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v

This book is about a very important class of biological macromolecules, namely 
heat shock proteins or HSP. Sometimes, these proteins are also called stress pro-
teins. In evolutionary terms, stress proteins are perhaps the most ancient and 
conservative ones. They certainly were already present in the oldest ancestor of 
modern biological cells. Why am I so certain? Because stress proteins provide 
the very fundamental basis of life itself: the ability of cells to divide, turnover of 
intracellular proteins, cell protection from damaging factors, mechanisms of signal 
transduction, and gene expression. You can remove many types of proteins from 
cells: as a result the cell may cease to perform a function, but it will still live! 
But it is impossible to remove stress proteins from the cell without triggering the 
“death sentence” for it.

At the same time these amazing proteins were discovered very recently, only 
60 years ago. They were discovered due to an error by a lab assistant working 
for an Italian researcher Ferruccio Ritossa. By accident the careless lab assis-
tant increased the temperature in an incubator where Ritossa kept his Drosophila 
melanogaster flies. All laboratory staff expressed their sympathy to Ritossa for 
the destroyed flies and ruined experiment. However, Ritossa was not really upset. 
Fortunately, he was one of those excellent scientists, who look at whatever eve-
ryone looks at, but sees what nobody else sees! Due to the lab technician’s error 
Ritossa was the first to notice that heat shock causes an increase in gene expres-
sion. These genes were called heat shock genes, and the proteins that they encode 
were called heat shock proteins or stress proteins. Thus, the accidental switching 
of the incubator thermoregulator “turned on” the era of heat shock proteins!

While analyzing the biological role of heat shock proteins it is certainly very 
important to know the details, in what concentrations they accumulate, what cell 
regions they work in, etc. So the English are right when they say “the devil is in 
the detail”! However, it is also important to understand the whole physiologi-
cal picture, so the French are right as well when they say “you cannot imagine 
an elephant, studying it under a microscope.” While looking into the issue of heat 
shock proteins, I tried to use both approaches: the detailed “English” and the con-
ceptual “French” ones. The detailed approach means that we need to remember 
specific numbers, biochemical characteristics, and the sub-molecular structure 
of stress proteins. The conceptual approach means that we need to understand 
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the mechanisms and the relationship of phenomena, to be able to see direct and 
reverse links, to understand, so to say, to understand the “logistics” of the intracel-
lular management involving stress proteins. These principles underlie the writing 
of all chapters. It is very important to capture the connections between fundamen-
tal functions of stress proteins and their disruptions with development of specific 
human disease.  Chapters 6–8  focus precisely on that.

For years I have been talking about stress proteins to students of the Moscow 
State University of Medicine and Dentistry (MSUMD), the Moscow State University 
(MSU), and the University of North Texas. That is why I wrote this book in the style 
somewhat similar to the lecture style, which is more accessible for both the students 
who want to discover a scientific problem for the first time, and for professionals 
who simply want to learn something new.

Recently, looking through my lecture notes written a decade ago, I was sur-
prised how little we knew about stress proteins then. I am sure that ten years from 
now, some of the A students reading this book will think with a smile, “Poor 
Professor Malyshev, how little did he know!” However, I hope that, at least for 
today, I succeeded in describing an unbiased state of affairs in one of the most 
exciting areas of molecular biology and medicine, the science of stress proteins 
that provide the basic foundation of life.

Having finished the book, I clearly realized that I could not have writ-
ten it without the help of many people. I am especially thankful to my teachers: 
Professor N. P. Larionov, who played a crucial role in my life by instructing me in 
the basics of serious scientific work; and Professor F. Z. Meerson, an outstanding 
world renowned scientist, who completed the “fine-tuning” of my brain on a scien-
tific footing, and helped in choosing a subject for my doctorate thesis, suggesting 
to focus on stress proteins.

I am also deeply grateful to Professor V. B. Koshelev, who has been inviting 
me for many years to give lectures on stress proteins to students of the School of 
Fundamental Medicine, MSU, thus encouraging me to keep abreast of the latest 
works in this area. I also want to thank the professors at the University of North 
Texas, Drs. J. Vishwanatha, F. Downey, and E. Manukhina, who invited me to 
deliver a course on stress proteins to American undergraduate and graduate stu-
dents; the material from these lectures is included in this book.

My University friend, Dr. D. N. Atochin, now Professor at Harvard University, 
was of great help in preparing the manuscript: he found a lot of great reviews and 
experimental reports for me. I am also grateful to Ms. Olga Rybina, a student of 
the School of Medicine at MSUMD for her help in finding and selecting relevant 
publications.

I am also grateful to all the students who attended my lectures on stress pro-
teins. They played a big role in the decision to write this book. Sometimes, their 
clever and unconventional questions caught me “off guard”, and often after a lec-
ture I had to urgently dig for an answer on Internet and in electronic libraries.

I would like to express my utmost appreciation to D. N. Yushchuk, Academician 
of the Russian Academy of Medical Sciences and the reviewer of this manuscript, 
who “blessed” it to be released to the large audience.

http://dx.doi.org/10.1007/978-94-007-5943-5_6
http://dx.doi.org/10.1007/978-94-007-5943-5_8
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Publishing a book is not an easy task, but all technical issues were solved 
thanks to the optimism and perseverance of my assistant, Ms. Anastasia 
Raetskaya, who is also our laboratory assistant and a student of the School of 
Therapy.

Finally, I have very special feelings about the invaluable support from my 
family including my wife, who inspired me to write this book, and my two sons, 
my most ardent supporters who have been impatiently waiting for the completion 
and publication of this book. 



ix

Contents

1	 A General Description of HSPs, The Molecular Structure  
of HSP70 and The HSP70 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 1
1.1	 About the Discovery of HSP, or How Drosophila Melanogaster  

was Accidentally “Heated”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 	 1
1.2	 HSPs General Characteristics: Probably the Most Conserved  

and Ubiquitous Proteins in all Cell Types . . . . . . . . . . . . . . . . . . . . .                     	 3
1.3	 The HSP70 Protein Structure: A Molecular Triptych . . . . . . . . . . . .            	 6
1.4	 The HSP70 Cycle: The Mechanism of the ATP-Dependent  

Interaction of HSP70 with Other Proteins. Or What is Common  
Between the HSP70 Cycle and the Flight of a Bumblebee. . . . . . . .        	 7

1.5	 Bag-1, HspBP1, Hip and HSP40: “helper” Proteins for HSP70,  
but Each One is Canny. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 8
1.5.1	 To Sum it up, or What we Have Learnt (Summary). . . . . . . .        	 11

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 11

2	 The Functions of HSP70 in Normal Cells. . . . . . . . . . . . . . . . . . . . . . . .                        	 15
2.1	 The Role of HSP70 in Protein Folding and the Prevention  

of Protein Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 17
2.2	 The Role of Hsp70 in Protein Degradation: Welcome  

to an Execution!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         	 19
2.3	 Folding–Refolding–Degradation: The Molecular Protein Quality  

Control Machinery. The One that Decides the Fate of a Protein. . . .    	 24
2.4	 The Role of HSP70 in Signal Transduction. . . . . . . . . . . . . . . . . . . .                    	 25

2.4.1	 What New we did Learn from this Chapter (Summary)  
and P.S.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           	 26

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 28

3	 HSP70 in Damaged Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 31
3.1	 The Concept of Homeostasis: From Hippocrates to the  

Present Day, or What Would Have Happened had Friedrich  
Engels and Claude Bernard Become Friends. . . . . . . . . . . . . . . . . . .                   	 32

3.2	 HSP70 as a “Stem” Molecule of Protein Homeostasis . . . . . . . . . . .           	 32

http://dx.doi.org/10.1007/978-94-007-5943-5_1
http://dx.doi.org/10.1007/978-94-007-5943-5_1
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec6
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_2
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_2#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_3
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec2


Contentsx

3.3	 The Convergence of Different Mechanisms of Cell Damage  
Towards the Disruption of Protein Homeostasis Turns HSP70  
into a Universal Protective Factor . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 34

3.4	 HSP70 and Apoptosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 38
3.5	 What New Have we Learnt From This Chapter (Summary). . . . . . .       	 41
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 42

4	 Mechanisms of Activation and Inactivation of HSP70 Synthesis. . . . .     	 47
4.1	 The Structure of Genes and HSP70 Transcription Factors. . . . . . . . .         	 48
4.2	 The Mechanism for Activation of HSP70, or the Story  

of How Two Richards Argued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 49
4.3	 The Mechanism of Inactivating the HSP70 Synthesis,  

or the Story About How Two Richards Agreed. . . . . . . . . . . . . . . . .                 	 54
4.4	 Regulation of HSP70 Synthesis, the Protein Which  

Supports Protein Homeostasis in a Cell, is Itself Based  
on the Homeostatic Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               	 55

4.5	 What New Have we Learnt About the Mechanisms  
of HSP70 Synthesis (Summary) and P.S. . . . . . . . . . . . . . . . . . . . . .                      	 56

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 57

5	 HSP70 in the Immune Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              	 63
5.1	 Immune Response: Steps of Development. . . . . . . . . . . . . . . . . . . . .                     	 64
5.2	 HSP70 Protects Immune Cells, but “A Spoon is Dear  

When Lunch Time is Near”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                	 65
5.3	 Role of HSP70 in the Development of the Innate Response,  

or the Duplicity of the Chaperone . . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 66
5.4	 HSP70 as an Informer of the Immune System that Detects  

Damages to the Body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 70
5.5	 The Role of HSP70 in the Development of an Adaptive  

Response, or the Antigenic Escort. . . . . . . . . . . . . . . . . . . . . . . . . . .                           	 70
5.6	 HSP70, Immune Memory Cells, or “I Remember Everything  

That did Not Happen to Me!”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	 72
5.7	 HSP70 in the Termination of Inflammation. . . . . . . . . . . . . . . . . . . .                    	 74
5.8	 Some Doubts About the Role of HSP70 in the  

Immune Response: Dr Gao’s Fly in the Ointment. . . . . . . . . . . . . . .               	 75
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 76

6	 HSP70 in Carcinogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     	 83
6.1	 Intracellular HSP70 in Tumours: Rejuvenation Elixir  

or the Road to Hell is Paved by Good Intentions. . . . . . . . . . . . . . . .                	 85
6.2	 Extracellular and Membrane-Bound HSP70 in Tumours,  

or an Apology to the Host Immune System for its  
Intracellular Counterparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 90

http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_3#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_4
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_4#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_5
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec6
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec6
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec7
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec8
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Sec8
http://dx.doi.org/10.1007/978-94-007-5943-5_5#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_6
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec2


Contents xi

6.3	 Unresolved Issues of Carcinogenesis, or How to Make a  
Million Dollars (and P.S.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  	 92

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 93

7	 HSP70 in Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             	 99
7.1	 What is Senescence and its Underlying Causes. . . . . . . . . . . . . . . . .                 	 100
7.2	 Accumulation of Damaged Proteins, HSP70 and the  

Sacrificial Altruism of the Ageing Daughter Cells. . . . . . . . . . . . . . .               	 100
7.3	 Oxidative Stress and HSP70: The Unity and the Struggle  

of Opposites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            	 103
7.4	 Through HSP70 to Longevity, or “Eat Your Dinner Like  

a Pauper” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              	 105
7.5	 Why Does HSP70 Inducibility Decline with Age? A Chronicle  

of a Senescent Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       	 106
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 108

8	 The Role of HSP70 in the Protection of: (A) The Brain  
in Alzheimer’s Disease and (B) The Heart in Cardiac Surgery . . . . . .      	 113
8.1	 The Role of HSP70 in the Protection of the Brain in  

Alzheimer’s Disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      	 113
8.1.1	 Pathogenesis of Alzheimer’s Disease: The Disease is Still  

Incurable, so There Must be Something Really Important  
that Remains Unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             	 114

8.1.2	 The Role of HSP70 in Alzheimer’s Disease. Sometimes  
You Feel Like You are Balancing on a Sword Blade. . . . . . .       	 116

8.1.3	 The Insulin Hypothesis of Alzheimer’s Disease  
and a Possible Role of HSP70. . . . . . . . . . . . . . . . . . . . . . . .                        	 123

8.2	 The Role of HSP70 in Protecting the Heart in Heart Surgery. . . . . .      	 124
8.2.1	 TIschemic Complications Associated with Open Heart  

Surgery, or How We are Hoisted by Our Own Petard. . . . . .      	 125
8.2.2	 The Role of HSP70 in Protecting the Heart From  

Ischemia/Reperfusion Injury During Heart Surgery . . . . . . .       	 125
8.2.3	 Systemic Inflammatory Response Syndrome in Heart  

Surgery or“Give a Man Enough Rope and He’ll  
Hang Himself”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    	 127

8.2.4	 The Role of HSP70 in the Development and Monitoring  
of Systemic Inflammatory Response During Heart Surgery:  
Modus Operandi as a Principle of Biological Regulation. . .   	 128

8.3	 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            	 131
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  	 131

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           141

http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_6#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_7
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_7#Bib1
http://dx.doi.org/10.1007/978-94-007-5943-5_8
http://dx.doi.org/10.1007/978-94-007-5943-5_8
http://dx.doi.org/10.1007/978-94-007-5943-5_8#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_8#Sec1
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec2
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec3
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec4
http://dx.doi.org/10.1007/978-94-007-5943-5_8#Sec5
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec6
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec6
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec7
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec7
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec8
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec8
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec8
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec9
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec9
http://dx.doi.org/10.1007/978-94-007-5943-5_1#Sec9
http://dx.doi.org/10.1007/978-94-007-5943-5_8#Sec10
http://dx.doi.org/10.1007/978-94-007-5943-5_8#Bib1


1

Abstract  Fifty years ago the accidental switch of a temperature knob on the 
incubator where Ferruccio Ritossa kept his fruit flies started a new era, the epoch of 
heat shock proteins (HSP). In 1986 H. Pelham was the first to suggest that HSPs bind 
to denatured protein aggregates, thereby restricting their aggregation and breaking 
them by using ATP as an energy source. Among all HSPs, the protein with a molecu-
lar weight of 70 kDa was found to be the most common, drew the most attention and 
is consequently the HSP we know the most about. HSP70 contains three domains: 
the ATPase N-domain which hydrolyzes ATP; the substrate domain which binds pro-
teins, and the C-domain that forms the “lid” for the substrate domain. Because of its 
three-domain structure, HSP70 forms a unified ATPase cycle coupled with connec-
tion and disconnection of the client protein. The “team” of HSP70 cycle regulators 
includes HSP40, which delivers clients to HSP70 and stimulates ATP hydrolysis; 
Hip, which assists HSP70 in retaining the client, and Bag-1 and HspBP1, which 
accelerate the dissociation of ADP and the release of the client protein.

Keywords  HSP70  •  Hip  •  Bag-1  •  HspBP1  •  The HSP70 cycle

In this first chapter, I will begin by telling you the amazing story about how heat 
shock proteins (HSPs) were discovered, their general characteristics, molecular 
structure and their functional cycle.

1.1 � About the Discovery of HSP, or How Drosophila 
Melanogaster was Accidentally “Heated”

The name itself—“heat shock proteins”—results from the simple fact that HSPs were 
first discovered in cells exposed to elevated temperatures. As is the case with many 
significant scientific discoveries, they were discovered by chance. It all happened in 
a genetics and biophysics laboratory in the Italian city of Pavia early in the 1960s. 
By accident, a lab assistant increased the temperature in an incubator containing fruit 

Chapter 1
A General Description of HSPs, 
The Molecular Structure of HSP70 
and The HSP70 Cycle

I. Malyshev, Immunity, Tumors and Aging: The Role of HSP70,  
SpringerBriefs in Biochemistry and Molecular Biology,  
DOI: 10.1007/978-94-007-5943-5_1, © The Author(s) 2013



2 1  A General Description of HSPs 

fly Drosophila Melanogaster. The Drosophila owner, an Italian named Ferruccio 
Ritossa, reprimanded the lab assistant. Luckily, Ritossa was not only good at inform-
ing his lab members of bad practice, but was a good scientist too. He discovered 
(Fig.  1.1.) that a brief increase in temperature resulted in a characteristic pattern 
of puffing in the chromosomes of the salivary glands in Drosophila Melanogaster 
(Ritossa 1962). This meant that a heat shock provoked gene activation in Drosophila; 
the genes were immediately named “heat shock genes”.

That in itself was one of the clearest pieces of evidence to prove that the  
environment influences genes and their activity. Ritossa was extremely excited; 
he submitted his article to one of the most prestigious scientific journals of the 
time. However, the editor did not accept the manuscript as “it was irrelevant to 
the scientific community” (Ritossa 1996). Ritossa nevertheless did not give up: he 
finally published in 1962 the article describing the above phenomenon in the jour-
nal Experientia.

However, 12  years passed before the proteins encoded by these genes were 
identified by the Tracy team (Tissières et al. 1974). Naturally, the proteins whose 
synthesis increases as a result of heat shock were called “heat shock proteins”.

Finally, in 1982 Cold Spring Harbor Laboratory hosted the First International 
conference on heat shock. By that time the scientific community was somewhat 
ready to accept Ritossa’s work; he was finally recognized as the discoverer of heat 
shock proteins.

the chromosome of Drosophila 

nonnative discs

a characteristic 
pattern of puffing

HSP mRNA

heat shock proteins

Fig. 1.1   Brief increase in temperature resulted in a characteristic pattern of puffing in the sali-
vary glands chromosomes in Drosophila Melanogaster
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1.2 � HSPs General Characteristics: Probably the Most 
Conserved and Ubiquitous Proteins in all Cell Types

But what happens in cells after the heat shock? What is the “biological mission” of 
HSPs? Why would a cell increase the expression of HSPs? Hugh Pelham, a British 
scientist, was one of the first to ask, and his research gave the following results.

Immediately after heat exposure, HSP expression in a cell increases dramati-
cally (Fig. 1.2.). Most of HSPs are located in the nucleus, or more specifically, in the 
nucleolus of the damaged pre-ribosomes. As time passes after the heat shock, the 
HSP content in the nucleus gradually decreases, while it increases in the cytoplasm. 
By that time, the damaged nucleolar structure and the disturbed general protein 
biosynthesis system have completely recovered. Is there a connection between the 
increase in HSP content and the recovery of general protein biosynthesis? Yes, said 
numerous researches who have demonstrated that inhibitors of HSP synthesis sup-
presses the ability of cells to restore general protein synthesis disturbed as a result of 
the heat shock. Therefore, no HSPs leads to no cellular recovery! This result proved 
that HSPs ensure the resistance of the protein synthesis apparatus to heat shocks.

However, until 1986 it was not clear how it all actually worked. An elegant 
hypothesis advanced by Hugh Pelham (Pelham 1986) filled in some of the gaps.

It was known that a heat shock event caused partial denaturation of protein 
structures in nucleolar pre-ribosomes. This process exposes hydrophobic patches 
that are normally buried within the interior of a protein (Fig.  1.3). The appear-
ance of hydrophobic patches leads to protein–protein interactions. As a result, pre-
ribosomes stick together to form insoluble units. That is exactly what leads to the 
disruption of protein synthesis in a cell. According to Hugh Pelham, HSPs first 
bind to the hydrophobic surfaces of the denatured proteins, thereby limiting pre-
ribosome aggregation. Second, formation of a complex with denatured proteins 
induces the ATP activity of HSPs. Hydrolysis of ATP results in changes in the con-
formation of both the HSP and the bound denatured pre-ribosome protein. That in 
turn leads to the disruption of hydrophobic bonds between the aggregated proteins; 
the released proteins then get a chance to restore their initial native conformation. 

Fig. 1.2   The disturbed 
general protein biosynthesis 
and HSP content in a cell 
after heat exposure
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The sequence of such HSP-related reactions can lead to a successful disaggrega-
tion of large abnormal protein aggregates.

The basic premise of this hypothesis was that the HSP has a uniquely high 
affinity toward denatured proteins. Like a Spanish bull that quickly finds and 
attacks anything red, HSP finds and attaches to anything that has hydrophobic 
patches on the surface and thus inhibits protein aggregation.

After the first experiments that hinted at the important role of HSPs in protect-
ing cells from heat shock the amount of HSP research started to snowball.

It turned out that the term “heat shock proteins” was not exactly accurate 
(Fig. 1.4.). As far back as 1984, Ellwood & Craig demonstrated that HSP syn-
thesis can be equally stimulated by exposure to cold. The proteins could have 

ENVIRONMENTAL   
STRESSES

Heat shock
Cold shock

Amino acid analogues
Oxygen-free radicals

Heavy metals
Inhibitors of energy 

metabolism

Inflammation & infection  Hypertrophy  Ischemia Tissue injury & repair  Aging 

PATHOLOGIES

NON-STRESS
CONDITIONS

Cell cycle  
Growth factors  
Development  
Differentiation  
Oncogenes  
Proto-oncogenescell

nucleus

Fig. 1.4   Many different conditions and factors induce the synthesis of HSP in a cell 
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proteins

DISAGREGATION

HSP70

hydrophobic 
areas

hydrophobic 
bonds

Fig. 1.3   Hugh Pelham’s hypothesis on the mechanism of HSP’s protective effect
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been therefore easily called “cold shock proteins” or “temperature shock pro-
teins”. Then it was shown that HSP synthesis can also be induced by a num-
ber of various environmental stresses without any temperature change, as well as 
by various pathologies or diseases (Lis and Wu 1993; Morimoto et al. 1993; Wu 
et al. 1995).

With this new information, these proteins started being called “stress proteins”. 
However, this name did not fully reflect their nature, since they were later discovered 
in normal cells without any stress exposure. Nowadays, most scientists worldwide still 
refer to them as “heat shock proteins”, paying tribute to the history of their discovery.

HSPs are found in virtually all living organisms, from viruses to primates. 
Evolutionarily, HSPs are highly conserved proteins. For instance, homology in the 
amino acid composition of HSPs in bacteria and in humans reaches 60 %. By now 
HSPs with molecular weights of 28, 32, 40, 60, 70, 80, 90, 100 and 110 kDa have 
been discovered. Since tissues contain primarily the HSP with a molecular weight 
of 70 kDa, this HSP has attracted the majority of research attention. Therefore, we 
will be mostly talking about this important HSP70 family.

In 1986 Schlesinger gave a precise definition of the HSP70 family: “HSP70 
family includes proteins whose synthesis is stimulated by stress, and whose genes 
contain a marker nucleotide block—heat shock consensus element (HSE)—CT- 
GAA-TTC-AG”.

The HSP70 family includes at least 13 isoforms divided into two groups: con-
stitutive and inducible. Constitutive HSP70 proteins have a high basal level and 
are weakly induced by stress. Conversely, inducible HSP70 are virtually absent in 
normal conditions, while their expression increases dramatically under stress.

In eukaryotes, HSP70 can be found in any part of a cell; in the cytoplasm, the 
nucleus, mitochondria, endoplasmic reticulum, as well as inside or outside any 
other organelle and compartment. Such a concentrated and universal spread of 
HSP70 indicates that they must be playing an important role in the cell.

Indeed, it was shortly found that both constitutive and inducible HSP70 iso-
forms were involved not only in protecting cells from heat shock, but in many other 
cellular processes; basically everywhere where a partial or full protein unfolding 
event occurs (Floer et al. 2008; Morimoto and Nollen 2002). For example, HSP70 
proteins are involved in processes such as mRNA translation, protein translocation 
through membranes, protein delivery to sites of degradation, during the assembly 
and disassembly of macromolecular complexes, genes induction and apoptosis.

All these discoveries were more than sufficient to maintain the continued  
attention of HSP70 to molecular biologists, cell pathophysiologists and medical 
scientists. At the same time, as I said before, the scientific community initially 
failed to properly appreciate the role of these proteins. For a long time since the 
discovery of heat shock proteins it was poorly understood how the HSP70 pro-
tein could possibly participate in such a wide array of biological processes. Hugh 
Pelham’s hypothesis remained an elegant one, but was still just a hypothesis. 
However, from the very beginning this hypothesis has established the right direc-
tion for further research by claiming that HSP70 performs its functions via revers-
ible binding to other proteins.

1.2  HSPs General Characteristics
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1.3 � The HSP70 Protein Structure: A Molecular Triptych

The “black box” of the HSP70 action mechanisms was opened by decoding the 
HSP70 molecular structure (Sharma and Masison 2009) It turned out that inside 
the cell, HSP70 exists as a dimer in which each monomer contains three func-
tional domains: an ATPase N-domain (44 kDa), a substrate domain (18 kDa) and a 
C-domain (10 kDa) (Fig. 1.5). Each of the domains has its own specific function; 
together they form a functionally unique protein, a sort of a peculiar molecular 
“triptych” (meaning “a work of art containing three paintings or bas-reliefs united 
by a common theme or idea”, from the Greek τρíπτυχος, ‘three-fold’).

The substrate domain functions as a binding scaffold that interacts with vari-
ous substrate “client” proteins. For this purpose, the substrate domain has a special 
hollow. The hollow structure includes a hydrophobic internal surface and a nega-
tively charged surrounding surface. Therefore, the substrates with an accessible 
hydrophobic area surrounded by positive charges have the largest affinity to the 
HSP70 substrate domain (Jordan and McMacken 1995).

The ATPase N-domain serves the purpose of binding and hydrolysing ATP. 
This function of the N-domain was determined when the molecular structure was 
solved. The ATP-ase N-domain of HSP70 consists of four sub-domains organized 
into two lobes, I and II. Lobe I is composed of sub-domains IA and IB, lobe II—of 
sub-domains IIA and IIB. The two lobes are connected via sub-domains IA and 
IIA. Sub-domains IB and IIB form a “cleft” and the bottom of this cleft forms the 
ATP binding site (Jiang et al. 2005; O’Brien et al. 1996). When ATP binds to the 
cleft, the IB and IIB sub-domains approach each other (Jiang et al. 2005).

The C-domain is composed of five α-spirals (αA-αE) and a flexible sub-
domain. The C-domain forms a structure similar to a “lid” on a flexible drive. 
Because of the flexible drive, the “lid” can open and close the substrate–binding 
hollow of the substrate domain (Han and Christen 2003). The “lid” covers the sub-
strate domain and is secured or held in place by the spatial position of hydrogen 
and ionic bonds between the “lid” and the substrate domain. The energy of these 
bonds is small, so the transition between the “opened” and “closed” state of a lid 
can be easily implemented by simple conformational changes in the domains.

Fig. 1.5   The HSP70 protein 
structure: each monomer 
contains three functional 
domains: an ATPase 
N-domain, a substrate 
domain and a c-domain
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However, decoding the structure and functions of HSP70 sub-domains only 
partially solved the mystery of the functional mechanism of HSP70. HSP70 
domains turned out to be only pieces of a whole puzzle. Sharma and Masison 
from the National institutes of Health (Sharma and Masison 2009) tried to piece 
together the complete puzzle. And they did it! The answer was that while HSP70 
performs its functions, its domains are actively interacting with each other. 
Moreover, these inter-domain interactions form a single ATPase cycle associated 
with the attachment and detachment of the substrate protein. Figure 1.6 presents 
the HSP70 cycle.

1.4 � The HSP70 Cycle: The Mechanism of the ATP-
Dependent Interaction of HSP70 with Other Proteins. 
Or What is Common Between the HSP70 Cycle 
and the Flight of a Bumblebee

Binding of the substrate protein to the substrate domain of HSP70 gives rise to 
changes in the substrate domain conformation (Fig. 1.6). This change represents 
a signal that is transmitted to the N-domain and induces ATP hydrolysis. ATP 
hydrolysis in turn causes a change in the N-domain conformation. The change in 
the N-domain generates two types of conformational call-back signals. The first 
signal is transmitted to the substrate domain: this leads to an increase in bind-
ing affinity of the substrate to HSP70. The second signal is transmitted to the 
C-domain. This signal leads to the C-domain “lid” covering the hydrophobic hol-
low of the substrate domain, thus “attaching” the substrate to HSP70 even more.

Fig. 1.6   The HSP70 cycle: 
the mechanism of the ATP-
dependent interaction of 
HSP70 with other proteins 

Native 
protein

Client 
protein

HSP40

BAG-1, 
HspBP1

Pi Hi
p

C-domain

ADPN-domain

HSP70

S-domain

ATP

ATP
ADP

ADP

FOLDING-REFOLDING

1.3  The HSP70 Protein Structure: A Molecular Triptych



8 1  A General Description of HSPs 

Therefore HSP70 in the ADP-conformation retains the substrate protein because the sub-
strate domain has high affinity to the substrate and the C-domain “lid” covers the bound 
substrate.

The next stage of the ATPase cycle includes removal of ADP and the bind-
ing of ATP into the cleft between the IB and IIB sub-domains of the N-domain.  
The binding of ATP to the N-domain generates two conformational signals, opposite 
to those generated by ATP hydrolysis. The first signal, induced by ATP binding, is 
generated between the sub-domains IA and IIA in the N-domain and is transmit-
ted to the substrate-binding hollow through the substrate domain spiral. This reduces 
the substrate affinity of the substrate domain. The second conformational signal is 
also formed in the N-domain; however, this signal is transmitted to the C-domain 
whereby conformation changes lead to the C-domain opening its “lid”. As a result, 
nothing holds the substrate protein anymore and it detaches from HSP70.

Therefore, HSP70 in the ATP-conformation does not retain the substrate protein because 
the substrate domain has low affinity to the substrate and the “lid” of the C-domain is 
opened. In this conformation, HSP70 is ready to attach a new protein and to start a new 
ATPase cycle.

This model could have explained the mechanism of HSP70 activity, if not for 
one observation. The ability of HSP70 to release ADP and to hydrolyse ATP is 
very low. For example, the rate of ADP dissociation is only 3–4 molecules per 
minute while the rate of ATP hydrolysis is up to 1 molecule per minute (Ha et al. 
1999; Brehmer et al. 2001). With such a low rate of the ATPase cycle HSP70 
would barely be able to perform any biologically significant task.

This situation reminds us of an old story about German aviation scientists. 
Once they wanted to create a flying engine based on the principles of bumblebee 
flying. Having calculated all aerodynamic characteristics of the bumblebee wings 
they realized that the bumblebee with such parameters would not be able to fly! 
However, the bumblebee did not know about those scientific calculations and kept 
flying. Likewise, HSP70 continued functioning perfectly.

1.5 � Bag-1, HspBP1, Hip and HSP40: “helper” Proteins 
for HSP70, but Each One is Canny

The ability of HSP70 to release ADP and hydrolyse ATP was evaluated in vitro, 
whereas HSP70 works in a live cell and perhaps the rate of release and hydroly-
sis differ. Therefore it was suggested that cells may have special molecular instru-
ments to accelerate the HSP70 ATPase cycle. Indeed, soon such instruments 
were discovered by Dr. Bracher from the Max Planck Institute of Biochemistry 
in Germany (Shomura et al. 2005) and Brodsky JL from Pittsburgh University 
(Brodsky et al. 2002).

These two scientists found that the low rate of nucleotide exchange at the 
HSP70 N-domain could be substantially increased by special protein factors. They 
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were called Nucleotide Exchange Factors (Brodsky et al. Brodsky et al. 2002a, b; 
Dragovic et al. 2006). In higher eukaryotes such factors are Bag-1 and HspBP1 
(Shomura et al. 2005; Brodsky et al. 2002a, b).

It turned out that Bag-1 interacts with the cleft between sub-domains IB and 
IIB of the HSP70 N-domain (Harrison et al. 1997; Sondermann et al. 2001) and 
that it induces the IIB sub-domain to rotate by 14°. This small sub-domain IIB 
holds ADP and such a rotation liberates ADP (Fig.  1.6). Because of this simple 
mechanism Bag-1 increases the ADP dissociation rate more than 600 fold (Gassler 
et al. 2001).

Therefore, we should say a few words about this important regulator. In 
humans the Bag protein family consists of six homologs: Bag-1, Bag-2, Bag-3, 
Bag-4, Bag-5 and Bag-6 (Takayama and Reed 2001). All the homologs contain 
a Bag domain, which is required for the interaction with the released HSP70 
(Takayama et al. 1999; Miki and Eddy 2002). However, only Bag-1 is able to 
exchange nucleotides for HSP70. In addition to the Bag domain, Bag-1 contains 
other domains that can interact with other proteins involved in different cell pro-
cesses. This is very important for understanding the variety of HSP70 functions. 
For example, Bag-1 contains an ubiquitin-like domain. Due to the presence of 
these two domains Bag-1 can simultaneously bind to both HSP70 and a proteas-
ome, thereby coupling the ATPase HSP70 cycle to proteolysis of the released sub-
strate in proteasomes (Lüders et al. 2000; Gassler et al. 2001).

For now it is important to remember that Bag-1 is a protein factor that speeds 
up the dissociation of ADP from the HSP70 N-domain, thus controlling the sub-
strate release from HSP70.

At the same time, it is well known that the principle of biological regulation is 
often based on the balanced action of activators and inhibitors. Consequently, when 
an ADP dissociation activator was discovered, scientists immediately asked the 
question: are there also any inhibitors of this process in a cell? This turned out to be 
a valid question. In 1995, Hohfeld, Minami and Hart, researchers from the Howard 
Hughes Medical Institute and the Sloan-Kettering Cancer Center (USA) (Hohfeld 
et al. 1995) discovered the Hip protein (molecular weight of 43  kDa). Hip was 
found to interact with the ATPase domain of human HSP70 (Höhfeld et al. 1995). 
Currently Hip is considered an antagonist of Bag-1 (Fig. 1.6.). Hip competes with 
Bag-1 for binding on the ATPase domain of HSP70 to prevent the Bag-1-stimulated 
release of the ADP nucleotide (Kanelakis et al. 2000; Lambert and Prange 2003) 
and, consequently, the release of the immature substrate (Höhfeld and Jentsch 1997).

Another rate-limiting step of the cycle is that the rate of ATP hydrolysis can be 
substantially increased by the HSP70 interaction with co-factors such as HSP40 
(Lu and Cyr 1998; Wegele et al. 2003). As I have already discussed, the binding of 
the substrate stimulates ATP hydrolysis only slightly; this is not sufficient for clos-
ing the C-domain lid and triggering the whole HSP70 cycle. HSP40 provides assis-
tance (Fig. 1.6.) by interacting with HSP70 via its J-domain (Karzai and McMacken 
1996; Laufen et al. 1999) and thus increases the ATP hydrolysis rate more than 
a 1,000 fold (Liberek et al. 1991; Laufen et al. 1999). As mentioned above, ATP 
hydrolysis leads to strong capture uptake of the client protein by the HSP70 

1.5  Bag-1, HspBP1, Hip and HSP40
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substrate domain. It was clearly demonstrated that the ability of HSP40 to stimulate 
this mechanism was important for virtually all HSP70 activities. (Kelley 1999).

Therefore we need to say a few words about this very important HSP70 
partner. Unlike HSP70, HSP40 has many more isoforms. Humans only have 13 
HSP70 isoforms while HSP40 has 41 isoforms. Like HSP70, Hsp40 functions 
as a dimer. HSP40 can also bind hydrophobic peptides, and can independently 
prevent protein aggregation (Lian et al. 2007; Moriyama et al. 2000). However, 
the main physiological destiny of HSP40 is to assist HSP70 in performing its 
functions. HSP40 can interact with virtually all molecular and sub-molecular 
participants of the HSP70 cycle including N- and C-domains and the substrate 
protein.

Furthermore, it appears that the ability of HSP40 to increase the ATP hydrol-
ysis rate at the HSP70  N-domain was only one of many “services” that HSP40 
provides to HSP70. In fact, in addition to the J-domain, HSP40 has several vari-
able domains. Some of these domains can interact with different substrate client 
proteins and deliver them to HSP70 (Demand et al. 1998; Landry 2003). Other 
domains of HSP40 can interact with different protein structures of organelles and 
cellular structures. Therefore, when HSP40 binds to HSP70, first of all it allows 
HSP70 to capture a much broader spectrum of protein substrates than it would 
have done without the assistance of HSP40 (Misselwitz et al. 1998). Second, 
HSP40 aids the localization of HSP70 in various places inside the cell, such as in 
the cytosol close to ribosomes, that allows HSP70 to participate in protein trans-
lation from cytoplasmic ribosomes (Horton et al. 2001); in mitochondria or the 
endoplasmic reticulum which allows HSP70 to participate in the transfer of the 
polypeptide chain across the membrane of these organelles (Brodsky et al. 1998) 
or where biogenesis of peroxisomes takes place (Hettema et al. 1998). Third, as we 
have mentioned, it increases the rate of ATP hydrolysis in the HSP70 N-domain.

Therefore, HSP40 substantially expands the field of activity of HSP70 
(Genevaux et al. 2007) and ensures incorporation of HSP70 into various cell pro-
cesses in numerous regions of a cell.

Now let us look again carefully at the whole ATPase HSP70 cycle. Although 
at a first glance it does not seem to be important, note the following: HSP40 con-
trols the rate of ATP hydrolysis, and the delivery and binding of the client pro-
tein, whereas other factors like Bag-1 and Hip control the rate of ADP dissociation 
and the release of the client. You can truly appreciate it and admire how elegantly 
and efficiently the cell utilizes its resources if you understand that the nucleo-
tide exchange factors and HSP40 in a cell can be spatially separated. This means 
that the substrate protein can associate with HSP70 in one place, where HSP40 
is available, and dissociate in an absolutely different location, where there is the 
nucleotide-exchange factor Bag-1 but no Hip! And this is no less than the intercel-
lular system of vector protein delivery!

At this place my students usually shout “So we can actually use this system to 
deliver medicines to a specific cell region?” There is no doubt that many pharma-
cologists would love to obtain a driving license for such a vehicle!
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1.5.1 � To Sum it up, or What we Have Learnt (Summary)

To conclude, we can summarize what those who have never heard about heat 
shock proteins would have learnt by reading this chapter the following points:

1.	 Fifty years ago an accidental switch of a temperature knob on the incubator 
where Ferruccio Ritossa kept his fruit flies started a new era, the epoch of heat 
shock proteins (HSPs).

2.	 HSP synthesis can be activated by various physical, chemical and biological 
stressors.

3.	 In 1986, Pelham was the first to suggest that HSPs bind to denatured protein 
aggregates, restrict protein aggregation and break protein aggregates using ATP 
as an energy source.

4.	 Starting with the work of Pelham a great deal of data have been accumulated 
about the fundamental role of HSPs in the survival of cells.

5.	 Among all heat shock proteins, the species with a molecular weight of 70 kDa 
was found to be the most common, thereby drawing the largest amount of 
attention from researchers and is consequently the one we know the most about.

6.	 HSP70 contains three domains: the ATPase N-domain, which hydrolyses ATP, 
the substrate domain, which binds proteins, and the C-domain that forms the 
“lid” for the substrate domain.

7.	 Because of its three-domain structure, HSP70 forms a unified ATPase cycle 
coupled with the association and the disassociation of the client protein.

8.	 The “team” of HSP70 cycle regulators includes: HSP40, which delivers clients 
to HSP70 and stimulates ATP hydrolysis; Hip, which assists HSP70 in retain-
ing the client; and Bag-1 and HspBP1, which accelerate ADP dissociation and 
the release of the client protein.

In the next chapter we will examine the HSP70 cycle in more detail and how it 
is involved in the most important intracellular processes such as protein folding, 
protein transportation into organelles, and directing old or incorrectly folded pro-
teins for degradation. We will also examine the role of the HSP70 cycle in signal 
mechanisms.
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Abstract  In normal cells, the HSP70 ATPase cycle performs several fundamental 
functions: (1) together with co-chaperones, HSP70 forms a protein folding mecha-
nism and provides protein transportation into organelles; (2) assisted by HSP40, 
HSP70 recognizes irreversibly damaged proteins and, assisted by CHIP, Bag-1 
and HSJ1 ubiquitinates these proteins, thereby targeting them for degradation via 
proteasomes; and (3) together with the co-chaperones HSP90, HSP40, Hip, Hop 
and Bag-1, HSP70 recognizes normal proteins containing the marker sequence 
KFPRQ and sends these proteins for degradation in lysosomes. Thus, the HSP70 
ATPase cycle forms a protein quality control system or the FOlding Refolding 
Degradation machinery (FORD) and, depending on the state of the protein, sends 
the protein either for re-folding or for degradation. Because of the FORD machin-
ery, a cell maintains protein homeostasis. The HSP70 ATPase cycle also controls 
the activity of key signalling proteins by maintaining these proteins in an inactive 
or active state by regulating their levels and by intracellular transport.

Keywords  HSP70 • Protein folding • HSP90 • CHIP • Proteasomal degradation • 
Lysosomal degradation

In the first chapter, I introduced an important class of proteins that exist in cells—
heat shock proteins. Synthesis of these proteins, primarily HSP70, dramatically 
increases when a cell falls into adverse conditions. HSP70 can quickly receive the 
signal that damaged proteins and abnormal protein formations have appeared in a cell 
and repair the damage. In this sense, HSP70 acts as an intra-cellular “911” service!

As soon as the first hints about the protective role of HSP70 appeared in sci-
entific journals, scientists started asking: what is the structure of these proteins? 
How do they act? Significant efforts went into answering these questions. As a 
result, we now know that HSP70 contains three domains: the ATPase N-domain 
that hydrolyzes ATP, the substrate domain that binds proteins, and the C-domain 
that provides a “lid” for the substrate domain. We know now that, because of its 
three-domain structure, HSP70 forms a single ATPase cycle that involves the asso-
ciation and disassociation of the client protein. We also know that the “team” of 
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HSP70 cycle regulators include: HSP40, which delivers the clients to HSP70 and 
stimulates ATP hydrolysis; Hip, which assists HSP70 in retaining the client, and 
Bag-1 and HspBP1, which increase the rate of ADP dissociation and the release 
of the client protein.

The idea of the ATPase cycle of HSP70 provided an explanation as to how 
HSP70 can protect a cell from heat damage. According to the Pelham hypothesis, 
HSP70 binds to denatured protein aggregates, restricts their aggregation and breaks 
protein aggregates using the energy generated from the hydrolysis of ATP. A fairly 
logical system of ideas on HSP70 was built: these ideas regarded HSP70 as a protec-
tive protein which is rapidly synthesized “on demand” in response to cell damage.

However, HSP70s are also found in normal cells. Consequently, what would 
be the role of HSP70 in this situation? How does the ATPase cycle assist HSP70 
in performing its functions in a normal cell? This is the subject of the second 
chapter.

It is impossible to define who began thinking about the role of HSP70 in a  
normal cell. However, the one who started addressing this problem in the right 
direction certainly knew two things. This “Mister X” knew, first of all, that HSP70 
could bind to the hydrophobic part of proteins and delay protein folding. Second, 
he knew the problem in explaining the protein folding phenomenon. In fact, in 
vitro most proteins fold spontaneously, confirming the Anfinsen principle implying 
that a polypeptide chain sequence contains all the necessary information to define 
the exact three-dimensional protein fold (Anfinsen 1973). However, the situation 
in a cell is much more complicated. The cytoplasm is full of various molecules 
and organelles, and the problems arise already during the translation: growing 
polypeptide chains may begin aggregating with each other. (Dobson 2003). Such 
events happen because the hydrophobic patches in these chains stay exposed until 
the entire polypeptide chain comes off the ribosome. It is only after the synthesis 
is completed that the polypeptide chain can fold, burying all hydrophobic regions 
of the polypeptide in the interior of the protein.

Having compared these two points, it was easy to propose that HSP70 may be 
the best candidate for playing a role in assisting protein folding, because it can 
bind and shield hydrophobic zones of the polypeptides being synthesized, thus 
preventing unwanted protein aggregation. Once the entire chain is synthesized, 
HSP70 can release the chain, allowing it to fold properly and to reach its native 
three-dimensional state.

However, even after a proper folding event, proteins tend to aggregate, since 
small physical and chemical changes within the cell or just normal functioning may 
expose hydrophobic regions thereby leading to protein aggregation. Here, HSP70 
may play a substantial role in preventing the aggregation of normal proteins.

Therefore, by analyzing the role of HSP70 in a normal cell, researchers have 
noted first of all that, in terms of functionality, HSP70 was well suited to solving 
problems that arise with the appearance of hydrophobic regions, both in the pro-
cess of translation and protein folding, and during the normal functioning of mature 
proteins.
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2.1 � The Role of HSP70 in Protein Folding 
and the Prevention of Protein Aggregation

So how does HSP70 guarantee correct protein folding in normal cells? In eukary-
otes, HSP70, in cooperation with its co-factors, interact with at least 30  % of all 
synthesized proteins to ensure that the correct native conformation is achieved. It all 
starts at the point where HSP40 assists each emerging hydrophobic area of a protein 
synthesized on the ribosome to bind to the substrate domain of HSP70 (Fig. 2.1.). 
The events we discussed in the previous chapter then occur (Hartl and Hayer-Hartl 
2009). HSP40 initiates ATP hydrolysis within the N-domain. This increases the pro-
tein affinity of the substrate domain; at the same time the flexible C-domain “covers” 
the bound protein from the top. Now we understand why it is important that HSP70 
binds to hydrophobic areas of the polypeptide chains! Shielding of the hydropho-
bic areas by HSP70 prevents unwanted aggregation of protein chains. Removing 
HSP70 gives rise to the situation where the cell will have a significant population 
of proteins that will not form functionally active tertiary structures. During polypep-
tide chain synthesis, factors such as Hip keep hydrophobic areas bound to HSP70. 
Further, when the whole polypeptide chain emerges from the ribosome and is ready 
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Fig. 2.1   How HSP70s guarantee correct protein folding in the cytoplasme of normal cells
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to fold into a native tertiary structure, the nucleotide exchange factors exchange the 
N-domain ADP for ATP. As you remember from the first chapter, this leads to a 
reduction in protein affinity toward the substrate domain, opening of the “lid” and 
eventually to the release of the entire polypeptide chain and its folding.

In addition to HSP70, HSP40 and nucleotide exchange factors, in some cases, 
the process of protein folding may involve HSP60—barrel-shaped particles, 
inside which the protein folding process takes place. Protein barrels further isolate 
synthesized polypeptides or denatured proteins to ensure favourable folding or 
refolding of proteins. HSP60 are involved in the folding of ~10 % of all proteins.

Some proteins do not fold in the cytoplasm, but in the endoplasmic reticulum 
(Fig. 2.2.). For this process, the protein synthesized on a ribosome should be trans-
ported into the reticulum through a translocon, and the first to meet the “guest” 
protein is HSP70, which is called BiP in the endoplasmic reticulum. BiP binds to 
the first protein hydrophobic area to appear in the ER and thus prevents the poly-
peptide chain from returning back into the cytoplasm. In addition, with the help of 
repeated ATPase cycles, BiP binds every time to the next hydrophobic area of the 
protein which has just appeared in the reticulum lumen, and pulls the polypeptide 
chain into the lumen of the reticulum like a ratchet. Interestingly, the function of 
HSP40 in attracting BiP and regulating its ATPase activity is performed by trans-
locon proteins located on the endoplasmic reticulum membrane.

Proteins destined for mitochondria also bind to HSP70 rather than folding in 
the cytoplasm. The function of cytoplasmic HSP70 is to maintain a linear state 
of the protein chain, so that the protein can penetrate through the narrow translo-
cons of the mitochondrial membranes (Fig. 2.3.). As soon as the beginning of the 

Fig. 2.2   How HSP70/BiP 
guarantee correct protein 
folding in the endoplasmic 
reticulum of normal cells
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polypeptide chain appears in the matrix, other mitochondrial HSP70 would, by the 
energy of ATP, draw the protein chain into the mitochondrial matrix. In the same 
location, within the matrix there are regulators required for the cycle: the nucleotide 
exchange factor and translocon proteins accelerate the ATPase activity of mitochon-
drial HSP70. Retraction of the protein into the mitochondria occurs in the same 
way as explained above for the events occurring in the endoplasmic reticulum.

Therefore HSP70 carefully escorts polypeptide chains from the moment of its 
birth on a ribosome until the final formation of the protein spatial structure. Since 
HSP70 largely does what a nanny does for children, HSP70 proteins were named 
“chaperones” (Bukau et al. 2006). Chaperone, according the Oxford dictionary, 
means an older married or widowed woman who accompanies a young woman 
to her first ball (or a person who accompanies and looks after another person or 
group of people or an older woman responsible for the decorous behaviour of a 
young unmarried girl at social occasions).Proteins that help chaperones to per-
form their functions, such as HSP40, were named co-chaperones.

2.2 � The Role of Hsp70 in Protein Degradation: Welcome to 
an Execution!

Unfortunately, errors sometimes occur during protein folding and re-folding. 
This can lead to the emergence of non-functional proteins or to proteins that are 
harmful to the cell. Folding of mutant proteins leads to the same consequences; 

Fig. 2.3   The role of HSP70 
in protein folding in the 
mitochondria of normal cells
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however, even proteins that have folded properly have a limited functional life-
span from a few hours to a few days. Old dysfunctional proteins can even become 
dangerous to the cell. Fortunately, nature provided several ways of disposing such 
old, mutant or poorly folded proteins; heat shock proteins participate in two of 
them, namely proteasomal and lysosomal degradation.

The “password” for an unwanted protein entering into a proteasome is a ubiqui-
tin chain (Fig. 2.4.). Protein ubiquitination consists of three stages (Glickman and 
Ciechanover 2002). In the first stage the ubiquitin-activating enzyme E1 binds to 
ubiquitin and transfers it to the enzyme-carrier E2. In the second stage E2 deliv-
ers ubiquitin to the protein designated for degradation, and then in the third stage 
a special E3 ligase transports ubiquitin from E2 to the “wrong” protein. After 
these three events, proteasomes recognize and degrade the proteins “labelled” with 
ubiquitin.

However, for a long time it was unclear how damaged and old proteins were 
recognized to be labelled by ubiquitin (Hershko and Ciechanover 1998). Only in 
the mid-1990s was an answer to this question found. Goldberg and Ciechanover 
laboratories clearly showed that the ubiquitin–proteasome system needs HSP70 
and HSP40 for degradation of short-lived, mutant or old proteins (Lee et al. 1996; 
Bercovich et al. 1997).

It turned out that HSP70, assisted by its co-chaperone HSP40, recognizes dam-
aged and irreversibly denatured proteins and sends them to proteosomes (Cyr et al. 
2002) with the help of co-chaperones such as CHIP, Bag-1 and HSJ1 (Lüders et al. 
2006; Petrucelli et al. 2004).

Fig. 2.4   The role of Hsp70 in protein degradation into proteasomes
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The exact mechanism remains unclear; however, when HSP70 binds an irre-
versibly denatured or abnormal protein, the HSP70 C-domain exposes the sites 
for binding the co-chaperone CHIP (C terminus of HSP70 interacting protein) 
(Ballinger et al. 1999; Connell et al. 2001). This is a key moment in the switch-
ing of the effector function of the HSP70 ATPase cycle from the folding function 
to the proteolytic function (Fig. 2.4.). This is where the fate of the client protein is 
decided: whether there is a refolding process or whether the denatured protein is 
sent for proteasomal degradation. So why does CHIP play such an important role?

Ballinger et al. (Ballinger et al. 1999) discovered and described properties of 
CHIP that allowed the understanding of the mechanism of chaperone-depend-
ent ubiquitination. CHIP was found to be an E3 ligase (Ballinger et al. 1999; 
Connell et al. 2001) and it has binding sites not only for HSP70 or HSP90, but 
also for the E2 enzyme-carrier (Jiang et al. 2001). CHIP binds to HSP70 and 
thereby interferes with the ATPase cycle and suppresses the HSP70 capacity for 
protein refolding (Ballinger et al. 1999); however, at the same time it builds the 
«HSP70-HSP40-protein-client-CHIP-E2» complex. When this complex is built, 
CHIP ubiquitinates the client protein bound to HSP70, thereby labelling the pro-
tein for proteasomal degradation (Connell et al. 2001; Glover and Lindquist 1998; 
Meacham et al. 2001).

Ubiquitin labelling is sufficient for the protein to enter the proteasome and be 
degraded. There are, however, two more co-chaperones, Bag-1 and HSJ1b, which 
until the very end control the execution of the ubiquitinated protein.

You know already that Bag-1 contains a BAG domain, which is necessary for 
the interaction with HSP70. You also know that Bag-1 acts as a nucleotide 
exchange factor for HSP70, causing the release of the client protein. Finally, by 
now you also know that this Bag-1 activity is necessary for normal folding of the 
client protein. Since the ATPase cycle can only function in one of the two alterna-
tive states, it seems obvious that the folding activity of the cycle should inhibit its 
proteasomal activity. Indeed it was demonstrated that Bag-1 does inhibit the pro-
teasomal degradation of the Tau protein1 because of an increase in the refolding 
activity of the HSP70 cycle (Elliott et al. 2007).

However, nothing is that simple. The “double game” of Bag-1 is that in addi-
tion to the BAG domain it also contains an ubiquitin-like domain, through which it 
can interact with proteasomes (Lüders et al. 2000) and transport the ubiquitinated 
protein into proteasomes (Alberti et al. 2003). This is, for example, how the gluco-
corticoid receptor gets degenerated (Demand et al. 2001).

While the ubiquitinated client protein is Bag-1-escorted to its proteasome 
“scaffold”, there is always a danger that ubiquitin hydrolases would cleave the 
ubiquitin chain off the client protein, and the protein would no longer be recog-
nized for proteasomal degradation. The system of the “sentenced execution” for 
the disposal of unwanted proteins takes care of this danger too. To make sure it 

1  Tau proteins stabilize microtubules in neurons of the central nervous system. When tau 
proteins are defective, they can result in Alzheimer's disease.

2.2  The Role of Hsp70 in Protein Degradation
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does not happen, another co-chaperone, HSJ1b, which contains ubiquitin-binding 
sites, binds to ubiquitinated proteins and protects them from ubiquitin hydro-
lases, thus ensuring that the ubiquitinated proteins are delivered to proteasomes. 
(Westhoff et al. 2005).

Membrane proteins and proteins of the endoplasmic reticulum lumen are directed 
for proteasomal degradation through a mechanism called endoplasmic reticulum-
associated degradation (ERAD). In this mechanism, the reticular HSP70, Bip, recog-
nizes some poorly folded proteins in the reticulum (Molinari et al. 2002) and binds 
directly to these mis-folded proteins (Nishikawa et al. 2005; Zhang et al. 2001). BiP, 
assisted by other proteins, then transports the denatured protein to the inner side of 
the reticulum membrane and transfers it through the membrane to cytoplasmatic 
HSP70. HSP70 then delivers these proteins to proteasomes for degradation.

An alternative way of degrading intracellular proteins—the one assisted by lys-
osomes (Fig. 2.5.)—comes to the foreground when a cell exists in a state of pro-
longed fasting.

Using the culture of human fibroblasts Chiang (Chiang et al. 1989) showed that 
HSP70 recognizes the protein destined for degradation, binds to it and transports it 
to the lysosome.

Majeski and Dice (Majeski and Dice 2004) helped to establish details of this 
process. When a cell is starving interesting things happen: normal proteins start 
degrading. This apparently “strange” cell behaviour is caused by the neces-
sity to supply the protein biosynthesis process with amino acids to produce pro-
teins essential to the survival of the cell. It turns out that up to 30 % of normal 
proteins sacrificed by a cell and sent to lysosomes contain a marker amino acid 
sequence known as KFPRQ. This degradation “black mark” is recognized by the 

Fig. 2.5   The role of Hsp70 
in protein degradation into 
lysosomes
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HSP70/HSP90 chaperone complex that also contains co-chaperones Hsp40, Hip, 
Hop and Bag-1. This complex then binds to the lysosome membrane and imports 
the client protein to the lysosome to be degraded (Salvador et al. 2000).

This is quite incredible! When the cell was only being formed and experienced 
no starvation, it was already defined at the genetic level (by the KFPRQ motif) 
what proteins would be sacrificed in the situation of possible starvation.

Another intriguing fact was that HSP70 contains two KFERQ sequence motifs. 
Thanks to these motifs HSP70 penetrates into the lumen of lysosomes, where it is 
probably involved in protein transportation. However, lysosomes do not contain 
ATP; therefore the lysosomal HSP70 cannot retract proteins into the lysosome 
lumen using the ATP-dependent ratchet, similar to what mitochondrial HSP70 and 
Bip do in the lumen of the endoplasmic reticulum. The type of mechanism the 
lysosomal HSP70 use remains unresolved.

So we have examined the role of HSP70 in proteasomal and lysosomal protein 
degradation. A careful comparison of these two mechanisms of proteolysis shows 
something important: in both cases HSP70 together with its co-chaperones per-
forms similar functions, namely, it recognizes the “unwanted” protein and delivers 
it to the disposal site: to either proteasomes or lysosomes. It appears also that the 
choice of the disposal site is determined genetically by specific amino acid motifs, 
such as KFPRQ.

Another important conclusion we can make is that the HSP70 ATPase cycle—
together with chaperones and co-chaperones which ensure folding and re-fold-
ing, and the proteasomes or lysosomes that ensure degradation of “irreparable” 
proteins—form the protein “quality control” mechanism (Fig.  2.6.). To make 
it easier to remember the effector function of the molecular chaperone machine, 
one can use the abbreviation FORD-machinery to define the whole protein qual-
ity control system. It is made of the first letters of the words Folding–Refolding–
Degradation, namely the FORD machinery.

2.2  The Role of Hsp70 in Protein Degradation
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Fig. 2.6   The HSP70 ATPase cycle which ensures folding and re-folding, and the proteasomes 
or lysosomes that ensure degradation of “irreparable” proteins form the protein “quality control” 
mechanism (FORD-machinery)
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2.3 � Folding–Refolding–Degradation: The Molecular 
Protein Quality Control Machinery. The One that 
Decides the Fate of a Protein

Since HSP70 interacts with a number of intercellular proteins, its participation in 
folding or degrading should be carefully controlled. An important question arises 
then. Who switches the FORD-machinery on (or off)? At least two mechanisms 
play a potential role in forming a switch.

The first switch mechanism is formed as a result of competition between folding-
stimulating co-chaperone and the factors that stimulate protein degradation for HSP70 
binding sites. Normally the concentration of the folding-stimulating co-chaperones 
is 5–10 times higher than the concentration of the degradation stimulating factors. 
(Connell et al. 2001; Demand et al. 1998; Höhfeld and Jentsch 1997) Therefore under 
normal conditions, the main role of HSP70 will be protein folding. However, under 
various influences on a cell, the ratio of different co-factors may change, and that can 
switch the cycle from the folding-refolding pathway to degradation.

We know the examples of both co-factors. CHIP, and sometimes Bag-1 and 
HSJ1 can stimulate degradation. In humans, the nucleotide-exchange factor 
HSPBP1 is the activator of HSP70-mediated protein folding and, consequently, the 
degradation inhibitor. (Esser et al. 2004). HSPBP1 can bind HSP70 and CHIP to 
hamper protein ubiquitination (Alberti et al. 2004). As a result, HSPBP1 can 
switch the HSP70 cycle from degradation to folding. It was shown, for instance, 
that HSPBP1 inhibits the CHIP-mediated Cystic fibrosis transmembrane conduct-
ance regulator (CFTR)2 protein degradation (Alberti et al. 2004; Arndt et al. 2005).

Another mechanism of switching the functional activity of the HSP70 ATPase 
cycle arises from chaperone HSP90. Whitesell and coworkers were the first to 
conduct research that made scientists think about the role of HSP90 in regulating 
the functions of HSP70 (Whitesell et al. 1994) and Sepp-Lorenzino et al. (Sepp-
Lorenzino et al. 1995). These two groups showed that inhibition of HSP90 by the 
antibiotics herbimycin A and geldanamycin significantly increased the ubiquitina-
tion and proteasomal degradation of certain proteins. The simplest explanation is 
that HSP90 inhibits the CHIP-dependent ubiquitination of the client protein and 
can switch the HSP70 cycle from degradation to folding.

In this way, HSP70 manifests itself as a sort of molecular transformer: when 
certain factors get attached, the HSP70 cycle ensures folding of the newly pro-
duced or denatured and damaged protein; when other factors are attached, the 
cycle does the opposite; the protein is targeted for degradation.

Taken together, this allows HSP70 with its co-chaperones and the chaperone 
HSP90 to build an intracellular system of protein quality control. In this system, 
HSP70 acts as a “judge” together with its “jury” of co-chaperones to decide the 

2  CFTR is an ion channel that transports chloride ions across epithelial cell membranes. 
Mutations of the CFTR gene affect functioning of the chloride ion channels, leading to cystic 
fibrosis.
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fate of a damaged or denatured protein. Here, a protein will be either sent for 
“re-education”, i.e., refolding, or the protein will be sent for degradation to the 
proteasomal or lysosomal “scaffold”.

2.4 � The Role of HSP70 in Signal Transduction

The concept of HSP70 and its co-chaperones’ role in coupling mechanisms of 
protein folding and degradation also made researchers revise or supplement their 
understanding of the mechanisms for intracellular signal transduction. Each year 
additional data show that normal intracellular activity of signalling proteins is con-
trolled by HSP70. These proteins include, for instance, steroid hormone receptors, 
Raf kinase, eIF2α-kinase, CyclinB1/Cdk1 and heat shock transcription factors–1 
(HSF-1), c-Myc and pRb.

Through its interaction with such signalling molecules, HSP70 is involved in 
cell cycle regulation, differentiation and transduction of hormonal signals. It is not 
surprising therefore that HSP70 and its co-chaperones play an important role in the 
process of normal development as well as in pathological processes, such as car-
cinogenesis, aging and neurodegenerative dysfunctions (Jäättelä 1999; Kregel 2002).

A few general principles of the effect of HSP70 on signal transduction mecha-
nisms were discovered.

First, HSP70 complexes with a signalling client protein also involve various 
co-chaperones, such as HSP40, CHIP, chaperone HSP90 and some other proteins 
(Pratt 1997).

Second, generally in such complexes the intracellular transduction proteins 
remain in an inactive state from which they can be quickly activated (Pratt and 
Toft 2003). For instance, HSP70 detachment from the complex, when denatured 
or damaged proteins appear in a cell, can lead to activation of signalling proteins, 
because HSP70 has a high affinity towards denatured proteins. Therefore adverse 
environmental conditions can activate intracellular transduction pathways. This is 
how activation of the HSF-1 transcription factor occurs.

In a second example, HSP70 together with HSP90 keeps the intracellular steroid 
receptor in an inactive form that is still ready to bind a ligand. When the steroid hor-
mone binds to the receptor, the chaperone complex disassociates, and the active hor-
mone-receptor complex is directed to the nucleus and activates gene transcription.

Third, HSP70 and its co-factors can interact with components of signalling 
pathways to protect them also from degradation and to ensure their continued 
active state. HSP70 employs this “set of tactics” with respect to the retinoblastoma 
protein (pRB). pRB is a major regulatory molecule involved in the initial stages 
of the cell cycle. HSP70 protects pRB from degradation and allows active pRB to 
restrain the cell from entry into the cell cycle.

Fourth, through rapid switching of its folding and degradation activities the 
ATPase cycle can effectively regulate the quantitative and qualitative composition 
of a certain part of the pool of signalling molecules. This can also ensure effective 

2.3   Folding–Refolding–Degradation
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regulation of signalling pathways. For instance, hypoxia-induced factor I (HIF-I) 
is a transcription factor that mediates the cell adaptation to hypoxic conditions. 
Under normal conditions, HSP70 and CHIP interact with HIF-1 and thus ubiquit-
inate this protein and direct it for proteasomal degradation (Luo et al. 2010). Under 
hypoxia, denatured proteins appear in a cell. This leads to HSP70 detachment from 
HIF-1 and attachment to the damaged proteins, to which it has a higher affinity. As 
a result, HSP70 stops sending HIF-1 for degradation and HIF-1 can penetrate into 
the nucleus and activate genes responsible for adaptation to hypoxia.

Finally, HSP70 can be involved in the intracellular trafficking of signalling 
proteins. This was clearly shown in the example of G protein-coupled recep-
tors (GPCRs). In order to transduce an extracellular signal into the cell GPCRs 
have to be properly folded, transported to the cell surface and subsequently 
degraded once they have performed their function. The HSP70 chaperone FORD-
machinery plays the major role in organizing all these processes (Ancevska-
Taneva et al. 2006; Chapple and Cheetham 2003; Lanctôt et al. 2006; Neuhaus  
et al. 2006).

These receptors are of particular relevance to human health. Since most hor-
mones transmit a signal through GPCRs, many diseases associated with muta-
tions in the GPCRs disrupt the endocrine system. In these diseases there is usually 
a violation of receptor trafficking to the surface of the plasma membrane (Conn 
et  al. 2007). This happens because in the endoplasmic reticulum the resident 
HSP70 Bip recognizes the mutant GPCR as a mis-folded protein and sends this 
GPCR for proteasomal degradation (Conn et al. 2007; Anelli and Sitia 2008).

2.4.1 � What New we did Learn from this Chapter 
(Summary) and P.S.

We have examined only the most important part of what is known about HSP70 
functions in normal cells. We have learnt that:

1.	 The HSP70 ATPase cycle together with co-chaperones forms the protein fold-
ing mechanism and provides protein transportation into organelles.

2.	 The HSP70 ATPase cycle assisted by HSP40 recognizes irreversibly damaged 
proteins and, assisted by CHIP, Bag-1 and HSJ1 ubiquitinates these proteins 
and sends them for proteasomal degradation.

3.	 The HSP70/HSP90 complex, together with the co-chaperones Hsp40, Hip, Hop 
and Bag-1, recognizes normal proteins containing the marker sequence KFPRQ 
and sends these proteins to the lysosome for degradation.

4.	 The HSP70 ATPase cycle forms the protein quality control system (FORD machin-
ery) and, depending on the state of the protein, sends the protein either for re-fold-
ing or for degradation. Thus, the FORD machinery maintains protein homeostasis.

5.	 Transitions between the “folding” and “degradation” states of the cycle are 
carefully monitored by HSP90 and by the ratio of co-chaperones, folding stim-
ulators and degradation stimulators.
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6.	 The HSP70 ATPase cycle controls the activity of key signalling proteins by 
keeping them in an inactive or active state, by regulation of their levels and by 
intracellular transport.

P.S. The multitude of HSP70 functions and cellular processes is astound-
ing! This protein pokes its nose everywhere! Now we understand that there is 
safety in numbers and that the HSP70 multifunctional uniqueness is connected 
both with its three-domain structure and, primarily, with a large number of its 
co-chaperone “assistants”. First HSP70 attracts co-chaperones, and then, with 
their help, it builds a multifunctional regulatory network that is used by the cell 
for many purposes: folding, re-folding, degradation or regulation of signalling 
transduction events. Truly, first the “the king makes the suite” and then “the suite 
makes the king”!

Despite the significant progress in understanding how this network works, 
many questions still remain unanswered. We do not understand how the 
co-chaperones direct HSP70 to substrates; how HSP70 knows that this particu-
lar protein is to be folded, but the other one should be sent for degradation; what 
determines the substrate specificity of HSP70 to signalling proteins? There are 
many more other questions that remain unanswered.

Therefore, many more discoveries about cell processes that depend on the 
activity of HSP70 will undoubtedly be found in the future. In relation to the study 
of HSP70 effects it would be appropriate now to recall the words of the great 
British Prime Minister Winston Churchill, “Now this is not the end. It is not even 
the beginning of the end. But it is, perhaps, the end of the beginning” (Fig. 2.7).

2.4  The Role of HSP70 in Signal Transduction

Fig. 2.7   Discussion of the important problems
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Abstract  In a damaged cell HSP70 maintains protein homeostasis. To achieve 
this, HSP70, together with co-chaperones, prevents protein aggregation, aids in 
the dissociation of formed protein aggregates, and targets particular “irreparable”  
proteins for degradation. In addition, because of HIF-1 activation, the restoration 
of protein homeostasis forms a specific cell defense against hypoxic injury, against 
free-radical injury owing to an increase in antioxidant activity, and against calcium 
injury owing to a reduction in the calcium level in the cell. HSP70 can deposit 
mutant proteins. However, such mutant proteins can be released when denatured 
proteins appear in the cell. HSP70 blocks apoptosis by inhibiting the release of 
proapoptotic factors from mitochondria, inhibiting AIF, caspase-9 and JNK activi-
ties, as well as by increasing the Bcl-2 level and decreasing the Bax level. HSP70 
protects cells from the accidental triggering of apoptosis by restricting DNA-ase 
folding until the inhibitor binds to this proapoptotic protein. All of the above pro-
cesses lead to the general conclusion: HSP70 is a component of an intracellular 
system aimed at maintaining protein homeostasis and protecting damaged cells.

Keywords  HSP70  •  Protein  homeostasis  •  Cell  damage  •  Cell  defence  • 
Apoptosis

In the previous chapter we looked at the functions of HSP70 in normal cells and 
learned that: (i) the HSP70 ATPase cycle forms a protein quality control sys-
tem (FORD machinery) that, depending on the protein condition, sends the pro-
tein either for folding/re-folding or for degradation. Consequently, the FORD 
machinery maintains protein homeostasis. (ii) The HSP70 ATPase cycle controls 
the activity of key signaling proteins. These proteins include the steroid hormone 
receptors, Raf kinase, eIF2α-kinase and CyclinB1/Cdk1, and transcription factors 
HSF-1, c-Myc and pRb.

Studies of HSP70 functions in damaged cells have been conducted with equal 
intensity and this is what will be covered in this chapter. To understand better what 
essentially happens in a damaged cell, and to assess the role of HSP70 in these 
events, we need to recall the notion of homeostasis.

Chapter 3
HSP70 in Damaged Cells

I. Malyshev, Immunity, Tumors and Aging: The Role of HSP70,  
SpringerBriefs in Biochemistry and Molecular Biology,  
DOI: 10.1007/978-94-007-5943-5_3, © The Author(s) 2013
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3.1 � The Concept of Homeostasis: From Hippocrates to 
the Present Day, or What Would Have Happened had 
Friedrich Engels and Claude Bernard Become Friends

The concept of homeostasis as a certain constancy of the internal environment 
was first suggested by the famous Greek physician Hippocrates. He believed 
that a human stays healthy for as long as the ratio of the four liquids—red from 
blood, yellow from liver, black from spleen and blue from brain—remain con-
stant in the body. Many years later the physiologists Claude Bernard and Walter 
Cannon conferred a scientific form to these semi-mystical ideas of Hippocrates; 
they developed the concept of homeostasis, which until now remains as impor-
tant as the Darwin theory of evolution and the Schleiden and Schwann cell 
theory. The very essence of the homeostasis theory was best expressed by 
Bernard (1878): “The constancy of the internal environment is a guarantee of 
free and independent life!”

At the same time in the nineteenth century, when Claude Bernard was 
developing his concept, Friedrich Engels, a friend and sponsor of Karl Marx, 
defined life as a mode of existence of protein bodies (Engels 1987). This state-
ment is not far from truth! If Engels was a friend of Claude Bernard rather 
than of Karl Marx, the two of them would have certainly developed a joint 
formula “Homeostasis of proteins is a key condition for the existence of life”. 
Consequently, whoever explains the mechanisms of cellular protein turnover, i.e., 
the mechanisms of both the synthesis of new proteins and of the removal of “old” 
and damaged proteins, will basically answer the question “what is life?” Let’s 
be ambitious and try to do it here and now! After the first two chapters about the 
heat shock proteins we are ready for it!

3.2 � HSP70 as a “Stem” Molecule of Protein Homeostasis

In the second half of the last century, scientists obtained convincing data confirm-
ing that HSP70 plays an important role in the folding of newly created proteins, 
in the degradation of the old and damaged ones, as well as in ensuring the normal 
functioning of proteins. Understanding the HSP70 ATPase cycle was very useful 
in figuring out how it works. Basically we are ready to conclude that the HSP70 
ATPase cycle, or, FORD machinery, is a homeostatic mechanism that regulates 
intracellular protein turnover. However, if it is so, then the FORD machinery 
should follow the homeostasis principles, which are simple and well-known.

The modern concept of homeostasis has taught us that the constant internal 
environment is supported by a negative feedback mechanism which consists of 
three elements: sensor—the structure that notes disorders of homeostasis; regu-
lator—the structure that regulates the body or cell response to this disorder; and 
effector—the structure, which eliminates this disorder.
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Now we can make a small discovery: the protein quality control system, or 
the FORD mechanism, exactly matches the structure of a homeostatic mecha-
nism (Fig.  3.1). The HSP40 co-chaperone and the HSP70 substrate domain, 
which recognize the quality of proteins, form a two-component sensor. The 
regulator role is played by the ATPase N-domain complex with co-chaperones, 
which regulate ATP hydrolysis, nucleotide exchange, as well as co-chaperone-
switches of the FORD functions. Finally, the intracellular executive structures 
that provide folding or degradation of proteins are the effectors for the FORD 
machinery. Further, if a violation of cell homeostasis is related with increased 
synthesis of new proteins, the FORD machinery will increase the folding rate, 
and that will consequently reduce the the number of unfolded polypeptides and 
eliminate the disruption of homeostasis. If the disruption of homeostasis is asso-
ciated with the appearance of old or mutant proteins, the FORD machinery will 
direct them to proteasomes or lysosomes for degradation and will thus restore 
homeostasis.

HSP70 is admirable and truly unique! A three-domain structure of one mole-
cule contains the possibility of forming the whole three-component homeostatic 
mechanism of negative feedback! It would be fair to say that HSP70 is the main 
“stem” molecule for the whole homeostasis of cell proteins.

The notion of the homeostatic principle for the FORD operation clearly indi-
cates that HSP70 activity in a damaged cell will be primarily directed for restoring 
the disrupted protein homeostasis. How HSP70 carries this process out is depend-
ent on the nature of the disruption of protein homeostasis in a cell.

HOMEOSTASIS is supported by 
a negative feedback mechanism 
which consists of three elements: 

SENSOR notes disorders of  
homeostasis 

REGULATOR regulates cell 
response to this disorder 

EFFECTOR eliminates 
this disorder 

HSP70

HSP90 
HspBP1
BAG-1

HSP40

CHIP 
HSJ1
BAG-1

Damage protein -
client

FOLDING   
REFOLDING

Restoration of 

normal protein 

structure

DEGRADATION

Destruction of 

irreversibly

damaged proteins

(FORD)

PROTEIN 
HOMEOSTASIS

Fig. 3.1   The protein quality control system (FORD mechanism) exactly matches the structure 
of a homeostatic mechanism

3.2  HSP70 as a “Stem” Molecule of Protein Homeostasis
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3.3 � The Convergence of Different Mechanisms of Cell 
Damage Towards the Disruption of Protein Homeostasis 
Turns HSP70 into a Universal Protective Factor

Any textbook on cell pathophysiology will describe three main types of cell dam-
age: (1) hypoxic damage, (2) free-radical damage and (3) intracellular calcium 
overload. Even by simply skimming through the respective parts of the textbook, 
one would notice something important: a serious disruption of protein homeostasis 
is common for all these three cases with an increase in the occurrence of denatured 
and damaged proteins. This may be associated with developing acidosis, action of 
free radicals and/or activation of calcium-dependent proteases.

The loss of native conformation leads not only to the loss of functional prop-
erties of the protein, but also to another serious problem, namely polypeptide 
aggregation with the formation of toxic aggregates. Fortunately the appearance of 
denatured proteins is also a signal to activate synthesis of protective HSPs.

Approximately 25 years ago, Hugh Pelham, describing the role of HSP70 in a 
damaged nucleolus, was the first to hint at how HSP70 could participate in rena-
turation of proteins and disaggregation of protein aggregates. The Pelham hypoth-
esis was based on the fact that HSP70 has a unique high affinity to denatured 
proteins. Consequently, HSP70 would readily bind to these proteins and, using 
the energy from ATP hydrolysis, break non-covalent hydrophobic bonds between 
damaged proteins and disrupt protein aggregates. As a result, the released proteins 
can renature to restore native structure and function (Fig. 1.3).

This hypothesis was largely confirmed; it even turned into a concept, with a 
number of important details added.

So how, in the modern view, does protein homeostatis recover after disruption 
induced by the appearance of denatured, damaged and aggregated proteins?

To maintain protein homeostasis in a damaged cell, the FORD protein quality 
control system uses several approaches. First, HSP70 can prevent the formation of 
aggregates. Second, if the aggregates have already formed, HSP70 can disaggre-
gate them and restore protein function (Liberek et al. 2008). Finally, if the protein 
cannot be restored, FORD targets the protein for degradation.

HSP70 can prevent aggregation virtually alone, by binding to hydrophobic 
areas of denatured proteins to prevent formation of non-covalent hydrophobic 
interactions between proteins (Fig. 1.3). HSP70 may need HSP40 to recognize a 
damaged protein, and the energy from ATP to capture tightly and shield the hydro-
phobic region.

Additional partners, primarily the chaperone HSP100 and small HSPs, are 
required for disaggregating the aggregates formed (Liberek et al. 2008). The dis-
aggregation mechanism is presented in Fig.  3.2. It is assumed that first HSP70 
extracts a polypeptide from the aggregate (Ziętkiewicz et al. 2006) and then inserts 
this peptide into the channel of another chaperone, HSP100 (Haslberger et al. 
2007). Inside this channel there are special loops that pull the polypeptides out-
side through the channel using ATP as an energy source (Hinnerwisch et al. 2005). 

http://dx.doi.org/10.1007/978-94-007-5943-5_1#Fig3
http://dx.doi.org/10.1007/978-94-007-5943-5_1
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Retraction of the polypeptide through the channel leads to the full unfolding of 
the protein into a linear chain. (Lum et al. 2004; Schlieker et al. 2004; Weibezahn 
et al. 2004). After that, the unfolded protein re-folds into the native structure either 
without assistance, or with the help of the HSP70 chaperone system.

Researchers from the Dr. Walter laboratory revealed important details of this  
process. They discovered that, in the absence of HSP70, the polypeptide advance-
ment through the HSP100 channel is significantly reduced (Doyle et al. 2007a, 
2007b; Schaupp et al. 2007). The researchers interpreted these findings and made a 
logical conclusion; HSP70 not only contributes to the substrate transportation to the 
HSP100 channel, but also stimulates ATP hydrolysis in the HSP100 ATPase domains.

This is a very familiar situation to the process in which HSP40 transports sub-
strates to HSP70 and stimulates ATP cleavage in the HSP70 N-domain. We can 
continue with this analogy. In both the HSP40-HSP70 and HSP70-HSP100 pairs, 
polypeptide binding to HSP70 or to HSP100 significantly stimulates ATP hydroly-
sis in the ATPase domain of that HSP (Schaupp et al. 2007).

In the literature there is no explanation as to why two similar mechanisms are 
required. One can only assume that the HSP40-HSP70 bi-chaperone cooperation 
is used for the folding of polypeptides synthesized on ribosomes, and that the 
HSP70-HSP100 complex is used for pulling polypeptides out of an aggregate and 
their subsequent refolding.

Another important observation describing dissociation of the protein aggre-
gates was made by two Japanese scientists, Kitagawa and Nakamoto (Kitagawa 
et al. 2000; Nakamoto et al. 2000). They suggested that small HSPs (sHSPs) 
play an important role in controlling the “aggregation-disaggregation” processes 
(Fig.  3.2). Members of this family have a low molecular weight, 15–43  kDa 
(Haslbeck 2002; Haslbeck et al. 2005) and do not require ATP hydrolysis for man-
ifesting their activity, i.e., they are ATP-independent.

HSP70

HSP100

Small HSPs 

Hsp70 pulls a polypeptide 
out of the aggregate Retraction of the 

polypeptide

The unfolded protein re-folds 
into the initial structure

Fig.  3.2   The chaperone HSP100 and small HSPs play an important role in the “aggregation-
disaggregation” processes
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sHSPs in damaged cells bind to denatured proteins during the process of aggre-
gate formation (Franzmann et al. 2005; Haslbeck et al. 1999), thereby reducing the 
number of hydrophobic contacts between the denatured polypeptides. This sub-
stantially increases the efficiency of disaggregation and subsequent re-folding (Lee 
and Vierling 2000; Mogk et al. 2003; Matuszewska et al. 2005).

Unfortunately, despite all the cooperative efforts of the chaperones, not all  
proteins restore their native structure after disaggregation. Some of them remain 
damaged. There would be little “debate” with such “incorrigible” proteins: 
the FORD protein quality control system will send them for degradation using 
the mechanism that we have examined in the last chapter. Basically the HSP70 
ATPase cycle, assisted by the co-chaperones, will recognize the irreversibly dam-
aged proteins and, with the help of CHIP, Bag-1 and HSJ1, will ubiquitinate them 
and send them to proteasomes for degradation.

So, irrespective of the type of cell damage (hypoxic, radical or calcium) HSP70 
contributes to cell recovery through restoration of the impaired protein homeosta-
sis. To achieve this “strategic” goal, HSP70 and its partners employs three “tac-
tics”: preventive—HSP70 shields hydrophobic areas of damaged proteins and 
prevents their aggregation; therapeutic—HSP70 disaggregates protein formations 
and facilitates refolding of the disaggregated proteins; and finally the surgical 
tactic—HSP70 labels irreversibly damaged proteins for degradation.

We have just examined how HSP70 can assist in restoring protein homestasis, 
disturbed during various types of cell damage. This is precisely a situation where 
many would say that, since the effect is evident under a variety of damaging con-
ditions, this effect is non-specific. It was noticed a long time ago that, as soon as 
scientists fail to study the problem in depth, they resort to the notion of “non-spec-
ificity”. In our case, the seemingly “non-specific” restoration of protein homeosta-
sis actually has very “specific” protective consequences.

For instance, as mentioned before, normally, HSP70 and CHIP interact with 
the transcription factor HIF-1. Such an interaction leads to HIF-1 ubiquitina-
tion and subsequent removal via proteasomal degradation (Luo et al. 2010). As a 
result, HIF-dependent genes remain inactive. Under hypoxia, denatured proteins 
appear in the cell. This leads to detachment of HSP70 from HIF-1 and the bind-
ing to damaged proteins to which HSP70 has higher affinity. As a result, HSP70 
no longer sends HIF-1 for degradation and the active HIF-1 can enter the nucleus 
to activate genes responsible for adaptation to hypoxia, such as the glycolytic 
enzymes.

It was shown also that, in the case of free-radical damage, HSP70 can limit 
free radical generation by damaged mitochondria (Ouyang et al. 2006; Xu and 
Giffard 1997) and stimulate the activity of antioxidant enzymes, such as catalase, 
glutathione peroxidase (Romero et al. 2010) and superoxide dismutase (Suzuki  
et al. 2002).

Finally, in the case of intracellular calcium overload, it was found that an 
increase in HSP70 levels correlates with a decrease in calcium levels in the cell 
(Szenczi et al. 2005; Sharma et al. 2003). These examples represent specific cases 
where HSP70 plays a role in protecting the cell.
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Protein homeostasis can be disrupted without a cell being damaged, for 
instance when mutant proteins appear. This is another interesting story, in which 
HSP70 plays an important role.

Mutants of p53,1 CFTR or superoxide dismutase (SOD) draw the particular 
attention of HSP70 (Gaiddon et al. 2001; Shinder et al. 2001). HSP70 strongly 
binds to such proteins and does not release them, thus preventing these mutants 
from manifesting their negative effects (Fig. 3.3). This is clearly a good function 
of HSP70, but at the same time it becomes a true time bomb! Such mutant proteins 
can be released when denatured proteins appear in the cell. The denatured proteins 
will attract HSP70 molecules that are in complex with the mutants. It can, for 
instance, happen under stress conditions, at some stages of development or aging, 
when HSP70 synthesis decreases (Neupert and Brunner 2002; Rogue et al. 1993). 
These mechanisms may contribute to the development of pathologies, such as 
oncogenesis, when a mutant p53 is released, neurodegenerative diseases such as 

1  p53—a protein product of a tumor suppressor gene, regulates cell growth and proliferation, 
and prevents unrestrained cell division after chromosomal damage, as from ultraviolet or ionizing  
radiation.The absence of p53 as a result of a gene mutation increases the risk of developing  
various cancers.

HSP70

HSP40

CHIP

Mutant 
protein

Mutant 
protein

HSP40

HSP70

HSP70

Denaturated protein

PATHOLOGY

Mutant 
protein

DEGRADATION

Fig.  3.3   HSP70 can deposit mutant proteins and can release such mutant proteins when  
denatured proteins appear in the cell
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amyotrophic lateral sclerosis when a mutant SOD is released, Parkinsonism when 
a mutant α-synuclein is released and Huntington’s chorea when a mutant hunting-
tin protein is released. Alternatively, HSP70 and its co-chaperones can degrade 
mutant proteins. Such events were shown in relation to mutant CFTR and mutant 
SOD (Meacham et al. 2001; Urushitani et al. 2004).

3.4 � HSP70 and Apoptosis

Finally, in all cases of cell damage, or when mutant proteins appear, in the most 
severe situation the cell dies via an apoptotic cell-death type process. Apoptosis 
can also be induced by activation of death receptors, like Fas or tumor necro-
sis factor (TNF) receptors, decreased levels of growth factors, excessive DNA 
damage, and the effects of drugs and radiation (Martin et al. 1995; Rosette and 
Karin 1995).

Before inducing apoptosis in a cell culture researchers at one Californian 
laboratory activated HSP70 synthesis in cells by heat treatment. The result 
was astounding! In the control group apoptosis developed and the cells died. 
In contrast, apoptosis did not develop in the cells with a high concentration of 
HSP70. With this in view one starts respecting the Finnish sauna even more; as 
researchers (naturally Finnish) have shown, the sauna does activate the synthesis 
of protective HSP70. Thus it was shown that HSP70 can exhibit antiapoptotic 
properties.

Originally it was proposed that the antiapoptotic effect of HSP70 was associ-
ated with the ability of HSP70 to support protein folding and to limit aggregation. 
Subsequent research showed; however, that HSP70 can directly interfere with the 
apoptotic program (Giffard and Yenari 2004; Papadopoulos MC et al. 1996; Sun Y 
et al. 2006).

Apoptosis can be triggered by two main pathways (Leist and Jäättelä 2001): 
mitochondria-dependent and receptor-dependent (Fig. 3.4).

Mitochondria-dependent apoptosis can be activated in response to cell 
stress and intracellular changes induced, for instance, by ischemia (Chan 2004; 
Matsumori et al. 2006; Matsumoto et al. 1999). In this case, apoptosis is initiated 
by release from mitochondria of proapoptotic molecules, such as cytochrome c, 
AIF (apoptosis inducing factor), Smac/DIABLO (Gogvadze and Orrenius 2006) 
and endonuclease G (EndoG) (Garrido and Kroemer 2004). In the cytoplasm, 
cytochrome c interacts with Apaf-1 (apoptosis protease activating factor-1) and 
dATP to form an apoptosome that activates specific protease caspase-9 (Gogvadze 
and Orrenius 2006; Leist and Jäättelä 2001). Caspase-9 then triggers the activation 
mechanisms of other caspases (Slee et al. 1999).

The triggering of mitochondria-dependent apoptosis is closely monitored 
by the Bcl-2 protein family. Bcl-2 is a key antiapoptic member of the family. It 
blocks the release of cytochrome c and AIF from mitochondria, and thus prevents 
the activation of caspases. (Merry and Korsmeyer 1997; Yuan and Yankner 2000).  
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The  Bax protein, a counter-partner to Bcl-2, acts as a proapoptic factor. The  
Bcl-2/Bax balance determines whether a cell will take the apoptotic pathway or not.

Receptor-dependent apoptosis is triggered by death ligands, such as Fas, TNF-α 
and the death receptor ligand (DRL), which activate death receptors on the plasma 
membrane. Through their death domains these receptors activate caspase-8, which 
in turn activates caspase-3 (Thorburn 2004).

The increase in the number of death receptors may be due to the activation of 
the protein kinase c-Jun N-terminal kinase (JNK). The activation of JNK itself is 
stimulated by death receptors (Kitamura et al. 2003).

In both mitochondrial-dependent and receptor-dependent apoptosis, activated 
caspases cleave intracellular proteins, thereby reverting apoptosis to an irreversible 
event (Andrabi et al. 2006; Kauppinen and Swanson 2007). In addition, caspase-3 
activates caspase-activated DNAase that fragments DNA.

Apoptosis may develop even without caspase activation, due to translocation of 
AIF and endonuclease G (EndoG) to the nucleus and induction of chromatin con-
densation and DNA fragmentation.

HSP70 has been shown to block the development of the apoptotic program 
through several mechanisms (Ravagnan et al. 2001; Stankiewicz et al. 2005; Steel 
et al. 2004).
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At the mitochondrial level. It was shown that an increase in the HSP70 level 
leads to an increase in antiapoptotic protein Bcl-2 (Kelly et al. 2002) and a decrease 
in proapoptotic Bax (Stankiewicz et al. 2005). HSP70 blocks the possibility for 
Bax to incorporate into the external mitochondrial membrane, thus preventing the 
increase in permeability of mitochondrial membranes and the exit of cytochrome 
c and AIF (Stankiewicz et al. 2005). In addition, HSP70 can directly block the exit 
of cytochrome c (Lee et al. 2004; Matsumori et al. 2006; Tsuchiya et al. 2003), 
the Smac/DIABLO protoapoptic protein (Jiang et al. 2005) and Apaf‑1(Beere et al. 
2000; Matsumori et al. 2006; Saleh et al. 2000) from mitochondria.

At the post-mitochondrial level. HSP70 can bind to Apaf-1 thus preventing 
the attraction of procaspase-9 to the apoptosome (Saleh et al. 2000), and this com-
plex also inhibits caspase-9 activity (Beere et al. 2000).

At the level of death receptors. HSP70 can reduce the number of death recep-
tors because of inhibition of JNK (Lee et al. 2005; Park et al. 2001). In addition, 
HSP70 can bind to death receptors DR4 and DR5 to inhibit the passage of apop-
totic signals through these receptors (Guo et al. 2005).

At the final stages of apoptosis. HSP70 can limit apoptosis when caspase acti-
vation has already happened; for instance, it can restrict activation of phospholi-
pase A2 and changes in nuclear morphology (Jaattela et al. 1998).

HSP70 can also prevent activation of caspase-independent apoptotic pathways 
(Creagh et al. 2000; Ravagnan et al. 2001) because of the interaction with AIF 
and EndoG, and thus block the translocation of these proapoptotic factors into the 
nucleus (Gurbuxani et al. 2003; Kalinowska et al. 2005; Matsumori et al. 2005; 
Ravagnan et al. 2001; Ruchalski et al. 2006; Sun et al. 2006).

In general, apoptosis is a very serious process. It is needed, first of all, to elimi-
nate from the body cells with dangerous point mutations, cells that do not per-
form their functions any more, and cells that are old or damaged. For this purpose 
each cell already has all necessary molecular instruments for its own “suicide”: 
caspases and DNAases. It is like a story of one ancient tribe in the Amasonian 
forest. Chiefs of that tribe had a very beautiful sword hidden in a particular place. 
Whenever a chief made a mistake, at war or while hunting, he would take the 
sword out and, according to that tribe’s law, would kill himself! Japanese samurai 
followed a similar code of conduct.

However, while no mistake has been made, there is no need to kill yourself. 
That is why the caspase “swords” in a cell are—until the time comes—inactive in 
the form of procaspases, and DNAases are bound to their inhibitors. In this way, 
nature made absolutely sure that apoptosis is not activated by accident. However, 
in the case of caspase-activated DNAase (CAD) the cell “story” of apoptosis 
has one subtlety. While de novo synthesis takes place, DNAase is not bound to 
its inhibitor; so immediately after the translation is over, and before the inhibitor 
binds, it may cause a lot of trouble in the cell.

To solve this problem the cell uses HSP70. HSP70 binds CAD during the trans-
lation process in ribosomes, preventing the enzyme from folding. The folding is 
completed only when the CAD inhibitor ICAD is added to CAD (Sakahira and 
Nagata 2002).
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Therefore, HSP70 not only inhibits the activation of apoptosis, but also pro-
hibits an accidental triggering of apoptosis when dangerous proapoptic factors are 
synthetized de novo.

Such an important role of HSP70 in controlling the development of apoptosis 
means that disruption of HSP70 synthesis or functioning would lead to the devel-
opment of serious diseases. Many tumor cells, for instance, show increased levels 
of HSP70; this correlates with an enhanced resistance of tumor cells to apopto-
sis and with tumor growth (Nylandsted et al. 2000). In contrast, neurodegenerative 
diseases such as Alzheimer’s disease, Parkinsonism, Huntington chorea and amyo-
trophic lateral sclerosis are associated with a decrease in the synthesis of HSP70 
and therefore excessive apoptosis.

When we are analyzing the protective role of HSP70 in a damaged cell, we 
need to take into account another critically important point. As a rule, in all cases 
of cell damage ATP synthesis is disrupted and an energy shortage arises. Here 
we need to recall that homeostatic mechanisms of the FORD machinery, as well 
as the effects of HSP70, are ATP-dependent. So it is important to remember that 
HSP70 can protect the cell only when a decrease in the ATP level is not critical 
for the functioning of the HSP70 ATPase cycle. Whenever the ATP level dramati-
cally decreases (and this may happen with any type of damage) neither FORD 
nor HSP70 will be able to perform their functions. As a result, HSP70 will no 
longer function as a homeostatic regulator, but rather a pathogenetic part of irre-
versible cell damage.

3.5 � What New Have we Learnt From This Chapter 
(Summary)

In this chapter the dramatic story of HSP70 in a damaged cell was presented and 
we can summarize what we have learnt.

1. The protein quality control system (FORD-machinery) matches the structure 
of the homeostatic mechanism of negative feedback.

2. To maintain protein homeostasis in a damaged cell, the FORD-machinery 
prevents protein aggregation, disrupts formed aggregates, and labels “irreparable” 
proteins for proteasomal degradation.

3. In the initial stages of the protein disaggregation process, HSP70 extracts a 
protein from the aggregate and inserts it into the HSP100 channel. Pulling the pro-
tein through the channel leads to the protein unfolding and refolding to the native 
structure.

4. During the process of aggregate formation sHSPs bind to denatured proteins. 
This reduces the number of hydrophobic contacts and substantially increases the 
efficiency of protein disaggregation by other HSPs such as HSP70.

5. HSP70 forms a specific cell defense: (1) against hypoxic injury due to 
HIF‑1; (2) against free-radical injury due to increases in antioxidant activity; and 
(3) against calcium injury due to a decrease in the calcium levels of the cell.

3.4  HSP70 and Apoptosis
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6. HSP70 can deposit mutant proteins. However, such mutant proteins can be 
released when denatured proteins appear in the cell.

7. HSP70 blocks apoptosis by inhibiting the release of proapoptotic factors 
from mitochondria, inhibits proteins such as AIF, caspase-9 and JNK, as well as 
regulate an increase in the Bcl-2 level and a decrease in the Bax level.

8. HSP70 guarantees against unwanted apoptotic events by inhibiting the activity of 
newly produced DNAase until the inhibitor protein binds to this proapoptotic protein.

All of the above allows us to make a general conclusion: HSP70 is a compo-
nent of an intracellular system aimed at maintaining protein homeostasis and pro-
tecting damaged cells.
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Abstract  The main participants that regulate HSP70 synthesis are the HSP70 
genes and the HSF-1 transcription factor. In a non-stressed cell, HSF-1 exists within 
the cytoplasm in an inactive monomer state. The inactive state of the HSF-1 mon-
omer is supported by the «HSP90-p23-immunophilin» complex and, possibly, by 
intramolecular hydrophobic bonds and phosphorylation of specific HSF-1 serine 
residues. HSP70 and HSP40 participate in the formation of the inhibitory com-
plex. Activation of the HSF-1 transcription factor occurs in two steps. The first 
step occurs when emerging denatured and/or misfolded proteins induce removal 
of the negative influence of the «HSP90-p23-immunophylin» complex, trimeri-
zation of the HSF-1, and the binding of trimerized HSF-1 to a specific region of 
the hsp70 promoter, termed the HSE. In the second step, the negative influence 
of the «HSP90-p23-Fkbp52» complex is abolished and transcription is activated. 
Inactivation of HSF-1 and cessation of HSP70 synthesis occurs when HSP70 and 
HSP40 bind to HSF-1, and thus inhibit HSF-1 transcriptional activity. Thus, the 
system of HSP70 synthesis includes an autoregulation mechanism; the ability of 
HSP70 to inactivate its own transcription factor.

Keywords  HSP70  •  HSE  •  HSF-1  •  The HSP70 synthesis

In the last chapter we examined HSP70 functions in a damaged cell. We learnt 
that: (i) to maintain protein homeostasis the FORD protein quality control system 
prevents protein aggregation, disaggregates the formed aggregates and degrades 
misfolded proteins that cannot be retrieved to an active state; (ii) as a result of 
HIF-1 activation, restoration of protein homeostasis forms a specific cell defence 
mechanism against hypoxic, free-radical and calcium injuries; (iii) HSP70 can 
deposit mutant proteins and (iv) HSP70 inhibits apoptosis and protects against the 
accidental triggering of apoptosis in healthy cell.

These points allowed us to make an important conclusion: HSP70 is a com-
ponent of an intracellular system aimed at maintaining protein homeostasis 
and the recovery of damaged cells. Evidence for the protective role of HSP70 
was obtained in many studies (Huot et al. 1991; Jaattela et al. 1992; Parsell and 
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Lindquist 1993; Marber et al. 1995; Mestril et al. 1994; Mehlen et al. 1995; 
Mizzen and Welch 1988; Mosser et al. 1997; Plumier et al. 1995).

At the same time, with an understanding of the key roles HSP70 plays in the pro-
cess of cell reparation and cell defence, another important question emerged: what are 
the mechanisms regulating HSP70 synthesis? This chapter will address this question.

4.1 � The Structure of Genes and HSP70 Transcription 
Factors

The main participants in the regulatory mechanisms for HSP70 synthesis are 
hsp70 genes, forming a whole family; HSF transcription factors are another family 
(HSF-1 will be of particular interest for us); and finally the regulatory mechanisms 
of HSP70 synthesis, which remain unclear.

The human genome contains 17 genes that encode different isoforms of 
HSP70. HSP70 genes are localized in 11 chromosomes 1, 4, 5, 6, 9, 10, 11, 13, 14, 
20 and 21 (Brocchieri et al. 2008).

Figure 4.1 schematically shows the gene encoding HSP70. As with all genes, 
the hsp70 gene contains two main parts: the promoter and the encoding sequence. 
The promoter contains the TATA box and a marker regulatory nucleotide sequence 
for the hsp70 gene, the heat shock consensus element (HSE). RNA polymerase 
recognizes and binds to the TATA box. This part of the promoter is nonspecific 
and is present in all known genes. HSE is a specific unit of the hsp70 gene pro-
moter. HSE contains many adjacent and inverted repeats of the pentanucleotide 
5′-nGAAn-3′ (Fernandes et al. 1994). HSE is necessary for activation of the hsp70 
gene, because factors activating HSF-1 transcription bind precisely to HSE. HSF-1 
binding to HSE causes activation of RNA polymerase and, consequently, gene 
transcription (Lis and Wu 1993; Morimoto 1993; Voellmy 1994; Wu 1995).

By the mid-1990s it was already well known what HSFs existed and their 
structures had been solved. Multicellular invertebrates have only one kind of 
HSF, whereas vertebrates have four different types (Clos et al. 1990; Czarnecka-
Verner et al. 1995; Nakai and Morimoto 1993; Nakai et al. 1997; Nover  
et al. 1996; Scharf et al. 1990; Scharf et al. 1993; Schuetz et al. 1991; Sorger and 
Pelham 1987; Treuter et al. 1993; Wiederrecht et al. 1988). HSF-1, HSF2 and 
HSF4 were discovered in cells of all mammals, whereas HSF3 exists only in birds. 

Fig. 4.1   The gene encoding 
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HSF-1 is a key factor in the stress-induced gene expression in most vertebrates, 
except birds (Ali et al. 1998; Baler et al. 1993; Holmberg et al. 2001; McMillan  
et al. 1998; Sarge et al 1993; Zhang et al. 2002).

Figure 4.2 shows the domain structure and functional aspects of HSF-1. HSF-1 
has a DNA-binding domain (Harrison et al. 1994; Schultheiss et al. 1996; Vuister 
et al. 1994) that is located near the amino terminus (Clos et al. 1990). This domain 
interacts with HSE in the hsp70 gene promoter. The DNA-binding domain is adja-
cent to a long domain with the hydrophobic repeat HR-A/B. This domain is neces-
sary for HSF trimerization (Clos et al. 1990; Peteranderl and Nelson 1992; Sorger 
and Nelson 1989) and trimerization is essential for facilitating DNA-binding. The 
C-terminal region contains a transactivational domain that is required for the acti-
vation of transcription. (Chen et al. 1993; Green et al. 1995; Shi et al. 1995; Zuo 
et al. 1995; Wisniewski et al. 1996). Near the transactivational domain there is 
another sequence of hydrophobic repeats, HR-C. In-between HR-A/B and HR-C 
there is a sequence that, together with these sites, suppresses DNA-binding and 
the transcriptional activity of HSF-1 (Farkas et al. 1998; Green et al. 1995; Hoj 
and Jakobsen 1994; Nieto-Sotelo et al. 1990; Orosz et al. 1996; Rabindran et al. 
1993a, b; Shi et al. 1995; Zuo et al. 1994; 1995).

4.2 � The Mechanism for Activation of HSP70, or the Story 
of How Two Richards Argued

There was no doubt about the general course of events in the activation of 
HSP70 synthesis: it was clear that HSF-1 in normal cells exists in the inactive 
form and cannot bind DNA to activate gene transcription. Under certain condi-
tions, HSF-1 can be activated. Activation of HSF-1 leads to interaction of this 
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Fig.  4.2   The domain structure and functional aspects of HSF-1 (heat shock transcription  
factor 1)
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protein with the hsp70 gene promoter and subsequent transcription of the hsp70 
gene. The inactive form of HSF-1 is a monomer. When HSF-1 is activated, the 
transcription factor trimerizes to form a single active unit. In the trimer state, 
HSF-1 acquires the ability to penetrate into the nucleus and bind to the hsp70 
gene promoter.

One remarkable property of HSP70 is that in the first few hours follow-
ing stress the overall biosynthesis of cellular proteins is significantly depressed, 
whereas the synthesis of HSP70 dramatically increases (Fig. 1.2) and the accumu-
lation of HSP70 proteins can reach a maximum after 2–3 days. Conversely, when 
general protein biosynthesis recovers, HSP70 synthesis decreases and is eventually 
terminated! This indicates that the regulation of HSP70 synthesis differs from the 
regulation of synthesis of most cell proteins.

That was a true challenge to molecular biologists. Many ambitious researchers 
started dealing with the problem and contributed a lot to solving it. First of all, 
it was important to find out what triggers the activation of HSF-1, i.e., whether 
HSF-1 directly perceives physical and chemical changes in a stressed cell or 
whether there are any intermediaries between the stress signal and HSF-1.

The question of whether HSF-1 activation can be induced directly by physi-
cal conditions or chemical factors has been periodically emerging and has left 
researchers baffled. Goodson and Sarge 1995, Larson et al. 1995 and Zhong  
et al. 1998 were among those who spent considerable time trying to understand 
this problem. They showed that in vitro purified or recombinant HSF-1 in the 
monomeric form can be activated independently, i.e., they form trimeric structures 
and acquire DNA-binding activity in response to heat or hydrogen peroxide stress 
(Goodson and Sarge 1995; Larson et al. 1995; Zhong et al. 1998), in response to 
lower pH (pH 6.5) or to the addition of salicylates (Mosser et al. 1990; Zhong  
et al. 1998) in vitro. These results suggest that intrinsic properties of HSF-1 can be 
modulated by its chemical environment.

Some time ago I too was quite interested in the issue. Together with Prof. 
Manukhina and Prof. Vanin, we ran experiments on cultured cells and showed 
that a nitric oxide (NO) donor caused a marked activation of HSP70 synthesis  
(Malyshev et al. 1996a, b; Wiegant et al. 1999). We suggested that this was 
because of the well-known ability of NO to form disulfide bonds (Fig. 4.3). It can-
not be excluded that in the case of HSF-1, NO nitrosylated SH groups of HSF-1 
and thereby induces HSF-1 trimerization and activation. Ahn and Thiele (2003) 
confirmed our hypothesis by showing that oxidation of two cysteines could result 
in the formation of disulfide bonds both in vitro and in vivo under the action of 
heat shock or HSF-1 oxidants. These bonds may possibly contribute to the trimeri-
zation and activation of HSF-1.

However, as often happens, we found a fly in the ointment. A few experiments 
showed that the cysteines that may have formed disulfide bonds between the 
HSF-1 molecules do not play any significant role in the trimerization since mutant 
HSF-1 without these cysteines still had the capability for trimerization under heat 
shock (Orosz et al. 1996; Rabindran et al. 1993a, b; Zuo et al. 1994, 1995).

http://dx.doi.org/10.1007/978-94-007-5943-5_1
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Therefore, many researchers arrived at an idea that was common for a variety 
of HSP70 synthesis inducers in vivo; that all inducers caused the unfolding and 
accumulation of unfolded or damaged proteins (Freeman et al. 1995; Liu et al. 
1996; McDuffee et al. 1997; Senisterra et al. 1997; Zou et al. 1998). Consequently, 
an increase in the level of denatured unfolded proteins can possibly be a trigger for 
HSF-1 activation (Kelley and Schlesinger 1978; Hightower 1980).

As soon as this idea emerged, it was quickly put to the test! How? It was very 
simple! Denatured proteins were administered to cells and it worked! The cells 
responded immediately by activation of HSF-1 and subsequent synthesis of 
HSP70 (Ananthan et al. 1986). These observations clearly indicated that denatured 
proteins triggered activation of HSF-1 and, consequently, HSP synthesis.

Next, it was important to understand how cells translate the information about 
the appearance of denatured proteins to HSF-1 activation mechanisms. The answer 
was right in front of us. Researchers who have studied HSP70 induction certainly 
knew very well that it was the heat shock protein that could best identify and 
bind denatured proteins. Further, researchers reasoned as follows: if HSP binding 
to denatured proteins in a damaged cell leads to HSF activation, then one could 
assume that HSPs were bound to HSF-1 in normal cells, and HSF activation was a 
result of HSP detachment from HSF-1.

Furthermore, Westwood and colleagues discovered that a heat shock to 
Drosophila cells induced HSF homotrimerization (Westwood et al. 1991; 
Westwood and Wu 1993). Subsequent studies on other multicellular animals 
have confirmed this phenomenon (Baler et al. 1993; Sarge et al. 1993). They also 
showed that homotrimerization induced HSF-1 binding to DNA/HSE (Zuo et al. 
1994). It immediately became clear that the trimerized DNA-bound HSF-1 can 
exist in both transcriptionally active and transcriptionally inactive states (Bruce 
et al. 1993; Jurivich et al. 1992). Therefore, it also became clear that HSF-1 
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activation had at least two phases and that the phase of acquiring the DNA-
binding activity and the phase of acquiring the transcriptional activity were regu-
lated by separate mechanisms (Zuo et al. 1995). This finding was confirmed by 
the HSF-1 domain structure (Fig. 4.2): it is the HS-A/B domain that is closer to 
the N-terminus and is responsible for the trimerization, whereas the domain that 
is responsible for the transactivational activity is closer to the C-terminus. (Knauf  
et al. 1996; Zuo et al. 1995).

However, we have approached a real understanding of this issue thanks to two 
Richards: Richard Morimoto and Richard Voellmy. When you read their papers 
(Morimoto 1998; Voellmy 1994; Ananthan et al. 1986), you have a real impression 
of a true scientific competition; the discussion polite in form, but fierce in essence. 
They were rivals, but unwittingly helped each other. As with two athletes, when 
both are running together each one runs faster than if he was running alone. The 
two researchers disagreed on the manner in which the first and the second steps of 
HSF-1 activation were regulated (Fig. 4.4).

Morimoto believed that in normal cells HSF-1 exists in an inactive monomeric 
state due to intramolecular interactions between HR-C, HR-A/B and the HSF-1 
central region (Nakai and Morimoto 1993; Rabindran et al. 1993a, b), as well 
as due to phosphorylation of serine residues Ser303, Ser307, and Ser363 (Knauf 
et al. 1996; Kline and Morimoto 1997; Holmberg et al. 2002). Stabilization of 

Fig. 4.4   Richard Morimoto’s hypothesis versus Richard Voellmy’s hypothesis: the two researchers 
disagreed on the manner in which the HSF-1 activation were regulated
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intramolecular hydrophobic interactions, in this case, was ensured by HSP70 
and HSP90. When denatured proteins appeared in the cell, HSP70 and HSP90 
detached themselves from HSF-1 and formed complexes with the emerging dam-
aged proteins. This led to destabilization of intra-molecular hydrophobic inter-
actions that prevented HSF-1 trimerization. As a result, HSF-1 spontaneously 
trimerized and acquired the ability to bind HSE. In the next stage, according to 
Morimoto, the stress-induced hyperphosphorylation of additional residues Ser230 
and Thr142 took place and this led to the appearance of transcriptional activity 
(Cotto et al. 1996; Hensold et al. 1990; Holmberg et al. 2001; Jurivich et al. 1992; 
Kline and Morimoto 1997; Sarge et al. 1993; Soncin et al. 2003). Indeed it was 
discovered that protein kinases Erk1/2, Gsk3, Jnk, CamkII, Rsk2, Ck2 and Pkc 
phosphorylated HSF-1. However, no direct evidence for intramolecular hydropho-
bic interactions has been observed.

Voellmy proposed an alternative explanation (Fig.  4.4). In essence his 
hypothesis suggested that the HSP90-chaperone complex plays a key role in 
the regulation of trimerization and the appearance of HSF-1 transcriptional 
properties.

The following experimental facts provided the proof for Voellmy’s explana-
tion. First of all, Hsp90 and co-chaperones can interact with HSF-1 (Nadeau  
et al. 1993; Nair et al. 1996). Secondly, Hsp90-binding medicines herbimycin A 
and geldanamycin activate HSF-1 (Hedge et al. 1995; Zou et al. 1998). Thirdly, 
removing HSP90 but not other chaperones, (Zou et al. 1998) or adding HSP90 
antibodies (Ali et al. 1998) induced the DNA-binding activity in HSF-1, whereas 
the administration of purified HSP90 abolished this effect. Finally, excessive 
HSP90 synthesis reduced the heat-shock-induced induction of HSF-1 DNA-
binding activity (Zhao et al. 2002). Interpretation of these results converged to one 
conclusion: HSP90 inhibits HSF-1 activation.

Evidence for the role of a p23 protein (Bharadwaj et al. 1999) and immunophilin 
(Duina et al. 1998) in the inhibition of the DNA-binding properties of HSF-1 was 
obtained in the same way.

Thus, oligomerization of HSF-1 and its DNA-binding activity can, apparently, 
be inhibited through association of monomeric HSF-1 with the HSP90 multi-chap-
erone complex. If so, then such HSP90-HSF-1 complexes should be found in non-
stressed cells and should disappear under stress at a rate comparable to the rate 
of trimerization. Research in the Voellmy laboratory proved that this was exactly 
what happened in cells.

By then other researchers, using Drosophila cells, showed that removal of not 
only HSP90, but also of HSP70 and HSP40 increased the DNA-binding activity 
of HSF-1 (Marchler and Wu 2001). Together all these data allowed Voellmy to  
propose his model of HSF-1 activation (Fig. 4.4).

Initially, during the synthesis in ribosomes, monomeric HSF-1 binds HSP70 
and HSP40. Then these proteins form the multi-chaperone «HSP90-p23-
immunnofilin» complex, which reliably stabilizes the monomeric inactive state of 
HSF-1 in a non-stressed cell. When a cell experiences a stress response, denatured 
proteins appear that “distract” the chaperones and co-chaperones that are part of 

4.2  The Mechanism for Activation of HSP70



54 4  Mechanisms of Activation and Inactivation of HSP70 Synthesis

the HSF-1 inhibitory complex. As a result, the HSF-1 molecules are released from 
the inhibitory effect of the chaperone complex and form homotrimers with DNA-
binding activity.

Then the HSF-1 trimer binds to DNA, and simultaneously the regulatory 
domain of HSF-1 binds to another HSP90-multi-chaperone complex «Hsp90-p23-
Fkbp52» (Guo et al. 2001; Nair et al. 1996), which inhibits HSF-1 transcriptional 
activity. If the cell has significantly high levels of denatured proteins, then these 
misfolded proteins will also “distract” this inhibitory complex, thus removing 
the second constraint and allow HSF-1 to activate hsp70 gene transcription and 
synthesis.

However, data that showed that not all HSF-1 molecules are associated with the 
multi-chaperone complex in a non-stressed cell introduced doubt into the elegant 
Voellmy model. Therefore we cannot exclude that the inactive condition of a part 
of the HSF-1 population may be supported by other mechanisms, different from 
those based on chaperones, for instance by the hydrophobic mechanism suggested 
by Morimoto. In this way, the Morimoto and Voellmy hypotheses no longer “com-
peted”, each one simply showing alternative ways of supporting the inactive state 
of HSF-1.

4.3 � The Mechanism of Inactivating the HSP70 Synthesis,  
or the Story About How Two Richards Agreed

HSP70 synthesis stops when stress recedes and protein homeostasis in the cell 
recovers. Researchers did not disagree about the inactivation of HSF-1 and the 
subsequent decrease of HSP70 synthesis. Here, agreement was reached that upon 
recession of cell stress, HSP70 and HSP40 bind to the trimerized HSF-1, or more 
specifically, with its transactivational domain (Abravaya et al. 1992; Baler et al. 
1992; Halladay and Craig 1995; Mosser et al. 1993; Shi et al. 1995; Shi et  al. 
1998), Together with another protein, HSBP1 (HSF binding protein 1) (Satyal 
et al. 1998) they induce dissociation of HSF-1 from DNA to return HSF-1 to the 
monomeric inactive form. Both Richard Morimoto and Richard Voellmy agreed 
with such explanations.

Another researcher, Boellmann, introduced another intriguing point on the 
mechanism of HSP70 synthesis. He proved that the Daxx protein is an impor-
tant co-factor in activating the transcriptional activity of HSF-1 (Boellmann et al. 
2004). Until now, it remains unclear how Daxx increases the transcriptional activity 
of HSF-1. It could be competing with the Hsp90-p23-Fkbp52 chaperone complex 
for binding to the trimer HSF-1 sites. At the same time there is another interesting 
point! Initially Daxx was described as an amplifier of apoptosis and a repressor of 
the general transcriptional activity (Michaelson 2000). It is amazing how the acti-
vation of the same intracellular protein can lead both to apoptosis, i.e., the death 
program, or to activation of HSP70 synthesis—the life program! Figure 4.5 clearly 
illustrates this paradox—the lack of boundaries between life and death.
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This picture is from the Mark Twain museum in Virginia. Depending on how 
you look at the picture, with eyes wide open or squinting, you will see two com-
pletely opposite things: a skull—a symbol of death, or children—a symbol of life! 
In science, as in life, a lot depends on your view of the world.

4.4 � Regulation of HSP70 Synthesis, the Protein Which 
Supports Protein Homeostasis in a Cell, is Itself Based 
on the Homeostatic Principle

We can make another important conclusion now. It is certainly very interesting 
that HSP70 is involved in the mechanism for controlling its expression. However, 
it hides something greater than the mechanisms of substrate inhibition, which 
are well-known in biochemistry! The activation of HSP70 synthesis occurs when 
denatured proteins appear, i.e., when homeostasis inside the cell is disrupted. The 
existing fraction of HSP70, which inhibits HSF-1, detects the damaged and dena-
tured proteins and binds to them. This HSP70, dissociating from HSF-1, enables 
activation of the transcription factor HSF-1. The active HSF-1 enters the nucleus 
and activates expression of hsp70 genes, which, in turn, increases the synthesis 
of HSP70. The newly synthesized HSP70, using the ATP-ase cycle, either sends 
damaged proteins for refolding, or targets irreversibly damaged proteins to pro-
teasomes or lysosomes, i.e., HSP70 restores the disturbed homeostasis. Only after 

Fig. 4.5   “Life and death”

4.3  The Mechanism of Inactivating the HSP70 Synthesis



56 4  Mechanisms of Activation and Inactivation of HSP70 Synthesis

reaching homeostasis once more in the cell, does the synthesis of HSP70 stop. So 
this is a ready-made mechanism of homeostatic negative feedback! Indeed, the pre-
existing HSP70 fraction serves as a sensor, detecting a disorder in protein home-
ostasis and sending a signal to the transcription factor HSF-1. HSF-1 and hsp70 
genes function as control switches, regulating cellular responses to the disruption 
of protein homeostasis. Finally, the newly synthesized HSP70 functions as effec-
tors of a homeostatic negative feedback mechanism which restores homeostasis.  
A possibility that such a negative feedback mechanism of could exist was sug-
gested many years ago by Lindquist (1980) and Didomenico et al. (1982).

Now we can expand our notion of the homeostatic control mechanism for pro-
tein turnover, which we discussed during the third chapters (Fig.  3.1), by intro-
ducing new elements including HSF-1, the HSP90-chaperone complex, the hsp70 
gene, possible mechanisms of HSF-1 phosphorylation, and some other additional 
regulators, such as Daxx.

4.5 � What New Have we Learnt About the Mechanisms  
of HSP70 Synthesis (Summary) and P.S

We can summarize what we have learnt about the mechanisms of HSP70 synthesis.

1.	 The regulatory element, the HSE promoter, plays a key role in the transcrip-
tion of the hsp70 gene. The interaction of the transcription factor HSF-1 with 
HSE activates the expression of hsp70 gene.

2.	 In a non-stressed cell, HSF-1 is present in the cytoplasm in an inactive 
monomeric state. The inactive state of the HSF-1 monomer is supported by 
the « HSP90-p23-immunophilin  » complex and, possibly, by intramolecular 
hydrophobic bonds and phosphorylation of specific HSF-1 serine residues. 
HSP70 and HSP40 participate in the formation of the inhibitory complex.

3.	 Activation of the HSF-1 transcription factor occurs via two steps. In the first step, 
emerging denatured proteins induce removal of the negative influence of the 
«HSP90-p23-immunophylin» complex, which leads to trimerization HSF-1, and 
this trimer binds DNA. In the second step, the negative influence of the «HSP90-
p23-Fkbp52» complex is abolished and transcription is activated.

4.	 Inactivation of HSF-1 and cessation of HSP70 synthesis are facilitated by the 
interaction of HSP70 and HSP40 with HSF-1. Such an interaction inhibits the 
transcriptional activity of HSF-1 by facilitating dissociation of HSF-1 with 
DNA.

5.	 The HSP70 synthesis system includes an autoregulation mechanism; based on 
the ability of HSP70 to inactivate its own transcription factor.

P.S. When I was trying to figure out how the mechanisms of HSP70 synthesis 
work, I do not know why, but I kept thinking about stories from the Bible. As you 
know, according to the New Testament, Christ suffered on the cross for 3 days. 
During these days he was actually experiencing the most severe psycho-emotional 

http://dx.doi.org/10.1007/978-94-007-5943-5_3
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stress, pain, as well as dehydration and heat shock. With this in mind, I thought 
that over this period his body must have accumulated a significant level of 
HSP70. So, when I learnt that the maximum stress-induced accumulation of 
HSP70 can happen on the third day, i.e., the day when Christ was miraculously 
resurrected, I started thinking, was it just by chance? Moreover, when I remem-
bered about the antiapoptic ability of HSP70, i.e., the ability to defeat death in a 
cell, I suddenly thought: could these proteins be involved in the resurrection of 
Christ!?

However, do not rush to accuse me of naively trying to unravel the nature of 
naive biblical miracles! I remember well that the two others, hanging on the cross 
next to Jesus Christ, did not resurrect! The mystery remained a mystery! However, 
remember, in Chap.  2 I introduced to you how the HSP70-dependent system of 
re-folding and degradation sorts out damaged proteins into those that are liable for 
recovery—they are sent to refolding-“resurrection”—while the irreversibly dam-
aged proteins are sent for degradation. But those two, who were next to Christ on 
crosses, were incorrigible criminals.
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Abstract  HSP70 s play important roles in immune responses. The specific 
physiological context substantially influences the immune functions of HSP70. The 
first factor is the localization of HSP70; whether it is intracellular, on the cell surface, 
or in circulation. Intracellular HSP70 protects the cell and restricts cytokine produc-
tion, whereas extracellular HSP70 stimulates cytokine production and labels cells 
for destruction. The second factor is the type of receptors on the target cells that bind 
HSP70. Signaling receptors, such as the toll-like receptor (TLR), confer to HSP70 the 
ability to activate cytokine production and stimulate the innate response, whereas scav-
enger receptors help HSP70 to deliver antigens to antigen-presenting cells and there-
fore stimulate an adaptive response. The third factor is the circumstances of synthesis 
and release of HSP70 from the cell. For example, in the case of microbial invasion, 
HSP70 s are involved in the formation of antigen-dependent immune memory, and in 
the case of different stresses in the formation of antigen-independent immune memory.

Keywords  HSP70  •  Immunity  •  Immune  memory  •  Inflammation  • 
Cytokines  •  NFkB

Humans have always been inclined to believe that they have a very special place 
in nature that is different from all other living species. Only humans invented the 
wheel and learned how to make fire. Only humans created great civilizations that 
changed the world in the ways that no other organism could do. Therefore for a 
long time it seemed natural that the human body lives and gets sick according 
to its own human laws. That is why until the 16th century diseases were studied 
using an anatomical approach, i.e., when people dissected other people.

However, physicians could not study the causes and pathogenesis of diseases 
simply by performing autopsies. Fortunately, help came from Darwin’s theory 
of evolution. The theory proved that the major principles of normal development 
are the same for all living organisms. Subsequently, one smart pathophysiologist 
got the idea that diseases in different species also develop according to the same 
common laws. That means, he thought, that human diseases can be studied using 
animals and even bacteria. His name was Claude Bernard. Therefore, once again, 
after the homeostasis theory, we have to say “thank you, Claude Bernard!” Thanks 
to research on animals, cells and bacteria we have developed an understanding 
about the important role of HSPs in normal and damaged cells.

Chapter 5
HSP70 in the Immune Responses

I. Malyshev, Immunity, Tumors and Aging: The Role of HSP70,  
SpringerBriefs in Biochemistry and Molecular Biology,  
DOI: 10.1007/978-94-007-5943-5_5, © The Author(s) 2013
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This chapter starts by examining medical aspects of HSP70, beginning with the 
role of HSP70 in immune responses.

5.1 � Immune Response: Steps of Development

Figure  5.1 shows the main steps of development of innate and adaptive immu-
nity. Macrophages are the first to detect pathogens in the body. Interacting with 
intracellular organisms—viruses and bacteria—macrophages produce pro-
inflammatory cytokines, such as IL-12 and TNF-α, as well as chemokines 
(Janeway et al. 2005; Mantovani et al. 2004, 2006; Mantovani 2006). These 
chemokines attract natural killers, neutrophils and T-cells into the focus of inflam-
mation (Boehm et al. 1997; Sharma 2010). IL-12 and TNF-α affect the activity of 
natural killer cells and macrophages, and an increase in the secretion of IFN-γ by 
these cells is observed. IFN-γ further stimulates macrophages to produce IL-12 
and TNF-α, and this cytokine also enhances the phagocytic and bactericidal prop-
erties of macrophages (Trost et al. 2009; Nelson 2001).

When interacting with the extracellular parasites—fungi and worms—
macrophages produce anti-inflammatory cytokines, such as IL-10 and chemokines 
(Mantovani et al. 2004; Mantovani 2006; Mantovani et al. 2006; Martinez et al. 
2006). These chemokines attract T lymphocytes, eosinophils and basophils, which 
produce IL-4 and IL-13. IL-4 and IL-13 stimulate macrophages to further produce 
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IL-10 (Kaplan 2001; Falcone et al. 2000). IL-10 reduces the production of pro-
inflammatory cytokines (D’Andrea et al. 1993), reactive oxygen species and NO 
(Hu et al. 1995) and, therefore, reduces the bactericidal properties of macrophages.

This step marks the development of the innate immune response.
To successfully remove the pathogen, the body launches an adaptive immune 

response. How does this happen?
Antigens of intracellular microbes, the pro-inflammatory phenotype of mac-

rophages and its cytokines TNF-α, IL-12 and IFN-γ potentiate the development of 
Th0 cells into Th1 cells. The response of Th1 cells helps to neutralize viruses, bac-
teria and cancer cells (Mantovani et al. 2004). Antigens of extracellular parasites, 
the the anti-inflammatory phenotype of macrophages and its cytokines IL-10 and 
IL-4 potentiate the development of Th0 cells into Th2 cells (Sieling et al. 1993). 
The Th2 humoral response neutralizes extracellular bacteria, parasites and toxins.

5.2 � HSP70 Protects Immune Cells, but “A Spoon is Dear 
When Lunch Time is Near”

At the point of an inflammation, macrophages are considered to be in unfavora-
ble conditions. To survive, macrophages start synthesizing protective HSP70. This 
HSP70 synthesis is activated by cytokines and NO, which are produced by mac-
rophages themselves. Thus, the first obvious function of HSP70 in the immune 
response is to protect immune cells from damaging inflammatory factors.

The example of the role of HSP70 in inflammation will show an enormous dif-
ference between the laws of mathematics and biology. No one has ever doubted the 
law of mathematics saying that changing the order of the addends does not change 
the sum; 2 + 3 and 3 + 2 will always equal five. However, it works differently in 
biology (Fig.  5.2). For instance, it was shown that prior accumulation of HSP70 
protects cells from inflammation. If you “change the order of addends” and activate 

Fig. 5.2   The heat shock 
paradox: prior accumulation 
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the HSP70 synthesis after the initial stages of inflammation, the cells will die! This 
situation is called the heat shock paradox. Inflammation simultaneously induces 
both anti-apoptotic and pro-apoptotic pathways. If HSP70 synthesis is activated 
before inflammation, HSP70 will block apoptosis, whereas if HSP70 is activated 
after the start of inflammation, it will enhance apoptosis. Thus, the activation of 
HSP70 synthesis must be timely. Indeed, “a spoon is dear when lunch time is near”.

5.3 � Role of HSP70 in the Development of the Innate 
Response, or the Duplicity of the Chaperone

Activation of HSP70 synthesis and its accumulation in macrophages is important 
for the development of the innate response (Fig. 5.3). HSP70 s have been shown 
to block the activation of pro-inflammatory cytokine genes through inhibition of 
a cytokine transcription factor—nuclear factor-kB (NF-kB) (Cahill et al. 1996, 
1997; Housby et al. 1999; Ianaro et al. 2001; Ding et al. 2001; Xie et al. 2002a, b). 
As mentioned, HSP70 synthesis in macrophages can be activated by these same 
cytokines. This means that the accumulation of HSP70 in the cell closes the nega-
tive feedback. This regulatory mechanism restricts excessive production of pro-
inflammatory cytokines, which may kill neighboring normal cells and thereby 
does not allow the situation of “an innocent passer-by syndrome” during inflam-
mation (Yoo et al. 2000; Zugel et al. 1999; Lindquist and Craig 1988).

It was long thought that HSP70 is a typical intracellular protein. However, since 
the late 1980 s, more exceptions have appeared. For example, researchers began 
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finding HSP70 molecules on the surface of normal, infected and tumor cells, and 
also in the blood stream (Hirsh et al. 2006; Egan and Carding 2000; Multhoff et al. 
1997; Di Cesare et al. 1992; Ferrarini et al. 1992; Poccia et al. 1996; Sapozhnikov 
et al. 2002; Hashiguchi et al. 2001; Carding and Egan 2000; Belles et al. 1999; 
Johnson and Fleshner 2006; Tytell et al. 1986; Hightower and Guidon 1989; 
Mabula and Calderwood 2006a, b)

Significant efforts have been made to answer two key questions: how do these 
proteins exit cells? What is the function of extracellular HSP70?

First of all, the conditions under which HSP70 s are found outside the cell have 
been analyzed, as well as what types of cells can release HSP70.

It appeared that a variety of cells, such as neurons, monocytes and macrophages, 
B cells and tumor cells (Robinson et al. 2005; Clayton et al. 2005; Davies et al. 
2006) can release HSP70 under very different circumstances: (i) in severe heat 
shock or under the action of toxic substances (Mabula and Calderwood 2006a, b; 
Todryk et al. 1999); (ii) necrosis (Wewers 2004; Mabula and Calderwood 2006a, b); 
(iii) various diseases (Wright et al. 2000; Pockley 2002; Pockley et al. 2003); 
(iv) aging (Terry et al. 2004); and (v) under various types of stress conditions and 
physical exercise (Campisi and Fleshner 2003; Pockley 2002; Fleshner et al. 2006; 
Fleshner and Johnson 2005; Pittet et al. 2002).

An analysis of this list shows that in most cases cells release HSP70 in patho-
logical conditions, wherever there is cell damage and necrosis. This immediately 
leads to an obvious conclusion: the appearance of HSP70 in the extracellular 
space may be related with cell lysis and the discharge of intracellular contents 
(Srivastava 2003; Calderwood 2005).

Is necrosis the only mechanism for the release of HSPs from cells? The second 
part of the list clearly indicates that it certainly is not! Physiological stress and physi-
cal activity are not accompanied by cell necrosis. Experiments have also confirmed 
that glial, (Guzhova et al. 2001), tumor (Gastpar et al. 2005), mononuclear (Lancaster 
and Febbraio 2005) and B cells (Clayton et al. 2005) can release HSP70 in the 
absence of detectable cell death. So there must be other mechanisms involved.

The studies of Lancaster and Febbraio (2005) and others (Gastpar et al. 2005; 
Clayton et al. 2005; Lancaster and Febbraio 2005; Bausero et al. 2005) showed 
that exosomes provide the main pathway for the physiological release of HSP72 
(Fig.  5.4). Furthermore, Johnson and Fleshner (2006) established that the 
increased output of HSP70-containing exosomes during physiological stress is 
a result of the activated sympathetic nervous system and norepinephrine release. 
Norepinephrine, through the activation of adrenergic receptors, increases intra-
cellular Ca2+ (Guarino et al. 1996), which stimulates the release of HSP70-
containing exosomes (Savina et al. 2003).

Thus, the lysis of cells in pathological situations or hormone-dependent release 
of exosomes in normal conditions represents the main mechanisms of HSP70 
release from cells.

What consequences may result from the emergence of HSP70 on the cell sur-
face or in circulation? The structural similarity between the microbial and human 
HSP70 s (Karlin and Brocchieri 1998) was a good tip for those who reflected on 

5.3  Role of HSP70 in the Development of the Innate Response
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the role of extracellular HSP70! The first who used this “tip” was Dr. Shinnick 
(Shinnick et al. 1996). He was the first to suggest the similarities and then, along 
with others, showed that extracellular HSP70 may trigger a strong immune 
response (Zügel and Kaufmann 1999; Shinnick 1991).

Different immune cells were shown to be able to recognize HSP70 on the cell 
surface. For example, on the surface of tumor cells, HSP70 s are recognized by 
natural killer cells, dendritic cells and cytotoxic T-cells. This recognition enables 
natural killer cells to kill virus-infected and tumor cells (Multhoff 2002; Multhoff 
et al. 1997, 1999; Moser et al. 2002; Gross et al. 2003a, b; Gastpar et al. 2004), 
and dendritic (Chen et al. 2009) and cytotoxic T-cells are activated (Srivastava 
2002a, b).

Thus, it became clear that endogenous HSP70 exposed on the outer surface of 
cell membranes contributes to the development of innate and adaptive immune 
responses.

In parallel, scientists were focusing on free HSP70 found in circulation. Here, 
too, interesting and important details have emerged. It turned out that circulating 
HSP70 can bind to the outer membrane of macrophages, dendritic cells and T-cells 
(Srivastava 2002a, b; Gross et al. 2003a, b; Figueiredo et al. 2009). Subsequently, 
HSP70 was shown to bind microbial products and modulate toll-like receptor1 

1  Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune 
system. They are membrane-spanning receptors that recognize structurally conserved molecules 
derived from microbes.
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(TLR)-dependent signaling mechanisms (Osterloh et al. 2007). These studies sug-
gested that circulating free HSP70 may be involved in the immune response.

Starting in 1993, this hypothesis has received strong support. Since then, 
multiple studies have reported that HSP70 preparations isolated from mammals 
(Asea et al. 2000a, b; Basu et al. 2000; Somersan et al. 2001; Panjwani et al. 2002) 
and recombinant human HSP70 (Vabulas et al. 2002; Asea et al. 2000a, b; Asea 
et al. 2002; Dybdahl et al. 2002) can activate the innate response. These stud-
ies have demonstrated that free extracellular HSP70 stimulates production of 
the proinflammatory cytokines TNF-α (Campisi and Fleshner 2003; Asea et al. 
2000a, b), interleukin 1 (IL-1) (Campisi and Fleshner 2003; Asea et al. 2000a, 
b), IL-6 (Campisi and Fleshner 2003; Asea et al. 2000a, b), and IL-12 (Multhoff 
et al. 1999; Breloer et al. 2001), NO (Campisi and Fleshner 2003; Panjwani et al. 
2002) and chemokines in monocytes, macrophages and dendritic cells (Asea  
et al. 2000a, b; Srivastava 2002a, b; Panjwani et al. 2002; Lehner et al. 2000a, b). 
Furthermore, the ability of HSP70 to stimulate the production of innate response 
mediators did not depend on whether the peptide (antigen) was bound to HSP70 
(Asea et al. 2000a, b).

It was also reported that free HSP70 induces the maturation of dendritic 
cells, because it has been shown that an increase in the number of major histo-
compatibility complex2 (MHC) class I and II molecules occurs, and also an 
increase in the levels of co-stimulatory molecules Cluster of Differentiation 80 
(CD80), CD86 and CD40 (Basu et al. 2000; Somersan et al. 2001; Wang et al. 
2002).

In science, establishment of an interesting scientific phenomenon, especially 
a medically relevant one, has always been a powerful incentive and motivation 
to search for mechanisms of this phenomenon. This was certainly the case with 
HSP70 s role in the immune response! Studies have determined that the cytokine 
effects of HSP70 are mediated through CD40 and CD14/TLR (2 and 4) signal-
ing pathways of NFκB and mitogen-activated protein kinases (MAPK) activa-
tion (Vabulas et al. 2002; Asea et al. 2000a, b; Asea et al. 2002; Basu et al. 2000; 
Somersan et al. 2001; Srivastava 2002a, b; Gross et al. 2003a, b; Asea et al. 2000a, 
b; Quintana et al. 2004; Quintana and Cohen 2005).

HSP70 also interacts with CD91 in antigen-presenting cells and other types of 
immune cells (Basu et al. 2001; Binder et al. 2000a, b)

Thus, the role of HSP70 in the innate response depends on its localiza-
tion in a polar way. Such “duplicity” of a chaperone at the molecular level is 
explained by HSP70 having different “targets”: intracellular HSP70 aids the 
maintenance of protein homeostasis and inhibits NFkB, a cytokine transcrip-
tion factor, whereas extracellular HSP70 attracts killer cells and activates 
receptors activating NFkB.

2  Major histocompatibility complex (MHC) is a cell surface molecule encoded by a large gene 
family in all vertebrates. MHC molecules mediate interactions of immune cells, with other leuko-
cytes or body cells. In humans, MHC is also called human leukocyte antigen (HLA).

5.3  Role of HSP70 in the Development
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5.4 � HSP70 as an Informer of the Immune System 
that Detects Damages to the Body

Naturally the question arises: what is it all for? What is the biological ration-
ale for HSP70 being involved in the immune response? According to Cao 
(Chen and Cao 2010) and Ireland (Williams and Ireland 2008) HSP70, which 
is released at the site of tissue damage, enters into the circulation system and 
performs cytokine-like functions. Consequently, HSP70 can serve as a signal of 
damage or alert the host immune system. This hypothesis was further confirmed 
when an increase in circulating HSP70 was found in different diseases: renal 
disease (Wright et al. 2000), hypertension and atherosclerosis (Pockley et al. 
2003).

This would all be very well; however, the level of HSP70 in the blood can 
increase in response to physiological stress or physical exercise (Fleshner et al. 
2004; Lancaster et al. 2004; Campisi and Fleshner 2003; Campisi et al. 2003; 
Fleshner et al. 2003; Walsh et al. 2001; Febbraio et al. 2002), even when there is 
no tissue damage or medical condition. This understanding leads us to an impor-
tant conclusion, which does not counter, but expands the concept of the “alarm” 
signals: the stress-induced release of HSP70 is a feature of a normal stress 
response (Fleshner et al. 2006), and HSP70 plays a signalling role to inform the 
innate immunity about the presence of stress.

5.5 � The Role of HSP70 in the Development of an Adaptive 
Response, or the Antigenic Escort

Immune effects of extracellular HSP70 are not restricted to the innate response. 
HSP70 was found to play an important role in the adaptive response (Srivastava 
2002a, b), namely, in the activation and maturation of dendritic cells in the anti-
gen presentation and activation of T-cells (Srivastava 2002a, b; Lehner et al. 2004; 
Srivastava and Heike 1991; Srivastava 2002a, b; Srivastava et al. 1994; Li et al. 
2002; Calderwood et al. 2007; Pockley et al. 2008).

The role of HSP70 in the activation and maturation of dendritic cells is defined 
by the fact that HSP70 stimulates migration of dendritic cells (Binder et al. 2000a, 
b) and increases the expression of surface CD40, CD83, CD86 and MHC class II 
molecules (Basu et al. 2000; Singh-Jasuja et al. 2000; Asea et al. 2002; Noessner 
et al. 2002).

However, HSP70 plays the most significant role in antigen presentation. HSP70 
may be involved in antigen presentation at three key stages of this process (Javid 
et al. 2007; Noessner et al. 2002): (1) during formation of the complex with a pep-
tide antigen; (2) during antigenic peptide delivery to antigen-presenting cells and 
of the antigen transfer into the cell; and (3) during intracellular chaperoning of 
antigens to the MHC class I molecules.
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The HSP70-antigen complex can form both outside and inside cells, and be 
released during necrosis (MacAry et al. 2004; Noessner et al. 2002; Singh-Jasuja 
et al. 2000; Grossmann et al. 2004; Suto and Srivastava 1995). In performing the 
chaperone functions, HSP70 binds the antigenic peptide via the substrate domain 
(Zhu et al. 1996). In situations with low ATP levels, HSP70 exists in the ADP-
bound form, and thus strongly retains the protein substrate (see Chap. 1). Now it 
becomes clear that the shortage of ATP in damaged cells and low blood levels of 
ATP will contribute to the formation of the “HSP70-antigen” complex.

How important is the binding of the antigen to HSP70? Extremely important! 
Several studies have shown that “HSP70-antigen” complexes significantly poten-
tiate the activation of T-cells (Li et al. 2002; Bendz et al. 2007) and anti-tumor 
immunity (Javid et al. 2004) compared with scenarios with the antigen alone or 
without a HSP.

On the surface of antigen presenting cells the HSP70-antigen complex can 
bind to either signaling receptors such as TLR2, TLR4 and CD91, or to scavenger 
receptors (SR), such as LOX-1, SREC-1, FEEL-1/CLEVER-1 and CD91 (Arnold-
Schild et al. 1999; Singh-Jasuja et al. 2000; Theriault et al. 2005; Delneste et al. 
2002a, b; Theriault et al. 2006). Binding of the complex to signaling receptors 
results in the activation of cytokine production, i.e., the induction of an innate 
response. The interaction with the scavenger receptors or CD91 results in recep-
tor-mediated endocytosis of the complex (Li et al. 2002; Basu et al. 2001; Todryk 
et al. 1999; Delneste et al. 2002a, b; Chu and Pizzo 1993; Binder et al. 2000a, b, 
2004; Takemoto et al. 2005) and the antigen entry into the cell.

When an antigenic peptide enters the cell, HSP70 continues to “chaperone” 
the antigen and transports it to the endoplasmic reticulum (Srivastava 2002a, b; 
Martin et al. 2003). HSP70 enters into the cell in the ADP conformation, which 
allows HSP70 to securely hold the protein antigen, thereby ensuring that the 
peptide is not released. The antigen-presenting cell, in contrast to the extracel-
lular space and circulation, has singificant ATP levels and nucleotide-exchange 
factors. Therefore, HSP70 readily exchanges ADP for ATP and, in the ATP con-
formation, releases the bound peptide antigen to facilitate entry into the endo-
plasmic reticulum.

In the endoplasmic reticulum, the preparation for the immune antigen presenta-
tion continues. There, other heat shock proteins, namely HSP90, bind the deliv-
ered antigenic peptides and transport them to class I MHC to present the antigen 
on the surface of antigen-presenting cell for interaction with CD8+ receptors on T 
lymphocytes (Li et al. 2002; Ishii et al. 1999; Srivastava 2008) and activation of 
adaptive immunity.

It may appear strange and unlikely that one molecule performs so many 
immune functions. Multiplicity of receptors for HSP70 on the surface of immune 
cells explains the immunological multifunctionality of HSP70. TLR, for exam-
ple, confers to HSP70 the possibility to activate cytokine production in an NFkB-
dependent way and to stimulate the innate response, whereas SR allows HSP70 
to deliver antigenic peptides into antigen-presenting cells (Li et al. 2002) and to 
stimulate the adaptive immune response (Fig. 5.5).

5.5  The Role of HSP70 in the Development of an Adaptive Response
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Thus, extracellular HSP70 can play a molecular immune switch role, toggling 
between innate and adaptive responses (Wang et al. 2005).

At the same time, it appeared quite interesting that the ability of HSP70 to 
stimulate innate and adaptive responses involves different domains of the HSP70 
molecule (Lehner et al. 2004; Wang et al. 2002, 2005; Lehner et al. 2000a, b). The 
C-terminal domain stimulates production of chemokines, IL-12, TNF-α, NO and 
binds to CD14, TLR4, and CD40 on antigen-presenting cells, i.e., stimulates the 
innate response (Lehner et al. 2004; Wang et al. 2001, 2002, 2005; Lehner et al. 
2000a, b). The substrate domain binds the antigenic peptide and thus stimulates 
the antigen presentation and the adaptive response (MacAry et al. 2004). Finally, 
the N-terminal ATPase domain, through the ADP/ATP exchange, regulates both 
binding and release of the antigenic peptide, which may be related to stimulation 
of both the innate and adaptive responses.

5.6 � HSP70, Immune Memory Cells, or “I Remember 
Everything That did Not Happen to Me!”

Perhaps the most important consequence of immune responses to a specific patho-
genic antigen is the formation of immunological memory. Immunological memory 
is the ability of the immune system to respond more quickly and effectively to the 
antigen with which the body has already met. Such memory is ensured by pre-
existing antigen-specific clones of B- and T-memory cells. Therefore, when the 
antigen re-enters the body, memory cells will recognize the antigen and will form 
an immune response more quickly and effectively.

Among scientists, the thesis of antigen-specificity of the immune memory 
became a sort of “unquestionable truth” since Karl Landsteiner (1868–1943, 
Austria) predicted the existence of such a memory almost 100 years ago, and it 
has never been questioned. Until 2010, Dr. Thomas Lehner from the National 
Institutes of Health did not question this dogma either. However, when he was 
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studying the role of HSP70 on the surface of dendritic cells some doubt crept 
into his mind (Wang et al. 2010). In this study, HSP70 appeared on dendritic 
cells after heat or oxidative stress. The emergence of HSP70 resulted in the acti-
vation of NFkB and a subsequent increase in IL-15 on the surface of dendritic 
cells (Fig.  5.6). These IL-15 molecules bound to their receptors on the sur-
face of CD4(+)T-cells to induce the appearance of CD40 ligands on the surface 
of T-cells and proliferation of T-cells. The CD40 ligand on CD4(+)T cells, in 
turn, reactivated CD40 on dendritic cells, inducing maturation of dendritic cells 
and an increase in the expression of IL-15. Thus a positive feedback mechanism 
was formed, which stimulated the formation of CD62L(+) T memory cells from  
CD4 (+) T cells.

Thus it was first shown that T memory cells can be formed independently of the 
antigen and MHC class II molecules, and that stress-induced HSP70 on the sur-
face of dendritic cells plays the leading role in this process!

However, until that time “the classic of the immune genre” assumed that 
without the antigen and the MHC-II-TCR interaction neither activation nor pro-
liferation of T cells happened! Open any textbook on immunology and you will 
see that the formation of T memory cells is considered only in the context of 
antigen-specificity.

But why does the immune system need to form antigen-independent memory 
and to remember what stress represents? In humans, high temperature and stress 
accompany virtually all specific infections, so the formation of an immunologi-
cal memory of stress through an emerging pool of antigen-independent T memory 
cells may help the body to cope faster with any new infection. This phenomenon 
could be defined as the phenomenon of cross-immunological memory. In this phe-
nomenon, stress-induced HSP70 allows the immune system to respond to a new 
infection as if the immune system somehow knew and remembered the infection, 
though there has never been any previous contact.

Fig. 5.6   T memory cells can 
be formed independently of 
the antigen and MHC class 
II molecules, and HSP70 on 
the surface of dendritic cells 
plays the leading role in this 
process
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5.7 � HSP70 in the Termination of Inflammation

A rapid immune response to penetrating pathogens is certainly important for the 
host defense against infection. However, termination of this response is equally 
important to prevent damage to tissue by toxic mediators of inflammation. Activated 
macrophages and neutrophils release the largest amount of these mediators. 
Therefore, timely removal of these cells is a prerequisite for a proper shutdown of 
inflammation. It was found that one of the mechanisms for removing the inflamma-
tory cells is associated with HSP60 and HSP70. Basically, this is how it works.

In the conditions of excessive inflammation, macrophages and neutrophils 
increase HSP60 and HSP70 synthesis, and expose them to their surface (Fig. 5.7). 
HSP molecules in mammals resemble microbial counterparts, and therefore 
phagocytes decorated with HSP60 and HSP70 are recognized by the special 
γδT killer cells as target cells (O’Brien et al. 1992). These γδT cells recognize 
the “death” label (HSPs), and kill the overactivated immune cells that have been 
destroying the pathogenic bacteria (Hirsh et al. 2006). Just like in the criminal 
world, where the assassin kills the killer after the murder.

In contrast to the criminal world, however, the removal of the long-activated 
immune cells, serves to protect the host organs from being damaged by aggres-
sive phagocytes (Hirsh et al. 2004, 2006; Moore et al. 2000; Chung et al. 2006; 
Saunders et al. 1998; Tam et al. 2001). Indeed, it has been shown that γδT cells 
that recognize HSP60 and HSP70 play an important role in protecting the body 
from secondary damage, such as immune responses to peritoneal sepsis (Hirsh 
et al. 2004, 2006), experimental Listeria monocytogenes (Kimura et al. 1998), 
Mycobacteria tuberculosis (Beagley et al. 1993) or Plasmodium malariae (Tsuji 
et al. 1994).

Thus HSP70 and HSP60, by attracting γδT cells, play an important role in 
removing excessively activated phagocytes, and consequently, in the natural ter-
mination of inflammation and recovery following infection (Born et al. 1999; Egan 
and Carding 2000; Carding and Egan 2000; Belles et al. 1999).

Fig. 5.7   The role of 
HSPs in the termination of 
inflammation: HSP70 and 
HSP60, by attracting γδT 
cells remove excessively 
activated phagocytes, and 
consequently, terminate 
inflammation and provide 
recovery following infection
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5.8 � Some Doubts About the Role of HSP70 in the Immune 
Response: Dr Gao’s Fly in the Ointment

Immunnomodulating properties of extracellular HSP70 have been so impressive 
that it caused enormous interest and a huge increase in the number of articles on 
this subject followed. A large number of beautiful hypotheses were put forward. 
However, in early the 2000s Dr. Gao had sounded a warning that was in disagree-
ment with the general consensus (Gao and Tsan 2003a, b). He and his colleagues 
had found that many of the HSP70 immune effects in vitro may be due to lipopol-
ysaccharide3 contamination of exogenous HSP70 preparations. As often happens; 
“The great tragedy of science −  the slaying of a beautiful hypothesis by an ugly 
fact” (Huxley 1870).

All cytokine-like effects in vitro have been carefully re-checked on HSP prepa-
rations, thoroughly cleaned of contamination. Together with Gao (Gao and Tsan 
2003a, b; Tsan and Gao 2004; 2007) Wallin et al. (2002), Bausinger et al. (2002), 
Reed et al. (2003), Osterloh et al. (2007) and Bendz et al. (2008) all indicated that 
the cytokine effects of HSPs are unlikely to be correct.

Thus, any in vitro studies should be interpreted with care. Nonetheless, the data 
obtained in vivo have been so convincing that we can in good faith repeat once 
again a well-founded conclusion that endogenous extracellular HSP70 contributes 
to the development and termination of immune responses.

It is important to keep in mind that the immune effects of HSP70 are highly 
dependent on several factors.

The first factor is the localization of HSP70 to either intracellular, cell surface, 
or circulation. Intracellular HSP70 protects the cell and restricts cytokine produc-
tion, whereas extracellular HSP70, in contrast, stimulates cytokine production and 
labels cells for destruction.

The second factor is the type of receptors on the target cells that bind HSP70. 
Signaling receptors, such as TLR, confer to HSP70 the ability to activate cytokine 
production and stimulate the innate response, whereas scavenger receptors help 
HSP70 to deliver antigens into antigen-presenting cells and stimulate an adaptive 
response.

The third factor relates to the synthesis and release of HSP70 from the cell. For 
example, in the case of microbial invasion, HSP70 is involved in the formation of 
antigen-dependent immune memory, and in the case of different stresses HSP70 is 
involved in the formation of antigen-independent immune memory.

Thus, the specific physiological context substantially influences the immune 
functions of HSP70. This is a warning to all researchers: refrain from any global 
statements about the role of HSP70 in the immune response in vivo.

3  Lipopolysaccharides are large molecules consisting of a lipid and a polysaccharide joined by a 
covalent bond. They are found in the outer membrane of Gram-negative bacteria, act as endotox-
ins and elicit strong immune responses in animals.

5.8  Some Doubts About the Role of HSP70
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Abstract  Depending on the location, HSP70 has different, often opposite effects on 
carcinogenesis. Intracellular HSP70 contributes to tumour development by: (1) sup-
porting protein homeostasis in a tumour cell, thus protecting the cell from the adverse 
conditions of external inflammation; (2) contributing to the proliferation of tumour 
cells because HSP70 stabilizes cyclin D1; and (3) suppressing oncogene-induced 
apoptosis and the aging program. As a result, intracellular HSP70 creates the most 
favourable internal conditions for tumour growth. Membrane-associated and extra-
cellular HSP70, in contrast, mainly aid the immune system to destroy the tumour. 
Extracellular HSP70 may participate in antigen-presentation of a tumour specific anti-
gen and facilitate the development of anti-tumour adaptive responses. Extracellular 
HSP70 released from tumour cells, can influence the immune system even in the 
absence of an antigenic peptide. Natural killer cells can recognize HSP70 located on 
the tumour cell membrane as a tumour-specific structure. Along with natural killer 
cells, T memory cells can also recognize and kill HSP70-positive tumour cells.

Keywords  HSP70  •  Immunity  •  Tumor  •  Apoptosis  •  Cell senescence  •  P53

In the previous chapter I discussed the role of HSP70 in the development of an 
immune response. This role can be briefly summarized by three main concepts:

The first concept: intracellular HSP70 protects the cell and limits cytokine pro-
duction, whereas extracellular HSP70, in contrast, stimulates cytokine production 
and labels cells for destruction.

The second concept: signalling receptors, such as TLR, confer to HSP70 the 
ability to activate cytokine production and stimulate the innate response, whereas 
scavenger receptors, such as SR, help HSP70 to deliver antigens to antigen-pre-
senting cells and stimulate an adaptive response.

The third concept: in microbial invasion, HSP70 is involved in the formation 
of antigen-dependent immune memory, whereas under various stress conditions, 
HSP70 is involved in the formation of antigen-independent immune memory.

So what happens when the synthesis of these proteins is disrupted?
Some effects are obvious (Fig.  6.1). If macrophages lose the ability to syn-

thesize protective HSP70, they die, and this considerably weakens the immune 
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response. An insufficient extracellular level of HSP may lead to a decrease in 
cytokine production, errors in antigen presentation and, therefore, to an inadequate 
immune response.

However, there is another, perhaps more dramatic consequence of dysfunc-
tional HSP70 synthesis and function, namely the inefficiency of immune sur-
veillance and the role of HSP70 in carcinogenesis. Evaluating the role of HSP70 
in carcinogenesis is not an easy task. There are more than two hundred types of 
tumours, each with its own characteristics (Tang et al. 2005) (Hahn and Weinberg 
2002) and HSP70 is involved in many stages of tumour growth: proliferation, 
blocking apoptotic and senescence programs, invasion and metastasis (Romanucci 
et al. 2008). Here we will talk about the key immunological aspect.

It is obvious that ineffective immunity leads to a significant increase in cancer 
cases and premature death of patients. Failure of the immune system and mod-
ern medicine to resist the onslaught of transformed cells poses a real threat to the 
evolution of Homo Sapiens! By the way, a hypothesis on the extinction of dino-
saurs proposes that dinosaurs lacked a developed immune system and died from 
cancer when the environmental conditions changed. Clearly, understanding and 
developing drugs that combat cancer represents a significant challenge that is being 
met by a large body of scientists. Since HSP70 plays an important role in regulat-
ing the immune response, this protein has attracted significant research efforts.

First of all, it was discovered that large amounts of HSP70 are present in vari-
ous types of human tumours, such as breast cancer, endometrial cancer, lung can-
cer, prostate cancer and other tumour types (Jäättelä 1995; Vargas-Roig et al. 1997; 
Costa et al.1997; Nanbu et al. 1998; Ciocca et al. 1993; Santarosa et al. 1997).

The mechanism of abnormal activation of HSP70 synthesis in tumours is not fully 
understood. The main hypothesis suggests that HSP70 synthesis is induced by the 
appearance of abnormal denatured proteins in the cell (Voellmy 2004). The appearance 
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of these proteins may be caused by low levels of glucose, pH and oxygen in the micro-
environment of tumour cells, or gene mutations present in genes such as p53.

The increase in the synthesis of HSP70 in tumour cells often correlates with an 
increase in proliferation, metastasis and poor survival of patients (Jäättelä 1999; 
Ciocca and Calderwood 2005; Calderwood et al. 2006), and is often a poor prog-
nostic sign (Jäättelä 1995; Garrido et al. 1998).

When the tumour develops, the HSP70 levels increase inside the cell, on the 
surface of cell membrane and in the extracellular space. Depending on the loca-
tion, HSP70 has different, often opposite effects on carcinogenesis: (1) intracel-
lular HSP70 contributes to tumour development by protecting tumour cells from 
adverse environmental conditions and by suppressing anti-tumour mechanisms, 
such as apoptosis and senescence whereas; (2) membrane-associated and extracel-
lular HSP70 mainly help the immune system to destroy the tumour.

6.1 � Intracellular HSP70 in Tumours: Rejuvenation Elixir 
or the Road to Hell is Paved by Good Intentions

When macrophages recognize tumour cells, they recognize these cells as potential 
danger and begin producing cytokines, NO and other inflammatory mediators to kill 
the tumour cells in a similar manner to the way bacteria are destroyed (Fig. 6.2). 
However, unlike bacteria, tumour cells respond to pro-inflammatory mediators like 
macrophages, by increasing the synthesis of their own HSP70. Tumour cells gen-
erally have high levels of intracellular HSP70. These HSP70 molecules, in “good 
faith” and “not knowing what they are doing”, protect cancer cells from the cyto-
toxic action of macrophages. We can characterize the function of HSP70 in tumour 
cells with the phrase, “the road to hell is paved by good intentions.”

The protection of tumour cells from the pro-inflammatory micro-environment 
by HSP70 is very unfortunate, but this is only half the trouble! Back in the mid-
1990s, it was suspected that intracellular HSP70 directly promoted proliferation 
of tumour cells (Jäättelä 1995; Volloch and Sherman 1999; Seo et al. 1996). For 
example, in breast cancer an increase in HSP70 production leads to the stabiliza-
tion of cyclin D1 (Diehl et al. 2003), which shortens the G0/G1 phase of the cell 
cycle and significantly accelerates cell division (Barnes et al. 2001). However that 
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was not all! It turned out that intracellular HSP70 blocked key anti-tumour pro-
grams in the cell, such as apoptosis and senescence (Fig. 6.3).

In normal and tumour cells both apoptosis, or cell death, and senescence, or 
limiting the number of cell divisions, pursue the same goal: to reduce the appearance 
of tumour cells or destroy tumour cells that have appeared. Now imagine how unex-
pected and surprising it was when it was discovered that it was precisely the onco-
genes that could activate apoptosis in tumour cells, as myc or E1A do (Pelengaris 
et al. 2000; Prendergast 1999; Perez-Sala and Rebollo 1999; White 1998; Blyth et 
al. 2000) or to trigger senescence, as Ras, Her-2, PTEN, Raf, and other oncogenes 
do (Ferbeyre et al. 2002; Trost et al. 2005; Chen et al. 2005; Sebastian and Johnson 
2006; Benanti and Galloway 2004; Mason et al. 2004; Peeper et al. 2001; Chen et al. 
2005; Olsen et al. 2002; Zhu et al. 1998). Interestingly, the oncogenes trigger both 
these anti-oncogene programs through activation of p53 (Chen et al. 2005; Nilsson 
and Cleveland 2003; Eischen et al. 1999; Yu et al. 1997).

So an intriguing question arises: whether the oncogene is an oncogene? What is 
a true oncogene in a cell? At the same time, no one has countered the concept that 
oncogenes can accelerate the proliferation of tumour cells. The only way out of this 
paradox was to conclude that the oncogene simultaneously triggers two programs, pro-
liferation and apoptosis/senescence. For a normal cell it is quite appropriate, because 
this protects the cell from spontaneous malignancy during the action of normal growth 
factors. However, tumour cells apparently bypass this protection mechanism, therefore 
indicating that a factor in tumour cells is responsible for blocking oncogene-induced 
anticancer programs. So researchers began to look for this factor or mechanism.

Initially it appeared as if a quick answer had been found, because it was known 
that mutations in p53 were detected in many tumours, and this explained why 
p53-dependent apoptosis and senescence do not take place in cancer cells. Another 
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Fig.  6.3   Intracellular HSP70s block key anti-tumour programs in the cell, such as apoptosis 
and senescence
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mechanism for suppressing p53-dependent apoptosis/senescence in the process of 
malignant transformation could be associated with increases in the synthesis of the 
p53 transcription suppressor proteins Snail and Twist (Lee et al. 2009; Ansieau et al. 
2008). However, it was found that a large number of tumours developed with a fully 
functionally preserved p53-dependent pathway. This means that there must be an 
alternative suppression factor for p53-dependent cell death. This factor was found to 
be HSP70. It “turns on a green light” in cells to suppress apoptosis and senescence, 
that is, this signal gives rise to cells with immortality and accelerated proliferation.

HSP70 showed its true, anti-tumour “personality” in experiments with HSP70 
over-production and removal of this protein from cells. Dr. Guzhova from Russia 
was the first to demonstrate that HSP70 can suppress apoptosis stimulated by the 
myc oncogene (Afanasyeva et al. 2007). Other experiments were conducted by 
the Sherman (Sherman 2010) and Wei groups (Wei et al. 1995). These research 
teams showed that the removal of HSP70 from tumour cells resulted in the rapid 
development of apoptosis (Wei et al. 1995; Nylandsted et al. 2000a, b; Li et al. 
2000; Gurbuxani et al. 2003;) and senescence (Sherman 2010). In both cases, 
there was strong activation of p53. Furthermore, when p53 induces the cell cycle 
inhibitor, gene p21, the senescence program is launched, and the cell cycle and 
division processes are arrested (Sherman 2010). However, if the induction of p21 
is blocked, for example by myc, apoptosis is activated (Nilsson and Cleveland 
2003; Eischen et al. 1999). At the same time, the removal of HSP70 did not affect 
the viability of normal cells (Nylandsted et al. 2000a, b; Gabai et al. 2000; Dix 
et al. 1996). This meant that tumour cells, in contrast to normal ones, cannot sur-
vive unless they activate the synthesis of HSP70. This observation is analogous 
to the fable describing where the needle of Koschei the Immortal was hidden! 
Koschei the Immortal is an evil character from Russian folk tales. Koschei cannot 
be killed by conventional means targeting his body. His soul is hidden separate 
from his body inside a needle, which is in an egg, which is in a duck, which is in 
a hare, which is in an iron chest, which is buried under a green oak tree, which is 
on the island of Buyan, in the ocean (Afanasyev 1873). As long as his soul is safe, 
he cannot die.

Thus, it was concluded that HSP70 inhibits the p53-dependent pathways of 
apoptosis and senescence in tumour cells.

Before discussing how HSP70 can block p53-dependent apoptosis in tumour 
cells, it necessary to say, that p53 can activate both the mitochondria- and recep-
tor-dependent pathways of apoptosis.

p53 can trigger mitochondria-dependent apoptosis because this protein acti-
vates the proapoptotic members Bax and Bak, and inhibits the antiapoptotic mem-
bers of the Bcl-2 family (Green and Kroemer 2009; Vaseva and Moll 2009; Leu 
et al. 2004; Mihara et al. 2003; Wu et al. 1997). As a result, Bax and Bak incorpo-
rate into the mitochondrial membrane and form pores, through which proapoptotic 
factors may exit. p53 can stimulate receptor-dependent apoptosis by activating 
death receptor genes (Müller et al. 1998; Bouvard et al. 2000; Bennett et al. 1998).

HSP70 directly binds to p53 (Nihei et al. 1993; Ehrhart et al. 1988) and main-
tains this protein in the inactive state. In addition, HSP70 can block p53-induced 

6.1  Intracellular HSP70 in Tumours
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mitochondria- and receptor-dependent pathways of apoptosis. I have already 
discussed how HSP70 can do this (see Chap. 3).

An increase in HSP70 has been shown to lead to an increase in the level of 
antiapoptotic Bcl-2 (Kelly et al. 2002) and a reduction in the level of proapoptotic 
Bax (Stankiewicz et al. 2005). In this case, HSP70 blocks the possibility of Bax to 
incorporate into the outer mitochondrial membrane, thus preventing an increase 
in the permeability of mitochondrial membranes and the release of cytochrome c 
and AIF (Stankiewicz et al. 2005). In addition, HSP70 can directly block the exit 
of cytochrome c (Matsumori et al. 2006; Lee et al. 2004; Tsuchiya et al. 2003), 
proapoptotic protein Smac/DIABLO (Jiang et al. 2005) and Apaf-1 from mito-
chondria (Matsumori et al. 2006; Beere et al. 2000; Saleh et al. 2000). HSP70 can 
bind to Apaf-1 thus preventing the attraction of procaspase 9 to the apoptosome 
(Saleh et al. 2000). HSP70 can also directly inhibit caspase-9 (Beere et al. 2000). 
HSP70 can reduce the number of death receptors through inhibition of JNK (Park 
et al. 2001; Lee et al. 2005). In addition, HSP70 can bind to death receptors DR4 
and DR5 thus inhibiting transmission of the apoptotic signal through these recep-
tors (Guo et al. 2005). HSP70 can limit apoptosis, when caspase activation has 
already occurred. For example, HSP70 can restrict both activation of phospholi-
pase A2 and changes in nuclear morphology (Jäättelä et al. 1998). HSP70 can also 
prevent activation of caspase-independent apoptotic pathways (Creagh et al. 2000; 
Ravagnan et al. 2001), through the binding to AIF and EndoG and by blocking the 
translocation of proapoptotic factors into the nucleus (Sun et al. 2006; Ruchalski 
et al. 2006; Ravagnan et al. 2001; Gurbuxani et al. 2003; Matsumori et al. 2005; 
Kalinowska et al. 2005). Thus, HSP70 can inhibit the development of p53-depend-
ent antitumour apoptosis (Steel et al. 2004; Stankiewicz et al. 2005; Ravagnan et 
al. 2001) by directly binding to p53, and through the inhibition of the active p53-
induced mitochondria- and receptor-dependent apoptotic pathways.

Cell senescence is the second important anti-tumour cell program, which limits 
the number of cell divisions (Hayflick 1979; McCormick and Maher 1988). 
Replicative senescence, to some extent, ensures that a normal cell, which accumu-
lates various potentially pro-oncogenic mutations during its life (Vogelstein and 
Kinzler 1993.) does not pass them on to their daughter cells, thus causing tumour 
progression (Wright and Shay 2001; Campisi 2005). Initially it was assumed that 
replicative senescence is the result of telomere1 shortening. This has been con-
firmed. However, another mechanism was found (Fig. 6.4). Replicative senescence 
may be triggered by p53, which for this purpose increases the expression of two 
endogenous inhibitors of the cell cycle, p16 and p21 (Braig and Schmitt 2006; 
Garbe et al. 2007; Li et al. 2007).

Thus oncogenes, such as Ras, activate a program of aging through several 
mechanisms that involve p53. For example, these oncogenes may activate the 

1  A telomere is a region of repetitive nucleotide sequences at each end of a chromosome, which 
protects the end of the chromosome from deterioration or from fusion with neighboring chromo-
somes. Over time, due to each cell division, the telomere ends become shorter.

http://dx.doi.org/10.1007/978-94-007-5943-5_3
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DNA damage response ATM kinase, and ATM kinase in turn phosphorylates and 
stabilizes p53 (Di Micco et al. 2006). Another mechanism involves the induction 
of p19ARF, which inhibits the p53 ubiquitin ligase Hdm2, also leading to the sta-
bilization of p53 (Bihani et al. 2004). This results in the accumulation and activa-
tion of p53.

In addition to activating the p53-dependent pathway, oncogenes, such as Ras or 
Raf, can activate aging with the help of p53-independent mechanisms. The main 
route involves MAP kinases and ends by the activation of extracellular-signal-
regulated kinases (ERK)2 (Yaswen and Campisi 2007).

Unfortunately, tumour cells do not undergo replicative senescence and become 
“immortalized” (Hanahan and Weinberg 2000). This dictates that tumour cells 
acquire mechanisms for avoiding replicative aging. The first of these mecha-
nisms is related to the fact that telomerases, which restore the length of telom-
eres, are activated in tumour cells (Shay and Bacchetti. 1997; Kim et al. 1994) 
The second is connected with the inactivation of p16, either through mutation 
or by methylation of the promoter (Matsuda 2008; Schwabe and Lubbert 2007). 
The p16 protein is a cyclin-dependent kinase (CDK) inhibitor that decelerates the 
cell cycle by inactivating the CDKs that phosphorylate the retinoblastoma protein 
(pRb). The third mechanism is associated with a mutation or inactivation of p53.  

2  ERKs are involved in functions including the regulation of meiosis, mitosis and postmitotic 
functions in differentiated cells. Many different stimuli, including growth factors, cytokines, 
virus infection, ligands for G protein-coupled receptors, transforming agents, and carcinogens, 
activate the ERK pathway.
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We have already mentioned that HSP70 can inactivate p53, thus likely suppressing 
the development of the aging program in tumour cells, and therefore providing 
tumour cells with immortality.

In general, the following hypothesis describes the role of intracellular HSP70 
accumulation in tumour cells.

First, HSP70 through their chaperone functions support protein homeostasis in 
a tumour cell, thus protecting it from the adverse conditions of external inflamma-
tion. Second, HSP70 contributes to the proliferation of tumour cells due to the sta-
bilization of cyclin D1. Third, HSP70 suppresses oncogene-induced apoptosis and 
the aging program, without affecting the ability of oncogenes to accelerate prolif-
eration (Sherman 2010). As a result, intracellular HSP70 creates the most favour-
able internal conditions for tumour growth.

6.2 � Extracellular and Membrane-Bound HSP70 in 
Tumours, or an Apology to the Host Immune System 
for its Intracellular Counterparts

In addition to intracellular localization, HSP70 can be found on the plasma mem-
brane of malignantly transformed cells (Shin et al. 2003; Multhoff et al. 1995; 
Gross et al. 2003; Schmitt et al. 2007) and in the extracellular environment 
(Triantafilou and Triantafilou 2004). Screening of more than 1,000 tumour biop-
sies showed that 50–70  % of human carcinomas contain HSP70 integrated into 
the membrane, whereas normal tissues did not contain HSP70 on their surface 
(Multhoff et al. 1995; Multhoff 2007; Gehrmann et al. 2003).

There are two alternative views describing the role of HSP70 that has been inte-
grated into the membrane of tumour cells and extracellular HSP70 that has been 
released from a tumour cell.

In the first point of view, it is assumed that the membrane-bound HSP70 aids 
in maintaining the stability of tumour cell membranes and thus may protect the 
tumour cells from the adverse surrounding environment (Horvath and Vigh 2010; 
Horvath et al. 2008). This view is supported by clinical studies that show that the 
appearance of HSP70 on the surface of tumour cells correlates with a decrease in 
the survival rate of patients with squamous cell carcinomas of the lung and lower 
rectal carcinomas (Pfister et al. 2007). However, other clinical studies have shown 
opposing results. In osteosarcoma and renal cancers, an increase in the expression 
of HSP70 was associated with an improved prognosis (Santarosa et al. 1997; Trieb 
et al. 1998). Therefore, another alternative point of view has been proposed and 
is possibly more justified. According to this proposal, extracellular and membrane 
HSP70 molecules facilitate the recognition of tumour cells and stimulate the anti-
tumour response.

HSP70 released from tumour cells into the extracellular space and into circu-
lation may carry intracellular tumour antigens (Fig.  6.5). The events could then 
unfold as Srivastava imagined them; we have already discussed these events in the 
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previous chapter. Basically, extracellular HSP70 may participate in antigen-pres-
entation at three key steps of this process (Srivastava 2002): (1) formation of a 
complex with a peptide antigen; (2) antigenic peptide delivery to antigen-present-
ing cells and transport of the antigen into the cell; and (3) intracellular chaper-
oning of the antigen to the MHC class I molecules. These mechanisms certainly 
facilitate the development of anti-tumour adaptive responses.

According to Srivastava (Srivastava et al. 1998), extracellular HSP70 can influ-
ence the immune system even in the absence of an antigenic peptide (Fig. 6.6). It 
has been shown that together with proinflammatory cytokines IL-2 and IL-15, extra-
cellular HSP70 can stimulate natural killers (Zeng et al. 2006; Multhoff et al. 1997), 
thus leading to the induction of antitumour immunity (Multhoff et al. 1997, 1999, 
2001; Moser et al. 2002; Multhoff 2002; Gross et al. 2003). In this case, natural kill-
ers release granzyme B and induce apoptosis in tumour cells (Gross et al. 2003).

It was shown that natural killers can also recognize HSP70 located on the sur-
face of tumour cell membranes as tumour-specific structures. The recognition hap-
pens because of the specific interaction of the CD94 receptor on the surface of 
natural killer cells and the peptide TKD-sequence located within the C-terminal 
part of HSP70 (Gross et al. 2003). This part of HSP70 extends into the extracellular 
environment of tumour cells and can be readily recognized (Multhoff et al. 2001). 
HSP70 on the membrane surface can also be recognized by the γδT memory cells, 
which we discussed in the previous chapter. That is why, along with natural killers, 
T memory cells can also kill HSP70-positive tumour cells (Laad et al. 1999).

It is interesting that HSP70 is integrated into the membrane only in tumour 
cells (Vega et al. 2008; Gehrmann et al. 2008), whereas HSP70 is bound to the 
membrane of normal antigen-presenting cells through a receptor. Perhaps that 
is why natural killer cells and T memory cells attack tumour cells, rather than 
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antigen-presenting cells. However, currently nobody knows why natural killers 
attack a cell if HSP70 is integrated into the membrane, and do not attack the cell 
if HSP70 is bound to the cell through a receptor even though the TKD sequence of 
the receptor-bound HSP70 is readily available for interaction.

Although many questions remain to be answered, it is clear that HSP70 has 
a dual role that is dependent on its intra- and extracellular localization. Tumour 
cells use intracellular HSP70, and this HSP70 is not recognized protects the cancer 
cells. In contrast, extracellular HSP70, is something more like a “prisoner” who 
has escaped from the “cancer jail” to inform the immune system to act. Here, natu-
ral killer cells and T cells recognize cancerous cells from normal healthy cells, and 
therefore act to destroy these cells.

6.3 � Unresolved Issues of Carcinogenesis, or How to Make 
a Million Dollars (and P.S.)

A significant amount of knowledge is known about the mechanisms of carcinogen-
esis and the role HSP70 plays within these mechanisms. However, cancer still exists 
and modern medicine struggles to find suitable solutions to treat such diseases. This 
indicates that there are important aspects of tumour cells that we do not understand! 
This is not just about how smart our reasoning is, or how “generously” the state 
funds science; the inherent complexity of tumour cells still exceeds the capabilities 
of our knowledge on this topic. This sobering conclusion; however, should not over-
shadow the fact that we have made enormous advances in the study of tumours, and 
we can expect a rapid, if not sensational breakthrough in the next decade!
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Fig. 6.6   Extracellular HSP70 can influence the immune system even in the absence of an anti-
genic peptide
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However, studies of tumours are currently undergoing a substantial reassess-
ment. Understanding the role of stem tumour cells, precursor cells and differenti-
ated tumour cells can change our view of carcinogenesis (Reya and Clevers 2005; 
Reya et al. 2001). The role of HSP70 in stem cell growth of cancer cells remains 
completely unknown; however, understanding the role of HSP70 in these cells 
may become highly significant for any future approaches aimed at treating cancer.

P.S. At this point, it would be appropriate to recall a historical fact. The will 
of Alfred Nobel, the founder of the Nobel Foundation, says that when the prob-
lem of carcinogenesis is solved, all the money in the fund (and that is a lot of 
money; many millions of dollars!) should be given to the person who solved the 
problem of cancer. Now, I have an important statement to make! If ever any of you 
dear readers solve the problem of carcinogenesis, remember who told you about 
tumours in this chapter!
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Abstract  Aging or senescence in biology is defined as the process of gradual loss of 
important body functions and cells, and in particular, the inability of cells to reproduce 
and cope with stress. Important features of an aging cell include the progressive accu-
mulation of damaged proteins, abnormal protein aggregates and oxidative stress. Such 
features may damage macromolecules and trigger two genetic programs—cellular 
senescence and apoptosis. HSP70 limits cellular aging by: (i) ensuring the refolding 
and disaggregation of denatured/misfolded proteins; (ii) participating in the degrada-
tion of irreversibly dysfunctional proteins; (iii) mediating the effects of histone deacet-
ylase 6 in the starvation-induced increase in life expectancy; and (iv) preventing cell 
senescence and apoptosis. However, cells of an aging body display a dramatic reduc-
tion of HSP70 inducibility. This reduction correlates with a decrease in the ability of 
cells to cope with stress. The reduction of HSP70 inducibility most likely reflects the 
launch of a special genetic program aimed at the activation of JNK-dependent apop-
tosis and the destruction of old cells, which have accumulated damaged proteins and 
dangerous mutations. Such a program functions to protect the body as a whole.

Keywords  HSP70  •  Age  •  Oxidative stress  •  Histone deacetylase 6  •  JNK kinase

The interest of people in the topic of this chapter is significant. Frankly speaking, 
for many, it is even bigger than the interest in the origin of life! Why do we age 
so quickly and why do we have such short lives? In this chapter, I will talk about 
the mechanisms of aging and longevity, and more specifically, about the role of 
HSP70 in these mechanisms.

When scientists studied the role of HSP70 in folding, refolding, and the mainte-
nance of protein homeostasis, it was of significant interest for a number of molecular 
biologists. For most people, this research was unfamiliar and did not seem relevant to 
medicine. However, as it became apparent that HSP70 increases the cells’ resistance 
to various injuries can block cell aging and even cell death, researchers began to con-
sider that these proteins may play a significant role in the mechanisms of human lon-
gevity. These intuitive assumptions proved to be correct. Heat shock proteins begun 
to be of interest not only to scientists, but to all people who wished for a longer, 
healthier life, rather than becoming a burden for their own children in old age!

Chapter 7
HSP70 in Aging

I. Malyshev, Immunity, Tumors and Aging: The Role of HSP70,  
SpringerBriefs in Biochemistry and Molecular Biology,  
DOI: 10.1007/978-94-007-5943-5_7, © The Author(s) 2013
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7.1 � What is Senescence and its Underlying Causes

Aging or senescence in biology refers to the process of gradual disruption and 
loss of important body functions. This process also refers to cells losing the ability 
to reproduce and regenerate, and to cope with stress and damage factors. Due to 
senescence, the body and individual cells become less adapted to environmental 
conditions, and thus, their resistance to stress and the action of damaging factors 
decreases. The rate of aging of an individual cell and the body generally reflects a 
conflict between two forces: the effects of different stressors and harmful factors 
that attack the cell throughout its life, and body defence mechanisms that maintain 
homeostasis, vitality and longevity.

Two main factors play a most important role in the aging of a cell: (1) pro-
gressive accumulation of damaged proteins and abnormal toxic protein aggregates, 
and (2) oxidative stress, which may lead to damage of macromolecules and trigger 
two genetic programs—the program of cellular senescence and the program of cell 
death, apoptosis.

In all of these cases, HSP70 restricts the development of the aging processes. 
However, the aging process does result in a decrease in the activity of HSP70 
induction systems. Therefore the key question of the concept of aging is: why do 
HSP70 induction systems decrease in an aging cell?

7.2 � Accumulation of Damaged Proteins, HSP70 and the 
Sacrificial Altruism of the Ageing Daughter Cells

Starting at mitotic birth and throughout its life, the cell is constantly exposed to 
various unfavourable stress factors. The most common impact of these factors is 
damage and denaturation of cellular proteins and, consequently, formation of toxic 
protein aggregates. Progressive accumulation of damaged proteins and aggregates 
plays a key role in disrupting cellular function, and in accelerating the aging of 
cells and the body as a whole.

Fortunately, these adverse age-related changes can be effectively limited for 
a long time by the system of protein quality control and maintenance of protein 
homeostasis (Garrido et al. 2006; Lindquist and Craig 1988), i.e., by the special 
FORD mechanism. It would be useful to remind ourselves how cells respond to 
the disruption of protein homeostasis (see Chap. 3) and focus our discussion on 
those aspects that are related to aging.

A damaged protein appears in a young or senescent cell. What happens to it 
next? The choice is limited to four pathways, but a disruption to any of these path-
ways will accelerate the process of aging.

First, the protein quality control system will attempt to send the protein to 
refolding and restore its native structure (Figs.  1.6 and 2.6). HSP70, its HSP40 
co-chaperones and the factors of nucleotide exchange, Bag-1 and HSPBP-1, play a 
key role in this process (Min et al. 2008).

http://dx.doi.org/10.1007/978-94-007-5943-5_3
http://dx.doi.org/10.1007/978-94-007-5943-5_1
http://dx.doi.org/10.1007/978-94-007-5943-5_2
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Second, the quality control system will send the irreversibly damaged proteins 
to degradation via proteasomes (Fig. 2.4 and 2.6). HSP70, HSP40, CHIP ubiqui-
tin ligase and proteasomes play an important role in proteosomal cleavage of the 
protein (Marques et al. 2006). In this case, the denatured protein, scavenged by 
the HSP70 protein, moves closer to CHIP, and becomes polyubiquitinated with its 
help, thus becoming a target for degradation in a proteasome.

Third, in lysosomal degradation, HSP70 recognizes a label block, KFERQ, on 
the protein intended for degradation (Fig. 2.5), binds to this protein, and delivers 
the protein into the lysosome lumen for degradation (Dice 2007).

These three mechanisms maintain protein homeostasis when denatured proteins 
appear in a cell. If something happens, and, for whatever reasons, these mecha-
nisms fail, the denatured proteins begin associating to form toxic aggregates. In 
cells this leads to disruption of cellular functions and death (Winklhofer et al. 
2008; Hands et al. 2008).

However, even in this case, HSP70 can save the situation by a fourth mecha-
nism. Together with the HSP100 protein, HSP70 can pull protein aggregates apart 
(Hut et al. 2005; Mayer and Bukau 2005). As a result, each denatured protein 
released from the aggregate gets a second chance of refolding or is sent for degra-
dation (Fig. 3.2).

Molecular chaperones and their helpers are especially important during aging, 
when the number of damaged proteins in the cell increases. For example, inactiva-
tion of CHIP in mice leads to a significant reduction in life expectancy (Min et zal. 
2008), and a decrease in HSP70-dependent lysosomal degradation is associated 
with the development of Parkinson’s disease (Dice 2007).

Thus, HSP70 activity in refolding, disaggregation and degradation of 
irreparable proteins forms the basis for the anti-aging effects of the protein quality 
control system.

However, the ability of cells to refold or degrade misfolded/dysfunctional pro-
teins reduces as we grow older, while the number of damaged denatured proteins 
in the cell increases. Consequently, a point is reached when the protein quality 
control system, the FORD machinery, can no longer cope with the level of accu-
mulated damaged proteins and protein aggregates. At this point, interesting, 
almost dramatic events begin.

When the FORD machinery begins to be seriously disrupted, protein aggre-
gates begin being actively transported along microtubules to centrosomes and 
accumulate there in the form of aggresomes (Rujano et al. 2006). Aggresomes 
are then removed either by macroautophagy or, more often, in asymmetrical 
division (Fig.  7.1). The result of asymmetrical division is that one daughter cell 
is cleared of all aggregates, whereas the other inherits aggresomes! The first cell 
then becomes “healthy” and continues functioning normally, while the second, 
overloaded by aggresomes, is destroyed by apoptosis, basically “sacrificed for the 
health” of its sister cell! (Rujano et al. 2006).

In mammals, the formation of aggresomes is regulated by histone deacetylase 
6 (HDAC6) (Fig.  7.2). Histone deacetylases similar to HDAC6 are very inter-
esting enzymes. Histone deacetylases catalyse cleavage of acetyl groups from 
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lysine residues of many substrates. HDAC6 can bind both damaged proteins and 
microtubules (Boyault et al. 2007), thus providing the transfer of protein aggre-
gates along microtubules to centrosomes. Additionally, owing to deacetylation 

Fig. 7.2   Histone deacetylase 
6 (HDAC6) regulates the 
formation of aggresomes and 
HSF-1 activation and due to 
this effect HDAC6 is involved 
in the beneficial effects of a 
reduced calorie diet
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of histones in the protein microenvironment of the HSP70 gene, this enzyme 
can induce detachment of HSP90 from HSF1 (which sits on the promoter) thus 
activating HSF1 and HSP70 synthesis (Boyault et al. 2007; Kovacs et al. 2005; 
Rujano et al. 2006; Westerheide et al. 2009).

It is well known that a reduced calorie diet may prolong our life and improve 
our health (Corbi et al. 2012; Sherman et al. 2011; Dall et al. 2009; Everitt et al. 
2007). Genetic studies have shown that HDACs play a key role in this interesting 
effect (Westphal et al. 2007). The starvation-associated increased activity of HSF1 
(Steinkraus et al. 2008) and increased life expectancy of C. elegans are blocked 
when HDACs are inhibited. The induction of HDACs by starvation was shown to 
increase the life expectancy of the worm Caenorhabditis elegans and the fruit fly 
Drosophila melanogaster (Westphal et al. 2007). This effect of HDACs is associ-
ated with the separation of aggresomes during asymmetrical division and activa-
tion of HSP70 synthesis.

7.3 � Oxidative Stress and HSP70: The Unity and the 
Struggle of Opposites

In addition to the accumulation of damaged, denatured proteins, increases in the 
levels of reactive oxygen species (Powis et al. 1995) leads to increases in oxidative 
damage to DNA, lipids and proteins. This oxidative damage plays an important 
role in cell damage and accelerated ageing. HSP70 may limit the oxidative stress-
induced damage to proteins through mechanisms that we have discussed: due to 
refolding, degradation and disaggregation of damaged proteins.

At the same time, the role of oxidative stress in aging is not limited to damaged 
intracellular macromolecules. It is more specific (Fig. 7.3). Oxidative stress may 
accelerate aging and cell death through activation of apoptosis and the cell senes-
cence program (Gabai et al. 1998). It was shown, for example, that in age-related 
neurodegenerative diseases such as Alzheimer’s, it is precisely oxidative stress that 
triggers apoptosis, which is the main cause of neuronal death (Gabai et al. 1998).

Can the anti-aging effects of HSP70 manifest when cell aging and death of 
cells are triggered by signalling mechanisms, rather than by the accumulation 
of denatured proteins? This question was experimentally tested and HSP70 was 
found to prevent apoptosis induced by factors such as radiation (Simon et al. 1995; 
Raffray and Cohen 1997; Cosulich and Clarke 1996; Mosser and Martin 1992), 
TNF-α signalling molecules (Jäättelä 1993) and NO (Bellmann et al. 1996).

The material presented in the previous chapter will help us understand how 
HSP70 does this. I talked about how the activation of both apoptosis and senes-
cence goes through two consecutive key steps: the activation of the JNK stress-
kinase and the activation of the p53 transcription factor. We already know from 
the previous chapter that HSP70 can block both steps, as well as some other steps 
in apoptosis (Cosulich and Clarke 1996; Gabai et al. 1997; Gabai et al. 1998; 
Mignotte and Vayssiere 1998; Salvesen and Dixit 1997; Seimiya et al. 1997;  

7.2  Accumulation of Damaged Proteins, HSP70 and the Sacrificial Altruism
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Xia et al. 1995; Mosser et al. 1997; Verheij et al. 1996; Volloch et al. 1998; Zanke 
et al. 1996; Webb et al. 1997). It is important to note that the suppression of JNK 
activation does not require participation of the ATP-ase HSP70 domain, i.e., it 
is ATP-independent. This means that HSP70 can perform this function in aging 
cells that may be experiencing a serious energy shortage.

Once it had been shown that HSP70 can block particular signalling pathways 
associated with aging and cell death in the absence of accumulated damaged pro-
teins, the most meticulous experts were asking: “Excuse us, but where would 
HSP70 come from, when it is well known that HSP70 synthesis is activated pre-
cisely by damaged proteins?” It was necessary to find an answer to this question; 
otherwise the whole concept would be invalid. Dr. Mivechi’s group had conducted 
studies and showed that in the absence of denatured protein, the stress-induced 
protein kinase JNK can itself activate the HSF1 transcription factor and thus the 
synthesis of HSP70 (Zanke et al. 1996; Simon et al. 1995).

Surprisingly, it appears that oxidative stress can, through activation of JNK 
kinase, simultaneously trigger two opposing programs in the same cell: the aging 
program and the HSP70-dependent anti-aging program. Apparently, a regulatory 
negative feedback mechanism forms immediately in the cell, and a certain balance 
between the JNK-dependent apoptosis and cellular aging programs on the one 
hand, and the activation of HSP70 synthesis on the other, is established.

The existence of such a balance between the pro-and anti-aging JNK programs 
sheds new light on another dark corner of aging. We can assume that the balance 
is shifted in favour of HSP70 at a young age. Therefore, despite strong oxidative 
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Fig.  7.3   Oxidative stress can, through activation of JNK kinase, simultaneously trigger two 
opposing programs in the same cell: the aging program and the HSP70-dependent anti-aging pro-
gram
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stresses affecting a young cell, it can survive and divide, because the HSP70, 
activated by the same oxidative stress, blocks the program of JNK-dependent 
apoptosis and replicative aging. With age, when the inducibility of HSP70 is 
depressed, the balance is shifted in favour of the apoptosis and aging program. 
Therefore, even weak oxidative stress signals can activate mechanisms of replica-
tive aging and apoptosis.

Now that we have examined the role HSP70 plays in aging cells, we can come 
to a justified conclusion: HSP70 is a key component of the intracellular system 
limiting cellular senescence. In this system HSP70:

•	 ensures refolding and disaggregation of denatured proteins that progressively 
accumulate in aging cells;

•	 participates in the degradation of irreversibly damaged proteins;
•	 mediates the effects of HDACs in the starvation-induced increase in life 

expectancy;
•	 prevents the development of the cell senescence program and apoptosis induced 

by oxidative stress.

7.4 � Through HSP70 to Longevity, or “Eat Your Dinner Like 
a Pauper”

Increased levels of HSP70 have been correlated with increased life expectancy. 
Thus, HSP70 and HSF1 are very attractive pharmacological targets for anti-
aging therapies. An increase in gene copies of HSP70 or HSF1 (Hsu et al. 2003), 
or starvation, which, through HDACs, stimulates both HSF1 activity and HSP70 
synthesis, has been shown to increase the life span of C. elegans (Hsu et al. 2003) 
and Drosophila (Singh et al. 2007). You may be thinking that although such a sys-
tem exists in flies, does a similar mechanism exist in humans? Do not worry; for-
tunately we are not evolutionarily that different from flies!

In humans, like in flies and worms, the potential for HSP70 induction notice-
ably declines with age (Singh et al. 2006). Aging, and age-related diseases and 
symptoms reflect precisely this reduction of HSP70 inducibility and resistance 
to stress. However, people who live over 100 years are an exception; their ability 
to induce HSP70 does not decrease with age (Ambra et al. 2004). If you want to 
know whether you will live to a 100 years, check your ability to induce HSP70 
synthesis!

The more apparent it became that HSP70 played a critical role in limiting the 
aging process, the greater the number of pharmacologists that started raising the 
question of how to control HSP70 synthesis in the body in order to increase life 
expectancy was. A serious problem here is that the chemicals that induce the 
HSP70 synthesis, usually damage the cell, that is, they are cytotoxic, and can-
not therefore be used by elderly people, whose cell resistance to stress factors is 
already reduced.

7.3  Oxidative Stress and HSP70
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A glimmer of hope appeared when it was found that HDACs activated HSF1 
in senescent cells. Consequently, using molecules that activate deacetylases could 
potentially activate expression of HSP70 genes. Such molecules are known: for 
example, resveratrol and dihydrocoumarin. These molecules are non-toxic in the 
doses that activate HDACs (Westphal et al. 2007; Westerheide et al. 2009). As 
such, pharmaceutical companies will conduct these studies and will spend signifi-
cant sums of money on such drug development.

However, let us ignore the financial interests of pharmaceutical companies. Just 
recall that restricting calories and hunger may well activate HDACs, and thus acti-
vate the HSF1 transcription factor and HSP70 synthesis, and thus maintain home-
ostasis of proteins and block apoptosis in senescent cells. You can start devising 
ways of maintaining the inducibility of your chaperone system and increasing the 
duration of your life right now! In short, miss your dinner today, or eat it like a 
pauper! Or as they say in Russia, eat your breakfast yourself, share your lunch 
with your friend and give your supper to your enemy!

7.5 � Why Does HSP70 Inducibility Decline with Age? 
A Chronicle of a Senescent Cell

Cells of an aging body display a dramatic reduction of HSP70 inducibility in 
response to stress (Heydari et al. 1994; Gabai and Kabakov 1993; Salvesen and 
Dixit 1997; Seimiya et al. 1997; Li et al. 1995; Njemini et al. 2002; Visala et al. 
2003; Jin et al. 2004; Gutsmann-Conrad et al. 1998). Most often, inducibility is 
measured by an increase in the level of HSP70 in cells after heat shock at 42 °C 
(or 107.5 F). The decrease in this index closely correlates with a reduced ability 
to cope with environmental stress factors (Ames et al. 1993; Beckman and Ames 
1998; Berlett and Stadtman 1997; Cortopassi and Wong 1999; Johnson et al. 
1999; Kregel 2002; Kregel et al. 1995; Papaconstantinou 1994) and elevated rates 
of morbidity and mortality in older bodies subjected to periodic stress (Liu et al. 
1996; Heydari et al. 1994; Hall et al. 2000; McArdle et al. 2004). On the contrary, 
the ability of the body to respond quickly to stress by HSP70 induction determines 
the high adaptive ability of the body and hence the ability to survive and maintain 
longevity (Minois et al. 2001).

There is a second question that is being asked more often: why does the ability 
to induce HSP70 synthesis in humans decrease with age? There is still no clear 
answer to this question. The age-related decline in the ability to activate HSP70 
synthesis was found in nervous tissue (Sherman and Goldberg 2001; Winklhofer 
et al. 2008; Hands et al. 2008), skeletal and cardiac muscles (Kayani et al. 2008), 
and liver (Gagliano et al. 2007).

It is unclear why, but neurons of the central nervous system are much more 
prone to protein aggregation than cells in other organs and tissues. This could 
be due to significantly lower HSP70 inducibility in neurons when compared 
with other cells. In neuronal tissue, the age-related decline in activity of HSP70 
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synthesis in nerve cells is explained by the decline in expression of HSF1 and 
the reduced ability of HSF1 to form DNA-binding trimers (Batulan et al. 2003, 
Heydari et al. 1994). Inhibition of HSF1 activity and HSP70 synthesis occurs in 
Alzheimer’s disease (Bhat et al. 2004) and it is believed that this is related to the 
accumulation of protein aggregates of β-amyloid peptide and the tau cytoskeletal 
protein in the brain of patients with Alzheimer’s disease (Winklhofer et al. 2008).

The age-related decline in the ability to activate synthesis of heat shock pro-
teins is also found in muscle tissue. In these tissues, strong contractions are a 
factor in the activation of HSP70 synthesis (Kayani et al. 2008). It is therefore 
assumed that the reduced contraction force in older animals and people may be 
related to a reduction of HSP70 inducibility (Kayani et al. 2008). As discussed 
before, starvation leads to the consecutive induction of HDACs and HSP70 syn-
thesis, and thus contributes to increasing the life expectancy in worms and flies. 
We know now that exercise can induce synthesis of HSP70, the anti-aging protein. 
Thus, powerful biochemical and molecular biology studies have confirmed the slo-
gan for those who want to live longer: “eat less and move more!”

The age-related decline in the HSP70 inducibility also occurs in liver cells 
(Gagliano et al. 2007). What are the consequences in this case? Heat shock pro-
teins protect liver cells from toxic effects of alcohol, heavy metals, xenobiotics 
and oxidants (Lindquist and Craig 1988). Therefore, the age-related decline of 
HSP70 inducibility contributes significantly to reducing the detoxification function 
of the liver in older people (Gagliano et al. 2007).

Data obtained on yeast suggest that the age-related decline of HSP70 induc-
ibility may be associated with a decrease in the activity of HDACs (Westphal et al. 
2007), which activate HSF1 in senescent cells. It has also been shown that in an 
aging cell the CHIP protein begins making mistakes and sometimes starts ubiq-
uitinating not only the damaged protein bound to HSP70, but also HSP70. As a 
result, HSP70 is also degraded in the proteasome. The observed increase in deg-
radation of HSP70 may also contribute to the age-related decline in HSP70 induc-
ibility (Min et al. 2008).

In thinking about the general causes of the age-dependent decline of HSP70 
inducibility, it seems that these causes all represent special cases related to the 
effect of stress factors. Here is, however, one question that has not been answered: 
why in both body cells and in isolated cells placed in ideal conditions does 
HSP70 inducibility inevitably decrease? We do not know why it happens, but the 
very “inevitability” of the process clearly suggests that the age-related decline 
of HSP70 inducibility is genetically programmed. When a normal somatic cell 
stops dividing, we know that this is genetically programmed and is because of the 
reduced telomere length. Carol Greider recently won the Nobel Prize (2009) for 
the discovery of this mechanism. The genetic mechanism that determines the age-
related decline in HSP70 inducibility is as relevant to life expectancy as telomeres. 
Therefore we are guaranteed at some stage in the near future to hear something 
about this genetic mechanism.

Regardless of what mechanism leads to the age-related decline in HSP70 
inducibility, the most important consequence of this is the increase in activity of 

7.5  Why Does HSP70 Inducibility with Age?
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JNK kinase, apoptosis and cell death (Volloch et al. 1998). Why did nature intro-
duce this genetic mechanism, and why do cells always use this mechanism at the 
end of their life?

To better understand the suicidal behaviour of senescent cells consider your-
self as such a cell. You had a rough life, you worked hard, and now you know 
that you have accumulated a lot of dangerous mutations and many damaged pro-
teins. In principle you could still fight for your life: you still have your FORD 
machinery, battered, but still running, at your disposal; and you have stocks of 
ATP, albeit reduced, but still sufficient to ensure a minimum energy supply for the 
protein quality control system. Your co-chaperone partners and HDACs can still 
help you. However, you are a wise old cell; you certainly know that by prolonging 
your days, you will be passing dangerous pro-oncogenic mutations to your daugh-
ter cells, to your children, thereby increasing the likelihood of malignant tumour 
transformation of your “baby-cells” at each division event. So you take a coura-
geous decision by pressing the “self-destruct button.”

Thus, we can assume that a reduction of HSP70 inducibility in aging cells 
reflects the launch of a special genetic program (Fig.  7.3), aimed at activating 
JNK-dependent apoptosis and the destruction of old cells that have accumulated 
damaged proteins and dangerous mutations. Such a process(es) ensures the protec-
tion of the body.
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Abstract  The accumulation of aggregated, misfolded proteins and the appearance 
of neurotoxic aggregates of Aβ and tau proteins play a key role in the development of 
Alzheimer’s disease. HSP70 can inhibit neurodegeneration associated with Alzheimer’s 
disease because this protein can: (i) aid in the degradation of intracellular and extra-
cellular Aβ aggregates; (ii) restrict tau protein hyperphosphorylation and facilitate the 
degradation of dysfunctional tau proteins; (iii) limit NO overproduction; and (iv) regu-
late apoptosis. It is also likely that HSP70 may delay the development of Alzheimer’s 
disease by limiting insulin receptor desensitization. HSP70 can limit ischemia myocar-
dial injury by: (i) maintaining protein homeostasis in cells; (ii) stabilizing lysosomal 
membranes; (iii) inhibiting the excessive activation of ADP-ribose polymerase; and 
(iv) blocking ischemia-induced apoptosis. During the excessive systemic inflamma-
tory response syndrome (SIRS) that occurs in heart surgery, extracellular HSP70 initi-
ates inflammatory effects through the stimulation of immune cell receptors. In contrast, 
intracellular HSP70, exerts anti-inflammatory effects on the inflammatory balance of 
SIRS by inhibiting proinflammatory signaling in immune cells.

Keywords  HSP70  •  Alzheimer  disease  •  Insulin  •    Ischemia  •  Systemic 
inflammatory response syndrome

8.1 � The Role of HSP70 in the Protection of the Brain 
in Alzheimer’s Disease

In the previous chapter, I discussed what happens to HSPs, and more generally with 
the proteins quality control system (FORD machinery) in a senescent cell and in 
an aging body. Briefly, with age there is a decrease in the inducibility and effec-
tiveness of the cell chaperone system. Globally, this leads to two consequences. 
First, the damaged, denatured proteins and toxic protein aggregates increase in 
number, and, second, HSPs stop monitoring two genetic programs: the program 
of cell replicative aging and the program of apoptosis. As a result, the cell stops 
dividing and dies. Physiological cessation of division and death of senescent cells 
are fully justified. It protects the body from mitotic proliferation of potentially 
dangerous prooncogenic and other mutations acquired during the life of a cell.  

Chapter 8
The Role of HSP70 in the Protection of: 
(A) The Brain in Alzheimer’s Disease and 
(B) The Heart in Cardiac Surgery

I. Malyshev, Immunity, Tumors and Aging: The Role of HSP70,  
SpringerBriefs in Biochemistry and Molecular Biology,  
DOI: 10.1007/978-94-007-5943-5_8, © The Author(s) 2013
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The disruption of normal physiological aging of cells, which may be caused by 
various genetic factors and adverse environmental stresses, can lead to the develop-
ment of age-related diseases. In this chapter I will talk about one of the most widely 
spread diseases in the world, Alzheimer’s disease, and the role heat shock proteins, 
especially HSP70, play in this disease. However, let me introduce Alzheimer’s dis-
ease and the issues surrounding the link between HSPs and this disease.

8.1.1 � Pathogenesis of Alzheimer’s Disease: The Disease is 
Still Incurable, so There Must be Something Really 
Important that Remains Unknown

A whole army of scientists and physicians have been studying Alzheimer’s disease 
for over a hundred years in an effort to find ways to treat and prevent this disease. 
Every time we open a new issue of a scientific journal, we often discover some-
thing new, interesting and important about the molecular mechanisms of neurode-
generation and dementia.

Alzheimer’s is a neurodegenerative disease of the central nervous system. One 
in three people (Sadik and Wilcock 2003) who live to an old age are likely to be 
affected. Starting subtly and stealthily, the gradual progression of Alzheimer’s dis-
ease leaves no chance for recovery. Alzheimer’s disease, long before the biological 
death of the body, gradually robs a person of the most important thing that makes 
us Homo sapiens, our memory. As a result of this disease, we lose the ability to 
establish causal relationships, to perceive and analyze new information, and to rec-
ognize friends and relatives.

What phenotypic features appear to the brains of patients with Alzheimer’s? 
Genetic analysis of families presenting Alzheimer’s dementia were found to have 
mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1) (Mullan 
et al. 1992; Van Broeckhoven et al. 1990; Goate et al. 1991; Chartier-Harlin et al. 
1991; Campion et al. 1995; Perez-Tur et al. 1996; Sherrington et al. 1995) (Fig. 8.1).

In healthy humans, APP is cleaved by the gamma-secretase complex, resulting 
in the formation of an amyloid peptide in the alpha form (Aα). The central compo-
nent of the gamma-secretase complex is PS1. Aα incorporates into the membrane and 
performs important physiological functions. As we age the gamma secretase com-
plex begins making mistakes because of mutations to the APP and/or PS1 genes. The 
secretase cleaves the APP at a slightly different position. The error is only a few amino-
acid residues, but the consequences are dramatic. As a result, the neurotoxic, beta form 
of the amyloid protein (Aβ) appears in hippocampal neurons and the cerebral cortex.

Aβ may remain in the nerve cell or enter into the extracellular space (Hsiao et al. 
1996; Duff et al. 1996; Holcomb et al. 1998, 1999; Takeuchi et al. 2000; Borchelt et 
al. 1997). Aβ has a high tendency to form neurotoxic oligomers and multimeric aggre-
gates (Golde et al. 1992; Estus et al. 1992; Shoji et al. 1992; Halverson et al. 1990; 
Meyer-Luehmann et al. 2008; Spires-Jones et al. 2008; Shankar et al. 2007, 2008; 
Walsh et al. 2002; Cleary et al. 2005; Gong et al. 2003; Caughey and Lansbury 2003).
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There is ample evidence that Aβ plays an important role in the pathogenesis of 
Alzheimer’s disease. Neurotoxicity of Aβ is due to its ability to induce apoptosis, 
oxidative stress, NO overproduction (Christen 2000; Clippingdale et al. 2001) 
and neuro-inflammation (Sasaki et al. 1997; Hu et al. 1998; Stalder et al. 2005; 
Simard et al. 2006). Together, these processes lead to the death of neurons, atrophy 
of some brain regions with cognitive decline evident as loss of memory and the 
inability to recognize close friends and family members.

Despite the well-proven role of Aβ in the pathogenesis of Alzheimer’s disease, the 
use of therapies aimed at reducing Aβ accumulation or production of this peptide has 
had limited clinical success (Schenk et al. 2005; Hock et al. 2003; Nitsch et al. 2008; 
Wilcock et al. 2004, 2006; Osborne 2008). It is therefore evident that apart from Aβ, 
there are other factors that play an important role in the pathogenesis of this disease.

One of these factors proved to be a mutation in the tau protein gene (Hutton 
et al. 1998; Spillantini et al. 1998; Rizzini et al. 2000) (Fig. 8.2). The normal tau 
protein binds to microtubules and regulates their polymerization and stability. 
Mutant forms of the tau protein, as opposed to the normal ones, are phospho-
rylated by GSK3β and Cdk5 kinases (Noble et al. 2005; Kosik et al. 2002). Tau 
hyperphosphorylation triggers aggregation of this protein and formation of intra-
cellular neurotoxic fibrillar tau tangles. It was shown that this process is strongly 
correlated with the death of neurons and cognitive impairment (Santacruz et al. 
2005; Ramsden et al. 2005). The ideas about the pathogenic role of abnormal 
tau protein were immediately supported by initial clinical research, which found 
that an inhibitor of tau protein aggregation significantly improved the cognitive 
function in Alzheimer’s patients (Opar 2008). Thus it is currently known that the 
accumulation of aggregated, misfolded proteins and the appearance of abnormal 
oligomeric forms and neurotoxic aggregates of Aβ and tau protein, as well as 
mutant PS1 proteins play a key role in the development of Alzheimer’s disease.

What happens in the 
brains of patients with 

Alzheimer's?

In healthy humans
APP is cleaved by the
γ-secretase complex,
resulting in formation
of AP in the (Aα)

As we age, and as a
result of mutations of
APP and/or PS1 the
neurotoxic, beta form of the
AP appears in hippocampal
neurons and cerebral cortex

In humans with
AD: loss of memory
and cognitive decline
due to apoptosis,
oxidative stress, and
neuroinflammation

Fig. 8.1   What happens in the brains of patients with Alzheimer’s
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8.1.2 � The Role of HSP70 in Alzheimer’s Disease. Sometimes 
You Feel Like You are Balancing on a Sword Blade

The realization that protein homeostasis disorder and the appearance of mutant 
proteins and damaged forms of certain proteins played key roles in neurodegenera-
tion immediately gave rise to two hypotheses.

The first hypothesis proposed that a disturbance of protein metabolism could 
be associated with the age-related weakening of the chaperone protein quality con-
trol system. This hypothesis was supported in studies that showed that the content 
of HSP70 mRNA in patients with Alzheimer’s disease was significantly lower than 
that in old healthy people of the same age (Wakutani et al. 1995; Getchell et al. 
1996). In addition, it was found that abnormality in hippocampal neurons led to 
cognitive decline and Alzheimer’s disease. Moreover, such neurons also had low 
basal levels of HSP70 when compared with other brain regions (Chen and Brown 
2007). The hippocampus is responsible for cognitive functions of the brain and 
memory. The question arises then: why did nature not arrange for the protection 
of this region of the brain? A higher basal level of HSP70 could provide “pre-
protection” of these neurons from stress-induced disturbances in protein homeosta-
sis and ensure protection of the brain cognitive functions from detrimental effects 
from everyday stresses. This question, like many others related to the issue of neu-
rodegeneration, remains unanswered. One hypothetical explanation put forward is 
that high basal levels of HSP70 somehow interfere with cognitive functions.

The second hypothesis was that HSPs can inhibit neurodegeneration in 
Alzheimer’s disease (Renkawek et al. 1993; Pappolla et al. 1996; Brown and 
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Gozes 1998; Ohtsuka and Suzuki 2000). Indeed, it was found that, despite a 
general age-related decline of the chaperone system inducibility in the brain of 
Alzheimer’s patients, the levels of heat shock proteins HSP27, HSP70 and CHIP 
in the regions affected by the pathological process were increased (Yoo et al. 
1999; Renkawek et al. 1994; Petrucelli et al. 2004). Experiments with increased 
levels of expression of HSP70 showed that HSP70 protects neurons from neuro-
degenerative processes (Magrane et al. 2004; Smith et al. 2005). We can list at 
least six mechanisms of the neuroprotective effect of HSP70: (1) disaggregation 
and degradation of intracellular Aβ aggregates; (2) disaggregation of extracellular 
Aβ aggregates; (3) an increase in the elimination of Aβ from intercellular spaces; 
(4) restriction of tau protein hyperphosphorylation, disaggregation and degradation 
of abnormal tau proteins; (5) limiting NO overproduction; and (6) restriction of 
apoptosis.

Mechanism 1. Studies using cell cultures and the human brain have shown that 
Aβ can accumulate inside nerve cells, either by intracellular production, or by the 
uptake of extracellular Aβ (Yang et al. 1998; Gouras et al. 2000; Sun et al. 2002). 
Intracellular Aβ neurotoxicity may manifest itself long before the extracellular 
accumulation of Aβ (Kumar-Singh et al. 2000; Wirths et al. 2001). Moreover, after 
lysis of nerve cells, intracellular Aβ contributes significantly to the formation of 
senile plaques (D’Andrea et al. 2001). Different research has shown that intracel-
lular Aβ forms complexes with several proteins, many of which have chaperone 
activity (Yan et al. 1997; Fonte et al. 2002; Cottrell et al. 2005). Intracellular Aβ 
was found to interact with HSP70 in a specific manner (Fonte et al. 2002). (Fonte 
et al. 2002; Evans et al. 2006) found that HSP70 can inhibit the earliest steps of 
aggregation of intracellular Aβ, thereby completely suppressing its neurotoxic-
ity (Magrané et al. 2004; Ansar et al. 2007) and the formation of the degenera-
tive neuron phenotype. These data suggest that intracellular Aβ is recognized by 
the chaperone system of the cell, including HSP70, as an abnormal protein. As a 
result, HSP70, together with other chaperone proteins, rearranges Aβ metabolism 
from the secretory pathway and the formation of extracellular plaques to an alter-
native pathway of Aβ disaggregation and degradation (Fig. 8.3).

Mechanism 2. The extracellular accumulation of beta-amyloid plaques is 
believed to be one of the most important triggers of neurodegenerative processes. 
It was shown that low molecular weight stress proteins may prevent the formation 
of Aβ aggregates in vitro, and that extracellular HSP70 and HSP90 can disaggre-
gate toxic amyoloid aggregates (Koren et al. 2009) (Fig. 8.4).

Mechanism 3. The content of Aβ in the extracellular space is determined by 
the ratio between the rates of its production and elimination. Kakimura et al. 
(2002) showed that extracellular HSP90, HSP70 and HSP32 may actively influ-
ence this ratio through activation of microglia and the induction of IL-6 and 
TNF-α production. Microglial cytokines enhance phagocytosis, thus contribut-
ing to the removal of neurotoxic Aβ (Fig. 8.5). However, an excessive increase in 
the production of proinflammatory cytokines may enhance neuro-inflammation. 
Therefore, once again, a particular balance of the effects of cytokines on HSPs 
should be observed.

8.1  The Role of HSP70
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Mechanism 4. Normal Tau is a protein that promotes polymerization and stabi-
lization of microtubules. However, hyperphosphorylation of the tau protein is the 
major trigger for the formation of fibrillar neuronal tangles in neurons affected by 
Alzheimer’s disease. Thus, the interaction of tau with microtubules is disrupted, 
thereby disturbing polymerisation and the stability of microtubules (Weaver et 
al. 2000; Guillozet-Bongaarts et al. 2005; Pickering-Brown et al. 2000). Johnson 
et al. (1993) discovered that HSP70 forms a stable complex with the tau protein. 
Subsequently, Kirby et al. (1994) proved that HSP70 binding to tau protects tau 
from hyperphosphorylation and, therefore, limits the formation of neurofibrillary 
tangles (Fig. 8.6). In contrast, it was shown that reducing HSP70 levels leads to 
the formation of neurofibrillar tangles (Dou et al. 2003).

Fig. 8.4   Small stress 
proteins may prevent the 
formation of Aβ aggregates, 
and extracellular HSP70 and 
HSP90 can disaggregate toxic 
amyoloid aggregates

DISAGGREGATION

HSP70

HSP100

Small HSPs 

Extracellular 
β-amyloid

Fig. 8.3   HSP70 rearranges 
Aβ metabolism from the 
secretory pathway and the 
formation of extracellular 
plaques to an alternative 
pathway of Aβ disaggregation 
and degradation

Intracellular β-amyloid

DISAGGREGATIONDEGRADATION

Bag-1, 
HSJ1b

U
U

U

U
U

U

Ubiquitin

PROTEASOMEpeptides

HSP70

HSP100

Small HSPs 



119

In addition, the chaperone proteins such as HSP27, HSP70 and CHIP can 
detect abnormal tau and reduce its intracellular concentration by targeting this 
protein for degradation in proteasomes or lysosomes (Petrucelli et al. 2004; Dou 
et al. 2003; Shimura et al. 2004; Sarkar et al. 2008; Elliott et al. 2007). Taken 
together, this data suggests that chaperones are required to maintain tau in the non-
aggregated, normal state.

Other studies have shed light on what mechanism the chaperone system uses 
to control abnormally accumulated tau. Protein kinase Akt, which has elevated 
levels in Alzheimer’s patients, plays a very important role in this mechanism 
(Pei et al. 2003). Akt is a kinase that, on the one hand, can phosphorylate the 
tau protein (Pei et al. 2003) thus stimulating its aggregation, and, on the other 
hand, prevent tau ubiquitination and the subsequent degradation of abnormal 
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tau (Dickey et al. 2006, 2008). A tentative model that illustrates our current 
understanding of tau protein metabolism under the control of the HSP70/HSP90 
chaperone system is shown in Fig. 8.7.

Kinases, such as MARK2 and Akt phosphorylate a specific area of the tau 
protein (KXGS motifs); this phosphorylation, with the help of the chaper-
one system, prevents the degradation of abnormal tau. Another abnormal or 
misfolded tau, non-phosphorylated at the KXGS motif, is recognized by the 
HSP40/HSP70 complex and is sent directly to the proteasome for degradation, or 
through the formation of a complex with HSP90. Akt can recognize and bind the 
HSP40/HSP70/HSP90 complex. The HSP90 complex can provide refolding and 
recovery of tau, or it can send tau to degradation. However, in the presence of Akt, 
the degradation of tau by this complex is disrupted and tau accumulates. Note that 
Akt is also an HSP90 client and may be degraded along with the tau protein.

Mechanism 5. The next mechanism of neuronal death in Alzheimer’s disease 
is associated with NO overproduction. NO overproduction plays an important 
pathogenic role in inflammatory reactions during Alzheimer’s disease. The brain 
contains all three NOS isoforms. Neuronal NOS is expressed throughout the 
brain, including cerebellum, cortex, hippocampus, amygdala and substantia nigra 
(Vincent and Kimura 1992). Endothelial NOS is localized mainly in endothe-
lial cells. Inducible NOS is absent in healthy brain tissue, but can be expressed 
in cells following brain injury. NO overproduction can be associated with exces-
sive activation of iNOS by cytokines in microglial cells and astrocytes. NO causes 
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neuronal death mainly by damaging mitochondria and triggering apoptosis 
(Charbrier et al. 1999).

It was shown that HSP70 may limit NO production and thus reduce neuro-
inflammation (Calabrese et al. 2000) by inhibiting the expression of cytokine and 
iNOS genes (Yoo et al. 2000a, b). This effect is due to the ability of intracellu-
lar HSP70 to block activation of NFkB, the main pro-inflammatory transcription 
factor (Fig. 8.8).

Mechanism 6. Neuronal death in Alzheimer’s disease occurs mainly through 
the apoptotic pathway. Neuronal apoptosis can be triggered by neurotoxic forms 
of Aβ, tau-protein, NO overproduction and a variety of stressors, the sensitiv-
ity to which is significantly increased in aging neurons. In the previous chapters, 
I  have already examined how HSP70 may limit apoptosis in cells. It is possible 
that HSP70 may limit apoptosis in neurons using the same mechanisms (Fig. 3.4). 
Briefly, HSP70 may block apoptosis by inhibiting mitochondrial release of the 
proapototic factors, cytochrome c and Araf-1, inhibit the activity of AIF, caspase-9 
and JNK, as well as by increasing the level of Bcl-2 and reducing the level of Bax. 
In general, we can conclude that HSP70 is an important endogenous system for 
protection of hippocampal neurons against Alzheimer’s disease.

There is an interesting and important point to the story describing the intracel-
lular relationship between HSPs and Aβ (Fig.  8.9). HSE, the site that can bind 
HSF1, was discovered in the promoter of the app gene (Salbaum et al. 1998). 
That means that under stress, when HSF1 is activated, this transcription factor 
can increase the expression of both HSP genes, such as HSP27, HSP40, HSP70 
and HSP90, and the app gene (Dewji 2005, 2006; Dewji et al. 1995). These data, 
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on the one hand, allow us to understand and explain the molecular mechanism by 
which stress can contribute to the development of Alzheimer’s disease, and, on 
the other hand, offer a hypothesis about why the risk of early neurodegenerative 
changes and Alzheimer’s disease increases with age.

It could be that during aging, the HSF1 affinity to the promoter of the HSP70 
gene reduces, while the affinity to the promoter of the app gene increases. The 
increase in the synthesis of APP and the decrease in HSP70 inducibility would 
then be associated with an aging brain. Consequently, such protein production reg-
ulation may, under certain stress conditions, contribute to the formation of neuro-
toxic Aβ within and outside the cell. Extracellular Aβ can activate stress-induced 
kinases, which in turn can phosphorylate and thus activate HSF1 (Koren et al. 
2009). Therefore, a positive feedback mechanism, which would increase the pro-
duction of neurotoxic Aβ, may form in cells of an aging brain.

The formation of this positive feedback mechanism, which involves HSF1, 
allows a new assessment of the age-related decrease in HSF1 activity in a healthy 
brain. It is possible, that in this case, the age-related decline in HSF1 activity 
allows the physiologically aging neurons to substantially slow down the produc-
tion of neurotoxic Aβ. Thus the aging neuron, if it wants to stay healthy, has to 
balance very accurately the level of HSF1 activity. Here, HSF1 activity should be 
low enough to avoid activation of high levels of amyloid production, yet the activ-
ity of HSF1 should be sufficient to support HSP70 inducibility to maintain protein 
homeostasis. If this hypothesis was confirmed, HSF1 would potentially become a 
very good “target” for pharmacological treatment of Alzheimer’s disease.

Once again, we can only regret that hippocampal neurons contain low basal 
levels of protective HSP70, as compared to other regions of the brain and other 
cells. I have already mentioned that this is probably due to the fact that high levels 
of HSP70 in some way impede the execution of cognitive functions.

Fig. 8.9   The intracellular 
relationship between HSF-1 
and Aβ: a positive feedback 
mechanism, which would 
increase the production of 
neurotoxic Aβ, may form in 
cells of an aging brain
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An amazing thing happens! When neurons are damaged, the surround-
ing microglial cells and astrocytes begin secreting high-levels of HSP70. These 
HSP70 molecules, besides participating in the disaggregation of extracellular Aβ 
aggregates, are also taken up by neurons and begin protecting neurons. Neurons, 
not having sufficient number of their own HSP70 use HSP70 released from neigh-
boring glial cells and astrocytes (Tytell et al. 1986). A stunning example of mutual 
help among brain cells!

8.1.3 � The Insulin Hypothesis of Alzheimer’s Disease 
and a Possible Role of HSP70

In analyzing the role of HSPs in Alzheimer’s disease, we were primarily focused 
on the prevailing hypothesis, formed over many years, about this disease involving 
the aggregation of proteins and impaired homeostasis of Aβ and the tau protein.

However, recently some truly revolutionary discoveries have been made, and 
they can radically alter our views on the etiology of Alzheimer’s disease. If in 
2009 you would have opened the BMB reports magazine, you would have found 
an interesting article there: “Insulin resistance and Alzheimer’s disease”. The 
author, Suzanne de la Monte (de la Monte 2009), argued that the earliest event that 
triggers neurodegeneration and development of Alzheimer’s disease is a reduction 
in insulin levels and insulin receptor desensitization in the central nervous system. 
Both factors were found in the brains of patients with Alzheimer’s disease, and 
both of them, as experimentally shown, are likely to disrupt insulin-dependent sig-
nalling pathways and inhibit insulin-dependent genes in brain cells. According to 
Suzanne de la Monte that is precisely what leads to the development of the whole 
spectrum of Alzheimer’s disease symptoms, namely, accumulation of Aβ oligom-
ers and aggregates, neurofibrillar tangles of hyperphosphorylated tau protein, oxi-
dative stress, activation of apoptosis and neuronal death.

The most amazing thing is that insulin resistance in the brain can develop inde-
pendently, whereas the insulin sensitivity of peripheral cells of other organs is not 
disturbed, that is, in the absence of type-2 diabetes. This observation gave grounds 
to Suzanne de La Monte to propose the existence of a specific cerebral form of 
“type-3 diabetes mellitus”, which is the cause of Alzheimer’s disease (Lester-
Coll et al. 2006). This hypothesis has been supported by studies where intrana-
sal administration of insulin significantly improved the cognitive function without 
changing peripheral glucose metabolism (Reger et al. 2008).

The insulin hypothesis, however, does not negate a number of cases when an 
increase in the level of HSP70 or one of its co-chaperones helped to overcome 
neurodegeneration symptoms (Bonini 2002; Klucken et al. 2004). However, if the 
insulin hypothesis of Alzheimer’s disease is confirmed, we should be prepared to 
revise the role of HSPs as well. There is a lot of data, obtained on different types of 
cells, which suggest that HSP70 may play a specific role in the insulin-dependent 
signaling and possibly in the development of Type-3 diabetes and Alzheimer’s 
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disease. All these data, obtained mainly on hepatic cells, suggests that HSP70 may 
limit insulin resistance in cells as well as disorders of insulin-dependent signaling 
(McCarty 2005; Zachayus et al. 1996; Morino et al. 2008; Marucci et al. 2009).

However, once again, these data were obtained mainly on hepatic cells; thus we 
should cautiously extrapolate the data to what happens in the brain. One of the first 
studies on the relationship between HSP70 and insulin-dependent mechanisms in 
brain neurons was done by the Piccoletti group in Italy (Piccoletti et al. 2001). This 
study showed that the activation of the HSF1 transcription factor and the accumula-
tion of HSP70 in neurons are accompanied by activation of insulin receptors. Thus, it 
can be suggested with certain caution that HSP70 may delay the development of neu-
rodegeneration in Alzheimer’s disease by limiting insulin receptor desensetization. 
Once again; however, this hypotesis requires serious experimental verification.

8.2 � The Role of HSP70 in Protecting the Heart  
in Heart Surgery

We discussed how HSPs protect our brain, our cognitive functions and our con-
sciousness. Now I turn to the role these proteins play in protecting the heart, which 
is, as previously believed, a “container for our soul”.

When we hear, “he has a bad heart,” our own heart shrinks with pain, especially 
when it is about someone close to us. Since the heart is not a paired organ, it cannot 
be removed like a dysfunctional kidney, and thus, heart-related diseases are often 
serious illnesses. Unlike the stomach and even the brain, removal of a piece of a 
damaged heart is not a viable option. The heart is the only organ that operates on 
the “all or nothing” principle, and thus a sick heart represents a serious health risk! 
Therefore, heart surgery is one of the best equipped and high-tech areas in medicine.

Sixty years ago, in April 1951, Dr. Dennis and his team from the University of 
Minnesota hospital made a huge technological breakthrough in heart surgery. They 
were the first to carry out an operation on an open heart by stopping the heart using 
the “iron heart” machine. Since then, many heart diseases have been treated and 
are not considered a sure death sentence. These days this device is called the artifi-
cial circulation machine, or “heart–lung machine”, and the operations are known as 
cardio-pulmonary bypasses. Without this device it would not be possible to carry out 
operations that are often the last hope for survival of cardiological patients. These 
operations are coronary artery bypass surgery, cardiac valve repair and/or replace-
ment (aortic valve, mitral valve, tricuspid valve, pulmonic valve), repair of large septal 
defects (atrial septal defect, ventricular septal defect, atrioventricular septal defect), 
repair and/or palliation of congenital heart defects (Tetralogy of Fallot, transposition 
of the great vessels), transplantation (heart transplantation, lung transplantation, heart–
lung transplantation), repair of some large aneurysms (aortic aneurysms, cerebral 
aneurysms), pulmonary thromboendarterectomy and pulmonary thrombectomy.

The above list is rather extensive. A lot of terminally ill patients have been saved 
over the last half-a-century by using the artificial circulation system; however, some 
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serious complications were also discovered. The most serious ones are ischemia and 
reperfusion injury, and the excessive systemic inflammatory response syndrome 
(SIRS). These two complications often lead to irreversible cardiac dysfunction, mul-
tiple organ failure and death.

In studying these complications, HSP70 proteins have attracted particular atten-
tion. However, before answering the question why HSP70 attracted the attention 
of scientists and cardiologists, it is important to say a few words about what these 
complications are and why they occur.

8.2.1 � Ischemic Complications Associated with Open Heart 
Surgery, or How We are Hoisted by Our Own Petard

We must say at once that in open heart surgery, many of which are carried out to 
eliminate myocardial ischemia, it is not possible to avoid further ischemic dam-
age to cardiomyocytes. Clamping the aorta, connecting the extracorporal circula-
tion apparatus, and stopping the heart, lead directly to myocardial ischemia during 
surgery because the heart has to stop functioning for a period of time. In addi-
tion, restoration of blood supply to the heart after the surgery and reoxygenation 
of the ischemic tissue inevitably leads to oxidative stress and further reperfusion 
injury. During ischemia and subsequent reperfusion, the myocardium experiences 
denaturation of proteins and the development of all three classic types of cellular 
damage. I discussed these points in Chap. 3, namely, hypoxic damage, free radical 
damage and calcium overload. These injuries seriously contribute to heart rhythm 
disturbances and the development of postoperative atrial fibrillation (Archbold and 
Curzen 2003; St Rammos et al. 2002).

Reoxygenation of ischemic tissue also triggers local inflammation and the 
release of proinflammatory cytokines into the blood. These cytokines act on 
endothelial cells of coronary vessels and increase the production of adhesion mol-
ecules by these cells. The appearance of adhesion molecules on the surface of the 
endothelium contributes to the attachment of activated neutrophils and monocytes 
to the endothelium, and subsequent migration of these cells into the interstitial 
space of reperfused myocardium. There, the activated neutrophils release aggres-
sive reactive oxygen species (ROS). Unfortunately the neutrophils do not care 
which cells are attacked by ROS; pathogens that must be destroyed or cardiomy-
ocites that had just survived ischemia. The activated neutrophils attack all living 
cells in their path, provoking their death by necrotic or apoptotic processes.

8.2.2 � The Role of HSP70 in Protecting the Heart From 
Ischemia/Reperfusion Injury During Heart Surgery

The development of ischemic heart damage is associated with hypoxia, activation 
of free radical processes, calcium overload, and protein denaturation. All these 
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factors have been shown to be involved in the activation of HSP70 synthesis dur-
ing ischemia. The value of ischemia-induced HSP70 synthesis has become clear in 
the study of the ischemic preconditioning phenomenon. The essence of this phenom-
enon lies in the fact that brief ischemia, which induces a small damage and accu-
mulation of HSP70 in the heart, results in an increase of myocardial resistance to 
subsequent severe, prolonged ischemia and subsequent reperfusion (Taggart et al. 
1997; Demidov et al. 1999; Giannessi et al. 2003). The conclusion from these stud-
ies was that the activation of HSP70 by damaging factors forms a basis for auto-
adaptation of the myocardium to injury.

The protective role of HSP70 in the heart has been repeatedly confirmed in var-
ious experiments (Jayakumar et al. 2000, 2001; Okubo et al. 2001; Currie et al. 
1998). It was shown, in particular, that after surgery the heart contractile function 
in patients, who had had higher myocardial levels of HSP70 before surgery, recov-
ered faster than patients with lower levels of this protein (Demidov et al. 1999; 
Giannessi et al. 2003).

Naturally, once the high effectiveness of HSP70 in cardioprotection was shown 
there was significant interest in defining what and how HSP70 functions as a car-
dioprotectant. As a result, it was discovered that HSP70 can limit ischemia/rep-
erfusion myocardial injury using at least four mechanisms: (1) by maintaining 
the protein homeostasis in cells; (2) by stabilizing lysosomal membranes; (3) by 
inhibiting the excessive activation of ADP-ribose polymerase; and (4) by blocking 
ischemia-induced apoptosis.

The first defensive mechanism is connected with HSP70 ability to maintain pro-
tein homeostasis in damaged ischemic and reperfused cells (Gabai and Kabakov 
1993; Kabakov and Gabai 1995). I have presented this mechanism in detail in the 
third chapter. The main points of the mechanism are:

1.	 To maintain protein homeostasis in a damaged cell, the HSP70-dependent 
protein quality control system, FORD, prevents protein aggregation, disaggre-
gates formed aggregates and degrades “incorrigible” proteins.

2.	 The restoration of protein homeostasis forms a specific cell defense from 
hypoxic injury due to HIF-1 activation; the defense from radical injury—by 
increasing the activity of antioxidants, and from calcium overload—by reduc-
ing intracellular calcium.

The second protective mechanism is connected with HSP70 ability to stabi-
lize lysosomal membranes in ischemic cells. During ischemic injury, lysosomal 
proteases and cathepsins may exit from the lysosome lumen in response to vari-
ous death signals, such as pro-inflammatory cytokines or oxidative stress. Being 
released into the cytosol, cathepsins and proteases cause cell autolysis and death. 
Therefore, by stabilizing lysosomal membranes, HSP70 may limit the exit of dan-
gerous enzymes and prevent cell death induced by cytokines and oxidative stress, 
the factors that actively contribute to ischemia/reperfusion myocardial injury.

The third defense mechanism is owing to the fact that, in the case of cellular 
damage, HSP70 translocates to the nucleus and interacts with an ATP-dependent 
enzyme, poly (ADP-ribose) polymerase. This sensor enzyme detects DNA 
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single-strand breaks and participates in their repair. However, as often happens 
in biological systems, the same enzyme plays an active role in injury. Whenever 
the level of cellular oxygen recovers after a period of ischemia, the extent of poly 
(ADP-ribose) polymerase activation may far exceed the supply levels of available 
cellular energy needed for such hyperactivation. Hyperactivation of the enzyme 
in a reperfused heart leads to large amounts of ATP expenditure. As a result, an 
energy deficit develops, which can damage the cell even more than the oxygen 
shortage the cells have just experienced. Consequently, it was clearly shown that 
the interaction of HSP70 with the enzyme limits the excessive activation of poly 
(ADP-ribose) polymerase and thus preserves ATP stocks in a damaged cell.

The fourth defense mechanism is associated with the ability of HSP70 to inhibit 
signaling pathways of apoptosis. I have already examined this mechanism in some 
detail in previous chapters. It is important to add here that, first of all, it was shown 
that ischemia/reperfusion leads to a significant activation of JNK in cardiomyocytes 
(Bogoyevitch et al. 1996; Laderoute and Webster 1997), and that activiation level 
is sufficient to trigger apoptosis in these cells (Wang et al. 1998). Second, experi-
ments on cardiomyocytes showed that HSP70 blocks JNK activation induced by 
ischemia and reperfusion. This effect of HSP70 was shown to correlate clearly with 
the increased survival of cells (Gabai et al.1995). Consequently, the protective anti-
ischemic effects of HSP70 may be associated with the inhibition of JNK-dependent 
apoptosis. Thus, experimental and clinical data suggest that intracellular HSP70 
protects the myocardium from ischemia/reperfusion injuries during heart surgery 
(Williams and Benjamin 2000; Lepore et al. 2001; Wang et al. 2003).

8.2.3 � Systemic Inflammatory Response Syndrome in Heart 
Surgery or“Give a Man Enough Rope and He’ll 
Hang Himself”

Apart from ischemia and reperfusion, open heart surgery is always accompanied 
by development of SIRS. In most cases, it manifests as a temporary tachycardia, 
arterial hypo- or hypertension, fever without any signs of concomitant infection 
and slight changes in blood chemistry.

Why does SIRS develop? During heart surgery using the cardiopulmonary 
bypass, the patient’s blood is run by the pump of the heart–lung machine through 
the tubes of the extracorporeal circulation. These tubes have no inner endothelial 
layer, as in real blood vessels. Therefore, particular blood cells in contact with the 
artificial surface are activated. Consequently, after returning to the natural vascular 
bed of the patient the activated leukocytes release inflammatory cytokines and thus 
trigger activation of the vascular endothelium. As a result, endothelial cells change 
their phenotype from the anti-adhesive and anti-inflammatory to the adhesive and 
proinflammatory type (Kalawski et al. 1998).

The release of various inflammatory mediators by blood cells, activated 
endothelium and reperfused myocardium into systemic circulation marks the onset 
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SIRS. Subclinical forms of this syndrome develop in virtually all patients after 
surgery, even with relatively small lesions. They usually do not pose any prob-
lems and are not life-threatening. Moreover, a mild form of systemic inflamma-
tion should be regarded as a rather biologically sensible phenomenon. Any open 
postsurgery wound is an open gate for infection. Therefore, systemic inflamma-
tion can be regarded as a form of anticipatory activation of the immune response 
to potential penetration of pathogenic germs. The systemic inflammatory response 
syndrome was probably developed and maintained during evolution, so that the 
body could survive any violation of the body surface integrity, including wounds 
and burns. Therefore, during surgery the body also uses this ancient form of pro-
tection to ensure survival.

However, to prevent excessive inflammation, the body must reliably control 
every step of the inflammatory process, both locally and at the systemic level. 
So, in fact, the systemic inflammatory response actually represents a dynamic 
balance in which the initial hyper-inflammatory phase and the predominance of 
pro-inflammatory cytokines is followed by a hypo-inflammatory phase with the 
predominance of anti-inflammatory cytokines (Hiesmayr et al. 1999; Nathan et al. 
2000). If the control of the inflammatory processes is disturbed, the syndrome 
begins to manifest as excessive inflammatory reactions. Among the clinical con-
sequences of an excessive systemic inflammation the most dangerous outcome is 
the multiple organ failure syndrome (Sablotzki et al. 2002; Rothenburger et al. 
2003), which is usually fatal. In some cases, secondary infection contributes to the 
adverse outcome. However, in many other serious cases, the clinical manifesta-
tion of SIRS, although very similar to symptoms of the septic shock syndrome, 
develops without any symptoms of infection. The SIRS form developing in the 
absence of infection is called “sepsis-like syndrome”. The degree of excessive  
pro-inflammatory activation of SIRS depends on the reliability of the mechanisms 
for intracellular, local and systemic regulation of the proinflammatory signaling 
pathways in immune cells following surgery. A significant component in such a 
regulation is based on the functions of intracellular and extracellular HSP70.

8.2.4 � The Role of HSP70 in the Development and 
Monitoring of Systemic Inflammatory Response 
During Heart Surgery: Modus Operandi as a Principle 
of Biological Regulation

After heart surgery, the extracellular HSP70 level almost always increases. The sys-
temic release of HSP70 has been demonstrated in humans after myocardial infarc-
tion (Dybdahl et al. 2005; Satoh et al. 2006) and coronary artery bypass grafting 
(Dybdahl et al. 2002). The appearance of HSP70 in the systemic circulation results 
from disturbed cell integrity and the release of intracellular HSP70 from damaged 
cells into the extracellular space (Saito et al. 2005; Basu et al. 2000). In this case, 
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damaged cells substantially increase HSP70 synthesis to increase HSP70 release at 
the time of cell necrotic death (Saito et al. 2005). Therefore, the greater the surgical 
injury, the more HSP70 will be released from cells, and the higher the plasma level 
of HSP70 (Dybdahl et al. 2004; Cavaillon et al. 2005; Szerafin et al. 2008).

In all cases, the increase in extracellular HSP70 is transient, followed by a 
more prolonged elevation of circulating proinflammatory cytokines. This tran-
sient change in HSP70 and the subsequent increase in cytokine production indi-
cate that extracellular HSP70 may perform signaling functions in triggering the 
pro-inflammatory component of the systemic inflammatory response. Studies have 
confirmed that HSP70 does trigger this pro-inflammatory component (Fig. 8.10). 
In contrast to other intracellular proteins that enter the circulation, extracellular 
HSP70 interacts with CD14, TLR-2 and/or TLR-4 membrane receptors (Asea 
et al. 2002; Vabulas et al. 2002; Gross et al. 2003) on the surface of innate immu-
nity cells, such as monocytes, macrophages, natural killer cells and dendritic cells. 
Intracellular signaling pathways of different immune cell receptors converge on 
NF-kB. NF-kB activation leads to its translocation from the cytosol to the nucleus, 
activation of proinflammatory cytokine genes and the development of the innate 
inflammatory component of a systemic inflammation in a sterile environment.

In this process, innate immunity cells accumulate in areas of inflammation 
(Tomic et al. 2005; Arispe et al. 2004; Theriault et al. 2005; Vega et al. 2008) in 
various organs because of the interaction with adhesion molecules on the surface 
of endothelial cells (Campisi et al. 2003; Chase et al. 2007). In the absence of 
intracellular damage, the level of intracellular HSP70 in circulating inflammatory 
cells is low enough. Therefore, HSP70 only slightly inhibits the activity of NF-κB, 
and so the overall inflammatory balance is pro-inflammatory.

In addition to this, extracellular HSP70 can interact with another group of 
receptors (see Chap. 5), such as LOX-1, CD91, CD94 and CD40 on the surface of 
adaptive response cells, such as macrophages, dendritic cells and T cells (Pockley 
et al. 2008). These ligand-receptor interactions lead to the activation of the adap-
tive, antigen-nonspecific immune response (Millar et al. 2003; Wang et al. 2006).
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Thus, extracellular HSP70 may represent a molecular link between myocardial 
injury and the activation of post-operative, innate, pro-inflammatory and adaptive 
non-antigen-specific responses of SIRS (Fig. 8.11).

As such, the logic of developing systemic inflammation is as follows: the 
immune cells activated by extracellular HSP70 start producing large amounts of 
proinflammatory cytokines, ROS and NO, which, in turn, trigger the synthesis of 
intracellular HSP70 in immune cells through NFkB (Hamilton et al. 2004; Oehler 
et al. 2001; Schroder et al. 2003; Temple et al. 2004). This is very important for 
understanding the switch of systemic inflammatory response syndrome from the 
pro-inflammatory to the anti-inflammatory direction.

In fact, intracellular HSP70, as distinct from its extracellular partners, inhibits 
rather than activates NF-κB (Feinstein et al. 1996; Lau et al. 2000), thus blocking the 
activation of pro-inflammatory cytokine genes. The HSP70-mediated negative feed-
back to the NF-κB activity is an important immuno-regulatory pathway (Ammirante 
et al. 2008). The intracellular anti-inflammatory effect of HSP70 is associated with 
the inhibition of IκB kinase (IKK) activity, which activates NF-kB (Ran et al. 2004). 
In addition, HSP70 can prevent degradation of the NF-kB inhibitor, I-κBα (Yoo et al. 
2000a, b; Weiss et al. 2007) or inhibit translocation of NF-κB from the cytosol to the 
nucleus (Tang et al. 2007) by physical occlusion of a nuclear pore.

These effects of intracellular HSP70 counteract receptor-mediated proinflam-
matory signaling, thus preventing the widespread and uncontrolled development 
of an immune proinflammatory response and ensure multiple organ failure during 
systemic inflammation.

Therefore, despite the fact that extracellular HSP70 triggers inflammatory 
responses, which under excessive activation can lead to considerable damage, 
the inhibition of HSP70 synthesis does not reduce these risks, but leads instead 
to multiple organ failure and increased mortality (Xiao et al. 1999; Van Molle 
et al. 2002; Singleton and Wischmeyer 2006). Now it is clear that the inhibition of 
HSP70 synthesis decreases intracellular levels of HSP70, which depresses the pro-
inflammatory signaling cascade.

Fig. 8.11   Extracellular 
HSP70 may represent a 
molecular link between 
myocardial injury and the 
activation of post-operative, 
innate, pro-inflammatory and 
adaptive non-antigen-specific 
responses of the systemic 
inflammatory response
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The effects of intracellular HSP70 have immediately attracted the attention of 
those pharmacologists and physicians who were concerned about negative and 
even fatal outcomes in heart patients, who showed excessive activation of the pro-
inflammatory component of systemic inflammation after surgery. Moreover, it 
was already known that HSP70 synthesis can be induced without any cell dam-
age, for example, by the administration of the amino acid glutamine. In addition, it 
has already been shown that glutamine can increase HSP70 synthesis and reduce 
damage to lungs during sepsis (Singleton et al. 2005). The pre-operative adminis-
tration of glutamine in experimental models was shown to increase HSP70 synthe-
sis in different cells and tissues, decrease systemic levels of the proinflammatory 
cytokines IL-6, IL-8 and NO (Hayashi et al. 2002), and improve post-surgery 
recovery of the myocardium.

In general, summarizing what you have learned about the role of HSP70 in the regu-
lation of systemic inflammation in heart surgery, we can make the following conclusions.

During systemic inflammation, extracellular HSP70 initiates inflammatory 
effects through the stimulation of immune cell receptors, whereas intracellular 
HSP70, in contrast, exerts anti-inflammatory effects on the inflammatory balance 
of systemic inflammation by inhibiting proinflammatory signaling in immune cells.

Such a situation, when the effects of the same moiety alternatively depend on 
the site of action, is denoted by the Latin term modus operandi. As I have dis-
cussed, HSP70 actively uses this principle for the regulation of the systemic 
inflammatory response syndrome.

8.3 � Conclusions

This was the last chapter of the book. I have presented a number of questions 
about the role of HSP70 in biology and medicine. However, to cover all the impor-
tant issues is not sufficient in providing a clear answer to all of them. Moreover, 
I would be dishonest if I did not admit that there remain unresolved features of 
heat shock proteins function. This is why these proteins remain of interest for 
basic research and are not yet widely used in the clinical setting.

However, what is definitely known, beyond any doubt, is that the discovery of the 
molecular basis for regulation and functioning of the entire chaperone system will 
represent a major breakthrough in discovering the mystery of life. This discovery, in 
turn, will be essential not only for medicine but for all aspects of biology.
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