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PREFACE

Advanced materials (composites, multiphase materials, materials for
microelectronics, biomaterials, etc.) play a crucial role in modern en-
gineering and biomechanical applications where they are often exposed
to complex loading and environmental conditions. In many cases, new
approaches are needed to characterise various features of these mate-
rials and to model their deformational behaviour, failure processes as
well as to analyse reliability of components and structures under dif-
ferent conditions. Such approaches should be calibrated and validated
by specific experimental techniques, quantifying both microstructural
features and respective mechanisms at various length scales. The aim
of the course is to give an overview of various modelling tools and
experimental methods that can be employed to analyse and estimate
properties and performance of advanced materials.

The first paper (by P.D. Ruiz and V.V. Silberschmidt) deals with
experimental analysis of mechanical behaviours of advanced materi-
als. A special emphasis is on techniques used to gain quantitative
microstructural information needed for material modelling and/or ex-
perimental validation of model predictions. Two main groups of tech-
niques are covered - mechanical tests and full-field analysis. The paper
starts with application of dynamic mechanical analysis to viscoelastic
materials followed by a discussion of experimentation with microspec-
imens. Theoretical aspects of nanoindentation are presented together
with case studies for a Ni-based alloy and ceramic coating. A review
of full-field measuring techniques is accompanied by examples of their
use to validate predictions of stresses in adhesive joints and surface
strains, damage detection and characterisation as well as identifica-
tion of material’s parameters.

Another part of the course deals with modern theoretical approaches
used to analyse heterogeneous materials and a non-linear material be-
haviour. The first topic is covered in a paper by G.S. Mishuris, A.B.
Movchan and L.I. Slepyan that reviews main results obtained for pe-
riodic structures based on dynamic lattice Green’s functions. Among
the analysed phenomena are localization of vibrations mear defects
and fracture in structured media, including wave tunnelling along the
crack and energy dissipation in the lattice containing a moving crack.
In the next paper (by M. Jabareen and M.B. Rubin) the second topic



is studied by means of the formulation of a 3-D brick Cosserat Point
Element (CPE) for the solution of problems in non-linear elasticity.
The paper opens with a review of some tensor operations and kine-
matic measures in continuum mechanics followed by introduction of
the CPE that exhibits no locking for nearly incompressible materials
and for thin structures, like plates and shells. Some example problems
for such structures are discussed.

A paper by E. Busso reviews multiscale materials modelling ap-
proaches required to complement continuum and atomistic analyses
methods. Their potential for computational materials design, based
on the understanding of the dual nature of the structure of matter
- continuous when viewed at large length scales and discrete when
viewed at an atomic scale - is discussed. Various methods of contin-
uum mechanics are reviewed, including a local crystallographic frame-
work and non-local approaches. The paper finishes with a discussion
of the problem of bridging the length and time scales. Another paper
(by H.J. Béhm, D.H. Pahr and T. Dazner) deals with numerically
based continuum modelling of thermomechanical and thermophysical
behaviours of microstructured materials. After a review of mean-field
methods and variational bounds the authors discuss various aspects
of, and methods for, modelling discrete microstructures. Among the
presented applications are elastoplastic composites at finite strains,
diamond particle-reinforced composites as well as porous and cellular
materials.

In the final paper by V.V. Silberschmidt, several case studies are
analysed in order to demonstrate the strategies used to solve the real-
life problems, in which the microstructure of materials directly affects
their response to loading and/or environmental conditions. Among
the presented examples are studies of the effect of microstructural
randomness of carbon fibre-reinforced composites and ceramic coat-
ings on their properties and performance as well as incorporation of
microstructure and various deformational mechanisms in models of
flip chip microelectronic packages.

The book is addressed to doctoral students, young researchers as
well as practicing RED engineers, dealing with advanced materials,
components and structures.

Vadim V. Silberschmidt
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Experimental Analysis of Mechanical Behaviour of
Advanced Materials

Pablo D. Ruiz and Vadim V. Silberschmidt

Wolfson School of Mechanical and Manufacturing Engineering,
Loughborough University, UK

1 Introduction

A notion of a material’s mechanical property in many cases is not an
unambiguous one. There are two main groups of reasons for this. The first is
linked to conditions of the test, the second to the length scale, for which property
is sought. Hence, instead of a narrow understanding of a mechanical property as
a constant magnitude obtained from the handbook or a database, modern
researchers dealing with real-life applications of advanced materials should
rather consider it as a multi-parametric function and, in some cases, even a
statistic one.

Let us start with analysis of the first group since it has direct implications for
performing the tests to obtain material’s properties. The effect of environmental
conditions on mechanical parameters of materials is mostly appreciated in terms
of temperature-dependent properties. Other environmental factors could be also
important for some specific applications (e.g. hygroscopic effect in composites,
exposure to aggressive environment, irradiation effects etc.) but they are outside
the scope of this Chapter. Another important factor is the loading rate, affecting
non-elastic response of various materials, e.g. strain-rate hardening in plasticity
and strain-rate sensitivity of a viscous behaviour. A type of loading is also
important, especially for strength assessment — consider the differences between
the (quasi)static strength, on the one hand, and dynamic (impact) and cyclic
loading (fatigue) strengths, on the other. A loading state, used in experiments, is
usually supposed to be simple and permanent (i.e. non-changing during the
experiment); an implementation of these requirements can become rather
cumbersome in cases of large deformations.

An importance of the length scale is linked to microscopic heterogeneity of
most materials. This can be complicated by a presence of several levels of non-
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uniformity, e.g. in layered structures with different properties of layers,
functionally-graded materials etc. Hence, two levels of properties assessment are
possible. For specimens larger than the size of representative volume element
(RVE), or, in other words, containing a large representative set of microstructural
features (grains, microdefects, reinforcing elements in composites etc.) —
effective (sometimes called global or homogenized) properties are obtained in
tests. These magnitudes are usually presented in handbooks, databases etc. of
material’s properties. In contrast, properties measured at the lower length scale —
known as local properties — demonstrate a considerable spatial scatter. The
extent of the latter depends on the scale size (window size) — the smaller the
window, the larger the scatter, which, in the case of two-phase materials will
have two natural bounds linked to the properties of the constituents
(Silberschmidt, 2008).

In many practical cases, the global properties cannot be used in models due to
a large size of the RVE compared to characteristic dimensions of a component.
Besides, a transition to critical and post-critical behaviour of materials that is
characterised by the onset of plastic flow, macroscopic damage and/or failure is
usually linked to localisation of these mechanisms precluding the use of
effective parameters. One of the obvious examples is a transition from a
macroscopically uniform deformation of a large specimen of polycrystalline
material in the elastic regime to a spatially localised plastic flow, e.g. due shear
band formation starting in grains that are appropriately oriented with respect to
maximum shear stresses.

All the discussed features should be adequately accounted for in preparation
of test programs and employment of specific techniques. This Chapter can by no
means present a fully comprehensive description of all experimental techniques
used to assess mechanical behaviour of materials. It rather deals with some
specific types of tests that are usually not covered by standard textbooks on
experimental mechanics dealing mainly with global properties. Since
descriptions of the latter are (to some extent) ubiquitous, the authors decided to
narrow down the choice of the techniques to those that either characterise more
advanced properties (e.g. relaxation ones), local (microstructure-induced)
properties or their spatial distribution — so called fi/l-field methods.

2 DMA & visco-elastic properties

In contrast to elastic and plastic behaviour, characterisation of the visco-elastic
one is still not a fully established in the engineering community. This can be
explained by historic reasons linked to a relatively late broad introduction of
plastics, demonstrating such behaviour, into various products, as compared to
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traditional structural materials. High-temperature applications with a long-term
exposure of components (made predominantly, of metals and alloys) to extreme
thermal conditions became ubiquitous nearly at the same time. Another reason is
unsuitability of standard tensile tests to provide a direct information about
parameters characterising viscous behaviour in the same (relatively) simple way
as for the elastic behaviour (Young’s modulus) or the plastic one (yield stress,
hardening modulus). Special tests — creep (loading with a constant stress level)
and relaxation (loading with a constant deformation) — that can be nowadays
performed with the same universal testing machines used for tensile testing are
rather time-consuming when a full description of visco-elasticity is necessary.

Various applications can not be reduced to the cases of pure creep or
relaxation; among the obvious examples are solder points/balls in
microelectronic packages exposed to creep-fatigue under service conditions or
plastics and composites under dynamic (e.g. impact) loading. The need for the
parameters characterising the visco-elastic behaviour is additionally enhanced by
expansion of mechanics of materials into domain of biomaterials, many of which
can be considered as visco-elastic media.

A special type of tests — dymamic mechanical analysis (DMA) — was
developed to characterise visco-elastic properties of materials. Let us start with
some general ideas of visco-elasticity that will be analysed following classical
books (Christensen, 1971 and Tschoegl, 1989).

The visco-elastic behaviour is often described in terms of a so-called
hereditary approach with stress being dependent on the current strain state as
well as the history of strain in the material. For a uniaxial loading at # =0 of an
isotropic linear visco-elastic material under isothermal conditions the
constitutive equation can be introduced in terms of a hereditary integral (also
known as Boltzmann superposition integral):

olt)= [ Ele-c)(e)ie, )

where E (t ) is a relaxation function, € is a strain rate. Another form can be
used to explicitly introduce the strain history:

a<t>=Ee[zs(z)—jéo—r)s(r)dr], @

where E, is an equilibrium modulus.

For the so called generalised Maxwell model (also known as Wiechert model)
consisting of a spring and N Maxwell elements (see Figure 1) the relaxation
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Figure 1. Generalised Maxwell model.

model has the following form:

t

E()=E + ZV:E‘.eT , 3)

i=1

where ¢, =n,/E, are relaxation times of elements. The second term is also

known as the Prony series.
Using the Laplace transformation

F@&=[ e, @

an operational modulus (Park and Schapery, 1999) can be obtained in the
following form:

E(s)= STE(t)e""’dt . (5)

The frequency-dependent version of the stress relaxation modulus can be
obtained for a steady-state harmonic (sinusoidal) loading with a frequency of
oscillation @ :

E*(@)=E(s)| = E(0)+iE" (), (6)

s—iw

where E” and E” are the so called storage and loss moduli.
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A more clear analysis can be obtained by comparison of the responses of
different types of media to the harmonic excitation presented in Figure 2.
Obviously, in a perfectly elastic media (Figure 2a) phases of strain and stress
diagrams would coincide, since both strain and stress are directly proportional
due to the Hooke’s law. A perfectly viscous material is characterised by the
known relationship between the stress and the strain rate: o =7¢ that means
that in a system with harmonic strain excitation the stress level will change with
a delay by ¢ =7/2 (Figure 2b).

A linear visco-elastic material is an intermediate case: for a harmonic

excitation with strain the stress changes will be characterised by the phase
difference 0 (Figure 2¢) that due to standard dynamic analysis (Inman, 2007)

Stress/Strain
Stress/Strain

Stress/Strain
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Key for parts (a) to (c):

Figure 2. Cyclic stress strain diagrams for (a) elastic, (b) viscous and (¢) visco-
elastic materials, (d) complex modulus diagram for visco-elastic material.



6 P.D. Ruiz and V.V. Silberschmidt

can be determined as
E/’

d=tan"'—
E

, ()

(see the respective Argand diagram in Figure 2d). The phase difference o
indicates the extent of material’s viscosity, with =0 and & =7/2 being

equivalent to perfectly elastic and perfectly viscous materials, respectively.

Generally, a storage modulus £ specifies the energy stored in the specimen
due to the applied strain, and a loss modulus E” specifies the dissipation of
energy as heat. A useful quantity is the damping factor or loss tangent

”

E
tand = — 8
and == ®)

representing a part of mechanical energy dissipated as heat during the
loading/unloading cycle. Apparently, it vanishes for a perfectly elastic material
and is equal to infinity for a perfectly viscous one. This parameter is linked to the
so called quality factor, or Q factor:

1
tand

)

The above discussion deals with fundamentals of DMA. In dynamic
mechanical analysis tests a harmonic excitation is used with a simultaneous
measurement of the amplitudes of stresses and strains as well as the phase angle
J between them. This excitation is low-amplitude so that no plastic deformation
could affect the results. Various loading schemes can be used — tensional,
torsional and shear. Most materials demonstrate dependence of E’, E” and
tand on frequency and temperature. So, modern DMA testing machines usually
perform a test with automatically changing frequencies and temperatures. The
latter is important, for instance, for estimation of additional properties such as
the glass transitions in polymers.

The scheme overcomes limitations of transferability of results based on the
creep and relaxation approach to short-term and high-frequency ranges that are
characteristic for various service conditions (Christensen, 1971). As an example,
Figure 3 presents results of DMA testing of constituent layers of an adidas
football (for details see (Price et al., 2008)). This type of data obtained with
DMA can be used to model the visco-elastic behaviour of materials for arbitrary
loading conditions and histories. The finite-element software package ABAQUS,
for instance, transfers the data for storage and loss moduli into the Prony series
(Abaqus, 2003). The latter in the frequency domain will have the following form
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(Park and Schapery, 1999):

and

E(w)=E +Y

N

i=1

o't P
1+t

i

(10)
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E”(a))=ﬁLE. . (11)

3 Testing of microspecimens

A scale-dependent mechanical behaviour of materials is well known. With
dimensions of tested specimens approaching those of the characteristic elements
of microstructure, an averaging effect, which ‘smears’ both the presence of
microstructural features as well as realisation of various deformational
mechanisms at lower length scales over a large (macroscopic) volume,
diminishes. This can result in significant deviations of the local properties from
the global (i.e. averaged) ones. A detailed study of the local properties is
important in many cases linked to localisation of deformation and/or fracture
processes. Another obvious reason for such studies is linked to applications of
components/structures with microscopic dimensions, e.g. in microelectronic
packages. In this case, direct testing of microspecimens is unavoidable.

A typical study of lead-free solders at micro scale is analysed here based on
works by Gong et al. (2006a, 2007a) and Gong (2007). A process of
miniaturisation of microelectronic devices leads to a continuous decrease in the
dimensions of all microelectronic components. An additional need to increase
the number of interconnections between elements of packages has been driven a
diminishment of solder bumps to dimensions below 100 um. Elements with such
dimensions can contain only few grains, making the use of the data obtained for
bulk macroscopic polycrystalline specimens at best questionable. To overcome
this hindrance, a program of testing at a micro scale was undertaken. A material
of interest — lead-free SnAgCu solder — was used in specially prepared
specimens. The latter consisted of two Cu plates (15 mm X 15 mm, thickness 1
mm) soldered together by a thin layer of the studied material (Figure 4). A
special device was used to change the thickness of the solder layer; in the tests
two thicknesses — 100 wm and 1000 um — were used. The reflow process that
transformed the solder paste into solders was implemented with a Planer T-
TRACKO reflow oven; two different cooling rates were used to study their
effect on the microstructure and properties of solder joints.

After the reflow the specimen was cut with a low-speed diamond saw into
specimens with the cross-section | mm x 1 mm (see Figure 4b) that were used in
mechanical tests. Such specimens can be directly tested in tension using Instron
MicroTester. In microelectronic packages solder bumps are exposed to
temperature changes resulting in shear deformations due to the mismatch in
coefficients of thermal expansion of constituent materials. So, a special setup
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Solder joint

(2)

Cut into
specimens

Polished surface

(b)

Figure 4. Preparation of microspecimens: (a) specimen after soldering; (b)
specimens for the mechanical test. d = 1 mm.

was prepared for testing the manufactured specimens (Figure 5).

A steel holder with a hole, the cross section of which is slightly larger than
that of the specimen, is used. It is fixed on one of the testing machine’s grips.
One of Cu substrates of the specimen is inserted into the hole as shown in Figure
5 while the other substrate at the opposite end is fixed to the machine’s second
grip, the movement of which is controlled by the MicroTester. Then the hole in
the steel holder is filled with Epoxy resin, making sure that the resin does not
contact with the solder joint. After 24 hours of curing, the epoxy resin is fully
hardened, and the specimen is assembled in the MicroTester in a stress-free state.

In the shear test, the solder joint yields with the copper substrates being still
in the elastic state since its yield point is much lower than that of pure copper. At
the same time, the Young’s modulus of Cu is significantly higher and effectively
all the deformation is localised in the solder material. Therefore, the applied

engineering shear strain rate ¥ on the joint is approximately:

U
= (12)

where U is the applied displacement rate of the grip and b is the distance
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e 77T e

Grip

Figure 5. Setup for shear test.

between substrates (it is the distance between the middle points of interfaces for
the real specimens). A resin with the highest available stiffness was used in order
to reduce its effect on the results.

The mechanical test was performed with the loading rate 0.1 pum/s that
corresponds to the shearing strain rate is 1x107° s for solder thickness 100 pm.
The specimen at first is loaded for a specific time to reach a prescribed shearing
deformation then held in the tester for 24 hours to release the residual stresses.

The microstructure of solder was studied before and after the deformation;
both scanning electron microscopy (SEM) and an optical microscopy in
polarized light (PL) were employed to examine grain features. Additionally,
transmission electron microscopy (TEM) was used to study crystallographic
parameters of local areas after loading and to characterize the deformation and
damage behaviour of substructures within SnAgCu grains.

A typical result of shear deformation in the solder specimen is presented in
Figure 6. Apparently, only two grains occupy the entire cross section of the
solder. Their mechanical behaviour is determined by their crystallographic
orientation: slip bands inside each grain have the same direction; however, there
is a large angle between these bands for the two grains. Shear of stiff, parallel Cu
plates induces practically the (macroscopically) uniform deformation state in the
solder (with some deviations near the specimen’s edges and grain boundaries) of
these two grains. Hence, different orientations of shear bands demonstrate the
lattice-dependent behaviour and, consequently, anisotropic properties of a
SnAgCu single grain. Since a joint in electronic packages can contain one or a
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Figure 6. Bright-field image of a loaded joint (5 = 82 wm) after shear
Y =3%%.

few grains, this grain-based behaviour would define its response to the in-service
conditions.

The obtained results were used in two-scale finite element analysis of thermal
cycling of lead-free joints (Gong et al., 2006b, 2007b and 2008); these results are
presented in another Chapter.

In many cases there is a need to analyse even smaller specimens. For
instance, the above solder in the test described above still contains more than one
grain. To study the intra-grain deformation another technique was used (for
details of the method below see (Gong, 2007)). It employed the focussed ion
beam (FIB) to cur a specimen from the single grain of the solder as shown in
Figure 7a. FIB was used to mill the specimen with length and thickness of 25 um
and 2 um on the ground and polished solder block obtained by the reflow
process with a relatively low cooling rate. The bottom of the micro-specimen
was separated from the bloc in order to reduce the effect of the bulk specimen
and induce a pure tensile deformation state.

This design allows overcoming another limitation of the previous technique —
a (relatively) high loading rate. The latter is defined by the minimum
displacement rate of the testing machine (that is 0.1 wm/s) and the size of the
solder specimen. Since the entire grips’ displacement was applied to the solder,
in case of the solder layer thickness 100 um the lowest possible strain rate was
107 s™'; for the length of the studied micro-specimen it would be even higher —
4x107 5. The use of the bulk solder specimens incorporating the milled micro-
specimen can significantly overcome this limit by increasing the length of the
bulk specimen (it was 25 mm in the study). With a (nearly) uniform axial
distribution of strain in the tensile test the extension rate of the micro-specimen
is the same as of the entire specimen. Hence, the strain rate in this test is
decreased by a factor equal to the ratio of the length of the macro-specimen to
that of the micro-specimen (up to 500 in this study).
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Figure 7. Micro-specimen before (a) and after (b) deformation.

The notch is also introduced into the micro-specimen to study the failure
process (Figure 7a). The applied deformation resulted in the strain rate 1x107 s™;
the specimen after 20% elongation is shown in Figure 7b. The deformed
specimen vividly demonstrates the ductile character of deformation — there is no
crack growth from the tip of the notch; instead, the notch widens and shear
deformation started from the notch at approx. 45° to the tension direction. A
further analysis with TEM (gong, 2007) demonstrated that the highly non-
uniform character of the deformation process in the single-grain micro-specimen
caused by the presence of notch did not only affect the deformation localisation
in the form of shear bands but also caused microstructural changes — formation
of a low-angle sub-grain boundary.

The two studied cases by no means exhaust possible ways to analyse
deformational and failure behaviours at the microscopic scale. Still, they clearly
show the considerable increase in the detailedness of information about these
behaviours. Besides, a direct effect of microstructure on the spatial realisation of
deformational processes and an opposite effect — of the deformation on the
microstructure — demonstrate the need for a direct introduction of these processes
into respective micromechanical models.
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4 Nanoindentation
4.1 Introduction

An apparent difference between the global (macroscopic) and local
(microscopic) properties of many advanced materials due to the effects of their
microstructure presupposes a development of special techniques for studies at
the micro scale. One of the obvious challenges for extension of the conventional
testing techniques utilised in universal testing machines to a micro scale is
impossibility to perform in situ tests in the area of interest. The chance to prepare
a micro specimen of the material from this area — though currently feasible with
FIB (see above) — still does not fully solve the discussed problem ‘specimen vs.
material’ not to mention the complexity of treating such specimens.

Hence, a relatively old idea of the use of indention to measure hardness as a
parameter linked to the ratio of the applied force to the effective cross-sectional
area of the imprint left by an indentor have become a basis of a new testing
technique known as nanoindentation. Here, the scaling down is implemented by
means of transition to low loads — down to micro-Newtons — resulting in
penetration lengths down to nanometres (this is the reason for the name).

Two important moments should be considered here, before a discussion of
nanoindentation with its advantages, features and limitations. The first is the use
of the free surface of a specimen to measure hardness, and the second is that
hardness is not a mechanical parameter that can be directly used in any models of
mechanics of materials. The former moment presupposes a special attention to
preparation of specimens; the latter is alleviated by the use of theories linking
hardness to the Young’s modulus.

Now, about benefits:

1) Nanoindentation provides a possibility for en situ measurements for
very small volumes of materials and spatial scale and, hence, can be
considered as a non-destructive technique.

2)  There are options of spatial scanning of properties using arrays of
indentations points of various configuration and even continuous
measurements based on nanoscratching (Kaupp and Naimi-Jamal,
2004).

3) A precise placement of the indenting point allows estimation of
properties exactly in the area of interest, e.g. in a specific phase,
constituent or near any microstructural feature.

4)  Automatization of tests allows performing a large testing program, e.g.
indentation of the same specimen in many points, without interventions
by an operator.

These generic benefits of the method are complementary to the principal

feature of nanoindentation, i.c. assessment of properties of materials that
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otherwise are hardly feasible. Best examples are soft materials (including
biological tissues) and thin (and soft) coatings.

Some limitations of the technique will be discussed after the overview of its
main principles, which is based on well-known literature (Fischer-Cripps, 2004,
Oliver and Pharr, 1992, 2004, and Pharr and Bolshakov, 2002).

4.2 Principles of nanoindentation

Though the history of hardness tests is several centuries long, their use to extract
traditional mechanical properties of materials is significantly shorter. This was
linked to a transition from the measurement of the residual area of the imprint to
a continuous depth-sensing technique in 1960s (see some historical comments in
(Borodich and Keer, 2004); it was known under the name microindentation at
that time).

The depth-sensing method is based on the continuous measurement of the
depth of penetration of indentor /# and the corresponding level of the applied
force P (see Figure 8). In the process of penetration by indentor into a material
the maximum attained level of force applied to the indentor P__ corresponds to

max

the maximum penetration depth /4 _ . Figure 8 also presents other main

parameters of the indent’s geometry for an axisymmetric (conical) indentor with
a half-angle ¢: the depth of contact /4, and the corresponding radius of the

contact circle «; the final depth £, ; the residual imprint depth after unloading
(removing of the indentor); the sink-in dept 4, .

Various types of indentors are used for nanoindentation; one of broadly used
ones is the Berkovich indentor — a triangular pyramid, made of diamond. It has

Indentor J Initial
) L a 4 / Unloaded

hmax .
hc Wded

Figure 8. Schematic of indentation process with parameters of indent’s
geometry (after Oliver and Pharr, 1992).
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Figure 9. Schematic loading-unloading curve for indentation.

the same area-to-depth relationship as the Vickers indentor, a four-sided pyramid
that was used in microindentation tests (Pharr and Bolshakov, 2002).
Axisymmetric indentors, including spherical ones, are also used to test various
materials.

The continuous measurement of the indentation parameters during the entire
cycle of imprinting and removal of the indentor results in the load-displacement
(i.e. load-depth) diagram that is schematically presented in Figure 9 (a real curve
for a cortical bone tissue is given in Figure 10 (Alam, 2008)). The non-linear
loading part of the diagram is followed by an unloading part, situated below the
former due to the residual strains caused by the irreversible (plastic in the case of
elasto-plastic material) deformation.

The relationships linking the Young’s modulus of the tested material and a
slope of the initial portion S = dP/dh of the unloading curve were suggested in

1970s (see, e.g. (Bulychev at al., 1975, 1976)). In a more common notation
(Oliver and Pharr, 1992, 2004) it can be presented in following form:

1 |7
E, _ﬁ\/;s (13)



16 P.D. Ruiz and V.V. Silberschmidt

100 -
90 -
80 -
70
60
50 -
40 -
30 -
20 A
10 +

0 Y A R

400 800 1200 1600 2000 2400 2800 3200
Depth (nm)

Load (mN)

o

Figure 10. Loading-unloading curve for nanoindentation of cortical bone tissue.

and

EL=(1-v)E +(1-v2)E". (14)

The system of equations (13), (14) can be resolved with regard to the
Young’s modulus of the tested material £ for a known properties of the
indentor — its Young’s modulus £, and Poisson’s ratio v, — and the given
magnitude of the material’s Poisson’s ratio v . Other parameters of the system
are the cross-sectional area of the indentor 4 and the dimensionless parameter
£ . Theoretically, in approximation of infinitesimal strains, f=1 for a rigid
axisymmetric indentor penetrating an elastic body. The exact magnitude of £ is
still a highly discussed area; it is known to depend on the shape of indentor,
Poisson’s ratio, plastic deformation etc. — a discussion on the matter is given in
(Oliver and Pharr, 2004) where the magnitude £ =1.05 was suggested ‘as good
a choice as any”.

The notion of contact area A4 is very important to assessing the hardness
(term nanohardness is used for nanoindentation results) of the tested material:

P
H o= 15
y (15

It is important to note that A is not an area of the residual imprint; it is
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linked to the contact area under load. In effect, it corresponds to the projection of
the area of contact when indentor reaches depth 4__, i.e. for a case when the

max 2

depth, along which there is a contact with the indentor, is equal to %, (see Figure
8).

The current research into applications of nanoindentation is aimed at
assessment of additional mechanical properties or parameters. The level of
residual stress o, can be assessed using the following equation for a spherical

indentor with radius R (Fischer-Cripps, 2004):

4E 4 |a
O'RZO'Y—|:33;;}E. (16)

Nanoindentation can also be used to characterise fracture toughness of
materials (Kese and Rowcliffe, 2003), based on the scheme developed for
microindentation in 1980s (Lawn et al., 1980). For the known Young’s modulus
and hardness, the fracture toughness of the tested material can be expressed in

the following way:
E P
K =a|——, 17
. W/Hcgz (17)

where ¢, is the length of the radial crack, caused by indentation with load P .

Parameter ¢ is linked to geometry of indentor (for a cube corner « =0.04
(Field and Swan, 1995)).

The underlying formulae vividly demonstrate limitations of the used
approach: this scheme is applicable to isotropic materials with time-independent
behaviour. Many novel schemes of applications link results of nanoindentation
with detailed finite-element simulations that allow researchers — in many cases
by means of inverse analysis — to deal with more complex cases, such as
anisotropic materials (Bocciarelli et al., 2005). There are also modifications
aimed at alleviation of these limitations — an account for creep is introduced in
(Lucas and Oliver, 1999).

4.3 Examples of implementation of nanoindentation

There are various ways to use nanoindentation but — regarding limitations of the
method — the most suitable way is to use it for a comparative analysis. The latter
can be applied to quantify either the difference in properties of various
specimens or the scatter in the spatial distribution of the properties of a single
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Figure 11. NanoTest Platform: (a) general view; (b) schematic.

material due to its microstructure. This Section presents examples of both
approaches.

Effect of Ultrasonically-Assisted Machining. Ultrasonically-Assisted Machin-
ing (UAM) is a new technology based on superposition of ultrasonic vibration
with amplitude 15-30 um and frequency around 20 kHz on the movement of the
cutting tool (Babitsky et al., 2004). This vibration significantly improves
conventional cutting technologies resulting in reduction of cutting forces,
improved surface finish etc., allowing turning of hard-to-turn materials such as
nickel-based superalloy INCONEL 718. To study the difference between the
conventional turning (CT) and ultrasonically-assisted turning (UAT), it is
necessary to understand the extent of the effect of technology on the sub-surface
layers of machined specimens. Hence, nanoindentation tests were performed
with the NanoTest Platform made by Micro Materials Ltd, Wrexham, UK
(Figure 11) to estimate the layer affected by turning.

The specification of the range and sensitivity for the displacement and load
is shown in Table 1.The Berkovich indenter is used in all the tests.

In NanoTest Platform a load to the indentor is applied by means of a coil and
magnet located at the top end of the pendulum. The penetration of the probe into
the sample is monitored with a sensitive capacitive transducer. In order to
prepare a specimen for the nanoindentation analysis, parts of work pieces that
were machined with CT and UAT were placed facing each other and potted into
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Table 1. Specification of the NanoTest Platform.

Displacement range and sensitivity

Range 0-50 um
Noise-floor 0.025% of full-scale deflection
Theoretical resolution 0.04 nm

Load range and sensitivity

Maximum resolution better than 100 nN

Load ranges up to 0-500 mN

X/Y/Z resolution/travel 0.02 mm/50 mm

Analysis area 50 mm x 50 mm

epoxy resin as it is shown in Figure 12a. After polishing the produced specimen
was mounted into the NanoTest machine (Mitrofanov, 2004, and Ahmed et al.,
2006). The tests were carried out in an automatic mode with a total duration of
two days. There are three runs A, B and C, parallel to each other (vertical lines in
Figure 12b). Each of these lines goes from the conventionally machined part of
the specimen, crosses a thin separating layer of plastic between samples and then
goes through the workpiece sample machined with UAT. Each run consisted of
three parts: coarsely placed indents (with the distance of 50 um between two
neighbouring indentation points) in the regions distant from the machined
surfaces and finely placed indents (with spacing 10 um) in the direct vicinity of
the machined surfaces.

Each indentation point was produced with a constant load of about 10 mN
applied to the probe tip. The difference in the residual depth of the indent
produced with the probe is automatically recalculated into hardness and the
Young’s modulus of the corresponding indentation place as it is shown above.

Results of nanoindentation for INCONEL 718 machined with two turning
techniques (Figure 13) vividly demonstrate that at distances from the machined
surfaces larger than 100 um the measured levels of nanohardness converge to a
relatively low level that should correspond to that for the non-machined (as-
delivered) state of the alloy. Sub-surface layers are significantly harder for both
techniques, and both the level of hardness and depth of the affected layer are
higher for CT.
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Figure 12. (a) Tested specimens; (b) schematic of indentation points.
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Figure 13. Results of nanoindentation of INCONEL 718 for various machining
techniques.
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The average width of this layer is 70 % higher for the conventionally
machined specimen than for the ultrasonically machined one (85 wm and 50 wm,
respectively) while the average hardness of the hardened surface layer for UAT
(about 15 GPa) is about 60 % of that for CT (25 GPa). The through-depth scatter
in hardness values, i.e. peaks/troughs found in the graph for both CT and UAT
machined surfaces (Error! Reference source not found.), can be explained by a
combination of several factors, most probably, effects of microdefects, second
phase/precipitates or carbides/nitrides observed by SEM (Mitrofanov, 2004).

Effect of Porosity in Ceramic Coatings. Ceramic coatings are broadly used as
thermal barriers to protect various components from detrimental effects due to
high-temperature environment. Usually, such coatings have thickness of several
hundreds micrometres and are deposited on the surface of components using
various techniques. These deposition techniques result in specific microstructure
characterised by oblate grains and a level of porosity, usually in the range from
2% - 8%. The voids have varying dimensions and are randomly distributed in
coatings. Such microstructure results in significantly decreased magnitudes of
the Young’s modulus as compared with those for bulk ceramics. The presence of
voids results in local fluctuations in the level of elastic moduli.

A 200 pm-thick plasma-sprayed alumina coating on a metallic substrate was
used to study the random character of its mechanical properties. The typical
microstructure of this coating that has porosity 1.8% is presented in Figure 14
(Zhao, 2005).

0 20pm
—_

Figure 14. Microstructure of plasma sprayed alumina coating.
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(a) (b)

Figure 15. Young’s Modulus (a) and hardness (b) of alumina coating from
nanoindentation tests

Nanoindentation tests of this alumina coating were performed using the
NanoTest Platform (described above) for various levels of the applied load —
from 50 mN to 400 mN. The obtained results for both Young’s modulus and
hardness (Figure 15) vividly demonstrate a high spatial scatter in these
parameters (Zhao, 2005, and Zhao and Silberschmidt, 2006). The analysis shows
that they also depend on the level of the applied load: both the average levels of
parameters and their scatter decreases with the increase in the indentation load.
This can be naturally linked to the effect of the microstructure and the
penetration depth.

The lowest force corresponds to a low maximum penetration depth —
approx. 550 nm — that is considerably lower than the characteristic size of the
microstructural features. Hence, the obtained parameters do not account for the
properties reduction due to porosity and rather represent those for the bulk
materials. Larger deviations from the average values are linked to indenting
various microstructural features, e.g. intra-oblate areas. The increase in the
indentation load causes the increase in the maximum penetration depth — more
than 2000 nm for 400 mN, and, subsequently, the increased volume of response
to indentation. The latter causes, on the one hand, the reduction in the scatter in
the measured data due to increased representativeness of the assessed micro-
volume. On the other hand, the results for higher loads account for the effect of
porosity, which is now a part of the tested volume, on the Young’s modulus and
hardness (i.e. diminishing their values).
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5 Full field measurement techniques
5.1 Introduction

The aim of Section 5 is to introduce a broad picture of some of the major full
field techniques currently employed in mechanics of materials and structures,
and the use that an engineer can make of information they provide.

Many mechanical and structural engineers are familiar with the ubiquitous
strain gauge, which provides an inexpensive and reliable way to measure point-
wise surface strains in a wide range of materials. However, when multiple
measurements are required, e.g. for mapping a spatial strain distribution on a
structural component, full field methods become more suitable. There is
currently a plethora of full field measurement techniques that provide
displacement or strain distributions for structural parts under load, most of them
suitable for static and dynamic studies of mechanical phenomena in objects
ranging from nanometres to several meters in size.

Photoelasticity has been developed in the 1930s and is still used to visualize
strain/stress fields in transparent materials using the principle of stress-induced
birefringence. It mainly applies to flat samples under plane stress, but three-
dimensional photoelasticity is also possible either by using frozen stress
photoelasticity (achieved by initial stress freezing in the model and then
mechanically slicing it) or tomographic photoelasticity (using image processing
tomographic reconstruction or light sheet slicing and scattering photoelasticity)
(Ramesh, 2000, and Dally and Riley, 1991). The information on the stress field
is encoded in a fringe pattern that depends on the phase retardation between two
orthogonally polarized light beams propagating through the material. The
measured phase retardation is proportional to the difference between the
principal stresses on a plane perpendicular to the direction of propagation, and it
is also possible to determine the orientation of the principal stresses.

Moiré-based methods have been used for surface strain measurement for
more than half a century now and rely on the analysis of fringe patterns that arise
when a grating applied or projected onto the object under study is deformed and
superimposed (by geometric, digital or interferometric means) to a reference
unloaded grating (Bromley, 1956, Brandt, 1967, Durelli and Clark, 1970,
Sciammarella and Chawla, 1977, Rastogi et al., 1982, and Post, 1994). The
amplitude or phase gratings generally consist of parallel lines or a family of
parallel lines orthogonal to each other. Moiré systems are sensitive to
displacements perpendicular to the grating lines, with displacement sensitivity
being inversely proportional to the grating pitch.

The Grid method is based on the replication of a low spatial frequency (circa
10 lines/mm) amplitude grating onto the object under study. Instead of being
used to produce a moiré pattern this grating is imaged with a digital camera and
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lenses that can resolve the lines so that around 5 pixels are used to sample each
grating period. Then phase evaluation methods are used to extract the spatial
phase before and after deformation of the object, to finally convert the phase
changes in displacements.

The advent of the laser in the 1960s brought a formidable development of full
field measurement techniques based on Holographic Interferometry (Spetzler,
1972, Jones and Wyeks, 1989 and Sirohi, 1993) and then Speckle Interferometry
(Sirohi, 1993) and Digital Holography (Osten, 2007) in the 1970s and 1980s.
Two latter techniques took over the former thanks to technological advances in
imaging sensors and increased computing power that avoided the wet stage of
hologram development and enabled direct numerical analysis. Interferometric
techniques measure the optical phase delay between a reference beam and light
reflected off the object, with both beams coming from the same coherent source.
In the case of optically rough objects, where the roughness is of the order /4,

with A being the wavelength of light, a random interference pattern known as
“speckle” is produced, from which it is still possible to extract deterministic
phase changes due to object deformation. The optical phase is related to object
displacements through the geometry of the setup and the wavelength of the light
source used. Due to the short wavelength of visible light (400-750 nm) the
displacement sensitivity can be below /20 ~ 20 nm for rough surfaces and

around 1 nm or below for smooth specular surfaces.

Speckle Shearing Interferometry belongs to this family of techniques and
provides fringe patterns, in which the measured optical phase is proportional to
changes in the spatial derivative of the out-of-plane displacements or, in other
words, to changes in the slope of the object’s surface. In this technique, an image
of the object under study is coherently superimposed onto the same image
shifted along one specified direction. The sensitivity of the system is
proportional to the shift introduced and can be easily adjusted in most setups
usually by simply tilting a mirror (Sirohi, 1993). This feature and the fact that it
is robust against environmental disturbances such as vibrations and convective
currents make it very suitable for damage detection. Composite panels with
delaminations, for instance, are usually loaded using vacuum, infrared lamps or
even hot air guns.

Another technique, which evolved rapidly aided by advances in imaging
technology and computing, was Digital Image Correlation (DIC), now growing
strongly in popularity in the engineering testing community. DIC spun out from
the field of photogrammetry, image registration and Particle Image Velocimetry
in the 1980s, it is generally (but not necessarily) based on grey scale digital
images, triangulation and local correlation, and can provide 3D surface shape
and displacement measurements (Popp et al., 1973, Chu et al., 1985, and
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Kahnjetter and Chu, 1990). It does not rely on special light sources, as do
interferometric techniques, but on the way position information is retrieved from
one or multiple cameras viewing the same scene before and after a change in the
spatial configuration of the object or flow under study. The sensitivity is usually
expressed in fractions of pixels and it can be better than 1/100 of a pixel under
certain conditions. The displacement sensitivity therefore depends on the lateral
resolution of the imaging system.

Neutron Diffraction and X-ray Diffraction can provide strain/stress
measurements within the volume of materials with a crystalline structure. As a
material irradiated with neutrons or x-rays is mechanically loaded, the lattice
parameters related to the inter-atomic distances change, which results in shifts of
the diffraction peaks. These techniques are usually based on point measurements
but full cross sections and volumes can be measured by scanning the
measurement gauge volume across the material. Measurements are expensive
(£3000/day as at 2005 at the Engin-X facility, Rutherford Appleton Laboratory,
UK) as the required high intensity neutrons are generally produced at spallation
source facilities or nuclear reactors and x-rays at synchrotron sources, but new
technologies such as free electron lasers are leaving the drawing board (Service,
2002) and promise to become the new competitors in the x-ray generation.

The above mentioned techniques constitute just a sample of a much broader
collection, enriched by the fact that advances in some of them foster advances in
others. For instance, fringe analysis methods, which are mathematical tools to
extract phase and displacement information from fringe patterns wherever the
fringes come from (photoelasticity, moiré, interferometry, etc.) are common to
different techniques and have become an area of research on its own (Osten,
2005). Another important refinement of phase measurement methods is their
ability to produce enough data, by using phase shifting methods (Huntley, 2001),
to extract both the absolute value and the sign of the phase and therefore of the
associated displacement field.

5.2 Experimental validation of numerical predictions

There are a number of ways in which full field measurements assist and advance
mechanical engineering research. The straightforward use of 2D distributions of
displacements and strains is to identify weak points and regions of strain/stress
concentration in structural components, as well as regions of low strains/stresses
that could be removed to reduce the material’s use. This way of feeding back
information to design engineers has its drawbacks, generally linked to time, costs
and the need for experimental facilities. For these reasons, the role of numerical
modelling has become more and more important and predictions obtained using
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the Finite Element Method (FEM) can now drive the design stage. However,
unless engineers fully validate their FEM models against experimental
measurements (to check their assumptions and geometrical and material
properties of the elements used), they will not be in a position to trust their
predictions. This is another role of full-field techniques.

In processed metals, residual stresses are frequently produced by localised
plastic deformation and in polymers a similar effect may occur by localised
visco-elastic or visco-plastic deformation. Differential expansion or contraction
in a bonded structure is also a major source of residual stress. In an adhesively
bonded joint differential expansion can be caused by changes due to chemical
reactions, temperature and moisture (or other absorbed solvent) content, leading
to curing, thermal or hygroscopic stresses, respectively. In most occasions it is
not possible to distinguish between each other, but their consequence is that there
is some residual stress in the joint components before any mechanical load is
applied.

The following example aims to illustrate how full-field measurement
methods can be used to validate FEM models by straightforward comparison of
measured and predicted results and without using any adjusting parameters
(Jumbo et al., 2004). On the one hand, residual strains and total internal strains
were measured in the aluminium (Al) adherend of an aluminium/carbon fibre
reinforced polymer (AI/CFRP) double lap shear joints using neutron diffraction.
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Figure 16. Schematic of a double lab joint. RG represents the reflection
grating replicated on it for moiré interferometry measurements.
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On the other hand, full field surface strain owing to the mechanical stresses alone
was measured using Moiré Interferometry. Experimental results were compared
against FEM predictions obtained by using the known geometry of the joints,
independently measured mechanical properties and the applied loads/thermal
gradients during the curing process.

Validation of residual stress predictions with neutron diffraction. Figure 16
shows a double-lap adhesively bonded joint. The outer adherends material used
was unclad 7075-T6 aluminium alloy and the middle adherend was uni-axial
IM7/8552 CFRP. The adhesive used in the experiments was FM73 Cytec, 1998).
The dimensions of the sample were as follows: A =3 mm, B =3 mm, C =25
mm, D =25 mm and E = 250 mm.

The Al/CFRP double-lap (DLS) joint full geometry was modelled with 44840
eight-node, full integration 3-D brick elements. MSC.Marc element 7 with
assumed strain formulation was used for the adhesive and aluminium substrate
while element 149, which is a 3-D, eight-node composite brick element, was
used for the CFRP. In numerical simulations, the load was applied to the joint
via a pin, as in the experiments, using a rigid-to-deformable body-contact
analysis, with the pin as the rigid body and the joint as the deformable body. For
analysis of the thermal residual stresses, an initial condition of 120°C was
applied to the models and a uniform cooling rate was applied for a change in
temperature of 100°C. A quasi-static load of 5 kN was applied along the axis of
the specimen for measuring surface strains on the grating region.

Figure 17 shows the FEM predictions and Neutron Diffraction measurements
of the longitudinal (&) and peel (&, ) thermal residual strains in the AI/CFRP

joint for different positions along the middle line of the outer aluminium
adherends. Within the accuracy limits, good agreement is observed between the
measured and predicted strains in four out of six points measured in Figure 17
(a) and in four out of five points in Figure 17b. The maximum predicted
longitudinal residual strain of 4.5x107 agrees well with the measured values at
the middle of the joint length (x = 6 mm). These are well in excess of the
maximum values of circa 107 strain predicted and 2x10™ measured for the
aluminium double-lap joint, and confirms that hybrid joints with a high
temperature curing adhesive will have considerable residual stresses before the
application of any load. These stresses should therefore be taken into
consideration before any realistic modelling of applied load can take place.

Validation of surface strain predictions with moiré interferometry. In Moiré
Interferometry, symmetric coherent illumination beams intersect at an angle onto
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the sample in order to generate a virtual grating with twice the spatial frequency
of a diffraction grating replicated onto the sample. A schematic view of the
moiré interferometer with horizontal (x-axis) sensitivity is shown in Figure 18.
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Figure 17. Neutron diffraction results and FEA predictions of longitudinal and
peel strain for an AI/CFRP joint.

Illumination angles of 18.6° were used for sample gratings of 600 lines/mm
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Figure 18. Moir¢ interferometer showing: grating beam splitter G;
piezoelectric transducer PZT for phase shifting; steering mirrors M,; sample
with replicated grating S; Field lens L; Imaging lens L, and camera C.

and an illumination wavelength of A =532 nm. Quantitative displacement fields
were obtained across the replicated grating by evaluating the optical phase
change between the reference and loaded states of the sample. Phase changes of
2n are produced for displacements of half the pitch of the sample grating, and are
therefore equivalent to an in-plane displacement of 0.83 um along the x-axis (see
Figures 16 and 18). While displacement fields are experimentally measured,
strain is evaluated by numerical differentiation of the displacement fields.

Phase shifting was implemented by moving the grating beam splitter along
the x-axis with a piezoelectric transducer. This provided the magnitude and sign
of the displacement field u(x, y) (u being the sample’s displacements along the x-
axis), which was numerically differentiated to obtain the distribution of strain
¢.(x,y) shown in Figure 19a. Figure 19b shows the FEM predicted value of

gxx('x’ y) N
Figure 20 shows cross sections €_(x,0), &, (x,~3.4) and &_(x,3.4) of the

xx

longitudinal strain distribution En(x, y) as measured with moiré interferometry

and predicted with an FEM model assuming uniform loading. This study has
shown that in a joint with dissimilar adherends such as the Al/CFRP joint, the
predicted and measured strains are in close agreement in their spatial distribution
and magnitude. Within the accuracy limits of measurements using neutron
diffraction, the experimental work has confirmed the FEM predictions and
shown that significant strains exist in an A/CFRP DLJ before the application of
any load. It is therefore important that these strains are considered in any
prediction of in-service joint behaviour.
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Validation of surface strain predictions within the adhesive layer using high
magnification moiré interferometry. Reliable predictions of strain/stress
distributions in the adherends of adhesive joints can be obtained with
appropriately validated FEM models. Bonded joints, however, fail due to
fracture of the adhesive line, which is the weakest point in the joint. High-
magnification moiré interferometry has been used to measure strain distributions
within the adhesive line in the fillet region of AI/Al and AI/CFRP joints under
uniaxial load along the x-axis. A dual sensitivity interferometer similar to the one
shown in Figure 18 was used but with an extra pair of illumination beams in the
yz plane to provide sensitivity along the y-axis. This requires crossed lines
gratings replicated onto the region of interest, which in this case was of about 1.7
mm x 0.8 mm. Fields of displacements u(x, y) and v(x, y) (along the x- and y-
axis, respectively) were measured, from which all the components ¢, &, and

xx 2

v, of the 2D engineering strain tensor were obtained through numerical

differentiation. The illumination angles, grating frequency and illumination
wavelength were the same as those used in the system described in the previous
section, leading to the same displacement sensitivity of 0.83 um for every 2n rad
phase change.

The FEM package MSC Marc was used to model the bonded joint in the
small region of interest of the adhesive line in the fillet area. In order to reduce
the complexity of the model and computational demands, the model was
simplified as much as possible without compromising the results, as discussed in
(Jumbo et al., 2004). The measured adhesive fillets were included and the full

(@) (b)

Figure 19. Comparison between moiré interferometry results (a) and FEM
predictions (b) of longitudinal strain & obtained at the surface of the CFRP/Al

joint under a tensile load of 5 kN.
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(a) (b)

Figure 20. FEM mesh for Al/Al double lap joint: (a) global mesh; (b) local
refinement

joint geometry was modelled for each joint to account for manufacturing
misalignment in individual samples.
The joints were modelled using 8 node full brick 3D elements with assumed
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Figure 21. Comparison of moir¢ interferometry and FEM longitudinal strain
distributions across the overlap length of the DLJ.
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Figure 22. Engineering shear strain distribution y, (x, y) in adhesive layer of
Al/Al double lap joint under 7 kN tensile load: (a) measured with high-
magnification moiré interferometry; (b) predicted with FEM model, which
includes local refinement and plastic deformations.

strain formulation for the adhesive and aluminium adherends and 8 node 3D
composite brick elements for CFRP adherends.

Owing to the high resolution of strains required over a small area, a sub-
modelling approach, termed structural zooming in MSC Marc (MSC, 2005), was
used to improve the strain results in an efficient way. The structural zooming
analysis involves a global model to derive the boundary conditions for a highly
refined local model to obtain refined results in the region of interest. This
procedure can be repeated as many times as desired and any local analysis can be
the global analysis for the next level of refinement. Figures 21a and b show
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respectively the global mesh and the local mesh refinement used in the fillet area
for a local model. For each joint, a 7 kN load was applied along the x-axis and
measured mechanical properties were used for the adherends and the adhesive
(Jumbo et al., 2004).

The adhesive line thickness was around 200 pum. Figure 22a shows the
engineering shear strain y = measured in one of the adhesive lines in the fillet

area of an Al/Al double lap joint under a 7 kN uniaxial load. Figure 22b shows
the FEM prediction of the same strain field under the same loading conditions,
using local refinement and considering plastic deformation.

There is a great similarity between the measurements and the FEM
predictions, both of them showing a region of shear strain concentration within
the adhesive layer and next to the outer adherend. An optical micrograph in
Figure 23 shows that this is indeed the region at which the crack initiates.

5.3. Damage detection and characterization

Damage detection is another common application of full field techniques and
usually requires the object to be loaded by mechanical, thermal, or other means
that will excite a mechanical response of the damage, which is different to the
response of the undamaged material. Photoelasticity using coating methods,
moiré-, speckle- and shearing- interferometry can effectively provide the
necessary mapping of strain/stress fields in a broad range of materials such as
glass, metals, ceramics, composites or polymers. Figure 24 illustrates the
principle in the particular case of a carbon fibre reinforced polymer (CFRP)

Figure 23. Crack through the fillet and adhesive line, initiated at the region of
stress concentration predicted by the models and measured with moiré
interferometry (arrow).
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Figure 24. Laminate with internal delaminations in a vacuum chamber before (a)
and after (b) reducing the pressure of the vacuum chamber that houses the
sample.

panel with an artificial delamination made by embedding a thin Teflon film
under the first ply. The panel was subjected to a change in environmental
pressure, and temporal phase shifting speckle interferometry was used to
measure the time-resolved evolution of the deformation as the pressure changed
in a chamber (Maranon et al., 2007, and Davila et al., 2003). Figure 25 shows a
schematic of the optical setup used. The displacement field due to surface out-of-
plane deformation was measured and it is shown in Figure 26. In this case, with
the panel containing a circular artificial delamination, the same experimental
setup was used to detect real delaminations caused by impact and to study
various improvements of the data processing algorithms.

Low-noise, high-sensitivity full field measurements like these can be used to
characterize the damage. The inverse problem of characterization can be
formulated as an optimization problem, in which the shape, lateral position
(along the x- and y-axes) and depth of the delamination are estimated by using
measured displacements produced by a known load. The more familiar direct
problem consists of calculating the displacement field of the panel surface when
the mechanical properties of the panel, the depth, position and size of the
delaminations and the applied loads are all known. The procedure, illustrated in
Figure 27, is as follows:

0- A panel with an unknown delamination is vacuum-loaded and the
displacement field is measured.

I- An edge detector operator is used on the measured displacement
distribution to find the edges of the delamination.

2- An ellipse is fitted to the detected edge in order to reduce the
parameters that describe the shape (data reduction).

3- Central geometric moments are evaluated from the displacement
measurements. This is another data reduction stage in which a small
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Figure 25. Temporal phase shifting optical setup for time-resolved speckle

interferometry showing Nd:YVOj laser, beam splitter BS, mirrors M, phase

modulator P for phase shifting, phase modulator driver D, lenses L, pin hole
spatial filters PH, frame grabber F, personal computer PC, sample S and vacuum

chamber V.

number of parameters are found to describe the deformation. Even
though this stage is not strictly necessary, it speeds up the solution of
the problem without compromising the physical significance of the data.
A finite-element model is constructed based on known material
properties, geometry of the panel, load applied and the parameters
identified in step 2 and an initial guess of the delamination depth and
internal pressure.

Central geometric moments are evaluated for the predicted FEM
displacements.

Central geometric moments evaluated from measurements and from
FEM predictions are compared and a cost function is evaluated. The
FEM model is updated with new parameters generated by using an
adaptive Genetic Algorithm (GA). This process is repeated until the
cost function is minimized, at which point the delamination parameters
are obtained.

By following this methodology, Maranon et al. (2007) found that the planar
location of delaminations was predicted with accuracy greater than 95% in nine
out of ten samples studied. Even though the depth of the delaminations was
predicted correctly only 50% of the times, in those cases where the delamination
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Figure 26. Displacement field due to embedded artificial delamination in CFRP
measured with temporal phase shifting speckle interferometry.

was not predicted accurately, the identification methodology reported depths that
were close to the real value by just one interlaminar layer above or below of the
correct location. Results for the pressure of the air trapped inside of the
delamination are inconclusive, as there are no experimental measurements or
analytical calculations to verify their correctness.

One interesting conclusion from this work was that the problem of
delamination depth characterization is not well posed and multiple solutions may
exist that result in the same values of the cost function. In other words, different
delaminations can result in the same response: a big and deep delamination can
result in the same (in the sense that surface measurements alone cannot tell the
difference) displacement distribution than a smaller and shallower delamination.

In Section 5.5 we will discuss one way to overcome this problem, which
consists in measuring the displacements in the whole volume of the material.

5.4. Identification of material constitutive parameters
Once the displacement fields of an object under known loads have been

measured, they can also be used to find the constitutive parameters of the
material. In the general case where the stress/strain fields are heterogeneous due
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Figure 27. Methodology for characterization of delaminations in composite
panels using Finite Element Updating (FEMU) and Genetic Algorithms.

to boundary conditions, specimen’s geometry, localized plasticity or damage, the
inverse problem can only be solved if full-field data is available. Finite Element
Method Updating (FEMU) (Pedersen and Frederiksen, 1992) and the Virtual
Fields Method (VFM) are two approaches currently used to obtain the
constitutive parameters from 2D full-field strain measurements. In the former,
the direct problem is solved by means of the Finite Element Method as illustrated
in Section 5.3 by using initial guesses of the unknown parameters. Simulations
are performed iteratively until the displacements computed at various nodes of
the mesh match their experimental counterparts. In the VFM, for measured strain
fields, the stress fields are expressed as a parameterised function of the unknown
constitutive parameters. The principle of virtual work is then applied so that the
stress fields verify the global equilibrium of the structure. Finally, the use of
several virtual fields yields a system of equations that involve the unknown
parameters leading to the solution of the problem (Grediac, 1989, Pierron, 2000,
and Grediac et al., 2006).

The VFM has matured in the last two decades to the point, in which a more
robust and efficient characterization is performed as compared to FEMU. By
using the simulated 2D surface displacement/strain data, Grediac and co-workers
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illustrated how the VFM can be used to find elastic bending rigidities of thin
anisotropic plates (Grediac and Vautrin, 1990), in-plane anisotropic stiffnesses
(Grediac et al., 1994, 1999, and Grediac and Pierron, 1998), through-thickness
moduli of thick composite panels (Grediac et al., 2001) and elasto-plastic
constitutive parameters (Grediac and Pierron, 2006). The VFM was also tested
against FEMU approaches in terms of computational efficiency and robustness
to noise in the displacements/strain data (Avril and Pierron, 2007).

Different full field measurements techniques have been used to provide the
necessary input data to characterize constitutive parameters of different materials
with the VFM. Deflectometry was used to measure 2D displacements to find the
damping material properties of isotropic vibrating plates (Giraudeau et al., 2006).
The grid method was also used to measure 2D displacements to find stiffness
parameters of glass epoxy beams (Avril and Pierron, 2007) and Digital Image
Correlation and FEMU were used to measure elasto-visco-plastic parameters on
steel specimens at high strain rates (Avril et al., 2008).

Even though 2D surface measurements can be sufficient to characterize
material’s constitutive parameters such as the ones mentioned above, in order to
map the spatial distributions of those parameters full field 3D measurements are
required. This is relevant when heterogeneous materials are studied at a scale, in
which different constituents are resolved, e.g. fibres and the matrix in a
composite material. In the next section we discuss some exciting new
developments in experimental techniques that, together with VFM or FEMU
approaches, could enable spatially resolved material characterization in partially
scattering materials.

5.5. Towards the development of suitable full-field measurement
techniques for spatially resolved identification of constitutive
parameters

Semitransparent scattering materials are widely encountered in industrial
applications (adhesives, polymers, composite materials) and biological systems
(tissues such as skin, cartilages, cornea) and their function is often critical in the
performance and structural integrity of the system they belong to. There has been
a long history of research into the mechanical and functional behaviour of these
materials, but in many cases they are not fully understood due to
1) the inherent complexity of the materials that cannot always be
modelled with continuum mechanics assumptions, as in the case of
many composite materials and biological tissues,
(i1) the limitations of current experimental techniques to measure the
distribution of the constitutive parameters of the materials within
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their volume with enough sensitivity and spatial resolution, in order
to relax the need for more simplistic bulk properties assumptions.

As discussed in previous Section, displacement fields can be used to
evaluate the constitutive parameters of an anisotropic material by solving an
inverse problem. In general it requires the measurement of three-component
displacement fields (to over-determine the problem) under a set of known
boundary conditions, and the geometry of the sample (Avril and Pierron, 2007).
The inverse problem is usually posed as identification of the most representative
components of the material’s constitutive matrix. Generally, this is due to
insufficient spatial resolution and/or incomplete multi-component displacement
mapping, as is the case for experimental methods that only provide surface
displacement fields. Therefore, techniques that allow us to measure multi-
component displacement fields inside the volume of the material will enable us
to determine non-uniform distributions of constitutive parameters, which is
essential to accurately predict the mechanical behavior.

A broad range of methods to measure internal structure and displacement
fields have been developed in the last few decades such as neutron and X-ray
diffraction, Photoelastic Tomography (PT) (Abe et al., 1986, and Abe et al.,
2004), Phase Contrast Magnetic Resonance Imaging (PCMRI) (Steele et al.,
2000, and Draney et al., 2002), and 3-D Digital Image Correlation using data
acquired with X-ray Computed Tomography (XCT) (Bay, 1999) and Optical
Coherence Tomography (OCT) (Schmitt, 1998, and Fercher et al., 2003). Each
technique has a restricted range of materials to which it can be applied: PT, for
example, is suitable only for materials that exhibit photo-elasticity; PCMRI
requires significant water or fat content in the sample, and neutron diffraction
relies on the crystalline structure of the material. For many technologically- and
medically-important materials the existing techniques are often either non-
applicable, have insufficient spatial resolution or are too insensitive.

OCT is an exciting technique that provides depth-resolved microstructure
images primarily for medical applications. It is based on a Michelson
interferometer and a low temporal coherence broadband source and is usually
implemented in the time domain, in which case the reference mirror is scanned to
provide cross-sections of the sample. It can also be realised in the spectral
domain (SOCT) where all the information for a ‘slice’ inside the material is
registered simultaneously by using a spectrometer, an area photodetector array
and no scanning devices. A 2D interferogram is recorded with depth encoded as
spatial frequency along the wavelength axis of the spectrometer, rather than as a
function of time (Dressel et al., 1992). The microstructure in the 10°-10° m
range is then extracted from the spectral magnitude of the Fourier transform
along the wave-number axis.

Although digital correlation methods can be used to quantify displacement
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fields from OCT microstructure images obtained before and after deformation,
the displacement sensitivity would be limited by the depth resolution of typically
10 um or more, with 1 um only achievable with ultra-high resolution systems.
This constrains the ability to detect and quantify deformation fields due to small
loads (mechanical, thermal or chemical) even for compliant materials. It was
recently demonstrated that optical phase information can be extracted from OCT
data to measure displacements with a sensitivity of order 10 nm, i.e. some 2-3
orders of magnitude better than the intrinsic depth resolution. Three main
different methods that make use of phase information to measure depth-resolved
displacements have been used and these will be referred here as Phase-Contrast
(PC) methods (Vakoc et al., 2005). These are:

1) Tilt Scanning Interferometry (TSI);

2) Wavelength Scanning Interferometry (WSI);

3) Phase Contrast Spectral Optical Coherence Tomography (PC SOCT)
and will be briefly described below. Doppler OCT, proposed in 1997, also makes
use of the optical phase information for velocity mapping of e.g. retinal blood
flow (Chen et al., 1997).

Measurement of depth-resolved displacement fields in semitransparent
materials using optical phase information. TSI is realised by tilting the
illumination wavefront from a monochromatic source whilst a sequence of
interferograms records depth-encoded temporal carrier signals (Ruiz et al.,
20006). TSI (Figure 28b) can be adapted to any laser source and controlled tilting
of the wavefront is technically much easier than tuning the wavelength of a laser
as in Wavelength Scanning Interferometry (WSI) (Figure 28a), a sequential
version of spectral OCT that can also deliver depth-resolved displacement fields
(Ruiz et al., 2004, 2005). For example, closed loop piezo-electric tilt stages are
now available with sub-urad resolution that can scan a beam through 100 mrad
in a fraction of a second. At an incidence angle of 45°, and a wavelength of 532
nm the effective depth resolution in TSI is ~30 um. To achieve the same
resolution, a WSI system would need a tuning range of ~30 nm, requiring mode-
hop-free dye or Ti:sapphire lasers, which operate on multiple longitudinal modes
with the potential for major speckle decorrelation.

TSI is appropriate to study static problems and it can provide 3-D
distributions of all displacement components within a scattering material, with
high sensitivity and high spatial resolution. As an example of this approach,
depth-resolved displacement measurements with sensitivity to out-of-plane and
one in-plane displacement component have been made within a point-loaded
polyester resin beam (Ruiz et al., 2006). The top row of Figure 29 shows the
depth-resolved in-plane wrapped (2 modulus) phase change (proportional to in-
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Figure 28. Generation of depth-encoding frequency shifts by: (a) tuning the
wavelength of the light source through a narrow range (Wavelength Scanning
Interferometry); (b) tilting a monochromatic wavefront (Tilt Scanning
Interferometry).

plane displacements) starting at the object surface z = 0 mm (left) in steps of 1.74
mm down to z = 5.22 mm (right). The wrapped out-of-plane phase change
distribution for the same depth slices are shown in the bottom row of Figure 29.
PC SOCT is fundamentally analogous to WSI, the main difference being that
in PC SOCT a low cost broadband source is used and the interference signal is
present along the wavelength axis of a spectrometer detector, rather than along
the time axis of a sequence of frames, as in WSI. The key feature of PC SOCT is
that it is based on “single shot”, which enables fast acquisition of instantaneous
deformation states to study dynamic events and follow the temporal evolution of
displacement and strain fields with nanometre sensitivity within a slice in the
sample. It provides 2D cross sections of the material, usually perpendicular to ,
the surface of the sample. Out of plane sensitivity is straightforward to measure
and in-plane sensitivity has been recently achieved. Depth-resolved
displacements were measured by means of PC SOCT achieving a depth
resolution of circa 30 microns and a displacement sensitivity of circa 30 nm,
limited by the phase noise (De la Torre-Ibarra et al., 2006). PC SOCT has
exciting practical advantages over WSI and the potential to expand the
capabilities of SOCT to map displacement and strain fields with nanometre
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Figure 29. In-plane (top row) and out-of-plane (bottom row) wrapped phase-
change distribution for different slices within a simply supported polyester resin
beam under pin loading (coordinate of pin is approximately (2, -2). Black
represents -1 and white +1t.

sensitivity within the microstructure of in-vivo samples.

Polarization Sensitive Optical Coherence Tomography (PSOCT) is another
powerful new technique which is finding interesting applications in mechanics of
materials (de Boer et al., 1998, de Boer and Milner, 2002, Yasuno et al., 2003,
Strakowski et al., 2008, Stifter et al., 2003, 2007, 2008, Wiesauer et al., 2005,
2006, 2007, and Stifter, 2007). It combines depth-resolved imaging capabilities
of OCT with photoelasticity principles in such a way that the phase retardation of
orthogonal polarization components is measured at each point in a slice through
the material. As this retardation is proportional to the difference of principal
stresses in a plane perpendicular to the observation direction, it is possible to
map depth-resolved stresses. It would not be surprising to see a merging of
polarization-sensitive with phase contrast OCT methods, to combine their
working principles and different sensitivities in a single technique.
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Abstract This review paper outlines several formulations for
lattice structures where dynamic lattice Green’s functions play an
important role in analysis of localization near defects as well as frac-
ture in structured media. The mechanism of dissipation discussed
here is natural for lattices modelling structured media. The prop-
erties of waves generated by cracks, and the exponentially localized
vibration modes near small defects are linked to spectral properties
of Bloch-Floquet waves in undamaged periodic media. The results
outlined in this review paper are based on the work by Slepyan
(2002), Movchan & Slepyan (2007), Mishuris et al. (2007, 2008).

0.1 Introduction

Micro-nonuniformity of structured media results in the wave disper-
sion and consequently filtering and polarization phenomena observed in ex-
periments. Another important feature of structured materials is the local-
ization of vibrations, which may occur around defects in a periodic structure.

“Waves in lattices” is a classical topic, which is well addressed in the
books by Brillouin (1953) and Maradudin et al. (1963). Lattice models were
also used successfully in Martinsson and Movchan (2003), Jensen (2003),
Cai et al. (2005) to design photonic/phononic crystal models based on the
mass-spring interactions within periodic structures.

The range of applications for models, describing localized vibrations,
extend from solid state physics problems dealing with disorder in atomic
lattice structures to the design of photonic crystal fibres where localization
occurs within the optical frequency range.

In photonic crystal structures, the exponentially localized defect modes
occur naturally when the frequency is chosen within the stop band inter-
val and a finite size defect is introduced into the structure. The analytical
and numerical models for problems of this type are described Poulton et al.
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(2003), where rapidly convergent series approximations for band gap Green’s
functions were constructed and used to characterize the defect modes. A
significant progress has been made in modelling and design of photonic band
gap materials, as discussed in Yablonovitch (1987, 1993) and John (1987),
which was motivated by the recent advance in the technological develop-
ments of the photonic crystal fibres.

The displacement within the lattice can be written in terms Green’s
functions for a general type of external load. Dynamic lattice Green’s func-
tions for frequencies within the pass bands were studied by Martin (2006).
For the case when the frequency has been chosen within the stop band
range, the analysis of Green’s functions has been published by Movchan
and Slepyan (2007); this study shows the way to model exponentially lo-
calized defect modes created by a finite change of elastic stiffness or mass
within the structure. It also addresses the notion of the depth of the band
gap characterizing the rate of decay of exponentially localized vibration
modes. Particularly new geometries of localized waveforms, referred to as
the star-shaped localized solutions in lattices, are discussed in Slepyan and
Ayzenberg-Stepanenko (2007).

In continuum models of cracks, singular integral equations can be
used as a mathematical tool for description of the elastic displacement field;
the kernel functions of such equations are represented via derivatives of
Green’s functions. Similar formulations are valid for the discrete systems.
For certain geometries, the problems can be formulated in the form in-
volving Fourier transforms of the unknown functions representing displace-
ment or tractions. Functional equations of the Wiener-Hopf type for dis-
crete systems involving semi-infinite faults (cracks) are discussed in detail
in Slepyan (2002), this analysis includes both scalar and vector formulations
for dynamic lattice structures. The paper by Slepyan (1981) presented the
first analytical solution of a fracture model for a linear spring-like lattice
in two dimensions. This work was followed by a series of publications on
analytical models in dynamic spring-like lattice structures, which includes
Kulakhmetova et al. (1984), Fineberg et al. (1991, 1992), Marder and Liu
(1994), Marder and Gross (1995), Marder and Fineberg (1996), Sharon et
al. (1996), Kessler (1999, 2000), Kessler and Levine (2001, 2003), Slepyan
(2001a,b; 2005), Heizler et al. (2002), Slepyan and Ayzenberg-Stepanenko
(2002, 2004, 2006).

The main difference between continuum and discrete models of frac-
ture is related to the behavior of stress near the crack edge. While a crack
in a continuous medium is characterised by the square root singularity of
the stress components near its vertex, the crack growth in lattice structures
is considered as a result of breakage of individual bonds within the lattice;
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there is no crack edge singularity for stress in lattices. Dynamic features
of the lattice structures with cracks are seen even when crack propagate
quasi-statically - every bond rapture is accompanied by the discrete pulses
and hence leads to the oscillations within the lattice. In turn, this may
influence the direction of the propagating crack as well as the propagation
speed. Models addressing these issues were studied in Slepyan (2000, 2002)
and Mishuris et al. (2007, 2008, 2008a).

The plan of the present review paper is as follows. Section 0.2 ad-
dresses the notion of band gap Green’s functions. This material is based on
the recent work by Movchan and Slepyan (2007), and it concerns with the
modelling of exponentially localized defect modes within lattice structures
with impurities. Further, in Sections 0.3 and 0.4 we consider dynamic model
problems of fracture in the lattice subjected to anti-plane shear deforma-
tion. The material of Section 0.3 is based on the results of Mishuris et al.
(2007) and incorporates a semi-infinite crack in an inhomogeneous lattice,
which includes two types of particles of different mass. The structure is
chosen to model a stratified medium with the layers aligned along the hori-
zontal direction. Such a lattice possesses a stop band within a finite range of
frequencies for harmonic waves in the vertical direction. For this problem,
we illustrate a general algorithm applicable for a wide range of lattices with
cracks and reduce the mathematical formulation to the functional equation
of the Wiener-Hopf type. We outline the possible mechanism of dissipa-
tion linked to the energy carried away from the crack by the high frequency
waves. Another model of a “double fault” in the harmonic lattice, discussed
in Section 0.4, introduces a configuration, which can be considered in the
framework of the boundary layer approximations for a pair of two cracks in
the continuous solid. This material follows the recent work by Mishuris et
al. (2008). We also show the way to use the discrete lattice approach in or-
der to resolve certain paradoxes, which occur naturally in some asymptotic
models in continuous media.

0.2 Stop bands and localization within discrete dynamic systems

Consider a periodic linear lattice. Each particle has a unit mass and
is connected to neighbouring particles by elastic springs, and it moves in the
anti-plane direction according to the second Newton’s law. The motion is
assumed to be time-harmonic, with the radian frequency w. Let us consider
the Fourier transform u®" (k) of the displacement amplitude with respect to
the spatial variables; here k stands for the Bloch parameter which takes
values in the reciprocal space. For the sake of simplicity, we look first
at a linear, single dispersion-branch system, where homogeneous Fourier-
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transformed equation of motion is written in the form
[L(k) = w?Ju” (k) =0, (1)

where L(k) > 0.

It is natural for periodic discrete systems to exhibit filtering proper-
ties, and in particular to possess stop bands of a certain frequency range.
Assume, there exist stop bands {w:w < w_} and {w : wy < w} so that for
such frequencies no sinusoidal waves exist in the lattice structure. Corre-
spondingly, the pass band frequencies are {w : w_ < w < w4 }. For the stop
band values of frequency w, equation (1) has no nontrivial real solutions k.

Let us load the system by applying a unit force to a particle located
at the origin (z = 0) at a frequency w within the stop band; for the dis-
crete lattice, the corresponding solution is not singular, and we denote the
displacement at the origin by U = u(0), which can also be obtained via the
inverse Fourier transform of

1

uf (k) = T =2 (2)

We note that within the stop band range the displacement field is exponen-
tially localized; U > 0 when 0 < w < w_, and U < 0 when w > w_..

Next, instead of applying a force to a single particle within the lattice,
we perturb the mass of this particle, and formally replace the force by the
inertia of the additional mass. Using the notation M for the perturbation
of the mass of the central particle and applying (1) we deduce

Mw?U

uF(k‘):m.

(3)
Equations (2) and (3) yield that that for frequencies within the stop band
range, there exists a localized waveform coincident with the Green function,
when the perturbation M of mass of the central particle is chosen in the
form

_ L
QU

where 0 = w?. The notation  will have the same meaning in the further
text below. It follows that M > 0 when 0 < w < w_, and M < 0 when
w > wy. Although for high frequencies the localized vibration modes occur
when M < 0, the total mass of the central mass remains positive, i.e.
14+ M >0.

The ideas described above are applicable to a wide range of prob-
lems for continuous and lattice structures. In particular, they are still valid

M (4)
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in analysis of localized vibration forms in multiple vibration-branch sys-
tems. Examples of such systems incorporates inhomogeneous periodic lat-
tices, where the mass of particles or stiffness of bonds may vary within an
elementary cell of periodicity.

A chain of masses on an elastic foundation

First, we illustrate the ideas outlined above for the physical example involv-
ing a uniform chain consisting of a periodic array of particles of the same
mass, connected by identical elastic bonds. It is assumed that the bonds
are massless, and that each particle is supported by an elastic foundation of
stiffness ». The system is normalized in such a way that the particle mass,
the bond stiffness and the cell size are defined as unity.

When a unit force of the radian frequency w is applied to the mass
located at the origin, the application of the discrete Fourier transform to
the equations of motion yeilds

[ +2(1 — cosk) —w?ul (k) =1. (5)

This lattice structure has a finite width pass band {w : w_ < w < wy},
where

wi =V4+ 3 and w_ = /5, (6)

and the localized waveforms may exist when 0 < w < w_ or w > wy.
When w > /4 + 3, the amplitude u(m) of vibrations of the mass at
x = m is evaluated as follows

9—Im|

u(m) = — N R R (\/(Q —30)2 —4(Q — )

Im|

—(Q—%—Q)) . (7)

Indeed, the expression (7) shows that the field is exponentially localized.
If the action of the point force is replaced by the inertia associated
with the perturbation M of mass at x = 0, then according to the algorithm
described above we deduce
1 V(Q =52 —4(Q - »)

M = = for Q=w?>4 .
u(0) O or w* >4+ (8)

We note that M is negative, and hence the localized oscillations exist for
w > /4 + s if one mass within the chain is lighter than the others: 0 <
1+ M < 1.
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For sufficiently small frequencies 0 < w < /7 the application of the
unit force to the mass at © = 0 yields the exponentially localized solution
9—Im|
NCEIEE P

VoG a) " )

and as before the action of the unit force can be replaced by the inertia of
an additional mass placed at x = 0. The positive perturbation M of the
mass is given by

1 Ve =—Q)2 +4(x - Q)

M:Qu(O): a >0 where 0 < Q<. (10)

u(m) =

(%—Q+2

Indeed, in order to obtain the localized waveform by increasing the mass at
the origin we require the presence of the elastic foundation. If the elastic
foundation is removed, so that s is replaced by zero, then the low frequency
band gap disappears, and the increase of mass would not create a desired
effect of localization.

Localization in a non-uniform lattice

We consider a periodic one-dimensional discrete system consisting of parti-
cles of two types linked by liner elastic springs. An elementary cell of this
periodic structure contains two masses, m; and mo, as shown in Fig. 1.
Bloch-Floquet waves in “bi-atomic” periodic structure are very well studied
in the literature (see, for example, Brillouin (1953)). With the absence of
external forces, the equations of motion for the time harmonic motion of
the radian frequency w yield

—wrmaun g = Ug g 4 Uz pe1 — 2Un

—wimoug = Ut g+ U g1 — 2us (11)
where u1, and us, are amplitudes of vibrations of masses m; and m,
within the n—th cell of the structure. For the Bloch-Floquet wave we have

ikm ikm
Ut = u1,06"" L U = ug e, (12)

where k is the Bloch parameter. The dispersion equation, which relates w
and k is

wzzwi\/(w>2_45h12k/2_ (13)

mymea myms mims
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If the masses are equal then the problem is reduced to the case of the
previous section when s = 0. Assume that the mass m; is greater than ms.
Then the system has two stop bands, i.e. the intervals of frequencies where
the dispersion equation (13) does not have real roots k. It is convenient to
introduce the notations:

[ 2 [ 2
= — =4/ —. 14
w m y W mo ( )

Then according to the above dispersion relation the frequency band gaps
are

I ={w:w_ <w<wi}, (15)
and
2 2
—{w: I 1
I ={w:w> m1+m2} (16)

m; m,
o—(—0—0

Figure 1. A bi-atomic chain.

Band gap Green’s function for inhomogeneous lattice

Now, for frequencies with the band gaps, we consider the Green’s matrix
function. The force can be applied to any of the two particles within the
elementary cell. Let P; be the value of the force applied to the mass m;
and P, be the force applied to the mass mo; also as before we shall use the
notation © = w?. The equations of motion yield

=M QU1 = U2 + U2 -1 — 2Ut m + P100,m

—MoQUg = UL + UL m41 — 2U2 m + P2bom - (17)
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The discrete Fourier transform leads to the solution

1 .
’U/f = *[—Pl(mQQ— 2) +P2(1 +elk)],

Q
b = é[—Pg(mlﬂ — )4 P14+, (18)
where
Q= (m1Q —2)(m2Q — 2) — 2(1 + cos k), (19)

where Q < 0 for the finite band gap II; and @ > 0 for the high-frequency
band gap Ils.

Applying the inverse Fourier transform we obtain the displacement
amplitudes

ut,m(Pr, Py) = —m{[_a(mm —2) + P A™ 4 pyyIm—tiy
U (P, P2) = —\/ﬁ{[—Pg(le —2) + P AI™ 4 pamH (90)
where
A= % <M+Qo—2)> and
Qo = (M1 —2)(maQ2 —2) <0 for ml1<ﬂ<miz. (21)

We note that —1 < A < 0, and hence when the frequency is chosen within
the finite stop band II; the solution (28) is exponentially localised. The
Green’s matrix function is then given by

G — Ul,m(lao) Ul,m(ovl)
m ’ZLQ,m(].,O) Ugym(o, ].) ’
In particular, for m = 0, we obtain the amplitudes of the particle
displacements in the central cell

Pi(maQ —2) — (1/2)Py (Qo + \/m)

VQ3 —4Qo ’
Pa(mi§ = 2) = (1/2)P1 (Qo + v/QF — 4Q0)
Uz2,0 = \/m

Up,0 =

. (22)
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Localized vibration modes within the finite band gap

Next, instead of applying the forces to the particles of the central cell (m =
0), we introduce perturbations M; and Ms of masses for the first and second
particle, respectively. In this case, two particles contained in the central cell
will have masses my + M7 and mq + Ms; the masses of other particles within
the chain remain unchanged.

In this case, we consider free vibrations of the new lattice structure,
and if the localized waveform exists then the results outlined in the previous
section are applicable, with the formal replacement P, = M;Quq 9, P> =
M>Qug o in formulae (28). For the radian frequency w chosen within the
finite width stop band II; we have mll <0< n% and write the following
homogeneous system of linear algebraic equations

My (myQ = 2) - (1/2) Mo (QO + Q2 4@0)

"o V@5 —4Qo 7
MoQua(maQ — 2) — (1/2) M Qus (Qo + Q- 4@0)
U = . (23)

V@5 —4Qo

Note that for the sake of simplicity 1,0, u2,0 have been replaced by uq, us.
The system (23) has non-trivial solutions if and only if

(\/m — Mmoo — 2)) (\/m — MyQ(my Q2 — 2))
2 2
M (e a)) o

which gives a constraint on the choice of “additional masses” M; and Ms.

The frequency of the localized waveform depends on perturbations
M, and Ms of masses within the central cell, as shown in two examples
below.

Design of localized waveforms via perturbation of mass

Here we show that the localized defect mode can be created via a small
variation of the masses in the central cell.

Ezample 1. First, consider the case when the second mass remains
intact (M2 = 0), whereas the perturbation M; is chosen to be consistent
with the localized vibration of the radian frequency w € IT;. For the sake of
convenience, we introduce the normalization of the lattice, so that the total
mass of the unperturbed elementary cell is m1 +mo = 2. Also, let us define
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the contrast parameter » = my/mso > 1. Then the required perturbation
M is determined by

1 2-2 1= 0, Q-1-
M, o= L miw T T

w2\l 2 — mow? 1—|—7‘) 1+7r—-Q
xVA+r)2+(Q-1-r)(1+7r-Q) , (25)

() ()

For a small change of the first mass, a localized mode appears near the
lower edge of the band gap, i.e. Q) — 2m1_1 + 0, when My = 0 and M; ~
—C' v/m1Q) — 2, with C being a positive constant. In Fig. 2, we present the
graphs of frequencies of the localized modes as functions of the mass ratio
in the unperturbed bi-atomic lattice for the case when My = 0 and M is
negative. This includes the curves corresponding to M; = —0.5, —0.7, —
and the limit curve My = —2r/(147), where m; 4+ M; = 0. This illustration
suggests that by decreasing the first mass, while M; + mq > 0 and the
other mass is kept unchanged, we can design a localized defect mode at the
frequency which lies within the region between the limit curve and the lower
edge of the band gap, where Q@ = 2/m; = 1+ 1/r. The localized mode near
the upper edge of the band gap cannot be created by a small variation of
mq while My = 0.

where

Example 2. Now consider the situation when the mass of the first
particle remains unchanged, i.e. M; = 0, but the second mass is perturbed
according to the formula

1 2 — mgQ
M = 1/
? QL+7)Vm—2
B 2 14+r—-Q
Q1+ V17

VA+r)2 4+ —1—r)(1+7r—Q)27)

This gives another rule for generating an exponentially localized waveform
for a lattice of the given contrast r, at a frequency within the stop band
IT;. We note that the localized mode near the lower edge of the band gap
cannot be created by a small variation of mo with M; = 0.

On the contrary, to obtain a localized vibration at the frequency
close to the upper edge of the band gap, i.e. 2 — 2m2_1 — 0, it is sufficient
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Figure 2. The graphs of ) versus the lattice contrast r for My = 0: (1)
M, = —0.5; (2) My = —0.7; (3) My = —1; (4) the limit curve M; =
—2r/(1 4+ r); (5) the lower band gap boundary; (6) the upper band gap
boundary.

to increase the smaller mass mo, so that My ~ C /2 —moQ, C > 0,
while M7 = 0. In Fig. 3, we show the frequencies of the localized modes
as functions of the mass ratio » = mj/mgo for the case when M; = 0
and M5 is positive. The diagram incorporates the curves corresponding to
Ms = 0.5, 1, 2, 3. The open band gap region can be covered via increase
of the mass mo while M; = 0. However, in order to reach the lower bound
of the band gap one has to take the limit as my — +o0.

Simultaneous finite variations of both masses, m; and ms allow to
create a localized mode over all the frequency range within the finite band
gap II;.

High frequency localized modes

The analysis produced for frequencies within the finite width band gap II;
can be extended to the case of high frequencies from the interval I, when
Q> Qnaz = 2/m1 +2/m2 =2+r+ 1/7“.



62 G.S. Mishuris, A.B. Movchan and L.I. Slepyan

6

3.51

2.5

1.6

lattice contrast r

Figure 3. The graphs of ) versus the lattice contrast  for M; = 0: (1)
My =0.5; (2) My =1; (3) My = 2; (4) My = 3; (5) the lower band gap
boundary; (6) the upper band gap boundary.

For the forced system, it follow from equations (19) that the ampli-
tudes of vibrations are given by

1
— ([P0~ 2) £ B P

BN o I To s

1

{[=P2(m1© = 2) + PA™ 4+ PAmHY o (28)

where

0<>\:;<Q0—2—1/Q3—4Q0)) <1

and Qo = (M1 —2)(m2Q —2) > 0. (29)

Hence the displacement amplitudes (28) decay exponentially as |m| — oc.
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The amplitudes in the central cell are

| —Pi(my2—2)+ (1/2)P (Qo — VT Qs )
o @2 - 1Qo ’
—Py(miQ—2) + (1/2) P, (Qo ~ \/M)

o NG

To model a defect mode we formally replace Py, P, according to the
rule Py = M1Quq,9, P> = M>§Qus o, and hence derive a system of two linear
equations with respect to uy ¢ and ug o, which has a non-trivial solution if
and only if

(\/m 4 ML (maQ — 2)) (M 4 MO Q — 2))
4 2
—% (Qo = \/m> —0, (31

(30)

where

Q> —+ — = . (32)

It follows that a high-frequency localized waveform can be created by reduc-
ing one of the masses within the central cell. For any frequency within the
interval II,, the appropriate change of mass, generating the defect mode,
can be determined as follows.

If the first mass m; is replaced by my + M; > 0, while the second
mass is unchanged (M = 0), then for a given w € II; the perturbation
My < 0 is defined by

1 2 __
My = —— e «/Qo — 4> —m. (33)

w2\ maw? — 2
On the other hand, if the first mass remains unchanged (M; = 0), then to

create a localized defect mode one would need to perturb the second mass
by the amount My < 0, where

1 mQQ
My = Q e — \/ —4 > —msy . (34)
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0.3 Dynamic fault in a two-dimensional inhomogeneous lattice
structure

The ideas of the previous sections will be extended to the case of
an inhomogeneous lattice which occupies an infinite plane. Non-uniformity
within the lattice is introduced in the same way as before, i.e. by assigning
different masses to the joints of the lattice. The problem corresponds to the
anti-plane deformation, and the elementary cell of the periodic lattice has a
rectangular shape, as shown in Fig. 4a. In this diagram, the particles repre-
sented by black (or white) discs are assumed to have the mass m; (or ms).
The rows of joints of the same mass are aligned with the horizontal axis,
and with our choice of distribution of mass, an elementary cell of the doubly
periodic structure contains three particles, with two particles of mass m;
and one particle of mass ms.

(a) b) }n_l

—C —O0—O0—O0—+0—10— —O0—0—0—+0—10— } n=>0
o Y Y Y Y Y D
} n=-2

Figure 4. Nonuniform lattice structures: (a) Undamaged lattice, (b) Lat-
tice with a crack. The elementary cell is shown as a shaded rectangle. The
horizontal and vertical coordinates of the cell are denoted by m and n,
respectively.

Similar to the previous text, we introduce the normalization in such
a way that the stiffness of the bonds connecting neighbouring particles,
the lattice spacing between neighbouring particles, and the averaged mass
density within the elementary cell are equal to unity. This implies that
(2mq1+ms)/3 = 1, and that the low-frequency wave speed is equal to ¢ = 1.
The notation r = my/ms is used for the contrast parameter of the lattice.

The equations of motion are written for three particles within the
elementary cell of the periodic structure, and the displacement of a node
is denoted by ;s n, where (m,n), m,n = 0,£1,+2, .., is the multi-index
characterising the position of the cell me") + 3ne(®, and the remaining



Localization and Dynamic Defects in Lattice Structures 65

index j = 0,1, 2, characterises the position of the particle within the cell:

3r .
Uommn = UO,m—1,n + U0, m~+1,n + U1, m,n + U2 mn—1 — 4“0,771,71 )
2r+1
3
1,mn — Ul,m—1n + UL, m+1,n + U2 m,n + Uo,m,n — 4ful,rn,n ) (35)
2r+1
3r

= U2m—1;n T U2 m+1n T U mn+1 + UL mn — 4“2,m,n~

Note that when a fault is introduced into the lattice the equations change
for particles placed on the boundary of the fault. The fault is defined as an
array of broken bonds, and we call it a crack.

We assume that a semi-infinite crack, m < vt,t > —oo, shown in
Fig. 4b, propagates along a line between the layers (0,m,0) and (2, m, —1),
with a constant speed v > 0. In such a “steady state”, it is assumed that
the displacement u; m, »(t) depends only on the variables j, n = m — vt and
n. The crack propagation is accompanied by the bond breakage at n = 0,
and it is convenient to describe the displacement field by functions w; ,,(n).
Assuming the mode III symmetry we can state

uon(n) = —tz,—n-1(n), uLn(n) = —t1,—n-1(n),

2, (1) = —to,—n—1(1). (36)
On the upper and lower crack faces, the displacements are ug(n) and
ug,—1(n), respectively. The symmetry of the problem implies that us 1 (1) =
—ug,0(n). It is assumed that the crack faces are traction free, so that if o

denotes the traction on the boundary of the upper half-plane, then for n < 0
we have

a(n) =0, (37)

whereas for n > 0

o (n) = 2uo,0(n) - (38)

Similar to Section 0.2, we first consider Bloch-Floquet waves in the
infinite two-dimensional periodic lattice. Furthermore, we reduce the prob-
lem for a semi-infinite crack in the lattice to a functional equation of the
Wiener-Hopf type.

Bloch-Floquet waves in the doubly periodic lattice

First we consider the undamaged discrete structure. Bloch-Floquet waves
in the lattice, whose elementary cell consists of three particles, are sought
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in the form:
U = Ujei(wt—k$m—3kyn) , (39)

where U;, j = 0,1,2, are the amplitudes, w is the radian frequency, and
(ks ky) is the Bloch vector in the reciprocal plane possessing the periodic
structure with the elementary cell (—m, | x (—7/3,7/3].

The system (35) yields

SQU() —-U; — UQGSiky = O,

Sy Uy —Us —Up =0,
SoUs — er—Siky —-U; =0, (40)

where

2 3r 2

5124—2COS/€I—2T+1W , 52:4—2005km—mw .

(41)

This system of linear algebraic equations with respect to Uy, Uy, Uy has a
nontrivial solution if and only if

S1(S3 — 1) — 2S5 — 2cos(3k,) = 0, (42)

which is a cubic algebraic equation with respect to = w?.

The dispersion surfaces w = w(ks, ky) representing the solutions of
the dispersion equation (42) are shown in Fig. 5, and for a non-homogeneous
lattice, when r # 1, we deal with a three-branch system.

For long waves, as k;,k, — 0, the corresponding dispersion surface
has a conical shape, as expected for the homogenized medium

w? ~ K2+ k] (43)

The Wiener-Hopf equation for the semi-infinite fault

When the moving crack is introduced, we break the periodicity of the lattice.
Nevertherless, the information about the Bloch-Floquet waves outlined in
the previous section remains useful, as we are going to show in this section.
As mentioned above, the dynamic field around the crack is described in
terms of the displacement function w; (1), where n = m — vt and v is the
crack velocity. We formally apply the Fourier transform with respect to
71 considered as a continuous variable. Using the notation uf (k) for the
Fourier transform of u; (7)), we write the Fourier tranformed equations of
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Figure 5. The three-branch dispersion diagram; the contrast parameter is
r=2.

motion for a lattice above the crack (n > 0) in the form

Sgugjn—ufn—ug)n_l =0,
Slufn—ué‘jn—uﬁjn =0, (44)
82u§n—u§n+1—ufn =0,
with
3
S1(k) =4—2cosk + —— jkv)?
1(k) cos —|—2T+1(O+zkv) ,
3r
kE)=4—2cosk + —— ikv)?
Sa(k) cos +2T+1(0+zkv) ) (45)
where
(0 + ikv) = lin+10(5—|—ikv). (46)

It is worth noting that the expressions (45) are similar to those in (41) with
the formal replacement of —w? by (0 + ikv)?.
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For the upper half-plane, when n > 0, we represent the solution of
(44) in the form

ul (k) =ul (K)A"(k), ul =uly, |A<T, (47)

J,n J

and then equations (44) yield

Soul —ul" —uf /N =0,
St — uf —ud =0, (48)
Soul’ — Ml —uf” =0.

The linear algebraic system (48) has a nontrivial solution if and only if

Sy -1 -\t
det| -1 & -1 |=o0. (49)
-A -1 &
It follows that
1
A=P— PP _1, P=3 (5825 -8). (50)

and the equations (42) and (49) coincide if we formally take
w=kv and k, = élnA(k), (51)

where k = k,. If we look at the surfaces in the three-dimensional space
with the axes kg, ky,w, then the intersection of the plane w = k,v with the
dispersion surfaces in Fig. 5 and the surfaces defined by the last equality
n (51) define the waves which can be excited by the propagating crack.
Indeed, if [A\| = 1 or |A] < 1, then the corresponding solution represents
sinusoidal or exponentially decreasing waves, respectively.

For the crack problem, it is essential to determine the displacement
up,0(n) on the crack faces. In terms of the Fourier transforms, we use the
representation

ugo(k) = wy (k) +u(k), ws(k) = [uoo(mH(+n)" (52)

where H is the Heaviside function. Since the crack faces are traction free,
we have

on)=0, o_=0 for n<O0, (53)
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and
o(n) =2upo(n), or=2usp for n>0. (54)
Then using the relation
($182 = Duy’ = (8> + n)ug. (55)

we derive the functional equation of the Wiener-Hopf type, which relates
the functions u, (k) and u_ (k)

Q1 (k)uy (k) + Qa(k)u_(k) =0,

So+ A So+ A
=S +1— 22 k=8 —1— 212 56
Qi (k) =8 + 5.8, 1 Qa(k) =Sz 58, 1 (56)
where &1 2 and A are the same as in (45) and (50).
We now define the function
L(k) = Q1/Q> (57)

as the kernel of the Wiener-Hopf equation written in the form
L(k)uy (k) +u_(k) =0. (58)

For the lattice of a finite contrast, the index of L(k) is equal to zero (see
Slepyan (2002), p. 451)), and L(£oo) = 1. Following the standard factor-
ization procedure we deduce

L(k) = L (K)L_ (k).

B 1 [ In L)
Li(k)=exp :l:% ck

— 00

d¢| , (59)

where L. is analytic for Sk > 0, and L_ is analytic for Sk < 0.
The factorized equation for uy and u_ takes the form

Ly(k)uy(k)+ L= u_(k)=0. (60)

Following Slepyan (2002), Chapter 14, and Mishuris et al. (2007),
we modify this equation by allowing for a contribution from the remote
external load, which will be represented by the d-function type term in the
right-hand side:

Ly (k)us (k) + L= u (k) = C[(0+ k)" + (0 —ik)7'] , (61)
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where C'is a constant. The solution, which satisfies the regularity condition
including the boundedness of the displacements at the crack edge, has the
form

o _ CL_(k)

= — (k) = —2. 62
vk = Gomnm W T (62)
The behaviour of the solution near £ = 0 defines the long wave carrying
energy to the propagating crack from —oo. On the other hand, the real sin-
gular points of Ly (k) and zeros of Ly (k) correspond to the high-frequency

waves excited by the propagating crack.

Wave tunneling along the crack

Similar to Section 0.2, where we have seen exponentially localized solutions
for dynamic problems in nonhomogeneous lattice structures, one can ask
if similar effects may appear for two-dimensional lattice structures with
defects. While for the model of Section 0.2 the rate of exponential decay
was determined by the band gap Green’s function, for the present problem
involving the moving crack in the lattice the wave tunneling is controlled
by the kernel function L of the Wiener-Hopf equation (58).

Here we highlight a class of solutions, which correspond to waves
tunneled along the crack. These solutions are also used in the dissipation
mechanism for lattice structures, as outlined in the text below. The atten-
tion is given to the roots of Q;(k) or Qa(k) from (56), which correspond to
singular points of uy (k) or u_ (k). Three set of roots of the equations

Qi(k) =0 and Qy(k)=0 (63)

for a non-homogeneous lattice (r # 1) are determined and analyzed in
Mishuris et al. (2007) for
A==1.

It has also been shown that, for these waves, which can be referred to as
“dissipative waves”, there is no averaged energy flux in y-direction, i.e. the
y-component of the group velocity of these waves is equal to zero. Thus,
these waves carry the energy parallel to the crack. Nevetherless, since os-
cillations percolate in the y-direction, the steady-state wave field is not
localized near the crack.

Energy dissipation in the lattice containing a moving crack

Slepyan (2002) introduced the notion of the local energy release rate G for
the lattice and the global energy release rate G be for the corresponding
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homogenized medium, in such a way that G is the strain energy accumu-
lated in the bond before it breaks, whereas GG is the energy release rate
corresponding to the long-wave mode of the exact lattice solution. In this
case, the difference, G — Gy, represents the energy of high-frequency waves
radiated by the propagating crack. This quantity can be interpreted (see
Slepyan (2002) and Mishuris et al. (2007)) as the dissipation energy release
rate, and it has been shown that

% =R*(), (64)
with
R(v) = exp 1 / Arg7L%)dk , (65)
m k
0

where Arg L(k) depends on the lattice structure, and, in particular, it de-
pends on the lattice contrast parameter 7.
The limiting elongation of the bond is equal to 2u(n) at n = 0, and

2u(0) =2 lim (—ik)us (k) =2C , (66)

k—ico

and hence, in our solution, the limiting energy of the linearly elastic bond
is given by

Go =202, (67)

At the same time, the long-wave behaviour (K — 0) of o and u_ are
defined by the same formulas as for the homogeneous lattice (compare with
Slepyan (2002), Section 11.5.2)

V2C(1 —v2)1/4

o)~ Vo=
V20
=)~ G AR ) (0 + k)72 (68)
with
R(v) = exp %/ArgTL(k)dk , (69)
0

where Arg L(k) depends on the lattice structure.
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1 2 3 4

Figure 6. (a) Dispersion diagrams together with the rays w = kv. (b)
The corresponding normalised argument 27~ !ArgL(k) for r = 2. The ray
numbers, j = 1,2,...,5, on the dispersion diagram (a) are repeated on the
diagrams (b). Here and in the following figures, the dashed dispersion curves
correspond to zeros of Q;(k), whereas the solid curves correspond to zeros

of Qy(k).

The diagrams including the dispersion curves, intersecting with the
rays w = kv for certain fixed values of the crack speed v, as well as the
corresponding diagrams for Arg L(k) are presented in Figs. 6a and 6b,
respectively.

Results of calculations of the energy ratio, R?(v) for a number of
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values of the lattice contrast u, are presented in Fig. 7. Here we use the
contrast variable = 1/r. An interesting result obtained in Mishuris et al.
(2007) is a considerable energy ratio drop-down which arises in the energy
ratio diagram for a certain region of the lattice contrast. It mainly arises
when g > 1, and the corresponding region on the v-axis moves to the right
as p increases (see the diagrams in Fig. 7 for p = 2, 5, 10, 20). With the
further increase of p, this drop-down approaches the critical crack speed
where the energy ratio equals zero.

08 08
0.6l 0.6l
Go
04 4
G 04— 4 L —10
0.2 0.2
% 05 1 % 05 1
08
06
Go
‘G 04
02t =25
% 05 1 9% 05 1
v

Figure 7. The energy ratio as a function of the crack speed v for different
values of the lattice contrast parameter = 1/r.

0.4 Lattice models versus paradoxes of continuous formulations

On some occasions, lattice models can serve as boundary layer formu-
lations for problems in a medium with a micro-structure. If the boundary



74 G.S. Mishuris, A.B. Movchan and L.I. Slepyan

layer is not taken into account, the continuous solutions may exhibit unre-
alistic behaviour of different types. However, with the lattice solutions in
place, the “paradox” gets resolved.

In this section we consider one of such examples involving the propa-
gation of a symmetric double-crack fault shown in Fig. 8. Here, the chain of
masses connected by massless bonds, is removed by a remote force, applied
in the out-of-plane mode, from the lattice plane, while two parallel lines of
broken bonds are being formed. The corresponding continuous model in-
volves a pair of semi-infinite parallel cracks propagating along the x—axis.

Physically, the lattice model describes, for example, the process of
pulling out a thread from fabric, where the propagation of the fault is ac-
companied by rupture of some of retaining bonds. Comparing the contin-
uum and the lattice models we note a paradox occurring in the two-crack
configuration in the infinite continuous plane. The finite energy release
rate can be maintained at a constant level as the strip width and the force
magnitude both tend to zero. Consequently, we arrive to the conclusion
that a ”fault” generating a finite energy release rate propagates under the
action of a zero force. This paradox is resolved using the solution of the
corresponding lattice problem.

It is also appropriate to mention another paradox associated with the
continuum formulation in a different physical situation for lattice structures
with edge or screw dislocations. This is linked to the classical Peierls-
Nabarro model (Peierls (1940) and Nabarro (1947)), which includes, as a
part of the mathematical formualtion, a hypersingular integral equation
describing a displacement jump across the glide plane — within a continuum
approach any non-zero constant stress, represented by a constant term in
the right-hand side of the equation, is sufficient to move the dislocation all
the way to infinity, which indeed contradicts the physical reality. On the
other hand, the lattice provides the trapping effect and hence a positive
value of the critical Peierls stress.

Lattice formulation for a double-crack fault

We consider a steady-state dynamic problem for a square uniform lattice
where a chain of connected particles is extracted from the lattice by a remote
force. The problem is normalized in such a way that the lattice spacing,
stiffness of bonds and the mass of particles are all equal to unity. This
can be thought of as a propagation of two parallel cracks. As before, the
problem is assumed to be symmetric with respect to the xr—axis, so that it
is sufficient to consider the upper half-plane. For the first two layers, the



Localization and Dynamic Defects in Lattice Structures 75

Figure 8. The lattice with the extracted chain. In the problem formulation,
the force shown by the arrow is applied far from the crack front, at ‘minus
infinity’.

equations of motion are
ﬁO,m = UQ,m+1 + U0,m—1 T 2ul,m - 4uO,m - 2(ul,m - Uo,m)H(—U),
Ulm = Ulm+1 + Ul m—1 + U2 m + U, m — dUt i + (U1, m — Uo,m ) H (—1). (70)

The first subscript stands for the number of the horizontal layer, whereas
the second subscript denotes the number of the node within the layer. The
Fourier transform with respect to n = m — vt leads to the equations
(2 + W) ud —2ul" = —2(u;— —ug_),
Fr@+nh?=Nul” = (u1- —ug_), (71)

where A = uf /ul’.
We use the notation

Q" = (ur —up)" (72)

In Mishuris et al. (2007), the problem is reduced to a functional equation
of the Wiener-Hopf type. The homogeneous equation has the form

Qs + L(KQ- =0 (73)
with
~ h%*(s+h)
L(k) = m ) (74)
where

h=+/2(1 —cosk)? + (0 +ikv)2, s=+\/h2+4.
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Note that
s+h#0, s24+sh—2%#0 (75)

and hence real zeros and singular points of the function L(k) coinsides with
those of h and s, respectively. For subcritical speeds, 0 < v < 1, and the
kernel L(k) has the properties

1 —?

L(k) K> (k—0), Lk)—1 (k—4o0), IndL(k)=0.(76)

This function allows for the factorization
L(k) = L(k)4Lo(k),

B 1 [ L)
Ly(k) = exp i% Ek

— 00

d¢| with £Sk>0. (77

‘We shall also use the notation

o0

R(v) = exp % / ArgTL(k)dk . (78)
0

When a remote force is applied at infinity to the central chain, the
equation becomes nonhomogeneous. The nonhomogeneous equations is de-
fined according to Slepyan (2002), Section 11.5.1, with the delta-function
type term in the right-hand side of the factorized equation :

Q. ¢
FE Sl BT T

(79)

where C'is a constant. Detailed analysis of the solution is given in Mishuris
et al. (2007). It has been shown that

P 1—02
R(v) 2

C=- (80)
where P is the remote force applied to the central chain at infinity. The
local energy release rate G, related to the energy released via breakage of
the bonds at the tip of the double-crack fault, and the global energy release
rate GG, associated with the homogenized problem, are defined by

(1—0v?)P?

Go = 2R?(v)

(81)
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1 —v?)P?
G = & , (82)
2
and the energy release ratio is
G
60 = R2(v). (83)

As before, the difference, G—Gj, can be interpreted as the energy dissipation
rate for the lattice with the double-crack fault.

The continuum model versus the lattice solution

The related continuum model concerns with the anti-plane shear of an in-
finite plane containing two parallel cracks M, and M_, separated by the
distance a and propagating with the speed v along the r—axis:

My ={(z,y) :n=z—vt <0,y =a}

and M_ ={(z,y):n=1a—vt <0,y =0} (84)

The displacement function u(n,y) satisfies the equation

2 2
029 u(n,y) . 0%u(n, y)
87’2 ayZ

=0, (85)

where a? =1 —v?/c?, and c is the shear wave speed; to be consistent with
the formulation of Section 0.4 we will use the normalization ¢ = 1.

The crack faces are traction free, which corresponds to the homoge-
neous Neumann boundary conditions

0
u(az;y) =0 when (z,y)€ My and (z,y) € M_. (86)

The conditions at infinity are defined to model a remote load, the
force P = Ca, applied at ‘minus infinity’ to the semi-infinite strip between
the cracks M, and M_:

u(n,y) ~—Cn as n— —oo and 0<y<a, (87)
and
aCa 9 9 o
u(n,y) ~ == —1n (n” + a’y’) + const (88)

when 7n? + y? — oo outside the strip between M, and M_.
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The energy release rate

The above problem allows for an explicit closed form solution, which uses
a conformal map of R?\ (M, U M_) into the upper half-plane (see Morse
and Feshbach (1953), p. 229):

1
Z—2z20= A(§w2 —1nw),

where A = —a/m, zyp=—A/2.

The solution of the problem (85)—(88) is not differentiable at the
vertices of the cracks My and M_, i.e. the components of Vu are singular,
O(1/(n? +y*)Y/*) and O(1/(n? + (y — a)?)'/*), as expected for stress near
the crack tips in continuous media.

In contrast with the lattice model, the continuous formulation yields
that the energy is not radiated to infinity, and all the energy produced
by the remote force is absorbed into the vertices of the bouble-crack fault.
The total energy release rate evaluated for the double-crack fault can be
represented in the form

E=Er— & — &, (89)
where & = —Pu’ = P?/a is the rate of the work of the remote external
force applied to the strip between the cracks, & = %(u’ V2a = 5—: is the
strain energy rate of the strip, and &, = % = P;;f is the rate of the

kinetic energy of the strip. Then the energy release rate per unit length for
each of the two cracks is
1 P2(1 —v?)
Gcrack - 55 - T (90)

The limit case of ¢« — 0

Assuming that the crack propagates when the energy release rate reaches
the critical value, i.e. Gereer = Ge, one can evaluate the crack speed in the

form
/ 4aG..
v=1/1— 2 (91)

When P > 2/aG. the speed v increases monotonically with the increase of
the external force P, and v — 1 as P — oo.

The formulae for the solution include the distance a between the
cracks, and it is formally possible to consider the limit when a — 0. Physi-
cally, this would correspond to a double-crack fault discussed in Section 0.4,
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which was treated in the framework of the lattice model. Here we show that
subject to a certain constraint on the applied load, the formal application
of the continuum formulation would lead to a paradox.

First, we assume that P = const. Then, as a — 0, the crack speed
tends to the critical value, which is equal to 1.

If P/\/a — 0, then the energy release rate tends to zero as a — 0,
and the crack should stop.

It is also feasible to take P/y/a — P > 24/G,. Then the force P tends
to zero, whereas the energy release rate tends to a non-zero constant suffi-
cient to support the propagating cracks. This leads to a paradox inherent
to the continuum model: in the limit when a — 0, the double-crack fault
can propagate, as a point singularity, under a nonzero energy flux but zero
external force. The paradox is fully resolved by the lattice model, as shown
in the earlier Section 0.4.
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1 Introduction

A nonlinear hyperelastic elastic material has one of the simplest constitu-
tive equations because the stress response is determined algebraically by
derivatives of a strain energy function. However, the nonlinear partial dif-
ferential equations which describe the deformation of an elastic material are
intractable analytically for most problems. Therefore, numerical methods
are essential to obtain solutions of realistic problems.

Examination of the commercial programs ABAQUS, ADINA, ANSYS
and the academic code FEAP reveals that the user has to choose from a list
of different hyperlastic elements (see Table 1.1). This list includes element
formulations based on full integration (Q1), full integration of distortion
and reduced integration of volume (Q1P0), reduced integration with vari-
ous types of hourglass controls, hybrid methods, incompatible modes and
enhanced strains. The reason for this extensive list is that no single element
performs well for all element geometries, levels of compressibility and under
all loading conditions. In particular, it is well known that, within the con-
text of the Bubnov-Galerkin approach based on a tri-linear approximation of
the displacement field, full integration of the constitutive equations leads to
an element response which exhibits locking for bending dominated response
of thin structures (shells and rods) with poor element aspect ratios and for
nearly incompressible materials. Two main modifications of the element
formulations have been proposed to overcome these problems. One mod-
ification uses reduced integration with hourglass control (e.g. Belytschko
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et al. (1984); Hutter et al. (2000); Reese and Wriggers (1996); Reese and
Wriggers (2000); Reese et al. (2000)) and the second modification uses en-
hanced strains or incompatible modes (e.g. Simo and Rifai (1990); Simo
and Armero (1992), and Simo et al. (1993)).Moreover, the enhanced strain
and incompatible mode elements exhibit hourglass instabilities in regions of
high compression combined with bending (e.g. Reese and Wriggers (1996);
Reese and Wriggers (2000); Jabareen and Rubin (2007a), and Jabareen and
Rubin (2007b)).

Often the person who wants to solve a specific problem using a hypere-
lastic constitutive equations typically does not know which of the element
formulations in the code is best suited for the specific problem. Some-
times a problem can be sufficiently complicated that none of these elements
can provide accurate predictions for the deformation fields in all regions of
the problem. In this sense the existing element formulations are not user
friendly.

Therefore, there appears to be a need for a robust user friendly element
formulation that can be reliably used for all applications. The 3-D brick
Cosserat Point Element (CPE) is a new element technology that is based
on the theory of a Cosserat point (Rubin (1985a); Rubin (1985b); Rubin
(1995), and Rubin (2000)) and which has been proven (Nadler and Rubin
(2003); Jabareen and Rubin (2007a); Jabareen and Rubin (2007b); Jaba-
reen and Rubin (2007¢), and Jabareen and Rubin (2008a)) to be such a
robust user friendly element for nonlinear elasticity. In particular, it does
not exhibit unphysical locking or hourglassing for thin structures or nearly
incompressible material response.

2 Basic tensor operations

Before developing the equations for a CPE it is useful to review some tensor
operations. Basic knowledge of index notation and simple vector operations
is assumed and more details of tensor operations can be found in (Rubin
(2000)).

Tensor product
Let {a;, b;} (i = 1,2,3,4) be sets of vectors in three-dimensional space.
Then, the tensor product is denoted by the symbol ® and the tensor product
a; ®ay of two vectors is defined by its operation on another vector by, such
that

(a1 (9 az)bl
bi(a; ® as)

aj(ageb;) = (ageby)a; ,
(b1 oal)ag (21)
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Table 1.1. List of elements tested in the programs ABAQUS, ADINA,
ANSYS and FEAP.

Short Name | Program | Element Name Options
ABAQUS-1 | ABAQUS C3D8® full integration (B method)
ABAQUS-2 | ABAQUS C3D8RS reduced integration
hourglass control: enhanced
ABAQUS-3 | ABAQUS C3D8RS reduced integration
hourglass control: stiffness
ABAQUS-4 | ABAQUS C3D8RH® hybrid formulation

reduced integration
hourglass control: enhanced

ABAQUS-5 | ABAQUS C3D8RH® hybrid formulation

reduced integration
hourglass control: stiffness

ABAQUS-6 | ABAQUS C3D8I® incompatible modes
ABAQUS-7 | ABAQUS C3D8IH® hybrid formulation
incompatible modes
ADINA-1 ADINA 3D Solid full integration
(8 Nodes)
ADINA-2 ADINA 3D Solid incompatible modes
(8 Nodes)
ANSYS-1 ANSYS Solid185 pure displacement with
full integration
ANSYS-2 ANSYS Solid185 pure displacement with

reduced integration and
hourglass control

ANSYS-3 ANSYS Solid185 pure displacement with
enhanced strains
ANSYS-4 ANSYS Solid185 pure displacement with
simplified enhanced strains
ANSYS-5 ANSYS Hyper86 full integration
ANSYS-6 ANSYS Hyper86 full integration for shear and
reduced integration for volume
FEAP-1 FEAP Solid full integration
Fini-Disp-8
FEAP-2 FEAP Solid mixed formulation
Fini-Mixe-8
FEAP-3 FEAP Solid enhanced strains

Fini-Enha-8
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where (as @ by) denotes the scalar product between the two vectors as, by.
A scalar is called a zero order tensor and a vector is called a first order
tensor. The quantity (a; ® as) is called a second order tensor because it is
linear operator which maps the space of vectors onto a tensor of one order
lower than itself (i.e. a first order tensor). That is to say that the result of
(a1 ® ag) operating on a vector is a vector. In general, the result when b
is placed to the right of (a; ® ay) is different than when it is placed to the
left of (a1 ® 32).

The tensor product can be used to develop higher order tensors by cre-
ating a string of vectors, separated by tensor products. For example, the
quantity (a; ® as ® az ® a4) is a fourth order tensor which satisfies the
conditions

(a1 X ao X as X a4)b1 = (a4 ° bl)(al X ao &® ag) 5
bl(al ®azs ®asz® a4) = (bl ° al)(ag ®az® a4) (2.2)

Juxtaposition of two tensors
The operation of juxtaposition is used when two tensor are placed next to
each other. For example

(a1 ®az)(b; ®by) = a; ® (ag e by)by = (az e by)(a; ® by) ,
(bl ® bg)(al (24 32) = (bg (] al)(bl ® ag) 7é (a1 ® ag)(bl ® bg) (23)

In particular, note that the operation of juxtaposition is not commutative
so that the two tensors in (2.3a, 2.3b) are not necessarily equal. Moreover,
it is noted that the operation of juxtaposition involves the scalar product
of only one vector from each of the tensors. It will be shown later that
this operation yields results that are the same as standard multiplication of
matrices.
Dot product of two tensors

The scalar product or dot product of two vectors is a positive definite op-
erator which is defined so that the dot product of a vector with itself is
positive as long as the vector is nonzero. The dot product of two tensors
is also defined as a positive definite operator. Specifically, it is defined so
that

(a1 ® ag) o (b1 @ b) = (a; eby)(azeby) = (b ® by) e (a; ® az)
(a1 ®as®@az®ay)e(b; @by) = (azgeby)(aseby)(a; ®as) ,

(b1 @by)e(a; ®a;®az®ay) = (b ea;)(byeay)(az ®ay)
#(ap@ay®@az®@ay)e (b ®by) |

(a1 ®a; ®az ®ay) e (b; @by @bz ® by)

= (ajebj)(azebsy)(asebsz)(aseby) (2.4)
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In particular, note that the dot product of two tensors has the order of the
difference of the orders of the tensors (e.g. the dot product of two tensors
of the same order is a scalar and the dot product of a tensor of fourth order
with a tensor of second order is a tensor of second order).
Transpose of a tensor

The transpose of a tensor is obtained by interchanging the order of the
vectors associated with the order of the transpose operator. For example,
the right transpose (denoted by a superposed T') and the left transpose
(denoted by a superposed LT) are defined so that

(a1 ®32)T = (aa®a) ,
LT(a1 Ray) = (aa®@ay) ,
(a1 RayRaz®a)’ = (a1 ®a) ® (g ®a3)
IT(a; @a; ®as3®ay) = (a ®a;) ® (ag @ ay) (2.5)

Notice that the operators T and LT change the order of the two vectors
closest to the operator. It is also possible to define higher order transpose
operations like 7'(2) and LT(2) which apply to pairs of two vectors, such
that

(a1 Qay®az®@ay)T® = (a30a,) ® (a1 ®ay) ,

= LT(®) (a1 ®ax®az® a4) (26)

General tensors
Although the tensor (a; ® as) is a second order tensor it is not a general
second order tensor. In order to discuss general tensors it is convenient to

first consider tensors referred to a rectangular Cartesian triad e; (i = 1,2, 3)
of constant orthonormal vectors

e oe; = 0 (2.7)
where 0;; denotes the Kroneker delta
6y =1 for i=3 and &; =0 for i#j (2.8)

It is well known that the vectors e; form a complete set of base vectors that
span the space of three-dimensional vectors so that an arbitrary vector v
can be expressed in terms of its components v; relative to e;, such that

Vg =Vvee; |

VvV = v;€; (29)
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where the usual summation convention is used over repeated indices, which
take the values (i = 1,2,3). In a similar manner it is possible to define a
set of nine orthonormal base tensors (e; ® e;) that span the space of second
order tensors with

(ei ®ej) o (en ®e,) = 0imdjn (2.10)

Then, an arbitrary second order tensor T can be expressed in terms of its
components T;; relative to e;, such that

Tij =Te(e;®e;) ,
T = Ti(e; ® e)) (2.11)

Also, an arbitrary fourth order tensor T can be expressed in terms of its
components Tj;.,, relative to e;, such that

Tijmn = Te(e;Re;Re, ®e,) ,
T = Tijmn(e; ®e; @ e, Qey,) (2.12)

In particular, it is noted that a general second order tensor has 32 = 9
independent components and a general fourth order tensor has 3* = 81
independent components.

Representation of tensors with respect to curvilinear coordinates
Within the context of the CPE theory it is convenient to express some ten-
sors using the same symbol as is typically used in the three-dimensional
theory. Thus, in order to distinguish between these quantities a superposed
(*) is used for the three-dimensional quantity. For example, the position
vector of a material point in the deformed present configuration associated
with the three-dimensional theory is denoted by x* instead of x. The rect-
angular Cartesian base vectors e; are special in that they are constants
which are independent of the coordinates z. Consequently, the position
vector x* can be expressed in the form

X" =ule; (2.13)
so that the base vectors e; can be determined by the equations

ox*

= *
oz}

€; (2.14)

For general curvilinear coordinates the position vector x* is a function of
three convected coordinates 0" (i=1,2,3) and time t, such that

x* = x*(0°,1) (2.15)
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The convected coordinates % have constant values for a specified material
point and the need for distinguishing between subscripts and superscripts
will become apparent. The covariant base vectors g; defined by
. OxF
are generalizations of the base vectors e; in (2.14). Here, and throughout
the text, a comma is used to denote partial differentiation with respect to
the coordinates 6*. Also, it is noted that the mapping (2.15) is limited so
that it is one-to-one with g; being linearly independent vectors

g"/? =g xgregs >0 (2.17)

that span the three-dimensional space. The main difference between g; and
e; is that g; can depend on the coordinates §?. This has an important
influence on expressions related to the gradient and divergence operators.
Moreover, since #° do not necessarily have the units of length (i.e. the angle
in cylindrical polar coordinates), g; need not be unitless.

Since g; are linearly independent it is possible to define reciprocal vectors
g’ (also called contravariant base vectors) by the expressions

gl =gV ?gxgs , g2 =g Vg xg

g’ =g g1 x & (2.18)

such that
gleg; =0 (2.19)
where 6; is the Kroneckor delta symbol. Now, an arbitrary vector v can

be expressed in terms of its covariant components v; or its contravariant
components v*

Vi=Vveg; , V' :V.gl )

v =g =0v'g; (2.20)
Similarly, an arbitrary second order tensor T can be expressed in terms of
its covariant components 755, its contravariant components 1, or its mixed

components T, T;”
T,;,=Te(gi®g;) , TV =Te(g'®gl) ,
T, =Te(g g , T, =Te(g;®g) ,
T=Tygeg)=T(gog) ,
=Ti(gog) =T, @g) (2.21)
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In particular, notice that the summation connects covariant components
with contravariant base vectors or contravariant components with covariant
base vectors. Furthermore, it can be shown that the unit second order
tensor I can be expressed in the forms

I=(gog)=(gog) (2.22)

Referential description
In continuum mechanics it is sometimes convenient to introduce a stress-
free reference configuration. Specifically, the material point in the reference
configuration that is associated with the position x* in the present config-
uration is denoted by X*

X* = X*(0%) (2.23)

and is independent of time ¢. It then follows that the associated covariant
base vectors G;, and contravariant base vectors G’ are defined by expres-
sions similar to (2.16)-(2.19)

G =X;, G/ =G xGyeG3 >0, G'eG; =7, ,
G'=G1?GyxG3 , G* =G*G3x Gy,
G3 = G7Y2G; x Gy (2.24)
Also, the unit tensor I can be written in the alternative forms
I=(G;®G") =(G'®G)) (2.25)

Gradient operator
The gradient of a tensor T relative to the reference position X* is denoted
by Grad*T and the gradient of T relative to the present position x* is
denoted by grad*T, which are defined by

JT , JT ,
Grad'T = X = T,®G" , grad'T = e T,®g" (2.26)

Divergence operator
The divergence of a tensor T relative to the reference position X* is denoted
by Div*T and the divergence of T relative to the present position x* is
denoted by div*T, which are defined by

Div*T =T,;eG" | div*T =T, eg’ (2.27)

The divergence operators can be simplified by differentiating (2.17), (2.18)
and (2.24) to prove the identities

(G*Gh,, =0, (4%, =0 (2.28)
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Then, Div*T and div*T can be expressed in the alternative forms
Div*T = G~Y*GY?TGY),; , div*'T =g %(¢"/*Tg"); (2.29)

These forms are simpler than (2.27) because the derivative of T includes
derivatives of the components of T as well as derivatives of each of the base
vectors. For example, if T is a second order tensor then

T, = [Tmn(gm & gn)]l
= Toni(8" ®8") + Trnn (g} ®8") + Tmn(g™ ®g%)  (2.30)

whereas, the expressions in (2.29) are based on derivatives of vectors.

3 Some kinematic measures in continuum mechanics

In continuum mechanics the material point X* in the fixed reference con-
figuration mapped to the location x* in the deformed present configuration
by the expression (2.15). The absolute velocity v* of the material point is
obtained by

v ewini ox* (0", t)

v i =%x"(0"t) = 5 (3.1)
where the material time derivative is denoted by a superposed dot (-) which
indicates partial differentiation with respect to time ¢ holding the convected
coordinates % constants.

The deformation gradient F* is a two-point tensor that maps material
line element dX* in the reference configuration to material line elements
dx™ in the present configuration

_ox”
- 0X*
Using the results in Section 2 it can be shown that F* can be expressed in
terms of the base vectors by

dx* = F*dX* , F* = Grad"x"* (3.2)

F* =g, ®G’ (3.3)
Moreover, the dilatation J*
1/2 dv*
* » _ 9 _
J* = det(F*) = Gz = gy (3.4)

is a pure measure of volume change since the element of volume dV* in
the reference configuration and the element of volume dv* in the present
configuration are given by

AV* = G249 de*do? | dv* = g/2de'd6>do? (3.5)
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Next, taking the material derivative of F* and using the fact that G’ are
independent of time it can be shown that

= 0G =vi®G =L'g®G' = L'F* (3.6)

where L* is the velocity gradient

L* =v;® g’ (3.7)

~ ox*

The velocity gradient L* separates into its symmetric part D*, called the
rate of deformation tensor, and its skew-symmetric part W*, called the spin
tensor, such that

L*=D"+W* |
1
D" = J(L"+L7) =D,
1
W= S (L - L) = -WT (3.8)

Moreover, it can be shown that the material derivative of the dilatation J*
is given by

J* = J*D* o1 (3.9)

4 Balance laws in curvilinear coordinates

Let P denote the current material region of space occupied by a body and
let OP be its smooth closed boundary. Also, let Py be the material region
occupied by the same body in its fixed reference configuration with 0F,
being its smooth closed boundary. Then, the balance laws of the purely
mechanical theory can be expressed as the conservation of mass

/p*dv* :/ podV* (4.1)
P Py

the balance of linear momentum

d
—/ p v dv* :/p*b*dv*—i—/ t*da* (4.2)
dat Jp P P

and the balance of angular momentum about the fixed origin

d
—/ X* X p*vidvt = / x* X p*b*dv* —|—/ x* x t*da” (4.3)
dt Jp P op
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In these expressions, p* is the current mass density, pj is its reference
value, b* is the body force per unit mass, t* is the surface traction and da*
is the element of area in the present configuration. Also, it is recalled that
the traction vector is related to the Cauchy stress tensor T* and the unit
outward normal vector n* to 0P by the expression

t* = T*n* (4.4)
Next, using (3.5) and the divergence theorem in the form

/ div* Adv* = An*da* (4.5)
P ap

the local forms of the conservation of mass and the balance of linear mo-
mentum become

where use has been made of (2.28) and the three vectors t** are defined by
¥ = g1/2 gl (4.7)

Also, using the balance laws (4.6) the reduced form of the balance of angular
momentum requires the Cauchy stress tensor to be symmetric

™7 =T~ (4.8)

Within the context of the purely mechanical theory it is convenient to
define the rate of work W done on the body, the kinetic energy K and the
strain energy U of the body by the expressions

W = / p*b*ov*dv*+/ t*evida® |
P ap

1
K:/ —p'vievidv* | U :/p*Z*dv* (4.9)
P2 P

where X* is the strain energy function per unit mass. Then, the rate of
material dissipation D* per unit present volume can be defined by

/D*dv*:W—K—UZO (4.10)
P

and is required to be non-negative. Next, using the balance laws (4.6) and
(4.8) it can be shown that

D* = T*eD* — p*¥* >0 (4.11)
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For a nonlinear elastic solid the strain energy depends on the deformation
gradient F* through the deformation tensor C*

¥ =x*(C*) , C* =FTF* (4.12)

the stress T* is assumed to be independent of deformation rate and the rate

of dissipation D* vanishes. These assumptions lead to the result that the

stress is given by the hyperelastic constitutive equation

)

oC*
Using the work of Flory (1961) it is possible to separate the effects of

dilation from distortion. Specifically, the dilation J* defined by

J* = det(F*) (4.14)

T = 2p'F* __—F*7 (4.13)

is a pure measure of volume change and the symmetric, unimodular tensor
B* defined by

BY = J*723B* | B* =F'FT | det(BY) =1 (4.15)

is a pure measure of distortional deformation. It therefore, follows that B*/
has only two nontrivial invariants, which can be defined by

af =B" el , a5 =B eB" (4.16)

Thus, for an elastically isotropic material the strain energy function ¥* can
be expressed in the form

= SF(J*, ok, o) (4.17)

Moreover, in the examples considered here, attention is focused on the spe-
cial case of a compressible Neo-Hookean material defined by

1 1
P = KT =17+ Julof —3) (4.18)
where {K, u} are the small deformation bulk and shear modulus, respec-
tively, and Poisson’s ratio v is defined such that
2u(l+v)
K=—--= 4.19
3(1—2v) (4.19)
Unless otherwise stated, for the example problems considered in the later
sections the material is taken to be compressible with the strain energy
function (4.18) and with the material constants specified by

K=1GPa , pn =06GPa , v =0.25 (4.20)
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For the special examples which consider a nearly incompressible the material
constants are specified by

K =1000GPa , p =06GPa , v =0.4997 (4.21)

5 Bubnov-Galerkin equations for a 3-D brick element

€

Figure 5.1. Sketch of a general brick CPE showing the numbering of the
nodes and the surfaces.

Figure 5.1 shows a sketch of a 3-D brick element which occupies the
region P with closed boundary 0P characterized by the union of the six
surfaces 0Py (I = 1,2,...,6). Within the context of the Bubnov-Galerkin
approach based on tri-linear shape functions, the position vector X* of a
material point in the reference configuration is represented by

7
X" =X*(0") = Y N™(6)D, (5.1)
m=0

where the shape functions N (%) depend only on the convected coordinates
0" and are given by

N'=1, N'=¢" | N> =0, N° =¢°
N*=0'¢* |, N° =¢'0 |, N° =020 , N" =0'0°0° (5.2

) 9

and the reference element director vectors D; (i=0,1,...,7) are constant vec-
tors with D; (i=1,2,3) being linearly independent

DY?2 =D, x DyeD3 >0 (5.3)
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The locations of the nodes in the reference configuration are characterized
by the constant reference nodal director vectors D; (i = 0,1,...,7). In
particular, the convected coordinates are limited by the lengths H; (i =
1,2, 3), such that

H1 H2 H3

0 < — 0 < —= 03] < — 4
Ol < =5 o 102l < =, 105l < 5 (5.4)
and that

_ H H H. _ H H H

Dy = X*(7?17*72a*73) ’ D; = X*(Ta*%v*?g) )

_ H, H H _ Hy H H

A L e R

- ., H1 Hy Hj = ., H1 Hy Hj

D4—X(77 7;7) aDS_X(zﬂ 272)7

= . 1 Hy H3 = ., Hi Hy Hj

D6_X(27272) 7D7_X( 2’272) (55)
Also, the lengths H; are defined so that D; (i = 1,2, 3) are unit vectors

|D,| = |Dy| = |Ds| =1 (5.6)

In the Bubnov-Galerkin approach it is also assumed that the position vector
x* of material points in the present configuration can be expressed using
a representation of the form (5.1) with the reference element directors D;
replaced by the present element directors d;(¢), which are functions of time
t only, such that

x* = x"(0%,1) = 3 N (0)d(1) (5.7)

where it is assumed that d; (i = 1,2, 3) are linearly independent vectors
d'/? =d; x dyeds >0 (5.8)

In this regard, it should be noted that although the representation (5.1) is
exact the expression (5.7) is an approximation of the deformation field in
the element.

Now, the element directors can be expressed as functions of the nodal
directors using a constant matrix A;; (¢,7 = 0,1,...,7) that is determined
by (5.1) and (5.5)

7 7
D, = ZAiij s d;, = ZAijaj (5.9)
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In this expression d;(t) (i = 0,1,...,7) are the nodal director vectors that
locate the present positions of the nodes of the element. Moreover, the
element director velocities w; and nodal director velocities w; are defined
by

The objective of the Bubnov-Galerkin approach is to develop weak forms
of equations for the director vectors d; which represent an approximation
of the partial differential equation (4.6a) expressing the balance of linear
momentum. To this end, multiply (4.6b) by the weighting function ¢(6%) to
deduce that

3
¢m*V* = ¢gm*b* + > [(¢t*) ; — ¢ ;] (5.11)

Jj=1

Then, integrate this result over the region P to obtain the weak form

d
—/ op*vrdv* :/q’)p*b*dv*—i— ot da*
dt Jp P op

3
- Z/ g V2t ¢ dv* (5.12)
j=17F

where use has been made of the conservation of mass (4.6a) and the diver-
gence theorem (4.5).

Next, it is convenient to introduce a number of quantities that are used
in the CPE formulation. Specifically, the mass m of the element and the
director inertia quantities 4% are given by

m:/p*dv* ,
P

my = / NNIp*dv* = my’  (i,j =0,1,..,7) ,
P

0 =1 (5.13)

the external assigned director couples b’ due to body forces and the director
couples m* due to surface tractions on the boundaries of the CPE are given
by

mbi:/Nip*b*dv* ,
P

mi:/ Nit*da* (i=0,1,..,7) (5.14)
oP
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Also, the intrinsic director couples t? are expressed by
3 . .
t' = Z/Pg—l/%*?zvgdv* (i=0,1,..,7) (5.15)
j=1

Then, using these definitions, the global balance laws (4.1- 4.3), the repre-
sentation (5.7) and taking ¢ in (5.12) equal to N? it is possible to derive
the balance laws of the CPE. Specifically, the conservation of mass

=0 (5.16)

the balances of director momentum

7

d o
@(Z myw;) = mb' + m' —t* with t* =0, (i=0,1,..,7) (5.17)
=0

and the balance of angular momentum

7T 7 7
%(szz x myw;) = Zdi x mb' + Zdi xm'  (5.18)
i=0 i=0

i=0 j=0

represent the balance laws of the CPE. In particular, it is noted that bal-
ances of director momentum (5.17) include the global form (4.2) of the
balance of linear momentum for ¢ = 0. Also, it can be shown that the
director inertia coefficients y*/ are constants

9 =0 (5.19)

Furthermore, using the representation (5.7) the rate of work W and kinetic
energy K in (4.9) can be expressed in the forms

W:Wb+WC )

7 7
W, = g mb' ew; WC:E m'ew,; |,
i=0 i=0

T T

K= Z Z %myijwi oW, (5.20)

i=0 j=0

where {W,, W_.} represent the rates of work done by body forces and surface
tractions, respectively.

The main difference between the Bubnov-Galerkin approach and the
CPE approach is the procedure for determining constitutive equations for
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the intrinsic director couples t?. This will be discussed in detail in the
following sections.

6 Balance laws for a 3-D brick CPE (direct approach)

The nodes of the 3-D brick CPE shown in Figure 5.1 are characterized by
the constant reference nodal directors D; (i = 0, 1,...,7) and by the present
nodal director vectors d;(t) (i = 0,1,...,7) which are functions of time.
Then, the reference element directors D; and present element directors d;(t)
are determined by the expressions (5.9) where A;; is a constant matrix.
Moreover, the element director velocities w; and nodal director velocities
w; are given by (5.10).

In view of the restrictions (5.3) and (5.8) it is possible to define reciprocal
vectors D and d° (i = 1,2,3) by formulas of the type (2.18) and (2.24) so
that

D;eD’ =67 | d;ed’ =5,/ (6.1)
Then, the kinematics of the CPE can be characterized by the deformation
tensor F and its determinant J

d1/2

3
F=F() =) d;®D' , J =det(F)
1=1

associated with homogeneous deformations and the vectors 3;
B; =F 'dits —Diys , disz =F(B; + Diya) , (i =1,2,3,4) (6.3)

associated with inhomogeneous deformations. Furthermore, the rate of de-
formation tensor L and its symmetric part D are defined by

3
. ) 1
L=FF' =) w,ad , D:i(L+LT):DT (6.4)
=1

so that
w; =Ld; (1=1,2,3) ,
Wirs = Ldiys + FB; , B; = F Y(wirs — Ldiys) (i=1,2,3,4) (6.5)
Within the context of the direct approach, the balance laws of the CPE
are proposed as the conservation of mass (5.16), the balances of director

momentum (5.17) and the balance of angular momentum (5.18). Also, the
director inertia coefficients y* are constants (5.19) and the expressions for
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the rate of work W done on the CPE and its kinetic energy K are given
by (2.20). Moreover, the rate of material dissipation D is proposed by an
equation like (4.10), such that

d'?’D=W—-K-—m% >0 (6.6)

where 3 is the strain energy function per unit mass m of the CPE.
Using the symmetry of the director inertia coefficients y*’, the balances
of director momentum (5.17) and introducing the tensor

7
d'PT =) t'®d (6.7)
i=1

it can be shown that the reduced form of the balance of angular momentum
(5.18) requires T to be a symmetric tensor

T =T (6.8)

which is similar to the restriction (4.8) associated with the three-dimensional
theory.

Moreover, using the balances of director momentum (5.17), the rate of
material dissipation can be expressed in the form

7
d'/?D = "t ew; —m% >0 (6.9)
i=1
However, with the help of (6.5) the mechanical power can be rewritten in
the form

7 4
D tiew; =d/”TeD+> F'tl9eg, (6.10)

i=1 i=1

so the rate of material dissipation reduces to

4
d'/?D =d'’TeD+» F'ti* e, —m% >0 (6.11)

i=1

Now, comparison of (6.11) with the three-dimensional equation (4.11)
suggests that d'/2T is similar to the Cauchy stress. In fact, using the
approximation (5.7) it follows that

7
g =Y Nid; (j=1,23) (6.12)
=1
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Thus, with the help of (2.22), (4.7), (5.15) and (6.7) it can be shown that
d'/?T is related to the volume integral of Cauchy stress

7 3
d'?T = ZZ/ g PNt @ d;
P

i=1j=1
3 .
= / T*<Zgﬂ ®gj>dv*
P =
= / T dv* (6.13)
P
Consequently, the volume averaged Cauchy stress T, is given by
. 1
T}, = U—*dl/QT (6.14)

where with the help of (2.17), (3.5) and (5.7) the current volume of the
element is given by

v* z/dv*
P

H? H?2
— H,H,H; [dl/Q + 1—21014 x ds ed; + 1—22016 x dy e dy

o3
+ §d5 X d6 L] d3 (615)

7 Constitutive equations for a hyperelastic CPE

The strain energy function ¥* in (4.12) for a hyperelastic material is local
in the sense that it characterizes the response of the material at a mate-
rial point. In contrast, the 3-D brick CPE is a structure whose response
depends on both the material and geometric properties and the structure.
Consequently, the constitutive equations for the CPE necessarily combine
material and geometric quantities.

A hyperelastic CPE is an ideal element in the same sense that a hyper-
elastic material is an ideal material. In particular, for a hyperelastic CPE
it is assumed that the strain energy function ¥ depends tacitly on the ref-
erence geometry of the CPE and explicitly on the deformations measures

% =13%(C,5) (7.1)
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Furthermore, the kinetic quantities {T,t'} are assumed to be independent
of deformation rates and the rate of dissipation D in (6.11) is assumed to
vanish for all processes

4
d'?D =d'”TeD+ Y F'ti*) e —m% =0 (7.2)

i=1

Then, using the usual arguments it can be shown that the kinetic quantities
are determined by derivatives of 3
0%

: )y
d?T = 2mF——=FT | t0+3) —pp T2 (7=1,2,3,4 .
m 50 , m 98, (i ,2,3,4)  (7.3)

with the remaining t? (i = 0, 1,2, 3) being determined by (5.17) and (6.7)

7
t0=0, t' = {dlﬂT—th ®dj} ed' (i=1,2,3) (7.4)
j=4

8 A nonlinear patch test

Following previous research on shells (Naghdi and Rubin (1995)), rods (Ru-
bin (1996)) and points (Rubin (2000); Rubin (2001); Nadler and Rubin
(2003)) it is possible to impose restrictions on the strain energy function X
which ensure that the CPE produces solutions that are consistent with the
exact three-dimensional theory for all homogeneous deformations of an arbi-
trary uniform homogeneous anisotropic elastic material. These restrictions
are equivalent to a nonlinear patch test on the brick element. Specifically,
confining attention to such a material it can be shown that the mass m is
given by

m = pyV™ (8.1)

where the volume V* of the CPE in its reference configuration is determined
by using the representation (5.1) to deduce that

V*=DYV?V = [ qv*
Py

H? H?
= H1H2H3 l:Dl/2 + T21D4 X D5 ODl + TQQDG X D4 .DQ

H
—+ §D5 X D6 ° D3 (82)
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and the quantity V has been introduced for convenience.
Now, using (3.3) and the kinematic assumption (5.7) it can be shown
that

3 4
F* = Z [FDZ- + Z N,%+3)F(Di+3 + /31):| ® G™
m=0

i=1

3
F>
m=0

4 3
=F [I +> > NUPB® Gm] (8.3)

i=1 m=0

4
{Gm ®G™+Y NEF¥B @ G’"}
1=1

Thus, the deformation will be three-dimensionally homogeneous with F*
being independent of the coordinates # if 3, vanish

F* =F(t) for B; =0 (i=1,23,4) (8.4)

This result demonstrates that 3, are measures of inhomogeneous deforma-
tion. Moreover, Nadler and Rubin (2003) introduced the auxiliary defor-
mation measure F

F = F(I+iﬁi®vi) (8.5)

i=1
where the vectors V? are defined by the reference geometry of the CPE such
that

3
DvVi =} / [Nf,fjf”(;ﬂdv* (i=1,2,3,4) (8.6)
Py

m=1
Consequently, with the help of (5.1), V* are given by
12

H?2 ]
DY?y V' = H,H,H, D; x D; + TS’DQ x Dg|

H? H2 ]
DY2VV? = H HyHs 1—21D1 x Dy + T§D6 x Ds|

H2 H? ]
DY?VV?3 = H,H,H, T;D4 x Dy + I—;Dg x Ds| |

DY?yvit =0 (8.7)
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Also, integration of (8.3) over the region Py yields the result that F is the
volume averaged three-dimensional deformation gradient (Loehnert et al.
(2005))

— 1
F=—u- Frdv* .
D/2y /Po 4 (8 8)

Furthermore, for homogeneous deformations (8.4) of a hyperelastic ma-
terial the Cauchy stress T* is also independent of the coordinates. Conse-
quently, with the help of (3.4), (4.6a), (4.13), (6.15), (8.1) and (8.2) it can
be shown that for homogeneous deformations (6.13) requires

d1/2T _ ,U*T* _ DI/QVJ*T*
ox*
= 2mF* _——F*"
" B
0¥*(C)
oC

Also, for homogeneous deformations (5.15) yields

3
t(+3) = Z / T*gm]\f)(f;j'?’)dv’k
m=1 P

= 2mF F” (8.9)

3
=JT'F 7 / > NEHGmdv
Po yp=1
= D'V JT*F "V’
= d'2TF TV (i=1,2,3,4) (8.10)

Now, comparison of the results (8.9) and (8.10) with the constitutive equa-
tions (7.3) indicates that the CPE will satisfy the patch test provided that
the strain energy function satisfies the restrictions that

98 9% (C)

oc ~  aCc

ox  _ _%NC) ;. B

aﬂifQC So Vi (i=123.4) for B; =0 (8.11)

Motivated by the work in (Nadler and Rubin (2003)) these restrictions can
be simplified by writing the general form of the strain energy of the CPE
as

¥(C,B;) = Z5(C)+¥(C,B;) , (i=1,2,34) (8.12)
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where here ¥ is taken to be a function of {C,3,} instead of {C,3;} as in
(Nadler and Rubin (2003)). Next, taking the material derivative of (8.5)
yields the results that

4
F= LF+F<Z@ ®Vi> ,
' =1 . |
C=F"FTCF'F+ FTF(Z@ ® V’>
i=1

+ <z4:v ®Bi) FTF (8.13)

=1

so that using the chain rule of differentiation it can be shown that

)3 _[ox* ov]-
= —F'F| = + = |FTF T
dC {ac - ac] ’
)y oV _[ox*  ov]. ..
= FTF|— + — |V’ (i=1,2,3,4 14

Thus, with the help of the representation (8.12) the restrictions (8.11) reduce
to restrictions on only the inhomogeneous part of the strain energy

ov(C,B;) o
g 0 for B;=0 (i=1,2,3,4) ,
w =0 for B, =0 (i,m=1234) (8.15)

For general anisotropic materials it is not known how to propose a func-
tional form for ¥ which includes dependence on the reference geometry that
causes the CPE to produce accurate results for general irregular shaped el-
ements experiencing bending dominated loads. However, progress made for
isotropic materials will be discussed in the next sections.
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9 A specific form of the strain energy function for
inhomogeneous

Using the definitions of the inhomogeneous strain measures n} in (Nadler
and Rubin (2003); Jabareen and Rubin (2008a))

5%:H2,31'D1 ) ’i% :H1B10D2 ) ’f? :H3ﬂ1'D3 )

’i%:HS,Bz'Dl ) ’ig :H2,620D2 ) ’fg :Hlﬂz'Dg )

Ky = HiB;eD' | k2 =H3B,eD? | k3 =H,3;,eD? |

ky = HyH3B,eD" | k3 = H H38,D? | ki = H Hy3,eD? (9.1)
and the alternative variables b; (i = 1,2, ..., 12) defined by

b; = {H%v Hg, ”%7 ”%7 ”%7 ”%7 ”?7 ”%7 ”év ’@117 ﬂiv ﬂi} (92)
it is convenient to replace the dependence of ¥ on 3; (j = 1,2,3,4) with
dependence on b; (j = 1,2,...,12) and express the strain energy function in
the form

3(C,8;) = S*(C)+¥(C,b;) (i=1,2,..,12) (9.3)
Then, the constitutive equations for a hyperelastic CPE become
_[oX* OV
dY*T = 2mF |~ % + —= |FT
e roliTe]

ov ov ov
4 1 2 3
t° = {mbl Hod™ + m—bg H{d* +m by Hsd ]

n dl/ZT(F*Tvl) ,

—— Hyd! —— Hod? — H,d?
Mg 134 Mgy 2 T Mg i

o — [ v v ov ]
+dPT(FTVE)

ov o O
t8 = [m—H,d! — Hsd? — H,d?
{mabg L S L T

+dPr(FTVE)

oV v v
t7 = |m—— HyHsd" —— H,Hsd? —— H,H,d? A
{mablo 2 +m<%11 1 +m3b12 e } (94)



A 3-D Brick CPE for Nonlinear Elasticity 107

with the remaining expressions for t*(i = 0, 1,2, 3) are given by (7.4). More-
over, the special case considered in (Jabareen and Rubin (2008a)) takes to
be a quadratic function of b; which is independent of C, such that

2ml = DWV“ [ZZBUI) b, } (9.5)

=1 j=1

where {u, v} are the shear modulus and Poisson’s ratio associated with the
small deformation response and B;; is a symmetric matrix. As a special case,
higher-order hourglass modes are uncoupled from bending and torsional
modes so that (Nadler and Rubin (2003))

Bij =0 for =10 and j #10 ,
Bij =0 for i =11 and j #11 ,
Bij =0 for 1 =12 and j #12 ,

1-v)[23-v) H1 Hi
B =
(10,10) 24 |32 Tm T HZ)
(1—-v)[2(3- 1/) H? H2
B =
(11,11) 24 | (3—2v) H2 Taz| o
(1—-v)[2(3- 1/) H? Hi
B = 9.6
(12,12) 24 | (3—2v) H2 T az (9.6)

The remaining 45 values of B;; need to be determine by matching exact
solutions to specific problems.

10 Determination of the constitutive coefficients

The coefficients B;; of the strain energy ¥ of inhomogeneous deformations
(9.5) can be determined by matching exact solutions of the linearized theory
of an isotropic elastic material. Specifically, these coefficients were deter-
mined in (Nadler and Rubin (2003)) by matching exact solutions of pure
bending and pure torsion of a rectangular parallelepiped. Then, the same
functional forms of B;; were used for elements with general reference shapes.
In (Loehnert et al. (2005)) it was shown that the resulting CPE exhibited
robust, accurate response to a number of problems which typically exhibit
unphysical locking or hourglassing in other element formulations. However,
it was also shown there that the CPE exhibited undesirable sensitivity to
irregularity of the reference element shape.
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Recently, Boerner et al. (2007) have proposed a numerical method for
determining coefficients in a quadratic form of the strain energy function for
inhomogeneous deformations of a 2-D plane strain formulation of the CPE.
This numerical approach produces improved response for irregular shaped
elements. Jabareen and Rubin (2007b) developed analytical forms for B;;
which cause an improved 3-D brick CPE to yield results that are relatively
insensitive to element irregularity for a number of problems. However, it was
observed that the accuracy of this improved CPE for out-of-plane bending of
a rhombic plate degrades as the angle of the plate decreases from 90°. This
is because the coefficients developed in (Jabareen and Rubin (2007b)) were
not based on out-of-plane bending solutions. Later, Jabareen and Rubin
(2008a) developed a generalized CPE which removed the deficiency in the
improved CPE. Specifically, the functional forms for B;; were generalized
to include full coupling of bending and torsional modes of deformation.
Also, the generalized CPE was obtained by considering out-of-plane bending
solutions in addition to in-plane bending solutions.

Figure 10.1. Sketch of the cross-section of the parallelepiped element E1.

It was observed in (Jabareen and Rubin (2007b) and Jabareen and Rubin
(2008a)) that in order to develop functional forms for B;; which produce
a CPE that is relatively insensitive to element irregularity it is sufficient
to focus attention on the bending and torsion response of elements which
are parallelepipeds with two right angles. Specifically, with reference to
the base vectors e; of a fixed rectangular Cartesian coordinate system it is
convenient to introduce the metric D;;
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and consider the three elements E1-E3 defined by (see Figure 10.1 for E1)
Element E1 (D12 %0, D13 =0, Do3 = 0)

D, =e; , Dy = Dyse; +4/1—D?es , Dy =e3 ,

D, =0 (i=0,4,56,7) (10.2a)
Element E2 (D12 =0, D13 #0, Da3 =0)

D; =e; , Dy =ey , D3 = Dize; +4/1 — Dizes ,

D, =0 (i=0,4,5,6,7) (10.2b)
Element E3 (D12 =0, D13 =0, Doz #0)

D, =e; , Dy =ey , D3 = Dayges + /1 — D3zes3 ,

D; =0 (i=0,4,56,7) (10.2¢)
It then follows from (8.2) and (8.7) that for these elements
V =HHH; , VI =0 (i=1,2,3,4) (10.3)

and the position vector X* in (5.1) reduces to
3
X* =) ¢'D;, (10.4)
j=1

where D has been set equal to zero. Also, for the example problems con-
sidered in this section use is made of linearized constitutive equations asso-
ciated with the compressible Neo-Hookean strain energy function (4.18).

Now, with reference to the base vectors €} of another fixed rectangular
Cartesian coordinate system, the components { X}/, u;’, T;} of the position
vector X*, the displacement vector u* and the stress tensor T*, respectively,
of an exact solution of the linear equations of elasticity can be expressed in
the forms

3 3
X* = ZX;" Lo,ouf :Zu;"e; ,
=1 i=1
ZZT*’ e ®e}) (10.5)
=1 j=1

Moreover, the classical pure bending solution (e.g. Sokolnikoff (1956)) of
the three dimensional equations of isotropic elasticity for a rectangular par-
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allelepiped can be written in the form
* */ */ / 1 */ 2 */ 2 */ 2 /
u = (VX1 X5 )el —37 (X1 ) +V(X2 ) —U(X3 ) €5
— ('yl/Xé”Xé“)e'3 ,
T" = 2u(1 +v7)7X3'(e) ® €}) (10.6)
where ~ controls the magnitude of the pure bending. Similarly, the simple

torsion-like solution in (Jabareen and Rubin (2007¢)) can be expressed in
the form

u* = —(wq’)X%" g”)e'l - (wa’ §'>e’2 + (ink’X;’)eg ,
T = ,u(.u[— (1+¢)X3 (6] ®e)+e,2e))
+ (1= 6)X5' (e @ ¢ +ef @) (10.7)

where the constant w is the twist per unit length in the e} direction and
the constant ¢ controls the warping of the cross-section with unit normal
e}. Moreover, with the help of (10.4) and (10.5) the components X/ are
determined by the convected coordinates 67

3
X7 = (e} o D)t (10.8)

Jj=1

so that the solutions (10.6) and (10.7) can be expressed as function of 67.
Within the context of the linear theory of a CPE (Nadler and Rubin
(2003)) the director displacements §; are defined such that

d;, =D, +6; (z’zO,l,...,?) (109)

and for the special elements defined by (10.2) the linearized forms of the
inhomogeneous strains 3; become

B; = biys (i=1,23,4) (10.10)

As explained in (Nadler and Rubin (2003)), the values 8; of the element
director displacements d; which correspond to the exact displacement field
u* need to be properly defined. Specifically, for these element shapes the val-
ues d; are determined by the equations in (Nadler and Rubin (2003)) which
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connect d; to integrals over the reference element region Py of derivatives
of u* with respect to the convected coordinates

1 1 ou*
o, = A% o = _dV* (i=1,2,3
0 V*/P“ C = e =128
N 1 0%u* . . 1 0*u* .
0i= s Paalamdv 0 = Paalaesdv ’
1 9%u* 1
* _ _dV* Y (S A | VA 10.11
%= Jomom ™ 0 0T = v /Paelae?aa:*d‘/ (10-1)

In particular, for the exact solutions (10.6) and (10.7) and the element
shapes (10.2) it can be shown that these expressions yield

so that when §; are replaced by the exact values d; the linearized values of
x4 vanish so that [(9.2)]
Kﬁll = lﬁi = Iii =0 or b10 = b11 = b12 =0 (1013)

and with the help of (7.4) and (9.5) the linearized forms of the constitutive
equations (9.4) reduce to

d'P?T=0, t =0 (i=0,1,2,3,7) ,

D2y
4 6(17—; Z B HaD' + By, HD? + By HsD? b,

D1/2V
= TH Z [357113 + By, HyD? + B4J-H1D3} b

D1/2V
g6 = 2 VK Z [ngHl + Bg,; HsD? + szHsz‘} b; (10.14)

where d? have been replaced by the reference values D?. Also, the values of
m’ in (5.14) associated with the exact solutions (10.6) and (10.7) are given
by

m' =0 (i=0,1,2,3,7) ,

mi:/ NT*N*dA* (i = 4,5,6) (10.15)
BPU
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where 0P, is the reference boundary of the CPE, N* is the unit outward
normal to 9P and dA* is the reference element of area. It then follows that
within the context of the linearized theory, the equations of equilibrium
associated with the bending (10.6) and torsion (10.7) solutions reduce to
three vector equations

t'—m’' =0 (i=4,5,6) (10.16)

Analytical expressions for B;; can be developed by matching the solu-
tions (10.6) and (10.7) for each of the element shapes (10.2). Specifically,
with reference to the element shape E1 in (10.2a) consider six bending so-
lutions associated with specifications of the orientations of €} relative to
D;

Bending B1: e =D; , e =Dj , (10.17a)
Bending B2: e =D; , e, =Dj , (10.17Db)
Bending B3: e =Dy , e, =Dj3 , (10.17¢)
Bending B4: e =Dy , e, =Dj , (10.17d)
Bending B5: e) =D; , e, =Dy, (10.17e)
Bending B6: e =D3 , e, =-D; (10.17f)

Also, consider two torsion solutions associated with specifications
Torsion T1: e =D; , e =Djy, (10.18a)
Torsion T2: e =Dy , e, =D; (10.18Db)

For each bending and torsion solution the exact values d; are determined
by (10.11) the linearized values of b; are determined using (9.1), (9.2) and
(10.10) with &; replaced by d; and the resulting constitutive equations for
t? are determined by (10.14). Also, the values of the warping constant ¢
corresponding to nearly pure torsion being determined by

Torsion T1: mleD; =0 = ¢ = , (10.19a)
H3 (1~ D%,) + H3
13 (1~ D3,) - 13

Torsion T2: m’eDy =0 = ¢ = (10.19Db)
13 (1 D%,) + H3
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For each bending solution the value of v can be eliminated in the result-
ing equations of equilibrium (10.16) and the value of w can be eliminated
from each of the equations of equilibrium associated with the torsion solu-
tions. Also, the values (10.19) are used in the resulting torsion equations.
It therefore follows that the each of the solutions (B1)-(B6), (T1) and (T2)
yield nine scalar equations of equilibrium which total 72 scalar equations to
determine the values of B;; as functions of H; and D1». Some of these scalar
equations are trivially satisfied and others are redundant. In particular, us-
ing a symbolic program like Maple it can be shown that these equations can
be solved for B;; such that

det(Bij) >0 (1020)

Similar procedures can be used to define bending and torsion solutions
for the element shapes E2 and E3 and the resulting equations can be solved
for B;; to determine the dependence on the metrics D13 and Das. Next,
introducing the auxiliary variables {A12, A13, A23} defined by

For D3,+ Di;+ D3 =0:

A2 = A1z = A2z =0, (10.21a)
For D3}y, + D3+ D3y >0:
A12 — D%Q )\13 —_ D%?)
D3, + Dis + D3 D3, + D35 + D3g

_ D3y
D3, + Di; + D33

A23 (10.21b)

it is possible to denote the values of B;; associated with the solutions of
the three elements E1-E3 in (10.2) by Bilj2 for E1, by Bilf’ for E2, and by
B?f for E3. Also, the matrix B?j is defined so that it yields a strain energy
function ¥ equivalent to that obtained in (Nadler and Rubin (2003)) for
a rectangular parallelepiped, when the value of the torsion function b*(1)
is taken to be 1/2 as suggested in (Jabareen and Rubin (2007c)). Then,
the general expression B;;(D12, D13, D23) which combines these solutions is
given by

Bij(D12, D13, Da3) = (1 — A2 — A1z — )\23)3%
+ M2Bj} + MisB 4 Aos B (10.22)

Now, using the definitions (10.21) it follows that each of the coefficients
{(1 = X2 — A3 — Aa23), A2, A3, A23} is non-negative and that at least
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one of them is positive. Also, each of the matrices {B};, B}?, B}, B}}
is positive definite so that the combined matrix B;;(Di2, D13, D23) is also

positive definite for all reference element shapes.

11 A test for path-dependence

The formulation of the CPE for nonlinear elasticity treats the element
as a structure and determines the kinetic quantities by derivatives of a
strain energy function so that the dissipation vanishes. It therefore fol-
lows that the CPE formulation is automatically hyperelastic and predicts
path-independent results. In contrast, element formulations which modify
full integration methods like those associated with enhanced strain or in-
compatible mode methods can introduce path-dependence of the results.
Although an analytical proof is required to ensure that an element formula-
tion is hyperelastic for all deformations, only a single calculation is needed
to prove that an element formulation is path-dependent.

Jabareen and Rubin (2007a) introduced a simple simulation which can
be used to test element formulations for path-dependence and the elements
in Table 1.1 were tested. In the examples considered here and in the rest
of the text the elements ABBAQUS-6, ADINA-2, ANSYS-3 and FEAP-
3 in Table 1.1 are denoted by (AB), (AD), (F), respectively. Also, the
generalized CPE is denoted by (C).

It has been shown in (Jabareen and Rubin (2007a)) that the response
of (F) is similar to that of other enhanced strain and incompatible mode
elements. Therefore, for most of the example problems presented in the
following sections, comparisons will be limited to the element in FEAP.
However, the results of the (Q1P0) 3-D brick element and the mixed higher
order nine node quadrilateral element [denoted by (HO9)] in FEAP will be
used for comparison of some of the examples using nearly incompressible
material response.

In order to test potential path-dependency of element formulations, con-
sider a single brick element which is a cube in its reference configuration
with edges of length L = 1 m (see Figure 11.1). The four nodes located by
X, (i =1,2,3,4) are fixed, the nodes X; (i = 5,6,7) are free and the node
Xy is deformed to the location xg by the displacement ug

X8 = Xg—|—u8 (111)

Specifically, the displacement ug is characterized by a sequence of straight
line segments that connect the end points A-F shown in Figure 11.1 which
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are characterized by

uy =0, up = —fe; , uc = —pe; — fey ,
up = —fe; — fes — fes , up = —fPey — fPes ,
up = —fes , B =025m (11.2)

The total external work done on the element is given by

where fg is the external nodal force applied to node 8.

Deformation path
)
I 4 F
3 B A
7 8
E
A D
C
1 SN
2 e

3

Figure 11.1. Sketch of the cubical element showing the numbering of the
nodes and the paths used to test path-dependency of various element for-
mulations.

To quantify the error associated with path-dependency it is convenient
to introduce the quantities

* ok
Wi = Wapcpera » Wi =Wargpera ,

WB = WABCD ; Wl*)* - WAFED ’
W* W** W* _ W**
Ey = A4 Ey = A Ey=—L_—"D (114
A WB Y A WB ) A WB ( )

Here, W} denotes the work done on the element in a single cycle of de-
formation following the path ABCDEFA, W3* denotes the work done in
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a single cycle of the path AFED and its reverse path DEFA, W} is the
work done during the path ABC'D and W} is the work done during the
path AFED to the same point D. Also, £% and E%" are the relative er-
rors for the cycles associated with W3 and W}*, respectively and Ep is
the relative error associated with the two different paths to the point D.
The trapezoidal rule was used to integrate (11.3) and each segment of the
deformation was divided into N = 250 equal steps to ensure accuracy.

Three types of element response are possible: hyperelastic, Cauchy elas-
tic and hypoelastic. For hyperelastic element response the nodal forces
maintaining equilibrium of any configuration and the work done between
two configurations are both path-independent. For Cauchy elastic element
response the nodal forces maintaining equilibrium of any configuration are
path-independent but the work done between two configurations is path-
dependent. For hypoelastic element response the nodal forces maintaining
equilibrium of any configuration and the work done between two configura-
tions are both path-dependent.

Table 11.1. Path-independence tests. Errors in the work and description
of the type of elastic response.

Element | W5 (MJ) | E4 (%) | EX (%) | Ep (%) | Type of
elasticity
C 40.6 8.3E-5 | 2.1E-14 | -8.3E-5 | Hyper
AB 36.8 0.393 0.011 -3.18 HYPO
AD 38.9 1.1E-5 | -1.0E-8 | -1.1E-5 | Hyper
AN 36.8 0.393 0.011 -3.18 HYPO
F 41.3 8.6E-5 -2.6E-15 | -8.6E-5 Hyper

Table 11.1 presents the results for the Cosserat point element (C) and for
the other enhanced strain/incompatible mode elements. The theoretical val-
ues of { £, E%*, Ep} for the Cosserat point element are zero. Consequently,
the numerical values for the Cosserat solution in Table 11.1 represent the
combined numerical error due to: the convergence criterion used to satisfy
equilibrium, machine precision and numerical integration of the work done
using the trapezoidal rule. Thus, the error in the constitutive equation of a
particular element can be determined by comparing the relative error with
that of the Cosserat element. Furthermore, it is noted that the differences
in the values of the work W}, given in Table 11.1 reflect differences in the
specific treatment of inhomogeneous deformations in each of the elements.
Moreover, the errors E’}" associated with a cycle composed of a path and
its reverse path are typically smaller than those E% associated with a gen-
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eral cycle. The errors Ep associated with two different paths to the same
point can be up to 10 times those of E%. Also, it is noted that negative
values of £ or %" in Table 11.1 indicate that the element generates en-
ergy whereas positive values of these quantities indicate that the element
dissipates energy.

(a) AB (b) AN

Figure 11.2. Residual element distortion after 10 deformation cycles
ABCDEF A for the inelastic elements (AB) and (AN). The displacements
have not been enhanced.

The results in Table 11.1 indicate that the elements (AD) and (F) ex-
hibit hyperelastic response for the paths considered, while the elements
(AB) and (AN) exhibit hypoelastic response. Although the values of E% in
Table 11.1 for the elements (AB) and (AN), based on incompatible modes
or enhanced strains, seem relatively small, these errors are cumulative when
multiple cycles are performed. Figure 11.2 shows the residual element dis-
tortion after 10 deformation cycles ABCDEF A. 1t is emphasized that the
displacements in Fig. 11.2 have not been enhanced. Also, it is noted that
multiple deformation cycles need to be calculated for problems like rolling
tires or vibrating MEMS devices so that these accumulated errors may be
quite significant in certain calculations.
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12 Example problems of thin structures with
irregular element shapes

The deformation field associated with the solution of a practical problem
typically is inhomogeneous so that the response of the CPE is influenced
by the specific form of the inhomogeneous strain energy being used. Mesh
refinement tends to cause the response of the CPE to be dominated by its
response to homogeneous deformations with the influence of the inhomo-
geneous strain energy becoming negligible. Consequently, since the CPE
satisfies the patch test the predictions of the CPE should converge to the
exact solution with mesh refinement. However, the rate of convergence is
influenced by details of the functional form for the inhomogeneous strain
energy.

In order to study the accuracy of the inhomogeneous strain energy func-
tion it is best to focus attention on problems that are dominated by in-
homogeneous deformations. This can be accomplished by focusing on the
response of thin structures to bending fields. More details of the exam-
ples discussed in this section can be found in (Jabareen and Rubin (2007a),
Jabareen and Rubin (2007b) and Jabareen and Rubin (2008a)).

12.1 Shear load on a thin cantilever beam (small deformations)

Figure 12.1 shows a sketch of a thin cantilever beam with dimensions
L=200mm , H=W =10mm (12.1)

which is fully clamped at one of its ends and is subjected to a shear force
P (modeled by a uniform shear stress) applied in the ey direction to its
other end. The lateral surfaces are traction free. The mesh {20n x n x n} is
defined by distorting the middle cross-section in its reference configuration
(using the parameters ay, as, ag, a4 shown in Figure 12.1), with 10n elements
on each side of this cross-section and n elements in each of the e and es
directions.
Two cases of element irregularity are considered

Casel:a; =a , ag =—a , a3 =a , a4 =—a ,

Casell:a; =a , ag =a , a3 =—a , a4 =—a (12.2)
where the parameter a/H defines the element irregularity. Both of these
cases cause the middle surface to remain planar with the normal to that

surface being in the e; — ey plane for Case I and being in the e; — e3 plane
for Case II. The value

why = 0.21310mm  for P =0.1N (12.3)
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e

Figure 12.1. Shear load on a thin cantilever beam. The irregular element
mesh is based on the distorted center cross-section.

of the ey component of the displacement of point A (see Figure 12.1) pre-
dicted by the generalized CPE (C) with the most refined mesh (n = 5)
and zero irregularity (a/H = 0) is considered to be exact and the error E
associated with the predictions u 49 of other calculations for the same value
of P is defined by

UA2 — Ul
|“22|

Figures 12.2a,b show the results for Case I and Figs. 12.2c¢,d show the
results for Case II. The error is plotted as a function of the irregularity pa-
rameter a/H in Figs. 12.2a,c and convergence is examined in Figs. 12.2b,d.
Ideally the response should be insensitive to the value of a/H. These figures
show that the two elements converge to the same value for the refined mesh
(n =5) and large irregularity a/H = 2. They also show that the predictions
of (C) are slightly more accurate than those of (F).

E = (12.4)

12.2  Shear load on a thin slanted cantilever beam (small defor-
mations)

Figure 12.3 shows a sketch of a thin slanted cantilever beam with di-
mensions (12.1) and with the slanting angle #. The boundary conditions
are the same as those for the previous example except that the shear load
P is applied in the ez direction to cause out-of-plane bending. Again the
mesh is taken to be {20n x n xn} with 20n elements in axial direction of the
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Figure 12.2. Shear load on a thin cantilever beam (small deformations).
(a,c) Errors in the displacement of the point A in the ey direction versus
the distortion parameter a/H and; (b,d) the errors versus n for the mesh
{20n x n x n} defined for two cases of element distortion.

beam. All of the elements have parallelogram cross-sections in the e; — e
plane with sides parallel to the ends of the beam.

Figure 12.4a shows the displacement component uss of point A (see
Figure 12.3) in the eg direction as a function of 6 for the most refined mesh
(n =5). The error E in uaz is defined in a similar manner to (12.4) with
the exact value u’, taken to be that predicted by (C) for each value of
0 with n = 5 and with the load P given by (12.3). Figures 12.4b,c show
that (C) and (F) converge to the same values and that (C) is slightly more
accurate than (F) for n =1 and large values of 6.
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Figure 12.4. Shear load on a thin slanted cantilever beam (small deforma-
tions). (a) Displacement u 3 of the point A in the e3 direction versus the
angle 0 for n = 5 with the mesh {20n x n x n}; (b) errors in w3 versus 0

for n = 1; (¢) errors in ua3 versus n for § = 60°.
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Figure 12.5. Shear load on a thin twisted cantilever beam. The element
mesh is based on the distorted center cross-section.

12.3 Lateral torsional buckling of a thin cantilever beam (large
deformations)

Figure 12.5 shows a sketch of a thin twisted cantilever beam which in
its unstressed reference configuration has length L and a rectangular cross-
section with height H and width W given by

L=200mm , H=10mm , W =2mm (12.5)

Each of the cross-sections is twisted by the angle # which varies linearly
from zero at the clamped end to © at the loaded end. Also, the load P is
applied in the constant direction parallel to the long edges of the rectangular
cross-section in its reference configuration. In order to stimulate lateral
torsional buckling the value of © is taken to be 0.1° which introduces a
small imperfection in the reference geometry of the beam. Furthermore,
the element irregularity shown in Figure 12.5 is specified by Case I in (12.2)
and the mesh is given by {20n x n x n} with 20n elements in axial direction
of the beam.

To investigate rotation of the beam’s end it is convenient to consider the
difference in the displacements of the points A and B shown in Figure 12.5.
Specifically, the quantity Aw is defined by

Au = (up —uy)eey (12.6)
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Figure 12.6. Large deformation lateral torsional buckling of a thin can-
tilever beam with a small pre-twist © = 0.1° using the mesh {20n x n x n}.
The influence of element irregularity is shown in Figs. 12.6a,b for n = 2
and in Figs. 12.6¢,d for n = 3.

Figure 12.6 shows the results for large deformation lateral torsional buckling
of a thin cantilever beam. In this figure the curves denoted by (E) are
predicted by (C) with n =5 and a/H = 0 and are considered to be exact.
The results in this figure show that for n = 2 the predictions are not yet
converged and are sensitive to element irregularity whereas for n = 3 the
predictions are reasonably converged and reasonably insensitive to element
irregularity. Also, it can be seen that (C) and (F) converge to the same
results.
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Figure 12.7. Point load on the corner of a thin partially clamped rhombic
plate.

12.4 Point load on the corner of a thin partially clamped rhombic
plate (small deformations)

Figure 12.7 shows a sketch of a thin partially clamped rhombic plate
with dimensions

L=500mm , H =10mm (12.7)

with two clamped and two free edges and which is loaded at its corner by a
point force P. The length of each edge is L and the load is specified by

P=1N (12.8)

The mesh used for the plate is defined by {10n x 10n x n} with n elements
through the thickness.

Figure 12.8a shows the component u 43 of the displacement of the point
A in the e3 direction as a function of # for the most refined mesh (n = 5).
The error E in this displacement is defined in a similar manner to (12.4)
with the exact value u’, taken to be that predicted by (C) for each value
of 6 with n = 5 and the load P given by (12.8). Also, Figures 12.8b,c show
that (C) and (F) converge to the same values.

12.5 Point load on the center of a thin fully clamped square plate
with an irregular element mesh (small deformations)

Figure 12.9 shows a sketch of one quarter of a thin fully clamped square
plate with dimensions (12.7) that is loaded by a point force at its center.
Only one quarter of the plate is modeled and the value P given by (12.8)
corresponds to one quarter of the load that would be applied to the center
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Figure 12.8. Point load on the corner of a thin partially clamped rhombic
plate (small deformations). Displacement was of the point A in the ej
direction versus the angle 6 for n = 5 with the mesh {10n x 10n x n}; (b)
errors in uysz versus 6 for n=1; (c¢) errors in uusz versus n for § = 45°.

of the entire plate. Irregular elements are specified by moving the center
point of the quarter section to the position characterized by the lengths a;
and ag (shown in Figure 12.9) defined by two cases

Casel:a; =ay =a , —1< <1

)

sin(d) , 0<6<2r (12.9)

»\hh‘g

L
Case Il : a; = ZCOS(G) , ag =

The quarter section of the plate is meshed by {10n x 10n x n} with each
subsection being meshed by {5n x 5n x n} and with n elements through
the thickness. The error E in the displacement component u43 of point A
in the e direction is defined in a similar manner to (12.4) with the exact
value u’; taken to be that predicted by (C) for regular elements (a/L = 0)
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Figure 12.9. Point load on the center of a thin fully clamped square plate
with an irregular element mesh.

withn =5
uys = 0.16893mm  for P =1N (12.10)
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Figure 12.10. Point load on the center of a thin fully clamped square plate
(small deformations). Errors in the displacement of the point A in the eg
direction versus the distortion parameters (a) 4a/L and; (b) the angle 6 for
two cases of element irregularity with the mesh {10 x 10 x 1}.

Figures 12.10a,b show the error for n = 1 as a function of the irregularity
parameter 4a/L for Case I (Figure 12.10a) and as a function of 6/(27) for
Case II (Figure 12.10b). From these figures it can be seen that that (C)
and (F) are both relatively insensitive to the magnitude and type of element

irregularity.
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12.6 Point load on the corner of a thin partially clamped rhombic
plate (large deformations)

(a) 0=0deg (b) 6 =060 deg

Figure 12.11. Point load on a partially clamped rhombic plate (large defor-
mations). Predictions of the generalized CPE for the mesh {10n x 10n x 1}
with n =2 and P =1kN.

Figure 12.11 shows the deformed shapes of a thin partially clamped
rhombic plate subjected to a point load on its corner for two different angles
f and the same value of the load P. The plate is fully clamped on two edges
and the other edges and major surfaces are traction free. The dimensions
are given by (12.7) as shown in Figure 12.7 and the point force P given by

P =1kN (12.11)

The mesh is specified by {10n x 10n x 1} and the exact values uj of the
displacement of the corner in the ez direction is determined by the most
refined solution (C) with n =5

uz = 0.21084m  for 6 =0°,
uz = 0.39306 m  for 6 =60° (12.12)

Figures 12.12 show the load P versus displacement curves for n = 2
and the convergence curves for two values of the angle §. Comparison of
Figures 12.12a,c shows that the rhombic plate with angle § = 60° is more
flexible than that for § = 0° and that (C) and (F) converge to the same
solution. Also, Figure 12.12d shows that the convergence properties of (C)
are slightly better than those of (F) for the case when 6 = 60°.
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Figure 12.12. Point load on a partially clamped rhombic plate (large
deformations). Predictions of the load P versus displacement us at the
loaded corner and convergence of the error in the displacement for the mesh
{10n x 10n x 1} with the load P = 1 kN and different angles.

13 Example problems exhibiting robustness to
hourglass instabilities

Reese and Wriggers (1996), Reese and Wriggers (2000) and Reese et al.
(2000) have shown that enhanced strain formulations, like that proposed
by Simo et al. (1993), can predict unphysical hourglass buckling modes for
plane strain compression of a block. In order to examine this phenomena
(Jabareen and Rubin (2007a)) considered a square block with edge length
L =1 m which is compressed between two smooth rigid parallel end plates
with the other two edges being free (see Figure 13.1). Plane strain defor-
mations are modeled using one 3-D element through the block’s thickness
and eliminating displacements in the out-of-plane direction.
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Figure 13.1. Plane strain compression of a block showing the load P and
the stretches A\; and Ay for the homogeneous solution.

For the homogeneous solution the stretches in the e; and es directions
are denoted by A; and Ag, respectively (see Figure 13.1). At a critical
value of Ay (< 1) the block buckles in its plane. In order to calculate the
post-buckling response of this structure it is necessary to use special meth-
ods like arc-length control because a spring-back phenomena occurs as the
block buckles in shear. Moreover, a small imperfection is introduced in the
reference mesh to trigger the shear buckling mode. Figure 13.2 shows that
(C) predicts physical shear buckling modes for two nearly perfect regular
meshes {10 x 10 x 1} and {20 x 20 x 1} and for two nearly perfect irregular
meshes. From this figure it can be seen that the effect of element irregularity
is not large.

Figure 13.3 shows the predictions of an element in ABAQUS (AB) which
is based on reduced integration with hourglass control. From this figure it
can be seen that this element (AB) produces physical shear buckling which
follows the predictions of the Cosserat element (C). However, (AB) ceases to
converge and thus cannot predict the full post-buckling behavior. Moreover,
it is noted that the buckled mode predicted by (AB) shown in Figure 13.3
is presented for the load just before the program ceased to converge.

As mentioned previously, the elements based on enhanced strains and
incompatible modes can exhibit unphysical hourglass modes for problems
with high compression combined with bending. Specifically, Figure 13.4
shows the results of calculations using the enhanced strain element in FEAP
(F) for two perfect regular meshes {10 x 10 x 1} and {20 x 20 x 1}. From
this figure it can be seen that at the bifurcation point uwso = —0.330m (the
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(¢) {10x10x1}, u,, =—0.389 m (d) {20x20x1},uy, =—0.348 m

Figure 13.2. Compression of a block. Physical shear buckling modes pre-
dicted by (C) for: (a,b) two nearly perfect regular meshes {10 x 10 x 1} and
{20 x 20 x 1}; and (c,d) two nearly perfect irregular meshes.

0.0
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(a)

(b)uy, =—0.381m

Figure 13.3. Compression of a block. Predictions of (C) and (AB) in
ABAQUS for a nearly perfect regular mesh {20 x 20 x 1}; (a) displacement
components; (b) compressive force P; and (b) post-buckling shape.
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Figure 13.4. Compression of a block. Unphysical hourglass buckling modes
at bifurcation predicted by (F) for two perfect regular meshes {10 x 10 x 1}
and {20 x 20 x 1}.

point where the lowest eigenvalue of the global tangent stiffness changes sign
between w42 = —0.3303 m and wao = —0.3304 m), the associated buckling
mode shapes are characterized by unphysical hourglassing for both meshes.

The enhanced strain and incompatible mode elements in ABAQUS (AB),
ADINA (AD) and ANSYS (AN) exhibit unphysical hourglasing that causes
lack of convergence for (AB) and (AN). Figure 13.5 shows the deformed
shapes predicted by these elements for a nearly perfect regular mesh {20 x
20 x 1} corresponding to the load just before the programs ABAQUS and
ANSYS ceased to converge. The element (AD) predicts a post buckled
response that is corrupted by hourglassing.

14 Example problems exhibiting robustness to near
incompressibility

Jabareen and Rubin (2008b) considered the example of plane strain inden-
tation of a rigid plate into a nearly incompressible elastic block to examine
the response of (C) in the nearly incompressible limit. Figure 14.1 shows a
sketch of the boundary conditions on a block which has length 2L, height
L and depth W. Material points on the block’s sides and bottom remain
in contact with a rigid container and are allowed to slide freely. The top
surface of the block is loaded by a rigid plate (AB) of length L which makes
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(a) (AB), uy, =—0.297 m (b) (AD), uy, =—0.389 m

(©) (AN), uy, =—0.295 m

Figure 13.5. Compression of a block. Unphysical hourglass buckling modes
predicted by (AB), (AD) and (AN) for a refined nearly perfect regular mesh
{20 x 20 x 1}.

perfect contact with the block so that material points in contact with the
rigid plate move only vertically. The remaining half of the block’s top sur-
face is traction free and the dimensions of the block are given by

L=W=1m (14.1)

Irregular meshes are defined by dividing the block into four subsections
with the central node moving to the position characterized by the lengths
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€,
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Figure 14.1. Plane strain indentation of a rigid plate into a block showing
the boundary conditions and definition of element irregularity.

{a1, as} (shown in Figure 14.1) defined by two cases

8a
Casel:a; =a , ap =0 | —1§3—L§1,
Ugg = —01m , n=5,
8a
CaseIl:a; =0 , ax =a , —1§3—L§1,
upga =—01m , n=>5 (14.2)

The entire block is meshed by {8n x 4n x 1} with 4n elements in the e;
direction and 2n elements in the e in each of the subsections. The point C
(shown in Figure 14.1) is located on the free top surface at a distance 0.25L
from the corner B of the rigid plate. Also, the material is considered to be
nearly incompressible.

Figure 14.2 shows convergence of the solution for the regular (a = 0)
mesh {8n x 4n x 1} and was = —0.1 m. The converged value uf., of the
displacement of the point C in the es direction predicted by (C) for a regular
mesh with n = 20 is considered to be exact and is given by

Ugg = 0.071895m  for wuase = —0.1m with n =20 (14.3)

The error E of in the values ucs predicted by calculations of other elements
and meshes is defined by an expression similar to (12.4). Figure 14.2 shows
the convergence of this error predicted by (C), (Q1P0) and (HO9), where
(HO9) denotes a mixed higher order nine node quadrilateral element in
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Figure 14.2. Plane strain indentation of a rigid plate into a nearly incom-
pressible block. Convergence of the error E in the displacement uco of the
point C using the regular mesh {8n x 4n x 1} for uge = —0.1m versus: (a)
n; and (b) versus the number of degrees of freedom DOF.

FEAP. This error is plotted relative to n for the mesh {8nx4nx 1} in Figure
14.2a and is plotted relative to the degrees of freedom (DOF, calculated for
plane strain response) in Figure 14.2b. From Figure 14.2a it is not clear if
(Q1P0) exhibits a locking behavior by converging to a value different from
(C) or whether the convergence rate is very slow. To validate the converged
value of (C) for n = 20, calculations were also performed using the mixed
higher order element (HO9) with the mesh {8n x 4n x 1} up to n = 10. In
particular, it can be seen in Fig. 14.2b that (HO9) tends to converge to the
value predicted by (C).

Figure 14.3 presents the errors E in the displacement ucs for two cases
of element irregularity and for the mesh {8n x 4n x 1} with n = 5 and
uao = —0.1 m. Since there is a strain concentration near the edge of the
plate it is expected that a non-fully converged solution will be sensitive to
element irregularity. In particular, it can be seen from Figure 14.3a that
(Q1PO0) is more sensitive to element irregularity than (C) for positive values
of a for Case I which cause the elements near the plate’s edge B to be more
irregular. The results in Figure 14.3b show that the error reduces slightly
for increasing positive values of a for Case II which cause the elements near
the plate’s edge B to be more refined.

Figure 14.4 shows nonlinear load curves using the regular mesh {8n x
4n x 1} for different values of n. These figures again show that (C) predicts
more flexible response than (Q1P0) for the coarser meshes. Figure 14.5
shows the deformed shapes for the regular mesh {8n x 4n x 1} with n = 3
for different values of loads. In particular, it can be seen that the flexibility
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Figure 14.3. Plane strain indentation of a rigid plate into a nearly incom-
pressible block. Error E in the displacement ucs of the point C for two
cases of element irregularity and for the mesh {8n x 4n x 1} with n =5 and
Upg = —0.1m.

of (C) allows the elements near the plate’s corner to roll around the corner
more easily than allowed by (Q1P0). Since the flexibility of (C) has been
validated relative to the mixed higher order element (HO9) it is concluded
that the stiffness shown by (Q1P0) is unphysical.
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Figure 14.4. Plane strain indentation of a rigid plate into a nearly in-

compressible block showing nonlinear load curves using the regular mesh
{8n x 4n x 1} for different values of n.
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15 Conclusions

The previous sections summarized the development of a 3-D brick Cosserat
Point Element (CPE) for the numerical solution of problems in nonlinear
elasticity. The CPE is based on the theory of a Cosserat point which is
a continuum theory that introduces balance laws for the deformation of a
structure that is "thin” in three-dimensions. In contrast with standard fi-
nite element methods, the CPE treats the finite element as a structure and
the kinetic quantities are determined by derivatives of a strain energy that
characterizes resistance to all modes of deformation of the structure. In
particular, a nonlinear form of the patch test is used to place restrictions on
this strain energy function which ensure that the CPE reproduces all homo-
geneous solutions exactly for all reference element shapes. Special attention
has been focused on developing an analytical form for the strain energy
of inhomogeneous deformations that causes the predictions of the CPE to
be relatively insensitive to element irregularity even for thin structures like
shells and rods.

Example problems have been considered which show that the CPE is
as accurate as elements based on enhanced strains and incompatible modes
for thin structures and is free of the hourglass instabilities observed in these
elements for deformations with high compression combined with bending.
Also, the CPE is free of locking due to near incompressible material re-
sponse. Consequently, the CPE is truly a user friendly element that can be
used with confidence to solve problems in nonlinear elasticity.

Although the CPE approach has proved very successful for nonlinear
elastic materials it is not clear how it can be generalized for more compli-
cated material response. An elastic solid has the special simple property
that it has a unique shape when it is unloaded. In contrast, an elastic-
viscoplastic material can have an infinite number of stress-free shapes which
differ by a general homogeneous deformation. Thus, in order to generalize
the CPE for elastic-viscoplastic materials it is necessary to first understand
how the CPE can be generalized for fluids which have no unique stress-
free shapes. At present it appears that this area of research will remain
challenging for a number of years to come.
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Multiscale Approaches: From the Nanomechanics to
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1 Overview

Computational modelling of materials behaviour is becoming a reliable tool to
underpin scientific investigations and complement traditional theoretical and
experimental approaches. In cases where an understanding of the dual nature of
the structure of matter - continuous when viewed at large length scales and
discrete when viewed at an atomic scale - and its interdependencies are crucial,
multiscale materials modelling (MMM) approaches are required to complement
continuum and atomistic analyses methods. At transitional (or microstructure)
scales - in between continuum and atomistic - continuum approaches begin to
break down, and atomistic methods reach inherent time and length-scale
limitations (Ghoniem et al., 2003). Transitional theoretical frameworks and
modelling techniques are being developed to bridge the gap between length scale
extremes. The power of analytical theories lies in their ability to reduce the
complex collective behaviour of the basic ingredients of a solid (e.g. electrons,
atoms, lattice defects, single crystal grains) into insightful relationships between
cause and effect. For example, the description of deformation beyond the elastic
regime is usually described by appropriate constitutive equations, and the
implementation of such relationships within continuum mechanics generally
relies on the inherent assumption that material properties vary continuously
throughout the solid. However certain heterogeneities linked to either the
microstructure or the deformation per se cannot be readily described within the
framework provided by continuum mechanics: dislocation patterns, bifurcation
phenomena, crack nucleation in fatigue, some non-local phenomena, etc. Some
examples will be discussed next to illustrate the role of MMM in nano and
micro-mechanics research.

Recent interest in nanotechnology is challenging the scientific community to
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analyze, develop and design nano to micro-meter size devices for applications in
new generations of computers, electronics, photonics and drug delivery systems.
These new exciting application areas require novel and sophisticated physically-
based approaches for design and performance prediction. Thus theory and
modelling are playing an ever increasing role in this area to reduce development
costs and manufacturing times. An important problem which concerns the micro-
electronic industry is the reliable operation of integrated circuits (ICs), where the
lifetime is limited by the failure of interconnect wires in between sub-micron
semiconducting chips. In some cases, the nucleation and growth of even a single
nanovoid can cause interconnect failure. Statistical mechanics cannot adequately
address this situation. Future electronic and optoelectronic devices are expected
to be even smaller, with nanowires connecting nano-size memory and
information storage and retrieval nano-structures. Understanding the mechanics
of such nano-engineered devices will enable high levels of reliability and useful
lifetimes to be achieved. Undoubtedly, defects are expected to play a major role
in these nano and micro-systems due to the crucial impact on the physical and
mechanical performance.

The potential of MMM approaches for computational materials design is also
great. Such possibility was recently illustrated on a six-component Ti-base alloy,
with a composition predetermined by electronic properties, which was shown to
exhibit an entirely new twin- and dislocation-free deformation mechanism,
leading to “superelasticity, superplasticity, superstrength, superworkability, Invar
and Elinvar properties” (Saito et al., 2003). Such an alloy would be unlikely to
be found by trial and error. This points to a paradigm shift in modelling, away
from reproducing known properties of known materials and towards simulating
the behaviour of possible alloys as a forerunner to finding real materials with
these properties.

In high-payoff, high-risk technologies such as the design of large-structures
in the aerospace and nuclear industries, the effects of aging and environment on
failure mechanisms cannot be left to conservative approaches. Increasing efforts
are now focused on developing MMM approaches to develop new alloys and
material systems in these areas. An illustration of an MMM based strategy for
the development of large components surrounding the plasma core of a fusion
energy system is shown in Figure 1 (Ghoniem ef al., 2003). The development of
ultra-strong, yet ductile materials by combining nano-layers with different
microstructures also requires detailed understanding of their mechanical
properties. Such materials, if properly designed, may be candidates for many
demanding applications (e.g. micro-electronics, opto-electronics, laser mirrors,
aircraft structures, rocket engines, fuel cells, etc.).

Appropriate validation experiments are also crucial to verify that the models
predict the correct behaviour at each length scale, ensuring that the linkages
between approaches are directly enforced. However current nano and micro-
scale mechanical experiments have been mostly limited to indentation (e.g.
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Figure 1. Illustration of a multiscale materials modelling approach for the
design of radiation-resistant materials for fusion energy structures: MD,
molecular dynamics.

(Tunvisut et al., 2003) and bulge tests (e.g. Small et al., 1994), and to non-
contact tests such as X-ray residual stress measurements. Multi-scale
interconnected approaches will need to be developed to interpret new and highly
specialized nano/micro-mechanical tests. One of the advantages of these
approaches is that, at each stage, physically meaningful parameters are predicted
and used in subsequent models, avoiding the use of empiricism and fitting
parameters.

As the material dimensions become smaller, its resistance to deformation is
increasingly determined by internal or external discontinuities (e.g. surfaces,
grain boundaries, dislocation cell walls, etc.). The Hall-Petch relationship has
been widely used to explain grain size effects, although the basis of the
relationship is strictly related to dislocation pileups at grain boundaries. Recent
experimental observations on nano-crystalline materials with grains of the order
of 10-20 nm indicate that the material is weaker than what would be expected
from the Hall-Petch relationship (Campbell ef al., 1998). Thus, the interplay
between interfacial or grain boundary effects and slip mechanisms within a
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single crystal grain may result in either strength or weakness, depending on their
relative sizes. Although experimental observations of plastic deformation
heterogeneities are not new, the significance of these observations has not been
addressed till very recently. In same metallic alloys, regular patterns of highly
localised deformation zones, surrounded by vast material volumes which contain
little or no deformation, are frequently seen (e.g. Mughrabi et al., 1987). The
length scale associated with these patterns (e.g. typically the size of dislocation
cells, the ladder spacing in persistent slip bands (PSB's), or the spacing between
coarse shear bands) controls the material strength and ductility. As it may not be
possible to homogenise such types of microstructures in an average sense using
either atomistic simulations or continuum theories, new intermediate approaches
will be needed.

The issues discussed above, in addition to the ever increasingly powerful and
sophisticated computer hardware and software available, are driving the
development of MMM approaches in nano and micro-mechanics. It is expected
that within the next decade, new concepts, theories, and computational tools will
be developed to make truly seamless multiscale modelling a reality.

2 Continuum Mechanics Methods

In this section, an overview will first be given of the main continuum mechanics-
based framework used today to describe the non-linear deformation behaviour of
materials at the local (e.g. single phase or grain level) and macroscopic (e.g.
polycrystal level) scales. Emphasis will be placed on recent progress made in
crystal plasticity, strain gradient plasticity, and homogenization techniques to
link deformation phenomena simultaneously occurring at different scales in the
material microstructure with its macroscopic behaviour.

Standard tensorial notation will be used throughout. Vectors will be
described by boldface lower case letters, second order tensors by boldface upper
case letters, and fourth order tensors by italic upper case letters. Also,
a-b=ap,, Ab=Ap, A:B=AB AB=AB, L:A=L, A

iiMjo ij > ij— jk° ijkl” "kl >
(a ® b)ij = aibj, where Einstein’s summation applies for repeated indices.

2.1 Continuum Discretisation of a Boundary Value Problem

In a generic boundary value problem (BVP), the deformation of a body subjected
to external forces and prescribed displacements is governed by the: (i)
equilibrium equations, (ii) constitutive equations, (iii) boundary conditions, and
(iv) initial conditions. The “weak” form of the boundary value problem is
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obtained when the equilibrium equations and the boundary conditions are
combined into the “principle of virtual work”. Such “weak form” constitutes the
basis for obtaining a numerical solution of the deformation problem via, e.g. the
finite element method. Thus, in a continuum mechanics Lagrangian formulation
of a quasi-static BVP, the principle of virtual work is the vehicle by which the
global equilibrium equations are obtained (see e.g. Zienkiewicz and Taylor
(1994)).

The basic features of a generic Galerkin-type discretisation framework are
given next.

Consider a structure occupying a domain V in the deformed configuration
which is subjected to external forces and displacements on its boundary, I". In
the absence of body forces and inertial effects, the principle of virtual work for
the structure, in its rate form, satisfies the following equation,

jVozéédV—jrt-smr:o, (1)

for any arbitrary virtual velocity vector field év compatible with all kinematics
constraints. In the above equation, t=on, represents the boundary traction
forces, ¢ the Cauchy stress, n the normal to the surface on which the tractions
act, and the virtual strain rate associated with the velocity field ov .

To solve a complex BVP numerically, the discretisation of the principle of
virtual work is generally performed using the finite element method. Let v be
approximated at a material point within an element by,

V:EN'V"EN{', 2)

where v denotes the nodal values of the element velocity field and N are the
isoparametric shape functions. Substituting Eq. 2 into 1 leads to the discretised
version of the principle of virtual work on the finite element V_,

r{{]} = fint _fext =0 ’ (3)
where

" = [, Bledy,, ™ = [ N'tdr, (4)

are the internal and external global force vectors, respectively, and B relates the
symmetric strain rate tensor withv. The global equilibrium relations (Eq. 3)
represent a set of implicit non-linear equations which may be solved
incrementally using a Newton-type algorithm. In a Newton-Raphson iterative
scheme, the non-linear system (Eq. 3) is typically expanded using Taylor series
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in the neighbourhood of v,
~k
rlo* —sek}=r{e’f}+@£v—}sek LoRF, (5)
avk

where k represents a generic iteration and or/ov is the global tangent stiffness or

jacobian matrix of the non-linear system of equations. The formulation of
accurate estimates of the global jacobian is at the heart of most numerical
schemes developed to provide robust algorithms for the use of complex
constitutive models with continuum approaches, e.g. see Esche, Kinzel and Altan
(1997), Crisfield (1997), Busso, Meissonnier and O'Dowd (2000).

2.2 Continuum Approaches for Single Crystal Plasticity

Constitutive models developed to predict the anisotropic behaviour of single
crystal materials generally follow either a Hill-type or a crystallographic
approach. As a common feature, they treat the material as a continuum in order
to describe properly plastic or visco-plastic effects. Hill-type approaches (e.g.
Nouailhas, 1992, Schubert et al., 2000) are based on a generalisation of the
Mises yield criterion proposed by Hill (1950) to account for the non-smooth
yield or flow potential surface required to describe the anisotropic flow stress
behaviour of single crystals. In constitutive formulations based on
crystallographic slip, the macroscopic stress state is resolved onto each slip
system following Schmid's law. Internal state variables are generally introduced
in both formulations to represent the evolution of the microstructural state during
the deformation process. Although recent developments in these two approaches
have now reached an advanced stage, the major improvements have been made
by crystallographic models due to their ability to incorporate complex micro-
mechanisms of slip within the flow and evolutionary equations of the single
crystal models. These include the effects of dislocation interactions (e.g. Meric et
al., 1991), hardening and strain gradient phenomena (e.g. Gurtin, 2000),
Meissonnier et al., 2001), Stainer et al., 2002), and general anisotropic plastic
and visco-plastic behaviour (e.g. Busso and McClintock, 1996), Anand and
Kothari, 1996). A brief outline of the salient features of local and non-local
crystal plasticity approaches are given below.

2.3 Generic Local Crystallographic Framework

A generic internal variable based crystallographic framework is said to be a local
one when the evolution of its internal variables can be fully determined by the
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local microstructural state at the material point. The description of the kinematics
of most crystal plasticity theories follows that originally proposed in Asaro and
Rice (1977), which has been widely reported in the computational mechanics
literature (e.g. Pierce et al., 1983; Kalidindi ef al., 1992; Busso et al., 2000). It
relies on the multiplicative decomposition of the total deformation gradient, F,

into an inelastic, F”, and an elastic, F¢, components. Thus, under isothermal
conditions,

F = FF”. (6)

Although single crystal laws can be formulated in a corotational frame, i.e. the
stress evolution is computed on axes which rotate with the crystallographic
lattice, the most widely used approach is to assume that the material's response is
hyperelastic, that is its behaviour can be derived from a potential (i.e. free
energy). Such potential may be expressed in terms of the elastic Green-Lagrange
tensorial strain measure,

E° = %(FeTF” —1), (7)

and the corresponding objective work conjugate (symmetric) stress (Hill, 1975),
or second Piola-Kirchhoff stress, T. Note that the Cauchy stress is related to T by

o = det{F* | FTF" . )

The hyperelastic response of the single crystal is governed by,

e

OE¢ ©

where 8CI>/ OE°¢ represents the Helmholtz potential energy of the lattice per unit

reference volume. Differentiation of Eq. 9, and assuming small elastic stretches,
yields

T=L:E°. (10)

where L is the anisotropic linear elastic moduli.
In rate-dependent formulations, the time rate of change of the inelastic
deformation gradient F” | is related to the slipping rates on each slip system, y“

(Asaro and Rice, 1977), as
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F? ={ZQ:VQPQJFP, with P“ =m” ®n”. (11)

a=1

Here, m“ and n“” are unit vectors defining the slip direction and the slip plane
normal on the slip system.

In rate-independent formulations, in contrast, flow rules are based on the well
known Schmid law and a critical resolved shear stress, 7“, whereby the rate of
slip is related to the time rate of change of the resolved shear stress,

¢ (: T:P” ) Then,

£ =z =Y WPy, i > 0. (12)

a=1

In the above equation, 4“, the slip hardening rates, incorporate latent
hardening effects. Due to the severe restrictions placed on material properties,
such as latent hardening, to ensure uniqueness in the mode of slip (e.g. Anand
and Kothari, 1996; Busso and Cailletaud, 2005), and the associated difficulties in
its numerical implementation, the use of rate-independent formulations has been
somehow restricted and much more limited than rate-dependent ones. This has
been compounded by the fact that, by calibrating their strain rate sensitivity
response accordingly, rate-dependent models have been successfully used in
quasi-rate-independent regimes. Thus, henceforth the focus of the discussions
will be on rate-independent approaches.

The slip rate in Eq. 11 can functionally be expressed as,

7=, se .82 0], (13)

mg 2

where S/ (for i=1,...,mg) denotes a set of internal state variables for the slip

system « , and @ is the absolute temperature. A useful and generic expression
for the overall flow stress in the slip system can be conveniently found by
inverting Eq. 13 with my =2,

=+ [ 7 8.0}k e, SE, (14)

where ¢ is a scaling parameter, and S and Sy represent additive and
multiplicative slip resistances, respectively. Here the distinction between a
multiplicative (S;") and an additive (S5) slip resistance is motivated by the

additive and multiplicative use of non-directional hardening variables rather than
on mechanistic considerations. By expressing the flow stress in the slip system in
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the way shown in Eq. 14, the contributions from viscous effects (first term in Eq.
14), and hardening mechanisms (second term) can be clearly identified. The
majority of formulations relied on power law functions for Eq. 13, which results

in $Y#0 and S =0 in Eq. 14 (e.g. Pierce et al., 1983). This introduces a

coupling between the viscous term and microstructure which is inconsistent with
most strengthening mechanisms. Recently, work by Meric et al. (1991) and

Busso et al. (2000) have proposed flow stress relations with S #0 and S; =0,

which allows a more physically meaningful interpretation of strengthening
phenomena. For a more detailed discussions of these issues, see Busso and
Cailletaud (2003).

The crystallographic formulation is completed with the evolutionary relations

for the S/ internal slip system variables. The time rate of change of each

internal slip system variable, S/, is, in its most general form, expressed as,

S = SESE s SE A s V¥, 01, (15)

Note that the dependency of Eq. 15 on the slip rates on all systems enables cross-
hardening effects to be accounted for.

2.4 Non-Local Approaches

The study of experimentally observed size-effects in a wide range of mechanics
and materials problems has received a great deal of attention recently. Most
continuum approaches and formulations dealing with these problems are based
on strain-gradient concepts and are known as non-local theories since the
material behaviour at a given material point depends not only on the local state
but also on the deformation of neighbouring regions. Examples of such
phenomena include particle size effects on composite behaviour (e.g. Nan et al.,
1996), precipitate phase size in two-phase single crystal materials (Busso et al.,
2000), increase in measured micro-hardness with decreasing indentor size (e.g.
Swadener et al., 2002), and decreasing film thickness (e.g. Huber ef al., 1999),
amongst others.

The dependence of mechanical properties on length scales can in most cases
be linked to features of either the microstructure, boundary conditions, or type of
loading, which give rise to localised strain gradients. In general, the local
material flow stress is controlled by the actual gradients of strain when the
dominant geometric or microstructural length scales force the deformation to
develop within regions of less than approximately 5 to 10 pm wide in
polycrystalline materials, and of the order of 0.1 to 1 um in single crystal
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materials (Busso et al., 2000). Thus, gradient-dependent behaviour is expected to
become important once the length scale associated with the local deformation
gradients becomes sufficiently large when compared with the controlling
microstructural feature (e.g. average grain size in polycrystal materials). In such
cases, the conventional crystallographic formulations discussed in the previous
section will be unable to predict properly the evolution of the local material flow
stress. To accommodate these strain gradients, generation of geometrically
necessary dislocations (GNDs) is required in these regions of incompatibility
(e.g. Arsenlis and Parks, 2001; Busso et al., 2000; Gao and Huang, 2003). The
introduction of these GNDs, in addition to those stored in a random way (so-
called “statistically stored” or SSDs), is what causes the additional strengthening
of the material.

One of the first non-local theories was that proposed by Aifantis (1987), and
Zbib and Aifantis (1988) to describe the formation of shear bands. This type of
formulations rely on first and second derivatives of strain linked to the flow rule
to describe strain gradient effects without the need to use higher order stresses. It
requires additional boundary conditions, is relatively easy to implement
numerically into the finite element method but is limited to describe strain-
gradient problems that involve only one material length scale. Furthermore, by
the nature of the formulation, it provides a limited mechanistic insight into the
non-local phenomena.

A more physically intuitive continuum approach to describe strain gradient
effects are constitutive theories such as those developed by Arsenlis and Parks
(2001), Busso et al. (2000); Acharya (2000) and Bassani (2001). They rely on
internal state variables to describe the evolution of the obstacle or dislocation
network within the material and generally introduce the strain gradient effects
directly in the evolutionary laws of the slip system internal variables without the
need for higher order stresses. Thus, in some of these formulations, the
functional dependency of the slip system internal variables evolutionary laws,
such as the general form given for the slip resistance in Eq. 15, will now include

an additional dependency in the gradient of the slip rates, Vy“. Then,

S = S s SE A e e VA VA V6] (16)

This class of theories has been shown capable of providing great physical
insight into the effects of microstructure on the observed macroscopic
phenomena, including rate-independent plastic deformation and visco-plasticity
in both single crystal and polycrystalline materials (e.g. Arsenlis and Parks,
2001; Busso et al., 2000; Acharya, 2000). One additional attractive aspect of the
these theories is that they are relatively easy to implement numerically and do
not require higher order stresses or additional boundary conditions. However,
one limitation of these types of theories is that they are unable to describe
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problems which may require non-standard boundary conditions, such as the
boundary layer problem modelled by Shu et al., 2001.

A significant amount of work has been based on the treatment of the solid as
a Cosserat continuum (e.g. Muhlhaus, 1989; Forest, 1998), where the material
flow stress is assumed to be controlled not just by the rate of slip but also by the
material curvature. However, even though Cosserat-type models have shown to
be well suited to predict localisation phenomena, they are analytically complex
and phenomenological in nature, and it is therefore difficult to gain a direct
insight into the controlling physical phenomena at the microstructural level.

Another class of non-local theories with higher-order fields is that proposed
recently by Fleck and Hutchinson (2001), and by Gurtin (2003). They contain
higher order stresses and are extensions of the original theory proposed earlier by
Fleck and Hutchinson (1997).

In such non-local formulation, the balance laws are based on a principle of
virtual work where additional field variables, namely the work conjugates of the
slip and slip rate gradients, are required. Consider a crystallographic approach
and let q be a higher order stress vector, with components ¢, , work conjugate to

the slip rate gradients, Vy“, and 7“ be the work conjugate to the slip rate, 7*.
Then,

IV[G:6é+Za(7r“ —T“)&"a +2.,4° 'VSYQ]C]V
—J‘F[on'ﬁv+zaq“-n6«'/“]df=0. (17)

By integrating Eq. 17 by parts, it can be shown that, in addition to the usual
equilibrium relation in V,

dive=0, (18)
the following micro-force balance is obtained,

7% =7t"+Vq:1, (19)

where 1 is the second order unit tensor and 7% is the resolved shear stress
previously defined. Furthermore, Eq. 17 also implies that the following relations
be satisfied at the boundary, I",

a

t=on or v, and q“-n, or 7 (20)

It can be seen that, when no slip rate gradients are present, Eq. 17 gives

7% =7"and Eq. 17 resolves to the local version of the principle of virtual work
given by Eq. 1.
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The numerical implementation of these typically highly non-linear theories
require the development of complex numerical algorithms. However, the
introduction of higher order stresses and the required boundary conditions to
satisfy the additional higher order field equations introduced by some non-local
theories often precludes and limits the use of these formulations to in-house
programmes (e.g. see implementation of a coupled stress theory by Shu et al.,
1999).

2.5 Homogenisation Approaches for Heterogeneous Microstructures

The bridging between the mechanical behaviour of heterogeneous materials and
that of their individual constituents remains a topic of major interest and is at the
heart of homogenisation schemes developed to predict the behaviour of materials
at different scales. Such schemes are based on the assumption that the
mechanical behaviour of individual constituents can lead to the description of the
mechanical response of a macroscopic aggregate through either suitable
interaction laws or a numerical averaging process.

When distinct heterogeneities exist at different microstructural levels, it is
always possible to identify at each level the smallest possible representative
volume element (RVE) of the microstructure which contains all the information
concerning the distribution and morphology of the material's heterogeneities.
Irrespective of the homogenisation schemes, once the relevant scales in the
heterogeneous microstructure are identified, it is then necessary to select an RVE
of the microstructure at the level of interest. Typically, the representative length
scales in the microstructure are the average size of the largest heterogeneity at
that particular level, D, and the size of the RVE, L. They must satisfy,

D<<L. 21

The value of D can be, for instance, the average grain size in a polycrystal
with randomly oriented grains of size, or be defined by the size of the
precipitates relative to their mean spacing.

Homogenisation schemes require not only constitutive models for the
individual constituents but also appropriate rules to make the transition between
scales. The cases to be discussed here are those where loading in the RVE is
homogencous. If the loads applied on the RVE were inhomogeneous, then the
homogenised equivalent medium is said to be a generalised one and special
kinematics and equilibrium equations would apply (e.g. see Besson et al., 2002).
Some of the most widely used approaches to link local fields with macroscale
phenomena, such as the large deformation and texture evolution of polycrystals,
are Taylor-type (e.g. Kalidindi ez al., 1992) or Sachs-type (e.g. Leffers, 2001)
models. The former assumes strain uniformity and can only fulfil compatibility
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at grain boundaries, but not equilibrium. In contrast, Sachs-type models assume
homogeneous stresses and ignore local compatibility at grain boundaries.
Amongst the most successful recent methods proposed to overcome the
limitations of the assumed plastic strain or stress uniformity are those based on
the relaxed constrained method (e.g. Van Houtte ef al., 1999) and on mean field
approaches, such as self-consistent (e.g. Hill, 1965) and variational (e.g. Ponte
Castaneda, (1991)) methods. Here, compatibility and equilibrium between grains
are satisfied at both the local and the macroscopic levels.

In the self-consistent averaging approach, the interaction between a single
crystal grain and its neighbours is treated as that between an inclusion with the
same properties as those of the grain, embedded in an homogeneous equivalent
medium (HEM) which has the same (unknown) properties as those of the
macroscopic aggregate (see Fig. 2). A critical aspect of the self consistent
method is that the strain distribution within the inclusion is assumed uniform
when in reality, in cases of low strain rate sensitivity and large property
mismatch, it is seldom the case.

One of the simplest self-consistent frameworks is that proposed by Hill
(1965) where the stress and strain rate tensors in each phase or grain, T and E,
are related to those of the HEM, ¢ and &, through an elastic accommodation
tensor L, ,

T-6=L,:(c-E). (22)

The determination of suitable interaction relations between the inclusion and
HEM is at the centre of most self-consistent approaches.

In Eq. 22, an elastic interaction between the grain and the polycrystal
aggregate is implicitly assumed, thus a high constraint is imposed on the
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Figure 2. Comparison between the assumptions behind (a) standard and (c)
generalised self-consistent approaches
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inclusion by the surrounding elastic aggregate. In reality, such high constraint is
partially relaxed by the plastic deformation of the polycrystalline aggregate. The
work of Berveiller and Zaoui (1979) addressed this problem by introducing a
plastic accommodation factor, L ,. Thus, for the non-linear case, Eq. 22
becomes

T-6=L,: (& -E). (23)

where the global and local strain rate tensors are now the plastic ones. Similarly,
the tangent approach method proposed by Molinari (2002) enables approximate
solutions for non-linear material behaviour problems to be obtained while
preserving the structure of the Eshelby's linear inclusion solution. Generally,
self-consistent schemes are well suited to plastic or visco-plastic aggregates
which can be treated as elastically rigid. The incorporation of elastic effects
within a self-consistent framework is more difficult and clear solutions remain
elusive. As self-consistent schemes are by definition implicit, their numerical
implementation require Newton-type iterative procedures to solve the highly
non-linear systems of equations. A more elaborate self-consistent approach (e.g.
see Herve and Zaoui, 1993), referred to as a generalised or a three-phase scheme,
is illustrated in Fig. 2b. Here, a composite sphere made up of two phases (i.e.
matrix and inclusion) is embedded in an infinite matrix which is the HEM of
unknown properties. The additional requirement in this case is that the average
strain in the two-phase composite sphere must be the same as the strain
prescribed in the far field. Herve and Zaoui (1993) showed that such scheme
provides a framework for statistical analyses and demonstrated this by
determining the effective behaviour of a random assembly of arbitrary-size
spheres. Pitakthapanaphong and Busso (2002) used a similar generalised self-
consistent approach to determine the elastoplastic properties of functionally
gradient materials.

An alternative homogenisation method to the classical self-consistent
approach is that derived from a variational procedure. The variational
formulation proposed by Ponte Castaneda (1991) relies on the effective modulus
tensor of  linear elastic comparison composites, whereby the effective stress
potentials of nonlinear composites are expressed in terms of the corresponding
potentials for linear composites with similar microstructural distributions, to
generate the corresponding bounds. Ponte Castaneda's variational principles have
been used successfully to derive elastoplastic relations for metal matrix
composites, amongst other applications. For further details, refer to references
given herein.

As a result of the ever increasing computer power available, it is now
becoming possible to replace the approximate mean field methods for more
accurate ones based on numerical homogenisation. One of the most powerful is
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Figure 3. Homogenisation of a typical heterogeneous single crystal superalloy:
(a) RVE and (b) predicted contours of accumulated inelastic strain under [010]
uniaxial loading}

that based on periodic unit cell concepts, whereby a microstructural “window” of
the constituents is periodically arranged and subjected to homogeneous far-field
loading. By defining appropriate periodic boundary conditions on the smallest
window or RVE which contains all the information about the local
heterogeneities, the average stress and strain response of the unit cell can be
obtained numerically. Even though these methods are computationally intensive,
they offer the capability for digitised images of typical microstructures to be
easily superimposed onto a regular FE mesh, thus enabling a precise model of
the microstructure to be made and a framework to predict accurately the
inhomogeneity of the deformation at the level of the individual phases.
Alternatively, the FE mesh can be designed so that the element boundaries
correspond to phase boundaries. This method has the advantage that almost any
heterogeneity can be modelled, but the modelling effort required is generally
impractical for very complex microstructures.

An example of a periodic unit cell of a typical heterogeneous single crystal
superalloy RVE is presented in Fig. 3 (Regino et al., 2002). Figure 3(a) shows an
SEM micrograph of the microstructure's RVE at an intermediate scale, and (b)
the predicted RVE contour plot of uniaxially equivalent accumulated inelastic
strain, after a 10% straining along the [010] orientation at a rate of 10° 1/s at
950°C. It can be seen that the localisation of inelastic strain occurs in the vicinity



156 E. Busso

of the stronger (eutectic) region. For complex 3D microstructures, such as those
of polycrystal aggregates with randomly oriented grains, realistic FE meshes can
be build based on Voronoi tessellations (e.g. see Ghosh ef al., 1996; Barbe ef al.,
2002).

3 Outstanding Issues and Future Prospects

In this review, we have discussed the different modelling approaches which
address specific phenomena at different length scales, and have highlighted the
rich variety of physical, computational and technological issues within the broad
area of nano and micromechanics which have been successfully addressed. We
conclude by briefly summarising the current level of understanding in these
areas, and discuss our expectations of forthcoming progress.

3.1 Bridging the Length and Time Scales

Even though recent advances in computing power have led to new and vastly
improved simulation techniques at the atomistic and continuum levels, there has
not yet been a concerted effort to develop explicit links between atomistic and
continuum mechanics models. When properly reinforced, links between length
scales should bring the overall field of material modelling one step closer to
predict, ab-initio, the final properties of a proposed material.

A natural sequence to produce a fully integrated multi-scale modelling
framework will require:

e The prediction of crystal energies, structures and the derivation of
interatomic potentials from ab-initio calculations.

e The prediction of complex microstructural heterogeneities and
morphologies resulting from solidification from the surface
energies/kinetics predicted ab-initio.

e The identification of the crystal structures, slip systems and interface
structures of the phases and the kinetics of phase transformations during
subsequent thermo or thermo-mechanical processes using atomistic,
dislocation dynamics and topological modelling techniques.

e The formulation of crystallographic models for each phase to describe
the dominant deformation processes and the development of
homogenisation schemes to obtain the macroscopic mechanical
response of the material.
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Figure 4 illustrates the structure and the links between the modelling
paradigms, together with the outputs and inputs for each sub-area. Here, the
physical properties of the alloy are predicted at the atomistic scale and these are
linked to the continuum level via appropriate constitutive and kinetic models.
The properties determined by ab-initio calculations (e.g. crystal energies and
structures, interatomic potentials) needs to be related to the range of
compositions predicted after solidification. The ab-initio results can then be used
in molecular dynamics (MD) calculations of deformation mechanisms. The
resulting defect structures and interface kinetics are then fed into the continuum
formulations to provide the crystallographic description and slip systems of the
individual phases present in the heterogeneous (multi-phase) microstructures.
The overall behaviour of representative volume elements (RVEs) of such
microstructures can finally be determined using homogenisation techniques.

While progress on linking length scales has just started, linking time scales
remains as an outstanding problem. As pointed out earlier, systematic and
rigorous reduction of the degrees of freedom that describe material evolution will
lead to self-consistent length scale linking, hence confident predictions of
mechanical properties. On the other hand, methods for self-consistent linking of
time scales are still lacking. Events at the atomic scale are often in the pico- to
nano-second range, while microstructure evolution takes place on much longer
time scales - seconds to years. Since the time evolution of the microstructure is
path-dependent, events that occur in the pico- to nano-second time scale (e.g.
atomic jumps, nucleation) may have profound effects on microstructure
evolution. In addition, relaxation time scales in atomic models cannot be
matched by continuum relaxation time scales. Thus, when an MD model is
directly linked to the continuum, matching can be accomplished for static or
quasi-static problems, while it has not been shown for fully-dynamic problems.
Progress in this area is needed.

3.2 Atomistic Scales

Atomistic simulations have mainly supplemented experimentally obtained
information till now. Nevertheless, future developments are expected in four
major directions: (i) higher accuracy; (ii) larger systems; (iii)computationally
faster methods, and (iv) more general approaches.

Density functional approaches have evolved rather rapidly during the past
decade to address accuracy. The introduction of generalized gradient corrections
has improved the accuracy of binding energies, surface energy and energy
barriers. While the standard local spin density and generalized gradient
approximations for the exchange-correlation energy can work for certain cases of
strong correlation, i.e. where electrons partially preserve their localized atomic-
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like nature, they fail dramatically for others. Novel functionals, such as the
recently developed self-correlation-free meta-GGA and self-interaction-free
hyper-GGA, might yield a more reliable description of strong correlations. It is
also possible that the use of quantum Monte Carlo methods for benchmark
calculations could provide a fruitful path to assess and improve density
functionals. Concurrent with the above efforts in developing more accurate
functionals within the spirit of DFT, several other methods have been recently
developed to treat the ground-state properties of condensed systems that exhibit
strong correlations. These include the self-interaction correction method, the
LDA+U method, the LDA-+dynamical mean field theory method, and the
Optimized Effective Potential method. In addition, the time-dependent extension
of DFT and the GW approximation will provide a way to treat the excitation
properties of moderately correlated electron systems.

Two other areas of developments, perhaps the most important ones, are faster
methods, to enable dynamic processes to be simulated over sufficiently long time
scales, and O(N) methods. Recasting the electronic structure calculations in an
“order N”” form which scales linearly with N will have important conceptual and
practical implications for the treatment of sufficiently large systems. If the full
calculation on a large system could be carried out in a time of “order N”, then the
properties of a small region of the large system could be calculated in a time
independent of the system size. Such quantum “order N” methods will have
exactly the same scaling as classical empirical potential methods. Furthermore
the independence between the different regions will allow them to be readily
adapted to parallel computations. This would enable calculations on large
systems of great interest in areas which are beyond current capabilities, such as
materials science and biology, to be performed.

A single method is unlikely to meet all goals in multiscale modelling of nano
and micromechanics. Even with O(N) algorithms, it will not be possible in the
foreseeable future to treat systems containing millions of atoms at a highly
accurate DFT level using large basis sets, as would be necessary for certain
materials science applications. Such problems can only be approached if one
succeeds in linking methods of different accuracy, such as DFT methods with
classical force fields, and applying the high-accuracy method only to regions
where the low-accuracy method is expected to fail. Hybrid methods of this type
will certainly be based on the same notions of locality as O(N) methods and will
employ similar techniques.

In atomistic MD simulations, two areas are worth exploring. The first is the
direct linking between atomistic and meso or microstructure-mechanics
simulations. Approaches linking directly atomistic and continuum methods do
exist, however a two-way connection between atomistic and dislocation
dynamics simulations has not yet been achieved. Atomistic simulations are
capable of providing interaction rules or mechanisms for a finite number of
dislocation configurations, most of them being of high symmetry. In dislocation
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dynamics simulations, a few dislocations may interact at close proximity,
forming a low symmetry configuration with respect to the simulation cell
boundaries. It would be desirable to take such a configuration, and describe it in
molecular dynamics simulations, and then feed the resulting configuration back
to dislocation dynamics simulations in a seamless fashion. The second area is
dislocation interaction with interfaces. A dislocation behaves differently near a
surface or at a grain boundary, when compared to bulk dislocations. A fair
understanding of how a dislocation nucleates at a surface or grain boundary (i.e.
dislocation absorption or blockage at interfaces) exists. The interaction of a
dislocation with an interface depends very much on the nature of the interface.
Different grain boundary structures (e.g. low angle versus high angle grain
boundaries) and compositions (e.g. pure vs. segregated grain boundaries) lead to
a large number of interaction mechanisms. Many of these mechanisms remain to
be explored, thus a comprehensive and simple description of dislocation-grain
boundary interaction needs to be developed.

3.3 Transitional-Continuum Scales

The significant role that defects play in determining the mechanical properties of
metallic materials and the vast progress recently made in computational
techniques has led to the emergence of the field of Mesomechanics, which
focuses on the behaviour of defects rather than those of atoms. Thus
Mesomechanics describes the mechanics of heterogeneities and irregularities in
materials, including topological defects (point, line, surface and volume), and
compositional and structural heterogeneities. One of the most powerful
mesomechanics methods is dislocation dynamics (DD), where considerable
progress has been made during the past two decades due to a variety of
conceptual and computational developments. It has moved from a curious
proposal to a full-fledged and powerful computational method. In its present
stage of development, DD has already addressed complex problems, and
quantitative predictions have been validated experimentally. Progress in 3-D DD
has contributed to a better understanding of the physical origins of plastic flow,
and has provided tools capable of quantitatively describing experimental
observations at the nano and micro-scales, such as the properties of thin films,
nanolayered structures, micro-electronic components, and micro-mechanical
elements. Advances in areas such as the mechanical behaviour of very small
volumes and dislocations — interphase interactions are expected to continue in
the near future.

One of the most difficult future challenges is the development of explicit
links between the transitional-microstructure scales addressed by mesomechanics
approaches and the continuum level. As previously discussed, mesomechanics
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approaches are needed to complement atomistic methods and provide
information about defect interaction and the kinetics of slip and interphase
motion. Such fundamental information can then be transferred to the continuum
level to underpin the formulation of flow and evolutionary behaviour of
continuum mechanics-based constitutive equations. Crystallographic approaches
for single crystal behaviour which rely on internal slip system variables will
continue to provide the most powerful framework to incorporate basic
mechanistic understanding in continuum models. Numerical and analytical
homogenisation techniques at the continuum level will be relied upon to a much
greater extent than at present to model the behaviour of complex multi-phase and
polycrystalline microstructures. This will enable the resulting constitutive
models to incorporate explicit links between features of the microstructure at
different levels and the macroscopic behaviour. However, further development
of this type of multi-scale material design capability will require a few
challenges to be overcome.

New and efficient computational techniques for processing and visualizing
the enormous amount of data generated in mesomechanical and continuum
multi-scale simulations must be developed. Then, the issue of computational
efficiency must be addressed so that truly large-scale simulations on thousands
of processors can be effectively performed. Another example of the severe
computational complexities which can arise with deformation is given by the
highly-intermittent nature of plastic slip, as it may require to be dynamically
described as quick avalanche events separated by long time intervals, thus
imposing severe computational limitations. Theoretical methodologies that
enable the proper coarse graining of space should be pursued, such as multi-polar
expansion techniques, continuum averaging of slip gradients, grains and
heterogeneous microstructures, and extraction of average lattice curvatures. The
increasing complexity of non-local formulations to predict size effects in multi-
phase materials and composites will require improved and more robust numerical
schemes to be developed, especially when a more physical description of
dislocation interaction with themselves and with grain boundaries or other
obstacles is required. Methods for a more direct coupling between DD
simulations and continuum methods would also be required to improve the
ability of non-local continuum mechanics approaches to predict complex
deformation phenomena, such as size effects. For instance, details obtained by
DD simulations can provide information about the evolution of the material
topology, and the dislocation density tensor which can lead to precise
descriptions of lattice curvatures.

The integration of the approaches discussed in this section is expected to lead
to more physically-based multi-scale formulations and established materials-by-
design as an approach to optimize the mechanical properties of materials with
complex microstructures and to develop exciting new materials of extraordinary
properties.
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Abstract Basic application-related aspects of two important groups
of approaches to continuum micromechanics of inhomogeneous ma-
terials are presented, viz., mean field schemes and methods based
on discrete microstructures. Emphasis is put on handling both ther-
momechanical and thermal conduction problems.

On this basis some issues and applications of continuum microme-
chanics are discussed. They comprise incremental Mori-Tanaka
methods for finite strains, modeling of the thermomechanical and
thermal conduction behavior of diamond particle reinforced metal
matrix composites, windowing estimates for the macroscopic linear
responses of inhomogeneous media, and modeling of the mechanical
behavior of cellular materials.

1 Introduction

Microstructured or heterogeneous materials play important roles in mate-
rials science and technology. This group of materials encompasses, among
others, composites, polycrystalline materials, porous and cellular materials,
functionally graded materials, concrete, wood, and bone. Their behavior
can be studied at a number of length scales ranging from sub-atomic scales,
where quantum mechanical methods must be used, to scales for which con-
tinuum descriptions are best suited. Continuum models are the topic of the
present contribution.

In materials modeling transitions from lower to higher length scales aim
at achieving a marked reduction of the number of degrees of freedom describ-
ing the system. Obviously, suitable choices of the degrees of freedom used
at the higher length scale and of methods for carrying out the transition are
preconditions for a successful bridging of the scales. The continuum meth-
ods discussed in the following are suitable for handling scale transitions
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from length scales in the low micrometer range to macroscopic samples,
components or structures with sizes of millimeters to meters. The pertinent
research field is usually referred to as continuum micromechanics of materi-
als. The length scale of the inhomogeneities is termed the microscale, that
of samples or components is the macroscale, and intermediate length scales
are called mesoscales. A typical application of continuum micromechanics
is studying composite materials in terms of the behavior and geometrical
arrangement of their constituents, i.e., matrix and reinforcements such as
fibers or particles.

Because the steady-state thermomechanical and thermal conduction be-
haviors of microstructured materials are of major practical importance, the
present contribution concentrates on these two groups of problems. The
mathematical descriptions of steady-state thermoelasticity and thermal con-
duction of heterogeneous materials share many common features and can
be attacked using similar techniques. Table 1 lists the principal variables
of the two groups of problems such that the analogies between them are
highlighted. Other steady-state diffusion phenomena that are mathemati-
cally analogous to heat conduction are listed by Hashin (1983) and further
problems are discussed by Torquato (2002).

Table 1. Principal variables in steady state elasticity and heat conduction
problems.

| physical problem | elasticity ‘ thermal conduction
“direct variable” displacement field | temperature field
u [m] T [K]
generalized intensity | strain field thermal gradient field
e 1] d [Km]
generalized flux stress field heat flux field
o [Pa) q [Wm™?
generalized property | elasticity thermal conductivity
E [Pa] K [Wm™ K™Y

An important difference between elasticity and conduction problems con-
cerns the orders of the tensors involved, which is lower in the latter case.
The displacements u are vectors whereas the temperatures T are scalars,
stresses o and strains € are tensors of order 2, whereas the heat fluxes q
and thermal gradients d are vectors, and the elasticity tensor E as well as
its inverse, the compliance tensor C = E~!, are of order 4, whereas the
conductivity tensor K and its inverse, the resistivity tensor R = K, are
of order 2. The differences in the orders of the tensors directly affect the
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number of generalized moduli required for describing the generalized ma-
terial property tensors as well as their symmetry properties (Nye, 1957).
For example, cubic geometrical symmetry gives rise to macroscopic cubic
symmetry in elasticity (with three independent elastic moduli) but isotropy
in thermal conduction.

In the following, Nye notation is used for mechanical variables, i.e., ten-
sors of order 4 are written as 6 X 6 quasi-matrices, and stress- as well as
strain-like tensors of order 2 as 6-(quasi-)vectors. Conductivity-like tensors
of order 2 are treated as 3 x 3 matrices. Tensors of order 4 are denoted
by bold upper case letters, stress- and strain-like tensors of order 2 by
bold lower case Greek letters, conductivity-like tensors of order 2 by cal-
ligraphic upper case letters, and 3-vectors by bold lower case letters. All
other variables are taken to be scalars. The symbol “x” is used to denote
the contraction of a tensor of order 2 and a 3-vector, i.e., [( * z|; = (;;2;.

The bridging of length scales, which constitutes the central issue of con-
tinuum micromechanics, involves the handling of two main tasks. On the
one hand, the behavior at some larger length scale must be estimated or
bounded by using information from a smaller length scale, a problem known
as homogenization. In the case of continuum micromechanics this involves
finding a homogeneous “reference material” that is energetically equivalent
to a given heterogeneous material, the main inputs being the geometrical ar-
rangement and the material behaviors of the constituents at the microscale.
On the other hand, the local responses at the smaller length scale must be
deduced from the loading conditions (and, where appropriate, from the load
histories) on the larger length scale. This task is referred to as localization.
In many continuum micromechanical methods, homogenization is less de-
manding than localization because the local fields tend to show a marked
dependence on details of the microgeometry, i.e., the local geometry of the
constituents.

Homogenization relations usually take the form of volume averages, so
that the homogenized value of a variable f(x), (f), is given by

=g [rea . 1)
Q

where x stands for the position vector and €2 for the integration volume, i.e.,
the inhomogeneous volume element to be studied. Homogenization must be
based on volume elements of finite size that are as representative as possible
of the phase arrangement of the microstructured material to be studied. For
the mechanical behavior, the energetic equivalence between the behaviors
on the micro- and macroscales can be expressed by the relation
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e =g [ ea = (o)) . ©)
Q

(Hill, 1967), where the o(x) are general statically admissible stress fields,
the e(x) are general kinematically admissible strain fields, and T indicates
the transpose of a tensor. Equation (2) is known as Hill’s macrohomogeneity
condition or the Mandel-Hill condition.

In standard micromechanics approaches the micro- and macroscales are
assumed to be sufficiently different so that, on the one hand, the fluctuating
fields at the lower length scale influence the behavior at the higher length
scale only via their volume averages. On the other hand, gradients of the
macrofields as well as composition gradients at the higher length scale must
not be significant at the lower one, so that the macroscopic fields appear
to be locally constant. If the above conditions are not met or if the mate-
rial is not statistically homogeneous, higher order homogenization schemes
(Kouznetsova et al., 2002) or embedding techniques must be employed.

Continuum approaches to handling the homogenization and localization
of microstructured materials can be classified into two main groups. On the
one hand, local fields in the constituents may be described by their volume
averages, the microgeometry being introduced via statistical descriptors.
This modeling strategy gives rise to Mean Field Approaches (MFAs) and is
discussed in chapter 2. On the other hand, the fields in discrete microge-
ometries that are characteristic in some sense of the actual microstructure
can be evaluated at high resolution, typically by numerical methods. Such
Discrete Microfield Approaches (DMAs) are the subject of chapter 3. Fi-
nally, chapter 4 is devoted to the discussion of some issues and applications
of continuum micromechanical models.

For more extensive and in-depth treatments of many of the concepts
and methods involved in continuum micromechanics see e.g., Mura (1987),
Aboudi (1991), Nemat-Nasser and Hori (1993), Suquet (1997), Markov and
Preziosi (2000), Bornert et al. (2001), Milton (2002), Torquato (2002), Qu
and Cherkaoui (2006), and the references given therein. Additional infor-
mation can be found in Hashin (1983), Zaoui (2002), and Béhm (2004a).

2 Mean Field Methods and Variational Bounds

This chapter — with the exception of sections 2.4 and 2.7 — aims at present-
ing relationships “in parallel” for thermoelasticity and thermal conduction.
Only the most important equations are given; for more detailed treatments
see, e.g., Bohm (2007) and the references given therein.
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2.1 Basic Mean Field Relations

In this section linear thermoelastic and/or linear heat conduction behav-
iors are assumed at both the constituent and macroscopic levels, i.e.,

e =Co + aAT d =Rq
o = Ee + VAT q=Kd , (3)

where av and 9 denote the thermal expansion and specific thermal stress
tensors with ¥ = —Ea«, and AT is an applied spatially uniform temperature
difference with respect to some stress-free reference temperature (note that
AT only activates the thermal expansion behavior and is not connected to
the temperature fields in thermal conduction).

Phase-wise constant fields are obtained by volume averaging over the
phase volumes Q® according to eqn. (1), and the localization relations for
phase ® can be written as

<5>(p) — AD <€> + rf](P)AT <d>(p) _ fl@ (d)
(0)® = B0 (o) + BYAT (@® =B8Y(q) . (4

Here A® and B® are the phase averaged mechanical strain and stress
concentration tensors, 7% and B@ are the phase averaged thermal strain
and stress concentration tensors, and A® and B® are the phase averaged
thermal gradient and flux concentration tensors, respectively. These con-
centration tensors fulfill the relations

Zg(P)A(p):I Zf(p)j((p)zj

®) ®)
Zg(P)B(p) -1 Zf(p)g(p) -7

®) ®)

e =Y g —o o)
® ®

where £® stands for the volume fraction of phase ®, I is the symmetric unit
tensor of order 4, 7 is the unit tensor order 2, and o is the strain-like null
tensor. The sums run over all phases ® of the heterogeneous material. Voids
and other flaws that are present in the microstructure must be explicitly
accounted for. If they are of comparable size to the microstructural features
of primary interest they can be treated as separate phases (with E®P =0
and K® = O for voids), whereas they are best homogenized into an effective
matrix behavior if they are much smaller.
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The phase averaged concentration tensors together with the thermoelas-
tic and conduction tensors of the phases allow to express the macroscopic
(effective) thermoelastic and conduction tensors of a microstructured ma-
terial as

BE* = Zg(P)E(P)A(P) K = Zg(P)K(P)A(P)
® ®

C* = Zg(}))c(}?)B(P) R = Z&(P)R(P)B(P)
® ®

of — Zg@)(B(D))Ta(P) , (6)
®

respectively. The relation for a* is known as the Levin (1967) formula.

Within the mean field framework there are a number of relationships
that link stress and strain as well as gradient and flux concentration tensors,
among them

AP — CPOBOE* A0 — rO o -
BO — EP A C* BY — 0 f0R* (1)

In addition, there are connections between the mechanical and thermal con-
centration tensors. All mechanical and thermal concentration tensors of an
n-phase material can be obtained from n — 1 mechanical concentration and
conduction tensors, respectively.

2.2 Dilute Inhomogeneities

When an ellipsoidal homogeneous inclusion, i.e., a region that is embed-
ded in a matrix consisting of the same material, is subjected to a uniform
stress-free strain, referred to as a transformation strain, e, the resulting
constrained strain, €., is homogeneous, as was shown by Eshelby (1957).
The constrained strain can be described in terms of the Eshelby tensor
Sm) a5

g. = Smg (8)

By using the concept of equivalent homogeneous inclusions this result can
be extended to inhomogeneous inclusions (inhomogeneities) under applied
far-field strain or stress loads. The Eshelby tensor is of order 4 and depends
on the elastic properties of the matrix and on the shape parameters of
the inclusion. Expressions for S4™) pertinent to inclusions () of general
symmetry in isotropic and transversally isotropic matrices ® were given,
e.g., by Mura (1987) and Withers (1989), respectively. The equivalent of
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S:m) in thermal conduction is the “diffusion Eshelby tensor”, S4:m) | Tt is
of order 2 and for isotropic matrices depends only on the shape parameters
of the inhomogeneity, see, e.g., Hatta and Taya (1986) or Duan et al. (2006).
On the basis of the Eshelby tensor expressions for the mechanical inho-
mogeneity concentration tensors of dilute composites can be obtained as

A((iii)l — {1+ 86m 0RO — E(m)]}*1

B{) = {1+ E®™[1 - stm)ct) — ¢t~

9)

(Hill, 1965a), provided the interfaces between the phases show ideal me-
chanical and thermal behavior. The thermal inhomogeneity concentration
tensors can be expressed in analogy as

AD = {7 4 SEmRE [0 _ e~
BY = {T+ k™[ — SERO — R} (10)

Equations (9) and (10) pertain to dilute ellipsoidal inhomogeneities that
do not interact either directly or collectively, so that an individual inhomo-
geneity embedded in the matrix directly “feels” the far field stress, strain,
gradient or flux. As a consequence the inhomogeneity concentration ten-
sors are independent of the phase volume fractions. Equations (9) and (10)
are excellent approximations for & (i)§0.01 and usually do not lead to major
errors for £€<0.1.

The fields in the matrix are not homogeneous in the neighborhood of
inclusions and inhomogeneities (Eshelby, 1959) and can be described in
terms of the “exterior point Eshelby tensor”, see, e.g., Ju and Sun (1999).

2.3 Non-Dilute Inhomogeneities

Within the Mean Field framework non-dilute inhomogeneity volume
fractions are handled by describing interactions between inhomogeneities
in a collective way rather than by accounting for interactions between indi-
vidual inhomogeneities. There are two main strategies for doing so, effective
field and effective medium approaches.

Mori—Tanaka Methods In effective field methods the perturbations “felt”
by a given inhomogeneity due to the presence of all other inhomogeneities
are approximated by a suitable average strain or stress in the matrix. This
idea goes back to Brown and Stobbs (1971) as well as Mori and Tanaka
(1973). Such methods, which are usually referred to as Mori-Tanaka meth-
ods (MTM), were proposed by a number of authors. A concise and flexi-
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ble formulation was given by Benveniste (1987a), who expressed the Mori—
Tanaka inhomogeneity concentration tensors in terms of the dilute concen-
tration tensors as

Al(\;I)T = AElll)lAg/[n’)I‘ ‘AMT = AdllA(m)
B() - th)lB(m) BI(\/IT = Bdi)IBI(\r/?T : (11)

By using equs. (5) the Mori-Tanaka matrix and gradient concentration ten-
sors, in turn, can be obtained as

A I m) i i)1—1 A i m) i i)1—1
AQ = [W1+ > OAD] AQL = AR+ Y DA
(1) #m) D (m
(1)#m)
7 (m) - i i)y7—1 7@ m) i i)y1—1
Al = [¢¢ >I+(_)§( )5“«4531] Ay = AQ[EWT+ > WA
V7 (1)#(m)

(12)

respectively. The relations for the stress and flux concentration tensors are
analogous.

By combining eqns. (6), (9), (11) and (12) explicit algorithms are ob-
tained that support both homogenization and localization for materials that
show a matrix—inclusion topology with aligned inhomogeneities. For the
special case of two-phase materials consisting of spherical isotropic inho-
mogeneities in an isotropic matrix, simple scalar equations for the effective
shear modulus Gy, the effective bulk modulus By and the effective con-
ductivity K3 can be obtained (Benveniste, 1987a; Hatta and Taya, 1986).
For stiff inhomogeneities in a compliant matrix Mori—-Tanaka methods un-
derestimate the macroscopic stiffness, and for compliant inhomogeneities in
a stiff matrix they overestimate it.

Self-Consistent Methods The idea underlying effective medium ap-
proaches is to approximate interaction effects between non-dilute inhomo-
geneities by embedding “phase patterns” into the homogeneous reference
material rather than into the matrix and subjecting these “kernels” to the
macroscopic fields. In its simplest form this concept uses a single inhomo-
geneity as the kernel and employs eqn. (6) to obtain the implicit relation

Eio =Y EPALY Ko =Y KOALY | (13)
® ®

where the superscript ®*) indicates that the inhomogeneities ® are embed-
ded in the effective material of elasticity Eg- or conductivity Kgc, so that
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A" is a function of B4, and AP is a function of K4, respectively. By
plugging eqn. (10) into eqn. (13) and solving by self-consistent iteration the
classical self-consistent scheme (CSCS) is obtained as

* % —1
Egc,, = § E(p){l + SS,BCsc,n—l[E@ — Escn-1]}
®

Cson = Bscn)™" (14)
(Hill, 1965a). The CSCS expression for thermal conduction takes the form

IC%C,TL = ZIC(p) {Z+ SS;*l)RSC,n—l[IC(p) - K:SC,n—l]}_l
©®

Ricn = (Kicn) ™ (15)

and relations analogous to the above equations can be given in terms of the
stress and flux concentration tensors, respectively.

Equations (14) and (15) differ fundamentally from Mori-Tanaka expres-
sions in being implicit and fully symmetric in terms of the phases (i.e.,
there is no distinction between matrix and inhomogeneities). Classical
self-consistent methods pertain to materials that do not have a matrix—
inclusion topology, such as polycrystals and composites with interwoven
phases, aligned ellipsoidal grains being described in the former case. For
the simplest case of two isotropic phases and macroscopic symmetry the
CSCS gives rise to implicit equations for G§., Bic and K{¢, the two for-
mer being coupled (Torquato, 2002).

Differential Schemes Another approach to constructing an effective me-
dium theory takes the form of repeated cycles of adding small volume frac-
tions of inhomogeneities followed by homogenization, increasingly larger
inhomogeneities being added to the material (McLaughlin, 1977). For a
two-phase material the resulting Differential Scheme (DS) in elasticity takes

the form of the ordinary differential equations
dE; 1 ; w1 (i

(Hashin, 1988) and the analogous relationship for thermal conduction is

given by
CUC* 1 i * i,%
ae® = o K ~KBIAGT a7

the initial conditions being

E' (Y =0)=E™ and KD =0)=K" . (18)
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For isotropic spherical inhomogeneities in an isotropic matrix eqn. (16)
simplifies to two coupled differential equations in G}y and Bjj, and eqn. (17)
can be integrated to give a nonlinear equation in K}, see Torquato (2002).
The differential scheme describes matrix—inclusion composites with aligned
reinforcements that have a wide range of sizes.

2.4 Inelastic Inhomogeneous Materials

Mean Field Models for inhomogeneous materials with viscoelastic con-
stituents are closely related to those for elastic composites. Relaxation
moduli and creep compliances can be obtained by applying micromechan-
ical approaches in the Laplace transformed domain, where the problems
are analogous to elastic ones for the same microgeometries. Standard mi-
cromechanical methods can be used in conjunction with complex moduli for
steady state vibration analysis of viscoelastic composites. For correspon-
dence principles between descriptions pertaining to elastic and viscoelastic
inhomogeneous materials see, e.g., Hashin (1983).

The extension of mean field estimates and bounding methods to elasto-
plastic, viscoelastoplastic, and damaged inhomogeneous materials has, how-
ever, proven to be challenging. The main difficulties in developing such
methods lie, on the one hand, in representing the marked intra-phase fluc-
tuations of the microstress and microstrain fields by their phase averages
and, on the other hand, in the path dependence of plastic behavior.

In the literature several lines of development of mean field approaches
for inhomogeneous materials with elastoplastic phases can be found. The
most important of them have been secant plasticity concepts based on de-
formation theory, compare (Tandon and Weng, 1988) or (Ponte Castaneda
and Suquet, 1998), and incremental plasticity models, see, e.g., Hill (1965b).
Other relevant approaches are the tangent concept (Molinari et al., 1987)
and affine formulations (Masson et al., 2000).

Secant models treat elastoplastic composites as nonlinear elastic ma-
terials and are, accordingly, limited to monotonic loading and radial (or
approximately radial) trajectories of the constituents in stress space dur-
ing loading. Advanced secant formulations, compare (Bornert and Suquet,
2001), are highly suitable for materials characterization, where they give
excellent results.

Incremental mean field models are not subject to limitations with respect
to that can be followed. They are based on formulations in terms of phase
averaged instantaneous strain and stress rate tensors, d(e)® and d(o)®,
which are linked by instantaneous concentration tensors of the type



Analytical and Numerical Methods for Microstructured Materials 177

d(e)® = APd(e) + pPar
d(o)? = BPd(o) + BPdr . (19)

Expressions for the instantaneous concentration tensors can be obtained in
analogy to mean field methods in elasticity. For example, in the Incremental
Mori-Tanaka (IMT) scheme of Pettermann (1997) the instantaneous matrix
strain concentration tensor of a two-phase composite consisting of elastic
inhomogeneities embedded in an elastoplastic matrix takes the form

X - ; Lm) o) p) _ g
AY = {1401+ sMMCMEY ~EP] T L (20)

Here Sgl’m) is the instantaneous Eshelby tensor. It must be evaluated for
the current, generally anisotropic, instantaneous stiffness tensor Eém), which
typically has to be done numerically (Gavazzi and Lagoudas, 1990).

Incremental mean field schemes directly based on eqn. (20) tend to mar-
kedly overestimate the overall strain hardening in the post-yield regime,
compare, e.g., Chaboche and Kanouté (2003). Recent developments involve
the use of tangent operators that reflect the macroscopic symmetry of the
composite, i.e., “isotropized” ones for statistically isotropic materials, see
Bornert (2001), and algorithmic modifications, compare Doghri and Ouaar
(2003) as well as Doghri and Friebel (2005). These improvements have
succeeded in markedly reducing the tendency towards excessive hardening
of incremental Mori-Tanaka methods for particle reinforced composites.
Such modified IMT schemes are particularly attractive as micromechani-
cally based material models that can be implemented at the integration
point level into Finite Element programs for structural modeling. For a
further discussion of aspects of IMT models see section 4.1.

2.5 Variational Bounds

Rigorous bounds for the overall thermomechanical and thermal conduc-
tion properties of inhomogeneous materials can be generated by combining
variational principles with appropriate trial fields.

The simplest variational bounds are obtained from uniform stress, strain,
gradient and flux fields together with minimum energy expressions (Voigt,
1889; Reuss, 1929; Wiener, 1912; Hill, 1952) in the form



178 H.J. Bohm, D.H. Pahr and T. Daxner

(Z g(p)c(m)’l <E <Y EVED
® ®

(Z g(p)R@)’l <K< Y EvKn (21)
) )

These bounds describe the phase geometries by one-point statistics, i.e., by
the phase volume fractions only, and hold for any volume element, but are
typically too slack to be of practical use.

The variational formulation due to Hashin and Shtrikman corresponds
to two-point statistics and, as a consequence, accounts for the macroscopic
symmetry of phase arrangements. The original Hashin—Shtrikman bounds
pertain to macroscopically isotropic inhomogeneous materials (Hashin and
Shtrikman, 1962a,b) and analogous bounds were reported for a wide range
of problems, among them the elastic behavior of composites reinforced by
continuous fibers (Hashin and Rosen, 1964; Hashin, 1983), of materials with
aligned ellipsoidal phases or anisotropic constituents (Willis, 1977), and of
periodic media (Milton and Kohn, 1988). All mean field estimates discussed
in section 2.4 fulfill the appropriate Hashin—Shtrikman bounds. For two-
phase composites with aligned ellipsoidal reinforcements, in fact, the Mori—
Tanaka estimates coincide with one of the Hashin—Shtrikman bounds (Weng,
1990) and the other can be obtained by exchanging the properties of matrix
and inhomogeneities.

Bounds on the elastic and conduction behavior that are tighter than
Hashin—Shtrikman bounds can be obtained by using three-point (or higher)
statistics. Such “improved” bounds can be formulated to account for shapes
and size distributions of inhomogeneities, which are introduced via mi-
crostructural parameters that are available for a range of important mi-
crogeometries (Torquato, 1998a, 2002).

The most flexible way of bounding the macroscopic elastoplastic behavior
of heterogeneous media in a materials characterization context is due to
Ponte Castaneda (1992), who introduced a variational principle that allows
upper bounds on the effective nonlinear response to be generated on the
basis of upper bounds for the elastic moduli.

2.6 Non-Aligned Inhomogeneities

The orientations of non-aligned inhomogeneities may be random (leading
to isotropic macroscopic behavior), planar random (leading to transversally
isotropic macroscopic behavior), or show general orientation distribution
functions (ODFs), p. Within the mean field framework, the macroscopic
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properties of such materials can be estimated by orientation averaging over
the elasticity tensor or over the mechanical concentration tensors. The
former strategy and its variants essentially correspond to laminate analogy
models (Fu and Lauke, 1998; Schjgdt-Thomsen and Pyrz, 2001). The latter
type of approach has been incorporated into Mori—Tanaka methods by a
number of authors, the orientation averaging being done by direct numerical
integration, see, e.g., Pettermann et al. (1997), or on the basis of expansions
of the ODF in terms of generalized spherical harmonics (Viglin expansions),
see, e.g., Advani and Tucker (1987) or Siegmund et al. (2004).

Following Duschlbauer et al. (2003) the starting point for such “ex-
tended” Mori- Tanaka methods are dilute inhomogeneity concentration ten-
sors, Bél)l or Bdll , that have some prescribed orientation with respect to
the global coordinate system. On the basis of eqn. (9) these concentration
tensors can be expressed as

B{)¢ = TZ {1+ E® [T - s6-m)c®) — )} s
BY =T {T+ K0 - SEmRO — R TT (22)

where T< stands for the stress transformation tensor from the local (reinfor-
cement-based) to the global coordinate system and 7 “ for the corresponding
conductivity-like transformation tensor of order 2. When Euler angles ¢, 1
and 6 are used, orientation averaging takes the form

27 27w

B = (BY) ) / / / BOZ (0,10, 0) pl, b, 0) dpdirdd , (23)

the ODF being assumed to be normalized such that ((p)) = 1. Plugging Béii)l

and its conduction equivalent, B((;i)l, into eqns. (11) and (12), respectively,
orientation averaged Mori-Tanaka stress and flux concentration tensors are
obtained as

m (m) m)
BMT = [T+ ¢0 Bd1l] Byr = [0 + 0 Bdll]
(i) (i) 1o @m) (i)
Byt = Ba Byt Byir = Bdil BMT ) (24)

which allow evaluating the effective thermoelastic and conductivity tensors
from eqn. (6). Because Bl(\;I)T and Bl(\;I)T are orientation averages over all inho-
mogeneities, they are of limited use in assessing the stress state or heat flux
in any given inhomogeneity. For such localization tasks the inhomogeneity
stress and flux concentration tensors

5 ()2 i (m) (i) 2 i)/ 4,0m)
Bl(\/I)T - Béi)l Byt 31(\4)1“ = Béi)l Byt (25)
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may be used, which allow to evaluate the average stress state and flux
in inhomogeneities of a given orientation (Duschlbauer, 2004). Analogous
expressions can be formed in terms of the strain and gradient concentration
tensors.

“Extended” Mori-Tanaka methods as described by eqns. (22) to (25)
are not fully compatible with the Mori—-Tanaka concept, which implicitly
assumes aligned inhomogeneities (Ponte Castaneda and Willis, 1995). For
this reason they can give rise to nonsymmetric effective “elastic tensors”
in a number of scenarios, especially for multi-phase materials or when
anisotropic phases are present (Benveniste et al., 1991; Ferrari, 1991). A
mean field method that does not show this shortcoming was proposed by
Ponte Castaneda and Willis (1995). Despite their ad-hoc nature extended
Mori-Tanaka methods have been used with considerable success for study-
ing the elastic behavior of short fiber reinforced composites and also of
woven composites (Gommers et al., 1998).

2.7 Non-Ellipsoidal Inhomogeneities and Interfacial Thermal Con-
ductances

The mean field methods for modeling the thermomechanical and con-
duction behavior of microstructured materials presented in sections 2.1 to
2.6 do not possess an absolute length scale. It is well known, however, that
interfacial effects introduce an absolute length scale into the macroscopic
thermal conductivity of inhomogeneous materials. The present section aims
at presenting mean field models that can describe this behavior and/or the
effects of non-ellipsoidal inhomogeneities.

In general, both finite interfacial thermal conductances and non-ellipsoi-
dal shapes of inclusions or inhomogeneities cause the the Eshelby property,
to be lost, i.e., the fields in the dilute inclusions become inhomogeneous. In
such cases approximate solutions can be obtained by volume averaging the
Eshelby tensors or the dilute inhomogeneity concentration tensors (these
two strategies are not equivalent, eqns. (9) and (10) being nonlinear). Be-
cause volume averaged dilute inhomogeneity concentration tensors have the
direct interpretation of describing appropriate ellipsoidal “replacement inho-
mogeneities” that have perfect interfaces (Duschlbauer, 2004), this modeling
strategy is discussed in the following.

The resulting “replacement tensor” (RT) algorithm for two-phase ma-
terials uses numerical methods for computing the local fields in volume
elements that contain a single inhomogeneity at a dilute volume fraction
of, say, 5((1?1;0.001 under six linearly independent mechanical and/or three
linearly independent thermal load cases (Nogales, 2008). From these solu-
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tions dilute effective elasticity and conductivity tensors, E}; and Kj;, as
well as dilute replacement inhomogeneity strain and gradient concentration
tensors, Aéli’lr ) and Affi’lr ), respectively, can be extracted. In the case of finite
interfacial conductances the temperature jumps at the interfaces must be
included into the replacement inhomogeneity gradient concentration tensor.
This may be achieved, e.g., by evaluating the averaged matrix gradient con-

centration tensor and using the two-phase version of eqn. (5) for obtaining
Aé’i’lr) and Agi’lr). Equations (6) provide consistency conditions

) 1 ir)y—
EGD — g 4 . [E5, — E(m)](Aé{I )) '
dil
) 1 ir)y—
o) — g . (K — ]C(m)](Aéivl)) 1 (26)
dil

from which the replacement inhomogeneity elasticity and conduction ten-

(i,r)
dil >

KED and A((iii’lr) can then be inserted into mean field relations in lieu of the

sors E(") and K1) can be extracted. The replacement tensors EG:1) | A

corresponding “standard” tensors E®) A((iii)l, K® and A((iii)l, respectively.
This strategy is well suited for use with Mori-Tanaka methods, where only
one dilute configuration must be evaluated. The resulting MTM/RT mod-
els can handle, e.g., polyhedral particles with inhomogeneous interfacial
conductances, compare section 4.2. Because the Mori—-Tanaka method by
default treats inhomogeneities as aligned, directional averaging may be re-
quired to achieve macroscopic isotropy in the case of anisotropic replacement
inhomogeneities that are randomly oriented.

For inhomogeneities that have simple shapes and interfaces with ho-
mogeneous conductances the replacement inhomogeneity conductivity and
gradient concentration tensors are diagonal tensors. For example, in the
case of spherical particles with homogeneous interfacial conductances the
two tensors are isotropic and their components are

@ dh 3K
dh + 2K ) ¢ KGO

(Benveniste and Miloh, 1986; Bohm and Nogales, 2008), where d stands for
the particle diameter and h for the interfacial conductance. By combining
these results with eqns. (11), (12) and (6) the well-known scalar expressions
for the macroscopic conductivity of composites containing spherical particles
with finite interfacial conductances given by Hasselman and Johnson (1987)
and Benveniste (1987b) are recovered.

Approaches that are related to the replacement inhomogeneity concept
can also be used to study the mechanical behavior of composites that are

ir) __ ir)
K0Y =K A= (27)
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subject to damage by decohesion between reinforcement and matrix or by
reinforcement failure, see, e.g., Sun et al. (2003).

An alternative mean field approach to studying materials containing
non-ellipsoidal inhomogeneities was proposed by Kachanov et al. (1994).
It is based on decomposing the elastic strain—stress relation of an elastic
microstructured material as

(€)= C'(a) = [C + (o) (28)

the tensor CQ*“‘) = C* - CWw being referred to as the compliance con-
tribution tensor. Dilute compliance contribution tensors can be evaluated
from numerical analysis, and Mori-Tanaka or self-consistent schemes can
be set up to handle non-dilute cases on this basis. This approach can also
be extended to thermal conduction problems.

3 Methods Based on Discrete Microstructures

The most important micromechanical approaches based on discrete mi-
crostructures encompass unit cell, windowing and embedding methods, the
emphasis in the present chapter being put on the former two. In addi-
tion, small microstructured samples may also be modeled in their entirety,
usually with boundary conditions that correspond to some experimental sit-
uation, see e.g. (Papka and Kyriakides, 1999; Luxner, 2006). Depending on
the boundary conditions applied, such models may be related to windowing
methods.

3.1 General Remarks

Volume Elements Heterogeneous volume elements used in discrete mi-
crostructure models can range from highly idealized periodic geometries,
such as simple cubic arrays of spheres in a matrix, to complex microgeome-
tries that aim at capturing the statistics of the phase arrangements of real
materials. Geometrically complex volume elements can be obtained either
by computer simulation or by experimental techniques such as computed
tomography (Buffiere et al., 2008) or serial sectioning (Chawla and Chawla,
2006). Obviously, volume elements based on real microstructures in general
are not periodic, whereas computer generated phase arrangements can be
either periodic or non-periodic.

Algorithms for generating generic random microgeometrical models with
matrix—inclusion microtopology typically involve random addition methods
(also known as random sequential insertion models). They use a random
process to select possible positions for new inhomogeneities, these “candi-
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dates” being accepted if they do not collide with any of the existing inhomo-
geneities and rejected otherwise. Such “hard core” models tend to be limited
to moderate reinforcement volume fractions due to jamming and their rep-
resentativeness for phase arrangements generated by mixing processes may
be open to question (Stroeven et al., 2004). Marked improvements on both
counts can be obtained, on the one hand, by using RSA geometries as start-
ing configurations for random perturbation models that apply small ran-
dom displacements to each inhomogeneity to find acceptable arrangements
of individual reinforcements as the size of the volume element is reduced
(Segurado, 2004). On the other hand, heuristic “stirring” models can be
used to generate matrix-rich regions that support the placement of further
inhomogeneities (Melro et al., 2008). Another strategy for producing vol-
ume elements, which is not limited to matrix—inclusion topologies, modifies
starting configurations by simulated annealing and related procedures to
generate “statistically reconstructed” phase arrangements that closely ap-
proach the phase distribution statistics of the target material (Rintoul and
Torquato, 1997; Zeman, 2003). A further possible approach to the com-
puter generation of volume elements for inhomogeneous materials involves
simulation of the relevant production processes. For a discussion of many
aspects of the computer generation of random microstructures see Jeulin
(2001).

Computer generated microgeometries for composites have tended to em-
ploy idealized reinforcement shapes, equiaxed particles embedded in a ma-
trix, for example, being typically represented by spheres, and fibers by cylin-
ders or prolate spheroids. Real structure phase arrangements, in contrast,
may involve very irregular particle shapes (Chawla and Chawla, 2006).

Size of Volume Elements For any discrete microstructure model the
question immediately arises what level of geometrical complexity (and thus
what size of volume element) is required for adequately representing the
physical behavior of the inhomogeneous material to be studied. Represen-
tative Volume Elements (RVEs), which by definition are sufficiently large to
make predictions independent of details of the selection of the geometry and
of boundary conditions, provide a theoretical solution to the above problem.
In practice, however, limitations in computer power have tended to restrict
simulations to volume elements of rather limited size, which typically are
only approximations to proper RVEs and have been referred to as Statistical
Volume Elements or Sub-Representative Volume Elements (SVEs).

There are two main approaches to assessing the adequacy of the sizes of
such volume elements. One of them is based on using statistical descriptors
of the microgeometry, corresponding to the concept of “geometrical RVEs”.
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In this context adequate sizes of model geometries are estimated on the ba-
sis of purely geometrical parameters of the phase arrangement. This can be
done on the basis of experimentally obtained correlation lengths (Bulsara
et al., 1999; Jeulin, 2001) or by comparing statistical distribution functions
of actual and model microgeometries (Rintoul and Torquato, 1997; Zeman
and Sejnoha, 2001). The other approach assesses the dependence of the
predictions for some macroscopic material behavior on the size of volume
elements in analogy to the concept of “physical RVEs”. This idea goes back
to Hill (1963), who defined RVEs as giving the same macroscopic response
irrespective of the boundary conditions used. For example, hierarchies of
bounds from windowing analysis, compare section 3.3, differences between
predictions for some macroscopic modulus or response (e.g., for homoge-
nized stress vs. strain curves), or deviations from some macroscopic mate-
rial symmetry have been employed for checking if a given volume element
approaches being an RVE according to this concept. Criteria for assessing
the sizes of model geometries were discussed and compared, e.g., by Trias
et al. (2006) and Swaminathan et al. (2006).

Methods based on geometrical parameters or on the overall elastic be-
havior typically give rise to relatively small volume elements. For example,
Zeman (2003) reported that two-dimensional volume elements for studying
the transverse behavior of continuously reinforced composites only require
10 to 20 randomly positioned fibers. For the case of statistically isotropic
elastic composites with matrix—inclusion topology and sphere-like particles
of equal size Drugan and Willis (1996) estimated that for approximating
the overall moduli with errors of less than 5%, non-periodic volume ele-
ments with sizes of approximately five particle diameters are sufficient for
any volume fraction. The concept of physical RVEs obviously implies that
adequate sizes of model geometries depend on the physical property to be
studied. A number of numerical studies (Jiang et al., 2001; Gitman et al.,
2006) have indicated that inelastic constituent behavior tends to lead to
a requirement for larger volume elements for satisfactorily approximating
the overall symmetries and for obtaining good agreement — especially at
elevated strains — between the responses of phase arrangements designed
to be statistically equivalent. For cases involving damage at the constituent
level, in fact, eliminating the dependence of the homogenized responses on
the size of the volume element may be impossible (Gitman et al., 2007).

Model microgeometries of similar size that describe the same material
may be viewed as being (approximate) realizations of the same statistical
process. As a consequence, ensemble averaging can be used to obtain im-
proved estimates for the macroscopic behavior when predictions for a set
of such volume elements are available (Kanit et al., 2003; Stroeven et al.,
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2004). The number of different volume elements required for a given accu-
racy of the ensemble averages tends to decrease as the sizes of the models
increase (Khisaeva and Ostoja-Starzewski, 2006).

Numerical Methods The majority of published micromechanical studies
of discrete microgeometries have employed standard numerical engineering
methods for resolving the microfields, work using Finite Difference and Fi-
nite Volume algorithms, Fast Fourier Transforms, the Boundary Element
Method as well as the Finite Finite Element Method (FEM) having been
reported. In addition, some specialized approaches such as Transforma-
tion Field Analysis (Dvorak, 1992; Michel and Suquet, 2003) as well as the
the Method of Cells and its developments (Aboudi, 1996, 2004) have been
used. For discretizing numerical methods the characteristic length of the dis-
cretization (“mesh size”) must be considerably smaller than the microscale
of a given problem in order to obtain spatially well resolved results.

At present, the Finite Element Method is the most commonly used nu-
merical scheme for evaluating the fields in discrete microgeometries, espe-
cially in the nonlinear range, where its flexibility, efficiency and capability
of supporting a wide range of constitutive models for the constituents and
for the interfaces between them are especially appreciated. Another asset
of the FEM in the context of continuum micromechanics is its ability to
handle discontinuities in stress, strain, thermal gradient and heat flux com-
ponents, which typically occur at interfaces between different constituents,
in a natural way via appropriately placed element boundaries. In addition,
phase averages of the local fields can be evaluated in a rather straightforward
way by making use of the fact that in displacement based finite elements
stresses and strains are given at the integration points (as are thermal gra-
dients and heat fluxes in temperature-based heat conduction codes). This
allows to approximate volume integrals as weighted sums of the type

N
R FEUETS SV (29)
Q i=1

where f; and §2; are the function value and integration point volume, re-
spectively, associated with the i-th integration point within a given volume
Q) that contains a total of IV integration points. Higher statistical moments
of the fields, such as standard deviations, can be evaluated in analogy.
Applications of the FEM to micromechanical problems tend to fall into
four main groups, compare figure 1. In most published works the phase
arrangements are discretized by “standard” continuum elements, the mesh
being designed in such a way that element boundaries coincide with all in-
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terfaces between constituents. Such an approach has the advantage that in
principle any microgeometry can be handled, that interfaces can be mod-
eled by interface elements if required, and that readily available commercial
FE packages may be used. Meshing is often a considerable hurdle in using
this discretization strategy, with complex phase configurations requiring so-
phisticated preprocessors. When volume elements of regular shape, e.g.,
right hexahedra, are used, intersections between the faces of the cell and
phase boundaries at very acute angles can be especially difficult to handle,
with suboptimal element shapes leading to unfavorably conditioned stiff-
ness matrices. The capability of providing for mesh refinements where they
are required is a major strength of standard FE discretizations of inhomo-
geneous solids, but tends to lead to numerical models of substantial size.
Similar or identical meshes can be used for thermomechanical and thermal
analysis. In studying cellular materials, shell and beam elements can often
be employed to advantage.
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Figure 1. Sketch of FEM-based modeling strategies used in continuum
micromechanics: a) discretization by standard elements, b) special hybrid
elements, c) pixel/voxel discretization, d) “multiphase elements” (Bohm,
2004Db).

Alternatively, a smaller number of special hybrid elements may be used,
which are specifically formulated to model the displacement, stress and
strain fields in a region consisting of a single inhomogeneity together with
the surrounding matrix on the basis of some appropriate analytical theory.
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This modeling strategy is exemplified by the Voronoi Finite Element Method
of Ghosh et al. (1996), in which the mesh for the hybrid elements is obtained
by Voronoi tesselations based on the positions of the reinforcements. Large
planar multi-inhomogeneity arrangements can be analyzed this way using a
limited number of (albeit rather complex) elements, and good accuracy as
well as significant gains in efficiency have been claimed.

A third discretization strategy has been employed especially in cases
where the phase arrangements to be studied are based on experimentally
obtained digital representations of actual microgeometries. It uses a topo-
logically and geometrically regular mesh that consists of rectangular or hex-
ahedral elements of fixed size and has the same resolution as the digital data.
Each element is assigned to one of the constituents by operations such as
thresholding of the grey values of the corresponding pixel or voxel, respec-
tively. Such models have the advantage of being highly suitable for (semi-)
automatic generation from appropriate experimental data and of avoiding
possible ambiguities in detecting and smoothing interfaces in the digital
data. Obviously “voxel element” or “digital image based” strategies lead
to ragged phase boundaries, which have, however, been found acceptable in
many situations (Guldberg et al., 1998).

Regular FE meshes are also used in a fourth approach, where phase prop-
erties are assigned to Finite Elements at the integration point level (“multi-
phase elements”). Essentially, this amounts to trading off ragged boundaries
at element edges for smeared-out (and typically degraded) microfields within
those elements that contain a phase boundary, because stress or strain dis-
continuities within elements cannot be adequately handled by standard FE
shape functions. With respect to the element stiffnesses the latter con-
cern can be much reduced by overintegrating elements containing phase
boundaries, which provides satisfactory approximations of integrals involv-
ing non-smooth displacements (Zohdi and Wriggers, 2001).

3.2 Periodic Homogenization

An important group of discrete microstructure approaches involves pe-
riodic model materials, the effective properties of which are used to ap-
proximate the behavior of actual, non-periodic inhomogeneous materials.
This modeling strategy is referred to as periodic homogenization or as the
periodic microfield approach.

Unit Cells Periodic homogenization involves studying unit cells, i.e., vol-
ume elements with periodic phase arrangements that tile space by transla-
tion and provide a complete description of periodic media of infinite exten-
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sion. The cell volume of the smallest unit of periodicity is uniquely defined
for a given periodic medium, whereas the translation vectors p; describing
such volumes and the shapes of unit cells of minimal size (“minimum unit
cells”) are non-unique. Computer generated periodic volume elements are
often set up such that the translation vectors are orthogonal, which gives
rise to unit cells that are rectangles or right hexahedra, compare fig. 2, and
to some extent facilitates the application of periodicity boundary conditions.
The faces of such cells typically intersect phase boundaries.

North

NET

NEB

Bottom SEB

Figure 2. Cube-shaped periodic unit cell containing 15 randomly posi-
tioned spherical particles of equal size at a volume fraction of £1=0.15.
Designators of the six faces (East, West, North, South, Top, Bottom) and
of the vertices are given (Pahr and Bohm, 2008).

In general, however, the periodicity translation vectors p; are not orthog-
onal and, accordingly, unit cells of irregular shape may be chosen. Such unit
cells can be used for avoiding local configurations that are difficult to mesh,
e.g., at intersections between material interfaces and cell faces. Figure 3
shows a two-dimensional periodic array of circles of equal radius, which can
be used to model a transverse cross section of some material reinforced by
continuous aligned fibers. In it four different, but equivalent unit cells are
marked, each of which contains four fibers. Whereas the faces of unit cells
do not have to be planar, the condition must be fulfilled that the surface
of any unit cell can be split into regions *T', each of which consists of two
parallel surface elements, k=~ and k7. The positions of the two surface el-
ements making up such a pair must differ by a vector ¥s that is a linear
combination of the periodicity translation vectors, ¥s = > kcpi, where the
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Figure 3. Different minimum unit cells for a two-dimensional periodic
matrix—inclusion medium with two (slightly) non-orthogonal translation
vectors p; and py. Paired face segments are marked by identical line styles
and inhomogeneities inside the unit cells are set off by darker shading.

k¢, are integer numbers. In fig. 2, for example, there are three such regions

that coincide with pairs of cell faces, viz., East and West, North and South,
as well as Bottom and Top.

Boundary Conditions When an appropriate unit cell has been chosen,
it must be subjected to periodicity boundary conditions. This implies that
the FE-discretizations on each pair of surface elements that make up a
region *I" must be compatible, i.e., that the same mesh is used on both of
them. For such a pair of surface elements the boundary conditions for the
mechanical problem can be expressed as

AFu = mu(x) —Fux) = (e) xFs | (30)

(e) being the macroscopic strain, which is prescribed in displacement con-
trolled analysis and which is to be determined in load controlled analysis.
These conditions enforce a “seamless fit” between neighboring unit cells for
all possible deformed states. The analogous relationship for the thermal
conduction problem takes the form

AT =¥ T(x) = F T(x)=(d) *s , (31)

where (d) is the macroscopic temperature gradient. These boundary con-
ditions may be interpreted as slaving the behavior of one face of each pair
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of surface elements *T', called the slave face, to the other one, known as the
master face. The increments of the macroscopic displacements and temper-
atures over the unit cell, (€) x ¥s and (d) s, respectively, can be evaluated
from the differences in the displacements and temperatures between pairs
of nodes, a “master node” on the slave face and the corresponding reference
node on the master face.

If the phase arrangement (and thus each translational unit cell) has
planes, axes or points of symmetry, these can be used to define smaller
unit cells that use symmetry and point symmetry boundary conditions,
respectively. Mirror symmetry is not maintained through all deformation
states, so that only a limited number of load cases can be handled with
symmetry boundary conditions. For details see, e.g., Bohm (2004b, 2007).

In displacement and temperature based FE formulations, periodicity can
be enforced in terms of these variables only, whereas periodicity in terms of
stresses and fluxes is fulfilled approximately. All of the boundary conditions
discussed above can be realized via linear multi-point constraints (i.e., linear
equations linking a number of degrees of freedom), which are available in
most commercial FE-packages. When doing load or flux controlled analysis,
appropriate displacement or temperature degrees of freedom must be fixed
to avoid rigid body modes.

Linking Microscale and Macroscale The most versatile and elegant
strategy for linking the macroscale and the microscale in periodic microfield
models is based on a mathematical framework known as asymptotic ho-
mogenization or homogenization theory, where the governing equations are
explicitly formulated in terms of macroscopic and microscopic coordinates.
Asymptotic homogenization directly provides the macroscopic elasticity or
conductivity tensors of a unit cell, but typically requires special FE codes;
for details see, e.g. Jansson (1992), Hassani and Hinton (1999), Chung et al.
(2001) or Matt and Cruz (2008). It is also suitable for evaluating tangent
modulus tensors in nonlinear analysis, compare, e.g., Ghosh et al. (1996),
and for second-order homogenization problems explicitly involving stress
and strain gradients (Kouznetsova et al., 2002).

Alternatively, the structure of the periodicity boundary conditions, eqns.
(30) and (31), can be made use of, the macroscopic response being intro-
duced via pairs of master and reference nodes. This approach was termed
the “method of macroscopic degrees of freedom” by Michel et al. (1999).
Displacement controlled analysis then takes the form of prescribing appro-
priate displacements to the master nodes, whereas for load controlled anal-
ysis concentrated forces must be applied to them. Following Smit et al.
(1998), these concentrated forces can be obtained as the surface integrals
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of the homogeneous “applied traction” vector, o % nr(x), over the appro-
priate slave face, np(x) being the surface normal vector. For example, the
West and East faces of the cell shown in fig. 2 form a master—slave pair with
reference node SWB and master node SEB. The concentrated force acting
on node SEB due to a prescribed macroscopic stress tensor o?, fggp, then
evaluates as

fspp = /a’a «np(x) dI* . (32)
I'g

The corresponding heat flow (or concentrated heat flux) in 1-direction,
gseB,1 takes the form

gSEB,1 = /qa nr(x) dI' (33)
I'e

where g* is the prescribed macroscopic heat flux. Within standard FE
programs these concentrated loads can be easily prescribed. Outside the
small strain regime eqn. (32) must, however, be evaluated for the current
deformed configuration.

Averaged fields as well as phase averages of fields can be computed from
unit cell models by using eqns. (1) and (29). In addition, macroscopic
strains, stresses and gradients can be evaluated from the displacements,
reaction forces and temperatures, respectively, of the master nodes.

The method of macroscopic degrees of freedom can be extended to me-
chanical analysis involving finite strains by approximating the homogenized
deformation gradient ¢ via the relations

PL= 6D * op1 (34)

where op; and ;p; are the [-th periodicity translation vectors at states 0 and
t, respectively, see, e.g., Huber (2008).

Periodic homogenization is at present the most flexible and best under-
stood discrete microstructure approach to continuum micromechanics. Its
main limitations lie in the modeling of damage and failure, where diffuse
damage can be handled but periodic fields are unrealistic once localization
has set in, in dynamic problems, where periodic phase arrangements in gen-
eral and unit cells specifically act as filters that can strongly restrict the
passage of waves, and in stability problems, where similar effects can affect
buckling modes. Aside from these issues periodic homogenization is capable
of modeling the behavior of essentially any material for which a valid unit
cell can be set up.
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3.3 Windowing Methods

The aim of windowing methods consists in estimating or bounding the
macroscopic properties of inhomogeneous materials on the basis of (non-
periodic) samples of small size. The windows typically are volume elements
of simple shape, are extracted at random positions and with random ori-
entations from an inhomogeneous medium, and are not sufficiently big to
be proper RVEs. Because the results of windowing pertain to individual
samples rather than to a material, they are referred to as apparent (rather
than effective) properties.

The evaluation of the macroscopic properties of a volume element can
be based on the expression

/[t(x) — (o) * nr(x)]T [u(x) — () xx|]dl' =0 (35)

r

which can be obtained from the Hill condition, eqn. (2), compare (Hazanov,
1998). Here T" stands for the surface of the volume element and t(x) =
o(x) *nr(x) is the surface traction vector. The analogous relationship for
thermal conduction takes the form

/ [[a() = (@) 'nr(®)] [T(x) = (d)"x]dl =0 | (36)

r

(Jiang et al., 2002a). In general there are four ways of fulfilling these equa-
tions, three of them being based on uniform boundary conditions (Hazanov
and Amieur, 1995; Ostoja-Starzewski, 2006).

First, the traction term in eqn. (35) or the normal flux term in eqn. (36)
can be set equal to zero by specifying appropriate Neumann boundary con-
ditions for the tractions t(x) or the normal fluxes ¢,(x) = q (x) np(x).
This can be enforced by prescribing a given macroscopically homogeneous
stress tensor (o) or flux vector (q)* on all faces of the volume element,

6(x) = (0)* + nr(x) w0 = (@ nr(x)  vxel , (37)
leading to statically uniform (SUBC) or uniform Neumann (UNBC) bound-
ary conditions, respectively.

Second, the displacement or temperature terms in eqns. (35) and (36)
can be set to zero by imposing a given macroscopically homogeneous strain
tensor (€)* or temperature gradient vector (d)* on all boundaries,

u(x) = () *x T(x) = (d)*'x vxel . (38)
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This results in kinematically uniform (KUBC) or uniform Dirichlet (UDBC)
boundary conditions.

Third, mixed uniform boundary conditions (MUBC) may be specified,
which enforce the vector or scalar product under the integral to vanish
separately for each face 'y of the surface

[t(x) — (o) * nr(x)] " [u(x
[gn(x) — (@) "nr(x)] [T(x) — (d)Tx] AT = vxeTly. (39)

S—
|
o
*
sl
o
=
|
o

In the mechanical case this involves appropriate combinations of traction
and strain components that are uniform over a given face of the volume
element, but not macroscopically homogeneous. Mixed uniform boundary
conditions that fulfill eqn. (35) must be orthogonal in the fluctuating con-
tributions (Hazanov and Amieur, 1995).

Finally, the fluctuations of non-uniform boundary fields can be made to
cancel out by pairing parallel faces of the volume element such that they
show identical fluctuations but surface normals of opposite orientations.
This strategy, which does not involve homogeneous fields, is implemented
by the periodicity boundary conditions (PBC) used in periodic homogeniza-
tion, see section 3.2.

Macrohomogeneous boundary conditions following eqns. (37) and (38)
can be shown to give rise to lower and upper estimates, respectively, for the
overall elastic stiffness and thermal conductivity of a given volume element
(Nemat-Nasser and Hori, 1993). Ensemble averages of such estimates ob-
tained from windows of comparable size provide lower and upper bounds
on the overall apparent tensors of these volume elements. Hierarchies of
bounds can be generated from sets of windows of different sizes (Ostoja-
Starzewski, 1998; Huet, 1999), bringing out effects of the size of the volume
elements.

Equations (39) can be fulfilled by a range of different MUBC, result-
ing in different estimates for the apparent macroscopic tensors. A specific
set of mixed uniform boundary conditions that avoids prescribing nonzero
boundary tractions was proposed by Pahr and Zysset (2008) for obtaining
the apparent elastic tensors of cellular materials. Table 2 lists these six load
cases in a formulation suitable for windows in the shape of right hexahedra
aligned with the coordinate system that have edge lengths [y, l5 and [3 in
the 1-, 2- and 3-directions, respectively. The components of the prescribed
strain tensor are denoted as €f; and those of the prescribed traction vector
as t¥. When applied to periodic volume elements with phase arrangements
that show orthotropic or higher symmetry, these MUBC were found to give
the same predictions for the macroscopic elasticity tensor as periodic ho-
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Table 2. The six linearly independent uniform strain load cases constituting
the periodicity compatible mixed uniform boundary conditions (PMUBC)
in elasticity (Pahr and Zysset, 2008). The nomenclature of the volume
element faces follows fig. 2.

| | tensile 1 | tensile 2 | tensile 3 |
East Uy = 6?111/2 uy = Uy =
t5=15=0 15 =15 = t5=15=0
West up = —e401/2 | up = U =
t5=1t5=0 t5=1t5=0 t5=1t5=0
North | ug =0 Ug = 55l2/2 uz =0
1=t4=0 =1t=0 1=t4=0
South U = 0 Uy = 753212/2 U = 0
tr=t3=0 tP=t5=0 tr=t3=0
TOp usz = 0 us = 0 us = 53313/2
H=t3=0 |th=t=0 |t=t1=
Bottom | uz =0 uz =0 uz = —e35l3/2
ti=1t5=0 1P =1t5=0 ti=1t5=0
| | shear 12 | shear 13 | shear 23 |
East U = 6%111/2 Uus = €§1l1/2 Uy = 0

Uz =042 =0 | 8=0{2=0 |#B8=12=0
West, uz = —e5101/2 | uz = —e§1l1/2 | u1 =0
ug = 0,65 =0 | 5=0,66=0 | 3 =13=

North | uy = &945l5/2 us =0 uz = eyla/2
us=0,8=0 | 2 =12=0 | u =0,8=0
South Uy = 75?212/2 Uy = 0 us = 76%212/2
us=0,8=0 | 2 =12=0 | u=0,82=0
TOp us = 0 uy = 6?3[3/2 U = 53313/2
ti =t5=0 U = 0,t5=0 | uy =0,t5=0
Bottom | ug =0 up = —e5l3/2 | ug = —e54l3/2
2=13=0 | u=0,45=0 | us=0,5=0

mogenization. Accordingly, they were named “periodicity compatible mixed
uniform boundary conditions” (PMUBC).

The concept of periodicity compatible mixed uniform boundary condi-
tions can be extended to thermoelasticity by adding a load case that con-
strains all displacements normal to the faces of the volume element, sets all
in-plane tractions to zero, and applies a uniform temperature increment AT
This allows to evaluate the volume averaged specific thermal stress tensor
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(9), from which the apparent thermal expansion tensor can be obtained as
(a) = —C*(09).

Boundary conditions that show an analogous behavior to the above
PMUBC were reported by Jiang et al. (2002a) for thermal conduction in
two-dimensional orthotropic periodic media. Table 3 lists the three thermal
load cases required for extracting the apparent thermal conduction tensor in
the three-dimensional case, which make use of prescribed thermal gradient
and flux components di and ¢f', respectively.

Table 3. The three linearly independent uniform gradient load cases con-
stituting the periodicity compatible mixed uniform boundary conditions in
thermal conduction. The nomenclature of the faces follows fig. 2.

| | thermal 1 | thermal 2 | thermal 3 |
East T =d}ly/2 @ =0 @ =0
West T=—d{l1/2 | ¢¢ =0 g =0
North ¢ =0 T =djla/2 g5 =0
South @ =0 T=-d5l5/2 | =0
Top g5 =0 g5 =0 T = djls/2
Bottom | ¢ =0 g3 =0 T = —djl3/2

The PMUBC listed in tables 2 and 3 offer an attractive option for eval-
uating estimates of the macroscopic elasticity and conductivity tensors of
periodic and non-periodic volume elements. The question if and to what ex-
tent they are applicable to obtaining approximations of the macroscopic be-
havior of microgeometries that show sub-orthotropic symmetry is explored
in section 4.3.

The generation of lower and upper estimates by windowing using SUBC
and KUBC can be shown to be valid in the context of nonlinear elastic-
ity and deformation plasticity (Jiang et al., 2001, 2002b). PMUBC can be
used for materials characterization of elastoplastic inhomogeneous materials
(Pahr and Bohm, 2008), but lack the flexibility for handling general load
paths in plasticity. The principal strength of windowing methods lies in pro-
viding an approach to studying the linear behavior of non-periodic volume
elements.

3.4 Embedding Methods

Embedding methods combine a geometrically well resolved core region,
in which the local fields can be evaluated at high detail, with an outer region
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that describes the inhomogeneous material in a simplified way and serves
mainly for introducing loads into the core. The material behavior in the
outer region may either be prescribed, e.g., via a suitable mean field model,
or be evaluated self-consistently from the responses of the core, the latter
approach being difficult to use properly for nonlinear studies. Embedding
models cannot avoid boundary layers in both core and embedding region,
where local perturbations of the fields are present. These boundary layers
must be excluded from the evaluation of macroscopic quantities and volume
averaged fields.

@

()

Figure 4. Schematic sketch of an embedded cell analysis of a crack in a
tensile specimen of a composite material

The main strength of embedded cell models lies in their capability of
describing non-periodic local phenomena in inhomogeneous materials, most
importantly the regions around the tips of macrocracks as sketched in fig. 4.
When combined with appropriate material models that can handle local
damage and failure at the constituent level such models allow to simulate
the progress of macrocracks in inhomogeneous materials, see, e.g., van der
Giessen and Tvergaard (1994) or Ayyar and Chawla (2007). Other problems
to which embedded cells can be applied to advantage include macroscopic
interfaces involving at least one inhomogeneous material (Chimani et al.,
1997) as well as other situations where gradients of loads or geometrical
parameters are too high for standard homogenization methods.
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4 Some Issues and Applications

4.1 Incremental Mori—Tanaka Methods for Elastoplastic Com-
posites at Finite Strains

As noted in section 2.4, algorithmic enhancements have led to marked
improvements in Incremental Mori-Tanaka (IMT) schemes, especially for
macroscopically isotropic composites. Such methods can be extended to
make them suitable for handling finite macroscopic strains, e.g., for forming
simulations involving particle reinforced metal matrix composites (MMCs).
In these materials elastic strains are small compared to the inelastic ones
because the Young’s modulus of the matrix typically is orders of magnitude
larger than the yield stress. This allows to use the additive decomposition
of strain rates as well as the choice of Cauchy stress and logarithmic strain
as conjugate measures. Matrix plasticity is treated as the exclusive origin of
the rotation of the material base reference system, the rotation of the matrix
phase being assumed to be fully conveyed to the embedded elastic particles.
Enhanced IMT schemes of this type can be implemented into Finite Element
programs as micromechanically based constitutive models at the integration
point level (Huber et al., 2007; Huber, 2008). In addition to enabling multi-
scale forming simulations of components made of MMCs, such models allow
comparing the predictions of IMT and unit cell approaches for non-radial
load paths.
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Figure 5. Comparison between predictions of a unit cell (MMC-J2) and
a finite strain IMT model for the equi-biaxial tensile loading of a particle
reinforced MMC (Huber, 2008). The macroscopic stress—strain diagram in
the plane of loading and the normal strain are shown.
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Figure 5 shows the macroscopic stress—strain responses under equi-biaxial
tension predicted, on the one hand, with a periodic unit cell of the type
depicted in fig. 2 and, on the other hand, with a single Finite Element
employing an IMT model modified for finite strains. Both models pertain
to an MMC consisting of elastic spherical particles with E) = 400 GPa,
v =0.19 and €9 = 0.2 embedded in an elastoplastic matrix with elastic
parameters F™ = 100 GPa and v®™ = 0.30, Jy-plasticity and isotropic
hardening. The macroscopic stress—strain diagram (11 vs. €11) as well as
the evolution of the normal strain £33 are shown, excellent agreement be-
tween the predictions of the two models being evident.

An axisymmetric FE model employing the IMT was used to simulate a
Gleeble-type experiment, i.e., a compression test of a cylindrical specimen
between two anvils, of the same material (Huber et al., 2007). The de-
formation gradients obtained at selected points were treated as mesoscopic
responses and applied to a periodic unit cell. Good agreement between
the IMT and periodic homogenization models was found in terms of the
evolution of the stress components at these points. The computationally
expensive unit cell approach also allows to extract the distributions of mi-
crofields in the constituents at given mesoscopic points. Figure 6 shows
such a “spectrum” of the accumulated equivalent plastic strain in the ma-
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Accumulated equivalent plastic strain

Figure 6. Unit cell prediction for the distribution of the accumulated equiv-
alent plastic strain in the matrix at the center of an initially cylindrical
MMC sample under uniaxial compression. Phase averages predicted by the
unit cell model (PMA) and the finite strain IMT model are shown (Huber
et al., 2007).
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trix. These results pertain to the center of the sample and a macroscopic
deformation gradient of ¢o5 = 0.88. The mean value of this distribution
can be seen to be slightly higher than the corresponding IMT mean field
prediction.

Underestimating the equivalent stresses and strains is a typical behavior
for incremental mean field methods that evaluate the equivalent stress from
the phase averaged stress components and thus do not account for corre-
lations between fluctuating contributions. Solutions to this problem were
proposed, e.g., by Buryachenko (1996) and by Ju and Sun (2001).

As is evident from figure 7 stress fluctuations can also markedly influ-
ence the predicted phase averages of the maximum principal stress in the
particles. This behavior can be especially marked at positions of high macro-
scopic symmetry such as the center of the sample in the present case, for
which the IMT results do not hint at any propensity for brittle failure of
the particles. The unit cell model, in contrast, picks up positive averages
and long tails in the tensile range of the distribution of the local maximum

principal stresses.

I, —location A, at F22=0.88

==|ocation A, at F22=0.988

probability density

max. principal stress, all particles [MPa]

Figure 7. Unit cell prediction for the distribution of the maximum principal
stress in the particles at the center of an initially cylindrical MMC sample
under uniaxial compression. Phase averages predicted by the unit cell model
(PMA) and the finite strain IMT model are shown (Huber et al., 2007).

4.2 Diamond Particle Reinforced Composites

Thermomechanical Behavior Aluminum or copper matrices reinforced
with diamond particles are of considerable practical interest for use as heat
sink materials because they promise, on the one hand, overall conductiv-
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ities that exceed the corresponding properties of the matrix and, on the
other hand, the possibility of tailoring the effective coefficients of thermal
expansion (CTE) for a good match with active elements made of semi-
conductors. The marked thermal expansion mismatch between diamond
(o) ~ 1.5x107 K~ at room temperature) and matrix (a® =~ 21.7x10~°
K~! for aluminum at room temperature), however, can lead to high mi-
crostresses in the constituents under thermal loading.

Periodic unit cells for describing diamond reinforced composites of par-
ticle volume fractions up to, say, 35% can be generated on the basis of
arrangements of randomly positioned, non-interpenetrating spheres by in-
scribing a randomly oriented regular tetrakaidekahedron into each sphere.
Figure 8 shows three unit cells of nominal particle volume fraction £ = 0.34
that share the same particle center positions, the tetrakaidekahedra in the
left and center cells differing in their orientation only (Nogales and Béhm,
2008). Alternatively, the replacement tensor algorithm discussed in section
2.7 can be used to address particle shape effects within the context of mean
field approaches.

| 44

®

Figure 8. Three unit cells of nominal particle volume fraction ¢ = (.34
used for modeling the thermomechanical and thermal conduction behavior
of diamond reinforced aluminum (Nogales and Bohm, 2008). The cells are
referred to as UCDA (left), UCDB (center) and UCS (right).

Table 4 compares predictions for the effective Young’s moduli, E*, shear
moduli, G*, and bulk moduli, K*, obtained with different models for the
elastic behavior of diamond reinforced composites. The standard Mori—
Tanaka (MTM,sph) and Torquato (1998b) three-point estimates (3PE) as
well as periodic homogenization with unit cell UCS, compare fig. 8 (right),
pertain to spherical particles. Regular tetrakaidekahedral particles were
used with the MTM/RT model, the results of which were isotropized by
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Table 4. Predictions for the effective elastic moduli [GPa] of diamond re-
inforced aluminum obtained for spherical (MTM,sph; 3PE,sph; UCS) and
tetrakaidekahedral (MTM/RT; UCDA, UCDB) particles (Nogales, 2008).

| model | E* | G* | K* |
MTM,sph | 131.2 | 50.7 | 106.1
3PE,sph 137.2 | 53.3 | 107.3
UcCs 135.7 | 52.7 | 106.6
MTM/RT | 134.0 | 51.9 | 106.7

UCDA 141.7 | 55.3 | 108.0
UCDB 142.0 | 55.4 | 108.2

the Hershey—Kroner—Eshelby method (Ledbetter, 1984) because the “raw”
MTM results show cubic elastic symmetry due to the shapes of the parti-
cles. Finally, results obtained with the multi-particle unit cells UCDA and
UCDB are given. The diamond particles were treated as elastically isotropic
and the elastic parameters for the constituents were chosen as F() = 1050
GPa, GO = 477 GPa, E™ = 70 GPa, and G™ = 26 GPa. Good agreement
between the six sets of predicted moduli can be observed, the Mori—Tanaka
estimates giving the lowest stiffnesses for both particle shapes. The poly-
hedral particles are predicted to give rise to somewhat higher macroscopic
stiffnesses than the spherical ones by both the mean field and the discrete
microfield methods. The differences between unit cells UCDA and UCDB
are very small, i.e., the particle orientations have little influence on the
overall elastic behavior.

Figure 9 (left) presents the predicted distribution of the accumulated
equivalent plastic strain in the matrix after cooling down from a stress-free
temperature of 450 K to room temperature. Most of the matrix can be seen
to have yielded plastically in the cooled-down state, the distribution of the
plastic strains in the matrix being very inhomogeneous. In fig. 9 (right) an
analogous plot is given for a state obtained by subsequent heating by 100
K. Here the marked CTE mismatch and the low yield stress of the matrix
have led to further plastic yielding, the values of the equivalent plastic strain
being noticeably higher throughout the matrix.

Information on the evolution of the plastic strains of the matrix within
the volume element can be obtained by evaluating the phase averages of
the accumulated plastic strain and the corresponding standard deviations
via eqn. (29). The resulting data can be plotted against the temperature
as shown in fig. 10, which pertains to the heating-up process and uses error
bars to represent the standard deviations of the equivalent plastic strain. For
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Figure 9. Accumulated equivalent plastic strains in the matrix of a
diamond—aluminum composite subjected to cooling down from a stress-free
temperature of 450 K to room temperature (left) and subsequent heating
by 100 K (right) as predicted with unit cell UCDA, compare fig. 8 (left),
with a particle volume fraction of €1 = 0.34 (Nogales, 2008).

temperature increases up to, say, 25°C the accumulated equivalent plastic
strain remains constant, i.e., the matrix behaves thermoelastically. Further
heating, however, leads to monotonous growth of both the phase average and
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Figure 10. Evolution of phase average and standard deviation of the
equivalent plastic strain in the matrix of an diamond—aluminum composite
(€M = 0.34 ) during heating from a cooled-down state as predicted with the
multi-particle unit cell shown in fig. 9 (Nogales, 2008).
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the standard deviation of the equivalent plastic strain, indicating progressive
plastic yielding and growing intra-phase fluctuations of the plastic strain in
the matrix.

Thermal Conduction In studying the thermal conduction behavior of
diamond reinforced composites finite interfacial conductances at the inter-
face between particles and matrix must be explicitly accounted for. Beyond
this, the models and modeling techniques used for describing the thermo-
mechanical responses of these composites are directly applicable.

Experimental studies (Ruch et al., 2006) indicate that the interfacial
conductances of diamond particles in aluminum are inhomogeneous, values
of hiip0y = 100 MW/Km? and k113 = 20 MW/Km? being assumed for
the diamonds’ {100} and {111} faces, respectively, in the following. For
the given phase conductivities, &) = 1800 W/Km and £® = 237 W/Km,
an “equivalent” homogeneous interfacial conductance of hnom,200 ~ 27.7
MW /Km? can be evaluated for dilute regular tetrakaidekahedra of 200 pm
diameter (Nogales, 2008).

Figure 11 compares predictions of a number of models for the size depen-
dence of the macroscopic conductivities of diamond—aluminum composites
of particle volume fraction ¢) = 0.34. Mori-Tanaka results for perfectly
bonded and for fully debonded particles, the latter behaving like voids, are
marked as “MTM, perfect” and “MTM, voids”, respectively, and do not
show a size effect. Predictions obtained by combining the replacement ten-
sor algorithm with the Mori-Tanaka method, eqns. (27), are represented by
the curves “MTM/RT, inh” and “MTM/RT, hom”, which pertain to the use
of inhomogeneous and equivalent homogeneous interfacial conductances, re-
spectively. As is typical for Mori-Tanaka estimates, they do not consistently
fall within the pertinent three-point bounds (Torquato and Rintoul, 1995),
designated as “3PB, hom”. In addition, numerical predictions based on unit
cell UCDA, compare fig. 8, are shown for a number of particle diameters. At
the critical particle diameter, d., =~ 19.7 pm, the composite behaves like the
matrix material and the upper and lower three-point bounds as well as the
Mori-Tanaka predictions for homogeneous interfaces coincide. For the case
considered here, the differences in the macroscopic conduction behavior due
to particle shape and interfacial inhomogeneity effects can be seen to play
a minor role only. For further details see Nogales (2008) as well as Nogales
and Bohm (2008).

The diamond—aluminum system can also be studied by windowing mod-
els using the sets of boundary conditions discussed in section 3.3, non-
periodic volume elements being available for higher particle volume fractions
than were periodic unit cells (Flaquer et al., 2007). Nogales (2008) reported
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Figure 11. Predictions of the effective conductivity of diamond reinforced
aluminum (€0 = 0.34). The Mori-Tanaka results for fully debonded
(MTM, voids) and perfectly bonded (MTM, perfect) particles and the three-
point bounds (3PB, hom) pertain to spherical inhomogeneities, whereas the
MTM/RT predictions for particles with homogeneous and inhomogeneous
interfaces and the unit cell results (UCDA) pertain to tetrakaidekahedral
particles.

good agreement between the predictions obtained with the volume element
shown in fig. 12 and effective conductivities obtained with the MTM/RT.
Results obtained for unit cell UCDA with both periodic homogenization
and windowing models are listed in table 6 and discussed in section 4.3.

In many real composites the reinforcements are not of exactly equal size,
but follow some particle size distribution. When this size distribution can
be cast into the form of a histogram-like description that provides volume
fractions €0 in terms of particle diameters and when the particle shapes
can be approximated by spheres, eqns. (27) can be used to evaluate the
(diagonal) components of the replacement tensors as functions of the per-
tinent particle diameters. AGY) and K in turn, can be combined with
equs. (5), 6), (11) and (12) to obtain the Mori-Tanaka estimate

g(i) [K(Lr) _ K(m)]Aéii,lr)
(i)#@m)
g g(i)Aéli-,lr)
(i) #@m)

K*=K® 4
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2

Figure 12. Non-periodic volume element for a diamond—aluminum com-
posite of particle volume fraction £ = 0.445 (Nogales, 2008).

for the isotropic macroscopic conductivity of a composite reinforced by
equiaxed particles with finite interfacial conductances (B6hm and Nogales,
2008). Obviously, this model treats particles of different diameters as differ-
ent inclusion phases. The resulting simple algebraic relationship provides a
handy method for approximating the size effect in conduction due to finite
interfacial conductances, e.g., for the practically relevant case of bimodal
size distributions of equiaxed particles.

4.3 Windowing Methods Using PMUBC

As discussed in section 3.3 windowing methods using periodicity com-
patible mixed uniform boundary conditions (PMUBC) were reported to give
identical results to periodic homogenization for periodic microstructures of
orthotropic symmetry in elasticity (Pahr and Zysset, 2008) and thermal
conduction (Jiang et al., 2002a). However, actual volume elements typi-
cally are too small to be proper RVEs and, as a consequence, tend to show
some sub-orthotropic contributions to their overall symmetry even if they
aim at modeling isotropic materials. The question whether and to what ex-
tent PMUBC are suitable for studying such microgeometries can be assessed
by comparing the responses of periodic phase arrangements that are sub-
jected, on the one hand, to PMUBC and, on the other hand, to periodicity
boundary conditions (PBC). The latter provide well understood reference
estimates that are not subject to restrictions in terms of symmetry.

This testing strategy was first applied to a multi-particle unit cell con-
taining 15 randomly positioned spherical inhomogeneities at a volume frac-
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tion of €0 = 0.15, see fig. 2. This volume element had been used by Béhm
et al. (2004) to study particle reinforced metal matrix composites. Both
PBC and PMUBC were used to obtain full elasticity tensors, symmetriza-
tion of the raw results being necessary in the latter case. Approximations
to the orthotropic contributions to these elasticity tensors were generated
by setting to zero the non-orthotropic coupling terms, which are about an
order of magnitude smaller than the orthotropic terms. This procedure was
carried out for elastic contrasts, E() / E™ | ranging between 2 and 30, and
the macroscopic elastic moduli were evaluated from the “orthotropized” ten-
sors, see Pahr and Bohm (2008). Figure 13 shows the relative differences of
the predicted Young’s, shear and bulk moduli with respect to the reference
solutions obtained with PBC. The upper estimates obtained with kinemat-
ically uniform boundary conditions (KUBC) and the three-point bounds
(Torquato, 2002) evaluated with statistical parameters pertaining to hard
spheres of equal size (Torquato et al., 1987; Miller and Torquato, 1990) are
also shown.

In fig. 13 direction averaged predictions for the Young’s, shear and bulk
moduli are marked by symbols and the levels of anisotropy are given by error
bars where applicable. The results obtained with PMUBC differ by no more
than 1.7% from the reference values in the case of the Young’s moduli and
by much less for the shear and bulk moduli. The PMUBC can be seen to
lead to slightly higher deviations from macroscopic elastic isotropy than do
the PBC. Both sets of estimates are compatible with the three-point bounds
evaluated for monodisperse non-interpenetrating spheres, and the PBC data
nearly coincide with the three-point lower bounds. The upper estimates
obtained with KUBC, in contrast, differ markedly from the reference data,

Young s modulus shear modulus bulk medulus
15 15
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o 14t 14} KUBG e g
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Figure 13. Relative differences in the macroscopic elastic responses of the
volume element depicted in fig. 2 predicted numerically by PBC, KUBC and
PMUBC and analytically by three-point bounds (Pahr and Bohm, 2008).
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fall clearly outside the bounds, and show a marked anisotropy in the Young’s
and shear moduli. For windowing using KUBC the deviations from the
PBC predictions are strongly correlated with the elastic contrast E(1)/E®),
whereas for the estimates obtained with PMUBC they are nearly constant
for elastic contrasts beyond ten.

By using the isotropic term of a generalized spherical harmonics expan-
sion of the orthotropic elongation and bulk modulus orientation distribution
functions developed by He and Curnier (1997), the isotropic elasticity ten-
sors can be found that are closest to the orthotropized ones. For the unit cell
shown in fig. 2 the maximum difference between the components of these
macroscopic elastic tensors obtained with PBC and PMUBC is some 1.2%
(Pahr and Bohm, 2008).

In a second step four groups of six periodic phase arrangements were
generated, two of which pertain to particle volume fractions of £€0) ~ 0.15
and two to €0 ~ 0.40, respectively. Unit cells containing 15 and 30 parti-
cles were used for each volume fraction. Each group comprised 6 microge-
ometries consisting of randomly positioned spheres of equal size (Géndara,
2008; Bohm et al., 2008). Table 5 lists the ensemble averages of the bulk
and shear moduli obtained with PBC and PMUBC, respectively, together
with the three-point bounds for impenetrable spheres of equal size. Again,
very close agreement between periodic homogenization and windowing using
PMUBC is evident, although some results for the shear modulus obtained
with the latter approach are slightly below the three-point bounds.

Table 5. Ensemble averages of the shear and bulk moduli [GPa] obtained
with periodic homogenization (PBC) and PMUBC from four groups of six
unit cells each (Gdndara, 2008). The pertinent three-point bounds are listed
for comparison.

[ Shear Moduli [ 3PB [ PBC | PMUBC |

£=0.147, 15 particles | 33.99 / 34.55 | 34.01 | 33.94
£=0.145, 30 particles | 33.88 / 34.43 | 33.94 | 33.87
£€=0.397, 15 particles | 51.68 / 55.29 | 52.82 | 52.57
£=0.395, 30 particles | 51.50 / 55.07 | 52.25 | 52.06
| Bulk Moduli | 3PB | PBC | PMUBC |
£=0.147, 15 particles | 68.21 / 68.56 | 68.17 | 68.27
€=0.145, 30 particles | 68.06 / 68.40 | 68.06 | 68.14
£=0.397, 15 particles | 91.00 / 93.32 | 91.33 | 91.73
£€=0.395, 30 particles | 90.78 / 93.08 | 90.95 | 91.29
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For thermal conduction analysis comparisons between periodic homog-
enization and windowing using the PMUBC listed in table 3 were carried
out on the basis of the unit cell shown in fig. 8 (left), which contains 20 ran-
domly positioned and oriented regular tetrakaidekahedral particles of equal
size (Nogales, 2008). Inhomogeneous interfacial conductances as discussed
in section 4.2 were prescribed at the interfaces between matrix and rein-
forcements. Table 6 shows the predictions obtained with UNBC, PMUBC,
PBC, and UDBC for this periodic volume element together with results
from the Mori-Tanaka method employing the replacement tensor algorithm
discussed in section 2.7. Because the finite interfacial conductances give
rise to a particle size effect, four different particle sizes were studied. In
each case the UNBC lead to lower and the UDBC to upper estimates, the
relative difference being largest for the smallest particles, which approach
the behavior of holes and thus lead to a high conductivity contrast. The
predictions obtained with PMUBC and PBC differ by less than 3%.

Table 6. Comparison of effective and apparent conductivities [W/Km]| ob-
tained by periodic homogenization (PBC), windowing using uniform Dirich-
let (UDBC), uniform Neumann (UNBC), and periodicity compatible mixed
uniform (PMUBC) boundary conditions as well as the MTM/RT for four
different particle sizes (Nogales, 2008).

| | UNBC | PMUBC | PBC | UDBC | MTM/RT |
r=10"%m | 1304 | 151.3 149.6 287.8 | 151.3
r=10""m | 246.5 | 256.6 249.2 364.3 | 249.2
r=10""m | 390.7 | 411.9 405.1 484.1 | 401.0
r=10""m | 441.0 | 466.1 460.4 529.2 | 453.6

These results show that PMUBC are well suited to evaluating the overall
elastic and thermal conduction behavior of periodic unit cells that display
considerable sub-orthotropic contributions to their overall symmetry. This
property of PMUBC also holds for volume elements that are clearly too
small to be RVEs, as is the case in table 6, where the lower and upper
estimates obtained with UNBC and UDBC, respectively, differ by 20% to
120%. On the basis of the results presented in this section it can also be
expected that PMUBC are valid for studying the macroscopic elastic behav-
ior of non-periodic volume elements with overall symmetries that deviate to
some extent from orthotropy.
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4.4 Porous and Cellular Materials

For many purposes porous and cellular materials can be treated as in-
homogeneous materials one constituent of which has vanishing stiffness and
conductivity. This approximation is not valid if the void spaces are satu-
rated with a liquid, a situation that is studied in poromechanics, see, e.g.,
Dormieux and Ulm (2005), or when the pressure of a gas filling the voids
influences the mechanical response. In heat transfer analysis gas in the
voids may give rise to conduction or convection and at high temperatures
radiative heat transport may occur. Such effects are not considered in the
following.

Porous materials Here porous materials are understood to have void
volume fractions considerably smaller than 50%, and they typically show
matrix—inclusion topology. For small strain elasticity they can be modeled
by standard mean field theories by letting the elasticity and conductivity
tensors of the inhomogeneities vanish. For the Mori—Tanaka method this
leads to expressions of the type

E* = (1- g(i))E(m) [1— S(i’m)][I _ g(m)s(i’m)]*l
£ = (1= €M - SEMT - gMSEmITT ()

which correspond to Hashin—Shtrikman upper bounds. Classical self-consis-
tent estimates for macroscopically isotropic materials break down for void
volume fractions exceeding approximately one third, where the voids start
to percolate through the microstructure and cohesion of the material is lost.

Elastoplastic porous materials have been the subject of a considerable
number of micromechanical studies due to their relevance to the ductile
damage and failure behavior of metals. Micromechanically based models
have been employed for describing the growth of pre-existing voids, com-
pare (Gurson, 1977; Gologanu et al., 1997; Kailasam et al., 2000). Generally,
the underlying modeling concepts are closely related to the homogenization
for particle reinforced composites, the main difference being that at finite
macroscopic strains the shapes of the voids may evolve significantly through
the loading history. Studies using axisymmetric cell models showed that for
tensile load cases with axial symmetry initially spherical pores stay ellip-
soids throughout the deformation history (Gardjeu et al., 2000), whereas
under compressive loading they may evolve into markedly different shapes
in inelastic regimes (Segurado et al., 2002).

Cellular materials In cellular materials, such as foamed polymers or
metals, wood, and trabecular bone, the volume fraction of the solid phase is
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low, often amounting to a few percent or less. The voids may be topologi-
cally connected (open cell foams), unconnected (closed cell foams, syntactic
foams), or both connected and unconnected voids may be present (e.g., in
hollow sphere foams).

Linear elastic responses are often limited to a very small range of macro-
scopic strains in cellular materials. Higher strains lead to nonlinear behavior
in which gross shape changes of the cells take place, with bending, elastic
buckling, plastic buckling, and brittle failure of cell walls or struts play-
ing major roles on the microscale. For compression-dominated load cases
this regime tends to give rise to a stress plateau on the macroscale, which
underlies the favorable energy absorption properties of many cellular mate-
rials. No behavior of this type is present under tensile and shear loading.
At some elevated strain the effective stiffness typically rises sharply under
compression, the cellular structure having collapsed to such an extent that
many cell walls or struts are in contact.

The micromechanical modeling of cellular materials has been dominated
by methods based on discrete microstructures. Gibson and Ashby (1988)
developed a set of well known formulae for the macroscopic behavior of
cellular materials that are based on analytical models using unit cells that
consist of beams (for open cell foams) and plates (for closed cell foams). In
these formulae the thermomechanical moduli and other macroscopic physi-
cal properties of cellular materials are approximated by power laws in terms
of the relative density.

Due to the inherent absorption contrast between matrix and voids, cellu-
lar materials are well suited to high-resolution computed tomography, giving
access to microgeometries that can be directly converted into voxel models
as discussed in section 3.1. This modeling strategy was first applied in bone
biomechanics, where the macroscopic elastic tensors of trabecular bones
have been studied by tomography-based models for more than a decade
(Hollister et al., 1994; Miller and Riiegsegger, 1996). Later such models
were also used for studying the nonlinear behavior of metallic and ceramic
foams (Maire et al., 2000). Windowing models using periodicity compatible
mixed uniform boundary conditions as discussed in section 3.3 are especially
well suited for linear elastic analysis of such CT-derived microgeometries.

Unit cells for carrying out periodic homogenization of cellular materials
beyond the linear elastic regime must provide for large deformations on
the microscale and, typically, for mechanical instabilities of the cell walls
or struts. In addition, (periodic) contact between and self contact of cell
walls or struts may have to be handled. When the method of macroscopic
degrees of freedom, compare section 3.2, is used, it is helpful if the vertices
of the unit cell can be positioned in solid material, i.e., in cell walls or
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struts, so that suitable master nodes are easily available. The wavelengths
of buckling modes that can be directly studied by periodic homogenization
are obviously limited by the size of the unit cell. For capturing long wave
buckling modes, which may well be critical, Bloch wave theory (Gong et al.,
2005) can be employed.

In many cases shell elements have been used for the cell walls in FE-
based discrete microstructural models of closed cell as well as hollow sphere
foams, and beam elements have been employed for the struts of open cell
materials. For periodic models this implies that periodicity must be en-
forced in terms of rotations in addition to displacements, and appropriate
periodicity boundary conditions must be provided, see, e.g., Bitsche (2005).
At high porosities it is necessary to account for the overlap of shell elements
at edges and of beam elements at vertices when evaluating the phase volume
fractions of the discretized unit cells.

The geometries of unit cells for FE-based modeling of both closed and
open cell foams have typically been based on space-filling polyhedra, such
as regular tetrakaidekahedra (Grenestedt, 1998), or on minimum surface
shapes, such as Kelvin and Weaire-Phelan geometries (Kraynik and Reinelt,
1996). The latter geometries differ only slightly from polyhedra, but at
low solid volume fractions the small distortions of the faces can lead to
considerable differences in the overall mechanical response. Roberts and
Garboczi (2001) proposed irregular multi-cell volume elements based on
Voronoi tesselations for both closed cell and open cell foams. In addition,
cell geometries based on various cubic arrangements of struts were reported
for modeling scaffold-type open cell materials (Luxner, 2006).

The effects of details of the microgeometries of cellular materials, such as
thickness distributions, geometrical imperfections and flaws of cell walls or
struts, can considerably influence the overall behavior of cellular materials,
see, e.g., Grenestedt (1998). Similar issues are raised by sintering necks in
hollow sphere foams and the cross sectional shapes of open cell materials
with hollow struts. Modeling such details typically requires highly resolved
discretizations.

As an example fig. 14 (left) shows a Weaire—Phelan periodic model of an
open cell metallic foam with hollow struts (right), which contain a second
connected void region. The microgeometry was based on an idealization of
the production process for such foams. First the geometry of a precursor
open cell foam was obtained with the program SurfaceEvolver (Brakke,
1992) and then a coating was applied to this precursor. This coating, which
represents the hollow strut foam, was discretized with continuum shell and
prism-shaped solid elements provided by the FE-code ABAQUS (Simulia
Corp., Pawtucket, RI). Solid volume fractions between ¢® = 0.01 and
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Figure 14. Weaire-Phelan model of an open cell foam with hollow struts
(left) and detail of the FE-model of a strut’s cross-section (right), from
Daxner et al. (2007).

€™ = 0.04 were covered (Daxner et al., 2007) and elastic material behavior
was specified for the solid phase. The unit cell used for modeling this cellular
material is depicted in fig. 15 (left).

In the small strain regime this cellular material deforms mainly by bend-
ing of the struts and, as a consequence, the macroscopic moduli show a
marked nonlinear dependence on the relative density (Daxner et al., 2007).
The plot in the center of fig. 15 displays the predicted deformations of
the unit cell due to a uniaxial compressive macroscopic load and that on

Figure 15. Undeformed state (left) and deformed configurations under
compressive uniaxial (center) and shear loading (right) of the unit cell of
the Weaire—Phelan model for an open cell foam with hollow struts (Daxner
et al., 2007).
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the right presents the deformations due to macroscopic shear loading. The
cubic symmetry of the unit cell leads to a cubic elastic behavior on the
macroscale, the minima and maxima of the orientation-dependent Young’s
moduli differing by 20% to 40%, depending on the solid volume fraction.
In this complex cellular material, local contact can occur even at moderate
macroscopic strains. Stability analysis of the models found both strut-level
and more local instabilities on the microscale (Daxner et al., 2008).

5 Closing Remarks

Continuum micromechanics provides a considerable range of methods that
differ markedly in capabilities and cost for studying the thermomechanical
and thermophysical behavior of inhomogeneous materials. Current research
in the field tends to emphasize, on the one hand, low cost methods that
provide reasonable accuracy in describing nonlinear behavior, and, on the
other hand, complex models that allow to study the stiffness, strength and
conduction behavior of inhomogeneous materials at high levels of detail.

The most serious constraint to the practical use of micromechanical ap-
proaches is providing adequate material parameters for describing the in-situ
behavior of the constituents, a task that is especially difficult for strength
parameters.

The main strength of continuum micromechanics lies, on the one hand,
in its “bidirectionality” in terms of length scales, i.e., in its capability of
supporting both homogenization and localization. This allows, at least in
principle, to zoom into the behavior at the microscale whenever some in-
teresting or critical response is encountered on the structural scale. On the
other hand, the input parameters into micromechanical models are neatly
separated into geometrical descriptors and constituent level material pa-
rameters, which is very helpful in designing and carrying out “virtual ex-
periments”.

Continuum micromechanics has seen major development over the past
decades and has been highly successful in improving the understanding of
as well as in providing predictive methods for the thermomechanical and
thermophysical behavior of composites, cellular materials and other inho-
mogeneous media.
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Effect of Microstructure: Multi-scale Modelling
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1 Introduction

A study of a structure of any real material would vividly demonstrate the
presence of several hierarchical levels — from atoms to microscopic features to
the macroscopic scale of a specimen/component/structure. Depending on the
type of material and its microstructure, several scales — six for highly
heterogeneous cases such as composite structures (Beaumont et al., 2008) and
bones (Rho ef al., 1998) — can be introduced. These scales can cover in various
materials the range of lengths from nanometres to centimetres or metres. An
obvious reason for introduction of any additional scale into consideration is
specificity of its structure and/or of the character of realisation of deformation
and failure processes at the corresponding scale.

The presence of such scales presupposes an introduction of scale-specific
constitutive descriptions as well as conditions of the transfer from one scale to
another, i.e. the effect of processes at one scale on properties of, or processes at,
another one. A growing understanding of necessity for adequate mechanical
descriptions of real materials with hierarchical structures has been a reason of an
active research in this area (see, e.g., recent books by Soutis and Beaumont
(2005) and Kwon et al. (2008) on composites). And various models and
descriptions of deformation and fracture processes have been developed for
different scales. First-principle methods could be applied at the lowest scales but
still, in words of David McDowell (2008), ‘bottom—up modelling of realistic
multiphase, hierarchical microstructures remains an outstanding grand
challenge’.

In practical terms it means that, currently, applications of modelling tools do
not cover all the scales that are present in the studied material; rather, they are
focused on the scale of interest and adjacent ones: an account for the directly
underlying scale allows to incorporate finer details of the structure while the
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overlying scale is wused to define the long-range effects and/or
loading/environmental conditions as well as geometric or kinematic constraints.
Obviously, such a reduction of the number of analysed scales diminishes the
complexity of the problem.

If the study is limited to analysis of the material’s effective properties — in
contrast to the study of a component with exact geometry and loading —
complexity of a modelling approach can be further diminished: an effect of the
overlying scale can be reduced to periodic boundary conditions imposed onto a
representative volume element (RVE) or unit cell. Such a transition is equivalent
to an assumption that a real material can be presented as consisting of similar
elements with the same properties/behaviour. Notwithstanding obvious
advantages of such an approach — the main being a refinement of presentation of
the structure within a RVE — it has some limitations due to finiteness of RVE’s
dimensions. Another problem is linked with a way to introduce a microstructure
into the RVE. The use of the scanned data for a real microstructure and its
meshing by finite elements is an option preferred by many. Unfortunately, it
leaves unanswered the question of representativeness of the chosen image. A use
of ‘artificial’, or numerically generated, microstructures that have the same
parameters as the real microstructure (see Silberschmidt (2008) for their review)
is another approach, and a rather cumbersome one. In other words, the powerful
tool of RVEs is not universally applicable (the next Section will give more
details on this).

This Chapter does not give an exhausting review of all classes of materials or
modelling tools and strategies. It covers some aspects of multi-scale modelling
of microstructured materials and presents several schemes of introduction of
microstructural features into numerical simulations in order to provide a more
adequate description of various properties of such materials or processes in them.
The discussion concentrates on the problems where a scale of several
micrometres is important; thus descriptions of lower scales (e.g. atomic) are not
treated here. A seemingly arbitrary choice of materials and applications is linked
to research interests of the author.

2. Account for microstructural randomness of composites

Traditional composite materials, for instance, carbon fibre-reinforced polymer
(CFRP) laminates usually have a rather random microstructure due to
manufacturing technologies that cannot provide a spatial periodicity of
reinforcing elements. As a result, images of their microstructures demonstrate a
rather random pattern of distribution of constituents. For instance, the pattern of
fibres in a digitally enhanced image of a unidirectional carbon-fibre reinforced
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Figure 1. Distribution of continuous graphite fibres in epoxy matrix in a
transverse cross section of a unidirectionally reinforced ply (digitalisation of a
micrograph).

composite in Figure 1 can hardly be reduced to a periodic — square, hexagonal
etc. — one. As a result, dimensions of RVEs, used to model the properties of this
material, should be larger than an (average) distance between the centres of
neighbouring fibres. A detailed analysis of various parameters of the set of the
fibres is given elsewhere (Silberschmidt, 2005a, 2006), here the main
implications for numerical simulations are discussed.

From Mechanics of Composites (see, e.g. Herakovich (1988)) we know that
longitudinal stiffness of the unidirectional fibrous composite is very close to the
one defined by the linear rule of mixture and, hence, proportional to the volume
fraction of reinforcement:

By~ ERM =V (B - E™)+ E™, (1)

where E“ is the effective axial modulus of the composite, E;*™ is the axial

modulus calculated according to the linear rule of mixtures, E| is the
longitudinal modulus of fibres (transversely isotropic in the case of carbon ones)
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and E™ is the Young’s modulus of the (isotropic) matrix. Equation (1) presents
the effective magnitude for the composite, i.e. the one, averaged over a large
volume.

Still, from Figure 1 it is apparent that local volume fractions differ for various
parts of the presented cross section so one can calculate the local magnitudes of
the Young’s modulus. Obviously, moving a window of specific size to select a
local area of the cross section, one would get changing magnitudes of this
parameter for various window sizes. This data, presented as histograms (Figure
2), demonstrates that the decrease in the window size results in a larger scatter in
the local volume fractions of fibres. This can seriously affect the local

magnitudes of ES™ , especially in materials with a high contrast of properties of

their constituents; CFRP is a good example of such materials, with the Young’s
modulus of matrix being only a small fraction of the is the longitudinal modulus
of fibres — 2.3%.

Figure 3 presents the extent of fluctuations of the local magnitudes of the
effective longitudinal modulus of unidirectional CFRP normalised by its global
value (i.e. for an infinitely large area). It is seen that even at the scale of 125 um
that corresponds to a standard ply thickness in CFRPs the obtained maximum
and minimum values of modulus do not converge entirely.

A large scatter at the low scale corresponds, on the one hand, to the presence
of resin-rich areas practically without fibres (lower bound) and, on the other
hand, areas occupied by a single fibre (upper bound). This has direct
implications for numerical simulations at the microscopic scale — an increase in
the number of elements (mesh refinement) in such simulations would not
improve the quality of obtained results if it is not accompanied by the
introduction of statistic tools to accommodate material’s heterogeneity.

As was discussed above, the study of effective properties and performance of
heterogeneous materials would generally not be seriously affected if standard FE
approaches based on global properties of (anisotropic) layers are used. In
contrast, analysis of fracture processes — crack formation, initiation and
propagation of delamination zones, etc. — that are spatially localised should
contain a direct account for microstructural randomness. Let us consider, for
instance, a study of cracking in CFRP laminates. In order to properly account for
the through-thickness properties in plies the thickness of each ply should be
divided into at least 4 elements with a size of some 30 pm. For such meshing the
scatter in local levels of the Young’s modulus, measured as its ratio of maximum
magnitude to the minimum one, would be more than 200% (see Figure 3). And
refining the area would only increase this scatter!

A direct consequence of this scatter is a highly non-uniform distribution of
stresses in CFRPs even under uniform macroscopic loading conditions, e.g.
tensile fatigue that is one of the main test techniques in analysis of the damage
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Figure 2. Effect of the length scale (window size) on distribution of the volume
fraction of fibres.

tolerance of laminates used in aerospace applications. The stress localisation is
affected not only by fluctuations of the local volume fraction of reinforcement
but also by the character of fibres closeness to each other.

Figure 1 vividly demonstrates that some neighbouring fibres touch each other
while other fibres are separated from their neighbours by a considerable amount



230 V.V. Silberschmidt

1.8
(7] 16+ —e— max

> L

% 14 ” —o—min

= F — — — —average
E g
ke;

@

2

©

IS

-

o)

c

©

1)

o

window size, um

Figure 3. Effect of the length scale on bounds of distributions of the normalised
axial modulus.

of matrix. A quantitative data for spacings between nearest neighbours in the
studied ensemble is presented in Figure 4. Narrow areas between fibres,
especially between touching ones, are linked to local stress concentration and can
serve as crack generation sites.

Such load transfer mechanisms — from macroscopically uniform applied
loads to highly localised stress concentrations — are responsible for spatially non-
uniform damage evolution in laminates. One of the obvious examples is the
character of matrix cracking in [Om /90, ]S cross-ply CFRP laminates

Silberschmidt, 1995). Matrix (transversal) cracks appear in weak 90° layers of
the sandwich-like cross-ply laminates at the very early stages of loading, for
instance, they can be initiated during a few initial cycles of tensile fatigue. They
propagate in a weak matrix parallel to strong fibres (and nearly orthogonal to the
applied tension) not causing their fracture. The density of matrix cracks increases
(an average spacing between neighbouring cracks diminishes) with the loading
history. Since they cross the entire thickness of 90° plies they cause the so called
shielding effect — decreasing the axial stress component in the area in their direct
vicinity (Silberschmidt, 1998). As a result, the increase in the numbers of
transverse cracks decelerates at the advanced stages of fatigue reaching a
(nearly) constant density known as characteristic damage state (Reifsnider and
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carbon fibres in unidirectional laminate.

Case, 2002).

This type of behaviour caused various researchers to introduce the following
model scenario for matrix cracking: the first crack appears in the middle of the
specimen, the next generation — in the mid-spacing between it and the edges etc.
As a result, each stage of the cracking process is characterised by a periodic
pattern of matrix cracks with a constant spacing between neighbours equal to
L/(n+1), where L is the axial length of the laminate and » is a number of
matrix crack in its 90° layer.

In real laminates, matrix cracking is anything but an ordered process. Figure
5 demonstrates the change in the parameters of the spacing distribution of matrix
cracks in the [04 /90, / 04] CFRP laminate with the loading history, obtained

from the results of X-ray radiography analysis. It is obvious that though the
increase in the number of cycles causes a slow down in the decline of crack
spacing, the distribution of matrix cracks is highly non-uniform. Even after 4
million cycles the ratio of spacings corresponding to 0.95 and 0.05 quantile is
more than 3.1.

This data contravene a major assumption of numerical schemes traditionally
used to model matrix cracking in laminates — linking the axial size of RVEs with
the average spacing between neighbouring transverse cracks. In (Silberschmidt,
2005b) a direct investigation of this assumption demonstrated its limitation. Four
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various distributions of matrix cracks were studied: a random one, based on the
experimental data, and three artificial distributions with uniform spacings,
corresponding to the minimum, maximum and mean spacings from the
experimental data. In this study the ratio of the maximum spacing to the
minimum one was 4.0 (the spacing magnitudes correspond to 0.05 and 0.95
quantiles of [01 /90,/ Ol] laminate). Two distributions — the random one and the
one with the minimum spacing «,,, = 0.4 mm contained at least one pair of
neighbouring matrix cracks separated by this distance. The difference was that in
the former case other spacings differs form that spacing while in the latter case
they were all equal to it.

The finite-element simulation using the effective properties for lamina in
order to study a pure effect were performed; the obtained results for the axial
stress in 0° layers (near the 0/90 interface) are given in Figure 6. The difference
for two sets of cracks demonstrates that the use of RVEs (i.e. a spatially uniform
distribution of cracks) results in underestimation of the extent of the stress
concentration near the tips of matrix cracks at the interface between week (90°)
and strong (0°) layers.

To overcome the limitations of the RVE-based approaches, various schemes
can be used. A lattice model based on the direct introduction of the material
randomness in terms of its local stiffness (linked to spatial fluctuations of the



Effect of Microstructure: Multi-scale Modelling 233

1400 —a—random
© [ —O—min
o L
= 1300 +
& L
n L
o L
' L
5 1200 +
X
(]

1100‘\\\\}\\\\a‘\\\\}\\\\}\\\\}\\\\a‘\\\\}\\\\‘

-05 -025 0 025 05 075 1 125 15

Xla min

Figure 6. Distributions of axial stress in 0° layers (near 0/90 interface) for
spacings of the same length in laminates with two different sets of matrix cracks.

volume fraction of fibres) was suggested in (Silberschmidt, 1997). The load
transition mechanism, developed there, is a result of interaction between
ordering factors (e.g. due to the shielding zones near cracks) and random initial
distributions of weak and strong areas. The model also accounts for damage
evolution in elements with random properties, forming a lattice, and a local
fracture criterion in terms of the critical damage level. As a result, it allows
describing a process of matrix cracking that reminds a real one (see Figure 7).

The crack sets at various stages of loading history are characterised by a
changing degree of randomness — more pronounced at initial stages of life and
less — at the advanced stages of tensile fatigue. At the latter stages, newly-formed
transverse cracks (shown by thick lines in Figure 7) tend to form in mid-spacing
areas. This can be naturally explained by the mutual action of the shielding zones
from the neighbouring cracks; the total length of these zones at this stage
exceeds the average spacing. Still, at all stages there are cracks that are formed
relatively close to already existing ones (see Figures 7b and 7d). In such cases,
the effect of large local fluctuations in material’s properties is strong enough to
compensate for the local stress reduction due to the shielding effect that can not
prevent generation of a new matrix crack.

Some other models incorporating random material properties of laminates are
discussed, for instance, in (Berthelot, 2003). A recently developed approach is
based on transition to stochastic cohesive zone elements (Khokhar et al., 2008)



234 V.V. Silberschmidt

d [T T [T IO T 1T ] [ 1]

Figure 7. Positions of matrix cracks in a specimen (axial length 50 mm) of
[0,/90/0,] T300-934 laminate loaded by tensile fatigue with the maximum

cyclic stress 450 MPa at different moments of loading history: (a) 100 cycles, (b)
4x10° cycles, (c) 10° cycles and (d) 2x10° cycles. Vertical to horizontal scale 2:1,

(as opposed to standard ones). In this approach, parameters of the traction-
separation law for cohesive zone elements are random magnitudes in order to
reflect local differences in their microstructures.

3. Modelling ceramic coatings with random porosity

Ceramic coatings are widely used to protect components and structures from
wear, chemical attacks and high-temperature environments. Various deposition
processes are used to manufacture, for instance, Thermal Barrier Coatings
(TBCs); thermal plasma spraying is one of the most common processes for high-
performance coatings. In this process molten droplets, formed from ceramic
powder particles, are deposited at high temperature and velocity on a cooler
metallic substrate and rapidly cooled. After deposition, the coating is heated to
fuse the material into a dense alloyed structure and produce a diffusion bond to
the substrate. A layer of coating is built up by moving the plasma-gun, spraying
droplets, transversely across the substrate.

Such manufacturing processes of deposition define a specific microstructure
of plasma sprayed ceramic TBCs — they have porous lamellar microstructures
consisting of elongated and flat splats. A typical microstructure of alumina
(ALLO3) coating is presented in Figure 8. This microstructure greatly influences
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Figure 8. SEM cross-sectional micrograph of alumina coating on a substrate.

effective mechanical properties of coatings, resulting in their pronounced
anisotropy as well as a significant — up to 75% — reduction in their stiffness as
compared to that for the respective bulk material. This reduction increases with

the level of porosity. The anisotropy ratio C22’33 / C,, (axis 1 corresponding to

deposition direction while 2 and 3 to directions in the deposition plane) of the as-
sprayed alumina ranges from 1.8 to 3.6 depending on the material deposition
process (Wanner and Lutz, 1998). There is no significant difference between the
in-plane properties, i.e. it could be considered that C,, = C,; (Damani and

Wanner, 2000) and the ceramic coating is transversely isotropic.

As in composites, with the standard thickness of coating being 200 pm — 500
pum and the void size up to 50 pum, analysis of the damage evolution and cracking
under various loading and/or environmental conditions needs an introduction of
microstructure-related properties. In standard approaches, porosity is used as the
main — and in many cases single — parameter together with introduction of
empirical relationships for deterioration of the Young’s modulus with the
increase in the porosity level. Such an approach does not account for significant
differences in the shape and size of voids observed in alumina coatings with the
latter additionally affecting anisotropy of their properties.
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Figure 9. Values of Young’s modulus of alumina coating in the deposition
direction from nanoindentation tests (distance between neighbouring points 100

um).

Experimental results, based on nanoindentation, show significant fluctuation
in the local magnitudes of the Young’s modulus of alumina coating (Figure 9)
demonstrating the necessity to transfer from the effective (global) properties to
microstructure-defined local ones.

So, this Section presents an alternative approach, based on a multi-scale
modelling scheme. The details of the approach are presented elsewhere (Zhao
and Silberschmidt, 2005, 2006 and Zhao, 2005).

3.1. Modelling microstructure of ceramic coatings

The first step to introduce the microstructure and its main features into the model
of the alumina coating is to quantify respective parameters. The results of
research into i-th damage evolution in bulk alumina (Najar and Silberschmidt,
1998) demonstrated that porosity is the dominant factor affecting this process.
Microvoids exist in coatings at random locations and their interaction is
neglected for the considered porosity level (below 10%) on the assumption that
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the characteristic interaction length is smaller than dimensions of elements and
spacing between the neighbouring microvoids. To characterise porosity in
ceramic coatings standard parameters are used:

Porosity p in ceramic coatings is generally defined as a volume or an area
fraction of microvoids:

| 1 &
p=—>V, or p=;ZA,-, )
i i1

where V' and A4 are a volume and an area of a reference part of a coating
containing » microvoids; ¥, and A4, are volumes and areas of individual

1
microvoids, respectively.
Voids density p, is defined as an average number of voids in a unit area and

can be determined by micrographic analyses; then the total number of
microvoids N, inthe area 4 is

N, =p.A. 3)

The microstructure of ceramic coatings (see Figure 8) indicates that
microvoids in coatings generally demonstrate irregular shapes but to simplify our
analysis, the shape of microvoids is considered as an ellipse, which can be
characterised using lengths of its major and minor axes. In general, these
parameters — porosity, voids density/number, shape, size and orientation of
microvoids — characterise the microstructure of ceramic coatings in this Section.
The effective properties of coatings are significantly affected not only by the
average values but also by a scatter in respective parameters, which are
determined by means of image analyses of microstructure of coatings.

Image analyses for 10 cross-sectional micrographs (each 260 pm x 200 pm)
of plasma sprayed alumina coatings allowed to determine areas and dimensions
of 5252 microvoids (with the detection limit of 0.5 um). The average porosity
was 1.8% with the size of most microvoids being within the range 0 — 30 pm.
Based on these data, all microvoids are divided into n =59 discrete types
according to their shape and size obtained from the image analyses (see Figure
10).

The shapes of microvoids are divided into 16 bands using a shape factor S;

s, :1-@ , )
a

where b and a are lengths of minor and major axes of the ellipsoid presenting
the void, respectively (here all voids are assumed to have their major axis along
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Figure 10. A shape-size-probability distribution of microvoids in plasma sprayed
alumina coating with porosity 1.8%.

the transverse direction, i.e. in the deposition plane). The extreme values of the
shape factor 0 and 1 correspond to circular voids and cracks, respectively. The
size of voids, presented by a, is divided into 14 bands. Probability p; for each
type of voids in their distribution is determined as

P =p/P. s (5)
where p; is a density of the i-th type of voids (defined as a number of voids in a

unit area) and p, = Z p,; 1s the total void density of the coating.
i=1
In numerical simulations, the number N, of the i-th type of microvoids in a

representative element is determined by the Monte-Carlo algorithm. Then local
effective mechanical parameters — the Young’s moduli E, and E. in transverse
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directions and EV in the spray direction as well as shear moduli and the

Poisson’s coefficient — of an element for materials with a transversely isotropic
distribution of elliptical voids can be explicitly expressed in terms of the number
of microvoids of various types, porosity p

_ LTS 2, ©)

k=1
and the crack density (hole density tensor P (Kachanov et al.,, 1994 and
Sevostianov et al., 2004)
RS 3 3 3
B=" 2N (a}nn + bmm + a}11) (7)
k=1
in the following way:

o 320-v2) g, 3-vo+5v,) p |
E =E,=E,|1+ e 0 0 , (8
32-v,) 1-p 2(7-5v,) 1-p

2 -1
E3:E0{1+12(£1_V0) By +3(1_V0)(9+5V0) p :| i )
—v)1=p  27-5v) 1-p
32(1-v,) 156-v,) p |
G, =G, 1+ Vo) B " Vo) P i (10)

32-v,)1-p 2(7-5v,)1-p
-1
G.=G..=G 1+16(1_V0)ﬂ11+ﬂ33+15(3_V0) p (11)
BB 32-y) 1-p 20-5v)1l-p |
&:@:v_o 1+3(1—V0X1+5V0) p (12)
E, E, E, 2v,(7-5v,) 1-p|

In Egs. (6)-(12) N, is the number of the k-th type of voids in the total volume
V'; a, and by are lengths of the major and minor axes of these voids; n, m and 1
are unit vectors of these axes; E,, G,and v, are the Young’s modulus, shear
modulus and Poisson’s ratio of the undamaged material; x >1, z—>2 and
y—>3.

A combination of the random allocation of voids to RVEs together with
analytical relations for their local properties allows us to analyse the effect of
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Figure 11. Normalized Young’s moduli of plasma sprayed alumina coating with
porosity 1.8%.

microstructure on the properties for RVEs of varying dimensions. The calculated
local effective magnitudes of the Young’s modulus for 100 random RVEs with
dimensions 80 um x 80 um for alumina coating with average porosity 1.8% are
shown in Figurell. The Poisson’s ratio used in simulations is v, =0.27.

Obviously, the elastic properties in spray direction are much more sensitive to
the microstructure — they demonstrate both the larger decline and the higher
scatter.

The maximum scatter in sets of the effective properties diminishes with the
increase in the dimensions of RVEs; this trend for the respective parameter for

Young’s moduli calculated as m’axii —<b_" >‘}/<E >, i=1,..,100, where <E > is

the averaged modulus, is obvious in Figure 12a. The calculations have
demonstrated that the increase in the porosity level causes the increase in a
relative scatter for the fixed dimensions of RVEs while the average mechanical
parameters deteriorate (Figure 12b).
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Figure 12. Change in scatter of the Young’s modulus in spray direction: (a) with
dimensions of RVE, porosity 18% and (b) with porosity, RVE size 80 pum.

3.2. Multi-scale strategy

To solve application problems for ceramic coatings, a two-scale (macro and
meso) finite-element model was developed to analyse damage and fracture
evolution. The macroscopic finite-element analysis is firstly conducted for a
global region Q° (see Figure 13) exposed to external loading/environmental
conditions that are implemented as respective boundary conditions in the finite-
element simulations. At this level, macroscopic finite elements have material
properties of a homogenised material, reflecting its averaged properties and
global anisotropy.

A local region of interest Q" — for instance, the area near the focus of a laser
beam in the problem of a laser-induced thermal shock (Zhao, 2005) — is then
analysed at another level by means of a mesoscopic finite-element study.
Material properties of each mesoscopic element are determined by its local
heterogeneity defined by microstructural features such as microvoids,
microcracks etc. based on the combination of the Monte-Carlo scheme, defining
elements’ microstructure, and analytical relations for mechanical properties
discussed above.

The obtained results of the macroscopic simulations are used to define the
boundary conditions for the boundary I'" of the local area Q" in mesoscopic
analysis. These boundary conditions may be formulated in displacements or
forces. For the former case, the applied boundary displacements are interpolated
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Figure 13. Two-scale finite-element model used to analyse damage and fracture
in ceramic coatings.

from solutions for the macroscopic mesh. For the latter case, the internal forces
or stresses obtained from the macroscopic calculation are converted to nodal
forces on the mesoscopic mesh.

Obviously, the above description deals with the initial state of the material; a
study of damage accumulation and fracture evolution presupposes introduction
of additional mechanisms into consideration at the lower (mesoscopic) scale. In
case of alumina coatings these elements include:

e Introduction of the initial level of damage linked to the random
distribution of porosity in the coating;
e Damage evolution based on the original variant of continuum
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Figure 14. Flow chart of damage and fracture analysis for local region in
porous alumina coating.

damage mechanics with a tensorial damage parameter (Najar and
Silberschmidt, 1998 and Zhao, 2005) and respective deterioration of
the local stiffnesses;

e Introduction of the local failure criterion that defines conditions for
the crack initiation based on the critical magnitude of the major
principal damage component;

e Account for damage-induced anisotropy by means of updating
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stiffnesses of the elements with cracks (Zhao and Silberschmidt,
2005) — the local stiffness along the direction perpendicular to the
crack (and coinciding with that of the major principal stress and
damage components) is changed to a very small magnitude.

The flow chart in Figure 14 presents main elements of the computational
multi-scale strategy used to simulate the response of a porous alumina ceramic
deposited onto the metallic substrate to the laser-induced thermal shock. The
solution at the macroscopic level was concentrated on the thermomechanical
behaviour of the coating under the given temperature profile, measured in the
experiment and using the effective thermomechanical properties. A transient
thermomechanical formulation provided solutions used as boundary conditions
for a mesoscopic scale at each time step. Then the damage evolution was
calculated for this time step using the iteration procedure before the convergence
criterion was met — as shown in the lower half of the flow diagram in Figure 14.
Another criterion — linked with a possibility of the local failure — was applied to
all the mesoscopic elements. If it was fulfilled for a given element, this element
was considered as locally failed with a crack formed in it along the direction
perpendicular to that of the major principal stress.

Obviously, a random microstructure results in significantly varying
magnitudes of local damage accumulation rates. One of typical examples of
damage distribution caused by such evolution is given in Figure 15. A somewhat
chaotic image still demonstrates a proper capture of one of the observed features
of damage in the coating — generation of a large crack near, and parallel to, the
coating/substrate interface.

Figure 15. Damage distribution in local region of porous alumina coating.
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4. Effect of Microstructure in Modelling Microelectronic
Applications

Microelectronic devices are one of obvious examples where the microstructural
features become an important factor, affecting their properties, performance and
reliability. The major reason defining the prominence of microstructure is
continuing miniaturisation in microelectronics with characteristic elements of
packages, e.g. solder joints, having dimensions below 100 pum. In this case, a
solder joint can consist of a single grain or several grains hence making the use
of mechanical properties defined for bulk specimens at best questionable.

Another important feature of microelectronic packages is their multi-material
compositions linked to the necessity to implement multiple functions (e.g.
conductivity and isolation) that can not be achieved with the use of a single
material. As a result, even a careful assembling aiming at stress-free packaging
and protection from external loads can not fully avoid mechanical loading in
microelectronics components due to inevitable thermal fluctuations and a
mismatch in thermomechanical properties of constituents’ materials.

For instance, in a flip-chip package, solder interconnections connect a
substrate and a chip that have a pronounced mismatch of their coefficients of
thermal expansion: that of an organic FR4 substrate is 18x10® K™ while the one
of Si used for chips is only 2.6x10° K™'. Any temperature variations — either due
to powering of the chip or caused by daily/seasonal changes — would result in
(predominantly) shearing loading of solder joints as illustrated in Figure 16.
Repetition of such changes is known as thermal fatigue that can eventually result
in the failure of the package; this type of failure is one of the major ones in

(a) (b)

Figure 16. Shear strain in solder joints during purely thermal loading: (a) high
temperature; (b) low temperature.



246 V.V. Silberschmidt

P ciiconcrio

Solder joints

W zl
(a)
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microelectronics.

Any analysis of reliability of such devices should be based on the data for
fields of stresses and strains in order to define the places with large changes and
to predict the life-in-service based on this data. A large difference in dimensions
of microelectronic packages and their components, e.g. solder joints (see Figure
17), together with complex deformation processes at the microscopic scale in the
latter prevents a direct introduction of an entire package together with the
detailed microstructural descriptions into numerical simulations. Rather, a multi-
scale simulation strategy can be used; two variants of such strategy are discussed
in this Section following (Gong et al., 2006a, 2007, and 2008 and Gong, 2007).

4.1 Effect of crystallinity

The first variant of multi-scale scheme deals with analysis of the effect of the
crystalline structure of lead-free SnAgCu solder micro-joints on their creep
behaviour. The main aim is to study the effect of transition from the use of
mechanical properties obtained for a bulk specimen that has a microscopically
isotropic behaviour to grain-defined ones. The latter are linked to the crystalline
structure of B Sn — the major component of SnAgCu solder that has a body-
centred tetragonal structure — resulting in locally anisotropic properties of its
grains.

Two levels of finite-element simulations are implemented in this case. In the
global model that describes the response to thermal cycling of the entire package
using a fully coupled thermomechanical 2D formulation a relative displacement
of the chip/joint interface with regard to the joint/substrate one is calculated. The
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obtained data is mapped onto a 3D sub-model of a finely-meshed solder joint as
respective boundary conditions.

A crystal visco-plasticity model is used to model the behaviour of SnAgCu
solder that was implemented by means of subroutine Umat in the commercial
finite-element software package ABAQUS. In this model, the creep strain is
defined as a sum of all component strains of the activated slip systems, which are
controlled by the resolved shear stress on the corresponding slip plane.

The total strain is the sum of elastic, inelastic and thermal components; since
the major effect of thermal loading in the assembly is accounted for at the level
of a joint by introduction of boundary conditions from the global solution, the
total strain rate €, is defined here as

stotal :Se +£c’ (13)

where €, and g, are elastic and creep strains, respectively. The anisotropic
elastic behaviour is described by the Hooke’s law

c=C:¢,, (14)
where the fourth-order elastic stiffness tensor C has the following structure:
Co =G(6,68,+8,5,)+25,5, . (15)

Here G is the shear modulus, 4 is the Lame’s constant, 6, is the Kronecker
symbol and i, j,k,[= 1,2, 3.
The evolution of creep strain is controlled by the contributions of shear creep

rates by each slip system in SnAgCu (in total, 16 slip systems are considered in
simulations):

N
¢, = Z 7iSk - (16)
=1

where N is the number of slip systems, 7, and s, are the scalar shear strain rate

the Schmid tensor of the k-th slip system, respectively. The latter can be
expressed in the following form:

1
sk:E(m,(®nk+nk®mk), 17)
where n, and m, are unit vectors of the slip direction and the normal to the slip

plane, respectively.
The shear strain rate is a function of the resolved stress on the slip system,
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temperature and hardening variables. Assuming the state of steady-state creep,
the hyperbolic sine law is used to describe this behaviour:

7, = A, sinh(z, )’ exp(— %) , (18)

where 4, is a constant, n is a stress exponent, 0, is the activation energy and
7, 1s the resolved shear stress on the slip plane in the slip direction for the k-th
system:

T, =$,:0. (19)

Several simplifying assumptions with regard to the grain-level mechanical
behaviour are used in simulations: the effect of hardening is not considered; A4,
and O, are considered to be the same for all systems; the effect of rotations is
not accounted for as deformations are considered to be small.

The modelled area in the global 2D model is a middle section of the package
normal to direction 3 in Figure 17; one half of this package is modelled due to its
symmetry with respective boundary conditions at the symmetry axis. A thermal
loading history starting by heating from the initial temperature 298 K to 373 K

Yl 4

Figure 18. Distribution of equivalent stress (in MPa) and deformation of the
global model after heating to 373 K.
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and then cycling between the latter and 273 K is used in simulations; a spatially
isothermal loading is used due to small dimensions of the package. The cooling
and heating rates were constant with magnitude 10 K/min. A result of these
package-level finite-element simulations for the moment with a maximum
temperature after heating for 450 s is given in Figure 18.

The global analysis of deformational behaviour of the flip chip assembly
under cyclic loading was used to define the micro-joint that undergoes the largest
stresses and deformation in the package. Since it is most critical for reliability of
the entire package, the detailed local analysis was implemented for it in order to
study the effect of grain microstructure on its response to loading.

Simulations at the micro-scale were performed for four various types of the
microstructure: one with properties of the bulk material and three other with
various type of grain structure — single-crystal, bi-crystal and multi-crystal; the
last two cases are shown in Figure 19. In this figure, colours correspond to
different lattice orientations of the grains; to make analysis more transparent only
three, mutually orthogonal, orientations of the body-centred tetragonal unit cell
with @ =b>c were employed. In the case of the single-crystal joint, its three
variants, each corresponding to one of these lattice orientations, are modelled.

The computational results for the first type of joints demonstrate that stresses
at extreme temperatures concentrate at the chip/joint or joint/substrate interfaces
with the highest stress concentration taking place at the edges of these interfaces

.
@ (®)

Figure 19. Crystalline structure in cases of bi-crystal (a) and multi-crystal (b)
joints.
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(Figure 20a).
This type of stress distribution can be linked to the shape of solder joints: it is

(a) (b)

© 0

Figure 20. Distribution of equivalent stress (in MPa) and deformation of the
global model after heating to 373 K in joints with various microstructure: (a)
joint with isotropic properties of macroscopic material; (b)-(d) single-crystal
joints with various lattice orientations, (e) bi-crystal joint; (f) multi-crystal
joint.
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not only the smallest cross section of joints but also the edges near the interfaces
have an acute angle resulting in significant stress concentration (see also (Gong
et al., 2006b)).

This is also justified by experimental results demonstrating crack initiation
exactly in these areas with subsequent crack propagation along the interface
during thermal cycling. Hence, the stress and strain responses of these edges
should be used to predict the fatigue life of joints.

In the models, accounting for crystallinity of joints, stresses still concentrate
at the interfaces, with the highest stress levels occurring near the edges at these
interfaces (Figure20b-f). This indicates that the shape of the joint is the major
factor affecting its stress state. However, there are some obvious differences. For
instance, stress gradients in the regions with stress concentration are significantly
higher than in the case without accounting for grain orientation. This difference
stems from the specificity of strain behaviour of the single crystal with inelastic
strains occurring predominantly in certain slip systems and different directions of
the creep strain rate and stresses. As a result, stresses in some directions are hard
to release. Moreover, the higher the stresses the higher the residual stress that
remains. This leads to additional stress concentration.

The mechanical behaviour of polycrystalline bulk specimens with a very
large number of grains, resulting in quasi-isotropic properties, is equivalent to
that of a single crystal with an infinite number of slip systems, which are
randomly oriented in all possible directions. Hence, the high values of stresses
are released by the preferably oriented slip system. This effective mechanism
leads to lower stress gradients. There are no principal differences in stress
distributions in single-grain joints with three different, mutually orthogonal,
orientations of their lattices though magnitudes of stresses change (Figure 20b-
d).

Transitions to a bi-crystal joint (Figure 20e) or a multi-crystal one (Figure 20f)
does not affect considerably the character of stress distribution (in both cases the
effect of grain boundary is neglected). Hence, at the micro-scale, the structure of
the electronic package, e.g. geometry of its joints, is still a major factor that
determines its reliability. Still, numerical simulations demonstrated that the type
of crystallinity of solder joints affects both magnitudes and the character of
distribution of various stress components in them and hence should be accounted
in the reliability study of microelectronic packages.

4.2 Effect of deformational mechanisms

Development of another variant of the multi-scale model was linked to two main
objectives:
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e To introduce a 3D variant of the global model of the flip-chip package;
e To introduce additional deformational mechanisms in the constitutive
description used in simulations.

To implement the first objective, a quarter of the assembly was discretised into
3D finite elements (Figure 21) to simplify the model that have two planes of
symmetry; respective boundary conditions were introduced for those planes. The
model geometry for the package is based on dummy components provided by a
supplier. The silicon chip has the dimensions 5.08 mm x 5.08 mm with thickness
0.625 mm. An area array of joints consists of solder bumps with diameter of 136
pm and height 100 um; the spacing is 254 pm. The four-layer FR4 printed
circuit board has thickness of 0.8 mm.

One joint in the centre of the model (marked with an arrow in Figure 21b) is
used for the local analysis and, therefore, has a finer mesh (Figure 22) than other
bumps in the array. The under-bumps metallization between the silicon chip and
solder joints and metal finishes between solder joints and the substrate are
neglected in the model, and three components are ideally bonded along the
interface (each with diameter 110 pm).

The materials description is extended to accommodate another creep
mechanism linked to void diffusion and the effect of thermal deformations at the
microscopic scale (Gong et al., 2008 and Gong, 2007). Hence, the total strain
rate in this case can be presented as

IRV
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Figure 21. 3D finite-element mesh for flip chip package: (a) quarter of entire
package; (b) substrate with joints.



Effect of Microstructure: Multi-scale Modelling 253

8total = ée + éc + éth H (20)

where the old subscripts are the same as in Eq. (13); the subscript ‘th’ denote
thermal components. To accommodate the additional deformational mechanism,
the inelastic strain term now has the following form:

£, =8, +&,. (21)

Here the term describing dislocation movement in slip planes — ¢, , — has

the same form as before (see Eq. (16)); but another expression was used to
describe the shear strain rate for the steady-state creep — a power law:

- " o
=A (7, ) exp| ——|, 22
Vi k( k p ( RT (22)
where 7, is the stress exponent.

The strain due to the vacancy diffusion — & , — is introduced in terms of the

isotropic intragranular stress-controlled diffusion; the respective creep rate can
be presented with another power law:

. 3s? .
£l = . Ay (o-eq )’Z exp [— —i; J . (23)
eq

Here, s” is a deviatoric stress component; o, 1s the equivalent stress; n, is the

Figure 22. 3D finite-element mesh of the joint used for local analysis and its

surroundings.
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stress exponent; A4, and Q,, are the material constant and the activation energy

for VD, respectively.

The last term in Eq. (20) — the thermal strain rate — should, in a general case,
reflect anisotropy of micro-joints due to their crystallinity. So, instead of a single
scalar a second-order tensor of coefficients of thermal expansion a is used:

¢, =al. (24)

A special procedure was developed for this new description (for details see Gong
et al. (2008) and Gong (2007)); a wuser-defined subroutine Umat was
programmed to implement the suggested algorithm in finite-element simulations.
The same loading history as in the simulations with the previous model (Section
4.1) was used in the analysis.

At the first stage of numerical simulations, the entire package (i.e. its quarter)
is modelled; all solder joints are presented with mechanical properties of a bulk
solder specimen. A distribution of the equivalent stress in the package is
presented in Figure 23 at temperature 318 K, after two minutes of heating from
the initial temperature.

The figure clearly demonstrates (though exaggerated by the used scale factor
for deformation) the warpage of the substrate. This behaviour is linked to the
difference in the levels of CTEs of the silicon chip and substrate. Due to stiffness

34

17

Figure 23. Equivalent stresses in package (with removed silicon chip) after
temperature increases to 318 K in the first cycle. Scale factor for deformation is
300.
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of the chip (its Young’s modulus is 131 GPa), when the temperature increases
the deformation is transferred through solder joints and absorbed by the soft
substrate (part of it is also absorbed by joints). The constraint on expansion of
the substrate’s top surface is comparatively large, leading to the upward
warpage.

The deformation of the chip is similar to that of the substrate, but with a
significantly lower amplitude. Solder joints between the substrate and the silicon
chip experience a shearing deformation, which increases with the distance form
the chip’s centre. Therefore, under thermal cycling, interfaces of peripheral joints
are one of the most critical positions in the package.

At the local level, the solder bump with refined meshing is treated as a
single-crystal joint. In the crystal model, all the strain components, including
elastic, creep and thermal expansion, are accounted for; 16 activated slip systems
(the same as in the previous model) are considered. A distribution of the
equivalent stress in the single-crystal joint after the temperature increase to 318
K from its initial level is shown in Figure 24a. Obviously, there are two areas of
stress concentration at the chip/joint interface on opposite edges along the
direction of the maximum shearing deformation.

The finite-element simulation tools allows to study single deformational
mechanisms and their effect on response of solder joints to thermal cycling that
in real-life experiments would be rather cumbersome or even impossible. For
instance, in order to investigate the contribution of thermal expansion, the

29.0 33.1

15.0 173

10 15
(a) (b)

Figure 24. Calculated distributions of equivalent stresses in single-crystal joint at
318 K: (a) with account for thermal expansion; (b) with thermal expansion de-
activated.
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thermal component of the constitutive model is deactivated in simulations of the
single-crystal joint. Other joints, as well as the silicon chip and the substrate,
retain this component.

The resulting distribution of equivalent stress for conditions of Figure 24a
(excluding the effect of thermal expansion) are presented in Figure 24b. The
effect of de-activation is apparent — instead of two stress concentration areas at
the chip/joint interface there is only one, with another appearing at the
joint/substrate interface.

It is also possible to estimate the inputs of both non-clastic deformational
mechanisms. For this purpose, the equivalent strain

e =.—¢:¢g (25)

is calculated for components linked to movement of dislocations and vacancy
diffusion; the obtained distributions for a single-crystal joint at 318 K after first
two minutes of heating are presented in Figure 25. It can be seen that
deformations due to VD are considerably smaller since higher temperatures are
needed for accelerated deformations due to this mechanism. The simulations
show that even at the highest temperature of the cycle — 373 K — this mechanism
has little effect.

18.2e5 16.1e9
i 9.1e5 i g.0e-9

(@) (b)

Figure 25. Calculated distributions of equivalent strains in single-crystal joint at
318 K due to: (a) movement of dislocations; (b) vacancy diffusion.
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