory and Background

This section provides a brief overview of the delta and Bayesian techniques for
constructing PIs. It is assumed that the intended audience of this paper are familiar
with NNs, their training techniques, and issues related to them such as over-fitting
or under-fitting. Detailed description and mathematical discussion about different
types of NNs can be found in [23].

Both Bayesian and delta techniques are adopted for constructing PIs for outputs
of NNs. Before going further, it is necessary first to distinguish the difference be-
tween confidence intervals and prediction intervals. Confidence intervals provide a
measure of the uncertainty between the prediction and the expected mean value of
the dependent variables. On the other hand, PIs deal with the accuracy of predic-
tion of an individual output. Based on this discussion, it is obvious that prediction
intervals are wider than confidence intervals and cover them [36].

2.1 Delta Technique

The delta technique is based on representing and interpreting NNs as nonlinear re-
gression models. This allows applying standard asymptotic theory to them for con-
structing prediction intervals. According to this, one may represent them as below,

yi = Φ(xi,Θ ∗)+ εi, i = 1,2, . . . ,n (2)

where n is the number of samples. The term εi is the error associated with the mod-
eling function and its misspecification. Θ̂ , an estimate of Θ ∗, is obtained through
minimization of sum of squared error (SSE) cost function,

SSE =
n

∑
i=1

(
yi −Φ(xi,Θ̂)

)2
(3)

where prediction for the i-th sample is obtained using Θ̂ ,

ŷi = Φ(xi,Θ̂) (4)
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A first-order Taylor expansion of (2) around the true values of model parameters
(Θ ∗) can be expressed as,

ŷi = Φ(xi,Θ ∗)+�T
Θ ∗ ŷi(Θ̂ −Θ ∗), i = 1,2, . . . ,n (5)

Dimensionality of �T
Θ ∗ ŷi in (5) is 1 × p. With the assumption that εi in (2) are

independently and normally distributed N(0,σ2), the (1−α)% PI for yi is [20],

ŷi ± t
1− α

2
d s

√
1 +�T

Θ ∗ŷi(JT J)−1 �Θ ∗ ŷi (6)

where �T
Θ ∗ ŷi and J are defined as follows,

�T
Θ ∗ ŷi =

[
∂Φ(xi,Θ ∗)

∂Θ ∗
j

]
j

, j = 1,2, . . . , p (7)

J =

[
∂Φ(xi,Θ ∗)

∂Θ ∗
j

]
i, j

, i = 1,2, . . . ,n, j = 1,2, . . . , p (8)

The delta method is based on minimization of the quadratic cost function in (3). This
cost function is only related to the prediction errors and does not put any penalties on
the network size or does not constraint the parameter magnitudes. This may result in
singularity of matrix JT J, that in turn makes computed PIs less reliable. To remedy
this problem, one alternative is to include some regularizing terms in (3). Based on
the weight decay concept [23], De Veaux et al. [21] have added the sum of squares
of adaptive parameters to the cost function in (3),(

Y − Ŷ
)T (

Y − Ŷ
)
+ λΘ̂ TΘ̂ (9)

where λ is the regularizing factor [23]. The generalization power of NN models
is highly improved through using (9) as the training cost function. Rebuilding PIs
based on (9) will yield the following PIs,

ŷi ± t
1− α

2
d s

√
1 +�T

Θ ∗ŷi(JT J + λ I)−1(JT J)(JT J + λ I)−1 �Θ ∗ ŷi (10)

The procedure for calculation of s in (10) has small differences with the one used
in (6). These differences arise from the corresponding cost function considered in
each method. An acceptable estimate of s in (10) has been given below,

s =
√

SSE
n− trace(2Γ −Γ 2)

(11)

where,

Γ = J(JT J + λ I)−1JT (12)
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Generally, training NNs based on (9) and then using (10) for constructing PIs yields
more acceptable results. In case of using (3) and (6) for analysis, some trained net-
works must be discarded due to quick convergence of optimization to some val-
ues, which are not close to the minimum. More discussion on these issues can be
found in [21].

2.2 Bayesian Technique

Bayesian technique for constructing PIs is based on NN Bayesian training algorithm
[23]. The method aims at developing a NN with the best performance and the least
parameters so that the problem of over-fitting can be effectively controlled. The
Bayesian approach has the considerable benefits that validation and test sets are not
needed for NN training. From a Bayesian inference perspective, the NN parameters
are considered as random variables with unknown distributions. The posterior prob-
ability of a NN model with the set of parameter Θ and the training dataset D can be
determined using Bayes’ rule:

P(Θ |D,ρ ,β ,M) =
P(D|Θ ,β ,M)P(Θ |ρ ,M)

P(D|ρ ,β ,M)
(13)

where P(D|Θ ,β ,M) and P(Θ |ρ ,M) are the likelihood function of data occurrence
and the prior density of parameters respectively. P(D|ρ ,β ,M) is also a normaliza-
tion factor enforcing that total probability is one. It is possible to consider different
distributions for P(D|Θ ,β ,M) and P(Θ |ρ ,M). In order to simplify further analysis,
it is often assumed that they are Gaussian,

P(D|Θ ,β ,M) =
1

ZD(β )
e−β ED (14)

and

P(Θ |ρ ,M) =
1

ZΘ (ρ)
e−ρEΘ (15)

where ZD(β ) =
(

π
β

) n
2

and ZΘ (ρ) =
(

π
ρ

) p
2
. n and p are number of training samples

and NN parameters respectively. Substituting (14) and (15) into (13) results in,

P(Θ |D,ρ ,β ,M) =
1

ZF(β ,ρ)
e−(ρEΘ+β ED) (16)

When training NNs using Bayesian method, the purpose is to maximize
P(Θ |D,ρ ,β ,M). Such maximization can be achieved through minimization of the
following cost function,

E(Θ) = ρEΘ + β ED (17)

where ED is SSE defined in (3) and EΘ is the sum of squares of the network weights
(Θ TΘ ). It has been shown [23] [37] that the following values for β and ρ maximize
the posterior probability function in (16),
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β MP =
γ

ED (Θ MP)
(18)

ρMP =
n− γ

EΘ (Θ MP)
(19)

γ is the effective number of parameters,

γ = p−2ρMPtr
(
HMP)−1

(20)

where HMP is the hessian matrix of E(Θ) computed for Θ ∗ (HMP = ρ∇2EΘ +
β ∇2ED). γ is a measure of the number of NN parameters effectively used for error
function minimization. Usually, the LevenbergMarquardt optimization algorithm is
applied to approximate the Hessian matrix (HMP) [38].

Application of this technique for training NNs results in NNs that the variance of
their prediction is,

σ2
i = σ2

D + σ2
Θ MP =

1
β

+ ∇T
Θ MPŷi (HMP)−1 ∇Θ MP ŷi (21)

Therefore, a (1−α)% PI for the i-th future sample can be constructed as follows,

ŷi ± z1− α
2

(
1
β

+ ∇T
Θ MPŷi (HMP)−1 ∇Θ MP ŷi

) 1
2

(22)

Further information about this technique and its detailed mathematical discussion
can be found in [23] [37].

3 A New Assessment Measure for Prediction Intervals

As discussed before, literature does not offer a suitable measure for comprehensive
assessment of PIs. In this section a new general examination measure is proposed
which covers both important aspects of PIs: length and coverage probability. As the
proposed measure is general and developed based on features of PIs (not the utilized
method for constructing PIs), it can be applied in other relevant studies as well.

Theoretically, one can characterize PIs based on their length and coverage prob-
ability. One approach for quantitative assessment of PI lengths is to normalize each
interval length with regard to range of targets. Following this, a measure called Nor-
malized Mean Prediction Interval Length (NMPIL) can be obtained as follows:

NMPIL =
1

nξ

n

∑
i=1

(U(xi)−L(xi)) (23)

Normalization of PI length by the range of targets makes the objective comparison
of PIs possible, regardless of techniques used for their construction or magnitudes
of the underlying targets. The upper bound of NMPIL is one, obtained for the case
that minimum and maximum of targets are considered as upper and lower bounds
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of PIs for all targets. Usually, the smaller the NMPIL, the more useful the PIs. The
lower bound of NMPIL is model dependent and is dominated by MSE of NN modes.
Assuming that in the ideal case, the gradient term in (10) vanishes for unobserved
samples, one can obtain the lower bound of NMPIL for the delta technique as follows,

NMPILminD =
1

nξ

n

∑
i=1

2t
1− α

2
d s (24)

If the Bayesian method is applied, this lower bounds will be,

NMPILminB =
1

nξ

n

∑
i=1

2z1− α
2 β

−1
2 (25)

Practically, achieving NMPILmin for PIs is far remote. This stems from the fact that
gradient terms in (10) and (22) are not ignorable. Indeed, they are often big for
unobserved (test) samples, as test samples are not used in the training stage of NNs.

While NMPIL relates to the length of PIs, another measure is required for moni-
toring coverage of PIs. If PIs are deliberately squeezed in favor of achieving smaller
NMPIL, many targets may drop out of PIs. Therefore, another measure is required
for quantification of this phenomenon. The PI Coverage Probability (PICP) indi-
cates the probability that the underlying targets will lie within the constructed PIs.
It can be calculated through counting the covered targets by PIs:

PICP =
1
n

n

∑
i=1

ci (26)

where ci = 1 if yi ∈ [L(xi),U(xi)], otherwise ci = 0. Theoretically, PICP should be
as close as possible to its nominal value, (1−α)%, the confidence level that PIs
have been constructed based on. Unfortunately, in reality this often does not happen.
Imperfectness of PICP is attributable to the presence of noise in samples and severe
effects of uncertainty. Other issues such as under-fitting and over-fitting (which are
direct results of using (very) small or big NNs) also contribute to the unsatisfactory
smallness of PICP.

It is always desirable to construct PIs whose PICP is the highest possible value.
Such high PICP can be simply achieved through considering target ranges as PIs
for all samples. Needless to say, wide PIs like these ones are practically useless.
This argument makes clear that judgment about PIs based on PICP without consid-
ering length of PIs (here, NMPIL) is always subjective and biased. It is essential to
evaluate PIs simultaneously based on their both key measures: length (NMPIL) and
coverage probability (PICP).

Generally, PI lengths and PICP have a direct relationship. The wider the PIs,
the higher the corresponding PICP. This means that as soon as PIs are squeezed,
some targets will lie out of PIs, which results in a lower PICP. According to this
discussion, the following Coverage-Length-based Criterion (CLC) is proposed for
comprehensive evaluation of PIs in term of their coverage probability and lengths,
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Fig. 1. Evolution of the sigmoidal function for different values of its parameters (η and μ)

CLC =
NMPIL

σ(PICP,η ,μ)
(27)

where σ(·) is the sigmoidal function defined as follows,

σ(PICP,η ,μ) =
1

1 + eη(PICP−μ) (28)

The level of confidence that PIs have been constructed based on can be appropriately
used as a guide for selecting hyperparameters of CLC. One reasonable principle is
that we highly penalize PIs that their PICP is less than (1−α)%. This is based on
the theory that the coverage probability of PIs in an infinite number of replicates
will approach towards (1−α)%.

Fig. 1 demonstrates σ(PICP,η ,μ) for different values of η and μ . It can be seen
that the sigmoidal function sharply drops immediately after some values of PICP.
These values are determined based on the confidence level of PIs, (1−α)%. Ac-
cording to curves in Fig. 1, if PICP is less than some nominal thresholds, CLC will
highly increase, no matter what the length of PIs is. In this way, PIs with not satisfac-
torily high coverage probability are highly penalized. Generally, smallness of CLC
is an indication of goodness of constructed PIs (simultaneously achieving small
NMPIL and high PICP). Smallness or bigness of CLC is totally case-dependant.
However, if PICP is sufficiently high, CLC and NMPIL will be almost the same.

4 Experiment and Numerical Analysis

4.1 Data and Experiment Procedure

The delta and Bayesian techniques are here applied for constructing PIs for load
datasets used in [16]. The purpose of load forecasting is to predict the two-day-ahead
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loads based on the past observations. The dataset includes records of consumed loads,
weather condition, and calendar information for five years. For this case study, NN
model includes 15 inputs and one output (load demand in the next day). Inputs are
loads in the last hours (3), temperatures in three major cities in the last hours (9), day
and month (2), and the corresponding load last year in the same day and hour (1). It
is important to mention here that the main purpose of this paper is not to develop op-
timal NN models for load forecasting. Generally, accuracy of load forecasts depends
on many factors including, among others, set of inputs (independent variables), NN
structure, training algorithm (over-fitted or under-fitted), and targets’ behavior. Often
some kinds of analysis are conducted for selection of appropriate inputs or determin-
ing the optimal structure of NN models [39] [40]. The main objective here is to show
that point prediction error always exists. Therefore, point predictions are unreliable.
In this study, the aforementioned inputs are used for developing NN models based
on the procedure schematically shown in Fig. 2. As NNs are data-driven techniques,
their prediction performance highly depends on data, their initial parameters, and
their structure. To avoid any subjective judgment about NN prediction capabilities,
samples are split into training (70%) and test (30%) samples. Then NN is trained
using training sets and examined using test samples. This procedure is repeated B
times. Then average the results for different measures, including global statistics and
CLC, are computed. Experiment continues until exploration of all potential struc-
tures. Through this way, effects of random initialization of NN parameters or data
distribution are minimized.

In the experiments, different structures are examined for developing NN mod-
els. The two layer feedforward NN models are developed in the experiments. The
quantity of neurons in their first and second hidden layers are changed within a grid
([1,nU pper

i ], i = 1,2). nU pper
i can be determined based on the number of available

samples and the proposed method in [31], guaranteeing d ≥ 30. Over a grid includ-
ing of ∏2

i=1 nU pper
i nodes, networks have been trained B times (totally B∏2

i=1 nU pper
i

NNs are investigated in experiment).
Table 2 lists some parameters and quantities used in both case studies. In order

to give all independent variables equal chance to contribute to the built models, all
variables are pre-processed to have zero mean and unit variance.

Table 2. Parameter values used in experiments

α 0.1
η 200
μ 0.875
B 5
nU pper

1 10

nU pper
2 10

Dtrain 70% of all samples
Dtest 30% of all samples
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Fig. 2. Experiment procedure

Fig. 3. Load fluctuation (five year samples)
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4.2 Results and Discussion

The samples for experiments in this study have been plotted in Fig. 3. Visual inspec-
tion of samples illustrates that load consumption peaks happen in summer. Also,
there is an upward trend in samples, which indicates growth of load consumption
through the five years.

Fig. 4 shows the average coefficient of determination (R2) for test samples com-
puted over a gird of NNs. The maximum of R2 is 94.8%, which is low and unsatis-
factory. It is achieved for one of the biggest investigated NNs with 8 neurons in the
first layer and 10 neurons in the second layer. Also the mean and standard division of
R2 are 91.8% and 0.84%. Taking into account these values and the maximum of R2,
one may conclude that no matter which structure is used or what the initial param-
eters are, NN point prediction performance is poor. A stable pattern in the obtained
results is that as the NN size increases, the R2 tends to decrease very slowly. Based on
Fig. 4, this reduction plagues for NNs with more than 5 neurons in their second layer.

Fig. 4. Average R2 for test samples over a grid of 100 NNs

The scatter plot of actual loads against the predicted ones has been given in Fig. 5.
Prediction has been done using a NN with 8 neurons in its first layer and 5 neurones
in its second layer. R2 index for this particular case is 0.8513 that is again low.
Examination of MAPE for this case shows that it is also quite big (227%). Even if
the outliers are deleted from results, it does not become less than 75%.

Fig. 6 and Fig. 7 represent CLCs of PIs constructed using delta and Bayesian tech-
niques, respectively. With the sake of better graphical representation, CLCs of a few
outliers have been changed to 100. Both methods show promising results in term of
length and coverage probability of PIs. Since CLC is always less than 100 (with the ex-
ception of a few outliers when using delta technique), it is reasonable to conclude that
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Fig. 5. Scatter plots between actual and forecasted loads using a NN with (8-5) structure

Fig. 6. CLC for PIs constructed using the delta technique (average results over a grid of 100
NNs)

PICP has always been bigger or at least equal to its nominal value (90%). Therefore,
all constructed PIs are acceptable in term of their PICP. The shortest PIs are obtained
using the delta technique (14.66%, more than 2% less than shortest PIs constructed
using the Bayesian technique). In contrast, constructed PIs using the Bayesian tech-
nique are in average shorter with smaller standard division. These behaviours can be
observed in fluctuations of CLC on the grid of NNs. While for PIs of the Bayesian
technique, fluctuations are smooth and decreasing, they are pretty big and erratic for
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Fig. 7. CLC for PIs constructed using the Bayesian technique (average results over a grid of
100 NNs)

PIs of the delta technique. This indicates that PIs constructed using the delta tech-
nique are more affected by initial weights of NN models. For both cases and with the
exception of some outliers, there is an overall downward trend in CLCs.

In Fig. 8, PIs of test samples constructed using the delta technique have been
demonstrated. The developed NN has 8 and 5 neurons in its hidden layers. CLC,
PICP, and NMPIL for this particular case are 18.87, 93.9%, and 18.87%. As PICP is
above the nominal confidence level (90%), CLC and NMPIL are the same. NMPIL
is less than one fifth of the range of targets. High PICP and small NMPIL means that,
(i) PIs well cover the actual values of targets, and (ii), they are satisfactorily narrow
and, therefore, can be used instead of unreliable predicted values. One should make
note of the fact that upper and lower bounds of PIs can be interpreted and used
like the traditional predicted points. The upper bounds of PIs can be interpreted as
the highest load demand in the future (the pessimistic case). In contrast, the lower
bounds indicate the minimum load required in future (the optimistic case). Based on
these interpretations, one may consider both upper and lower bounds when devel-
oping power generating schedules. A conservative approach is to consider all upper
bounds as future demands and prepare the operation schedule based on them.

It is also interesting to monitor variation of CLC versus network size. In
Fig. 9, results shown in Fig. 6 and Fig. 7 have been shown in format of a vector.
The top and down plots show CLCs for PIs constructed using the delta and Bayesian
techniques, respectively. The horizontal axis is the number of NN parameters. These
two plots clearly show that CLCs are highly affected by NN size. As the provided
results are averages of five replicates, variations are more likely to be solely due
to NN structure not the parameters of NN. The bigger the NNs, the smaller the
CLCs, for the Bayesian case. This is due to the promising feature of Bayesian train-
ing algorithm. It guarantees that no matter what the size and structure of NNs is,
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Fig. 8. PIs constructed using the delta technique (NN with (8-5) structure)

Fig. 9. Distribution of CLC versus NN number of parameters, (top) CLC for PIs constructed
using delta technique, (down) CLC for PIs constructed using the Bayesian technique

over-fitting never happens. Therefore, even if the NN size increases, there is no
change in the NN performance. From PI construction perspective, this happens for all
NNs with more than 100 parameters, and their CLCs are almost the same. For the case
of using the delta technique for constructing PIs, the same relationship between CLCs
and NN size is observable. Off course, there are cases that they do not follow this
principle. Such cases can be considered as highly over-fitted NNs. This means that
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even if terms related to the training set in (10) remain small, the generalization power
of NNs is highly weakened. Consequently, the PIs are widened.

In our analysis and modeling procedure here, many networks with different num-
ber of neurons were investigated. It is a practical aspect of the delta method based
on (10) that there is no need to discard any network due to singularity or near sin-
gularity of (JT J) matrix. Our experience shows that in the case of using (6) for
constructing PIs, many networks are required to be discarded due to the singularity
problem of (JT J) matrix. This comfort has been achieved through considering λ
parameter in (10).

The Bayesian technique for constructing PIs is robust against increase of NN pa-
rameters. Still PIs can be optimized to have shorter length (smaller NMPIL) with
higher coverage probability. The current common practice is to train NNs to min-
imize the prediction error and then used the developed NNs for constructing PIs.
Instead of this, it is more appropriate to adjust NN parameters on the basis of mini-
mization of CLCs. In this way, PIs are squeezed while guaranteeing their high cov-
erage probability. Such study is the subject of ongoing research.

5 Conclusion

In this study, the problem of load forecasting in power system was studied from a
new perspective. Instead of using neural networks for point prediction, NNs were
employed for constructing prediction intervals. As these prediction intervals carry
more useful information than predicted values of loads, they are more reliable (due
to their accuracy indication) and more practical (providing a range of probable loads).
The delta and Bayesian techniques were implemented for constructing prediction in-
tervals. Also, a new measure was developed for objective assessment of prediction
intervals. The proposed measure simultaneously covers both length and coverage
probability of prediction intervals. In the experiments with real data, it was shown
that the reliability of neural networks for load forecasting is not very high. At the
same, constructed prediction intervals are satisfactorily in term of the proposed mea-
sure. Exploring different structures of neural networks revealed that the delta tech-
nique yields narrower prediction intervals than the Bayesian technique. In contrast,
the Bayesian technique is more robust to the change of neural network structure.

It is our hope that this study will enlighten and inspire researchers to greater em-
pirical study of prediction intervals for modeling and analysis of power systems.
Further study may be conducted in different streams. In the area of power engineer-
ing, research can be conducted to investigate practicality and reliability of prediction
interval for operation planning in power systems. Also, the prediction intervals con-
struction methods and the proposed measure can be applied to similar problems,
including price forecasting. From the computational intelligence perspective, it is
very important to develop and train neural networks on the basis of minimization of
cost functions directly related to the prediction interval qualities rather than point
prediction error. Research is ongoing in these directions.
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Neural Network Ensemble for 24-Hour Load 
Pattern Prediction in Power System 

Krzysztof Siwek1 and Stanislaw Osowski* 

Abstract. The paper is concerned with the problem of accurate prediction of the 
24-hour ahead load pattern in the power system. We propose the solution relying 
on the application of many different neural predictors combined in an ensemble. 
Each neural network is responsible for the same job – predicting the 24-hour load 
pattern for the next day. The series containing 24 values of the load pattern 
forecasted by each predictor are combined together using principal component 
analysis, which extracts the most important information and reduces the size of 
vector used in the final stage of prediction. The final predictor has the form of 
another neural network. The developed system of prediction was tested on the real 
data of the Polish Power System. The results have been compared to the 
appropriate values generated by other methods.  

1   Introduction  

The prediction of pattern corresponding to 24 hours ahead load demand is very 
important in industrial research and practice. It is an essential instrument in the 
reliable and economical generation and distribution of electrical energy, since 
enables to deliver the really needed power and in this way to reduce the cost of 
energy. Depending on the time horizon the forecasting can be generally divided into 
short-term, mid-term and long-term. Short-term load forecasting, ranging from an 
hour to a week, fulfills important function used in unit commitment, power transfer 
scheduling and economic emission dispatch. On the other side the mid/long term 
forecasting covers from a few weeks to several years. It is used for the maintenance, 
purchasing fuel as well as planning the development of the power plants. 

In this paper we will consider the short term load forecasting aiming in prediction 
of the 24-hour load pattern of the power system. A wide variety of forecasting 
models suited for this task have been proposed in the past. Most of them can be 
classified into two broad categories: the statistical methods and artificial intelligence. 
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To the most known approaches of the first group belong the regression models 
(ARX, ARMAX, ARIMA), where the load is a random variable function of a set of 
independent deterministic variables or time series (stochastic or Box-Jenkins 
models). These approaches consider the load as the result of an stochastic process 
[10, 28]. The second group is of most interest now and is represented by the neural 
networks and SVM [2, 12, 13, 18, 27], fuzzy systems [19, 24], evolutionary 
algorithms [23], expert systems [17] and hybrid models  [1, 6, 7, 11, 16, 22] which 
take advantage of several models. 

Nowadays most often used are neural networks due to their capability to 
approximate any continuous nonlinear function and their self-adaptation properties. 
The term neural networks has been extended now to many different kinds of neural 
and neural alike methods, like Multilayer Perceptron (MLP), self-organizing (SO) 
Kohonen network, Support Vector Machine (SVM), Radial Basis Function (RBF), 
etc. [9]. Although many different approaches have been developed in the past there 
is still need to improve the accuracy of the predicting systems.  

The neural based methods differ by the particularity of the network structure and 
the basic nonlinear functions used in prediction, principle of operation and the way 
of learning. They depend their prediction ability on different aspects of processing 
of the learning data. For example application of Kohonen network exploits the 
concept of clusterization of similar data points [4, 15] while the MLP, RBF, Elman 
networks and SVM take into account the universal approximation ability of these 
networks [9]. On the other hand MLP network performs the global approximation, 
the RBF network is a typical local approximation tool, while SVM may apply both, 
depending on the applied kernel (the sigmoidal, polynomial or Gaussian kernels). 
The Elman network is a recurrent structure differing significantly from the 
feedforward ones, like MLP, RBF or SVM. Moreover we should note also great 
differences in learning algorithms of these types of networks. 

The most often used approach in any application of neural networks is to train 
different networks and then take this one, which guarantees the best reproduction 
results on the data not taking part in learning (the verification data). Much wiser 
approach is to take into account all partial prediction results, combine them into 
one ensemble system of presumably better quality and treat the combined output 
as the final forecast [14, 21].  

This paper develops and investigates the latter philosophy. Instead of discarding 
the less fortunate prediction results we analyze them and take the conclusions of 
such analysis into account at preparation of the final forecasting. The ensemble of 
neural predictors is composed of few individual neural networks. The prediction 
data generated by each predictor of ensemble are combined together to form 
common forecasted power pattern for 24 hours ahead. Integration of the individual 
predictors is achieved here by applying the principal component analysis (PCA) of 
data and using the most important components as the input signals for the final 
neural predictor. 

This 2-step approach to the power demand forecasting was verified by the 
numerical experiments concerning the Polish Power System (PPS). The results will 
be compared to the other methods of forecasting. It will be shown that our approach 
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leads to the great improvement of the accuracy of prediction. For the same data we 
were able to reduce the total mean squared errors in a significant way. 

2   Analysis of the 24-Hour Load Pattern Prediction Problem 

The accurate prediction of the time series corresponding to the electric power 
consumption in the country belongs to the challenging tasks. It is due to the facts 
that the load of the power system depends on many different, not controllable 
factors of statistical nature resulting from the sum of many individual consumers, 
season of the year, the potentially abrupt changes of weather as well as on some 
unpredictable events having great impact of temporary consumption of electricity. 
If we take into consideration the Polish Power System of the last two years we 
have noted that at the mean load of about Pmean=16000MW the observed standard 
deviation was equal σ=2800MW. Fig. 1 presents the typical hourly change of 
power consumption of Poland in the last two years.  
 

 
Fig. 1. The change of hourly power consumption of Poland of two years 

We can observe the off-peak periods corresponding to late spring and summer 
months and also peak periods corresponding to autumn and winter months (the 
heating seasons). In the week scale we can also observe some loads trends: large 
consumption of power in working days and much smaller need for power at 
weekends, when most factories stop their activities.  

The difficulty of hourly load prediction is well illustrated on the plane of power 
formed by two consecutive hours. Fig. 2 presents such plot for PPS corresponding 
to the data of Fig. 1. The horizontal axis represents the power consumption at hth 
hour and the vertical one at (h+1)th hour. We can see wide distribution of such 
points, differing significantly from the diagonal shape. 
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Fig. 2. The distribution of the power consumption in PPS for two consecutive hours 

3   The Proposed Neural Approach to Load Prediction 

The key point in our approach is using many independent neural predictors. All of 
them are fed by the same learning data. Their output signals are grouped together 
and are subject to PCA analysis. Few most important principal components form 
the input data to the final neural predictor, which delivers the really forecasted 
values of the load pattern for the next 24 hours. 

3.1   The Individual Neural Predictors 

In the first step of our solution we apply the ensemble of individual neural predictors 
learned on the same data set. To get the best results we have to chose predictors of 
similar quality, which are independent from each other. The independence of their 
operation is a key point for getting high quality of performance of the ensemble. At 
independent operation of predictors each of them commit the prediction errors at 
different points. Taking into account all results at any hour we are able to compensate 
for same errors and in this way to reduce the total error of prognosis. In our solution 
we have chosen 4 neural type predictors: the multilayer perceptron, Elman recurrent 
network, Support Vector Machine and self-organizing Kohonen network. All of them 
are known from excellent operation in nonlinear signal processing. 

3.1.1   The Supervised Neural Predictors 

The first three predictors belong to the supervised networks and perform the role 
of the universal approximators. To represent the generally unknown, next day 24-
hour load pattern, they map the past loads of the system into the present forecasted 
load at dth day and hth hour. The general supervised model of the load forecast 
has been assumed in the following mathematical form [18] 
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( )),(),...,,1(),,(),...,1,(,,,),(ˆ HhDdPhdPHhdPhdPstfhdP −−−−−= w  (1) 

where w represents the vector of parameters of the network, H and D - the number 
of past hours and days, respectively, influencing the prediction process, t - type of 
the day (workdays, weekends and holidays) and s - the season of the year (autumn, 
winter, spring or summer). The symbol ),(ˆ hdP  represents the predicted load and 
the ),( jhidP −−  written without hat – the known values of the load of the 
appropriate type of the day and hour from the past. In this mathematical model we 
have omitted the temperature because the prediction is concerned with the data 
corresponding to the territory of the whole country. In the country like Poland the 
temperature is changing a lot in different regions of the country, so it would be 
difficult to adjust the proper value of the temperature for the particular day. 
However we should observe that the temperature information is indirectly 
contained in the power consumption. On the other side in the case of forecasting 
the energy consumption for a small region of the country the inclusion of 
temperature and gradient of temperature in the model would be beneficial and 
easy to consider in our approach. 

To provide the similar impact of all input variables the data samples should be 
normalized. The normalization may take different forms, from which the simplest 
one is to divide the real load by the mean value of the data base of the Power 
System, corresponding to the years taking part in experiments.  

The particular form of the applied predictors depends on their structure and 
way of learning. The expression (1) may be associated with MLP network of the 
particular structure presented in Fig. 3. The MLP [9] consists of many simple 
neuron-like processing units of sigmoidal activation function grouped together in 
layers. The synaptic connections exist only between the neighboring layers. The 
number of hidden layers and neurons of sigmoidal non-linearity are usually 
subject to adjustment in an experimental way by training different structures and 
choosing the smallest one, still satisfying the learning accuracy. The output layer 
contains 24 linear neurons. Their number is equal to the number of hours of 
prediction (24 hours ahead). The signals of output neurons represent the 
normalized forecasted 24-hour load pattern. The learning procedure of MLP is 
reduced to the minimization of the Euclidean error measure between the actual 
and desired output signals over the entire learning data set. The most effective 
learning approach applies the gradient information and uses the first or second 
order optimization algorithms, like Levenberg-Marquard or conjugate gradient [9]. 
Gradient vector in multilayer network is computed using the backpropagation 
algorithm. 

The input layer represents the excitation nodes. One node is used for binary 
coding of the type of day (working day or non-working day) and two - the season 
of the year (winter, spring, summer and autumn). Most nodes represent the loads 
of some past days (up to D) and previous hours (up to H). All these signals put to 
the input nodes form the input vector x.  
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Fig. 3. The multilayer perceptron structure used at forecasting the 24 hour load pattern 

 
The important point in this approach is adjusting the length of the input vector 

x, which depends explicitly on the chosen values of D and H. There are some 
methods for optimal selection of the input variables, based on data mining [2, 8]. 
To such tools belong: the correlation analysis, PCA, projection pursuit, application 
of the linear SVM feature ranking, etc [8]. In this work we have applied the 
correlation analysis studying the degree of correlation of the learning errors of 
MLP with different numbers of D and H. On the basis of the numerical 
simulations we have found that optimal number of input nodes in our case is 18, 
which corresponds to D=3 and H=3.  

The optimal number of hidden layers and neurons in these layers was found by 
using trial and error approach. It means learning many different structure MLP 
networks and accepting this one which provides the least value of the error on the 
validation data extracted from the learning data set (usually 20% of the learning 
set). On the basis of these experiments we have found the optimal structure 
consisting of two hidden layers of 20 and 15 sigmoidal neurons, respectively. In 
this way the optimal structure of MLP network used in prediction is described as 
18-20-15-24.  

Elman network is a two layer recurrent structure of sigmoidal neurons, 
implementing the feedback from the hidden layer to the input of the network [9]. 
This feedback path allows Elman network to learn to recognize and generate 
temporal patterns, which are of interest in prediction. The external input signals to 
Elman network are the same as for the MLP network. The actually applied 
network structure is shown in Fig. 4.  
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Fig. 4.  The Elman structure used for forecasting the 24-hour load pattern  

The most distinct difference of Elman network to the MLP is the feedback. 
Thanks to its existence we are able to reduce the complexity of the network. In the 
numerical experiments we have used the structure 18-8-24 applying 18 input 
external nodes containing the same signals as in MLP, only 8 hidden neurons and 
24 output neurons. The significant reduction of the synaptic weights was possible 
thanks to the feedback. The learning strategy of Elman network uses similar 
principle of minimization of error function defined for the learning data, 
implemented in the same way as for MLP. In our experiments it was performed 
using the Levenberg-Marquardt algorithm [9]. 

Support Vector Machine is another powerful neural like structure developed by 
Vapnik [25]. We have used it in a regression mode. Note that SVM contains only 
one output unit, hence to solve the prediction of the load pattern for 24 hours 
ahead we have to train 24 separate SVM networks. In training them we use the 
same input data arranged in an 18-element vectors x, identically as for MLP and 
Elman networks. In distinction to the previous networks SVM does not predefines 
the number of hidden units (kernel functions). This number is automatically 
determined in the learning procedure. 

The learning strategy of SVM network is relied on another philosophy than in 
the MLP and Elman networks. Instead of minimizing the error function defined 
for the learning data it minimizes the weights of the network, while keeping the 
output signals as close as possible to their destination values [20, 25]. Application 
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of Lagrange function to such problem leads to the final quadratic optimization task 
(so called dual problem), involving Lagrange multipliers iα , 'iα  (i=1, 2, …, p) 

responsible for the functional constraints  
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where p is the number of learning data (xi, ti), )()(),( j
T

ijiK xxxx ϕϕ=  the inner-

product kernel function defined in accordance with Mercer’s theorem [20], φ(x) the 
activation function vector, ε the assumed tolerance and C the user specified 
regularization parameter. The variables ε and C are free hyperparameters that control 
the Vapnik-Chervonenkis dimension of the approximating function and influence 
the generalization abilities of SVM. Both must be selected a‘priori by the user.  

The solution of the dual (quadratic) problem with respect to Lagrange 
multipliers is relatively easy and there are many very efficient algorithms leading 
to the global minimum [20]. After solving the dual problem we can determine the 
network output signal y(x) through the optimized Lagrange multipliers ', ii αα  and 

the kernel function K(x,xi) in the following way [20] 
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where Nsv is the number of so called support vectors (the number of nonzero 
Lagrange multipliers) and b is the bias. In practice the most often used kernels are 
the Gaussian and polynomial functions. 

To get reliable results of learning we have to make proper choice of 
hyperparameters ε and C. Constant ε determines the margin within which the error 
is neglected. The smaller its value the higher is the accuracy of the required 
matching of the response y(xi) of SVM to the proper target values ti in learning data 
set. However, too accurate matching of the learning data may result in the loss of 
generalization ability of the network, leading to the increase of the testing error. 
The constant C is the weight, determining the balance between the complexity of 
the network characterized by the weight vector w, and the error of approximation. 
For the normalized input signals the value of ε is usually adjusted in the range  
(10-3 – 10-2) while C is much bigger than the value of 1 (the typical value 1000). 

3.1.2   The Self-organizing Approach to Prediction 

To differentiate the types of predictors as much as possible we have additionally 
applied the self-organizing Kohonen network approach [4, 9]. This network is 
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learned by using competitive algorithms [9]. The main task of the self-organizing 
network is to learn the characteristics of the daily loads (profile vectors) of the 
system, defined in the way [4] 

)(

)(),(
),(

d

dPhdP
hdp m

σ
−=

                                            
(5) 

for each day d and 24 hours h=1, 2, ..., 24. The symbol P(d,h) is the real load of 
dth day at hth hour, Pm(d) is the mean value of the load of dth day and σ(d) the 
standard deviation of the load of dth day. The set of 24-load profiles forms the 

profile vector for dth day [ ]Tdpdpdpd )24,(),...,2,(),1,()(
���� =p .  

The most important task of Kohonen network is to group similar data vectors into 
clusters. The days of the same type belonging to the same seasons of the year have 
similar profile patterns and are grouped together. Each cluster is represented by one 
neuron, acting in the competitive mode. Once the network is trained, each neuron 
represents the data closest to its weight vector in the chosen metric space. The 
prediction of the load for dth day and hth hour may be expressed now in the form 

)(ˆ),(ˆ)(ˆ),(ˆ dPhdpdhdP m+= σ                                   (6) 

where the variables with hat mean the predicted values. To make the prediction of 

the load ),(ˆ hdP  for the particular day and hour we have to know not only the load 

profile ),(ˆ hdp , but also the mean value )(dPm  and standard deviation )(ˆ dσ  of 

the load for this day. 
The predictions of the mean value and standard deviation for the particular day 

have been obtained by applying the standard MLP network [18] in a way very 
similar to the already presented 24-hour load pattern approach. Fig. 5 presents the 
general structure of this network used for prediction of the mean value of the dth  
 
 

 

Fig. 5. The MLP network structure used for prediction of the daily mean load 
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day and of wth week. The mean daily loads taken into account correspond to D 
past days of the same week and D+1 days of the previous W weeks. 
Similar structure is used for standard deviation prediction. The only difference is 
substitution of the mean values by the standard deviations of the daily load. 
The profile vector prediction for dth day is estimated by averaging the winner 
vectors of the Kohonen network for this particular day (for example Tuesdays in 
July) from the past history, i.e.,  
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(7) 

where kdi is the quantity of appearances of ith neuron among the winners in the 
past for this particular day type and wi is the weight vector of the winner. 

3.2   Principal Component Analysis of Data 

Each neural predictor described in the previous section generates the series of 24 
load values predicted for 24 hours of the next day. Our task in the next step is to 
compress the amount of this data by keeping the essential part of the information. 
We perform this step by applying the principal component analysis of the data  [5]. 

Consider a data set generated by M predictors arranged in the form of the 
matrix Z of the size )24( Mp × , where p is the number of days under prediction 

and M the number of predictors (in our case M=4). Each predictor output for one 
day contains 24 predicted power demands for the particular hours of this day. The 
rows of the matrix Z are the composition of the concatenated outputs of M 
predictors for the respective day. The aim of the principal component analysis is to 
map these p high-dimensional vectors into a lower dimensional space [5, 9]. In 
this way each long vector z (the rows of the matrix Z) will be represented now by 
the vector y of smaller dimension K, containing sufficiently high percentage of the 
most important part of the original information.  

On the basis of the learning data set we form first the auto covariance matrix 
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and at the define the PCA matrix [ ]T

K
wwwW ,...,,

21
=  formed from K most 

important eigen vectors wi (i= 1, 2, …, K) associated with the largest eigenvalues. 
The transformation of 24M-dimensional vectors z into lower K-dimensional 
vectors y is defined by a simple linear relation  

Wzy =                                                           (9) 

The transformation defined in this way determines the low-dimensional vector y, 
representing the essential part of information concerning the load pattern for the 
next 24 hours. 
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3.3   Final Predictor 

The set of p low-dimensional vectors y is used in the next stage as the input 
training data for the final predictor, whose output signals will represent the 
finally forecasted 24-component time series of the next 24 hours of the day. To 
get high quality of prediction results we have to use the predictor of highest 
possible accuracy. On the basis of results of the first stage prediction we decided 
to check two best neural structures: the MLP and SVM. In the case of MLP only 
one network of 24 linear output neurons is used. Applying SVM we have to 
train 24 SVM structures (each specializing for the particular hour of the day) fed 
by the same input data. As the learning data for the final predictor we have used 
the pairs (yi, ti) for i=1, 2, ..., p. Vectors yi result from PCA analysis and ti are 
the known load patterns used also in learning the neural predictors in the first 
step of our approach. Fig. 6 presents the final structure of forecasting system 
described in this paper. 
 

 

Fig. 6. The diagram of the proposed 2-stage forecasting system 

It contains 4 individual predictors (MLP, SVM, Elman and Kohonen networks). 
The PCA fed by 24M (M=4) signals reduces their size to K signals. These signals 
form the excitation of the second stage neural predictor, delivering the final 
forecasted values of the load pattern for 24 hours of the next day. 

4   Numerical Results  

4.1   The Data Base 

The numerical experiments have been performed for the data of the Polish Power 
System of three years (over 26280 hours). The same data set applied in learning 
and testing has been used for each individual predictor. The first two years (17520 
hours) have been applied only in the learning stage and the last year, not taking 
part in learning (8760 hours) has been left for testing all trained predictors. The 
data samples have been normalized dividing the real load by the mean value of the 
data base of the Polish Power System of 3 years taking part in the experiments. 
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4.2   The Neural Predictors  

The individual predictors have been adapted on the basis of the learning data. The 
optimal MLP network of the structure 18-20-19-24 was trained using the 
conjugate gradient algorithm [9]. The input signals of the neural network have 
been formed by the normalized loads of the nearest past 3 hours of the actual day 
and 4 hours (the actual hour and 3 nearest past) for 3 previous days of the same 
type (15 components together), as well as the type of the season (two nodes coded 
in binary way: 00 – spring, 01 - summer, 10 – autumn an 11 – winter) and type of 
the day (one node: 1 – working days, 0 – non-working days). The hidden neurons 
were sigmoidal and the output neurons linear. The particular numbers of hidden 
neurons have been determined in the introductory stage of experiments using the 
validation data set extracted from the learning data (1/5 of the set). Each output 
neuron was responsible for prediction of the load for the particular hour of the 
day. The network was learned by applying the conjugate gradient algorithm, 
implemented on Matlab platform [29]. 

The Elman recurrent network structure (18-8-24) applied also 18 input nodes 
containing the same signals as in MLP. The structure was composed of 8 hidden 
neurons and 24 output neurons. The network was learned by applying Levenberg-
Marquardt algorithm implemented on Matlab platform [29]. 

The SVM network of also 18 inputs applies special strategy of prediction since 
it possesses only one output neuron. We have trained 24 separate SVM networks 

of Gaussian kernel functions 
2

),( i
i eK xxxx −−= γ  for prediction of 24-point time 

series (each SVM network responsible for prediction of the load of the particular 
hour of the day). The hyperparameters applied in prediction were: C=1000, γ=0.5 
and ε=0.01. The modified Platt algorithm implemented on Matlab platform was 
applied in learning all SVM networks [20]. 

In the self-organizing approach we have applied 100 self-organizing neurons 
for prediction of the profiles. This number was found after series of introductory 
experiments. After adapting the weights of Kohonen network the learning data of 
all days have been tested and the winners determined for the profile vectors of all 
days. These winners are then used for prediction of the profile vector for the 
particular day in the future (relation (7)). The MLP networks responsible for 
prediction of the mean values and standard deviations of the load for each day 
were of the following structures: 10-6-1 (the mean values) and 14-8-1 (standard 
deviation). The input vectors for both networks have been arranged by applying 
the same philosophy as in direct MLP prediction. In prediction of the mean we 
used the daily mean loads of previous 3 days of the same week and of 4 days (the 
actual and 3 previous days) of the previous week. Additionally we have used 2 
nodes to code the season of the year and one node to code the type of the day. 
The MLP network for forecasting the standard deviation used the same structure 
of data plus the data of the additional week (two previous weeks instead of one) 
of the past.  
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The PCA transformation of the data was tried at different number of principal 
components. The best results have been obtained at K=24 and this number was  
applied in the final experiments to form the excitation for the final neural 
predictor. Two different neural networks have been checked for final prediction: 
the MLP and SVM. The results of both experiments will be presented and 
discussed in the next sections. 

4.3   The Measures of Prediction Errors 

The results of prediction have been compared on the basis of the committed errors. 
There are four most important (from the practical point of view) types of errors. 

Let us denote by )(hP and )(hP
�

 the real and predicted load at hth hour, 

respectively, and by n the total number of hours under prediction. We have 
adopted the following definitions of errors: 
 

• the mean absolute percentage error (MAPE) 
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• the mean squared error (MSE) 
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• the normalized mean squared error (NMSE) 
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(12) 

where )(Pmean  represents the mean value of the load in the time period of 

prediction 
• the maximum percentage error (MAXPE) 
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These errors have been calculated separately for the learning and testing data. 
Here we will limit ourselves only to the testing errors, related to the data not 
taking part in learning, since this information is the most objective way of 
assessing the proposed predictive system. Taking into account the stochastic 
nature of the learning algorithms used in training of the neural networks we have 
repeated the learning and testing procedures 20 times starting from random values 
of weights. After all trials we have determined the means and standard deviations 
of these errors.  
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4.4   The Numerical Results of Prediction 

The results of prediction will be presented for each individual predictor and for the 
ensemble. Table 1 presents the obtained values of the mean and standard deviation 
of the testing errors for all individual predictors corresponding to one year (365 
days and 8760 hours) not taking part in learning. Note that SVM learning 
algorithm at constant values of the hyperparameters delivers repeatable results 
(hence std is equal zero).  

Table 1. The testing errors of the load forecasting for 8760 hours of the Polish Power System by 
using individual predictors  

Method 
MAPE [%] MAXPE  

[%] 
MSE  
[MW2] 

NMSE 

MLP 2.06±0.13 16.95 (1.74±0.12)e5 (6.81±0.46)e-4 

SVM 2.21±0 28.30 (2.92±0)e5 (11.6±0)e-4 

Elman 2.24±0.09 24.97 (3.13±0.10)e5 (12.0±0.41)e-4 

SO 2.36±0.03 18.12 (2.43±0.15)e5 (9.33±0.50)e-4 

 
It is evident that in any respect the most accurate is the MLP predictor, 

although the other solutions are not far from it. All MAPE errors are comparable 
to each other and this provides good premise for their successive integration in the 
ensemble.  

The results generated by all individual predictors have been processed 
according to the described procedure: first by PCA (24 main principal components 
selected) and then by second stage prediction using independently MLP o the 
structure 24-10-24, and SVM as the final predictors. The mean errors and standard 
deviations of the final prediction results, performed 20 times on the testing data 
are gathered in Table 2. 

Table 2. The testing errors of the final load forecasting by the ensemble of predictors for the 
Polish Power System obtained in 20 trials  

 
MAPE  
[%] 

MAXPE  
[%] 

MSE 
 [MW2] 

NMSE 

MLP final predictor 1.47±0.09 14.19 (1.042±0.06)e+5 (4.06±0.36)e-4 

SVM final predictor 1.34±0.05 10.65 (0.947±0.07)e+5 (3.69±0.21)e-4 

 
The obtained results confirm very high efficiency of the ensemble of predictors. 

All error measures have been reduced significantly in comparison to the best 
individual predictor (MLP) The MAPE was reduced from 2.06% (the best 
individual predictor) to 1.34% (the ensemble employing SVM integration). It 
means more than 28% relative improvement. Even more spectacular is the relative 
improvement of MSE and MAXPE error. The MSE has been reduced by 46% and 
MAXPE by 36% in relation to the best individual predictor.  
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Fig. 7.  The graphical presentation of the prediction results related to ensemble: a) the superimposed 
predicted and real load pattern of the whole year, b) the details of prediction corresponding to one 
week of the year. 

Fig. 7 presents the graphical results of the power demand prediction corresponding 
to the data of the last year not taking part in learning. They are related to the best 
ensemble of predictors. The upper figure shows the predicted values compared to the 
really measured load, and bottom figure presents one chosen week segment just to 
show the details of both curves.  

There are visible load patterns corresponding to 7 days of the week. The level 
of power consumption for the first 5 days (from Monday to Friday) is significantly 
higher than that for Saturday and Sunday (the last two segments). The load 
patterns of the working days are to some degree similar. On the other side the 
shapes of the patterns for Saturday and Sunday are significantly different. 

4.5   Comparison of Results to Other Integration Techniques 

The paper has shown the application of many predictors for getting the accurate 
forecast of the 24-hour load pattern. The natural question arises how the proposed 
method of integration is related to the other possible solutions. The most natural 
way of integration of the results of many predictors is the simple averaging 
(ordinary mean) for every hour under prediction. At M predictors the forecasted 
value of the load for dth day at hth hour may be then calculated as 
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At different accuracy of predictors better results may be expected by applying the 
weighted averaging, taking into account the accuracy of each predictor. The final 
forecast can be then described by 
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In this expression wi is the weight associated with ith predictor calculated on the 
basis of the learning results. In the case of comparable accuracy η of each 
predictor the most reasonable seems to be the simple formula 
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Another more complex form of integrating the results of different predictors have 
been presented in [17]. It applies blind source separation (BSS) of data [3]. The 
BSS system decomposes the original stream of predicted values of the hourly load 
produced by each individual predictor into independent components by using 
linear transformation  

WXY =                                                              (17) 

In this expression X represents the matrix of M rows (M – the number of 
predictors) and n columns (n – the number of hours under prediction) and W the 
BSS matrix, MM ×⊂ RW . Each row of the matrix Y represents the independent 
component series. Some of these series contain the essential information and some 
the noise or redundant information (from the point of view of prognosis). Cutting 
insignificant components and reconstructing the original time series back into the 
real prognosis on the basis of the essential independent components only, will 
provide the prognosis deprived of the noise, i.e., of presumably better quality. The 

reconstruction X̂  of the original data matrix X is done by using inverse operation 
called deflation [3] 

YWX ˆˆ 1−=                                                       (18) 

in which X̂  denotes the reconstructed time series matrix and Ŷ  - the independent 
component matrix, formed from the original matrix Y by zeroing some rows, 
representing the noise. As a result of reconstruction we get M time series 
representing the final solutions, since the number of reconstructed variables is the 
same as the number of inputs. We accept the channel, which represents the best 
accuracy for the learning data set. Table 3 depicts the comparison of the presented 
approach to these three techniques by applying exactly the same data set. The 
superiority of the actually presented way of integration is evident.  
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Table 3. The comparison of results of different methods of integration of predictors 

Method MAPE [%] MAXPE [%] MSE [MW2] NMSE 

Ordinary mean 1.86 16.98 1.48e5 5.76e-4 

Weighted average 1.84 16.97 1.47e5 5.72e-4 

BSS 1.73 16.21 1.25e5 4.87e-4 

Presented approach 1.34 10.65 0.947e+5 3.69e-4 

 
It is interesting to compare also the accuracy of our results to different 

approaches presented by other authors. The results of prediction for the same data 
of the Polish Power System have been presented in [22, 26]. These papers have 
given the results only in the form of the normalized mean squared error (NMSE) 
defined as the real MSE value divided by the square of the mean value. The best 
resulting NMSE of [22] was equal NMSE=1.6e-3. In the case of [26] the best 
result of NMSE was 1.8e-3. Our best result corresponding to the same data was 
equal 0.369e-3.   

5   Conclusions 

The paper has presented the novel approach to forecasting the 24-hour load pattern 
of the power system. In the proposed solution many different predictors are 
trained simultaneously and their results combined together using principal 
component analysis and additional neural integrator. In the classical approach the 
less fortunate predictors are usually discarded and the results of the best one are 
treated as the final outcome. In the presented approach we analyze all of them and 
take into account at preparation of the final forecast. In the presented solution we 
have used four individual predictors, although this number may be easily extended 
without any significant changes of the general procedure. The best practice is to 
apply predictors relying their outcome on different principle of signal processing. 
Thanks to such choice the results of their prediction will be statistically 
independent. 

To get the best possible results of integration of many predictors we have 
applied two stage procedure. In the first step we apply principal component 
analysis to reduce the size of data vectors while keeping the most essential part of 
information. In the second step we employ the additional neural predictor to make 
the final forecast. The best results in this step have been obtained at application of 
the SVM integrating system. 

The experimental results have shown that the performance of the individual 
predictors can be improved significantly by proper integration of their outputs. 
The improvement is observed even at application of different quality predictors. 
For the data corresponding to the Polish Power System and application of four 
different predictors we have got 28% relative improvement of MAPE and more 
than 40% of MSE error over the best individual predictors (the MLP network).  
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It is worth noting that the same principle of integration may be applied for any 
type of forecasting problems, for example in financial business, economy, 
environmental pollution, etc. Thanks to the proposed solution we may expect 
significant increase of accuracy of predictive system. 

Acknowledgments. This work is supported by Polish Ministry of Science and Higher Education 
by grant in the years 2008-2010. 
 
 
List of Abbreviations 
 
BSS - Blind Source Separation 
MAPE - Mean Absolute Percentage Error (MAPE) 
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Power System Protection Using Machine Learning  
Technique 

S. R. Samantaray1, P.K. Dash2, and G. Panda3 

Abstract. This chapter presents a new approach for distance relaying of transmis-
sion line using machine intelligence technique such as Support Vector Machine 
(SVM). SVM is a relatively new computational learning method based on the sta-
tistical learning theory. The proposed technique is used for developing protection 
schemes for Thyristor Controlled Series Compensated (TCSC) Line using post 
fault current samples for half cycle (10 samples) from the inception of the fault 
and firing angle as inputs to the SVM. Three SVMs are trained to provide fault 
classification, ground detection and section identification respectively for the 
TCSC line. Also SVM is used for faulty phase selection and ground detection in 
large power transmission system without TCSC. The method uses post fault cur-
rent and voltage samples for 1/4th cycle (5 samples) as inputs to SVM-1 to result 
faulty phase selection. SVM-2 is trained and tested with zero sequence compo-
nents of fundamental, 3rd and 5th  harmonic components of the post fault current 
signal to result the involvement of ground in the fault process. The polynomial and 
Gaussian kernel based SVMs are designed to provide most optimized boundary 
for classification. The classification test results from SVMs are accurate for simu-
lation model as well as experimental set-up, and thus provides fast and robust pro-
tection scheme for distance relaying in transmission line.  

1   Introduction 

This chapter presents machine learning technique such as Support Vector Machine 
(SVM) [1-10] for distance relaying of transmission line. SVM is a relatively new 
computational learning method based on the statistical learning theory. In SVM, 
original input space is mapped into a high-dimensional dot product space called a 
feature space, and in the feature space the optimal hyperplane is determined to 
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maximize the generalization ability of the classifier. The optimal hyperplane is 
found by exploiting the optimization theory, and respecting insights provided by 
the statistical learning theory. SVMs have the potential to handle very large feature 
spaces, because training of SVM is carried out so that the dimension of classified 
vectors does not have as distinct influence on the performance of SVM as it has on 
the performance of conventional classifiers. That is why it is noticed to be espe-
cially efficient in large classification problems. This will also benefit in fault classi-
fication, because the number of features to be the basis of fault diagnosis may not 
have to be limited. Also, SVM-based classifiers are claimed to have good generali-
zation properties compared to conventional classifiers, because in training the SVM 
classifier, the so-called structural misclassification risk is to be minimized, whereas 
traditional classifiers are usually trained so that the empirical risk is minimized.  

A Support Vector Machine is a relatively new machine learning method that op-
timizes model on training data by solving a quadratic program (QP). In essence, an 
SVM finds the maximal separating hyperplane in feature space. It is computation-
ally efficient because the transformation to feature space need not be done explic-
itly because dot-products in feature space can be represented by kernel functions.  

SVM has advantages over traditional approaches such as neural networks for 
the following reasons: 

 

1.  Good generalization performance—once it is presented with a training set, it 
is able to learn a rule, which can correctly classify a new object quite often. 

2.  Computational efficiency—it is efficient in terms of speed and complexity. 
3.  Robust in high dimensions—in general, dealing with high-dimensional data 

is difficult for a learning algorithm because of over-fitting. One of the ma-
jor reasons for attracting much attention is that SVMs are more robust to 
this over-fitting than other algorithms. 

1.1   Support Vector Machine for Classification 

Support Vector Machine (SVM) [1-10] is a relatively new computational learning 
method based on the statistical learning theory. In SVM, original input space is 
mapped into a high-dimensional dot product space called a feature space, and in the 
feature space the optimal hyperplane is determined to maximize the generalization 
ability of the classifier. The optimal hyperplane is found by exploiting the optimi-
zation theory, and respecting insights provided by the statistical learning theory.  

SVMs have the potential to handle very large feature spaces, because training 
of SVM is carried out so that the dimension of classified vectors does not have as 
distinct an influence on the performance of SVM as it has on the performance of 
conventional classifiers. That is why it is noticed to be especially efficient in large 
classification problems. This will also benefit in fault classification, because 
sometimes the number of features to be the basis of fault diagnosis may be large. 
Also, SVM-based classifiers are claimed to have good generalization properties 
compared to conventional classifiers, because in training the SVM classifier, the 
so-called structural misclassification risk is to be minimized, whereas traditional 
classifiers are usually trained so that the empirical risk is minimized. SVM is 
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compared to the RBF neural network in an industrial fault classification task [11], 
and it has been found to give better generalization. 

Let n-dimensional input M ..M),1  (i x_i …=  is the number of samples) belong to 

class-I or Class II and associated labels be  1 y_i = for Class I and  -1 y_i = for 

Class II, respectively. For linearly separable data, we can determine a hyperplane 
 0f(x) = that separates the data 

∑
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where ‘w’ is an n-dimensional vector and ‘b’ is a scalar. The vector ‘w’ and the 
scalar ‘b’ determine the position of the separating hyperplane. Function sign(f(x)) 
is also called the decision function. A distinctly separating hyperplane satisfies the 
constraints 1)x(f i ≥  if 1yi +=  and 1)x(f i −≥ , if 1yi −= . This result in  

      1)bixTw(iy)ix(fiy ≥+=   for i =1……, M.      (2) 

The separating hyperplane that creates the maximum distance between the plane 
and the nearest data, i.e., the maximum margin, is called the optimal separating 
hyperplane. An example of the optimal separating hyperplane of two datasets is 
presented in Fig. 1. From the geometry, the geometrical margin is found to 

be
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. Taking into account the noise with slack variables ξi and error penalty 

C, the optimal hyperplane can be found by solving the following convex quadratic 
optimization problem, 
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Where iξ  is measuring the distance between the margin and the examples ix  ly-

ing on the wrong side of the margin. The calculations can be simplified by con-
verting the problem with Kuhn–Tucker conditions into the equivalent Lagrange 
dual problem, which will be  
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Maximum margin 
X2

w.xi+b 0

The optimal separating hyper plane f(x) 
=w.xi+b=0       Class-I 

      Class-II 

space

wS

X1  

Fig. 1. f(x) as a separating hyperplane lying in a high-dimensional space. Support vectors 
are inside the circles. 

 
The number of variables of the dual problem is the number of training data. Let 

us denote the optimal solution of the dual problem with ∗α and ∗w . According to 
the Karush–Kuhn–Tucker theorem, the inequality condition in (2) holds for the 

training input–output (feature and label) pair y_i)(x_i,  only if the associated *α  is 

not 0. In this case the training example  ix  is a support vector (SV). Usually, the 

number of SVs is considerably lower than the number of training samples making 

SVM computationally very efficient. The value of the optimal bias *b  is found 
from the geometry: 
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where s1 and s2 are arbitrary support vectors(SVs) for Class I and Class II, respec-
tively. Only the samples associated with the SVs are summed, because the other 

elements of optimal Lagrange multiplier ∗α  are equal to zero.  
The final decision function will be given by 

∑ ∗+α=
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Then unknown data example ‘x’ is classified as follows: 

⎩
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SVM can also be used in nonlinear classification tasks with application of kernel 
functions. The data to be classified is mapped onto a high-dimensional feature 
space, where the linear classification is possible. Using a nonlinear vector function 

nm)),x()......x(()x( m1 >>φφ=φ  to map the ‘n’-dimensional input vector ‘x’ into 
the ‘m’ dimensional feature space, the linear decision function in dual form is 
given by 

∑ φφα=
SVs

i
T

ii )x()x(y)x(f                                     (8) 

Working in the high-dimensional feature space enables the expression of com-
plex functions, but it also generates problems. Computational problems occur 
due to the large vectors and the danger of overfitting also exists due to the 
high dimensionality. The latter problem is solved with application of the 
maximal margin classifier, and so-called kernels give solution to the first 
problem. Notice that in (8) well as in the optimization problem (3), the data 
occur only in inner products. A function that returns a dot product of the fea-
ture space mappings of original data points is called a kernel, 

)z()x()z,x(K T φφ= .  Applying a kernel function, the learning in the feature 

space does not require explicit evaluation of φ . Using a kernel function, the 

decision function will be 

)xx(Ky)x(f ii
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i
∗∑α=                                    (9) 

and the unknown data example is classified as before. The values of 
 )x,K(x ji over all training samples  ..M,1ji, …= from the kernel matrix, which 

is a central structure in the kernel theory. Mercer’s theorem states that any sym-
metric positive-definite matrix can be regarded as a kernel matrix.  

The polynomial learning machines of degree ‘n’ have the inner product kernel  

nT )1zx()z,x(K +=                                             (10) 

and radial basis function machines have the inner product kernel  
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Where the ‘ σ ’ is the width of the Gaussian function. 



176 S.R. Samantaray, P.K. Dash, and G.Panda
 

 

2   Distance Relaying of an Advanced Series Compensated  
Transmission Line Using SVM 

The use of FACTS [15-18] devices to improve the power transfer capability in 
high voltage transmission line is of greater interest in these days. The thyristor 
controlled series compensator (TCSC) is one of the main FACTS devices, which 
has the ability to improve the utilization of the existing transmission system. 
TCSC based compensation possess thyristor controlled variable capacitor pro-
tected by Metal Oxide Varistor (MOV) and an air gap. However, the implementa-
tion of this technology changes the apparent line impedance, which is controlled 
by the firing angle of thyristors, and is accentuated by other factors including the 
metal oxide varistor (MOV). The presence of the TCSC in fault loop not only af-
fects the steady state components but also the transient components. The control-
lable reactance, the MOVs protecting the capacitors and the air-gaps operation 
make the protection decision more complex and, therefore, conventional relaying 
scheme based on fixed settings has its limitation. Fault classification and section 
identification is a very challenging task for a transmission line with TCSC. Differ-
ent attempts have been made for fault classification using Wavelet Transform, 
Kalman filtering approach and neural network [19, 20]. 

The Kalman filtering approach finds its limitation, as fault resistance can not 
be modeled and further it requires a number of different filters to accomplish 
the task. Both BPNN (back propagation Neural Network), RBFNN (radial basis 
function neural network), FNN (Fuzzy Neural network) are employed for adap-
tive protection of such a line where the protection philosophy is viewed as a 
pattern classification problem [21, 22]. The networks generate the trip or block 
signals using a data window of voltages and currents at the relaying point. 
However, the above approaches are sensitive to system frequency-changes, and 
require large training sets and training time and a large number of neurons. 

The research work presents a new approach for fault classification and section 
identification of TCSC based line using support vector machine (SVM). SVM, 
basically, is a classifier based on optimization technique. It optimizes the classi-
fication boundary between two classes very close to each other and thereby clas-
sifies the data sets even very close to each other. Also SVM works successfully 
for multiclass classification with SVM regression. 

The current signals for all phases are retrieved at the relaying end at a sam-
pling frequency of 1.0 kHz.  Half cycle data (10 samples) and firing angle are 
used as input to the SVM. The SVM is trained with input and output sets to pro-
vide most optimized boundary for classification. Also another SVM is trained for 
identifying the TCSC position on the transmission line. Taking the current data 
samples before and after the TCSC, the corresponding SVM is trained to identify 
whether the fault includes TCSC or not. When fault includes TCSC, the 3rd and 
5th harmonic components are highly pronounced compared to the fault which 
doesn’t include TCSC. This issue is taken care by SVMs as the total half cycle 
(10 samples) data of the fault current signal is taken into consideration for train-
ing and testing the SVMs. 
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2.1   System Studied 

A 440 kV, 50 Hz power system is illustrated in Fig. 2.In this system the TCSC is 
located at midpoint of the transmission line, used for the distance protection study. 
The power system consists of two sources, TCSC and associated components and 
a 300 km transmission line. The transmission line has zero sequence impedance 
Z(0)=96.45+j335.26 ohm and positive sequence impedance Z(1)=9.78+j110.23 
ohm. 400=SE kV and δ∠= 400RE  kV. The TCSC is designed to provide com-

pensation varying form minimum 30% to maximum 40%. All    the    components 
are modeled using the EMTDC subroutines. 

 

Source-1        Source-2 

~

Transmission 
Line 

TCSC 

MOV 
~

Relay  

Fig. 2. The TCSC based line 

The sampling frequency is 1.0 kHz at 50 Hz base frequency. The metal oxide 
varistor (MOV) consists of a number of zinc oxide disks electrically connected in 
series and parallel. The purpose of the MOV is to prevent the voltage across the 
capacitor from rising to levels which will damage the capacitor. This is most likely 
to happen when a fault occurs at a point on the compensated line which minimizes 
the impedance of the fault loop. When instantaneous voltage across the capacitor 
approaches a dangerous level the MOV begins to draw a significant proportion of 
the line current thereby limiting the voltage across the capacitor at that level. This 
action alters the impedance in the series path and hence the fault-loop impedance. 
In the event that the MOV remains in conduction long enough to raise its tempera-
ture (energy) to a dangerous level an air-gap is triggered to short out both the 
MOV and the capacitor, again changing the fault loop impedance. The operation 
of the MOV can be within the first half cycle of fault and depending on the sever-
ity of the fault, it may continue to operate until the air-gap is triggered cycles later. 
This is precisely the time when a digital relay makes protection decision. Further, 
a bypass switch in parallel with the gap automatically closes for abnormal system 
conditions that cause prolonged current flow through the gap. Fig. 3 shows the 
components of MOV and characteristics. The fault current variation with firing 
angle is shown in Fig. 4. The fault current pattern including TCSC and without in-
cluding TCSC is shown in Fig. 5. 
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Fig. 3. (a) MOV protected series capacitor (b) MOV characteristic 

 

Fig. 4. Fault current with TCSC at different firing angles 

 

Fig. 5. Fault current before and after TCSC at 160º firing angle 
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The small inductance in the arrangement limits the current through the air-gap 
or switch circuit. The TCSC is designed such that it provides 30% compensation 
at 1800 (minimum) and 40% compensation at 1500 (maximum) firing angle and in 
this study the firing angle is varied within this range as shown in Fig. 6 .The pro-
posed protection scheme is shown in Fig. 7. 

 

 
Fig. 6. Variation of capacitive reactance with firing angle 

Ground  
detection 

Half cycle current 
Samples 

SVM-1 

SVM-3 

Fault  
classification 

Section  
Identification 

Zero sequence 
analyzer

SVM-2 

 

Fig. 7. Proposed scheme for protection. Fault classification (SVM-1), Ground detection 
(SVM-2) and section identification (SVM-3). 

The TCSC is placed at 50% of the transmission line with 300 km line length, 
which is 150 km from relaying end. The simulation for all 11 types of shunt faults (L-
G,LL-G,LL,LLL,LLL-G) are made on the transmission line with different fault resis-
tance, source impedance, incident angles at different fault locations with varying the 
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firing angle from 150º-180º with (after) and without including(before)  TCSC. The 
half cycle signal having 10 samples from the fault inception are retrieved at the relay-
ing end and normalized to be used as input to the corresponding SVMs. 

2.2   SVM Training and Testing 

2.2.1   SVM for Fault Classification 

The half cycle fault current signal samples after the fault inception are taken as in-
put to the SVM. The corresponding output is either fault or no-fault condition. Ten 
samples(half cycle at 1.0 kHz sampling frequency) of fault current form the fault 
inception are retrieved at the relaying end are normalized  along with the  firing 
angle of TCSC and are used as input(11-inputs)  space which is termed as ‘x’. ‘y’ 
is the corresponding output which results ‘1’ for fault and ‘-1’ for  no-fault condi-
tion. The optimal marginal classifier is designed with polynomial kernel with dif-
ferent order and Gaussian kernel with different parameter value. Both results are 
compared as depicted in Table-3.1.The SVM-1 is trained with 500 data sets and 
tested with 200 data sets, each set comprising of  11 data points(10 for half cycle 
current signal and 1 for firing angle of TCSC) for ‘x’ as input and (1,-1) for ‘y’ as 
corresponding output. 

Table 1. Testing of SVM-1 for fault classification 

Fault Kernel Parameter 
value 

a b c 

b-g fault at 30%, =155º,Rf
=20 ohm

Poly n=2 -1 1 -1 
Poly n=3 -1 1 -1 
Gaussian =0.5 -1 1 -1 
Gaussian  =1.5 -1 1 -1 

ab-g fault at 
30%, =165º,Rf =50 ohm

Poly n=2 1 1 -1 
Poly n=3 1 1 -1 
Gaussian =0.5 1 1 -1 
Gaussian  =1.5 1 1 -1 

‘bc’ fault at 
45%, =170º,Rf =100 ohm

Poly n=2 -1 1 1 
Poly n=3 -1 1 1 
Gaussian =0.5 -1 1 1 
Gaussian  =1.5 -1 1 1 

‘abc’ fault at 
65%, =160º,Rf =200 ohm

Poly n=2 1 1 -1 
Poly n=3 1 1 1 
Gaussian =0.5 1 1 1 
Gaussian  =1.5 1 1 1 

‘abc-g’ fault at 
75%, =165º,Rf =150 ohm 
with source changed

Poly n=2 1 1 1 
Poly n=3 1 1 1 
Gaussian =0.5 -1 1 1 
Gaussian  =1.5 1 1 1 
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Table 2. Classification rates of SVM-1 for fault classification with 200 data sets 

Fault Kernel Parameter 
Value 

Classification rates   
(%) 

No.of 
support 
vectors 

Poly n=2 96.52 15 
Poly n=3 97.23 12 
Gaussian σ=0.5 95.23 13 

 
L-G 

Gaussian σ =1.5 96.85 11 
Poly n=2 96.27 9 
Poly n=3 97.36 7 
Gaussian σ=0.5 97.51 7 

 
LL-G 

Gaussian σ =0.5 97.84 7 
Poly n=2 96.84 11 
Poly n=3 97.29 9 
Gaussian σ=0.5 95.99 9 

 
LL 

Gaussian σ =1.5 96.87 6 
Poly n=2 96.28 14 
Poly n=3 97.56 12 
Gaussian σ=0.5 95.68 11 

 
LLL 

Gaussian σ =1.5 96.87 10 
Poly n=2 97.25 12 
Poly n=3 97.68 10 
Gaussian σ=0.5 96.78 8 

 
LLL-G 

Gaussian σ =1.5 97.65 5 

 
Faults on the line are simulated with various operating conditions including dif-

ferent incident angles, fault resistance (10-200ohm), source capacities, and various 
locations with different firing angles for all 11 types of shunt faults. When the pa-
rameter values of the polynomial kernel and Gaussian kernel are changed, the 
numbers of support vectors on the optimized marginal plane vary accordingly as 
seen from the result depicted in the Table-2. Here ‘n’ stands for the order of the 
polynomial and ‘σ’ stands for width of the gaussian function. The bound on the 
lagrangian multipliers ‘C’ is selected 10 and the conditioning parameter for QP 
method, lambda is chosen as 1.0*e-7. Different values of ‘σ’ with which the SVM 
is trained and tested are 0.5 and 1.5. Similarly the values selected for ‘n’ are 2 and 
3. All the above parameters are selected after cross validation [12-14]. 

Table-1 shows the results for fault classification for various operating conditions. 
As seen from the table, for ‘b-g’ fault at 30%,α=155º,Rf =20 ohm, the ‘b’ ph output 
is ‘1’ but output for ‘a’ and ‘c’ phases is ‘-1’ for both polynomial and Gaussian ker-
nel, which depicts that fault occurs only on ‘b’ phase. Also for ‘abc’ fault at 
65%,α=160º,Rf =200 ohm, the output for all the phases is ‘1’. As seen, the misclassi-
fication occurs for the above operating condition with polynomial kernel with ‘n’=2 
resulting output of ‘c’ phase as ‘-1’ instead of ‘1’.Table-3.2 depicts the classification 
rates at different faults and corresponding support vectors with polynomial and 
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Gaussian kernel of different parameter values. The classification rate is 95.23% 
(minimum) at L-G fault with Gaussian kernel with σ =0.5 and the support vectors 
are 13. Similarly the classification rate is 97.84% (maximum) fir LL-G fault with 
gaussian kernel with σ =0.5 which results 7 support vectors on the hyperplane. 

2.2.2   SVM for Ground Detection 

The ground detection is done separately by training another SVM. The peak value 
of the zero sequence component of the fault current signal for half cycle is found 
out for fundamental, 3rd and 5th harmonic component. The peak value of zero se-
quence components and firing angle of TCSC are used as the input-‘x’(4-inputs) 
to the SVM-2 and the corresponding output(y) is ‘1’ for the fault involving  
ground and ‘-1’ for fault without involving ground. As the zero sequence compo-
nents for these three harmonic components are pronounced in case of fault involv-
ing ground compared to fault without involving ground, the SVM-2 is trained to 
design a optimized classifier for ground detection.        

Here ‘n’ stands for the order of the polynomial and ‘σ’ stands for width of the 
gaussian function. The bound on the lagrangian multipliers ‘C’ is selected 5 and 
the conditioning parameter for QP method, lambda is chosen as 1.0*e-7. Different 
values of ‘σ’ with which the SVM is trained and tested are 0.5 and 1.0. Similarly 
the values selected for ‘n’ are 1 and 2. All the above parameters are selected after 
cross validation [12-14].The SVM is trained with 500 data sets and tested for 200 
data sets. The average classification rate for ground detection for 200 test cases is 
found to be 98.05% for all types of faults with different operating conditions. It is 
found form the Table-3 that for ‘a-g’ fault at 10%,α=160º,Rf =20 ohm, the output 
is’1’ which shows that the fault involves ground. But ‘bc’ fault at 30%,α=165º,Rf 
=50 ohm, the output is ‘-1’ which clearly shows that fault without involving 
ground. Also misclassification is observed for ‘ac’ fault at 45%, α=155º,Rf =200 
ohm with polynomial kernel for n=2, which produces output ‘1’ instead of ‘-1’. 
Also similar case happens for abc-g fault at 85%, α=160º,Rf =150 ohm with poly-
nomial kernel for n=1. 

2.2.3   SVM for Fault Section Identification 

Fault section identification for the transmission line with TCSC is done by training 
the SVM-3 to build up an optimized classifier. The half cycle data (10 samples) 
after the fault inception and firing angle of TCSC are used as input-‘x’ (11-inputs) 
to the SVM and the output-‘y’ is the output. The output ‘y’ is ‘1’ or ‘-1’ for faults 
including TCSC and without TCSC, respectively. For any fault beyond 50% of the 
line the output of the SVM should be ‘1’, otherwise ‘-1’.The SVM is trained with 
the bound on the lagrangian multipliers with ‘C’ selected as 20 and the condition-
ing parameter for QP method lambda  chosen as 1.0*e-7. The lagrangian parame-
ter ‘C’ is selected after testing the SVM with other values. The above parameters 
are selected after cross validation as mentioned earlier. The SVM is trained with 
500 data sets and tested for 200 data sets. The average classification rate for sec-
tion identification for 200 test cases is found to be 95.09% for all types of faults 
with different operating conditions. 



Power System Protection Using Machine Learning Technique 183
 

 

Table 3. Testing of SVM-2 for ground detection 

Fault Kernel Parameter 
value 

Classifica-
tion 

poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

a-g fault at 10%,α=160º,Rf 
=20 ohm 

gaussian σ =1.0 1 

poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

bc fault at 30%,α=165º,Rf 
=50 ohm 

gaussian σ =1.0 -1 
poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

bc-g fault at 55%,α=175º,Rf 
=100 ohm 

gaussian σ =1.0 1 
poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

abc fault at 65%,α=160º,Rf 
=150 ohm 

gaussian σ =1.0 -1 
poly n=1 -1 
poly n=2 1 
gaussian σ =0.5 -1 

ac fault at 45%,α=155º,Rf 
=200 ohm 

gaussian σ =1.0 -1 

poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

abc-g fault at 30%,α=165º,Rf 
=50 ohm 

gaussian σ =1.0 1 
poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

bc-g fault at 85%,α=165º,Rf 
=100 ohm 

gaussian σ =1.0 1 
poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

ab fault at 65%,α=160º,Rf 
=150 ohm 

gaussian σ =1.0 -1 
poly n=1 -1 
poly n=2 1 
gaussian σ =0.5 1 

abc-g fault at 85%,α=160º
,Rf =150 ohm with source 
changed 

gaussian σ =1.0 1 
 

Table-4 depicts the results for section identification for TCSC on the transmis-
sion line. For ‘ac-g’ fault at 30%,α=165º,Rf =50 ohm, the output of SVM  is ‘-1’ 
which shows that the fault occurred before TCSC on the line. But for ‘bc-g’ fault 
at 55%,α=170º,Rf =100 ohm, the output of SVM is ‘1’, which clearly depicts that  



184 S.R. Samantaray, P.K. Dash, and G.Panda
 

 

 
 

Table 4. Testing of SVM-3 for section identification 

Fault Kernel Parameter 
value 

Classification 

poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

ab fault at 10%, α=160º, 
Rf =20 ohm 

gaussian σ =1.0 -1 

poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

ac-g fault at 30%, α=165º, 
Rf =50 ohm 

gaussian σ =1.0 -1 
poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

bc-g fault at 55%, α=170º, 
Rf =100 ohm 

gaussian σ =1.0 1 
poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

abc-g fault at 65%, α=170º, 
Rf =150 ohm 

gaussian σ =1.0 1 
poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 -1 

ac fault at 45%, α=165º, 
Rf =100 ohm 

gaussian σ =1.0 -1 

poly n=1 1 
poly n=2 -1 
gaussian σ =0.5 -1 

abc-g fault at 30%, α=175º, 
Rf =20 ohm 

gaussian σ =1.0 -1 
poly n=1 1 
poly n=2 1 
gaussian σ =0.5 1 

bc-g fault at 75%, α=165º, 
Rf =100 ohm with source 
changed 

gaussian σ =1.0 1 
poly n=1 -1 
poly n=2 -1 
gaussian σ =0.5 1 

ab fault at 15%, α=160º, 
Rf =20 ohm with source 
changed 

gaussian σ =1.0 -1 
poly n=1 1 
poly n=2 -1 
gaussian σ =0.5 1 

abc fault at 65%,α=155º, 
Rf =200 ohm with source 
changed 

gaussian σ =1.0 1 
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the fault occurred after the TCSC on the line. Also misclassification is observed 
for ‘abc-g’ fault at 30%, α=175º,Rf =20 ohm with polynomial kernel with n=1 and 
for ‘ab’ fault at 15%,α=160º,Rf =20 ohm with source changed with gaussian ker-
nel with σ =0.5. Also similar result occurs for ‘abc’ fault at 65%, α=155º,Rf =200 
ohm with source changed for polynomial kernel with n=2. 

3   SVM Based Distance Relaying for Single Circuit 
Transmission Line  

In power transmission line protection, faulty phase identification and location of 
fault are the two most important items which need to be addressed in a reliable 
and accurate manner. Distance relaying techniques based on the measurement of 
the impedance at the fundamental frequency between the fault location and the re-
laying point have attracted wide spread attention. The sampled voltage and current 
data at the relying point are used to locate and classify the fault involving the line 
with or without fault resistance present in the fault path.   

The accuracy of the fault classification and location also depends on the ampli-
tude of the DC offset and harmonics in comparison to the fundamental compo-
nent. Fourier Transforms, Differential equations, Waveform modeling and Kal-
man filters, and wavelet transforms are some of the techniques used for fault 
detection and location calculation [23-28].  Some of the recent papers in this area 
[25, 26, 28] have used only the sampled current values at the relaying point during 
faults for classification of fault types and distance calculations. To obtain more 
satisfactory results, however, wavelet filters having longer length and more levels 
of wavelet decomposition must be employed. Consequently more processing time 
is required: a fatal drawback for protection relays. The Kalman filtering approach 
finds its limitation, as fault resistance can not be modeled and further it requires a 
number of different filters to accomplish the task. 

The speed and accuracy of distance relays of transmission lines can be im-
proved by accurate and fast fault phase selection, and this also allows single pole 
tripping and autoreclosure to be employed. The selector module in the protective 
relay of a transmission line is very important as it is very much responsible for 
fault identification. So accurate fault detection is the primary requirement for pro-
tective relaying to start and trip correctly. In addition, faulty phase selection can 
be used to increase system stability by allowing single pole tripping and autoreclo-
sure. Conventional approaches to phase selection are based on power frequency 
measurements suffer from deficiencies due to fault resistance, fault distance, in-
fluence of mutual coupling from adjacent lines, reactance effect, incomplete 
knowledge of system parameters etc. In this regard, some new techniques have 
been adopted. Approaches using travelling wave theory have been proposed to 
perform faulty phase selection. A method based on initial current travelling waves 
is presented in [29]. However, these approaches lead to increased hardware re-
quirement. Travelling waves, being high frequency signals, are difficult to sepa-
rate from interference noise.  
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In recent years, techniques using artificial neural networks (ANN) and fuzzy 
logic have been employed in faulty phase selection [30-32] due to their superior 
ability to learn and generalize from training patterns. However, in the fault classi-
fication and location tasks, the neural networks cannot produce accurate results 
due to the inaccuracies in the input phasor data and the requirement of a large 
number of neural networks for different categories of fault. BPNN (Back Propaga-
tion Neural Network), RBFNN (radial basis function neural network) and FNN 
(Fuzzy Neural network) are employed for adaptive protection of such a line where 
the protection philosophy is viewed as a pattern classification problem. The net-
works generate the trip or block signals using a data window of voltages and cur-
rents at the relaying point. However, the above approaches are sensitive to system 
frequency-changes, and require large training sets and training time and a large 
number of neurons.  

This research work presents a new approach for faulty phase selection and 
ground detection using Support Vector Machine (SVM). A Support Vector Ma-
chine [1-10] is a relatively new machine learning method that optimizes model on 
training data by solving a quadratic program (QP). In essence, an SVM finds the 
maximal separating hyperplane in feature space. It is computationally efficient 
because the transformation to feature space need not be done explicitly because 
dot-products in feature space can be represented by kernel functions. Support 
vector machine (SVM)-based classification is a modern machine learning method 
that is surprisingly rarely used in fault classification even if it has given superior 
results in various classification and pattern recognition problems like, in text 
categorization [33] or phoneme recognition [34]. Currently there exist only a few 
publications concentrate on developing fault diagnostic methods based on SVM 
techniques.  

The proposed method uses post fault current and voltage samples for 1/4th cy-
cle (5 samples) from the inception of the fault as inputs to the SVMs to result 
fault classification with ground detection. Polynomial and Gaussian kernel based 
SVMs are trained and tested with corresponding current and voltage samples to 
distinguish faulty phase from un-faulted one. SVM-1 and SVM-2 are designed to 
provide information regarding faulty phase and ground involved in the fault 
process respectively. The classification test results obtained form SVMs are accu-
rate for simulation model with wide variations in operating conditions of the 
faulted power network, and thus provides fast and robust protection scheme for 
distance relaying.  

3.1   System Studied 

The power system model shown in Fig. 8 is simulated using PSCAD (EMTDC) 
software package.  The relaying point is as shown in Fig. 8, where fault voltage 
and current signal samples are retrieved for different fault conditions. The power 
system network consists of two areas of 400 kV generation capacities and con-
nected by 300 km long transmission line (distributed model).  
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Fault ES ER

300 KM 

Relaying 
Point  

Fig. 8. Transmission Line Model 

The transmission line parameters are as given below: 
 

Zero sequence impedance (ZL0) = 96.45 + j 335.26 ohms  
Positive sequence impedance (ZL1) =9.78 + j 110.23 ohms 
Source impedances: ohms  5.28 j6ZS += , ohms  5.11 j2.1ZR +=  

Source voltages: kV 400ES = ,  kV 400ER δ∠=  

where δ  = load angle in degrees. 
The power system model is simulated at 1.0 KHz sampling frequency. The 

voltage and current signals for different fault conditions are retrieved at the relay-
ing point and fed to the SVMs for faulty phase selection and ground detection. 
The proposed SVM based relaying scheme is shown in Fig. 9. 

 

Ground 
Detection 

1/4th   cycle of current 
signal  
(5 samples) Fault  

classification 

Zero sequence 
analyzer SVM-2 

1/4th   cycle of voltage 
signal  
(5 samples) 

SVM-1 

 

Fig. 9. Proposed scheme for protection. Fault classification   (SVM-1), Ground detection 
(SVM-2) 

The proposed algorithm is also tested on a physical transmission line model (ex-
perimental set up). The transmission line is consist of two 150 km π –section (total 
300 km) and charged with 400 volt, 5 kVA synchronous machines at one end and 
400 volt at the load end.  The three phase voltage and current are stepped down at 
the relaying end with potential transformer (PT) of 400/10 V and current trans-
former (CT) of 15/5 A respectively. Data collected using PCL-208 Data Acquisi-
tion Card (DAC) which uses 12-bit successive approximation technique for A/D 
(Analog to Digital) conversion. The card is installed on a Personal Computer (P-4) 
with a driver software routine written in C++. It has 6 I/O channels with input volt-
age range of  +/- 5 Volts. Data colleted with a sampling frequency of 1.0 KHz. 
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3.2   Computational Results 

This section deals with the training and testing results obtained from the corre-
sponding SVMs for faulty phase selection and ground detection. Both polynomial 
and gussian kernel based mapping are used to get the accurate results for classify-
ing faults from un-faulted one. SVMs are trained with 300 data sets and validated 
for 300 data sets for each category of fault generated from simulation model and 
experimental set up separately. Initially, the Radial Basis Function Neural Net-
work (RBFNN) is tested to have the performance comparison with the proposed 
SVM technique for fault classification.  

3.2.1   Fault Classification Using Radial Basis Function Neural Network 
(RBFNN) 

The fault classification results using Radial Basis Function Neural Network 
(RBFNN) [35] is given in Table-5. In this approach, a pruning strategy is used 
to select only a minimal number of hidden neurons by observing their outputs 
and if at any stage it is observed that the output of any neuron is insignificant 
it is omitted from the hidden layer. The current and voltage samples at the re-
laying point are retrieved for different fault condition and peak of the samples 
are fed to the RBFNN for fault classification. The RBFNN is tested with 300 
datasets from simulation model. Table-1 provides the fault classification re-
sults using RBFNN for L-G, LL-G, LL, LLL-G, LLL faults. The classification 
rate is 95.12 % (maximum) in case of LLL-G fault and 93.75 % in case  
of LL fault. 

Table 5. Classification rates of RBFNN for faulty phase selection 

Fault RBFNN Classification rates   (%) 

L-G 94.89% 

LL-G 94.34% 

LL 93.75% 

LLL 94.84% 

LLL-G 95.12% 

3.2.2   Fault Classification Using Support Vector Machine 

3.2.2.1   Phase Selection (SVM-1) 
Initially 1/4th cycle fault signal is used for fault detection and the next 1/4th post 
fault current and voltage signal samples are used as inputs to the SVM. The corre-
sponding output is either fault or no-fault condition. 5 samples of faulted voltage  
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and 5 samples of faulted current signal from the fault inception are retrieved at the 
relaying point and the corresponding normalized values are used as input features 
space (10 points) to the SVMs, termed as ‘x_i’. The corresponding output is ‘y_i’ 
which results ‘1’ for fault and ‘-1’ for no-fault condition. The SVM-1 is trained 
with 300 data sets and tested with 300 data sets for each category of fault, each set 
comprising of 10 data points for ‘x_i’ as input and (1,-1) for ‘y_i’ as correspond-
ing output.  

Faults on the line are simulated with various operating conditions including 
different incident angles ‘δ’, fault resistance Rf (10-200ohm), source capacities 
and at various locations for all types of shunt faults. These shunt faults are Line-
Ground (L-G) fault, Line-Line (L-L) fault, Line-Line-Ground (L-L-G) fault, 
Line-Line-Line (L-L-L) fault and Line-Line-Line-Ground (LLL-G) fault. In case 
of shunt faults, ‘a-g’, ‘b-g’, ‘c-g’ are categorized under L-G fault and ‘ab-g’, ‘bc-
g’, ‘ca-g’ are categorized under LL-G fault. Similarly ‘a-b’, ‘b-c’, ‘c-a’ corre-
spond to L-L fault and ‘abc-g’ corresponds to LLL-G fault. ‘abc’ is categorized 
under LLL fault. Thus there are 11 types of shunt faults occur on the power 
transmission line.  

Here ‘n’ stands for the order of the polynomial and ‘σ’ stands for width of 
the gaussian function. The bound on the lagrangian multipliers ‘C’ is selected 
5.0 and the conditioning parameter for QP (quadratic programming) method, 
lambda is chosen as 1.0*e-5. Different values of ‘σ’ with which the SVM is 
trained and tested are 1.0 and 1.5. Similarly the values selected for ‘n’ are 5 
and 6. All the above parameters are selected after cross validation [12-14]. Dif-
ferent values of ‘σ’ and ‘n’ are used to make a comparison study on the classi-
fication rate and support vectors generated. When the parameter values of the 
polynomial kernel and Gaussian kernel are changed, the classification rate  
and the numbers of support vectors on the optimized marginal plane vary  
accordingly.  

Table-6 provides the classification rates and support vectors during training of 
SVMs for faulty phase selection and ground detection. The classification rate for 
faulty phase selection is 99.26 %( maximum) with 14 nos of support vectors and 
for ground detection is 99.69 %( maximum) with 13 support vectors. After the 
SVMs are trained with the training data sets, the SVMs are tested or validated 
with test set data sets. 

Table-7 shows the testing results for faulty phase patterns for various operat-
ing conditions. As seen from the table, for ‘ab-g’(LL-G)  fault at 30%, δ=45° º, 
Rf =50 ohm, the SVM-1 outputs for ‘a’ and ‘b’ are ‘1’ but output for ‘c’ phase is 
‘-1’ for both polynomial and Gaussian kernel, which depicts that fault occurs on 
‘a’ and ‘b’ phases. Also for ‘bc’ fault at 50%,δ=60° Rf =100 ohm the output for 
‘b’ and ‘c’ phases are ‘1’ but the output is’-1’ for ‘a’ phase. As seen, the mis-
classification occurs for the ‘abc-g’ (LLL-G) fault at 90% ,δ=45° Rf =150 ohm 
with source changed, with gaussian kernel with ‘σ’=1.0 resulting output of ‘a’ 
phase as ‘-1’ instead of ‘1’.Table-8 depicts the classification rates at different  
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fault conditions with polynomial and Gaussian kernel of different parameter  
values during testing of SVM. The classification rate is 97.25% (minimum) at 
LLL-G fault with Polynomial kernel with n =5 and the classification rate is 
98.87% (maximum) for LL-G fault with gaussian kernel with σ =1.0.  

Table 6. Classification rates and support vectors during training of SVM-1 for phase 
selection and ground detection 

Fault Kernel Para-
meter 
value 

Training results for faulty 
phase selection 

Training results for 
ground detection 

Classifica-

tion rates   

(%) 

No. of 
support 
vectors 

Classifica-

tion rates   

(%)

No. of 
support 
vectors 

L-G 
poly n=5 98.89 19 99.15 15 
poly n=6 99.26 14 99.01 13 
gaus-
sian

=1.0 98.11 15 99.00 12 

gaus-
sian

 =1.5 98.34 12 99.27 09 

LL-G 
poly n=5 98.45 10 98.99 11 
poly n=6 98.25 11 98.46 08 
gaus-
sian

=1.0 98.99 09 99.49 10 

gaus-
sian

 =1.5 98.97 08 98.98 06 

LL 
poly n=5 98.01 10 99.69 13 
poly n=6 98.87 09 98.36 11 
gaus-
sian

=1.0 98.20 08 98.77 09 

gaus-
sian

 =1.5 98.04 06 98.02 05 

LLL 
poly n=5 98.32 19 99.03 17 
poly n=6 97.98 14 98.00 14 
gaus-
sian

=1.0 98.99 10 98.37 12 

gaus-
sian

 =1.5 98.03 09 98.53 09 

LLL-
G

poly n=5 98.05 12 98.10 10 
poly n=6 98.89 10 98.98 07 
gaus-
sian

=1.0 97.99 08 99.18 09 

gaus-
sian

 =1.5 98.65 06 99.23 04 
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Table 7. Testing of SVM-1 for faulty phase patterns 

Fault Kernel Parameter 
Value 

a-

phase 

b-phase c-phase 

b-g fault at 
10%, =30  Rf
=10 ohm

poly n=5 -1 1 -1 
poly n=6 -1 1 -1 
gaussian =1.0 -1 1 -1 
gaussian  =1.5 -1 1 -1 

ab-g fault at 
30%, =45  Rf
=50 ohm

poly n=5 1 1 -1 
poly n=6 1 1 -1 
gaussian =1.0 1 1 -1 
gaussian  =1.5 1 1 -1 

‘bc’ fault at 
50%, =60  Rf
=100 ohm

poly n=5 -1 1 1 
poly n=6 -1 1 1 
gaussian =1.0 -1 1 1 
gaussian  =1.5 -1 1 1 

‘abc’ fault at 
70%, =45  Rf
=150 ohm

poly n=5 1 1 -1 
poly n=6 1 1 1 
gaussian =1.0 1 1 1 
gaussian  =1.5 1 1 1 

‘abc-g’ fault at 
90% , =45  Rf
=150 ohm with 
source changed

poly n=5 1 1 1 
poly n=6 1 1 1 
gaussian =1.0 -1 1 1 
gaussian  =1.5 1 1 1 

‘ca-g’ fault at 
45%, =60  Rf
=100 ohm

poly n=5 1 -1 1 
poly n=6 1 -1 1 
gaussian =1.0 1 -1 1 
gaussian  =1.5 1 -1 1 

‘c-g’ fault at 
85%, =60 , Rf
=150 ohm 

poly n=5 -1 -1 1 
poly n=6 -1 -1 1 
gaussian =1.0 -1 -1 1 
gaussian  =1.5 -1 -1 1 

‘ab’ fault at 
95%, =45 , Rf
=200 ohm 

poly n=5 1 1 -1 
poly n=6 1 1 -1 
gaussian =1.0 1 1 -1 
gaussian  =1.5 1 1 -1 

‘abc-g’ fault at 
75%, =30 , Rf
=200 ohm with 
source changed 

poly n=5 1 -1 1 
poly n=6 1 1 1 
gaussian =1.0 1 1 1 
gaussian  =1.5 1 1 1 
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Table 8. Classification rates of SVM-1 for faulty phase selection during testing 

Fault Kernel Parameter 
Value

Classification rates   (%) 

 
L-G 

Poly n=5 98.16 
Poly n=6 98.19 
gaussian =1.0 98.23 
gaussian  =1.5 97.89 

 
LL-G 

poly n=5 98.15
poly n=6 98.09
gaussian =1.0 98.87 
gaussian  =1.5 97.84 

 
LL 

poly n=5 97.84 
poly n=6 98.29 
gaussian =1.0 97.99 
gaussian  =1.5 97.87 

 
LLL 

poly n=5 98.01 
poly n=6 97.56 
gaussian =1.0 98.68 
gaussian  =1.5 97.87 

 
LLL-G 

poly n=5 97.25 
poly n=6 98.69 
gaussian =1.0 97.86 
gaussian  =1.5 98.15 

 

3.2.2.2   Ground Detection (SVM-2) 
The ground detection is done separately by training and testing SVM-2. The peak 
value of the zero sequence component of the fundamental ,3rd and 5th harmonic 
components of post fault current signal are  found out and are used as the input-
‘x_i’(three input) to the SVM-2 and the corresponding output(y_i) is ‘1’ for the 
fault involving  ground and ‘-1’ for fault without involving ground. As the zero 
sequence components are pronounced in case of fault involving ground compared 
to fault without involving ground, the SVM-2 is trained to provide the classifica-
tion for ground detection. The SVM-2 is trained with 300 data sets and tested with 
300 data sets for each category of fault, each set comprising of 3 data points for 
‘x_i’ as input and (1,-1) for ‘y_i’ as corresponding output. 

The order of the polynomial is n’ and width of the gaussian function is ’σ’. 
The bound on the lagrangian multipliers ‘C’ is selected 5.0 and the conditioning 
parameter for QP method, lambda is chosen as 1.0*e-5. Different values of ‘σ’ 
with which the SVM is trained and tested are 1.0 and 1.5. Similarly the values se-
lected for ‘n’ are 5 and 6. All the above parameters are selected after cross vali-
dation [12-14]. Table-9 provides the ground detection patterns for different fault 
conditions. It is found that for ‘b-g’ (L-G) fault at 10%,δ=30° Rf =10 ohm, the 
output is ‘1’ which shows that the fault involves ground. But for ‘bc’ (L-L) fault 
at 50%, δ=60° Rf =100 ohm, the output is ‘-1’ which clearly shows that fault does 
not involve ground. Also misclassification is observed for ‘abc-g’ (LLL-G) fault  
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Table 9. Testing of SVM-2 for ground detection patterns 

 
‘ab-g’ fault at 30%, =45  
Rf =50 ohm 

poly n=5 1 
poly n=6 1 
gaussian =1.0 1 
gaussian  =1.5 1 

 
‘bc’ fault at 50%, =60  Rf 
=100 ohm 

poly n=5 -1 
poly n=6 -1 
gaussian =1.0 -1 
gaussian  =1.5 -1 

‘abc’ fault at 70%, =45  Rf 
=150 ohm 

poly n=5 -1 
poly n=6 -1 
gaussian =1.0 -1 
gaussian  =1.5 -1 

‘abc-g’ fault at 90% , =45  
Rf =150 ohm with source 
changed 

poly n=5 1 
poly n=6 1 
gaussian =1.0 -1 
gaussian  =1.5 1 

‘ca-g’ fault at 45%, =60  Rf 
=100 ohm 

poly n=5 1 
poly n=6 1 
gaussian =1.0 1 
gaussian  =1.5 1 

‘c-g’ fault at 85%, =60 , Rf 
=150 ohm 

poly n=5 1 
poly n=6 1 
gaussian =1.0 1 
gaussian  =1.5 1 

‘ab’ fault at 95%, =45 , Rf 
=200 ohm 

poly n=5 -1 
poly n=6 -1 
gaussian =1.0 -1 
gaussian  =1.5 -1 

‘abc-g’ fault at 75%, =30 , 
Rf =200 ohm with source 
changed 

poly n=5 -1 
poly n=6 1 
gaussian =1.0 1 
gaussian  =1.5 1 

 
Fault Kernel Parameter 

value 
Ground detection 

pattern 
‘b-g’ fault at 10%, =30  Rf 
=10 ohm 

poly n=5 1 
poly n=6 1 
gaussian =1.0 1 
gaussian  =1.5 1 

 

 
at 75%, δ=30°, Rf =200 ohm with source changed, with polynomial kernel for 
n=5, which produces output ‘-1’ instead of ‘1’. Also similar case happens for 
‘abc-g’ (LLL-G) fault at 90%, δ=45° Rf =150 ohm with source changed, with  
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gaussian kernel for σ=1.0 which results ‘-1’ instead of ‘1’. Table-10 shows the 
classification rate of the SVM-2 for ground detection. The classification rate is 
99.32%(maximum) for LL-G fault with Gaussian kernel with σ=1.0 and the 
97.89%( minimum) for LL fault with σ=1.5.The average classification rate for 
ground detection for 300 test cases is found to be 98.61% for all types of faults 
with different operating conditions.  

Table 10. Classification rates of SVM-2 for ground detection during testing 

Fault Kernel Parameter 
value 

Classification rates   (%) 

poly n=5 99.05 
poly n=6 98.74 
gaussian σ=1.0 98.98 

 
L-G 

gaussian σ =1.5 99.14 
poly n=5 98.96 
poly n=6 98.25 
gaussian σ=1.0 99.32 

 
LL-G 

gaussian σ =1.5 98.39 
poly n=5 99.25 
poly n=6 98.21 
gaussian σ=1.0 98.69 

 
LL 

gaussian σ =1.5 97.89 
poly n=5 98.47 
poly n=6 97.98 
gaussian σ=1.0 98.02 

 
LLL 

gaussian σ =1.5 98.07 
poly n=5 97.99 
poly n=6 98.77 
gaussian σ=1.0 99.05 

 
LLL-G 

gaussian σ =1.5 99.06 

3.2.2.3   Phase Selection and Ground Detection for Experimental Data Sets 
The proposed algorithm is also tested for data from experimental set-up. The 
trained SVMs are tested with 300 data sets from experimental set-up. The re-
sults for faulty phase selection and ground detection are given in Table-11. It 
is found that the trained SVMs produce accurate results when compared to the 
results using data from simulation model. The average faulty phase selection 
rate is 97.96% and the average ground detection is 98.50% compared to faulty 
phase selection and ground detection rates of 98.02% and 98.62% respectively 
using data from simulation study during testing.  
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Table 11. Classification rates of SVM-1 for faulty phase selection and SVM-2 for ground 
detection for experimental data sets 

 
Testing results for 
faulty phase selec-

tion 

Testing  
results for 

ground  
detection 

Fault Kernel Parameter 
value 

Classification 

rates   (%) 

Classification 

rates   (%) 

poly n=5 97.88 99.01 
poly n=6 97.11 98.56 
gaussian σ=1.0 96.98 98.76 

 
L-G 

gaussian σ =1.5 98.05 99.02 
poly n=5 97.95 98.74 
poly n=6 97.23 98.11 
gaussian σ=1.0 98.23 99.25 

 
LL-G 

gaussian σ =1.5 97.21 98.27 
poly n=5 98.98 99.32 
poly n=6 97.98 98.12 
gaussian σ=1.0 98.43 98.56 

 
LL 

gaussian σ =1.5 97.45 97.68 
poly n=5 98.65 98.32 
poly n=6 97.12 97.78 
gaussian σ=1.0 97.99 97.99 

 
LLL 

gaussian σ =1.5 97.76 98.01 
poly n=5 97.65 97.87 
poly n=6 98.67 98.69 
gaussian σ=1.0 99.01 98.97 

 
LLL-G 

gaussian σ =1.5 98.92 98.99 

4   Conclusions 

A new approach for the protection of Flexible AC Transmission Line with TCSC 
using machine learning technique such as support vector machine is presented in 
this research work. Half cycle post fault current samples and firing angles are used 
as input to the SVMs and the output is the corresponding classification. SVM-1 is 
used for fault classification, SVM-2 is used for ground detection and SVM-3 is 
used for section identification for the TCSC on the line, respectively. It is found 
that SVMs are trained to result most optimized classifier and with very less num-
bers of training samples compared to the neural network and neuro-fuzzy systems. 
Also the error found is less that 5% taking all SVMs to consideration. Hence the 
proposed method is very accurate and robust for the protection of transmission 
line including TCSC. 
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For transmission line without FACTs, 1/4th  cycle post fault current and voltage 
samples  are collected at the relaying point and fed to the SVMs as inputs and pro-
vides the information about the  faulty phase and ground involved in the fault 
process. SVM-1 is trained and tested with the faulted voltage and current samples 
to provide faulty phase selection and SVM-2 is trained and tested with the peak of 
the zero sequence currents to result the ground involvement in the fault process re-
spectively. The polynomial and Gaussian kernel based SVMs provide faulty phase 
selection and ground detection with error less than 2%. The results are compared 
with the RBF neural networks (previous work) and found better with respect to the 
efficiency and speed. The proposed method detects and classifies the faults within 
½ cycle from the inception of fault (10 ms). Also the algorithm is tested for ex-
perimental set-up and provides accurate results for faulty phase selection and 
ground detection. Hence the proposed technique is fast, accurate and robust for the 
protection of large power transmission networks. 
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Power Quality

Kyeon Hur and Surya Santoso

Abstract. Providing power quality (PQ) for 21st-century needs is one of the widely
accepted principal characteristics of the envisioned Smart Grid because we will have
more and more PQ-sensitive loads such as microprocessor-based devices, critical
manufacturing processes, and data centers [1]. Our future global competitiveness
demands disturbance-free operation of the digital devices that empower the produc-
tivity of our economy1. It is expected that the Smart Grid will provide a reliable
power supply with fewer and briefer outages, cleaner power, and self-healing power
systems, through advanced PQ monitoring, analysis of the measurement data, di-
agnosis of PQ disturbances, identification of the root causes, and timely automated
controls. Note that computational intelligence(CI) has been an integral, significant
part of advancing and expanding the horizons of this PQ research. The capabilities
and applications of CI for PQ are continually evolving due to advanced PQ mon-
itoring (or recording) devices. The objective of this chapter is to present these CI
applications such as signal processing and artificial intelligence (AI) techniques to
help understand, measure, and mitigate PQ phenomena. This chapter also describes
challenges and potential applications in turning raw PQ measurement data to a much
more valuable and actionable knowledge in order to improve PQ performance and
produce real financial benefits as well.

1 Introduction

Electric power quality (PQ) problems describe all electric power problems or distur-
bances in the supply system that prevent end-user equipment from operating prop-
erly. They encompass a wide range of different phenomena with time scales from
tens of nanoseconds to steady state. In principle, there are four important groups of
PQ disturbances frequently encountered in the distribution system [2]:
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per year in lost productivity and damaged equipment [1].
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• Momentary outages and voltage sag disturbances due to breaker operations to
clear faults, and also due to poor voltage regulations

• Transient overvoltages due to energizing and switching of distribution system
equipment, and lightning strikes entering the distribution system

• Harmonic distortion problems due to end-user nonlinear loads and the interaction
of these loads with the distribution system equipment

• Small and gradual voltage (including voltage flicker leading to light flicker), cur-
rent and frequency variations from the nominal values due to the inherent unbal-
anced nature of the distribution system.

PQ problems may originate in the distribution system (such as equipment energizing
or circuit breaker clearing operations), and customer’s own facility or other customer
facilities (where their equipment produces electrical emissions – i.e., harmonic cur-
rents). They can also arise from the interaction among customer loads, or between
customer loads and the utility system. It is also common that switching of distribu-
tion system equipment can interact with end-user equipment adversely. In addition
to voltage sags and overvoltage phenomena, power system resonance phenomena
arising from the interaction between distribution system equipment and end-users’
loads2 are a major important source of power quality disturbances. The interaction
usually arises due to the shift in the system frequency response (caused by shunt
capacitor bank energizing), the relatively weak system (i.e., low short-circuit ca-
pacity), and poor system damping. A real example of the power system harmonic
resonance facilitated by capacitor bank energizing is illustrated in Fig. 1. Note that
before the capacitor bank energizing, the harmonics are minimal, but it exhibits
clear signs of harmonic distortion after the capacitor bank energization, shifting the
system resonant frequency. Note also that transients are damped out rather slowly
because it takes more than a quarter of a second, indicating low system damping.
Impacts of power system resonance include additional losses, overheating, and over-
loading of capacitors, transformers, and motors. It can also cause interference with
telecommunication lines and errors in power metering.

The majority of PQ problems can be characterized through measurements3 of
voltage and current [3, 4, 5]. Continuous monitoring over an extended period is
often required to capture infrequent and unexpected disturbances. The monitoring
is also used to track the ongoing system performance, to watch for conditions that
could require attention, and to provide information for utility and customer person-
nel when there is a problem to be investigated. PQ monitoring has been widely used
to evaluate system-wide performance as well. By understanding the normal power
quality performance of a system, a utility can identify abnormal characteristics and
offer information to customers to help them match their sensitive equipment char-
acteristics with realistic PQ characteristics. For example, a technical understanding

2 Widespread use of power electronic devices and the frequent energization of distribution
system transformers may be considered to be main harmonic sources.

3 Understanding how to monitor PQ conditions – i.e., understanding which types of mea-
surements are needed, how to make them, over what time frame, and at what locations –
is key to any PQ project.
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Fig. 1. Capacitor energization resulting in increased harmonic distortion

of waveforms and what shape the power needs to be in for a particular applica-
tion is important to meet the operational requirements of end-use loads and various
regulatory standards and guidelines.

Since the time scales of PQ disturbances vary widely, monitoring instruments
such as PQ monitors, digital fault recorders, digital relays, and other intelligent elec-
tronic devices (IEDs) should ideally have the capability of capturing events ranging
in frequencies from DC to a few megahertz for faster transients such as lightning and
internal load switching4. Fig. 2 summarizes the basic requirements of monitoring as
a function of the different types of PQ variations and subsequent analysis [4].

As presented in Fig. 2, the requirements for the PQ monitoring and analysis
can be quite substantial. The PQ measurements are based on numerous metrics,
including voltage regulation limits, voltage balance limits, harmonic distortion lev-
els, voltage sag/swell rates, interruption rates, voltage flicker limits, switching and
lightning transients, electrical noise, and unwanted stray voltage potentials [2]. It
is very important that the user thoroughly understands the capabilities, limitations,
and features of each type of PQ instrument in reference to the their needs. Unfor-
tunately, as more and more PQ monitors are installed in the utility and customer
facilities, end users of PQ monitors are often overwhelmed with voluminous data
[4]. Note further that the aforementioned PQ phenomena may have a variety of dif-
ferent causes, which motivates more efficient tools or algorithms for improving the
power quality and equipment performance. The manual acquisition and analysis of
data has inherent inefficiencies and slows maintenance opportunities. It is desired
to establish automated PQ data gathering, and sifting of the data that can streamline
the PQ-related utility operations. A smart system to identify fundamental signatures
of PQ events, correlate them to the root causes, and indicate impending equipment

4 It is worth noting that many commercial power-quality monitoring instruments have sam-
pling rates of 256 samples per cycle since the majority of PQ events – i.e., sags, swells,
interruptions, flicker, and harmonics to the 50th – have frequency contents below 5 kHz
because they are the majority of big PQ issues. However, note also that the high-end instru-
ments with a higher sampling rate are required to analyze the faster transients [2, 4, 17].
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Fig. 2. Summary of monitoring requirements for different types of PQ disturbances

failure based on a robust knowledge base brings a great benefit [10, 18]. It should be
emphasized that the true value of any power-quality monitoring program lies in its
ability to analyze and interpret voluminous raw data and generate actionable infor-
mation to prevent PQ problems or improve the overall power-quality performance.
Signal-processing techniques in conjunction with various AI techniques are invalu-
able to meet this goal. The CI technology has enabled PQ monitoring and analysis
to continuously become more powerful and to provide a growing array of benefits to
the overall power-system operation and performance evaluation. The following sec-
tions provide an overview of how the CI techniques can be applied to provide better
understanding and solve the various types of PQ problems, and they also discuss the
techniques’ unique functional features.

2 Computational Intelligence for PQ Applications

As indicated earlier, one of the important development areas for PQ is the implemen-
tation of CI techniques in PQ monitoring and analysis systems that can automatically
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evaluate disturbances and operating conditions in order to draw conclusions about
the cause of the problems or predict potential problems before they occur [5, 8]. It
should be beneficial that the system can also contact the appropriate personnel and
provide them with the relevant information using the advancing information and
communication technologies [10]. Thus, numerous research activities have been fo-
cused on the following:

• Efficient algorithms that detect the instance of PQ disturbance and trigger record-
ing of PQ data for further analysis

• Methodologies that not only detect PQ disturbance but also identify the PQ type
by characterizing the disturbance to enable timely and appropriate control actions

• Tools for correlating the PQ disturbance with the root cause
• Methodology for locating the source of the PQ disturbance and system equipment

that facilitates the PQ disturbance
• Techniques for efficiently managing the huge amount of data collected through

the PQ monitors by storing only key signatures of important PQ disturbances.

To effectively discuss and better understand the integral roles of signal processing
and AI-based techniques in PQ applications, let’s first look into an envisioned in-
telligent PQ monitoring and analysis system5 designed especially to deal with a
variety of capacitor switching transient concerns [7, 10], as depicted in Fig. 3. It
includes the PQ event detection and classification module with five functional mod-
ules, which autonomously examine the location the capacitor bank, proper capacitor
switching, switching transient magnification, overall capacitor bank health, and sys-
tem harmonic resonance.

This envisioned smart system covers various functional capabilities that exist-
ing research in the PQ area strives for, as stated above. Specifically, capacitor bank
maintenance has been a time-consuming task for utility engineers. Typically, capac-
itor bank problems are found during routine inspections of capacitor banks or when
failures result in outages or other system problems. The delay in finding problems
such as blown fuses or can failures can result in inefficient system operation, voltage
control issues, voltage unbalance, and harmonic problems. Problems such as switch
restriking, harmonic resonance, and magnified transient voltages can cause catas-
trophic failures if they are not detected and fixed. An automated system can detect
many of these problems before they cause catastrophic failures and can reduce time
to repair routine problems that cause voltage-control and power-quality problems
[10]. It is important to note that this research motivation and the values can be easily
extended to other important PQ disturbances such as voltage-sag problem [6].

As discussed earlier, many utilities have already implemented extensive power-
quality monitoring systems with continuous management of the monitoring databases
[4]. These systems provide the data that can be used for automated identification of

5 This may be a good illustrative example of advanced smart PQ monitoring and analysis
systems. Implementation and development of the individual functional modules have been
the active research topics in the PQ area for many years, and remarkable progress has been
made. The performance and efficacy are evolving, and efforts to resolve the interoperability
and integration issues are noticeable.
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Fig. 3. A scalable expert system for capacitor switching transient concerns

PQ events. The data include transient voltages and currents during switching opera-
tions, as well as steady-state trends of voltage, current, reactive power, and harmonics.
They are the valuable (but huge) data sets used to detect and analyze PQ concerns.
Advanced signal-processing techniques based on the expertise of PQ professionals
help detect the event and capture unique features of a certain PQ event automatically.
These processes can be used in both time and frequency domains, and the techniques
include classic but efficient FFT-based methods [20], wavelet transforms [8, 9], S-
transform [11, 12], time-frequency analysis [13], and parametric methods such as
Prony analysis, MUSIC, ESPRIT [6], etc. It is worth noting that different PQ dis-
turbances require different signal-processing techniques, and sophisticated methods
do not always perform best. Computationally simple, steady-state trend analysis of
time-series data performs excellent for detecting and analyzing the voltage sag. Us-
ing the identified features, one can further categorize the PQ disturbances into the
predetermined PQ types (and may even create a new type) with the help of AI-based
tools such as expert system, soft computing techniques like neural network, fuzzy
logic, evolutionary computation, support vector machine (SVM) or a combination
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thereof [16, 6]. Heuristics based on engineers’ practical knowledge and the underly-
ing physics of the PQ phenomena reinforce the performance and may also provide
computationally simple solutions. In fact, computational efficiency is especially re-
quired so that feasible and low-cost solutions for PQ monitoring equipment imple-
mentation may be achieved. Identifying impending failure of system equipment (ca-
pacitor bank, transformer, recloser, etc.) through equipment health monitoring should
be greatly beneficial, as shown in the illustrative example. It will also be beneficial if
the intelligent system can (1) correlate the PQ disturbance with the system equipment
facilitating the disturbance by determining its location, and (2) evaluate power sys-
tem operating conditions (abnormal switching condition and system resonance)and
system characteristics (damping, resonant frequencies) continuously [10].

The advanced PQ monitoring and analysis system enables a preventive and proac-
tive maintenance strategy as well. First, when forewarned of an imminent equipment
failure, the utility has time to go and repair or replace the system before outages re-
sult. Second, it saves money by warning the utility of ailing equipment before it
actually dies. Often this equipment can be repaired or relocated to keep it in opera-
tion. Third, this system gives the utility greater knowledge about various PQ events
occurring on the grid. The upshot of all this is improved power quality. Such an
automated, intelligent PQ evaluation system could quite possibly save utilities con-
siderable money and shed new light on old PQ problems.

In the following sections, the various aforementioned CI techniques applied to
improve the PQ applications are discussed. Applications include PQ detection and
characterization, PQ classification, locating the correlated system equipment, power
system characterization, and data compression.

2.1 PQ Analysis – Detection and Characterization of PQ Problems

To identify whether PQ is acceptable or not, we must have an understanding of the
range of disturbances that can be present on the power system, the standards by
which these disturbances are judged, and the expected impacts on loads and system
equipment. Therefore, a good understanding of the various standards and guidelines
is a prerequisite for the PQ analysis. For example, there are Institute of Electri-
cal and Electronics Engineers (IEEE) and American National Standards Institute
(ANSI) standards that specify the allowable range of conditions for total harmonic
distortion and the specific levels of harmonics that can be present (IEEE Std. 519-
1992). There exist specifications for voltage regulation and voltage balance (ANSI
Std. C84.1-1995). IEEE Std. 1159-1995 discusses all of the various PQ disturbance
types and provides a comprehensive manual about how to measure and guide them.
For voltage sags and interruptions, the industry standards do not strictly define the
specific rates or severity of these disturbances because the performance needs are
more subjective and are interpreted based on load criticality, the susceptibility of
the load to such disturbances, and power system design factors. Obtaining a work-
ing knowledge of the expected interruption and sag rates for various types of power
systems in typical operating environments should be beneficial for planning and
evaluating PQ studies [17].
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2.1.1 Detection of PQ Problems

The analysis of a PQ problem begins with its detection [3, 8, 14, 9, 15]. The detec-
tion also provides the instant or triggering point in reference to the time when the PQ
disturbance starts. The threshold values for triggering are set judiciously for differ-
ent types of PQ disturbances of interest6. The values may be root-mean-square(rms)
magnitudes of voltage and current, peak values of the waveforms, total harmonic
distortion(THD) like harmonic indices, percent unbalance of voltages, or magni-
tudes of individual harmonic components, to name a few. These threshold values
could be set and represented most effectively in the time, frequency, time-scale, or
time-frequency domains, depending on certain PQ characteristics and applied tech-
niques. It is also worth noting that the PQ event detection often triggers the data
recording for further analysis. Although there may be some latency issues, modern
GPS-based PQ monitors can provide accurate time stamps for the monitored data,
which allows users to analyze multiple sets of PQ data associated with the same
event from different monitoring sources simultaneously and to perform more ad-
vanced studies such as finding the event location, an impending equipment failure
or the root cause of an event, etc. [4].

The end time of the event should be beneficial for further analysis. It is interesting
to note that the start and end timings for a voltage dip may easily be detected because
it generally results in a sudden drop and rise, as well as slow decay of the voltage
magnitude between the instants. This is based on the characteristics of the voltage
dip [3, 9]. However, the end time of a certain PQ event such as an oscillatory PQ
event may not be as clear as the start point. In this case, heuristics based on extensive
monitoring and analysis experience may help determine the transient- and steady-
state (quasi-stationary) periods for further analysis. These transient and steady-state
periods are often called transition segments (during an event) and event segments
(both before and after an event). The start and end points are closely related to these
segments [6]. For example, let’s revisit a capacitor bank energizing transient case, as
shown in Fig. 1. Prior to the energization, the total harmonic distortion is minimal,
and it does not exhibit any sort of resonance problems. However, when a capacitor
bank is energized, one can observe the transient period where the current is damped
out, taking more than a quarter of a second because the system is relatively weak.
After the transient period, the current waveform exhibits clear signs of harmonic
distortion due to the resonance. Thus, once the capacitor bank energizing transient
event occurs and the start point is accurately identified, one may extract the transient
(data for less than a cycle after the event) and steady-state segments (before and
after the event, allowing a few cycles of data) in an empirical but an automated
manner [20].

6 The objective is to be just sensitive enough to capture all of the significant PQ distur-
bances that are pertinent to the study, but not so sensitive that the instrument constantly
triggers on the thousands of insignificant events down near the noise level that occurs
daily. This also keeps the data build-up manageable by avoiding premature filling up of the
memory [17].
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Fig. 4. A dynamic overvoltage condition due to transformer energizing

Dynamic overvoltage due to transformer energizing, as illustrated in Fig. 4, is
another good example, and it is worth noting because the segment after the transient
period may not be considered quasi-stationary, unlike the general power system har-
monic problems. As well known, energizing the transformer produces magnetizing
inrush current that can excite the power system’s natural response frequencies [21].
It is apparent in Fig. 4 that the overvoltage magnitude is approximately 1.5 p.u. and
that it persists over the entire monitoring record. Note that the inrush current peaks
for the first few cycles are very large and highly distorted. Note also that the magni-
tude of the inrush current even exceeds the monitoring current setting of 200 amps,
and thus the current waveshape appears flat-topped. Due to the randomly fluctuat-
ing transient flux in the iron core, it is typical to observe that one phase experiences
a more severe inrush than others. This also causes current and thus voltage imbal-
ances. Hence, it may require at least several cycles of PQ data for further analysis
to classify this event among the similar types of PQ events.

Methods of PQ Detection

The underlying idea of PQ detection lies in finding a deviation from the quasi-
stationary characteristics of voltage and current measurements from the monitoring
devices [3, 6]. It is to find the transition segments, and three well-known approaches
exist for detecting these transition segments, as follows:
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Fig. 5. Wavelet transform coefficients of a capacitor switching transient

• Calculation of time-dependent rms voltage and current magnitudes. This is
the simplest but also a very efficient method for detecting many of the PQ
disturbances such as voltage sags, swells, and interruptions. The transition seg-
ments are detected by comparing the change in magnitude of the calculated rms
values with a predetermined threshold [2].

• Application of high-pass, band-pass filters and wavelet filters. This method is es-
pecially useful for detecting PQ disturbances that result in fast changes or oscilla-
tions. Numerous studies using wavelet transforms are noticeable in the literature
because wavelet transforms are effective in detecting multi-scale singular points
(sudden changes), and because transient segments are closely related to these sin-
gularities of the signal waveforms. Generally, some postprocessing is required
to identify the start and end points of the transition segment because wavelet-
transformed signals show all multi-scale singular points of a signal waveform.
Fig. 5 illustrates a voltage waveform of a capacitor bank energizing and the
squared wavelet transform coefficients at scales 1 – 4. In performing wavelet
transformations, a given signal is decomposed into four decomposition scales
with a Daub4 wavelet as a mother wavelet. A Daub4 wavelet is a Daubechies
wavelet with 2 vanishing moments [3].

• Use of parametric signal models such as a damped sinusoidal model or autore-
gressive model. Depending on the algorithms used, a recorded data sequence
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may be divided into blocks, and the model parameters in each block may be esti-
mated. This can be accomplished using estimation of signal parameters via rota-
tional invariance techniques (ESPRIT), multiple signal classification (MUSIC),
or autoregressive (AR) modeling. Alternatively, iterative algorithms may be used
without dividing data into blocks (e.g., using Kalman filters [33]). The so-called
residuals (model errors), which indicate the deviation between the original wave-
form and the waveform generated by the estimated model, are then calculated.
As long as the signal is quasi-stationary, the residual is small; however, for a sud-
den change in the signal, – e.g., a transition – the residual values become large.
Residual values can therefore be used to detect transition segments [6].

Each of these methods has advantages and disadvantages. It is desired to evaluate
and compare the performance of different methods for actual PQ disturbance data in
terms of their ability to detect and localize the changes of the measured waveforms.
The metrics may include time resolution, the detection rate, and the false alarm rate
of the detected points.

2.1.2 Characterization of PQ Problems

PQ phenomena have been investigated directly from actual recorded disturbance
waveforms thanks to widely available power monitor equipment. These disturbance
recordings are stored as three-phase voltage and current time-series. They contain a
wealth of information about the characteristics of the associated PQ types. Since these
characteristics are unique to each PQ event, they are useful to portray theprocess of PQ
disturbances and to pinpoint their root causes. The Fourier transform has been used to
characterize steady state phenomena, whereas the wavelet transform has been applied
to transient phenomena. We also make use of other mathematical analysis techniques
such as curve-fitting techniques to estimate sudden voltage step changes.

PQ events are generally characterized by their maximum amplitudes, crest volt-
ages, rms, frequency, statistics of wavelet transform coefficients, instantaneous volt-
age drops, number of notches, duration of transients, etc. These characteristics are
different for each power quality event, thus they are unique identifying features. In
the following, for example, we will classify capacitor switching transient events as
normal energizing and back-to-back energizing events. We will further discuss char-
acteristics of each category and formulate a procedure to extract identifying features
from input data [3].

Energizing a capacitor bank is accompanied by an inrush current that flows into
the bank. The characteristic impedance of the power system and the resistance of the
line initially limit the inrush current. During energization, a sharp reduction in the
voltage is immediately followed by a voltage rise, which later decays at a frequency
determined by the inductance and capacitance of the circuit. Typically, the voltage
rise due to capacitor switching operation can rise from 1.1 to 1.4 times the normal
voltage. The oscillation frequency in the voltage waveform is between 300-1000Hz
and lasts for less than half a cycle of the power frequency [3].
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Fig. 6. Typical voltage waveforms for normal capacitor switching events. PQ monitor is lo-
cated relatively (a) near and (b) faraway from the capacitor bank.

Normal Energizing of Utility Capacitors

Energization of utility capacitors is a daily operation in the utility system. They are
switched into the system in anticipation of load increase at a customer site, to correct
power factor, to support voltage on the system, and for many other reasons as well.
These are all considered normal energizations and they each have their own unique
features. The following are signatures for normal capacitor switching:

• Overvoltage: At the switching instant, the voltage in the capacitor cannot change
instantaneously. The bus voltage is pulled down, and then rises as the capacitor
begins to charge. During this process, the capacitor voltage may overshoot and
ring at the natural frequency. The overvoltage under normal energizing is usually
from 1.1 to 1.4 p.u. Fig. 6 shows the voltage waveform of normal energization of
a utility capacitor.

• Polarity and Magnitude of the Step Voltage: One of the most common identify-
ing features for normal energizing of utility capacitors is the polarity of the step
voltage. If the power quality monitor is located at or near capacitors that have
no series reactor (i.e., inrush reactor), a fast initial voltage step will be observed.
The voltage step at the instant of closing cannot go beyond zero if the capacitor is
lacking an initial net charge at the closing instant or if the capacitor is grounded.
If the power quality monitor is located farther away from the capacitor, the volt-
age step change may not be observed or may not be as prominent. Both of these
situations are illustrated in Fig. 6(a) and Fig. 6(b), respectively. In any event, sud-
den changes of voltages never go across the zero line (i.e., they do not change
polarity). This behavior is exhibited in nearly all utility capacitors energizing.

• Oscillation Frequency of the Energizing Event in the Phase Voltage: The oscilla-
tion frequency of any kind of capacitor energizing in the phase voltage is generally
between 300-1000 Hz. Thus, the frequency of oscillation is helpful in identifying
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Fig. 7. Oscillation frequency of capacitor energizing

capacitor energizing in general, but it cannot be used to discriminate normal en-
ergizing from other types of capacitor energizing. Extracting the oscillation fre-
quency from the capacitor energizing transients is difficult. First, the transient
event from a given voltage waveform has to be localized using the squared wavelet
transform coefficients. Once it is localized, the sinusoidal part has to be removed.
Then, the frequency of the transient event in the voltage phase is now estimated
by counting the number of crest voltages that are larger than 0.1 p.u. and the du-
ration of the corresponding crest voltages. The solid line waveform shown in Fig.
7 (a) is the first 22 ms of phase C voltage in a typical normal capacitor switching
event and the dotted line waveform is a curve-fitted waveform u(t). The transient
event can now be removed from v(t) by subtracting u(t) from it. The removed
waveform r(t) is now shown in Fig. 7 (b). The method does not always work if
the removed waveform is very small in magnitude. In such a case, the oscillation
frequency characteristic from the phase voltage cannot be extracted.

• Wavelet Transform Coefficients (WTC): The wavelet transform is utilized to
provide additional features in identifying capacitor switching events. It is used
to decompose the signal in different frequency bands and study its characteris-
tics separately. Many different types of wavelet transforms have been applied to
identify power system transient events. In developing a recognition and identi-
fication module, many prominent wavelet-based transforms will be tested and
enhanced to allow identification of additional features of capacitor switching
transient events. In fact, the aforementioned Fig. 5 shows wavelet transform co-
efficients for a typical capacitor switching transient event of phase C with scales
from 1 to 4, (b) through (e), respectively. In identifying normal energization of



212 K. Hur and S. Santoso

utility capacitors, the maximum squared magnitude with scales of 1 and 2 can in-
dicate the onset of the disturbance and its distribution activity, respectively. The
duration of the transient can also be estimated using WTCs at scales 1 and 2. The
small oscillation wave following the spike-like event in WTCs at scales 1 and 2
provides an estimate of the engineering transient duration.

• Oscillation Frequency of the Energizing Event in the Phase Current: As de-
scribed before, the oscillation frequency of the phase voltage transient is help-
ful in discriminating capacitor energizing events from other events. However,
the frequency signature from the phase voltage cannot be used to distinguish
between normal and irregular capacitor energizations. Fortunately, the oscilla-
tion frequency of the transient event at the phase current of a normal energizing
is very distinct from other types of capacitor energizing disturbances. The fre-
quency of the phase current during energization is typically between 300 and
1000 Hz. Once the transient event is localized by the wavelet transform, the os-
cillation frequency is computed using a Fourier transform. Current waveforms
for a typical capacitor switching transient event are shown in Fig. 8.

Fig. 8. Current waveforms at phases A, B, and C for a typical capacitor switching transient

Back-to-Back Capacitor Energizing

Back-to-back energizing of utility capacitors occurs when the capacitor being
switched into the utility system is located near an already energized capacitor. The
voltage waveforms of a back-to-back energizing event look very much the same as
those in normal energizing. Almost all features of normal energizing apply to back-
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Fig. 9. Typical voltage waveforms of back-to-back capacitor energizing of utility capacitors
in phases (a) A, (b) B, and (c) C

to-back energizing as well. Therefore, discriminating between normal and back-to-
back energizing events is a very delicate task. Fig. 9 shows a three-phase voltage
of back-to-back energizing of a utility capacitor bank. There are, however, two key
features that may help distinguish back-to-back from normal energizing-the step
voltage change and the oscillatory frequency of the phase current.

• Step Voltage: Back-to-back energizing transients involve two capacitors in close
vicinity. One of them is fully energized and then the other is switched on. The
resulting step voltage is not as large as it would be if the fully energized bank
was absent. However, this feature may not always be used to differentiate back-
to-back from normal energizing. The step voltage in back-to-back energizing
behaves exactly like the step voltage observed when the power quality monitor
is located far away from the capacitor during normal energizing. Based on our
observations, the voltage change in back-to-back capacitor energizing is typically
no larger than 0.5 p.u.

• Oscillation Frequency of the Energizing Event at the Phase Current: The
frequency of the phase current provides distinct evidence for the back-to-back
energizing event. The typical frequency for back-to-back energizing in the phase
current is greater than 1000 Hz, whereas that for the normal energizing is less
than 1000 Hz. Fig. 10 shows the energizing transient in the phase current. The
frequency in these phase currents is obviously higher than those under normal
energizing (see Fig. 8).
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Fig. 10. Current waveforms at phases A, B, and C of the back-to-back capacitor energizing
of utility capacitors

2.2 Classification of PQ Events

Recent advances in computer-based measurement technologies have allowed engi-
neers to deploy intelligent systems7 in PQ monitoring and analysis devices. The
primary goal of intelligent system applications in PQ measurement involves auto-
matic classification of PQ disturbances in terms of their types and root causes [5].
Thus, the intelligent systems help provide critical information and prioritize recom-
mended actions to manage critical equipment or avoid system failure.

It may be beneficial to compare two representative AI techniques – i.e., artificial
neural network (ANN)-based intelligent systems and rule-based expert systems –
that have been widely applied in PQ classifications.

2.2.1 ANN-Based Classifier

The artificial neural network (ANN), often called the neural network, is regarded
as the most generic form of AI for emulating the human thinking process. An
ANN tends to emulate the biological nervous system of the human brain in a very

7 Artificial intelligence (AI) techniques such as expert systems (ES), fuzzy logic (FL), ar-
tificial neural networks (ANN), genetic algorithms (GA), and synergistic hybrid schemes
have been applied extensively to solve many industrial problems, including problems in
process control, healthcare, geology, agriculture, information management, homeland se-
curity, and space technology, as well as power systems, to name a few [16].
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limited way using computer programming or electronic circuitry. An ANN consists
of the interconnection of a large number of nonlinear processing units referred to as
neurons. The internal structure of the ANN may involve feed-forward paths only, or
both feed-forward and feedback paths. The most important properties of the ANN
approach are summarized below [16]:

• Nonlinearity. This property is particularly useful if the underlying physical mech-
anism responsible for the generation of an input signal is inherently nonlinear.

• Weak statistical assumptions. ANN relies on the availability of training data
for its design; it is therefore able to capture the statistical characteristics of the
environment in which it operates, provided that the training data are sufficient to
represent the environment.

• Learning. ANN has a built-in capability to learn from its environment by under-
going a training session for the purpose of adjusting its free parameters.

These properties have justified the use of a neural network approach for pattern-
recognition and image-processing problems that are particularly difficult to solve.
Because the issue of PQ disturbance waveform identification is essentially a prob-
lem of pattern recognition, many ANNs have been used to classify power-quality
disturbance events and, shown promising results.

One of the most notable of these is waveform recognition using a wavelet-based
neural classifier [8, 6], which performs waveform recognition in the wavelet domain
using multiple neural networks. Wavelet transformation is very sensitive to signal
irregularities but very insensitive to regular signal behavior. In other words, wavelet
transform coefficients associated with the disturbance event have very large magni-
tudes while those of a disturbance-free waveform have small magnitudes.

Fig. 11 shows the conceptual block diagram of the wavelet-based neural classifier
consisting of preprocessing, processing, and post-processing phases. In this case,
the time domain PQ disturbance waveform is transformed into the wavelet domain
before being fed to the neural network. Thus, the input of the neural network is a
preprocessed signal. This transformation detects and extracts disturbance features in
the form of time and frequency data. The extracted data help the neural network in
distinguishing one disturbance event from another. The processing phase contains
a set of multiple ANNs, which perform the waveform recognition via the wavelet
domain (the domain of its input data). Because multiple neural networks are utilized,
a post-processing phase is required to combine the outcomes of the multiple neural
networks in order to make a decision about the disturbance type and to provide a
level of confidence for the decision made.

One of the drawbacks of using ANN is that it can only identify PQ events for
which it has been trained. If the incoming waveform is not one of the events for
which the ANN has been trained, it will incorrectly identify the waveform. Another
drawback of the ANN approach is its lack of scalability. The algorithm developer
cannot adjust ANN structures (e.g., the number of input and output stages, hidden
layers). Therefore, making changes to incorporate the identification of a new PQ
event requires retraining of the whole ANN system. However, although its perfor-
mance may be limited and it is not readily scalable, the ANN approach is a preferred
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Fig. 11. Conceptual block diagram of the wavelet-based neural classifier

choice when data are abundant and PQ experts are not available. In order to over-
come these disadvantages, we may consider a scalable rule-based expert system
while incorporating a reinforced self-adapting capability. This system is scalable,
easily modified, and capable of mimicking a PQ engineer’s thought process in PQ
event identification.

2.2.2 Rule-Based Expert System

Identification of PQ waveforms usually requires a significant amount of PQ ex-
pertise. A trained PQ engineer can easily identify the cause of a disturbance from
voltage and/or current waveforms. Identifying a handful of disturbance waveforms
is typically not problematic and can be performed with a high degree of accuracy.
However, identifying thousands of disturbance waveforms at a time is certainly an
onerous task. In addition to the drawback of human error, manual procedures used
to identify power-quality events are obviously not practical and quite costly. It is
therefore desirable that the expertise of power engineers be reproduced and coded
into a set of programs. This set of computer programs will behave as if it were an
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Fig. 12. Structure of a rule-based expert system

expert in power quality – it will possess the artificial intelligence necessary to per-
form various power-quality analysis tasks [7].

Fig. 12 shows the general structure of a rule-based expert system designed for
a PQ application. The inputs of the expert system are voltage and/or current wave-
forms. The output of the expert system is the desired information or actionable in-
telligence. The expert system consists of three basic elements:

• Inference engine or the control procedure mechanism. This element draws in-
ferences based on previously available knowledge and controls the analytical flow.

• Knowledge base. This is a compendium of static knowledge represented by pro-
duction rules (or if-then rules). For this reason, an expert system is often called a
rule-based system.

• User interface. This element facilitates communication between users and the
expert system.

The structure of the expert system described above is indeed a common structure
found in many expert systems. The flowchart for application program development
is shown in Fig. 13, which is similar to Fig. 11 except that here the system structure
is represented in a more developmental form and the if-then rules are delineated.

In a large and complex knowledge base, meta-rules and other forms of meta-
knowledge can increase the efficiency with which the expert system reaches a con-
clusion. Unlike a conventional program, an expert system is said to have a learning
capability because of meta-knowledge. Meta-knowledge is knowledge about the op-
eration of a knowledge base, and meta-rules are rules about the operation of the
rules. Meta-knowledge determines the most efficient operation strategy and allows
the knowledge base to learn which rules are most useful from experience. Avoid-
ance of testing for unlikely rules will improve the efficiency of a knowledge base
search. This is particularly true with an expert-system-based real-time control and
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Fig. 13. Expert system program development flowchart

monitoring of power systems. An example of a meta-rule to guide the order of a rule
search within a given frame is:

Meta-Rule 1: IF rules 2, 5, and 9 are skipped 15 times consecutively AND rule 1
is never tested THEN do not test rule 1 AND test rules 2, 5, and 9 at the end.

A successful expert system in PQ can be constructed if the following prerequi-
sites are available:

• There must be at least one human expert to identify and interpret disturbance
waveforms under consideration. The human expert is the source of knowledge in
the power-quality domain. In an ideal situation, the human expert is a group of
individuals with thorough knowledge in power quality.

• There must be at least one engineer to formalize and encode the knowledge of the
human expert into a set of computer programs. In addition, an expert in extracting
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power-quality signatures or empirical features from disturbance waveforms is
needed. Extracting power-quality signatures requires in-depth signal-processing
techniques.

• There must be a set of disturbance waveforms or data to provide empirical fea-
tures and to validate computer codes that embody the knowledge.

Let’s revisit Fig. 3, which shows the building blocks of the scalable expert system
for the automated evaluation of capacitor-switching transient concerns [18]. There
are six knowledge bases that are essentially autonomous software modules. These
modules perform the most essential tasks for evaluating capacitor-switching tran-
sients, and together they complete the automated system.

Each knowledge-base module stores knowledge (in the form of if-then rules)
relevant to each specific task. An individual knowledge base extracts predefined
characteristic disturbance features from a given disturbance waveform, and these
features are then compared with the stored knowledge. If a match is made, then a PQ
event has been identified, otherwise no match is made and the event is classified as
unidentified. The outcome of the comparison is then sent to an inference/procedure
control engine. The waveform, along with the extracted features, is now passed on
to the next module. The order of analysis depends on the author(s) of the expert
system. However, the module data flow is usually ordered according to increasing
identification difficulty (i.e., an increasing number of features to be extracted).

Unlike ANN approaches to identifying PQ events, this approach is easier to mod-
ify, debug, and expand. In ANNs, a weight factor connecting one neuron to another
is fixed – one cannot change its value without ANN retraining. This issue also makes
adding new PQ events to an already-trained ANN troublesome. Furthermore, if the
outputs of the ANNs do not give a correct PQ event type, it is not possible to de-
bug the ANN other than to retrain the whole network with more data or to improve
preprocessing techniques.

In summary, the rule-based PQ evaluation system possesses the following merits:

• The rule-based system is easy to develop and maintain. The system is capable
of reproducing a PQ engineer’s thought process in identifying the six capacitor-
switching transient characteristics specified above. Should identification of a new
capacitor-switching transient characteristic be desired, a new knowledge base
module can be created and added to the scalable system. Thereby, the capability
of the system can be expanded at will.

• Rules in the scalable system are also easy to modify and debug. If a disturbance
event causes magnification of capacitor-switching transients, but the output re-
ports that the event does not cause a magnification issue, then it is understood
that one or more rules in the module are not appropriate or that perhaps more
rules are needed.

• It has the ability to declare a given waveform as unidentified. For example, a wave-
form with a capacitor switching transient event of category X is entered to the sys-
tem. It begins analyzing the waveform through all modules. The output of each
module is certainly no match. Thus, after all possibilities are exhausted, the wave-
form is declared as unidentified, thereby minimizing misclassification errors.
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Fig. 14. The switched capacitor bank is downline from power-quality monitor PQM 1 and
upline from PQM 2. The CT direction is in the direction of feeder current flow.

2.3 Correlation of PQ Events with the System Equipment

As discussed previously, it should be beneficial to correlate the PQ disturbance with
the relevant system equipment that facilitates the disturbance. For example, over-
voltage transients resulting from capacitor switching operations can cause adverse
impacts both on the power system and within customer facilities. Locating the prob-
lematic capacitor bank helps the utilities prevent any PQ problems or mitigate the
impact by taking timely measures [22].

The problem addressed in this section can be stated as follows: Given voltage
and current waveforms resulting from the capacitor-energizing event, determine the
relative direction of the switched capacitor bank. That is, let us consider a one-
line diagram illustrated in Fig. 14, where a capacitor bank is energized. A power-
quality monitoring device (PQM) is located on both sides of the capacitor bank with
its current transformer (CT) direction8 pointing to the direction of the feeder cur-
rent. In this arrangement, the switched capacitor bank is physically downstream of
PQM 1, but upstream of PQM 2. Thus, we determine only the physical location of
the switched capacitor bank in order to be consistent in presenting the direction.

Several techniques have been proposed to determine the location of switched ca-
pacitors. Parsons [24] investigated the disturbance energy flow during the transient
period and the polarity of the initial peak of the disturbance power to find out the
relative location of the switched capacitor bank. The technique requires a provision
that the disturbance energy must be greater than or equal to a certain percentage
of the peak excursion of the disturbance energy. If this condition is satisfied, the
technique subsequently compares polarities of final values of disturbance energy
and power. Kim [34] applied a backward Kalman filter to find the location of a
switched capacitor bank by estimating the voltage rise of the capacitor bank. Chang
[23] proposed a method using voltage-disturbance energy index and current branch
current phase-angle variations for tracking transients. This section presents in more
detail research based on the two fundamental physical phenomena of capacitor bank
energizing.

8 The capacitor bank can be considered to be electrically upstream of PQM 1 but down-
stream of PQM 2 when both CTs are reversed upon installation. Nevertheless, its physical
location is unchanged. When the CT is found to be installed reversely, the measured cur-
rent could be flipped in the preprocessing stage.
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Fig. 15. Change in the phase-angle relationship between voltage and current waveforms be-
fore and after the capacitor bank energizing. Only PQM1 can detect the phase-angle jump.

The underlying physical properties are as follows. First, reactive power flow only
upstream of the capacitor bank is reduced by the injected reactive power. However,
reactive power flow downstream of the capacitor bank is not affected at all. Thus,
we will observe the power factor improvement only at the upstream PQ monitors,
as illustrated in Fig. 15. Second, when an uncharged capacitor bank is energized,
it behaves like an instantaneous short-circuit element because the initial voltage at
the capacitor terminal is zero. As a result, the instantaneous system voltage at the
energizing instant is pulled towards zero voltage. If a measurement is available at
the source-side of the capacitor bus, the instantaneous system voltage would be
zero. Due to the instantaneous short-circuit phenomenon, current measured at the
substation (or upstream from the capacitor location) will have a significantly large
magnitude but short-time current magnitude (i.e., inrush capacitor currents). On the
other hand, current measured downstream from the capacitor sees little of the inrush
current. As the capacitor is being charged, the instantaneous voltage rises and over-
shoots its system peak voltage momentarily. Thus, the relative location of a switched
capacitor bank can be determined by observing the polarities of initial voltage and
current change – i.e., the signs of voltage gradient, dv/dt, and current gradient,
di/dt, at the monitoring locations. Fig. 16 illustrates these phenomena clearly. The
accuracy and efficacy of the direction-finding technique above can be demonstrated
analytically [37], as well as by way of time-domain simulation models and actual
data [35, 22].

In order to utilize these two underlying physics, accurate detection of the switch-
ing event is required. Algorithms to calculate the time derivatives of voltage and
current immediately after the switching event are also required. By comparing the
zero crossings of voltage and current waveforms based on the time stamps, one can
also calculate the phase-angle changes before and after the switching event. Cross
time-frequency [13] analysis can also provide time- and frequency-localized phase
difference between the transient voltage and current disturbance waveforms.
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Fig. 16. Voltage and current waveforms recorded from power-quality monitors, which are
upstream (a and b), and downstream (c and d) from the switched capacitor bank. Note that
initial changes of current on b and d are dissimilar.

2.4 Modal Properties of Electric Power Systems

The modal properties of the electric power systems provide very useful informa-
tion to help develop any preventive control actions or execute mitigation schemes
against system resonance problems. As we discussed earlier, harmonic resonance in
a utility distribution system can occur when the system natural resonant frequency is
excited by relatively small harmonic currents from nonlinear loads [2]. The system
voltage and current may be amplified and highly distorted during this resonance
encounter. This scenario is more likely to occur while the energizing of a capaci-
tor bank in a system has little or negligible resistive damping. Thus, it is desirable
to predict the likelihood of harmonic resonance using system damping parameters
such as the Q factor9 and the damping ratio ζ at the resonance frequency. Various
signal-processing techniques help extract this damping and resonant frequency in-
formation from the PQ measurement data, especially from the transient data such as
capacitor bank transient data. Accurate system modal information can be utilized to
evaluate the system’s vulnerability to power quality disturbances, particularly res-
onance phenomena, so that a utility can take preventive measures and improve the
PQ of the system.

9 The Q factor is more commonly known as the X/R ratio. The reactance and resistance
forming the Q factor should be the impedance effective values that include the effect of
loads and feeder lines, in addition to impedances from the equivalent Thevenin source and
substation transformer. In other words, the X/R ratio is influenced by the load level. When
the ratio is high, harmonic resonance is more likely to occur.
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2.4.1 Estimation of Resonant Frequency

A simple yet accurate empirical method using FFT can estimate the system par-
allel resonant frequencies using voltage and current waveforms (less than a cycle)
from capacitor bank energizing events, and their FFT analysis results, leading to the
spectral analysis of the system impedance as follows [39, 19]:

Z( f ) =
FFT o f V (t)
FFT o f I(t)

=
V ( f )
I( f )

.

Fig. 17 illustrates a real-world example of this method and clearly indicates the
resonant frequencies at around 500 Hz and 720 Hz.

Fig. 17. Resonant frequency estimates: (a) FFT of voltage (b) FFT of current and (c) FFT of
impedance

An improved method using only the intrinsic transient portion of the capacitor
bank transient was also proposed and was proven to effectively remove the artificial
frequency components that may mislead the users [20]. The underlying idea is that the
capacitor bank transient will be composed of steady-state data and intrinsic transient
data, which will be damped out within a short time. Thus, the intrinsic portion can
be extracted by removing the steady data from the whole transient data. Of course,
accurate detection of the switching event is required for these two methods [8].

2.4.2 Estimation of Damping Parameters

A few studies on the application of signal processing techniques to transient mod-
eling and analysis have been undertaken on the assumption that transient compo-
nents are exponentially damped sinusoids. These techniques include Prony analysis
and Hilbert transform-based or wavelet transform-based system-identification tech-
niques, etc. [27, 25, 26]. ESPRIT and other system-identification techniques such as
the All-Pole model have also been applied [6]. However, they will not be discussed
in this chapter.
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Prony Analysis

Given accurate system parameters, eigenvalues from linear matrices arising from the
dynamic model of a system may provide analytical modal parameters. However, the
actual system may be too complex to model or may have time-varying parameters.
In these cases, it may be practical to substitute an estimated linear model for the
actual dynamic model. The estimated model can be derived from the system output
waveform. One of viable approaches to estimate the system parameters is Prony
analysis [27, 28, 29].

Prony analysis is basically designed to fit the parameters of a sum of damped
sinusoidal functions to an observed measurement.

v̂(t) =
n

∑
i=1

aie
−ζiωnit cos(ωdit + φi) =

n

∑
i=1

αie
λit (1)

where v(t) consist of N samples (i.e., v(tk) = v(k),k = 0,1, . . . ,N−1) that are evenly
sampled by Δ t.

Fig. 18 illustrates how closely the reconstructed waveform through the Prony
analysis can fit in the real measurement data from 115 kV line.
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Fig. 18. Original voltage transient (bold line) and Prony estimate (solid line) from 115 kV line

In practice, the measurement may be corrupted by high-frequency noise or offset
by a dc value, and thus one may need to preprocess the measurement before ap-
plying the Prony method. In general, the Prony analysis requires a computationally
complex series of procedures for building a linear prediction model, then calcu-
lating the roots of the characteristic equations and amplitude and phase for each
mode. Thus, it is often criticized for its computational intensity and artificial modal
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information generated to fit in the waveform. The appropriate system order that
should be determined beforehand is not generally known, and it may require a trial-
and-error process.

Hilbert Transform-based Damping Analysis

The Hilbert transform can be applied to determine and extract the circuit properties
embedded in the envelope of the waveshape of the transient signal such as capacitor
switching transient [25]. The Hilbert transform of a real-valued time domain signal
y(t) is another real-valued time domain signal, ỹ(t), such that an analytic signal
z(t) = y(t) + jỹ(t) exists [36]. This is a generalization of Euler’s formula in the
form of the complex analytic signal. It is also defined as a 90-degree phase-shift
system, as shown below:

ỹ(t) = H [y(t)] =
∫ ∞

−∞

y(τ)
π(t − τ)

dτ = y(t)∗ (
1
/

πt
)

(2)

F [ỹ(t)] = Ỹ ( f ) = (− jsgn f )Y ( f ) (3)

where Ỹ ( f ) is the Fourier transform of ỹ(t). From z(t), we can also write z(t) =
a(t) · e jω(t), where a(t) is the envelope signal of y(t) and θ (t) is the instantaneous
phase signal of y(t). The envelope signal is given by a(t) =

√
y(t)2 + ỹ(t)2 and the

instantaneous phase, θ (t) = tan−1
(

ỹ(t)
y(t)

)
. Using the property of Eq. (3), one can

easily obtain the Hilbert transform of a signal, y(t). If we let Z( f ) be the Fourier
transform of z(t), we can obtain the following relationship:

z(t) = F−1 [Z( f )] = y(t)+ jỹ(t) (4)

Thus, the inverse Fourier transform of Z( f ) gives z(t), as shown in Eq. (4).

y(t) = yme−ζωnt cos(ωdt + φ) (5)

ỹ(t) = yme−ζωnt sin(ωdt + φ) (6)

For the case of quadratic damping, the decaying transient and its Hilbert trans-
form can be represented as Eqs. (5, 6). Thus, the resulting envelope, a(t), becomes
yme−ζωnt , where ym is an arbitrary constant magnitude. This is a unique property of
the Hilbert transform applicable to envelope detection.

In fact, the envelope from the Hilbert transform is not an ideal exponential func-
tion and is full of transients especially for those low-magnitude portions of the signal
approaching the steady-state value (ideally zero). Thus, only a small number of data
are utilized in order to depict the exponential satisfactorily: one cycle of data from
the capacitor-switching instant is generally sufficient to produce a good exponen-
tial shape. The number of data elements will depend on the sampling rate of the
PQ monitoring devices and should be calibrated by investigating the general load
condition, especially when the method is applied to a new power system in order
to optimize the performance. The obtained data are now fitted into an exponential
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function. The direct way to fit the data into the exponential function is possible
through the iteration-based nonlinear optimization technique. However, the expo-
nential function is namely an intrinsic linear function, such that the lna(t) produces
a linear function; i.e.,

ln{a(t)} = lnym − ζωnt. (7)

As a result, we can apply the standard least-squares method to approximate the
optimal parameters more efficiently [28]. The solution is not optimal in minimizing
the squared error measure, due to the logarithmic transformation. However, except
for very high damping cases, this transformation plus the least-squares estimation
method, creates a very accurate estimate of a(t).

Analytic Wavelet Transform-based Damping Analysis

The main problem of the Hilbert damping analysis is that it does not perform as well
for multi-modal cases10 as for uni-modal cases. Unfortunately, it is not uncommon
to find many practical cases for which multiple modal components are comparable
in size such that there is no conspicuous single mode to study. One may reinforce the
signal-preprocessing stages by adding high-frequency noise-rejection filters and/or
adding band-pass filters and thus appropriately selecting the important resonant fre-
quencies based on the system studies followed by the Hilbert damping analysis.

It is also interesting to note that the continuous wavelet transform can be ap-
plied to identify the dynamic system modal parameters. These research problems
have been encountered in civil and mechanical engineering and have shown very
promising results [40]. The vibration data, acoustic data, and ambient noise have
been utilized to identify system modal parameters, from which one can detect any
damage of the system in order to prevent further damage. It was demonstrated that
the wavelet-based system-identification method can be applied to the capacitor bank
transient data to characterize electric power systems [26].

An analytic wavelet can be constructed by the frequency modulation of a real and
symmetric window g(t) – i.e., ψ (t) = g(t)exp( jηt) [38]. The Fourier transform of
ψ(t) is then ψ̂ (ω) = ĝ(ω −η). Thus, ψ̂ (ω) = 0 for ω < 0 if ĝ(ω) = 0 for |ω |> η .
Hence, ψ is analytic. Specifically, a Gabor wavelet is a representative of an analytic
wavelet transform and is obtained from a Gaussian window [38]:

g(t) =
1

(σ2π)1/4
exp

(−t2

2σ2

)
(8)

The Fourier transform of this window is then computed as follows:

ĝ(ω) =
(
4σ2π

)1/4 exp

(−σ2ω2

2

)
(9)

10 Two or more energized shunt capacitor banks and feeders may interact and form two or
more modal (resonant) components. These cases correspond to multi-degree-of-freedom
(MDOF) systems in mechanical or structural engineering [40].
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Thus, if σ2η2 � 1, ĝ(ω) ≈ 0 for |ω | > η . Hence, Gabor wavelets are considered
to be analytic. The Fourier transform of ψu,s is a dilation of ψ̂ (ω) by 1/s, and can
be obtained as ψ̂u,s (ω) =

√
sψ̂ (sω)e− jωu. Thus, the AWT of f (t) (i.e., W f (u,s))

is the inverse Fourier transform of the frequency function obtained by multiplying
f̂ (ω) by ψ̂ (sω). Thus, given the Fourier transform of the chosen analytic wavelet
transform, computational complexity can be reduced. This is because the Fourier
and inverse Fourier transforms of the signal, f (t) at each scale, s, can be calculated
efficiently via FFT11 [39]. In practice, this is a significant benefit of the proposed
method because it can be easily implemented in the existing monitoring devices.

An analytic wavelet transform defines a local time-frequency energy density
named a scalogram:

PW f (u,s) = |W f (u,s)|2 (10)

Note that we focus on the instantaneous frequency, ω (u), defined as η/s(u). This
is related to the ridges12 of the normalized scalogram, s−1PW f (u,s) [38].

Let us represent a signal, v(t), as v(t)= a(t)cosθ (t). This may represent an entire
single-mode signal or a single-modal component of a multi-modal signal. The Gabor
wavelet transform of this signal is obtained as follows [40]:

Wv(u,s) =
1
2

a(u) ψ̂u,s (ω (u) ,σ ,η)e jθ(u) + ε
(
a′ (t) ,ω ′) , (11)

where ω = θ ′(u) = dθ(u)
du , ω ′(u) = dω(u)

du , and ψ̂u,s is a dilated and translated version
of (9),

ψ̂u,s (ω ,σ ,η) =
(
4σ2s2π

)1/4e

(
−(ω−η/s)2σ2s2

2

)
e− jωu. (12)

The last term, ε (a′ (t) ,θ ′′(u)) in Eq. (11) is an approximation error and can be
neglected if the derivative of the phase is greater than the bandwidth Δω [38]; i.e.,
θ ′(u) ≥ Δω . The derivation for this Gabor wavelet function is presented in [40].

In general, the signal v(t) can be represented as a damped sinusoidal: v(t) =
αe

−ζ ωnt
cos(ωdt + φ), where ωd = ωn

√
(1− ζ 2) and ωn is a system natural fre-

quency. The algorithm for estimating the power-system damping ratios based on
AWT can be developed as follows:

1. The signal utilized for estimating the system damping is the same capacitor bank
switching transient as used in [20, 26], where an empirical method was taken to

11 The discrete Fourier transform of a circular convolution is the product of the two dis-
crete Fourier transforms. For two signals f and h with a length M ≥ 32, computing their
convolution with an FFT is faster than using the straightforward formula. In this case, it
is required to calculate ĝ(ω) and f̂ (ω) only once. It is then required to multiply these
functions by varying scales. The inverse FFT is finally required only once. Note that the
spectral range of interest will determine the number of required scales.

12 The time-scale representation of the energy concentration of the continuous wavelet trans-
form is called the ridge. Ridges represent the frequency content of the analyzing signal
with a high density of energy that is a function of u [38].
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extract the free response of the system to the capacitor bank energizing. This free
response is dictated by the system resonant frequencies.

2. Perform FFT on this free response of the system and determine the salient ωd’s.
Note that ωd’s replace ωn’s in this algorithm development, since the observable
resonant frequency components are ωd’s. However, small damping ratios make
the numerical difference between them negligible.

3. Obtain the Gabor wavelet coefficients using Eqs. (11) and (12).
4. The angular velocity of the Gabor wavelet function (ω = η/s) is equal to the

angular velocity of the signal i.e., ωd as far as the ridge is concerned. Therefore,

exp
(
−(

ω −η
/

s
)2 σ2s2

/
2
)

will be 1.

5. Consequently, the following relation can be derived:

ln

(
2 |Wv(u,s(u))|
(4πσ2s(u)2)1/4

)
≈−ζωdu + lnα. (13)

It should be noted that Eq. (13) is a linear function of u. Thus, the standard linear
squares method can be applied to find the slope of Eq. (13). As to a multi-modal
signal, this linear regression analysis should be performed for all modal components
of interest. The ridge is considered to be constant because a constant, instantaneous
angular velocity is assumed. Since s(u) = η

ωd
, where η denotes the frequency center

of the base wavelet, the frequency center of a dilated wavelet is η/s.
It is necessary to tune the parameters (η and σ ) of the Gabor wavelet to obtain

accurate damping ratios. This process of tuning can be systematically conducted
based on the the bandpass filter design methodology [39] and empirical observations
of the capacitor-switching transients [26].

In designing the bandpass filter – i.e., selecting the parameters of the Gabor
wavelet – one should consider the center frequency, bandwidth13 and the associated
quality factor, Q. In our case, the center or resonant frequency is already known (es-
timated). Bandwidth or Q value can be calculated once either of them is determined.

A synthetic voltage signal, v(t) is composed of three damped sinusoidal compo-
nents and can be represented as follows:

v(t) =
3

∑
i=1

αie
−ζiωnit cos(ωdit + φi). (14)

This signal is composed of the 5th, 7th, and 11th harmonics (modes) with ref-
erence to the system frequency (60 Hz). The magnitudes of modal components
are selected based on our experience in harmonic analysis with reference to the
magnitude of the 5th harmonic voltage, α1. Thus, α1 = 100 (selected arbitrarily),
α2 = 100 · 5/7 = 71.43, and α3 = 100 · 5/11 = 45.45. The damping ratios, ζi’s,
for these harmonic components are randomly selected as 0.03, 0.05, and 0.1, re-
spectively. The phase angles, φi’s, are chosen arbitrarily as π/3, −π/4, and π/6,

13 It is defined to be the frequency range between the -3dB points located on either side of
the center frequency.
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Fig. 19. (a) Synthetic voltage transient waveform, and (b) FFT of the waveform
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Fig. 20. Linear regression analysis for (a) 5th harmonic, (b) 7th harmonic, and (c)11th har-
monic

respectively. Fig.19 shows (a) the synthetic waveform and (b) the FFT result for this
signal. Fig. 20 illustrates the linear regression analysis based on Eq. (13) for (a) the
5th mode, (b)the 7th mode, and (c) the 11th mode of the signal. Note that the solid
lines are fitted into the bold lines. Based on (13), linear regression analysis finds the
slopes of each mode, (−ζiωdi).

Using ωdi’s obtained from the spectral analysis of the signal, we can obtain the
multi-modal damping ratios (ζ ′

i s). Based on the assumption that the voltage in the
s-domain can be represented by a sum of quadratic equations, we can interpret ( 1

2ζi
)

as the effective X/R ratio at ωdi as defined in [26].
As described in Table 1 above, the estimated damping ratios are very close to the

theoretical values.
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Table 1. Estimation Results for a Synthetically Composed Signal

Parameters fd = ωd/2π ζ
Theoretical values 300, 420, 660 0.030, 0.050, 0.100

Estimates using AWT 303, 420, 694 0.030, 0.050, 0.095

2.5 PQ Data Management

Present data-reduction techniques in power-disturbance monitoring use a wrap
around scheme that recycles the existing memory capacity by writing over the oldest
data, and a quantization technique that represents a group of similar waveforms as a
single entity. Both methods conserve memory space14 but do not compress data in
the usual sense of data compression [30, 31, 32].

Wavelet transforms can be utilized in compressing power-quality disturbance
signals. Wavelet-based compression schemes have been utilized especially in the
image-processing area. Wavelet transforms decompose a given signal into several
scales at different levels of resolution. At each scale, the wavelet transform coeffi-
cients that correspond to a particular disturbance event are exclusively larger than
those that do not correspond to the event in question. Therefore, related coefficients
are kept along with their temporal information, while others that are not related
to disturbance events are discarded. In this way, the amount of stored data can be
reduced. To recover the original signal, reconstruction is performed using the most-
smoothed signal, along with the saved wavelet transform coefficients of the detail
signals. The compression scheme is similar to the noise reduction or denoising pro-
cedures described in [31], where a dyadic orthonormal wavelet was used in power-
quality data compression techniques. With this transform, perfect reconstruction is
guaranteed. In other words, the reconstructed signal is the same as the original signal
as indicated in Eq.s (15) and (16) below.

DWTψx(m,n) = 2−m/2
∫ ∞

−∞
x(t)ψ∗

(
t −n2m

2m

)
dt (15)

x(t) = 2−m/2 ∑
m

∑
n

DWTψx(m,n)ψ
(

t −n2m

2m

)
, (16)

where x(t) is the time domain signal to be decomposed or analyzed and Eq. (15)
is the dyadic wavelet transform of x(t); the asterisk denotes a complex conjugate;

14 It is interesting to note that a disadvantage of using a high fixed sampling rate in the PQ
monitoring is the large amount of data that must be stored in the monitor’s physical mem-
ory for each recorded power-quality event. Although this issue is becoming less important
today due to modern high-capacity memory devices a tradeoff is still made between the
large memory requirements of high fixed sampling rates that enable faithful reproduction
of the pertinent high frequency transient data versus lower sample rates that require less
memory but may not faithfully capture all aspects of the waveform [17].
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m and n are scale and time-shift parameters, respectively; and ψ(t) is a given basis
function (mother wavelet). Because the family of the dilated wavelets constitutes
an orthonormal basis for L2(R), it is then possible to perfectly recover the original
signal x(t) from its coefficients, as presented in Eq. (16). With regard to wavelet data
compression, the more scale decomposition one carries out, the more information
is likely lost. However, this is not due to the dyadic orthonormal wavelet transform,
but rather to the application of the threshold15 the purpose of which is to discard
undesired information – i.e., noise. However, in doing so, useful information may
also be discarded. Therefore, the choice of threshold is very important. It was also
observed that the compression ratio, defined as the original file size divided by the
compressed file size, is in the range of 3–6 with normalized mean square errors of
the order of 10−6 to 10−5. Using the data-compression method, one can minimize
data storage requirements and transmission time while preserving the reconstructed
signal in such a way that it is virtually indistinguishable from the original.

A computationally simple but efficient data-compression method used in some
instruments is a variable-sample-rate algorithm based on the rate-of-change of the
waveform. It works on the principle that most of the time a lower sample rate will
suffice and that a higher rate is only needed during each short burst of transient activ-
ity. This technique offers an effective means to capture high-frequency data while
also limiting memory needs at times when high-frequency content is not present
on the waveform. Not only does this allow the instrument with finite memory ca-
pabilities to store many more waveforms before it fills (allowing longer intervals
between downloads), but also the smaller data files are less cumbersome to work
with and analyze. Variable sampling-rate algorithms can significantly reduce mem-
ory requirements, depending on the nature of the data [17].

3 Summary and Future Directions

PQ monitoring has advanced significantly in recent decades not only because of
more interest and need for it but also because of the much-improved instrument and
analysis technologies. The modern time-synchronized, advanced microprocessor-
based PQ recording devices can measure the full range of power conditions. The
computational intelligence has also been enabling technologies for turning raw PQ
measurements into a much more valuable commodity, i.e. actionable knowledge
that can help us better understand PQ problems, evaluate situation, and correlate

15 The choice of threshold varies according to the particular application. As pointed out by
Donoho, the choice of threshold for denoising applications is based on the assumption
that the noise in a given signal is white noise. From this assumption, the threshold level
for each decomposition level is derived. However, for the application of compressing rms
power system event data, the minimum length description approach as a threshold selection
rule might be more appropriate. Threshold selection might be a good issue to investigate.
For example, one might investigate the nature of the noise embedded in the power system
and examine it in the wavelet in domain. A better threshold selection rule might then be
derived from the statistical property of the noise in the wavelet domain.
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the problems with the root causes, leading to the prevention and mitigation of PQ
problems with timely controls. However, we cannot overemphasize the importance
of performing PQ studies based on a working knowledge or understanding of the
power systems in terms of the expected occurrence rates of typical disturbances,
required measurement types and critical locations for them within the industry or
customer expectations and guidelines. The PQ data should be analyzed within the
context of facility load characteristics, utility system design, and the various appli-
cable PQ guidelines because the type of power system affects how we interpret the
PQ measurement data.

While this chapter covers the basic concepts of PQ monitoring and focuses on a
few CI applications in PQ such as the capacitor bank switching transients, power
system harmonics, and resonance, it conveys that as utilities and industrial cus-
tomers have expanded their PQ monitoring systems, the data management, anal-
ysis, and interpretation functions have become the most significant challenges in
the overall PQ research effort. It is highly desirable that analysis, characterization
and classification of PQ disturbances, and generation of any useful PQ protection or
mitigation schemes can be performed in an automated manner.

PQ monitoring is rapidly becoming an integral part of general distribution system
monitoring, as well as an important customer service. Electric power utilities are in-
tegrating PQ and energy management monitoring, evaluation of protective device
operation, and distribution automation functions. PQ information should ideally be
available throughout the company via an intranet and should be made available to
customers for evaluation of facility power-conditioning requirements. The PQ in-
formation should be analyzed and summarized in a form that can be used to priori-
tize system expenditures and to help customers understand the system performance.
The information from PQ monitoring systems can help improve the efficiency of
operating the system and the reliability of customer operations. These are bene-
fits that cannot be ignored. The capabilities and applications for PQ monitors are
continually evolving.
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Particle Swarm Optimization PSO: A New Search Tool 
in Power System and Electro Technology 

Adel M. Sharaf and Adel A.A. El-Gammal* 

Abstract. Classical optimization techniques such as LP and NLP are efficient 
approaches that can be used to solve special cases of optimization problem in 
power system applications. As the complexities of the problem increase, especially 
with the introduction of uncertainties to the system, more complicated optimization 
techniques, such as stochastic programming have to be used. Particle Swarm 
Optimization (PSO) technique can be an alternative solution for these complex 
problems. Particle Swarm Optimization (PSO) is an evolutionary computational 
technique, (a search method based on a natural system), which was introduced by 
Kennedy and Eberhart in 1995. This optimization and search technique models the 
natural swarm behavior seen in many species of birds returning to roost, group of 
fish, and swarm of bees… etc. In general, there are two optimization techniques 
based on Particle Swarm Optimization (PSO). These two techniques are:  

 
1. Single objective Particle Swarm Optimization SOPSO, and  
2. Multi objective Particle Swarm Optimization MOPSO.  
 

The main procedure of the SOPSO is based on deriving a single objective function 
for the problem. The single objective function may be combined from several 
objective functions using weighting factors. The objective function is optimized 
(either minimized or maximized) using the Particle Swarm Optimization (PSO) to 
obtain a single solution. On the other hand, the main objective of the Multi-Objective 
(MO) problem is finding the set of acceptable trade-off optimal solutions. This set of 
accepted solutions is called Pareto front. These acceptable solutions give more ability 
to the user to make an informed decision by seeing a wide range of solutions that are 
optimum from an “overall” standpoint. Single Objective (SO) optimization may 
ignore this trade-off viewpoint. This chapter has described the basic concepts of PSO 
and presents a review of some of the applications of PSO in power systems-based 
optimization problems to give the reader some insight of how PSO can serve as a 
solution to some of the most complicated engineering optimization problems. 

1   Single Objective Particle Swarm Optimization (SOPSO) 

Particle Swarm Optimization (PSO) is an evolutionary computational technique, (a 
search method based on a natural system), which was introduced by Kennedy and 
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Eberhart in 1995 [1]. This optimization and search technique models the natural 
swarm behavior seen in many species of birds returning to roost, group of fish, and 
swarm of bees… etc. The Particle Swarm Optimization (PSO) may be used to find 
optimal (or near optimal) solutions to numerical and qualitative problems [2] – [7]. 
PSOs methods are inspired by particles moving around in the defined Search-
Space. The individuals in a PSO have a position and a velocity. The PSO method 
remembers the best position found by any particle. Additionally, each particle 
remembers its own previously best-found position. A particle moves through the 
specified solution space along a trajectory defined by its velocity, the draw to return 
to a previous promising search area, and an attraction towards the best location 
discovered by its close neighbors. Particle swarm optimization has been used for a 
wide range of search applications, as well as for specific optimization tasks. PSO 
can be easily implemented in most programming languages and has proven to be 
both effective and fast when applied to a diverse set of nonlinear optimization 
problems.  PSO has been successfully applied in many areas:  

 

• Function optimization, 
• Artificial neural network training, 
• Proportional and Integral Fuzzy system control, and  
• Other search and optimization areas where GA can be applied. 

1.1   Differences between Pso and Other Evolutionary 
Computation (EC) Techniques 

Most of Evolutionary Techniques have the following procedure: 
 

1. The system is initialized with a population of random solutions and searches for optima by updating generations.  

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to the optimum. 

3. Reproduction of the population based on fitness values. 

4. If requirements are met, then stop. 

5.     Otherwise go back to 2.
 

 

From the procedure, PSO shares many common points with GA.  

Both algorithms start with a group of a randomly generated-population,  

Both have fitness values to evaluate the population.  

Both update the population and search for the optimum with random techniques.  

Both systems do not guarantee success.
 

 
• Unlike other random search algorithms, each potential solution (called a 

particle) is also assigned a randomized velocity and then flown through 
the problem hyperspace.  

• The most striking difference between PSO and the other evolutionary soft 
computing algorithms is that PSO chooses the path of cooperation over 
competition. The other algorithms commonly use some form of decimation, 
survival of the fittest. In contrast, the PSO population is stable and 
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individuals are not destroyed or created. Individuals are influenced by the 
best performance of their neighbors. Individuals eventually converge on 
optimal points in the problem domain. 

 

1. The PSO traditionally does not have any genetic operators like 
crossover between individuals and mutation, and other individuals 
never substitute particles during the run. Instead the PSO refines its 
search by attracting the particles to positions with good solutions. 

2. Particles update themselves with the internal velocity. 
3. They also have memory, which is important to the algorithm. 
4. Compared with genetic algorithms (GAs), the information sharing 

mechanism in PSO is significantly different. In GAs, chromosomes 
share information with each other. So the whole population moves 
like a one group towards an optimal area. In PSO, only gbest or pbest 
gives out the information to others. It is a one-way information 
sharing mechanism. The evolution only looks for the best solution. 

5. Compared to the GA, the advantages of PSO are that PSO is easy to 
implement and there are few parameters to adjust. 

 

A comparison between conventional optimization techniques and evolutionary 
algorithms (like genetic algorithm and PSO) is presented in Table 1 [7]. 

Table 1. Comparison between conventional optimization procedures and evolutionary 
algorithms 

Property Evolutionary Traditional 
Search space 

 
Population of potential 

solutions 
Trajectory by a single point 

Motivation 
Natural selection and Social 

adaptation 
Mathematical properties (gradient, 

Hessian) 

Applicability 
 

Domain independent, 
Applicable to variety of 

problems 

Applicable to a specific problem 
domain 

Point 
Transition 

Probabilistic Deterministic 

Prerequisites 
An objective function to be 

optimised 
Auxiliary knowledge such as 

gradient vectors 

Initial guess 
Automatically generated by 

the algorithm 
Provided by user 

Flow of control Mostly parallel Mostly serial 
CPU time Large Small 

Results 
Global optimum more 

probable 
Local optimum, dependant of initial 

guess 
Advantages Global search, parallel, speed Convergence proof 

Drawbacks 
No general formal 
convergence proof 

Locality, computational cost 
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1.2   The Structure of a Particle 

The basic structure of any particle in a selected population consists of five 
components: 

 

• x

G
, is a vector containing the current location in the solution space. The 

size of x
G

 is defined by the number of variables used by the problem that 
is being solved. 

• Fitness is the quality of the solution represented by the vector x
G

, as 
computed by a problem-specific evaluation function. 

•  V
G

, is a vector containing the velocity for each dimension of x
G

. The 

velocity of a dimension is the step size that the corresponding x
G

 value 
will change into at the next iteration. Changing the V

G
 values changes the 

direction the particle will move through in the search space, causing the 
particle to make a turn. The velocity vector is used to control the range 
and resolution of the search. 

• 
bestP  is the fitness value of the best solution yet found by a particular 

particle, and 

• P
G

 is the copy of the x
G

 for the location that generated the particle’s 

bestP . Jointly, 
bestP  and x

G
 comprise the particle’s memory, which is 

used to control the particle to go back towards a definite search region. 
 

Each particle is also aware of the current best fitness in the neighborhood for 
any given iteration. A neighborhood may consist of some small group of 
particles, in which case the neighborhoods overlap and every particle is in 
multiple neighborhoods. Particles in a swarm are related socially; that is, each 
particle is a member of one or more neighborhoods. Each individual tries to 
emulate the behavior of the best of its neighbors. Each individual can be thought  
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Fig. 1. Circle of Neighborhood 
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of as moving through the feature space with a velocity vector that is influenced 
by its neighbors. The particles can be viewed as being in a circle, where each 
particle is the center of a neighborhood made of the previuos and next particles, 
as shown in Fig. (1).  

1.3   Basic Method 

The position of each particle is represented by XY axis position; and also the 
velocity is expressed by Vx (the velocity of X axis) and Vy (the velocity of Y 
axis). Modification of the particle position is realized by the position and 
velocity information.  Each particle knows its best value so far (Pbest) and its XY 
position. This information represents the personal experiences of each particle. 
Moreover, each particle knows the best value so far in the group (gbest) among 
Pbests. This information represents the knowledge of how the other particles 
around have performed. Namely, Each particle tries to modify its position using 
the following information: 

 

• The current positions (x, y), 
• The current velocities (Vx, Vy), 
• The distance between the current position and Pbest 
• The distance between the current position and gbest 

 

This modification can be represented by the concept of velocity. Velocity of 
each particle can be modified by the following equation: 

( ) ( )idgd22idid11idid XPrandCXPrandCVWV −××+−××+×=     (1) 

Where:  

• Vid is the value of dimension d in the velocity vector V
G

 for particle i,  

• C1 is the cognitive learning selected rate,  

• C2 is the social learning selected rate,  

• rand1 and rand2 are random values on the range [0.1],  

• Xid is the current position of particle i along dimension d, 

• W is the selected weighting factor,  

• Pid is the location along dimension d at which the particle previously had 
the best fitness measure, and  

• Pgd is the current location along dimension d of the neighborhood particle 
with the best fitness.  

 

The basic concept of the PSO technique lies in accelerating each particle towards 
its Pbest and gbest locations, with a random weighted acceleration at each step and 
this is illustrated in Fig. (2), 
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PK

PK+1

VK

VK+1

Pbest

gbestVgbest

Vpbest

 

Fig. 2. Concept of modification of a searching point by PSO 

Where  

Pk      is the current position of a particle,  
Pk+1   is its modified position,  
VK      is its initial velocity,  
VK+1   is its modified velocity,  
Vpbest  is the velocity considering its pbest location and  
Vgbest  is the velocity considering its gbest location. 
 
Using the above concept, a certain velocity, which gradually gets close to Pbest and 
gbest, can be calculated. The current position (searching point in the solution space) 
can be modified by the following equation: 

 

ididid VXX +=                                        (2) 

1.4   The Search Algorithm 

The main steps in the particle swarm optimization process are described as 
follows: 

 

1. System initialized with a population of random potential solutions. Each 
potential solution is assigned a random 'velocity' and is called a particle. (It 
has position in the space; i.e., it is a point in the solution space and it has 
velocity). These particles are then 'flown' through the search space of 
potential solutions. 

2. Evaluate the fitness of each particle in the swarm. 
3. For every iteration, compare each particle’s fitness with its previous best 

fitness (Pbest) obtained. If the current value is better than Pbest, then set Pbest 
equal to the current value and the Pbest location equal to the current location 
in the d-dimensional space. 

4. Compare Pbest of particles with each other and update the swarm global best 
location with the greatest fitness (gbest). 
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5. The velocity of each particle is changed (accelerated) towards its Pbest and 
gbest. This acceleration is weighted by a random term. A new position in the 
solution space is calculated for each particle by adding the new velocity 
value to each component of the particle's position vector.  

6. Repeat steps (2) to (5) until convergence is reached based on some desired 
single or multiple objective criteria. 

 

Figure (3) shows the general flow chart of the PSO algorithm. 

Generation of initial condition of
each agent

Evaluation of searching point of
each agent

Modification of each searching
point

Reach maximum iterations

Start

Stop

No

Yes

 

Fig. 3. The general flow chart of PSO search algorithm 

There are not many parameters that need to be tuned in PSO. Here is a list of the 
parameters and their typical values. 

 

• The number of particles:  
 

The typical range is usually 20 - 40. Actually, for most of the problems 10 
particles is large enough to get good results.  

 

• Dimension of particles:  
 

It is determined by the problem to be optimized; the solution space, itself, has a 
number of dimensions (1 or more) matching the number of variables 
(unknowns) in the problem. Unlike people, the PSO algorithm has no difficulty 
working with 4 or more dimensions. 
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• Range of particles:  
 

It is also determined by the problem to be optimized. You can specify different 
ranges for different dimension of particles. 
 

• Vmax  
It determines the maximum change one particle can take during one iteration. 
Vmax is the maximum allowable velocity for the particles (i.e. in the case where 
the velocity of the particle exceeds Vmax, then it is limited to Vmax). Thus, 
resolution and fitness of search depends on Vmax. If Vmax is too high, then 
particles will move beyond a good solution, and if Vmax is too low, particles 
will be trapped in local minima.  
 

• Learning factors:  
 

The constants C1 and C2 in Eq. (1), termed as cognition and social 
components, respectively, are the acceleration constants which changes the 
velocity of a particle towards Pbest and gbest (generally, somewhere between 
Pbest and gbest). C1 and C2 are usually equal to 2. However, other settings 
were also used in different papers. But C1 is usually equal to C2 and ranges 
from [0- 4]. 

 

• W is called the inertia weight and controls the exploration and exploitation 
of the search space because it dynamically adjusts velocity. Local minima 
are avoided by small local neighborhoods, but faster convergence is 
obtained by a larger global neighborhood, and in general a global 
neighborhood is preferred. Synchronous updates are more costly than the 
asynchronous updates. Other modified error/deviation based inertia weights 
can be used. 

 

• The stop condition:  
 

There are two possible conditions to stop the algorithm execution. These stop 
criteria is usually either the maximum number of iterations the PSO executes 
or the minimum error requirement achieved. These stop conditions depend on 
the problem complexity to be optimized. 

2   Multi-Objective Particle Swarm Optimization (MOPSO) 

In many real-life applications, multiple and often conflicting objectives need to 
be satisfied. Satisfying these conflicting objective functions is called Multi-
Objective Optimization (MO). For example, to place more functional blocks on 
a chip while minimizing that chip’s area and/or power dissipation are conflicting 
objectives that need performing a tradeoff analysis [8]. The objective of MO 
optimization is to find a set of acceptable solutions and present them to the user, 
who will then choose from them. Generally, there are two general approaches to 
solve Multi-Objective Optimization. The first approach lies in combining the  
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individual objective functions into a single composite function. Determination 
of a single objective is possible with methods, such as the weighted sum 
method, but the problem lies in the correct selection of the weights. In practice, 
it can be very difficult to accurately select these weights, even for someone very 
familiar with the problem domain. In addition, optimizing a particular solution 
with respect to a single objective can result in unacceptable results with respect 
to the other objectives [8]. The second general approach is to obtain the optimal 
solution. There will be a set of optimal trade-offs between the conflicting 
objectives, but this optimal solution is called Pareto optimal solution set or 
Pareto front [9]. A Pareto optimal set is a set of solutions that are non-dominated 
with respect to one another. While moving from one Pareto solution to another, 
there is always a certain amount of importance in one objective to achieve a 
certain amount of gain in the other. Generating the Pareto set has several 
advantages. The Pareto set allows the user to make an informed decision by 
seeing a wide range of options. The Pareto set contains the solutions that are 
optimum from an “overall” standpoint.  SO optimization may ignore this trade-
off viewpoint. This feature is useful since it provides better understanding of 
this system in which all the consequences of a decision with respect to all the 
objectives can be explored [8]. Fig (4) shows an example of the optimization of  
 
 

 
(a) 

 

(b) 

Fig. 4. Illustration of the Pareto front of a bi-objective optimization problem. Figure is 
extracted from [8]. 
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two conflicting objective functions f1 and f2. The Pareto front that optimizes f1 
and f2 is shown in the graph [8]. 

2.1   Simple Example 

Consider the problem of determining the most efficient transportation mode [8]. 
There are two conflicting objective functions. These functions that must be 
optimized are:  

 

(a) Distance covered in a day, and  
(b) Energy used in the process.  

 

The following transportation modes are assumed to be available: walking; riding 
a cow, a bicycle, a car, a motorcycle, a horse, an airplane, a rocket, a balloon, a 
boat and a scooter. These transportation modes are considered the set of available 
solutions. Common sense can be used to obtain all potential solutions. For 
example, the car will need less fuel than the motorcycle. At the same time, the 
car can travel longer distance. Therefore, the solution that uses the car dominates 
the solution that uses the motorcycle. Similarly, given the same amount of food, 
the horse will cover a longer distance than the cow. Therefore, the solution that 
uses the horse dominates the solution that uses cow. In the same manner, Fig (5) 
shows the set of acceptable solutions for determining the most efficient 
transportation mode [8]. 

 

 

Fig. 5. Example of transportation modes, Figure is extracted from [8]. 

2.2   Generic Formulation of MO Optimization 

The following definitions are used in the proposed Multi-Objective Optimization 
(MO) search algorithm: 

 

Def. 1. The general MO problem requiring the optimization of N objectives may 
be formulated as follows: 
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                    Minimize 

    
[ ] T

N321 )x(f....,),x(f,)x(f,)x(f)x(Fy
GGGGGGGGGGG ==   

(3) 

                    
( ) M,1,2,j0xg j …G =≤tosubject  (4) 

                    Where: [ ] Ω∈= T*
P

*
2

*
1

* x,...,x,xx
GGGG

 (5) 

y
G  is the objective vector, the ( )xg i

GG
 represent the constraints and *x

G
is a P-

dimensional vector representing the decision variables within a parameter space Ω .. 
The space spanned by the objective vectors is called the objective space. The 
subspace of the objective vectors satisfying the constraints is called the feasible space.  

 

Def. 2. A decision vector Ω∈1x
G

 is said to dominate the decision vector Ω∈2x
G

 
(denoted by 11 xx

G≺G
), if the decision vector 

1x
G  is not worse than 2x

G
in all 

objectives and strictly better than 2x
G

 in at least one objective. 
 

Def. 3. A decision vector Ω∈1x
G  is called Pareto-optimal, if there does not exist 

another Ω∈2x
G  that dominates it. An objective vector is called Pareto-optimal, if 

the corresponding decision vector is Pareto-optimal. 
 

Def. 4. The non-dominated set of the entire feasible search space Ω is the Pareto-
optimal set. The Pareto-optimal set in the objective space is called Pareto- 
optimal front. 

2.3   The Search Procedure for the MOPSO Algorithm 

In MOPSO [8-13], a set of particles are initialized in the decision space at 
random. For each particle i, a position xi in the decision space and a velocity vi 
are assigned. The particles change their positions and move towards the so far 
best-found solutions. The non-dominated solutions from the last generations are 
kept in the archive. The archive is an external population, in which the so far 
found non-dominated solutions are kept. Moving towards the optima is done in 
the calculations of the velocities as follows: 

 

( ) ( )idrdidpdid XPrandCXPrandCV −××+−××+×= 2211idV ω
 

(6) 

ididid VXX +=  (7) 

Where  P ,P dp,dr,
 are randomly chosen from a single global Pareto archive, ω is 

the inertia factor influencing the local and global abilities of the algorithm, Vi,d is  
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the velocity of the particle i in the d_th dimension, c1 and c2 are weights affecting 
the cognitive and social factors, respectively. r1 and r2 are two uniform random 
functions in the range [0 , 1]. According to (7), each particle has to change its 
position Xi,d towards the position of the two guides Pr,d, Pp,d which must be 
selected from the updated set of non-dominated solutions stored in the archive. 
The particles change their positions during generations until a termination 
criterion is met. Finding a relatively large set of Pareto-optimal trade-off solutions 
is possible by running the MOPSO for many generations. 

Figure (6-a) shows the flow chart of the Multi-Objective Particle Swarm 
Optimization MOPSO. Also fig (6-b) explains the procedure of the Multi-Objective 
Particle Swarm Optimization MOPSO using pseudo code. 

 

Update position

Evaluate
Particles

Find Global best
then insert in archive

Update Velocity

Initialize Position,
Velocity, and archive

Update the memory
of each particle

archive

 

                                               (a) 

1. MOPSO 

2. {

3.           Init _Pop(); 

4.           Init _Velocity(); 

5.           Evaluate_ Pop(); 

6.           Update_ Fbest(); 

7.           Update_ Pbest(); 

 

Fig. 6. Procedure of the MOPSO (a) Flow chart of the algorithm, (b) Pseudo code of 
MOPSO 
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8.           Insert_ nodom(); 

9.          Gbestpos = rnd(0,nodomfileSize) 

10.           for (i=1 to MAXCYCLES)   

11.           { 

12.                   for (j=0 to MAXPARTICLES)  

13.                   {  

14.                                Update_Velocity(); 

15.                                Update_Particle(); 

16.                   }  

17.                   Keeping(); 

18.                   Evaluate_ Pop(); 

19.                   Update_ Fbest(); 

20.                   Update _Pbest(); 

21.                   Insert_ nodom(); 

22.                   Gbestpos = rnd(0,nodomfileSize) 

23.          } 

24.          Print Statistics(); 

25.          Generate Outfile(); 

26. } 

 
 

                     (b) 

Fig. 6. (Continued) 

Init Pop(); 
The particle swarm is initialized with random values corresponding to the ranges 
of the decision variables. These values are dependent on the test functions.  

 

Init Velocity(); 
The velocities are initialized with zero values.  

Check the feasibility of each particle. If the particle does not satisfy the 
constraints, then regenerate it. 

 

Evaluate Pop(); 
The swarm is evaluated using the corresponding objective functions.  

 

Update Fbest(); 
The fitness vectors are updated (Evaluate the multi-objective fitness value of each 
particle and save it in vector form). 

As we are dealing with multi-objective optimization, these vectors store the  
values of each decision variable, whereby the particles obtain the best values in a 
Pareto sense.  
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At this stage of the algorithm, these vectors are filled with the results of the 
initial particle evaluations.  

 

Update Pbest(); 
Analogously, these values are copied in the pbest vectors.  

 

Insert nodom(); 
Calculate the multi-objective fitness values of each particle and check its 
Pareto optimality. Store the non-dominated particles in the Pareto archive. If 
the specific constraint does not exist for the archive, the size of the archive will 
be unlimited (all non-dominated particles are inserted in the grid; i.e., in the 
external file).  

 

Gbestpos = rnd (0,nodomfileSize) 
The global gbest particle is randomly selected.  

 

//The flight cycle starts here // 
 

Update Velocity(); 
The velocity of each particle is updated, using Eq. (4.4). 

Two Pareto solutions are chosen randomly for  P ,P di,dr,  from the Pareto archive. 

Update Particle(); 
The position of each particle is also updated using Eq. (4.4) 

 

Keeping(); 
The keeping operation is carried out to maintain the particles into the allowable 
range values. Then, the particles are mutated. 

If the particle does not remain within the feasible solution region, it is discarded 
and mutated again. 

 

Evaluate Pop();       Update Fbest();          Update Pbest(); 
The particles are evaluated, the fitness, and pbest vector are, if appropriate, 
updated.  

 

Insert nodom(); 
As the particles move in the search space because they have changed positions, 
the dominance of each particle is verified and, if appropriate, they are inserted in 
the grid.  

 

(a) Check the Pareto optimality of each particle. If the fitness value of the particle 
is non-dominated when compared to the Pareto optimal set in the archive, 
save it into the Pareto archive. 

(b) In the Pareto archive, if a particle is dominated by a new one, then discard it. 
 

Gbestpos = rnd(0,nodomfileSize) 
Then, the new gbest is randomly selected. Two Pareto solutions are chosen 
randomly for pp;d and pr;d from the Pareto archive. 

Repeat the cycle until the number of generations reaches a given n. 
 

// the end of the cycles // 
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Print Statistics();       Generate Outfile(); 
Print the statistics and generate an output file, which contains the non-dominated 
particles. 

2.4   Test Functions 

In order to validate the proposed search algorithm of MOPSO, the following well-
known test functions are used: 

 
Test problem 1: 

( )

52x01,1x0.1tosubject

1x
2x1

)2x,1(x2fMinimize

1x)2x,1(x1fMinimize

≤≤≤≤

+=

=
 

(8) 

 

Test problem 2: 

( )

52x0,11x1.0tosubject
1x

2x1
60)2x,1x(2fMaximize

1x1.1)2x,1x(1fMaximize

≤≤≤≤

+−=

−=
 

(9) 

Test problem 3: 

( ) ( )
10x5,10x5tosubject

5x5x)x,x(fMinimize

xx)x,x(fMinimize

21

2
2

2
1212

2
2

2
1211

≤≤−≤≤−
−+−=

+=
 (10) 

 

Fig. 7. Objective space of test problem 1 
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Test problem 4: 

( )
( ) ( )( )

10x5,10x5tosubject

5.0x5.0x)x,x(fMinimize

xx)x,x(fMinimize

21

4
1

2
2

2
1212

8
1

2
2

2
1211

≤≤−≤≤−
−+−=

+=

 (11) 

 
Figures (7)-(10) show the Pareto fronts (or objective space) and the Pareto sets 
(input space) for each test function, respectively. 

 

 

Fig. 8. Objective space of test problem 2 
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Fig. 9. Objective space of test problem 3 
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Fig. 10. Objective space of test problem 
 

3   Discrete Particle Swarm Optimization (DPSO) [14-15] 

The particle swarm search algorithm works by adjusting trajectories through 
manipulation of each coordinate of a particle in the d-dimensional space. 
However, many optimization problems are set in a space featuring discrete, 
discontinuous qualitative distinctions between variables and between levels of 
variables.  In the binary version of the PSO, the trajectories are changes in the 
probability that a coordinate will take on binary value (0 or 1). Therefore, the 
main difference between the original PSO and the DPSO is equation (3) replacing 
equation (2).  

 

.0

;1))()((

=
=<

id

idid

xElse

xthenvSrandif
 (12) 

Where S (v) is a sigmoid limiting transformation function: 

ve
vS −+

=
1

1
)(  (13) 

and rand( )  is  a  quasi-random number selected from a uniform distribution in  

[0.0, 1.0]. In the discrete version, Vmax is retained, that is maxVvid <  which 

simply limits the ultimate probability that bit xid will take on a binary value. A 
smaller  Vmax   will allow a higher mutation rate. 
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4   PSO Applications in Power System 

Solving an optimization problem is one of the common scenarios that occur in 
most engineering applications. Classical techniques such as LP and NLP are 
efficient approaches that can be used in special well defined cases. As the 
complexities of the problem increase, especially with the introduction of severe 
uncertainties to the system, more complicated optimization techniques, such as 
stochastic programming or DP have to be used. However, these analytical 
methods are not easy to implement for most of the real-world problems [16]. In 
fact, for many problems, the curse of dimensionality makes the approach 
unfeasible to implement. The above issues are of particular importance when 
solving optimization problems in a power system. As a highly nonlinear, non-
stationary system with noise and uncertainties, a power network can have a large 
number of states and parameters. Implementing any of the classical analytical 
optimization approaches might not be feasible in most of the cases. On the other 
hand, PSO can be an alternative and effective solution. It is a stochastic-based 
search technique that has its roots in artificial life and social psychology, as well 
as in engineering and computer science. This section will present some of the 
applications of PSO in power systems-based optimization problems to give some 
insight of how PSO can serve as a solution to some of the most complicated 
engineering optimization problems [17-47].  

4.1   Efficient Operation of Induction Motor Drives [17] 

This application presents an optimization technique for an efficient controller for 
the three-phase induction motors. Multi Objective Particle Swarm Optimization 
MOPSO technique is implemented to tackle all the conflicting goals that define 
the search for the optimality problem. The PSO search deals with two main 
conflicting objective functions. These conflicting functions are:  Maximizing the 
operating efficiency of the drive system for a given mechanical load, and 
maximizing the equivalent power factor of the induction motor for start up and 
steady state operation. In addition, the optimization ensures that maximum 
allowable stator current constraints are not exceeded. The proposed technique are 
based on the principle that the flux level in a machine can be adjusted to give the 
required trade-off solution of maximum efficiency and maximum power factor  
for a given value of speed and load torque. The optimum flux levels are function 
of the machine load and speed requirements. Simulation results show that 
considerable efficiency and power factor improvements are achieved using 
MOPSO when compared with the Field Oriented Control (FOC) and Constant 
Voltage to Frequency Ratio based Control (CVFRC).  

4.1.1   The Objective Functions 

The following definitions are useful in subsequent analyses, the per-unit 
frequency is 
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The slip is defined by: 
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The rotor current is given by: 
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The electromagnetic torque is given by: 
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The stator current is related to the air gap flux and the electromagnetic torque as: 
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The air gap flux is related to the electromagnetic torque as: 
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rs  :stator resistance, rr :rotor resistance, Xls :stator leakage reactance, Xlr  :rotor 
leakage reactance, a, ωe :Supply frequency, S :slip, ωr :rotor speed, ωb :base speed, 
ωs: slip speed, φm :air gap flux, Is: stator current, Ir :rotor current, Te 
:electromagnetic torque, TL:load torque, ke, kh :eddy current and hysteresis 
coefficients, cstr :stray losses coefficient, cfω :mechanical losses coefficient, s1,s2, s3 
:magnetizing curve coefficients. The power efficiency is defined as the output 
power divided by the electric power supplied to the stator (inverter losses are 
included). After some mathematical manipulations, the efficiency is expressed as: 
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Also the conventional power factor is defined as the input power divided by the 
apparent power. After some algebraic manipulations, the power factor can be 
expressed as:  
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Where X ′′  is the sub transient reactance: 
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For optimal operation, three objective functions that can affect the operation 
optimization of three phase induction motors had been chosen. These two 
objective functions are: 

 

1. Efficiency (to maximize); 
2. Power factor (to maximize); 

 

In addition, the optimization ensures that maximum allowable stator current 
constraints are not exceeded. Figure (11) is a plot of input power versus stator 
current. As illustrated in this figure, the stator current and the input power are 
minimized almost simultaneously. Therefore, in practice the Maximum Efficiency 
ME and the Minimum Stator Current MSC are not conflicting objective functions. 
So, when the efficiency is maximized, the stator current is minimized and the torque 
per ampere is maximized. So, the maximum efficiency and power factor will be 
considered as the main conflicting objective functions. However, a good operation 
should represent the right compromise among different objectives but the problem 
consists in searching this “compromise.” The only tool to solve this problem is 
represented by the multi objective approach. This approach allows us to investigate 
how each single-objective and multi objective problem affects the results in terms of 
performance and independent variables and, above all, allows us to have a wide 
range of alternative solutions among which the operator can choose a better solution. 

4.1.2   Digital Simulation Results 

The MOPSO algorithm has been applied to optimize the operation of a three-
phase, 380 V, 1-HP, 50 Hz, 4-pole, squirrel cage induction motor. The motor  
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Fig. 11. Input power versus stator current at rated speed and various load powers. 
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Fig. 12. The proposed drive system using PSO based on the loss model controller 

 
parameters in per units are Rs=0.0598, Xls=0.0364, Xm=0.8564, Xlr=0.0546, 
Rr=0.0403, Ke=0.0380, Kh=0.0380, Cstr=0.0150, Cfw=0.0093, S1=1.07, S2=-0.69, 
S3=0.77.  

The block diagram of the optimization process based on PSO is shown in fig. 12. 
In the proposed controller, the PSO algorithm receives the rotor speed and load 
torque, and then the PSO controller determines the slip frequency at which the 
optimal fitness function occurs at that rotor speed and load torque. As stated before, 
this part of simulation will consider the Maximum Efficiency and the Maximum 
Power Factor (ME and MPF) problem to be solved using Multi-Objective Particle 
Swarm Optimization. Figure 13 shows the solution to this problem and shows the 
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Pareto fronts of the problem for different levels of rotor speed ωr = 0.2, 0.4, 0.8, 1 
PU and different levels of load torque TL = 0.2, and 1 PU. 

 

 
(a) 

 

 
(b) 

Fig. 13. Pareto front of ME and MPF problem for different levels of rotor speed ωr = 0.2, 
0.4, 0.8, 1 PU and different levels of load torque: TL=0.2 PU (b) TL = 1 PU 
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Table 2 shows the solution limits of the efficiency and the power factor for 
each operating point. This range of solutions which is called the Pareto front 
enables the operator to choose the best compromise solution.   

Table 2. The limits pf the Pareto front of the two conflicting objective functions 

(a) 

ωr = 0.2 PU 
Efficiency Power Factor 

TL (PU) 
Minimum Maximum Maximum Minimum 

0.2 0.2521 0.4463 0.9323 0.6806 
0.4 0.2647 0.4768 0.9323 0.7184 
0.6 0.2742 0.4792 0.9323 0.7705 
0.8 0.2702 0.4725 0.9323 0.7741 
1 0.278 0.4636 0.9323 0.8165 

(b) 

ωr = 0.4 PU 
Efficiency Power Factor 

TL (PU) 
Minimum Maximum Maximum Minimum 

0.2 0.3894 0.5957 0.9082 0.6328 
0.4 0.4021 .6257 0.9082 0.6647 
0.6 0.4154 0.6309 0.9082 0.7033 
0.8 0.4335 0.6271 0.9079 0.7271 
1 0.4182 0.6195 0.9082 0.7532 

(c) 

ωr = 0.6 PU 
Efficiency Power Factor 

TL (PU) 
Minimum Maximum Maximum Minimum 

0.2 0.4804 0.6649 0.892 0.6342 
0.4 0.4984 0.6937 0.892 0.6375 
0.6 0.5132 0.7005 0.892 0.6701 
0.8 0.5183 0.699 0.892 0.7224 
1 0.523 0.6943 0.892 0.736 

(d) 

ωr = 0.8 PU 
Efficiency Power Factor 

TL (PU) 
Minimum Maximum Maximum Minimum 

0.2 0.5475 0.7013 0.8806 0.6221 
0.4 0.5681 0.7295 0.8806 0.6676 
0.6 0.5808 0.7377 0.8805 0.6542 
0.8 0.5793 0.7385 0.8806 0.7124 
1 0.5776 0.7353 0.8805 0.7165 

(e) 

ωr = 1  PU 
Efficiency Power Factor 

TL (PU) 
Minimum Maximum Maximum Minimum 

0.2 0.5846 0.7217 0.8722 0.6563 
0.4 0.6093 0.7506 0.8722 0.6529 
0.6 0.6221 0.7597 0.8722 0.6853 
0.8 0.6277 0.7617 0.8722 0.6928 
1 0.6283 0.7603 0.8722 0.7257 
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(a) 
 

 
(b) 

Fig. 14. The comparison between CVFRS, FOCS, and MOPSO for different levels of load 
torque TL and different levels of rotor speed: (a) ωr =0.2 PU (b) ωr = 1 PU 
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Figure 14 shows the comparison between the constant voltage to frequency 
ratio strategy CVFRS, the field oriented control strategy FOCS, and the available 
solutions from MOPSO at different levels of load torque and rotor speed ωr = 0.2, 
and 1 PU respectively. The solution that has maximum efficiency is selected from 
the Pareto front to achieve this comparison. Keep in mind that, the operator can 
choose the compromised solution from the Pareto front depending on the desired 
efficiency and power factor. It is obvious from fig. 14 that the stator current is 
minimized using MOPSO. In addition, there is a great improvement in efficiency 
and power factor using MOPSO when compared with other strategies especially at 
light loads. It is noted that there is a very poor PF obtained using conventional 
methods (field oriented control strategy and constant voltage to frequency ratio) 
especially at light loads. It is obvious from fig 4 that the efficiency improvement 
has a noticeable value especially at light loads and rotor speed ωr = 0.2 PU that 
can be as high as 80 % using CVFRS. This difference decreases to 65% at rotor 
speed ωr = 1 PU. On the other hand, the power factor improvement reaches 55 % 
at light load and rotor speed ωr = 0.2 PU. Whereas this improvement reaches to 
160 % at rotor speed ωr = 1 PU and light load. The performance difference 
between the Field Oriented Control (FOC) and the proposed control strategies 
MOPSO comes from the chosen value of the slip frequency and the air gap flux 
for each strategy. For example, at loading condition of rotor speed equal to 0.2 PU 
and load torques varying from  0.2 PU to 1 PU,  the values of slip frequency based 
on FOCS vary from 0.01 PU to 0.042  PU. On the other hand, the values of slip 
frequency based on MOPSO vary from 0.0301 PU to 0.0524  PU. This difference 
in slip frequency and air gap flux causes the difference in performance of each 
control strategy. The difference in the flux level of the (FOCS) controller comes 
from the choice of the level of the magnetization current command.  The 
command of magnetization current is set to a constant value, which produces rated 
torque at rated stator flux. At light loads, the constant chosen value of 
magnetization current fails to choose the optimal flux level. On the other hand, 
this value yields the optimal flux level at rated loads. The proposed strategies 
overcome this problem and successfully choosing the optimal flux level especially 
at light loads. 

4.2   PSO Self-regulating Modulated Power Filter Compensator 
Scheme for Electric Distribution Networks [18] 

This application presents a novel Modulated Power Filter and Compensator 
(MPFC) scheme for combined voltage stability, energy conservation, loss 
reduction, power factor correction, and power quality enhancement of electric 
distribution grid systems based on Multi-Objective Particle Swarm Optimization 
(MOPSO). The MPFC scheme was developed by the First Author to vary the shunt 
power filter equivalent admittance, and modify the reactive power flow to the 
distribution network. The filter dynamic switching is achieved using two 
complementary switching pulses generated by a Sinusoidal Pulse Width 
Modulation (SPWM) control strategy and regulated by a tri-loop dynamic error  
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Fig. 15. Three-phase sample study ac system with the proposed Modulated Power Filter 
Compensator 

 
driven controller comprising three time decoupled control loops, a minimum RMS 
source current dynamic loop, voltage stabilization loop, and synthesized dynamic 
power loop. The MOPSO technique is used to find the optimal control settings that 
control the input control modulation signal to the SPWM activation/ triggering 
block that minimizes the distribution feeder current, hence reducing feeder losses, 
bus voltage deviations, and ensuring distribution feeder capacity release. 

4.2.1   System Description 

The sample study system comprises three-phase ac utilization grid system, short 
feeder, hybrid electric load including a motorized load (3-phase induction motor), 
non-linear load, and linear load as shown in fig (15). The tri-loop error-driven 
dynamic controller is a novel structure developed by the First Author and used to 
modulate the power filter compensator PWM switching. The global error is the 
summation of the three loop individual errors including voltage stability, current 
limiting and synthesize dynamic power loops. The global error signal is input to 
the self tuned variable structure sliding mode controller. The (per-unit) three 
dimensional-error vector (ev ,eI, ep) is governed by the following equations: 

                                           (27) 
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                                      (28) 

          
(29)

 

The total error et (k) at a time instant: 

                              (30) 

The solid-state switches (S1, S2) are usually (GTO, IGBT/bridge, MOSFET/bridge, 
SSR, TRIAC) turns “ON” when a gating pulse g(t) is applied by the activation 
switching circuit as shown in fig. (15). Removing the pulse will turn the solid-state 
switch “OFF” 

                                       
(31)

 

Where: fs/w is switching frequency, and   0<ton<TS/W. 
The novel filter and compensator scheme is a low-cost attractive solution for 

both distribution and utilization radial circuits, feeding a nonlinear load. Figure 
(16) depicts the self tuned variable structure sliding mode controller developed by 
the First Author for adjusting the switching duty-cycle-ratio (α) based on Multi 
Objective Particle swam Optimization searching technique MOPSO. The effective 
reactance of the combined hybrid fixed capacitors and the modulated tuned arm 
filter depends on the duty cycle and the frequency of the SPWM output which in 
turn is a function of the self tuned variable structure sliding mode controller 
output. The output of the SPWM generator is a train of pulses with variable duty 
cycles and constant frequency. The degree of reactive compensation is dependent  
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Fig. 16. Tri-loop self tuned variable structure sliding mode dynamic controller for the 
Modulated Power Filter MPFC  
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on the duty cycle of the generated pulses. This would in turn vary the effective 
reactance of the hybrid power filter.  

The system control voltage has the following form in the time domain: 

                          (32) 

The MOPSO searching algorithm is implemented for tuning the gains (β0, β1) to 
minimize the system objective functions. The selected objectives functions in this 
paper are to minimize a stated number of objective functions using PSO algorithm 
are defined by the following: 

 

1. Minimize the absolute voltage deviations: 
 

                                                         (33) 

2. Minimize the Distribution Feeder total  active power Losses: 
 

                                     (34) 

3. Minimize the Distribution Feeder  total  reactive power losses: 

                                     (35) 

4. Minimize the absolute total error deviations: 

                                      (36) 

4.2.2   Digital Simulation Results 

Matlab-Simulink Software environment was used to design, test, and validate the 
effectiveness of the proposed novel MPFC device and the associated dynamic 
SPWM controller based on SOPSO and MOPSO search optimization techniques. 
Table (3) shows the main objective functions versus the Tuned controller Gains 
based SOPSO and MOPSO control schemes, SOPSO obtains a single global or 
near optimal solution based on a single weighted objective function. The weighted 
single objective function combines several objective functions using specified or 
selected weighting factors as follows: 

 

44332211 JJJJ   function objective weighted αααα +++=
        

(37) 

Where α1 = 0.25, α2 = 0.25, α3 = 0.25, α4 = 0.25, are selected weighting factors. 

J1 : Minimize the voltage deviations, 
J2  : Minimize the Distribution Feeder total active power Losses,  
J3 : Minimize the Distribution Feeder total reactive power Losses,  
J4 : Minimize the absolute total error deviations. 
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Table 3. The main objective functions versus the Tuned controller Gains based SOPSO and 
MOPSO control scheme 

 β0 β1 

J1 
Minimize the 

voltage 
deviations (PU)

J2 
Minimize the 
Distribution 
Feeder total  
active power 
Losses (PU) 

J3 
Minimize the 
Distribution 
Feeder  total  

reactive power 
losses (PU) 

J4 
Minimize 

the absolute 
total error 
deviations 

SOPSO 0.7498 19.5937 0.0462 0.0612 0.07478 0.21746 
0.5108 42.3264 0.019 0.0771 0.0273 0.1273 
0.1167 26.3051 0.0422 0.0554 0.07080 0.1024 
0.8393 10.2121 0.0233 0.0396 0.0371 0.2788 
0.5002 33.6397 0.0517 0.0662 0.0352 0.1398 
0.6539 41.9221 0.0514 0.0537 0.0976 0.1597 

MOPSO 

0.8127 21.0800 0.0360 0.0456 0.0837 0.2323 

 
Table 4. System behavior comparison with and without MPFC based SOPSO and MOPSO 
optimization technique  

 without the MPFC 
with the MPFC-with 
SOPSO Optimization 

Technique 

with the MPFC-with 
MOPSO Optimization 

Technique 
RMS Voltage (PU) 0.863454 0.93567 0.9634542 

Power Factor 0.456798 0.9278645 0.959835 
Maximum Transient 

Voltage – Over/Under 
Shoot (PU) 

0.129756 0.093454 0.092563 

Maximum Transient 
Current – Over/Under 

Shoot (PU) 
0.09826 0.083654 0.073597 

RMS Current (PU) 0.674564 0.4787465 0.429875 
Active Power Losses 

(PU) 
0.113746 0.0687231 0.0498576 

Reactive Power 
Losses (PU) 

0.148575 0.072543 0.598324 

 
On the other hand, the MOPSO finds the set of acceptable (trade-off) near Optimal 
Solutions. This set of accepted solutions is called Pareto front, as shown in Table 
(3), MOPSO obtains six near optimal point as a Pareto front. These acceptable 
trade-off multi level solutions give more ability to the user to make an informed 
decision by seeing a wide range of near optimal selected solutions.  Table (4) 
shows system behavior comparison with and without MPFC based SOPSO and 
MOPSO optimization technique, Comparing the dynamic response results of the 
two study cases, with and without the hybrid modulated power filter compensator, 
it is quite apparent that the hybrid modulated power filter compensator highly 
improved the ac system dynamic performance from a general power quality point 
of view. The effect of the MPFC is noticeable where it highly improved the power 
factor by reducing the amount of reactive power drawn from the supply, 
maintaining the system dynamic stability under sudden disturbances and recovering  
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faster from any inrush transient state. The MPFC had a great impact on the supply 
power factor improving it from 0.25 to around 0.92 which is highly desired. 
Moreover, the load power factor also improved from 0.2 to a value of .85. The 
simulation results show that the power factor can be effectively improved (from 
0.35 to 0.9) when the novel dynamic compensator is used in the unbalanced fault 
case and from 0.4 to 0.85 in the balanced fault case. In addition, the phase voltage 
can maintained around 1pu and the transient over-voltages and surge type inrush 
currents are also damped. By comparing the results of all sample simulation cases, 
it is concluded that the novel dynamic MPF-Facts device with the SPWM dynamic 
controller developed by the first author is an attractive low cost and efficient 
Voltage stabilization and power factor correction device that also improve power 
quality and efficient-utilization of three phase –four wire Residential and 
Commercial Loads. 

4.3   Optimal Design of Hybrid Power Filter Compensator [19] 

This application presents a novel algorithm for a discrete search optimization and 
an approach to solve the problem of the hybrid power filter compensator with the 
design of C-type filter and fixed capacitor bank using Discrete Multi Objective 
Particle Swarm Optimization MOPSO method. This novel optimization approach, 
a Multi Objective Particle Swarm Optimization MOPSO method is implemented 
to tackle a number of conflicting search goals that define the complex optimal 
filter design problem. The paper presents the selection with conflicting objective 
functions and a compromising selection criterion: 

 

1. Minimum change in the fundamental frequency load bus voltage under 
steady state conditions, 

2. Minimum feeder current for maximum AC system grid capacity release, 
3. Minimum fundamental frequency utilization feeder active and reactive 

power losses, due to reduced fundamental RMS current magnitude, 
4. Minimum dominant harmonic current penetration into the host electric 

grid system,  
5. Maximum harmonic current absorption by the hybrid harmonic power 

filter with the fixed capacitor bank, 
6. Minimum harmonic voltage distortion at the point of common coupling or 

load bus. 

4.3.1   Hybrid Shunt Power Filter Compensator Design 

Figure 17 shows the single line diagram of a sample electric AC grid system. This 
electric AC grid utility-power filter installation is using the fixed C-type power 
filters structure shown in Fig.  19.  The equivalent circuit of the system for the 
fundamental frequency component is shown in fig. 20. This equivalent circuit is 
used to predict the values of some objective functions where: 

1ωjS =  and 

ω1=377 rad/sec. is the fundamental frequency Fig. 5 shows the equivalent circuit 
of the AC system for harmonic low order components where 

njS ω= ,  
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Fig. 17. Single Line Diagram for the Sample Radial Study Distribution AC System 
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Fig. 18. Equivalent circuit of the hybrid power filter Compensator Scheme at the load bus 
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Fig. 19. Per Phase Equivalent AC circuit of the Sample Study System at the fundamental 
frequency component 

 
n=3,5,7,9,11,13,15. The selection of the best and cost effective hybrid power filter 
parameters is very complicated due to the fact that the AC grid system's dynamic  
Thevenin’s equivalent  (driving-point)  impedance  is  usually variable  due  to  
AC network  switching,  load  variations,  energization/de-energization of existing 
capacitor banks, static var compensators  and  shunt  reactors. Harmonic  AC 
equivalent system Thevenin’s  impedance  can usually be measured or estimated  
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Fig. 20. Equivalent Per Phase AC circuit for n-harmonic frequency components 

 
using Network/System  Spectrum  Analyzers and frequency domain  identification 
software tools to obtain an effective  equivalent  system  admittance  as a curve-
fitted continuous or discrete equivalent frequency model. Measurement  over three 
phases may be  required with  an equivalent  arithmetic or  geometric  averaging  
impedance model in the case of  unbalanced phase conditions. The particle swarm 
optimization can handle any parametric variations in the AC system impedance 
with changes in the resultant optimization objective function. The power filter 
optimization problem including the key filter parametric constraints can be 
structured as follows: 

 

(1) Calculate, measure and curve-fit the equivalent AC system equivalent 
harmonic impedance/admittance Ys(s), 

                   (38) 

with 
njS ω= , n=3,5,7,9,11,13,15 as a function of frequency over the specified 

selected harmonic frequency range. Ys(s) were obtained from measurement as: 

    (39) 

Where: 

 

In addition, calculate the total equivalent dynamic impedances of the transformer 
and feeder…, this impedance may be considered constant: 

                              (40) 



Particle Swarm Optimization PSO: A New Search Tool in Power System  267
 

The total equivalent Thevenin’s admittance of the system with transformers and 
feeders is: 

                                              (41) 

(2) Select the hybrid C-type power filter compensator structure with the equivalent 
transfer function, YF(s), with

njS ω= , n=3,5,7,9,11,13,15.  For the C-type  filter,  

YF(s)  is   a  function  of  the power filter resistance R,  the  inductance  L,  and  
the  capacitor  sizes  C1, C2and  C0 (see  Fig.  3). YF(s) represents the C-type filter 
selected and the compensated capacitor C0: 

                              (42) 

(3) Calculate the dynamic variable equivalent load admittance YL(S): 

                                                  (43) 

 

njS ω= , n=3,5,7,9,11,13,15. 
 

(4) Select the set of the discrete low order dominant or offending harmonics 

njS ω= , n=3,5,7,9,11,13,15  over  which  the power filter optimization is  to  be  

performed  using  a  multi  objective  function  to  reflect  the  basic power  filter  
requirements. The main objective functions to be optimized with the following 
objectives are: 

 

1. Minimize AC feeder current for AC system capacity release by reducing AC 
fundamental frequency feeder current, 

                                                (44) 

                                        (45) 

2. Minimize the voltage variations and change in fundamental frequency load 
bus voltage, 

                                       (46) 

                                     (47) 
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3. Minimize the fundamental frequency RMS current squared to reduce active 
and reactive feeder power losses (See Fig. 4), 

                                          (48) 

4. Minimize the harmonic current injection into the host electric grid system, 

                                         (49) 

                    (50) 

5. Maximize the harmonic current absorption by the hybrid power filter compensator, 

                                    (51) 

                           (52) 

6. Minimize any dynamic harmonic voltage distortion at the point of common 
coupling, 

                                        (53) 

                       (54) 

7. Define all hybrid power filter and capacitor compensator values and parameter 
constraints.  For the C-type power filter with compensator unknown 
parameters {R, L, C1, C2, C0}, the constraints are: 

 

(i)   

(ii)   

(iii) , k = 1, 2..... m,  where δ >  0  is  chosen  so  as  to  
avoid any possible near-parallel  resonance conditions  on  the  combined  
power filter compensator with the system. 

(iv)  either , i =  1, 2, or Ci is a member of a  discrete  set  
{Ci1, Ci2, … , Cipi },  i =  1, 2,  of specified values  which  reflect  other  system 
requirements  such  as the  need  for  reactive  compensation  or  power  factor 
correction.  

8. Run iteratively the Multi objective Particle Swarm Optimization MOPSO 
routine to optimize the selected objective functions,  with  respect  to  the 
power filter  parameters, to find the set of acceptable trade-off optimal 
solutions,  the optimization process over  all  specified discrete dominant low 
order frequencies  

njS ω= , n=3,5,7,9,11,13,15 , where m is the selected 
higher harmonic order. Objective functions can be selected in pairs. 
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4.3.2   Digital Simulation Results 

Two sample hybrid power filter compensator designs are presented.   
 

Case 1: Hybrid Power Filter Compensator with Continuous Parameters 
Constraints 
In this case, the hybrid power filter compensator parameters {R, L, C1, C2, C0} are 
considered as continuously constrained to lie between specified bounds. The 
selected numerical values ranges are as follows: 

 

 

, Seven discrete dominant offending 
harmonics. 

 

Table 5 depicts the optimality solutions and final Pareto front surface compromise 
hybrid power filter and compensator. 

Table 5. Final Pareto front-based Selections of the Hybrid power filter Compensator 
optimally selected parameters for the continuous case for different conflicting functions 

R (Ω) L (H) 
C1 

(µF) 
C2 

(µF) 
C0 

(µF) J1 J2 J3×104 J4×10-3 J5 J6 
769.06 0.1819 29.74 28.3 198.1 259.84 132.49 6.7521 0.079 1.1379 1.672 
409.56 0.4501 35.47 95.4 148 261.28 133.23 6.8272 0.0695 1.1016 1.47 
597.42 0.3441 33.09 101.5 101.8 262.85 134.02 6.9092 0.0618 1.0778 1.3073 
536.99 0.2745 47.19 151.1 141.5 266.43 135.85 7.0989 0.0503 1.0495 1.064 
704.70 0.3434 54.41 144.1 174.1 256.79 130.94 6.5944 0.115 1.3907 2.4331 
516.35 0.3267 73.88 149.4 183.9 265.44 135.35 7.0462 0.0529 1.0552 1.1191 
496.85 0.0858 74.65 156.6 111.2 271.32 138.34 7.3616 0.0409 1.0319 0.8654 
752.45 0.3197 16.64 135.6 135.5 268.57 136.94 7.2131 0.0435 1.0364 0.9198 
470.43 0.4166 77.46 117.4 92.5 258.83 131.98 6.6997 0.0924 1.2054 1.954 
395.38 0.1639 24.78 74 152 263.83 134.52 6.9609 0.0578 1.067 1.2229 
430.09 0.4214 12.81 156.9 147.9 257.47 131.28 6.6295 0.1033 1.2799 2.1859 
667.39 0.2625 37.92 114.8 109.3 260.12 132.64 6.7667 0.0774 1.1312 1.6372 
526.99 0.334 50.99 143.4 157.8 270.52 137.94 7.3186 0.042 1.0337 0.8885 
395.32 0.4002 22.12 138.6 149.9 268.21 136.76 7.1939 0.0465 1.0418 0.9833 
362.25 0.4607 67.45 42 166.8 272.02 138.70 7.3998 0.0405 1.0313 0.8575 

 
Case 2: Hybrid Power Filter Compensator with Discrete Parameter Constraints 
In this case, the resistance, the inductance, and the capacitor sizes C1 and C2 are 
chosen from a discrete set of specified parameter values. The discrete constraints 
of the hybrid power filter compensator parameters are as follows: 
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Table 6 shows the optimality selected possible solutions and Pareto selected 
parameters for the discrete MOPSO search. 

Table 6. Final Pareto front-based Selections of the Hybrid power filter Compensator 
optimally selected parameters for the discrete case for different conflicting functions  

R (Ω) L (H) 
C1 

(µF) 
C2 

(µF) 
C0 

(µF) J1 J2 J3×104 J4×10-3 J5 J6 
300 0.4 60 140 200 271.57 138.47 7.3754 0.0405 1.0312 0.8566 
800 0.3 50 100 150 265.45 135.35 7.0466 0.0528 1.055 1.117 
500 0.5 80 180 250 278.87 142.2 7.7772 0.0328 1.0201 0.693 
700 0.2 30 80 100 260.52 132.84 6.7873 0.0746 1.1201 1.5781 
400 0.05 10 20 50 256.46 130.77 6.5776 0.1176 1.4212 2.4872 

4.4   Micro Hydro-Fuel Cell Green Energy Management Scheme 
for Hydrogen and Island Electricity Generation 

This application presents a novel FACTS based Electric Energy Management 
(EEM) compensator scheme based on Multi Objective Particle Swarm 
Optimization search technique MOPSO for use in hydrogen and Island Electricity 
Generation. It combines a fuel cell power source and a micro hydro water turbine. 
The novel control strategy is designed to achieve the high-efficiency coordinated 
operation of the two individual power sources and to regulate current and voltage 
for maximum utilization, without compromising the power quality and 
performance of the overall system. To achieve these conflicting objectives, a 
novel dual action Modulated Power Filter and Compensator at the AC bus 
(MPFC) and an additional Green Power Filter GPF scheme at the common DC 
bus using a dynamic self regulating error driven scheme for voltage stability, 
energy conservation, loss reduction, power factor correction, and power quality 
enhancement for hybrid multi source energy utilization systems.  A tri-loop error 
driven dynamic controller is used to adjust the Pulse Width Modulation PWM 
switching of the DFC - Dynamic filter compensator on the AC side and green 
power filter on the DC side. Power factor correction and power quality 
enhancement is validated by simulation under different operating conditions, 
including sudden load disturbances and wind velocity excursions. Multi Objective 
Optimization MOPSO technique is used to find the optimal control gain settings 
that dynamically minimize the global dynamic error. 
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Fig. 21. Sample Study AC system with the novel AC Dynamic Filter Compensator (DFC) 
and the DC-side Green plug filter compensator  

4.4.1   Sample Study System Description 

The proposed study system comprises the following main components, as shown 
in Fig. 21. Micro hydro energy system, Fuel cell energy system, Battery bank 
backup system, Induction generator driven by the hydro turbine, Electrical energy 
management control system, Stabilization interface scheme and stabilization 
controller, The hybrid AC side load, and The hybrid DC side load. 

Figures (22-29) depict the two dynamic self regulating PID and self tuned 
variable structure sliding mode electrical energy management dynamic controllers 
developed by the First Author for adjusting the switching duty-cycle-ratio based on 
Single Objective Particle Swarm Optimization SOPSO and Multi Objective Particle 
Swam Optimization MOPSO search and optimization techniques. The tri-loop error-
driven dynamic controller is a novel structure developed by the First Author and 
used to control GPFC, MPFC, α- controller for the novel AC side converter and 
PMDCM. The global error is the summation of the three loop individual errors 
including voltage stability, current limiting and synthesize dynamic power loops. 
The global error signal is input to the self tuned PID controller or the self tuned 
variable structure sliding mode dynamic controller. As shown in figure (22) and 
(26), the (per-unit) three dimensional-error vector of the electrical energy 
management EEMS AC filter scheme is governed by the following equations: 
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Fig. 22. Tri-loop error driven PSO self regulating PID dynamic controller for the AC side 
EEMS Scheme 
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Fig. 23. Tri-loop error driven PSO self regulating PID dynamic controller for the DC side 
GPFC Scheme 
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Fig. 25. Tri-loop error driven PSO self regulating PID dynamic controller for the speed 
control PMDC motor drive 

The total or global error etg(k) for the EEMS AC side scheme at a time instant: 

( ) ( ) ( )kekeke igigvgvgtg γγ +=1_                                           (59) 

( ) ( ) ( )kekeke PFgPFgPgPgtg γγ +=2_                                      (60) 

( ) ( ) ( )keKkeKke tgBtgAtg 2_1_ +=                                        (61) 

Where: KA, KB are of the adjustable coordinated regulation weightings for the dual 
action controller parameters.  
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Fig. 26. Tri-loop error driven self tuned variable structure sliding mode dynamic controller 
the AC side EEMS filter scheme 

The system control voltage has the following form in the time domain for the 
PID controller: 

dt

)t(de
Kdt)t(eK)t(eK)t(V tg

t

0

dgtgigtgpgcg ∫ ++=
                                 

(62) 

While it has the following form in the time domain for self tuned variable 
structure sliding mode dynamic controller: 

dt

tde
tetV tg

tgggcg

)(
)()( 10 ++= ββ                                            (63) 

The on-line dynamic PSO optimization search algorithm is implemented for 
tuning the weightings (KA, KB) and the gains (KPg, KIg, KDg) or (β0g, β1g) to 
optimize the selected objective functions. In the same manner, figures (23) and 
(27) show the tri-loop error driven PSO self regulating PID dynamic and the self 
tuned variable structure sliding mode dynamic controllers of the GPFC DC-Side 
scheme. The (per-unit) three dimensional-error vector (evd ,eId, epd) is governed by 
the following equations: 
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And the total or global error etg (k) for the DC side green plug filter compensator 
GPFC scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pdpdididvdvdtd γγγ ++=                                        (67) 

The system control voltage of the GPFC scheme has the following form in the 
time domain for the PID controller: 

dt
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t

0

ddtdidtdpdcd ∫ ++=
                           

(68) 

And the following time domain form for the novel self tuned variable structure 
sliding mode dynamic controller: 

dt

tde
tetV td

tdddcd
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)()( 10 ++= ββ

                                     

(69) 

The PSO optimization algorithm is implemented for tuning the gains (KPd, KId, 
KDg) or  the sliding surface parameters (β0d, β1d)  to minimize the motor drive 
system total error etd. In addition, figures (24) and (28) show the tri-loop error 
driven PSO self regulating PID dynamic and the self tuned variable structure 
sliding mode dynamic controllers of the of the three phase controlled rectifier 
scheme. The (per-unit) three dimensional-error vector (evR ,eIR, epR) is governed by 
the following equations: 
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The total or global error etg (k) for the three phase controlled converter rectifier 
scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pRpRiRiRvRvRtR γγγ ++=                                 (73) 

The system control voltage of the three phase controlled rectifier scheme has the 
following form in the time domain for the PID controller: 
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And the following time domain form for self tuned variable structure sliding mode 
dynamic controller: 
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Fig. 27. Tri-loop error driven self tuned variable structure sliding mode dynamic controller 
for the DC side GPFC scheme 
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Fig. 28. Tri-loop error driven self tuned variable structure sliding mode dynamic α - 
controller for the AC side converter scheme 

The first PSO search algorithm is implemented for on-line tuning of the gains 
(KPR, KIR, KDR) or the sliding surface parameters (β0R, β1R) to minimize the 
selected objective functions.  Finally, figures (25) and (29) show the tri-loop error 
driven PSO self regulating PID dynamic and the self tuned variable structure 
sliding mode dynamic controllers of the PMDC motor scheme. The (per-unit) 
three dimensional-error vector (eωm ,eIm, epm) is governed by the following 
equations: 
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Fig. 29. Tri-loop error driven self tuned variable structure sliding mode dynamic speed 
controller for the PMDC motor drive 
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And the total or global error etg (k) for the EEMS scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pmpmimimmmtm γγγ ωω ++=                                    (79) 

And the system control voltage has the following form in the time domain for the 
PID controller: 

dt

)t(de
Kdt)t(eK)t(eK)t(V tm

t

0

dmtmimtmpmcm ∫ ++=
                                

(80) 

And the following time domain form for self tuned variable structure sliding mode 
dynamic controller: 

dt

tde
tetV tm

tmmmcm

)(
)()( 10 ++= ββ

                                          

(81) 

The second PSO search algorithm is implemented for the dynamic on-line tuning 
of the gains (KPm, KIm, KDm) or the other optimal sliding surface parameters (β0m, 
β1m) to minimize the selected objective functions. A number of conflicting 
objective functions are selected to optimize using the PSO algorithm. These 
functions are defined by the following: 

 

1. Minimize the voltage deviations at the AC and DC collection bus: 

{ }ACAC VVJMinimize ΔΔ= ,1
                                                (82) 
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LgAC VVV −=Δ                                                               (83) 

DLRDC VVV −=Δ                                                              (84) 

2. Minimize the grid collection Feeder total  active power Losses: 

lossDCPlossACPlossP PPPJ ___2 +==                                        (85) 

3. Minimize the grid collection Feeder  total  reactive power losses: 

lossACQlossQ PPJ __3 ==                                                      (86) 

4. Minimize the absolute total control error deviations: 

{ }tmtdtgtg eeeeMinimizeJ ,,,4 =                                          (87) 

4.4.2   Digital Simulation Results 

SOPSO obtains a single global or near optimal solution based on a single selected 
weighted objective function. The weighted single objective function combines 
several objective functions using specified or selected weighting factors as 
follows: 

44332211 JJJJ   function objective weighted αααα +++=              (88) 

Where α1 = 0.25, α2 = 0.25, α3 = 0.25, α4 = 0.25, are selected weighting factors. 
J1 : Minimize the voltage deviations, J2  : Minimize the grid collection feeder 

total active power Losses,  J3 : Minimize the grid collection feeder total reactive 
power Losses, and J4 : Minimize the absolute control total error deviations. On 
the other hand, the MOPSO finds the set of acceptable (trade-off) Optimal 
Solutions. This set of accepted solutions is called Pareto front. These acceptable 
trade-off multi level solutions give more ability to the user to make an informed 
decision by seeing a wide range of near optimal selected solutions.  The digital 
simulation results are presented for EEMS on the test system using MOPSO 
searching optimization algorithm. Table (7) shows the optimal solutions of the 
main objective functions versus the Tuned PID controller Gains based SOPSO 
and MOPSO control schemes and system behavior comparison without and with 
the EEMS Scheme based SOPSO and MOPSO optimization technique for the 
PID controller is shown in table (8). In addition to that, table (9) shows the 
optimal solutions of the main objective functions versus the self tuned variable 
structure sliding mode dynamic controller gains based SOPSO and MOPSO 
control scheme. Finally, Table (10) shows the system behavior comparison 
without and with the EEMS Scheme based SOPSO and MOPSO optimization 
technique for the self tuned variable structure sliding mode dynamic controller. 
Comparing the dynamic response results of the two study cases, without and 
with the Electrical Energy Management System EEMS, it is quite apparent that 
the Electrical Energy Management System EEMS highly improved the ac 
system dynamic performance from a general power quality point of view. The 
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effect of the EEMS is noticeable where it highly improved the power factor by 
reducing the amount of reactive power drawn from the supply, maintaining the 
system dynamic stability under sudden disturbances and recovering faster from 
any inrush transient state. The EEMS had a great impact on the supply power 
factor improving it from 0.223 to around 0.959 which is highly desired. 
Moreover, the Total Harmonic Distortion THD also improved from 25.46 % to a 
value of 4.85 %. In addition, the phase voltage can maintained around 1pu and 
the transient over-voltages and surge type inrush currents are also damped. 
Finally, the total losses are reduced from 0.1154 PU to a value of 0.0578 PU. By 
comparing the results of all sample simulation cases, it is concluded that the 
novel Electrical Energy Management System EEMS is an attractive low cost and 
efficient voltage stabilization and power factor correction device that also 
improve power quality and efficient-utilization of three phase –four wire 
Residential and Commercial Loads. 

Table 7. Selected Objective Functions versus the Tuned PID controller Gains based 
SOPSO and MOPSO control schemes 
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Table 8. System dynamic behavior comparison with and without the EEMS Scheme based 
SOPSO and MOPSO optimization technique for the Proportional – Integral – Derivative 
PID controller 

 
without the EEMS 

Scheme 

With the EEMS 
Scheme with 

constant 
controller gains 

with the EEMS 
Scheme with SOPSO 

Optimization 
Technique 

with the EEMS 
Scheme with MOPSO 

Optimization 
Technique 

RMS Voltage (PU) 0.82896 0.9119 0.9604 0.9843 
Power Factor 0.27093 0.8243 0.9228 0.9705 

THD (%) 
Total Harmonic 

Distorsion 
23.9662 9.0278 4.8802 3.7656 
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(PU) 
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0.0996 0.0608 0.0538 0.0355 

RMS Current (PU) 0.6931 0.5592 0.4905 0.4223 
Active Power Losses 

(PU) 
0.0970 0.0610 0.0483 0.0379 

Reactive Power 
Losses (PU) 

0.1104 0.0879 0.0613 0.0516 

Table 9. Selected Objective Functions versus the self tuned variable structure sliding mode 
dynamic controller gains based SOPSO and MOPSO control scheme 
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SOPSO 
22.214
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20.245
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MOPSO 

17.0769
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Table 9. (Continued) 

25.7307

1.6563

18.9640

0.9709

10.3980

1.2543
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Table 10. System dynamic behavior comparison with and without the EEMS Scheme based 
SOPSO and MOPSO optimization technique for the self tuned Variable Structure Sliding 
Mode Dynamic Controller  

 
without the EEMS 

Scheme 

With the EEMS 

Scheme with constant 

controller gains 

with the EEMS Scheme 

with SOPSO 

Optimization Technique

with the EEMS Scheme 

with MOPSO 

Optimization Technique 

RMS Voltage (PU) 0.82896 0.9246 0.9402 0.9878 

Power Factor 0.27093 0.8755 0.9422 0.9646 

THD (%) 

Total Harmonic 

Distortion 

23.9662 7.9994 6.6523 5.0405 

Maximum Transient 

Voltage – Over/Under 

Shoot (PU) 

0.1426 0.0617 0.0474 0.0382 

Maximum Transient 

Current – Over/Under 

Shoot (PU) 

0.0996 0.0688 0.0400 0.0308 

RMS Current (PU) 0.6931 0.5240 0.4712 0.4307 

Active Power Losses 

(PU) 
0.0970 0.0770 0.0593 0.0474 

Reactive Power Losses 

(PU) 
0.1104 0.0834 0.0605 0.0574 

4.5   An Optimally Coordinated Wind-FC-Diesel Utilization 
Scheme 

The modeling and coordinated control strategy for a hybrid wind–diesel-fuel cell 
renewable green energy generation system with battery backup is investigated in 
this application. The proposed hybrid scheme tracks the maximum power 
efficiency and optimal energy capture from the wind, diesel and the fuel cell. The 
diesel generator set unit issued to balance the system demand power according to 
the total power demand in order to minimize the diesel fuel consumption. The 
wind system generator is regulated to maximize the energy capture from the wind 
turbine. The paper presents a novel application of Multi Objective Particle Swarm 
Optimization MOPSO technique to control the 6-pulse rectifier converter, 
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dynamic filter/capacitor compensation DFC and Green Power Filter GPF schemes 
developed by the First Author using real time dynamic self regulating error 
tracking. A tri-loop error driven dynamic controller is used to adjust the PWM 
switching of the DFC- Dynamic AC side filter compensator and green power 
filter. Full power factor correction and power quality enhancement is validated 
under different operating conditions, including sudden load disturbances and wind 
velocity excursions. Multi Objective Optimization MOPSO technique is used to 
find the near optimal control gain settings that dynamically minimize the global 
dynamic error for each controller. 

4.5.1   Sample Study System Description 

A Standalone Wind Energy Conversion Scheme (WECS) using induction 
generator (IG) is studied in this paper under a time sequence of Load variations, 
Excursions and Wind gusting. The standalone WECS connected to the local load 
bus over a radial transmission line. The WECS comprises the following main 
components, as shown in Fig. 30: Wind turbine, Gear box, Synchronous Generator 
driven by the Diesel Engine, Fuel Cell, Battery Backup System, Induction 
generator driven by the wind turbine, Stabilization interface scheme and 
stabilization controller, and the hybrid electric load. All the parameters of the 
unified AC study system of the standalone WECS sample study system are given 
in Appendix. The sample standalone WECS was subjected to severe combined 
sequence of load switching/load variation/load excursion and wind speed variation 
and gusting.  
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Fig. 30. Sample three-phase Study ac system with the novel AC Dynamic Filter 
Compensator (DFC) and DC-side Green plug filter compensator 
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A. Diesel Generator - Set 
From an electrical system point of view, a diesel generator can be represented as a 
prime mover and generator. Ideally, the prime mover has the capability to supply 
any power demand up to rated power at constant frequency. The synchronous 
generator connected to it must be able to keep the voltage constant at any load 
condition. The diesel engine kept the frequency constant by maintaining the rotor 
speed. When power demand fluctuates the diesel generator could vary its output 
via fuel regulation to its governor. The synchronous generator must control its 
output voltage by controlling the excitation current. Thus, the diesel generating 
system, as a unit, must be able to control its frequency and its output voltage. The 
ability of the diesel generator to respond to frequency changes was affected by the 
inertia of the diesel gen-set, the sensitivity of the governor, and the power 
capability of the diesel engine. The ability of the synchronous generator to control 
its voltage was affected by the field-winding time constant, the availability of the 
DC power to supply the field winding, and the response of voltage control 
regulation. 

 
B. Wind-Turbine Generator 

The power generated by the wind turbine was defined as follows: 

3
2 31 1

2 2
W

W P W P W
W W

V
T ARC V AC V kρ ρ

λ ω ω
= = =

  

(89) 

Where 
 

ρ is the specified density of air (1.25kg/m2) 

A is the area swept by the blades 

R is the radius of the rotor blades 

PC is power conversion coefficient 

λ is the tip speed ratio 

Wω is the wind turbine velocity in rpm 

k is equivalent coefficient in per unit (0.745) 
 
The novel sinusoidal PWM Switched Power Filter schemes using real time 
dynamic voltage, current and power as tri-loop error tracking inputs to the 
proposed Particle swarm optimization controller (POS) scheme are shown in Fig. 
(6). The AC side dynamic filter and compensator scheme can also be an attractive 
solution for both distribution and utilization radial circuits, feeding a nonlinear 
type load. Figures (31-38) depict the dynamic self regulating PID controller and 
self tuned variable structure sliding mode dynamic controller for adjusting the 
switching duty-cycle-ratio based on Multi Objective Particle swam Optimization 
search and optimization technique MOPSO. The effective reactance of the 
combined hybrid fixed capacitors and the modulated tuned arm filter depends on 
the duty cycle and the frequency of the SPWM output which in turn is a function 
of the self tuned variable structure sliding mode controller output. The output of  
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the SPWM generator is a train of pulses with variable duty cycles and constant 
frequency. The degree of filtering and compensation is dependent on the duty 
cycle of the generated pulses. This would in turn vary the effective reactance of 
the hybrid power filter.  The tri-loop error-driven dynamic controller is a novel 
structure developed by the First Author and used to control GPFC, MPFC, and 
PMDCM. The global error is the summation of the three loop individual errors  
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Fig. 31. Tri-loop error driven PSO self regulating PID dynamic controller for the DC side 
GPFC Scheme 
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Fig. 32. Tri-loop error driven self regulating PID α- controller for the novel AC side 
converter- scheme 
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including voltage stability, current limiting and synthesize dynamic power loops. 
The global error signal is input to the self tuned PID controller. The (per-unit) 
three dimensional-error vector (evg ,eIg, epg) of the MPFC AC filter scheme is 
governed by the following equations: 
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Fig. 33. Tri-loop error driven PSO self regulating PID dynamic controller for the AC side 
MPFC Scheme 
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Fig. 34. Tri-loop error driven PSO self regulating PID dynamic controller for the speed 
control PMDC motor drive 
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The total or global error etg(k) for the MPFC AC side scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pgpgigigvgvgtg γγγ ++=                              (93) 
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Fig. 35. Tri-loop error driven self tuned variable structure sliding mode dynamic controller 
for the DC side GPFC scheme 
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Fig. 36. Tri-loop error driven self tuned variable structure sliding mode dynamic α - 
controller for the AC side converter scheme 
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Fig. 37. Tri-loop error driven self tuned variable structure sliding mode dynamic controller 
the AC side MPFC filter scheme 
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Fig. 38. Tri-loop error driven self tuned variable structure sliding mode dynamic speed 
controller for the PMDC motor drive 

The system control voltage has the following form in the time domain for the PID 
controller: 

dt
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While it has the following form in the time domain for self tuned variable 
structure sliding mode dynamic controller: 

dt
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The PSO optimization search algorithm is implemented for tuning the gains (KPg, 
KIg, KDg) or (β0g, β1g) to minimize the system total error etg. In the same manner, 
The (per-unit) three dimensional-error vector (evd ,eId, epd) of the GPFC scheme is 
governed by the following equations: 
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And the total or global error etg (k) for the DC side green plug filter compensator 
GPFC scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pdpdididvdvdtd γγγ ++=                       (99) 

The system control voltage of the GPFC scheme has the following form in the 
time domain for the PID controller: 

dt
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And the following time domain form for self tuned variable structure sliding mode 
dynamic controller: 
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The PSO optimization algorithm is implemented for tuning the gains (KPd, KId, 
KDg) or (β0d, β1d)  to minimize the motor drive system total error etd. In addition, 
The (per-unit) three dimensional-error vector (evR ,eIR, epR) of the three phase 
controlled rectifier scheme is governed by the following equations: 
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The total or global error etg (k) for the three phase controlled converter rectifier 
scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pRpRiRiRvRvRtR γγγ ++=                      (105) 



Particle Swarm Optimization PSO: A New Search Tool in Power System  289
 

The system control voltage of the three phase controlled rectifier scheme has the 
following form in the time domain for the PID controller: 
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And the following time domain form for self tuned variable structure sliding mode 
dynamic controller: 
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The PSO search and optimization algorithm is implemented for tuning the gains 
(KPR, KIR, KDR) to minimize the motor drive system total error etR. or (β0R, β1R). 

Finally, the (per-unit) three dimensional-error vector (eωm ,eIm, epm) of the 
PMDC motor scheme is governed by the following equations: 
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And the total or global error etg (k) for the MPFC scheme at a time instant: 

( ) ( ) ( ) ( )kekekeke pmpmimimmmtm γγγ ωω ++=                    (111) 

And the system control voltage has the following form in the time domain for the 
PID controller: 

dt
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And the following time domain form for self tuned variable structure sliding mode 
dynamic controller: 
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The PSO searching algorithm is implemented for tuning the gains (KPm, KIm, KDm) 
or (β0m, β1m) to minimize the system total error etm.  

4.5.2   Digital Simulation Results 

The parallel operation of a hybrid wind turbine, with the diesel generator set, and 
the fuel cell performance is compared for the two cases, with fixed and self tuned 
type controller. Matlab-Simulink Software was used to design, test, and validate 
the effectiveness of the two FACTS devices and the associated dynamic SPWM 
controllers. Table (11) shows system behavior comparison with and without 
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MPFC&GPFC using PID and tuned variable structure sliding mode dynamic 
controllers, comparing the dynamic response results of the two study cases, with 
and without MPFC & GPFC. The simulation results show the system dynamic 
response for unbalanced hybrid nonlinear loading condition with constant and 
tuned controller parameters. In addition, the figures show the system dynamic 
response for three-phase short duration fault and open phase fault with fixed and 
self tuned controller parameters. The three phase short circuit fault is single line to 
ground fault (Phase A) from 0.2 to 0.4 sec at generator bus and the open phase 
fault is from 0.6 to 0.8 sec in phase A. Comparing the dynamic response results, 
with fixed and self tuned controller parameters, it is quite apparent that the 
dynamic filter compensator with tuned controller parameters did highly improve 
the ac system dynamic performance from a general power quality point of view. 
The effect of the AC side DFC filter is noticeable where it highly enhanced the 
power factor by reducing the amount of reactive power drawn from the generator 
supply, maintaining the AC system dynamic stability under sudden disturbances 
and recovering faster from any transient excursions. In addition, the phase voltage 
can be also maintained around 1pu and the transient over-voltages and surge type 
inrush currents are also damped. By comparing the results of all sample digital 
simulation cases, it is concluded that the two dynamic FACTS devices (DFC + 
GPFC) with the SPWM dynamic multi-loop controller developed by the First 
Author can be used as efficient Voltage stabilization and power factor correction 
tools to improve power quality and efficient energy utilization. 

Table 11. System behavior comparison with and without MPFC&GPFC using PID and 
tuned variable structure sliding mode dynamic controllers  

without the MPFC and 

GPFC 

with the MPFC and 

GPFC with constant 

parameters of PID 

dynamic controller 

with the MPFC and 

GPFC with constant 

parameters of variable 

structure sliding mode 

dynamic controller 

with the MPFC and GPFC 

with tuned PID dynamic 

controller 

with the MPFC and GPFC with 

tuned variable structure sliding 

mode dynamic controller 

RMS Voltage (PU) 0.7807 0.918467 0.902847 0.96744 0.97827 

Power Factor 0.256534 0.896746 0.848756 0.9564 0.9690 

THD (%) 

Total Harmonic Distortion 
28.7341 9.45987 8.95982 3.995674 3.64582 

Maximum Transient Voltage – 

Over/Under Shoot (PU) 
0.25647 0.128546 0.140934 0.0453 0.0544 

Maximum Transient Current – 

Over/Under Shoot (PU) 
0.209645 0.129354 0.118534 0.0853 0.0751 

RMS Current (PU) 0.8881 0.536745 0.516783 0.40893 0.39674

Active Power Losses (PU) 0.109345 0.092673 0.093564 0.0701 0.0509

Reactive Power Losses (PU) 0.1156743 0.10356 0.108474 0.0540 0.06103 
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Particle Swarm Optimization and Its 
Applications in Power Systems 

M.R. AlRashidi1, M.F. AlHajri2, A.K. Al-Othman3, and K.M. El-Naggar4 

1   Introduction 

Optimization problems are widely encountered in various fields in science and 
technology. The fact that most optimization problems, when modeled accurately, 
are of non-convex and sometimes discrete nature has encouraged many research-
ers to develop new optimization techniques to overcome such difficulties.  Particle 
Swarm Optimization (PSO) is one of the newly developed optimization techniques 
with many attractive features.  Early experimentations of employing PSO in many 
applications in science and technology have indicated its promising potential.  
Thus, the basics of PSO theory, development, main features, and its applications 
in power systems are presented in the following sections. 

2   Fundamentals of Particle Swarm Optimization 

Two scientists, namely Kennedy and Eberhart, first introduced PSO in 1995 as a 
new metaheuristic method [1;2].  They studied a stochastic nonlinear model that 
was developed by Heppner and Grenander to simulate species movement traveling 
in groups [3].  The original objective of the research conducted by Heppner and 
Grenander was to create a computer model that simulates the social behavior of 
bird flocks and fish schools. As Kennedy and Eberhart progressed in their 
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research, they discovered that with some modifications the social behavior model 
can also serve as a powerful optimizer.  They realized that such species try to 
approach their target in an optimal manner which resembles finding the optimal 
solution to any mathematical optimization problem.  The first version of PSO was 
intended to handle only nonlinear continuous optimization problems.   

One of the key attractive features of the PSO approach is its simplicity as it 
involves only two model equations. In PSO, the coordinates of each particle represent 
a possible solution associated with two vectors, the position (xi) and velocity (vi) 
vectors. In N-dimensional search space, xi= [xi1,xi2,…xiN] and vi= [vi1,vi2,…viN] are 
the two vectors associated with each particle i. A swarm consists of a number of 
particles “or solution candidates” that fly through the feasible solution space to 
explore points where optimal solutions exist.  During their search, particles interact 
with each other in a certain way as to optimize their search experience.  In each 
iteration, the particle with the best solution shares its position coordinates (Gbest) 
information with the rest of the swarm.  Then, each particle updates its coordinates 
based on its own best search experience (Pbest) as well as (Gbest) according to the 
following equations: 

 1
1 1 2 2( ) ( )k k k k k k

i i i i iv v c r Pbest x c r Gbest x+ = + − + −  (1) 

 1 1k k k
i i ix x v+ += +  (2) 

 

where  
− c1 and c2 are two positive acceleration constants, they keep balance be-

tween the particle’s individual and social behavior when they are set to 
be equal. 

− r1 and r2 are two randomly generated numbers with a range of [0,1] 
added in the model to introduce stochastic nature to the particles’ move-
ment. 

− k
iPbest  is the best position particle i achieved based on its own experi-

ence; 1 2[ , ,..., ]pbest pbest pbestk
i iNi iPbest x x x=  

− kGbest  is the best particle position based on overall swarm’s experience; 

1 2[ , ,..., ]gbest gbest gbestk
NGbest x x x=  

− k is the iteration index     
 

Equations (1) and (2) represent the original PSO model equations introduced in 
1995.  However, this model experienced poor convergence characteristics and 
sometimes additional fitness evaluations were needed to find an optimal solution.   

3   PSO Development 

Many advances in PSO development elevated its capabilities to handle a wider 
class of complex engineering and science optimization problems and to improve 
its overall performance. Summaries of recent advances in these areas are presented 
in references [4-6]. Different variants of the PSO algorithm were proposed but the 
most standard is the global version of PSO (Gbest model) introduced by Shi and  
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Eberhart [7], in which the whole population is considered as a single neighbor-
hood throughout the optimization process. Information sharing mechanism among 
swarm members of the Gbest model can be best described using graphical illustra-
tion. A mathematical function of two varibles with multiple valleys and peaks is 
depicted in Fig. 1. The known global solution is found to be (-4.7119, 4.7116) 
with minimum objective value of -16.4248.  In the Gbest model, the entire swarm 
of four members, namely A, B, C, and D forms a single neighborhood.  A snap-
shot of each particle location during their flying experience (in iteration k) is also 
shown in Fig. 1. It is clear that particle A is the closest one to the global solution 
(i.e. having minimum objective value) in this iteration. Thus, it will send its Gbest 
coordinates to the rest of the swarm members.  

The original model Equations (1) and (2) are modified in the Gbest model as 
follows: 

 N
1

1 1 2 2

   

( ) ( )k k k k k k
i i i i i

previous velocity cognitive component social component

v wv c r Pbest x c r Gbest x+ = + − + −���	��
 ����	���
  (3) 

 1 1k k k
i i ix x v+ += +  (4) 

where w is the inertia weight and it is a decreasing function of the iteration index. 
The velocity vector in Equation (3) consists of three terms that determine the 

next position: 
 

1. Previous velocity:  This is the stored velocity from the previous iteration 
to regulate each particle from making severe changes in its direction be-
tween consecutive iterations. 

2. The cognitive component:  This term represents the attraction force that 
each particle has toward its best position achieved based on its own fly-
ing experience. 

3. The social component:  This term corresponds to each particle tendency 
to be attracted toward the best position discovered among the entire indi-
viduals in a swarm. 

 

To maintain a good balance between the individuality and sociality, c1 and c2 are 
typically set to be equal.  If c1 is set greater than c2, each particle individual per-
formance will be weighed more in Equation (3) and it is more likely that the algo-
rithm will get trapped in local solutions (i.e. the best solution achieved by that in-
dividual particle).  On the contrary, if c1 is set less than c2, that algorithm might 
fail to converge.  The inertia weight parameter introduced in Equation (3) allows 
the velocity vector to start with larger values, and then it decreases as the iteration 
index increases to limit any big particle movements towards the end of the optimi-
zation process.  This modification improves the convergence characteristics sig-
nificantly.  Factors affecting the flying experience of each particle in its search for 
optimal solution are shown in Fig. 2.    
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Fig. 2. Influential elements on the particle’s movement during its search for an optimum 

4   PSO versus Other Optimization Techniques 

PSO is a population-based evolutionary technique that has many key advantages 
over other optimization techniques, for example: 
 

• Unlike deterministic methods, PSO is a non-gradient, derivative-free 
method which gives the PSO the flexibility to deal with objective 
functions that are not necessarily continuous, convex or differentiable, 

• PSO does not use derivative information (1st and/or 2nd order) in its 
search for an optimal solution, instead it utilizes the fitness function value 
to guide the search for optimality in the problem space, 

• PSO, by utilizing the fitness function value, eliminates the approximations 
and assumption operations that are often performed by the conventional 
optimization methods upon the problem objective and constraint 
functions,  

• Due to the stochastic nature of the PSO method, PSO can be efficient in 
handling special kinds of optimization problems which have an objective 
function that has stochastic and noisy nature,  

• The quality of a PSO obtained solution, unlike deterministic techniques, 
does not depend on the initial solution,  

• The PSO is a population-based search method that enables the algorithm 
to evaluate several solutions in a single iteration which, in turn, 
minimizes the likelihood of the PSO getting trapped in local minima, 

• The PSO algorithm is flexible enough to allow hybridization and 
integration with any other method if needed, whether deterministic or 
heuristic, 
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• Unlike many other metaheuristic techniques, PSO has fewer parameters 
to tune and adjust,  

• Overall the PSO algorithm is simple to comprehend, and easy to 
implement and to program since it utilizes simple mathematical and 
Boolean logic operations. 

 
On the other hand, PSO has some disadvantages that can be summarized as  

follows: 
 

• There is no solid mathematical foundation for the PSO metaheuristic 
method, 

• It is a highly problem-dependent solution method, as most metaheuristic 
methods are; for every system the PSO parameters have to be tuned and 
adjusted to ensure a good quality solution, 

• Other metaheuristic optimization techniques have been commercialized 
through code packages like MATLAB® GADS® Toolbox for GA, 
GeaTbx® for both GA and Evolutionary Algorithm (EA) and Excel 
Premium Solver for EP; however PSO- to the knowledge of the authors- 
has not commercialized yet. 

• Compared to GA, EP algorithms, PSO has fewer published books and 
articles. 

 
A pseudo-code of general PSO algorithm is shown in Fig. 3. 

 
 Set the algorithm parameters;
For each particle

Randomly initialize the position vector;
Randomly initialize the velocity vector;

End
Measure the fitness of each particle;
Store pbest
Store gbest
While the stopping criteria is not met

For each particle
Update the velocity and position vectors
Measure the fitness of the new position vector
If the new fitness value is better than the previously stored one

Store the new position vector as pbest
Store the new fitness value

End
End
Determine the particle with lowest fitness value in the search history 
and store its position vector as gbest

End  

Fig. 3. A pseudo-code of PSO algorithm 
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In addition to traditional gradient-based optimization algorithms, there are 
many other heuristic techniques that compete with PSO such as genetic algo-
rithms, simulated annealing, evolutionary programming, and most recently ant 
colony optimization.  In general, most of these techniques can be used to solve 
various optimization problems in a similar way to the case of PSO.  However, 
such competing techniques tend to have major drawbacks such as: 

 

• More parameter tuning is required. 
• They tend to require more computational time in most cases. 
• Heavily involved programming skills are required to develop and modify 

competing algorithms to suit different classes of optimization problems. 
• Some techniques require binary conversion instead of working with direct 

real valued variables. 
• Most of them require a considerable number of population members that 

would translate to more fitness evaluations. 
 

On the other hand, some advantages of the aforementioned algorithms over  
PSO are: 
 

• The availability of commercial versions of some algorithms like MATLAB® 
(genetic algorithm and simulated annealing) and Excel premium solver (evo-
lutionary programming). 

• The extensive collection of books and research literature, especially in the 
case of genetic algorithm and evolutionary programming, that provide broad 
coverage of these competing methods.  

 

Other heuristic techniques that belong to the same category are summarized in 
[8].  These techniques have been gaining more popularity mainly because of their 
robustness, simplicity, and their ability to deal with more exact models instead of 
making intolerable approximations.  The major drawbacks of PSO are the lack of 
solid mathematical background and failure to theoretically assure global optimal 
solutions, just like in the case of other metaheuristic optimizers.  PSO has been 
proven to perform well in many standard benchmark optimization problems used 
by researchers to validate new global optimization techniques [9-12].  Reference 
[10] is an excellent reference that analyzed and studied the PSO promising con-
vergence characteristics.  In [10], Clerc and Kennedy successfully established 
some mathematical foundations to explain the behavior of a simplified PSO 
model in its search for an optimal solution.  However, further analysis is needed 
to explain other issues of the PSO like the social influence aspect of the algo-
rithm and generalized rules in how to tune its parameters to suit different optimi-
zation problems.  In [10], the authors emphasized the need for further future stud-
ies by stating “Several kinds of coefficient adjustments are suggested in the 
present paper, but we have barely scratched the surface and plenty of experiments 
should be prompted by these findings.”  Fig. 4 shows the exponentially increas-
ing growth in various research areas with regard to PSO (based on 
IEEE/IET/ScienceDirect databases). 
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5   Constraint Handling Methods in Evolutionary Algorithms 

There are different ways to handle constraints in evolutionary computation opti-
mization algorithms just like in the case of the PSO.  The following constraint 
handling methods are the most commonly used [11]: 
 

1. Preserving feasible solution method: In this method, solutions are ini-
tially placed in the feasible search space and remain within this space by 
adapting an update mechanism that generates only feasible solutions. 

2. Infeasible solution rejection method: This approach rejects any solution 
that violates the feasible search space. 

3. Penalty function method: In which a penalty factor is added to the objec-
tive once any constraint violation occurs.  It transforms the constrained 
optimization problem to unconstrained one. 

4. Solution repair method: This approach converts the infeasible solution to 
a feasible one by performing special operations. 

 

Selecting the proper constraint handling method is highly reliant on the nature of 
the problem.  Reference [11] indicates that in the solution repair method, the proc-
ess of reinstating the infeasible solution to a feasible one can be as challenging as 
solving the original problem.  In the penalty function method, the objective func-
tion is augmented by adding penalty terms to transform the constrained problem 
into an unconstrained one.  This approach usually encounters a major difficulty in 
how to properly select penalty factor values.  If the penalty factors selected are 
high, the optimization algorithm will get trapped in local solutions.  On the other 
hand, the algorithm may not be able to detect a feasible solution if the penalty fac-
tors are low [13].   
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6   Survey of Major PSO Applications in Power Systems 

The following are the major areas in power systems in which PSO was applied: 

6.1   Economic Power Dispatch 

El-Gallad et al. [14] and Park et al. [15] adapted PSO to solve the traditional eco-
nomic dispatch problem.  In both papers, the objective function was formulated as 
a combination of piecewise quadratic cost functions with non-differential regions 
instead of using a single convex function for each generating unit.  This innova-
tion in problem formulation is due to the incorporation of practical operating  
conditions like valve-point effects and different fuel types.  The system constraints  
included in reference [14] were system demand balance constraint with network 
losses incorporated and the generating capacity limits.  Park et al. did not account 
for transmission line losses in reference [15] for simplicity.  El-Gallad et al. added 
new constraints to the problem formulation in reference [16] by introducing sys-
tem spinning reserve and generator prohibited operating zones.  In this formula-
tion, they included the same constraints as those used in reference [14] and con-
sidered a single convex cost function.   

In reference [17], a different formulation was proposed by including the gen-
erator ramp rate limits in  the same problem treated in [16].  In Gaing’s work [17], 
a comparison is made between PSO and genetic algorithm performance in solving 
the same economic dispatch problem.  Gaing introduced a dynamic aspect to the 
same problem by adding a time-varying system load in addition to accounting for 
some of the generator operation related restrictions, such as ramping rate limits 
and prohibited operating zones, while imposing system spinning reserve require-
ments and line flows as inequality constraints [18].  Victoire and Jeyakumar ex-
tended Gaing’s research by forming a hybrid optimizer to tackle the same problem 
[19].  They used SQP to fine-tune PSO search in finding the optimal solution.   

Kumar et al. included emission aspects of the power dispatching problem [20].  
They utilized PSO in solving a multi-objective optimization problem that included 
both cost and emission functions.  They combined the two objective functions by 
assigning a single price penalty factor to the emission function to form a single ob-
jective function.  Reference [21] presents improved versions of PSO to solve both 
convex and non-convex economic dispatch problems that take into account differ-
ent operational constraints.  The main contributions of the proposed approaches 
are the integration of local random search with PSO and the splitting up of the 
cognitive term such that both the best and worse particle positions affect the ve-
locity update equation.  Wang and Singh formulated a multi-objective emission-
economic dispatch problem for a multi-area system [22].  A PSO approach was 
developed to solve the problem with convex objective functions while accounting 
for the tie-line transfer limits as additional constraints.  Reference [23] presents a 
hybrid form of PSO and evolutionary programming to solve the economic dis-
patch while accounting for the valve point loading effects.  The hybrid approach 
showed faster convergence characteristics when compared to the conventional 
PSO or evolutionary programming. 
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6.2   Reactive Power Optimization 

In this area, PSO was used to optimize the reactive power flow in the power system 
network to minimize real power system losses.  Yoshida et al. [24-26] and Fuku-
yama et al. [27] took the initiative of introducing PSO to reactive power optimiza-
tion.  In their problem formulation, the objective was to find the optimal settings of 
some control variables that would minimize the total real power losses in a net-
work.  The control variables are automatic voltage regulator operating values, 
transformer tap positions, and a number of reactive power compensation equipment 
subject to equality and inequality constraints.  Based on the nature of the control 
variables, the problem is classified as a mixed-integer nonlinear optimization prob-
lem since some variables are continuous while others are discrete.  Mantawy and 
Al-Ghamdi investigated the same problem using a different test system [28]. 

Miranda and Fonseco appear to be  the first to introduce a hybrid PSO approach 
in this area [29;30].  They combined evolutionary strategies with PSO to improve 
the robustness of the classical PSO.  In [31], Zhao et al. combined multi-agent 
systems with PSO to solve the same problem.  Esmin et al. considered shunt ca-
pacitor banks as the only type of control variables in their problem formulation 
[32].  They incorporated the tangent vector technique to identify the critical area 
of power system network where voltage stability might be in danger.  Then, they 
applied PSO to find the “needed” reactive power compensation.  A new hybrid 
method was introduced by Chuanwen and Bompard as they combined PSO with a 
linear interior point technique to solve a reactive power optimization problem 
[33].  In their work PSO was used as a global optimizer to search the entire solu-
tion space while the linear interior point method acted as a local optimizer to 
search the space around the optimal solution. 

To show the effectiveness of PSO in reactive power control and power losses 
reduction, it was successfully applied to a practical power system in the province 
of Heilongjiang in China [34].  This system consists of 151 buses and 220 trans-
mission lines with 71 control variables.  A different problem formulation was pro-
posed by Coath et al. where they considered reactive power losses minimization 
as an objective function [35].  They also introduced generator real power outputs 
as additional control variables.  The difference in their problem formulation was 
mainly due to the inclusion of wind farms as modern integral parts of the power 
system networks. 

6.3   Optimal Power Flow (OPF) 

Abido is credited with introducing PSO to solve the OPF problem [36].  In OPF, 
the goal is to find the optimal settings of the control variables such that the sum of 
all the generator’s cost functions is minimized.  The generator real power outputs 
are considered control variables in addition to the other control variables consid-
ered previously in reactive power optimization problems.  PSO was effective in 
dealing with this complex optimization problem that has various equality and ine-
quality constraints and both continuous and discrete variables. In a different ap-
proach to the problem, Zhao et al. solved the highly constrained OPF optimization 
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problem by minimizing a non-stationary multi-agent assignment penalty function 
[37].  In this formulation, PSO was used to solve the highly constrained OPF op-
timization problem in which the penalty values were dynamically modified in ac-
cordance with system constraints.  In reference [38], the passive congregation 
concept was incorporated in PSO to solve the OPF problem.  This hybrid tech-
nique improved the convergence characteristics over the traditional PSO in solv-
ing the same OPF problem.  Wang et al. developed a modified PSO to solve the 
OPF problem with the objective being the minimization of the quadratic fuel cost 
function [39].  The proposed algorithm mainly relied on the idea of randomly ex-
changing information among the entire swarm rather than only the best member in 
the swarm.  The environmental-economic transaction planning problem in the 
electricity market was formulated as a multi-objective OPF in reference [40].  A 
multi-objective PSO algorithm was developed to solve the problem via a non-
stationary multi-stage assignment penalty function.  Different versions of PSO 
were developed in reference [41] in an attempt to construct a comparison of their 
performance with regard to the OPF.  The objective functions selected in this 
study were the real power losses and voltage profile improvement.  Gaing intro-
duced an enhanced PSO to solve a multi-objective OPF problem with the objec-
tive functions being the fuel cost, real power losses, and voltage deviation [42]. 

6.4   Controller Design 

In references [43] and [44], PSO was employed to find the optimal settings of 
power system stabilizer parameters.  The problem was formulated as one of min-
max optimization of two eigenvalue-based objective functions.  Okada et al. went 
along the same lines when they used PSO to optimally design a fixed-structure 
controller to enhance the stability of power systems [45].  In this work, the au-
thors’ goal was to find the global optimal solution of a multimodal optimization 
problem.  PSO was also used in optimizing the feedback controller gains.  Al-
Musabi et al. made use of PSO in finding optimal controller gain values for a load 
frequency problem of a single area power system [46].  Abdel-Magid and Abido 
extended PSO usage in this area when they enlarged the control system to two ar-
eas [47].  In their work, they considered two types of controllers namely an inte-
gral controller and a proportional plus integral controller.  Juang and Lu combined 
the genetic algorithm with PSO in reference [48] to perform the same optimization 
process as in [47] on a fuzzy proportional-integral-controller.  Ghoshal augmented 
the problem by trying to find the optimal proportional-integral-derivative control-
ler gains of a three area power system [49].  He tackled the problem using PSO in 
addition to other heuristic techniques.  Lu and Juang applied PSO to design a 
fuzzy controller for a thyristor-controlled series capacitor to enhance the transient 
stability of flexible alternating current transmission systems (FACTS) [50]. 

6.5   Neural Network Training 

Neural Networks emerged as a valuable artificial intelligence tool in many areas in 
electric power systems.  El-Gallad et al. used PSO to train a Neural Network for 
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power transformer protection [51].  The objective was to develop a model that 
would be able to intelligently distinguish between magnetizing inrush current and 
internal fault current in power transformers.  PSO was employed to improve the 
accuracy and the execution time of the identification process.  Hirata et al. used 
PSO to determine the optimal connection weights of a neural network model used 
to improve stability control of power systems [52].  They formulated the optimiza-
tion problem as a min-max problem with an objective function that has non-
differential and discontinuous nature.  Kassabalidis et al. integrated PSO with a 
Neural Network to identify the dynamic security border of power systems under a 
deregulated power system environment [53]. 

6.6   Other Electric Power System Areas 

In [54] and [55], the performance of  PSO was explored in the area of electric 
power quality by improving the process of feeder reconfiguration.  The problem 
was formulated as a nonlinear optimization problem with non-differentiable char-
acteristics.  Victoire and Jeyakumar combined PSO, sequential-quadratic-
programming, and tabu-search to form a hybrid technique to solve the unit com-
mitment combinatorial optimization problem [56].  In the area of short-term load 
forecasting, Huang et al. were able to identify the autoregressive moving with the 
exogenous variable model using PSO [57].  Slochanal et al. and Kannan et al. in-
troduced PSO in the area of generation expansion planning in references [58] and 
[59] to solve discrete nonlinear optimization problems.  They used it in [58] to 
maximize the profit of a generating utility subject to certain market conditions and 
various system constraints.  In [59], PSO was employed to minimize the capital 
and operation cost of the generation expansion planning problem.  Also in this 
area, PSO was utilized in solving the expansion planning problem of a transmis-
sion line network [60].   

Koay and Srinivasan solved the multi-objective generator maintenance schedul-
ing problem by creating a hybrid technique by means of combining PSO with evo-
lutionary strategies in reference [61].  In power system reliability studies, PSO 
was applied to feeder-switch relocation problems in a radial distribution system 
[62].  The authors in reference [62] used PSO to allocate the most appropriate po-
sitions to place sectionalized devices in distribution lines.  The objective function 
of this problem is categorized as nonlinear with non-differentiable characteristics.  
In reference [63], applications of PSO in finding optimal operation settings of a 
system composed of distributed generators and energy storage systems were illus-
trated.  Naka et al. and Fukuyama formed hybrid techniques by combining PSO 
with other heuristic techniques to improve the performance of a distribution of 
state estimator in [64] and [65] respectively.  PSO was later applied to solve short 
term hydroelectric system scheduling problems in reference [66].  The problems in 
references [64-66] are formulated as continuous nonlinear optimization problems.  
Yu et al. applied PSO to tackle the discrete optimal capacitor placement problem 
in a noisy environment [67]. 
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7   Application of PSO in Optimal Operation of Power Systems 
OPF Example 

Power engineers require special tools to optimally analyze, monitor, and control 
different aspects of power systems operation and planning.  Most of these tools are 
properly formulated as some sort of optimization problems.  The optimal power 
flow (OPF ) is the backbone tool that has been extensively researched since its first 
introduction in the early 1960’s [68;69].  It appears that the commonly known term 
“optimal power flow” was first introduced by Dommel and Tinney in 1968 [70]. 

Originally, the OPF was formulated as a natural extension of the traditional 
economic dispatch.  Differences between the two optimization functions exist 
even though both of them may share the same objective function.  In economic 
dispatch, the entire power network is reduced to a single equality constraint.  By 
contrast, all major elements of the modeled system are explicitly presented in the 
OPF problem.  The generic term “OPF” is no longer associated exclusively with 
the extended economic dispatch calculation.  Rather, it presents a wide range of 
optimization problems commonly formulated in power systems related studies.  
OPF studies are evolving over time from its basic form to cope with the continu-
ous changes that are taking place in power systems.  Deregulation of the electric 
power industry, advances being made in the area of power electronics, and the en-
vironmental regulations that are being imposed on power plants are some of the 
main factors that have played major role in constantly reformulating the OPF.  The 
historical development of the OPF is closely correlated with the advances made in 
the area of numerical optimization techniques [71].  Researchers have attempted to 
apply most optimization techniques to solve the OPF.    

The purpose of OPF is to find the optimal settings of a given power system 
network that optimize a certain objective function while satisfying its power flow 
equations, system security, and equipment operating limits.  Different control 
variables are manipulated to achieve an optimal network setting based on the 
problem formulation.  The main control variables typically used in optimizing the 
OPF are as follows: 

 

− Generators’ real power outputs and voltages. 
− Transformer tap changing settings. 
− Phase shifters settings and placement for expansion planning. 
− Switched capacitors and reactors. 
− FACTS devices settings and placement for expansion planning. 
 

A main obstacle of the OPF problem is the nature of the control variables since 
some of them are continuous (e.g. real power outputs and voltages) and others are 
discrete (e.g. transformer tap setting, phase shifters, and reactive injections).  The 
presence of discrete variables makes the optimization problem a non-convex one, 
which in turn complicates the solution methodology.  Objective functions of the 
OPF studies can be arranged into two main categories: traditional and newly 
emerged objectives.  The latter group has emerged mainly as a result of restructur-
ing the electric power industry.  Fig. 5 summaries most used objectives in the OPF  
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 OPF Objectives 

Traditional Emerged 

Real power loss 
minimization 

Load shedding 

Emission of generating 
units 

Contingency severity 
index 

Capacity of transmission 
network 

Number of control actions

Post-contingency 
correction time 

Bus voltage deviation 

Maximization of the 
social welfare 

Wheeling rate 

Bidding strategy 

Fuel cost function 

 

Fig. 5. Most commonly used objective functions in the OPF studies 

studies.  It is noted from this study that the most commonly used objective is the 
minimization of the overall fuel cost function (convex and non-convex).   

Researchers proposed different mathematical formulations of the OPF problem, 
which can be broadly classified as follows: 

 

1. Linear programming problem in which objectives and constraints are given in 
linear forms with continuous control variables. 

2. Non-linear programming problem where either objectives or constraints or 
both combined are non-linear with continuous control variables. 

3. Mixed integer linear and non-linear programming problems when control 
variables are both discrete and continuous.  

 

Many conventional optimization techniques were developed to solve the OPF 
problem, the most popular being linear programming, sequential quadratic pro-
gramming, generalized reduced gradient method, and the Newton method.  Refer-
ences [72-74] offer a complete list of the most commonly used conventional opti-
mization algorithms with regard to the OPF.  Despite the fact that some of these 
techniques have excellent convergence characteristics and various among them are 
widely used in the industry, some of their drawbacks are: 
 

1. Convergence to the global or local solution is highly dependant on the se-
lected initial guess, i.e. they might converge to local solutions instead of 
global ones if the initial guess happens to be in the vicinity of a local solution.  

2. Each technique is tailored to suit a specific OPF optimization problem based 
on the mathematical nature of the objectives and/or constraints.   

3. They are developed with some theoretical assumptions, such as convexity, 
differentiability, and continuity, among other things, which may not be suit-
able for the actual OPF conditions. 

 

The rapid developments of recent computational intelligence tools have attracted 
many researchers to employ them in solving the ever changing OPF. Reference [75] 
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provides an extensive coverage of the major research work conducted in applying 
modern computational tools to the OPF problem.   

8   Problem Formulation 

The desired goal of the OPF is to optimize a certain objective subject to differ-
ent sets of equality and inequality constraints. The problem can be formulated 
as follows: 
 

     ( , )Min F x u  (5) 

   Subject to 
 ( , ) 0g x u =  (6) 

 min max( , )h h x u h≤ ≤  (7) 
 

where vector x denotes the dependant or state variables of a power system network 
that contains the slack bus real power output (PG1), voltage magnitudes and phase 
angles of the load buses (VLk,θLk), and generator reactive power outputs (QG).  
Vector u represents both integer and continuous control variables that consist of 
real power generation levels (PGN) and voltage magnitudes (׀VGN׀ ), transformer 
tap setting (Tk), and reactive power injections (QCk) due to volt-amperes reactive 
(VAR) compensations; i.e. 

 
  

,  
OPF Control Variables

continuous discreteu u u
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦


��������
 (8) 

where 

 [ ] [ ]2 2 11,  and ,  N N NG G G G N C Ccontinuous discreteu P P V V u T T Q Q= =… … … …  (9) 

In this example, minimization of different objectives is considered to examine the 
performance of the proposed algorithm.  The objective functions taken into con-
siderations are fuel emission, fuel cost, and the network real power losses.  Each 
objective is briefly described as follows: 

8.1   Fuel Emission 

Fossil based thermal plants are considered a major player in the pollution crisis 
that we are facing nowadays. The industrial growth led to greater demands to gen-
erate more electricity.  Consequently, the emission of these generating units is 
gradually building up in the atmosphere which is having a severe impact on our 
environment.  One way to cope with this problem is to dispatch electric power 
with emission considerations.  The objective of fuel emission dispatch problem is 
to minimize the total emission of all thermal units by allocating optimal control 
settings while satisfying various network operation constraints.  Fuel emission of a 
number of generating units can be modeled mathematically as follows: 
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 2
1

1

( ) ton/hr
N

i i i i i
i

F P Pα β γ
=

= + +∑  (10) 

8.2   Fuel Cost 

The aim of the fuel cost dispatch problem is to allocate the best network settings 
that minimize the overall fuel cost function while imposing all network 
constraints.  Conventionally, the overall fuel cost function for a number of thermal 
generating units can be modeled by a quadratic function (convex and 
differentiable) as follows: 

 2
2

1

( ) $/hr
i N

i i i i i
i

F a b P c P
=

=

= + +∑  (11) 

However, this model ignores the valve point loading that introduces rippling ef-
fects to the actual input-output curve.  Equation (11) is modified by adding an ad-
ditional sine term to account for the valve effects in this manner [76]:  

 2 min
2

1

sin( ( ))  $/hr
i N

i i i i i i i i i

i

F a b P c P e f P P
=

=

= + + + −⎡ ⎤
⎣ ⎦∑  (12) 

This more accurate modeling adds more challenges to most derivative-based op-
timization algorithms in finding the global solution since the objective is no longer 
convex nor differentiable every where. Fig. 6 shows the shape of the fuel cost 
function with the valve loading effects included.  

 
 Fuel Cost Function Charactrestics Considering Valve Loading Effects

Power (MW)
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ue

l C
os

t 
($

/h
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Fig. 6. The generator input-output curve considering the valve point effects 

8.3   Real Power Losses 

With this objective, all control settings are adjusted such that the total real power 
losses are minimized.  Power losses can be modeled as follows: 
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2 2

1

2 cos( )
LN

L k i j i j i j
k

P g V V V V δ δ
=

⎡ ⎤= + − −⎢ ⎥⎣ ⎦∑  (13) 

where NL is the number of transmission lines in the system, gk is the conductance 
of the line k connecting buses i and j,  and the bus voltage is represented in polar 
form by ׀V׀ and δ.  

The OPF problem has two categories of constraints: 
 

1. Equality Constraints: 
These are the sets of nonlinear power flow equations that govern the power  
system, i.e.  

 ( , ) 0
i i iG D TP P P− − =V δ  (14) 

 ( , ) 0
i i iG D TQ Q Q− − =V δ  (15) 

where PGi and QGi are the generated real and reactive power at bus i respectively, 
the load demand at the same bus is represented by PDi and QDi, and subscript T de-
notes the total sending and receiving power at each bus. 
 

2. Inequality Constraints: 
These are the set of continuous and discrete constraints that represent the system 
operational and security limits like the bounds on: 

 

1. The generators real and reactive power outputs; 

 min max ,  1, ,
i i i

NG G GP P P i G≤ ≤ = …  (16) 

 min max ,  1, ,
i i i

NG G GQ Q Q i G≤ ≤ = …  (17) 

2. Voltage magnitudes at each bus in the network; 

 min max ,  1, ,i i iV V V i N≤ ≤ = …  (18) 

3. The discrete transformer tap settings; 

 min max ,  1, ,i i i NT T T i T≤ ≤ = …  (19) 

4. The discrete reactive power injections due to capacitor banks; 

 min max ,  1, ,
i i i

NC C CQ Q Q i C≤ ≤ = …  (20) 

Note that PGi, QGi, and Vi are continuous variables while Ti and QCi are discrete ones. 
5. The transmission lines loading; 

 max ,  1, ,
i iL L NS S i L≤ = …  (21) 

Additional inequality constraints may include prohibited zones of the generating 
units, measures of transient stability, electromagnetic field levels …etc.   
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9   Simulation Results and Discussion 

PSO algorithm was implemented in MATLAB® computing environment and the 
standard IEEE 30-bus test system was used to validate its potential. The test system 
consists of six generating units interconnected with 41 branches of a transmission 
network to serve a total load of 189.2 MW and 107.2 Mvar as shown in Fig. 7. De-
tailed description of the system’s data is presented in the Appendix [77].   
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Fig. 7. A single line diagram of IEEE 30-bus standard test system 



Particle Swarm Optimization and Its Applications in Power Systems 313
 

Table 1. A Study of Tuning PSO Parameters 

Ave Min Max St. Dev. Other HPSO Parameters
0.10 582.396 577.831 588.311 2.950 No. of Particle = 10
0.25 578.845 576.501 584.893 2.220 Max. Velocity = 1
0.50 577.569 575.835 583.552 1.761 Max. Iterations =30
0.75 576.849 575.841 579.132 0.921
1.00 576.721 575.461 579.343 0.931
1.25 576.971 575.659 578.876 0.932
1.50 576.939 575.809 578.321 0.935
1.75 577.129 575.526 579.325 0.941

2.00 578.266 576.882 581.483 1.201

2.50 580.053 576.583 583.388 1.977

5 579.679 576.086 586.938 2.910 C1 = C2 = 1.0

10 576.721 575.461 579.343 0.931 Max. Velocity = 1
20 575.872 575.392 577.514 0.521 Max. Iterations =30
30 575.792 575.392 576.788 0.351

0.01 575.9490312 575.4180022 576.5178288 0.355682775 C1 = C2 = 1.0

0.1 575.7038747 575.4107523 576.3385352 0.262708898 No. of Particle = 20
0.25 575.8114492 575.4135668 576.677822 0.342970307 Max. Iterations =30
0.5 576.3442547 575.4562268 578.8141952 1.064837346
1 575.8724351 575.3922643 577.5141537 0.520501034
2 576.0249806 575.423816 577.553081 0.563978232
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Note that the original system has two capacitors banks installed at bus 5 and 24 

with ratings of 19 and 4 Mvar respectively.  A series of experiments were con-
ducted to properly tune the PSO parameters to suit the targeted OPF problem.  
Considering the quadratic fuel cost function as an objective, Table 1 shows the 
PSO outcomes as a result of varying its parameters.  To quantify the results, 50 
independent runs were executed for each parameter variation.  The most notice-
able observation from this groundwork is that the optimal settings for c1 and c2 are 
found to be 1.0.  These values are relatively small since most of the values re-
ported in the literature are in the range of 1.4-2.  The best settings for number of 
particles and particle’s maximum velocity are 20 and 0.1 respectively.  Note that 
increasing number of particles more than 20 will improve the solution accuracy 
slightly at the expense of increasing the computation time significantly. 

Inertia weight is kept fixed throughout the simulation process between upper 
and lower bounds of 0.9 and 0.4 respectively since changing its values did not 
have great impact in improving the convergence characteristics.  The same pa-
rameters were suitable to cases 1 and 2 below.  Once the PSO best parameters are 
set, the following cases were considered to test the proposed approach: 

 

Case 1: The quadratic emission and fuel cost functions in equations (10) and (11) 
were minimized considering only the continuous control variables, i.e. real power 
outputs and voltages at voltage-controlled buses.  A comparison of results obtained 
using the PSO to those obtained using MATPOWER®, MATLAB®-based software 
that uses sequential quadratic programming (SQP) to solve the OPF, are shown in 
Table 2. MATPOWER is capable of solving the OPF when the objective is  
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Table 2. Comparison between PSO and SQP for CASE 1 
 

Method SQP PSO SQP PSO

Pg1 41.54 43.611 24.88 24.016
Pg2 55.4 58.060 28.82 27.601

Pg13 16.2 17.555 33.05 30.181

Pg22 22.74 22.998 33.06 34.441
Pg23 16.27 17.056 26.25 30.000

Pg27 39.91 32.567 45.27 45.202

V1 0.982 1.000 1.033 1.000
V2 0.979 1.000 1.03 1.001

V13 1.064 1.059 1.1 1.064

V22 1.016 1.012 1.023 1.023

V23 1.026 1.021 1.054 1.043
V27 1.069 1.037 1.068 1.048

Objective 576.892 575.411 284.966 282.628
Plosses 2.860 2.647 2.130 2.240

Fuel Cost ($/hr) Emission (ton/hr)

 
 

represented in polynomial form and is only capable of handling continuous vari-
ables.  Results clearly indicate that PSO achieved better solution in both cases. 

Case 2: The test system is modified by introducing 4 tap-changing transformers 
between buses 6-9, 6-10, 4-12, and 27-28.  The operating range of all transformers 
is set between 0.9-1.05 with a discrete step size of 0.01.  Also, the capacitor banks 
at buses 5 and 24 are also considered as new discrete control variables with a 
range of 0-40 Mvar and a step size of 1.  With this modification, the problem now 
has both continuous and discrete control variables that can be troublesome to most  
conventional optimization methods.  In addition to the objectives considered in 
case 1, the total real power losses is also introduced as new objective in this case.  
Table 3 summarizes the results of each minimization problem along with the best 
solution vector achieved.   

Case 3: Since PSO is capable of handling optimization problems in which the 
objective is not required to be convex or differentiable, the fuel cost function is 
augmented with an additional sine term as in (12).  This addition increases the de-
gree of non-smoothness of the objective function significantly as depicted in Fig. 8.  
It shows the shape of the fuel cost function of two generation units, which repre-
sents part of the overall problem, when the valve point effects are accounted  
for and in the absence of any constraints.  Note that even when considering only 
two units, the shape of the objective is highly non-convex with multiple peaks and  
non-differentiable valleys.  Note that the fuel cost coefficients are modified to cre-
ate more challenging objective function shape within the permissible operating  
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Table 3. Results of Different Objective Minimization When both Discrete and Continuous 
Variables are Considered (CASE 2) 

Fuel Cost ($/hr) Emission (ton/hr) Plosses (MW)

Pg1 42.180 24.032 7.057
Pg2 57.013 27.333 50.131

Pg13 17.305 29.817 39.888

Pg22 22.025 33.895 45.575
Pg23 17.872 29.993 19.116

Pg27 35.060 46.202 28.963

V1 1.000 1.000 1.000
V2 0.999 1.002 0.950

V13 1.061 1.098 1.100

V22 1.071 1.041 1.091

V23 1.076 1.073 1.093
V27 1.100 1.084 1.093

QC5 4.000 2.000 9.000
QC24 8.000 9.000 9.000

T6-9 0.900 0.970 0.900

T6-10 0.950 0.930 0.950

T4-12 0.930 1.020 0.920
T27-28 0.950 0.990 0.980

Objective 574.143 282.218 1.540  
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Fig. 8. The high degree of non-convexity in the shape of the objective once valve loading 
effects are included 
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Table 4. Results of Case 3 under Different Swarm's Size 

20 30 100

Pg1 47.068 47.095 47.126
Pg2 42.911 42.359 71.366

Pg13 8.790 35.902 8.972

Pg22 44.728 37.359 37.391
Pg23 8.983 8.826 8.993

Pg27 42.044 20.959 20.777

V1 1.000 1.000 1.000
V2 1.099 1.009 1.097

V13 1.091 1.017 1.037

V22 1.087 1.082 0.982

V23 1.048 1.057 1.048
V27 1.029 1.080 1.088

QC5 33.000 16.000 29.000
QC24 35.000 15.000 12.000

T6-9 1.040 1.010 1.020

T6-10 1.010 1.000 0.990

T4-12 1.040 0.990 1.020
T27-28 0.990 1.030 1.040

Objective 658.416 645.333 615.250  

 
range. In this case, more number of particles is needed to explore this complex so-
lution hyperspace efficiently.  Table 4 tabulated the results obtained using differ-
ent swarm’s size.  Increasing the swarm’s size improved the PSO performance in 
achieving better results at the expense of computational time.  

To demonstrate the consistency and robustness of the developed algorithm, 20 
independent runs were conducted for each case to measure the frequency of reach-
ing the optimal or near optimal solution while maintaining the same stopping cri-
teria (maximum iterations of 30).  Results and computation time are shown in  
Table 5 that reflect the steady performance of PSO in solving the OPF problem.   

It is evident that in case 1, even the PSO worse performance outperformed SQP 
in both fuel cost and emission minimization.  However, it is noted that in case 3, 
there was a noticeable deviation between best and worse run when incorporating 
the valve loading effects into the fuel cost function.  This is due to the highly non-
smooth feasible region as a result of adding sine terms to the quadratic functions. 
Similar deviations were noted in earlier work conducted in [78;79] when consider-
ing the valve loading effects.     
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Table 5. Statistical Data for All Testing Cases 

 

Fuel Cost ($/hr) 575.704 575.411 576.339 0.263 5.974

Emission (ton/hr) 283.110 282.628 283.874 0.386 6.172

Fuel Cost ($/hr) 575.228 574.143 576.485 0.550 9.564

Emission (ton/hr) 283.072 282.218 284.179 0.565 6.781
Plosses (MW) 1.688 1.540 2.018 0.123 10.116

20 Particles 744.306 658.416 849.511 61.224 8.519

30 Particles 734.342 645.333 897.349 70.800 6.712

100 Particles 677.222 615.250 753.868 42.461 22.870

Case 1

Case 2

Case 3

Standard Deviation Average Time (s)/iterMean Best Worse

 

10   Summary 

This chapter covers the basics behind PSO theory and recent developments that 
have been made to enhance its overall performance.  Differences between PSO 
and other optimization techniques as well as summary of PSO applications in 
power systems are presented.  It highlights many applications in which PSO was 
successfully applied, yet it reveals some additional unexplored areas where it can 
be further employed like protection, restoration, etc.  Also, deregulating all major 
parts of the electric power industry led to new operation philosophy to emerge that 
will reformulate many optimization problems.  This will justify using the PSO to 
tackle such problems.  An OPF example is used to illustrate PSO searching capa-
bilities and to demonstrate its potential as a new competitor to other optimization 
techniques.  Future PSO development is anticipated to mainly focus on the theo-
retical investigations of the global convergence characteristics, hybridization with 
other optimization techniques, multi-objective optimization, and employment in 
new applications.  PSO is still in its infancy and further development and research 
are needed to enhance its overall performance characteristics. 
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Appendix 

Table A1. Characteristics of the Generating Units 

 Generator 1 2 3 4 5 6

a 0 0 0 0 0 0

b 2 1.75 1 3.25 3 3

c 0.02 0.0175 0.0625 0.00834 0.025 0.025

e 300 200 150 100 200 200

f 0.2 0.22 0.42 0.3 0.35 0.35

α 0.04091 0.02543 0.04258 0.05326 0.04258 0.06131

β -0.05554 -0.06047 -0.05094 -0.03550 -0.05094 -0.05555

γ 0.06490 0.05638 0.04586 0.03380 0.04586 0.05151

Pmin(MW) 0 0 0 0 0 0

Pmax(MW) 80 80 50 55 30 40

Qmin(Mvar) -20 -20 -15 -15 -10 -15

Qmax(Mvar) 150 60 62.5 48.7 40 44.7

Bus Number 1 2 22 27 23 13
 

Table A2. Bus Data for IEEE 30-Bus System 

Bus No. Pd Qd Qc Vmin Vmax Bus No. Pd Qd Qc Vmin Vmax

1 0 0 0 0.95 1.1 16 3.5 1.8 0 0.90 1.05

2 22 13 0 0.95 1.1 17 9 5.8 0 0.90 1.05

3 2.4 1.2 0 0.90 1.05 18 3.2 0.9 0 0.90 1.05

4 7.6 1.6 0 0.90 1.05 19 9.5 3.4 0 0.90 1.05

5 0 0 19 0.90 1.05 20 2.2 0.7 0 0.90 1.05

6 0 0 0 0.90 1.05 21 18 11 0 0.90 1.05

7 23 11 0 0.90 1.05 22 0 0 0 0.95 1.1

8 30 30 0 0.90 1.05 23 3.2 1.6 0 0.95 1.1

9 0 0 0 0.90 1.05 24 8.7 6.7 4 0.90 1.05

10 5.8 2 0 0.90 1.05 25 0 0 0 0.90 1.05

11 0 0 0 0.90 1.05 26 3.5 2.3 0 0.90 1.05

12 11 7.5 0 0.90 1.05 27 0 0 0 0.95 1.1

13 0 0 0 0.95 1.1 28 0 0 0 0.90 1.05

14 6.2 1.6 0 0.90 1.05 29 2.4 0.9 0 0.90 1.05

15 8.2 2.5 0 0.90 1.05 30 11 1.9 0 0.90 1.05  
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Table A3. Branch Data for IEEE 30-Bus System 

From To R X B From To R X B

1 2 0 0.1 0 15 18 0.1 0.2 0

1 3 0.1 0.2 0 18 19 0.1 0.1 0

2 4 0.1 0.2 0 19 20 0 0.1 0

3 4 0 0 0 10 20 0.1 0.2 0

2 5 0.1 0.2 0 10 17 0 0.1 0

2 6 0.1 0.2 0 10 21 0 0.1 0

4 6 0 0 0 10 22 0.1 0.2 0

5 7 0.1 0.1 0 21 22 0 0 0

6 7 0 0.1 0 15 23 0.1 0.2 0

6 8 0 0 0 22 24 0.1 0.2 0

6 9 0 0.2 0 23 24 0.1 0.3 0

6 10 0 0.6 0 24 25 0.2 0.3 0

9 11 0 0.2 0 25 26 0.3 0.4 0

9 10 0 0.1 0 25 27 0.1 0.2 0

4 12 0 0.3 0 28 27 0 0.4 0

12 13 0 0.1 0 27 29 0.2 0.4 0

12 14 0.1 0.3 0 27 30 0.3 0.6 0

12 15 0.1 0.1 0 29 30 0.2 0.5 0

12 16 0.1 0.2 0 8 28 0.1 0.2 0

14 15 0.2 0.2 0 6 28 0 0.1 0
16 17 0.1 0.2 0 - - - - -  
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Application of Evolutionary Optimization 
Techniques for PSS Tuning 

S.P. Ghoshal, A. Chatterjee, and V. Mukherjee*

 

Abstract. In this chapter, bacteria foraging optimization (BFO) and chaotic ant 
swarm optimization (CASO) are individually considered to tune the parameters of 
both single-input and dual-input power system stabilizers (PSSs). Conventional 
PSS (CPSS) and the three dual-input IEEE PSSs (PSS2B, PSS3B, and PSS4B) are 
optimally tuned to obtain the optimal transient performances. A comparative per-
formance study of these four variants of PSSs is also made. It is revealed by ap-
plying either BFO or CASO that the transient performance of dual-input PSS is 
better than single-input PSS. It is, further, explored that among dual-input PSSs, 
PSS3B offers superior transient performance. A comparison between the results of 
the BFO and that of genetic algorithm (GA) is conducted in this study. The com-
parison reveals that BFO is more effective than GA in finding the optimal tran-
sient performance. CASO explores the chaotic and self-organization behavior of 
ants in the foraging process. A novel concept, like craziness, is introduced in the 
CASO to achieve improved performance of the algorithm. For on-line, off-
nominal operating conditions Sugeno fuzzy logic (SFL) based approach is 
adopted. On real time measurements of system operating conditions, SFL adap-
tively and very fast yields on-line, off-nominal optimal stabilizer parameters. 

Keywords: Ant colony optimization; bacteria foraging optimization; chaotic ant 
swarm optimization; genetic algorithm; particle swarm optimization; power sys-
tem stabilizer; Sugeno fuzzy logic; swarm intelligence. 

1   Introduction 

OST of the generators are equipped with voltage regulators to automatically 
control the terminal voltage. It is reported in the literature [1] that the volt-
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age regulator action had a detrimental impact upon the dynamic stability of the 
power system. Oscillations of small magnitude and low frequency often persist for 
long periods of time and in some cases even limit the power transfer capability. 
Thus, low frequency oscillations or so-called electromechanical oscillations 
(EMO) [2] usually occur in large power system and some times cause power sys-
tem to become unstable. Small-signal analysis tools available today help to char-
acterize both the origin and nature of modes. Classification of the modes of EMO, 
according to their origin and nature, are of the following types: 

 

• Intra plant mode oscillations, 
• Local plant mode oscillations, 
• Inter area mode oscillations, 
• Control mode oscillations, 
• Torsional modes between rotating plant. 

 

Depending upon the unit ratings and the reactance connecting them, ma-
chines of the same power generation site oscillate against each other in the 
range of 2.0-3.0 Hz. This oscillation manifests within the generation plant and 
is referred to intra plant. The very beauty of this type of oscillation is that the 
rest of the system is unaffected. In local mode, one generator swings against 
the rest of the system at 1.0-2.0 Hz. Two coherent groups of generators, swing-
ing against each other at 1 Hz or less cause inter area mode of oscillations. The 
highlighting feature of this complex phenomenon is the involvement of many 
parts of the system with highly non-linear dynamic behavior. Generators, 
purely tuned exciters, governors, high voltage direct current (HVDC) convert-
ers, static VAR compensator (SVC) controls are mainly associated with control 
mode oscillation. Complex interaction of transformer tap-changing devices 
with non-linear load dynamics may lead to the birth of voltage oscillations. 
Torsional mode oscillation [3] in the frequency range of 10-46 Hz in the tur-
bine alternator shaft system is noticed. This mode of oscillation plays its role 
when multi-stage turbine generator unit is connected with the grid system 
through a series compensated power transmission channel. A mechanical tor-
sional mode of the shaft system interacts with the series capacitor at the natural 
frequency of the electrical system. When synchronous frequency minus tor-
sional frequency equals network natural frequency, the shaft resonance appears. 
Glimpses of power system separations with scale blackouts as laid down in [4] 
may be recalled. Of all the modes described above, local area mode of oscilla-
tion will be investigated in this chapter.  

Utility houses accept power system stabilizer (PSS) to generate supplementary 
control signals for the excitation system. PSS provides modulation of the voltage 
reference of the automatic voltage regulator (AVR) with proper phase and gain 
compensation circuitry [5]. Power system dynamic performance is improved by 
damping of system oscillations. This is a very effective method of enhancing the  
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small-signal stability performance. Small-signal stability analysis and transient 
stability analysis are complementary techniques. Both of these are essential for 
studying rotor-angle stability of power system. To investigate the small-signal sta-
bility, the usage of non-linear time domain simulation approach possesses the fol-
lowing significant problems:  

 

• Disturbances will not necessarily excite local controller modes 
which are unstable or poorly damped, 

• The time responses are multi-modal, 
• There exists usually insufficient information to identify the origi-

nality of the modes present in the time responses or to design re-
medial measures if they are found to be necessary. 

Recently, evolutionary programming and intelligent control techniques are be-
ing applied to solve many complex optimization problems in engineering applica-
tions. With high speed computing tools, these search methods are increasingly  
being applied in power system planning, design, operation and control problems. 
The advantage of these methods is that the objective function need not be explicit 
or differentiable and nonlinearity or non-convexity is not a problem and minimal 
damping in the closed loop can be obtained. 

Most of the techniques, described in the state-of-the-art literature, are centered 
on angular speed deviation as single input variable to classical phase compensa-
tion PSS. Some of these techniques suffer from complexity of algorithm, heavy 
computational burden and memory storage requirement. Some suffer from robust-
ness because of choice of limited number of control parameters of stabilizer, lim-
ited number of optimization functions and necessity of real time on-line fast 
changing stabilizer parameters. Some techniques like genetic algorithm (GA), 
simulated annealing (SA) etc suffer from settings of algorithm parameters and 
give rise to repeated revisiting of the same suboptimal solutions.  

In this chapter, GA and two novel evolutionary optimization techniques like 
chaotic ant swarm optimization (CASO) and bacteria foraging optimization (BFO) 
are applied to tune the conventional power system stabilizer (CPSS) and three dif-
ferent varieties of dual input IEEE-PSS. The prime emphasis of this chapter is to 
present a comparison among the conventional phase compensation single input 
PSS and three varieties of dual input IEEE-PSS. It is also going to present in this 
chapter that among the dual input IEEE-PSS family (IEEE-PSS2B, IEEE-PSS3B 
and IEEE-PSS4B) which dual input IEEE-PSS offers the best transient stabiliza-
tion performance. For on-line tuning of PSS’s parameters, very fast acting Takagi 
Sugeno fuzzy logic (SFL) is adopted.    

The organization of this chapter is as follows. In Section 2, single-machine in-
finite bus (SMIB) model and various PSS models are given. Problem formulation, 
PSS parameters tuning by evolutionary optimization techniques are given in  
Section 3 and Section 4, respectively. Section 5 and Section 6 show application  
of SFL to PSS parameters on-line tuning and input parameters considered,  
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respectively. The performance studies of various PSSs are elaborated in Section 7. 
Classical phase compensation based PSS vis-à-vis IEEE dual input PSS is narrated 
in Section 8. Finally, conclusions are drawn in Section 9. 

2   SMIB Model and Various PSS Models 

The SMIB system [6], as considered in the present chapter, is illustrated in Fig. 1. 
The theoretical basis of the PSS representation may be illustrated with the  
help of block diagram as depicted in Fig. 2  [6, 7]. As the purpose of PSS is to  
introduce damping torque component, speed deviation is used as a logical signal 
to control generator excitation. The block diagram of SMIB system with AVR, 
thyristor high gain exciter, synchronous generator and PSS are shown in Fig. 3. 
The synchronous generator with AVR, IEEE type ST1A thyristor excitation sys-
tem and equivalent transmission line reactance are represented by a two-axis, 
fourth order model. In Fig. 3, eTΔ  input to PSS loop subsystem is assumed to  

be zero to configure CPSS [6]. In this figure, PSS loop subsystem constitutes  
Figs. 4-7 to configure CPSS or dual input PSSs [8] as PSS2B, or PSS3B, or 
PSS4B respectively. 

 

Fig. 1. Single-machine infinite bus test system 

CPSS is the single input conventional PSS where rωΔ  is the input and the out-

put is pssVΔ . On the other hand, for dual input PSSs, the two inputs are rωΔ  

and eTΔ  and the processed output is pssVΔ . pssVΔ  acts as a supplementary 

control signal to the excitation system. The transfer function of CPSS (Fig. 4) 
model is given in (1). 
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Fig. 2. Block diagram representation with AVR and PSS 

 
Fig. 3. Block diagram representation of SMIB system with AVR, thyristor high gain ex-
citer, synchronous generator and PSS Loop 

 
Fig. 4. Block diagram representation of CPSS 
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Fig. 5. Block diagram representation of dual input IEEE PSS2B 

 

Fig. 6. Block diagram representation of dual input IEEE PSS3B 

 
The second and third term in (1) represents washout term and the lead-lag com-

pensator blocks, respectively. The purpose of using washout block is to allow sig-
nals in the range of 0.2-2.0 Hz associated with rotor oscillations to pass un-
changed. Lead-lag compensators introduced in the circuit between the exciter 
input (i.e. PSS output) and the electrical torque provide the phase lead (in some 
rare cases lag also) for the phase lag. It is important to avoid interaction between 
the PSS and the torsional modes of vibration. From literature, it is revealed that all 
modern excitation systems are prone to such interaction as these devices yield  
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Fig. 7. Block diagram representation of dual input IEEE PSS4B 

relatively high gain at high frequencies [9]. Particularly, at light loading condi-
tions of the synchronous generators where the inherent mechanical damping is 
relatively small, stabilizer-torsional instability may result with a high-response ex-
citation system. Shaft damage does not occur due to such instability but it can 
cause saturation of the stabilizer output yielding the stabilizer to be ineffective and 
possibly causing saturation of the voltage regulator, which in turn, results in loss 
of synchronism and tripping of the unit. Thus, it is imperative that stabilizers do 
not induce torsional instabilities. A modified form of the model PSS2A published 
in IEEE standard 421.5 is the computer representation model of PSS2B [8] as il-
lustrated in Fig. 5. To model the stabilizers that incorporate a more complex phase 
lead function, an additional block with lag time constant T5 and lead time constant 
T10 can be used. In some specific applications, designers may choose to provide 
additional low-pass filtering at turbine-generator torsional frequencies, so the 
model should be structured to permit the use of a zero lead time constant, T10. All 
computer representation models of the dual input PSS (PSS2B, PSS3B and PSS4B 

depicted in Figs. 5-7) have two inputs rωΔ  and eTΔ . Time constants ( 2dT , 4dT  

in PSS3B model and T2, T4 in PSS4B model) represent washout time constants for 
electrical torque and rotor angular speed respectively. In PSS3B  
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model the stabilizing signal pssVΔ  results from the vector summation of proc-

essed signals for electrical torque and angular frequency deviation. By matching 
the polarity of the gain constants 1sK  and 2sK , the desired amplitude and phase 

for the stabilizing signal are obtained. The function of the limit values max
pssVΔ  

and min
pssVΔ  is to adjust the maximum and minimum allowed, respectively. For 

PSS4B, the structure of the angular frequency deviation channel, the formulation 
and limitation of the stabilizing signal are, basically, the same as the structure of 
the PSS3B model. The conditioning network for accelerating power requires the 

system constant 0T  (represents the characteristic start up time constant of the syn-

chronous machine) as well as the inertia time constant )2( HM =  for the com-

bined turbine-generator shaft system.  
The SMIB system with AVR and exciter along with CPSS, or PSS2B, or 

PSS3B, or PSS4B is represented by a state matrix A of order eight, seventeen, 
eight and eleven, respectively. Varying input operating conditions for the present 
study are active power )(P , reactive power )(Q , equivalent transmission line re-

actance )( eX  and Generator’s LT side bus voltage )( tE .  

3   Problem Formulation  

The parameters of the PSS (for CPSS: pssK , 1dT , 2dT , 3dT , 4dT , 5dT , 6dT ; 

for PSS2B: 1sK , 1T , 2T , 3T , 4T , 5T ; for PSS3B: 1sK , 2sK , 1dT , 2dT , 3dT , 

4dT ; for PSS4B: 1sK , 2sK , 1T , 2T , 3T , 4T ) are to be so tuned that some degree 

of relative stability and damping of electromechanical modes of oscillations, mini-

mized undershoot )( shu , minimized overshoot )( sho  and lesser settling time 

)( stt  of transient oscillations of rωΔ  are achieved. So, to satisfy all these require-

ments, two multi-objective optimization functions, )(1OF  and )(2OF  which are to 

be minimized in succession are designed in the following way: 

∑ −= i iOF 2
011 )( σσ  if iσσ >0 , iσ  is the real part of the ith  eigenvalue. 

The relative stability is determined by 0σ− .  The value of 0σ  is taken as 6.0 for 
the best relative stability and optimal transient performance. 

∑ −= i iOF 2
012 )( ξξ , if ( iβ , imaginary part of the ith eigenvalue) > 0.0, iξ   

is the damping ratio of the ith eigenvalue and 0ξξ <i . Minimum damping ratio 

considered, 3.00 =ξ . Minimization of this objective function will minimize 

maximum overshoot. 
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∑= i iOF 2
13 β , if 0σσ −≥i . High value of iβ  to the right of vertical line 

0σ−  is to be prevented. Zeroing of 13OF  will increase the damping further. 

=14OF  an arbitrarily chosen very high fixed value (say, 106), which will indi-

cate some iσ values ≥  0.0. This means unstable oscillation occurs for the par-

ticular parameters of PSS. These particular PSS parameters will be rejected during 
the optimization technique. 

So, first multi-objective optimization function is formulated as in (2).  

OFOFOFOFOF 141312111 01.01010)( +×+×+×=               (2) 

The weighting factors ‘10’ and ‘0.01’ in (2) are chosen to impart more weights 
to 11OF , 12OF  and to reduce high value of 13OF , to make them mutually competi-

tive during optimization. By optimizing )(1OF , closed loop system poles are con-

sistently pushed further left of ωj  axis with simultaneous reduction in imaginary 

parts also, thus, enhancing the relative stability and increasing the damping ratio 
above 0ξ . Finally, all closed loop system poles should lie within a D-shaped sector 

(Fig. 8) in the negative half plane of ωj  axis for which 00 , ξξσσ >>−<< ii . 

Selection of such low negative value of σ  is purposefully chosen. The purpose is 
to push the closed loop system poles as much left as possible from the ωj  axis to 

enhance stability to a great extent. 

 
Fig. 8. D-shaped sector in the negative half of s plane 
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Thorough computation shows that optimization of )(1OF  is not sufficient for 

sharp tuning of PSS parameters. So, it is essential to design second multi-objective 
optimization function, )(2OF  for sharp tuning of PSS parameters. Thus, the sec-

ond multi-objective optimization function is formulated as given in (3). 

2622626
2 )10)(()()10()10()( ×Δ++×+×= rstshsh dt

d
tuoOF ω          (3) 

In (3); sho , shu , stt , )( rdt

d ωΔ  are all referred to the transient response of 

rωΔ  determined by modal analysis subsequent to state perturbation D5=Δδ  = 

0.0857 rad. Results of subsequent optimizations are based on successive minimi-
zation of both )(1OF  and )(2OF , though most of the results show only )(1OF  

values only, some show )(2OF  values only and some show both )(1OF  and 

)(2OF  values. The constrained optimization problem for the tuning of PSSs is, 

thus, formulated as follows: 
Minimize )(1OF  and )(2OF  in succession with the help of any optimization 

technique to get optimal PSS parameters, subject to the limits [6, 8]: 
 

a) For CPSS: 

61,0.1001.0,0.2300.175 toiTK dipss =≤≤≤≤  
 

b) For IEEE-PSS2B:  

⎩
⎨
⎧

=

=≤≤≤≤

0001.0

,51,0.101.0,3010

10

1

T

toiTK is
 

      Other parameters are fixed.  
 

c) For IEEE-PSS3B:   
 

⎩
⎨
⎧

=≤≤

≤≤−≤≤−

41,0.2005.0

,0.1000.10,0.100.100 21

toiT

KK

di

ss
 

 

No fixed parameters are required. 
 

d) For IEEE-PSS4B: 

⎩
⎨
⎧

==≤≤

≤≤−≤≤−

2.0,41,0.2005.0

,0.1000.10,0.100.100

0

21

TtoiT

KK

i

ss
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4   Tuning of PSS Parameters by Evolutionary Optimization 
Techniques 

To improve the stabilizer’s optimal performance and to achieve adaptive real 
time tuning and robustness under all sorts of system operating conditions and 
configurations, a lot of extensive research works have been reported in the litera-
ture. To recall a few among the other numerous works reported in the literature, 
PID PSS [10], pole-placement/shifting based PSS [11-12], artificial neural net-
work PSS [13], H2 optimal adaptive PSS [14], adaptive PSS [15], genetic local 
search [16], simulated annealing based PSS [17], design of sliding mode PSS via 
GA [18] may be noted.  

4.1   GA for PSS Parameters Tuning 

GA [19-21] is search procedures based on the mechanics of natural selection of 
genetics. Steps of GA, as implemented for optimization of PSS parameters, are 
presented in Fig. 9. 

4.2   Bacteria Foraging Optimization 

Natural selection favors propagation of genes of those animals that have effi-
cient foraging strategies (method of finding, handling and taking in food) and 
eliminate those animals that have weak foraging strategies. As the efficient for-
aging strategy allows the animals to ingest better and quality food, only ani-
mals having better food searching strategy are allowed to enjoy reproductive 
cycle, in turn, producing better species. Poor foraging strategies are either 
shaped into good ones or eliminated after many generations. With their own 
physiological (e.g. cognitive and sensing capabilities) and environmental (e.g. 
physical characteristics of the search space, density of prey, risk and hazards 
from predators) constraints, animals try to maximize the consumption of energy 
per unit time interval. Such evolutionary idea has bred the concept of BFO [22] 
as an optimization algorithm. It is, gradually, being utilized by the interested 
research groups as an optimization algorithm to solve a range of non-linear op-
timization problems. 

Four processes can explain the foraging strategy of Escherichia bacteria present 
in human intestine. These are chemotaxis, swarming, reproduction and elimina-
tion-dispersal.  

A set of relatively rigid flagella helps the bacteria in locomotion. Its character-
istics of movement for searching of food can be in two different ways, i.e. swim-
ming and tumbling together known as chemotaxis. Its movement in a predefined 
direction is termed as swimming (running), whereas tumbling is the movement in  
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Fig. 9. Steps of implementation of GA algorithm for tuning of PSS parameters 

altogether different direction. During its entire lifetime, it alternates between these  
two modes of operation. Clockwise rotation of its flagella results in tumble, where 
as, anticlockwise rotation yields swim. 

Likelihood of increased search for nutrient concentration, enhanced capability 
to gang up on a large prey to kill and digest it, group protection of the individual 
from predators are the highlighting objectives and motivations of social and intel-
ligent foraging strategy. Successful foraging for food of each and individual of the 
group result from grouping, communication mechanism and collective intelli-
gence. To attract the other bacteria towards the optimal convergence direction, it is 
necessary to pass on the information about the nutrient concentration (optimal 
point) to other bacteria. This is called swarming. To achieve this, a penalty func-
tion based upon the relative distances of each bacterium from the fittest bacterium  
 
 

Step 1 Initialization: 

a) Input operating values of P , Q , eX , and tE . Input fixed SMIB pa-

rameters, 

b) Setting of limits of variable PSS parameters, 

c) Setting of limits of GA parameters like mutation probability, crossover 
ratio, 

d) Maximum population number of PSS parameter strings,   

e) Maximum iteration cycles, 

f) Binary value initialization of all the PSS parameter strings of the popu-
lation, 

g) Decoding of the binary strings within parameters’ limits .      

Step 2 Determination of SMIB parameters like 61 KK −  

Step 3 Computation of objective function of each string of the total population 

Step 4 Arraigning the values in increasing order from minimum and selection 
of top 50% better strings. 

Step 5 Copying of 50% selected strings over the rest 50% inferior strings to 
form the total population 

Step 6 Crossover 

Step 7 Mutation 

Step 8 Repeat from Step 3 till the end of the maximum iteration cycle 

Step 9 Determine the optimal PSS parameter string corresponding to the 
grand minimum misfitness. 
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till that search duration, is added to the original optimization function. This pen-
alty function becomes zero when all the bacteria have merged into the desired so-
lution point. 

After getting evolved through several chemotactic stages, the original set of bac-
teria is allowed for reproduction. Biological aspect of their conjugation process is 
splitting of one into two identical bacteria. It is mimicked in the optimization proc-
ess by replacing the poorer half (having higher objective function value for mini-
mization problem and vice versa) with weaker foraging strategy by the healthier 
half, which is eliminated owing to their poorer forging strategy, maintaining the to-
tal number of population bacteria constant in the process of evolution. 

Elimination and/or dispersal of a set of bacteria to a new position result(s) in 
drastic alteration of smooth biological process of evolution. The underlying con-
cept behind this step is to place a newer set of bacteria nearer to the food location 
to avoid stagnation (to avoid premature trapping into local optima).  Pseudo code 
of BFO, as utilized for PSS parameter tuning, is depicted in Fig. 10.   

 
Step 1      Initialization: 

a) Maximum reproduction cycle, 10max =reprod , 

b) Maximum chemotactic cycle, 20max =chemo , 

c) Maximum dispersal cycle, 1max =dispersal , 

d) Total number of bacteria, 500=numBact , 

e) Maximum number of iteration cycle, (k), 200max =cycles  

f) Some positive constants 0.2=attractd ; 2.0=attractw ;   

            0.2=repelentd ;  1.0=repelentw ; selection ratio, 5.0sr = ;  

             probability of elimination, 3.0=edP ;  1.0max =c ;  

            0001.0min =c ; 00001.01 =d ;  00001.02 =d , 

g) Maximum swim length (integer value) 4max =swim , 

h) Number of problem variables, var  (depends on specific 
               application),                                                                                      

i) Variables’ upper and lower limits maxvar  and minvar  , 

            respectively, as given for individual test objective function. 
 

Step 2 Compute  fitness functions of the bacteria, J  

Step 3 Find pseudo global optimum fitness 

Step 4 Find global optimum bacteria and its variables 

Step 5 Swarming    
 

Fig. 10. Pseudo code of bacteria foraging optimization 
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              where,  

                 ∑ −+=
numBact

k
bact

k
global

k
bact

k
bact

2)()()()( )var(varσσ            (5) 

Step 6 Tumbling 

())1)()(2((var) randrandrand ×−×=Δ                           (6)  

               (var)(var) 'Δ×Δ=ΔΔ                                                  (7)  

    Compute:  

ΔΔ
Δ×−+=+

(var)

2max
)()1( )(varvar dckk                          (8) 

Step 7 Impose limits of variables 

Step 8 To start with BFO, the following pseudo codes are to be    followed :    
 

               (A) for disperse := 1 to dispersemax  do 

               (B) for reprod := 1 to reprodmax  do 

                (C) for chemo := 1 to chemomax  do 

                   
cycles

cycle
cccc

max
)( (var)

min
(var)
max

(var)
max

(var) ×−−=            (9) 

Step 9 Compute fitness functions of the bacteria, J  

Step 10 Find pseudo global optimum fitness, globalJ  

Step 11 Swarming: As shown in Step 5 

Step 12 Swarming of each bacteria 

   (D) for bact := 1 to numBact  do 

                      swimm _ =0 

 

Fig. 10. (Continued) 
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   (E)  while swimm _ < swimlength  

                                1__ += swimmswimm  

    (F) if 
)1()( −< k

bact
k

bact JJ   

                         ''swimxx =  

                       Compute ΔΔΔ ,(var)  using (6) and (7) 

                         Compute    

    
ΔΔ

Δ×++=
(var)

1
(var)
1

(var))()( )(varvar dckk                            (10) 

Impose restrictions on variables’ values 
 

Compute bactJ of each bacteria 

                          Swarming: As shown in Step 5 

                      else 

                          ''Tumblexx =  

                          
)1()( −< k

bact
k

bact JJ  

                          swimlengthswimm =_  

                         Compute ΔΔΔ ,(var)  using (6) and (7) 

                          Compute              

                         
ΔΔ

Δ×−+=
(var)

(var)
2

(var))()( )(varvar dckk        (11) 

                          Impose restrictions on variables’ values 

                          Compute bactJ of each bacteria 

                          Swarming: As shown in Step 5 

              End of if loop (F) 

              End of while loop (E) 

               End of for loop (D) 

Fig. 10. (Continued) 
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Step 13 Swarming: As shown in Step 5 

               Impose restrictions on variables’ values 

               End of chemo loop (C)  
 

Step 14 Selection and Copying of elite bacteria 

               Select elite bacteria by rs  ratio and copy the elite set of   

              bacteria over the non-elite bacteria 

              Impose restrictions on variables’ values 

               End of reprod  loop (B) 

               End of disperse  loop (A) 

Step 15 Compute global optimum fitness among all previous pseudo global 

optimum fitness and plot.   

               Determine corresponding optimum problem variables. 

Fig. 10. (Continued) 

4.3   Chaotic Ant Swarm Optimization (CASO) 

CASO [23] combines the chaotic and self-organization behavior of ants in the for-
aging process. It includes both effects of chaotic dynamics and swarm-based 
search. This algorithm is employed to tune the PSS (both single input and dual in-
put) parameters with some modifications to suit the present application. 

CASO is based on the chaotic behavior of individual ant and the intelligent 
organization actions of ant colony. Here, the search behavior of the single ant is 
“chaotic” at first and the organization variable, ir  is introduced to achieve self-

organization process of the ant colony. Initially, the influence of the organiza-
tion variable on the behavior of individual ant is sufficiently small. With the 
continual change of organization variable evolving in time and space, the cha-
otic behavior of the individual decreases gradually. Via the influence of the or-
ganization variable and the communication of previously best positions with 
neighbors, the individual ant alters his position and moves to the best one it can 
find in the search space.  

The searching area of ants corresponds to the problem search space. In the 

search space lR , which is the l-dimensional continuous space of real numbers, the 
algorithm searches for optima. A population of K ants is considered. These ants 
are located in a search space S and they try to minimize a function f: S→R. Each 
point s in S is a valid solution to the considered problem. The position of an ant i 
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is assigned the algebraic variable symbol ),......,( 1 ilii zzS = , where i =1, 2, . . ., 

K. Naturally, each variable can be of any finite dimension. During its motion, each 
individual ant is influenced by the organization processes of the swarm. In 
mathematical terms, the strategy of movement of a single ant is assumed to be a 
function of the current position, the best position found by itself. Any member of 
its neighbors and the organization variable are given by (12). 
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where 

n current iteration cycle,  
n−1 previous iteration cycle,  

)n(yi   current state of the organization variable ( 999.0)0(yi = ),  

a , b , c  positive constants, 

]1.0,0[∈ir   a positive constant and is termed as the organization factor of 

ant i,  

)(nzid   current state of the dth dimension of the individual ant i, 

l...........2,1d = ,  

dψ   determines the selection of the search range of dth element of 

variable in search space and  

iV   determines the search region of ith ant and offers the advantage 

that ants could search diverse regions of the problem space 

( )(randVi = ).  
 

The neighbor selection can be defined in the following two ways. The first one is 
the nearest fixed number of neighbors. The nearest m ants are defined as the 
neighbors of single ith ant. The second way of the number of neighbor selection is 
to consider the situation in which the number of neighbors increases with iteration 
cycles. This is due to the influence of self-organization behaviors of ants. The im-
pact of organization will become stronger than before and the neighbors of the ant  
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will increase. That is to say, the number of nearest neighbors is dynamically 
changed as iteration progresses.  

The general CASO is a self-organizing system. When every individual trajectory 
is adjusted towards the successes of neighbors, the swarm converges or clusters in op-
timal regions of the search space. The search of some ants will fail if the individual 
cannot obtain information about the best food source from their neighbors. 

For the work of this chapter, the algorithm’s parameters, ir , dψ , iV , a , b , c  

are different from those as in [23]. These are respectively, ir+1  is replaced by 

))(04.002.1( rand×+ , 0.2=dψ , )(randVi = , 1=a , 1.0=b , 3=c . 

These values are pre-set after a lot of experiments to get the best convergence to 
optimal solution. In our study, finally craziness is introduced as given in (13), 
which is not present in [23] but taken from [24, 25], introduced by Mukherjee and 
Ghoshal in the literature. 

craziness
iidid vrsignnznz ×+= )4()()(                       (13) 

The values of )4(rsign  and craziness
iv  are determined by (14) and (15),  

respectively. 

⎩
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⎧

<−
≥

=
)5.04(,1

)5.04(,1
)4(

r

r
rsign                            (14) 

)()( minmaxmin randvvvv crazzinesscrazzinesscrazzinesscrazziness
i ×−+=     (15) 

Introduction of craziness enhances CASO’s ability of searching and convergence 
to a global optimal solution. Variables’ upper and lower bound restrictions are al-
ways present. Ultimately, after maximum iteration cycles the optimal solution of  

idz  corresponds to the global optimal value of fitness function under considera-
tion. Steps of implementation of CASO algorithm for tuning of PSS parameters 
are presented in Fig. 11. 

5   Sugeno Fuzzy Logic as Applied for On-Line Tuning of PSS 
Parameters 

The behavior of a synchronous generator connected to a network depends on, 
among other things, its position in this network, the operating conditions (in par-
ticular, the reactive power flow and the voltage map), the network topology and 
the generation schedule. Usage of the desired optimization technique yields a dis-
tinct set of controller parameters for different operating conditions. Under drastic 
change in operating conditions (e.g. different circuit topologies) the nominal con-
troller is not necessarily going to be tuned enough to yield satisfactory perform-
ance.  For on-line tuning of the parameters of PSS, very fast acting Sugeno Fuzzy 
Logic (SFL) is adopted. 
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Step 1 Initialization: 

• Input operating values of P , Q , eX , and tE . Input fixed 

SMIB parameters, 

• Setting of limits of variable PSS parameters, 

• Setting of limits of CASO parameters, 

• Maximum population number of PSS parameter strings,  
maximum iteration cycles, 

• Real value initialization of all the PSS parameter strings of the 
population within limits. 

Step 2 Determination of SMIB parameters like 61 KK − . 

Step 3 Computation of misfitness function/objective function of each string 
of the total population. 

Step 4 Determination of the best string corresponding to minimum misfit-
ness/objective function value. 

Step 5 Updating the strings of the population using CASO algorithm. 

Step 6 Repeat from Step 3 till the end of the maximum iteration cycle. 

Step 7 Determine the optimal PSS parameter string corresponding to the 
grand minimum misfitness. 

Fig. 11. Steps of implementation of CASO algorithm for tuning of PSS parameters 

The whole process of SFL [20, 21] involves three steps as:  
 

(a) Fuzzification: The first step is the fuzzification of input operating 
conditions as active power (P), reactive power (Q), equivalent trans-
mission line reactance (Xe) and Generator’s LT side bus voltage (Et) in 
terms of fuzzy subsets (Low, Medium, High). These are associated with 
overlapping triangular membership functions. SFL rule base table is 
formed, each composed of four nominal inputs and corresponding 
nominal optimal PSS parameters as output determined by any of the op-
timizing techniques dealt with. The respective nominal central values of 
the input subsets of P are (0.2, 0.7, 1.2), those of Q are (-0.2, 0.6, 1.0), 
those of Xe are (0.4752, 0.77, 1.08) and those of Et are (0.5, 0.8, 1.1), 
respectively, at which membership values are unity (Fig. 12). These are 
nominal input conditions also. Sugeno fuzzy rule base table consists  

of )81(34 =  logical input conditions or sets (SFL tables calculated for 

different PSS structures investigated), each composed of four nominal 
inputs. Each logical input set corresponds to nominal optimal PSS  
parameters as output. 
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Fig. 12. Fuzzification of input operating conditions ( P , Q , eX  and tE ) 

(b) Sugeno Fuzzy Inference: For on-line imprecise values of input  
parameters, firstly their subsets in which the values lie are determined 
with the help of “IF”, “THEN” logic and corresponding membership val-
ues are determined from the membership functions of the subsets. From 
Sugeno fuzzy rule base table, corresponding input sets and nominal PSS 
parameters are determined. Now, for each input set being satisfied, four 

membership values like μP , μQ , μ X e and μEt and their minimum 

minμ  are computed. For the input logical sets, which are not satisfied 

because parameters do not lie in the corresponding fuzzy subsets, minμ  

will be zero. For the non-zero minμ  values only, nominal PSS parame-
ters corresponding to fuzzy sets being satisfied are taken from the Sugeno 
fuzzy rule base table. 

 
(c) Sugeno Defuzzification: It yields the defuzzified, crisp output for 
each parameter of PSS. Final crisp PSS parameter output is given by (16). 

      
∑

∑
=

i

i
i

i
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K
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)(
min .

μ

μ
                                    (16)  

where i corresponds to input logical sets being satisfied among 81 input 
logical sets, iK  is the corresponding nominal PSS parameter. crispK  is 

the crisp PSS parameter. )(
min
iμ  is the minimum membership value corre-

sponding to the ith  input logical set being satisfied. 
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6   Input Parameters 

(a) For SMIB System: Inertia constant, 5=H , HM 2= , nominal fre-

quency, 500 =f  Hz, 0.995 ≤ │ bE  │ ≤ 1.0, the angle of bE  = 0°, 0.2 ≤ 

P  ≤ 1.2, -0.2 ≤ Q  ≤ 1.0, 0.4752 ≤ eX  ≤ 1.08, 0.5 ≤  tE  ≤ 1.1. At t=0, it 

is assumed that D5=Δδ  = 0.0857 rad is the state perturbation, 
0.0=Δ rω  and other state deviations are also zero [6]. In the block dia-

gram representation of generator with exciter and AVR, terminal voltage 
transducer time constant, sTrr 02.0= , thyristor exciter gain, 0.200=aK . 

 

(b) For GA: Number of parameters depends on problem variables (PSS con-
figuration), number of bits = (number of parameters)*8, population size = 
50, maximum number of iteration cycles = 200, mutation probability = 
0.001, crossover rate = 80%. 

 

(c) For BFO:  Number of problem variables depends upon the PSS structure 
under investigation. All the input parameters of the algorithm are given in 
Fig. 10. 

 

(d) For CASO: Number of problem variables depends upon the PSS structure 
under investigation. All the input parameters of the algorithm are given in 
Section 4.3. 

7   Performance Study of PSSs 

Optimized PSS parameters determined by any of the optimization technique are 
substituted in MATLAB-SIMULINK model of the system to obtain the transient 
response profiles. Final values of )(OF1  and )(OF2 , final eigenvalue, final un-

damped and damped frequencies and final damping ratio are all determined by the 
optimization technique at the end of optimization. Sugeno fuzzy rule base tables 
(not shown) are obtained by applying each optimization technique for distinct 81 
number nominal input operating conditions. The outputs are 81 distinct nominal 
optimal PSS parameters sets. For the optimization, GA/BFO/CASO technique is 
adopted. GA is utilized for the sake of comparison. 

7.1   Discussions on BFO-Based Results 

a) Analytical transient response characteristics: Table 1 depicts the com-
parative GA and BFO based optimal transient response characteristics (in 
terms of )(2OF  value) of different PSS equipped system model. From this  
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table, it may be inferred that the transient stabilization performance of dual-
input PSS equipped system model is better than single-input counterpart. 
Comparing dual-input PSSs, it is also observed that the transient stabilization 
performance of PSS3B equipped system model is superior to that of others. 

PSS3B equipped system model offers lesser values of sho , shu , stt , 

)( rdt

d ωΔ  and, thereby, lesser values of )(2OF . It may also be observed that 

the BFO based optimization technique offer lesser value of )(2OF  than GA 

based one. Thus, BFO based optimization technique offers better results than 
GA based one. Fig. 13 depicts that the comparative optimal transient per-
formance of the different PSS equipped power system model corresponding to 
an operating condition of 2.1=P , 6.0=Q , 4752.0=eX , 5.0=tE (all are 

in pu) for 0.01 pu simultaneous change in mTΔ  and refVΔ . From this figure, 

it is noticed that the transient stabilization performance of dual-input PSS is 
better than that of single input one. Among the dual-input PSSs, the perform-
ance of PSS3B is established to be the best one.   

Table 1. GA and BFO based comparison of )(2OF  values for CPSS, PSS2B, PSS3B and 

PSS4B based systems 

 

Value of )(2OF  (X107) Sl. 
No. 

Per unit  
operating 
conditions 
 ( P , Q , 

eX , tE ) A
lg

or
ith

m
s CPSS 

 
PSS2B 
 

PSS3B 
 

PSS4B 
 

GA-SFL 7.45 6.23 1.42 2.90 1 0.2, -0.2,  
0.4752,1.1 BFO-SFL 4.91 4.02 1.01 1.62 

       
GA-SFL 7.85 7.33 2.47 3.17 2 0.5, 0.2,  

0.4752,1.0 BFO-SFL 4.87 4.14 1.21 1.52 
       

GA-SFL 7.16 5.18 2.71 3.88 3 0.75, 0.50,  
0.4752, 0.5 BFO-SFL 3.97 3.17 1.01 1.45 

       
GA-SFL 7.29 5.85 2.02 4.58 4 0.95, 0.30,  

0.4752, 0.5 BFO-SFL 3.15 2.17 1.42 1.96 
       

GA-SFL 8.96 8.72 3.74 4.39 5 1.2, 0.6,  
1.08, 0.5 BFO-SFL 5.16 4.83 2.57 2.43 
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Fig. 13. Comparative BFO based transient response profiles of CPSS, PSS2B, PSS3B and 
PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ  

b) Analytical eigenvalue based system performance analysis: BFO based 
comparison of )(1OF  values of CPSS, PSS2B, PSS3B and PSS4B are 

shown in Table 2 for different system operating conditions. From Table 2, 
it is observed that the value of )(1OF  is the least for PSS3B, establishing 

the performance of PSS3B to be the best one. For PSS3B equipped system 
model, majority of the eigenvalues are within D-shaped sector (Fig. 8) 
which yield lesser values of )(11OF , )(12OF  and )(13OF . Hence, the 

value of )(1OF  is very less for PSS3B equipped system model. On the 

other hand, majority of the eigenvalues for PSS2B based system are outside 
the D-shaped sector but very close to and at the right side of ( 0σ− , 0j ) 

point. This yields higher values of )(11OF , )(12OF  and )(13OF . The 

value of )(1OF  is more for this system. Thus, from the eigenvalue analysis 

it may be concluded that a considerable improvement has occurred in the 
transient performance for the PSS3B based system. 

 

c) Convergence profiles: The comparative BFO based convergence profiles 
of )(1OF  for CPSS, PSS2B, PSS3B and PSS4B are depicted in Fig. 14 

corresponding to an operating condition of 5.0=P , 2.0=Q , 

4752.0=eX , 0.1=tE (all are in pu). From these figures, the objective 

function value, )(1OF  corresponding to PSS3B is found to converge faster 

than the others. 
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Table 2. BFO based comparison of )(1OF  values under different operating conditions for 

CPSS, PSS2B, PSS3B and PSS4B 

Operating 
conditions 

Type of 
PSS 

PSS parameters )(1OF  ext   

(s) 
CPSS 175.00, 0.005, 0.005, 0.001, 

0.001, 0.352, 0.001 
1455.62 330.65 

PSS2B 10.00, 0.097, 0.010, 0.113, 
0.01, 0.25 

1251.60 639.21 

PSS3B -10.00, 10.00, 0.271, 0.005, 
0.005, 0.334 

291.30 344.78 

1.2, 0.6,  
0.4752, 0.5 
 
     
 

PSS4B -10.00, 10.00, 0.273, 0.005, 
0.138, 0.005 

311.52 420.73 

CPSS 230.00, 0.005, 0.005, 0.029, 
0.001, 0.001, 0.001 

1491.69 345.16 

PSS2B 10.00, 0.01, 0.126, 0.01, 
0.393, 0.204 

1444.20 638.75 

PSS3B -10.00, 10.00, 0.171, 0.005, 
0.139, 0.131 

267.77 335.89 

1.0, 0.2,  
1.08, 0.5 
 
      

PSS4B -10.00, 10.00, 0.005, 0.168, 
0.237, 0.005 

372.49 415.62 

 

 
Fig. 14. Comparative BFO based convergence profiles of )(1OF  for CPSS, PSS2B, 
PSS3B and PSS4B ( 5.0=P , 2.0=Q , 4752.0=eX , 0.1=tE ) 

d) Comparative optimization performance of the optimization tech-
niques: With regard to optimization performances of the optimizing algo-
rithms, as depicted in Table 1, it may be concluded that the BFO based ap-
proach offers the lower values of )(2OF  for the same input operating 
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conditions. Comparative transient performances of rωΔ  and convergence 

profiles of )(1OF  for BFO and GA based optimization for all the four PSS 

modules(CPSS, PSS2B, PSS3B, and PSS4B) are depicted in Fig. 15 and 
Fig. 16 respectively.  These figures assist to conclude that the transient 
stabilization performance and convergence profile of BFO based optimiza-
tion are better than those of GA based one. Though the execution time of 
BFO (Table 2) is more than GA (not shown in the present work), BFO of-
fers much better optimal performance. Thus, BFO may be accepted as a 
better optimizing algorithm. 

 

 
Fig. 15. Comparative BFO and GA based transient response profiles of CPSS, PSS2B, 
PSS3B and PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ ; ( 2.0=P , 

2.0=Q , 4752.0=eX , 0.1=tE ) 

e) Transient performance study under different perturbations: Fig. 17 
displays MATLAB-SIMULINK based transient response profiles of 

rωΔ and 1vΔ  for PSS3B equipped generator. This figure helps to con-

clude that PSS3B damps the oscillations of rωΔ  and 1vΔ  very quickly 

under any form of system perturbations. Real parts of some eigenvalues  

for CPSS / PSS2B are always either equal to, or greater than 0σ  in the  
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negative half plane of ωj  axis. A few eigenvalues are always outside  

D-shaped sector (Fig. 8) for any operating condition. So, objective function 
values ( )(1OF ) are always higher (Table 2). Much lower negative real 

parts of eigenvalues of PSS3B and PSS4B (not shown) cause higher rela-
tive stability than CPSS / PSS2B. Larger reductions of nω  and dω  for 

some electromehanical oscillations are due to higher damping ratios 0ξξ >>i  

for those particular modes, in case of PSS3B and PSS4B (Table 3). 

 

 
Fig. 16. Comparative BFO and GA based transient response profiles of CPSS, PSS2B, 
PSS3B and PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ ; ( 2.0=P , 

2.0=Q , 4752.0=eX , 0.1=tE ) 
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Fig. 17. MATLAB-SIMULINK based transient response profiles of rωΔ and 1vΔ under 
different perturbation conditions for generator equipped with PSS3B 

Table 3. GA, and BFO based results of eigenvalue analysis corresponding to operating 
conditions ( 95.0=P , 30.0=Q , 08.1=eX , 5.0=tE ; all are in pu) 

Damping ratio 
(ξ ) 

 Undamped natural 

frequency ( nω ), 

rad/s 

 Corresponding  
damped frequency 

( dω ), rad/s 

Type 
of PSS 

A
lg

or
ith

m
s-

SF
L

 

L*  H*  L*   H*  L*  H* 
CPSS I# 0.16  0.57  0.38  2.45  0.42  0.59 
 II# 0.38  0.65  0.59  1.45  0.45  4.31 
          

PSS2B I# 0.26 0.97  0.48 3.33  0.32 0.79 
 II# 0.49 1.00  0.63 13.42  0.56  7.79 
PSS3B I# 0.36 0.98  0.17 1.93  0.15 1.8 
 II# 0.72 0.98  0.47 0.96  0.33  0.38 

 

PSS4B I# 0.2 0.95  0.55 1.22  0.54 0.36 
 II# 0.37 0.95  0.34 2.97  0.28 2.98 

I# means GA-SFL, II# means BFO-SFL  
L* means lowest, H* means highest.  



352 S.P. Ghoshal, A. Chatterjee, and V. Mukherjee
 

 

Fig. 18. Comparative GA-SFL and BFO-SFL based transient response profiles of rωΔ   for 
the generator equipped with PSS3B under change in operating conditions 

Table 4. Off-nominal operating conditions, simulation of faults, algorithms-SFL, and 
optimal PSS3B parameters 

 

Fa
ul

t N
o.

 Off-nominal  
operating  
conditions 

( P , Q , eX , 

tE ; all are in pu) A
lg

or
ith

m
s-

SF
L

 

PSS3B parameters 

BFO-SFL -13.50, 83.26, 0.529, 0.051, 0.008, 
1.566 

0.95, 0.3,  
0.4752, 1.0 

GA-SFL -59.57, 59.22, 0.558, 0.013, 0.317, 
0.169 

BFO-SFL LT bus fault of 
duration 220 ms 
and subsequent 
clearing 

GA-SFL No change in parameters 
 

BFO-SFL -12.34, 83.67, 1.608, 0.239, 0.326, 0.473 

Fa
ul

t 1
 

0.95, 0.3, 1.08, 
1.0 GA-SFL -14.22, 66.25, 0.208, 0.013, 0.161, 0.099 

    

BFO-SFL -10.88, 26.40, 1.279, 0.369, 0.070, 0.140 1.0, 0.6,  
0.4752, 1.1 GA-SFL -10.00, 53.24, 1.618, 0.192, 0.410, 0.254 

BFO-SFL LT bus fault of 
duration 220ms 
and subsequent 
clearing 

GA-SFL No change in parameters 
 

BFO-SFL -13.07, 39.00, 1.322, 1.816, 1.006, 0.088 

Fa
ul

t 2
 

0.2, 0.2,  
0.4752, 1.1 GA-SFL -15.27, 12.11, 1.805, 0.893, 0.137, 0.005 
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Fig. 19. Comparative CASO and GA-based transient response profiles of rωΔ  for CPSS, 
PSS2B, PSS3B and PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ  
( 0.1=P , 2.0=Q , 08.1=eX , 9.0=tE , all are in pu) 

f) Simulation of fault: It is revealed that PSS3B is offering the best transient 
performance in damping all electromechanical modes of generator’s angu-
lar speed oscillations for all nominal and off-nominal system conditions, 
step changes of mechanical torque inputs ( mTΔ ), reference voltage inputs 

( refVΔ ). LT bus fault of duration 220 ms at the instant of 2.0 s is simulated 

for PSS3B equipped system model and the corresponding comparative tran-
sient response profiles of rωΔ  for both GA-SFL and BFO-SFL based re-

sponses are plotted in Fig. 18 (Fig. 18(a) corresponds to Fault 1 and Fig. 
18(b) corresponds to Fault 2). A look into these figures show that after the 
creation of the fault the BFO-SFL based response recovers from this ab-
normal situation with much lesser fluctuation in angular speed as compared 
to that of GA-SFL based one.  
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Table 4 depicts the system model parameters as determined by SFL. 
Thus, BFO-SFL based model exhibits better response having lesser am-
plitude of angular speed deviation under fault and subsequent clearing 
condition yielding better dynamic robust transient performance than 
GA-SFL based one. Thus, PSS3B proves to be much less susceptible to 
faults because PSS3B settles all the state deviations to zero much faster 
than any other PSSs. 

7.2   Discussions on CASO-Based Results 

a) Comparative optimization performance of the optimization techniques: 
Comparative transient performances of rωΔ  and convergence profiles of 

)(1OF for GA and CASO-based optimization for all the four PSS modules 

(CPSS, PSS2B,  PSS3B, and PSS4B) are depicted in Fig. 19 and Fig. 20,  
 
 
 

 

Fig. 20. Comparative CASO, and GA-based transient response profiles of )(1OF CPSS, 
PSS2B, PSS3B and PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ  
( 0.1=P , 2.0=Q , 08.1=eX , 9.0=tE , all are in pu) 
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respectively. From Fig. 19, it may be concluded that the transient stabilization 
performance of CASO-based optimization is better than that of GA-based one. 
From Fig. 20, it is observed that CASO-based optimization technique offers 
lesser )(1OF value as compared to GA-based one, for whatever may be the 

PSS model under consideration. Thus, CASO offers much better optimal  
performance. 

b) Fuzzy logic-based tuning of PSS parameters under changes in system 
operating conditions: LT bus fault of duration 220 ms at the instant of 2.0 s 
is simulated for different PSS equipped system model and the corresponding 
comparative transient response profiles of rωΔ  for both GA-SFL and 

CASO-SFL-based approaches are plotted in Fig. 21 for all the PSSs.  
 

Fig. 21 reveals that CASO-SFL response exhibits better response than GA-
SFL based one irrespective of the PSS model. A close look into this figure also 
reveals that after the creation of the fault, the CASO-SFL-based response for  
 

 

Fig. 21. Comparative GA-SFL, and CASO-SFL-based transient response profiles of rωΔ   

for the generator equipped with PSS under change in operating conditions 
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Table 5. Off-nominal operating conditions, type of PSS, algorithms-SFL, and optimal PSS 
parameters 

Off-nominal op-
erating conditions 

Type  
of PSS 

Algorithms-SFL PSS parameters 

GA-SFL 179.68, 0.030, 0.032, 0.245, 
0.005, 0.144, 0.401 

CPSS 

CASO-SFL 230.00, 0.177, 0.005, 0.001, 
0.001, 0.001, 0.001 

   

GA-SFL 10.00, 0.143, 0.047, 0.089, 
0.011, 0.138 

1.0, 0.5,  
0.4752, 1.0  
(Pre-fault) 

PSS2B 

CASO-SFL 10.00, 0.098, 0.010, 0.010, 
0.039, 0.022 

GA-SFL  -10.00, 83.47, 1.992, 0.995, 
0.005, 0.036  

PSS3B 

CASO-SFL -10.00, 10.00, 2.00, 1.142, 
0.005, 0.077  

   

GA-SFL -27.23, 55.70, 0.440, 0.005, 
0.044, 0.005 

 

PSS4B 

CASO-SFL -10.00, 10.00, 0.579, 0.005, 
0.202, 0.005 

GA-SFL  LT bus fault of 
duration 220 ms 
and subsequent 
clearing 

 

CPSS/ 
PSS2B/ 
PSS3B/ 
PSS4B 

CASO-SFL No change in parameters 
 

GA-SFL 182.32, 0.109, 0.090, 0.071, 
0.038, 0.088, 0.075 

CPSS 

CASO-SFL 175.00, 0.065, 0.005, 0.001, 
0.001, 0.001, 0.001 

GA-SFL 10.39, 0.022, 0.150, 0.177, 
0.179, 0.077 

PSS2B 

CASO-SFL 10.00, 0.282, 0.010, 0.795, 
0.010, 0.010 

GA-SFL -18.09, 10.00, 1.525, 0.994, 
0.005, 0.005 

PSS3B 

CASO-SFL -10.00, 10.00, 0.861, 2.00, 
0.005, 0.005 

GA-SFL -10.35, 69.06, 0.153, 0.005, 
0.852, 0.005 

0.2, -0.2,  
1.08, 1.1  
(Post-fault) 

PSS4B 

CASO-SFL -10.00, 10.00, 0.139, 0.005, 
0.076, 0.014 
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PSS3B equipped system model recovers from this abnormal situation with 
much lesser fluctuation in angular speed as compared to that of GA-SFL-based 
counter part.  

Table 5 depicts the system model parameters as determined by SFL for all the 
PSS models. Thus, CASO-SFL-based model exhibits better response having lesser 
amplitude of angular speed deviation under fault and subsequent clearing condi-
tion yielding better dynamic transient performance than GA-SFL-based one for 
PSS3B equipped system model. Hence, PSS3B proves to be much less susceptible 
to faults because PSS3B settles all the state deviations to zero much faster than 
any other PSS. 

c) Comparative performances of PSSs in terms of analytical transient  
response characteristics: From Table 6, it may also be inferred that the 
transient stabilization performance of dual-input PSS equipped system 
model is better than single-input counter part. Comparing dual-input 
PSSs, it is also observed that the transient stabilization performance of 
PSS3B equipped system model is superior to that of others. PSS3B 

equipped system model offers lesser values of sho , shu , stt , )( rdt

d ωΔ  

and, thereby, lesser values of )(2OF .  Fig. 22 depicts that the compara-

tive optimal transient performance of the different PSS equipped power 
system model corresponding to an operating condition of 5.0=P , 

2.0=Q , 93.0=eX , 0.1=tE (all are in pu) for 0.01 pu simultaneous 

change in mTΔ  and refVΔ . From this figure, it is noticed that the tran-

sient stabilization performance of dual-input PSS is better than that of 
single input one. Among the dual-input PSSs, the performance of PSS3B 
is established to be the best one for this specific application of SMIB 
system model under study.  From Fig. 22, it is apparently observed that 

CPSS outperforms the other three PSSs in terms of magnitudes of shu  

and sho . But the duration of undershoot and stt are very large for CPSS. 

The second objective function )(2OF is designed in such a fashion that it 

will take care of sho , shu , stt , )( rdt

d ωΔ . And as the value of stt  is 

very large for CPSS, it offers the highest value of )(2OF among all the 

PSSs taken in this study. Thus, CPSS exhibits poor performance for the 
specific application under study. 
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Table 6. GA, and CASO-based comparison of )(2OF  values for CPSS, PSS2B, PSS3B 
and PSS4B-based systems 

Value of )(OF2  (X107) Sl. 
No. 

Operating 
conditions  

Algorithms 

CPSS PSS2B PSS3B PSS4B 
GA-SFL 7.45 6.23 1.42 2.90 1 0.2, -0.2, 

0.4752,1.1 CASO-SFL 3.24 3.97 0.99 1.47 
GA-SFL 7.85 7.33 2.47 3.17 2 0.5, 0.2, 

0.4752, 1.0 CASO -SFL 4.19 4.04 1.12 1.15 
GA-SFL 7.16 5.18 2.71 3.88 3 0.75, 0.50, 

0.4752, 0.50 CASO -SFL 3.14 2.47 0.87 1.19 
GA-SFL 7.29 5.85 2.02 4.58 4 0.95, 0.30, 

0.4752, 0.5 CASO-SFL 3.01 2.06 1.15 1.45 
GA-SFL 8.96 8.72 3.74 4.39 5 1.2, 0.6,  

1.08, 0.5 CASO-SFL 4.19 3.89 2.01 2.01 
 

 
Fig. 22. Comparative CASO-based transient response profiles of rωΔ  for CPSS, PSS2B, 
PSS3B and PSS4B for 0.01 pu simultaneous change in mTΔ  and refVΔ  ( 2.0=P , 

2.0=Q , 93.0=eX , 0.1=tE , all are in pu) 

d) Comparative performances of PSSs based on convergence profiles: The 
comparative CASO-based convergence profiles of )(1OF  for CPSS, PSS2B, 
PSS3B, and PSS4B are depicted in Fig. 23 corresponding to an operating 
condition of 0.1=P , 2.0=Q , 4752.0=eX , 0.1=tE (all are in pu). From 

these figures, the objective function value, )(1OF  corresponding to PSS3B is 
found to be the least one and, hence, PSS3B probes to be the best PSS among 
the PSSs considered for the specific application under study. 
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Fig. 23. Comparative CASO-based convergence profiles of )(1OF  for CPSS, PSS2B, 
PSS3B and PSS4B ( 0.1=P , 2.0=Q , 4752.0=eX , 0.1=tE , all are in pu) 

e) Performance improvement of CASO with craziness: In this chapter, the con-
cept of craziness (a novel concept proposed by Mukherjee and Ghoshal in the 
literature [24, 25]) is blended with original CASO algorithm with an attempt to 
have improved performance of CASO algorithm. Table 7 shows how improved 
performance in CASO is taking place with the inclusion of craziness concept.  

Table 7. Comparison of )(1OF  values based on CASO without craziness and CASO with 
craziness for all the PSSs, nominal input operating conditions being 2.0=P , 2.0=Q , 

08.1=eX , 0.1=tE ; all are in pu 

Type of PSS Type of Algorithm PSS parameters )(OF1  

Algo 1* 175.00, 0.734, 1.00, 0.001, 
0.001, 0.001, 0.001 

1375.53 CPSS 

Algo 2# 175.00, 0.082, 0.005, 0.001, 
0.001, 0.001, 0.001 

1299.39 

Algo 1* 10.00, 0.375, 0.010, 1.00, 
0.010, 0.010 

1227.92 PSS2B 

Algo 2# 10.00, 1.00, 0.011, 0.253, 
0.010, 0.010 

1200.61 

Algo 1* -10.00, 10.00, 0.965, 1.510, 
0.040, 0.005 

449.23 PSS3B 

Algo 2# -10.00, 10.00, 0.934, 2.00, 
0.012, 0.005 

442.41 

Algo 1* -10.00, 10.00, 0.229, 0.202, 
0.191, 0.019 

560.42 PSS4B 

Algo 2# -10.00, 10.00, 0.271, 0.103, 
0.005, 0.017 

518.35 

Algo 1* means CASO without craziness, Algo 2# CASO with craziness. 
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This table shows for a particular input operating condition, improved  
)(1OF  value is achieved for all the four PSS structures. The comparative 

convergence profiles of )(1OF  based on CASO without craziness and 

CASO with craziness for CPSS, PSS2B, PSS3B, and PSS4B are depicted  
in Fig. 24 corresponding to a nominal operating condition of 2.0=P ,  
 

 

Fig. 24.  Comparative CASO (with craziness and without craziness)-based convergence 
profiles of )(OF1  for CPSS, PSS2B, PSS3B and PSS4B ( 2.0P = , 2.0Q = , 

08.1Xe = , 0.1E t = , all are in pu) 
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2.0=Q , 08.1=eX , 0.1=tE (all are in pu). From this figure, the objec-

tive function value, )(1OF  corresponding to CASO with craziness is found 

to converge to the lesser minimum value faster than the others. It is also no-
ticed that the )(1OF  value of PSS3B corresponding to CASO with crazi-

ness is the lowest one. 
f) System performance for generator without any PSS: Fig. 25 exhibits 

MATLAB-SIMULINK based plot of the transient performance of rωΔ  for 

simultaneous change in mTΔ  and refVΔ  in case of generator without any 

PSS. The dynamic response of the system without any PSS is unstable even 
due to any small change in mechanical input torque or reference voltage. So, 
it justifies the application of PSS, in general, to enhance small-signal stabil-
ity, especially, in case of synchronous generator equipped with very high 
gain static excitation systems.  

 
Fig.  25. MATLAB-SIMULINK based plot of rωΔ  for simultaneous change in mTΔ  and 

refVΔ   in case of generator without PSS 

8   Classical Phase Compensation Based PSS vis-à-vis IEEE 
Dual Input PSS 

Besides comparison of several evolutionary techniques applied for optimal 
phase compensation with three types of IEEE dual input PSSs, classical phase 
compensation based conventional PSS (CPSS) is presented for the purpose of 
benchmarking in this chapter. The speed deviation response profile for the 
SMIB system, as considered in this chapter, with CPSS/PSS2B/PSS3B/PSS4B  
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(with very high gain exciter, 200=AK ) and without PSS (with low gain ex-

citer, 5=AK ) for 2.1=P , 6.0=Q , 93.0=eX , 0.1=tE (all are in pu) and 

0.01 step perturbation in mTΔ  and no change in refVΔ  is presented in Fig. 

26. From this figure, it is inferred that the dual input PSS produces additional 
damping to settle the oscillations much quicker than CPSS. For the system 
without PSS, 5=AK  is chosen instead of choosing 200=AK  because high 

gain exciter without PSS causes instability in the system as illustrated in  
Fig. 25. 

 

 
Fig.  26. Comparative damping performances of different PSS models for an SMIB model 
under 0.01 pu step change in mTΔ  and no change in refVΔ  (with CASO based optimized 
PSS parameters) 
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The comparative degrees of phase compensation offered by different dual input 

IEEE PSSs are contrasted with that of conventional PSS and system without PSS 
in Fig. 27, for 2.1=P , 6.0=Q , 93.0=eX , 0.1=tE (all are in pu) and 0.01 

simultaneous step perturbation in mTΔ  and refVΔ . This figure reveals PSS3B of-

fers maximum damping to settle down the frequency deviation. Thus the stabiliz-
ing action offered by PSS3B is the best one among the PSSs considered, at least 
for the SMIB system considered. Thus, a proper benchmarking against the con-
ventional techniques – e.g. classical phase compensation based PSS is highlighted 
in the present chapter. 

 
 

 
Fig. 27. Comparative responses of an SMIB model equipped with different PSS configura-
tions and equipped with no PSS under 0.01 pu simultaneous step change in refVΔ  and mTΔ  

9   Conclusion 

In this study, only SMIB system is considered and drastic conditions considered are 
change in the operating conditions of active power flow, reactive power flow, change 
in LT bus voltage and change in line reactance and/or LT bus fault and subsequent 
opening of one of the two transmission lines. The IEEE dual input PSSs and classical 
phase compensation PSS are tested by evolutionary optimization techniques. From 
the study of the transient characteristics of lesser overshoot, lesser undershoot, lesser 
settling time, lesser size of state matrix, better damping and more robustness, it is es-
tablished that the dual input IEEE-PSS3B produces the best optimal phase compensa-
tion as compared with classical conventional one. The feedbacks of electromagnetic 
torque deviation and angular speed deviation and processed through tunable lead-lag 
networks produce proper phase compensation and damping torque so that transient 
response becomes sufficiently damped for IEEE-PSS3B. 
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CASO and BFO are the two novel algorithms utilized for parameter tuning of 
the PSSs under both nominal and changing off-nominal system operating condi-
tions. Any nominal controller based on any optimization technique is not necessar-
ily fast enough for other drastically changing system operating conditions in real 
time. So, for scheduling of PSSs’ parameters under off-nominal operating condi-
tions, very fast, adaptive SFL is applied, SFL has very low computational burden. 

List of Symbols 

de  Field voltage 

'E  Voltage behind '
dX  

BE  Infinite bus voltage  

tE  Generator’s LT side bus voltage 

fd  Field winding 

H  Inertia constant, MW-s/MVA 

DK  Damping torque coefficient, pu torque/pu speed deviation 

SK
 

Synchronizing torque coefficient, pu torque/rad 

sho  Overshoot of change in rotor speed, pu 

)(1OF  First objective function 

)(OF2  Second objective function  

P  Active power, pu 

eP   Electrical power output of the machine, pu 

mP   Mechanical power input to the machine, pu 

Q  Reactive power, pu 

TR  Total system resistance, pu 

ext  Execution time, s 

stt  Settling time of change in rotor speed, s 

0T  System constant  

shu  Undershoot of change in rotor speed, pu 

eX  Equivalent transmission line reactance, pu 

TdX  Direct axis total reactance of the system, pu 

TqX  Quadrature axis total reactance of the system, pu 

δΔ  Rotor angle deviation, elect rad 
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rωΔ  Speed deviation in pu =
0

0

ω
ωω −r  

eTΔ  Incremental change in electromagnetic torque, pu 

mTΔ  Incremental change in mechanical torque, pu 

1vΔ  Incremental change in transducer output voltage, pu 

pssVΔ  Incremental change in PSS output voltage, pu 

max
pssVΔ  Maximum value of incremental change in PSS output voltage, pu  

min
pssVΔ  Minimum value of incremental change in PSS output voltage, pu  

λ  Eigenvalue  

nd ωω ,  Damped and undamped frequencies, respectively, rad/s 

0ω  Rated speed in elect rad/s = 0f2π  

fdψ  Field flux linkage 

ξ  Damping ratio 

)( rdt

d ωΔ   Time derivative of change in rotor speed 
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A Metaheuristic Approach for Transmission System 
Expansion Planning 

Ashu Verma, P.R. Bijwe, and B.K. Panigrahi 1 

Abstract. Transmission network expansion planning (TNEP) is a very important 
problem to power system. The problem is very complex and computationally de-
manding because of discrete nature of decision variables and large number of op-
tions to be analyzed. Hence, more robust and efficient techniques are required to 
solve such problem. One of the recently developed metaheuristic, known as Har-
mony search (HS) has been tested for many engineering optimization problems 
and found to be an efficient tool for optimization. Hence, the motivation for this 
chapter is to investigate the application of HS for TNEP. The results for three 
sample test system are obtained to show the potential of the tested algorithm. The 
results obtained with HS are compared with basic binary GA to confirm the effec-
tiveness of HS in terms of solution quality and number of fitness function evalua-
tions required. 

1   Introduction 

An electric power system can be broadly divided in to three parts a) generating 
system, b) transmission system, and c) distribution system. The transmission sys-
tem is responsible for transmitting electric power from generating station to distri-
bution system or consumer level. The demands and generations in a power system 
are increasing day by day. This growth of electricity gives rise to the need of 
transmission system planning. The objectives of transmission network expansion 
planning (TNEP) are based on existing systems, future load, generation scenarios, 
available right- of-ways, cost of line etc.  The TNEP is an important part of power 
system planning. It consists of determining the optimal expansion plan of trans-
mission network such that the total cost of new constructed transmission lines is 
minimum while satisfying the operational constraints of the power system. The 
TNEP is a large scale, non linear, non convex, mixed integer optimization prob-
lem. It has large number of options to be analyzed. Further, the number of options 
to be analyzed increases exponentially with the size of the system. Hence, large 
number of sub optimal solutions exist for this problem. TNEP can be divided in to 
two types 1) static TNEP and 2) dynamic TNEP. Static TNEP performs all the ex-
pansions in a single stage of planning horizon. However, Dynamic TNEP decides 
when, where and how many new circuits should be installed to serve the growing 
electricity demand in an optimal way. The static TNEP being already very diffi-
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cult, the dynamic TNEP becomes even more complex. Secondly, the restructuring 
of electricity market has added even more to the complexity of TNEP problem. 

The metaheuristic techniques prove to be very well suited for such type of 
combinatorial optimization problems. Many techniques such as genetic algorithm 
(GA), particle swarm optimization (PSO), simulated annealing (SA), tabu search 
(TS) has been proposed and tested for transmission network expansion planning.  
HS being a recently developed metaheuristic, has been tested for variety of engi-
neering optimization problem and found to be very successful. However, its inves-
tigation for TNEP has not been done so, far. Hence, the motivation in this chapter 
is to investigate the usefulness of HS algorithm. 

The HS algorithm for solving engineering optimization problems was first pre-
sented in (Geem et.al. 2001). The algorithm is based on the musical process of search-
ing for the perfect state of harmony. The harmony in the music is analogous to the op-
timization solution vector and improvisations are analogous to the global and local 
search schemes. Compared to earlier meta-heuristic, it imposes fewer mathematical 
requirements and can be easily adopted for various engineering optimization problems. 
Application of HS for some of the problem can be found in (Kim et.al. 2001, Geem 
2009, kang et.al. 2004, Geem et.al. 2005). An improved version of HS has been found 
in (Mahdavi et.al. 2007), where it employs a novel method for generating new solution 
vector that enhances the accuracy and convergence of the classical HS. 

The improved HS (IHS) presented in (Mahdavi et.al. 2007) is used in this chap-
ter to demonstrate its application in TNEP problem. 

2   Transmission Network Expansion Planning 

In this chapter only static TNEP has been investigated. Since, TNEP problem is too 
complex and difficult to be fully dealt in a single chapter. Hence, a simple DC 
model is used for static TNEP where, the cost of transmission lines to be con-
structed is the only objective and real power flows in the lines in base case and N-1 
contingency cases are the only constraints. The N-1 contingency analysis looks at 
the system state after a single line outage and is used to access the system security. 
However, the algorithm is general enough to consider other aspects of transmission 
expansion planning like operational economy, deregulation, dynamic TNEP etc. 

The basic model for static TNEP with security constraints explained in (Silva 
et.al. 2005) is used as a base for formulating TNEP in this chapter. The TNEP 
with security constraints can be represented as  

 

min   l l
l

v c n
                                                    

(1)
 

kS f g d                                                        (2) 

l l

kf γ− ( )0 ( ) 0, for 1,2.........., &    k
l l ln n l nl l kθ+ Δ = ∈ ≠              (3) 
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k k
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                          (4) 
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y line outage. 

S : branch-node incidence transposed matrix of the power system, 
kf :vector with elements 

l

kf , 

lγ : susceptance of the circuit that can be added to lth right-of-way, 

ln : the number of circuits added in lth right-of-way, 
0
ln : no. of circuits in the base case, 

l

kθΔ : phase angle difference in lth right-of way when kth line is out, 
k

lf : total real power flow by the circuit in lth right-of-way  when kth line is out, 
_ _ _

lf : maximum allowed real power flow in the circuit in lth right-of-way , 
_ _ _

ln :maximum number of circuits that can be added in lth right-of-way, 
Ω : set of all right of ways, 

n l : total number of lines in the circuit, 
N C :number of credible contingencies(taken as equal to nl in the present case). 

The objective of TNEP problem is to minimize the total investment cost of the 
new transmission lines to be constructed, satisfying the constraint on real power 
flow in the lines of the network, for base case and N-1 contingency cases. Con-
straint (2) represents the power balance at each node. Constraint (3) and (4) are the 
real power flow equations in DC network. Constraint (5) and (6) represents the 
line real power flow constraint. Constraint (7) represents the restriction on the 
construction of lines per corridor (R.O.W). 

3   Improved Harmony Search Algorithm (IHS) 

The harmony search algorithm is based on an analogy with music improvisation 
process, where music players improvise the pitches of their instruments to obtain 
better harmony (Geem et.al. 2001). The musical performers try to find the perfect 
state of harmony as determined by aesthetic standard, just as the optimization 
process try to find a global optimum solution. The pitch of each musical instru-
ment determines the aesthetic quality, just as the objective function value is  
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determined by the set of values assigned to each decision variable. The IHS algo-
rithm proposed in [5] is used for solving the STNEP problem in this chapter. Brief 
outline of the method is as follows.  

 

The following steps are involved in any HS algorithm  
 

1. Initialize the problem and algorithm parameters. 
2. Initialize the harmony memory. 
3. Improvise a new harmony. 
4. Update the harmony memory. 
5. Check for the stopping criteria. 

 

For better understanding of the algorithm, these steps are briefly described in the 
following five subsections. 

 

A.  Initialize the problem and algorithm parameters. 
In this step, we specify the optimization problem as follows: 

 

  Minimize  f(x)     (8) 
 Subject to   xi Є Xi     ,  i=1,2……..N   (9) 

 

Where, f(x) is an objective function, x is set of decision variables xi, N is the num-
ber of decision variables, Xi represents the possible range of values for each deci-
sion variables.  

The HS algorithm parameters to be initialized are as follows: 
 

1. Harmony memory size (HMS) which indicates the number of solution 
vectors in the harmony memory. 

2. Harmony memory considering rate (HMCR):  
3. Pitch adjustment rate (PAR). 
4. Number of improvisations (NI) or stopping criteria. 

 
B. Initialize the harmony memory. 
The harmony memory is initialized with as many randomly generated vectors as 
the value of HMS. 
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  (10) 

 
C. Improvise a new harmony. 

The new harmony vector )........,( 21
t
i

ttt xxxx = is generated based of three rules: 

(1) memory consideration, (2) pitch adjustment and (3) random selection. 
 

}{ 1 2, ...... with  probability HMCR,
                       (11)

 with probability (1-HMCR)

t HMS
t i i i i
i t

i i

x x x x
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x X
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A HMCR of 0.92 indicates that the HS algorithm will choose the decision vari-
able from the stored values in the HM with 92% probability and from the entire 
range with ((100-92)%) probability. Every component chosen by harmony consid-
eration is examined for pitch adjustment based on the following rule. 

Pitch adjusting decision for t
ix is given as  

{Yes with probability PAR,
No with probability (1-PAR)

t
ix ←

                                   
(12) 

The value of (1-PAR) defines the rate of doing nothing. If pitch adjustment de-

cision for t
ix is Yes, t

ix is modified as follows 

t
ix = rand( )*bwt

ix ± ,               (13) 
 

Where, bw  is an arbitrary distance bandwidth, rand( ) is a random number be-
tween 0 and 1. 

The values of PAR are adjusted as follows, 
 

max min
min

(PAR PAR )
PAR(gn) PAR X gn  

NI

−
= +

                        
(14) 

 

Where,  
gn: an improvisation or generation 
gn=1,2…………NI, 
PAR(gn); pitch adjusting rate for generation or improvisation gn, 
PARmin, PARmax: minimum and maximum pitch adjusting rate, 
And the bw is calculated as follows, 
bw(gn)=bwmaxexp(c.gn) 
 

min

max

bw
Ln

bw
c=  

NI

⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                   

(15)
 

 

bw(gn): bandwidth for each generation, 
bwmin: minimum bandwidth, 
bwmax: maximum bandwidth. 

 
D. Update the harmony memory. 
The new memory is assessed in terms of the objective function (fitness function) 
value and if the new memory is better than the worst memory in the HM, the new 
harmony memory is included in the HM and the existing worst harmony is ex-
cluded from the HM. 

 
E. Check for stopping criteria: 
If maximum number of improvisations is reached, then stop, otherwise steps C 
and D are repeated. 
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HS for STNEP 
The f(x) represents the objective function represented by equation (1) for STNEP. 
x defines the set of candidate lines presenting a solution to STNEP. Each element 
in x represents the right-of-way in which a candidate line is to be constructed. The 
range of each variable defined by Xi indicates the list of available right-of-ways. If 
two lines are added in a particular right-of-way, then two elements with same 
number (indicating same right-of-way) will come in the vector x. 

Fitness function evaluation: 
To check the worth of a vector (solution) in the harmony memory, fitness function 
is evaluated using the following equation. 

___

1 2
0

W (abs ( ) )  +W ( - ) l

NC
k

l l l l l
l k ol

f c n f f n n
=

= + −∑ ∑ ∑
                   

(16)
 

ol:  represents the set of overloaded lines. 

The objective of the STNEP represented by equation (1)-(7) is to find the set of 
transmission lines to be constructed such that the cost of expansion plan is mini-
mum and no overloads are produced during the planning horizon. Hence, first 
term in the equation (16) indicates the total cost of transmission lines to be con-
structed. The second term is added to the objective function for the real power 
flow constraint violations in the base case, and N-1 contingency cases. The third 
term is added to the objective function if number of circuits added in lth right-of-
way exceeds the maximum limit. The second and third terms are added to the fit-
ness function only in case of violations. W1, W2 are constants.    

4   Results and Discussions 

The proposed algorithm has been tested for three standard test systems, 6 bus 
Garver system, IEEE 24 bus system, and South Brazilian 46 bus system. The 
comparison of results is presented with the one obtained with basic binary GA to 
show the potential of the proposed approach. An algorithm for basic binary GA is 
implemented to compare the results. 

4.1   Garver 6 Bus System 

This system has six buses, 15 candidate branches, a total demand of 760 MW, and 
a maximum possible number of lines per corridor is equal to five. The initial to-
pology and electrical system data is found in (Silva et.al. 2005). The initial topol-
ogy is also shown in Fig. 1 for reference. 

4.1.1   TNEP without Security Constraints 

The optimal solution to the expansion planning problem without security con-
straints results in a total investment cost of US$200,000 with the addition of  
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Fig. 1. Garver 6 bus system 

 

Fig. 2. Garver 6 bus system optimal expansion plan for TNEP without security  constraints 

following seven lines, n2-6=4, n4-6=2 and n3-5=1. The final expansion plan is shown 
in Fig.2. The broken lines are the planned one. The results obtained with the pro-
posed algorithm matches exactly with the results obtained with GA and the one 
reported in (Silva et.al. 2005). 
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4.1.2   TNEP with Security Constraints 

The optimal expansion plan with security constraints results an investment cost of 
US$298 000, with the addition of total ten lines as follows, n2–6=4, n3–5=2, n3–6=1, 
and n4–6=3. The final expansion plan is shown in Fig. 3. The results obtained with 
the proposed algorithm matches exactly with the results obtained with GA and the 
one reported in (Silva et.al. 2005). 

 

 

Fig. 3. Garver 6 bus system optimal expansion plan for TNEP with security  constraints 

4.2   IEEE 24 Bus System 

This system consists of 24 buses, 41 candidate circuits and 8550 MW of total de-
mand. The maximum number of lines allowed per corridor is four. The initial 
network and the electrical data can be found in (Fang et.al. 2003). The genera-
tion/load data has been taken for Plan G3 of (Romero et.al. 2005). The initial net-
work is also shown in Fig. 4 for reference. 

4.2.1   TNEP without Security Constraints 

The final optimal solution obtained with HS for TNEP without security constraints 
results in an investment cost of US$ 214x106 with the addition of seven lines as 
follows. 

n16-19=1, n14-16=1, n6-10=1, n7-8=2, n10-12=1, n20-23=1. 
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Fig. 4. IEEE 24 bus system 

The cost of expansion plan obtained with the proposed method is 1.8 % lesser 
than the cost obtained from the plan presented in (Romero et.al. 2005) and 
matches exactly with the one obtained with GA. 

4.2.2   TNEP with Security Constraints 

The final optimal solution obtained with HS for TNEP with security constraints 
results in an investment cost of US $869 x106 with the addition of twenty one 
lines as follows. 

 

n1-5=2, n3-9=2, n4-9=1, n5-10=2, n6-10=2, n7-8=3, n9-12=1, n10-12=1, n12-23=1, n13-14=1, 
n14-23=1, n15-21=1, n18-21=1, n20-23=1, n21-22=1. 

The solution obtained with basic binary GA results in an investment cost of US 
$903 x106 with the addition of following twenty lines, 

n7-8=3, n6-10=3, n1-5=2, n15-21=1, n20-23=1, n3-24=1, n16-19=1, n14-23=2, n15-24=1,  
n9-12=1, n10-12=1, n12-13=1, n19-22=1, n4-9=1. 

 

The parameters used for HS, and GA for this study are as follows  
For HS: harmony memory size (HMS) =50 ; harmony memory considering rate 

(HMCR)=0.98;  maximum pitch adjustment rate (PARmax)=0.99; minimum pitch 
adjustment rate (PARmin)=0.1; number of improvisations (NI) or stopping crite-
ria=3000. 

For GA: population size=750,crossover rate=0.8, mutation rate=0.01, number 
of generations=4000. 

The number of fitness function evaluations required by both algorithms for the 
above study are given in Table 1. 
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Table 1. Comparison of cost and number of fitness functions required for optimal solution 
with two methods for IEEE 24 bus system 

Method    No.of fitness function  
   Evaluations 

    Cost of Expansion Plan  
     [US$ 106] 

HS 1, 70,400 869 

Basic Binary     
GA 

   27,53,166 903 

 

It can be observed from the results that HS provides much better results (lower 
cost) with far lesser number of fitness function evaluations as compared to those 
with basic binary GA. The cost of expansion plan obtained with HS is 3.77% 
lesser than that obtained with GA. The number of fitness function evaluations re-
quired by HS is 93.85 %, lesser as compared to that required by GA. 

 
Fig. 5. Basic configuration of  46 bus South Brazilian System 
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4.3   South Brazilian 46 Bus System 

This system has 46 buses, 79 right-of-ways on which circuits can be constructed, 
and a total demand of 6880 MW. The maximum number of lines which can be 
added to each corridor is six. This is a realistic system representing a good test 
case for the proposed algorithm. The relevant data can be found in (Haffner et.al. 
2000). The initial network is taken from (Haffner et.al. 2000) and is also shown in 
Fig.5 for ready reference. 

4.3.1   TNEP without Security Constraints 

The final optimal solution obtained with HS for TNEP without security constraints 
results in an investment cost of US$154 420,000 which matches exactly with the 
one reported in (Romero et.al. 1994). 

The lines present in the solution are as follows 
 

n20-21=1, n42-43=2, n31-32=1, n28-30=1, n26-29=3, n29-30=2, n24-25=2, n19-25=1, n46-6=1,  
n6-5=2. 

4.3.2   TNEP with Security Constraints 

The final optimal solution obtained with HS for TNEP with security constraints 
results in an investment cost of US $343,870,000 with the addition of following 
thirty lines. 

 

n26-29=3, n29-30=2, n28-30=1,  n31-32=1, n24-25=4, n25-32=1, n25-21=1, n46-6=2, n6-5=4,  
n2-5=1, n12-14=1, n17-19=1, n19-21=1, n20-21=2, n26-27=1, n27-38=1, n32-43=1, n42-43=3. 

 

The final optimal solution obtained with GA results in an investment cost of 
US$ 432 350,000 with the addition of following forty three lines, 

 

n26-29=3, n29-30=2, n28-30=1,  n31-32=1, n46-11=1, n11-5=3, n24-25=4, n25-32=1, n25-21=1, 
n46-6=2, n6-5=2, n12-14=3, n2-5=2, n16-28=1, n26-27=1, n1-7=2, n19-21=1, n9-14=1, n27-36=1, 
n28-43=1, n42-43=3, n37-39=2, n34-35=1, n20-21=2, n2-4=1.  

 

A rigorous study of algorithm parameters done by varying them for the above 
system between the permissible ranges is given in Table 2 and 3. Initially the ef-
fect of variations of HMCR is observed by keeping HMS constant. Then with the 
best value of HMCR obtained, the effect of variations of HMS is observed. 

It can be observed from Table 2 and 3 that HMCR=0.98 and HMS =50 pro-
vided best results in terms of no of fitness function evaluations and standard de-
viation for the above system. However, these settings are system dependent. With 
experiments in large number of systems with different levels of complexity, it has 
been observed that for TNEP problem, HMCR value of 0.98 provides best results. 
However, HMS needs to be adjusted depending upon the size of the system and 
level of complexity of TNEP problem. 

Hence, the algorithm parameters used for this system are as follows: harmony 
memory size (HMS) =50; harmony memory considering rate (HMCR) =0.98;  
maximum pitch adjustment rate (PARmax)=0.99; minimum pitch adjustment rate 
(PARmin)=0.1; number of improvisations (NI) or stopping criteria=3000. 
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Table 2. Effect of HMCR variation on performance of HS algorithm for TNEP (with 
HMS=50) 

HMCR 0.99 0.98 0.95 0.9 
Cost of expansion 

Plan [US$ 106] 
343. 870 343. 870 343. 870 349.17 

Standard  
Deviation 

31.39 25 18.85 54 

No. of fitness 
function  

evaluations 

439750 296800 354600 318700 

Table 3. Effect of HMS variation on performance of HS algorithm for TNEP (with 
HMCR=0.98) 

HMS 25 50 75 100 
Cost of  

expansion 
Plan  

[US$ 106] 

343. 870 343. 870 343. 870 343. 870 

Standard 
Deviation 

50 25 25.40 30.54 

No. of  
fitness 

function 
evaluations 

140500 296800 321575 482500 

 
For GA. no. of population=1000, crossover rate=0.8, mutation rate=0.01, num-

ber of generations=4000. 
The number of fitness function evaluations required by both methods for the re-

sults shown above are given in Table 4. 

Table  4. Comparison of cost and number of fitness functions required for optimal solution 
with different methods for 46 bus South Brazilian system 

Method No.of fitness function  

evaluations 

Cost of Expansion Plan  

[US$ 106] 

HS 2.96x 105 343. 870 

Basic Binary 
GA 

2.67x106 432.350 
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It can be observed from the above results that the HS algorithm provides much 
better (low cost ) results with lesser number of fitness function evaluations as 
compared to basic binary GA. The cost of expansion plan obtained with IHS is 
20.46% lesser than the one obtained with GA. The number of fitness function 
evaluations required by HS is 8.89 % lesser as compared to that required by GA.  

5   Summary and Conclusions 

It can be found from the literature that HS has been proved to be better algorithm 
for handling complex engineering optimization problems. However, its usefulness 
for TNEP has not been investigated so far. Hence, in this chapter the application of 
HS for TNEP has been presented. The comparison of results is carried out with the 
one obtained with basic binary GA. Results for three sample test systems confirm 
the potential of the tested algorithm. The discussed algorithm provides better (low 
cost) solution in all the cases with lesser number of fitness function evaluations.  
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