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Preface

The retrieval problems arising in atmospheric remote sensing belong to the class of the so-
called discrete ill-posed problems. These problems are unstable under data perturbations,
and can be solved by numerical regularization methods, in which the solution is stabilized
by taking additional information into account.

The goal of this research monograph is to present and analyze numerical algorithms
for atmospheric retrieval. The book is aimed at physicists and engineers with some back-
ground in numerical linear algebra and matrix computations. Although there are many
practical details in this book, for a robust and efficient implementation of all numerical
algorithms, the reader should consult the literature cited.

The data model adopted in our analysis is semi-stochastic. From a practical point
of view, there are no significant differences between a semi-stochastic and a determinis-
tic framework; the differences are relevant from a theoretical point of view, e.g., in the
convergence and convergence rates analysis.

After an introductory chapter providing the state of the art in passive atmospheric
remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete equa-
tions. To illustrate the difficulties associated with the solution of discrete ill-posed prob-
lems, we consider the temperature retrieval by nadir sounding and analyze the solvability
of the discrete equation by using the singular value decomposition of the forward model
matrix.

A detailed description of the Tikhonov regularization for linear problems is the sub-
ject of Chapter 3. We use this opportunity to introduce a set of mathematical and graphical
tools to characterize the regularized solution. These comprise the filter factors, the errors
in the state space and the data space, the mean square error matrix, the averaging kernels,
and the L-curve. The remaining part of the chapter is devoted to the regularization pa-
rameter selection. First, we analyze the parameter choice methods in a semi-stochastic
setting by considering a simple synthetic model of a discrete ill-posed problem, and then
present the numerical results of an extensive comparison of these methods applied to an
ozone retrieval test problem. In addition, we pay attention to multi-parameter regular-
ization, in which the state vector consists of several components with different regular-
ization strengths. When analyzing one- and multi-parameter regularization methods, the
focus is on the pragmatic aspects of the selection rules and not on the theoretical aspects
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associated with the convergence of the regularized solution as the noise level tends to
zero.

At first glance, it may appear that Chapter 4, dealing with statistical inversion theory,
is an alien to the main body of the textbook. However, the goal of this chapter is to re-
veal the similitude between Tikhonov regularization and statistical inversion regarding the
regularized solution representation, the error analysis, and the design of regularization pa-
rameter choice methods. The marginalizing method, in which the auxiliary parameters of
the retrieval are treated as a source of errors, can be regarded as an alternative to the multi-
parameter regularization, in which the auxiliary parameters are a part of the retrieval.

Chapter 5 briefly surveys some classical iterative regularization methods such as the
Landweber iteration and semi-iterative methods, and then treats the regularizing effect of
the conjugate gradient method for normal equations (CGNR). The main emphasis is put on
the CGNR and the LSQR implementations with reorthogonalizations. Finally, we analyze
stopping rules for the iterative process, and discuss the use of regularization matrices as
preconditioners.

The first five chapters set the stage for the remaining chapters dealing with nonlinear
ill-posed problems. To illustrate the behavior of the numerical algorithms and tools we
introduce four test problems that are used throughout the rest of the book. These deal with
the retrieval of O3 and BrO in the visible spectral region, and of CO and temperature in the
infrared spectral domain.

In Chapter 6 we discuss practical aspects of Tikhonov regularization for nonlinear
problems. We review step-length and trust-region methods for minimizing the Tikhonov
function, and present algorithms for computing the new iterate. These algorithms rely on
the singular value decomposition of the standard-form transformed Jacobian matrix, the
bidiagonalization of the Jacobian matrix, and on iterative methods with a special class of
preconditioners constructed by means of the Lanczos algorithm. After characterizing the
solution error, we analyze the numerical performance of Tikhonov regularization with a
priori, a posteriori and error-free parameter choice methods.

Chapter 7 presents the relevant iterative regularization methods for nonlinear prob-
lems. We first examine an extension of the Landweber iteration to the nonlinear case, and
then analyze the efficiency of Newton type methods. The following methods are discussed:
the iteratively regularized Gauss–Newton method, the regularizing Levenberg–Marquardt
method and the Newton–CG method. These approaches are insensitive to overestimations
of the regularization parameter, and depend or do not depend on the a priori information.
Finally, we investigate two asymptotic regularization methods: the Runge–Kutta regular-
ization method and the exponential Euler regularization method.

In Chapter 8 we review the truncated and the regularized total least squares method
for solving linear ill-posed problems, and put into evidence the likeness with the Tikhonov
regularization. These methods are especially attractive when the Jacobian matrix is in-
exact. We illustrate algorithms for computing the regularized total least squares solution
by solving appropriate eigenvalue problems, and present a first attempt to extend the total
least squares to nonlinear problems.

Chapter 9 brings the list of nonlinear methods to a close. It describes the Backus–
Gilbert method as a representative member of mollifier methods, and finally, it addresses
the maximum entropy regularization.



Preface XIII

For the sake of completeness and in order to emphasize the mathematical techniques

ods for solving linear and nonlinear ill-posed problems in a general framework. The anal-
ysis is outlined in the appendices, and is performed in a deterministic and discrete setting.
Although discrete problems are not ill-posed in the strict sense, we prefer to argue in this
setting because the proofs of convergence rate results are more transparent, and we believe
that they are more understandable by physicists and engineers.

Several monographs decisively influenced our research. We learned the mathematical
fundamentals of the regularization theory from the books by Engl et al. (2000) and Rieder
(2003), the mathematical foundation of iterative regularization methods from the recent
book by Kaltenbacher et al. (2008), and the state of the art in numerical regularization
from the book by Hansen (1998). Last but not least, the monograph by Vogel (2002) and
the book by Kaipio and Somersalo (2005) have provided us with the important topic of
regularization parameter selection from a statistical perspective.

This book is the result of the cooperation of more than six years between a mathemati-
cally oriented engineer and two atmospheric physicists who are interested in computational
methods. Therefore, the focus of our book is on practical aspects of regularization meth-
ods in atmospheric remote sensing. Nevertheless, for interested readers some mathematical
details are provided in the appendices.

The motivation of our book is based on the need and search for reliable and efficient
analysis methods to retrieve atmospheric state parameters, e.g., temperature or constituent
concentration, from a variety of atmospheric sounding instruments. In particular, we were,
and still are, involved in data processing for the instruments SCIAMACHY and MIPAS
on ESA’s environmental remote sensing satellite ENVISAT, and more recently for the
spectrometer instruments GOME-2 and IASI on EUMETSAT’s MetOp operational me-
teorological satellite. This resulted in the development of the so-called DRACULA (aD-
vanced Retrieval of the Atmosphere with Constrained and Unconstrained Least squares
Algorithms) software package which implements the various methods as discussed in this
book. A software package like DRACULA, complemented by appropriate radiative trans-
fer forward models, could not exist without the support we have received from many sides,
especially from our colleagues at DLR in Oberpfaffenhofen. To them we wish to address
our sincere thanks.

Finally, we would like to point out that a technical book like the present one may still
contain some errors we have missed. But we are in the fortunate situation that each author
may derive comfort from the thought that any error is due to the other two. In any case, we
will be grateful to anyone bringing such errors or typos to our attention.

Oberpfaffenhofen, Germany Adrian Doicu
March, 2010 Thomas Trautmann

Franz Schreier

which are used in the classical regularization theory, we present direct and iterative meth-



 



1

Remote sensing of the atmosphere

Climate change, stratospheric ozone depletion, tropospheric ozone enhancement, and air
pollution have become topics of major concerns and made their way from the scientific
community to the general public as well as to policy, finance, and economy (Solomon et al.,
2007). In addition to these atmospheric changes related to human activities, natural events
such as volcanic eruptions or biomass burning have a significant impact on the atmosphere,
while the demands and expections on weather forecasting are steadily increasing (Chahine
et al., 2006). Furthermore, the discovery of extrasolar planets with the possibility of hosting
life (Des Marais et al., 2002) has brought a new momentum to the subject of planetary
atmospheres.

In view of all these developments, atmospheric science comprising various fields of
physics, chemistry, mathematics, and engineering has gained new attraction. Modeling and
observing the atmosphere are keys for the advancement of our understanding the environ-
ment, and remote sensing is one of the superior tools for observation and characterization
of the atmospheric state.

In this chapter a brief introduction to atmospheric remote sensing will be given. After
a short survey of the state of the atmosphere and some of its threats, the atmospheric
sounding using spectroscopic techniques is discussed. A review of the radiative transfer in
(Earth’s) atmosphere and a general characterization of atmospheric inverse problems will
conclude our presentation.

1.1 The atmosphere – facts and problems

The state of planetary atmospheres, i.e., its thermodynamic properties, composition, and
radiation field, varies in space and time. For many purposes it is sufficient to concentrate
on the vertical coordinate and to ignore its latitude, longitude, and time-dependence. Var-
ious altitude regions of the atmosphere are defined according to the temperature structure:
troposphere, stratosphere, mesosphere, and thermosphere (Figure 1.1).
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Fig. 1.1. AFGL (Air Force Geophysics Laboratory) reference-atmospheric models: temperatures
(Anderson et al., 1986). The circles attached to the US standard profile indicate the altitude levels.

Pressure p decreases monotonically with increasing altitude z; according to the ideal
gas law p = nkBT and the hydrostatic equation dp = −gρ dz we have

p(z) = p0 exp
(
−
∫ z

0

dz

H̄

)
.

Here, n is the number density, g is the gravity acceleration constant, kB is the Boltzmann
constant, ρ = mn is mass density, and m is the mean molecular mass (m ≈ 29 amu =
4.82 · 10−23 g for dry air in Earth’s lower and mid atmosphere). Ignoring the altitude-
dependence of the factors defining the scale height

H(z) =
kBT (z)

mg
,

yields
p (z) = p0 exp

(
− z

H̄

)
, (1.1)

where p0 is the surface pressure (p0 = 1 bar = 1013.25 mb for standard STP). Then,
assuming a mean atmospheric temperature T = 250 K, gives the scale height H̄ = 7.3 km.

The terrestrial atmosphere is composed of a large number of gases and various solid
and liquid particles (hydrometeors and aerosols), see Figure 1.2. The water- and aerosol-
free atmosphere is made up of nitrogen (N2, 78%) and oxygen (O2, 21%) with almost con-
stant mixing ratios in the lower and middle atmosphere. Water is present in all three phases
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Fig. 1.2. AFGL reference atmospheric models: volume mixing ratios of selected molecules (Ander-
son et al., 1986).

(vapor, liquid droplets, and ice crystals) and varies significantly in space and time. The re-
maining 1% of the atmospheric gases are noble gases (0.95%) and trace gases (0.05%).
The trace gases, which are mainly carbon dioxide, methane, nitrous oxide and ozone, have
a large effect on Earth’s climate and the atmospheric chemistry and physics.

Precise knowledge of the distribution and temporal evolution of trace gases and aerosols
is important in view of the many challenges of the atmospheric environment.

1.1.1 Greenhouse gases

The greenhouse gases (carbon dioxide CO2, methane CH4, tropospheric ozone O3, chlo-
rofluorocarbons and to a lesser extent water H2O) are responsible for Earth’s natural green-
house effect which keeps the planet warmer than it would be without an atmosphere. These
gases block thermal radiation from leaving the Earth atmosphere and lead to an increase in
surface temperature. In the last century, the concentration of greenhouse gases increased
substantially: CO2 from its pre-industrial level of about 280 ppm by more than 30% due
to combustion of fossil fuels, and CH4 by even more than 100%. As a consequence, one
expects an average global warming of about 2◦C to 4◦C in the coming century. Hence, sub-
stantial changes of the environment can be expected with significant effects for the existing
flora and fauna (Solomon et al., 2007).
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1.1.2 Air pollution

Pollutants from natural processes and human activities like NO2 and CO are emitted
into the troposphere. In the northern hemisphere, the main source of pollutants is fossil
fuel combustion coupled with some biomass burning, while in the southern hemisphere,
biomass burning is the primary source. Acid rain produces severe damage to forests and
aquatic life, especially in regions with a lack of natural alkalinity. This forms when SO2

and NO2 build up in the atmosphere. Sulfur dioxide and nitrogen dioxide are oxidized by
reaction with the hydroxyl radical and generate sulfuric acid and nitric acid, respectively.
These acids with a pH normally below 5.6 are then removed from the atmosphere in rain,
snow, sleet or hail. It should be pointed out that the release of SO2 into the atmosphere by
coal and oil burning is at least two times higher than the sum of all natural emissions.

1.1.3 Tropospheric ozone

Ozone is a toxic and highly oxidizing agent. Photochemical ozone production in the tro-
posphere, also known as summer smog, produces irritation of the respiratory system and
reduces the lung function. The majority of tropospheric ozone formation occurs when ni-
trogen oxides, carbon monoxide and volatile organic compounds react in the atmosphere
in the presence of sunlight. High concentrations of ozone arise when the temperature is
high, humidity is low, and air is relatively static, and when there are high concentrations of
hydrocarbons.

1.1.4 Stratospheric ozone

While ozone behaves like a greenhouse gas in the troposphere, in the stratosphere it helps
to filter out the incoming ultraviolet radiation from the Sun, protecting life on Earth from
its harmful effects. It is produced from ultraviolet rays reacting with oxygen at altitudes
between 20 and 50 km, where it forms the so-called stratospheric ozone layer. In the upper
stratosphere, ozone is removed by catalytic cycles involving halogen oxides. In addition,
a very substantial depletion of stratospheric ozone over Antarctica and the Arctic has been
observed during springtime. The main source of the halogen atoms in the stratosphere
is photodissociation of chlorofluorocarbon compounds, commonly called freons, and of
bromofluorocarbon compounds known as halons. These compounds are transported into
the stratosphere after being emitted at the surface from industrial production. The loss
of ozone in the stratosphere is also affected, in a synergistic manner, by the tropospheric
emission of greenhouse gases.

1.2 Atmospheric remote sensing

Remote sensing means that measurements are performed at a large distance from the object
or the medium to be investigated. The interaction of electromagnetic or acoustic waves
with the medium is determined by the state of the medium, and the modification of the
waves can be used for the retrieval of the medium’s properties. The following discussion
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concentrates on measurements of the electromagnetic radiation, but the mathematical tools
for the solution of the inverse problem can equally well be applied to acoustic measure-
ments, e.g., SONAR (SOund NAvigation and Ranging) or SODAR (SOund Detection And
Ranging).

Remote sensing can be passive or active. Active remote sensing utilizes an artificial
radiation source such as a laser emitting light pulses; the laser light is scattered by gas
molecules and aerosols and it is partially absorbed by the target gas. A portion of the
emitted light is collected by a detector telescope, and the analysis of the recorded laser light
reveals information about the composition of the atmosphere. In LIDAR (LIght Detection
And Ranging) systems, the transmitter and the detector are usually co-located and the
technique is based on backscattering. Radar (radio detection and ranging) systems employ
a similar technique using microwave-emitting antennas.

In contrast, passive remote sensing utilizes natural radiation sources. The observation
of short-wave solar radiation propagating through the atmosphere, interacting with its con-
stituents and partly being reflected by Earth’s surface, and the observation of long-wave
thermal emission of both atmosphere and surface are the main approaches. Passive remote
sensing can be achieved by analyzing absorption or emission spectra as follows:

(1) Thermal emission. Instruments based upon the emission technique detect the long-
wave radiation (infrared or microwave) thermally emitted in the atmosphere along the
observer’s line-of-sight. The signals from atmospheric constituents can be regarded
as thermal ‘fingerprints’ of the atmosphere, and from the emission line properties,
temperature or trace gas concentrations are derived.

(2) Absorption of solar radiation. The upwelling radiation at the top of the atmosphere
from the ultraviolet to the near-infrared comprises the solar radiation that has been
scattered by air molecules and aerosols, partially absorbed by the target gas and re-
flected at the Earth’s surface. Information on trace gas concentrations is encapsulated
in that part of the incoming solar radiation that has been removed by absorption.

(3) Absorption of direct radiation. This category includes occultation instruments that
measure solar, lunar, and even stellar radiation directly through the limb of the atmo-
sphere during Sun, Moon and star rise and set events. By measuring the amount of
absorption of radiation through the atmosphere, occultation instruments can infer the
vertical profiles of trace gas constituents.

A further classification of remote sensing systems is based on the sensor location and
the observation geometry (Figure 1.3):

(1) Ground-based systems deployed in laboratory buildings usually observe the atmo-
sphere in an ‘uplooking’ geometry. Observatories in mountain regions are frequently
used with altitudes up to several kilometers, for example, in the Network for Detection
of Atmospheric Composition Change (NDACC).

(2) Airborne remote sensing systems work with instruments onboard of aircraft or bal-
loons. Whereas conventional aircraft operate in altitudes more or less confined to the
troposphere, some aircraft such as the American ER-2 or the Russian Geophysica can
reach altitudes of about 20 km, well in the lower stratosphere. Stratospheric balloons
can reach altitudes of almost 40 km, hence permitting observation of the atmosphere
in ‘limb sounding’ geometry.
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Fig. 1.3. Observation geometries for atmospheric remote sensing.

(3) Spaceborne systems aboard satellites, the Space Shuttle, or the International Space
Station (ISS) work in limb viewing or in nadir viewing (downlooking) mode. A large
number of sensors for environmental and meteorological studies is mounted on po-
lar orbiting satellites flying at altitudes of about 800 km. Furthermore geostationary
satellites with an altitude of about 36 000 km are utilized, especially for meteorologi-
cal purposes. In contrast, Space Shuttles and the ISS are orbiting at altitudes of about
400 km or less.

Figure 1.4 illustrates the incoming extraterrestrial solar radiation at the top of the at-
mosphere (TOA) versus wavelength. It is noted that for solar wavelengths beyond 1.4 μm
the solar emission curve closely resembles a blackbody radiator having a temperature of
about 6000 K. The lower curve depicts a MODTRAN4 (MODerate resolution atmospheric
TRANsmission) calculation (Berk et al., 1989) for the downwelling solar flux density
reaching the ground. The solar zenith angle has been set to 60◦, while for the composi-
tion and state of the atmosphere a midlatitude summer case has been adopted. All relevant
absorbing atmospheric trace gases, as shown in the figure, were included in the radiative
transfer computation which had a moderate spectral resolution of about 20 cm−1. Sim-
ilarly, in Figure 1.5 we show the infrared spectrum of the Earth atmosphere. The results
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Fig. 1.4. Spectral distribution of the incoming solar flux density at the top of the atmosphere (TOA)
and at ground level for a clear sky atmosphere and a nonreflecting ground. The solar zenith angle
has been set to 60◦. (Adapted from Zdunkowski et al. (2007).)

correspond to a clear sky US standard atmosphere and are also computed with the radiative
transfer band model MODTRAN4. Figures 1.4 and 1.5 clearly demonstrate that UV and
IR spectra of the terrestrial atmosphere contain a wealth of information about its state, and,
in particular, signatures of a large number of molecular absorbers can be identified. Two
examples will serve to illustrate the basic principles of atmospheric remote sensing.

In the UV wavelength range 290–330 μm, not only do spaceborne nadir observations
of the radiance enable determination of the total column amount of ozone below the sub-
satellite point but scanning from smaller to larger wavelengths also allows us to ‘sound’ the
atmosphere as a function of increasing distance from the sensor. Ozone molecules absorb
solar radiation strongly at short wavelengths, i.e., photons entering the atmosphere are not
able to penetrate the ozone layer in the stratosphere (with maximum concentration around
20 or 25 km). On the other hand, photons with higher wavelengths have a better chance to
reach a greater depth (lower altitude) before they are absorbed.

Weather forecasting heavily relies on sounding of the atmospheric temperature profile
using satellite observations in the infrared or microwave region following the pioneering
work of King and Kaplan. King (1956) showed that the vertical temperature profile can
be estimated from satellite radiance scan measurements. Kaplan (1959) demonstrated that
intensity measurements in the wing of a CO2 spectral band probe the deeper regions of
the atmosphere, whereas observations closer to the band center see the upper part of the
atmosphere. Analogously, the complex of O2 lines in the microwave spectral range can be
used. In both cases one utilizes emission from a relatively abundant gas with known and
uniform distribution.
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Fig. 1.5. Infrared spectrum of the Earth atmosphere: upwelling radiation seen by an observer above
the atmosphere (top), downwelling radiation seen by an observer at sealevel (middle) and atmo-
spheric transmission for a vertical path (bottom). The blackbody radiation according to Planck’s
function for three representative values and the main absorption bands are indicated too.

In summary, the spectral absorption or emission characteristics combined with mono-
tonically increasing path length allows a mapping between altitude and wavelength, thus
providing a direct link between absorber amount or temperature and observed radiation.

1.3 Radiative transfer

In atmospheric remote sensing, the radiation seen by an observer is described by the theory
of radiative transfer with an appropriate instrument model. Before discussing radiative
transfer models for the UV/vis and IR/mw spectral ranges, we define some quantities of
central importance. For a thorough discussion of the material presented in this section we
recommend classical textbooks on atmospheric radiation as for example, Goody and Yung
(1989), Thomas and Stamnes (1999), Liou (2002), and Zdunkowski et al. (2007).
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1.3.1 Definitions

Different variables are used to characterize the ‘color’ of electromagnetic waves: wave-
length λ with units μm, nm, or Å are common in the ultraviolet and visible range, wavenum-
bers ν = 1/λ in units of cm−1 are used in the infrared, and frequencies ν̃ = cν (with c
being the speed of light) are employed in the microwave regime. Numerically one has
ν
[
cm−1

]
= 10 000/λ [μm] ≈ 30ν̃ [GHz].

Monochromatic radiance or intensity is defined as the differential amount of energy
dEλ in a given wavelength interval (λ, λ + dλ) crossing an area dA into a solid angle
dΩ, oriented with an angle θ relative to the normal n of the area, within a time interval dt
(Figure 1.6),

Iλ =
dEλ

cos θ dΩ dt dA dλ
. (1.2)

The definition of the radiance Iν is done in a similar manner.
For a beam of radiation traveling in a certain direction, with distances measured by the

path variable s = |r1 − r2|, the ratio of the radiances at two different locations defines the
transmission

T (r1, r2) =
I(r1)
I(r2)

. (1.3)

Fig. 1.6. Concepts of radiative transfer. Left: illustration of radiance definition (1.2). Middle:
schematics of radiation attenuation dI traversing a path element ds with absorber density n. Right:
path s = |r1 − r2| relevant for the definition of optical depth and transmission.

1.3.2 Equation of radiative transfer

A beam of radiation traversing the atmosphere will be attenuated by interactions with the
atmospheric constituents, and the extinction (absorption and scattering) is proportional to
the amount of incoming radiation, the path distance ds in the direction Ω, and the density n
of the medium, i.e., dI ∝ −In ds (Figure 1.6). On the other hand, the thermal emission of
the medium and the scattering processes will result in an increase of the radiation energy
described by a ‘source function’ J(r,Ω). The total change of radiation is given by the
equation of radiative transfer

1
n(r)Cext(r)

dI

ds
(r,Ω) = −I(r,Ω) + J(r,Ω). (1.4)

The quantity Cext is called the extinction cross-section, and its product with the number
density is the extinction coefficient σext = nCext.
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In the absence of any sources, the differential equation can be readily solved and we
have (Beer–Lambert–Bouguer law)

T (r1, r2) =
I(r1)
I(r2)

= exp

⎛⎜⎝−
∫

|r1−r2|

Cext(r)n(r) ds

⎞⎟⎠ , (1.5)

where the integral in the exponent is the so-called (extinction) optical depth between the
points r1 and r2,

τext (r1, r2) =
∫

|r1−r2|

Cext(r)n(r) ds =
∫

|r1−r2|

σext(r) ds.

Equation (1.4) is a linear first-order differential equation that can be formally integrated
giving

I (ro,Ω) = I (rs,Ω) exp
(
−τext(ro, rs)

)
+
∫

|ro−rs|

J(r,Ω) exp
(
−τext(ro, r)

)
ds. (1.6)

The integral form of the radiative transfer equation (1.6) describes the radiation seen by
an observer at ro; the first term is the source radiation at rs (e.g., Earth’s surface in case
of a downlooking observer) attenuated according to Beer’s law (1.5) and the second term
represents the radiation due to emission and scattering at intermediate points along the line
of sight.

The atmospheric energy budget is essentially determined by solar insolation (roughly
in the UV–vis–IR spectral range 0.2–0.35 μm) and emission by the Earth and its atmo-
sphere (in the infrared spectral range 3.5–100 μm). For most practical purposes, these
two spectral regions may be treated separately: in the solar spectral range it is justified
to neglect the thermal emission of the Earth–atmosphere system, whereas in the infrared
the scattering processes are usually important only in the so-called atmospheric window
region 8–12.5 μm (Figure 1.5). However, as the clear atmosphere is almost transparent to
the infrared radiation in this region, the atmospheric window is of minor importance for
remote sensing of trace gases (except for ozone).

1.3.3 Radiative transfer in the UV

The radiation field can be split into two components: the direct radiation, which is never
scattered in the atmosphere and reflected by the ground surface, and the diffuse radiation,
which is scattered or reflected at least once. Neglecting the thermal emission, the source
function J can be decomposed as

J (r,Ω) = Jss (r,Ω) + Jms (r,Ω) , (1.7)

where the single and the multiple scattering source functions are given by

Jss (r,Ω) = F
ω (r)
4π

P (r,Ω,Ωsun) e−τext(r,rmax),
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and

Jms (r,Ω) =
ω (r)
4π

∫
4π

P (r,Ω,Ω′) I (r,Ω′) dΩ′,

respectively. In the above relations, ω = σscat/σext is the single scattering albedo, σscat is
scattering coefficient, F is the incident solar flux, P is the phase function, Ωsun is the unit
vector in the sun direction, and rmax is the point at the top of the atmosphere corresponding
to r, that is, rmax = r− |rmax − r|Ωsun. It should be pointed out that technically, there is
no absolute dividing line between the Earth’s atmosphere and space, but for studying the
balance of incoming and outgoing energy on the Earth, an altitude at about 100 kilometers
above the Earth is usually used as the ‘top of the atmosphere’.

An accurate interpretation of the measurements performed by satellite instruments in
arbitrary viewing geometries requires the solution of the radiative transfer equation in a
three-dimensional inhomogeneous spherical atmosphere. For this type of radiative transfer
problems, the Monte Carlo technique (Marchuk et al., 1980) is a possible candidate. In a
Monte Carlo simulation the radiance at the top of the atmosphere is determined statistically
by simulating a large number of individual photon trajectories through the atmosphere.
This method is computationally very expensive in the calculation of the backscattered ra-
diance, because many photons are lost when they leave the atmosphere at other positions
and in other directions than the one to the satellite. For atmospheric applications, the so-
called backward Monte Carlo method is more efficient. Here, the photons are started from
the detector and their path is followed backward to the point where they leave the atmo-
sphere in solar direction. The disadvantages of this method are, however, its poor accuracy
for optically thick or weakly absorbing media, and that for each viewing geometry, a new
backward calculation has to be performed. Additionally, the required linearization of such
Monte Carlo models is a challenging task. Applications of the Monte Carlo method for
radiance calculations in a spherical atmosphere can be found in Oikarinen et al. (1999).

Radiative transfer models

In practice, simplified radiative transfer models are used to simulate the radiances at the
observer’s position and in the direction of the instrument line-of-sight. These can be cate-
gorized depending on the assumptions made for the geometry of the model atmosphere.

Plane-parallel radiative transfer calculations have been applied successfully for nadir
measurements with solar zenith angles up to 75◦. The discrete ordinate method (Stamnes
et al., 1988), the doubling-adding method (Hansen, 1971), the finite difference method
(Barkstrom, 1975) and the Gauss–Seidel iteration method (Herman and Browning, 1965)
have been used to solve the radiative transfer equation in a plane-parallel atmosphere.
Further details on the mentioned solution methods can be found in Lenoble (1985).

For nadir viewing geometries with large solar zenith angles and for limb viewing ge-
ometries, the so-called pseudo-spherical approximation has been developed (Dahlback
and Stamnes, 1991). In this approximation, the single scattering radiance is computed
in a spherical atmosphere, whereas the multiple scattering radiance is still calculated in a
plane-parallel geometry. For limb measurements, the effect of a varying solar zenith angle
along the line of sight is accounted for by performing a set of independent pseudo-spherical
calculations for different values of the solar zenith angle. This model is equivalent to the
independent pixel approximation for three-dimensional radiative transfer in clouds, and
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can be regarded as a first-order spherical correction to the plane-parallel formulation of
the radiative transfer. Solution methods for radiative transfer in a pseudo-spherical at-
mosphere include the discrete ordinate method (Spurr, 2001, 2002), the finite difference
method (Rozanov et al., 2000), and the discrete ordinate method with matrix exponential
(Doicu and Trautmann, 2009a).

For a subhorizon Sun as well as for lines of sight with large tangent heights, the inde-
pendent pixel approximation leads to errors of about 4%. For such problems, the spherical
shell approximation (Rozanov et al., 2001; Walter et al., 2005; Doicu and Trautmann,
2009e) delivers more accurate results. Here, the atmosphere is approximated by homo-
geneous spherical shells and no horizontal inhomogeneities in the optical parameters are
considered. The radiative transfer equation is solved by means of a Picard iteration with a
long or a short characteristic method (Kuo et al., 1996).

Accurate simulations of radiances in ultraviolet and visible spectral regions should
take into account that light scattered by the atmosphere is polarized and that approximately
4% of molecular scattering is due to the inelastic rotational Raman component.

Polarization

The radiation and state of polarization of light can be described by the Stokes vector I =
[I, Q, U, V ]T , where I is the radiance, Q is a measure for the polarization along the x-
and y-axis of the chosen reference frame, U is a measure of the polarization along the
+45◦ and −45◦ directions, and V describes the circular polarization. The vector radiative
transfer equation reads as

dI
ds

(r,Ω) = −σext (r) I (r,Ω) + σext (r)J (r,Ω) ,

where J is the source term. As in the scalar case, the source function can be split into a
single and a multiple scattering component, and we have the representations

Jss (r,Ω) = F
ω (r)
4π

e−τext(r,rmax)Z (r,Ω,Ωsun)

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ ,

and

Jms (r,Ω) =
ω (r)
4π

∫
4π

Z (r,Ω,Ω′) I (r,Ω′) dΩ′,

with Z being the phase matrix.
The instrumental signal should be simulated with a vector radiative transfer model for

two reasons.
First, light reflected from Earth’s atmosphere is polarized because of (multiple) scat-

tering of unpolarized light by air molecules and aerosols. Simulations of radiance measure-
ments by a scalar approximation for atmospheric radiative transfer leads to errors of about
10% depending mainly on the viewing scenario (Mishchenko et al., 1994). The scalar
radiative transfer errors are small in the spectral regions in which mainly single scattering
takes place and significant in the spectral regions in which the amount of multiple scattering



Sect. 1.3 Radiative transfer 13

increases because of decreasing gas absorption. For a pseudo-spherical atmosphere, vector
radiative transfer models employing the discrete ordinate method (Spurr, 2006, 2008), the
successive order of scattering technique (McLinden et al., 2002a) and the discrete ordinate
method with matrix exponential (Doicu and Trautmann, 2009b) have been developed. A
survey of vector radiative transfer models for a plane-parallel atmosphere can be found in
Hansen and Travis (1974).

Second, the different optical devices in the instrument are sensitive to the state of po-
larization of the incident light. As a result, the radiance that is measured by the detectors,
referred to as the polarization-sensitive measurement, is different to the radiance that en-
ters in the instrument. In the calibration process, the instrumental signal is corrected for
the polarization sensitivity, whereas the polarization correction factor is determined from
broadband on-ground measurements. However, in spectral regions where the state of po-
larization is varying rapidly with wavelength, the polarization correction is not sufficiently
accurate and severely influences the retrieval. To eliminate this drawback, the polarization-
sensitive measurement together with the transport of radiation in the atmosphere have been
simulated by means of vector radiative transfer models (Hasekamp et al., 2002; McLinden
et al., 2002b).

Ring effect

The filling-in of solar Fraunhofer lines in sky spectra and the telluric filling-in of trace
gas absorption features in ultraviolet and visible backscatter spectra are known as the Ring
effect. Several studies (Kattawar et al., 1981; Joiner et al., 1995) have demonstrated that
the main process responsible for the Ring effect is the rotational Raman scattering by
molecular O3 and N2. In backscatter spectra, the Ring effect shows up as small-amplitude
distortion, which follows Fraunhofer and absorption lines. For an inelastically scattering
atmosphere, the radiative transfer equation includes an additional source term, the Raman
source function, and the single and multiple scattering source terms have to be modified
accordingly. Several radiative transfer models have been used to simulate the so-called
Ring spectrum defined as the ratio of the inelastic and the elastic scattering radiances.
These models include a Monte Carlo approach (Kattawar et al., 1981), a successive order of
scattering method (Joiner et al., 1995) and a model which treats rotational Raman scattering
as a first-order perturbation (Vountas et al., 1998; Landgraf et al., 2004; Spurr et al., 2008).

As Ring structures appear in the polarization signal, a complete simulation of the
polarization-sensitive measurement requires a vector radiative transfer model which sim-
ulates Ring structures for all relevant Stokes parameters (Aben et al., 2001; Stam et al.,
2002; Landgraf et al., 2004). The calculation of Ring spectra with a vector radiative trans-
fer model is numerically expensive and approximation methods are desirable for large data
sets. The numerical analysis performed in Landgraf et al. (2004) reveals that

(1) the polarization Ring spectra of Q and U are much weaker than those of the radiance
I due to the low polarization of Raman scattered light;

(2) the combination of both a vector radiative transfer model, simulating the Stokes vector
for an elastic scattering atmosphere, and a scalar radiative transfer approach, simulat-
ing the Ring spectrum for the radiance is sufficiently accurate for gas profile retrievals
but not for applications involving the retrieval of cloud properties.
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1.3.4 Radiative transfer in the IR and microwave

Neglecting scattering and assuming local thermodynamical equilibrium, the source func-
tion J is given by the Planck function at temperature T ,

B(ν, T ) =
2hc2ν3

exp
(

hcν

kBT

)
− 1

. (1.8)

The formal solution (1.6), describing the radiance I at wavenumber ν received by an in-
strument at position ro, is given by the Schwarzschild equation

I(ν, ro) = I(ν, rs)T (ν, ro, rs) +
∫
|ro−rs|

B (ν, T (r))
∂T
∂s

(ν, ro, r) ds, (1.9)

where I(ν, rs) is the background contribution at position rs. The monochromatic trans-
mission is computed according to Beer’s law as

T (ν, ro, r) = exp

(
−
∫
|ro−r|

σabs(ν, r′) ds′
)

(1.10)

= exp

(
−
∫
|ro−r|

ds′
∑
m

Cabsm (ν, p (r′) , T (r′))nm (r′)

)
. (1.11)

Here, σabs is the absorption coefficient, p is the atmospheric pressure, nm is the number
density of molecule m, and Cabsm is its absorption cross-section.

In general, the molecular absorption cross-section is obtained by summing over the
contributions from many lines. For an individual line at position ν̂, the cross-section is
the product of the temperature-dependent line strength S(T ) and a normalized line shape
function g(ν) describing the broadening mechanism(s), that is,

Cabsm (ν, p, T ) =
∑

l

Sml (T ) g
(
ν, ν̂ml, γml (p, T )

)
. (1.12)

In the atmosphere, the combined effect of pressure broadening, corresponding to a Lorentz-
ian line shape (indices m and l denoting molecule and line will be omitted for simplicity)

gL(ν, ν̂, γL) =
1
π

γL
(ν − ν̂)2 + γ2

L

, (1.13)

and Doppler broadening, corresponding to a Gaussian line shape

gD(ν, ν̂, γD) =
1
γD

(
log 2

π

) 1
2

exp

(
− log 2

(
ν − ν̂

γD

)2
)

, (1.14)

can be represented by a convolution, i.e., the Voigt line profile gV = gL ⊗ gD. Pressure
broadening (air-broadening, with self-broadening neglected) and Doppler broadening half-
widths are given by

γL(p, T ) = γL0
p

pref

(
Tref

T

)α
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Fig. 1.7. Lorentz, Gauss and Voigt half-widths (HWHM) as a function of altitude in the Earth atmo-
sphere for a variety of line positions ν̂. Pressure and temperature are from US Standard Atmosphere
and the molecular mass is 36 amu.

and

γD(T ) = ν̂

√
2 log 2

kBT

mc2
,

respectively. Here, pref and Tref are the reference pressure and temperature of line pa-
rameters, respectively, m denotes the molecular mass, and α describes the temperature
dependence of pressure broadening. Note that pressure broadening dominates in the lower
atmosphere; the transition altitude, where Doppler broadening becomes important, moves
up from the middle stratosphere to the mesosphere with increasing wavelength (Figure
1.7).

Spectroscopic line parameters required for the calculation of the molecular absorp-
tion cross-sections, e.g., the line position ν̂, the line strength S, the temperature exponent
α, the air-broadening half-width γL0, and the lower state energy E (required to calculate
S (T ) from the database entry S (Tref)) have been compiled in various databases such as
HITRAN (HIgh-resolution TRANsmission molecular absorption database), GEISA (Ges-
tion et Etude des Informations Spectroscopiques Atmosphériques) and JPL (Jet Propul-
sion Laboratory) catalog. The latest versions of HITRAN (Rothman et al., 2009) and
GEISA (Jacquinet-Husson et al., 2008) list parameters of some million transitions for sev-
eral dozen molecules from the microwave (ν̂ = 10−6 cm−1) to the ultraviolet (ν̂ ≈ 25 232
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and ν̂ ≈ 35 877 cm−1, respectively), whereas the JPL catalogue (Pickett et al., 1998) cov-
ers millions of rotational transitions in the microwave regime.

At a first glance the forward model appears to be much easier to solve in the infrared
than in the ultraviolet as the source function is known. However, for high resolution at-
mospheric spectroscopy, the line-by-line (lbl) computation of (1.9) and (1.10) remains a
challenging task because thousands of spectral lines have to be included in the sum (1.12).
Moreover, as the monochromatic wavenumber grid point spacing determined by the half-
widths of the spectral lines (cf. Figure 1.7) is very fine, accurate modeling of the spectrum
may require thousands or even millions of spectral grid points. Finally, the convolution
integral defining the Voigt line profile cannot be solved analytically, and numerical ap-
proximations have to be used.

In view of the computational challenges of lbl-modeling, alternative approaches have
been used for low to moderate resolution spectra. Band models have been developed since
the early days of radiative transfer modeling in meteorology and astrophysics (Goody and
Yung, 1989; Liou, 2002; Thomas and Stamnes, 1999; Zdunkowski et al., 2007). More
recently, the k-distribution and correlated k methods (Fu and Liou, 1992; Lacis and Oinas,
1991) or exponential sum fitting (Wiscombe and Evans, 1977) have been utilized.

Scattering is usually ignored in lbl models. However, if the analysis of data pro-
vided by spaceborne infrared sounders would be confined to clear sky observations only,
a large fraction of data would be ignored. For nadir sounding, single scattering can be
implemented with moderate effort, but multiple scattering, especially for limb sounding
geometries, is still a challenging task. Various attempts have been described by Emde
et al. (2004), Höpfner et al. (2002), Höpfner and Emde (2005), and Mendrok et al.
(2007).

Intercomparisons of high-quality (laboratory and atmospheric) infrared spectra have
revealed discrepancies with accurate model spectra obtained with the lbl approach (1.12).
These deviations are commonly attributed to the so-called ‘continuum’, and a variety of
explanations have been given in the literature, e.g., deviations of the far wing line profile
from the Lorentzian line shape, contributions from water dimers (H2O)2 etc. For modeling
infrared and microwave spectra, the semi-empirical approach developed by Clough et al.
(1989) is widely used (see also Clough et al., 2005), whereas the empirical corrections due
to Liebe et al. (1993) are frequently employed in the microwave regime.

When local thermodynamic equilibrium (LTE) is assumed, a local temperature can be
assigned everywhere in the atmosphere, and thermal emission can be described by Planck’s
law of blackbody radiation (1.8). However, because temperature and radiation vary in
space and time, the atmosphere is not in thermodynamic equilibrium. Nevertheless, the
LTE assumption is justified in the troposphere and stratosphere, where the density of air is
sufficiently high so that the mean time between molecular collisions is much smaller than
the mean lifetime of an excited state of a radiating molecule. Thus, equilibrium conditions
exist between vibrational, rotational and translation energy of the molecule. The break-
down of LTE in the upper atmosphere implies that the source function is no longer given
by the Planck function. An adequate description of collisional and radiative processes un-
der non-LTE conditions requires quantum theoretical considerations; see Lopez-Puertas
and Taylor (2001) for an in-depth treatment.
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1.3.5 Instrument aspects

In general, the finite resolution of the spectrometer results in a modification or smearing of
the ‘ideal’ spectrum. This effect can be modeled by a convolution of the ‘monochromatic’
spectrum Smc(ν) (radiance I or transmission T ) with an instrument line shape function
ILS (also termed spectral response function SRF ),

Sobs(ν) =
∫ ∞

−∞
ILS (ν − ν′)Smc (ν′) dν′. (1.15)

The function ILS clearly depends on the type of the instrument; a Gaussian can be used as
a first approximation in many cases, e.g., for a grating instrument. For a Fourier transform
spectrometer such as MIPAS (Michelson Interferometer for Passive Atmospheric Sound-
ing) or IASI (Infrared Atmospheric Sounding Interferometer), the finite optical path dif-
ference L of the Michelson interferometer corresponds to a multiplication of the interfero-
gram with a box function, so that (to a first approximation) the line shape function is given
by

ILS (ν − ν′) = 2L sinc (2πL (ν − ν′)) =
sin (2πL (ν − ν′))

π (ν − ν′)
. (1.16)

On the other hand, the finite aperture of an instrument results in a superposition of
ideal ‘pencil beam’ spectra corresponding to an infinitesimal field of view. Modeling of
this finite field of view is especially important for limb geometry and can be done by
convolving the pencil-beam spectra with a field-of-view function. Frequently, this function
is approximated by box, triangular, or Gauss functions.

1.3.6 Derivatives

Often, the radiative transfer models are optimized to deliver in addition to the simulated
radiance, the partial derivatives of the radiance with respect to the atmospheric parameters
being retrieved. The process of obtaining the set of partial derivatives, which constitute the
Jacobian matrix, is commonly referred to as linearization analysis. Several techniques for
performing a linearization analysis can be distinguished

In many cases, the Jacobian matrix is computed by finite differences, and this calcu-
lation is the most time-consuming part of the retrieval. Even more serious is the fact that
the amount of perturbation is difficult to predict and an improper choice leads to truncation
and/or cancellation errors; see Gill et al. (1981) for a pertinent discussion.

Analytical calculation of derivatives is advantageous, both for computational effi-
ciency and accuracy. From (1.6) it is apparent that the partial derivatives of the radiance
measured by the instrument are given by the partial derivatives of the single and the mul-
tiple scattering radiances. As the multiple scattering radiance depends on the solution of
the radiative transfer equation, derivatives calculation can be performed by linearizing the
radiative transfer equation with respect to the desired parameters. A linearized radiative
transfer model based on an analytical determination of the partial derivatives of the con-
ventional discrete ordinate solution for radiance has been developed by Spurr (2001, 2002,
2008), while a linearized forward approach based on the discrete ordinate method with
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matrix exponential has been proposed in Doicu and Trautmann (2009d). For infrared ap-
plications, analytic derivatives are implemented in the codes ARTS (Bühler et al., 2005),
KOPRA (Stiller et al., 2002) and MOLIERE (Urban et al., 2004). However, calculating
the derivatives manually and implementing these in a moderately large code as required
for general-purpose radiative transfer is tedious and error-prone. Moreover, no automatic
updates of the derivatives calculation in the case of upgrades of the forward model are
available.

The measured radiance can be expressed in the framework of a forward-adjoint ap-
proach as the scalar product of the solution of the adjoint problem and the source function
of the forward problem. Employing the linearization technique to the forward and the
adjoint problems, analytical expressions for the derivatives in a plane-parallel atmosphere
have been derived in Marchuk (1964, 1995), Box (2002), Ustinov (2001, 2005), Rozanov
and Rozanov (2007), and Landgraf et al. (2001). For a pseudo-spherical atmosphere, this
approach has been applied to nadir viewing geometries in Walter et al. (2004) and to limb
geometries in Ustinov (2008), and Doicu and Trautmann (2009c). The forward-adjoint ap-
proach is extremely efficient because only two radiative transfer calculations are required
for derivative calculations. In this context, Landgraf et al. (2001) reported that under cer-
tain conditions a forward-adjoint approach based on the Gauss–Seidel iteration technique
is approximately a factor of 20–30 faster than a linearized forward approach based on the
conventional discrete ordinate solution.

Automatic or algorithmic differentiation provides a pleasant alternative to quickly
generate derivative-enhanced versions of computer codes. Automatic differentiation tech-
niques (Griewank and Corliss, 1991; Griewank, 2000) are based on the observation that
every model implemented as a computer program is essentially formulated in terms of el-
ementary mathematical operations (sums, products, powers) and elementary functions. In
contrast to integration, differentiation is based on a few simple recipes such as the chain
rule, and these can be performed automatically by some kind of precompiler, taking a com-
puter code of the forward model as input and delivering a code that additionally produces
derivatives with respect to some chosen variables. A number of automatic differentation
tools are available for Fortran and C (cf. the compilation given at http://www.autodiff.org/).
This approach has been used by Schreier and Schimpf (2001), and Schreier and Boettger
(2003) to implement Jacobian matrices in an infrared line-by-line radiative transfer code.

1.4 Inverse problems

In atmospheric remote sensing, the relationship between the state parameters x and col-
lected observations making up some set of data y is described by a forward model F . This
encapsulates a radiative transfer model and an instrument model, and formally, we write

y = F (x) .

The task of computing the data y given the state parameters x is called the forward
problem, while the mathematical process to compute x given y is called the inverse prob-
lem (Figure 1.8). Atmospheric remote sensing deals with the inverse problem. In fact,
inverse problems are ubiquitous challenges in almost any field of science and engineer-
ing, from astrophysics, helioseismology, geophysics, quantum mechanical scattering the-
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Fig. 1.8. Forward and inverse problem.

ory and material science to medicine with its large diversity of imaging and tomographic
techniques, see, for example, Craig and Brown (1986), Groetsch (1993), Wing (1991) for
some introductory surveys, and Baumeister (1987), Engl et al. (2000), Hansen (1998),
Kaipio and Somersalo (2005), Kaltenbacher et al. (2008), Kirsch (1996), Menke (1984),
Parker (1994), Rieder (2003), Tarantola (2005), Vogel (2002) for more advanced treat-
ments. Inverse problems for atmospheric remote sensing are discussed by Twomey (1977),
Stephens (1994) and Rodgers (2000).

The forward model is closely connected with the actual observation being performed
and mirrors the physics of the measurement process. In contrast the approach to solving the
inverse problem is (to some extent) independent of the physical process and the methods
developed throughout this book can be used for inverse problems in other fields as well.

In a general framework, the data y may be a function of frequency (or wavelength)
or it may be a collection of discrete observations. In the first case, the problem is called a
continuous problem, while in the second case it is called a semi-discrete problem. When
both x and y are discrete, the corresponding problem is a discrete problem. In order to
avoid possible confusions, vectors will be denoted by bold letters, e.g., x is a vector of
state parameters or simply a state vector, while x is a state parameter function. As any
measurement system can deliver only a discrete, finite set of data, the problems arising
in atmospheric remote sensing are semi-discrete. Moreover, due to the complexity of the
radiative transfer, the forward model has to be computed by a numerical algorithm, which,
in turn, requires a discretization of the state parameter function. For these reasons, the
atmospheric inverse problems we are dealing with are discrete.

An important issue is that actual observations contain instrumental or measurement
noise. We can thus envision data yδ as generally consisting of noiseless observations y
from a ‘perfect’ instrument plus a noise component δ, i.e.,

yδ = y + δ.

For limb viewing geometries, yδ is usually a concatenation of spectra corresponding to all
limb scans, and the reconstruction of atmospheric profiles from a limb-scanning sequence
of spectra is known as the global-fit approach (Carlotti, 1988).

The radiation seen by an observer depends on a large variety of parameters, i.e., spec-
tral range, observation geometry, instrument settings, optical properties of the atmospheric
constituents, and the state of the atmosphere characterized by pressure, temperature, and
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concentration of molecules and particles. For a complete and accurate modeling of the
measurement process, the forward model has to take into account all relevant parameters.
However, only a single or a few variables of the atmospheric system can usually be re-
trieved from the observed data, and all other parameters are assumed to be known. For
this reason and following Rodgers (2000), we split the state vector x into two components:
the first component x1 represents the atmospheric profile (temperature or concentration
profile of one particular species of interest) to be retrieved, while the second component
x2 includes all auxiliary parameters or model parameters, which influence the retrieval.
It is a common practice to retrieve atmospheric profiles individually in sequence, where
the sequence of the target species and temperature retrieval is determined according to the
degree of their reciprocal interference. The auxiliary parameters may include

• surface parameters (surface albedo, ground emissivity factor),
• spectral corrections due to the instrumental convolution process (tilt, undersampling,

polarization spectra),
• instrumental parameters (pointing offset, wavelength shift and squeeze, ILS parame-

ters, baseline shift),
• atmospheric continuum (including all absorption that varies smoothly with the fre-

quency and being represented by a polynomial),
• parameters describing complex physical processes (Ring spectrum, non-LTE/LTE pop-

ulation ratio, temperature and volume mixing ratio gradients).

In general, the auxiliary parameters can be retrieved together with the main atmospheric
profile, they can be treated as an observation uncertainty, or they can be assumed to be
perfectly known. In the first case, we are talking about a multi-parameter problem, while
in the second case, we employ the so-called marginalizing method to solve the inverse
problem. Another option is to perform the retrieval in two stages (Rozanov et al., 2005).
In the first stage, also known as the pre-processing stage, the scaling factors of the spectral
corrections are computed together with the shift and squeeze corrections by considering a
linearization of the forward model about a reference state. In the second stage, referenced
to as the inversion stage, the scaling factors determined in the pre-processing step are used
to compute the corrected measured spectra, and the nonlinear problem is solved for the
trace gas profile.

In fact, the true physics of the measurement is described by the so-called forward
function f (x) (Rodgers, 2000). The forward function is difficult to compute because the
real physiscs is far too complex to deal with explicitly. For example, the correct modeling
of aerosol and cloud particles with respect to their shape, size distribution and loading is
an impossible task. The forward model errors δm, defined through the relation

f (x) = F (x) + δm,

are difficult to compute and only the norm ‖δm‖ can be estimated by an additional compu-
tational step.

To get a first idea about the difficulties associated with the solution of inverse prob-
lems, we consider an elementary example. Let x (z) be some function defined on the
interval [0, zmax], and let us compute the integral y (z) =

∫ z

0
x (t) dt. Evidently, y is an

antiderivative of x, and so, the original function can be rediscovered by taking the deriva-
tive of y, that is, x (z) = y′ (z). Formally, the integration step is the forward problem,
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while the differentiation step is the inverse problem. Now, let yδ be a perturbation of
y. Then, the derivative calculation xδ (z) = yδ′ (z) is an unstable process because, as
the opposite of the smoothing effect of integration, differentiation is very sensitive to small
perturbations of the function. As a result, xδ may deviate significantly from x, even though
yδ is close to y.

The goal of this book is to present numerical (regularization) methods for inverse prob-
lems involving the reconstruction of atmospheric profiles from (satellite) measurements.
The solution of atmospheric inverse problems is not an easy task due to the so-called
ill-posedness of the equation describing the measurement process. This concept will be
clarified in the next chapter.



2

Ill-posedness of linear problems

Inverse problems typically involve the estimation of certain quantities based on indirect
measurements of these quantities. The inversion process is often ill-posed in the sense that
noise in the data gives rise to significant errors in the estimate. In this chapter we introduce
the concept of ill-posedness and analyze the solvability and ill-posedness of linear discrete
equations. Our analysis is focused on a classical example in atmospheric remote sensing,
namely the temperature retrieval by nadir sounding. In a continuous setting, this retrieval
problem is modeled by a Fredholm integral equation of the first kind, which is the prototype
of ill-posed problems.

2.1 An illustrative example

To explain the difficulties associated with the solution of linear inverse problems, we con-
sider measuring a temperature profile by nadir sounding. Spaceborne remote sensing of
atmospheric temperature uses absorption features of gases with well-known and constant
mixing ratios as for instance, the CO2 bands at 15 and 4.3 μm in the infrared or the O2

lines at 60 GHz in the microwave regime. In a plane-parallel atmosphere and under the
assumption that the background contribution from the surface can be neglected, the diffuse
radiance at the top of the atmosphere z = zmax and in a direction with zero scan angle is
given by the Schwarzschild equation

I (ν) =
∫ zmax

0

B (ν, T (z))
∂T
∂z

(ν, z) dz.

In the microwave region, the Rayleigh–Jeans approximation allows the following repre-
sentation of the Planck function

B (ν, T (z)) = 2ckBν2T (z) .

As a result and when neglecting the temperature dependence of the transmission, we obtain

I (ν) =
∫ zmax

0

k (ν, z) T (z) dz, (2.1)
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with
k (ν, z) = 2ckBν

2 ∂T
∂z

(ν, z) (2.2)

being the kernel function.
Equation (2.1), which we rewrite in the generic form (y = I and x = T )

y (ν) =
∫ zmax

0

k (ν, z) x (z) dz, ν ∈ [νmin, νmax] , (2.3)

is a Fredholm integral equation of the first kind and represents the mathematical model of a
continuous problem. To formulate our problem in a general setting, we consider the space
of real-valued, square integrable functions on the interval [a, b], denoted by L2([a, b]).
Actually, L2([a, b]) is a Hilbert space under the inner product 〈u, v〉 =

∫ b

a
u (t) v (t) dt

and the induced norm ‖u‖ =
√∫ b

a
u(t)2 dt. Assuming that y belongs to the Hilbert space

Y = L2([νmin, νmax]) and x belongs to the Hilbert space X = L2([0, zmax]), we introduce
the linear operator K : X → Y by the relation

Kx =
∫ zmax

0

k (·, z) x (z) dz.

The integral equation (2.3) can then be written as

Kx = y, (2.4)

and since (cf. (2.2)) k ∈ L2([νmin, νmax]×[0, zmax]), the linear operator K is bounded and
compact (the image of any bounded sequence of functions in L2 has at least one converging
subsequence).

A spectral instrument cannot measure a continuous signal and the data is a collection
of discrete observations. More specifically, the radiances

y (νi) = I (νi) ,

with {νi}i=1,m being an equidistant set of points in the spectral interval [νmin, νmax], rep-
resent the data, and the equation to be solved takes the form

y (νi) =
∫ zmax

0

k (νi, z) x (z) dz, i = 1, . . . , m. (2.5)

The semi-discrete equation (2.5) is a mathematical model for discrete observations of a
physical process and can be expressed in compact form as

Kmx = ym. (2.6)

The data ym is a vector with entries [ym]i = y (νi), i = 1, . . . , m, and Km is a linear
operator acting between the Hilbert space X and the finite-dimensional Euclidean space
R

m,

[Kmx]i = (Kx) (νi) =
∫ zmax

0

k (νi, z)x (z) dz.
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The discretization approach which transforms the continuous equation (2.3) into the semi-
discrete equation (2.5) is known as the collocation method. It should be pointed out that
the collocation method can be regarded as a projection method with delta functions as basis
functions.

For a complete discretization, we consider the subspace Xn ⊂ X with the (not nec-
essarily orthonormal) basis {Φnj}j=1,n and define the approximation or the interpolant
xn ∈ Xn of x as the solution of the equation

Kmxn = ym. (2.7)

Representing xn as a linear combination of basis functions,

xn =
n∑

j=1

ξjΦnj ,

we obtain the system of equations

y (νi) =
n∑

j=1

[∫ zmax

0

k (νi, z) Φnj (z) dz

]
ξj , i = 1, . . . , m. (2.8)

In matrix form, (2.8) can be written as

Kmnxn = ym, (2.9)

where xn = [ξ1, . . . , ξn]T is the coordinate vector and the matrix Kmn, with entries

[Kmn]ij = [KmΦnj ]i = (KΦnj) (νi) =
∫ zmax

0

k (νi, z) Φnj (z) dz,

is a linear map between the finite-dimensional Euclidean spaces R
n and R

m. The dis-
cretization approach which transforms the continuous equation (2.3) into the discrete equa-
tion (2.8) is called a projection method.

Let us make some comments on the choice of the set of basis functions {Φnj} for
representing the state parameter x.

(1) If {zj}j=0,n is a discretization grid of the altitude interval [0, zmax] with z0 = 0 and
zn = zmax, we may choose the piecewise constant functions

Pnj (z) =
{

1, zj−1 ≤ z < zj ,
0, otherwise, j = 1, . . . , n

as basis functions. Using the orthogonality relations 〈Pni, Pnj〉 = 0, i �= j, and
‖Pnj‖2 = zj − zj−1, we obtain

ξj =
1

zj − zj−1
〈xn, Pnj〉 =

1
zj − zj−1

∫ zj

zj−1

xn (z) dz

for j = 1, . . . , n. Thus, the entries of the coordinate vector are the mean values of the
atmospheric profile over each altitude interval (layer).
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(2) For the discretization grid {zj}j=0,n+1 with z0 = z1 = 0 and zn = zn+1 = zmax, the
piecewise linear functions (or hat functions),

Hnj (z) =

⎧⎨⎩
(z − zj−1) / (zj − zj−1) , zj−1 < z ≤ zj ,
(zj+1 − z) / (zj+1 − zj) , zj ≤ z < zj+1,
0, otherwise,

j = 1, . . . , n,

can also be chosen as basis functions. Since

Hnj (zi) =
{

1, i = j,
0, i �= j,

i, j = 1, . . . , n,

it follows that ξj = xn (zj) for j = 1, . . . , n, and we conclude that the entries of the
coordinate vector are the values of the atmospheric profile at each grid point (level).

(3) For a smoother and more accurate approximation, we have to use a piecewise poly-
nomial approximation with higher-order pieces than broken lines. The most popular
choice is the B-spline interpolation (de Boor, 2001). In this case, for the discretization
grid {zj}j=1,n with z1 = 0 and zn = zmax, xn is expressed as

xn (z) =
n∑

j=1

ξjBnkj (z) ,

where Bnkj are the B-splines of order k. Note that Bnkj is a piecewise polynomial of
degree of at most k−1, and that the Bnkj , j = 1, ..., n, are locally linear independent.
A well-conditioned basis of B-splines can be obtained with the recursion formulas

Bn1j(z) =
{

1, zj ≤ z < zj+1,
0, otherwise,

Bnkj(z) =
z − tj

tj+k−1 − tj
Bnk−1j(z) +

tj+k − z

tj+k − tj+1
Bnk−1j+1(z), k ≥ 2,

where
t1 ≤ t2 ≤ . . . ≤ tn+k

are the knots at which the polynomials are tied together by the continuity conditions.
In many problems, where extrapolation beyond z = 0 and z = zmax is not anticipated,
it is a common practice to set

t1 = t2 = . . . = tk = 0

and
tn+1 = tn+2 = . . . = tn+k = zmax.

The second-order B-spline Bn2j coincides with the hat functions, and for this reason,
Bn2j is also called a linear B-spline.
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2.2 Concept of ill-posedness

The mathematical formulation of inverse problems leads to equations that typically are
ill-posed. According to Hadamard, the equation

Kx = y, (2.10)

with K being a linear operator acting from the Hilbert space X into the Hilbert space Y ,
is called well-posed provided (Engl et al., 2000; Rieder, 2003; Vogel, 2002)

(1) for any y ∈ Y , a solution x exists;
(2) the solution x is unique;
(3) the solution is stable with respect to perturbations in y, in the sense that if Kx0 = y0

and Kx = y, then x → x0 whenever y → y0.

Equivalently, equation (2.10) is called well-posed if the operator K is bijective and the
inverse operator K−1 is continuous. As equation (2.10) is a mathematical model of a
continuous problem, the term ‘well-posed’ is also used when referring to the underlying
problem. If one of Hadamard’s conditions is violated, the problem is called ill-posed.
Denoting by

R (K) = {Kx/x ∈ X}
the range space of K and by

N (K) = {x ∈ X/Kx = 0}

the null space of K, it is apparent that (Kress, 1999)

(1) if K is not surjective (R (K) �= Y ), then equation (2.10) is not solvable for all y ∈ Y
(non-existence);

(2) if K is not injective (N (K) �= ∅), then equation (2.10) may have more than one
solution (non-uniqueness);

(3) if K−1 exists but is not continuous, then the solution x of equation (2.10) does not
depend continuously on the data y (instability).

Non-existence can occur in practice because the forward model is approximate or because
the data contains noise. Non-uniqueness is introduced by the need for discretization and
is a peculiarity of the so-called rank deficient problems, characterized by a matrix Kmn

with a non-trivial null space. In particular, state vectors x0 that lie in the null space of
Kmn solve the equation Kmnx0 = 0, and by superposition, any linear combination of
these null-space solutions can be added to a particular solution and does not change the fit
to the data. Violation of the third Hadamard condition creates serious numerical problems
because small errors in the data space can be dramatically amplified in the state space.

When a continuous ill-posed problem is discretized, the underlying discrete problem
inherits this ill-posedness and we say that we are dealing with ‘a discrete ill-posed problem’
(Hanke and Hansen, 1993). The ill-posedness of a discrete linear problem, written in
the form of a linear system of equations, is reflected by a huge condition number of the
coefficient matrix. In this regard, the term ‘ill-conditioned system of equations’ is also
used to describe instability. To stabilize the inversion process we may impose additional
constraints that bias the solution, a process that is generally referred to as regularization.
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2.3 Analysis of linear discrete equations

The Fredholm integral equation Kx = y is severely ill-posed, when K is a compact op-
erator with an infinite-dimensional range space (Engl et al., 2000). This means that the
inverse operator K−1 is unbounded and that the third Hadamard condition is not fulfilled.
An analysis of continuous ill-posed problems regarding their solvability and ill-posedness
is given in Appendix A; here we pay attention to the discrete case.

From a strictly mathematical point of view, the discrete equation (2.9), written in the
more familiar form as

Kx = y, (2.11)

is well-posed, as any nonsingular matrix automatically has a continuous inverse. However,
in terms of condition numbers, the fact that a continuous problem is ill-posed means that
the condition number of its finite-dimensional approximation grows with the quality of the
approximation (Hanke and Hansen, 1993). Increasing the degree of discretization, i.e.,
increasing the approximation accuracy of the operator, will cause a huge condition number
of the matrix and a dramatic amplification of rounding errors. As a result, the approximate
solution becomes less and less reliable.

2.3.1 Singular value decomposition

In order to demonstrate the ill-posed nature of the discrete equation (2.11) we first intro-
duce the concept of singular value decomposition of a matrix.

For an m× n matrix K, the matrix KT K is symmetric and positive semidefinite, and
as a result, the eigenvalues of KT K are real and non-negative. The non-negative square
roots of these eigenvalues are called the singular values of K. If rank (K) = r, the matrix
K has exactly r positive singular values counted according to their geometric multiplicity.
To simplify our exposition we suppose that these singular values are simple and throughout
this book, the claim rank (A) = r tacitly assumes that the matrix A has exactly r positive
and distinct singular values. Note that a symmetric matrix A is said to be positive definite
if xT Ax > 0 for all x �= 0, and positive semidefinite if xT Ax ≥ 0. All eigenvalues of a
symmetric and positive definite matrix are positive real numbers. Also note that the rank of
a matrix A is the maximal number of linearly independent column vectors of A (column
rank), or the maximal number of linearly independent row vectors of A (row rank).

If K is of rank r, and {σi}i=1,n denotes the set of singular values appearing in de-
creasing order,

σ1 > σ2 > . . . > σr > σr+1 = . . . = σn = 0,

then there exist the orthonormal sets {vi}i=1,n ∈ R
n and {ui}i=1,m ∈ R

m such that

Kvi = σiui, KT ui = σivi, i = 1, . . . , r, (2.12)

and
Kvi = 0, i = r + 1, . . . , n, KT ui = 0, i = r + 1, . . . , m. (2.13)

Each system (σi;vi,ui) with these properties is called a singular system of K. The sets
{vi}i=1,r and {vi}i=r+1,n are orthonormal bases of N (K)⊥ and N (K), respectively,
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i.e.,
N (K)⊥ = span {vi}i=1,r , N (K) = span {vi}i=r+1,n , (2.14)

while {ui}i=1,r and {ui}i=r+1,m are orthonormal bases of R (K) and R (K)⊥, respec-
tively, i.e.,

R (K) = span {ui}i=1,r , R (K)⊥ = span {ui}i=r+1,m . (2.15)

In (2.14) and (2.15), N (K)⊥ and R (K)⊥ are the orthogonal complements of N (K)
and R (K), respectively, and we have the representations R

n = N (K) ⊕ N (K)⊥ and
R

m = R (K) ⊕ R (K)⊥, where the notation ‘⊕’ stands for the direct sum of two sets,
A ⊕ B = {x + y/x ∈ A, y ∈ B}. The condition number of the matrix K is defined as
the ratio of the largest to the smallest singular value, that is, κ (K) = σ1/σr.

Equations (2.12)–(2.13) can be written in matrix form as

K = UΣVT , (2.16)

where U = [u1, . . . ,um] and V = [v1, . . . ,vn] are orthogonal (or orthonormal) m × m
and n × n matrices, respectively, and Σ is an m × n matrix of the form

Σ =
[

diag (σi)r×r 0
0 0

]
,

with diag (σi)r×r being an r × r diagonal matrix. The representation (2.16) is called the
singular value decomposition (SVD) of the matrix K.

A positive definite matrix A is nonsingular and its singular value decomposition co-
incides with its spectral decomposition, that is, A = VΣVT . Throughout this book the
discussion of positive definite matrices is restricted to symmetric matrices, although a gen-
eral real matrix is positive definite if and only if its symmetric part (1/2) (A + AT ) is
positive definite, or equivalently, if and only if its symmetric part has all positive eigenval-
ues. Hence, when we say that A is positive definite, in fact, we mean that A is symmetric
and positive definite. Positive definite matrices are important in statistics essentially be-
cause the covariance matrix of a random vector is always positive definite, and conversely,
any positive definite matrix is the covariance matrix of some random vector (in fact, of in-
finitely many). For A = VΣVT , the square root of A is taken as A1/2 = VΣ1/2VT , and
evidently A1/2 is symmetric. However, a positive definite matrix has many non-symmetric
square roots, among which the one obtained by the Cholesky factorization A = LT L,
where L is upper triangular, is of particular interest.

2.3.2 Solvability and ill-posedness

Let K be an m×n matrix of rank n with the singular system {(σi;vi,ui)}. The assumption
rank (K) = n yields N (K) = ∅, which, in turn, implies that the linear operator K is
injective.

The solvability of equation (2.11) is stated by the following result: the linear equation
(2.11) is solvable if and only if y ∈ R (K), and the unique solution is given by

x† =
n∑

i=1

1
σi

(
uT

i y
)
vi. (2.17)
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To prove this result we first assume that x† is a solution of (2.11), i.e., Kx† = y. If
y0 ∈ N

(
KT
)
, we see that

yT y0 = x†T KT y0 = 0,

and since R (K) = N
(
KT
)⊥

, the necessity of condition y ∈ R (K) follows. Conversely,
let y ∈ R (K). Then, y can be expressed in terms of the orthonormal basis {ui}i=1,n of
R (K) as follows:

y =
n∑

i=1

(
uT

i y
)
ui.

For x† defined by (2.17), we have (cf. (2.12))

Kx† =
n∑

i=1

1
σi

(
uT

i y
)
Kvi =

n∑
i=1

(
uT

i y
)
ui,

and we deduce that Kx† = y. Finally, the uniqueness of x† follows from the injectivity of
K.

Equation (2.17) defines a linear operator K† : R
m → R

n by the relation

K†y =
n∑

i=1

1
σi

(
uT

i y
)
vi, y ∈ R

m, (2.18)

which also allows a representation by an n × m matrix,

K† =
n∑

i=1

1
σi

viuT
i .

This operator or matrix, which maps y ∈ R (K) into the solution x† of equation (2.11),
that is,

x† = K†y,

is called the generalized inverse. By convention, the data vector y which belongs to the
range space of K, will be referred to as the exact data vector, and x† = K†y will be called
the exact solution.

In practice, the exact data is not known precisely and only the noisy data is available.
The noisy data vector yδ is a perturbation of the exact data vector y, and we have the
representation

yδ = y + δ,

where δ is the instrumental noise. In general, yδ ∈ R
m, and there is no guarantee that

yδ ∈ R (K). As a result, the linear equation is not solvable for arbitrary noisy data and
we need another concept of solution, namely the least squares solution. For the noisy data
vector

yδ =
m∑

i=1

(
uT

i yδ
)
ui, (2.19)
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the least squares solution of the linear equation (2.11) is defined by

xδ =
n∑

i=1

1
σi

(
uT

i yδ
)
vi. (2.20)

The least squares solution can be characterized as follows:

(1) the image of xδ under K is the projection of yδ onto R (K), that is,

Kxδ = PR(K)yδ =
n∑

i=1

(
uT

i yδ
)
ui;

(2) xδ has the optimality property

xδ = arg min
x

∥∥yδ − Kx
∥∥ ;

(3) xδ solves the normal equation

KT Kx = KT yδ.

Assertion (1) follows from (2.20) in conjunction with (2.12). Considering (2), we see that∥∥yδ − Kxδ
∥∥ =

∥∥yδ − PR(K)yδ
∥∥ = min

y∈R(K)

∥∥yδ − y
∥∥ = min

x

∥∥yδ − Kx
∥∥

and the conclusion is apparent. For proving (3), we use (2.19) and (2.20) to obtain

yδ − Kxδ =
m∑

i=n+1

(
uT

i yδ
)
ui.

Thus, yδ − Kxδ ∈ R (K)⊥ = N
(
KT
)
; this gives KT

(
yδ − Kxδ

)
= 0 and the proof is

complete.
By virtue of (2.18) and (2.20), the least squares solution can be expressed as

xδ = K†yδ,

and since xδ solves the normal equation, the SVD of K yields the factorization

K† =
(
KT K

)−1
KT = VΣ†UT , (2.21)

with
Σ† =

[
diag

(
1
σi

)
n×n

0
]
.

Note that for rank (K) = r < n, xδ defined by

xδ =
r∑

i=1

1
σi

(
uT

i yδ
)
vi,
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is an element of N (K)⊥ = span {vi}i=1,r and represents the unique least squares solu-
tion of equation (2.11) in N (K)⊥. If x0 is an arbitrary vector in N (K), then

K
(
xδ + x0

)
= PR(K)yδ,

and xδ + x0 is a least squares solution of equation (2.11) in R
n. Using the orthogonality

relation xT
0 xδ = 0, we observe from∥∥xδ + x0

∥∥2 =
∥∥xδ
∥∥2 + 2xT

0 xδ + ‖x0‖2 =
∥∥xδ
∥∥2 + ‖x0‖2

,

that xδ represents the least squares minimal norm solution of equation (2.11).
For discrete ill-posed problems, the following features of the singular values and vec-

tors are relevant (Hansen, 1998):

(1) as the dimension of K increases, the number of small singular values also increases;
(2) as the singular values σi decrease, the corresponding singular vectors ui and vi have

more sign changes in their components.

As a consequence of the oscillatory behavior of the high-order singular vectors, the norm of
the least squares solution becomes extremely large and xδ is not a reliable approximation
of x†. To be more concrete, we choose a large singular-value index i	 and consider a
perturbation of the exact data vector y in the direction of the singular vector ui� ,

yδ = y + Δui� ,

with Δ =
∥∥yδ − y

∥∥ being the noise level. The least squares solution is then given by

xδ = x† +
Δ
σi�

vi�

and the ratio ∥∥xδ − x†∥∥
‖yδ − y‖ =

1
σi�

is very large if σi� is very small (Figure 2.1). In this context, any naive approach which
tries to compute xδ by using (2.20) will usually return a useless result with extremely large
norm.

The instability of an ill-conditioned linear system of equations depends on the decay
rate of the singular values. In this sense, we say that a discrete problem is mildly ill-posed
if σi = O(i−β) for some positive β, and severely ill-posed if σi = O(e−i).

2.3.3 Numerical example

The difficulties associated with the solution of ill-posed problems will be demonstrated by
considering the temperature nadir sounding problem (2.1).

As water absorption is dominant for frequencies below 40 GHz and above 120 GHz,
we assume a single oxygen line at position ν̂O2 and ignore other absorbers completely.
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Fig. 2.1. The generalized inverse K† maps the exact data vector y into the exact solution x† and the
noisy data vector yδ into the least squares solution xδ . The image of xδ under K is the projection of
yδ onto R (K). Although the error in the data space Δ =

‚‚yδ − y
‚‚ is small, the error in the state

space
‚‚xδ − x†‚‚ can be very large.

Neglecting the temperature-dependence of line strength and pressure broadening, and as-
suming an observer at infinity gives the absorption optical depth (omitting the gas index)

τabs (ν, z) =
1
π

∫ ∞

z

SγL0n (z)

(ν − ν̂)2 +
[
γL0

p (z)
pref

]2 p (z)
pref

dz. (2.22)

The volume mixing ratio q of O2 is constant with altitude, i.e., q = 0.21, and the number
density depends on altitude through pressure and temperature,

n (z) = q
p (z)

kBT (z)
. (2.23)

Taking into account that pressure varies approximately exponentially with altitude (see
(1.1)), assuming pref = p0 and ignoring the altitude dependence of the temperature in
(2.23) (T varies between 200 and 300 K), the integral in (2.22) can be evaluated analyti-
cally. The result is

τabs (ν, z) = a log
(ν − ν̂)2 + γ2

L0 exp
(
−2z

H̄

)
(ν − ν̂)2

,

and the transmission is then given by

T (ν, z) = exp (−τabs (ν, z)) =

⎡⎢⎢⎣ (ν − ν̂)2

(ν − ν̂)2 + γ2
L0 exp

(
−2z

H̄

)
⎤⎥⎥⎦

a

,

with

a =
qSp0H̄

2πkBTγL0
=

qSp0

2πγL0mg
.
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Fig. 2.2. Transmission T (left) and weighting function ∂T /∂z (right) for a temperature nadir
sounding model with exponent a = 1.0, line position ν̂ = 2.0 cm−1 and δν = ν − ν̂ =
10−6, . . . , 10−2 cm−1.

Chosing S = 1.51 · 10−25 cm−1/
(
molec · cm2

)
, γL0 = 0.1 cm−1, m = 5 · 10−23 g, and

p0 = 106 g cm−1s−2, we find that a ≈ 1. The transmission T and the weighting function,
defined by ∂T /∂z, are depicted in Figure 2.2.

Now, passing from the vertical coordinate z to the non-dimensional coordinate

ζ =
2z

H̄

and making the change of variable

1
2ckBγ2

L0

I (ν) → I (ν) ,

the integral equation (2.1) becomes

I (ν) =
∫ ζmax

0

K (ν, ζ) T (ζ) dζ, ν ∈ [νmin, νmax] ,

with

K (ν, ζ) =
ν2 (ν − ν̂)2 exp (−ζ)[

(ν − ν̂)2 + γ2
L0 exp (−ζ)

]2 .
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Assuming a discretization scheme with piecewise constant functions

Tn (ζ) =
n∑

j=1

T
(
ζj

)
Pnj (ζ)

we obtain the discrete equation

[Im]i =
n∑

j=1

[Kmn]ij [Tn]j , i = 1, . . . , m, (2.24)

with the forward model matrix (N is the number of quadrature points)

[Kmn]ij =
∫ ζmax

0

K (νi, ζ) Pnj (ζ) dζ =
N∑

k=1

K
(
νi, ζk

)
Pnj

(
ζk

)
ΔζN , (2.25)

the data vector
[Im]i = I (νi) ,

and the state vector
[Tn]j = T

(
ζj

)
.

The layer centerpoints in the data and state spaces are

νi =
(

i − 1
2

)
Δνm, i = 1, . . . , m,

and

ζj =
(

j − 1
2

)
Δζn, j = 1, . . . , n,

respectively, while the discretization steps are Δνm = (νmax − νmin) /m and Δζn =
ζmax/n. The integration scheme for computing the integral in (2.25) does not depend on
the discretization grid in the state space and we have

ζk =
(

k − 1
2

)
ΔζN , k = 1, . . . , N,

with ΔζN = ζmax/N . Further, we set νmin = 1.98 cm−1, νmax = 2.02 cm−1, ζmax = 15
and choose the exact temperature profile as

T † (ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
220 + 28

(
5
2 − ζ

)
, 0 ≤ ζ ≤ 2.5,

220, 2.5 < ζ ≤ 5,
220 + 25

3 (ζ − 5) , 5 < ζ ≤ 11,
270, 11 < ζ ≤ 14,
250 + 20 (15 − ζ) , 14 < ζ ≤ 15.

(2.26)
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Our analysis is organized as follows:

(1) we fix the number of discrete data and quadrature points, m = 200 and N = 1000,
respectively, and compute the exact data vector by using the relation

[Im]i =
∫ ζmax

0

K (νi, ζ) T † (ζ) dζ =
N∑

k=1

K
(
νi, ζk

)
T † (ζk

)
ΔζN ;

(2) we generate the noisy data vector Iδ
m as

Iδ
m = Im + δI,

where δI is a random Gaussian vector with zero mean and covariance Cδ = σ2Im;
the noise standard deviation is defined in terms of the signal-to-noise ratio SNR by

σ =
‖Im‖√
mSNR

;

(3) for different values of the discretization index n, we compute the least squares solution

Tδ
n = K†

mnI
δ
m,

and determine the solution error

ε2
n =

∥∥T † − T δ
n

∥∥2 =
∫ ζmax

0

[
T † (ζ) − T δ

n (ζ)
]2

dζ,

where

T δ
n (ζ) =

n∑
j=1

[
Tδ

n

]
j
Pnj (ζ) .

In the left panel of Figure 2.3 we plot the condition number of the matrix Kmn for
different values of the discretization index n. As expected, increasing the degree of dis-
cretization causes a huge condition number of the matrix and a dramatic amplification of
solution errors is expected. The behavior of the Picard coefficients

P δ
i =

∣∣uT
i I

δ
m

∣∣
σi

,

which reflects the ill-posedness of the discrete equation, is shown in the right panel of
Figure 2.3. As we will see in Chapter 3, if the sequence of Picard coefficients does not
decay on average, then the reconstruction error is expected to be extremely large. For n =
12, the discrete Picard condition is satisfied on average and we anticipate reasonable small
errors, while for n = 18, the Picard coefficients do not decay on average and extremely
large reconstruction errors are expected.

Figure 2.4 shows the singular vectors v1, v6 and v14 corresponding to the singular
values σ1 = 1.8 · 103, σ6 = 1.2 · 102 and σ14 = 1.6 · 10−1, respectively. The results
illustrate that the number of oscillations of the singular vector components increases when
the corresponding singular values decrease. Note that fine structures in the profile are
reproduced by singular vectors corresponding to smaller singular values, while singular
vectors corresponding to larger singular values are responsible for the rough structures
(see, e.g., Rodgers, 2000).
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Fig. 2.3. Left: condition number versus the discretization index. Right: Picard coefficients for
n = 12 and n = 18 , in the case SNR = 100.
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Fig. 2.4. Singular vectors v1, v6 and v14 for n = 18.

In the left panel of Figure 2.5 we plot the solution errors versus the discretization
index n for different values of the SNR. The results show that the solution error has a
minimum for an optimal value n	 of the discretization index. These values are n	 = 12
for SNR = 100, n	 = 13 for SNR = 500, and n	 = 14 for SNR = 1000; thus n	 increases
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Fig. 2.5. Left: relative errors versus the discretization index. Right: retrieved profiles for n = 12
and n = 14, in the case SNR = 100.

when the SNR increases. The solution errors corresponding to the optimal values of the
discretization index are reasonable small. This is apparent from the right panel of Figure
2.5, which illustrates the retrieved profile for n = 12 and SNR = 100. In contrast, up to
the discretization index n = 14, the least squares solution oscillates and has a large norm.

The behavior of the solution error illustrates that projection methods have an inher-
ent regularizing property (Natterer, 1977). If the discretization is too coarse, the finite-
dimensional equation will be fairly well conditioned, but the solution will be affected by a
large discretization error

ε2
dn =

∥∥T † − T †
n

∥∥2 ,

where

T †
n (ζ) =

n∑
j=1

[
T†

n

]
j
Pnj (ζ)

and T†
n = K†

mnIm is the least squares solution in the noise-free case. On the other hand,
if the discretization is too fine, then the influence of the small singular values is significant,
and the so-called noise error

ε2
nn =

∥∥T †
n − T δ

n

∥∥2
explodes. Both the discretization and the noise errors contribute to the solution error εn,
and the optimal discretization index n	 balances the two error components.

The main drawback of regularization by projection is that the optimal discretization
index n	 is too small and the corresponding vertical resolution is too low. Regularization
methods yielding satisfactory reconstruction errors with high vertical resolutions are the
topic of the next chapters.



3

Tikhonov regularization for linear problems

This chapter deals with Tikhonov regularization, which is perhaps the most widely used
technique for regularizing discrete ill-posed problems. The reader is encouraged to look
at the orginal papers by Tikhonov (1963a, 1963b) and the monograph by Tikhonov and
Arsenin (1977) for the very fundamental results.

We begin our analysis by formulating the method of Tikhonov regularization for lin-
ear problems and by making some general remarks on the selection of the regularization
matrix. We then summarize the generalized singular value decomposition and discuss a
variety of mathematical tools for obtaining more insight into Tikhonov regularization. Af-
terward, we analyze one- and multi-parameter regularization methods and compare their
efficiency by considering numerical examples from atmospheric remote sensing.

3.1 Formulation

A problem is called linear if the forward model F, which describes the complete physics
of the measurement, can be expressed as

F (x) = Kx.

An example of a linear problem has been considered in the previous chapter. Also encoun-
tered in atmospheric remote sensing are the so-called nearly-linear problems. Assuming a
linearization of the forward model about some a priori state xa,

F (x) = F (xa) + K (xa) (x − xa) + O
(
‖x − xa‖2

)
, (3.1)

where K (xa) ∈ R
m×n is the Jacobian matrix of F (x) at xa,

[K (xa)]ij =
∂ [F]i
∂ [x]j

(xa) , i = 1, . . . , m, j = 1, . . . , n,

we say that a problem is nearly-linear, when the Taylor remainder or the linearization error
is of the same size as the instrumental error. If the actual observations on the forward model
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make up the measurement vector yδ , then by the change of variables yδ − F (xa) → yδ

and x − xa → x, we are led to the standard representation of a linear data model

yδ = Kx + δ, (3.2)

with K = K (xa).
For the linear data model (3.2), the Tikhonov solution xδ

α solves the regularized normal
equation (

KT K + αLT L
)
x = KT yδ, (3.3)

and can be expressed as
xδ

α = K†
αyδ,

where the matrix
K†

α =
(
KT K + αLT L

)−1
KT

is the regularized generalized inverse. The parameter α is called the regularization param-
eter and L is known as the regularization matrix. Since LT L is positive semidefinite, the
spectrum of the matrix KT K+αLT L is shifted in the positive direction and the solution of
the regularized normal equation is less susceptible to perturbations in the data. If the regu-
larization matrix is chosen so that the Morozov complementary condition ‖Lx‖ ≥ β ‖x‖
is fulfilled for some β > 0 and all x ∈ R

n, then the regularized normal equation has a
unique solution xδ

α which depends continuously on the data yδ .
Tikhonov regularization can be interpreted as a penalized least squares problem. Tak-

ing into account that∥∥yδ − K (x + �x)
∥∥2 + α ‖L (x + �x)‖2

=
∥∥yδ − Kx

∥∥2 + α ‖Lx‖2 + 2�xT
[(

KT K + αLT L
)
x − KT yδ

]
+ ‖K�x‖2 + α ‖L�x‖2

for all x,�x ∈ R
n, we deduce that, if x = xδ

α solves equation (3.3), then xδ
α minimizes

the Tikhonov function

Fα (x) =
∥∥yδ − Kx

∥∥2 + α ‖Lx‖2
. (3.4)

The converse result is obvious: the minimizer xδ
α of the Tikhonov function (3.4) is the solu-

tion of the regularized normal equation (3.3). The basic idea of Tikhonov regularization is
simple. Minimizing the function (3.4) means to search for some xδ

α providing at the same
time a small residual

∥∥yδ − Kx
∥∥2 and a moderate value of the penalty term ‖Lx‖2. The

way in which these two terms are balanced depends on the size of α. If the regularization
parameter is chosen too small, equation (3.3) is too close to the original problem and we
must expect instabilities; if α is too large, the equation we solve has only little connection
with the orginal problem.

Regularization methods for solving ill-posed problems can be analyzed in a determin-
istic or a semi-stochastic setting.

(1) In a deterministic setting, the solution x† corresponding to the exact data vector y
is assumed to be deterministic and only information on the noise level Δ, defined as∥∥yδ − y

∥∥ ≤ Δ, is available.
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(2) In a semi-stochastic setting, the solution x† is deterministic, while the instrumental
noise δ is assumed to be an m-dimensional random vector. Usually, δ is supposed
to be a discrete white noise with zero mean and covariance Cδ = σ2Im, where σ2

is the noise variance. It should be pointed out that a data model with an arbitrary
instrumental noise covariance matrix can be transformed into a data model with white
noise by using the prewhitening technique (see Chapter 6).

The noise level can be estimated by using the probability distribution of the noise, and we
might define Δ = E{‖δ‖} or Δ2 = E{‖δ‖2}, where E is the expected value operator (or
expectation operator). These estimates can be computed either numerically by generating
randomly a sample of noise vectors and averaging, or analytically, if the explicit integrals
of probability densities are available. In the case of white noise, the second criterion yields

Δ2 = mσ2.

From a practical point of view, the Tikhonov solution does not depend on which setting
the problem is treated; differences appear when proving convergence and convergence rate
results for different regularization parameter choice methods. Although we are mainly
interested in a semi-stochastic analysis, we will not abandon the deterministic analysis;
whenever is possible we will evidence the similarity between these two interpretations.

In the presence of forward model errors quantified by δm, the linear data model can be
expressed as

yδ = Kx + δy,

where the data error δy is given by

δy = δm + δ.

As δm is likely to be deterministic, δy has the mean δm and the covariance σ2Im. The pres-
ence of forward model errors restricts the class of regularization parameter choice methods
and often leads to an erroneous error analysis. Unfortunately, we can only estimate the
norm of the forward model errors, but we cannot recover the entire error vector. Under the
‘ideal assumption’ that δm is known, the appropriate Tikhonov function reads as

Fα (x) =
∥∥yδ − Kx − δm

∥∥2 + α ‖Lx‖2
,

and the regularized solution is given by

xδ
mα = K†

α

(
yδ − δm

)
. (3.5)

3.2 Regularization matrices

The penalty term in the expression of the Tikhonov function is called the discrete smooth-
ing norm or the constraint norm and is often, but not always, of the form

Ω (x) = ‖Lx‖ .

The discrete smoothing norm takes into account the additional information about the solu-
tion and its role is to stabilize the problem and to single out a useful and stable solution.
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If we intend to control the magnitude of the solution, then L can be chosen as either
the identity matrix (L0 = In) or a diagonal matrix. If the solution should be smooth,
then we have to use another measure of the solution, such as the discrete approximations
to derivative operators. The use of discrete approximations to derivative operators rather
than the identity is recommended by the following argument: the noisy components in the
data lead to rough oscillations of the solution which provoke large L-norms ‖L·‖, but do
not affect that much the standard norm ‖·‖. The discrete approximations to the first-order
(L1) and the second-order (L2) derivative operators are frequently used to model this type
of additional information. For certain discretizations, the possible forms for the first-order
difference regularization matrix are (Gouveia and Scales, 1997)

L1 =

⎡⎢⎢⎢⎣
−1 1 . . . 0 0

0 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 1

⎤⎥⎥⎥⎦ ∈ R
(n−1)×n, (3.6)

and

L1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0

−1 1 . . . 0 0
0 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
n×n. (3.7)

There are important differences between the matrix representations (3.6) and (3.7). While
they both smooth the solution, the regularization matrix (3.6) maps constant vectors into
zero and has the same null space as the continuous first-order derivative operator. Note that
for a regularization matrix with rank (L) < n, we have N (L) �= ∅, and ‖L·‖ is said to
be a seminorm because it is zero for any vector x ∈ N (L), not just for x = 0. The matrix
(3.6) has a regularizing effect if and only if its null space does not overlap with the null
space of the forward model matrix. Indeed, assuming that δx is a perturbation that happens
to be in the null space of K and in the null space of L, then Fα (x + δx) = Fα (x) and no
improvement of the Tikhonov function is possible. The regularization matrix (3.7) is not
singular and has a regularizing effect regardless of the null space of K. The first line of
this matrix shows that L1 controls the magnitude of the first component of the solution. If
x represents the deviation of an atmospheric profile from the a priori, then this requirement
can be regarded as a boundary condition which is imposed on the first component of x. In
atmospheric remote sensing, this assumption is in general reasonable, because in the upper
part of the atmosphere, the gas concentration is very small and the retrieved profile may be
close to the a priori profile. As in (3.6) and (3.7), the second-order difference regularization
matrix can be expressed as

L2 =

⎡⎢⎢⎢⎣
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 −2 1

⎤⎥⎥⎥⎦ ∈ R
(n−2)×n,
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and

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n.

If we have some knowledge about the magnitude of the state vector and we want to
constrain the solution to be smooth, we can combine several derivative orders and deter-
mine the regularization matrix by the Cholesky factorization (Hansen, 1998)

LT L = ω0LT
0 L0 + ω1LT

1 L1,

where ω0 and ω1 are positive weighting factors satisfying the normalization condition

ω0 + ω1 = 1.

To compute the regularization matrix L, we may consider the QR factorization of the
‘stacked’ matrix,

M =
[ √

ω1L1√
ω0L0

]
= Q

[
R
0

]
,

with Q ∈ R
(2n−1)×(2n−1) and R ∈ R

n×n, and in view of the identity

MT M = ω0LT
0 L0 + ω1LT

1 L1 = RT R,

to set L = R. This triangular QR factor can be computed very efficiently since L0 and
L1 are band matrices. For example, if both ω0 and ω1 are non-zero, then the sequence
of Givens rotations proposed by Elden (1977) for annihilating a diagonal matrix below a
bidiagonal matrix can be used.

The regularization matrix can also be constructed by means of statistical information,
that is, L can be the Cholesky factor of an a priori profile covariance matrix. This con-
struction is legitimated by the similarity between Tikhonov regularization and the Bayesian
approach from statistical inversion theory. The covariance matrix Cx corresponding to an
exponential correlation function is given by

[Cx]ij = σxiσxj [xa]i [xa]j exp
(
−2

|zi − zj |
li + lj

)
, i, j = 1, . . . , n,

where σxi are the dimensionless profile standard deviations and li are the lengths which
determine the correlation between the parameters at different altitudes zi. Defining the
diagonal matrices Γ and Xa by [Γ]ii = σxi and [Xa]ii = [xa]i, respectively, and the dense
matrix R by

[R]ij = exp
(
−2

|zi − zj |
li + lj

)
, i, j = 1, . . . , n,

we obtain the representation

Cx = (ΓXa)R (ΓXa)
T

.
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The inverse of the matrix R, which reproduces the shape of the correlation function, can
be factorized as

R−1 = LT
n Ln,

where the Cholesky factor Ln is the so-called normalized regularization matrix. To com-
pute the regularization matrix L we have two options:

(1) If the profile standard deviations are known to a certain accuracy, the regularization
matrix L is defined by the Cholesky factorization

C−1
x = LT L,

which, in turn, implies that
L = Ln (ΓXa)

−1
.

In this case, the regularization parameter α can be regarded as a scale factor for the ma-
trix Γ. If our assumption on the profile standard deviations is correct, a regularization
parameter choice method will yield a scale factor close to one.

(2) If the profile standard deviations are unknown, it is appropriate to assume that σxi =
σx for all i = 1, . . . , n. Consequently, Γ = σxIn, and the covariance matrix can be
expressed as

Cx = σ2
xCnx,

where the normalized covariance matrix Cnx is given by

Cnx = XaRXT
a .

The regularization matrix L is then defined as the Cholesky factor of the inverse of the
normalized covariance matrix,

C−1
nx = LT L,

and we have the representation
L = LnX−1

a .

By this construction, the regularization parameter α reproduces the profile standard
deviation σx, and a regularization parameter choice method will yield an estimate for
σx.

The smoothing property of L is reflected by Ln. To give a deterministic interpretation
of the normalized regularization matrix, we consider an equidistant altitude grid with the
step �z and assume that li = l for all i = 1, . . . , n. The matrix R can then be inverted
analytically and the result is (Steck and von Clarmann, 2001),

R−1 =
1

1 − ζ2

⎡⎢⎢⎢⎢⎢⎣
1 −ζ 0 . . . 0 0
−ζ 1 + ζ2 −ζ . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 + ζ2 −ζ
0 0 0 . . . −ζ 1

⎤⎥⎥⎥⎥⎥⎦ ,
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with ζ = exp (−�z/l). This gives

Ln =
1√

1 − ζ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −ζ 0 . . . 0 0
0 1 −ζ . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −ζ

0 0 0 . . . 0
√

1 − ζ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and from a deterministic point of view, we see that Ln→L0 as l → 0, and that Ln behaves
like L1 as l → ∞.

In the QPACK tool developed by Eriksson et al. (2005) other types of covariance
matrices are considered, e.g., the covariance matrix with a Gaussian correlation function

[Cx]ij = σxiσxj [xa]i [xa]j exp

(
−4
(

zi − zj

li + lj

)2
)

, i, j = 1, . . . , n,

and the covariance matrix with a linearly decreasing correlation function (a tent function)

[Cx]ij = max
(

0, σxiσxj [xa]i [xa]j

[
1 − 2

(
1 − e−1

) |zi − zj |
li + lj

])
, i, j = 1, . . . , n.

3.3 Generalized singular value decomposition and regularized solution

The generalized singular value decomposition (GSVD) of the matrix pair (K,L) is a nu-
merical tool which yields important insight into the regularization problem. The use of the
SVD and the GSVD in the analysis of discrete ill-posed problems goes back to Hanson
(1971) and Varah (1973). In this section, we review this ‘canonical decomposition’ by
following the presentation of Hansen (1998).

If K is an m × n matrix and L is a p × n matrix, with m > n ≥ p, and further, if
rank (L) = p and N (K)∩N (L) = ∅, then the GSVD of the matrix pair (K,L) is given
by

K = UΣ1W−1, L = VΣ2W−1, (3.8)

where the matrices Σ1 and Σ2 are of the form

Σ1 =

⎡⎣ diag (σi)p×p 0
0 In−p

0 0

⎤⎦ , Σ2 =
[

diag (μi)p×p 0
]
,

the matrices U and V, partitioned as

U = [u1, . . . ,um] ∈ R
m×m, V = [v1, . . . ,vp] ∈ R

p×p,

are orthogonal, i.e.,

UT U = UUT = Im, VT V = VVT = Ip,
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and the matrix
W = [w1, . . . ,wn] ∈ R

n×n

is nonsingular. Moreover, diag (σi)p×p and diag (μi)p×p are p × p diagonal matrices,
whose entries are positive and normalized via

σ2
i + μ2

i = 1, i = 1, . . . , p.

The generalized singular values of (K,L) are defined by

γi =
σi

μi
,

and we shall assume them to be distinct and to appear in decreasing order

γ1 > . . . > γp > 0.

From the identities KW = UΣ1 and LW = VΣ2, we see that

Kwi = σiui, Lwi = μivi, i = 1, . . . , p, (3.9)

and that
Kwi = ui, Lwi = 0, i = p + 1, . . . , n.

Thus, the set {wi}i=p+1,n is a basis of N (L) and since

wT
i KT Kwj = (Kwi)

T (Kwj) = uT
i uj = δij , i, j = p + 1, . . . , n,

where δij is the Kronecker symbol, we deduce that {wi}i=p+1,n is KT K-orthogonal.
Scalar multiplying the first and the second equations in (3.9) with uj and vj , respectively,
yields further two important relations, namely

wT
i KT uj = σiδij , wT

i LT vj = μiδij , i, j = 1, . . . , p.

If L is an n × n nonsingular matrix (p = n), we have

Σ1 =
[

diag (σi)n×n

0

]
, Σ2 =

[
diag (μi)n×n

]
, (3.10)

and
KL−1 = UΣ1Σ−1

2 VT , (3.11)

with

Σ1Σ−1
2 =

[
diag (γi)n×n

0

]
.

By virtue of (3.11), it is apparent that the SVD of the matrix quotient KL−1 is given by the
GSVD of the matrix pair (K,L). Therefore, instead of the term GSVD, the term quotient
SVD is also encountered in the literature (De Moor and Zha, 1991).

If in particular, L is the identity matrix In, then the U and V of the GSVD coincide
with the U and V of the SVD, and the generalized singular values of (K,L) are identical
to the singular values of K.
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The matrix Σ1 reflects the ill-conditioning of K. For small σi, we have

γi =
σi√

1 − σ2
i

≈ σi,

and we see that the generalized singular values decay gradually to zero as the ordinary
singular values do. In connection with discrete ill-posed problems, the following features
of the GSVD can be evidenced (Hansen, 1998):

(1) the generalized singular values γi decay to zero with no gap in the spectrum, and
the number of small generalized singular values increases as the dimension of K in-
creases;

(2) the singular vectors ui, vi and wi have more sign changes in their components as the
corresponding generalized singular values γi decrease.

We turn now to the representation of the regularized solution in terms of a generalized
singular system of (K,L). By (3.8), we see that the regularized generalized inverse K†

α

possesses the factorization

K†
α =

(
KT K + αLT L

)−1
KT = WΣ†

αUT , (3.12)

with

Σ†
α =

[
diag

(
γ2

i

γ2
i +α

1
σi

)
p×p

0 0

0 In−p 0

]
. (3.13)

As a consequence, the regularized solution xδ
α takes the form

xδ
α = K†

αyδ =
p∑

i=1

γ2
i

γ2
i + α

1
σi

(
uT

i yδ
)
wi +

n∑
i=p+1

(
uT

i yδ
)
wi, (3.14)

where the second term

xδ
0 =

n∑
i=p+1

(
uT

i yδ
)
wi, (3.15)

is the component of the solution in the null space of L.
If p = n, the expressions of Σ1 and Σ2 are given by (3.10); these yield

Σ†
α =

[
diag

(
γ2

i

γ2
i + α

1
σi

)
n×n

0
]

, (3.16)

and we deduce that the expression of the regularized solution xδ
α simplifies to

xδ
α = K†

αyδ =
n∑

i=1

γ2
i

γ2
i + α

1
σi

(
uT

i yδ
)
wi. (3.17)

Further, the factorization

K† =
(
KT K

)−1
KT = WΣ†

0U
T
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gives the following representation of the exact solution:

x† = K†y =
n∑

i=1

1
σi

(
uT

i y
)
wi. (3.18)

Here, the notation Σ†
0 stands for Σ†

α with α = 0. In the data space, we note the useful
expansions (cf. (3.9) and (3.17))

Kxδ
α =

n∑
i=1

γ2
i

γ2
i + α

(
uT

i yδ
)
ui, (3.19)

and (cf. (3.9) and (3.18))

Kx† =
n∑

i=1

(
uT

i y
)
ui = y. (3.20)

The computation of the GSVD of (K,L) is quite demanding and for this reason,
the GSVD is of computational interest only for small- and medium-sized problems. For
practical solutions of large-scale problems, algorithms based on standard-form transfor-
mation are frequently used. A regularization problem with a discrete smoothing norm
Ω (x) = ‖Lx‖ is said to be in standard form if the matrix L is the identity matrix In. From
a numerical point of view it is much simpler to treat problems in standard form because
only one matrix is involved, namely K, and the computation of the SVD of the matrix K is
not so time-consuming. To distinguish the standard-form problem from the general-form
problem (3.4), we use bars in our notation, i.e., we are looking for a related minimization
problem

min
x̄

Fα (x̄) =
∥∥ȳδ − K̄x̄

∥∥2 + α ‖x̄‖2
. (3.21)

If rank
(
K̄
)

= n and (σ̄i; v̄i, ūi) is a singular system of K̄, then the regularized solution
of (3.21) takes the form

x̄δ
α = K̄†

αȳδ =
n∑

i=1

σ̄2
i

σ̄2
i + α

1
σ̄i

(
ūT

i ȳδ
)
v̄i. (3.22)

For the simplest case where L is square and nonsingular, we put x̄ = Lx; the standard-
form transformation is then given by

K̄ = KL−1, ȳδ = yδ,

while the back-transformation becomes

xδ
α = L−1x̄δ

α.

For a rectangular (or non-square) regularization matrix, explicit and implicit transforma-
tions are given in Appendix B.

In atmospheric remote sensing, the regularization matrix is frequently constructed as
the Cholesky factor of some a priori profile covariance matrix and is therefore square and
nonsingular. For this reason and in order to simplify our analysis, we will consider the
expression of the regularized solution as in (3.17).
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3.4 Iterated Tikhonov regularization

In the presence of noise, the exact solution of an ill-posed problem can be reconstructed
with limited accuracy. In those cases where the Tikhonov solution fails to have optimal
accuracy, it is possible to improve it by using the so-called iterated Tikhonov regulariza-
tion. The first iteration step of iterated Tikhonov regularization is the step of the ordinary
method, while at the iteration step p ≥ 2, we evaluate the defect of the linear equation and
formulate a new equation in terms of the improved solution step p,

Kp = yδ − Kxδ
αp−1. (3.23)

Equation (3.23) is again solved by means of Tikhonov regularization, i.e., the improved
solution step pδ

αp minimizes the function

Fαp (p) =
∥∥(yδ − Kxδ

αp−1

)
− Kp

∥∥2 + α ‖Lp‖2
,

and the new approximation is given by

xδ
αp = xδ

αp−1 + pδ
αp.

If we iterate p times, we obtain the iterated Tikhonov regularization of order p, and the
accuracy of the solution increases with every iteration. In fact, for sufficiently large p,
the reconstruction reaches an accuracy that cannot be improved significantly by any other
method.

The iterated Tikhonov solution is defined by the regularized normal equation(
KT K + αLT L

)
xδ

αp = KT yδ + αLT Lxδ
αp−1, (3.24)

and can be expressed as
xδ

αp = K†
αyδ + Mαxδ

αp−1,

with
Mα = In − K†

αK.

Considering a generalized singular value decomposition of the matrix pair (K,L), we find
the solution representation (see (3.35) and (3.36) below for computing Mα)

xδ
αp =

(
p−1∑
l=0

Ml
α

)
K†

αyδ =
n∑

i=1

[
1 −
(

α

γ2
i + α

)p] 1
σi

(
uT

i yδ
)
wi.

Usually, iterated Tikhonov regularization is used with a fixed order p, but (3.24) can also
be regarded as an iterative regularization method when p is variable and α depends on p.
The resulting method, in which the iteration index p plays the role of the regularization
parameter, is known as the non-stationary iterated Tikhonov regularization (Hanke and
Groetsch, 1998).
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3.5 Analysis tools

A variety of mathematical tools have been designed to obtain more insight into a discrete
ill-posed problem. These tools comprise the filter factors, the errors in the state space and
the data space, the mean square error matrix, and the averaging kernels. The discrete Picard
condition and several graphical tools as, for instance, the residual curve and the L-curve
are also relevant for the analysis of discrete ill-posed problems.

To compute expected values of random vectors we will use the so-called trace lemma
(Vogel, 2002). This states that, if δ is a discrete white noise with zero mean vector and
covariance matrix σ2Im, y is an m-dimensional deterministic vector, and A is an m × m
deterministic matrix, there holds

E
{
‖y + Aδ‖2

}
= E

{
‖y‖2 + 2yT Aδ + ‖Aδ‖2

}
= ‖y‖2 + E

{
‖Aδ‖2

}
= ‖y‖2 +

m∑
i=1

m∑
j=1

[
AT A

]
ij
E
{

[δ]i [δ]j
}

= ‖y‖2 + σ2trace
(
AT A

)
. (3.25)

The following result will be also used in the sequel: if {ui}i=1,m is an orthonormal basis
of R

m, we have

E
{(

uT
i δ
) (

uT
j δ
)}

= E
{

m∑
k=1

m∑
l=1

[δ]k [δ]l [ui]k [uj ]l

}
= σ2uT

i uj = σ2δij . (3.26)

3.5.1 Filter factors

The purpose of a regularization method is to damp or filter out the contributions to the
solution corresponding to the small singular values. In general, the regularized solution
can be expressed as

xδ
α =

n∑
i=1

fα

(
γ2

i

) 1
σi

(
uT

i yδ
)
wi, (3.27)

where fα

(
γ2

i

)
are the filter factors for a particular regularization method. To damp the

contributions [(uT
i yδ)/σi]wi from the smaller σi, the filter factors fα

(
γ2

i

)
must rapidly

tend to zero as the σi decrease.
The filter factors for Tikhonov regularization and its iterated version are given by

fα

(
γ2

i

)
=

γ2
i

γ2
i + α

, (3.28)

and

fα

(
γ2

i

)
= 1 −

(
α

γ2
i + α

)p

, (3.29)
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respectively. From (3.28) and (3.29) it is apparent that the filter factors are close to 1
for large γi and much smaller than 1 for small γi. In this way, the contributions to the
solution corresponding to the smaller σi are filtered out. The filtering effectively sets in for
those generalized singular values satisfying γi <

√
α. If the regularization parameter α is

smaller than γn, then all the filter factors are approximately 1, and the discrete ill-posed
problem is essentially unregularized.

The filter factors can be used to study the influence of the a priori xa on the regularized
solution (Hansen, 1998). For this purpose, we choose L = In, and express the Tikhonov
solution minimizing the function

Fα (x) =
∥∥yδ − Kx

∥∥2 + α ‖x − xa‖2

as

xδ
α =

n∑
i=1

{
fα

(
σ2

i

) 1
σi

uT
i yδ +

[
1 − fα

(
σ2

i

)]
vT

i xa

}
vi. (3.30)

The solution representation (3.30) shows that for fα

(
σ2

i

)
≈ 1, the contribution of the noisy

data is dominant, while for fα

(
σ2

i

)
≈ 0, the contribution of the a priori is dominant. Con-

sequently, for small regularization parameters, yδ dominates, while for large regularization
parameters, xa dominates. This result suggests that the optimal value of the regularization
parameter should balance the contributions of the data and the a priori.

3.5.2 Error characterization

An error analysis can be performed in the state space by computing the solution error
x† − xδ

α, or in the data space, by estimating the predictive error y − Kxδ
α. Actually, an

error analysis is not only a tool for characterizing the accuracy of the solution; it is also
the basis for selecting an optimal regularization parameter. In this section we identify the
different types of errors and derive representations of the error components in terms of the
generalized singular system of the matrix pair (K,L).

Errors in the state space

Let us express the deviation of the regularized solution from the exact solution as

x† − xδ
α =

(
x† − xα

)
+
(
xα − xδ

α

)
, (3.31)

where xα is the regularized solution for the exact data vector y, that is,

xα = K†
αy.

Defining the total error by
eδ

α = x† − xδ
α,

and the smoothing and noise errors by

esα = x† − xα,
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and
eδ
nα = xα − xδ

α,

respectively, (3.31) becomes

eδ
α = esα + eδ

nα. (3.32)

The smoothing error quantifies the loss of information due to the regularization, while the
noise error quantifies the loss of information due to the incorrect data.

The smoothing error can be expressed in terms of the exact data vector y as

esα =
(
K† − K†

α

)
y = W

(
Σ†

0 − Σ†
α

)
UT y =

n∑
i=1

α

γ2
i + α

1
σi

(
uT

i y
)
wi, (3.33)

and in terms of the exact solution x† as

esα = x† − xα =
(
In − K†

αK
)
x† = (In − Aα)x†. (3.34)

Here, the n × n matrix
Aα = K†

αK = WΣaW−1, (3.35)

with

Σa =

[
diag

(
γ2

i

γ2
i + α

)
n×n

]
, (3.36)

is called the resolution matrix or the averaging kernel matrix. From (3.34), we deduce that
an equivalent expansion for the smoothing error is

esα =
n∑

i=1

α

γ2
i + α

(
ŵT

i x†)wi,

where ŵT
i is the ith row vector of the matrix Ŵ = W−1. Similarly, the noise error

possesses a representation in terms of the noise vector δ, that is,

eδ
nα = xα − xδ

α = K†
α

(
y − yδ

)
= −K†

αδ = −
n∑

i=1

γ2
i

γ2
i + α

1
σi

(
uT

i δ
)
wi. (3.37)

In a semi-stochastic setting and for white noise, the smoothing error is deterministic,
while the noise error is stochastic with zero mean and covariance

Cen = σ2K†
αK†T

α = σ2WΣnαWT , (3.38)

where

Σnα = Σ†
αΣ†T

α =

[
diag

((
γ2

i

γ2
i + α

1
σi

)2
)

n×n

]
.

If no regularization is applied, the least squares solution xδ = K†yδ is characterized by
the noise error covariance matrix

Cen0 = σ2K†K†T = σ2WΣn0WT . (3.39)
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From (3.38) and (3.39) we deduce that ‖Cen‖ is generally much smaller than ‖Cen0‖
because the influence from the small σi is damped by the corresponding small filter factors
γ2

i /(γ2
i + α). Thus, from a stochastic point of view, a regularization method ‘reduces the

noise error covariance matrix’ by introducing a bias of the solution (the smoothing error).
The expected value of the total error is given by

E
{∥∥eδ

α

∥∥2} = ‖esα‖2 + E
{∥∥eδ

nα

∥∥2} , (3.40)

whereas the expected value of the noise error is computed as (cf. (3.26) and (3.37))

E
{∥∥eδ

nα

∥∥2} =
n∑

i=1

n∑
j=1

(
γ2

i

γ2
i + α

1
σi

)(
γ2

j

γ2
j + α

1
σj

)
×
(
wT

i wj

)
E
{(

uT
i δ
) (

uT
j δ
)}

= σ2
n∑

i=1

(
γ2

i

γ2
i + α

1
σi

)2

‖wi‖2
. (3.41)

The smoothing error ‖esα‖2 is an increasing function of α, while the expected value of
the noise error E{

∥∥eδ
nα

∥∥2} is a decreasing function of α. Consequently, we may assume
that the expected value of the total error E{

∥∥eδ
α

∥∥2} has a minimum for an optimal value
of α. The stability of the linear problem requires a large regularization parameter to keep
the noise error small, i.e., to keep the influence of the data errors small. On the other hand,
keeping the smoothing error small asks for a small regularization parameter. Obviously,
the choice of α has to be made through a compromise between accuracy and stability.

When the data error δy is determined by forward model errors and instrumental noise,
the regularized solution should be computed as (cf. (3.5))

xδ
mα = K†

α

(
yδ − δm

)
. (3.42)

As δm is unknown, we can only compute the regularized solution xδ
α = K†

αyδ; the relation
between xδ

α and xδ
mα is given by

xδ
α = xδ

mα + K†
αδm.

In view of the decomposition

x† − xδ
α =

(
x† − xα

)
+
(
xα − xδ

mα

)
+
(
xδ
mα − xδ

α

)
,

we introduce the total error in the state space by

eδ
α = esα + eδ

nα + emα.

Here, the smoothing and noise errors are as in (3.34) and (3.37), respectively, while the
new quantity emα, defined by

emα = xδ
mα − xδ

α = −K†
αδm, (3.43)

represents the modeling error.
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Constrained errors in the state space

The error in the solution can also be characterized via the ‘constrained’ total error

lδα = Leδ
α = L

(
x† − xδ

α

)
.

As before, we have the decomposition

lδα = lsα + lδnα,

where
lsα = Lesα = L

(
x† − xα

)
is the constrained smoothing error and

lδnα = Leδ
nα = L

(
xα − xδ

α

)
is the constrained noise error. Accounting of (3.9) and using (3.33) and (3.37), we find the
expansions

lsα =
n∑

i=1

α

γ2
i + α

1
γi

(
uT

i y
)
vi, (3.44)

and

lδnα = −
n∑

i=1

γi

γ2
i + α

(
uT

i δ
)
vi. (3.45)

The expected value of the constrained total error is then given by

E
{∥∥lδα∥∥2} = ‖lsα‖2 + E

{∥∥lδnα∥∥2} , (3.46)

with (cf. (3.26), (3.44) and (3.45))

‖lsα‖2 =
n∑

i=1

(
α

γ2
i + α

)2 1
γ2

i

(
uT

i y
)2

, (3.47)

and

E
{∥∥lδnα∥∥2} = σ2

n∑
i=1

(
γi

γ2
i + α

)2

. (3.48)

From (3.47) and (3.48) we infer that ‖lsα‖2 is an increasing function of α and that
E{
∥∥lδnα∥∥2} is a decreasing function of α.

When a regularization problem is transformed into the standard form and L is nonsin-
gular, we have K̄ = KL−1 and x̄δ

α = Lxδ
α. Thus, the constrained errors corresponding to

the general-form solution xδ
α coincide with the errors corresponding to the standard-form

solution x̄δ
α. As the generalized singular values of (K,L) are the singular values of the

matrix quotient K̄, it is apparent that an analysis involving the constrained errors for the
general-form problem is equivalent to an analysis involving the errors for the standard-form
problem.
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Errors in the data space

The accuracy of the regularized solution can be characterized via the predictive error or the
predictive risk, defined as

pδ
α = Keδ

α = psα + pδ
nα. (3.49)

The predictive smoothing error is given by

psα = Kesα = K
(
x† − xα

)
=
(
Im − KK†

α

)
y =

(
Im − Âα

)
y, (3.50)

where the m × m matrix
Âα = KK†

α = UΣ̂aUT , (3.51)

with

Σ̂a =

[
diag

(
γ2

i

γ2
i +α

)
n×n

0

0 0

]
, (3.52)

is called the influence matrix. Essentially, the influence matrix is the counterpart of the
resolution matrix and characterizes the smoothing error in the data space. Using the or-
thogonality relations uT

i y = 0 for i = n + 1, . . . , m, we obtain the expansion

psα =
n∑

i=1

α

γ2
i + α

(
uT

i y
)
ui. (3.53)

For the predictive noise error we find that

pδ
nα = Keδ

nα = K
(
xα − xδ

α

)
= −KK†

αδ = −Âαδ, (3.54)

and further that

pδ
nα = −

n∑
i=1

γ2
i

γ2
i + α

(
uT

i δ
)
ui. (3.55)

Using the representation
pδ

α = psα − Âαδ

and applying the trace lemma (3.25), we deduce that the expected value of the predictive
error is given by

E
{∥∥pδ

α

∥∥2} = ‖psα‖2 + E
{∥∥pδ

nα

∥∥2} , (3.56)

with

‖psα‖2 =
∥∥∥(Im − Âα

)
y
∥∥∥2 =

n∑
i=1

(
α

γ2
i + α

)2 (
uT

i y
)2

(3.57)

and

E
{∥∥pδ

nα

∥∥2} = σ2trace
(
ÂT

αÂα

)
= σ2trace

(
UΣ̂T

a Σ̂aUT
)

= σ2
n∑

i=1

(
γ2

i

γ2
i + α

)2

.

(3.58)

The monotonicity of the predictive errors is illustrated by (3.57) and (3.58): ‖psα‖2 is an
increasing function of α and E{

∥∥pδ
nα

∥∥2} is a decreasing function of α. The predictive error
is not a computable quantity but it can be approximated with a satisfactory accuracy by the
so-called unbiased predictive risk estimator. The minimization of this estimator yields a
regularization parameter which balances the smoothing and noise errors in the data space.
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3.5.3 Mean square error matrix

A measure of the accuracy of the regularized solution is the mean square error matrix
defined by (Vinod and Ullah, 1981; O’Sullivan, 1986; Grafarend and Schaffrin, 1993),

Sα = E
{(

x† − xδ
α

) (
x† − xδ

α

)T}
=
(
x† − xα

) (
x† − xα

)T
+ E

{(
xα − xδ

α

) (
xα − xδ

α

)T}
= (In − Aα)x†x†T (In − Aα)T + σ2K†

αK†T
α . (3.59)

The first term (bias) in the expression of the mean square error matrix depends on the exact
solution x† and is not a computable quantity. Several approximations for this term have
been proposed in the literature. Xu and Rummel (1994) suggested the estimate

x†x†T ≈ xδ
αxδT

α , (3.60)

while Grafarend and Schaffrin (1993) proposed the approximation

x†x†T ≈ σ2

α

(
LT L

)−1
. (3.61)

The estimate (3.61) is justified by the similarity between the mean square error matrix and
the a posteriori covariance matrix in statistical inversion theory. In this case, the mean
square error matrix becomes

Sα ≈ σ2
(
KT

αKα + αLT L
)−1

,

and coincides with the covariance matrix of the maximum a posteriori estimator (see Chap-
ter 4).

The mean square error matrix can be expressed in terms of the errors in the state space
as

Sα = E
{
eδ

αeδT
α

}
= esαeT

sα + Cen,

and we have
E
{∥∥eδ

α

∥∥2} = trace (Sα) .

In the presence of forward model errors, the regularized solution is biased by the
modeling error in the state space, and Sα is given by

Sα = (esα + emα) (esα + emα)T + Cen.

This relation is useless in practice, and in order to obtain a computable expression, we use
the approximation

Sα ≈ esαeT
sα + emαeT

mα + Cen

= esαeT
sα + K†

α

(
δmδ

T
m + σ2Im

)
K†T

α .
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The matrix δmδ
T
m + σ2Im, with diagonal entries[

δmδ
T
m + σ2Im

]
ii

= [δm]
2
i + σ2, i = 1, . . . , m,

is also unknown and we propose the diagonal matrix approximation

δmδ
T
m + σ2Im ≈

(
1
m

‖δm‖2 + σ2

)
Im. (3.62)

According to (3.62), the data error δy = δm + δ is replaced by an equivalent white noise
δe, with the variance

σ2
e =

1
m

‖δm‖2 + σ2, (3.63)

so that

E
{
‖δe‖2

}
= E

{∥∥δy

∥∥2} .

The mean square error matrix then becomes

Sα ≈ esαeT
sα + σ2

eK
†
αK†T

α . (3.64)

As we will see, the variance σ2
e can be estimated by computing the norm of the resid-

ual rδ
α = yδ − Kxδ

α for small values of the regularization parameter α, and the above
equivalence will enable us to perform an approximative error analysis.

3.5.4 Resolution matrix and averaging kernels

The mean square error matrix tells us about how precise the regularized solution is. In this
section, we consider how much resemblance there is between the exact and the regularized
solutions. Representing the regularized solution as

xδ
α = K†

αyδ = Aαx† + K†
αδ, (3.65)

we observe that the first term Aαx† is a smoothed version of the exact solution x†, while
the second term K†

αδ reflects the contribution from the noise in the data. Thus, the resolu-
tion matrix Aα quantifies the smoothing of the exact solution by the particular regulariza-
tion method and describes how well the exact solution is approximated by the regularized
solution in the noise-free case.

By virtue of (3.34), it is apparent that the deviation of Aα from the identity matrix
characterizes the smoothing error. Note that although Aα can deviate significantly from
In, the vector Aαx† is still close to x† if those spectral components of x† which are
damped by the multiplication with Aα are small (Hansen, 1998).

There is more information in the resolution matrix than just a characterization of the
smoothing error. If aT

αi is the ith row vector of Aα, then the ith component of Aαx† is
given by [Aαx†]i = aT

αix
†, and we see that aT

αi expresses [Aαx†]i as a weighted average
of all components in x†. For this reason, the row vectors aT

αi are referred to as the averaging
kernels. The ith averaging kernel has a peak at its ith component and the width of this
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peak depends on the particular regularization method. In atmospheric remote sensing, the
averaging kernel is an indication of the vertical resolution of the instrument. According to
Rodgers (2000), features in the profile which are much broader than the averaging kernel
width will be reproduced well, while features much narrower than the averaging kernel
width will be smoothed out.

The width of the averaging kernel can be measured in various ways. A simple measure
is the full width of the peak at half of its maximum (FWHM) but this measure does not
take into account any ripples on either sides of the main peak. Another way to calculate
the width of a function is to use the Backus–Gilbert spread. If we regard aαi as a function
ai (z) of the altitude z, then the spread of this function about the height zi is defined by

s (zi) = c

∫
(z − zi)

2
ai (z)2 dz[∫

ai (z) dz
]2 . (3.66)

An alternative form, designed to reduce the problem associated with the presence of nega-
tive sidelobes of ai, is

s (zi) = c

∫
|(z − zi) ai (z)| dz∫

|ai (z)| dz
, (3.67)

while a spread based directly upon the ‘radius of gyration’ of a2
i is

s (zi) =

[
c

∫
(z − zi)

2
ai (z)2 dz∫

ai (z)2 dz

] 1
2

. (3.68)

The normalization constant c in the above relations can be chosen so that the spread of a
‘top-hat’ or ‘boxcar’ function is equal to its width. As shown by several authors, the res-
olution measures (3.66)–(3.68) are in general misleading when the averaging kernels have
negative sidelobes of significant amplitudes. In this regard, other measures of resolution
derived from the averaging kernels have been proposed by Purser and Huang (1993).

In most applications, the resolution matrix Aα is a consequence of the choice of a
regularization method. However, in the mollifier method, to be discussed in Chapter 9, the
resolution matrix is the starting point for deriving the generalized inverse.

As Aα = K†
αK is the resolution matrix for the solution, the influence matrix Âα =

KK†
α is the resolution matrix for the predicted right-hand side, i.e., it describes how well

the vector Kxδ
α predicts the given right-hand side yδ .

3.5.5 Discrete Picard condition

An important analytical tool for analyzing discrete ill-posed problems is the decay of the
Fourier coefficients and of the generalized singular values. This topic is strongly connected
with the discrete Picard condition. In a continuous setting, Picard’s theorem states that in
order for the equation Kx = y to have a solution x† ∈ X , it is necessary and sufficient
that y ∈ R (K) and that

∞∑
i=1

〈y, ui〉2

σ2
i

< ∞, (3.69)
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where K is a compact operator between the real Hilbert spaces X and Y , and (σi; vi, ui)
is a singular system of K. The infinite sum in (3.69) must converge, which means that the
terms in the sum must decay to zero, or equivalently, that the generalized Fourier coeffi-
cients | 〈y, ui〉 | must decay faster to zero than the singular values σi.

For discrete ill-posed problems there is, strictly speaking, no Picard condition because
the solution always exists and is bounded. Nevertheless it makes sense to introduce a dis-
crete Picard condition as follows: the exact data vector y of the discrete equation satisfies
the discrete Picard condition if the Fourier coefficients |uT

i y| decay, on the average, to
zero faster than the generalized singular values γi, that is, the sequence {|uT

i y|/γi} gen-
erally decreases (Hansen, 1990). The discrete Picard condition is not as ‘artificial’ as it
may seem; it can be shown that if the underlying continuous equation satisfies the Picard
condition, then the discrete equation satisfies the discrete Picard condition (Hansen, 1998).
The importance of the discrete Picard condition in the analysis of ill-posed problems has
been discussed by Hansen (1992b), and Zha and Hansen (1990).

Let us assume that the Fourier coefficients and the generalized singular values are
related by the following model∣∣uT

i y
∣∣ = Cγβ+1

i , i = 1, . . . , n, (3.70)

where β > 0 and C > 0. In addition, if p is the index defined by(
uT

p y
)2

= σ2,

i.e., Cγβ+1
p = σ, we suppose that the decay rate of the generalized singular values is such

that

γi � γp, i = 1, . . . , p − 1,

γi � γp, i = p + 1, . . . , n. (3.71)

Under these assumptions and using the relation (cf. (3.26))

E
{(

uT
i δ
)2}

= σ2, (3.72)

we find that the expected values of the Fourier coefficients, corresponding to the noisy data,

F 2
i = E

{(
uT

i yδ
)2}

=
(
uT

i y
)2

+ σ2 = C2
(
γ2β+2

i + γ2β+2
p

)
(3.73)

behave like

F 2
i ∝

⎧⎨⎩ γ2β+2
i , i = 1, . . . , p − 1,

γ2β+2
p , i = p, . . . , n.

(3.74)

Thus, for i ≥ p, the Fourier coefficients F 2
i level off at σ2. Similarly, for the expected

values of the Picard coefficients
P 2

i =
1
γ2

i

F 2
i , (3.75)
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there holds

P 2
i ∝

⎧⎪⎨⎪⎩
γ2β

i , i = 1, . . . , p − 1,

γ2β
p

(
γp

γi

)2

, i = p, . . . , n,

(3.76)

and we deduce that the Picard coefficients P 2
i decrease until γp and increase afterward.

Another important result, which is also a consequence of assumptions (3.70) and
(3.71), states that γ2

p is close to the optimal regularization parameter for constrained er-
ror estimation

αopt = arg min
α

E
{∥∥lδα∥∥2} ,

where

L (α) = E
{∥∥lδα∥∥2} =

n∑
i=1

[(
α

γ2
i + α

)2 1
γ2

i

(
uT

i y
)2

+ σ2

(
γi

γ2
i + α

)2
]

. (3.77)

To justify this assertion we employ a heuristic technique which will be frequently used in
the sequel. Let us assume that α = γ2

j for some j = 1, . . . , n. Then, using (3.70) and the
relation σ = Cγβ+1

p , we obtain

L
(
γ2

j

)
= C2

n∑
i=1

γ2
i γ2

j(
γ2

i + γ2
j

)2 P̄ 2
i ,

where

P̄ 2
i =

γ2
j

γ2
i

γ2β
i +

1
γ2

j

γ2β+2
p .

The function f (t) = t/ (1 + t)2, with t = γ2
i /γ2

j , is common to all the terms in the sum.
For t � 1, we have f (t) ≈ t, while for t � 1, we have f (t) ≈ 1/t. Thus, f is very
small if t � 1 and t � 1, and we may assume that f effectively filters out the influence of
all P̄ 2

i with i �= j. In fact, the validity of this assumption depends on the behavior of the
coefficients P̄ 2

i , and, in particular, on the decay rate of the generalized singular values γi

and the size of the parameter β. We obtain

L
(
γ2

j

)
∝ P̄ 2

j = P 2
j ,

and we conclude that L
(
γ2

j

)
has approximately a turning point at γp (cf. (3.76)).

In practice, the computable Fourier coefficients (uT
i yδ)2 behave like their expected

values E{(uT
i yδ)2}, and the above results generalize as follows: (uT

i yδ)2 level off at σ2,
and if p is the first index satisfying (uT

p yδ)2 ≈ σ2, then γ2
p ≈ αopt. The latter result

can be used to obtain a rough estimate of the regularization parameter which balances the
constrained errors.

In Figure 3.1 we illustrate the Fourier coefficients for exact data F 2
0i together with the

expected Fourier and Picard coefficients F 2
i and P 2

i , respectively. The results correspond
to a synthetic model of a discrete ill-posed problem based on the assumptions

L = In, (3.78)
σi = exp (−ωi) , (3.79)∣∣uT

i y
∣∣ = Cσβ+1

i , (3.80)
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Fig. 3.1. Fourier coefficients for exact data F 2
0i together with the expected Fourier and Picard coef-

ficients F 2
i and P 2

i = F 2
i /σ2

i , respectively. The results correspond to the following values of the
noise standard deviation σ: 0.05 (left), 0.1 (middle), and 0.2 (right).

for i = 1, . . . , n. The parameter β, which controls the decay rate of the Fourier coef-
ficients for exact data, characterizes the smoothness of the exact solution. Note that for
K = UΣVT , we have x† =

(
KT K

)β/2
z, with z = C

∑n
i=1 sgn

(
uT

i y
)

vi, and the
smoothness of x† increases with increasing β (Appendix C). The parameter ω character-
izes the decay rate of the singular values and since σi = O(e−i), we see that the problem
is severely ill-posed. In our simulations we choose m = 800, n = 20, ω = 0.75 and
β = 1, in which case, the condition number of the matrix is 1.5 · 106. The plots in Figure
3.1 show that for i ≥ p, where p is such that F 2

0p ≈ σ2, the expected Fourier coefficients
F 2

i level off at σ2, while the expected Picard coefficients P 2
i have a turning point at σp. In

fact, we cannot recover the singular value components of the solution for i > p, because
the Picard coefficients are dominated by noise. The plots also show that when σ increases,
p decreases, and so, σ2

p increases. Thus, larger noise standard deviations require larger
regularization parameters.

3.5.6 Graphical tools

The residual curve for Tikhonov regularization plays a central role in connection with
some regularization parameter choice methods as for example, the discrepancy principle
and the residual curve method. Furthermore, the residual and the constraint curves de-
termine the L-curve, which is perhaps the most convenient graphical tool for analyzing
discrete ill-posed problems. To account on the random character of the noise in the data,
it is appropriate to define the expected curves by averaging over noisy data realizations. In
this sections, we use the simplified assumptions (3.70) and (3.71) to obtain qualitative in-
formation on the behavior of the expected residual and constraint curves, and to understand
the L-shape appearance of the L-curve.
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Residual curve

The residual vector defined by
rδ

α = yδ − Kxδ
α (3.81)

possesses the generalized singular value expansion (cf. (3.19))

rδ
α =

n∑
i=1

α

γ2
i + α

(
uT

i yδ
)
ui +

m∑
i=n+1

(
uT

i yδ
)
ui. (3.82)

The residual norm then becomes∥∥rδ
α

∥∥2 =
n∑

i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

(3.83)

and it is apparent that
∥∥rδ

α

∥∥2 is an increasing function of α. An equivalent representation
for the residual vector in terms of the influence matrix reads as

rδ
α = yδ − Kxδ

α =
(
Im − KK†

α

)
yδ =

(
Im − Âα

)
yδ. (3.84)

Using (3.73) and the identities

uT
i y = 0, i = n + 1, . . . , m, (3.85)

we find that the expected residual is given by

R (α) = E
{∥∥rδ

α

∥∥2} = (m − n) σ2 +
n∑

i=1

(
α

γ2
i + α

)2 [(
uT

i y
)2

+ σ2
]
. (3.86)

To analyze the graph (log α,R (α)) , we make the change of variable x = log α and con-
sider the function

Rlog (x) = R (exp (x)) = (m − n) σ2 +
n∑

i=1

(
ex

γ2
i + ex

)2 [(
uT

i y
)2

+ σ2
]
.

The slope of the curve is

R′
log (x) = 2

n∑
i=1

e−xγ2
i

(e−xγ2
i + 1)3

F 2
i ,

where F 2
i are the expected Fourier coefficients (3.73). Setting f (t) = t/ (1 + t)3, with

t = e−xγ2
i , we see that f (t) ≈ t if t � 1, and f (t) ≈ 1/t2 if t � 1. For x = xj =

log
(
γ2

j

)
, j = 1, . . . , n, the filtering property of f gives

R′
log (xj) ∝ F 2

j ,

and we infer that the slope R′
log at the discrete points xj behaves like the expected Fourier

coefficients F 2
j . From (3.74), it is apparent that the slope of the graph is large for j =

1, . . . , p − 1, and small and constant for j = p, . . . , n. Supposing that

Rlog (xn) = R
(
γ2

n

)
≈ lim

α→0
R (α) = (m − n) σ2,
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Fig. 3.2. Expected residual (left) and constraint (right) curves for different values of the noise stan-
dard deviation σ.

we deduce that Rlog has a plateau at (m − n) σ2 for all xj ≤ xp and afterward increases.
The plots in the left panel of Figure 3.2 correspond to the synthetic model (3.78)–(3.80) and
show that the expected residual is an increasing function of the regularization parameter
and has a plateau at (m − n) σ2.

Let us now assume that the data contains forward model errors and instrumental noise,
δy = δm + δ, and let us derive an estimate for the equivalent white noise variance (3.63).
From (3.83) together with (3.72) and (3.85), we see that

lim
α→0

E
{∥∥rδ

α

∥∥2} =
m∑

i=n+1

E
{(

uT
i δy

)2}
= (m − n) σ2 +

m∑
i=n+1

(
uT

i δm

)2
.

Thus, approximating the expected residual by

E
{∥∥rδ

α

∥∥2} ≈ (m − n)
(

1
m

‖δm‖2 + σ2

)
, α → 0,

we find that the equivalent white noise variance (3.63) can be estimated as

σ2
e ≈ 1

m − n
E
{∥∥rδ

α

∥∥2} ≈ 1
m − n

∥∥rδ
α

∥∥2 , α → 0.

Constraint curve

The constraint vector is defined as
cδ

α = Lxδ
α, (3.87)

and we have explicitly

cδ
α =

n∑
i=1

γi

γ2
i + α

(
uT

i yδ
)
vi. (3.88)



64 Tikhonov regularization for linear problems Chap. 3

The constraint norm is then given by

∥∥cδ
α

∥∥2 =
n∑

i=1

(
γi

γ2
i + α

)2 (
uT

i yδ
)2

, (3.89)

and it is readily seen that
∥∥cδ

α

∥∥ is a decreasing function of α.
We define the expected constraint by

C (α) = E
{∥∥cδ

α

∥∥2} =
n∑

i=1

(
γi

γ2
i + α

)2 [(
uT

i y
)2

+ σ2
]
, (3.90)

and consider the graph (log α,C (α)). As before, we make the change of variable x =
log α, introduce the function

Clog (x) = C (exp (x)) =
n∑

i=1

(
γi

γ2
i + ex

)2 [(
uT

i y
)2

+ σ2
]
,

and compute the slope of the curve as

C ′
log (x) = −2

n∑
i=1

(
e−xγ2

i

)2
(e−xγ2

i + 1)3
P 2

i ,

where P 2
i are the expected Picard coefficients (3.75). The function f (t) = t2/ (1 + t)3,

with t = e−xγ2
i , behaves like f (t) ≈ t2 if t � 1, and like f (t) ≈ 1/t if t � 1. For

x = xj = log
(
γ2

j

)
, j = 1, . . . , n, the filtering property of f yields

C ′
log (xj) ∝ −P 2

j ,

and we deduce that the slope C ′
log at the discrete points xj is reproduced by the expected

Picard coefficients P 2
j . From (3.76), we see that |C ′

log| attains a minimum value at j =
p; this result together with the inequality C ′

log (x) < 0 shows that Clog is a decreasing
function with a plateau in the neighborhood of xp.

The plateau of the expected constraint curve appears approximately at

Clog (xp) = C
(
γ2

p

)
≈
∥∥Lx†∥∥2 .

To justify this claim, we consider the representation (cf. (3.18))

∥∥Lx†∥∥2 =
n∑

i=1

1
γ2

i

(
uT

i y
)2

= C2

⎡⎣γ2β
p +

p−1∑
i=1

γ2β
i +

n∑
i=p+1

γ2β
i

⎤⎦ ,

and use (3.71) and (3.73) to express (3.90) as

C
(
γ2

p

)
≈ C2

⎡⎣1
2
γ2β

p +
p−1∑
i=1

γ2β
i + γ2β

p

n∑
i=p+1

(
γi

γp

)2
⎤⎦ .
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Hence, neglecting the contribution of all the terms γi with i ≥ p, we conclude that

C
(
γ2

p

)
≈
∥∥Lx†∥∥2 ≈ C2

p−1∑
i=1

γ2β
i .

The plots in the right panel of Figure 3.2 illustrate that the expected constraint is a decreas-
ing function with a plateau at

∥∥Lx†∥∥2.

L-curve

The L-curve is the plot of the constraint
∥∥cδ

α

∥∥2 against the residual
∥∥rδ

α

∥∥2 for a range of
values of the regularization parameter α. The use of such plots for ill-posed problems
goes back to Miller (1970), and Lawson and Hanson (1995). The properties of the L-curve
in connection with the design of a regularization parameter choice method for linear ill-
posed problems have been discussed by Hansen (1992a) and Hansen and O’Leary (1993),
and can also be found in Reginska (1996).

When this curve is plotted in log-log scale it has a characteristic L-shape appearance
with a distinct corner separating the vertical and the horizontal parts of the curve. To un-
derstand the characteristic shape of this curve, we consider the expected L-curve, which
is the plot of the expected constraint C (α) = E{

∥∥cδ
α

∥∥2} versus the expected residual
R (α) = E{

∥∥rδ
α

∥∥2}. As we saw before, for small values of the regularization parameters
the expected residual curve has a plateau at (m − n) σ2 and after that increases, while for
large values of the regularization parameters, the expected constraint curve has a plateau
at
∥∥Lx†∥∥2. Thus, for small values of the regularization parameters, the L-curve has a

vertical part where C (α) is very sensitive to changes in α. For large values of the regular-
ization parameters, the L-curve has a horizontal part where R (α) is most sensitive to α.
If we neglect the forward model errors, the corner of the L-curve appears approximately
at ((m − n) σ2,

∥∥Lx†∥∥2). Typical expected L-curves are illustrated in Figure 3.3. From
the left panel it is apparent that when σ increases, the vertical part of the L-curve moves
towards larger R values. The plots in the right panel show that the faster the Fourier coeffi-
cients decay to zero, the smaller the cross-over region between the vertical and horizontal
part and, thus, the sharper the L-shaped corner.

The L-curve divides the first quadrant into two regions and any regularized solution
must lie on or above this curve (Hansen, 1998). When very little regularization is in-
troduced, the total error is dominated by the noise error. This situation is called under-
smoothing, and it corresponds to the vertical part of the L-curve. When a large amount of
regularization is introduced, then the total error is dominated by the smoothing error. This
situation is called oversmoothing and it corresponds to the horizontal part of the L-curve.
For this reason, we may conclude that an optimal regularization parameter balancing the
smoothing and noise errors is not so far from the regularization parameter that corresponds
to the corner of the L-curve.
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Fig. 3.3. Expected L-curves for the synthetic model (3.78)–(3.80) with m = 800, n = 20 and
ω = 0.75. The plots in the left panel correspond to β = 1 and different values of the noise standard
deviation σ, while the plots in the right panel correspond to σ = 0.1 and two values of the smoothness
parameter β.

3.6 Regularization parameter choice methods

The computation of a good approximation xδ
α of x† depends on the selection of the regular-

ization parameter α. With too little regularization, reconstructions have highly oscillatory
artifacts due to noise amplification. With too much regularization, the reconstructions are
too smooth. Ideally, we would like to select a regularization parameter so that the cor-
responding regularized solution minimizes some indicator of solution fidelity, e.g., some
measure of the size of the solution error.

When reliable information about the instrumental noise is available, it is important to
make use of this information, and this is the heart of the discrepancy principle and related
methods. When no particular information about the instrumental noise is available or when
forward model errors are present, the so-called error-free parameter choice methods are a
viable alternative.

The formulations of regularization parameter choice methods in deterministic and
semi-stochastic settings are very similar. The reason is that the noise level Δ, which rep-
resents an upper bound for the data error norm

∥∥yδ − y
∥∥, can be estimated as Δ2 = mσ2,

and this estimate can be used to reformulate a ‘deterministic’ parameter choice method in
a semi-stochastic setting. According to the standard deterministic classification (Engl et
al., 2000)

(1) a regularization parameter choice method depending only on Δ, α = α (Δ), is called
an a priori parameter choice method;

(2) a regularization parameter choice method depending on Δ and yδ , α = α
(
Δ,yδ

)
, is

called an a posteriori parameter choice method;
(3) a regularization parameter choice method depending only on yδ , α = α

(
yδ
)
, is called

an a error-free parameter choice method.
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In this section we review the main regularization parameter choice methods encountered
in the literature and compare their efficiency by performing a numerical analysis in a semi-
stochastic setting. A deterministic analysis of a priori, a posteriori and error-free parameter
choice methods is outlined in Appendix C.

For our numerical simulations we consider the synthetic model (3.78)–(3.80), which
is very similar to that considered by Vogel (2002) for analyzing regularization parameter
choice methods in a semi-stochastic setting.

3.6.1 A priori parameter choice methods

In a deterministic setting, an a priori parameter choice method is of the form α ∝ Δp (Engl
et al., 2000; Vogel, 2002; Rieder, 2003), while in a semi-stochastic setting, this selection
rule translates into the choice α ∝ σp . In the next chapter we will see that in the framework
of a statistical Bayesian model, the maximum a posteriori estimator is characterized by the
a priori selection criterion α ∝ σ2.

In a semi-stochastic setting, we define the optimal regularization parameter for error
estimation as the minimizer of the expected error,

αopt = arg min
α

E
{∥∥eδ

α

∥∥2} , (3.91)

where E{
∥∥eδ

α

∥∥2} is given by (3.40) together with (3.33) and (3.41). The optimal regular-
ization parameter is not a computable quantity, because the exact solution is unknown, but
we may design an a priori parameter choice method by combining this selection criterion
with a Monte Carlo technique. The steps of the so-called expected error estimation method
can be synthesized as follows:

(1) perform a random exploration of a domain, in which the exact solution is supposed
to lie, by considering a set of state vector realizations {x†

i}i=1,Nx
, where Nx is the

sample size;
(2) for each x†

i , compute the optimal regularization parameter for error estimation

αopti = arg min
α

E
{∥∥∥eδ

α

(
x†

i

)∥∥∥2} ,

and determine the exponent

pi =
log αopti

log σ
;

(3) compute the sample mean exponent

p̄ =
1

Nx

Nx∑
i=1

pi;

(4) choose the regularization parameter as αe = σp̄.

The idea of the expected error estimation method is very simple; the main problem which
has to be solved is the choice of the solution domain. Essentially, {x†

i} should be a set
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Fig. 3.4. Left: expected error together with the smoothing and noise errors. Right: expected error
for three values of the noise standard deviation σ.

of solutions with physical meaning and stochastic a priori information can be used for an
appropriate construction. Assuming that x† is a Gaussian random vector with zero mean
and covariance Cx, the random exploration of the solution domain is a sampling of the (a
priori) probability density. The sampling of a Gaussian probability density is standard and
involves the following steps (Bard, 1974):

(1) given the a priori profile xa, choose the correlation length l and the profile standard
deviation σx, and set Cx = σ2

xCnx, where Cnx is the normalized covariance matrix
defined by

[Cnx]ij = [xa]i [xa]j exp
(
−|zi − zj |

l

)
, i, j = 1, . . . , n;

(2) compute the SVD of the positive definite matrix Cnx = VxΣxVT
x ;

(3) generate a random realization x of a Gaussian process with zero mean and unit covari-
ance x ∼ N (0, In);

(4) compute the profile deviation as x† = σxVxΣ
1/2
x x.

In Figure 3.4 we plot the expected error E{
∥∥eδ

α

∥∥2}. As ‖esα‖2 is an increasing func-
tion of α and E{

∥∥eδ
nα

∥∥2} is a decreasing function of α, E{
∥∥eδ

α

∥∥2} possesses a minimum.
The minimizer of the expected error increases with increasing the noise variance and this
behavior is apparent from the right panel of Figure 3.4.

3.6.2 A posteriori parameter choice methods

The a posteriori parameter choice methods to be discussed in this section are the discrep-
ancy principle, the generalized discrepancy principle (or the minimum bound method), the
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error consistency method, and the unbiased predictive risk estimator method. The first
two regularization parameter choice methods can be formulated in deterministic and semi-
stochastic settings, while the last two methods make only use of statistical information
about the noise in the data.

Discrepancy principle

The most popular a posteriori parameter choice method is the discrepancy principle due
to Morozov (1966, 1968). In this method, the regularization parameter is chosen via a
comparison between the residual norm (discrepancy)

∥∥rδ
α

∥∥ and the assumed noise level Δ,∥∥rδ
α

∥∥2 = τΔ2, τ > 1. (3.92)

A heuristic motivation for this method is that as long as we have only the noisy data vector
yδ and know that

∥∥yδ − y
∥∥ ≤ Δ, it does not make sense to ask for an approximate

solution xδ
α with a discrepancy

∥∥yδ − Kxδ
α

∥∥ < Δ; a residual norm in the order of Δ is
the best we should ask for. In a semi-stochastic setting, the discrepancy principle selects
the regularization parameter as the solution of the equation∥∥rδ

α

∥∥2 = τmσ2, (3.93)

which, in terms of a generalized singular system of (K,L), takes the form

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= τmσ2, (3.94)

with the convention γi = 0 for i = n + 1, . . . , m.

Generalized discrepancy principle

In some applications, the discrepancy principle gives a too small regularization parameter
and the solution is undersmoothed. An improved variant of the discrepancy principle is the
generalized discrepancy principle, which has been considered by Raus (1985) and Gfrerer
(1987) in a deterministic setting, and by Lukas (1998b) in a discrete, semi-stochastic set-
ting. For a more general analysis of this regularization parameter choice method we refer
to Engl and Gfrerer (1988).

In the generalized version of the discrepancy principle, the regularization parameter is
the solution of the equation∥∥rδ

α

∥∥2 − rδT
α Âαrδ

α = τΔ2, τ > 1. (3.95)

As Âα is positive definite, the left-hand side of this equation is smaller than the residual∥∥rδ
α

∥∥2, and therefore, the regularization parameter computed by the generalized discrep-
ancy principle is larger than the regularization parameter corresponding to the ordinary
method. In a semi-stochastic setting, the generalized discrepancy principle seeks the regu-
larization parameter α solving the equation
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∥∥rδ
α

∥∥2 − rδT
α Âαrδ

α = τmσ2. (3.96)

Using the relation (cf. (3.84))∥∥rδ
α

∥∥2 − rδT
α Âαrδ

α = yδT
(
Im − Âα

)3

yδ,

and the factorization (3.51), we express (3.96) in explicit form as
m∑

i=1

(
α

γ2
i + α

)3 (
uT

i yδ
)2

= τmσ2, (3.97)

with γi = 0 for i = n + 1, . . . , m. The difference to the conventional method (compare to
(3.94)) is that the factors multiplying the Fourier coefficients uT

i yδ converge more rapidly
to zero as α tends to zero.

An equivalent representation of the generalized discrepancy principle equation is based
on the identity

Im − Âα = α
[
K
(
LT L

)−1
KT + αIm

]−1

,

and is given by

αrδT
α

[
K
(
LT L

)−1
KT + αIm

]−1

rδ
α = τmσ2. (3.98)

The generalized discrepancy principle equation can also be formulated in terms of the
solution of iterated Tikhonov regularization. In the two-times iterated Tikhonov regular-
ization we compute the improved solution step

pδ
α2 = K†

α

(
yδ − Kxδ

α

)
= K†

αrδ
α,

where xδ
α = xδ

α1, and set xδ
α2 = xδ

α + pδ
α2. Since

rδ
α2 = yδ − Kxδ

α2 = yδ − K
(
xδ

α + pδ
α2

)
=
(
Im − Âα

)
rδ

α,

we find that ∥∥rδ
α

∥∥2 − rδT
α Âαrδ

α = rδT
α

(
Im − Âα

)
rδ

α = rδT
α rδ

α2.

Thus, in terms of the residual at the iterated Tikhonov solution, the generalized discrepancy
principle equation takes the form

rδT
α rδ

α2 = τmσ2.

The generalized discrepancy principle is equivalent to the so-called minimum bound
method. To give a heuristic justification of this equivalence in a deterministic setting and
for the choice L = In, we consider the error estimate∥∥eδ

α

∥∥2 ≤ 2
(
‖esα‖2 +

∥∥eδ
nα

∥∥2) .

In (3.37) we then employ the inequality

σi

σ2
i + α

≤ 1
2
√

α
<

√
2τ

α
, τ > 1,
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and obtain the noise error estimate ∥∥eδ
nα

∥∥2 <
2τΔ2

α
; (3.99)

this result together with (3.33) yields the following bound for the total error

M (α) = 2

[
n∑

i=1

(
α

σ2
i + α

1
σi

)2 (
uT

i y
)2

+ 2τ
Δ2

α

]
. (3.100)

The regularization parameter of the minimum bound method minimizes M (α), whence
setting M ′ (α) = 0, we obtain the equation

n∑
i=1

(
α

γ2
i + α

)3 (
uT

i y
)2

= τΔ2. (3.101)

As uT
i y = 0 for i = n+1, . . . , m, the upper limit of summation in (3.101) can be extended

to m, and in order to obtain an implementable algorithm, we replace y by yδ . The resulting
equation is (3.97) with Δ2 in place of mσ2, and the equivalence is proven.

Error consistency method

The error consistency method has been proposed by Ceccherini (2005) and has been suc-
cessfully applied for MIPAS near-real time data processing. In this method, we impose
that the differences between the regularized and the least squares solutions xδ

α and xδ ,
respectively, are on average equal to the error in the least squares solution(

xδ
α − xδ

)T
C−1

e

(
xδ

α − xδ
)

= n. (3.102)

The error in the least squares solution is due to the instrumental noise,

eδ = x† − xδ = K†y − K†yδ = −K†δ,

and since K† =
(
KT K

)−1
KT , we see that

Ce = E
{
eδeδT

}
= σ2K†K†T = σ2

(
KT K

)−1
.

Using the representation xδ
α − xδ =

(
K†

α − K†)yδ , equation (3.102) becomes∥∥K (K†
α − K†)yδ

∥∥2 = nσ2,

or explicitly,
n∑

i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= nσ2.

The expected equation of the error consistency method,

E
{∥∥K (K†

α − K†)yδ
∥∥2} = nσ2,
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is identical to the expected equation of the discrepancy principle E{
∥∥rδ

α

∥∥2} = mσ2 with
τ = 1, that is, (cf. (3.73) and (3.86))

n∑
i=1

(
α

γ2
i + α

)2 [(
uT

i y
)2

+ σ2
]

= nσ2.

For this reason, we anticipate that the regularization parameter of the error consistency
method is smaller than the regularization parameter of the discrepancy principle with
τ > 1.

Unbiased predictive risk estimator method

The computation of the regularization parameter by analyzing the solution error is not
practical, since the exact solution is unknown. Instead, the predictive error can be used as
an indicator of the solution fidelity, because it can be accurately estimated in the framework
of the unbiased predictive risk estimator method. This approach is also known as the
CL-method or the predictive mean square error method and was originally developed by
Mallows (1973) for model selection in linear regression. For further readings related to the
use of the predictive risk as a criterion for choosing the regularization parameter we refer
to Golub et al. (1979) and Rice (1986).

In a semi-stochastic setting, the expected value of the predictive error E{
∥∥pδ

α

∥∥2} is
given by (3.56) together with (3.57) and (3.58). The predictive risk estimator is defined
through the relation

πδ
α =

∥∥rδ
α

∥∥2 + 2σ2 trace
(
Âα

)
− mσ2,

and in order to compute its expected value, we write (3.84) as

rδ
α =

(
Im − Âα

)
(y + δ) ,

and use the trace lemma (3.25) to obtain

E
{∥∥rδ

α

∥∥2} =
∥∥∥(Im − Âα

)
y
∥∥∥2 + σ2 trace

(
ÂT

αÂα

)
− 2σ2 trace

(
Âα

)
+ mσ2.

(3.103)
Consequently, we find that

E
{
πδ

α

}
=
∥∥∥(Im − Âα

)
y
∥∥∥2 + σ2 trace

(
ÂT

αÂα

)
, (3.104)

and by (3.56)–(3.58), we deduce that πδ
α is an unbiased estimator for the expected value of

the predictive error, that is,
E
{
πδ

α

}
= E

{∥∥pδ
α

∥∥2} .

The unbiased predictive risk estimator method chooses the regularization parameter as

αpr = arg min
α

πδ
α,
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and, in view of (3.51), (3.52) and (3.83), a computable expression for πδ
α reads as

πδ
α =

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

+ 2σ2
n∑

i=1

γ2
i

γ2
i + α

− mσ2,

with the standard convention γi = 0 for i = n + 1, . . . , m.
Although they have the same expected values it does not necessarily follow that πδ

α

and
∥∥pδ

α

∥∥2 have the same minimizers (Vogel, 2002). However, the analysis performed by
Lukas (1998a) has shown that these minimizers are close provided that these functions do
not have flat minima.

The predictive risk estimator possesses a minimum since
∥∥rδ

α

∥∥2 is an increasing func-
tion of α and trace (Âα) is a decreasing function of α. However, this minimum can be
very flat especially when the trace term is very small as compared to the residual term. For
large values of α, trace (Âα) is very small and the expected predictive risk is reproduced
by the expected residual,

E
{
πδ

α

}
≈ E

{∥∥rδ
α

∥∥2}− mσ2, α → ∞.

In Figure 3.5 we show the expected predictive risk together with its asymptotical ap-
proximation. The plots illustrate that E{

∥∥rδ
α

∥∥2} − mσ2 is a reasonable approximation of
E{πδ

α} for large values of the regularization parameter α and small values of the noise
standard deviation σ. The expected predictive risk has a flat minimum which moves to-
ward large α with increasing σ and the flatness of the curves becomes more pronounced as
σ decreases.
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Fig. 3.5. Expected predictive risk and its asymptotical approximation. In the left panel, the curves
are plotted over the entire domain of variation of α, while in the right panel, the y-axis is zoomed out.
The results correspond to σ = 0.05 (solid line), σ = 0.1 (long dashed line) and σ = 0.2 (dashed
line). The approximations are marked with circles.
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3.6.3 Error-free parameter choice methods

Error-free parameter choice methods do not take into account information about the errors
in the data and for this reason, these methods do not depend on the setting in which the
problem is treated.

Generalized cross-validation

The generalized cross-validation method is an alternative to the unbiased predictive risk es-
timator method that does not require the knowledge of the noise variance σ2. This method
was developed by Wahba (1977, 1990) and is a very popular and successful error-free
method for choosing the regularization parameter.

The generalized cross-validation function can be derived from the ‘leaving-out-one’
principle (Wahba, 1990). In the ordinary or the ‘leaving-out-one’ cross-validation, we
consider models that are obtained by leaving one of the m data points out of the inversion
process. Denoting by K(k) the (m − 1)×n matrix obtained by deleting the kth row of K,
and by yδ

(k) the (m − 1)-dimensional vector obtained by deleting the kth entry of yδ , we
compute xδ

(k)α as the minimizer of the function

F(k)α (x) =
∥∥∥yδ

(k) − K(k)x
∥∥∥2 + α ‖Lx‖2

, (3.105)

with ∥∥∥yδ
(k) − K(k)x

∥∥∥2 =
m∑

i=1,i �=k

([
yδ
]
i
− [Kx]i

)2
.

For an appropriate choice of the regularization parameter, the solution xδ
(k)α should accu-

rately predict the missing data value [yδ]k. Essentially, the regularization parameter α is
chosen so that on average yδ and Kxδ

(k)α are very close for all k, that is,

αcv = arg min
α

Vα,

where the ordinary cross-validation function Vα is given by

Vα =
m∑

k=1

([
yδ
]
k
−
[
Kxδ

(k)α

]
k

)2

. (3.106)

To compute Vα, we have to solve m problems of the form (3.105) and this is a very expen-
sive task. The computation can be simplified by defining the modified data vector yδ

k,

[
yδ

k

]
i
=

⎧⎪⎨⎪⎩
[
Kxδ

(k)α

]
k
, i = k,

[
yδ
]
i
, i �= k,

(3.107)

which coincides with yδ except for the kth component. As [yδ
k]k = [Kxδ

(k)α]k, we observe
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that xδ
(k)α also minimizes the function

F̃(k)α (x) =
([

yδ
k

]
k
− [Kx]k

)2
+ F(k)α (x)

=
([

yδ
k

]
k
− [Kx]k

)2
+

m∑
i=1,i�=k

([
yδ

k

]
i
− [Kx]i

)2
+ α ‖Lx‖2

=
∥∥yδ

k − Kx
∥∥2 + α ‖Lx‖2

,

and so, that xδ
(k)α = K†

αyδ
k. This result, which allows us to express xδ

(k)α in terms
of the regularized generalized inverse K†

α and the modified data vector yδ
k, is known as

the ‘leaving-out-one’ lemma. To eliminate xδ
(k)α in the expression of the ordinary cross-

validation function, we express Vα as

Vα =
m∑

k=1

([
Kxδ

α

]
k
−
[
yδ
]
k

1 − ak

)2

, (3.108)

with

ak =

[
Kxδ

(k)α

]
k
−
[
Kxδ

α

]
k[

Kxδ
(k)α

]
k
− [yδ]k

.

By the ‘leaving-out-one’ lemma we have [Kxδ
(k)α]k = [KK†

αyδ
k]k , whence using the

identity [Kxδ
α]k = [KK†

αyδ]k, and replacing the divided difference by a derivative, we
obtain

ak =

[
KK†

αyδ
k

]
k
−
[
KK†

αyδ
]
k[

yδ
k

]
k
− [yδ]k

≈
∂
[
KK†

αyδ
]
k

∂ [yδ]k
=
[
KK†

α

]
kk

.

Taking into account that Âα = KK†
α, and approximating [Âα]kk by the average value[

Âα

]
kk

≈ 1
m

trace
(
Âα

)
,

we find that

Vα ≈

m∑
k=1

([
Kxδ

α

]
k
−
[
yδ
]
k

)2
[
1 − 1

m
trace

(
Âα

)]2 = m2

∥∥rδ
α

∥∥2[
trace

(
Im − Âα

)]2 . (3.109)

Thus, in the framework of the generalized cross-validation method, we select the reg-
ularization parameter as

αgcv = arg min
α

υδ
α,

where υδ
α is the generalized cross-validation function (3.109) without the factor m2,

υδ
α =

∥∥rδ
α

∥∥2[
trace

(
Im − Âα

)]2 .
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To obtain an implementable algorithm, we compute
∥∥rδ

α

∥∥2 according to (3.83) and the
trace term by using the relation (cf. (3.51) and (3.52))

trace
(
Im − Âα

)
= trace

(
U
(
Im − Σ̂a

)
UT
)

= m − n +
n∑

i=1

α

γ2
i + α

. (3.110)

It should be pointed out that in statistical inversion theory, the trace term can be viewed as
a measure of the degree of freedom for noise in the regularized solution.

Essentially, the generalized cross-validation method seeks to locate the transition point
where the residual norm changes from a very slowly varying function of α to a rapidly
increasing function of α. But instead of working with the residual norm, the generalized
cross-validation method uses the ratio of the residual norm and the degree of freedom for
noise, which is a monotonically increasing function of α. As the residual norm is also an
increasing function of α, the generalized cross-validation function has a minimum.

Wahba (1977) showed that if the discrete Picard condition is satisfied, then the minima
of the expected generalized cross-validation function and the expected predictive risk are
very close. More precisely, if

αgcv = arg min
α

E
{
υδ

α

}
,

and
αpr = arg min

α
E
{
πδ

α

}
,

then αgcv is asymptotically equal to αpr as m → ∞. This result was further examined
and extended by Lukas (1998a) and can also be found in Vogel (2002). To reveal the
connection between these two methods, we consider the expected value of the generalized
cross-validation function (cf. (3.103) and (3.104)),

E
{
υδ

α

}
=

E
{∥∥rδ

α

∥∥2}[
m − trace

(
Âα

)]2 =
E
{
πδ

α

}
− 2σ2 trace

(
Âα

)
+ mσ2

m2

[
1 − 1

m
trace

(
Âα

)]2 .

Since

0 < trace
(
Âα

)
=

n∑
i=1

γ2
i

γ2
i + α

< n,

we see that for m � n, the term (1/m) trace (Âα) is small, and therefore

E
{
υδ

α

}
≈ 1

m2
E
{
πδ

α

}
+

σ2

m
. (3.111)

Thus, the minimizer of the expected generalized cross-validation function is close to the
minimizer of the expected predictive risk. In view of this equivalence, the generalized
cross-validation method may suffer from the same drawback as the unbiased predictive risk
estimator method: the unique minimum of the generalized cross-validation function can be
very flat, thus leading to numerical difficulties in computing the regularization parameter.

In Figure 3.6 we plot the expected generalized cross-validation curve and its approxi-
mation (3.111). The agreement between the curves is acceptable over the entire domain of
variation of α.
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Fig. 3.6. Expected generalized cross-validation function and its approximation. In the right panel,
the y-axis is zoomed out. The results correspond to the same values of the noise standard deviation
as in Figure 3.5.

Maximum likelihood estimation

Based on a Monte Carlo analysis by Thompson et al. (1989) it was observed that the gen-
eralized cross-validation function may not have a unique minimum and that the unbiased
predictive risk estimator may result in severe undersmoothing. An alternative regulariza-
tion parameter choice method which overcomes these drawbacks is the maximum likeli-
hood estimation. This selection criterion will be introduced in a stochastic setting, but for
the sake of completeness, we include it in the present analysis. In the framework of the
maximum likelihood estimation, the regularization parameter is computed as

αmle = arg min
α

λδ
α,

where λδ
α is the maximum likelihood function defined by

λδ
α =

yδT
(
Im − Âα

)
yδ

m

√
det
(
Im − Âα

) =

m∑
i=1

(
uT

i yδ
)2

γ2
i + α

m

√√√√ m∏
i=1

1
γ2

i + α

, (3.112)

with γi = 0 for i = n + 1, . . . , m. As we shall see in Chapter 4, the minimization of the
maximum likelihood function is equivalent to the maximization of the marginal likelihood
function when Gaussian densities are assumed (Demoment, 1989; Kitagawa and Gersch,
1985).
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Quasi-optimality criterion

The quasi-optimality criterion is based on the hypothesis of a plateau of
∥∥xδ

α − x†∥∥ near
the optimal regularization parameter, in which case, α = αqo is chosen so as to minimize
the function

ςδ
α =

∥∥∥∥αdxδ
α

dα

∥∥∥∥2 .

This method originates with Tikhonov and Glasko (1965) in a slightly different form, and
has been considered by numerous authors thereafter, especially in the Russian literature
(Morozov, 1984). As demonstrated by Hansen (1992b), under certain assumptions, this
approach also corresponds to finding a balance between the smoothing and noise errors.

To compute dxδ
α/dα, we consider the regularized normal equation(

KT K + αLT L
)
xδ

α = KT yδ,

take its derivative with respect to α, and obtain

α
dxδ

α

dα
= (Aα − In)xδ

α = (Aα − In)K†
αyδ. (3.113)

Then, by (3.12), (3.16), (3.35) and (3.36), we find the computable expansion

α
dxδ

α

dα
= WΣqoUT yδ = −

n∑
i=1

αγ2
i

(γ2
i + α)2

1
σi

(
uT

i yδ
)
wi, (3.114)

with

Σqo = −
[

diag
((

γi

γ2
i +α

)2
α
σi

)
n×n

0
]

.

The expected quasi-optimality parameter defined by

ᾱqo = arg min
α

E
{
ςδ
α

}
,

is related to the turning point of the Picard coefficients. To justify this assertion, we take
L = In and assume that (3.70) and (3.71) hold with the singular-value index p being given
by (uT

p y)2 = σ2, or equivalently, by Cσβ+1
p = σ. Using (3.114) with σi in place of γi

and vi in place of wi, we obtain (cf. (3.73) and (3.75))

Q (α) = E
{
ςδ
α

}
=

n∑
i=1

(
σ2

i

α

)2

(
σ2

i

α
+ 1
)4 P 2

i , (3.115)

with P 2
i being the expected Picard coefficients. The function f (t) = t2/ (1 + t)4, with

t = σ2
i /α, is very small if t � 1 and t � 1. For α = σ2

j , the contributions of the terms
with i �= j in (3.115) will get suppressed, and we obtain

Q
(
σ2

j

)
∝ P 2

j .
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Hence, the behavior of the expected quasi-optimality function is reproduced by the ex-
pected Picard coefficients and we conclude that the turning point σ2

p is not too far from
ᾱqo.

The quasi-optimality criterion can be formulated in terms of the solution of the two-
times iterated Tikhonov regularization xδ

α2 = xδ
α + pδ

α2, with

pδ
α2 = K†

α

(
yδ − Kxδ

α

)
= (In − Aα)xδ

α

and xδ
α = xδ

α1. By (3.113) it is apparent that

α
dxδ

α

dα
= −pδ

α2 = xδ
α − xδ

α2,

and therefore,
ςδ
α =

∥∥xδ
α − xδ

α2

∥∥2 .

Thus, assuming that xδ
α2 is a satisfactory approximation of x†, we deduce that a min-

imizer of ςδ
α is also a minimizer of

∥∥xδ
α − x†∥∥2. In practice, the minimization of the

quasi-optimality function is complicated because this function has many local minima.

L-curve method

The L-curve method advocated by Hansen (1992a) is based on the L-curve, which is a
parametric plot of the constraint

∥∥cδ
α

∥∥2 against the residual
∥∥rδ

α

∥∥2 in log-log scale. The
corner of the L-curve appears for regularization parameters close to the optimal parameter
that balances the smoothing and noise errors. The notion of a corner originates from a
purely visual impression and it is not at all obvious how to translate this impression into a
mathematical language. In this regard, the key problem in the L-curve method is to seek a
mathematical definition of the L-curve’s corner and to use this as a criterion for choosing
the regularization parameter.

According to Hansen and O’Leary (1993), the corner of the L-curve is the point of
maximum curvature. Defining the L-curve components by

x (α) = log
(∥∥rδ

α

∥∥2) , y (α) = log
(∥∥cδ

α

∥∥2) ,

we select that value of α that maximizes the curvature function κδ
lcα,

αlc = arg max
α

κδ
lcα,

where

κδ
lcα =

x′′ (α) y′ (α) − x′ (α) y′′ (α)[
x′ (α)2 + y′ (α)2

] 3
2

(3.116)

and the prime (′) denotes differentiation with respect to α.
In order to simplify the notations, we set Rδ (α) =

∥∥rδ
α

∥∥2 and Cδ (α) =
∥∥cδ

α

∥∥2, where
Rδ and Cδ are given by (3.83) and (3.89), respectively. Straightforward differentiation
gives

R′
δ (α) = −αC ′

δ (α)
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and we obtain a simple formula for the curvature depending on Rδ , Cδ and C ′
δ:

κδ
lcα = −αRδ (α) Cδ (α) [Rδ (α) + αCδ (α)] + Rδ (α)2 Cδ (α)2 /C ′

δ (α)[
Rδ (α)2 + α2Cδ (α)2

] 3
2

. (3.117)

Any one-dimensional optimization routine can be used to locate the regularization param-
eter αlc which corresponds to the maximum curvature.

An alternative definition of the corner of the L-curve has been given by Reginska
(1996). The point C = (x (αlc) , y (αlc)) is the corner of the L-curve if

(1) the tangent of the curve at C has slope −1;
(2) in a neighborhood of C, the points on the curve lie above the tangent.

An implementable algorithm of this selection criterion can be designed by using the fol-
lowing result: the point C = (x (αlc) , y (αlc)) is a corner of the L-curve in the aforemen-
tioned sense if and only if the function

Ψδ
lc (α) = Rδ (α) Cδ (α)

has a local minimum at αlc, that is,

αlc = arg min
α

Ψδ
lc (α) .

For a proof of this equivalence we refer to Engl et al. (2000).
The expected L-curve and its negative curvature are illustrated in Figure 3.7. We recall

that the expected L-curve has the components x (α) = log R (α) and y (α) = log C (α),
where R and C are given by (3.86) and (3.90), respectively. Also note that, since R′ (α) =
−αC ′ (α), the curvature of the expected L-curve can be computed by using (3.117) with
R and C in place of Rδ and Cδ , respectively. The plots show that by increasing the noise
standard deviation, the regularization parameter also increases and more regularization is
introduced.

Residual curve method and its generalized version

The residual curve is the plot of the log of the residual
∥∥rδ

α

∥∥2 against the log of regular-
ization parameter α. This curve typically has a mirror symmetric L-shape and the residual
curve method chooses the regularization parameter corresponding to the corner of this
curve.

Analogously to the L-curve method, we may define the corner of the residual curve as
the point with minimum curvature. Denoting the components of the residual curve by

x (α) = log α, y (α) = log Rδ (α) , (3.118)

we have
αrc = arg min

α
κδ
rcα,
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Fig. 3.7. Expected L-curve and its negative curvature for three values of the noise standard devia-
tion σ.

where

κδ
rcα = −

Rδ (α)2
[
αR′

δ (α) + α2R′′
δ (α)

]
− α2R′

δ (α)2 Rδ (α)[
Rδ (α)2 + α2R′

δ (α)2
] 3

2
. (3.119)

The corner of the residual curve can also be defined as the point C = (x (αrc) , y (αrc))
with the following properties:

(1) the tangent of the curve at C has slope 1;
(2) in a neighborhood of C, the points on the curve lie above the tangent.

This notion of the corner leads to the error-free parameter choice method discussed by Engl
et al. (2000): the point C = (x (αrc) , y (αrc)) is a corner of the residual curve if and only
if the function

Ψδ
rc (α) =

1
α

Rδ (α)

has a local minimum at αrc, i.e.,

αrc = arg min
α

Ψδ
rc (α) . (3.120)

To show this equivalence, we observe that by (3.118), we have

Ψδ
rc (α) = exp (y (α) − x (α)) .

If Ψδ
rc (α) has a local extremum at αrc, there holds

Ψδ′
rc (αrc) = [y′ (αrc) − x′ (αrc)] Ψδ

rc (αrc) = 0,
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which yields
y′ (αrc) − x′ (αrc) = 0.

Thus, the tangent of the curve at C is parallel to the vector [1, 1]T , and the equation of the
tangent is given by

y − x = y (αrc) − x (αrc) . (3.121)

If αrc is now a minimizer of Ψδ
rc (α), then log Ψδ

rc (α) = y (α) − x (α) also has a local
minimum at αrc, and we have

y (α) − x (α) ≥ y (αrc) − x (αrc) (3.122)

for α near αrc. Hence, in the neighborhood of αrc, the points (x (α) , y (α)) lie above the
tangent at C. Conversely, if the tangent of the residual curve at C has slope 1, then the
tangent is given by (3.121), and the condition (3.122) implies that Ψδ

rc has a local minimum
at αrc.

A heuristic justification of the regularization parameter choice method (3.120) relies
on the observation that the behaviors of the solution error

∥∥x† − xδ
α

∥∥2 and the scaled
residual (1/α) Rδ (α) as functions of α are similar, and as a result, their minimizers are
very close. In this regard, the function (1/α) Rδ (α) is also known as the error indicator
function (Rieder, 2003).

In the left and middle panels of Figure 3.8 we plot the expected error indicator function
Ψrc (α) = (1/α) R (α) and the curvature of the expected residual curve of components
x (α) = log α and y (α) = log R (α). The plots correspond to the synthetic model (3.78)–
(3.80) and show that the curves have unique minimizers which increase with increasing the
noise standard deviation.

Wu (2003) proposed a regularization parameter choice method which is very similar
to the residual curve method. This method is called the ‘flattest slope method’ and uses
the plot of the constraint Cδ (α) against log (1/α). The graph of (log (1/α) , Cδ (α)) has
a corner which divides the curve into two pieces: the left piece is flat, while the right piece
is very steep. As in the residual curve method, the regularization parameter of the ‘flattest
slope method’ corresponds to a point on the flat portion just before the rapid growing.

Analogously to the residual curve we may consider the generalized residual curve,
which represents the plot of the log of the ‘generalized’ residual Rgδ (α) =

∥∥rδ
α

∥∥2 −
rδT

α Âαrδ
α against the log of the regularization parameter α. In view of the slope definition

for the corner of the generalized residual curve, we select the regularization parameter αgrc

as the minimizer of the error indicator function

Ψδ
grc (α) =

1
α

Rgδ (α) ,

with Rgδ as in (3.97). This regularization parameter choice method has been developed by
Hanke and Raus (1996) and can also be found in Engl et al. (2000) and Rieder (2003). The
expected error indicator function Ψgrc (α) = (1/α) Rg (α), with

Rg (α) = E
{
Rgδ (α)

}
= (m − n) σ2 +

n∑
i=1

(
α

γ2
i + α

)3 [(
uT

i y
)2

+ σ2
]
,

is plotted in the right panel of Figure 3.8, and as in the residual curve method, the mini-
mizers increase with increasing the noise standard deviation.
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Fig. 3.8. Expected error indicator functions Ψrc (left) and Ψgrc (right), and the curvature of the
expected residual curve (middle) for different values of the noise standard deviation σ.

3.7 Numerical analysis of regularization parameter choice methods

In the first step of our numerical analysis we examine the regularization parameter choice
methods discussed in this chapter by considering the synthetic model (3.78)–(3.80) with
m = 800, n = 20 and ω = 0.75. Specifically, we compute the expected regularization
parameter α of a particular parameter choice method and estimate the expected relative
error

ε =

√√√√E
{∥∥eδ

ᾱ

∥∥2}
‖x†‖2 . (3.123)

The following regularization parameters are considered:

(1) the optimal regularization parameter for error estimation

αopt = arg min
α

E
{∥∥eδ

α

∥∥2} ;

(2) the expected predictive risk parameter

αpr = arg min
α

E
{
πδ

α

}
;

(3) the expected discrepancy principle parameter αdp solving the equation

E
{∥∥rδ

α

∥∥2} = τmσ2;

(4) the expected generalized discrepancy principle parameter αgdp solving the equation

E
{∥∥rδ

α

∥∥2 − rδT
α Âαrδ

α

}
= τmσ2;
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(5) the expected generalized cross-validation parameter

αgcv = arg min
α

E
{
υδ

α

}
;

(6) the expected L-curve parameter maximizing the curvature of the expected L-curve,

αlc = arg max
α

κlcα;

(7) the expected residual curve parameter αrc minimizing the curvature of the expected
residual curve,

αrc = arg min
α

κrcα;

(8) the expected residual curve parameters αrc and αgrc minimizing the expected error
indicator functions

Ψrc (α) =
1
α

R (α)

and
Ψgrc (α) =

1
α

Rg (α) ,

respectively.

The regularization parameters are illustrated in Figure 3.9. For these simulations, we
consider three values of σ, and for each σ, we compute the regularization parameters for 20
values of β ranging from 0.2 to 2.0. On the y-axis, we represent the expected parameter α
obtained from a particular parameter choice method, while on the x-axis, we represent the
optimal regularization parameter for error estimation αopt . The dashed curve in Figure 3.9
is the y = x line, and the deviation of an error curve from this line serves as an evidence
for the deviation of α from αopt. The plots show that

(1) αpr ≈ αgcv < αdp < αopt;
(2) αpr ≈ αgcv < αgdp.

The above inequalities have been proven by Lukas (1998a) for a semi-discrete data model
and a Picard condition as in (3.70). Note that the inequalities proven by Lukas are αpr <
αdp < c1αopt and αpr < αgdp < c2αopt, with c1 > 2 and c2 > 3. The plots also illus-
trate that the regularization parameter of the L-curve method αlc is significantly smaller
than the optimal regularization parameter for error estimation αopt, and this effect is more
pronounced for small values of the noise standard deviation and very smooth solutions. A
similar behavior, but in a continuous and deterministic setting, has been reported by Hanke
(1996).

The expected relative errors ε are plotted in Figure 3.10. A general conclusion is
that the methods based on the analysis of the expected residual curve and the generalized
residual curve yield results with a low accuracy, especially for solutions with a reduced
degree of smoothness. Also apparent is that the L-curve method is characterized by a
saturation effect, i.e., the relative error does not decrease with decreasing σ and increasing
β. For small values of the smoothness parameter β, e.g., 0.2 ≤ β ≤ 0.5, the expected
relative errors are close to the relative error corresponding to error estimation, while for
larger values of β, e.g., 0.5 ≤ β ≤ 2.0, the deviations become more visible. Since in
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Fig. 3.9. Regularization parameters computed with the discrepancy principle (DP), the general-
ized discrepancy principle (GDP), the predictive risk estimator (PRE) method, generalized cross-
validation (GCV), the L-curve (LC) method, and the methods which minimize the error indicator
function Ψrc (EFR), the curvature of the residual curve (RC) and the error indicator function Ψgrc

(EFGR). The plots correspond to σ = 0.05 (left), σ = 0.1 (middle) and σ = 0.2 (right).
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Fig. 3.10. Expected relative errors versus the smoothness parameter β for the optimal regularization
parameter (ORP) for error estimation and the regularization parameters considered in Figure 3.9.
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practice very smooth solutions are not expected, we may conclude that the above methods
produce good regularization parameters.

Next, we analyze the performance of the regularization parameter choice methods for
an ozone retrieval test problem. The atmospheric ozone profile is retrieved from a sequence
of simulated limb spectra in a spectral interval ranging from 323 to 333 nm. The number
of limb scans is 11 and the limb tangent height varies between 14 and 49 km in steps of
3.5 km. The atmosphere is discretized with a step of 3.5 km between 0 and 70 km, and
a step of 5 km between 70 and 100 km. The problem is assumed to be nearly linear in
the sense that a linearization of the forward model about the a priori state is appropriate to
find a solution. In view of the transformations discussed in section 3.1, we emphasize that
the state vector represents the deviation of the gas profile with respect to the a priori. The
forward model assumes piecewise constant interpolation for profile representation, while
the regularization matrix is the Cholesky factor of a normalized covariance matrix with an
altitude-independent correlation length l = 3.5 km.

To compute the a priori regularization parameter in the framework of the expected
error estimation method, we consider 100 realizations of a Gaussian process with zero
mean vector and a covariance matrix characterized by the correlation length l = 3.5 km
and the profile standard deviations σx = 0.3 and σx = 0.4. Ten realization of the true
profile x† + xa computed with the generation algorithm described in section 3.6.1 are
shown in Figure 3.11.

The results illustrated in the top panel of Figure 3.12 correspond to σx = 0.4 and
represent the exponent pi for different state vector realizations and three values of the noise
standard deviation σ, namely 0.1, 0.02 and 0.01. In these three situations, the values of the
sample mean exponent p̄ are 2.31, 2.21 and 2.17, while the values of the sample standard
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Fig. 3.11. Ten realizations of the true ozone profile x† + xa for a Gaussian covariance matrix with
the correlation length l = 3.5 km and the profile standard deviations σx = 0.3 (left) and σx = 0.4
(right).
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Fig. 3.12. Top: exponent pi for different state vector realizations and three values of the noise stan-
dard deviation σ: 0.1 (left), 0.02 (middle) and 0.01 (right); the Gaussian covariance matrix is char-
acterized by the correlation length l = 3.5 km and the profile standard deviation σx = 0.4. Bottom:
sample mean exponent as a function of the noise standard deviation σ.

deviation sp are 0.30, 0.24 and 0.23. Thus, p̄ and sp slightly increase with increasing σ.
The sample mean exponent as a function of the noise standard deviation is shown in the
bottom panel of Figure 3.12. As the average values of p̄ over σ are 2.23 for σx = 0.3 and
2.22 for σx = 0.4, we adopt the a priori selection rule αe = σ2.225.

The exact state vector is now chosen as a translated and a scaled version of a climato-
logical profile with a translation distance of 3 km and a scaling factor of 1.3. For a fixed
value of the noise standard deviation σ, we compute the exact data vector y, and generate
the noisy data vector yδ

i = y + δi, with δi=1,N being a random sample of the white noise
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Fig. 3.13. Relative solution errors for the expected error estimation (EEE) method, the maximum
likelihood estimation (MLE), the discrepancy principle (DP), the generalized discrepancy principle
(GDP), generalized cross-validation (GCV), the quasi-optimality (QO) criterion, the L-curve (LC)
method, and the residual curve (RC) method. The non-filled circles correspond to the optimal values
of the regularization parameter. The noise standard deviation is σ = 0.1. For the residual curve
method, the regularization parameter is computed by minimizing the curvature of the residual curve.

with the N
(
0, σ2Im

)
distribution. The number of noisy data realizations is 100, and for

each yδ
i , we determine the regularization parameter αi by a particular parameter choice

method.
In Figure 3.13 we plot the solution errors

εi =

∥∥xδ
αi

− x†∥∥
‖x†‖ , (3.124)

where xδ
αi

= K†
αi

yδ
i is the regularized solution of parameter αi corresponding to the noisy

data vector yδ
i . Also shown in Figure 3.13 are the solution errors

εopti =

∥∥∥xδ
αopti

− x†
∥∥∥

‖x†‖ ,

for the optimal regularization parameter,

αopti = arg min
α

∥∥K†
αyδ

i − x†∥∥2 .

The average values of the solution errors over noisy data realizations are given in Ta-
ble 3.1. It should be remarked that the discrepancy principle, the generalized discrepancy
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Table 3.1. Average values of the relative solution errors in percent for different regularization pa-
rameter choice methods. The noise standard deviation is σ = 0.1.

Regularization parameter choice method Relative solution error

optimal regularization parameter 0.14
expected error estimation method 0.23
maximum likelihood estimation 0.20
discrepancy principle 1.88
generalized discrepancy principle 3.19
generalized cross-validation 0.38
quasi-optimality criterion 0.59
L-curve method 3.17
residual curve method 7.68

principle and generalized cross-validation occasionally fail and produce a very small α.
For the discrepancy principle and its generalized version this happens 11 times, while for
generalized cross-validation this happens 17 times. The discrepancy principle fails when
the corresponding equation does not have a solution. This never occurs for the ‘expected
equation’, but may occur for the ‘noisy equation’. In fact, we can choose the control pa-
rameter τ sufficiently large, so that the discrepancy principle equation is always solvable,
but in this case, the solution errors may become extremely large. In our simulation we
optimize the tolerance τ by minimizing the error for the first 10 configurations and use
the computed value (τ = 1.03) for the rest of the calculation. The failure of generalized
cross-validation occurs when the curve has a flat minimum and a very small α is found
as minimizer. The average values of the solution errors reported in Table 3.1 have been
computed by disregarding the situations in which the methods fail. The remaining reg-
ularization parameter choice methods are robust and can be classified according to their
accuracy as follows:

(1) the maximum likelihood estimation,
(2) the expected error estimation method,
(3) the quasi-optimality criterion,
(4) the L-curve method.

The maximum likelihood function λδ
α, the quasi-optimality function ςδ

α and the L-
curve are shown in Figure 3.14 for one noisy data realization. The behavior of the max-
imum likelihood function is somehow similar to the behavior of the generalized cross-
validation function, but the minimum is not so extraordinarily flat. The quasi-optimality
function has several local minima and to compute the global minimizer, we have to split
the interval of variation of the regularization parameter in several subintervals and have to
compute a local minimum in each subinterval with a robust minimization routine.

The regularizing effect of the parameter choice methods is illustrated in Figure 3.15.
Here, we plot the average values of the solution errors (over noisy data realizations) versus
the noise standard deviation. The results show that when the noise standard deviation
decreases, the average solution error also decreases, except for the L-curve method which
is characterized by a saturation effect in the region of small σ.
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Fig. 3.14. Maximum likelihood function (left), quasi-optimality function (middle) and L-curve
(right) for different values of the noise standard deviation σ.
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Fig. 3.15. Average values of the relative solution error over 100 noisy data realizations for the op-
timal regularization parameter (ORP), the expected error estimation (EEE) method, the maximum
likelihood estimation (MLE), the quasi-optimality (QO) criterion, and the L-curve (LC) method.

In Figure 3.16 we plot the Fourier coefficients F δ2
i = (uT

i yδ)2 and the Picard coeffi-
cients P δ2

i = F δ2
i /γ2

i for two noisy data realizations with σ = 0.1 and σ = 0.02. In both
situations, the Fourier coefficients level off at i = 11, and we have log γ11 = −5.13 and
log γ10 = −2.30. As log√αopt = −2.63 for σ= 0.1, and log√αopt = −4.26 for σ =
0.02, we see that log γ11 < log√αopt < log γ10. This result suggests that γ2

11 is a rough
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Fig. 3.16. Fourier and Picard coefficients for σ = 0.1 (left) and σ = 0.02 (right). The point marked
with X corresponds to i = 11 and indicates the plateau of the Fourier coefficients.

approximation of αopt .
In our next simulations we analyze the efficiency of the regularization parameter

choice methods in the presence of forward model errors. In this case, the noisy data vector
is generated as

yδ = y + δ + εmy,

where εm is a tolerance which controls the magnitude of the forward model error δm = εmy.
The solution errors for the expected error estimation method, the maximum likelihood

estimation, the quasi-optimality criterion and the L-curve method are illustrated in Figure
3.17. The results show that by increasing εm, the average and the standard deviation of the
solution errors also increase.

The average values of the solution errors for different values of the tolerance εm are
given in Table 3.2. It is interesting to note that for large values of εm, all methods yield the
same accuracy. In this regard, we may conclude that the L-curve method is efficient for
data with large noise levels.

In actual fact, our numerical simulation reveals that there is no infallible regularization
parameter choice method. This is because

(1) the expected error estimation method requires the knowledge of a solution domain
with physical meaning and is time-consuming;

(2) the discrepancy principle and its generalized version are sensitive to the selection of
the control parameter τ ;

(3) the predictive risk, the generalized cross-validation and sometimes the maximum like-
lihood functions may have very flat minima;

(4) the quasi-optimality function has several local minima and sometimes it does not have
a global minimum at all;
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Fig. 3.17. Relative solution errors for the expected error estimation (EEE) method, the maximum
likelihood estimation (MLE), the quasi-optimality (QO) criterion, and the L-curve (LC) method.
The results correspond to σ = 0.1 and to three values of εm: 0 (filled circle), 0.02 (non-filled circle)
and 0.04 (plus).

Table 3.2. Average values of the relative solution errors in percent for different values of the toler-
ance εm. The noise standard deviation is σ = 0.1.

Tolerance εm

Regularization parameter choice method 0 0.02 0.04

expected error estimation method 0.23 1.01 3.74
maximum likelihood estimation 0.20 1.02 3.82
quasi-optimality criterion 0.59 1.61 4.66
L-curve method 3.17 3.23 4.84

(5) the L-curve may lose its L-shape.

In this context, it is advantageous to monitor several strategies and base the choice of the
regularization parameters on the output of all these strategies.
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3.8 Multi-parameter regularization methods

In many applications, the state vector consists of several components which are assumed
to be independent. The statement of a two-component problem reads as

yδ = K1x1 + K2x2 + δ, (3.125)

with

x =
[

x1

x2

]
, K = [K1,K2] .

The data model (3.125) may correspond to a linear problem or to a nearly-linear problem,
in which case, K1 and K2 are the Jacobian matrices of the forward model with respect to
x1 and x2, respectively. Let us assume that for each component xi we are able to con-
struct an appropriate regularization matrix Li. As the components of the state vector are
independent, we can assemble the individual regularization matrices into a global regu-
larization matrix with a block-diagonal structure. For a two-component vector, the global
regularization matrix can be expressed as

Lω =
[ √

ωL1 0
0

√
1 − ωL2

]
, (3.126)

while the associated Tikhonov function takes the form

Fαω (x) =
∥∥yδ − Kx

∥∥2 + α ‖Lωx‖2
. (3.127)

The parameter 0 < ω < 1 is called the weighting factor and gives the contribution of
each individual regularization matrix to the global regularization matrix. In practice, the
weighting factor is unknown and we have to use a so-called multi-parameter regularization
method to compute both the weighting factor and the regularization parameter. It should
be pointed out that a one-component problem with a parameter-dependent regularization
matrix Lω (constructed by means of incomplete statistical information) is also a multi-
parameter regularization problem; the parameter ω can be the correlation length or the
ratio of two altitude-dependent profile standard deviations.

The penalty term can also be expressed as

Ω (x)2 = α1 ‖H1x‖2 + α2 ‖H2x‖2
, (3.128)

with

H1 =
[

L1 0
0 0

]
, H2 =

[
0 0
0 L2

]
, (3.129)

whence, in view of the identity

αLT
ωLω = α1HT

1 H1 + α2HT
2 H2,

the equivalence
α = α1 + α2, ω =

α1

α1 + α2

readily follows.
Multi-parameter regularization methods can be roughly classified according to the

goal of the inversion process. We distinguish between
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(1) complete multi-parameter regularization methods, when we are interested in comput-
ing the entire regularized solution;

(2) incomplete multi-parameter regularization methods, when we are interested in the re-
construction of some components of the state vector, e.g., the retrieval of a main at-
mospheric gas by considering an auxiliary gas as a contamination.

In this section we treat multi-parameter regularization methods under the simplified as-
sumption that the state vector consists of two components.

3.8.1 Complete multi-parameter regularization methods

Most of the one-parameter regularization methods, relying on the minimization of certain
objective functions, can be used to handle this problem. The idea is to regard the objec-
tive function as a multivariate function and to use an appropriate optimization method to
compute the regularization parameter α and the weighting factor ω.

In the one-parameter regularization case, the objective function has been expressed
in terms of a generalized singular system of the matrix pair (K,L), and the derivatives
with respect to the regularization parameter have been computed in an analytical manner.
Unfortunately, in the multi-parameter regularization case, there is no factorization of the
form

K = UΣ0W−1, H1 = V1Σ1W−1, H2 = V2Σ2W−1,

which could reduce the computational complexity preserving the accuracy of computation
(Brezinski et al., 2003). Here, U, V1 and V2 should be orthogonal matrices, while Σ0, Σ1

and Σ2 should be ‘diagonal’ matrices. A possible method for solving the underlying min-
imization problem is to use a conventional multivariate optimization tool as for example,
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method, and to compute the derivatives
of the objective function with respect to α and ω by using matrix calculus. The peculiarities
of derivative calculations for generalized cross-validation, the quasi-optimality criterion
and the maximum likelihood estimation are summarized below.

The selection criterion for generalized cross-validation reads as(
αgcv, ωgcv

)
= arg min

α,ω
υδ

αω, (3.130)

where the multi-parameter generalized cross-validation function is given by

υδ
αω =

∥∥rδ
αω

∥∥2[
trace

(
Im − Âαω

)]2 .

Setting
Mαω = KT K + αLT

ωLω,

and noting that K†
αω = M−1

αωKT , we compute the partial derivatives of the residual and
the trace term as follows:

∂

∂λ

∥∥rδ
αω

∥∥2 = 2yδT
(
Im − Âαω

)T ∂

∂λ

(
Im − Âαω

)
yδ
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and
∂

∂λ
trace

(
Im − Âαω

)
= trace

(
∂

∂λ

(
Im − Âαω

))
.

Here,
∂

∂λ

(
Im − Âαω

)
= K†T

αω

∂Mαω

∂λ
K†

αω, (3.131)

where the variable λ stands for α and ω.
The quasi-optimality criterion uses the selection rule(

αqo, ωqo

)
= arg min

α,ω
ςδ
αω, (3.132)

where
ςδ
αω =

∥∥(Aαω − In)K†
αωyδ

∥∥2 .

The derivatives of the quasi-optimality function read as

∂ςδ
αω

∂λ
= 2yδT K†T

αω (Aαω − In)T ∂

∂λ

[
(Aαω − In)K†

αω

]
yδ

with
∂

∂λ

[
(Aαω − In)K†

αω

]
=

∂K†
αω

∂λ
KK†

αω + (Aαω − In)
∂K†

αω

∂λ

and
∂K†

αω

∂λ
= −M−1

αω

∂Mαω

∂λ
K†

αω.

The regularization parameter and the weighting factor for the maximum likelihood
estimation are given by

(αml, ωml) = arg min
α,ω

λδ
αω, (3.133)

where

λδ
αω =

yδT
(
Im − Âαω

)
yδ

m

√
det
(
Im − Âαω

) .

To compute the partial derivatives of λδ
αω we have to calculate the derivatives of the deter-

minant of the matrix Im − Âαω. For this purpose, we may use Jacobi’s formula

∂

∂λ
det (A) = trace

(
adj (A)

∂A
∂λ

)
,

where adj (A) is the adjugate of the square matrix A. We obtain

∂

∂λ
det
(
Im − Âαω

)
= det

(
Im − Âαω

)
trace

((
Im − Âαω

)−1 ∂

∂λ

(
Im − Âαω

))
,

where the derivatives of the matrix Im − Âαω are given by (3.131).
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The minimization method based on matrix calculus is of general use because it can
handle situations with multiple regularization parameters. However, the memory require-
ment is excessively large and the calculation might be inaccurate, e.g., for small values of
α, the calculation of the inverse M−1

αω is an unstable process due to the large condition num-
ber of Mαω. For two-parameter regularization problems, the use of a semi-discrete mini-
mization method seems to be more appropriate. In this approach, we consider a discrete set
of weighting factors {ωj}, and for each ωj , we use the generalized singular value decom-
position of

(
K,Lωj

)
to solve the corresponding one-dimensional minimization problem.

An alternative strategy proposed by Brezinski et al. (2003) is to approximate the
multi-parameter solution xδ

α1α2
, minimizing the Tikhonov function

Fα1α2 (x) =
∥∥yδ − Kx

∥∥2 + α1 ‖H1x‖2 + α2 ‖H2x‖2
,

by a linear combination of the one-parameter solutions xδ
α1

and xδ
α2

, minimizing the
Tikhonov functions

Fαi
(x) =

∥∥yδ − Kx
∥∥2 + αi ‖Hix‖2

, i = 1, 2. (3.134)

The regularized solutions solve the corresponding normal equations, and we have(
KT K + α1HT

1 H1 + α2HT
2 H2

)
xδ

α1α2
= KT yδ, (3.135)(

KT K + α1HT
1 H1

)
xδ

α1
= KT yδ, (3.136)(

KT K + α2HT
2 H2

)
xδ

α2
= KT yδ. (3.137)

Inserting (3.135), (3.136) and (3.137) in the identity

KT yδ = ξKT yδ + (1 − ξ)KT yδ, 0 ≤ ξ ≤ 1,

and setting
Mα1α2 = KT K + α1HT

1 H1 + α2HT
2 H2,

yields the representation

xδ
α1α2

= xδ∗
α1α2

− M−1
α1α2

ρα1α2
(ξ) ,

with
xδ∗

α1α2
= ξxδ

α1
+ (1 − ξ)xδ

α2
,

and
ρα1α2

(ξ) = ξα2HT
2 H2xδ

α1
+ (1 − ξ) α1HT

1 H1xδ
α2

.

As the minimization of the error between xδ
α1α2

and xδ∗
α1α2

would involve the inverse of
the matrix Mα1α2(leading to a considerable computational effort), the choice proposed by
Brezinski et al. (2003) is to take ξ as the minimizer of

∥∥ρα1α2

∥∥2, that is,

ξ =
qT

2 (q2 − q1)
‖q2 − q1‖2 ,

with
q1 = α2HT

2 H2xδ
α1

, q2 = α1HT
1 H1xδ

α2
.
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The solutions xδ
α1

and xδ
α2

are then computed by using the corresponding generalized sin-
gular systems, and xδ

α1α2
is approximated by xδ∗

α1α2
. More precisely, in the aforementioned

regularization parameter choice methods, the residual

rδ
α1α2

= yδ − Kxδ
α1α2

is replaced by
rδ∗

α1α2
= yδ − Kxδ∗

α1α2
,

the influence matrix Âα1α2 , satisfying Kxδ
α1α2

= Âα1α2y
δ , by its approximation

Â∗
α1α2

= ξÂα1 + (1 − ξ) Âα2 ,

defined through the relation Kxδ∗
α1α2

= Â∗
α1α2

yδ , and the averaging kernel matrix Aα1α2 ,
satisfying xα1α2 = Aα1α2x

†, by its approximation

A∗
α1α2

= ξAα1 + (1 − ξ)Aα2 ,

defined through the relation x∗
α1α2

= A∗
α1α2

x†. It is remarkable to note that in the frame-
work of the generalized cross-validation method and under some additional assumptions,
Brezinski et al. (2003) have shown that(

α1gcv, α2gcv

)
= arg min

α1,α2
υδ∗

α1α2
≈ arg min

α1,α2

(√
υδ

α1
+
√

υδ
α2

)2

,

which means that this technique corresponds to the simple approach of choosing α1 and
α2 by applying separately the generalized cross-validation method to each of the one-
parameter regularization problems (3.134).

The regularization parameters can also be computed in a generalized L-curve frame-
work by using the concept of the L-surface (Belge et al., 2002). The L-surface components
are defined by

x (α1, α2) = log
(∥∥cδ

1α1α2

∥∥2) ,

y (α1, α2) = log
(∥∥cδ

2α1α2

∥∥2) ,

z (α1, α2) = log
(∥∥rδ

α1α2

∥∥2) ,

where the constraint vectors are given by cδ
iα1α2

= Hixδ
α1α2

, i = 1, 2. The ‘generalized
corner’ of the L-surface is the point on the surface around which the surface is maximally
wrapped and can be defined as the point maximizing the Gaussian curvature. The Gaussian
curvature can be computed given the first- and the second-order partial derivatives of z
with respect to x and y. Because this calculation is very time-consuming, the so-called
minimum distance function approach can be used instead. The distance function is defined
by

d (α1, α2)
2 = [x (α1, α2) − x0]

2 + [y (α1, α2) − y0]
2 + [z (α1, α2) − z0]

2
,

where x0, y0 and z0 are the coordinates of a properly chosen origin, and the regularization
parameters are chosen as

(α1ls, α2ls) = arg min
α1,α2

d (α1, α2)
2
.



98 Tikhonov regularization for linear problems Chap. 3

3.8.2 Incomplete multi-parameter regularization methods

For this type of regularization, the parameter choice methods should minimize some mea-
sure of the solution error corresponding to the first component of the state vector. As the
noisy data vector accounts for both contributions of the state vector components, which
cannot be separated (cf. (3.125)), regularization parameter choice methods based on the
analysis of the residual or the noisy data cannot be applied. Possible candidates for incom-
plete multi-parameter regularization are the expected error estimation method, the quasi-
optimality criterion, and, with some reticence, the L-curve method.

In the expected error estimation method with a semi-discrete minimization approach,
we consider the expected value of the first error component. Specifically, for a discrete set
of weighting factors {ωj}, we compute the optimal regularization parameter and weighting
factor as (

αopt, ωopt

)
= arg min

α,ωj

E
{∥∥∥eδ

1αωj

∥∥∥2} , (3.138)

where we have assumed the partition

eδ
αω =

[
eδ
1αω

eδ
2αω

]
.

To solve the one-dimensional minimization problem with respect to the regularization
parameter, we need analytical representations for the error components ‖es1αω‖2 and
E{
∥∥eδ

n1αω

∥∥2} as in (3.33) and (3.41), respectively. If (γωi;wωi,uωi,vωi) is a general-
ized singular system of (K,Lω), the required expansions take the forms

es1αω =
n∑

i=1

α

γ2
ωi + α

1
σωi

(
uT

ωiy
)
w1ωi,

and

E
{∥∥eδ

n1αω

∥∥2} = σ2
n∑

i=1

(
γ2

ωi

γ2
ωi + α

1
σωi

)2

‖w1ωi‖2
, (3.139)

where

wωi =
[

w1ωi

w2ωi

]
.

The steps of a two-component expected error estimation method can be summarized as
follows:

(1) choose a discrete set of weighting factors {ωj}j=1,Nω
, and generate a set of state

vectors {x†
i}i=1,Nx

in a random manner;

(2) for each state vector x†
i , compute the optimal regularization parameter and weighting

factor (
αopti, ωopti

)
= arg min

α,ωj

E
{∥∥∥eδ

1αωj

(
x†

i

)∥∥∥2} ,

and store the weighting-factor index j	
i defined as ωopti = ωj�

i
;
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(3) count the number of appearances of the index j over state vector realizations,

Nj =
∑
i∈Ij

1, Ij = {i/ j	
i = j} ,

and determine the index j̄ with maximum frequency of appearance,

j̄ = arg max
j

Nj ;

(4) compute the exponent

pi =
log αopti

log σ

for all i ∈ Ij̄ , and the sample mean exponent

p̄ =
1

Nj̄

∑
i∈Ij̄

pi;

(5) set αe = σp̄ and ωe = ωj̄ .

The regularization parameter and weighting factor for the quasi-optimality criterion are
defined by (

αqo, ωqo

)
= arg min

α,ωj

ςδ
1αωj

,

where

ςδ
1αω =

∥∥∥∥α∂xδ
1αω

∂α

∥∥∥∥2
and

α
∂xδ

1αω

∂α
= −

n∑
i=1

αγ2
ωi

(γ2
ωi + α)2

1
σωi

(
uT

ωiy
δ
)
w1ωi.

The difficulty associated with this selection criterion is that the quasi-optimality function
may have several minima, which are difficult to locate.

A heuristic regularization parameter choice rule can be designed by combining the
L-curve method with the minimum distance function approach. The idea is to consider
an ω-dependent family of L-curves, and for each L-curve to determine the regularization
parameter by maximizing its curvature. The final values of ω and α are then computed by
selecting the point with minimum residual and constraint norms. Thus, for each ωj , we
consider the L-curve of components

xj (α) = log
(∥∥∥rδ

αωj

∥∥∥2) , yj (α) = log
(∥∥∥cδ

1αωj

∥∥∥2) ,

and determine the value of the regularization parameter that maximizes the curvature func-
tion κδ

lcαj ,
αlcj = arg max

α
κδ
lcαj .



100 Tikhonov regularization for linear problems Chap. 3

−30 −20 −10 0
log(α)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
xp

ec
te

d 
F

irs
t E

rr
or

 C
om

po
ne

nt

ω = 0.01
ω = 0.99

Fig. 3.18. Expected value of the first error component E{
‚‚eδ

1αω

‚‚2} for the noise standard deviation
σ = 5 · 10−2 and one state vector realization.

Defining the distance

d2
j = [xj (αlcj) − x0]

2 + [yj (αlcj) − y0]
2
,

we compute j	 = arg minj d2
j , and set αlc = αlcj� and ωlc = ωj� .

A numerical example dealing with a BrO retrieval test problem may clarify the pecu-
liarities of multi-parameter regularization methods. The retrieval scenario is similar to that
considered in section 3.7. The spectral domain of analysis ranges between 337 and 357 nm
and in addition to BrO, O3 is considered as an active gas. The first component of the state
vector is the BrO profile, while the second component is the O3 profile. The discrete set of
weighting factors consists of 10 equidistant values between 0.01 and 0.99.

In the expected error estimation method, we generate 100 Gaussian profiles with a cor-
relation length l = 3.5 km and a profile standard deviation σx = 0.4. The expected value
of the first error component is shown in Figure 3.18 for different values of the weighting
factor ω. The plots illustrate that the minimum value of E{

∥∥eδ
1αω

∥∥2} with respect to α
does not vary significantly with ω. As a result, we may expect that the selection of the
weighting factor is not so critical for the inversion process.

In the top panel of Figure 3.19 we plot the optimal weighting factors for error estima-
tion ωopti for different state vector realizations. The weighting factor with the maximum
frequency of appearence is independent of the noise standard deviation σ, and its value is
ωj̄ = 0.99. It should be pointed out that the frequencies of appearance of the weighting
factors 0.01 and 0.99 are similar, and these situations correspond to a regularization of one
gas species only. Considering the subset Ij̄ of all state vector realizations related to the
weighting factor with maximum frequency of appearance ωj̄ , we plot in the middle panel
of Figure 3.19 the exponent pi for i ∈ Ij̄ . The values of the sample mean exponent are
p̄ = 1.90 for σ = 5 · 10−2, p̄ = 1.97 for σ = 5 · 10−3, p̄ = 1.96 for σ = 2.5 · 10−3,
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Fig. 3.19. Top: optimal weighting factors ωopti for the following values of the noise standard devi-
ation σ: 5 · 10−2 (1), 5 · 10−3 (2), 2.5 · 10−3 (3), and 1.25 · 10−3 (4). Middle: exponent pi for the
state vector realizations corresponding to ωj̄ = 0.99. Bottom: sample mean exponent as a function
of the noise standard deviation σ.
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standard deviation is shown in the bottom panel of Figure 3.19. It is apparent that p̄ does
not vary significantly with σ, and its average value is about 1.95.

Next, we choose the exact state vectors x†
1 and x†

2 as translated and scaled climatolog-
ical profiles with a translation distance of 2 km and a scaling factor of 1.3, and generate 50
noisy data vectors yδ

i with the white noise δ ∼ N
(
0, σ2Im

)
. In Figure 3.20 we plot the

solution errors for the expected error estimation method with αe = σ1.95 and ωe = 0.99,

εei =

∥∥∥xδ
1αeωei

− x†
1

∥∥∥∥∥∥x†
1

∥∥∥ , xδ
1αeωei =

[
K†

αeωe
yδ

i

]
1
,

together with the solution errors

εopti =

∥∥∥xδ
1αoptiωopti

− x†
1

∥∥∥∥∥∥x†
1

∥∥∥ ,

corresponding to the optimal parameters,

(
αopti, ωopti

)
= arg min

α,ωj

∥∥∥[K†
αωj

yδ
i

]
1
− x†

1

∥∥∥2 .

The solution errors for the expected error estimation method are in general comparable
with the errors in the optimal solution, but for some noisy data realizations, the errors may
exceed 40%.
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Fig. 3.20. Relative errors in the expected error estimation solution and the optimal solution. The
noise standard deviation is σ = 5 · 10−2 and 50 noisy data realizations are considered.

and p̄ = 1.94 for σ = 1.25 · 10−3. The sample mean exponent as a function of the noise
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Fig. 3.21. Expected quasi-optimality function E{ςδ
1αω} for the noise standard deviation σ = 5·10−2

and one state vector realization. The circle indicates the minimizer of the expected value of the first
error component E{

‚‚eδ
1αω

‚‚2}.

The expected quasi-optimality function E{ςδ
1αω} is shown in Figure 3.21 for different

values of the weighting factor ω. The plots evidence that the minimizer of the expected
value of the first error component is only a local minimizer and not a global minimizer of
the expected quasi-optimality function. This fact disqualifies the quasi-optimality criterion
for the present application.

In Figure 3.22 we illustrate the ω-dependent family of expected L-curves. The results
show that the plateau C1ω (α) = E{

∥∥cδ
1αω

∥∥2} decreases with increasing ω, and for ω =
0.99, we obtain a corner with a small constraint norm. Thus, the expected L-curve method
and the expected error estimation method predict the same value of the weighting factor.

In Figure 3.23 we plot the relative errors in the L-curve solution and the optimal solu-
tion for 50 realizations of the noisy data vector. The main drawback of the L-curve method
is that in some situations, the L-curve loses its L-shape and the estimation of the regular-
ization parameter is erroneous. In contrast to the expected error estimation method, the
failure of the L-curve method is accompanied by extremely large solution errors.

3.9 Mathematical results and further reading

Convergence and convergence rate results for Tikhonov regularization with different reg-
ularization parameter choice methods can be found in Engl et al. (2000), Groetsch (1984)
and Rieder (2003). In a deterministic setting and for a continuous problem given by the
operator equation Kx = yδ , the parameter choice rule with α = α

(
Δ, yδ

)
is said to be
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Fig. 3.22. Expected L-curves for the noise standard deviation σ = 5 · 10−2 and one state vector
realization.
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Fig. 3.23. Relative errors in the L-curve solution and the optimal solution. The noise standard devi-
ation is σ = 5 · 10−2 and 50 noisy data realizations are considered.

convergent if ∥∥∥xδ
α(Δ,yδ) − x†

∥∥∥→ 0 as Δ → 0. (3.140)

A regularization method together with a convergent parameter choice rule is called a con-
vergent regularization method. The rate of convergence of a parameter choice method is
expressed in terms of the rate with which the regularized solution xδ

α(Δ,yδ) converges to x†
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as the noise level Δ tends to zero. Rates for regularization parameter choice methods are
given under an additional assumption which concerns the smoothness of the solution x†.
For the so-called Hölder-type source condition

x† = (K∗K)μ
z, (3.141)

with μ > 0 and z ∈ X , a regularization parameter choice method is said to be of optimal
order, if the estimate ∥∥x† − xδ

α

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, Δ → 0, (3.142)

holds. A deterministic analysis of the general regularization method

xδ
α = gα

(
KT K

)
KT yδ, (3.143)

in a discrete setting and for the choice L = In is given in Appendix C. The function gα is
related to the filter function fα by the relation

fα (λ) = λgα (λ) ,

and for K = UΣVT , the matrix function in (3.143) should be understood as

gα

(
KT K

)
= V

[
diag

(
gα

(
σ2

i

))
n×n

]
VT . (3.144)

In particular, Tikhonov regularization and its iterated version are characterized by the
choices

gα (λ) =
1

λ + α
,

and

gα (λ) =
1
λ

[
1 −
(

α

λ + α

)p]
,

respectively. The conclusions of this analysis are as follows:

(1) the a priori parameter choice method α = (Δ/ ‖z‖)2/(2μ+1), the generalized dis-
crepancy principle and the generalized residual curve method are of optimal order for
0 < μ ≤ μ0;

(2) the discrepancy principle and the residual curve method are of optimal order for 0 <
μ ≤ μ0 − 1/2.

The index μ0 is the qualification of the regularization method, and we have μ0 = 1 for
Tikhonov regularization and μ0 = p for the p-times iterated Tikhonov regularization. Thus,
in the case of Tikhonov regularization, the best convergence rate which can be achieved by
the first group of methods is O(Δ2/3), while O(Δ1/2) is the best convergence rate of the
discrepancy principle and the residual curve method.

Although the formulations of regularization parameter choice methods in a determin-
istic and a semi-stochastic setting are very similar, the convergence analyses differ signifi-
cantly. In a semi-stochastic setting we are dealing with the semi-discrete data model

yδ
m = Kmx + δm,
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where Km is a linear operator between the state space X and the finite-dimensional Eu-
clidean space R

m, and δm is an m-dimensional vector whose components are each a ran-
dom variable. If the noise components are assumed to be uncorrelated with zero mean
and common variance σ2, the analysis is carried out under the assumptions that σ is fixed
and that m tends to infinity. In this regard, denoting by xδ

α the minimizer of the Tikhonov
functional

Fmα (x) =
∥∥yδ

m − Kmx
∥∥2 + α ‖x‖2

,

a regularization parameter choice method is said to be convergent if it yields a parameter
α = α(m) with the property

E
{∥∥∥x† − xδ

α(m)

∥∥∥2}→ 0 as m → ∞.

This type of convergence is often referred to as convergence in mean square. In addition to
convergence, other concepts have been introduced to quantify the optimality properties of
regularization parameter choice methods (Vogel, 2002). To be more concrete, if αopt (m) is
the optimal regularization parameter for error estimation, then, a regularization parameter
choice method yielding an expected parameter α (m) is called

(1) e-optimal if there exists m0 so that α (m) = αopt (m), whenever m ≥ m0;
(2) asymptotically e-optimal if α (m) ≈ αopt (m) as m → ∞;
(3) order e-optimal if there exists a positive constant r, called the order constant, so that

α (m) ≈ rαopt (m) as m → ∞.

A pertinent analysis of regularization parameter choice methods by assuming specific de-
cay rates for the singular values of the semi-discrete operator and for the Fourier coeffi-
cients has been given by Vogel (2002). For Tikhonov regularization, the proofs are ex-
tremely technical, but the results can be summarized as follows:

(1) the discrepancy principle, the unbiased predictive risk estimator method, and general-
ized cross-validation are convergent;

(2) the L-curve does not give a value of α that yields mean square convergence, i.e., the
L-curve method is non-convergent.

In fact, the convergence properties of the L-curve method has been studied by Hanke
(1996) and Vogel (1996). In the first work, the problem is continuous and the analysis
is carried out in a deterministic setting, while in the second work, the problem is semi-
discrete and the analysis is performed in a semi-stochastic setting. As a consequence,
the results established in these two papers are quite different. In a deterministic setting it
is shown that the regularization parameter determined by the L-curve method decays too
rapidly to zero as the noise level tends to zero. This behavior leads to an undersmoothing,
which is more pronounced for small noise levels and very smooth solutions (see Figures
3.9 and 3.10). In a semi-stochastic setting, the regularization parameter computed by the
L-curve method stagnates as m → ∞, and for this reason, the regularized solution is
oversmoothed. Despite these results, the L-curve method has been successfully used in
numerous applications.



4

Statistical inversion theory

The majority of retrieval approaches currently used in atmospheric remote sensing belong
to the category of statistical inversion methods (Rodgers, 2000). The goal of this chapter
is to reveal the similarity between classical regularization and statistical inversion regard-
ing

(1) the regularized solution representation,
(2) the error analysis,
(3) the design of one- and multi-parameter regularization methods.

In statistical inversion theory all variables included in the model are absolutely continuous
random variables and the degree of information concerning their realizations is coded in
probability densities. The solution of the inverse problem is the a posteriori density, which
makes possible to compute estimates of the unknown atmospheric profile.

In the framework of Tikhonov regularization we have considered the linear data model

yδ = Kx + δ, (4.1)

where yδ is the noisy data vector and δ is the noise vector. In statistical inversion theory
all parameters are viewed as random variables, and since in statistics random variables are
denoted by capital letters and their realizations by lowercase letters, the stochastic version
of the data model (4.1) is

Yδ = KX + Δ. (4.2)

The random vectors Yδ , X and Δ represent the data, the state and the noise, respectively;
their realizations are denoted by Yδ = yδ , X = x and Δ = δ, respectively.

4.1 Bayes theorem and estimators

The data model (4.2) gives a relation between the three random vectors Yδ , X and Δ,
and therefore, their probability densities depend on each other. The following probability
densities are relevant for our analysis:
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(1) the a priori density pa (x), which encapsulates our presumable information about X
before performing the measurement of Yδ;

(2) the likelihood density p
(
yδ | x

)
, which represents the conditional probability density

of Yδ given the state X = x;
(3) the a posteriori density p

(
x | yδ

)
, which represents the conditional probability density

of X given the data Yδ = yδ .

The choice of the a priori density pa (x) is perhaps the most important part of the inversion
process. Different a priori models yield different objective functions, and in particular, the
classical regularization terms correspond to Gaussian a priori models. Gaussian densities
are widely used in statistical inversion theory because they are easy to compute and often
lead to explicit estimators. Besides Gaussian densities other types of a priori models, as for
instance the Cauchy density and the entropy density can be found in the literature (Kaipio
and Somersalo, 2005).

The construction of the likelihood density p
(
yδ | x

)
depends on the noise assumption.

The data model (4.2) operates with additive noise, but other explicit noise models including
multiplicative noise models and models with an incompletely known forward model matrix
can be considered. If the noise is additive and is independent of the atmospheric state, the
probability density pn (δ) of Δ remains unchanged when conditioned on X = x. Thus,
Yδ conditioned on X = x is distributed like Δ, and the likelihood density becomes

p
(
yδ | x

)
= pn

(
yδ − Kx

)
. (4.3)

Assuming that after analyzing the measurement setting and accounting of the addi-
tional information available about all variables we have found the joint probability density
p
(
x,yδ

)
of X and Yδ , then the a priori density is given by

pa (x) =
∫

Rm

p
(
x,yδ

)
dyδ,

while the likelihood density and the a posteriori density can be expressed as

p
(
yδ | x

)
=

p
(
x,yδ

)
pa (x)

, (4.4)

and

p
(
x | yδ

)
=

p
(
x,yδ

)
p (yδ)

, (4.5)

respectively.
The following result known as the Bayes theorem of inverse problems relates the a

posteriori density to the likelihood density (cf. (4.4) and (4.5)):

p
(
x | yδ

)
=

p
(
yδ | x

)
pa (x)

p (yδ)
. (4.6)

In (4.6), the marginal density p
(
yδ
)

computed as

p
(
yδ
)

=
∫

Rn

p
(
x,yδ

)
dx =

∫
Rn

p
(
yδ | x

)
pa (x) dx,
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plays the role of a normalization constant and is usually ignored. However, as we will see,
this probability density is of particular importance in the design of regularization parameter
choice methods.

The knowledge of the a posteriori density allows the calculation of different estima-
tors and spreads of solution. A popular statistical estimator is the maximum a posteriori
estimator

x̂map = arg max
x

p
(
x | yδ

)
,

and the problem of finding the maximum a posteriori estimator requires the solution of an
optimization problem. Another estimator is the conditional mean of X conditioned on the
data Yδ = yδ ,

x̂cm =
∫

Rn

xp
(
x | yδ

)
dx, (4.7)

and the problem of finding the conditional mean estimator requires to solve an integration
problem. The maximum likelihood estimator

x̂ml = arg max
x

p
(
yδ | x

)
is not a Bayesian estimator but it is perhaps the most popular estimator in statistics. For
ill-posed problems, the maximum likelihood estimator corresponds to solving the inverse
problem without regularization, and is therefore of little importance for our analysis.

4.2 Gaussian densities

An n-dimensional random vector X has a (non-degenerate) Gaussian, or normal, distribu-
tion, if its probability density has the form

p (x) =
1√

(2π)n det (Cx)
exp
(
−1

2
(x − x̄)T C−1

x (x − x̄)
)

.

In the above relation,

x̄ = E {X} =
∫

Rn

xp (x) dx (4.8)

is the mean vector or the expected value of X and

Cx = E
{

(X − E {X}) (X − E {X})T
}

=
∫

Rn

(x − x̄) (x − x̄)T
p (x) dx

is the covariance matrix of X. These parameters characterize the Gaussian density and we
indicate this situation by writing X ∼ N (x̄,Cx). In this section, we derive Bayesian es-
timators for Gaussian densities and characterize the solution error following the treatment
of Rodgers (2000). We then discuss two measures of the retrieval quality, the degree of
freedom for signal and the information content.
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4.2.1 Estimators

Under the assumption that X and Δ are independent Gaussian random vectors, character-
ized by X ∼ N (0,Cx) and Δ ∼ N (0,Cδ), the a priori density can be expressed as

pa (x) =
1√

(2π)n det (Cx)
exp
(
−1

2
xT C−1

x x
)

, (4.9)

while by virtue of (4.3), the likelihood density takes the form

p
(
yδ | x

)
=

1√
(2π)m det (Cδ)

exp
(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

))
. (4.10)

With this information, the Bayes formula yields the following expression for the a posteri-
ori density:

p
(
x | yδ

)
∝ exp

(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
− 1

2
xT C−1

x x
)

. (4.11)

Setting

p
(
x | yδ

)
∝ exp

(
−1

2
V
(
x | yδ

))
,

where the a posteriori potential V
(
x | yδ

)
is defined by

V
(
x | yδ

)
=
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
+ xT C−1

x x,

we see that the maximum a posteriori estimator x̂map maximizing the conditional probabil-
ity density p

(
x | yδ

)
also minimizes the potential V

(
x | yδ

)
, that is,

x̂map = arg min
x

V
(
x | yδ

)
.

The solution to this minimization problem is given by

x̂map = Ĝyδ, (4.12)

where
Ĝ =

(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ (4.13)

is known as the gain matrix or the contribution function matrix (Rodgers, 2000). Equation
(4.12) reveals that the gain matrix corresponds to the regularized generalized inverse ap-
pearing in the framework of Tikhonov regularization. An alternative representation for the
gain matrix can be derived from the relation(

KT C−1
δ K + C−1

x

)−1
KT C−1

δ = CxKT
(
Cδ + KCxKT

)−1
, (4.14)

and the result is
Ĝ = CxKT

(
Cδ + KCxKT

)−1
. (4.15)



Sect. 4.2 Gaussian densities 111

To prove (4.14), we multiply this equation from the left and from the right with the matrices
KT C−1

δ K + C−1
x and Cδ + KCxKT , respectively, and use the identity

KT + KT C−1
δ KCxKT =

(
KT C−1

δ K + C−1
x

)
CxKT (4.16)

to conclude.
The a posteriori density p

(
x | yδ

)
can be expressed as a Gaussian density

p
(
x | yδ

)
∝ exp

(
−1

2
(x − x̄)T Ĉ−1

x (x − x̄)
)

, (4.17)

where the mean vector x̄ and the covariance matrix Ĉx can be obtained directly from (4.11)
and (4.17) by equating like terms (see, e.g., Rodgers, 2000). Equating the terms quadratic
in x leads to the following expression for the a posteriori covariance matrix:

Ĉx =
(
KT C−1

δ K + C−1
x

)−1
.

To obtain the expression of the a posteriori mean vector, we equate the terms linear in x
and obtain x̄ = x̂map. On the other hand, by (4.7), (4.8) and (4.17), we see that the a
posteriori mean coincides with the conditional mean, and we conclude that in the purely
Gaussian case there holds

x̄ = x̂map = x̂cm.

Due to this equivalence and in order to simplify the writing, the maximum a posteriori
estimator will be simply denoted by x̂.

An alternative expression for the a posteriori covariance matrix follows from the iden-
tity (cf. (4.14))

Cx − CxKT
(
Cδ + KCxKT

)−1
KCx

= Cx −
(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ KCx

=
(
KT C−1

δ K + C−1
x

)−1
, (4.18)

which yields (cf. (4.15))

Ĉx = Cx − ĜKCx = (In − A)Cx (4.19)

with A = ĜK being the averaging kernel matrix.
For Gaussian densities with covariance matrices of the form

Cδ = σ2Im, Cx = σ2
xCnx = σ2

x

(
LT L

)−1
, (4.20)

we find that
x̂ =

(
KT K + αLT L

)−1
KT yδ,

where we have set

α =
σ2

σ2
x

.
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As in section 3.2, σ is the white noise standard deviation, σx is the profile standard devia-
tion, Cnx is the normalized a priori covariance matrix, and α and L are the regularization
parameter and the regularization matrix, respectively. Thus, under assumptions (4.20), the
maximum a posteriori estimator coincides with the Tikhonov solution. The regularization
parameter is the ratio of the noise variance to the profile variance in our a priori knowledge,
and in an engineering language, α can be interpreted as the noise-to-signal ratio. We can
think of our a priori knowledge in terms of ellipsoids of constant probability of the a priori,
whose shape and orientation are determined by Cnx and whose size is determined by σ2

x .
The number σx then, represents the a priori confidence we have in our initial guess of the
state vector, confidence being measured through the Mahalanobis norm with covariance
Cnx. The correspondence between the Bayesian approach and Tikhonov regularization,
which has been recognized by several authors, e.g., Golub et al. (1979), O’Sullivan and
Wahba (1985), Fitzpatrick (1991), Vogel (2002), Kaipio and Somersalo (2005), allows the
construction of natural schemes for estimating σ2

x .

4.2.2 Error characterization

In a semi-stochastic setting the total error in the state space has a deterministic component,
the smoothing error, and a stochastic component, the noise error. In a stochastic setting,
both error components are random vectors. To introduce the random errors, we express the
maximum a posteriori estimator as (see (3.65))

x̂ = Ĝyδ = Ĝ
(
Kx† + δ

)
= Ax† + Ĝδ.

and find that
x† − x̂ = (In − A)x† − Ĝδ. (4.21)

In view of (4.21), we define the random total error by

E = X − X̂ = (In − A)X − ĜΔ, (4.22)

where
X̂ = ĜY

δ

is an estimator of X. In (4.22), X should be understood as the true state, and a realization
of X is the exact solution of the linear equation in the noise-free case.

The random smoothing error is defined by

Es = (In − A)X,

and it is apparent that the statistics of Es is determined by the statistics of X. If E{X} = 0
and Cxt = E{XXT } is the covariance matrix of the true state, then the mean vector and
the covariance matrix of Es become

E {Es} = 0, Ces = (In − A)Cxt (In − A)T
.

In practice, the statistics of the true state is unknown and, as in a semi-stochastic setting,
the statistics of the smoothing error is unknown.
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The random noise error is defined as

En = −ĜΔ

and the mean vector and the covariance matrix of En are given by

E {En} = 0, Cen = ĜCδĜT .

As X and Δ are independent random vectors, the random total error has zero mean
and covariance

Ce = Ces + Cen.

When computing the maximum a posteriori estimator we use an ad hoc a priori co-
variance matrix Cx because the covariance matrix of the true state Cxt is not available. It
should be pointed out, that only for Cx = Cxt, the total error covariance matrix coincides
with the a posteriori covariance matrix. To prove this claim, we construct the total error
covariance matrix as

Ce =
(
In − ĜK

)
Cx

(
In − ĜK

)T

+ ĜCδĜT

= Cx − CxKT ĜT − ĜKCx + ĜKCxKT ĜT + ĜCδĜT ,

and use the result (cf. (4.13) and (4.16))

ĜCδ + ĜKCxKT =
(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ

(
Cδ + KCxKT

)
=
(
KT C−1

δ K + C−1
x

)−1 (
KT C−1

δ K + C−1
x

)
CxKT

= CxKT

to obtain (cf. (4.19))
Ce = Cx − ĜKCx = Ĉx.

The main conclusion which can be drawn is that an error analysis based on the a posteriori
covariance matrix is correct only if the a priori covariance matrix approximates sufficiently
well the covariance matrix of the true state.

4.2.3 Degrees of freedom

In classical regularization theory, the expected residual E{
∥∥yδ − Kxδ

α

∥∥2} and the ex-
pected constraint E{

∥∥Lxδ
α

∥∥2} are important tools for analyzing discrete ill-posed prob-
lems. In statistical inversion theory, the corresponding quantities are the degree of freedom
for noise and the degree of freedom for signal.

To introduce these quantities, we consider the expression of the a posteriori potential
V
(
x | yδ

)
and define the random variable

V̂ =
(
Yδ − KX̂

)T

C−1
δ

(
Yδ − KX̂

)
+ X̂T C−1

x X̂, (4.23)
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where, as before, X̂ = ĜY
δ
. The random variable V̂ is Chi-square distributed with

m degrees of freedom, and therefore, the expected value of V̂ is equal to the number of
measurements m (Appendix D). This can be divided into the degrees of freedom for signal
and noise, defined by

ds = E
{
X̂T C−1

x X̂
}

and

dn = E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
,

respectively, and evidently we have

ds + dn = m.

The degree of freedom for signal measures that part of E{V̂ } corresponding to the state
vector, while the degree of freedom for noise that part corresponding to the measurement.

Using the identity
xT Ax = trace

(
xxT A

)
,

which holds true for a symmetric matrix A, we express the degree of freedom for signal as

ds = E
{
X̂T C−1

x X̂
}

= E
{

trace
(
X̂X̂T C−1

x

)}
= trace

(
E
{
X̂X̂T

}
C−1

x

)
,

where the covariance of the estimator X̂ is related to the covariance of the data Yδ by the
relation

E
{
X̂X̂T

}
= ĜE

{
YδYδT

}
ĜT .

To compute the covariance of the data, we assume that the covariance matrix of the true
state is adequately described by the a priori covariance matrix, and obtain

E
{
YδYδT

}
= KE

{
XXT

}
KT + E

{
ΔΔT

}
= KCxKT + Cδ. (4.24)

By (4.13) and (4.15), we then have

E
{
X̂X̂T

}
= CxKT C−1

δ K
(
KT C−1

δ K + C−1
x

)−1
, (4.25)

whence using the identities trace
(
B−1AB

)
= trace (A) and trace (A) = trace

(
AT
)
,

which hold true for a square matrix A and a nonsingular matrix B, we find that

ds = trace
(
KT C−1

δ K
(
KT C−1

δ K + C−1
x

)−1
)

= trace
((

KT C−1
δ K + C−1

x

)−1
KT C−1

δ K
)

= trace
(
ĜK

)
= trace (A) . (4.26)

Hence, the degree of freedom for signal is the trace of the averaging kernel matrix. Conse-
quently, the diagonal of the averaging kernel matrix A may be thought of as a measure of
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the number of degrees of freedom per layer (level), and thus as a measure of information,
while its reciprocal may be thought of as the number of layers per degree of freedom, and
thus as a measure of resolution. The degree of freedom for signal can also be interpreted
as a measure of the minimum number of parameters that could be used to define a state
vector without loss of information (Mateer, 1965); Rodgers, 2000).

The degree of freedom for noise can be expressed in terms of the influence matrix
Â = KĜ as (cf. (4.24))

dn = E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
= E

{
trace

((
Yδ − KX̂

)(
Yδ − KX̂

)T

C−1
δ

)}
= trace

((
Im − Â

)
E
{
YδYδT

}(
Im − Â

)T

C−1
δ

)
= trace

((
Im − Â

) (
KCxKT + Cδ

) (
Im − Â

)T

C−1
δ

)
, (4.27)

whence using the identity (
Im − Â

) (
KCxKT + Cδ

)
= Cδ, (4.28)

we obtain
dn = trace

(
Im − Â

)
. (4.29)

Note that the term ‘degree of freedom for noise’ has been used by Craven and Wahba
(1979) and later on by Wahba (1985) to designate the denominator of the generalized
cross-validation function.

Under assumptions (4.20), we have

trace (A) = trace
(
Â
)

=
n∑

i=1

γ2
i

γ2
i + α

, (4.30)

where γi are the generalized singular values of the matrix pair (K,L). By (4.26), (4.29)
and (4.30), it is apparent that the degree of freedom for signal is a decreasing function of the
regularization parameter, while the degree of freedom for noise is an increasing function of
the regularization parameter. Thus, when very little regularization is introduced, the degree
of freedom for signal is very large and approaches n, and when a large amount of regular-
ization is introduced, the degree of freedom for noise is very large and approaches m. As
in classical regularization theory, an optimal regularization parameter should balance the
degrees of freedom for signal and noise.

The degree of freedom for signal can be expressed in terms of the so-called informa-
tion matrix R defined by

R = C
1
2
x KT C−1

δ KC
1
2
x . (4.31)

Using the identity
A = C

1
2
x (In + R)−1 RC− 1

2
x , (4.32)
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we find that
ds = trace (A) = trace

(
(In + R)−1 R

)
, (4.33)

whence assuming the singular value decomposition of the positive definite matrix R,

R = VrΣrVT
r , Σr =

[
diag (ωi)n×n

]
, (4.34)

we obtain the representation

ds =
n∑

i=1

ωi

ωi + 1
.

The degree of freedom for signal ds remains unchanged under linear transformations of the
state vector or of the data vector, and as a result, ds is an invariant of the retrieval. Purser
and Huang (1993) showed that the degree of freedom for signal, regarded as a real-valued
function over sets of independent data, obeys a positive monotonic subadditive algebra.
In order to understand these properties from a practical point of view, we consider a set
of m1 data Yδ

1 = yδ
1, and an independent set of m2 data Yδ

2 = yδ
2 . For the ith set of

measurements, the data model is

Yδ
i = KiX + Δi, i = 1, 2,

and the maximum a posteriori estimator is computed as

x̂i = arg min
x

((
yδ

i − Kix
)T

C−1
δi

(
yδ

i − Kix
)

+ xT C−1
x x
)

.

The corresponding information matrix and the degree of freedom for signal are given by

Ri = C
1
2
x KT

i C−1
δi KiC

1
2
x

and
dsi = trace

(
(In + Ri)

−1 Ri

)
,

respectively. For the full set of m12 = m1 + m2 measurements, we consider the data
model [

Yδ
1

Yδ
2

]
=
[

K1

K2

]
X +

[
Δ1

Δ2

]
,

and compute the maximum a posteriori estimator as

x̂12 = arg min
x

((
yδ

1 − K1x
)T

C−1
δ1

(
yδ

1 − K1x
)

+
(
yδ

2 − K2x
)T

C−1
δ2

(
yδ

2 − K2x
)

+ xT C−1
x x
)

.

When the data are treated jointly, the information matrix and the degree of freedom for
signal are given by

R12 = C
1
2
x

(
KT

1 C−1
δ1 K1 + KT

2 C−1
δ2 K2

)
C

1
2
x = R1 + R2

and
ds12 = trace

(
(In + R1 + R2)

−1 (R1 + R2)
)

,
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respectively. In this context, the monotonicity of the degree of freedom for signal means
that ds12 of the full m12 measurements is never less than either ds1 or ds2, i.e.,

ds12 ≥ max (ds1, ds2) , (4.35)

while the subadditivity means that ds12 can never exceed ds1 + ds2, i.e.,

ds12 ≤ ds1 + ds2. (4.36)

These assertions are the result of the following theorem: considering a monotonic, strictly
increasing, and strictly concave function f (x) with f (0) = 0, and defining the associated
scalar function F of R ∈ Sn by

F (R) =
n∑

i=1

f (ωi) ,

where Sn is the set of all semi-positive definite matrices of order n, and ωi are the singular
values of R, we have

R2 ≥ R1 ⇒ F (R2) ≥ F (R1) (monotonicity), (4.37)

and
F (R1) + F (R2) ≥ F (R1 + R2) (subadditivity), (4.38)

for all R1,R2 ∈ Sn. Here, we write R2 ≥ R1 if R2 − R1 ∈ Sn. Since the degree of
freedom for signal ds can be expressed in terms of the information matrix R as a scalar
function F (R) with f (x) = x/ (1 + x), (4.37) and (4.38) yield (4.35) and (4.36), respec-
tively. A rigorous proof of this theorem has been given by Purser and Huang (1993) by
taking into account that F (R) is invariant to orthogonal transformations. However, (4.35)
and (4.36) can simply be justified when

m1 = m2 = m, K1 = K2, Cδ1 = Cδ2. (4.39)

In this case, we obtain
R1 = R2 = R, R12 = 2R,

and further,

ds1 = ds2 =
n∑

i=1

ωi

ωi + 1
, ds12 =

n∑
i=1

2ωi

2ωi + 1
.

Then, from
2ωi

2ωi + 1
≥ ωi

ωi + 1
,

2ωi

2ωi + 1
≤ 2ωi

ωi + 1
, i = 1, . . . , n,

the conclusions are apparent. The deficit m12 − ds12 may be interpreted as the internal
redundancy of the set of data, while the deficit ds1 + ds2 − ds12 may be thought as the
mutual redundancy between two pooled sets.

Another statistics of a linear retrieval is the effective data density. Whereas the degree
of freedom for signal is a measure that indicates the number of independent pieces of
information, the effective data density is a measure that indicates the density of effectively
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independent pieces of information. The data density at the ith layer of thickness �zi is
defined by

ρi =
[A]ii
�zi

, (4.40)

and it is apparent that the ‘integral’ of the effective data density is the degree of freedom
for signal,

ds =
n∑

i=1

ρi�zi.

This estimate together with the degree of freedom for signal can be used to interprete the
quality of the retrieval and the effectiveness of the measurements.

4.2.4 Information content

An alternative criterion for the quality of a measurement is the information content or the
incremental gain in information. The information content is defined in terms of the change
in entropy that expresses a priori and a posteriori knowledge of the atmospheric state. This
measure of performance has been proposed in the context of retrieval by Peckham (1974)
and has also been discussed by Rodgers (1976) and Eyre (1990).

In information theory, the Shannon entropy or the absolute entropy is a measure of
uncertainty associated with a random variable. The Shannon entropy of a discrete random
vector X, which can take the values x1, . . . ,xn, is defined by

H (p) = −
n∑

i=1

pi log pi, (4.41)

where the probability mass function of X is given by

p (x) =
{

pi, X = xi,
0, otherwise,

n∑
i=1

pi = 1.

H is positive and attains its global maximum Hmax = log n for a uniform distribution,
i.e., when all pi are the same. On the other hand, the lowest entropy level, Hmin = 0,
is attained when all probabilities pi but one are zero. Shannon (1949) showed that H (p)
defined by (4.41) satisfies the following desiderata:

(1) H is continuous in (p1, . . . , pn) (continuity);
(2) H remains unchanged if the outcomes xi are re-ordered (symmetry);
(3) if all the outcomes are equally likely, then H is maximal (maximum);
(4) the amount of entropy is the same independently of how the process is regarded as

being divided into parts (additivity).

These properties guarantee that the Shannon entropy is well-behaved with regard to relative
information comparisons. For a continuous density p (x), the following entropy formula
also satisfies the properties enumerated above:

H (p) = −
∫

Rn

p (x) log p (x) dx. (4.42)
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For a Gaussian random vector with covariance matrix C, the integral in (4.42) can be
analytically computed and the result is

H (p) =
n

2
log (2πe) +

1
2

log (det (C)) .

As the a priori density pa (x) describes knowledge before a measurement and the a posteri-
ori density p

(
x | yδ

)
describes it afterwards, the information content of the measurement

�H is the reduction in entropy (e.g., Rodgers, 2000)

�H = H (pa (x)) − H
(
p
(
x | yδ

))
.

For Gaussian densities with the a priori and the a posteriori covariance matrices Cx and
Ĉx, respectively, the information content then becomes

�H = −1
2

log
(

det
(
ĈxC−1

x

))
= −1

2
log (det (In − A)) .

By virtue of (4.32), which relates the information matrix R and the averaging kernel
matrix A, we obtain the representation

�H =
1
2

log (det (In + R)) ,

and further

�H =
1
2

n∑
i=1

log (1 + ωi) .

Similar to the degree of freedom for signal, the information content obeys a positive mono-
tonic subadditive algebra (Huang and Purser, 1996). By ‘monotonic’ we mean that the
addition of independent data does not decrease (on average) the information content, while
by ‘subadditive’ we mean that any two sets of data treated jointly never yield more of the
information content than the sum of the amounts yielded by the sets treated singly. These
results follow from (4.37) and (4.38) by taking into account that the information content
�H can be expressed in terms of the information matrix R as a scalar function F (R)
with f (x) = (1/2) log (1 + x), or, in the simple case (4.39), they follow from the obvious
inequalities

log (1 + 2ωi) ≥ log (1 + ωi) , log (1 + 2ωi) ≤ 2 log (1 + ωi) , i = 1, . . . , n.

A density of information can be defined by employing the technique which has been
used to define the effective data density. For this purpose, we seek an equivalent matrix Ah,
whose trace is the information content �H , so that the diagonal elements of this matrix
can be used as in (4.40) to define the density of information at each layer,

ρhi =
[Ah]ii
�zi

.

The matrix Ah is chosen as
Ah = VrΣahVT

r ,
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where Vr is the orthogonal matrix in (4.34) and

Σah =

[
diag

(
1
2

log (1 + ωi)
)

n×n

]
.

The information content is used as a selection criterion in the framework of the so-
called information operator method. Assuming (4.20) and considering a generalized sin-
gular value decomposition of the matrix pair (K,L), the maximum a posteriori estimator
and the information content of the measurement can be expressed as

x̂map =
n∑

i=1

fα

(
γ2

i

) 1
σi

(
uT

i yδ
)
wi,

and

�H =
1
2

n∑
i=1

log
(

1 +
γ2

i

α

)
,

respectively, where

fα

(
γ2

i

)
=

γ2
i

γ2
i + α

, i = 1, . . . , n,

are the filter factors for Tikhonov regularization and α = σ2/σ2
x . In the information oper-

ator method, only the generalized singular values γi larger than
√

α are considered to give
a relevant contribution to the information content. Note that α should not be regarded as
a regularization parameter whose value should be optimized; rather α is completely deter-
mined by the profile variance σ2

x which we take to be fixed. The state space spanned by the
singular vectors associated with the relevant singular values gives the effective state space
accessible with the measurement (Kozlov, 1983; Rozanov, 2001). If p is the largest index
i so that

γ2
i ≥ α =

σ2

σ2
x

, i = 1, . . . , p,

then the information operator solution can be expressed as

x̂io =
p∑

i=1

fα

(
γ2

i

) 1
σi

(
uT

i yδ
)
wi.

Essentially, the filter factors of the information operator method are given by

fα

(
γ2

i

)
=
{

γ2
i , γ2

i ≥ α,
0, γ2

i < α,

and we see that the information operator method has sharper filter factors than Tikhonov
regularization.



Sect. 4.3 Regularization parameter choice methods 121

4.3 Regularization parameter choice methods

Under assumptions (4.20), the Bayesian approach is equivalent to Tikhonov regulariza-
tion in the sense that the maximum a posteriori estimator simultaneously minimizes the
potential

V
(
x | yδ

)
=

1
σ2

∥∥yδ − Kx
∥∥2 +

1
σ2
x

‖Lx‖2
,

and the Tikhonov function

Fα (x) = σ2V
(
x | yδ

)
=
∥∥yδ − Kx

∥∥2 + α ‖Lx‖2
, α =

σ2

σ2
x

.

When the profile variance σ2
x is unknown, it seems to be justified to ask for a reliable

estimator σ̂2
x of σ2

x , or equivalently, for a plausible estimator α̂ of α. For this reason, in
statistical inversion theory, a regularization parameter choice method can be regarded as
an approach for estimating σ2

x .

4.3.1 Expected error estimation method

In a semi-stochastic setting, the expected error estimation method has been formulated
in the following way: given the exact profile x†, compute the optimal regularization pa-
rameter αopt as the minimizer of the expected error E{

∥∥x† − xδ
α

∥∥2}, with xδ
α being the

Tikhonov solution of regularization parameter α. In statistical inversion theory, an equiv-
alent formulation may read as follows: given the covariance matrix of the true state Cxt,
compute the profile variance σ2

x as the minimizer of the expected error

E
{
‖E‖2

}
= trace

(
(In − A)Cxt (In − A)T

)
+ σ2 trace

(
ĜĜT

)
, (4.43)

where the a priori covariance matrix in the expressions of Ĝ and A is given by Cx =
σ2
xCnx. If the covariance matrix of the true state is expressed as Cxt = σ2

xtCnx, then the
minimization of the expected error (4.43), yields σx = σxt. To prove this result under
assumptions (4.20), we take L = In, and obtain

E (α) = E
{
‖E‖2

}
= σ2

xt

n∑
i=1

[(
α

σ2
i + α

)2

+ αt

(
σi

σ2
i + α

)2
]

, αt =
σ2

σ2
xt

.

Setting E′ (α) = 0 gives

n∑
i=1

[
ασ2

i

(σ2
i + α)3

− αtσ
2
i

(σ2
i + α)3

]
= 0,

which further implies that α = αt, or equivalently that σx = σxt. Thus, the maximum a
posteriori estimator is given by x̂map = Ĝyδ with

Ĝ =
(
KT C−1

δ K + C−1
xt

)−1
KT C−1

δ . (4.44)
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The selection rule based on the minimization of (4.43) simply states that if the covariance
matrix of the true state is known, then this information should be used to construct the a
priori density.

In statistical inversion theory, the minimization of the expected error is not formulated
in terms of the profile variance (or the regularization parameter), but rather in terms of
the inverse matrix G. The resulting method, which is known as the minimum variance
method, possesses the following formulation: if the statistics of the true state is known,

E {X} = 0, E
{
XXT

}
= Cxt, (4.45)

then for the affine estimation rule x̂ = Gyδ , the matrix Ĝ minimizing the expected error

Ĝ = arg min
G

E
{∥∥∥X − GYδ

∥∥∥2} (4.46)

is given by (4.44), and the minimum variance estimator x̂mv = Ĝyδ coincides with the
maximum a posteriori estimator x̂map. To justify this claim, we look at the behavior of the
expected error when G is replaced by a candidate solution G + H. Using the result∥∥∥X − (G + H)Yδ

∥∥∥2
=
∥∥∥X − GYδ

∥∥∥2 − 2
(
X − GYδ

)T

HYδ +
∥∥∥HYδ

∥∥∥2
=
∥∥∥X − GYδ

∥∥∥2 − 2 trace
(
HYδ

(
X − GYδ

)T
)

+
∥∥∥HYδ

∥∥∥2 ,

we obtain

E
{∥∥∥X − (G + H)Yδ

∥∥∥2}
= E

{∥∥∥X − GYδ
∥∥∥2}− 2 trace

(
H E

{
Yδ
(
X − GYδ

)T
})

+ E
{∥∥∥HYδ

∥∥∥2} .

The trace term vanishes for the choice

G = Ĝ = E
{
XYδT

} (
E
{
YδYδT

})−1
, (4.47)

since

E
{
Yδ
(
X − ĜYδ

)T
}

= E
{
YδXT

}
− E

{
YδYδT

}
ĜT = 0.

Under assumptions (4.45), we find that

E
{
XYδT

}
= E

{
XXT

}
KT = CxtKT ,

whence using (4.24), (4.47) becomes

Ĝ = CxtKT
(
KCxtKT + Cδ

)−1
=
(
KT C−1

δ K + C−1
xt

)−1
KT C−1

δ .
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Hence, we have

E
{∥∥∥∥X −

(
Ĝ + H

)
Y

δ
∥∥∥∥2
}

= E
{∥∥∥X − ĜY

δ
∥∥∥2}+ E

{∥∥∥HYδ
∥∥∥2}

≥ E
{∥∥∥X − ĜY

δ
∥∥∥2}

for any H ∈ R
n×m, and therefore, E{

∥∥X − GYδ
∥∥2} is minimal for G = Ĝ.

The minimum variance estimator minimizes the expected error, which represents the
trace of the a posteriori covariance matrix. Instead of minimizing the trace of the a pos-
teriori covariance matrix we may formulate a minimization problem involving the entire a
posteriori covariance matrix. For this purpose, we define the random total error

E = X − GYδ = (In − GK)X − GΔ,

for some G ∈ R
n×m. The covariance matrices of the smoothing and noise errors Es =

(In − GK)X and En = −GΔ, can be expressed in terms of the matrix G, as

Ces = (In − GK)Cxt (In − GK)T

and
Cen = GCδGT ,

respectively. Then, it is readily seen that the minimizer of the error covariance matrix

Ĝ = arg min
G

(Ces + Cen) , (4.48)

solves the equation

∂

∂G

(
Cxt − CxtKT GT − GKCxt + GKCxtKT GT + GCδGT

)
= 0 (4.49)

and is given by (4.44).
Because in statistical inversion theory, the conventional expected error estimation

method is not beneficial, we design a regularization parameter choice method by look-
ing only at the expected value of the noise error. Under assumptions (4.20), the noise error
covariance matrix is given by (cf. (3.38))

Cen = σ2ĜT Ĝ = σ2WΣnαWT ,

with

Σnα =

[
diag

((
γ2

i

γ2
i + α

1
σi

)2
)

n×n

]
,

and the expected value of the noise error (cf. (3.41)),

E
{
‖En‖2

}
= trace (Cen) = σ2

n∑
i=1

(
γ2

i

γ2
i + α

1
σi

)2

‖wi‖2
,
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is a decreasing function of α. To improve the degree of freedom for signal we need to
chose a small value of the regularization parameter. But when the regularization parameter
is too small, the noise error may explode. Therefore, we select the smallest regularization
parameter so that the expected value of the noise error is below a specific level. Recalling
that x is the deviation of the retrieved profile from the a priori profile xa, we define the
regularization parameter for noise error estimation α̂ne as the solution of the equation

E
{
‖En‖2

}
= εn ‖xa‖2

,

for some relative error level εn. In atmospheric remote sensing, the expected noise error
estimation method has been successfully applied for ozone retrieval from nadir sounding
spectra measured by the Tropospheric Emission Spectrometer (TES) on the NASA Aura
platform (Steck, 2002).

4.3.2 Discrepancy principle

In a semi-stochastic setting, the discrepancy principle selects the regularization parameter
as the solution of the equation ∥∥rδ

α

∥∥2 = τmσ2. (4.50)

Under assumptions (4.20), equation (4.50) reads as

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= τmσ2, (4.51)

with the convention γi = 0 for i = n + 1, . . . , m.
The regularization parameter choice method (4.50) with τ = 1 is known as the con-

strained least squares method (Hunt, 1973; Trussel, 1983; Trussel and Civanlar, 1984).
It has been observed and reported by a number of researchers, e.g., Demoment (1989),
that the constrained least squares method yields an oversmooth solution. To ameliorate
this problem, Wahba (1983), and Hall and Titterington (1987) proposed, in analogy to re-
gression, the equivalent degree of freedom method. In a stochastic setting, this method
takes into account that the expected value of the residual is equal to the trace of the matrix
Im − Â, that is, (cf. (4.27) and (4.29))

E
{(

Yδ − KX̂
)T

C−1
δ

(
Yδ − KX̂

)}
= trace

(
Im − Â

)
.

The resulting equation for computing the regularization parameter is then given by(
yδ − Kx̂

)T
C−1

δ

(
yδ − Kx̂

)
= trace

(
Im − Â

)
,

or equivalently, by

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

= σ2
m∑

i=1

α

γ2
i + α

.
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On the other hand, the random variable V̂ , defined by (4.23), is Chi-square distributed
with m degrees of freedom. In this regard, we may choose the regularization parameter as
the solution of the equation(

yδ − Kx̂
)T

C−1
δ

(
yδ − Kx̂

)
+ x̂T C−1

x x̂ = m,

that is,
m∑

i=1

(
α

γ2
i + α

)(
uT

i yδ
)2

= mσ2.

As compared to (4.51), the factors multiplying the Fourier coefficients uT
i yδ converge

more slowly to zero as α tends to zero, and therefore, this selection rule yields a larger
regularization parameter than the discrepancy principle with τ = 1.

4.3.3 Hierarchical models

In the Bayesian framework, all unknown parameters of the model are included in the re-
trieval and this applies also for parameters describing the a priori density. The resulting
model is then known as hierarchical or hyperpriori model (Kaipio and Somersalo, 2005).

For the a priori covariance matrix Cx = σ2
xCnx, we suppose that the a priori density

is conditioned on the knowledge of σx, i.e.,

pa (x | σx) =
1√

(2πσ2
x)

n det (Cnx)
exp
(
− 1

2σ2
x

xT C−1
nx x
)

. (4.52)

For the parameter σx, we assume the Gaussian density

pa (σx) =
1√

2π�σx

exp
(
− 1

2�σ2
x

(σx − σ̄x)
2

)
,

where the mean σ̄x and the variance �σ2
x are considered to be known. The joint probability

density of X and σx is then given by

pa (x, σx) = pa (x | σx) pa (σx)

∝ 1

(σ2
x)

n
2

exp
(
− 1

2σ2
x

xT C−1
nx x − 1

2�σ2
x

(σx − σ̄x)
2

)
,

the Bayes formula conditioned on the data Yδ = yδ takes the form

p
(
x, σx | yδ

)
∝ 1

(σ2
x)

n
2

exp
(
−1

2
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
− 1

2σ2
x

xT C−1
nx x − 1

2�σ2
x

(σx − σ̄x)
2

)
,

and the maximum a posteriori estimators x̂ and σ̂x are found by minimizing the a posteriori
potential

V
(
x, σx | yδ

)
=
(
yδ − Kx

)T
C−1

δ

(
yδ − Kx

)
+

1
σ2
x

xT C−1
nx x +

1
�σ2

x

(σx − σ̄x)
2 + n log σ2

x .
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4.3.4 Maximum likelihood estimation

In the Bayes theorem

p
(
x | yδ

)
=

p
(
yδ | x

)
pa (x)

p (yδ)
, (4.53)

the denominator p
(
yδ
)

gives the probability that the data Yδ = yδ is observed. The
marginal density p

(
yδ
)

is obtained by integrating the joint probability density p
(
x,yδ

)
with respect to x, that is,

p
(
yδ
)

=
∫

Rn

p
(
x,yδ

)
dx =

∫
Rn

p
(
yδ | x

)
pa (x) dx. (4.54)

By (4.53) and (4.54), we see that p
(
x | yδ

)
integrates to 1 as all legitimate probability

densities should and that the marginal density p
(
yδ
)

is nothing more than a normalization
constant. Despite of this fact, p

(
yδ
)

plays an important role in the design of regularization
parameter choice methods and in particular, of the maximum likelihood estimation.

Assuming that the likelihood density p
(
yδ | x

)
and the a priori density pa (x) depend

on additional parameters, which can be cast in the form of a parameter vector θ, we express
the marginal density p

(
yδ; θ

)
as

p
(
yδ; θ

)
=
∫

Rn

p
(
yδ | x; θ

)
pa (x; θ) dx. (4.55)

The marginal density p
(
yδ; θ

)
is also known as the marginal likelihood function and the

maximum likelihood estimator θ̂ is defined by

θ̂ = arg max
θ

log p
(
yδ; θ

)
.

Let us derive the maximum likelihood estimator for Gaussian densities with the co-
variance matrices (4.20) when σ2 and α = σ2/σ2

x are unknown, that is, when θ is of the
form θ = [θ1, θ2]

T with θ1 = σ2 and θ2 = α. The a priori density pa
(
x; σ2, α

)
and the

conditional probability density p
(
yδ | x;σ2

)
are given by (cf. (4.9) and (4.10))

pa
(
x; σ2, α

)
=

1√
(2πσ2)n det

(
(αLT L)−1

) exp
(
− α

2σ2
‖Lx‖2

)

and

p
(
yδ | x; σ2

)
=

1√
(2πσ2)m exp

(
− 1

2σ2

∥∥yδ − Kx
∥∥2) , (4.56)

respectively. Taking into account that∥∥yδ − Kx
∥∥2 + α ‖Lx‖2 = (x − x̂)T (KT K + αLT L

)
(x − x̂) + yδT

(
Im − Â

)
yδ,
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where x̂ = Ĝyδ and Â = KĜ, we express the integrand in (4.55) as

p
(
yδ | x;σ2

)
pa
(
x;σ2, α

)
=

1√
(2πσ2)n+m det

(
(αLT L)−1

) exp
(
− 1

2σ2
(x − x̂)T (KT K + αLT L

)
(x − x̂)

)

× exp
(
− 1

2σ2
yδT

(
Im − Â

)
yδ

)
.

Using the normalization condition∫
Rn

exp
(
−1

2
(x − x̂)T

[
σ2
(
KT K + αLT L

)−1
]−1

(x − x̂)
)

dx

=
√

(2πσ2)n det
(
(KT K + αLT L)−1

)
we obtain

p
(
yδ; σ2, α

)
=
∫

Rn

p
(
yδ | x;σ2

)
pa
(
x;σ2, α

)
dx

=

√√√√√ det
(
(KT K + αLT L)−1

)
(2πσ2)m det

(
(αLT L)−1

) exp
(
− 1

2σ2
yδT

(
Im − Â

)
yδ

)
.

Taking the logarithm and using the identity

det
((

KT K + αLT L
)−1
)

det
(
(αLT L)−1

) = det
((

KT K + αLT L
)−1

αLT L
)

= det (In − A) ,

yields

log p
(
yδ; σ2, α

)
= −m

2
log
(
2πσ2

)
+

1
2

log (det (In − A)) − 1
2σ2

yδT
(
Im − Â

)
yδ. (4.57)

Computing the derivative of (4.57) with respect to σ2 and setting it equal to zero gives

σ̂2 =
1
m

yδT
(
Im − Â

)
yδ. (4.58)

Substituting (4.58) back into (4.57), and using the result

det (In − A) = det
(
Im − Â

)
=

n∏
i=1

α

γ2
i + α

,

we find that

log p
(
yδ | σ̂2, α

)
= −m

2

[
log
(
yδT

(
Im − Â

)
yδ
)
− 1

m
log
(

det
(
Im − Â

))]
+ c,
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where c does not depend on α. Thus, the regularization parameter α̂mle which maximizes
the log of the marginal likelihood function also minimizes the maximum likelihood func-
tion

λδ
α =

yδT
(
Im − Â

)
yδ

m

√
det
(
Im − Â

) ,

and we indicate this situation by writing

α̂mle = arg min
α

λδ
α.

The numerical simulations performed in the preceding chapter have shown that the
maximum likelihood estimation is superior to the generalized cross-validation method in
the sense that the minimum of the objective function is not very flat and the estimated
regularization parameter is closer to the optimum.

4.3.5 Expectation minimization

The Expectation Minimization (EM) algorithm is an alternative to the maximum likelihood
estimation in which the negative of the log of the marginal likelihood function is minimized
by an iterative approach. The formulation of the expected minimization as a regularization
parameter choice method has been provided by Fitzpatrick (1991), while a very general
development can be found in Dempster et al. (1977), and McLachlan and Krishnan (1997).
In this section we present a version of the EM algorithm by following the analysis of Vogel
(2002).

Taking into account that the a posteriori density p
(
x | yδ; θ

)
is normalized,∫

Rn

p
(
x | yδ; θ

)
dx = 1, (4.59)

and representing the joint probability density p
(
x,yδ; θ

)
as

p
(
x,yδ; θ

)
= p
(
x | yδ; θ

)
p
(
yδ; θ

)
,

we see that for any fixed θ0, the negative of the log of the marginal likelihood function can
be expressed as

− log p
(
yδ; θ

)
= − log p

(
yδ; θ

) ∫
Rn

p
(
x | yδ; θ0

)
dx

= −
∫

Rn

p
(
x | yδ; θ0

)
log p

(
yδ; θ

)
dx

= −
∫

Rn

p
(
x | yδ; θ0

)
log

(
p
(
x,yδ;θ

)
p (x | yδ; θ)

)
dx

= Q
(
yδ, θ,θ0

)
− H

(
yδ, θ, θ0

)
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with
Q
(
yδ,θ, θ0

)
= −

∫
Rn

p
(
x | yδ;θ0

)
log p

(
x,yδ;θ

)
dx

and
H
(
yδ, θ, θ0

)
= −

∫
Rn

p
(
x | yδ; θ0

)
log p

(
x | yδ; θ

)
dx.

To evaluate the difference

H
(
yδ, θ, θ0

)
− H

(
yδ, θ0,θ0

)
= −

∫
Rn

p
(
x | yδ; θ0

)
log

(
p
(
x | yδ; θ

)
p (x | yδ; θ0)

)
dx,

we use the Jensen inequality∫
ϕ (g (x)) f (x) dx ≥ ϕ

(∫
g (x) f (x) dx

)
for the convex function ϕ (u) = − log u, that is,

−
∫

Rn

p
(
x | yδ; θ0

)
log

(
p
(
x | yδ; θ

)
p (x | yδ; θ0)

)
dx ≥ − log

(∫
Rn

p
(
x | yδ; θ

)
dx
)

= 0,

and obtain
−H

(
yδ, θ, θ0

)
≤ −H

(
yδ, θ0, θ0

)
.

Assuming that θ is such that

Q
(
yδ, θ, θ0

)
≤ Q

(
yδ, θ0, θ0

)
,

it follows that
− log p

(
yδ; θ

)
≤ − log p

(
yδ; θ0

)
.

The EM algorithm seeks to minimize − log p
(
yδ; θ

)
by iteratively applying the fol-

lowing two steps:

(1) Expectation step. Calculate the function Q
(
yδ, θ, θ̂k

)
for the a posteriori density

under the current estimator θ̂k,

Q
(
yδ, θ, θ̂k

)
= −

∫
Rn

p
(
x | yδ; θ̂k

)
log
(
p
(
yδ | x; θ

)
pa (x; θ)

)
dx.

(2) Minimization step. Find the parameter vector θ̂k+1 which minimizes this function,
that is,

θ̂k+1 = arg min
θ

Q
(
yδ, θ, θ̂k

)
.

Two main peculiarities of the EM algorithm can be evidenced:

(1) Even if the algorithm has a stable point, there is no guarantee that this stable point
is a global minimum of − log p

(
yδ;θ

)
, or even a local minimum. If the function

Q
(
yδ, θ,θ′) is continuous, convergence to a stationary point of − log p

(
yδ;θ

)
is

guaranteed.
(2) The solution generally depends on the initialization.
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To illustrate how the EM algorithm works, we consider Gaussian densities with the covari-
ance matrices (4.20), and choose the parameter vector θ as θ = [θ1, θ2]

T with θ1 = σ2
x

and θ2 = σ2. The a priori density pa
(
x; σ2

x

)
and the conditional probability density

p
(
yδ | x; σ2

)
are given by (4.52) and (4.56), respectively. Using the results

∂

∂σ2
x

log
(
p
(
yδ | x; σ2

)
pa
(
x; σ2

x

))
= − n

2σ2
x

+
1

2σ4
x

xT C−1
nx x,

∂

∂σ2
log
(
p
(
yδ | x; σ2

)
pa
(
x; σ2

x

))
= − m

2σ2
+

1
2σ4

∥∥yδ − Kx
∥∥2 ,

we deduce that the EM iteration step yields the recurrence relations

σ̂2
xk+1 =

1
n

∫
Rn

xT C−1
nx x p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx, (4.60)

σ̂2
k+1 =

1
m

∫
Rn

∥∥yδ − Kx
∥∥2 p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx. (4.61)

To compute the n-dimensional integrals in (4.60) and (4.61) we may use the Monte Carlo
method (Tarantola, 2005). As the a posteriori density under the current estimator is Gaus-
sian, the integration process involves the following steps:

(1) for σ̂2
xk and σ̂2

k, compute the maximum a posteriori estimator x̂k and the a posteriori
covariance matrix Ĉxk;

(2) generate a random sample {xki}i=1,N of a Gaussian distribution with mean vector x̂k

and covariance matrix Ĉxk;
(3) estimate the integrals as∫

Rn

xT C−1
nx x p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx ≈ 1

N

N∑
i=1

xT
kiC

−1
nx xki,

∫
Rn

∥∥yδ − Kx
∥∥2 p

(
x | yδ; σ̂2

xk, σ̂2
k

)
dx ≈ 1

N

N∑
i=1

∥∥yδ − Kxki

∥∥2 .

This integration process is quite demanding, and as a result, the method may become very
time-consuming.

4.3.6 A general regularization parameter choice method

In this section we present a general technique for constructing regularization parameter
choice methods in statistical inversion theory. Our analysis follows the treatment of Neu-
maier (1998) and enables us to introduce the generalized cross-validation method and the
maximum likelihood estimation in a natural way.

Assuming Gaussian densities with the covariance matrices (4.20) and considering a
generalized singular value decomposition of the matrix pair (K,L), i.e., K = UΣ1W−1

and L = VΣ2W−1, we express the covariance matrix of the data Yδ as (cf. (4.24))

E
{
YδYδT

}
= KCxKT + Cδ = σ2

xK
(
LT L

)−1
KT + σ2Im = UΣyUT ,
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where

Σy = σ2
xΣ1

(
ΣT

2 Σ2

)−1
ΣT

1 + σ2Im

=

[
diag

(
σ2
xγ

2
i + σ2

)
n×n

0
0 diag

(
σ2
)
(m−n)×(m−n)

]
.

Next, we define the scaled data
Ȳδ = UT Yδ,

and observe that Ȳδ has a diagonal covariance matrix, which is given by

E
{
ȲδȲδT

}
= E

{
UT YδYδT U

}
= Σy.

If σx and σ correctly describe the covariance matrix of the true state and the instrumental
noise covariance matrix, respectively, we must have

E
{
Ȳ δ2

i

}
= σ2

xγ
2
i + σ2, i = 1, . . . , m, (4.62)

where Ȳ δ
i = uT

i Yδ for i = 1, . . . , m, and γi = 0 for i = n + 1, . . . , m. If σx and σ are
unknown, we can find the estimators σ̂x and σ̂ from the equations

E
{
Ȳ δ2

i

}
= σ̂2

xγ
2
i + σ̂2, i = 1, . . . , m. (4.63)

However, since only one realization of the random vector Ȳδ is known, the calculation
of these estimators may lead to erroneous results and we must replace (4.63) by another
selection criterion. For this purpose, we set (cf. (4.62))

ai (θ) = θ1γ
2
i + θ2, (4.64)

with θ = [θ1, θ2]
T , θ1 = σ2

x and θ2 = σ2, and define the function

f
(
Ȳδ, θ

)
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
Ȳ δ2

i − ai (θ)
]
,

with ψ being a strictly concave function. The expected value of f is given by

E
{
f
(
Ȳδ,θ

)}
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
E
{
Ȳ δ2

i

}
− ai (θ)

]
,

whence, defining the estimator θ̂ through the relation

E
{
Ȳ δ2

i

}
= ai

(
θ̂
)

, i = 1, . . . , m, (4.65)

E {f} can be expressed as

E
{
f
(
Ȳδ, θ

)}
=

m∑
i=1

ψ (ai (θ)) + ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
.
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Then, we obtain

E
{
f
(
Ȳδ, θ

)}
− E

{
f
(
Ȳδ, θ̂

)}
=

m∑
i=1

ψ (ai (θ)) − ψ
(
ai

(
θ̂
))

+ ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
.

Considering the second-order Taylor expansion

ψ (ai (θ))−ψ
(
ai

(
θ̂
))

+ψ′ (ai (θ))
[
ai

(
θ̂
)
− ai (θ)

]
= −1

2
ψ′′ (ξi)

[
ai

(
θ̂
)
− ai (θ)

]2
with some ξi between ai (θ) and ai

(
θ̂
)

, and taking into account that ψ is strictly concave,

we deduce that each term in the sum is non-negative and vanishes only for ai (θ) = ai

(
θ̂
)

.
Thus, we have

E
{
f
(
Ȳδ, θ

)}
≥ E

{
f
(
Ȳδ, θ̂

)}
,

for all θ. If, in addition, θ̂ is determined uniquely by (4.65), then θ̂ is the unique global
minimizer of E{f

(
Ȳδ, θ

)
}, and we propose a regularization parameter choice method in

which the estimator θ̂ is computed as

θ̂ = arg min
θ

E
{
f
(
Ȳδ,θ

)}
. (4.66)

Different regularization parameter choice methods can be obtained by choosing the
concave function ψ in an appropriate way.

Generalized cross-validation

For the choice
ψ (a) = 1 − 1

a
,

we obtain

E
{
f
(
Ȳδ, θ

)}
= m +

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)2

− 2
ai (θ)

]
. (4.67)

As θ̂ is the unique global minimizer of E{f
(
Ȳδ, θ

)
}, the gradient

∇E
{
f
(
Ȳδ, θ

)}
= −2

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)3

− 1
ai (θ)2

]
∇ai (θ)

vanishes at θ̂. Thus,
θ̂

T
∇E
{

f
(
Ȳδ, θ̂

)}
= 0, (4.68)

and since (cf. (4.64))
θT∇ai (θ) = ai (θ) ,
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we deduce that
m∑

i=1

⎡⎢⎣E {Ȳ δ2
i

}
ai

(
θ̂
)2 − 1

ai

(
θ̂
)
⎤⎥⎦ = 0. (4.69)

Equation (4.69) together with the relation

ai

(
θ̂
)

= σ̂2
xγ

2
i + σ̂2,

gives

σ̂2
x =

p (α̂)
q (α̂)

, σ̂2 = α̂ σ̂2
x , (4.70)

where

p (α) =
m∑

i=1

E
{
Ȳ δ2

i

}
(γ2

i + α)2

and

q (α) =
m∑

i=1

1
γ2

i + α
.

From (4.70), it is apparent that σ̂2
x and σ̂2 are expressed in terms of the single parameter α̂,

and by (4.67) and (4.69), we find that

−E
{

f
(
Ȳδ, θ̂

)}
+ m =

m∑
i=1

1

ai

(
θ̂
) =

1
σ̂2
x

q (α̂) =
q (α̂)2

p (α̂)
. (4.71)

Now, if α̂ minimizes the function

υα =
p (α)
q (α)2

=

m∑
i=1

(
α

γ2
i + α

)2

E
{
Ȳ δ2

i

}
(

m∑
i=1

α

γ2
i + α

)2 ,

then by (4.71), α̂ maximizes −E {f}, or equivalently, α̂ minimizes E {f}. In practice, the
expectation E{Ȳ δ2

i } cannot be computed since only a single realization ȳδ
i = uT

i yδ of Ȳ δ
i

is known. To obtain a practical regularization parameter choice method, instead of υα we
consider the function

υδ
α =

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

(
m∑

i=1

α

γ2
i + α

)2 =

∥∥yδ − Kx̂
∥∥2[

trace
(
Im − Â

)]2 ,

which represents the generalized cross-validation function discussed in Chapter 3.
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Note that for ψ (a) = (1 − 1/aq)/q with q > −1 and q �= 0, we obtain

E
{
f
(
Ȳδ, θ

)}
=

m

q
+

m∑
i=1

⎡⎢⎢⎣ E
{
Ȳ δ2

i

}
ai (θ)q+1 −

1 +
1
q

ak (θ)q

⎤⎥⎥⎦ ,

and we are led to a generalization of the cross-validation function of the form

υδ
αq =

m∑
i=1

(
α

γ2
i + α

)q+1 (
uT

i yδ
)2q

[
m∑

i=1

(
α

γ2
i + α

)q
]q+1 .

Maximum likelihood estimation

For the choice
ψ (a) = log a,

we obtain

E
{
f
(
Ȳδ, θ

)}
= −m +

m∑
i=1

[
E
{
Ȳ δ2

i

}
ai (θ)

+ log ai (θ)

]
, (4.72)

and the minimization condition (4.68) yields

m∑
i=1

E
{
Ȳ δ2

i

}
ai

(
θ̂
) = m. (4.73)

As before, equation (4.73) implies that σ̂2
x and σ̂2 can be expressed in terms of the single

parameter α̂ through the relations

σ̂2
x =

1
m

m∑
i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂
, σ̂2 = α̂ σ̂2

x , (4.74)

and we find that

E
{

f
(
Ȳδ, θ̂

)}
+ m log m = m log m +

m∑
i=1

log ai

(
θ̂
)

= m log m + m log σ̂2
x +

m∑
i=1

log
(
γ2

i + α̂
)

= m log

(
m∑

i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂

)
+

m∑
i=1

log
(
γ2

i + α̂
)

= m

[
log

(
m∑

i=1

E
{
Ȳ δ2

i

}
γ2

i + α̂

)
− 1

m
log

(
m∏

i=1

1
γ2

i + α̂

)]
.
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Hence, if α̂ minimizes the function

λα =

m∑
i=1

E
{
Ȳ δ2

i

}
γ2

i + α

m

√√√√ m∏
i=1

1
γ2

i + α

,

then α̂ minimizes E {f}. In practice, we replace E{Ȳ δ2
i } by (uT

i yδ)2 and minimize the
maximum likelihood function

λδ
α =

m∑
i=1

(
uT

i yδ
)2

γ2
i + α

m

√√√√ m∏
i=1

1
γ2

i + α

=
yδT

(
Im − Â

)
yδ

m

√
det
(
Im − Â

) . (4.75)

An equivalent interpretation of the maximum likelihood estimation can be given as
follows. Let us consider the scaled data Ȳδ = UT Yδ and let us compute the maximum
likelihood estimator θ̂ as

θ̂ = arg max
θ

log p
(
ȳδ; θ

)
,

with

p
(
ȳδ; θ

)
=

1√
(2π)m det

(
Σy (θ)

) exp
(
−1

2
ȳδT Σ−1

y (θ) ȳδ

)
,

and

Σy (θ) =
[

diag
(
θ1γ

2
i + θ2

)
n×n

0
0 diag (θ2)(m−n)×(m−n)

]
.

Then, taking into account that

log p
(
ȳδ; θ

)
= −1

2
ȳδT Σ−1

y (θ) ȳδ − 1
2

log
(
det Σy (θ)

)
+ c

= −1
2

[
m∑

i=1

ȳδ2
i

θ1γ2
i + θ2

+ log

(
m∏

i=1

(
θ1γ

2
i + θ2

))]
+ c,

where c does not depend on θ, we see that the maximization of log p
(
ȳδ; θ

)
is equivalent

to the minimization of f
(
Ȳδ, θ

)
as in (4.72).

4.3.7 Noise variance estimators

In a semi-stochastic setting, we have estimated the noise variance by looking at the behav-
ior of the residual norm in the limit of small α. This technique considers the solution of
the inverse problem without regularization and requires an additional computational step.
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In this section we present methods for estimating the noise variance, which do not suffer
from this inconvenience.

In the analysis of the generalized cross-validation method and the maximum likeli-
hood estimation we considered the parameter vector θ, whose components depend on the
regularization parameter α and the noise variance σ2. In fact, these methods are ideal
candidates for estimating both the regularization parameter and the noise variance.

In the the generalized cross-validation method, the second relation in (4.70) gives the
noise variance estimator

σ̂2
gcv = α̂gcv

p
(
α̂gcv

)
q
(
α̂gcv

) ≈

m∑
i=1

(
α̂gcv

γ2
i + α̂gcv

)2 (
uT

i yδ
)2

m∑
i=1

α̂gcv

γ2
i + α̂gcv

=

∥∥yδ − Kx̂
∥∥2

trace
(
Im − Â

) , (4.76)

where x̂ and Â are computed for the regularization parameter α̂gcv. The noise variance
estimator (4.76) has been proposed by Wahba (1983) and numerical experiments presented
by a number of researchers support the choice of this estimator (Fessler, 1991; Nychka,
1988; Thompson et al., 1991).

In the maximum likelihood estimation, a noise variance estimator can be constructed
by using (4.58); the result is

σ̂2
mle =

1
m

yδT
(
Im − Â

)
yδ,

where Â is computed for the regularization parameter α̂mle. Numerical experiments where
this estimator is tested has been reported by Galatsanos and Katsaggelos (1992).

An estimator which is similar to (4.76) can be derived in the framework of the unbi-
ased predictive risk estimator method. This selection criterion chooses the regularization
parameter α̂pr as the minimizer of the function

πδ
α =

m∑
i=1

(
α

γ2
i + α

)2 (
uT

i yδ
)2

+ 2σ2
n∑

i=1

γ2
i

γ2
i + α

− mσ2.

Taking the derivative of πδ
α with respect to α, and setting it equal to zero gives

σ2
n∑

i=1

γ2
i

(γ2
i + α)2

=
n∑

i=1

αγ2
i

(γ2
i + α)3

(
uT

i yδ
)2

. (4.77)

By straigthforward calculation we find that

trace
(
Â
(
Im − Â

))
=

n∑
i=1

αγ2
i

(γ2
i + α)2

and that

yδT
(
Im − Â

)T

Â
(
Im − Â

)
yδ =

n∑
i=1

α2γ2
i

(γ2
i + α)3

(
uT

i yδ
)2

.
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Now, taking into account that α̂pr and α̂gcv are asymptotically equivalent, equation (4.77)
can be used to estimate the noise variance; we obtain

σ̂2
pr =

yδT
(
Im − Â

)T

Â
(
Im − Â

)
yδ

trace
(
Â
(
Im − Â

)) ,

where Â is computed for the generalized cross-validation parameter α̂gcv. Since

yδ − Kx̂ =
(
Im − Â

)
yδ,

we see that this estimator is similar to (4.76); the only difference is the multiplication with
the influence matrix in both the numerator and denominator.

4.4 Marginalizing method

In a stochastic setting, a two-component data model reads as

Yδ = K1X1 + K2X2 + Δ, (4.78)

where X1 and X2 are assumed to be independent Gaussian random vectors characterized
by X1 ∼ N (0,Cx1) and X2 ∼ N (0,Cx2). The dimensions of the random vectors X1 and
X2 are n1 and n2, respectively, and we have n1 + n2 = n. The maximum a posteriori
estimator x̂ of the state

X =
[

X1

X2

]
is obtained from the Bayes theorem

p
(
x1,x2 | yδ

)
=

p
(
yδ | x1,x2

)
pa (x1,x2)

p (yδ)
=

p
(
yδ | x1,x2

)
pa (x1) pa (x2)

p (yδ)
, (4.79)

where the a priori densities and the likelihood density are given by

pa (xi) ∝ exp
(
−1

2
xT

i C−1
xi xi

)
, i = 1, 2, (4.80)

and

p
(
yδ | x1,x2

)
∝ exp

(
−1

2
(
yδ − K1x1 − K2x2

)T
C−1

δ

(
yδ − K1x1 − K2x2

))
,

(4.81)
respectively.

To show the equivalence between classical regularization and statistical inversion, we
assume Gaussian densities with covariance matrices of the form

Cδ = σ2Im, Cxi = σ2
xiCnxi = σ2

xi

(
LT

i Li

)−1
, i = 1, 2, (4.82)
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and write the penalty term in the expression of σ2V
(
x1,x2 | yδ

)
as

σ2

(
1

σ2
x1

‖L1x1‖2 +
1

σ2
x2

‖L2x2‖2

)
= α

[
ω ‖L1x1‖2 + (1 − ω) ‖L2x2‖2

]
.

Then, it is readily seen that the regularization parameter α and the weighting factor ω are
given by

α =
σ2

σ2
x

, ω =
σ2
x

σ2
x1

, (4.83)

where
1
σ2
x

=
1

σ2
x1

+
1

σ2
x2

.

In the framework of classical regularization theory we discussed multi-parameter reg-
ularization methods for computing α and ω, or equivalently, for estimating σx1 and σx2. An
interesting situation occurs when the statistics of X2 is known, and only σx1 is the param-
eter of the retrieval. In this case we can reduce the dimension of the minimization problem
by using the so-called marginalizing technique. The idea is to formulate a minimization
problem for the first component of the state vector by taking into account the statistics of
the second component. The maximum a posteriori estimator for the first component of the
state vector is defined as

x̂1 = arg max
x1

p
(
x1 | yδ

)
.

To compute the marginal a posteriori density p
(
x1 | yδ

)
, we must integrate the density

p
(
x1,x2 | yδ

)
over x2,

p
(
x1 | yδ

)
=
∫

Rn2

p
(
x1,x2 | yδ

)
dx2 =

pa (x1)
p (yδ)

∫
Rn2

p
(
yδ | x1,x2

)
pa (x2) dx2,

(4.84)
where the a priori densities and the likelihood density are given by (4.80) and (4.81), re-
spectively. To evaluate the integral, we have to arrange the argument of the exponential
function as a quadratic function in x2. For this purpose, we employ the technique which
we used to derive the mean vector and the covariance matrix of the a posteriori density
p
(
x | yδ

)
in the one-parameter case, that is,[(

yδ − K1x1

)
− K2x2

]T
C−1

δ

[(
yδ − K1x1

)
− K2x2

]
+ xT

2 C−1
x2 x2

= (x2 − x̄2)
T Ĉ−1

x2 (x2 − x̄2) +
(
yδ − K1x1

)T (
K2Cx2KT

2 + Cδ

)−1 (
yδ − K1x1

)
,

with
x̄2 = G2

(
yδ − K1x1

)
, G2 =

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C−1
δ ,

and
Ĉx2 =

(
KT

2 C−1
δ K2 + C−1

x2

)−1
.

Using the normalization condition for the Gaussian density

exp
(
−1

2
(x2 − x̄2)

T Ĉ−1
x2 (x2 − x̄2)

)
,
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we obtain

p
(
x1 | yδ

)
∝ exp

(
−1

2
(
yδ − K1x1

)T (
K2Cx2KT

2 + Cδ

)−1 (
yδ − K1x1

)
− 1

2
xT

1 C−1
x1 x1

)
,

and it is apparent that x̂1 is given by (4.12) and (4.13), with K replaced by K1 and Cδ

replaced by
Cδy = Cδ + K2Cx2KT

2 . (4.85)

Thus, when retrieving the first component of the state vector we may interpret the data
error covariance matrix as being the sum of the instrumental noise covariance matrix plus
a contribution due to the second component (Rodgers, 2000).

Actually, the marginalizing method can be justified more simply as follows: express
the data model (4.78) as

Yδ = K1X1 + Δy,

where the random data error Δy is given by

Δy = K2X2 + Δ,

and use the result E{Δy} = 0 to conclude that the covariance matrix Cδy = E{ΔyΔT
y }

is given by (4.85). In the state space, the marginalizing method yields the random model
parameter error

Emp = −ĜK2X2,

characterized by
E
{
Emp

}
= 0, Cemp = ĜK2Cx2KT

2 ĜT .

Finally, we present a general derivation of the marginalizing method, which is not
restricted to a stochastic setting. The maximum a posteriori estimator, written explicitly as[

x̂1

x̂2

]
=
([

KT
1

KT
2

]
C−1

δ [K1,K2] +
[

C−1
x1 0
0 C−1

x2

])−1 [
KT

1

KT
2

]
C−1

δ yδ

=
[

KT
1 C−1

δ K1 + C−1
x1 KT

1 C−1
δ K2

KT
2 C−1

δ K1 KT
2 C−1

δ K2 + C−1
x2

]−1 [
KT

1

KT
2

]
C−1

δ yδ, (4.86)

is equivalent to the Tikhonov solution under assumptions (4.82). Setting

A = KT
1 C−1

δ K1 + C−1
x1 , B = KT

1 C−1
δ K2, C = KT

2 C−1
δ K2 + C−1

x2 ,

we compute the inverse matrix in (4.86) by using the following result (Tarantola, 2005): if
A and C are symmetric matrices, then[

A B
BT C

]−1

=
[

Ã B̃
B̃T C̃

]
,

with

Ã =
(
A − BC−1BT

)−1
, C̃ =

(
C − BT A−1B

)−1
, B̃ = −ÃBC−1 = −A−1BC̃.
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The first component of the state vector is then given by

x̂1 = ÃKT
1 C−1

δ yδ − ÃBC−1KT
2 C−1

δ yδ = Ã
(
KT

1 − BC−1KT
2

)
C−1

δ yδ.

By straightforward calculation we obtain

Ã
(
KT

1 − BC−1KT
2

)
C−1

δ

=
(
A − BC−1BT

)−1 (
KT

1 − BC−1KT
2

)
C−1

δ

=
{
KT

1 C− 1
2

δ

[
Im − C− 1

2
δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ

]
C− 1

2
δ K1

+C−1
x1

}
KT

1 C− 1
2

δ

[
Im − C− 1

2
δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ

]
C− 1

2
δ

and

Im − C− 1
2

δ K2

(
KT

2 C−1
δ K2 + C−1

x2

)−1
KT

2 C− 1
2

δ = C
1
2
δ

(
Cδ + K2Cx2KT

2

)−1
C

1
2
δ ,

which then yields

x̂1 =
(
KT

1 C−1
δy

K1 + C−1
x1

)−1

KT
1 C−1

δy
yδ,

with Cδy as in (4.85). This derivation clearly shows that the solution for the full state vector
will give the same results for each of the partial state vectors as their individual solutions.



5

Iterative regularization methods
for linear problems

The iterative solution of linear systems of equations arising from the discretization of ill-
posed problems is the method of choice when the dimension of the problem is so large that
factorization of the matrix is either too time-consuming or too memory-demanding.

The ill-conditioning of the coefficient matrix for these linear systems is so extremely
large that some sort of regularization is needed to guarantee that the computed solution is
not dominated by errors in the data. In the framework of iterative methods, the regulariz-
ing effect is obtained by stopping the iteration prior to convergence to the solution of the
linear system. This form of regularization is referred to as regularization by truncated iter-
ation. The idea behind regularization by truncated iteration is that in the first few iteration
steps, the iterated solution includes the components [(uT

i yδ)/σi]vi corresponding to the
largest singular values and approaches a regularized solution. As the iteration continues,
the iterated solution is dominated by amplified noise components and converges to some
undesirable solution (often the least squares solution). This phenomenon is referred to as
semi-convergence. In this context, it is apparent that the iteration index plays the role of the
regularization parameter, and a stopping rule plays the role of a parameter choice method.

In this chapter we first review some classical iterative methods and then focus on the
conjugate gradient method and a related algorithm based on Lanczos bidiagonalization.
The classical iterative methods to be discussed include the Landweber iteration and semi-
iterative methods.

5.1 Landweber iteration

The Landweber iteration is based on the transformation of the normal equation

KT Kx = KT yδ

into an equivalent fixed point equation

x = x + KT
(
yδ − Kx

)
,
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that is
xδ

k = xδ
k−1 + KT

(
yδ − Kxδ

k−1

)
, k = 1, 2, . . . . (5.1)

The slight inconvenience with the Landweber iteration is that it requires the norm of
K to be less than or equal to one, otherwise the method either diverges or converges too
slowly. If this is not the case, we introduce a relaxation parameter χ, chosen as 0 < χ ≤
‖K‖−1, to obtain

xδ
k = xδ

k−1 + χ2KT
(
yδ − Kxδ

k−1

)
, k = 1, 2, . . . .

This construction has the same effect as multiplying the equation Kx = yδ by χ and
iterating with (5.1). In the present analysis we assume that the problem has been scaled
appropriately, so that ‖K‖ ≤ 1, and drop the relaxation parameter χ.

The initial guess xδ
0 = xa plays the same role as in Tikhonov regularization: it selects

the particular solution which will be obtained in the case of ambiguity. The iterate xδ
k can

be expressed non-recursively through

xδ
k = Mkxδ

0 +
k−1∑
l=0

MlKT yδ, (5.2)

where
M = In − KT K.

This result can be proven by induction. For k = 1, there holds

xδ
1 = xδ

0 + KT
(
yδ − Kxδ

0

)
= Mxδ

0 + KT yδ,

while under assumption (5.2), we obtain

xδ
k+1 = xδ

k + KT
(
yδ − Kxδ

k

)
= Mxδ

k + KT yδ = Mk+1xδ
0 +

k∑
l=0

MlKT yδ.

To obtain more transparent results concerning the regularizing property of the Landwe-
ber iteration, we assume that xδ

0 = 0. Using the result

MlKT yδ =
n∑

i=1

(
1 − σ2

i

)l
σi

(
uT

i yδ
)
vi, l ≥ 0,

where (σi;vi,ui) is a singular system of K, we deduce that the iterate xδ
k can be expressed

as

xδ
k =

n∑
i=1

[
1 −
(
1 − σ2

i

)k] 1
σi

(
uT

i yδ
)
vi, (5.3)

and the regularized solution for the exact data vector y as

xk =
n∑

i=1

[
1 −
(
1 − σ2

i

)k] 1
σi

(
uT

i y
)
vi.
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Accounting for the expression of the exact solution x†,

x† =
n∑

i=1

1
σi

(
uT

i y
)
vi,

we find that the smoothing error norm is given by

‖esk‖2 =
∥∥x† − xk

∥∥2 =
n∑

i=1

(
1 − σ2

i

)2k 1
σ2

i

(
uT

i y
)2

. (5.4)

Since by assumption ‖K‖ ≤ 1, it follows that σi ≤ 1 for all i = 1, . . . , n, and therefore,
‖esk‖ → 0 as k → ∞. On the other hand, the noise error norm

‖enk‖2 =
∥∥xk − xδ

k

∥∥2 =
n∑

i=1

[
1 −
(
1 − σ2

i

)k]2 1
σ2

i

(
uT

i δ
)2

(5.5)

converges to ∥∥K†δ
∥∥2 =

n∑
i=1

1
σ2

i

(
uT

i δ
)2

as k → ∞. Since K possesses small singular values, the noise error is extremely large in
this limit. The noise error can be estimated by using the inequality

sup
0≤x≤1

1 −
(
1 − x2

)k
x

≤
√

k, k ≥ 1,

and the result is
‖enk‖2 ≤ kΔ2. (5.6)

From (5.4) and (5.6), we see that the smoothing error converges slowly to 0, while the
noise error is of the same order of at most

√
kΔ. For small values of k, the noise error

is negligible and the iterate xδ
k seems to converge to the exact solution x†. When

√
kΔ

reaches the order of magnitude of the smoothing error, the noise error is no longer covered
in xδ

k and the approximation changes to worse. This semi-convergent behavior requires a
reliable stopping rule for detecting the transition from convergence to divergence.

The regularizing effect of the Landweber iteration is reflected by the filter factors of
the computed solution. From (5.3), we infer that the kth iterate can be expressed as

xδ
k =

n∑
i=1

fk

(
σ2

i

) 1
σi

(
uT

i yδ
)
vi,

with the filter factors being given by

fk

(
σ2

i

)
= 1 −

(
1 − σ2

i

)k
.

For σi � 1, we have fk

(
σ2

i

)
≈ kσ2

i , while for σi ≈ 1, there holds fk

(
σ2

i

)
≈ 1. Thus,

for small values of k, the contributions of the small singular values to the solution are
effectively filtered out, and when k increases, more components corresponding to small
singular values are included in the solution. Therefore, an optimal value of k should reflect
a trade-off between accuracy and stability.
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5.2 Semi-iterative regularization methods

The major drawback of the Landweber iteration is its slow rate of convergence, this means,
too many iterations are required to reduce the residual norm to the order of the noise
level. More sophisticated methods have been developed on the basis of the so-called semi-
iterative methods.

To introduce semi-iterative methods, we consider again the Landweber iteration and
define the function gk (λ) in terms of the filter function

fk (λ) = 1 − (1 − λ)k

by the relation

gk (λ) =
1
λ

fk (λ) =
1
λ

[
1 − (1 − λ)k

]
. (5.7)

In terms of gk, the Landweber iterate reads as

xδ
k = gk

(
KT K

)
KT yδ, (5.8)

where
gk

(
KT K

)
= V

[
diag

(
gk

(
σ2

i

))
n×n

]
VT .

Evidently, gk (λ) is a polynomial of degree k − 1, which converges pointwise to 1/λ on
(0, 1] as k → ∞. This property guarantees that in the noise-free case, the regularized
solution converges to the exact solution, that is, limk→∞

∥∥xk − x†∥∥ = 0, where xk =
gk

(
KT K

)
KT y.

Any sequence of polynomials {gk}, with gk having the degree k − 1, defines a semi-
iterative method. The idea is that polynomials gk different from the one given by (5.7) may
converge faster to 1/λ, and may thus lead to accelerated Landweber methods. In the case
of semi-iterative methods, the polynomials gk are called iteration polynomials, while the
polynomials

rk (λ) = 1 − λgk (λ)

are called residual polynomials. The residual polynomials are uniformly bounded on [0, 1]
and converge pointwise to 0 on (0, 1] as k → ∞. In addition, they are normalized in the
sense that rk (0) = 1.

If the residual polynomials form an orthogonal sequence with respect to some measure
over R+, then they satisfy the three-term recurrence relation

rk (λ) = rk−1 (λ) + μk [rk−1 (λ) − rk−2 (λ)] − ωkλrk−1 (λ) , k ≥ 2. (5.9)

By virtue of (5.9) and taking into account that

xδ
k =

n∑
i=1

[
1 − rk

(
σ2

i

)] 1
σi

(
uT

i yδ
)
vi

and that

KT
(
yδ − Kxδ

k−1

)
=

n∑
i=1

[
σ2

i rk−1

(
σ2

i

)] 1
σi

(
uT

i yδ
)
vi,
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we deduce that the iterates of the associated semi-iterative method satisfy the recurrence
relation

xδ
k = xδ

k−1 + μk

(
xδ

k−1 − xδ
k−2

)
+ ωkKT

(
yδ − Kxδ

k−1

)
, k ≥ 2. (5.10)

Note that because the kth iterate does not depend only on the (k−1)th iterate, the iterative
approach (5.10) is termed semi-iterative. As in the case of the Landweber iteration, K
must be scaled so that ‖K‖ ≤ 1, and for this reason, systems of polynomials defined on
the interval [0, 1] have to be considered.

The Chebyshev method of Stiefel uses the residual polynomials (Rieder, 2003)

rk (λ) =
Uk (1 − 2λ)

k + 1
,

where Uk are the Chebyshev polynomials of the second kind

Uk (λ) =
sin ((k + 1) arccos λ)

sin (arccos λ)
.

Due to the orthogonality of Uk in the interval [−1, 1] with respect to the weight function√
1 − λ2, it follows that the rk are orthogonal in the interval [0, 1] with respect to the

weight function
√

λ/ (1 − λ). The three-term recurrence relation reads as

xδ
k =

2k

k + 1
xδ

k−1 −
k − 1
k + 1

xδ
k−2 +

4k

k + 1
KT
(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 = xδ
0 + 2KT

(
yδ − Kxδ

0

)
.

In the Chebyshev method of Nemirovskii and Polyak (1984), the residual polynomials
are given by

rk (λ) =
(−1)k

T2k+1

(√
λ
)

(2k + 1)
√

λ
,

where Tk are the Chebyshev polynomials of the first kind

Tk (λ) = cos (k arccos λ) .

As before, the orthogonality of Tk in the interval [−1, 1] with respect to the weight function
1/
√

1 − λ2 implies the orthogonality of the rk in the interval [0, 1] with respect to the
weight function

√
λ/ (1 − λ) . The recursion of the Chebyshev method of Nemirovskii

and Polyak takes the form

xδ
k = 2

2k − 1
2k + 1

xδ
k−1 −

2k − 3
2k + 1

xδ
k−2 + 4

2k − 1
2k + 1

KT
(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 =
2
3
xδ

0 +
4
3
KT
(
yδ − Kxδ

0

)
.
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The ν-method of Brakhage (1987) uses the residual polynomials

rνk (λ) =
P

(2ν− 1
2 ,− 1

2 )
k (1 − 2λ)

P
(2ν− 1

2 ,− 1
2 )

k (1)
,

where P
(α,β)
k are the Jacobi polynomials. The parameter ν is fixed and is chosen as 0 <

ν < 1. The orthogonality of the Jacobi polynomials in the interval [−1, 1] with respect to
the weight function (1 − λ)α (1 + λ)β , where α > −1 and β > −1, yields the orthogo-
nality of the residual polynomials in the interval [0, 1] with respect to the weight function
λ2ν+1/2 (1 − λ)−1/2 . The three-term recurrence relation of the Jacobi polynomials leads
to the following recursion of the ν-method

xδ
k = xδ

k−1 + μk

(
xδ

k−1 − xδ
k−2

)
+ ωkKT

(
yδ − Kxδ

k−1

)
, k ≥ 2,

with
xδ

1 = xδ
0 + ω1KT

(
yδ − Kxδ

0

)
and

μk =
(k − 1) (2k − 3) (2k + 2ν − 1)

(k + 2ν − 1) (2k + 4ν − 1) (2k + 2ν − 3)
, k ≥ 2,

ωk = 4
(2k + 2ν − 1) (k + ν − 1)
(k + 2ν − 1) (2k + 4ν − 1)

, k ≥ 1.

5.3 Conjugate gradient method

Semi-iterative regularization methods are much more efficient than the classical Landwe-
ber iteration but require the scaling of K . The conjugate gradient method due to Hestenes
and Stiefel (1952) is scaling-free and is faster than any other semi-iterative method.

The conjugate gradient method is applied to the normal equation

KT Kx = KT yδ

of an ill-posed problem, in which case, the resulting algorithm is known as the conjugate
gradient for normal equations (CGNR). In contrast to other iterative regularization meth-
ods, CGNR is not based on a fixed sequence of polynomials {gk} and {rk}; these polyno-
mials depend on the given right-hand side. This has the advantage of a greater flexibility
of the method, but at the price of the iterates depending nonlinearly on the data,

xδ
k = gk

(
KT K,yδ

)
KT yδ.

To formulate the CGNR method we first consider a preliminary definition. If A is a
real n × n matrix and x is an element of R

n, then the kth Krylov subspace Kk (x,A) is
defined as the linear space

Kk (x,A) = span
{
x,Ax, . . . ,Ak−1x

}
.
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Using (5.8) and taking into account that gk is a polynomial of degree k−1, we deduce that
the kth iterate of any semi-iterative method belongs to the kth Krylov subspace

Kk

(
KT yδ,KT K

)
= span

{
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

}
.

If rank (K) = r, there holds

(
KT K

)k−1
KT yδ =

r∑
i=1

σ
2(k−1)+1
i

(
uT

i yδ
)
vi, k ≥ 1,

and we infer that
Kk ⊆ N (K)⊥ = span {vi}i=1,r , k ≥ 1, (5.11)

where, for notation simplification, Kk stands for Kk

(
KT yδ,KT K

)
.

The kth iterate of the CGNR method is defined as the minimizer of the residual norm
in the corresponding Krylov subspace; assuming a zero initial guess, i.e., xδ

0 = 0, we have

xδ
k = arg min

xk∈Kk

∥∥yδ − Kxk

∥∥2 . (5.12)

By virtue of (5.12) and the fact that the kth iterate of any semi-iterative belongs to Kk,
we may expect that CGNR requires the fewest iteration steps among all semi-iterative
methods. Going further, we define the kth subspace

Lk = KKk = {yk/yk = Kxk,xk ∈ Kk} , (5.13)

and in view of (5.12), we consider the minimizer

yδ
k = arg min

yk∈Lk

∥∥yδ − yk

∥∥ . (5.14)

The element yδ
k gives the best approximation of yδ among all elements of Lk, that is,

yδ
k = Pkyδ, (5.15)

where Pk is the orthogonal projection operator onto the (linear) subspace Lk. The unique-
ness of the orthogonal projection implies that yδ

k is uniquely determined and that

yδ
k = Kxδ

k. (5.16)

If {ui}i=1,k is an orthogonal basis of the (finite-dimensional) subspace Lk, then yδ
k can be

expressed as

yδ
k =

k∑
i=1

uT
i yδ

‖ui‖2 ui. (5.17)

Let us now define the vectors
sk = KT rδ

k, k ≥ 0,

with rδ
0 = yδ . As the residual vector at the kth iteration step,

rδ
k = yδ − yδ

k = (Im − Pk)yδ, k ≥ 1, (5.18)
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is orthogonal to Lk, the identity

sT
k xk =

(
KT rδ

k

)T
xk = rδT

k yk = 0, (5.19)

which holds true for all xk ∈ Kk and yk = Kxk ∈ Lk, yields

sk ⊥ Kk, k ≥ 1. (5.20)

The finite-dimensional subspaces Kk and Lk can be characterized by appropriate or-
thogonal bases. For the kth Krylov subspace we note the following result: the system
{si}i=0,k−1 is an orthogonal basis of Kk, that is,

Kk = span {si}i=0,k−1 , sT
i sj = δij ‖si‖2

, i, j = 0, . . . , k − 1. (5.21)

This assertion can be proven by induction on k (Rieder, 2003). For k = 1, the result
K1 = span {s0}, with s0 = KT yδ , is evidently true. Now, let us assume that (5.21)
holds for k, i.e., Kk = span {si}i=0,k−1, and let {ui}i=1,k be an orthogonal basis of
Lk. As Lk = KKk, {ui}i=1,k can be generated by orthogonalizing the set of vectors
{Ksi}i=0,k−1. From (5.17), we have

yδ
k =

k∑
i=1

uT
i yδ

‖ui‖2 ui = yδ
k−1 + αkuk, k ≥ 1, (5.22)

with yδ
0 = 0,

yδ
k−1 = Pk−1yδ =

k−1∑
i=1

uT
i yδ

‖ui‖2 ui,

and

αk =
uT

k yδ

‖uk‖2 . (5.23)

Then, by (5.18) and (5.22), we obtain

rδ
k = yδ − yδ

k =
(
yδ − yδ

k−1

)
− αkuk = rδ

k−1 − αkuk, k ≥ 1, (5.24)

and further,
sk = sk−1 − αkKT uk, k ≥ 1. (5.25)

For uk ∈ Lk = KKk, there exists vk ∈ Kk such that uk = Kvk, and we deduce that

KT uk = KT Kvk ∈ Kk+1. (5.26)

Since by induction hypothesis sk−1 ∈ Kk ⊂ Kk+1, (5.25) gives sk ∈ Kk+1. This result
together with the orthogonality relation (5.20) yields the (orthogonal) sum representation
Kk+1 = Kk⊕span {sk}, and the proof is finished. As dim (Kk) = k, dim (N (K)⊥) = r,
and Kk ⊆ N (K)⊥, we find that for k = r, Kr = N (K)⊥ and, in particular, that the
CGNR iterate xδ

r = arg minx∈N (K)⊥
∥∥yδ − Kx

∥∥2 is the least squares minimal norm
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solution of the equation Kx = yδ . Since xδ
r solves the normal equation KT Kx = KT yδ ,

we obtain
sr = KT rδ

r = KT
(
yδ − Kxδ

r

)
= 0.

Thus, by the CGNR method we construct a sequence of iterates which approaches the least
squares minimal norm solution, and we have to stop at some iteration step k < r in order to
obtain a reliable solution. The set of orthogonal vectors {uk}k≥1 is generated by applying
the Gram–Schmidt orthogonalization procedure to the set of vectors {Ksk}k≥0, that is,

u1 = Ks0,

uk = Ksk−1 −
k−1∑
i=1

uT
i Ksk−1

‖ui‖2 ui, sk−1 �= 0, k ≥ 2. (5.27)

The special form of the finite-dimensional subspaces Kk and Lk allows us to derive a
recurrence relation for the orthogonal vectors uk. Since, for k > 2 and i = 1, . . . , k − 2,
we have sk−1 ⊥ Ki+1 ⊆ Kk−1 and KT ui ∈ Ki+1 (cf. (5.26)), we infer that

uT
i Ksk−1 =

(
KT ui

)T
sk−1 = 0.

The basis vector uk defined by (5.27) can then be expressed as

uk = Ksk−1 + βk−1uk−1, k ≥ 1, (5.28)

with

βk−1 = −
uT

k−1Ksk−1

‖uk−1‖2 (5.29)

and the convention β0 = 0. The first orthogonal vectors sk and uk are illustrated in
Figure 5.1.

Fig. 5.1. The first orthogonal vectors sk and uk. The construction is as follows: (1) rδ
0 = yδ →

s0 = KT rδ
0, K1 = span {s0} → L1 = KK1; (2) rδ

1 = yδ − PL1y
δ → s1 = KT rδ

1, K2 =
span {s0, s1} → L2 = KK2; (3) rδ

2 = yδ − PL2y
δ → s2 = KT rδ

2, and so on.
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The preimages vk ∈ Kk of the orthogonal vectors uk ∈ Lk, already defined by

uk = Kvk, (5.30)

satisfy the recurrence relation (cf. (5.11), (5.28) and (5.30))

vk = sk−1 + βk−1vk−1, k ≥ 1. (5.31)

Besides that, the residual vector rδ
k can be computed recursively by using (5.24), while

a recurrence relation for the iterates xδ
k can be obtained from (5.22) in conjunction with

(5.11), (5.16) and (5.30); the result is

xδ
k = xδ

k−1 + αkvk, k ≥ 1. (5.32)

The coefficients αk and βk, defined by (5.23) and (5.29), respectively, can be com-
puted efficiently as follows:

(1) For k ≥ 2, we have uk ⊥ Lk−1 and Kxδ
k−1 ∈ Lk−1, and we find that uT

k Kxδ
k−1 = 0

for k ≥ 1. Then, by (5.16), (5.18), (5.30), (5.31), and the orthogonality relation
sk−1 ⊥ vk−1 ∈ Kk−1, (5.23) yields

αk ‖uk‖2 = uT
k

(
yδ − Kxδ

k−1

)
= (Kvk)T rδ

k−1

= vT
k sk−1

= ‖sk−1‖2 + βk−1vT
k−1sk−1

= ‖sk−1‖2
,

and so,

αk =
‖sk−1‖2

‖uk‖2 , k ≥ 1.

(2) By (5.24) and the orthogonality relation sk ⊥ sk−1, we have

−αkuT
k Ksk =

(
rδ

k − rδ
k−1

)T
Ksk = (sk − sk−1)

T sk = ‖sk‖2
,

and (5.29) gives

βk =
‖sk‖2

αk ‖uk‖2 =
‖sk‖2

‖sk−1‖2 , k ≥ 1.

Collecting all results, we summarize the kth iteration step of the CGNR method as follows:
given xδ

k−1, rδ
k−1, sk−1 �= 0 and vk, compute

uk = Kvk,

αk = ‖sk−1‖2
/ ‖uk‖2

,

xδ
k = xδ

k−1 + αkvk,

rδ
k = rδ

k−1 − αkuk,

sk = KT rδ
k,

βk = ‖sk‖2
/ ‖sk−1‖2

,

vk+1 = sk + βkvk.
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Even the best implementation of the CGNR method suffers from some loss of accuracy
due to the implicit use of the cross-product matrix KT K. An alternative iterative method
which avoids KT K completely is the LSQR algorithm of Paige and Saunders (1982). This
method is based on the Lanczos bidiagonalization procedure of Golub and Kahan (1965)
and is analytically equivalent to the CGNR method.

The Lanczos bidiagonalization algorithm is initialized with

β1ū1 = yδ, α1v̄1 = KT ū1, (5.33)

and the iteration step k ≥ 1 has the form

βk+1ūk+1 = Kv̄k − αkūk, (5.34)

αk+1v̄k+1 = KT ūk+1 − βk+1v̄k. (5.35)

The scalars αk > 0 and βk > 0 are chosen such that

‖ūk‖ = ‖v̄k‖ = 1;

for example, the representation α1v̄1 = KT ū1 assumes the calculations

v1 = KT ū1, α1 = ‖v1‖ , v̄1 = (1/α1)v1.

Defining the dense matrices

Ūk+1 = [ū1, . . . , ūk+1] ∈ R
m×(k+1), V̄k = [v̄1, . . . , v̄k] ∈ R

n×k,

and the bidiagonal matrix

Bk =

⎡⎢⎢⎢⎢⎢⎣
α1 0 . . . 0
β2 α2 . . . 0
...

...
. . .

...
0 0 . . . αk

0 0 . . . βk+1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
(k+1)×k,

we rewrite the recurrence relations (5.33)–(5.35) as

β1Ūk+1e
(k+1)
1 = yδ, (5.36)
KV̄k = Ūk+1Bk, (5.37)

KT Ūk+1 = V̄kBT
k + αk+1v̄k+1e

(k+1)T
k+1 , (5.38)

where e(k+1)
j is the jth canonical vector in R

k+1,[
e(k+1)

j

]
i
=
{

1, i = j,
0, i �= j.

The columns ū1, . . . , ūk+1 of Ūk+1 and v̄1, . . . , v̄k of V̄k are called the left and the right
Lanczos vectors, respectively. In exact arithmetics, Ūk+1 and V̄k are orthogonal matrices,
and we have

ŪT
k+1Ūk+1 = Ik+1, V̄T

k V̄k = Ik.
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As a result, BT
k Bk can be expressed as

BT
k Bk = V̄T

k

(
KT K

)
V̄k,

and we infer that (
BT

k Bk

)j
= V̄T

k

(
KT K

)j
V̄k, j ≥ 1.

Using the relations

KT yδ = αv̄1 = αV̄ke
(k)
1 , α =

∥∥KT yδ
∥∥ ,

and (
KT K

)j
KT yδ = α

(
KT K

)j
v̄1 = α

(
KT K

)j
V̄ke

(k)
1 = αV̄k

(
BT

k Bk

)j
e(k)
1 ,

and setting

Kk =
[
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

]
∈ R

n×k

and
Ek = α

[
e(k)
1 ,
(
BT

k Bk

)
e(k)
1 , . . . ,

(
BT

k Bk

)k−1
e(k)
1

]
∈ R

k×k

we find that
Kk = V̄kEk. (5.39)

Thus, (5.39) resembles the QR factorization of the matrix Kk, and as R (Kk) = Kk, we
deduce that {v̄i}i=1,k is an orthonormal basis of Kk. Therefore, the LSQR method can be
regarded as a method for constructing an orthonormal basis for the kth Krylov subspace
Kk. To solve the least squares problem

min
xk∈span{v̄i}i=1,k

∥∥yδ − Kxk

∥∥2 ,

we proceed as follows. First, we set

xk = V̄kzk,

for some zk ∈ R
k. Then, we express the ‘residual’

rk = yδ − Kxk,

as (cf. (5.36) and (5.37))
rk = Ūk+1tk+1,

with
tk+1 = β1e

(k+1)
1 − Bkzk.

As we want ‖rk‖2 to be small, and since Ūk+1 is theoretically orthogonal, we minimize
‖tk+1‖2. Hence, in the kth iteration step of the LSQR method we solve the least squares
problem

min
zk∈Rk

∥∥∥β1e
(k+1)
1 − Bkzk

∥∥∥2 . (5.40)
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If zδ
k is the least squares solution of (5.40), then the vector

xδ
k = V̄kzδ

k = β1V̄kB
†
ke

(k+1)
1 ,

which belongs to the kth Krylov subspace Kk = span {v̄i}i=1,k, is the iterate of the LSQR
method. Computationally, the least squares problem (5.40) is solved by means of a QR
factorization of Bk, which is updated efficiently at each iteration step. The QR factoriza-
tion then yields a simple recurrence relation for xδ

k in terms of xδ
k−1, and neither Ūk+1 nor

V̄k need to be stored.
For discrete problems that do not require regularization, LSQR is likely to obtain

more accurate results in fewer iteration steps as compared to CGNR (Paige and Saunders,
1982). However, for discrete ill-posed problems, where the iteration is stopped before
convergence, both iterative methods yield results with comparable accuracies (Hansen,
1998).

In practice, the convergence of CGNR and LSQR is delayed due to the influence of
finite precision arithmetic. Specifically, xδ

k stays almost unchanged for a few steps, then
changes to a new vector and stays unchanged again for some steps, and so on. To prevent
this delay and to simulate exact arithmetic, it is possible to incorporate some reorthogo-
nalization techniques as for instance, the modified Gram–Schmidt algorithm or the House-
holder transformation. In LSQR we can orthogonalize the Lanczos vectors ūi and v̄i,
while in CGNR we can orthogonalize the residual vectors si = KT rδ

i (Hansen, 1998).
The orthogonalization methods are illustrated in Algorithm 1.

For a deeper insight into the regularizing properties of the LSQR method, we consider
the representation of the residual polynomial as given in Appendix F,

rk (λ) =
k∏

j=1

λk,j − λ

λk,j
,

where
0 < λk,k < λk,k−1 < . . . < λk,1,

are the eigenvalues of the matrix BT
k Bk. The eigenvalues λk,j are called Ritz values and

for this reason, rk is also known as the Ritz polynomial. The spectral filtering of the LSQR
method is controlled by the convergence of the Ritz values to the eigenvalues of the matrix
KT K (Hansen, 1998). This, in turn, is related to the number k of iteration steps. If, after
k steps, a large eigenvalue σ2

i has been captured by the corresponding Ritz value λk,i, i.e.,
σ2

i ≈ λk,i, then the corresponding filter factor is fk

(
σ2

i

)
= 1 − rk

(
σ2

i

)
≈ 1 (Appendix

F). On the other hand, for an eigenvalue σ2
i much smaller than the smallest Ritz value, i.e.,

σ2
i � λk,k, the estimate

rk

(
σ2

i

)
=

k∏
j=1

(
1 − σ2

i

λk,j

)
≈ 1 − σ2

i

k∑
j=1

1
λk,j

,

yields

fk

(
σ2

i

)
≈ σ2

i

k∑
j=1

1
λk,j

,
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Algorithm 1. Orthogonalization algorithms. (1) Modified Gram–Schmidt orthogonaliza-
tion routine (MGSOrth): at the iteration step k, the new vector p is added to the set of
orthonormal vectors stored in the columns of P. (2) Householder orthogonalization rou-
tine (HOrth): at the iteration step k, the candidate vector p is transformed into a normalized
vector p̄ orthogonal to the previous vectors; the vectors vk and the scalars βk, defining the
reflection matrix Pk = In −βkvkvT

k , are stored in the columns of the matrix P and in the
array π, respectively.
subroutine MGSOrth (k, n,P; p)
for i = 1, k − 1 do

a ←
∑n

j=1 [p]j [P]ji; {compute pT [P]·i}
for j = 1, n do [p]j ← [p]j − a [P]ji; end for

end for

subroutine HOrth (k, n,π,P,p; p̄, p
sgn
nrm)

{transformation p ← Pk−1Pk−2...P1p}
for i = 1, k − 1 do

a ←
∑n

j=i [p]j [P]ji; {compute [p]Ti:n [P]i:n,i}
for j = i, n do [p]j ← [p]j − a [π]i [P]ji; end for

end for

{Householder reflection matrix Pk}
p ←

√∑n
j=k [p]2j ; [π]k ← 1/

(
p2 + |[p]k| p

)
;

[P]kk ← [p]k + sgn ([p]k) p; for j = k + 1, n do [P]jk ← [p]j ; end for

psgnnrm ← −sgn ([p]k) p;
{transformation p̄ ← P1P2...Pkek, where p̄ is normalized}
p̄ ← 0, [p̄]k ← 1;
for i = k, 1,−1 do

a ←
∑n

j=i [p̄]j [P]ji; { [p̄]Ti:n [P]i:n,i }
for j = i, n do [p̄]j ← [p̄]j − a [π]i [P]ji; end for

end for

and we see that these filter factors decay like σ2
i . Thus, if the Ritz values approximate the

eigenvalues in natural order, starting from the largest, then the iteration index plays the
role of the regularization parameter, and the filter factors behave like the Tikhonov filter
factors.

5.4 Stopping rules and preconditioning

Stopping the iteration prior to the inclusion of amplified noise components in the solution
is an important aspect of iterative regularization methods. Also relevant is the precondi-
tioning of the system of equations in order to improve the convergence rate. These topics
are discussed below.
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5.4.1 Stopping rules

The most widespread stopping rule for iterative regularization methods is the discrepancy
principle. According to the discrepancy principle, the algorithm is terminated with k	

when ∥∥yδ − Kxδ
k�

∥∥2 ≤ τΔ2 <
∥∥yδ − Kxδ

k

∥∥2 , 0 ≤ k < k	. (5.41)

In a semi-stochastic setting and for white noise with variance σ2, the expected value of the
noise E{‖δ‖2} = mσ2 is used instead of the noise level Δ2.

Error-free parameter choice methods can also be formulated as stopping rules. In this
case we have to store each iterate together with the corresponding objective function, e.g.,
the generalized cross-validation function, and to perform a sufficient number of iteration
steps in order to detect the minimum of the objective function. For iterative regularization
methods, the use of the generalized cross-validation and the maximum likelihood estima-
tion requires the knowledge of the influence matrix, which, in turn, requires the knowledge
of the generalized inverse. This is a difficult task because neither a canonical decomposi-
tion of K nor the filter factors fk are available (recall that iterative methods are preferred
when a factorization of the matrix is infeasible).

More promising for iterative regularization methods is the use of the L-curve criterion.
For the CGNR method, the monotonic behavior of both the solution norm

∥∥xδ
k

∥∥ and the
residual norm

∥∥rδ
k

∥∥ recommends this approach. In the framework of Tikhonov regular-
ization, the components of the L-curve are defined by some analytical formulas and the
calculation of the curvature is straightforward. In the case of iterative methods, we are lim-
ited to knowing only a finite number of points on the L-curve (corresponding to different
values of the iteration index). Unfortunately, these points are clustered giving fine-grained
details that are not relevant for the determination of the corner. To eliminate this inconve-
nience, Hansen (1998) defined a differentiable smooth curve associated with the discrete
points in such a way that fine-grained details are eliminated while the overall shape of the
L-curve is maintained. The approximating curve is determined by fitting a cubic spline
curve to the discrete points of the L-curve. Since a cubic spline curve does not have the
desired local smoothing property, the following algorithm is employed:

(1) perform a local smoothing of the L-curve, that is, for each interior point k = q +
1, . . . , P − q, where P is the number of discrete points of the L-curve and q is the
half-width of the local smoothing interval, fit a polynomial of degree p to the points
k − q, . . . , k + q, and store the corresponding kth ‘smoothed’ point situated on the
fitting polynomial;

(2) construct a cubic spline curve by using the smoothed points as control points;
(3) compute the corner of the spline curve by maximizing its curvature;
(4) select the point on the orginal discrete curve that is closest to the spline curve’s

corner.

Another method which couples a geometrical approach to identify the corner of the L-
curve with some heuristics rules has been proposed by Rodriguez and Theis (2005). The
main steps of this approach can be summarized as follows:
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(1) compute the vectors ak = [xk+1 − xk, yk+1 − yk]T , k = 1, . . . , P − 1, where xk =
log(
∥∥rδ

k

∥∥2) and yk = log(
∥∥xδ

k

∥∥2);
(2) eliminate the clusters by deleting all the ‘short’ vectors;
(3) normalize the remaining V vectors;
(4) select the corner of the L-curve as that point which minimizes the scalar triple prod-

uct between two successive vectors, i.e., k	 = arg mink=1,V −1 wk, where wk =
(ak × ak+1) · e3, and e3 is the Cartesian unit vector codirectional with the
z-axis.

5.4.2 Preconditioning

In general, the aim of preconditioning is to improve the convergence rate of iterative meth-
ods for solving large systems of equations. When preconditioning from the right, the linear
system of equations

Kx = yδ, (5.42)

is replaced by
KMx̄ = yδ, Mx̄ = x,

with M being a nonsingular matrix. If (5.42) is solved by using an iterative method for
normal equations, M should be chosen such that the condition number of MT KT KM is
smaller than that of KT K. This spectral property then yields faster convergence for the
iterative method.

For discrete ill-posed problems, the preconditioner should not be regarded as a conver-
gence accelerator, but rather as an enhancer of solution quality, since convergence is never
achieved. In fact, there is no point in improving the condition of K because only a part of
the singular values contributes to the regularized solution (Hansen, 1998).

By right preconditioning we control the solution with a different norm as in the case
of Tikhonov regularization with a regularization matrix L. Therefore, there is no practical
restriction to use a regularization matrix L in connection with iterative methods (Hanke
and Hansen, 1993; Hansen, 1998). Regularization matrices, when used as right precondi-
tioners, affect the solution of an iterative method in a similar way as they affect the solution
of Tikhonov regularization. The system of equations preconditioned from the right by the
nonsingular regularization matrix L then takes the form

KL−1x̄ = yδ, L−1x̄ = x. (5.43)

To obtain more insight into right preconditioning by regularization matrices, we recall
that in the framework of Tikhonov regularization, we transformed a general-form problem
(with L �= In) into a standard-form problem (with L = In) by using the transformation
K̄ = KL−1 and the back-transformation x = L−1x̄. In terms of the standard-form
variables, equation (5.43) expressed as

K̄x̄ = yδ, L−1x̄ = x,
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Algorithm 2. ν-algorithm with preconditioning. The control parameters of the algorithm
are the maximum number of iterations Niter, the noise level Δ, and the tolerance τ . The
notation ‖A‖F stands for the Frobenius norm of the matrix A.

χ ← 1/
∥∥KL−1

∥∥
F
; {relaxation parameter}

xδ ← 0; rδ ← χ
(
yδ − Kxδ

)
;

{step k = 1}
ω ← 4ν+2

4ν+1 ;

q ← ωrδ; xδ ← xδ + χ
(
LT L

)−1
KT q; rδ ← χ

(
yδ − Kxδ

)
;

if
∥∥rδ
∥∥2 ≤ τχ2Δ2 stop; {residual smaller than the prescribed tolerance}

{steps k ≥ 2}
for k = 2, Niter do

ω ← 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+4ν−1) ;

μ ← 0.25 (k−1)(2k−3)
(k+ν−1)(2k+2ν−3)ω;

q ← μq + ωrδ; xδ ← xδ + χ
(
LT L

)−1
KT q; rδ ← χ

(
yδ − Kxδ

)
;

if
∥∥rδ
∥∥2 ≤ τχ2Δ2 exit; {residual smaller than the prescribed tolerance}

end for

reveals that solving the right preconditioned system of equations is equivalent to solving
the standard-form problem without preconditioning. In practice, the multiplication with
L−1 is built into the iterative schemes, and the back-transformation is avoided. The ν-
method, as well as the CGNR and the LSQR methods with preconditioning and using the
discrepancy principle as stopping rule are outlined in Algorithms 2–4.
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Algorithm 3. CGNR algorithm with preconditioning and reorthogonalization. The control
parameters of the algorithm are the maximum number of iterations Niter, the noise level
Δ, the tolerance τ , and the logical variables TypeOrth. The values of TypeOrth are as
follows: 0 if no reorthogonalization is applied, 1 for Householder orthogonalization, and 2
for the modified Gram–Schmidt orthogonalization.
xδ ← 0;
rδ ← yδ − Kxδ;
if TypeOrth �= 0 S ← 0;
q ← KT rδ;
s ← L−T q;
{initialization of arrays S and σ}
if TypeOrth = 1 then

σ ← 0; s ← ‖s‖; [σ]1 ← 1/
(
s2 + |[s]1| s

)
;

[S]11 ← [s]1 + sgn ([s]1) s;
for i = 2, n do [S]i1 ← [s]i; end for

snrm ← −sgn ([s]1) s;
{initialization of array S}
else if TypeOrth = 2 then

snrm ← ‖s‖ ;
for i = 1, n do [S]i1 ← [s]i /snrm; end for

else

snrm ← ‖s‖;
end if

v ← L−1s;
for k = 2, Niter do

u ← Kv;
α ← s2

nrm/ ‖u‖
2;

xδ ← xδ + αv;
rδ ← rδ − αu;
if
∥∥rδ
∥∥2 ≤ τΔ2 exit; {residual smaller than the prescribed tolerance}

q ← KT rδ;
s ← L−T q;
if TypeOrth = 1 then

call HOrth (k, n,σ,S, s; s̄, snrm1); s ← snrm1s̄;
else if TypeOrth = 2 then

call MGSOrth (k, n,S; s); snrm1 ← ‖s‖ ;
for i = 1, n do [S]ik ← [s]i /snrm1; end for

else

snrm1 ← ‖s‖;
end if

β ← s2
nrm1/s2

nrm;
snrm ← snrm1;
v ← L−1s + βv;

end for
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Algorithm 4. LSQR algorithm with preconditioning and reorthogonalization.
xδ ← 0; if TypeOrth �= 0 then P ← 0; Q ← 0; end if

if TypeOrth = 1 then {initialization of arrays P and π}
π ← 0; p ←

∥∥yδ
∥∥; [π]1 ← 1/

(
p2 +

∣∣[yδ
]
1

∣∣ p);
[P]11 ←

[
yδ
]
1

+ sgn
([

yδ
]
1

)
p; for i = 2, m do [P]i1 ←

[
yδ
]
i
; end for

β ← −sgn
([

yδ
]
1

)
p; ū ← (1/β)yδ;

else if TypeOrth = 2 then {initialization of array P}
β ←

∥∥yδ
∥∥; ū ← (1/β)yδ; for i = 1, m do [P]i1 ← [ū]i ; end for

else

β ←
∥∥yδ
∥∥; ū ← (1/β)yδ;

end if

q ← L−T KT ū;
if TypeOrth = 1 then {initialization of arrays Q and ν}

ν ← 0; q ← ‖q‖; [ν]1 ← 1/
(
q2 + |[q]1| q

)
;

[Q]11 ← [q]1 + sgn ([q]1) q; for i = 2, n do [Q]i1 ← [q]i; end for

α ← −sgn ([q]1) q; v̄ ← (1/α)q;
else if TypeOrth = 2 then {initialization of array Q}

α ← ‖q‖; v̄ ← (1/α)q; for i = 1, n do [Q]i1 ← [v̄]i; end for

else

α =← ‖q‖; v̄ ← (1/α)q;
end if

w ← v; φ̄ ← β; ρ̄ ← α;
for k = 2, Niter do

p ← KL−1v̄ − αū;
if TypeOrth = 1 then

call HOrth (k, m,π,P,p; ū, β);
else if TypeOrth = 2 then

call MGSOrth (k, m,P; p); β ← ‖p‖; ū ← (1/β)p;
else

β ← ‖p‖; ū ← (1/β)p;
end if

q ← L−T KT ū − βv̄;
if TypeOrth = 1 then

call HOrth (k, n,ν,Q,q; v̄, α);
else if TypeOrth = 2 then

call MGSOrth (k, n,Q; q); α ← ‖q‖; v̄ ← (1/α)q;
else

α ← ‖q‖; v̄ ← (1/α)q;
end if

if TypeOrth = 2 store ū in column k of P and v̄ in column k of Q;
ρ ←

√
ρ̄2 + β2; c ← ρ̄/ρ; s ← β/ρ; θ ← sα; ρ̄ ← −c/α;

φ ← cφ̄; φ̄ ← sφ̄;
∥∥rδ
∥∥← φ̄; xδ ← xδ + (φ/ρ)w; w ← v̄ − (θ/ρ)w;

if
∥∥rδ
∥∥2 ≤ τΔ2 exit; {residual smaller than the prescribed tolerance}

end for

xδ ← L−1xδ;
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5.5 Numerical analysis

To analyze the performance of iterative regularization methods we consider the same re-
trieval scenario as in Chapter 3, but retrieve the O3 profile together with the NO2 profile in
a spectral interval ranging from 520 to 580 nm. The atmosphere is discretized with a step
of 1 km between 0 and 60 km, and a step of 5 km between 60 and 100 km. The number
of unknowns of the inverse problem is n = 100. In our first simulation, we choose the
discrepancy principle as stopping rule. As CGNR and LSQR yield identical results, only
the CGNR results are reported here.

The solution errors for different values of the control parameter τ (cf. (5.41)) are
illustrated in the left panel of Figure 5.2. The error curves possess a minimum for an op-
timal value of the control parameter: the smallest errors are 5.56 · 10−2 for the ν-method,
5.20 ·10−2 for CGNR without reorthogonalization and 5.02 ·10−2 for CGNR with House-
holder orthogonalization. Note that the stepwise behavior of the error curves for the CGNR
method is a consequence of the discrete nature of the stopping rule. The retrieved profiles
are shown in the right panel of Figure 5.2, and a sensible superiority of CGNR with House-
holder orthogonalization can be observed in the lower part of the atmosphere.

Although the methods are of comparable accuracies, the convergence rates are com-
pletely different (Figure 5.3). To reduce the residual norm to the order of the noise level,
100 iteration steps are required by the ν-method, 50 by CGNR without reorthogonalization
and 30 by CGNR with Householder orthogonalization.

The non-monotonic behavior of the residual curve in the case of the ν-method is ap-
parent in the left panel of Figure 5.4, while the delay of CGNR without reorthogonalization
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Fig. 5.2. Left: relative solution errors for different values of the control parameter τ . Right: retrieved
profiles corresponding to the optimal values of τ . The results are computed with the ν-method
(ν = 0.5), CGNR without reorthogonalization, and CGNR with Householder orthogonalization.
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Fig. 5.3. Histories of the residual norm corresponding to the ν-method (left), CGNR without re-
orthogonalization (middle), and CGNR with Householder orthogonalization (right).
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Fig. 5.4. Left: non-monotonic behavior of the residual curve corresponding to the ν-method. Right:
delay of CGNR without reorthogonalization reflected in the residual curve.

(the iterate stays almost unchanged for a few steps) is evidenced in the right panel of Fig-
ure 5.4.

The discrete L-curve for the CGNR method illustrated in Figure 5.5 has a pronounced
L-shape with a distinct corner. The inversion performance of CGNR with the L-curve
method are slightly better than those of CGNR with the discrepancy principle; the retrieved
profile in Figure 5.5 is characterized by a solution error of 4.52 · 10−2.



162 Iterative regularization methods for linear problems Chap. 5

−2.2 −2 −1.8
Residual

−20

−10

0

10

20

30

C
on

st
ra

in
t

0 4e+12 8e+12
Number Density [molec/cm

3
]

10

20

30

40

50

60

A
lti

tu
de

 [k
m

]

retrieved profile
exact profile

Fig. 5.5. Discrete L-curve for CGNR with Householder orthogonalization (left) and the correspond-
ing retrieved profile (right).

5.6 Mathematical results and further reading

A deterministic analysis of the Landweber iteration and of semi-iterative methods equipped
with the discrepancy principle as stopping rule is presented in the first part of Appendix
E. For the source condition x† =

(
KT K

)μ
z, with μ > 0 and z ∈ R

n, the Landweber
iteration is order-optimal for all μ > 0, while the ν-method is order-optimal for 0 < μ ≤
ν − 1/2. Despite its optimal convergence rate, the Landweber iteration is rarely used in
practice, since it usually requires far too many iteration steps until the stopping criterion
(5.41) is met; the stopping index for the Landweber iteration is k	 = O(Δ−2/(2μ+1)), and
the exponent 2/ (2μ + 1) cannot be improved in general (Engl et al., 2000).

The convergence rate of the CGNR method using the discrepancy principle as stopping
rule is derived in the second part of Appendix E. This method is order-optimal for μ > 0,
and so, no saturation effect occurs. In general, the number of iteration steps of the CGNR
method is k	 = O(Δ−1/(2μ+1)), and in particular, we have

k	 = O
(
Δ− 1

(2μ+1)(β+1)

)
for the polynomial ill-posedness σi = O(i−β) with β > 0, and

k	 = O
(∣∣∣log Δ

1
2μ+1

∣∣∣)
for the exponential ill-posedness σi = O(qi) with q ∈ (0, 1). In any case, the CGNR
method requires significantly less iteration steps for the same order of accuracy than the
Landweber iteration or the ν-method. A detailed analysis of conjugate gradient type meth-
ods for ill-posed problems can be found in Hanke (1995), while for a pertinent treatment
of preconditioned iterative regularization methods we refer to Hanke et al. (1993).
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Tikhonov regularization
for nonlinear problems

Most of the inverse problems arising in atmospheric remote sensing are nonlinear. In
this chapter we discuss the practical aspects of Tikhonov regularization for solving the
nonlinear equation

F (x) = y. (6.1)

As in the linear case, equation (6.1) is the representation of a so-called discrete ill-posed
problem because the underlying continuous problem is ill-posed. If we accept a character-
ization of ill-posedness via linearization, the condition number of the Jacobian matrix K
of F may serve as a quantification of ill-posedness.

Nonlinear problems are treated in the same framework as linear problems. The right-
hand side y is supposed to be contaminated by instrumental noise, and we have the repre-
sentation

yδ = y + δ,

where yδ is the noisy data vector and δ is the noise vector. In a deterministic setting, the
data error is characterized by the noise level Δ, while in a semi-stochastic setting, δ is
assumed to be a discrete white noise with the covariance matrix Cδ = σ2Im.

The formulation of Tikhonov regularization for nonlinear problems is straightforward:
the nonlinear equation (6.1) is replaced by a minimization problem involving the objective
function

Fα (x) =
1
2

[∥∥yδ − F (x)
∥∥2 + α ‖L (x − xa)‖2

]
. (6.2)

For a positive regularization parameter, minimizers of the Tikhonov function always exist,
but are not unique, and a global minimizer xδ

α is called a regularized solution (Seidman
and Vogel, 1989).

This chapter begins with a description of four retrieval test problems which, through-
out the rest of the book, will serve to illustrate the various regularization algorithms and
techniques. We then review appropriate optimization methods for minimizing the Tikhonov
function, discuss practical algorithms for computing the iterates and characterize the error
in the solution. Finally, we analyze the numerical performance of Tikhonov regularization
with a priori, a posteriori and error-free parameter choice methods.
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6.1 Four retrieval test problems

To investigate the efficiency of nonlinear regularization methods we consider the limb re-
trieval test problems illustrated in Table 6.1. The last problem is an exotic exercise, because
temperature retrieval is usually performed in a thermal infrared CO2 or a O2 band. How-
ever, this problem will enable us to reveal some interesting features of the regularization
methods under examination. The limb tangent height varies between 13.6 and 59.8 km in
steps of 3.3 km. The atmosphere is discretized with a step of 1.75 km between 0 and 42 km,
a step of 3.5 km between 42 and 70 km, and a step of 10 km between 70 and 100 km. The
total number of levels is 36, and the spectral resolution is 0.25 nm.

Table 6.1. Four retrieval test problems. The auxiliary components with label 1 are included in the
retrieval, while the auxiliary components with label 2 are not. The tangent altitude is expressed in
km, while the spectral domain is expressed in nm for the first two retrieval problems, and in cm−1

for the last two retrieval problems.

Main
component

Auxiliary
component1

Auxiliary
component2

Spectral
domain

Tangent
altitude

SNR

O3 NO2 – 520...580 13.6...49.9 300
BrO O3 – 337...357 13.6...43.3 103

CO CH4 H2O 4280...4300 13.6...40.0 103

Temperature – CO, CH4, H2O 4280...4300 13.6...59.8 104

An efficient and flexible retrieval algorithm should include a preprocessing step com-
prising:

(1) the selection of the forward model by estimating the degree of nonlinearity of the
problem;

(2) a sensitivity analysis revealing our expectations on the inversion process;
(3) the derivation of a data model with white noise by using the prewhitening techni-

que.

6.1.1 Forward models and degree of nonlinearity

The forward model for the retrieval problems in the infrared spectral domain is the radiance
model

Imeas (ν, h) ≈ Pscl (ν,pscl (h)) Isim (ν,x, h) + Poff (ν,poff (h)) , (6.3)

where ν is the wavenumber, h is the tangent height, and Pscl and Poff are polynomials
of low order with coefficients pscl and poff, respectively. The scale polynomial Pscl ac-
counts on the multiplicative calibration error, while Poff is a polynomial baseline shift
(zero-level calibration correction) accounting for the self-emission of the instrument, scat-
tering of light into the instrument or higher-order nonlinearities of the detectors. The
measured spectrum is the convolution of the radiance spectrum with the instrumental line
shape, for the latter of which a Gaussian function is assumed in our simulations.
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For the retrieval problems in the ultraviolet and visible spectral regions we consider
two forward models. The first forward model is the radiance model,

Rmeas (λ, h) ≈ Pscl (λ,pscl (h)) Rsim (λ,x, h) , (6.4)

where λ is the wavelength and R stands for the ‘scan-ratioed’ radiance ratio, that is, the
radiance spectrum normalized with respect to a reference tangent height,

R (·, h) =
I (·, h)

I (·, href)
. (6.5)

The normalization procedure minimizes the influence of the solar Fraunhofer structure and
avoids the need of absolute radiometric calibration of the instrument. In addition, there
is a reduction in the effect of surface reflectance and clouds that can influence the diffuse
radiation even at high altitudes. The normalization procedure does not completely remove
the effect of the surface albedo, but does reduce the accuracy to which the algorithm must
model this effect. The scale polynomial Pscl is intended to account for the contribution
of aerosols with smooth spectral signature. The second forward model is the differential
radiance model

log R̄meas (λ, h) ≈ log R̄sim (λ,x, h) , (6.6)

with
log R̄sim (λ,x, h) = log Rsim (λ,x, h) − Psim (λ,psim (x, h))

and
log R̄meas (λ, h) = log Rmeas (λ, h) − Pmeas (λ,pmeas (h)) .

For a state vector x and a tangent height h, the coefficients of the smoothing polynomials
Psim and Pmeas are computed as

psim (x, h) = arg min
p

‖log Rsim (·,x, h) − Psim (·,p)‖2
,

and
pmeas (h) = arg min

p
‖log Rmeas (·, h) − Pmeas (·,p)‖2

,

respectively. In general, a smoothing polynomial is assumed to account for the low-order
frequency structure due to scattering mechanisms, so that log R̄ will mainly reflect the ab-
sorption process due to gas molecules (Platt and Stutz, 2008). For the sake of simplicity, the
spectral corrections, also referenced as pseudo-absorbers, have been omitted in (6.4) and
(6.6). The spectral corrections are auxiliary functions containing spectral features which
are not attributed to the retrieved atmospheric species. They describe different kinds of in-
strumental effects, e.g., polarization correction spectra, undersampling spectrum (Slijkhuis
et al., 1999), tilt spectrum (Sioris et al., 2003), I0- correction (Aliwell et al., 2002), and
more complex physical phenomena, e.g., Ring spectrum.

The choice of the forward model is crucial for the retrieval process, because it may
substantially influence the nonlinearity of the problem to be solved.

The degree of nonlinearity can be estimated in a deterministic or a stochastic setting.
In a deterministic framework, the degree of nonlinearity can be characterized by using
curvature measures of nonlinearity from differential geometry (Bates and Watts, 1988).
To present these concepts, we follow the analysis of Huiskes (2002). The m-dimensional
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vector F (x) defines an n-dimensional surface, the so-called measurement surface or ex-
pectation surface. To define the curvature measures, we consider the second-order Taylor
expansion of the kth component of F about xa,

[F (xa + p)]k = [F (xa)]k +
n∑

i=1

∂ [F]k
∂ [x]i

(xa) [p]i

+
1
2

n∑
i,j=1

∂2 [F]k
∂ [x]i ∂ [x]j

(xa) [p]i [p]j + O
(
‖p‖3

)
. (6.7)

For notation simplification, we introduce the full derivative arrays K and K′ by the rela-
tions

[K (xa)]ki =
∂ [F]k
∂ [x]i

(xa) , [K′ (xa)]kij =
∂2 [F]k

∂ [x]i ∂ [x]j
(xa) ,

where K ∈ R
m×n is the Jacobian matrix of F and K′ ∈ R

m×n×n is a three-dimensional
array. In general, for an array A with three indices, left multiplication by a matrix B means
a multiplication by summation over the first index of the array,

[BA]lij =
∑

k

[B]lk [A]kij ,

while right multiplication by two vectors c and d means a multiplication by summation
over the vector indices,

[Acd]k =
∑
ij

[A]kij [c]i [d]j .

If the three-dimensional array A is symmetric with respect to the second and third index,
i.e., [A]kij = [A]kji, then right multiplication does not depend on the order of the vec-
tors c and d; we will write Ac2 for Acc. With these notations, the second-order Taylor
expansion (6.7) can be expressed as

F (xa + p) = F (xa) + K (xa)p +
1
2
K′ (xa)p2 + O

(
‖p‖3

)
,

while the first-order Taylor expansion reads as

F (xa + p) = F (xa) + K (xa)p + O
(
‖p‖2

)
. (6.8)

The range of K is the tangent plane to the measurement surface at the point xa, and the
linear approximation (6.8) amounts to approximating the measurement surface in a neigh-
borhood of xa by this plane. The tangent plane is a good approximation to the measurement
surface if the norm of the quadratic term

∥∥K′p2
∥∥ is negligible compared to the norm of

the linear term ‖Kp‖. It is useful to decompose the quadratic term into two orthogonal
components, the projection onto the tangent plane and the component normal to the tan-
gent plane. If P = K

(
KT K

)−1
KT is the projection matrix onto the tangent plane at

xa, then the tangential and normal components of K′ can be expressed as K′
t = PK′ and



Sect. 6.1 Four retrieval test problems 167

K′
n = (Im − P)K′, respectively. In view of the decomposition K′p2 = K′

tp
2 + K′

np
2,

the nonlinearity measures defined by Bates and Watts (1988) are given by

κt =

∥∥K′
tp

2
∥∥

‖Kp‖2 , κn =

∥∥K′
np

2
∥∥

‖Kp‖2 .

The quantities κt and κn are known as the parameter-effects curvature and the intrinsic
curvature, respectively. If the intrinsec curvature is high, the model is highly nonlinear and
the linear tangent plane approximation is not appropriate.

The curvature measures can be expressed in terms of the so-called curvature arrays. To
obtain the curvature arrays, we must transform the vector function F into a vector function
F̃ such that its tangent plane at xa aligns with the first n axes of a rotated coordinate system.
The projection of the second-order derivative of F̃ on the tangent plane and its orthogonal
complement will be the parameter-effects and the intrinsic curvature arrays, respectively.
To derive the curvature arrays, we consider a QR factorization of the Jacobian matrix

K = QR =
[

Qt Qn

] [ Rt

0

]
,

where the column vectors of the m × n matrix Qt are the basis vectors of the tangent
plane (R (K)) and the column vectors of the m× (m − n) matrix Qn are the basis vectors
of the orthogonal complement of the tangent plane (R (K)⊥). The n × n matrix Rt is
nonsingular and upper triangular. The vector function F̃ is then defined by

F̃ (x̃a) = QT F (Tx̃a) ,

where T = R−1
t and xa = Tx̃a. As Q is an orthogonal matrix, multiplication by QT can

be interpreted as a rotation by which the basis vectors of the tangent plane are mapped into
the first n unit vectors, and the basis vectors of the orthogonal complement of the tangent
plane are mapped into the last m − n basis vectors of the transformed coordinate system.
The Jacobian matrix of F̃ becomes

K̃ (x̃a) = QT K (xa)T = QT Qt =
[

In

0

]
,

and it is apparent that in the transformed coordinate system, projection on the tangent plane
consists of taking the first n components and setting the remaining components to zero. For
the second-order derivative, we have explicitly

[
K̃′ (x̃a)

]
kij

=
∂2
[
F̃
]

k

∂ [x̃]i ∂ [x̃]j
(x̃a) =

∑
k1,i1,j1

[Q]k1k [K′ (xa)]k1i1j1
[T]i1i [T]j1j .

The parameter-effects curvature array At and the intrinsic curvature array An are defined
as the projection of K̃′ on the tangent plane and its orthogonal complement, respectively,
that is,

[At]kij =
[
K̃′

t

]
kij

=
∑

k1,i1,j1

[Qt]k1k [K′]k1i1j1
[T]i1i [T]j1j ,

[An]kij =
[
K̃′

n

]
kij

=
∑

k1,i1,j1

[Qn]k1k [K′]k1i1j1
[T]i1i [T]j1j .
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As the curvature measures do not depend on the length of the step vector, we choose
p = Te, with ‖e‖ = 1. Then, using the result P = QtQT

t and taking into account
that vector norms are invariant under orthogonal transformations, i.e., ‖Qtx‖ = ‖x‖, we
obtain

κt =

∥∥K′
tp

2
∥∥

‖Kp‖2 =

∥∥∥QtQT
t K′ (Te)2

∥∥∥
‖KTe‖2 =

∥∥QtAte2
∥∥

‖Qte‖2 =
∥∥Ate2

∥∥
and similarly,

κn =
∥∥Ane2

∥∥ .

The computation of curvature arrays requires the calculation of the first- and second-order
derivatives K and K′. The calculation of K′ can be performed by using finite differences
schemes or automatic differentiation algorithms, but these processes are computationally
very expensive (Huiskes, 2002). An efficient approach for computing the curvature arrays
by using a symmetric storage scheme is given in Bates et al. (1983).

In a stochastic framework, the degree of nonlinearity can be examined by comparing
the forward model with its linearization within the a priori variability (Rodgers, 2000). For
this purpose, we assume that x is a random vector characterized by a Gaussian a priori
density with mean xa and covariance Cx. In the x-space, the ellipsoid

(x − xa)
T C−1

x (x − xa) = 1

represents the contour of the a priori covariance, outlining the region within which the state
vector is supposed to lie. Considering the linear transformation

z = Σ− 1
2

x VT
x (x − xa) ,

for Cx = VxΣxVT
x , we observe that in the z-space, the contour of the a priori co-

variance is a sphere of radius 1 centered at the origin, that is, zT z = 1. The points
z±k = [0, . . . ,±1, . . . , 0]T are the intersection points of the sphere with the coordinate axes
and delimit the region to which the state vector belongs. In the x-space, these boundary
points are given by

x±
k = xa + VxΣ

1
2
x z±k = xa ± ck,

where the vectors ck, defined by the partition VxΣ
1/2
x = [c1, . . . , cn], represent the error

patterns for the covariance matrix Cx. The size of the linearization error

R (x) = F (x) − F (xa) − K (xa) (x − xa) ,

can be evaluated through the quantity

ε2
link =

1
mσ2

‖R (xa ± ck)‖2
.

If εlink ≤ 1 for all k, then the problem is said to be linear to the accuracy of the measure-
ments within the assumed range of variation of the state. The results plotted in Figure 6.1
show that the differential radiance model (6.6) is characterized by a smaller linearization
error than the radiance model (6.4). For this reason, the differential radiance model is
adopted in our simulations.
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Fig. 6.1. Linearization errors for the O3 retrieval test problem corresponding to the differential radi-
ance model (top) and the radiance model (bottom).

6.1.2 Sensitivity analysis

The sensitivity of the forward model with respect to components of the state vector is
described by the Jacobian matrix. To be more precise, let us consider a linearization of the
forward model about the a priori

F (x) ≈ F (xa) + K (xa) (x − xa) .

For a change in the kth component of the state vector about the a priori, �xk = x − xa,
with

[�xk]j =
{

ε [xa]k , j = k,
0, j �= k,

the change in the forward model is given by

�Fk = F (xa + �xk) − F (xa) = K (xa)�xk,

or componentwise, by

[�Fk]i = ε [K (xa)]ik [xa]k , i = 1, . . . , m.

In this context, we say that the instrument is sensitive over the ‘entire’ spectral domain to
a ±ε-variation in the kth component of the state vector about the a priori, if |[�Fk]i| > σ
for all i = 1, . . . , m.
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The complexity of the retrieval test problems in Table 6.1 is increased by assuming
that the unknowns of the inverse problems are the layer values of the number density or
the temperature. As a result, the limb radiances are mainly sensitive to those quantities
which correspond to the layers traversed by the limb scans (Figure 6.2). This means that
the retrieval of intermediate layer quantities is essentially based on information coming
from the a priori and not from the measurement. In practice, this unfavorable situation can
be overcome by considering the level quantities as unknowns of the inversion problem, or
by choosing a rougher retrieval grid.
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Fig. 6.2. Variations of the limb radiances at the first spectral point for a +20%-variation of the num-
ber density/temperature in the layers characterized by the central heights 13.125 (1), 16.625 (2),
20.125 (3), 23.625 (4), 27.125 (5), 30.625 (6), 34.125 (7), 35.875 (8), 39.375 (9), 43.750 (10) and
47.250 km (11). The variations of the limb radiances with respect to variations of the number den-
sity/temperature in the layers situated at 14.875, 18.375, 21.875, 25.375, 28.875, 32.375, 37.625 and
41.125 km are very small and cannot be distinguished. The horizontal dotted lines indicate the limb
tangent heights (13.6, 16.9, 20.2, 23.5, 26.8, 30.1, 33.4, 36.7, 40.0, 43.3 and 46.6 km), while the
vertical dashed lines delimit the noise domain.

Other relevant aspects of the sensitivity analysis can be inferred from Figure 6.2.

(1) For the BrO retrieval test problem, the variations of the limb radiances with respect to
the O3 concentrations are one order of magnitude higher than those corresponding to
the BrO concentrations. This fact explains the large value of the signal-to-noise ratio
considered in the simulation.
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(2) For the CO retrieval test problem, the variations of the limb radiances are larger than
the noise level only for the layers situated between 13 and 30 km. However, above 30
km, the gas concentration is small and of no significant importance for the observed
radiance signal.

(3) For the temperature retrieval test problem, the low sensitivity of the forward model
with respect to layer values of the temperature in the upper region of the atmosphere
requires an extremely large signal-to-noise ratio. Anyway, large reconstruction errors
are expected in the region above 30 km.

6.1.3 Prewhitening

When the instrumental noise covariance matrix has non-zero off-diagonal elements, we
may use the prewhitening technique to transform noise into white noise. To explain this
technique, we consider the data model

yδ = F (x) + δ, (6.9)

where the instrumental noise δ is supposed to have a zero mean vector and a positive
definite covariance matrix Cδ = E{δδT }. The standard prewhitening approach involves
the following steps:

(1) compute the SVD of the covariance matrix Cδ ,

Cδ = UδΣδUT
δ ;

(2) define the ‘equivalent’ white noise variance

σ2 =
1
m

trace (Cδ) ;

(3) compute the preconditioner
P = σΣ− 1

2
δ UT

δ .

Multiplying the data model (6.9) by P we obtain

ȳδ = F̄ (x) + δ̄,

with ȳδ = Pyδ , F̄ (x) = PF (x) and δ̄ = Pδ. Then it is readily seen that E{δ̄} = 0, and
that

Cδ̄ = E
{

δ̄δ̄
T
}

= PCδPT = σ2Im.

Note that the choice of the equivalent white noise variance is arbitrary and does not influ-
ence the retrieval or the error analysis; the representation used in step 2 is merely justified
for the common situation of a diagonal noise covariance matrix Cδ = Σδ , when the pre-
conditioner is also a diagonal matrix, i.e., P = σΣ−1/2

δ .
Multi-parameter regularization problems, treated in the framework of the marginal-

izing method, deal with a data error which includes the instrumental noise and the con-
tribution due to the auxiliary parameters of the retrieval. If the auxiliary parameters are
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encapsulated in the n2-dimensional vector x2 and the instrumental noise covariance ma-
trix is the diagonal matrix Σδ , the data error

δy = K2 (x2 − xa2) + δ (6.10)

has the covariance

Cδy = E
{

δyδ
T
y

}
= Σδ + K2Cx2KT

2 , (6.11)

where Cx2 ∈ R
n2×n2 is the a priori covariance matrix of x2 and K2 ∈ R

m×n2 is the Jaco-
bian matrix corresponding to x2 evaluated at the a priori. Note that for nonlinear problems,
the representations (6.10) and (6.11) tacitly assume that K2 does not vary significantly dur-
ing the iterative process. As for large-scale problems the computation of the SVD of the
covariance matrix Cδy ∈ R

m×m by using the standard prewhitening technique is quite
demanding, we propose the following algorithm:

(1) perform the Cholesky factorization of the a priori covariance matrix Cx2 = L2LT
2 ;

(2) compute the SVD of the m × n2 matrix Σ−1/2
δ K2L2,

Σ− 1
2

δ K2L2 = U2Σ2VT
2 ;

(3) define the equivalent white noise variance

σ2 =
1
m

trace
(
Cδy

)
;

(4) compute the preconditioner

P = σΣ− 1
2 UT

2 Σ− 1
2

δ ,

with
Σ = Im + Σ2ΣT

2 .

To justify this approach, we use the result

Cδy = Σδ + K2Cx2KT
2 = Σ

1
2
δ

(
Im + Σ− 1

2
δ K2L2LT

2 KT
2 Σ− 1

2
δ

)
Σ

1
2
δ = Σ

1
2
δ U2ΣUT

2 Σ
1
2
δ ,

and set δ̄ = Pδy to conclude that

Cδ̄ = PCδyP
T = σ2Σ− 1

2 ΣΣ− 1
2 = σ2Im.

The treatment of the auxiliary parameters as an extra source of error requires the mul-
tiplication of the preconditioner with the Jacobian matrix at each iteration step. For large-
scale problems, this process is time-consuming and it is more preferable to include the
auxiliary parameters in the retrieval or to account on them only when performing an error
analysis (Eriksson et al., 2005).

For the rest of our analysis, prewhitening is implicitly assumed, and we will write F
for PF and yδ for Pyδ .
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6.2 Optimization methods for the Tikhonov function

In the framework of Tikhonov regularization, the regularized solution xδ
α is a minimizer of

the objective function

Fα (x) =
1
2

[∥∥yδ − F (x)
∥∥2 + α ‖L (x − xa)‖2

]
, (6.12)

where the factor 1/2 has been included in order to avoid the appearance of a factor two in
the derivatives. The minimization of the Tikhonov function can be formulated as the least
squares problem

min
x

Fα (x) =
1
2
‖fα (x)‖2

, (6.13)

where the augmented vector fα is given by

fα (x) =
[

F (x) − yδ
√

αL (x − xa)

]
.

The regularized solution can be computed by using optimization methods for un-
constrained minimization problems. Essentially, optimization tools are iterative methods,
which use the Taylor expansion to compute approximations to the objective function at all
points in the neighborhood of the current iterate. For Newton-type methods, the quadratic
model

Mα (p) = Fα (x) + gα (x)T p +
1
2
pT Gα (x)p (6.14)

is used as a reasonable approximation to the objective function. In (6.14), gα and Gα are
the gradient and the Hessian of Fα, that is,

gα (x) = ∇Fα (x) = Kfα (x)T fα (x) ,

and
Gα (x) = ∇2Fα (x) = Kfα (x)T Kfα (x) + Qα (x) ,

respectively, where

Kfα (x) =
[

K (x)√
αL

]
is the Jacobian matrix of fα (x),

Qα (x) =
m∑

i=1

[fα (x)]i Gαi (x) ,

is the second-order derivative term and Gαi is the Hessian of [fα]i. Although the objective
function (6.13) can be minimized by a general method, in most circumstances, the spe-
cial forms of the gradient and the Hessian make it worthwhile to use methods designed
specifically for least squares problems.

Nonlinear optimization methods can be categorized into two broad classes: step-length
methods and trust-region methods. In this section we summarize the relevant features of
an optimization method by following the analysis of Dennis and Schnabel (1996), and Gill
et al. (1981).
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6.2.1 Step-length methods

For an iterative method it is important to have a measure of progress in order to decide
whether a new iterate xδ

αk+1 is ‘better’ than the current iterate xδ
αk. A natural measure

of progress is to require a decrease of the objective function at each iteration step, and to
impose the descent condition

Fα

(
xδ

αk+1

)
< Fα

(
xδ

αk

)
.

A method that imposes this condition is termed a descent method. A step-length procedure
requires the computation of a vector pδ

αk called the search direction, and the calculation of
a positive scalar τk, the step length, for which it holds that

Fα

(
xδ

αk + τkpδ
αk

)
< Fα

(
xδ

αk

)
.

To guarantee that the objective function Fα can be reduced at the iteration step k, the
search direction pδ

αk should be a descent direction at xδ
αk, that is, the inequality

gα

(
xδ

αk

)T
pδ

αk < 0

should hold true.

Search direction

In the steepest-descent method characterized by a linear convergence rate, the objective
function is approximated by a linear model and the search direction is taken as

pδ
αk = −gα

(
xδ

αk

)
.

The negative gradient −gα

(
xδ

αk

)
is termed the direction of steepest descent, and evidently,

the steepest-descent direction is indeed a descent direction (unless the gradient vanishes)
since

gα

(
xδ

αk

)T
pδ

αk = −
∥∥gα

(
xδ

αk

)∥∥2 < 0.

In the Newton method, the objective function is approximated by the quadratic model
(6.14) and the search direction pδ

αk, which minimizes the quadratic function, is the solution
of the Newton equation

Gα

(
xδ

αk

)
p = −gα

(
xδ

αk

)
. (6.15)

For a general nonlinear function, Newton’s method converges quadratically to the min-
imizer xδ

α if the initial guess is sufficiently close to xδ
α, the Hessian matrix is positive

definite at xδ
α, and the step lengths {τk} converge to unity. Note that when Gα is always

positive definite, the solution of (6.15) is a descent direction, since

gα

(
xδ

αk

)T
pδ

αk = −pδT
αkGα

(
xδ

αk

)
pδ

αk < 0.

In the Gauss–Newton method for least squares problems, it is assumed that the first-
order term KT

fαKfα in the expression of the Hessian dominates the second-order term
Qα. This assumption is not justified when the residuals at the solution are very large, i.e.,
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roughly speaking, when the residual
∥∥fα (xδ

α

)∥∥ is comparable to the largest eigenvalue

of Kfα

(
xδ

α

)T
Kfα

(
xδ

α

)
. For small residual problems, the search direction solves the

equation
Kfα

(
xδ

αk

)T
Kfα

(
xδ

αk

)
p = −Kfα

(
xδ

αk

)T
fα
(
xδ

αk

)
, (6.16)

and possesses the variational characterization

pδ
αk = arg min

p

∥∥fα (xδ
αk

)
+ Kfα

(
xδ

αk

)
p
∥∥2 . (6.17)

The vector solving (6.16) is called the Gauss–Newton direction, and if Kfα is of full col-
umn rank, then the Gauss–Newton direction is uniquely determined and approaches the
Newton direction.

For large-residual problems, the term
∥∥fα (xδ

α

)∥∥ is not small, and the second-order
term Qα cannot be neglected. In fact, a large-residual problem is one in which the residual∥∥fα (xδ

α

)∥∥ is large relative to the small eigenvalues of Kfα

(
xδ

α

)T
Kfα

(
xδ

α

)
, but not with

respect to its largest eigenvalue. One possible strategy for large-residual problems is to
include a quasi-Newton approximation Q̄α to the second-order derivative term Qα, and to
compute the search direction by solving the equation[

Kfα

(
xδ

αk

)T
Kfα

(
xδ

αk

)
+ Q̄α

(
xδ

αk

)]
p = −Kfα

(
xδ

αk

)T
fα
(
xδ

αk

)
. (6.18)

Quasi-Newton methods are based on the idea of building up curvature information as the
iteration proceeds using the observed behavior of the objective function and of the gradi-
ent. The initial approximation of the second-order derivative term is usually taken as zero,
and with this choice, the first iteration step of the quasi-Newton method is equivalent to
an iteration of the Gauss–Newton method. After xδ

αk+1 has been computed, a new ap-
proximation of Q̄α

(
xδ

αk+1

)
is obtained by updating Q̄α

(
xδ

αk

)
to take into account the

newly-acquired curvature information. An update formula reads as

Q̄α

(
xδ

αk+1

)
= Q̄α

(
xδ

αk

)
+ Uαk,

where the update matrix Uαk is usually chosen as a rank-one matrix. The standard con-
dition for updating Q̄α is known as the quasi-Newton condition, and requires that the
Hessian should approximate the curvature of the objective function along the change in
x during the current iteration step. The most widely used quasi-Newton scheme, which
satisfies the quasi-Newton condition and possesses the property of hereditary symmetry, is
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update,

Q̄α

(
xδ

αk+1

)
= Q̄α

(
xδ

αk

)
− 1

sT
αkWα

(
xδ

αk

)
sαk

Wα

(
xδ

αk

)
sαksT

αkWα

(
xδ

αk

)
+

1
hT

αksαk
hαkhT

αk, (6.19)

where
sαk = xδ

αk+1 − xδ
αk
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is the change in x during the current iteration step,

hαk = gα

(
xδ

αk+1

)
− gα

(
xδ

αk

)
is the change in the gradient, and

Wα

(
xδ

αk

)
= Kfα

(
xδ

αk+1

)T
Kfα

(
xδ

αk+1

)
+ Q̄α

(
xδ

αk

)
.

Step length

A step-length procedure is frequently included in Newton-type methods because a step
length of unity along the Newton direction will not necessarily reduce the objective func-
tion. The main requirements of a step-length procedure can be summarized as follows: if
x and p denote the actual iterate and the search direction, respectively, then

(1) the average rate of decrease from Fα (x) to Fα (x + τp) should be at least some
prescribed fraction εf > 0 of the initial rate of decrease in that direction,

Fα (x + τp) ≤ Fα (x) + εfτgα (x)T p;

(2) the rate of decrease of Fα in the direction p at x + τp should be larger than some
prescribed fraction εg > 0 of the rate of decrease in the direction p at x,

gα (x + τp)T p ≥ εggα (x)T p.

The first condition guarantees a sufficient decrease in Fα values relative to the length
of the step, while the second condition avoids too small steps relative to the initial rate of
decrease of Fα. The condition εg > εf implies that both conditions can be satisfied simul-
taneously. In practice, the second condition is not needed because the use of a backtracking
strategy avoids excessively small steps.

Since computational experience has shown the importance of taking a full step length
whenever possible, the modern strategy of a step-length algorithm is to start with τ = 1,
and then, if x + p is not acceptable, ‘backtrack’ (reduce τ ) until an acceptable x + τp is
found. The backtracking step-length algorithm 5 uses only condition (1) and is based on
quadratic and cubic interpolation (Dennis and Schnabel, 1996). On the first backtracking,
the new step length is selected as the minimizer of the quadratic interpolation function
mq (τ), defined by

mq (0) = Fα (x) , m′
q (0) = gα (x)T p, mq (1) = Fα (x + p) ,

but being constrained to be larger than ε1 = 0.1 of the old step length. On all subsequent
backtracks, the new step length is chosen by using the values of the objective function at
the last two values of the step length. Essentially, if τ and τprv are the last two values of
the step length, the new step length is computed as the minimizer of the cubic interpolation
function mc (τ), defined by

mc (0) = Fα (x) , m′
c (0) = gα (x)T p,

and
mc (τ) = Fα (x + τp) , mc

(
τprv
)

= Fα

(
x + τprvp

)
,

but being constrained to be larger than ε1 = 0.1 and smaller than ε2 = 0.5 of the old step
length.
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Algorithm 5. Step-length algorithm. Given the actual iterate x and the search direction
p, the algorithm computes the new iterate xnew. The control parameters can be chosen as
εf = 10−4, ε1 = 0.1 and ε2 = 0.5.

Fα ← 0.5 ‖fα (x)‖2; gα ← Kfα (x)T fα (x);
estimate τmin;
τ ← 1; stop ← false;
while stop = false do

xnew ← x + τp; Fαnew ← 0.5 ‖fα (xnew)‖2;
{satisfactory xnew found}
if Fαnew ≤ Fα + εfτgT

αp then

stop ← true;
{no satisfactory xnew can be found distinctly from x}
else if τ < τmin then

xnew ← x; stop ← true;
{reduce τ}
else

{quadratic interpolation}
if τ = 1 then

τtmp ← −0.5gT
αp/

(
Fαnew −Fα − gT

αp
)
;

{cubic interpolation}
else [

a
b

]
← 1

τ−τprv

[
1/τ2 −1/τ2

prv

−τprv/τ2 τ/τ2
prv

] [
Fαnew −Fα − τgT

αp
Fαprv −Fα − τprvgT

αp

]
;

Δ ← b2 − 3agT
αp;

if a = 0 then

τtmp ← −gT
αp/ (2b); {cubic is a quadratic}

else

τtmp ←
(
−b +

√
Δ
)

/ (3a); {true cubic}
end if

if τtmp > ε2τ τtmp ← ε2τ ;
end if

τprv ← τ ; Fαprv ← Fαnew;
if τtmp ≤ ε1τ then

τ ← ε1τ ;
else

τ ← τtmp;
end if

end if

end while
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6.2.2 Trust-region methods

In a trust-region method, the step length is taken as unity, so that the new iterate is defined
by

xδ
αk+1 = xδ

αk + pδ
αk.

For this reason, the term ‘step’ is often used to designate the search direction pδ
αk. In order

to ensure that the descent condition holds, it is necessary to compute several trial steps
before finding a satisfactory pδ

αk. The most common mathematical formulation of this
idea computes the trial step pδ

αk by solving the constrained minimization problem

min
p

Mαk (p) (6.20)

subject to ‖p‖ ≤ Γk,

where Mαk is the quadratic model (6.14) at the current iterate xδ
αk, and Γk is the trust-

region radius. Thus, as opposite to a step-length method, in which we retain the same step
direction and choose a shorter step length without making use of the quadratic model, in a
trust-region method, we first select a shorter step length and then use the quadratic model
to choose the step direction.

Assuming that the solution occurs on the boundary of the constraint region, the first-
order optimality conditions for the Lagrangian function

L (p, λ) = Fα

(
xδ

αk

)
+ gα

(
xδ

αk

)T
p +

1
2
pT Gα

(
xδ

αk

)
p +

1
2
λ
(
‖p‖2 − Γ2

k

)
,

yield [
Gα

(
xδ

αk

)
+ λIn

]
pλ = −gα

(
xδ

αk

)
(6.21)

and
‖pλ‖2 = Γ2

k. (6.22)

Particularizing the trust-region method for general minimization to least squares problems
with a Gauss–Newton approximation to the Hessian, we deduce that the trial step solves
the equation[

Kfα

(
xδ

αk

)T
Kfα

(
xδ

αk

)
+ λIn

]
pλ = −Kfα

(
xδ

αk

)T
fα
(
xδ

αk

)
, (6.23)

while the Lagrange multiplier λ solves equation (6.22). For comparison with a step-length
method, we note that the solution of (6.23) is a solution of the regularized least squares
problem

pδ
αk = arg min

p

(∥∥fα (xδ
αk

)
+ Kfα

(
xδ

αk

)
p
∥∥2 + λ ‖p‖2

)
. (6.24)

If λ is zero, pδ
αk is the Gauss–Newton direction; as λ → ∞, pδ

αk becomes parallel to the
steepest-descent direction −gα

(
xδ

αk

)
.

Generally, a trust-region algorithm uses the predictive reduction in the linearized model
(6.14),

ΔFpred
αk = Mαk (0) −Mαk

(
pδ

αk

)
(6.25)
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and the actual reduction in the objective function

ΔFαk = Fα

(
xδ

αk

)
−Fα

(
xδ

αk + pδ
αk

)
(6.26)

to decide whether the trial step pδ
αk is acceptable and how the next trust-region radius is

chosen. The heuristics to update the size of the trust region usually depends on the ratio of
the actual change in Fα to the predicted change.

The trust-region algorithm 6 finds a new iterate and produces a trust-region radius
for the next iteration step (Dennis and Schnabel, 1996). The algorithm starts with the
calculation of the trial step p for the actual trust-region radius Γ (cf. (6.22) and (6.23)),
and with the computation of the prospective iterate xnew = x+p and the objective function
Fα (xnew). Then, depending on the average rate of decrease of the objective function, the
following situations may appear.

(1) If Fα (xnew) > Fα (x) + εfgα (x)T p, then the step is unacceptable. In this case, if
the trust-region radius is too small, the algorithm terminates with xnew = x. If not, the
step length τmin is computed as the minimizer of the quadratic interpolation function
mq (τ), defined by

mq (0) = Fα (x) , m′
q (0) = gα (x)T p, mq (1) = Fα (x + p) ,

and the new radius is chosen as τmin ‖p‖ but constrained to be between ε1Γ = 0.1 and
ε2Γ = 0.5 of the old radius.

(2) If Fα (xnew) ≤ Fα (x) + εfgα (x)T p, then the step is acceptable, and the reduction
of the objective function predicted by the quadratic Gauss–Newton model

�Fpred
α = −gα (x)T p − 1

2
‖Kfα (x)p‖2

is computed. If ΔFα = Fα (x)−Fα (xnew) and �Fpred
α agree to within a prescribed

tolerance, or negative curvature is indicated, then the trust-region radius is increased
and the while loop is continued. If not, xnew is accepted as the new iterate, and the
trust-region radius is updated for the next iteration step.

A simplified version of a trust-region method is widely used in atmospheric remote
sensing (Rodgers, 2000; Eriksson et al., 2005; von Clarmann et al., 2003). In these imple-
mentations, the step pδ

αk is computed by solving equation (6.24) and a heuristic strategy is
used to update the Lagrange multiplier λ at each iteration step.

6.2.3 Termination criteria

In a deterministic setting, the standard termination criteria for unconstrained minimization
are the X-convergence test (Dennis and Schnabel, 1996)

max
i

⎛⎝
∣∣∣[xδ

αk+1

]
i
−
[
xδ

αk

]
i

∣∣∣
max

(∣∣∣[xδ
αk+1

]
i

∣∣∣ , typ [x]i
)
⎞⎠ ≤ εx (6.27)
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Algorithm 6. Trust-region algorithm. Given the actual iterate x and the trust-region radius
Γ, the algorithm computes the new iterate xnew and produces a starting trust-region radius Γ
for the next iteration step. The control parameters can be chosen as εf = 10−4, ε1Γ = 0.1,
ε2Γ = 0.5, δ = 0.01, ca = 2, cr = 0.5, εr = 0.1 and εa = 0.75.

Fα ← 0.5 ‖fα (x)‖2; gα ← Kfα (x)T fα (x);
estimate Γmin and Γmax; retcode ← 4;
while retcode > 1 do

compute the trial step p for the trust-region radius Γ;
xnew ← x + p; Fαnew ← 0.5 ‖fα (xnew)‖2; �Fα ← Fα −Fαnew;
{if retcode = 3, reset xnew to xprv and terminate the while loop}
if retcode = 3 and (Fαnew ≥ Fαprv or Fαnew > Fα + εfgT

αp) then

retcode ← 0; xnew ← xprv; Fαnew ← Fαprv;
{objective function is too large; reduce Γ and continue the while loop}
else if Fαnew > Fα + εfgT

αp then

if Γ < Γmin then

retcode ← 1; xnew ← x; Fαnew ← Fα;
else

retcode ← 2; Γtmp ← 0.5
(
gT

αp
)
‖p‖ /

(
�Fα + gT

αp
)
;

if Γtmp < ε1ΓΓ then

Γ ← ε1ΓΓ;
else if Γtmp > ε2ΓΓ then

Γ ← ε2ΓΓ;
else

Γ ← Γtmp;
end if

end if

{objective function is sufficiently small}
else

�Fpred
α ← −gT

αp − 0.5 ‖Kfαp‖2;
{increase Γ and continue the while loop}
if retcode �= 2 and (

∣∣∣�Fpred
α −�Fα

∣∣∣ ≤ δ�Fα or Fαnew ≤ Fα + gT
αp)

and Γ < Γmax then

retcode ← 3; xprv ← xnew; Fαprv ← Fαnew; Γ ← min (caΓ,Γmax);
{accept xnew as new iterate and update Γ for the next iteration step}
else

retcode ← 0;
if �Fα ≤ εr�Fpred

α then

Γ ← max (crΓ,Γmin); {reduce Γ}
else if �Fα ≥ εa�Fpred

α then

Γ ← min (caΓ,Γmax); {increase Γ}
end if

end if

end if

end while
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and the relative gradient test

max
i

⎛⎝∣∣[gα

(
xδ

αk+1

)]
i

∣∣ max
(∣∣∣[xδ

αk+1

]
i

∣∣∣ , typ [x]i
)

max
(
Fα

(
xδ

αk+1

)
, typF

)
⎞⎠ ≤ εg. (6.28)

The first condition checks whether the sequence {xδ
αk} is converging, while the second

criterion reflects the optimality condition gα

(
xδ

α

)
≈ 0. The relative gradient test (6.28) is

a modification of the conventional gradient test
∥∥gα

(
xδ

αk+1

)∥∥
∞ ≤ εg, which is strongly

dependent on the scaling of both Fα and x. The relative gradient of Fα at x, defined as the
ratio of the relative rate of change in Fα to the relative rate of change in x, is independent
of any change in the units of Fα and x.

The termination criteria (6.27) and (6.28) are formulated in terms of the infinity norm
(or the maximum norm) rather than in terms of the two-norm (or the Euclidean norm).
The reason is that for large n, the number of terms contributing to the magnitude of the
two-norm may cause these tests to be extremely severe.

It should be mentioned that the problem of measuring relative changes when the argu-
ment z is near zero is addressed by substituting z with max (|z| , typ z), where typ z is an
estimate of a typical magnitude of z. Otherwise, we may substitute 1 + |z| for z, in which
case, the X-convergence test becomes (Gill et al., 1981)

max
i

(∣∣[xδ
αk+1

]
i
−
[
xδ

αk

]
i

∣∣) ≤ εx

[
1 + max

i

(∣∣[xδ
αk+1

]
i

∣∣)] .

As a matter of fact, a third strategy is adopted in the PORT optimization routines (Den-
nis et al., 1981). Here, the problem of measuring relative changes in x is addressed by
formulating the X-convergence test as

maxi

(∣∣∣[xδ
αk+1

]
i
−
[
xδ

αk

]
i

∣∣∣)
maxi

(∣∣∣[xδ
αk+1

]
i

∣∣∣+ ∣∣[xδ
αk

]
i

∣∣) ≤ εx. (6.29)

It is apparent from the above discussion that the termination criteria are based on an
implicit definition of ‘small’ and ‘large’, and that variables with large varying orders of
magnitude may cause difficulties for some minimization algorithms. This problem can
be remedied by scaling the variables through a linear transformation. The goal of the
scaling process is to make all the variables of a similar order of magnitude in the region of
interest. If typical values of all variables are known (e.g., an a priori atmospheric profile),
we may pass from the original variable x to the transformed variable x̂ through the linear
transformation x̂ = Dx, where D is a diagonal matrix with entries [D]ii = 1/typ [x]i,
i = 1, . . . , n. Sometimes the scaling by a diagonal matrix only has the disadvantage that
the magnitude of a variable may vary substantially during the minimization process and
that some accuracy may be lost. This situation can be overcome if a range of values, that
a variable is likely to assume, is known. For example, if we know that li ≤ [x]i ≤ ui for
i = 1, . . . , n, then the transformed variable x̂ is defined by (Gill et al., 1981)

[x̂]i =
2 [x]i
ui − li

− ui + li
ui − li

, i = 1, . . . , n.
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In a stochastic framework, the X-convergence test involves the change in the iterate
scaled by its estimated error, that is, (Rodgers, 2000; Eriksson et al., 2005)(

xδ
αk+1 − xδ

αk

)T
Ĉ−1

xk

(
xδ

αk+1 − xδ
αk

)
n

≤ εx, (6.30)

where
Ĉxk =

(
KT

αkC
−1
δ Kαk + C−1

x

)−1

is the a posteriori covariance matrix at the iteration step k and Kαk = K
(
xδ

αk

)
. The idea

behind criterion (6.30) is that, if xδ
α is the minimizer of the Tikhonov function, and Cδ and

Cx accurately reproduce the covariance matrices of the errors in the data and of the true
state, respectively, then the random variable(

x† − xδ
α

)T
Ĉ−1

x

(
x† − xδ

α

)
,

with Ĉx corresponding to xδ
α , is Chi-square distributed with n degrees of freedom (Ap-

pendix D). Here, the true state x† and its estimator xδ
α should be regarded as random

variables distributed as x† − xδ
α ∼ N

(
0, Ĉx

)
. Essentially, condition (6.30) requires

that instead of the infinity norm, the Mahalanobis norm between two successive iterates∥∥xδ
αk+1 − xδ

αk

∥∥2bC−1
xk

scaled by n is smaller than the prescribed tolerance εx.
A termination criterion, which is frequently used in conjunction with a regularization

parameter choice method, is the relative function convergence test (Rodgers, 2000; Caris-
simo et al., 2005)

rδ
k − rδ

k+1

rδ
k

≤ εfr, (6.31)

where
rδ
k =

[
yδ − F

(
xδ

αk

)]T
C−1

rk

[
yδ − F

(
xδ

αk

)]
,

is the ‘residual’, and
Crk = Cδ

(
KαkCxKT

αk + Cδ

)−1
Cδ

is the covariance matrix of the residual at the iteration step k. If the noise and the a priori
covariance matrices properly describe the errors in the data and the true state, respec-
tively, and moreover, if the iterate xδ

α, satisfying the relative function convergence test, is a
minimizer of the Tikhonov function Fα, then the corresponding residual rδ is Chi-square
distributed with m degrees of freedom (Appendix D). In this regard, to test the ‘correct’
convergence, we check the condition

m −
√

2mzt/2 < rδ < m +
√

2mzt/2,

where zt/2 is the relevant z-value for a Chi-square distribution with m degrees of free-
dom, and t is the significance level. A similar test can be performed in the state space by
considering the ‘constraint’

cδ
k =

(
xδ

αk − xa

)T
Cbxk (xδ

αk − xa

)
,
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with
Cbxk = CxKT

αkC
−1
δ Kαk

(
KT

αkC
−1
δ Kαk + C−1

x

)−1
,

and by taking into account that at the minimizer xδ
α, the constraint cδ is Chi-square dis-

tributed with n degrees of freedom. It should be pointed out that for Cδ = σ2Im,
the relative function convergence test, formulated in terms of the residual

∥∥rδ
αk

∥∥2 =∥∥yδ − F
(
xδ

αk

)∥∥2, plays a significant role in the framework of iterative regularization
methods.

6.2.4 Software packages

The Gauss–Newton model of the Hessian is used, usually with enhancements, in much of
the software for nonlinear least squares as for example, MINPACK, NAG, TENSOLVE
and PORT. For a survey of optmization software we recommend the monograph by Moré
and Wright (1993).

The algorithms in MINPACK (Moré et al., 1980) are based on the trust-region concept
and employ either a finite-difference or an analytical Jacobian matrix.

The NAG routines (NAG Fortran Library Manual, 1993) use a Gauss–Newton search
direction whenever a sufficiently large decrease in the objective function is attained. Oth-
erwise, second-order derivative information is obtained from user-supplied function eval-
uation routines, quasi-Newton approximations, or difference approximations. Using this
information, the software attempts to find a more accurate approximation to the Newton
direction than the Gauss–Newton direction is able to provide.

The TENSOLVE software (Bouaricha and Schnabel, 1997) augments the Gauss–New-
ton model with a low-rank tensor approximation to the second-order term. It has been
observed to converge faster than standard Gauss–Newton on many problems, particularly
when the Jacobian matrix is rank deficient at the solution.

The optimization algorithms implemented in the PORT library use a trust-region meth-
od in conjunction with a Gauss–Newton model and a quasi-Newton model to compute the
trial step (Dennis et al., 1981). When the first trial step fails, the alternate model gets a
chance to make a trial step with the same trust-region radius. If the alternate model fails
to suggest a more successful step, then the current model is maintained for the duration of
the present iteration step. The trust-region radius is then decreased until the new iterate is
determined or the algorithm fails.

6.3 Practical methods for computing the new iterate

A step-length method for minimizing the Tikhonov function is of the form of the following
model algorithm:

(1) compute the search direction;
(2) compute the step length by using Algorithm 5;
(3) terminate the iterative process according to the X-convergence test.

The step-length procedure is optional, but our experience demonstrates that this technique
improves the stability of the method and reduces the number of iteration steps. In this sec-
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tion we are concerned with the computation of the search direction pδ
αk, or more precisely,

with the computation of the new iterate xδ
αk+1 = xδ

αk + pδ
αk. Certainly, if a step-length

procedure is part of the inversion algorithm, then xδ
αk+1 is the prospective iterate, but

we prefer to use the term ‘new iterate’ because it is frequently encountered in the remote
sensing community.

Using the explicit expressions of the augmented vector fα and of the Jacobian matrix
Kfα, we deduce that the Gauss–Newton direction pδ

αk solves the equation (cf. (6.16))

(
KT

αkKαk + αLT L
)
p = −KT

αk

[
F
(
xδ

αk

)
− yδ

]
− αLT L

(
xδ

αk − xa

)
,

with Kαk = K
(
xδ

αk

)
. Passing from the unknown p = x − xδ

αk to the unknown �x =
x − xa yields the regularized normal equation(

KT
αkKαk + αLT L

)
� x = KT

αky
δ
k,

with
yδ

k = yδ − F
(
xδ

αk

)
+ Kαk

(
xδ

αk − xa

)
. (6.32)

The new iterate is then given by

xδ
αk+1 = xa + K†

αky
δ
k, (6.33)

where
K†

αk =
(
KT

αkKαk + αLT L
)−1

KT
αk

is the regularized generalized inverse at the iteration step k.
In order to give a more practical interpretation of the Gauss–Newton iterate (6.33), we

consider a linearization of F about xδ
αk,

F (x) = F
(
xδ

αk

)
+ Kαk

(
x − xδ

αk

)
+ R

(
x,xδ

αk

)
,

where R is the remainder term of the first-order Taylor expansion or the linearization error
about xδ

αk. If x† is a solution of the nonlinear equation with exact data F (x) = y, then x†

is defined by the equation
Kαk

(
x† − xa

)
= yk

where
yk = y − F

(
xδ

αk

)
+ Kαk

(
xδ

αk − xa

)
− R

(
x†,xδ

αk

)
.

Because yk is unknown, we consider the equation

Kαk (x − xa) = yδ
k, (6.34)

with yδ
k being given by (6.32). Evidently, the errors in the data yδ

k are due to the instru-
mental noise and the linearization error, and we have the representation

yδ
k − yk = δ + R

(
x†,xδ

αk

)
.

Because the nonlinear problem is ill-posed, its linearization is also ill-posed, and we solve
the linearized equation (6.34) by means of Tikhonov regularization with the penalty term
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‖L (x − xa)‖2 and the regularization parameter α. The Tikhonov function for the lin-
earized equation takes the form

Flαk (x) =
∥∥yδ

k − Kαk (x − xa)
∥∥2 + α ‖L (x − xa)‖2

,

and its minimizer is given by (6.33). Thus, the solution of a nonlinear ill-posed problem by
means of Tikhonov regularization is equivalent to the solution of a sequence of ill-posed
linearizations of the forward model about the current iterate.

The new iterate can be computed by using the GSVD of the matrix pair (Kαk,L).
Although, the GSVD is of great theoretical interest for analyzing general-form regulariza-
tion problems, it is of computational interest only for small- and medium-scale problems.
The reason is that the computation of the GSVD of the matrix pair (Kαk,L) is quite de-
manding; the conventional implementation requires about 2m2n+15n3 operations (Hanke
and Hansen, 1993). For practical solutions of large-scale problems it is much simpler to
deal with standard-form problems in which the regularization matrix is the identity matrix
and only the SVD of the transformed Jacobian matrix is required. The regularization in
standard form relies on the solution of the equation

K̄αk � x̄ = yδ
k, (6.35)

with K̄αk = KαkL−1 and �x = L−1 � x̄, by means of Tikhonov regularization with
L = In. If (σi;vi,ui) is a singular system of K̄αk, the solution of the standard-form
problem expressed by the regularized normal equation(

K̄T
αkK̄αk + αIn

)
� x̄ = K̄T

αky
δ
k (6.36)

reads as

�x̄δ
αk+1 =

n∑
i=1

σi

σ2
i + α

(
uT

i yδ
k

)
vi.

An efficient implementation of Tikhonov regularization for large-scale problems, which
also takes into account that we wish to solve (6.36) several times for various regularization
parameters, is described in Hanke and Hansen (1993). In this approach, the standard-form
problem is treated as a least squares problem of the form (cf. (6.36))

min
x

∥∥∥∥[ K̄αk√
αIn

]
� x̄ −

[
yδ

k

0

]∥∥∥∥2 .

The matrix K̄αk is tranformed into an upper bidiagonal matrix J,

K̄αk = U
[

J
0

]
VT ,

by means of orthogonal transformations from the left and from the right, with U ∈ R
m×m,

J ∈ R
n×n and V ∈ R

n×n. The bidiagonal matrix J is computed explicitly, while the or-
thogonal matrices U and V are represented by series of orthogonal transformations, which
are usually stored in appropriate arrays and later used when matrix-vector multiplications,
e.g., UT x and Vx, are needed. Making the change of variables

ξ = VT � x̄, zδ = UT yδ
k,
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and assuming the partition

zδ =
[

zδ
1

zδ
2

]
, zδ

1 ∈ R
n,

we are led to an equivalent minimization problem expressed as

min
ξ

∥∥∥∥[ J√
αIn

]
ξ −
[

zδ
1

0

]∥∥∥∥2 .

As shown by Elden (1977), the above minimization problem can be solved very efficiently
by means of O (n) operations. Essentially, for each value of the regularization parameter,
we compute the QR factorization[

J√
αIn

]
= Qα

[
Tα

0

]
, (6.37)

by means of 2n − 1 Givens rotations, where Tα ∈ R
n×n is an upper bidiagonal matrix,

and Qα ∈ R
2n×2n is a product of Givens rotations. Further, defining the vector

ζδ
α = QT

α

[
zδ
1

0

]
,

and partitioning ζδ
α as

ζδ
α =

[
ζδ

α1

ζδ
α2

]
, ζδ

α1 ∈ R
n,

we obtain
ξδ

α = T−1
α ζδ

α1

and finally,
�x̄δ

αk+1 = Vξδ
α.

This solution method, relying on a bidiagonalization of the Jacobian matrix, is outlined in

The standard-form problem can be formulated as the augmented normal equation (cf.
(6.36))

K̄T
fαK̄fα�x̄ = K̄T

fαf̄ , (6.38)

with

f̄ =
[

yδ
k

0

]
, K̄fα =

[
K̄αk√
αIn

]
,

and the linear equation K̄fα�x̄ = f̄ can be solved by using iterative methods for normal
equations like the CGNR and the LSQR algorithms. For large-scale problems, the compu-
tational efficiency can be increased by using an appropriate preconditioner. The precondi-
tioner M for the normal equation (6.38) should be chosen so that the condition number of
MT K̄T

fαK̄fαM is small. The construction of a preconditioner based on the close connec-
tion between the Lanczos algorithm and the conjugate gradient method has been described
by Hohage (2001). Assuming the singular value decomposition K̄αk = UΣVT , we have

K̄T
fαK̄fα = V

[
diag

(
σ2

i + α
)
n×n

]
VT ,

Algorithm 7.
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Algorithm 7. Implementation of Tikhonov regularization with Jacobian bidiagonalization.
The bidiagonalization of K̄αk can be performed by using the routine DGEBRD from the
LAPACK library (Anderson et al., 1995), while the products UT yδ

k and Vξδ
α can be com-

puted by using the routine DORMBR from the same library. The notation J = bidiag [d, e]
means that d and e are the diagonal and superdiagonal of the bidiagonal matrix J.
K̄αk ← KαkL−1;

bidiagonalize K̄αk = U
[

J
0

]
VT with J = bidiag [d, e];

zδ ← UT yδ
k; partition zδ =

[
zδ
1

zδ
2

]
with zδ

1 ∈ R
n; z̄ ←

[
zδ
1

0

]
∈ R

2n;

{QR factorization
[

J√
αIn

]
= Qα

[
Tα

0

]
, Tα = bidiag [d, e]; z̄ ← QT

α z̄}

for i = 1, n do [s]i ←
√

α; end for {diagonal of the regularization matrix
√

αIn}
for i = 1, n do

{rotation in (i, i + n)-plane: angle of rotation}
ρ ←

√
[d]2i + [s]2i ; sin θ ← [s]i /ρ; cos θ ← [d]i /ρ;

{rotation in (i, i + n)-plane: [d]i and [e]i}
if i ≤ n − 1 then

[e]i ← [d]i [e]i /ρ; λ ← [s]i [e]i /ρ;
end if

[d]i ← ρ;
[s]i ← 0;
{rotation in (i, i + n)-plane: z̄ ← QT

α z̄}
w1 ← cos θ [z̄]i + sin θ [z̄]i+n; w2 ← − sin θ [z̄]i + cos θ [z̄]i+n;
[z̄]i ← w1; [z̄]i+n ← w2;
if i ≤ n − 1 then

{rotation in (i + n, i + n + 1)-plane: angle of rotation}
ρ ←

√
λ2 + [s]2i+1; sin θ ← λ/ρ; cos θ ← [s]i+1 /ρ;

[s]i+1 ← ρ;
{rotation in (i + n, i + n + 1)-plane: z̄ ← QT

α z̄}
w1 ← cos θ [z̄]i+n + sin θ [z̄]i+n+1; w2 ← − sin θ [z̄]i+n + cos θ [z̄]i+n+1;
[z̄]i+n ← w1; [z̄]i+n+1 ← w2;

end if

end for

{solve Tαξδ
α = z̄1, where Tα = bidiag [d, e] and z̄ =

[
z̄1

z̄2

]
with z̄1 ∈ R

n}[
ξδ

α

]
n
← [z̄]n / [d]n;

for i = 1, n − 1 do
[
ξδ

α

]
n−i

←
(

[z̄]n−i − [e]n−i

[
ξδ

α

]
n−i+1

)
/ [d]n−i; end do

{new iterate}
�x̄δ

α ← Vξδ
α; xδ

αk+1 ← L−1 � x̄δ
α + xa;
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and for a fixed index r, the preconditioner can be constructed as

M = V

⎡⎢⎣ diag
(

1√
σ2

i +α

)
r×r

0

0 diag
(

1√
α

)
(n−r)×(n−r)

⎤⎥⎦VT .

We then obtain

MT K̄T
fαK̄fαM = V

[
Ir 0

0 diag
(

σ2
i +α
α

)
(n−r)×(n−r)

]
VT ,

and the condition number of MT KT
fαKfαM is 1+σ2

r+1/α. If σ2
r+1 is not much larger than

α, then the condition number is small and very few iteration steps are required to compute
the new iterate. Turning now to practical implementation issues we mention that iterative
algorithms are coded without explicit reference to M; only the matrix-vector product Mx
is involved. Since

Mx =
1√
α
x +

r∑
i=1

(
1√

σ2
i + α

− 1√
α

)(
vT

i x
)
vi,

we observe that the calculation of Mx requires the knowledge of the first r singular values
and right singular vectors of K̄αk, and these quantities can be efficiently computed by the

The steps of computing the r singular values and right singular
vectors of an m × n matrix A can be synthesized as follows:

(1) apply r steps of the Lanczos bidiagonalization algorithm with Householder orthogo-
nalization to produce a lower (r + 1) × r bidiagonal matrix B, an n × r matrix V̄
containing the right singular vectors, and an m× (r + 1) matrix Ū containing the left
singular vectors,

AV̄ = ŪB;

(2) compute the QR factorization of the bidiagonal matrix B,

B = Q
[

R
0

]
,

where Q is an (r + 1)×(r + 1) orthogonal matrix, and R is an upper r×r bidiagonal
matrix;

(3) compute the SVD of the bidiagonal matrix R,

R = URΣVT
R ;

(4) the first r singular values are the diagonal entries of Σ, while the corresponding right
singular vectors are the column vectors of the n × r matrix

V = V̄VR.

Lanczos Algorithm 8.
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Algorithm 8. Lanczos bidiagonalization algorithm for estimating the first r singular values
and right singular vectors of a matrix A. The r singular values are stored in the diagonal
of Σ, while the corresponding right singular vectors are stored in the columns of V. The
algorithm uses the LAPACK routine DLARTG to generate a plane rotation. The SVD
of the bidiagonal matrix R can be computed by using the routine DBDSDC from the
LAPACK library. The routine HOrth is given in Chapter 5.
p ← 0; [p]1 ← 1; {choose p arbitrarily, e.g., the first Cartesian unit vector}
d ← 0; e ← 0; v̄ ← 0;
π ← 0; P ← 0; ν ← 0; Q ← 0;
{initialization of arrays P and π}
p ← ‖p‖; [π]1 ← 1/

(
p2 + |[p]1| p

)
;

[P]11 ← [p]1 + sgn ([p]1) p; for k = 2, m do [P]k1 ← [p]k; end for

β ← −sgn ([p]1) p; ū ← (1/β)p;
for i = 1, r do

q ← AT ū − βv̄;
call HOrth (i, n,ν,Q,q; v̄, α);
[d]i ← α; for k = 1, n do

[
V̄
]
ki

← [v̄]k; end for {store α and v̄}
p ← Av̄ − αū;
call HOrth (i + 1, m,π,P,p; ū, β);
[e]i ← β; {store β}

end for

{compute the QR factorization of B = bidiag [d, e]}
for i = 1, r − 1 do

call DLARTG([d]i , [e]i ; c, s, ρ);
[d]i ← ρ; [e]i ← s [d]i+1; [d]i+1 ← c [d]i+1;

end for

if r < min (m, n) then

call DLARTG([d]r , [e]r ; c, s, ρ);
[d]r ← ρ; [e]r ← 0;

end if

compute the SVD R = URΣVT
R , where R = bidiag [d, e];

V ← V̄VR;

The above computational steps yield

A = ŪBV̄T = ŪQ
[

URΣVT
R

0

]
V̄T = ŪQ

[
UR 0
0 1

] [
Σ
0

] (
V̄VR

)T ;

whence, taking into account that the product of two matrices with orthonormal columns is

purpose.
The regularized normal equation (6.36) can be expressed as

A � x̄ = b, (6.39)

with
A = K̄T

αkK̄αk + αIn

also a matrix with orthonormal columns, we deduce that Algorithm 8 serves the desired
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Table 6.2. Computation time in min:ss format for different solution methods.

Solution method

Problem GSVD SVD Bidiagonalization CGNR

O3 0:25 0:16 0:14 0:14
BrO 0:32 0:21 0:18 0:20
CO 5:04 3:23 2:43 3:19
Temperature 5:28 3:37 2:54 3:32

and
b = K̄T

αky
δ
k.

As A is symmetric, the system of equations (6.39) can be solved by using standard iterative
solvers, as for example, the Conjugate Gradient Squared (CGS) or the Biconjugate Gra-
dient Stabilized (Bi-CGSTAB) methods (Barrett et al., 1994). A relevant practical aspect
is that for iterative methods, the matrix A is never formed explicitly as only matrix-vector
products with A and eventually with AT are required. The calculation of the matrix-vector
product Ax demands the calculation of K̄T

αkK̄αkx, and, clearly, this should be computed
as K̄T

αk

(
K̄αkx

)
and not by forming the cross-product matrix K̄T

αkK̄αk. The reason for
avoiding explicit formation of the cross-product matrix is the loss of information due to
round-off errors. A right preconditioner for the system of equations (6.39), i.e.,

AMa � x̄′ = b, Ma � x̄′ = �x̄,

can also be constructed by using the Lanczos algorithm. For K̄αk = UΣVT , the right
preconditioner is given by

Ma = V

⎡⎣ diag
(

1
σ2

i +α

)
r×r

0

0 diag
(

1
α

)
(n−r)×(n−r)

⎤⎦VT ,

in which case, the condition number of AMa is 1 + σ2
r+1/α, and we have

Max =
1
α
x +

r∑
i=1

(
1

σ2
i + α

− 1
α

)(
vT

i x
)
vi.

The comparison of the numerical effort of the methods for computing the new iterate
can be inferred from Table 6.2. The fastest method is the approach relying on a bidiagonal-
ization of the Jacobian matrix, and as expected, the slowest method is the approach based
on the GSVD of the matrix pair (Kαk,L).

6.4 Error characterization

An important part of a retrieval is to assess the accuracy of the regularized solution by
performing an error analysis. The error representation depends on the solution method
which is used to compute a minimizer of the Tikhonov function, or more precisely, on the
Hessian approximation.
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6.4.1 Gauss–Newton method

The Gauss–Newton iterate xδ
αk+1 is the regularized solution of the linearized equation

(6.34) and its expression is given by (6.33). For the exact data vector y, the Gauss–Newton
iterate possesses a similar representation, namely

xαk+1 = xa + K†
αkyk,

where, in order to avoid an abundance of notations, yk is now given by

yk = y − F (xαk) + K (xαk) (xαk − xa) .

As in the linear case, we consider the representation

x† − xδ
αk+1 =

(
x† − xαk+1

)
+
(
xαk+1 − xδ

αk+1

)
(6.40)

and try to estimate each term in the right-hand side of (6.40). Using the linearizations of
the forward model about xαk and xδ

αk,

y = F (xαk) + K (xαk)
(
x† − xαk

)
+ R

(
x†,xαk

)
and

y = F
(
xδ

αk

)
+ Kαk

(
x† − xδ

αk

)
+ R

(
x†,xδ

αk

)
,

respectively, and assuming that Kαk = K
(
xδ

αk

)
≈ K (xαk), we express the first term in

the right-hand side of (6.40) as

x† − xαk+1 =
(
x† − xa

)
− K†

αkyk = (In − Aαk)
(
x† − xa

)
− K†

αkR
(
x†,xαk

)
and the second term as

xαk+1 − xδ
αk+1 = K†

αk

(
yk − yδ

k

)
= −K†

αkδ − K†
αk

[
R
(
x†,xδ

αk

)
− R

(
x†,xαk

)]
,

with Aαk = K†
αkKαk being the averaging kernel matrix. Inserting the above relations in

(6.40) we find that

x† − xδ
αk+1 = (In − Aαk)

(
x† − xa

)
− K†

αkδ − K†
αkR

(
x†,xδ

αk

)
. (6.41)

Assuming that the sequence {xδ
αk} converges to xδ

α and that F is continuously differen-
tiable, we let k → ∞ in (6.41), and obtain

eδ
α = esα + eδ

nα + elα, (6.42)

where
eδ

α = x† − xδ
α (6.43)

is the total error in the solution,

esα = (In − Aα)
(
x† − xa

)
(6.44)
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is the smoothing error,
eδ
nα = −K†

αδ (6.45)

is the noise error, and
elα = −K†

αR
(
x†,xδ

α

)
is the nonlinearity error. In the above relations, the generalized inverse K†

α and the aver-
aging kernel matrix Aα are evaluated at xδ

α.
The expression of the total error can also be derived by using the fact that xδ

α is a
minimizer of the Tikhonov function Fα. The stationary condition for Fα at xδ

α ,

∇Fα

(
xδ

α

)
= gα

(
xδ

α

)
= 0,

shows that xδ
α solves the Euler equation

KT
α

[
F
(
xδ

α

)
− yδ

]
+ αLT L

(
xδ

α − xa

)
= 0; (6.46)

whence, assuming a linearization of F about xδ
α,

y = F
(
xδ

α

)
+ Kα

(
x† − xδ

α

)
+ R

(
x†,xδ

α

)
, (6.47)

we find that(
KT

αKα + αLT L
) (

x† − xδ
α

)
= αLT L

(
x† − xa

)
− KT

αδ − KT
αR
(
x†,xδ

α

)
.

Further, using the identity(
KT

αKα + αLT L
)−1

αLT L = In −
(
KT

αKα + αLT L
)−1

KT
αKα,

we obtain

x† − xδ
α = (In − Aα)

(
x† − xa

)
− K†

αδ − K†
αR
(
x†,xδ

α

)
, (6.48)

which is the explicit form of (6.42). Thus, the error representations in the nonlinear and
the linear case are similar, except for an additional term, which represents the nonlinearity
error. If the minimizer xδ

α is sufficiently close to the exact solution x†, the nonlinearity
error can be neglected, and the agreement is complete.

In a semi-stochastic framework, we suppose that Kα is deterministic, and as a result,
the total error eδ

α is stochastic with mean esα and covariance Cen = σ2K†
αK†T

α . As in the
linear case, we define the mean square error matrix

Sα = esαeT
sα + Cen

= (In − Aα)
(
x† − xa

) (
x† − xa

)T
(In − Aα)T + σ2K†

αK†T
α (6.49)

to quantify the dispersion of the regularized solution xδ
α about the exact solution x†. The

rank-one matrix
(
x† − xa

) (
x† − xa

)T
can be approximated by (cf. (3.60))(

x† − xa

) (
x† − xa

)T ≈
(
xδ

α − xa

) (
xδ

α − xa

)T
(6.50)
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or by (cf. (3.61)) (
x† − xa

) (
x† − xa

)T ≈ σ2

α

(
LT L

)−1
. (6.51)

The approximation (6.50) yields the so-called semi-stochastic representation of Sα, while
the approximation (6.51) yields the stochastic representation of Sα, since in this case, Sα

coincides with the a posteriori covariance matrix in statistical inversion theory.
In order to assess the validity of the semi-stochastic and stochastic representations of

the mean square error matrix, we perform a numerical analysis for the O3 retrieval test
problem. In Figure 6.3 we plot the average values of the solution error

ε̄α =

√√√√ 1
N

N∑
i=1

ε2
αi, ε2

αi =

∥∥x† − xδ
αi

∥∥2
‖x†‖2 ,

and of the expected error

ε̄eα =

√√√√ 1
N

N∑
i=1

ε2
eαi, ε2

eαi =
E
{∥∥eδ

αi

∥∥2}
‖x†‖2 =

trace (Sαi)

‖x†‖2

for a set of noisy data vectors {yδ
i }i=1,N , with N = 100. Here, xδ

αi and Sαi are the
Tikhonov solution and the mean square error matrix corresponding to the noisy data vector
yδ

i , respectively. Because the simulation is performed for a single state vector realization,
the numerical analysis is semi-stochastic. The main conclusions are briefly summarized
below.

(1) The (expected) semi-stochastic error, with the smoothing error given by (6.50), ap-
proximates sufficiently well the solution error for small values of the regularization
parameter and in the neighborhood of the minimizer. For large values of the regular-
ization parameter, the approximation becomes worse because the regularized solution
is close to the a priori. As a result, the smoothing error is not a monotonically de-
creasing function of the regularization parameter, and the semi-stochastic error may
not have a unique minimum.

(2) If the retrieval is not sensitive to some components of the state vector, the (expected)
stochastic error, with the smoothing error given by (6.51), is not an appropriate ap-
proximation of the solution error. The smoothing error explodes and so, the stochastic
error is very large. If the retrieval is sensitive to all components of the state vector, the
approximation is satisfactory for that values of the regularization parameter which are
close to the minimizer. A typical feature of the stochastic error is that it is a decreasing
function of the regularization parameter.

The plots in Figure 6.4 illustrate the distributions of the average errors with respect
to the altitude. If the retrieval is sensitive to all components of the state vector, both error
representations yields accurate results. If this is not the case, the semi-stochastic represen-
tation appears to be superior to the stochastic representation.

An appropriate diagnostic of the retrieval is the comparison of the smoothing and
noise errors (Figure 6.5). In general, the minimizer of the solution error is close to the reg-
ularization parameter which roughly yields a trade-off between the two error components.
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Fig. 6.3. Average errors for the O3 retrieval test problem. The plots in the left panel correspond to
an altitude retrieval grid with 36 levels, while the plots in the right panel correspond to an altitude
retrieval grid with 24 levels. The regularization parameter is given by α = σp, with σ being the
noise standard deviation. Since σ < 1, small values of α correspond to large values of p.
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Fig. 6.4. Distributions of the average errors with respect to the altitude for the O3 retrieval test
problem. The plots in the left panel correspond to popt = 1.7 and an altitude retrieval grid with 36
levels, while the plots in the right panel correspond to popt = 1.9 and an altitude retrieval grid with
24 levels.

Consequently, if the smoothing and noise errors are of the same order of magnitude, we
may conclude that the regularization parameter is close to the minimizer of the solution
error.
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Fig. 6.5. Distributions of the smoothing and noise errors with respect to the altitude for the O3

retrieval test problem. The curves correspond to the semi-stochastic error representation and to one
noisy data realization. The parameters of calculation are as in Figure 6.4.

Accounting for all assumptions employed it is readily seen that a linearized error anal-
ysis can be performed when

(1) the regularization parameter is not too far from the minimizer of the solution error;
(2) the sequence of iterates {xδ

αk} converges;
(3) the linearization error R

(
x†,xδ

α

)
is small;

(4) the errors in the data are correctly modelled.

If one of these assumptions is violated the error analysis is erroneous. The first requirement
is the topic of the next section, while the second requirement can be satisfied by using an
appropriate termination criterion. Let us pay attention to the last two conditions.

The linearity assumption can be verified at the boundary of a confidence region for the
solution (Rodgers, 2000). For this purpose, we consider the SVD of the positive definite
mean square error matrix Sα = VsΣsVT

s , and define the normalized error patterns sk for
Sα from the partition VsΣ

1/2
s = [s1, . . . , sn]. The linearization error

R (x) = F (x) − F
(
xδ

α

)
− Kα

(
x − xδ

α

)
,

can be estimated by comparing

ε2
link =

1
mσ2

∥∥R (xδ
α ± sk

)∥∥2 ≈ 1,

for all k = 1, . . . , n.
The knowledge of the errors in the data is perhaps the most important problem of an

error analysis. If the data error δy contains only the instrumental noise δ, application of
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(6.47) and (6.48) gives

yδ − F
(
xδ

α

)
= Kα (In − Aα)

(
x† − xa

)
+
(
Im − Âα

)
δ +

(
Im − Âα

)
R
(
x†,xδ

α

)
,

(6.52)
with Âα = KαK†

α being the influence matrix at xδ
α. As α approaches 0, the averaging

kernel matrix Aα approaches the identity matrix In; whence, neglecting the linearization
error R

(
x†,xδ

α

)
, we find that the residual rδ

α = yδ − F
(
xδ

α

)
is given by

rδ
α =

(
Im − Âα

)
δ =

m∑
i=n+1

(
uT

i δ
)
ui, α → 0.

For δ ∼ N
(
0, σ2Im

)
, we then obtain

E
{∥∥rδ

α

∥∥2} = (m − n) σ2, α → 0.

Equivalently, (6.52) shows that for problems with a small degree of nonlinearity and when-
ever α → 0, the random variable rδT

α C−1
δ rδ

α with Cδ = σ2Im, is Chi-square distributed
with m − n degrees of freedom (Appendix D). If the contribution of the forward model
error δm in the data error δy is significant, we have instead

E
{∥∥rδ

α

∥∥2} ≈ (m − n)
(

1
m

‖δm‖2 + σ2

)
, α → 0.

The forward model errors introduce an additional bias in the solution. To handle this type
of errors, we may proceed as in the linear case, that is, we may replace the data error δy by
an equivalent white noise δe with variance

σ2
e =

1
m

‖δm‖2 + σ2,

so that
E
{
‖δe‖2

}
= E

{∥∥δy

∥∥2} .

The noise variance estimate

σ2
e ≈ 1

m − n
E
{∥∥rδ

α

∥∥2} ≈ 1
m − n

∥∥rδ
α

∥∥2 , α → 0,

can then be used to perform an error analysis with the equivalent white noise covariance
matrix Cδe = σ2

eIm. It is apparent that by this equivalence we increase the noise error
variance and eliminate the bias due to forward model errors.

6.4.2 Newton method

In the framework of the Newton method, the search direction is the solution of the equation
(cf. (6.15))

Gα

(
xδ

αk

)
p = −gα

(
xδ

αk

)
.
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To perform an error analysis we rewrite the Newton equation in terms of the a priori profile
deviation �x = x − xa, that is,

Gα

(
xδ

αk

)
� x = Gα

(
xδ

αk

) (
xδ

αk − xa

)
− gα

(
xδ

αk

)
and approximate the right-hand side of the resulting equation as

Gα

(
xδ

αk

) (
xδ

αk − xa

)
− gα

(
xδ

αk

)
=
[
Gα

(
xδ

αk

)
−
(
KT

αkKαk + αLT L
)] (

xδ
αk − xa

)
+ KT

αky
δ
k

≈ KT
αky

δ
k,

where yδ
k is given by (6.32). Then, employing the same arguments as in the derivation of

(6.42), we find that the smoothing and noise errors are given by

esα =
(
In − G−1

α KT
αKα

) (
x† − xa

)
(6.53)

and
eδ
nα = −G−1

α KT
αδ, (6.54)

respectively. Hereafter, the notation Gα stands for Gα

(
xδ

α

)
. Thus, the mean vector and

the covariance matrix of the total error eδ
α are the smoothing error esα and the noise error

covariance matrix
Cen = σ2G−1

α KT
αKαG−1

α .

Similar expressions for the smoothing and noise errors can be derived if we regard
the state vector and the data vector as independent variables and consider a linearization
of the gradient of the objective function about

(
xδ

α,yδ
)
. Setting x† = xδ

α − �xδ
α and

y = yδ − δ, we have

gα

(
x†,y

)
= gα

(
xδ

α,yδ
)
− ∂gα

∂x

(
xδ

α,yδ
)
�xδ

α − ∂gα

∂y

(
xδ

α,yδ
)
δ + R

(
x†,y;xδ

α,yδ
)
,

where R is the remainder term of the first-order Taylor expansion of the gradient. Using
the stationary condition gα

(
xδ

α,yδ
)

= 0 and taking into account that

gα

(
x†,y

)
= αLT L

(
x† − xa

)
,

∂gα

∂x

(
xδ

α,yδ
)

= Gα,
∂gα

∂y

(
xδ

α,yδ
)

= −KT
α ,

we find that

x† − xδ
α = αG−1

α LT L
(
x† − xa

)
− G−1

α KT
αδ − G−1

α R
(
x†,y;xδ

α,yδ
)
. (6.55)

Finally, employing the approximation

G−1
α

(
KT

αKα + αLT L
)
≈ In,

we obtain the expressions of the smoothing and noise errors as in (6.53) and (6.54), respec-
tively.
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If instead of the Newton method, the quasi-Newton method is used to compute a mini-
mizer of the Tikhonov function, an additional step involving the calculation of the Hessian
at the solution has to be performed. The reason is that the quasi-Newton approximation
Q̄
(
xδ

αk

)
is a very crude estimate of the second-order derivative term Q

(
xδ

αk

)
, which is

not even certain to converge to the true Q
(
xδ

α

)
as xδ

αk approaches xδ
α. For the Hessian

calculation, we consider the Taylor expansion of the Tikhonov function about xδ
α,

Fα (x) ≈ Fα

(
xδ

α

)
+

1
2
(
x − xδ

α

)T
Gα

(
x − xδ

α

)
, (6.56)

where by definition, the entries of the Hessian are given by

[Gα]ij =
∂2Fα

∂ [x]i ∂ [x]j

(
xδ

α

)
. (6.57)

Equations (6.56) and (6.57) suggest that we may use finite differences for computing Gα.
Denoting by �xi the displacement in the ith component of x, we calculate the diagonal
entries of Gα by using (6.56), that is,

[Gα]ii = 2
Fα

([
xδ

α

]
i
+ �xi

)
−Fα

([
xδ

α

]
i

)
(�xi)

2 , (6.58)

and the off-diagonal entries by using (6.57) with central differences, that is,

[Gα]ij =
[
Fα

([
xδ

α

]
i
+ �xi,

[
xδ

α

]
j
+ �xj

)
−Fα

([
xδ

α

]
i
−�xi,

[
xδ

α

]
j
+ �xj

)
−Fα

([
xδ

α

]
i
+ �xi,

[
xδ

α

]
j
−�xj

)
+ Fα

([
xδ

α

]
i
−�xi,

[
xδ

α

]
j
−�xj

)]
/ (4�xi�xj) . (6.59)

In (6.58) and (6.59) only the relevant arguments of the Tikhonov function are indicated;
the omitted arguments remain unchanged during the calculation.

The computation of the Hessian by using finite differences requires an adequate choice
of the step sizes �xi. The difficulty associated with the step size selection stems from the
fact that in the x-space, the Tikhonov function may vary slowly in some directions and
rapidly in other. Small step sizes have to be used in steep directions of the Tikhonov func-
tion and large step sizes in flat directions. The iterative Algorithm 9 which significantly
improves the reliability of the Hessian matrix calculation has been proposed by Pumplin et
al. (2001). The method is based on the following result: if Gα is the exact Hessian with
the singular value decomposition Gα = VgΣgVT

g , then the linear transformation

x = VgΣ
− 1

2
g z, (6.60)

implies that in the z-space, the surface of constant Fα-values is a sphere, i.e.,

Fα (z) −Fα

(
zδ

α

)
=

1
2
(
z − zδ

α

)T (
z − zδ

α

)
. (6.61)

The computation of the pseudo-Hessian Φ in Algorithm 9 is performed in the z-space by
using (6.58) and (6.59), and this process is more stable than a Hessian calculation in the x-
space. The step sizes �zi are chosen so that the variations Fα

(
[zδ

α]i + �zi

)
−Fα

(
[zδ

α]i
)

in (6.58) are approximately equal to one.
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Algorithm 9. Iterative algorithm for Hessian calculation.
compute the Hessian approximation Gα = KT

αKα + αLT L at xδ
α;

stop ← false;
while stop = false do

compute the SVD Gα = VgΣgVT
g ;

T ← Σ1/2
g VT

g ;
zδ

α ← Txδ
α;

compute the pseudo-Hessian Φ from
Fα (z) −Fα

(
zδ

α

)
= 0.5

(
z − zδ

α

)T Φ
(
z − zδ

α

)
;

if Φ ≈ In then

stop ← true;
else

Gα ← TT ΦT;
end if

end while

It should be pointed out that even though the Gauss–Newton method is used to com-
pute a minimizer of the Tikhonov function, the error analysis can be performed by employ-
ing the Hessian approach. In atmospheric remote sensing with infrared spectroscopy, the
benefit of computing the a posteriori covariance matrix by means of the Hessian method
instead of the Gauss–Newton method has been evidenced by Tsidu (2005).

6.5 Regularization parameter choice methods

As for linear problems, the choice of the regularization parameter plays an important role
in computing a reliable approximation of the solution. In this section we first extend the
expected error estimation method to the nonlinear case. Then, we present selection criteria
with variable and constant regularization parameters. In the first case, the regularization
parameter is estimated at each iteration step, while in the second case, the minimization of
the Tikhonov function is done a few times with different regularization parameters.

In order to judge the accuracy of parameter choice methods, we solve the retrieval
test problems for various regularization parameters α = σp, where σ is the noise standard
deviation. The solution errors

∥∥x† − xδ
α

∥∥ /
∥∥x†∥∥ for different values of the exponent p

and for a single realization of the noisy data vector are illustrated in Figure 6.6. The plots
show that all error curves possess a minimum, and by convention, the minimizers of the
solution errors represent the optimal values of the regularization parameter. For the O3 and
the CO retrieval test problems, the minima are relatively sharp, while for the BrO and the
temperature retrieval test problems, the minima are flat. The latter situation is beneficial
for the inversion process, because acceptable solutions correspond to a large domain of
variation of the regularization parameter. The accuracy of a parameter choice method will
be estimated by comparing the predicted value of the regularization parameter with the
optimal value.
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Fig. 6.6. Relative solution errors for different values of the exponent p, where α = σp and σ is the
noise standard deviation. The numbers in parentheses indicate the minimizer popt and the minimum
value of the relative solution error εopt.

6.5.1 A priori parameter choice methods

In the linear case, the expected error estimation method has been formulated as an a priori
parameter selection criterion. The idea was to perform a random exploration of a domain
in which the solution is supposed to lie, and for each state vector realization x†

i , to compute
the optimal regularization parameter for error estimation

αopti = arg min
α

E
{∥∥∥eδ

α

(
x†

i

)∥∥∥2} ,

and the exponent pi = log αopti/ log σ. The regularization parameter is then chosen as
αe = σp̄, where

p̄ =
1

Nx

Nx∑
i=1

pi

is the sample mean exponent and Nx is the sample size.
The expected error estimation method can be formulated for nonlinear problems, by

representing the expected error at the solution as

E
{∥∥eδ

α

∥∥2} = ‖esα‖2 + E
{∥∥eδ

nα

∥∥2} ,

with

esα = (In − Aα)
(
x† − xa

)
=

n∑
i=1

α

γ2
i + α

[
ŵT

i

(
x† − xa

)]
wi (6.62)
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Table 6.3. Exponent p of the regularization parameter and relative errors in the Tikhonov solutions
computed with the expected error estimation method.

Problem p popt ε εopt

O3 1.75 1.85 5.56e-2 5.24e-2
BrO 1.62 1.60 6.15e-2 6.09e-2
CO 1.35 2.05 3.84e-2 1.73e-2
Temperature 1.23 1.20 1.67e-2 1.66e-2

and

E
{∥∥eδ

nα

∥∥2} = σ2trace
(
K†

αK†T
α

)
= σ2

n∑
i=1

(
γ2

i

γ2
i + α

1
σi

)2

‖wi‖2
. (6.63)

In (6.62) and (6.63), γi are the generalized singular values of the matrix pair (Kα,L),
wi is the ith column vector of the nonsingular matrix W, and ŵT

i is the ith row vector
of the matrix Ŵ = W−1. Because the Jacobian matrix Kα is evaluated at the solution,
the generalized singular system depends on α, and as a result, the optimal regularization
parameter for error estimation has to be computed for each state vector realization by re-
peatedly solving the nonlinear minimization problem. The resulting algorithm is extremely
computationally expensive and in order to ameliorate this drawback, we approximate the
Jacobian matrix at the solution by the Jacobian matrix at the a priori state. This is a realistic
assumption for problems with a small degree of nonlinearity. The a priori parameter choice
method is then equivalent to the expected error estimation method applied to a linearization
of the forward model about the a priori state.

The solution errors shown in Table 6.3 demonstrate that the expected error estimation
method yields accurate results except for the CO retrieval test problem. In this case, the
algorithm identifies a substantially smaller regularization parameter, but the solution error
is still acceptable. The retrieved profiles are illustrated in Figure 6.7 together with the
results obtained by using the Bayesian estimate p = 2. For the temperature retrieval test
problem, the Bayesian estimate yields an undersmoothed profile with large oscillations
around the exact profile.

Algorithm 10. Iterated expected error estimation method.
choose initial ᾱ;
for i = 1, Niter do

compute the Tikhonov solution of parameter ᾱ, xδ
ᾱ;

compute the GSVD Kᾱ = UΣ1W
−1 and L = VΣ2W

−1;
compute αopt = arg minα E

n‚‚eδ
α

‚‚2
o

, with

esα =
Pn

i=1
α

γ2
i +α

ˆ
ŵT

i

`
xδ

ᾱ − xa

´˜
wi and

E
n‚‚eδ

nα

‚‚2
o

= σ2 Pn
i=1

“
γ2

i

γ2
i +α

1
σi

”2

‖wi‖2;

if |αopt − ᾱ| < tol then

exit;
else

ᾱ ← αopt;
end if

end for
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Fig. 6.7. Tikhonov solutions computed with the expected error estimation (EEE) method and the
Bayesian estimate p = 2. The numbers in parentheses indicate the relative solution errors.

Another version of the expected error estimation method can be designed by assuming
a semi-stochastic error representation and by using an iterative algorithm for minimizing
the expected error (Algorithm 10). Two main drawbacks reduce the performance of the
so-called iterated expected error estimation method:

(1) the semi-stochastic error representation is valid if the regularization parameter lies
in the neighborhood of the optimal regularization parameter, and for this reason, the
solution strongly depends on the initialization;

(2) the minimizer of the expected error is in general larger than the optimal regularization
parameter (see Figure 6.3).

The results shown in Table 6.4 demonstrate that for all test problems, the retrieved profiles
are oversmoothed.

Table 6.4. Regularization parameters and relative errors in the Tikhonov solutions computed with
the iterated expected error estimation method. The numbers in parentheses indicate the exponent of
the regularization parameter.

Problem α αopt ε εopt

O3 6.14e-5 (1.67) 2.09e-5 (1.85) 6.35e-2 5.24e-2
BrO 6.20e-6 (1.31) 3.84e-7 (1.60) 7.89e-2 6.09e-2
CO 2.36e-4 (1.28) 1.17e-6 (2.05) 3.97e-2 1.73e-2
Temperature 2.39e-5 (1.18) 1.41e-5 (1.20) 1.68e-2 1.66e-2
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6.5.2 Selection criteria with variable regularization parameters

As the solution of a nonlinear ill-posed problem by means of Tikhonov regularization is
equivalent to the solution of a sequence of ill-posed linearizations of the forward model
about the current iterate, parameter choice methods for linear problems can be used to
compute the regularization parameter at each iteration step.

The errors in the right-hand side of the linearized equation (6.34) are due to the in-
strumental noise and the linearization error. Because the linearization error cannot be
estimated, we propose a heuristic version of the discrepancy principle as follows: at the
iteration step k, compute the regularization parameter as the solution of the equation∥∥rδ

lαk

∥∥2 = τ
∥∥rδ

lmink

∥∥2 , τ > 1,

where rδ
lαk is the linearized residual vector,

rδ
lαk =

(
Im − Âαk

)
yδ

k,

Âαk = KαkK
†
αk is the influence matrix, and

∥∥rδ
lmink

∥∥ is the minimum value of
∥∥rδ

lαk

∥∥
corresponding to the smallest generalized singular value of (Kαk,L).

Due to the difficulties associated with the data error estimation, error-free parameter
choice methods (based only on information about the noisy data) are more attractive. In this
context, we mention that the generalized cross-validation method has been applied to the
linearized equation (6.34) by Haber (1997), Haber and Oldenburg (2000), and Farquharson
and Oldenburg (2004). Selection of the regularization parameter by using the L-curve
criterion has been reported by Schimpf and Schreier (1997), Li and Oldenburg (1999),
Farquharson and Oldenburg (2004), and Hasekamp and Landgraf (2001). In our retrieval
algorithm, we use the following regularization parameter choice methods:

(1) the generalized cross-validation method,

αgcvk = arg min
α

υδ
αk,

with

υδ
αk =

∥∥rδ
lαk

∥∥2[
trace

(
Im − Âαk

)]2 , (6.64)

(2) the maximum likelihood estimation,

αmlek = arg min
α

λδ
αk,

with

λδ
αk =

yδT
k

(
Im − Âαk

)
yδ

k

m

√
det
(
Im − Âαk

) , (6.65)
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(3) the L-curve method,
αlck = arg max

α
κδ
lcαk,

with

κδ
lcαk =

x′′
k (α) y′

k (α) − x′
k (α) y′′

k (α)[
x′

k (α)2 + y′
k (α)2

] 3
2

and
xk (α) = log

(∥∥rδ
lαk

∥∥2) , yk (α) = log
(∥∥cδ

αk

∥∥2) .

Note that in the L-curve method, the constraint vector is computed for each value of the
regularization parameter by using the relation cδ

αk = LK†
αky

δ
k.

In practice, the following recommendations for choosing the regularization parameter
have to be taken into account:

(1) at the beginning of the iterative process, large α-values should be used to avoid local
minima and to get well-conditioned linear problems to solve;

(2) during the iteration, the regularization parameter should be decreased slowly to achieve
a stable solution.

Numerical experiments have shown that a brutal use of the regularization parameter com-
puted by one of the above parameter choice methods may lead to an oscillation sequence
of α-values. A heuristic formula that deals with this problem has been proposed by Eriks-
son (1996): at the iteration step k, the regularization parameter αk is the weighted sum
between the previous regularization parameter αk−1 and the regularization parameter α
computed by one of the above parameter choice methods, that is,

αk =
{

ξαk−1 + (1 − ξ) α, α < αk−1,
αk−1, α ≥ αk−1,

with 0 < ξ < 1 being a priori chosen. This selection rule guarantees a descending sequence
of regularization parameters, and the resulting method is very similar to the iteratively
regularized Gauss–Newton method to be discussed in the next chapter.

For the O3 retrieval test problem, the residual and the L-curves, as well as the gen-
eralized cross-validation and the maximum likelihood functions are shown in Figure 6.8.
The curves have the same behaviors as in the linear case: the generalized cross-validation
function has a flat minimum, the maximum likelihood function has a distinct minimum,
and the L-curve has a sharp corner.

The solution errors listed in Table 6.5 show that Tikhonov regularization with variable
regularization parameter yields accurate results, and that the maximum likelihood estima-
tion is superior to the other regularization parameter choice methods.
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Fig. 6.8. Residual curve, generalized cross-validation (GCV) function, maximum likelihood (ML)
function and L-curve for the O3 retrieval test problem. The curves are computed at the first iteration
step.

Table 6.5. Relative solution errors for Tikhonov regularization with variable regularization parame-
ters corresponding to the following selection criteria: the discrepancy principle (DP), the maximum
likelihood estimation (MLE), generalized cross-validation (GCV), and the L-curve (LC) method.

Problem Method ε εopt

DP 6.01e-2
O3 MLE 5.24e-2 5.24e-2

GCV 5.37e-2
LC 5.64e-2

DP 6.11e-2
BrO MLE 6.26e-2 6.09e-2

GCV 6.28e-2
LC 6.22e-2

DP 3.42e-2
CO MLE 2.08e-2 1.73e-2

GCV 2.55e-2
LC 3.66e-2

DP 1.82e-2
Temperature MLE 1.66e-2 1.66e-2

GCV 1.67e-2
LC 2.22e-2
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6.5.3 Selection criteria with constant regularization parameters

The numerical realization of these parameter choice methods requires us to solve the non-
linear minimization problem several times for different regularization parameters. Each
minimization is solved with a regularization parameter α and a solution xδ

α is obtained. If
the solution is satisfactory as judged by these selection criteria, then the inverse problem
is considered to be solved. The discrete values of the regularization parameters are chosen
as αi = σpi , where {pi} is an increasing sequence of positive numbers. Since σ < 1, the
sequence of regularization parameters {αi} is then in decreasing order.

In the framework of the discrepancy principle, the regularization parameter is the so-
lution of the equation ∥∥yδ − F

(
xδ

α

)∥∥2 = τΔ2, (6.66)

with τ > 1. Because, for nonlinear problems, the discrepancy principle equation only
has a solution under very strong restrictive assumptions (Kravaris and Seinfeld, 1985), we
use a simplified version of this selection criterion: if {αi} is a decreasing sequence of
regularization parameters, we choose the largest αi� such that the residual norm is below
the noise level, that is,∥∥yδ − F

(
xδ

αi�

)∥∥2 ≤ τΔ2 <
∥∥yδ − F

(
xδ

αi

)∥∥2 , 0 ≤ i < i	.

Note that this version of the discrepancy principle is typical for iterative regularization
methods.

The generalized discrepancy principle can also be formulated as an a posteriori pa-
rameter choice method for the nonlinear Tikhonov regularization. A heuristic justification
of this regularization parameter choice method can be given in a deterministic setting by
using the error estimate ∥∥eδ

α

∥∥2 ≤ 2
(
‖esα‖2 +

∥∥eδ
nα

∥∥2) ,

together with the noise error bound (3.99),∥∥eδ
nα

∥∥2 <
2τΔ2

α
, τ > 1.

To estimate the smoothing error we assume L = In, and consider the unperturbed solution
xα corresponding to the exact data vector y. The stationary condition for the Tikhonov
function at xα yields

KT
α [F (xα) − y] + α (xα − xa) = 0, (6.67)

with Kα = K (xα). Employing the same arguments as in the derivation of (6.48), we
obtain

esα = (In − Aα)
(
x† − xa

)
,

with the averaging kernel matrix Aα being evaluated at xα. Taking into account that for
any x, there holds

‖(In − Aα)x‖2 =
n∑

i=1

(
α

σ2
i + α

)2 (
vT

i x
)2 ≤

n∑
i=1

(
vT

i x
)2

= ‖x‖2
,
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we deduce that a bound for the total error is given by

M (α) = 4
(

1
2

∥∥x† − xα

∥∥2 + τ
Δ2

α

)
.

To derive the necessary condition for a minimum of the estimate M (α), we consider the
function

f (α) =
1
2

∥∥x† − xα

∥∥2 , (6.68)

and compute the derivative

f ′ (α) = −
(
x† − xα

)T dxα

dα
. (6.69)

Formal differentiation of the Euler equation (6.67) with respect to α yields

dKT
α

dα
[F (xα) − y] + KT

αKα
dxα

dα
+ α

dxα

dα
= − (xα − xa) ; (6.70)

whence, neglecting the first term in the left-hand side of (6.70) and using (6.67), we obtain

dxα

dα
≈ −

(
KT

αKα + αIn

)−1
(xα − xa) = − 1

α
K†

α [y − F (xα)] .

The linear approximation

y ≈ F (xα) + Kα

(
x† − xα

)
and the matrix identity(

KT
αKα + αIn

)−1
KT

α = KT
α

(
KαKT

α + αIm

)−1
,

then give

f ′ (α) ≈ 1
α

(
x† − xα

)T
K†

α [y − F (xα)]

=
1
α

[
Kα

(
x† − xα

)]T (
KαKT

α + αIm

)−1
[y − F (xα)]

≈ 1
α

[y − F (xα)]T
(
KαKT

α + αIm

)−1
[y − F (xα)] .

Setting M ′ (α) = 0 and replacing xα by xδ
α and y by yδ , we obtain the generalized

discrepancy principle equation in the form (see (3.98))

α
[
yδ − F

(
xδ

α

)]T (
KαKT

α + αIm

)−1 [
yδ − F

(
xδ

α

)]
= τΔ2.

Error-free methods with constant regularization parameter are natural extensions of
the corresponding selection criteria for linear problems; the most popular are the maximum
likelihood estimation, generalized cross-validation and the nonlinear L-curve method.

Applications of generalized cross-validation in conjunction with the method of Tikho-
nov regularization for solving a temperature retrieval problem and an inverse scattering



208 Tikhonov regularization for nonlinear problems Chap. 6

problem have been reported by O’Sullivan and Wahba (1985) and Vogel (1985), respec-
tively. To formulate the generalized cross-validation method and the maximum likelihood
estimation, we employ some heuristic arguments, while for a more rigorous treatment we
refer to O’Sullivan and Wahba (1985). At the iteration step k, the generalized cross-
validation function υδ

αk and the maximum likelihood function λδ
αk, given by (6.64) and

(6.65), respectively, depend on the influence matrix Âαk, the linearized residual rδ
lαk and

the noisy data vector yδ
k. If the iterates xδ

αk converge to xδ
α and F is continuously differ-

entiable, then we may assume that Âαk converges to the influence matrix at the solution
Âα = KαK†

α, rδ
lαk to the nonlinear residual rδ

α = yδ − F
(
xδ

α

)
and yδ

k to

yδ
α = yδ − F

(
xδ

α

)
+ Kα

(
xδ

α − xa

)
.

Thus, as k → ∞, the generalized cross-validation and the maximum likelihood functions
become

υδ
α =

∥∥rδ
α

∥∥2[
trace

(
Im − Âα

)]2 ,

and

λα =
yδT

α

(
Im − Âα

)
yδ

α

m

√
det
(
Im − Âα

) ,

respectively.
The use of the L-curve for nonlinear problems has been suggested by Eriksson (1996).

The nonlinear L-curve is the plot of the constraint
∥∥cδ

α

∥∥2 =
∥∥L (xδ

α − xa

)∥∥2 against the
residual

∥∥rδ
α

∥∥2 =
∥∥yδ − F

(
xδ

α

)∥∥2 for a range of values of the regularization parameter
α. This curve is monotonically decreasing and convex as shown by Gulliksson and Wedin
(1999). In a computational sense, the nonlinear L-curve consists of a number of discrete
points corresponding to the different values of the regularization parameter and in practice,
the following techniques can be used for choosing the regularization parameter:

(1) As for iterative regularization methods, we fit a cubic spline curve to the discrete points
of the L-curve (x (αi) , y (αi)), with x (α) = log (

∥∥rδ
α

∥∥2) and y (α) = log (
∥∥cδ

α

∥∥2),
and determine the point on the original discrete curve that is closest to the spline
curve’s corner.

(2) In the framework of the minimum distance function approach (Belge et al., 2002), we
compute

αlc = arg min
i

d (αi)
2

for the distance function

d (α)2 = [x (α) − x0]
2 + [y (α) − y0]

2
,

with x0 = mini x (αi) and y0 = mini y (αi).
(3) Relying on the definition of the corner of the L-curve as given by Reginska (1996), we

determine the regularization parameter as

αlc = arg min
i

(x (αi) + y (αi)) ,

that is, we detect the minimum of the logarithmic L-curve rotated by π/4 radians.
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Fig. 6.9. Nonlinear residual curve, generalized cross-validation (GCV) function, maximum likeli-
hood (ML) function and L-curve for the O3 retrieval test problem.

The curves corresponding to the nonlinear parameter choice methods with a constant
regularization parameter are illustrated in Figure 6.9. The plots show that the maximum
likelihood function has a sharper minimum than the generalized cross-validation function,
and that the L-curve corner is not distinctive. The solution errors listed in Table 6.6 indicate
that the best results correspond to the maximum likelihood estimation, and that the worst
results correspond to the L-curve method. Especially noteworthy is the failure of the L-
curve method for the O3 retrieval test problem: the predicted value of the regularization
parameter is considerably larger than the optimal value, and the retrieved profile is close to
the a priori (Figure 6.10).

6.6 Iterated Tikhonov regularization

To obtain a higher convergence rate, iterated Tikhonov regularization has been considered
for nonlinear ill-posed problems by Scherzer (1993), and Jin and Hou (1997). The p-
times iterated Tikhonov regularization is defined inductively in the following way: the
regularized solution at the first iteration step is the ordinary Tikhonov solution xδ

α1 = xδ
α,

while the regularized solution xδ
αp at the iteration step p ≥ 2 minimizes the objective

function
Fαp (x) =

1
2

[∥∥yδ − F (x)
∥∥2 + α

∥∥L (x − xδ
αp−1

)∥∥2] .

Iterated Tikhonov regularization can also be used to improve the regularized solution
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Table 6.6. Exponent p and relative solution errors for Tikhonov regularization with a constant reg-
ularization parameter coresponding to the discrepancy principle (DP), the maximum likelihood esti-
mation (MLE), generalized cross-validation (GCV), and the L-curve (LC) method.

Problem Method p popt ε εopt

DP 1.7 5.99e-2
O3 MLE 1.9 1.85 5.29e-2 5.24e-2

GCV 1.8 5.36e-2
LC 1.2 1.73e-1

DP 1.9 6.61e-2
BrO MLE 1.9 1.60 6.61e-2 6.09e-2

GCV 1.9 6.61e-2
LC 1.4 6.64e-2

DP 2.1 2.36e-2
CO MLE 2.1 2.05 2.36e-2 1.73e-2

GCV 2.2 5.55e-2
LC 1.3 3.91e-2

DP 1.3 1.68e-2
Temperature MLE 1.2 1.20 1.66e-2 1.66e-2

GCV 1.2 1.66e-2
LC 0.8 2.15e-2
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Fig. 6.10. Retrieval results for Tikhonov regularization with a constant regularization parameter
computed by using the discrepancy principle (DP), the maximum likelihood estimation (MLE), gen-
eralized cross-validation (GCV), and the L-curve (LC) method.
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of the linearized equation
Kαk�x = yδ

k,

with �x = x − xa. The solution refinement is based on the following defect iteration: at
the iteration step l, the linear equation

Kαk

(
�x −�xδ

αkl−1

)
= yδ

k − Kαk � xδ
αkl−1

is solved by means of Tikhonov regularization with the penalty term
∥∥L(�x −�xδ

αkl−1

)∥∥2
and the regularization parameter α. The algorithm for solution improvement then takes the
form

�xδ
αk0 = 0,

�xδ
αkl = �xδ

αkl−1 + K†
αk

(
yδ

k − Kαk � xδ
αkl−1

)
, 1 ≤ l ≤ p, (6.71)

xδ
αk+1 = xa + �xδ

αkp.

Essentially, this method consists of an outer Newton iteration for the nonlinear equation,
and an inner iteration, the p-times iterated Tikhonov regularization for the linearized equa-
tion. The order of iterated Tikhonov regularization is a control parameter of the algorithm
and must be chosen in advance.

The plots in Figure 6.11 show that by increasing the order of iterated Tikhonov reg-
ularization, the minimizer of the solution error also increases, the error curve becomes
flatter, and the minimum solution error decreases.
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Fig. 6.11. Relative errors in the iterated Tikhonov solution for the O3 retrieval test problem. The
order of iterated Tikhonov regularization (the number of iteration steps of the inner scheme) varies
between 1 and 4. The numbers in parentheses indicate the minimum value of the relative solution
error.
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6.7 Constrained Tikhonov regularization

Constrained versions of Tikhonov regularization can be developed by making use of addi-
tional information about the solution. For example, we may impose that on some layers i,
the entries [x]i of the state vector x are bounded,

li ≤ [x]i ≤ ui,

in which case, the optimization problem involves the minimization of the Tikhonov func-
tion subject to simple bounds on the variables. In this section we introduce the constrained
Tikhonov regularization by considering a practical example, namely the retrieval of ozone
profiles from nadir sounding measurements performed by instruments such as GOME,
SCIAMACHY, OMI and GOME-2. The constraints are imposed on the vertical column,
which represents the integrated ozone profile. Thus, in this version of Tikhonov regular-
ization, we control the smoothness of the profile through the regularization matrix and the
magnitude of the profile through the vertical column. Only equality constraints will be the
topic of the present analysis; the incorporation of inequality constraints into the iteratively
regularized Gauss–Newton method will be the subject of the next chapter.

In order to simplify our presentation we assume that the entry [x]i of x is the par-
tial column of ozone on the layer i. The number of layers is n and the vertical column
is then given by

∑n
i=1[x]i. The layer i = 1 is situated at the top of the atmosphere,

while the layer i = n is situated at the Earth’s surface. The main idea of formulating
the equality-constrained Tikhonov regularization relies on the observation that the a priori
profile deviation �xδ

αk+1 = xδ
αk+1 − xa minimizing the Tikhonov function

Flαk (�x) =
∥∥yδ

k − Kαk�x
∥∥2 + α ‖L�x‖2

,

also minimizes the quadratic function

Q (�x) = gT�x +
1
2
�xT G�x, (6.72)

with
G = KT

αkKαk + αLT L, (6.73)

and
g = −KT

αky
δ
k. (6.74)

The equality-constrained Tikhonov regularization possesses the following formula-
tion: at the iteration step k, compute the a priori profile deviation �xδ

αk+1 by solving the
quadratic programming problem

min
x

Q (�x) = gT�x +
1
2
�xT G�x (6.75)

subject to
n∑

i=1

[�x]i = c. (6.76)

Here, c is the vertical column corresponding to �x, and by convention, c will be referred
to as the relative vertical column with respect to the a priori.
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For solving the quadratic programming problem (6.75)–(6.76), the null-space or the
range-space methods can be employed (Gill et al., 1981; Nocedal and Wright, 2006). In
the framework of the null-space method, the matrix Z ∈ R

n×(n−1), whose column vectors
are a basis for the null space of the constraint matrix A = [1, . . . , 1] (cf. (6.76)), plays an
important role. In general, the matrix Z can be computed by using the QR factorization
of AT , or it can be derived by using the variable-reduction technique (Appendix J). In the
present analysis we adopt the variable-reduction technique, in which case, the algorithm
involves the following steps:

(1) compute a feasible point satisfying the linear constraint, e.g.,

�x̄ = c�x̄n, �x̄n =
1
n

⎡⎢⎣ 1
...
1

⎤⎥⎦ ;

(2) compute the gradient of Q at �x̄,

ḡ = cgn + g, gn = G�x̄n,

and construct the matrix Z as

Z =

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−1 −1 . . . −1

⎤⎥⎥⎥⎥⎥⎦ ∈ R
n×(n−1);

(3) determine the feasible step

p = −Hḡ = −cHgn − Hg,

where
H = Z

(
ZT GZ

)−1
ZT

is the reduced inverse Hessian of Q subject to the constraint;
(4) compute the solution of the constrained minimization problem as

�xδ
αk+1 (c) = �x̄ + p = c (�x̄n − Hgn) − Hg. (6.77)

The above solution representation explicitly indicates the dependency on the relative ver-
tical column, and this representation is beneficial in practice. The reason is that c is con-
sidered as a free parameter of the retrieval ranging in a chosen interval [cmin, cmax]. The
problem to be solved is the computation of the strengths of the constraints, or more pre-
cisely, of the regularization parameter, which controls the smoothness of the solution, and
of the relative vertical column, which controls the magnitude of the solution. Essentially,
we must solve a multi-parameter regularization problem. In this case we adopt a simple
strategy: we use an a priori chosen regularization parameter but compute the relative verti-
cal column by using the minimum distance function approach. Two regularization methods
with a dynamical selection criterion for the vertical column can be designed.



214 Tikhonov regularization for nonlinear problems Chap. 6

(1) Equality-constrained Tikhonov regularization with constant vertical column. For each
c ∈ [cmin, cmax], we compute the solution xδ

α (c) of the nonlinear constrained mini-
mization problem, and calculate the residual

Rδ (c) =
∥∥yδ − F

(
xδ

α (c)
)∥∥2

and the constraint
Cδ (c) =

∥∥L [xδ
α (c) − xa

]∥∥2
at the solution. Then, we determine the optimal value of the relative vertical column
as the minimizer of the (normalized) distance function

d (c)2 =
Rδ (c)
Rδ max

+
Cδ (c)
Cδ max

(6.78)

over the interval [cmin, cmax], where Rδ max = maxc Rδ (c) and Cδ max = maxc Cδ (c).

(2) Equality-constrained Tikhonov regularization with variable total column. At the iter-
ation step k, we compute �xδ

αk+1 (c) for all c ∈ [cmin, cmax], and evaluate the residual
and the constraint for the linearized equation

Rδ (c) =
∥∥yδ

k − Kαk�xδ
αk+1 (c)

∥∥2
and

Cδ (c) =
∥∥L�xδ

αk+1 (c)
∥∥2 ,

respectively. The optimal value of the total column at the current iteration step is the
minimizer of the distance function (6.78) over the interval [cmin, cmax].

Noting that the minimization of the distance function is usually performed by using a
discrete search algorithm it is readily seen that the first solution method is more time-
consuming than the second one. By virtue of (6.77), the computation of �xδ

αk+1 involves
only a scalar-vector multiplication and the summation of two vectors. As a result, the
computational effort of the equality-constrained Tikhonov regularization with variable total
column is not much higher than that of the ordinary method.

The performance of the equality-constrained Tikhonov regularization will be analyzed
from a numerical point of view. The ozone profile is retrieved from nadir synthetic data
by considering 375 equidistant points in the spectral interval ranging from 290 to 335 nm.
In this spectral interval, O3 and NO2 are considered as active gases. The atmosphere is
discretized with a step of 3.5 km between 0 and 70 km, and a step of 10 km between 70
and 100 km. The exact state vector is chosen as a translated and a scaled version of a
climatological profile with a translation distance of 3 km and a scaling factor of 1.3. The
exact relative vertical column of ozone is c = 110 DU (Dobson unit), and we choose
cmin = 80 DU and cmax = 125 DU. To compute the minimizer of the distance function by
a discrete search algorithm, 80 values of the relative vertical column are considered in the
interval [cmin, cmax]. The reason for choosing this large interval of variation is that we have
to guarantee that the distance function has a minimum for low values of the signal-to-noise
ratio. The solar zenith angle is 40◦, while the zenith and azimuthal angles of the line of
sight are 20◦ and 90◦, respectively. The regularization matrix is chosen as the Cholesky
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Fig. 6.12. Relative solution errors for Tikhonov regularization (TR) and the equality-constrained
Tikhonov regularization (TR-EQC) with variable and constant total column. The regularization pa-
rameter is α = σp, where σ is the noise standard deviation.

factor of a normalized covariance matrix with an altitude-independent correlation length
l = 3.5 km.

In Figure 6.12 we plot the solution errors for Tikhonov regularization and the equality-
constrained Tikhonov regularization for three values of the signal-to-noise ratio, namely
50, 100 and 150. The results show that for large values of p (small values of the regu-
larization parameter), the solution errors for the constrained method are smaller than the
solution errors for the ordinary method, while for small values of p, the solution errors
are comparable. Thus, the equality constraint comes into effect for underestimations of
the regularization parameter. The plots also indicate a slight superiority of the selection
criterion with variable total column over that with constant total column.

The normalized constraint, residual and distance function are illustrated in Figure 6.13.
The dependency of these quantities on the relative vertical column is similar to their de-
pendency on the regularization parameter. For small values of the relative vertical column,
the profile may have oscillatory artifacts around the a priori, so that the mean profile is
essentially close to the a priori. Thus, for small values of c, Cδ (c) is large, while Rδ (c)
is small. However, in contrast to the regularization parameter dependency, Cδ (c) is not a
monotonically decreasing function on c. As Rδ (c) is a monotonically increasing function
on c, the minimizer of d (c)2 is shifted to the left of the minimizer of Cδ (c).

The retrieval results illustrated in Figure 6.14 correspond to a small value of the reg-
ularization parameter and two values of the signal-to-noise ratio. The profiles computed
by Tikhonov regularization deviate significantly from the a priori, while the retrieved pro-
files computed by using the equality-constrained Tikhonov regularization are smoother and
approximate the exact profile sufficiently well (especially in the troposphere).
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Fig. 6.13. Normalized constraint (left), residual (middle) and distance function (right).
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Fig. 6.14. Retrieved profiles computed by using Tikhonov regularization (TR) and the equality-
constrained Tikhonov regularization (TR-EQC) with variable total column, in the case p = 2.4.

The comparison of the numerical effort of the methods can be inferred from Table 6.7.
It is pleasant to observe that the computation times of Tikhonov regularization and of the
equality-constrained Tikhonov regularization with variable total column are almost the
same.

The main conclusions emerging from our numerical analysis is that the equality-
constrained Tikhonov regularization is more stable than Tikhonov regularization with re-
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Table 6.7. Computation time in min:ss format for Tikhonov regularization (TR) and the equality-
constrained Tikhonov regularization (TR-EQC) with variable and constant total column. The num-
bers in parentheses represent the number of iteration steps and the relative solution error expressed
in percent.

Method

p TR
TR-EQC

variable total column
TR-EQC

constant total column

2.4 0:20 (4; 16.5) 0:21 (4; 9.2) 12:28 (4; 9.3)
0.2 0:20 (4; 12.3) 0:21 (4; 12.9) 12:28 (4; 12.8)

spect to underestimations of the regularization parameter. The interval of variation of the
relative vertical column should be chosen so that the distance function has a minimum for
the assumed values of the signal-to-noise ratio. To get some idea of where this interval lies,
we may use as guide the value of the total column delivered by an independent retrieval.
Evidently, this additional information is for reference only.

6.8 Mathematical results and further reading

In a continuous setting, nonlinear inverse problems can be cast into the abstract framework
of nonlinear operator equations

F (x) = y, (6.79)

where the operator F acts between the Hilbert spaces X and Y . Assuming that the nonlin-
ear equation is solvable, i.e, that there exists x† ∈ D (F ) such that F

(
x†) = y, then the

problem (6.79) is considered to be ill-posed if x† is not an isolated solution of the nonlin-
ear equation or x† does not depend continuously on the data. In the first case, the solution
cannot be locally reconstructed from the data, while in the second case, the reconstruction
from noisy data does not yield reliable solutions.

For linear problems, the equation Kx = y is ill-posed if and only if R(K) is not closed
in Y . As linear equations with compact operators are ill-posed, an ill-posedness criterion
for nonlinear equations should involve the compactness of the operators. However, since
for nonlinear operators, compactness does not imply continuity, a reasonable demand is to
suppose that F is completely continuous, which means that F is continuous and compact.
In this regard, if F is completely continuous and weakly sequentially closed, and X is
separable and infinite dimensional, then the problem (6.79) is ill-posed in x† (Rieder, 2003;
Hofmann, 1997; Engl et al., 1989).

It would be helpful to characterize the stability of the nonlinear equation (6.79) through
conditions on its linearization F ′ (x†)x = y, where F ′ is the Frechet derivative of F . The
following results are due to Hofmann und Scherzer (1994, 1998) and can also be found in
(Rieder, 2003): if F is Frechet-differentiable and F ′ is Lipschitz continuous in x†, then
the locally ill-posedness of the nonlinear equation F (x) = y in x† implies the locally ill-
posedness of its linearization F ′ (x†)x = y in all x ∈ X . This means that R

(
F ′ (x†)) is

not closed or that F ′ (x†) is not injective. Unfortunately, the converse result does not hold,
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that is, the ill-posedness of the linearization does not imply the ill-posedness of the non-
linear equation. In this context it is apparent that the connection between the ill-posedness
of a nonlinear problem and its linearization is not as strong as one might think. This is a
consequence of the Taylor expansion

F (x) = F
(
x†)+ F ′ (x†) (x − x†)+ R

(
x, x†) , (6.80)

which provides only little information on the local behavior of a nonlinear problem. The
linearization error R

(
x, x†) behaves like o(

∥∥x − x†∥∥) as x → x†, but if F is completely
continuous, then F ′ (x†) is compact and F ′ (x†) (x − x†) can be significantly smaller
than R

(
x, x†). This situation can be overcome when the linearization error is controlled

by the nonlinear residual. Assuming that there exist ρ > 0 and 0 < η < 1 such that

‖R (x, x′)‖ = ‖F (x) − F (x′) − F ′ (x′) (x − x′)‖ ≤ η ‖F (x) − F (x′)‖ (6.81)

for all x and x′ in a ball Bρ

(
x†) of radius ρ around x†, then the nonlinear equation F (x) =

y is ill-posed in x† if and only if N
(
F ′ (x†)) �= 0 or R

(
F ′ (x†)) is not closed. Conditions

like (6.81), which restrict the nonlinearity of the operator, are frequently assumed in the
analysis of regularization methods and are crucial for deriving convergence rate results.
Examples of nonlinear ill-posed problems with well-posed linearizations and of well-posed
nonlinear problems with ill-posed linearizations can be found in Engl et al. (1989).

A typical convergence result for Tikhonov regularization in a deterministic setting can
be formulated as follows: under the assumptions

α (Δ) → 0,
Δ2

α (Δ)
→ 0 as Δ → 0,

the regularized solution xδ
α depends continuously on the data for α fixed, and xδ

α converges
towards a solution of F (x) = y in a set-valued sense (Seidman and Vogel, 1989; Engl et
al., 2000; Rieder, 2003). Although a deterministic theory of Tikhonov regularization for
nonlinear problems is relatively complete, the development of a semi-stochastic theory is
at the beginning. Whereas there exists a huge literature on linear inverse problems with
random noise, only a few results have been published on nonlinear problems of this kind
(Snieder, 1991; Wahba, 1990; Weese, 1993). Rigorous consistency and convergence rate
results for nonlinear problems with random noise are available in a benchmark paper by
O’Sullivan (1990), while more recently, Bissantz et al. (2004) derived rates of convergence
for nonlinear Tikhonov regularization in a semi-stochastic setting.

A basic result on convergence rates for Tikhonov regularization with an a priori pa-
rameter choice method has been given by Neubauer (1989) and Engl et al. (1989). The
main assumptions are that F ′ is Lipschitz continuous,∥∥F ′ (x) − F ′ (x†)∥∥ ≤ L

∥∥x − x†∥∥ , L > 0, (6.82)

for all x ∈ Bρ

(
x†), and that there exists u ∈ Y such that

x† − xa = F ′ (x†)	 u. (6.83)
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Then, if L ‖u‖ < 1, the a priori selection criterion α ∝ Δ, yields the convergence rate∥∥xδ
α − x†∥∥ = O

(√
Δ
)

.

If furthermore x† − xa satisfies the Hölder-type source condition

x† − xa =
[
F ′ (x†)∗ F ′ (x†)]μ z, z ∈ X, (6.84)

for some 1/2 ≤ μ ≤ 1, then the choice α ∝ Δ2/(2μ+1) yields the convergence rate
O(Δ2μ/(2μ+1)). The disadvantage of this regularization parameter choice method is that α
depends on the smoothing index μ of the exact solution x† which is not known in practice.
A slight variant of Tikhonov regularization which allows to prove the rate O(

√
Δ) for the

choice α ∝ Δ2 (now independent on the unknown μ) and under assumptions (6.82) and
(6.83) with L ‖u‖ < 1 can also be found in Engl et al. (1989). In this case, xδ

α is the
minimizer of the function

Fα (x) =
1
2

[(∥∥yδ − F (x)
∥∥− Δ

)2
+ α ‖x − xa‖2

]
,

and this choice avoids multiple minima of the Tikhonov function. In a semi-stochastic
setting, this a priori parameter choice method takes the form α ∝ σ2 and coincides with
the Bayesian selection criterion.

The convergence rate O(
√

Δ) has been proven by Engl et al. (1989) for Tikhonov
regularization with the discrepancy principle. The proof relies on the assumption that the
discrepancy equation has a solution α (Δ) for Δ > 0 sufficiently small, and that (6.82)
and (6.83) hold with L ‖u‖ < 1. Another version of the discrepancy principle, which is
very simply to implement for a discrete set of regularization parameters, selects that value
of the regularization parameter α satisfying

τdpΔ ≤
∥∥yδ − F

(
xδ

α

)∥∥ ≤ (τdp + ε
)
Δ, (6.85)

with τdp > 1 and ε > 0. The introduction of the positive number ε copes with the fact
that the residual norm as a function of the regularization parameter is generally not strong
monotonically increasing and not continuous (Tikhonov and Arsenin, 1977). The effi-
ciency of this version of the discrepancy principle for a general regularization method
(which includes Tikhonov regularization as a special case) has been demonstrated by Taut-
enhahn (1997).

For the Hölder-type source condition (6.84) with 0 < μ ≤ 1, the generalized discrep-
ancy principle yields the optimal convergence rate O(Δ2μ/(2μ+1)). This result has been
proven by Scherzer et al. (1993) by assuming a series of restrictive conditions on F . The
same convergence rate has been evidenced by Jin and Hou (1999) under the nonlinearity
conditions

[F ′ (x) − F ′ (x′)] z = F ′ (x′) h (x, x′, z)
‖h (x, x′, z)‖ ≤ cR ‖x − x′‖ ‖z‖ , cR > 0,

for all x, x′ ∈ Bρ

(
x†).
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For the nonlinear p-times iterated Tikhonov regularization, the optimal convergence
rate O(Δ2p/(2p+1)) has been established by Scherzer (1993), by comparing the iterated
regularized solution of the nonlinear problem with the iterated regularized solution of its
linearization.

In a discrete setting and for the choice L = In, Tikhonov regularization can be cast
into a general framework of a regularization method based on the iteration

xδ
αk+1 = xa + gα

(
KT

αkKαk

)
KT

αky
δ
k, k = 0, 1, . . . . (6.86)

For the sake of completeness we include in Appendix G convergence rate results for the
general regularization method (6.86). The following conclusions arising from this analysis
can be drawn: if for all x ∈ Bρ

(
x†), F satisfies the nonlinearity condition∥∥F (x†)− F (x) − K (x)
(
x† − x

)∥∥ ≤ η
∥∥F (x†)− F (x)

∥∥ , 0 < η < 1,

and the source condition

x† − xa =
[
K (x)T K (x)

]μ
z, μ > 0, z ∈ R

n,

holds, then the a priori parameter choice method α = (Δ/ ‖z‖)2/(2μ+1) and the discrep-
ancy principle are of optimal order for 0 < μ ≤ μ0/2. The index μ0 represents the
qualification of the regularization method, and for the method of Tikhonov regularization,
we have μ0 = 1. As in the linear case, we observe that the best convergence rate of
Tikhonov regularization equipped with the discrepancy principle as a posteriori parameter
choice method is O(

√
Δ).



7

Iterative regularization methods
for nonlinear problems

Finding a global minimizer of the Tikhonov function is in general not an easy task. Nu-
merical experience shows that the Tikhonov function has usually many local minima and a
descent method for solving the optimization problem may tend to get stuck especially for
severely ill-posed problems. Since furthermore, the computation of an appropriate regular-
ization parameter can require high computational effort, iterative regularization methods
are an attractive alternative.

For iterative regularization methods, the number of iteration steps k plays the role of
the regularization parameter, and the iterative process has to be stopped after an appropriate
number of steps k	 in order to avoid an uncontrolled expansion of the noise error. In fact,
a mere minimization of the residual, i.e., an ongoing iteration, leads to a semi-convergent
behavior of the iterated solution: while the error in the residual decreases as the number of
iteration steps increases, the error in the solution starts to increase after an initial decay. A
widely used a posteriori choice for the stopping index k	 in dependence of the noise level
Δ and the noisy data vector yδ is the discrepancy principle, that is, the iterative process is
stopped after k	 steps such that∥∥yδ − F

(
xδ

k�

)∥∥2 ≤ τΔ2 <
∥∥yδ − F

(
xδ

k

)∥∥2 , 0 ≤ k < k	, (7.1)

with τ > 1 chosen sufficiently large. In a semi-stochastic setting and for white noise with
variance σ2, the expected value of the noise E{‖δ‖2} = mσ2 is used instead of the noise
level Δ2.

In this chapter we review the relevant iterative regularization methods and discuss
practical implementation issues. We first examine an extension of the Landweber iteration
to nonlinear ill-posed problems, and then address practical aspects of Newton-type meth-
ods. The application of asymptotic regularization methods to the solution of nonlinear
ill-posed problems will conclude our analysis.
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7.1 Nonlinear Landweber iteration

There are several ways to extend the Landweber iteration to the nonlinear case. Interpreting
the Landweber iteration for the linear equation Kx = yδ as a fixed point iteration xk+1 =
Φ (xk) with the fixed point function Φ (x) = x + KT

(
yδ − Kx

)
, we replace Kx by

F (x) in the expression of Φ (x), and obtain the so-called nonlinear Landweber iteration

xδ
k+1 = xδ

k + KT
k rδ

k, k = 0, 1, . . . , (7.2)

where Kk = K
(
xδ

k

)
and

rδ
k = yδ − F

(
xδ

k

)
. (7.3)

Alternatively, the nonlinear Landweber iteration can be regarded as a method of steepest
descent, in which the negative gradient of the nonlinear residual

F (x) =
1
2

∥∥yδ − F (x)
∥∥2

determines the update direction for the current iterate.
As in the linear case, the nonlinear Landweber iteration can only converge if the equa-

tion F (x) = yδ is properly scaled in the sense that

‖K (x)‖ ≤ 1, x ∈ Bρ (xa) ,

where Bρ (xa) is a ball of radius ρ around xa. The scaling condition can be fulfilled in
practice when both sides of the nonlinear equation are multiplied by a sufficiently small
constant

0 < χ ≤
[

max
x∈Bρ(xa)

‖K (x)‖
]−1

,

which then in (7.2) appears as a relaxation parameter,

xδ
k+1 = xδ

k + χ2KT
k rδ

k, k = 0, 1, . . . .

The nonlinear Landweber iteration (7.2) corresponds to standard-form problems with
L = In, while for general-form problems, the iteration takes the form

xδ
k+1 = xδ

k +
(
LT L

)−1
KT

k rδ
k, k = 0, 1, . . . ,

where L is a square and nonsingular regularization matrix.
This method requires a large number of iteration steps to reduce the residual norm

beyond the noise level. Although several modifications of the conventional method have
been proposed to ameliorate this problem (Scherzer, 1998), the computational effort re-
mains extremely high.

7.2 Newton-type methods

For ill-posed problems, the basic concepts of the Newton method provide a reliable basis
for the development of iterative regularization methods. The key idea of any Newton-type
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method consists in repeatedly linearizing the nonlinear equation about some approximate
solution xδ

k, solving the linearized equation

Kkp = rδ
k, (7.4)

for the Newton step pδ
k, and updating the approximate solution according to the relation

xδ
k+1 = xδ

k + pδ
k. (7.5)

Equation (7.4) is typically ill-posed and to obtain a reasonable solution some sort of reg-
ularization is necessary. The type of regularization employed, or the procedure which is
used to compute the Newton step, characterizes a specific iterative method.

7.2.1 Iteratively regularized Gauss–Newton method

The iteratively regularized Gauss–Newton method relies on the solution of the linearized
equation

Kk (x − xa) = yδ
k, (7.6)

with
yδ

k = yδ − F
(
xδ

k

)
+ Kk

(
xδ

k − xa

)
,

by means of Tikhonov regularization with the penalty term ‖L (x − xa)‖2 and the regular-
ization parameter αk. The new iterate minimizes the function

Flk (x) =
∥∥yδ

k − Kk (x − xa)
∥∥2 + αk ‖L (x − xa)‖2

,

and is given by
xδ

k+1 = xa + K†
ky

δ
k,

where K†
k =

(
KT

k Kk + αkLT L
)−1

KT
k is the regularized generalized inverse at the iter-

ation step k. At first glance, this method seems to be identical to the method of Tikhonov
regularization with a variable regularization parameter, but the following differences ex-
ist:

(1) the regularization parameters are the terms of a decreasing sequence satisfying the
requirements

αk > 0, 1 <
αk

αk+1
≤ c, lim

k→∞
αk = 0; (7.7)

(2) the iterative process is stopped according to the discrepancy principle (7.1) instead of
requiring the convergence of iterates and employing the discrepancy principle as an a
posteriori parameter choice method.

Several strategies for selecting the regularization parameters αk can be considered. In our
retrieval algorithm we use the selection criterion

αk = qkαk−1,
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where qk can be chosen as the ratio of a geometric sequence, i.e., qk = q < 1 is constant,
or as

qk =
τΔ2∥∥rδ

k

∥∥2 , (7.8)

and

qk = 1 − τΔ2∥∥rδ
k

∥∥2 . (7.9)

With the choice (7.8) the regularization parameter decreases very fast at the beginning of it-
eration, while the scheme (7.9) allows enough regularization to be applied at the beginning
of iteration and then to be gradually decreased.

Any iterative method using the discrepancy principle as stopping rule requires the
knowledge of the noise level or of its statistical estimate E{‖δ‖2}. Because in many
practical problems arising in atmospheric remote sensing, the errors in the data cannot
be estimated (due to the forward model errors), we propose the following stopping rules:

(1) For a geometric sequence of regularization parameters, we store all iterates xδ
k and

require the convergence of the nonlinear residuals
∥∥rδ

k

∥∥ within a prescribed tolerance.
If
∥∥rδ
∥∥ is the residual at the last iteration step, we choose the solution xδ

k∗ , with k	

being given by ∥∥rδ
k�

∥∥2 ≤ τ
∥∥rδ
∥∥2 <

∥∥rδ
k

∥∥2 , 0 ≤ k < k	, τ > 1.

(2) For the selection rules (7.8) and (7.9), we first estimate the noise level. For this pur-
pose, we minimize the sum of squares

F (x) =
1
2

∥∥yδ − F (x)
∥∥2

by requiring relative function convergence, compute the equivalent noise variance

σ2
e =

1
m − n

∥∥rδ
∥∥2 ,

where
∥∥rδ
∥∥ is the residual at the last iteration step, and then set Δ2 = mσ2

e .

The above heuristic stopping rules do not have any mathematical justification but work
sufficiently well in practice. To our knowledge there is a lack in the mathematical literature
dealing with this topic and, for the time being, we do not see other viable alternatives for
practical applications.

Although, from a mathematical point of view, the iteratively regularized Gauss–Newton
method does not require a step-length procedure, its use may prevent the iterative pro-
cess from yielding an undesirable solution. Taking into account that the Newton step
pδ

k = xδ
k+1 − xδ

k solves the equation

Kfk

(
xδ

k

)T
Kfk

(
xδ

k

)
p = −gk

(
xδ

k

)
,



Sect. 7.2 Newton-type methods 225

where gk is the gradient of the objective function

Fk (x) =
1
2
‖fk (x)‖2

, fk (x) =
[

F (x) − yδ

√
αkL (x − xa)

]
,

and Kfk is the Jacobian matrix of fk, we deduce that

gk

(
xδ

k

)T
pδ

k = −
∥∥Kfk

(
xδ

k

)
pδ

k

∥∥2 < 0,

and so, pδ
k is a descent direction for Fk. Thus, the step-length procedure outlined in

k

In Figure 7.1 we illustrate the solution errors for the iteratively regularized Gauss–
Newton method and Tikhonov regularization. In the iteratively regularized Gauss–Newton
method, the exponent p characterizes the initial value of the regularization parameter, α0 =
σp, while at all subsequent iteration steps, the regularization parameters are the terms of a
geometric sequence with the ratio q = 0.8. The plots show that the iteratively regularized
Gauss–Newton method still yields reliable results for small values of the exponent p, or
equivalently, for large initial values of the regularization parameter. Evidently, a stronger
regularization at the beginning of the iterative process requires a larger number of iteration
steps as can be seen in the right panels of Figure 7.1. The main conclusion of this numerical
simulation is that the iteratively regularized Gauss–Newton method is more stable than
Tikhonov regularization with respect to overestimations of the regularization parameter.

The same results are shown in Figure 7.2 for the dynamical selection criteria (7.8) and
(7.9). The selection criterion (7.8) maintains the stability of the regularization method, but
the errors at small p-values are almost two times larger than those corresponding to a ge-
ometric sequence. As a result, the retrieved profiles oscillate around the exact profiles and
are undersmoothed. Although the selection criterion (7.9) requires a small number of iter-
ation steps, it is less stable with respect to overestimations of the regularization parameter.
This is because we cannot find a unique value of the control parameter τ yielding accurate
results over the entire domain of variation of p. For example, in the case p = 0.3 and the
choice τ = 1.01, the solution error is 0.08. Choosing τ = 1.05, we reduce the solution
error to 0.05, but we increase the solution error at p = 0.5 from 0.06 to 0.09. Thus, for the
applications considered here, a dynamical selection of the regularization parameters is less
reliable than an a priori selection rule using a geometric sequence (with constant ratio).

An important aspect of any iterative method using the discrepancy principle as stop-
ping rule is the choice of the control parameter τ . From a theoretical point of view, τ
should be larger than 4, but in many practical applications this choice leads to a premature
termination of the iterative process. As we do not use the standard version of the discrep-
ancy principle with known noise level, we determine the optimal value of τ by minimizing
the solution error. The results plotted in Figure 7.3 show that for the O3 and the BrO re-
trieval test problems, the optimal value of τ is close to 1, and we find that a good choice
for τ is 1.01.

In Figure 7.4 we plot the histories of regularization parameters and residual norms
for different initial values of the exponent p. The plots show that the limiting values of
the sequences of regularization parameters and residual norms are comparable whatever
the initial values of the regularization parameter are. These values of the regularization

Algorithm 5 can be applied at each iteration step for the Tikhonov function F .
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Fig. 7.1. Relative solution errors and the number of iteration steps for different values of the expo-
nent p. The results are computed with the iteratively regularized Gauss–Newton (IRGN) method and
Tikhonov regularization (TR).
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Fig. 7.2. The same as in Figure 7.1 but for the selection criteria (7.8) (S2) and (7.9) (S3). The control
parameter τ is 1.01.
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Fig. 7.3. Relative solution errors for different values of the control parameter τ .
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Fig. 7.4. Histories of regularization parameters and residual norms for different values of the expo-
nent p.

parameter are 3.04 ·10−5 for p = 0.1, 3.44 ·10−5 for p = 0.5, 3.40 ·10−5 for p = 1.0, and
3.37 · 10−5 for p = 1.5. It is interesting to note that Tikhonov regularization using these
limiting values as a priori regularization parameters, yields small solution errors; for the
average value α = 3.31 · 10−5 in Figure 7.4, the solution error for Tikhonov regularization
is 5 ·10−2. This equivalence suggests that we may perform an error analysis at the solution
with the final value of the regularization parameter.

The retrieved profiles for the four test problems are shown in Figure 7.5. The under-
smoothing effect of the selection criterion (7.8) is more pronounced for the BrO and the
CO retrieval test problems.
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Fig. 7.5. Retrieved profiles computed with the iteratively regularized Gauss–Newton method. The
results correspond to a geometric sequence of regularization parameters with a ratio of 0.8 (S1), and
the selection criteria (7.8) (S2) and (7.9) (S3).

The incorporation of additional constraints into the iteratively regularized Gauss–
Newton method, hereafter abbreviated as IRGN method, results in a regularization method
which is less susceptible to the selection of the regularization parameter over a large range
of values. For the ozone nadir sounding problem discussed in the preceding chapter, the
equality-constrained IRGN method can be designed by replacing the unconstrained mini-
mization problem

min
x

Q (�x) = gT�x +
1
2
�xT G�x,

by the quadratic programming problem (cf. (6.75) and (6.76))

min
x

Q (�x) = gT�x +
1
2
�xT G�x

subject to
n∑

i=1

[�x]i = c.

Here, the Hessian and the gradient of Q are given by G = KT
k Kk + αkLT L and g =

−KT
k yδ

k, respectively. The quadratic programming problem is solved in the framework of
the null-space method by using an explicit representation of the solution in terms of the
vertical column. As opposed to the constrained Tikhonov regularization, both strengths
of the constraints are now computed internally: the regularization parameter, which con-
trols the smoothness of the solution, is decreased during the Newton iteration by a constant
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factor, and the vertical column, which controls the magnitude of the solution, is deter-
mined by using the minimum distance function approach. As in general, iterative methods
require more iteration steps than Tikhonov regularization, only the equality-constrained
IRGN method with variable total column is appropriate for practical applications.

An inequality-constrained IRGN method can be derived if the total column is known
with sufficiently accuracy. The information on the total column should be the result of
an independent retrieval, which can be performed in a distinct spectral interval by using
an appropriate algorithm like the DOAS approach (Van Roozendael et al., 2006; Balis
et al., 2007). The proposed inequality-constrained IRGN method is of the form of the
following model algorithm: at the iteration step k, compute the a priori profile deviation
�xδ

k+1α = xδ
k+1α − xa by solving the quadratic programming problem

min
x

Q (�x) = gT�x +
1
2
�xT G�x (7.10)

subject to
nt∑

i=1

[�x]i ≤ cmax, (7.11)

n∑
i=1

[�x]i ≥ cmin. (7.12)

The layer nt < n, delimits the tropospheric region from above, and the reasons for the
choice (7.11)–(7.12) are the following:

(1) the constraints should be linearly independent since otherwise one of the constraints
can be omitted without altering the solution;

(2) as the nadir radiance is less sensitive to variations of gas concentrations in the tropo-
sphere, the condition (7.11) does not allow large profile deviations in the sensitivity
region above the troposphere;

(3) the condition (7.12) guarantees a sufficiently large deviation of the profile (with respect
to the a priori) over the entire altitude range.

If c is the relative vertical column delivered by an independent retrieval and �c is the
associated uncertainty, we may choose cmin = c − εmin�c with εmin ≥ 1, and cmax = c.
This choice of the upper bound is reasonable since cmax in (7.11) controls only the vertical
column above the troposphere. The quadratic programming problem (7.10)–(7.12) can
be solved by using primal and dual active set methods. The dual active set method of
Goldfarb and Idnani (1983) generates dual-feasible iterates by keeping track of an active
set of constraints (Appendix J). An implementation of the method of Goldfarb and Idnani
is the routine ‘solve.qp’ from the optimization package ‘quadprog’, which is available free
through the internet (CRAN-Package quadprog, 2007).

Considering the same retrieval scenario as in the preceding chapter and taking into
account that the exact relative vertical column for ozone is c = 110 DU, we choose cmin =
80 DU and cmax = 125 DU for equality constraints, and cmin = 105 DU and cmax = 110
DU for inequality constraints.

In Figure 7.6 we plot the solution errors for Tikhonov regularization and the con-
strained and unconstrained IRGN methods. For these simulations, three values of the
signal-to-noise ratio have been considered, namely 50, 100 and 150. The plots show that
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Fig. 7.6. Relative solution errors for Tikhonov regularization (TR), the IRGN method, and the
equality- and inequality-constrained IRGN (IRGN-EQC and IRGN-INEQC) methods.

the constrained IRGN methods yield acceptable reconstruction errors over the entire do-
main of variation of the regularization parameter. The main drawback of the inequality-
constrained IRGN method is its sensitivity to the selection of the bounds cmin and cmax.
The reason is that the method does not use an internal selection criterion for the relative
vertical column and the information on c should be sufficiently accurate. Especially, the
choice of the bound cmin is critical; we found that values smaller than 105 DU lead to large
solution errors.

The retrieved profiles computed with the equality-constrained IRGN method and Ti-
khonov regularization are shown in Figure 7.7. For p = 2.4, the Tikhonov solution is
undersmoothed, while for p = 0.2, the solution is oversmoothed in the sense that mainly
the scaling and less the translation of the a priori profile is reproduced. In both situations,
the profiles computed with the equality-constrained IRGN method are better approxima-
tions of the exact profile.

The computation times of the methods are outlined in Table 7.1. For p = 0.2,
Tikhonov regularization is by a factor of 2 faster than the constrained IRGN methods,
while for p = 2.4 their efficiencies are comparable. This enhancement of computation
time is the price that we have to pay for obtaining stable approximations of the solution
over a large range of values of the regularization parameter.

We conclude this section by referring to a stopping rule which can be used in conjunc-
tion with any iterative regularization method, namely the Lepskij stopping rule (Bauer and
Hohage, 2005). This criterion is based on monitoring the total error

eδ
k = esk + eδ

nk,

where the smoothing and noise errors are given by esk = (In − Ak−1)
(
x† − xa

)
and

eδ
nk = −K†

k−1δ, respectively. The idea of the Lepskij stopping rule is to use the noise
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Fig. 7.7. Retrieval results corresponding to Tikhonov regularization (TR) and the equality-
constrained IRGN (IRGN-EQC) method in the case SNR = 100.

Table 7.1. Computation time in min:ss format for the regularization methods in Figure 7.6. The
numbers in parentheses represent the number of iteration steps and the relative solution errors ex-
pressed in percent.

Method

p TR IRGN IRGN-EQC IRGN-INEQC

2.4 0:20 (4;16.5) 0:23 (5;18.0) 0:26 (5;9.8) 0:24(5;9.9)
0.2 0:20 (4;12.3) 0:39 (12;8.1) 0:50 (12;8.1) 0:42(12;8.3)

error bound ∥∥eδ
nk

∥∥ ≤ cn
Δ

2√αk−1
, cn ≥ 1, (7.13)

to detect the iteration step after which the total error is dominated by the noise error. By
convention, the optimal stopping index kopt is the iteration index yielding roughly a trade-
off between the smoothing and noise errors. To estimate kopt, we assume that the total
error can be bounded as∥∥xδ

k − x†∥∥ ≤ E (k) Δ, k = kopt, . . . , kmax,

where E : N → [0,∞) is a known increasing function. Then, using the result∥∥∥xδ
kopt

− xδ
k

∥∥∥ ≤ ∥∥∥xδ
kopt

− x†
∥∥∥+

∥∥xδ
k − x†∥∥ ≤ E

(
kopt
)
Δ + E (k) Δ ≤ 2E (k) Δ

for all k = kopt + 1, . . . , kmax, we deduce that the optimal stopping index kopt can be
approximated by the first index k	 with the property∥∥xδ

k� − xδ
k

∥∥ ≤ 2E (k) Δ, k = k	 + 1, . . . , kmax. (7.14)
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The stopping index k	 is called the Lepskij stopping index and (7.14) is called the Lepskij
stopping rule. The main problem which has to be solved is the choice of the function E.
Taking into account that ∥∥eskopt

∥∥ ≈ ∥∥∥eδ
nkopt

∥∥∥ ,

and that
‖esk‖ ≤

∥∥eskopt

∥∥ ≈ ∥∥∥eδ
nkopt

∥∥∥ ≤ ∥∥eδ
nk

∥∥ , k = kopt, . . . , kmax,

we obtain ∥∥xδ
k − x†∥∥ ≤ 2

∥∥eδ
nk

∥∥ , k = kopt, . . . , kmax. (7.15)

Thus, in a deterministic setting we may choose (cf. (7.13) and (7.15))

E (k) =
c

√
αk−1

, c ≥ 1,

while in a semi-stochastic setting, the estimate

E
{∥∥eδ

nk

∥∥2} = σ2trace
(
K†

k−1K
†T
k−1

)
together with (7.15) suggests the choice

E (k) = c

√
1
m

trace
(
K†

k−1K
†T
k−1

)
, c ≥ 2.

7.2.2 Regularizing Levenberg–Marquardt method

In the regularizing Levenberg–Marquardt method, the linearized equation

Kk

(
x − xδ

k

)
= rδ

k, (7.16)

with rδ
k being given by (7.3), is solved by means of Tikhonov regularization with the

penalty term
∥∥L (x − xδ

k

)∥∥2 and the regularization parameter αk. The new iterate min-
imizing the Tikhonov function

Flk (x) =
∥∥rδ

k − Kk

(
x − xδ

k

)∥∥2 + αk

∥∥L (x − xδ
k

)∥∥2 , (7.17)

is given by
xδ

k+1 = xδ
k + K†

kr
δ
k. (7.18)

The difference from the iteratively regularized Gauss–Newton method consists in the penalty
term which now depends on the previous iterate instead of the a priori.

The parameter choice rule αk = qkαk−1 with qk < 1, designed for the iteratively
regularized Gauss–Newton method, can be used for the regularizing Levenberg–Marquardt
method as well. Otherwise, the regularization parameter can be selected by applying the
discrepancy principle to the linearized equation (7.16) (Hanke, 1997): if pδ

αk = K†
αkr

δ
k

with
K†

αk =
(
KT

k Kk + αLT L
)−1

KT
k ,
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denotes the minimizer of the Tikhonov function (7.17) for an arbitrary α, the Levenberg–
Marquardt parameter αk is chosen as the solution of the ‘discrepancy principle’ equation∥∥rδ

k − Kkpδ
αk

∥∥2 = θ
∥∥rδ

k

∥∥2 , 0 < θ < 1, (7.19)

and the Newton step is taken as pδ
k = pδ

αkk. The regularization parameter can also be
chosen according to the generalized discrepancy principle, in which case, αk is the solution
of the equation∥∥rδ

k − Kkpδ
αk

∥∥2 − (rδ
k − Kkpδ

αk

)T
Âαk

(
rδ

k − Kkpδ
αk

)
= θ
∥∥rδ

k

∥∥2 ,

where Âαk = KkK
†
αk is the influence matrix.

As in the iteratively regularized Gauss–Newton method, a step-length procedure can
be used to assure a decrease of the nonlinear residual at each iteration step. Considering
the nonlinear residual

F (x) =
1
2

∥∥yδ − F (x)
∥∥2 ,

and taking into account that the gradient of F at x is given by

g (x) = −K (x)T [yδ − F (x)
]

= −K (x)T rδ (x) ,

we deduce that pδ
k, solving the regularized normal equation(

KT
k Kk + αkLT L

)
p = KT

k rδ
k,

satisfies the inequality

g
(
xδ

k

)T
pδ

k = −
(∥∥Kkpδ

k

∥∥2 + αk

∥∥Lpδ
k

∥∥) < 0.

Thus, pδ
k is a descent direction for F , and the objective function in Algorithm 5 is the

nonlinear residual.
Instead of a step-length algorithm, a trust-region algorithm can be used to guarantee

the descent condition at each iteration step. This choice is justified by the equivalence
between the regularizing Levenberg–Marquardt method and a trust-region method: for a
general-form regularization, the kth iteration step of the optimization problem

min
x

F (x) =
1
2

∥∥yδ − F (x)
∥∥2 ,

involves the solution of the trust-region problem

min
p

Mk (p) (7.20)

subject to ‖Lp‖ ≤ Γk,

where
Mk (p) = F

(
xδ

k

)
− rδT

k Kkp +
1
2
pT KT

k Kkp, (7.21)
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Algorithm 11. Regularizing Levenberg–Marquardt method with a trust-region algorithm.
Given the actual iterate x and the regularization parameter α, the algorithm computes
the new iterate xnew to assure a sufficient decrease of the objective function. The control
parameters can be chosen as εf = 10−4, ε1Γ = 0.1 and ε2Γ = 0.5.

F ← 0.5
∥∥yδ − F (x)

∥∥2; g ← −K (x)T [yδ − F (x)
]
;

compute the step p for α;
Γ ← ‖Lp‖; {trust-region radius for this step}
estimate Γmin ; retcode ← 2; firstcall ← true;
while retcode > 1 do

if firstcall = false compute the trial step p for the trust-region radius Γ;
xnew ← x + p; Fnew ← 0.5

∥∥yδ − F (xnew)
∥∥2; �F ← F −Fnew;

{objective function is too large; reduce Γ and continue the while loop}
if Fnew > F + εfgT p then

if Γ < Γmin then

retcode ← 1; xnew ← x; Fnew ← F ;
else

retcode ← 2; Γtmp ← 0.5
(
gT p

)
‖Lp‖ /

(
�F + gT p

)
;

if Γtmp < ε1ΓΓ then

Γ ← ε1ΓΓ;
else if Γtmp > ε2ΓΓ then

Γ ← ε2ΓΓ;
else

Γ ← Γtmp;
end if

end if

{objective function is sufficiently small}
else

retcode ← 0;
end if

firstcall ← false;
end while

is the quadratic Gauss–Newton model about the current iterate and Γk is the trust-region
radius. The regularizing Levenberg–Marquardt method with a trust-region procedure is
illustrated in Algorithm 11. In contrast to the standard implementation (Algorithm 6), the
regularization parameter (or the Lagrange multiplier) is chosen a priori and is not deter-
mined by the trust-region radius. Only if the descent condition is violated, the trust-region
radius is reduced, and the new step is computed accordingly. To compute the trial step pδ

k

for the trust-region radius Γk, we consider the standard-form problem(
K̄T

k K̄k + αIn

)
p̄ = K̄T

k rδ
k,

with K̄k = KkL−1 and p̄ = Lp , solve the trust-region equation

n∑
i=1

(
σi

σ2
i + α

)2 (
uT

i rδ
k

)2
= Γ2

k, (7.22)
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Fig. 7.8. Relative solution errors and the number of iteration steps for different values of the expo-
nent p. The results correspond to the regularizing Levenberg–Marquardt (LVMR) method and the
iteratively regularized Gauss–Newton (IRGN) method.

for ᾱ, where (σi;vi,ui) is a singular system of K̄k, and then set pδ
k = L−1p̄δ

ᾱk, where
p̄δ

ᾱk = K̄†
ᾱkr

δ
k.

The regularizing Levenberg–Marquardt method is also insensitive to overestimations
of the regularization parameter. The results in Figure 7.8 show that the regularizing Leven-
berg–Marquardt method is superior to the iteratively regularized Gauss–Newton method:
for large initial values of the regularization parameter, the number of iteration steps as well
as the solution errors are smaller.

The retrieved profiles illustrated in Figure 7.9 give evidence that for the BrO retrieval
test problem, the undersmoothing effect of the selection criterion (7.8) is not so pronounced
as in the case of the iteratively regularized Gauss–Newton method.

The results listed in Table 7.2 demonstrate that for the BrO and the CO retrieval test
problems, the solution errors corresponding to the trust-region algorithm are on average
smaller than those corresponding to the step-length algorithm.

The standard trust-region implementation of the Levenberg–Marquardt method (Algo-
rithm 6) is also a regularization, in which the regularization parameter is adjusted by the
trust-region radius (Wang and Yuan, 2005). However, we found that this method is very
sensitive to the selection of the model parameters, especially to the choice of the amplifica-
tion factor ca, which controls the increase of the trust-region radius. The results in Figure
7.10 show that for large initial values of the regularization parameter we have to increase
the amplification factor in order to obtain reasonable accuracies. Acceptable solutions cor-
respond to a small domain of variations of the initial regularization parameter, and the
solution errors are in general slightly larger than those corresponding to the regularizing
Levenberg–Marquardt method.
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Fig. 7.9. The same as in Figure 7.5 but for the regularizing Levenberg–Marquardt method.

Table 7.2. Relative solution errors for the regularizing Levenberg–Marquardt method with the step-
length and trust-region algorithms. The results correspond to a geometric sequence of regularization
parameters with a ratio of 0.8 (S1), and the selection criteria (7.8) (S2) and (7.9) (S3).

Selection criterion

Problem Procedure S1 S2 S3

O3 step-length 4.45e-2 4.46e-2 5.50e-2
trust-region 4.41e-2 4.42e-2 5.01e-2

BrO step-length 5.83e-2 9.05e-2 5.87e-2
trust-region 3.54e-2 4.44e-2 3.92e-2

CO step-length 3.82e-2 2.54e-1 3.76e-2
trust-region 3.12e-2 1.21e-1 1.82e-2

Temperature step-length 1.81e-2 2.16e-2 2.16e-2
trust-region 1.96e-2 3.01e-2 2.13e-2
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Fig. 7.10. Left: relative solution errors versus the exponent p specifying the initial value of the
regularization parameter. Right: amplification factor ca which controls the increase of the trust-
region radius. The results correspond to the O3 retrieval test problem.

7.2.3 Newton–CG method

The Newton–CG method relies on the solution of the linearized equation

Kkp = rδ
k, (7.23)

by means of the conjugate gradient for normal equations and by using the nonsingular reg-
ularization matrix L as right preconditioner. For this purpose, the CGNR or the LSQR
algorithms discussed in Chapter 5 can be employed. The main peculiarity of this solution
method is that the linearized equation is not solved completely; only a number of pk iter-
ations are performed at the Newton step k. In this regard it is apparent that the number of
iteration steps pk plays the role of the regularization parameter αk. The resulting algorithm
belongs to the class of the so-called REGINN (REGularization based on INexact Newton
iteration) methods (Rieder, 1999; 2003). The term inexact Newton method refers to an
approach consisting of two components:

(1) an outer Newton iteration which updates the current iterate;
(2) an inner iteration which provides the update by approximately solving a linearized

version of the nonlinear equation.

It should be pointed out that other iterative methods as for example, the Landweber itera-
tion or the ν-method, can be used for solving the linearized equation (7.23).
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Algorithm 12. REGINN (REGularization based on INexact Newton iteration) algorithm.
The control parameters of the algorithm are θ0, θmax , q and τ .

set Δ2 = E
{
‖δ‖2

}
= mσ2 or estimate Δ2;

k ← 0, xδ
0 ← xa;

compute F
(
xδ

0

)
and K0 = K

(
xδ

0

)
; rδ

0 ← yδ − F
(
xδ

0

)
;

θ̃0 ← θ0; θ̃1 ← θ0;
while

∥∥rδ
k

∥∥2 > τΔ2 do {discrepancy principle for the outer iteration}
if k > 1 compute θ̃k by using (7.26) ;
θk ← θmax max

(
τΔ2/

∥∥rδ
k

∥∥2 , θ̃k

)
;

l ← 0 ;
repeat

l ← l + 1;
compute pδ

lk;
until

∥∥rδ
k − Kkpδ

lk

∥∥2 ≤ θk

∥∥rδ
k

∥∥2 {discrepancy principle for the inner iteration}
pk ← l;
xδ

k+1 ← xδ
k + pδ

pkk;
compute F

(
xδ

k+1

)
and Kk+1 = K

(
xδ

k+1

)
; rδ

k+1 ← yδ − F
(
xδ

k+1

)
;

k ← k + 1;
end while

The REGINN method outlined in Algorithm 12 is due to Rieder (1999; 2003). The
outer Newton iteration (the while loop) is stopped according to the discrepancy principle
(7.1). The number of iteration steps pk of the inner scheme (the repeat loop) is chosen ac-
cording to the discrepancy principle for the linearized equation (7.23) (compare to (7.19))∥∥rδ

k − Kkpδ
pkk

∥∥2 ≤ θk

∥∥rδ
k

∥∥2 <
∥∥rδ

k − Kkpδ
lk

∥∥2 , 1 ≤ l < pk, (7.24)

while the following selection criterion is used for the tolerances θk:

(1) choose θ0 ∈ (0, 1) and q ∈ (0, 1];
(2) set θ̃0 = θ̃1 = θ0;
(3) compute

θk = θmax max

(
τΔ2∥∥rδ

k

∥∥2 , θ̃k

)
, (7.25)

where θ̃k is given by

θ̃k =

{
1 − pk−2

pk−1
(1 − θk−1) , pk−1 ≥ pk−2,

qθk−1, pk−1 < pk−2,
k ≥ 2, (7.26)

and θmax ∈ (θ0, 1) bounds the θk away from 1 (uniformly in k and Δ).

The parameter θmax should be very close to 1, for instance, the choice θmax = 0.999
is reasonable. The general idea of the selection rule (7.25)–(7.26) is to start with a small
tolerance and to increase it during the Newton iteration. However, the level θk

∥∥rδ
k

∥∥2should
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decrease during the iterative process, so that on average, the number of iteration steps pk of
the inner scheme should increase with increasing k. In the starting phase of the algorithm,
the nonlinear residual is relatively large and as a result, the level θk

∥∥rδ
k

∥∥2 is not very small
even for small values of the tolerances. Thus, in spite of small tolerances, the repeat loop
will terminate. From (7.26) it is apparent that the tolerance is increased when the number of
passes through the repeat loop of two successive Newton steps increases significantly, and
it is decreased by a constant factor whenever the consecutive numbers of passes through the
repeat loop drop. However, a rapid decrease of the tolerances should be avoided (the repeat
loop may not terminate) and the choice of q in the interval [0.9, 1] is appropriate. In (7.25),
a safeguarding technique to prevent oversolving of the discrepancy principle (especially in
the final Newton step) is incorporated: at each Newton step there holds θk

∥∥rδ
k

∥∥2 ≥ τΔ2.
In our retrieval algorithm we use an a priori selection rule instead of the dynamical

selection criterion (7.24): the number of iteration steps of the inner scheme is assumed to
vary linearly between pmin and pmax,

pk = ξkpmin +
(
1 − ξk

)
pmax, 0 < ξ < 1, (7.27)

or according to the exponential law

pk = pmax − (pmax − pmin) e−ξk. (7.28)

In Figure 7.11 we illustrate the solution error for the selection criterion (7.27) as a
function of the initial number of iteration steps of the inner scheme p0 = pmin. The main
conclusions emerging from this simulation are summarized below.

(1) For each value of pmax, there exists a large interval of variation of pmin yielding ac-
ceptable solution errors.

(2) Large values of both control parameters pmin and pmax mean large values of the num-
ber of iteration steps pk. In this case, the regularization decreases very fast at the
beginning of the iterative process, the retrieved profiles are undersmoothed and the
solution errors are large.

(3) For a fixed value of pmin, small values of pmax yield small values of pk. The regu-
larization applied at each Newton step is large, and therefore, the number of Newton
steps is also large.

At each Newton step k, the number of iterations pk of the selection criterion (7.28) is
smaller than that of the selection criterion (7.27), and as a result, the number of Newton
steps is larger (Figure 7.12).

7.3 Asymptotic regularization

Asymptotic regularization can be regarded as a continuous analog of the Landweber itera-
tion,

xδ
k+1 = xδ

k + KT
k

[
yδ − F

(
xδ

k

)]
, k = 0, 1, . . . .

In this method, a regularized approximation xδ (T ) of the exact solution x† is obtained by
solving the initial value problem (Showalter differential equation)

ẋδ (t) = K
(
xδ (t)

)T [
yδ − F

(
xδ (t)

)]
, 0 < t ≤ T, xδ (0) = xa, (7.29)
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Fig. 7.11. Relative solution errors and the number of Newton steps versus pmin for the selection
criterion (7.27) with ξ = 0.5. Each curve corresponds to a value of pmax ranging between 10 and
30.
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Fig. 7.12. Number of iterations pk at each Newton step k for the linear and exponential selection
rules (7.27) and (7.28), respectively.
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where T plays the role of the regularization parameter. The basic property of asymp-
totic regularization states that x (T ) → x† as T → ∞, where x (t) is the solution of
the noise-free problem with the exact data vector y. For linear problems, this result is
straightforward: the solution of the initial value problem

ẋ (t) = KT [y − Kx (t)] , 0 < t ≤ T, x (0) = xa,

is given by
x (t) = e−KT Ktxa +

(
KT K

)−1
(
In − e−KT Kt

)
KT y,

whence letting T → ∞, we obtain

x (T ) →
(
KT K

)−1
KT y = x†.

For the nonlinear case, convergence results for the unperturbed and perturbed problems in
a continuous setting have been established by Tautenhahn (1994). Applying the family of
Runge–Kutta methods to the initial value problem (7.29), several iterative regularization
methods have been developed by Böckmann and Pornsawad (2008). Similarly, Hochbruck
et al. (2009) proposed an exponential Euler regularization method for solving the Showal-
ter differential equation. In this section we analyze the computational efficiency of the
Runge–Kutta regularization method and of the exponential Euler regularization method.

In the framework of Runge–Kutta methods, an approximate solution of the initial value
problem

ẋ (t) = Ψ (t,x (t)) , x (0) = xa,

is computed as

xk+1 = xk + τk

s∑
i=1

biΨ (t + ciτk,vi) ,

vi = xk + τk

s∑
j=1

aijΨ (t + cjτk,vj) , i = 1, . . . , s, k = 0, 1, . . . ,

where x0 = xa, s is the number of stages, τk is the step length at the actual iteration step
and the coefficients aij , bi and ci with i, j = 1, . . . , s, depend on the particular method
employed. These coefficients are usually arranged in a mnemonic device, known as the
Butcher tableau (Figure 7.13).

For our purpose, we consider consistent Runge–Kutta methods with the property
s∑

i=1

bi = 1. (7.30)

Applying the above scheme to the initial value problem (7.29) yields

xδ
k+1 = xδ

k + τk

s∑
i=1

biK (vi)
T [yδ − F (vi)

]
,

vi = xδ
k + τk

s∑
j=1

aijK (vj)
T [yδ − F (vj)

]
, i = 1, . . . , s, k = 0, 1, . . . .
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Fig. 7.13. General form of a Butcher tableau (1) and specific Butcher tableaus for the explicit Euler
method (2), the implicit Euler method (3), the Radau method (4), and the Lobatto method (5).

Setting

zi = vi − xδ
k = τk

s∑
j=1

aijK (vj)
T [yδ − F (vj)

]
,

and using the linearization

F (vj) = F
(
xδ

k + zj

)
≈ F

(
xδ

k

)
+ K

(
xδ

k

)
zj ,

and the approximation

K (vj) = K
(
xδ

k + zj

)
≈ K

(
xδ

k

)
,

we obtain

xδ
k+1 = xδ

k + τk

s∑
i=1

biKT
k

(
rδ

k − Kkzi

)
, (7.31)

zi = τk

s∑
j=1

aijKT
k

(
rδ

k − Kkzj

)
, i = 1, . . . , s, k = 0, 1, . . . , (7.32)

with Kk = K
(
xδ

k

)
and rδ

k = yδ − F
(
xδ

k

)
. To express (7.31) and (7.32) in a compact

form we introduce the matrices

A = A ⊗ In, Kk = Is ⊗ Kk, B = bT ⊗ In, I = Is ⊗ In,

and the vectors

rδk = 1s ⊗ rδ
k, z =

⎡⎢⎣ z1

...
zs

⎤⎥⎦ ∈ R
sn,

where

A =

⎡⎢⎣ a11 . . . a1s

...
. . .

...
as1 . . . ass

⎤⎥⎦ ∈ R
s×s, b =

⎡⎢⎣ b1

...
bs

⎤⎥⎦ ∈ R
s, 1s =

⎡⎢⎣ 1
...
1

⎤⎥⎦ ∈ R
s,
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and the notation X ⊗ Y stands for the Kronecker product of the matrices X ∈ R
m×n and

Y ∈ R
p×q defined as

X ⊗ Y =

⎡⎢⎣ x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

⎤⎥⎦ ∈ R
mp×nq, [X]ij = xij .

The use of the Kronecker product enables us to derive a transparent solution representation
in a straightforward manner. When working with the Kronecker product, the following
calculation rules have to be taken into account: for compatible matrices X, Y, Z and W,
there hold

(X ⊗ Y) (Z ⊗ W) = XZ ⊗ YW, (7.33)

(X ⊗ Y)T = XT ⊗ YT , (7.34)

(X ⊗ Y)−1 = X−1 ⊗ Y−1. (7.35)

Moreover, if A = A ⊗ In with A ∈ R
s×s and X = Is ⊗ X with X ∈ R

n×n , then the
representations

AX = (A ⊗ In) (Is ⊗ X) = A ⊗ X

and
XA = (Is ⊗ X) (A ⊗ In) = A ⊗ X,

yield the symmetry relation
AX = XA. (7.36)

Now, using the consistency relation (7.30), (7.31) and (7.32) become

xδ
k+1 = xδ

k + τkKT
k rδ

k − τkBKT
k Kkz, (7.37)(

τkAKT
k Kk + I

)
z = τkAKT

k rδk. (7.38)

Equation (7.38) is solved for z,

z = τk

(
τkAKT

k Kk + I
)−1

AKT
k rδk,

and is rearranged in the form

BKT
k Kkz = BKT

k rδk − BA−1
(
τkAKT

k Kk + I
)−1

AKT
k rδk. (7.39)

Since bT 1s = 1 and X = 1 ⊗ X, we have

BKT
k rδk =

(
bT ⊗ In

) (
Is ⊗ KT

k

) (
1s ⊗ rδ

k

)
= KT

k rδ
k, (7.40)

and by virtue of (7.39) and (7.40), (7.37) can be written as

xδ
k+1 = xδ

k + τkBA−1
(
τkAKT

k Kk + I
)−1

AKT
k rδk.

Finally, introducing the regularization parameter αk by

αk =
1
τk

,
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and using the symmetry relation (cf. (7.36) and the identity KT
k Kk = Is ⊗ KT

k Kk)

A
(
KT

k Kk

)
=
(
KT

k Kk

)
A,

which yields,
A−1

(
AKT

k Kk + αkI
)−1

A =
(
AKT

k Kk + αkI
)−1

,

we obtain the iteration of the Runge–Kutta regularization method

xδ
k+1 = xδ

k + B
(
AKT

k Kk + αkI
)−1

KT
k rδk, k = 0, 1, . . . . (7.41)

It is remarkable to note that for the explicit Euler iteration (s = 1, a11 = 0, b1 = 1)
we are led to z1 = 0, and (7.31) is the iteration of the nonlinear Landweber method (with
a relaxation parameter τk). Furthermore, for the implicit Euler method (s = 1, a11 = 1,
b1 = 1) there holds

A = B = In, Kk = Kk, rδk = rδ
k,

and (7.41) is the iteration of the regularizing Levenberg–Marquardt method with L = In,
i.e.,

xδ
k+1 = xδ

k +
(
KT

k Kk + αkIn

)−1
KT

k rδ
k, k = 0, 1, . . . . (7.42)

The regularizing property of any inversion method discussed up to now is reflected by
the filter factors. This concept can be generalized by introducing the so-called filter matrix.
For example, if (σi;vi,ui) is a singular system of the matrix Kk, then the iterate of the
regularizing Levenberg–Marquardt method (7.42) can be expressed as

xδ
k+1 = xδ

k + VFk

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦ , (7.43)

where the diagonal matrix

Fk =
[
diag

(
fαk

(
σ2

i

))
n×n

]
, fk

(
σ2

i

)
=

σ2
i

σ2
i + αk

, (7.44)

represents the filter matrix. Evidently, for very small values of the regularization pa-
rameter, Fk ≈ In, while for very large values of the regularization parameter Fk ≈
(1/αk) [diag

(
σ2

i

)
n×n

]. For the Runge–Kutta regularization method, the filter matrix is
not diagonal because A is not diagonal. To derive the expression of the filter matrix in this
case, we first employ the relations (cf. (7.33))

AKT
k Kk = A ⊗

(
KT

k Kk

)
= (Is ⊗ V)

(
A ⊗

[
diag

(
σ2

i

)
n×n

]) (
Is ⊗ VT

)
and

αkI = (Is ⊗ V) (αkI)
(
Is ⊗ VT

)
to obtain

AKT
k Kk + αkI = (Is ⊗ V)

(
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

) (
Is ⊗ VT

)
.
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Then, we use

KT
k rδk = 1s ⊗

(
KT

k rδ
k

)
= (Is ⊗ V)

(
Is ⊗

[
diag

(
σ2

i

)
n×n

])⎛⎜⎝1s ⊗

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦
⎞⎟⎠ ,

and
B (Is ⊗ V) =

(
bT ⊗ In

)
(Is ⊗ V) = bT ⊗ V,

together with (cf. (7.35)) (
Is ⊗ VT

)−1
= Is ⊗ V,

to conclude that

xδ
k+1 =xδ

k +
(
bT ⊗ V

) (
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

)−1

×
(
Is ⊗

[
diag

(
σ2

i

)
n×n

])⎛⎜⎝1s ⊗

⎡⎢⎣
1
σ1

uT
1 rδ

k
...

1
σn

uT
nrδ

k

⎤⎥⎦
⎞⎟⎠ . (7.45)

The iterate (7.45) can be expressed as in (7.43) by taking into account that X = 1⊗X and
x = 1 ⊗ x. The result is

Fk =
(
bT ⊗ In

) (
A ⊗

[
diag

(
σ2

i

)
n×n

]
+ αkI

)−1 (
1s ⊗

[
diag

(
σ2

i

)
n×n

])
.

Two extreme situations can be considered. If αk is very small, then by virtue of the identity
bT A−11s = 1, which holds true for the Radau and Lobatto methods illustrated in Figure
7.13, we obtain Fk ≈ In. On the other hand, if αk is very large, the consistency relation
bT 1s = 1, yields Fk ≈ (1/αk) [diag

(
σ2

i

)
n×n

]. Thus, the filter matrix of the Runge–
Kutta regularization method behaves like the ‘Tikhonov filter matrix’.

The exponential Euler method is based on the variation-of-constants formula which
allows us to integrate the linear part of semilinear differential equations exactly. For the
Showalter differential equation (7.29), Hochbruck et al. (2009) proposed the following
modification of the original exponential Euler scheme:

xδ
k+1 = xδ

k + τkϕ
(
−τkKT

k Kk

)
KT

k rδ
k, k = 0, 1, . . . ,

with
ϕ (z) =

ez − 1
z

.

Assuming the singular value decomposition Kk = UΣVT and setting αk = 1/τk, the
matrix function can be expressed as

ϕ
(
−α−1

k KT
k Kk

)
= αkV

⎡⎣diag

⎛⎝1 − exp
(
− σ2

i

αk

)
σ2

i

⎞⎠
n×n

⎤⎦VT , (7.46)
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and the iteration takes the form

xδ
k+1 = xδ

k +
n∑

i=1

[
1 − exp

(
−σ2

i

αk

)]
1
σi

(
uT

i rδ
k

)
vi, k = 0, 1, . . . . (7.47)

The exponential Euler regularization method is very similar to the regularizing Levenberg–
Marquardt method in which the Tikhonov filter factors (7.44) are replaced by the filter
factors

fk

(
σ2

i

)
= 1 − exp

(
−σ2

i

αk

)
.

Obviously, the filter factors for the exponential Euler regularization method are close to 1
for large σi and much smaller than 1 for small σi.

The algorithmic implementation of asymptotic regularization methods resembles that
of the regularizing Levenberg–Marquardt method. The main features are as follows:

(1) the iterations (7.41) and (7.47) are applied to the standard-form problem;
(2) the regularization parameters are chosen as the terms of a decreasing sequence αk =

qkαk−1 with constant or variable ratio qk;
(3) a step-length procedure for the nonlinear residual is used to improve the stability of

the method.

Note that the step-length procedure can be used because the Newton step pδ
k can be ex-

pressed as pδ
k = ĜkKT

k rδ
k , where Ĝk is a positive definite matrix; for example, in

the exponential Euler regularization method, we have Ĝk = α−1
k ϕ

(
−α−1

k KT
k Kk

)
, with

ϕ
(
−α−1

k KT
k Kk

)
being given by (7.46).

The numerical performance of asymptotic regularization methods and of the regular-
izing Levenberg–Marquardt are comparable; for large initial values of the regularization
parameters, the solution errors as well as the number of iteration steps are similar (Fig-
ure 7.14).

The asymptotic regularization methods yield results of comparable accuracies, al-
though the solution errors given in Table 7.3 indicate a slight superiority of the Radau
regularization method, especially for the O3 retrieval test problem.

7.4 Mathematical results and further reading

The convergence of the nonlinear Landweber iteration is expressed by the following result
(Hanke et al., 1995): if x† is a solution of the equation F (x) = y in the ball Bρ (xa) of
radius ρ about xa, F has the local property

‖F (x) − F (x′) − F ′ (x′) (x − x′)‖ ≤ η ‖F (x) − F (x′)‖ , 0 < η <
1
2
, (7.48)

for all x, x′ ∈ B2ρ (xa), and the equation F (x) = y is properly scaled in the sense that

‖F ′ (x)‖ ≤ 1, x ∈ B2ρ (xa) ,
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Fig. 7.14. Relative solution errors and the number of iteration steps for the Radau regularization
method and the regularizing Levenberg–Marquardt (LVMR) method.

Table 7.3. Relative solution errors for Radau, Lobatto and exponential Euler regularization methods.
The initial value of the regularization parameter is α = σp.

Selection criterion

Problem Method p S1 S2 S3

Radau 3.78e-2 3.78e-2 4.11e-2
O3 Lobatto 1.5 4.19e-2 4.19e-2 4.73e-2

Euler 4.08e-2 4.08e-2 4.51e-2

Radau 5.88e-2 7.01e-2 5.82e-2
BrO Lobatto 1.2 5.87e-2 6.89e-2 6.92e-2

Euler 5.88e-2 6.91e-2 6.09e-2

Radau 3.72e-2 31.9e-2 3.75e-2
CO Lobatto 1.0 3.79e-2 31.5e-2 3.59e-2

Euler 3.78e-2 34.4e-2 3.27e-2

Radau 1.80e-2 2.07e-2 2.06e-2
Temperature Lobatto 0.9 1.80e-2 2.13e-2 2.10e-2

Euler 1.80e-2 2.17e-2 2.07e-2
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then xδ
k� → x† as Δ → 0, where k	 = k	 (Δ) is the stopping index of the discrepancy

principle ∥∥yδ − F
(
xδ

k�

)∥∥ ≤ τdpΔ <
∥∥yδ − F

(
xδ

k

)∥∥ , 0 ≤ k < k	,

and
τdp > 2

1 + η

1 − 2η
> 2.

In contrast to Tikhonov regularization, the source condition

x† − xa =
[
F ′ (x†)	 F ′ (x†)]μ z, (7.49)

with μ > 0 and z ∈ X , is not sufficient to obtain convergence rates. In Hanke et al.
(1995), the convergence rate O(Δ2μ/(2μ+1)) with 0 < μ ≤ 1/2, has been proven under
the additional assumption that, for all x ∈ B2ρ (xa) , F satisfies

F ′ (x) = RxF ′ (x†) ,
‖I − Rx‖ ≤ cR

∥∥x − x†∥∥ , cR > 0, (7.50)

where {Rx/ x ∈ B2ρ (xa)} is a family of bounded linear operators Rx : Y → Y .
The iteratively regularized Gauss–Newton method was introduced by Bakushinsky. In

Bakushinsky (1992) local convergence was proven under the source condition (7.49) with
μ ≥ 1, provided that F ′ is Lipschitz continuous, i.e.,

‖F ′ (x) − F ′ (x′)‖ ≤ L ‖x − x′‖ , L > 0,

for all x, x′ ∈ B2ρ (xa). Lipschitz continuity of F ′ suffices to prove convergence rates for
the case μ ≥ 1/2, but if μ < 1/2 further conditions, that guarantee that the linearization is
not too far away from the nonlinear operator, are required. In Blaschke et al. (1997), the
convergence rates

∥∥xδ
k� − x†∥∥ =

⎧⎨⎩ o
(
Δ

2μ
2μ+1

)
, 0 < μ < 1/2,

O
(√

Δ
)

, μ = 1/2,
(7.51)

with k	 = k	 (Δ) being the stopping index of the discrepancy principle, have been derived
by assuming the following restrictions on the nonlinearity of F :

F ′ (x) = R (x, x′)F ′ (x′) + Q (x, x′) ,

‖I − R (x, x′)‖ ≤ cR, (7.52)

‖Q (x, x′)‖ ≤ cQ
∥∥F ′ (x†) (x − x′)

∥∥ , cR, cQ > 0,

for all x, x′ ∈ B2ρ (xa). Similarly, the optimal error bound O(Δ2μ/(2μ+1)) for 0 < μ <
1/2 has been proven by Bauer and Hohage (2005) for the Lepskij stopping rule and the
nonlinearity assumptions (7.52). As the best convergence rate of the discrepancy principle
is O(

√
Δ), the generalized discrepancy principle

αk�

〈
yδ − F

(
xδ

k�

)
,
[
F ′ (xδ

k�

)
F ′ (xδ

k�

)	
+ αk�I

]−1 [
yδ − F

(
xδ

k�

)]〉
≤ τΔ2, τ > 1,
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has been considered in Jin (2000), where the optimal convergence rate O(Δ2μ/(2μ+1))
with 0 < μ ≤ 1 has been established under the nonlinearity assumptions:

[F ′ (x) − F ′ (x′)] z = F ′ (x′) h (x, x′, z) ,

‖h (x, x′, z)‖ ≤ cR ‖x − x′‖ ‖z‖ , cR > 0,

for all x, x′ ∈ Bρ

(
x†).

Results on convergence rates under logarithmic source conditions can be found in
Hohage (1997) for the iteratively regularized Gauss–Newton method, and in Deuflhard et
al. (1998) for the nonlinear Landweber iteration.

For a general regularization method of the form

xδ
k+1 = xa + gαk

(
F ′ (xδ

k

)	
F ′ (xδ

k

))
F ′ (xδ

k

)	 [
yδ − F

(
xδ

k

)
+ F ′ (xδ

k

) (
xδ

k − xa

)]
,

(7.53)
the convergence rates (7.51) have been derived by Kaltenbacher (1997, 1998) for the mod-
ified discrepancy principle

max
(∥∥yδ − F

(
xδ

k�−1

)∥∥ , rlk�

)
≤ τdpΔ < max

(∥∥yδ − F
(
xδ

k−1

)∥∥ , rlk
)
, 1 ≤ k < k	,

(7.54)
with

rlk = yδ − F
(
xδ

k−1

)
− F ′ (xδ

k−1

) (
xδ

k − xδ
k−1

)
,

provided that τdp > 1 is sufficiently large, the nonlinearity conditions (7.52) hold, and the
sequence {αk} satisfies (7.7). Note that the stopping rule (7.54) is essentially equivalent
to the termination criterion

max
(∥∥yδ − F

(
xδ

k�−1

)∥∥ ,
∥∥yδ − F

(
xδ

k�

)∥∥)
≤ τ ′

dpΔ < max
(∥∥yδ − F

(
xδ

k−1

)∥∥ ,
∥∥yδ − F

(
xδ

k

)∥∥) , 1 ≤ k < k	,

which stops the iteration as soon as the residual norms at two subsequent iteration steps
are below τ ′

dpΔ. Examples of iterative methods having the form (7.53) are the iteratively
regularized Gauss–Newton method with

gα (λ) =
1

λ + α

and the Newton–Landweber iteration with

gα (λ) =
1
λ

[1 − (1 − λ)p] , α =
1
p
.

Hanke (1997) established the convergence of the regularizing Levenberg–Marquardt
method by using the local nonlinearity assumption

‖F (x) − F (x′) − F ′ (x′) (x − x′)‖ ≤ c ‖x − x′‖ ‖F (x) − F (x′)‖ , c > 0,

for all x, x′ ∈ B2ρ (xa), and by choosing the regularization parameter αk as the solution of
the ‘discrepancy principle’ equation (cf. (7.19))∥∥yδ − F

(
xδ

k

)
− F ′ (xδ

k

) [
xδ

k+1 (α) − xδ
k

]∥∥ = θ
∥∥yδ − F

(
xδ

k

)∥∥ ,

for some θ ∈ (0, 1).
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The regularizing trust-region method was analyzed by Wang and Yuan (2005). Con-
vergence results have been proven under the nonlinearity assumption (7.48) with 0 < η <
1, provided that the iterative process is stopped according to the discrepancy principle with

τdp >
1 + η

1 − η
.

Convergence rates for the regularized inexact Newton iteration method

xδ
k+1 = xδ

k + gαk

(
F ′ (xδ

k

)	
F ′ (xδ

k

))
F ′ (xδ

k

)	 [
yδ − F

(
xδ

k

)]
, (7.55)

and the source condition (7.49), have been established by Rieder (1999, 2003). The gen-
eral iteration method (7.55) includes the regularizing Levenberg–Marquardt method, and
Newton-type methods using as inner iteration the CGNR method, the Landweber iteration
and the ν-method.

The convergence of the Runge–Kutta regularization method has been proven by Böck-
mann and Pornsawad (2008) under the nonlinearity assumption (7.48).

The recent monograph by Kaltenbacher et al. (2008) provides an exhaustive and per-
tinent analysis of iterative regularization methods for nonlinear ill-posed problems. In ad-
dition to the methods discussed in this chapter, convergence and convergence rate results
can be found for the modified Landweber methods (iteratively regularized Landweber it-
eration, Landweber–Kaczmarz method), Broyden’s method, multilevel methods and level
set methods.

In Appendix H we derive convergence rate results for the general regularization meth-
ods (7.53) and (7.55) in a discrete setting. The regularization scheme (7.53) corresponds
to the so-called Newton-type methods with a priori information, e.g., the iteratively reg-
ularized Gauss–Newton method, while the regularization scheme (7.55) corresponds to
the Newton-type methods without a priori information, e.g., the regularizing Levenberg–
Marquardt method.



8

Total least squares

In atmospheric remote sensing, near real-time software processors frequently use approx-
imations of the Jacobian matrix in order to speed up the calculation. If the forward model
F (x) depends on the state vector x through some model parameters bk,

F (x) = F (b1 (x) , . . . ,bN (x)) ,

then, an approximate expression of the Jacobian matrix

K =
N∑

k=1

∂F
∂bk

∂bk

∂x
,

can be obtained by assuming that some bk are insensitive to x, i.e., ∂bk/∂x = 0. For
example, the limb radiance measured by a detector in the ultraviolet or visible spectral
domains can be expressed as

I (λ,x) = Iss (λ,x) + Ims (λ,x) = Iss (λ,x) [1 + cms (λ,x)] , (8.1)

where Iss and Ims are the single and multiple scattering terms, λ is the wavelength, and
cms is a correction factor accounting for the multiple scattering contribution. As the com-
putation of the derivative of cms is quite demanding, the Jacobian matrix calculation may
involve only the derivative of Iss. Similarly, in a line-by-line model, the absorption co-
efficient Cabsm of the gas molecule m is the product of the line strength Sml and the
normalized line shape function gml (cf. (1.12)),

Cabsm (ν, T ) =
∑

l

Sml (T ) gml (ν, T ) ,

where ν is the wavenumber, T is the temperature, and the summation is over all lines l. As
the most important temperature dependence stems from the line strength, the derivative of
the line shape function with respect to the temperature is sometimes ignored.

The total least squares (TLS) method is devoted to the solution of linear problems in
which both the coefficient matrix and the data are subject to errors. The linear data model
can be expressed as

yδ = (KΛ − Λ)x + δ,
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where the matrix KΛ is a perturbation of the exact (unknown) matrix K, KΛ = K + Λ,
and the data are affected by the instrumental noise δ.

The TLS method was independently derived in several bodies of work by Golub and
Van Loan (1980, 1996), and Van Huffel and Vanderwalle (1991). This literature has ad-
vanced the algorithmic and theoretical understanding of the method, as well as its ap-
plication for computing stable solutions of linear systems of equations with highly ill-
conditioned coefficient matrices. In this section we review the truncated and the regular-
ized TLS methods for solving linear ill-posed problems, and reveal the similarity with the
Tikhonov regularization. We then present a first attempt to extend the regularized TLS to
nonlinear ill-posed problems.

8.1 Formulation

The linear model which encapsulates the uncertainties in the data vector and the coefficient
matrix is of the form KΛx ≈ yδ . To sketch the TLS method, we introduce the augmented
matrix

[
KΛ yδ

]
and consider the homogeneous system of equations

[
KΛ yδ

] [ x
−1

]
= 0. (8.2)

We then assume a singular value decomposition of the m × (n + 1) matrix,[
KΛ yδ

]
= ŪΣ̄V̄T , (8.3)

and partition the matrices V̄ and Σ̄ as follows:

V̄ = [v̄1, . . . , v̄n+1] =
[

V̄11 v̄12

v̄T
21 v̄22

]
, V̄11 ∈ R

n×n, v̄12, v̄21 ∈ R
n, (8.4)

and

Σ̄ =

⎡⎣ Σ̄1 0
0 σ̄n+1

0 0

⎤⎦ , Σ̄1 =
[
diag (σ̄i)n×n

]
,

respectively. If σ̄n+1 �= 0, then rank
([

KΛ yδ
])

= n + 1, and the solution of the
homogeneous system of equations (8.2) is the trivial solution. Thus, the last component of
the solution vector is not −1, and to solve (8.2) it is necessary to reduce the rank of the
augmented matrix from n+1 to n. This can be achieved by approximating the rank-(n + 1)
matrix

[
KΛ yδ

]
by a rank-n matrix

[
Kn yn

]
. As rank

([
Kn yn

])
= n , we

may assume that the last column vector of the matrix
[

Kn yn

]
is a linear combination

of the first n column vectors, i.e.,

yn =
n∑

i=1

xiki,

with Kn = [k1, . . . ,kn], or equivalently that,

Knx = yn,
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with x = [x1, . . . , xn]T . The (matrix) approximation problem can be expressed as the
constrained minimization problem

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
(8.5)

subject to K̃x = ỹ,

where the Frobenius norm of the m × n matrix A is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

[A]2ij .

It should be pointed out that the ordinary least squares method minimizes the norm of the
residual vector yδ − ỹ under the assumption that KΛ = K̃.

The solution to the minimization problem (8.5) is given by the Eckart–Young–Mirsky
theorem (Golub and Van Loan, 1996): the matrix[

Kn yn

]
=

n∑
i=1

σ̄iūiv̄T
i (8.6)

is the closest rank-n matrix to
[

KΛ yδ
]
, and we have[

KΛ yδ
]
−
[

Kn yn

]
= σ̄n+1ūn+1v̄T

n+1,

yielding ∥∥[ KΛ yδ
]
−
[

Kn yn

]∥∥
F

= σ̄n+1.

The homogeneous system of equations (8.2) is then replaced by a homogeneous system of
equations involving the rank-n matrix

[
Kn yn

]
, that is,[

Kn yn

] [ x
−1

]
= 0. (8.7)

Since (cf. (8.6)) [
Kn yn

]
v̄n+1 =

n∑
i=1

σ̄i

(
v̄T

i v̄n+1

)
ūi = 0, (8.8)

we see that the vector av̄n+1 is the general solution of the homogeneous system of equa-
tions (8.7) and that the scalar a is (uniquely) determined by imposing that the last compo-
nent of the solution vector is −1. We obtain[

xδ
Λ

−1

]
= − 1

[v̄n+1]n+1

v̄n+1, (8.9)

provided that [v̄n+1]n+1 �= 0. From (8.4), we find that the TLS solution can be expressed
as

xδ
Λ = − 1

v̄22
v̄12. (8.10)

Note that if σ̄n+1 is a simple singular value, we have (cf. (8.8)) N
([

Kn yn

])
=

span {v̄n+1}, and the TLS solution is unique.
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8.2 Truncated total least squares

The truncated TLS method, which in general is devoted to numerically rank deficient prob-
lems, is also a suitable regularization method for discrete ill-posed problems. This tech-
nique is similar to the truncated SVD that treats small singular values of K as zeros. In
both methods, the redundant information in

[
KΛ yδ

]
and K, respectively, associated

to the small singular values, is discarded and the original ill-posed problem with a full rank
matrix is replaced by a well-posed problem with a rank-deficient matrix. This approxi-
mation is achieved by means of the Eckart–Young–Mirsky theorem. For example, in the
truncated SVD, the matrix K with rank (K) = n and singular value decomposition

K =
n∑

i=1

σiuivT
i

is replaced by the matrix

Kp =
p∑

i=1

σiuivT
i ,

with rank (Kp) = p , and the regularized solution takes the form

xδ
p = arg min

x

∥∥yδ − Kpx
∥∥2 =

p∑
i=1

1
σi

(
uT

i yδ
)
vi.

The major difference between the two methods lies in the way in which the approximation
is performed: in the truncated SVD, the modification depends only on K, while in the
truncated TLS, the modification depends on both KΛ and yδ . Thus, in the framework of
the truncated TLS method we approximate the matrix

[
KΛ yδ

]
by the rank-p matrix

[
Kp yp

]
=

p∑
i=1

σ̄iūiv̄T
i .

To determine the number p of large singular values or the truncation index, we may require
a user-specified threshold or determine p adaptively. The null space of the approximation
matrix is

N
([

Kp yp

])
= span {v̄p+1, . . . , v̄n+1} ,

whence accounting for the partition

V̄ = [v̄1, . . . , v̄n+1] =
[

V̄11 V̄12

v̄T
21 v̄T

22

]
, (8.11)

with V̄11∈ R
n×p, V̄12∈ R

n×(n−p+1), and

v̄21 =
[
[v̄1]n+1 , . . . , [v̄p]n+1

]T
∈ R

p,

v̄22 =
[
[v̄p+1]n+1 , . . . , [v̄n+1]n+1

]T
∈ R

n−p+1,
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we seek the solution as [
xδ

Λp

−1

]
=

n+1∑
i=p+1

aiv̄i =
[

V̄12

v̄T
22

]
a, (8.12)

with a = [ap+1, . . . , an+1]T ∈ R
n−p+1. From the last equation we find that

v̄T
22a = −1,

or equivalently that
n+1∑

i=p+1

ai [v̄i]n+1 = −1.

Since (cf. (8.12)) ∥∥∥∥[ xδ
Λp

−1

]∥∥∥∥2 = 1 +
∥∥xδ

Λp

∥∥2 =
n+1∑

i=p+1

a2
i , (8.13)

we see that the minimum norm solution xδ
Λp requires a minimum value of

∑n+1
i=p+1 a2

i .
This can be obtained by solving the constrained minimization problem

min
ai

n+1∑
i=p+1

a2
i

subject to
n+1∑

i=p+1

ai [v̄i]n+1 = −1.

In the framework of the Lagrange multiplier formalism, the first-order optimality condi-
tions for the Lagrangian function

L (a, λ) =
1
2

n+1∑
i=p+1

a2
i + λ

⎛⎝ n+1∑
i=p+1

ai [v̄i]n+1 + 1

⎞⎠ ,

yield

ai + λ [v̄i]n+1 = 0, i = p + 1, . . . , n + 1,

n+1∑
i=p+1

ai [v̄i]n+1 = −1,

and we obtain
a = − 1

‖v̄22‖2 v̄22. (8.14)

Hence, from (8.12) and (8.14), the minimum norm solution is given by

xδ
Λp = − 1

‖v̄22‖2 V̄12v̄22. (8.15)
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By (8.13), (8.14) and the Eckart–Young–Mirsky theorem, we have∥∥xδ
Λp

∥∥2 =
1

‖v̄22‖2 − 1,

and ∥∥Rδ
Λp

∥∥2
F

=
∥∥[ KΛ yδ

]
−
[

Kp yp

]∥∥2
F

= σ̄2
p+1 + . . . + σ̄2

n+1,

showing that the solution norm
∥∥xδ

Λp

∥∥ increases monotonically with p, while the residual
norm

∥∥Rδ
Λp

∥∥
F

decreases monotonically with p. These results recommend the discrepancy
principle and the L-curve method for computing the truncation index.

In order to demonstrate the regularizing property of the truncated TLS method, we
express xδ

Λp as the filtered sum

xδ
Λp =

n∑
i=1

fi
1
σi

(
uT

i yδ
)
vi, (8.16)

where (σi;vi,ui) is a singular system of KΛ. In Appendix I it is shown that if rank (KΛ) =
n and rank

([
KΛ yδ

])
= n + 1, and furthermore, if uT

i yδ �= 0 for all i = 1, . . . , n,
then the filter factors are given by

fi =
1

‖v̄22‖2

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 , (8.17)

and the estimates

1 < fi ≤ 1 +
(

σ̄p+1

σi

)2

+ O

(
σ̄4

p+1

σ4
i

)
, i = 1, . . . , p, (8.18)

and

0 < fi ≤
1 − ‖v̄22‖2

‖v̄22‖2

(
σi

σ̄p

)2 [
1 + O

(
σ2

i

σ̄2
p

)]
, i = p + 1, . . . , n (8.19)

hold. From (8.18), (8.19) and the interlacing property of the singular values of
[

KΛ yδ
]

and KΛ,

σ̄1 > σ1 > . . . > σ̄p > σp > σ̄p+1 > σp+1 > . . . > σn > σ̄n+1,

we see that for i � p, (σ̄p+1/σi)
2 � 1 and the filter factors are close to 1, while for i � p,

(σi/σ̄p)
2 � 1 and the filter factors are very small. Thus, the filter factors of the truncated

TLS method resemble the Tikhonov filter factors, and xδ
Λp is a filtered solution, with the

truncation index p playing the role of the regularization parameter.
When the dimension of KΛ is not too large, the singular value decomposition of the

augmented matrix
[

KΛ yδ
]

can be computed directly. For large-scale problems, this
approach is computationally expensive and an iterative algorithm based on Lanczos bidiag-
onalization can be used instead (Fierro et al., 1997). The so-called Lanczos truncated TLS
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algorithm uses the Lanczos bidiagonalization of the matrix KΛ to obtain, after p iteration
steps, the factorization

KΛV̄p = Ūp+1Bp, (8.20)

and projects the TLS problem onto the subspace spanned by Ūp+1 ∈ R
m×(p+1) and V̄p ∈

R
n×p . The projection is a consequence of the assumption that for a sufficiently large p,

all the large singular values of KΛ, which contribute to the regularized solution, have been
captured. The projected TLS problem reads as

min
[K̃p ỹp]∈Rm×(n+1)

∥∥∥∥ŪT
p+1

([
KΛ yδ

]
−
[

K̃p ỹp

]) [ V̄p 0
0 1

]∥∥∥∥2
F

subject to ŪT
p+1K̃pV̄pzp = ŪT

p+1ỹp,

where we have set x = V̄pzp for some zp ∈ R
p. Using the result (cf. (8.20) and (5.36))

ŪT
p+1

[
KΛ yδ

] [ V̄p 0
0 1

]
=
[

ŪT
p+1KΛV̄p ŪT

p+1y
δ
]

=
[

Bp β1e
(p+1)
1

]
,

the constrained minimization problem can be rewritten as

min
[B̃p ẽp]∈R(p+1)×(p+1)

∥∥∥[ Bp β1e
(p+1)
1

]
−
[

B̃p ẽp

]∥∥∥2
F

(8.21)

subject to B̃pzp = ẽp,

where we have put B̃p = ŪT
p+1K̃pV̄p and ẽp = ŪT

p+1ỹp. Thus, in each Lanczos step,
we use the TLS algorithm for the small-scale problem (8.21) to compute a truncated TLS
solution xδ

Λp. More precisely, assuming the singular value decomposition[
Bp β1e

(p+1)
1

]
= ¯̄U ¯̄Σ ¯̄V,

with
¯̄V =

[
¯̄V11 ¯̄v12

¯̄vT
21

¯̄v22

]
, ¯̄V11 ∈ R

p×p, ¯̄v12, ¯̄v21 ∈ R
p,

the TLS solution to (8.21) is (cf. (8.10))

zδ
Λp = − 1

¯̄v22

¯̄v12,

and the truncated TLS solution takes the form

xδ
Λp = V̄pzδ

Λp = − 1
¯̄v22

V̄p¯̄v12.

In the Lanczos truncated TLS algorithm, the solution norm and the residual norm also
possess monotonic behavior, i.e.,

∥∥xδ
Λp

∥∥ is a increasing function of p, while
∥∥Rδ

Λp

∥∥
F

is a
decreasing function of p (Fierro et al., 1997).



258 Total least squares Chap. 8

Regularization parameter choice methods for truncated TLS are discrete methods. If
explicit knowledge about the errors in KΛ and yδ is available, the discrepancy principle can
be used to compute the truncation index. When the errors in KΛ and yδ are not available,
error-free parameter choice methods can be employed. In this context, we mention that
Sima and Van Huffel (2006) formulated the generalized cross-validation in the framework
of the Lanczos truncated TLS, while the L-curve method has been applied by Fierro et al.
(1997).

The truncated solution xδ
Λp is a filtered solution whose main contributions come from

the first p singular vectors of KΛ (Appendix I). Because these vectors are not always the
best basis vectors for a regularized solution, we may implicitly include regularization in
general form with L �= In. This is done by transforming the problem involving KΛ

and L into a standard-form problem with the matrix K̄Λ = KΛL−1. Then, we apply
the truncated TLS method to the standard-form problem to obtain a regularized solution
x̄δ

Λp, and finally, we transform x̄δ
Λp back to the general-form setting by computing xδ

Λp =
L−1x̄δ

Λp. The conventional and the Lanczos versions of the truncated TLS method are
outlined in Algorithms 13 and 14. It should be remarked that Algorithm 13 computes
simultaneously the truncated SVD solution and the truncated TLS solution for a fixed
value of the truncation index p.

8.3 Regularized total least squares for linear problems

Tikhonov regularization has been recast in the framework of the regularized TLS by Golub
et al. (1999). To stress the differences and the similarities between the conventional
Tikhonov regularization and the regularized TLS, we first note that Tikhonov regulariza-

Algorithm 13. Algorithm for computing the truncated SVD solution xδ
p and the truncated

TLS solution xδ
Λp for a fixed value of the truncation index p.

K̄Λ ← KΛL−1;
{truncated SVD solution}
compute the SVD K̄Λ = UΣVT ;
x̄δ

p ←
∑p

i=1 (1/σi)
(
uT

i yδ
)
vi;

xδ
p ← L−1x̄δ

p;
{truncated TLS solution}
compute the SVD

[
K̄Λ yδ

]
= ŪΣ̄V̄T ;

partition V̄ =
[

V̄11 V̄12

v̄T
21 v̄T

22

]
with V̄11∈ R

n×p;

x̄δ
Λp ← −

(
1/ ‖v̄22‖2

)
V̄12v̄22;

xδ
Λp ← L−1x̄δ

Λp;
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Algorithm 14. Lanczos truncated TLS algorithm with pmax > 1 iterations.

β1 ←
∥∥yδ
∥∥; ū ← (1/β1)yδ;

q ← L−T KT ū; α1 ← ‖q‖; v̄1 ← (1/α1)q;
for p = 1, pmax do

p ← KL−1v̄p − αpū; βp+1 ← ‖p‖; ū ← (1/βp+1)p;
if p > 1 then

set A =
[

Bp β1e
(p+1)
1

]
=

⎡⎢⎢⎢⎢⎢⎣
α1 0 . . . 0 β1

β2 α2 . . . 0 0
...

...
. . .

...
...

0 0 . . . αp 0
0 0 . . . βp+1 0

⎤⎥⎥⎥⎥⎥⎦;

compute the SVD A = ¯̄U ¯̄Σ ¯̄V;

partition ¯̄V =

[
¯̄V11 ¯̄v12

¯̄vT
21

¯̄v22

]
with ¯̄V11∈ R

p×p;

x̄δ
Λp ← − (1/¯̄v22)

∑p
j=1 [¯̄v12]j v̄j ;

xδ
Λp ← L−1x̄δ

Λp;
end if

if p < pmax then

q ← L−T KT ū − βp+1v̄p; αp+1 ← ‖q‖; v̄p+1 ← (1/αp+1)q;
end if

end for

tion has an important equivalent formulation as

min
x

∥∥yδ − Kx
∥∥2 (8.22)

subject to ‖Lx‖ ≤ ε,

where ε is a positive constant. The constrained least squares problem (8.22) can be solved
by using the Lagrange multiplier formalism. Considering the Lagrangian function

L (x, α) =
∥∥yδ − Kx

∥∥2 + α
(
‖Lx‖2 − ε2

)
,

it can be shown that if ε ≤
∥∥Lxδ

∥∥, where xδ is the least squares solution of the equation
Kx = yδ , then the solution xδ

ε to (8.22) is identical to the Tikhonov solution xδ
α, with α

solving the equation ∥∥Lxδ
α

∥∥2 = ε2. (8.23)

To carry this idea over to the TLS setting, we add the bound ‖Lx‖ ≤ ε to the ordinary
problem (8.5), in which case, the new problem statement becomes

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
(8.24)

subject to K̃x = ỹ and ‖Lx‖ ≤ ε.
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The corresponding Lagrangian function is

L
(
K̃,x, α

)
=
∥∥[ KΛ yδ

]
−
[

K̃ K̃x
]∥∥2

F
+ α

(
‖Lx‖2 − ε2

)
,

and the Lagrange multiplier α is non-zero if the inequality constraint is active. In fact,
the solution xδ

Λε to (8.24) is different from the TLS solution xδ
Λ, whenever ε is less than∥∥Lxδ

Λ

∥∥.
To characterize xδ

Λε, we set the partial derivatives of the Lagrangian function to zero.
Differentiation with respect to the entries in K̃ yields

K̃ − KΛ − rxT = 0, (8.25)

with r = yδ − K̃x, while differentiation with respect to the entries in x gives

−K̃T r + αLT Lx = 0. (8.26)

Setting the partial derivative with respect to α to zero also yields

‖Lx‖2 = ε2. (8.27)

Making use of the expression of r, we rearrange (8.26) as(
K̃T K̃ + αLT L

)
x = K̃T yδ. (8.28)

Now, by (8.25) and (8.26), we have KΛ = K̃ − rxT and K̃T r = αLT Lx, respectively,
and so, we obtain

KT
ΛKΛ = K̃T K̃ − αxxT LT L + ‖r‖2 xxT − αLT LxxT (8.29)

and
KT

Λyδ = K̃T yδ −
(
rT yδ

)
x. (8.30)

Inserting (8.29) and (8.30) into (8.28), and using the identities (cf. (8.27))

xxT LT Lx = ε2x, ‖r‖2 xxT x = ‖r‖2 ‖x‖2 x,

and
LT LxxT x = ‖x‖2 LT Lx,

we arrive at (
KT

ΛKΛ + αIIn + αLLT L
)
x = KT

Λyδ, (8.31)

with
αI = αε2 − ‖r‖2 ‖x‖2 − rT yδ (8.32)

and
αL = α

(
1 + ‖x‖2

)
. (8.33)

The next step of our derivation is the elimination of the Lagrange multiplier α in the ex-
pressions of αI and αL. First, we use the relation (cf. (8.25))

r = yδ − K̃x = yδ − KΛx − ‖x‖2 r,
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to obtain (
1 + ‖x‖2

)
r = yδ − KΛx, (8.34)

and further, (
1 + ‖x‖2

)
‖r‖2 =

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2 . (8.35)

On the other hand, scalar multiplying (8.26) by x gives

α =
xT K̃T r

‖Lx‖2 =
1
ε2

(
rT yδ − ‖r‖2

)
. (8.36)

Considering the parameter αI, we insert (8.35) and (8.36) into (8.32), and find that

αI = −
∥∥yδ − KΛx

∥∥2
1 + ‖x‖2 . (8.37)

Turning now to the parameter αL, we use (8.33) and (8.36) to get

αL = α
(
1 + ‖x‖2

)
=

1
ε2

(
rT yδ − ‖r‖2

)(
1 + ‖x‖2

)
. (8.38)

Finally, a relationship connecting αL and αI can be derived as follows: by (8.35) and
(8.37), we have αI = −‖r‖2

(
1 + ‖x‖2

)
, whence using (8.34), (8.38) becomes

αL =
1
ε2

[
yδT

(
yδ − KΛx

)
+ αI

]
. (8.39)

To evaluate the approximation error
∥∥[ KΛ yδ

]
−
[

K̃ ỹ
]∥∥

F
, we use the rela-

tion (cf. (8.25))

[
KΛ yδ

]
−
[

K̃ K̃x
]

=
[

KΛ − K̃ r
]

=
[
−rxT r

]
= −r

[
x
−1

]T

,

together with (8.35) and (8.37), to obtain∥∥[ KΛ yδ
]
−
[

K̃ ỹ
]∥∥2

F
=
(
1 + ‖x‖2

)
‖r‖2 = −αI. (8.40)

Collecting all results we conclude that xδ
Λε is the solution of equation (8.31) with αI

and αL given by (8.37) and (8.39), respectively. The main features of the regularized TLS
are presented below (Golub et al., 1999).

(1) If the matrix αIIn + αLLT L is positive definite, then the regularized TLS solution
corresponds to the Tikhonov solution with the penalty term αI ‖x‖2 + αL ‖Lx‖2. If
the matrix αIIn + αLLT L is indefinite or negative definite, there is no equivalent
interpretation.
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(2) For a given ε, there are several pairs of parameters αI and αL and thus several solutions
xδ

Λε that satisfy (8.31), (8.37) and (8.39). However, from (8.40), we see that only the
solution with the smallest value of |αI| solves the constrained minimization problem
(8.24).

(3) If ε <
∥∥Lxδ

Λ

∥∥, where xδ
Λ is the TLS solution (8.10), the inequality constraint is bind-

ing, the Lagrange multiplier α is positive and by (8.33), it follows that αL > 0. From
(8.37) it is apparent that αI is always negative and thus adds some deregularization to
the solution. The residual (8.40) is a monotonically decreasing function of ε, and so,
αI is a monotonically increasing function of ε. If ε =

∥∥Lxδ
Λ

∥∥, the Lagrange multi-
plier α is zero and the regularized TLS solution xδ

Λε coincides with the TLS solution
xδ

Λ; for larger ε, the constraint is never again binding and so, the solution remains
unchanged.

To compute the regularized TLS solution xδ
Λε we have to solve a nonlinear problem, and

several techniques have been proposed in the literature. In Golub et al. (1999), αL is
considered as free parameter, a corresponding value is computed for αI, and the system
of equations (8.31) is solved in an efficient way. The idea is to transform (8.31) into the
augmented system of equations⎡⎣ Im 0 KΛ

0 In
√

αLL
KT

Λ

√
αLLT −αIIn

⎤⎦⎡⎣ r
s
x

⎤⎦ =

⎡⎣ yδ

0
0

⎤⎦ ,

to reduce KΛ to an n×n bidiagonal form by means of orthogonal transformations, to apply
Elden’s algorithm to annihilate the matrix term containing the factor

√
αL, and finally, to

use a symmetric perfect shuffle reordering to obtain a symmetric, tridiagonal, indefinite
matrix of size 2n × 2n containing the parameter αI on the main diagonal.

In Guo and Renault (2002), a shifted inverse power method is used to obtain the eigen-
pair (

λ,

[
x

−1

])
for the problem

B (x)
[

x
−1

]
= λ

[
x

−1

]
, (8.41)

where

B (x) =
[

KT
ΛKΛ + αL (x)LT L KT

Λyδ

yδT KΛ −αL (x) ε2 + yδT yδ

]
is an (n + 1) × (n + 1) matrix, λ = −αI, and αL is given by (cf. (8.37) and (8.39))

αL (x) =
1
ε2

[
yδT

(
yδ − KΛx

)
−
∥∥yδ − KΛx

∥∥2
1 + ‖x‖2

]
. (8.42)

In Renault and Guo (2005), the solution of the eigenproblem (8.41) is considered
together with the solution of a nonlinear equation which guarantees the bound ‖Lx‖ = ε.
To describe the main features of this algorithm, we consider the decomposition

B (αL) = M + αLN,
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where

M =
[

KT
ΛKΛ KT

Λyδ

yδT KΛ yδT yδ

]
, N =

[
LT L 0
0 −ε2

]
,

and denote by (
λαL

,

[
xαL

−1

])
the eigenpair corresponding to the smallest eigenvalue of B (αL). For a fixed ε, we intro-
duce the function

g (x) =
‖Lx‖2 − ε2

1 + ‖x‖2 ,

and compute α̂L such that xα̂L
solves the equation

g (xαL
) = 0; (8.43)

xα̂L
is then the regularized TLS solution of (8.24). To justify this algorithm, we assume

that xα̂L
satisfies the eigensystem equation

B (α̂L)
[

xα̂L

−1

]
= λα̂L

[
xα̂L

−1

]
, (8.44)

and is also a solution of equation (8.43). The first block equation of the eigenvalue prob-
lem (8.44) gives (8.31) with α̂I = −λα̂L

, while the second block equation yields (8.39).
Multiplying the eigensystem equation by [xT

α̂L
,−1] , we find that

λα̂L
=

1
1 + ‖xα̂L

‖2

[∥∥yδ − KΛxα̂L

∥∥2 + α̂L

(
‖Lxα̂L

‖2 − ε2
)]

. (8.45)

Since g (xα̂L
) = 0, it follows that ‖Lxα̂L

‖2 = ε2, and (8.45) becomes

λα̂L
=

∥∥yδ − KΛxα̂L

∥∥2
1 + ‖xα̂L

‖2 ; (8.46)

thus α̂I = −λα̂L
satisfies indeed (8.37). In summary, xα̂L

solves equation (8.31) with α̂I

as in (8.37) and α̂L as in (8.39). Since λα̂L
is the smallest eigenvalue of B, the present

approach explicitly computes a solution with the smallest value of |αI|.
For a practical implementation of the method of Renault and Guo we note the follow-

ing results:

(1) if λn+1 > 0 is the smallest eigenvalue of the matrix B and vn+1 is the corresponding
eigenvector, then λαL

= λn+1 and[
xαL

−1

]
= − 1

[vn+1]n+1

vn+1;

(2) g (xαL
) is a monotonically decreasing function of αL, and there exists only one solu-

tion α̂L of the equation g (xαL
) = 0.
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Algorithm 15 computes the Tikhonov solution and the regularized TLS solution for
a fixed value of the parameter α corresponding to the method of Tikhonov regularization
Both solutions are related to each other through the constraint norms. The input parameter
α is used to determine the bound ε and to estimate a bisection interval for αL. The algorithm
also computes the ‘equivalent’ regularization matrix defined as

αLT
eqLeq = α̂IIn + α̂LLT L. (8.47)

This factorization is performed by using the Cholesky method with added multiple of iden-
tity, which takes into account that for large negative values of α̂I, the matrix α̂IIn+α̂LLT L
may not be positive definite. Note that strategies based on modifying a Cholesky factoriza-
tion or a symmetric indefinite factorization of a non-positive definite Hessian are standard
approaches in the framework of Newton’s method (Nocedal and Wright, 2006).

Algorithm 15. Algorithm for computing the regularized TLS solution by solving the
eigenvalue problem (8.41). The regularization parameter α corresponds to the method
of Tikhonov regularization. The algorithm computes the solution xα̂L

, the regularization
parameters α̂L and α̂I, and the equivalent regularization matrix Leq.

compute the Tikhonov solution xδ
α for α, i.e., xδ

α =
(
KT

ΛKΛ + αLT L
)−1

KT
Λyδ;

ε ←
∥∥Lxδ

α

∥∥;
compute the matrices M and N;
estimate a bisection interval [αLmin, αLmax] for αL around α;
solve g (αL) = 0 in [αLmin, αLmax] using FuncEval (αL, ε,M,N; g,xαL

, αI);
store the solution α̂L and the corresponding xα̂L

and α̂I;
{regularization matrix using Cholesky factorization with added multiple of identity}
choose the tolerance εα, e.g., εα = 0.001;
�α ← εα |α̂I|; stop ← false;
while stop = false do

attempt to apply the Cholesky factorization to obtain LT
eqLeq = α̂IIn + α̂LLT L;

if factorization is successful then

stop ← true;
else

α̂I ← α̂I + �α;
end if

end while

Leq ← (1/
√

α)Leq.

{for given αL, the routine computes g (αL), xαL
and αI}

routine FuncEval (αL, ε,M,N; g,xαL
, αI)

B ← M + αLN;
compute the smallest eigenvalue λn+1 of B and the eigenvector vn+1;

compute xαL
as
[

xαL

−1

]
= −

(
1/ [vn+1]n+1

)
vn+1;

αI ← −λn+1;
g ←

(
‖LxαL

‖2 − ε2
)

/
(
1 + ‖xαL

‖2
)

.
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In Sima et al. (2003), the objective function is the so-called orthogonal distance, and
the constrained minimization problem takes the form (cf. (8.37) and (8.40))

min
x

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2

subject to ‖Lx‖ ≤ ε.

The first-order optimality conditions for the Lagrangian function

L (x, λ) =

∥∥yδ − KΛx
∥∥2

1 + ‖x‖2 + λ
(
‖Lx‖2 − ε2

)
,

yield
D (x)x + λLT Lx = d (x) , ‖Lx‖2 = ε2, (8.48)

with

D (x) =
KT

ΛKΛ

1 + ‖x‖2 −
∥∥yδ − KΛx

∥∥2(
1 + ‖x‖2

)2 In, d (x) =
KT

Λyδ

1 + ‖x‖2 .

The problem (8.48) is first transformed into the standard form and then solved iteratively
by using a fixed point iteration method. Assuming that L is square and nonsingular, the
transformation to the standard form gives

(W + λIn) x̄ = h, ‖x̄‖2 = ε2, (8.49)

with x̄ = Lx, W = L−T DL−1 and h = L−T d. Note that since D is a symmetric matrix,
W is also a symmetric matrix. Let us now consider the problem

(W + λIn)2 u = h, hT u = ε2 (8.50)

for u ∈ R
n. Setting

x̄ = (W + λIn)u,

and taking into account that, due to the symmetry of W + λIn, there holds

ε2 = hT u = uT (W + λIn)2 u = ‖x̄‖2
,

we see that the problems (8.49) and (8.50) are equivalent. Further, using the identity

h =
1
ε2

(
hT u

)
h =

1
ε2

hhT u,

we deduce that (8.50) can be transformed into the quadratic eigenvalue problem(
λ2In + 2λW + W2 − 1

ε2
hhT

)
u = 0. (8.51)

This quadratic eigenvalue problem is solved in order to find the largest eigenvalue λ and
the corresponding eigenvector u scaled so that hT u = ε2. As all matrices in (8.51) are
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real and symmetric, the quadratic eigenvalues are real and come in complex conjugate
pairs. Moreover, the special form of the quadratic eigenvalue problem (8.51) implies that
the rightmost (largest real) eigenvalue is real and positive. The solution of the original
problem is then recovered by first computing x̄ = (W + λIn)u and then x = L−1x̄.

Algorithm 16. Algorithm for computing the regularized TLS solution by solving the
quadratic eigenvalue problem (8.51). The regularization parameter α corresponds to the
method of Tikhonov regularization. The algorithm computes the solution x, the regular-
ization parameters αL and αI, and the equivalent regularization matrix Leq.
choose the tolerances εl and εx for the convergence test;
compute the Tikhonov solution xδ

α for α, i.e., xδ
α =

(
KT

ΛKΛ + αLT L
)−1

KT
Λyδ;

ε ←
∥∥Lxδ

α

∥∥;
K̄Λ ← KΛL−1;
stop ← false; k ← 0; x ← xδ

α; {starting vector}
while stop = false do

r ←
∥∥yδ − KΛx

∥∥2 /
(
1 + ‖x‖2

)
; c ← 1/

(
1 + ‖x‖2

)
;

W ← cK̄T
ΛK̄Λ − rcL−T L−1; h ← cK̄T

Λyδ;

set A =
[

−2W −W2 + ε−2hhT

In 0

]
;

compute the largest eigenvalue λ and the corresponding eigenvector
[

v
u

]
of A;

u ←
(
ε2/hT u

)
u; {scale u}

W ← W + λIn;
x ← L−1Wu;
{convergence test}
if k > 0 and

∣∣λ − λprv

∣∣ ≤ εlλ and
∥∥x − xprv

∥∥ ≤ εx ‖x‖ then

stop ← true;
else

λprv ← λ; xprv ← x;
k ← k + 1;

end if

end while

αL ← λ
(
1 + ‖x‖2

)
; αI ← −

∥∥yδ − KΛx
∥∥2 /

(
1 + ‖x‖2

)
;

compute Leq as in Algorithm 15

The quadratic eigenvalue problem (8.51) is equivalent to the linear eigenvalue problem[
−2W −W2 + 1

ε2 hhT

In 0

] [
v
u

]
= λ

[
v
u

]
,

and this can be solved by using for example, the routine DGEEV from the LAPACK library
(Anderson et al., 1995), or the routine DNAUPD from the ARPACK library (Maschhoff
and Sorensen, 1996). The DNAUPD routine is more efficient because it calculates only the
largest eigenvalue and the corresponding eigenvector by using Arnoldi’s method (Arnoldi,
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1951). The Algorithm 16 generates a sequence {(λk,xk)} by solving the quadratic eigen-
value problem (8.51) at each iteration step k. From the analysis of Sima et al. (2003) we
infer the following results:

(1) xk should correspond to the largest eigenvalue λk > 0 since only then the algorithm
converges;

(2) the orthogonal distance decreases at each iteration step;
(3) any limit point of the sequence {(λk,xk)} solves equation (8.48) .

The last result suggests that instead of requiring the convergence of the sequence {(λk,xk)}
we may check if equation (8.48) is satisfied within a prescribed tolerance at each iteration
step.

8.4 Regularized total least squares for nonlinear problems

As stated in Chapter 6, the solution of a nonlinear ill-posed problem by means of Tikhonov
regularization is equivalent to the solution of a sequence of ill-posed linearizations of the
forward model about the current iterate. Essentially, at the iteration step k, we solve the
linearized equation

Kαk�x = yδ
k, (8.52)

with �x = x − xa, Kαk = K
(
xδ

αk

)
, and

yδ
k = yδ − F

(
xδ

αk

)
+ Kαk

(
xδ

αk − xa

)
,

via Tikhonov regularization with the penalty term ‖L�x‖2 and the regularization param-
eter α. If �xδ

αk is the minimizer of the Tikhonov function

Flαk (�x) =
∥∥yδ

k − Kαk�x
∥∥2 + α ‖L�x‖2

, (8.53)

the new iterate is given by xδ
αk+1 = xa + �xδ

αk, and the constraint norm can be readily
computed as

ε =
∥∥L�xδ

αk

∥∥ . (8.54)

In the framework of the regularized TLS, we assume that Kαk is contaminated by
errors, and instead of minimizing (8.53) we solve the problem

min
[K̃ ỹ]∈Rm×(n+1)

∥∥[ Kαk yδ
k

]
−
[

K̃ ỹ
]∥∥2

F
(8.55)

subject to K̃�x = ỹ and ‖L�x‖ ≤ ε,

with ε being given by (8.54). The free parameter of the method is the Tikhonov regulariza-
tion parameter α, and the Algorithms 15 and 16 can be used to compute both the Tikhonov
solution and the regularized TLS solution. Although the numerical implementation of the
regularized TLS is very similar to that of Tikhonov regularization, the use of a step-length
procedure is problematic. In principle it can be applied for the objective function

Fα (x) =
1
2
‖fα (x)‖2

, fα (x) =
[

F (x) − yδ
√

αLeq (x − xa)

]
, (8.56)
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but solving (8.55) is not equivalent to minimizing (8.56) at the iteration step k because Leq

may not be the exact Cholesky factor of α̂IIn + α̂LLT L (cf. (8.47)).
In our numerical analysis, we consider the O3 retrieval test problem and compute

the Jacobian matrix Kss by assuming only the single scattering contribution (cf. (8.1)).
Furthermore, at each iteration step, we perturb this matrix as

[Kkα]ij = [Ksskα]ij + σΛεij [Ksskα]ij ,

where the elements εij are from a normal distribution with zero mean and unit variance.
Figure 8.1 shows the relative errors in the Tikhonov and the regularized TLS solutions
for four values of the standard deviation σΛ, namely 0, 0.01, 0.02 and 0.03. In all situa-
tions, the minimum solution error for the regularized TLS is clearly smaller than that for
Tikhonov regularization. Even in the case σΛ = 0 there is a solution improvement due
to the approximate Jacobian calculation. The plots also show that the minima of the TLS
errors are flat and this situation is beneficial for the inversion process.

In Figure 8.2 we plot the Tikhonov and the regularized TLS solutions, corresponding
to the minimizers of the error curves in Figure 8.1. In fact, the improvement of the TLS
error as compared to the Tikhonov error is due to the additional term αIIn in Eq. (8.31).

From the point of view of their accuracy, the regularized TLS algorithms solving the
eigenvalue problem (8.41) and the quadratic eigenvalue problem (8.51) are completely
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Fig. 8.1. Relative errors in the Tikhonov and the regularized TLS solutions as a function of the
exponent p, where α = σp and σ is the noise standard deviation. The results correspond to the O3

retrieval test problem and are computed with the regularized TLS algorithm solving the quadratic
eigenvalue problem (8.51). The numbers in parentheses indicate the minimum values of the relative
solution error.
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Fig. 8.2. Tikhonov (TR) and regularized TLS solutions corresponding to the minimizers of the error
curves in Figure 8.1.

equivalent. However, the computation time of the algorithm based on a quadratic eigen-
value problem is on average 6 times smaller (Table 8.1). The main drawback of the regular-
ized TLS is the extraordinarily large number of iteration steps (and so, computation time)
as compared to Tikhonov regularization. The decrease of the solution error by a factor of
4–5 is accompanied by an increase of the computation time by a factor of 7–8.

The large number of iteration steps is also a consequence of the fact that we do not
use a step-length procedure to guarantee a monotonic decrease of the residual norm (Fig-
ure 8.3). A step-length algorithm stops the iterative process too early (because the search
direction is not a descent direction for the Tikhonov function), and as a result, the solu-

Table 8.1. Computation time in min:ss format. The numbers in parentheses indicate the number
of iteration steps for Tikhonov regularization (TR) and the regularized TLS algorithms solving the
eigenvalue problem (8.41) (TLS-EP) and the quadratic eigenvalue problem (8.51) (TLS-QEP).

Standard deviation σΛ

Method 0 0.01 0.02 0.03

TR 0:14 (4) 0:15 (6) 0:18 (8) 0:24 (16)
TLS-QEP 1:24 (108) 1:37 (124) 2:23 (202) 2:58 (243)
TLS-EP 8:01 (108) 9:57 (124) 13:13 (202) 19:17 (243)
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Fig. 8.3. History of the residual norm in the case σΛ = 0.03. In the left panel the curves are plotted
for all iteration steps, while in the right panel, the y-axis is zoomed out.

tion errors are not sufficiently small. For example, in the case σΛ = 0.03, the regularized
TLS with a step-length algorithm terminates after 19 iteration steps with a solution error of
1.56 · 10−2, and if the step-length algorithm is turned off, it terminates after 243 iteration
steps with a solution error of 9.77 · 10−4.

The design of an efficient regularized TLS algorithm for nonlinear problems is far
from being complete. The selection of an optimal value of the regularization parameter
by an a posteriori method will dramatically increase the computational effort, while the
use of a variable regularization parameter computed for example, by using the L-curve
method, is also problematic. In our numerical simulations, the L-curve either does not
have a distinctive L-shape, or it predicts values of the regularization parameter that are too
small.

The regularized TLS has been applied to atmospheric trace gas profile retrievals by
Koner and Drummond (2008). In this work, the regularized TLS algorithm solving the
quadratic eigenvalue problem (8.51) is used for the automatic determination of the regu-
larization strength.



9

Two direct regularization methods

In this chapter we present two direct regularization methods, namely the Backus–Gilbert
method and the maximum entropy regularization. Although these approaches have been
designed for linear problems they can be applied to nonlinear problems as well.

9.1 Backus–Gilbert method

In the framework of Tikhonov regularization, the generalized inverse is not explicitly com-
puted and is merely an analysis tool. The goal of the so-called mollifier methods is the
computation of an approximate generalized inverse, which can then be used to obtain an
approximate solution. Mollifier methods have been introduced by Louis and Maass (1990)
in a continuous setting, and applied for discrete problems by Rieder and Schuster (2000).

To describe mollifier methods, we consider a semi-discrete Fredholm integral equation
of the first kind

yi =
∫ zmax

0

ki (z)x (z) dz, i = 1, . . . , m, (9.1)

and introduce a smoothing operator Aμ : X → X by the relation

(Aμx) (z0) =
∫ zmax

0

aμ (z0, z) x (z) dz. (9.2)

The parameter-dependent function aμ in (9.2) is called mollifier and it is chosen such that
Aμx → x as μ → 0 for all x ∈ X . Next, we assume that aμ can be expressed as

aμ (z0, z) =
m∑

i=1

ki (z) k†
μi (z0) , (9.3)

where k†
μi are referred to as the contribution functions. In the framework of mollifier meth-

ods we choose a mollifier āμ and compute the contribution functions k†
μi as the solution of



272 Two direct regularization methods Chap. 9

the constrained minimization problem

min
k†

μi

∫ zmax

0

[āμ (z0, z) − aμ (z0, z)]2 dz (9.4)

subject to
∫ zmax

0

aμ (z0, z) dz = 1,

with aμ being given by (9.3). The normalization condition in (9.4) just means that for
x ≡ 1, Aμx ≡ 1 (cf. (9.2)). Once the contribution functions are known, we use the
representation (cf. (9.1), (9.2) and (9.3))

(Aμx) (z0) =
m∑

i=1

[∫ zmax

0

ki (z) x (z) dz

]
k†

μi (z0) =
m∑

i=1

k†
μi (z0) yi, (9.5)

to compute the mollified solution of the linear equation (9.1) with noisy data yδ
i as

xδ
μ (z0) =

m∑
i=1

k†
μi (z0) yδ

i . (9.6)

Thus, in the framework of mollifier methods, instead of solving (9.1), we choose the mol-
lifier and solve (9.3) with respect to the contribution functions as in (9.4). Equation (9.3)
is also ill-posed as soon as equation (9.1) is, but the calculation of the mollified solution,
according to (9.4) and (9.6), is expected to be a stable process because there are no errors
in the data.

The transpose vector k†T
μ = [k†

μ1, . . . , k
†
μm] reproduces the row vector of the general-

ized inverse K†
μ corresponding to the altitude height z0, and aμ (z0, z) can be interpreted

as a continuous version of the averaging kernel matrix K†
μK.

The function aμ (z0, z) determines the resolution of the mollifier method at z0, and
for xδ

μ (z0) to be meaningful, aμ (z0, z) should peak around z0. To make aμ (z0, z) as
localized as possible about the point z0, we have to choose the mollifiers as smooth regular
functions approximating a Dirac distribution. In fact, the choice of mollifiers depends on
the peculiarities of the solution, and frequently used choices are (Louis and Maass, 1990)

āμ (z0, z) =
{

c,
0,

|z − z0| ≤ μ,
otherwise,

āμ (z0, z) = c sinc (μ (z − z0)) ,

āμ (z0, z) = c exp

(
− (z − z0)

2

2μ2

)
,

where the parameter μ controls the width of the δ-like functions and c is a normalization
constant.

Another variant of mollifier methods is the Backus–Gilbert method, also known as the
method of optimally localized averages (Backus and Gilbert, 1967, 1968, 1970). In this
approach, the averaging kernel function aμ (z0, z) is controlled by specifying a positive
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δ−1-like function dμ (z0, z) and then solving the constrained minimization problem

min
k†

μi

∫ zmax

0

dμ (z0, z) aμ (z0, z)2 dz (9.7)

subject to
∫ zmax

0

aμ (z0, z) dz = 1.

The function dμ can be chosen as

dμ (z0, z) =
∣∣∣∣z − z0

l

∣∣∣∣μ (9.8)

or as

dμ (z0, z) = 1 − exp
(
−1

2

∣∣∣∣z − z0

l

∣∣∣∣μ) , (9.9)

where l is the correlation length and as before, μ is a parameter which controls the width
of the δ−1-like function.

Although the Backus–Gilbert method has been designed for linear problems, its ex-
tension to nonlinear problems is straightforward. Let us consider the update formula

xδ
k+1 = xδ

k + pδ
k, k = 0, 1, . . . ,

where pδ
k is the Newton step and xδ

0 = xa. Further, let p†
k = x† − xδ

k be the exact step,
where x† is a solution of the nonlinear equation with exact data F (x) = y. It is quite
obvious that p†

k solves the equation (see Appendix H)

Kkp = rk, (9.10)

with
rk = y − F

(
xδ

k

)
− R

(
x†,xδ

k

)
(9.11)

and R
(
x†,xδ

k

)
being the linearization error. As rk is unknown, and only

rδ
k = yδ − F

(
xδ

k

)
, (9.12)

is available, we consider the equation

Kkp = rδ
k, (9.13)

and compute pδ
k as

pδ
k = K†

kr
δ
k. (9.14)

In (9.14), the generalized inverse K†
k is unknown and its row vectors will be deter-

mined one by one. Before doing this, we observe that the ith entry of pδ
k is given by[

pδ
k

]
i
= k†T

i rδ
k, (9.15)
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where k†T
i is the ith row vector of K†

k, partitioned as

K†
k =

⎡⎢⎣ k†T
1
...

k†T
n

⎤⎥⎦ . (9.16)

Now, defining as usual the averaging kernel matrix Ak by

Ak = K†
kKk, (9.17)

and assuming the partitions

Ak =

⎡⎢⎣ aT
1
...

aT
n

⎤⎥⎦ , Kk = [k1, . . . ,kn] ,

we obtain
[ai]j = k†T

i kj , i, j = 1, . . . , n. (9.18)

To compute the row vector k†T
i we proceed to formulate the constrained minimization

problem (9.7) in terms of the averaging kernel aT
i . For this purpose, we discretize the

altitude interval [0, zmax] in n layers and put [ai]j = aμ (zi, zj), where zi is the centerpoint
of the layer i. The objective function in (9.7) can then be expressed as (cf. (9.18))

s (zi) =
∫ zmax

0

dμ (zi, z) aμ (zi, z)2 dz

=
n∑

j=1

dμ (zi, zj) aμ (zi, zj)
2 �zj

=
n∑

j=1

dμ (zi, zj) [ai]
2
j �zj

= k†T
i Qkik

†
i ,

where �zi is the geometrical thickness of the layer i, and

Qki = Kk

[
diag (dμ (zi, zj)�zj)n×n

]
KT

k .

For the choice (9.8) with μ = 2, s (zi) represents the spread of the averaging kernel around
zi, and by minimizing the spread we intend to guarantee that the resolution of the retrieval
is as high as possible. The normalization condition in (9.7) takes the form (cf. (9.18))

1 =
∫ zmax

0

aμ (zi, z) dz =
n∑

j=1

aμ (zi, zj)�zj =
n∑

j=1

[ai]j �zj = kT k†
i ,

with

k =
n∑

j=1

kj�zj ,
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and the constrained minimization problem to be solved reads as

min
k†

k†T Qkik† (9.19)

subject to kT k† = 1.

Via the Lagrange multiplier formalism, the row vector k†T
i is determined by minimizing

the Lagrangian function

L
(
k†, λ

)
=

1
2
k†T Qkik† + λ

(
kT k† − 1

)
, (9.20)

and the result is
k†

i =
1

qT
i k

qi. (9.21)

with
qi = Q−1

ki k.

In practice it is necessary to add regularization when the problem (9.19) is solved
numerically, due to the ill-conditioning of the matrix Qki. Neglecting the linearization
error R

(
x†,xδ

k

)
, the Newton step pδ

k can be expressed as (cf. (9.10)–(9.12) and (9.14))

pδ
k = K†

kr
δ
k = K†

k (rk + δ) = Akp
†
k + K†

kδ,

and it is apparent that the spread accounts only for the smoothed component Akp
†
k of pδ

k.
The ith entry of the noise error vector eδ

nk = −K†
kδ is[

eδ
nk

]
i
= −k†T

i δ,

and for white noise with covariance Cδ = σ2Im, the expected value of the noise error is
given by

n (zi) = E
{[

eδ
nk

]2
i

}
= σ2

∥∥∥k†
i

∥∥∥2 . (9.22)

In this regard, we construct an objective function reflecting a trade-off between spread and
noise error, that is, we consider the constrained minimization problem

min
k†

(
k†T Qkik† + α

∥∥k†∥∥2) (9.23)

subject to kT k† = 1.

The objective function in (9.23) is as in (9.19), but with Qki + αIm in place of Qki; the
solution of (9.23) is then

k†
αi =

1
qT

αik
qαi, (9.24)

with
qαi = (Qki + αIm)−1 k. (9.25)
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Once the row vectors of the generalized inverse have been computed, the Backus–Gilbert
step is determined via (cf. (9.15))

[
pδ

kα

]
i
= k†T

αi r
δ
k =

qT
αir

δ
k

qT
αik

, i = 1, . . . , n. (9.26)

Let us discuss some practical implementation issues by following the analysis of
Hansen (1994). Defining the diagonal matrices

Di =

[
diag

(√
dμ (zi, zj)

)
n×n

]
, Z =

[
diag (�zj)n×n

]
,

and denoting by e the n-dimensional vector of all ones, i.e., e = [1, . . . , 1]T , we express
Qki as

Qki = KkDiZDiKT
k .

Setting
K̄ki = KkDiZ

1
2 , ei = D−1

i Z
1
2 e,

and noting that
k = KkZe = K̄kiei,

we write qαi as (cf. (9.25))

qαi =
(
K̄kiK̄T

ki + αIm

)−1
K̄kiei. (9.27)

Moreover, we have (cf. (9.24))

k†
αi =

1
qT

αiK̄kiei
qαi

and (cf. (9.26)) [
pδ

kα

]
i
=

qT
αir

δ
k

qT
αiK̄kiei

. (9.28)

Note that the singularity of D−1
i at j = i can be removed in practice by approximating

dμ (zi, zi) ≈ dμ (zi, zi + �z) ,

with �z sufficiently small, e.g., �z = 1 m. An inspection of (9.27) reveals that qαi

minimizes the Tikhonov function

Fα (q) =
∥∥ei − K̄T

kiq
∥∥2 + α ‖q‖2

.

Thus, if (σ̄j ; v̄j , ūj) is a singular system of K̄ki, we obtain the representation

qαi =
n∑

j=1

σ̄j

σ̄2
j + α

(
v̄T

j ei

)
ūj ,
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and the useful expansions

qT
αiK̄kiei =

n∑
j=1

σ̄2
j

σ̄2
j + α

(
v̄T

j ei

)2
, (9.29)

and

qT
αir

δ
k =

n∑
j=1

σ̄2
j

σ̄2
j + α

1
σ̄j

(
v̄T

j ei

) (
ūT

j rδ
k

)
. (9.30)

The Backus–Gilbert solution can be computed for any value of the regularization parameter
α, by inserting (9.29) and (9.30) into (9.28).

To reveal the regularizing effect of the Backus–Gilbert method we mention that the
characteristic features of the singular vectors of Kk carry over to the singular vectors of
K̄ki, and that the filter factors in (9.30) damp out the noisy components in the data as the
Tikhonov filter factors do.

To compute the regularization parameter we may impose that the noise error (9.22)
has a prescribed value, that is,

nα (zi) = εn [xa]
2
i , (9.31)

for some relative error level εn. Another selection criterion can be designed by taking into
account that the spread is an increasing function of α and that the noise error is a decreasing
function of α. Thus, we may follow the idea of the L-curve method, and compute the
regularization parameter which balances the spread and noise error. For any value of α,
the computable expressions of the quantities of interest are

sα (zi) =
1(

qT
αiK̄kiei

)2 n∑
j=1

(
σ̄2

j

σ̄2
j + α

v̄T
j ei

)2

,

nα (zi) =
σ2(

qT
αiK̄kiei

)2 n∑
j=1

(
σ̄j

σ̄2
j + α

v̄T
j ei

)2

,

and the regularization parameter, corresponding to the point on the curve at which the
tangent has the slope −1, is chosen as the minimizer of the function (Reginska, 1996),

β (α) = x (α) + y (α) , (9.32)

with x (α) = sα and y (α) = nα.
In Figure 9.1 we plot the solution errors for the O3 retrieval test problem. The δ−1-like

functions (9.8) and (9.9) yield similar accuracies but for different domains of variation of
the regularization parameter. The regularizing effect of the Backus–Gilbert method is also
apparent in this figure: by increasing the signal-to-noise ratio, the minimum solution error
as well as the optimal value of the regularization parameter (the minimizer) decrease.

In our numerical analysis we used a discrete version of the regularization parameter
choice methods (9.31) and (9.32), that is, for the set {αj} with αj = σ̄2

j , j = 1, . . . , n, we
chose the regularization parameter αj� as the smallest αj satisfying nαj� (zi) ≤ εn [xa]

2
i ,

or as the minimizer of β (αj). The plots in Figure 9.2 illustrate that the noise error is



278 Two direct regularization methods Chap. 9

10
−6

10
−5

10
−4

10
−3

10
−2

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

SNR = 100
SNR = 300

10
−8

10
−7

10
−6

10
−5

α

0

0.05

0.1

0.15

R
el

at
iv

e 
E

rr
or

Fig. 9.1. Relative solution errors for the Backus–Gilbert method with the quadratic function (9.8)
(left) and the exponential function (9.9) (right). The parameters of calculation are μ = 2 and l = 1.0
km for the quadratic function, and μ = 2 and l = 10.0 km for the exponential function.
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Fig. 9.2. Noise error curve (left) and L-curve (right) for a layer situated at 30.6 km.

a decreasing function of the regularization parameter and that the L-curve has a distinct
corner.

The solution errors given in Table 9.1 show that the noise error criterion yields suf-
ficiently accurate results. By contrast, the L-curve method predicts a value of the regu-
larization parameter which is considerably smaller than the optimal value. As a result,
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Table 9.1. Relative solution errors for the Backus–Gilbert method with the noise error (NE) criterion
and the L-curve (LC) method.

δ−1-like function SNR Method ε εopt

100 NE 6.65e-2 4.21e-2
quadratic LC 2.30e-1

300 NE 5.74e-2 2.51e-2
LC 1.42e-1

100 NE 5.88e-2 4.26e-2
exponential LC 3.15e-1

300 NE 5.41e-2 2.55e-2
LC 2.42e-1

the retrieved profiles are undersmoothed (Figure 9.3). Note that the failure of the L-curve
method is because we use a very rough discrete search procedure to minimize β.

In the framework of mollifier methods, the approximate generalized inverse is deter-
mined independently of the data, and therefore, mollifier methods can be viewed as being
equivalent to Tikhonov regularization with an a priori parameter choice method. In prac-
tice, the methods are computationally very expensive because for each layer, we have to
solve an optimization problem. However, for the operational usage of a near real-time soft-
ware processor, this drawback is only apparent; when the approximate generalized inverse

0 4e+12 8e+12
Number Density [molec/cm

3
]

10

20

30

40

50

A
lti

tu
de

 [k
m

]

0 4e+12 8e+12
Number Density [molec/cm

3
]

10

20

30

40

50

A
lti

tu
de

 [k
m

]

optimal
noise error criterion
L−curve method
exact profile

Fig. 9.3. Retrieved profiles computed with the Backus–Gilbert method using the quadratic function
(9.8) (left) and the exponential function (9.9) (right). The curves correspond to the optimal value of
the regularization parameter (the minimizer in Figure 9.1), the noise error criterion and the L-curve
method. The signal-to-noise ratio is SNR = 300 and the parameters of calculation are as in Figure 9.1.
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is (a priori) computed and stored, the processing of data is much faster than, for example,
Tikhonov regularization with an a posteriori parameter choice method, because it involves
only matrix-vector multiplications.

9.2 Maximum entropy regularization

First proposed as a general inference procedure by Jaynes (1957) on the basis of Shan-
non’s axiomatic characterization of the amount of information (Shannon, 1949; Shannon
and Weaver, 1949), the maximum entropy principle emerged as a successful regulariza-
tion technique due to the contributions of Frieden (1972), and Gull and Daniel (1978).
Although the conventional maximum entropy regularization operates with the concept of
absolute entropy (or Shannon entropy), we describe a formulation based on relative and
cross entropies, which allows a better exploitation of the available a priori information
(Engl et al., 2000).

To sketch the maximum entropy regularization we consider a discrete random variable
X with a finite number of realizations x1, . . . , xn, and suppose that we make some a priori
assumptions about the probability mass function of X ,

pa (x) =
{

pai, X = xi,
0, otherwise,

n∑
i=1

pai = 1.

By measurements we obtain additional information on X , which lets us change our a priori
probability mass function into the a posteriori probability mass function,

p (x) =
{

pi, X = xi,
0, otherwise,

n∑
i=1

pi = 1.

We recall that in statistical inversion theory, the a posteriori probability mass function rep-
resents the conditional probability density of X given the measurement data. The goal of
our analysis is the computation of the a posteriori probability mass function by considering
the new data.

In information theory, a natural distance measure from the probability mass function
p to the probability mass function pa is the Kullback–Leibler divergence defined by

D (p; pa) =
n∑

i=1

pi log
(

pi

pai

)
.

Essentially, the Kullback–Leibler divergence signifies the amount of useful information
about X , that can be obtained given the measurements. The negative of the Kullback–
Leibler divergence represents the relative entropy

Hr (p; pa) = −
n∑

i=1

pi log
(

pi

pai

)
.

Note that as opposed to the absolute entropy H (p) = −
∑n

i=1 pi log pi, the relative en-
tropy Hr is negative (cf. (9.35) below) and attains its global maximum Hrmax = 0 at
p = pa.
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To compute the a posteriori probability mass function, we minimize the Kullback–
Leibler divergence D (or maximize the relative entropy Hr) with the data and the normal-
ization condition

∑n
i=1 pi = 1 as constraints. If x is the state vector to be retrieved and xa

is the a priori state, we define the normalized vectors

x̄ =
1

n∑
i=1

[x]i

x, x̄a =
1

n∑
i=1

[xa]i

xa,

and under the assumptions [x]i > 0 and [xa]i > 0 for i = 1, . . . , n, we interpret the com-
ponents of these vectors as the probabilities pi and pai, respectively. As data we consider
the nonlinear model yδ = F (x) + δ, and impose the feasibility constraint∥∥yδ − F(x)

∥∥2 ≤ Δ2.

The constrained minimization problem then takes the form

min
x

Λr (x) =
n∑

i=1

[x̄]i log
(

[x̄]i
[x̄a]i

)
(9.33)

subject to
∥∥yδ − F (x)

∥∥2 ≤ Δ2.

By virtue of the Lagrange multiplier formalism, the problem (9.33) is equivalent to the
minimization of the Tikhonov function

Fα (x) =
1
2

∥∥yδ − F (x)
∥∥2 + αΛr (x) . (9.34)

Using the inequality

log z ≥ 1 − 1
z
, z > 0, (9.35)

we find that

Λr (x) ≥
n∑

i=1

([x̄]i − [x̄a]i) = 0.

Evidently, the global minimizer of Λr is attained for x̄ = x̄a, which reiterates the role of
xa as a priori information.

If x and xa are not normalized, the non-negative functions (Eggermont, 1993)

ΛB (x) =
n∑

i=1

[
log
(

[x]i
[xa]i

)
+

[xa]i
[x]i

− 1
]

and

Λc (x) =
n∑

i=1

[
[x]i
[xa]i

log
(

[x]i
[xa]i

)
− [x]i

[xa]i
+ 1
]

,

representing the negative of the Burg’s entropy and the cross entropy, respectively, can be
used as penalty terms. A Taylor expansion of the cross entropy about the a priori yields

Λc (x) =
1
2

(x − xa)
T

[
diag

(
1

[xa]
2
i

)
n×n

]
(x − xa) + O

(
‖x − xa‖3

)
,
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and we see that in the neighborhood of the a priori, the cross entropy regularization matrix
behaves like a diagonal matrix.

Ramos et al. (1999), following the work of Landl and Anderson (1996), developed
two entropic regularization techniques by using penalty functions which are similar to
the discrete difference operators. The first-order penalty function (corresponding to the
entropy of the vector of first-order differences of x) is defined by

Λ1 (x) =
n−1∑
i=1

(n − 1) d1i∑n−1
i=1 d1i

log

(
(n − 1) d1i∑n−1

i=1 d1i

)
,

where the d1i can be chosen as

d1i =
(
[x]i+1 − [x]i

)
+ (xmax − xmin) + ς, i = 1, . . . , n − 1, (9.36)

or as
d1i =

∣∣[x]i+1 − [x]i
∣∣+ ς, i = 1, . . . , n − 1. (9.37)

Here, ς is a small positive constant, while xmin and xmax are the lower and the upper
bounds of all entries in x, that is, and xmin ≤ [x]i ≤ xmax, i = 1, . . . , n. By (9.35), we
have

(n − 1) d1i

d1
log
(

(n − 1) d1i

d1

)
≥ (n − 1) d1i

d1
− 1,

with d1 =
∑n−1

i=1 d1i, and we infer that Λ1 ≥ 0. The minimum value of Λ1 is attained
when all d1i are the same, and the solutions to (9.34) approach the discrete approximation
of a first-order polynomial as α → ∞. The second-order penalty function (corresponding
to the entropy of the vector of second-order differences of x) is given by

Λ2 (x) =
n−1∑
i=2

(n − 2) d2i∑n−1
i=2 d2i

log

(
(n − 2) d2i∑n−1

i=2 d2i

)
,

with

d2i =
(
[x]i+1 − 2 [x]i + [x]i−1

)
+ 2 (xmax − xmin) + ς, i = 2, . . . , n − 1, (9.38)

or

d2i =
∣∣[x]i+1 − 2 [x]i + [x]i−1

∣∣+ ς, i = 2, . . . , n − 1. (9.39)

As before, Λ2 ≥ 0 attains its minimum when all d2i coincide, and the solutions to (9.34)
approach the discrete approximation of a second-order polynomial as α → ∞. In com-
parison, under similar conditions, Tikhonov regularization with the first- and second-order
difference regularization matrices will yield a constant solution and a straight line, respec-
tively.

The minimization of the Tikhonov function (9.34) can be performed by using the
Newton method with

gα (x) = ∇Fα (x) = K (x)T [F (x) − yδ
]
+ α∇Λ (x) ,
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and the Hessian approximation

Gα (x) = ∇2Fα (x) ≈ K (x)T K (x) + α∇2Λ (x) .

To be more concrete, at the iteration step k, the search direction pδ
αk is computed as the

solution of the Newton equation

Gα

(
xδ

αk

)
p = −gα

(
xδ

αk

)
,

the step length τk is determined by imposing the descent condition, and the new iterate is
taken as xδ

αk+1 = xδ
αk + τkpδ

αk.
In Figure 9.4 we plot the retrieved O3 profiles for the cross entropy regularization with

the penalty term Λc. Because in this case, the regularization matrix acts like a diagonal
matrix, the solution errors may become extremely large. Specifically, on a fine grid, the
number densities, with respect to which the retrieval is insensitive, are close to the a priori.
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Fig. 9.4. Retrieved O3 profiles computed with the cross entropy regularization on a retrieval grid
with 36 levels (left) and on a retrieval grid with 24 levels (right). The numbers in parentheses repre-
sent the values of the regularization parameter and of the relative solution error.

The plots in Figure 9.5 illustrate the solution errors for the first- and second-order
entropy regularization with the penalty terms Λ1 and Λ2, respectively. As for Tikhonov
regularization, the error curves possess a minimum for an optimal value of the regulariza-
tion parameter. The minima of the solution errors are 3.32 · 10−2 and 5.05 · 10−2 for the
first-order entropy regularization with the selection criteria (9.36) and (9.37), respectively,
and 3.79 · 10−2 and 2.73 · 10−2 for the second-order entropy regularization with the se-
lection criteria (9.38) and (9.39), respectively. Comparing both regularization methods we
observe that
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Fig. 9.5. Relative solution errors for the first-order entropy regularizations with the selection criteria
(9.36) (S1) and (9.37) (S2), and the second-order entropy regularization with the selection criteria
(9.38) (S1) and (9.39) (S2).

(1) the first- and second-order entropy regularizations yield results of comparable accura-
cies;

(2) the domains of variation of the regularization parameter with acceptable reconstruction
errors are larger for the selection criteria (9.37) and (9.39).

A pertinent analysis of the maximum entropy regularization can be found in Engl et
al. (2000), while for applications of the second-order entropy regularization in atmospheric
remote sensing we refer to Steinwagner et al. (2006).



A

Analysis of continuous ill-posed problems

In this appendix we analyze the ill-posedness of the Fredholm integral equation of the first
kind

y (ν) =
∫ zmax

0

k (ν, z)x (z) dz, ν ∈ [νmin, νmax] ,

written in operator form as
Kx = y. (A.1)

We begin our presentation by recalling some fundamental results of functional analysis.

A.1 Elements of functional analysis

Let X be a real vector space. The function 〈·, ·〉 : X × X → R is called a Hermitian form
if

(1) 〈αx + βy, z〉 = α 〈x, z〉 + β 〈y, z〉 (linearity),
(2) 〈x, y〉 = 〈y, x〉 (symmetry),

for all x, y, z ∈ X and all α, β ∈ R. A Hermitian form with the properties

(1) 〈x, x〉 ≥ 0 (positivity),
(2) 〈x, x〉 = 0 if and only if x = 0 (definiteness),

is called a scalar product. A vector space with a specified scalar product is called a pre-
Hilbert space. In terms of the scalar product in X , the norm ‖x‖ =

√
〈x, x〉 can be

introduced, after which X becomes a normed space.
Given a sequence {xn}n∈N of elements of a normed space X , we say that xn con-

verges to an element x of X , if ‖xn − x‖ → 0 as n → ∞. A sequence {xn}n∈N

of elements of a normed space X is called a Cauchy sequence, if ‖xn − xm‖ → 0 as
n, m → ∞. Any convergent sequence is a Cauchy sequence, but the converse result is not
true in general.

A subset U of a normed space X is called complete if any Cauchy sequence of ele-
ments of U converges to an element of U . A normed space is called a Banach space if it is
complete, and a pre-Hilbert space is called a Hilbert space if it is complete.
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A subset U of a normed space X is said to be closed if it contains all its limit points.
For any set U in a normed space X, the closure of U is the union of U with the set of all
limit points of U , and the closure of U is written as U . Obviously, U is contained in U ,
and U = U if U is closed. Note that complete sets are closed, and any closed subset of a
complete set is complete.

A subset U of a normed space X is said to be dense in X if, for any x ∈ X , there
exists a sequence {xn}n∈N in U such that ‖xn − x‖ → 0 as n → ∞. Any set U is dense
in its closure U , and U is the largest set in which U is dense (if U is dense in V , then
V ⊂ U ). If U is dense in a Hilbert space X , then U = X , and conversely, if U = X , then
U is dense in the Hilbert space X .

Two elements x and y of a Hilbert space X are called orthogonal if 〈x, y〉 = 0; we then
write x ⊥ y. If an element x is orthogonal to any element of a set U , we call it orthogonal
to the set U , and write x ⊥ U . Similarly, if any element of a set U is orthogonal to any
element of the set V , we call these sets orthogonal, and write U ⊥ V .

If the subset U of a Hilbert space X is dense in X (U = X), and x is orthogonal to
U , then x is the zero element of X , i.e., x = 0.

A set in a Hilbert space is called orthogonal, if any two elements of the set are orthog-
onal. If, moreover, the norm of any element is one, the set is called orthonormal.

U ⊂ X is a linear subspace of X if αx + βy ∈ U for any scalars α and β, and any
x, y ∈ U. Let X be a Hilbert space, U a complete linear subspace of X , and x an element
of X . Since, for any y ∈ U , we have ‖x − y‖ ≥ 0, we see that the set {‖x − y‖ /y ∈ U}
possesses an infimum. Setting d = inf {‖x − y‖ /y ∈ U} and taking into account that U is
complete, it can be shown that there exists a unique element z ∈ U such that d = ‖x − z‖.
The element z gives the best approximation of x among all elements of U . The operator
P : X → U mapping x onto its best approximation Px = z is a bounded linear operator
with the properties P 2 = P and 〈Px1, x2〉 = 〈x1, Px2〉 for any x1, x2 ∈ X . It is called
the orthogonal projection operator from X onto U , and Px is called the projection of x
onto U . Occasionally, we will write PU to denote the orthogonal projection operator onto
the complete linear subspace U . If U is a finite-dimensional linear subspace of the Hilbert
space X with the orthonormal basis {un}n∈N, then the orthogonal projection operator is
given by Px =

∑n
k=1 〈x, uk〉uk for x ∈ X .

The set of all elements orthogonal to a subset U of a Hilbert space X is called the
orthogonal complement of U , U⊥ = {x ∈ X/x ⊥ U}, and we note that U⊥ is a complete
linear subspace of X . If U is a complete linear subspace of the Hilbert space X and P
is the orthogonal projection operator from X onto U , then any element x ∈ X can be
uniquely decomposed as x = Px + x⊥, where x⊥ ∈ U⊥. This result is known as the
theorem of orthogonal projection. We also note the decomposition X = U ⊕ U⊥ for any
complete linear subspace U of X .

A system of elements {un}n∈N is called closed in the Hilbert space X if there are no
elements in X orthogonal to any element of the set except the zero element, i.e., 〈x, un〉 =
0 for n ∈ N implies x = 0. A system of elements {un}n∈N is called complete in the
Hilbert space X if the linear span of {un}n∈N,

span {un}n∈N
=

{
x =

N∑
n=1

αnun/ αn ∈ R, N ∈ N

}
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is dense in X , that is, span{un}n∈N
= X . The following result connects closedness and

completeness in Hilbert spaces: a system of elements {un}n∈N is complete in a Hilbert
space X if and only if it is closed in X .

A map K : X → Y between the Hilbert spaces X and Y is called linear if K trans-
forms linear combinations of elements into the same linear combination of their images,

K (α1x1 + . . . + αnxn) = α1K (x1) + . . . + αnK (xn) .

Linear maps are also called linear operators and in linear algebra we usually write argu-
ments without brackets, K (x) = Kx. The linearity of a map is a very strong condition
which is shown by the following equivalent statements:

(1) K is bounded, i.e., there exists a positive constant m such that

‖Kx‖ ≤ m ‖x‖ , x ∈ X;

(2) K is continuous.

Each number for which the above inequality holds is called a bound for K, and the induced
operator norm defined as

‖K‖ = sup
x∈X, x �=0

‖Kx‖
‖x‖ = sup

‖x‖=1

‖Kx‖

is the smallest bound for K. The range space of K, {Kx/x ∈ X}, will be denoted by
R (K) and the null space of K, {x ∈ X/Kx = 0}, will be denoted by N (K).

For any bounded linear operator K : X → Y acting from the Hilbert space X into
the Hilbert space Y , there exists a bounded linear operator K	 : Y → X called the adjoint
operator of K satisfying the requirement

〈Kx, y〉 = 〈x, K	y〉

for all x ∈ X and y ∈ Y . The following relations between the range and null spaces of K
and K	 hold:

R (K) = N (K	)⊥ , R (K)⊥ = N (K	)

and
R (K	) = N (K)⊥ , R (K	)⊥ = N (K) .

Note that K is a bijective operator, if and only if K	 is bijective.
R

n is a Hilbert space under the Euclidean inner product,

〈x,y〉 = xT y =
n∑

k=1

[x]k [y]k ,

and the induced norm is the Euclidean norm,

‖x‖ =

√√√√ n∑
k=1

[x]2k.
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The space of real-valued, square integrable functions on the interval [a, b], denoted by
L2([a, b]), is a Hilbert space under the inner product

〈x, y〉 =
∫ b

a

x(t)y(t) dt,

and the induced norm

‖x‖ =

√∫ b

a

x(t)2 dt.

The Fredholm integral operator of the first kind

(Kx) (s) =
∫ b

a

k(s, t)x(t) dt, s ∈ [a, b] , (A.2)

is bounded if

m =
∫ b

a

∫ b

a

k(s, t)2x(t) dsdt < ∞,

in which case, ‖K‖ ≤
√

m. The adjoint of K is given by

(K	y) (t) =
∫ b

a

k(s, t)y(s) ds, t ∈ [a, b] ,

and K is self-adjoint, if and only if k(s, t) = k(t, s).
An operator K : X → Y between the Hilbert spaces X and Y is called compact, if

and only if the image of any bounded set is a relatively compact set, i.e., if the closure of
its image is a compact subset of Y .

The analysis of the Fredholm integral equation of the first kind Kx = y with K as in
(A.2) relies on the following fundamental result: if k ∈ L2([a, b]× [a, b]), then the integral
operator K is bounded and compact.

A.2 Least squares solution and generalized inverse

Before introducing the concepts of least squares solution and generalized inverse for equa-
tion (A.1), we note that R (K) is closed if R (K) = R (K), but in general R (K) is
not closed, and so, R (K) ⊂ R (K). Similarly, R (K) is dense in Y if R (K) = Y ,
but we cannot expect that R (K) is dense in Y , and therefore, R (K) ⊂ Y . Thus,
R (K) ⊂ R (K) ⊂ Y , and, in view of the orthogonal projection theorem, we have
Y = R (K) ⊕R (K)⊥.

Theorem A.1. Let y ∈ Y . The following statements are equivalent:

(1) x ∈ X has the property PR(K)
y = Kx;

(2) x ∈ X is a least squares solution of equation (A.1), i.e.,

‖y − Kx‖ = inf {‖y − Kz‖ / z ∈ X} ;
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(3) x ∈ X solves the normal equation

K	Kx = K	y. (A.3)

Proof. To justify these equivalences, we will prove the implications: (1) ⇒ (2) ⇒ (3) ⇒
(1). Let x ∈ X be such that PR(K)

y = Kx. Since∥∥∥y − PR(K)
y
∥∥∥ = inf

{
‖y − y′‖ / y′ ∈ R (K)

}
≤ inf {‖y − y′‖ / y′ ∈ R (K)}
= inf {‖y − Kz‖ / z ∈ X} ,

we deduce that x is a least squares solution of (A.1). Let us consider now the quadratic
polynomial

F (λ) = ‖y − K (x + λz)‖2

for some z ∈ X . The derivative of F with respect to λ is given by

F ′ (λ) = 2λ ‖Kz‖2 − 2 〈z, K	 (y − Kx)〉 ,

and if x is a least squares solution of (A.1), then F ′ (0) = 0 for all z ∈ X . Thus, x
solves the normal equation (A.3). Finally, let x be a solution of the normal equation (A.3),
i.e., K	 (y − Kx) = 0. Then, we have y − Kx ∈ N (K	) = R (K)⊥, and further,
y − Kx ⊥ R (K). From y − PR(K)

y ⊥ R (K) and the uniqueness of the orthogonal
projection PR(K)

y, it follows that Kx = PR(K)
y, and the proof is finished. Note that

the name of equation (A.3) comes from the fact that the residual y − Kx is orthogonal
(normal) to R (K).

Theorem A.2. The normal equation (A.3) has solutions, if and only if y ∈ R (K) ⊕
R (K)⊥.

Proof. Let us assume that x is a solution of (A.3). From the decomposition y = Kx +
(y − Kx) and the result y − Kx ∈ R (K)⊥(which follows from the proof of implication
(3) ⇒ (1) in Theorem A.1) we infer that y ∈ R (K) ⊕ R (K)⊥. Conversely, let y ∈
R (K) ⊕R (K)⊥. Then, there exists x ∈ X and y⊥ ∈ R (K)⊥ such that y = Kx + y⊥.
Application of the projection operator PR(K)

and the result Kx ∈ R (K) ⊂ R (K), yield
PR(K)

y = Kx, whence, by Theorem A.1, we deduce that x solves the normal equation
(A.3).

Thus, if y /∈ R (K) ⊕ R (K)⊥, no solution of the normal equation (A.3) exists, or
equivalently, no least squares solution of equation (A.1) exists.

From the whole set of least squares solutions to equation (A.1), the element of minimal
norm is called the least squares minimum norm solution. Essentially, the least squares
minimum norm solution x is the least squares solution of equation (A.1) in N (K)⊥. If x0

is an arbitrary element in N (K), that is, Kx0 = 0, then K (x + x0) = PR(K)
y and by

Theorem A.1, x + x0 is a least squares solution of equation (A.1) in X . Therefore, the set
of all least squares solutions is x + N (K).
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The linear map K† : D
(
K†) → X with the domain D

(
K†) = R (K) ⊕ R (K)⊥,

which maps any y ∈ D
(
K†) into the least squares minimum norm solution x of equation

(A.1), that is, x = K†y, is called the generalized inverse or the Moore–Penrose inverse.
Note that K† is a linear operator which is defined on all Y if R (K) is closed (R (K) =
R (K)). .

Theorem A.3. The generalized inverse K† : D
(
K†) → X is bounded (continuous), if

and only if R (K) is closed.

Proof. First we assume that R (K) is closed, so that D
(
K†) = Y . Then, in view of the

closed graph theorem, K† is bounded. Conversely, let K† be bounded. Since D
(
K†) is

dense in Y , K† has a unique continuous extension K† to Y , such that KK† = PR(K)
.

Then, for y ∈ R (K), we have y = PR(K)
y = KK†y, which shows that y ∈ R (K).

Hence, R (K) ⊆ R (K), and R (K) is closed.

Thus, for a compact operator with a non-closed range space, the least squares mini-
mum norm solution x does not depend continuously on the data y.

Theorem A.4. The range space R (K) of a compact operator K is closed, if and only if
it is finite-dimensional.

Proof. If R (K) is closed, then it is complete (as a subset of the Hilbert space Y ), and by
Banach’s open mapping theorem, the operator K |N (K)⊥ : N (K)⊥ → R (K) is bijective
and continuously invertible. Then, the identity operator

I = K
(
K |N (K)⊥

)−1

: R (K) → R (K)

is compact, since the product of a compact and a continuous operator is compact. The
conclusion then follows by taking into account that the identity operator I : R (K) →
R (K) is compact, if and only if R (K) is of finite dimension.

The important conclusion is that if K is a compact operator acting between the infinite-
dimensional Hilbert spaces X and Y , and R (K) is infinite-dimensional (e.g., an integral
operator with a non-degenerate kernel), then R (K) is not closed, and as a result, the linear
equation (A.1) is ill-posed in the sense that the first and the third Hadamard conditions are
violated.

A.3 Singular value expansion of a compact operator

Any compact operator between Hilbert spaces admits a singular value expansion. For a
compact operator K : X → Y and its compact adjoint operator K	 : Y → X , the
non-negative square roots of the eigenvalues of the self-adjoint compact operator K	K :
X → X are called the singular values of K. If {σi}i∈N denotes the sequence of non-
zero singular values of K appearing in decreasing order, then there exist the orthonormal
sequences {vi}i∈N in X and {ui}i∈N in Y such that

Kvi = σiui, K	ui = σivi, i ∈ N.
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The countable set of triples {(σi; vi, ui)}i∈N is called the singular system of the compact
operator K. The right singular vectors {vi}i∈N form an orthonormal basis for N (K)⊥ ,

N (K)⊥ = span {vi}i∈N

while the left singular vectors {ui}i∈N form an orthonormal basis for R (K),

R (K) = span {ui}i∈N
.

If R (K) is infinite-dimensional, there holds

lim
i→∞

σi = 0,

and for any x ∈ X , we have the singular value expansions

x =
∞∑

i=1

〈x, vi〉 vi + PN (K)x, (A.4)

and

Kx =
∞∑

i=1

σi 〈x, vi〉ui.

A.4 Solvability and ill-posedness of the linear equation

In this section we analyze the solvability of the linear equation (A.1) by making use of
the singular value expansion of the compact operator K. To simplify our presentation, we
assume that K is injective, in which case, N (K) = ∅. If K is injective and x is a least
squares solution of equation (A.1), then from Kx = PR(K)

y , we deduce that x is unique.
Therefore, instead of using the appellation least squares minimum norm solution, x will be
simply called the least squares solution of equation (A.1).

Theorem A.5. The linear equation (A.1) is solvable, if and only if y ∈ R (K) and y
satisfies the Picard condition

∞∑
i=1

〈y, ui〉2

σ2
i

< ∞. (A.5)

In this case, the solution is given by

x =
∞∑

i=1

1
σi

〈y, ui〉 vi. (A.6)

Proof. Let x be the solution of equation (A.1), i.e., Kx = y for y ∈ Y , and let y0 ∈
N (K	). Then, from

〈y, y0〉 = 〈Kx, y0〉 = 〈x, K	y0〉 = 0,
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the necessity of condition y ∈ R (K) = N (K	)⊥ follows. As x is an element of X , x
possesses the representation (A.4) with the Fourier coefficients

〈x, vi〉 =
1
σi

〈x, K	ui〉 =
1
σi

〈Kx, ui〉 =
1
σi

〈y, ui〉 . (A.7)

Then, from
∞∑

i=1

1
σ2

i

〈y, ui〉2 =
∞∑

i=1

〈x, vi〉2 ≤ ‖x‖2
,

we see that the series (A.5) converges, and the necessity of the Picard condition is apparent.
Conversely, let y ∈ R (K) and assume that y satisfies the Picard condition. Then, by
considering the partial sums in (A.5), we deduce that the series

∑∞
i=1 (1/σi) 〈y, ui〉 vi

converges in the Hilbert space X . Let x be the sum of this series, that is, let x be given by
(A.6). Application of the operator K to x yields

Kx =
∞∑

i=1

〈y, ui〉ui = PR(K)
y. (A.8)

As y ∈ R (K), we have PR(K)
y = y, and we infer that Kx = y.

The Picard condition, which guarantees the solvability of equation (A.1), states that
the generalized Fourier coefficients | 〈y, ui〉 | must decay faster to zero than the singular
values σi. Essentially, for y ∈ R (K), the Picard condition implies that y ∈ R (K). As
stated by the next theorem, the converse result is also true.

Theorem A.6. If y ∈ R (K), then the Picard condition (A.5) is satisfied. As a result, the
solution of equation (A.1) exists and is given by (A.6).

Proof. Let y ∈ R (K). Then, there exists x ∈ X , such that Kx = y. By (A.4), we
may represent x in terms of the orthonormal basis {vi}i∈N as x =

∑∞
i=1 〈x, vi〉 vi. Taking

into account that (cf. (A.7)) 〈x, vi〉 = (1/σi) 〈y, ui〉, we find that x is given by (A.6).
Consequently, the series (A.5) converges, and the sum of this series is ‖x‖2.

In practice we are dealing with noisy data for which the requirement y ∈ R (K) is
not satisfied. In general, y ∈ Y , and since R (K) is not dense in Y , we have R (K) ⊂ Y .
Therefore, equation (A.1) is not solvable for arbitrary noisy data. However, by Theorem
A.2, we know that equation (A.1) has a least squares solution, if and only if y ∈ R (K) ⊕
R (K)⊥. The existence of the least squares solution to equation (A.1) is given by the
following theorem.

Theorem A.7. If y ∈ Y = R (K) ⊕ R (K)⊥ and y satisfies the Picard condition, then
the least squares solution of equation (A.1) exists and is given by (A.6).

Proof. Let y ∈ Y satisfy the Picard condition (A.5). We employ the same arguments as in
the proof of Theorem A.5: by virtue of (A.5), the series

∑∞
i=1 (1/σi) 〈y, ui〉 vi converges,

and if x is the sum of this series, from (A.8), we have Kx = PR(K)
y. Then, by Theorem

A.1, we conclude that x given by (A.6) is the least squares solution of equation (A.1).
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The next result is the analog of Theorem A.6.

Theorem A.8. If y ∈ R (K)⊕R (K)⊥ , then the Picard condition is satisfied. As a result,
the least squares solution of equation (A.1) exists and is given by (A.6).

Proof. Let us assume that y ∈ R (K) ⊕ R (K)⊥. Then, there exists x ∈ X and y⊥ ∈
R (K)⊥ such that y = Kx + y⊥. By (A.4), we can expand x =

∑∞
i=1 〈x, vi〉 vi. Taking

into account that (cf. (A.7)) 〈x, vi〉 = (1/σi)
〈
y − y⊥, ui

〉
and that

〈
y⊥, ui

〉
= 0 (since

y⊥ ∈ R (K)⊥ and ui ∈ R (K)), we deduce that x has the expansion (A.6) and that the
sum of the series (A.5) is ‖x‖2.

Turning now to the question of stability, we first observe that, in view of (A.6), the
series representation for the generalized inverse K† : D

(
K†)→ X is given by

K† =
∞∑

i=1

1
σi

〈·, ui〉 vi. (A.9)

To prevent inherent ambiguities, y ∈ R (K) will be called the exact data and in the pres-
ence of the noise δ, yδ = y + δ ∈ Y will be referred to as the noisy data. The following
conclusions arising from our above analysis can be drawn:

(1) If y ∈ R (K), then by Theorem A.6, the exact solution x† exists and is given by

x† = K†y =
∞∑

i=1

1
σi

〈y, ui〉 vi.

(2) If yδ ∈ Y does not satisfy the Picard condition, then by Theorem A.8, we have yδ /∈
R (K) ⊕ R (K)⊥, and further, by Theorem A.2, we deduce that the least squares
solution does not exist.

(3) If yδ ∈ Y satisfies the Picard condition, then by Theorem A.7, the least squares solu-
tion exists and is given by

xδ = K†yδ =
∞∑

i=1

1
σi

〈
yδ, ui

〉
vi.

The least squares solution xδ can be regarded as an approximation of the exact solution
x†, and the above series representations show how errors in the data affect the solution.
Assuming that yδ = y + Δui for some noise level Δ ∈ R, we obtain the least squares
solution xδ = x† + (Δ/σi) vi. Thus,

∥∥xδ − x†∥∥ = Δ/σi, and two situations can be
distinguished:

(1) If R (K) is of finite dimension, e.g., K is an integral operator with a degenerate kernel,
then there are finitely many singular values. In this case, the solution error Δ/σi

corresponding to a small singular value is bounded but may become unacceptably
large.

(2) If R (K) is infinite-dimensional, e.g., K is an integral operator with a non-degenerate
kernel, then limi→∞ σi = 0. As a result, Δ/σi → ∞ as i → ∞, and the solution
error increases without bound.



B

Standard-form transformation
for rectangular regularization matrices

In this appendix we discuss the transformation to the standard form when the rectangular
regularization matrix L ∈ R

p×n, p < n, has full row rank, i.e., rank (L) = p. The trans-
formation to the standard form depends on the type of the regularization method employed
(Hansen, 1998). For direct regularization methods, we need to compute the matrix K̄ of
the standard-form problem, while for iterative regularization methods we merely need to
compute matrix-vector products with K̄ and K̄T .

B.1 Explicit transformations

Explicit standard-form transformations can be derived by using the GSVD of the matrix
pair (K,L) or by means of orthogonal transformations.

Let us consider the GSVD of (K,L), i.e.,

K = UΣ1W−1, L = VΣ2W−1, (B.1)

with

Σ1 =

⎡⎣ diag (σi)p×p 0
0 In−p

0 0

⎤⎦ , Σ2 =
[

diag (μi)p×p 0
]
.

As L is of full row rank, the right inverse L† of L, satisfying LL† = Ip, can be constructed
as

L† = W

[
diag

(
1
μi

)
p×p

0

]
VT . (B.2)

The augmented residual vector

r =
[

K√
αL

]
x −

[
yδ

0

]
, (B.3)
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can be expressed in terms of a new variable x̄, defined through the transformation

x = L†x̄ + xδ
0, x̄ ∈ R

p,

as

r =
[

KL†
√

αIp

]
x̄ −

[
yδ − Kxδ

0

0

]
.

Here,

xδ
0 =

n∑
i=p+1

(
uT

i yδ
)
wi (B.4)

is the component of the solution in the null space of L, that is, Lxδ
0 = 0. In this regard, the

standard-form transformation takes the form

K̄ = KL†,

ȳδ = yδ − Kxδ
0,

and, if x̄δ
α is the solution of the standard-form problem, the back-transformation is given

by
xδ

α = L†x̄δ
α + xδ

0. (B.5)

A very efficient standard-form transformation relying on two QR factorizations has
been proposed by Elden (1977). First, we consider the QR factorization

LT = Q
[

R
0

]
=
[

Q1 Q2

] [ R
0

]
, (B.6)

where Q1 ∈ R
n×p, Q2 ∈ R

n×(n−p) and R ∈ R
p×p. Since Q is an orthogonal matrix, the

relation QT Q = In yields

QT
1 Q1 = Ip, QT

2 Q2 = In−p, QT
1 Q2 = 0,

and we infer that
LQ1 = RT , LQ2 = 0. (B.7)

Second, we make the change of variable

x = Q1x1 + Q2x2, x1 ∈ R
p, x2 ∈ R

n−p, (B.8)

and express the augmented residual vector (B.3) as (cf. (B.7))

r =
[

r1

r2

]
=
[

KQ1 KQ2√
αRT 0

] [
x1

x2

]
−
[

yδ

0

]
.

Third, we perform the QR factorization

KQ2 = S
[

T
0

]
=
[

S1 S2

] [ T
0

]
, (B.9)
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where S1 ∈ R
m×(n−p), S2 ∈ R

m×(m−n+p) and T ∈ R
(n−p)×(n−p). Multiplying the

equation
r1 = KQ1x1 + KQ2x2 − yδ

by ST , we obtain

ST r1 =
[

ST
1 r1

ST
2 r1

]
=
[

ST
1 KQ1 ST

1 KQ2

ST
2 KQ1 ST

2 KQ2

] [
x1

x2

]
−
[

ST
1 yδ

ST
2 yδ

]
.

Further, using the relation

ST KQ2 =
[

ST
1 KQ2

ST
2 KQ2

]
=
[

T
0

]
,

which yields ST
1 KQ2 = T and ST

2 KQ2 = 0, and setting

ST r1 =
[

r′1
r′′1

]
,

we find that[
ST r1

r2

]
=

⎡⎣ r′1
r′′1
r2

⎤⎦ =

⎡⎣ ST
1 KQ1 T

ST
2 KQ1 0√
αRT 0

⎤⎦[ x1

x2

]
−

⎡⎣ ST
1 yδ

ST
2 yδ

0

⎤⎦ ,

or explicitly, that

r′1 (x1,x2) = ST
1 KQ1x1 + Tx2 − ST

1 yδ,

r′′1 (x1) = ST
2 KQ1x1 − ST

2 yδ,

r2 (x1) =
√

αRT x1.

Now, as S is an orthogonal matrix, there holds

‖r1‖2 =
∥∥ST r1

∥∥2 = ‖r′1‖
2 + ‖r′′1‖

2
,

and the n-dimensional minimization problem

min
x1,x2

‖r (x1,x2)‖2 = ‖r′1 (x1,x2)‖2 + ‖r′′1 (x1)‖2 + ‖r2 (x1)‖2

can be split into the p-dimensional minimization problem

min
x1

(
‖r′′1 (x1)‖2 + ‖r2 (x1)‖2

)
(B.10)

for x1, and the equation
r′1 (x1,x2) = 0 (B.11)

for x2. The minimization problem (B.10) can be written as

min
x1

∥∥∥∥[ ST
2 KQ1√
αRT

]
x1 −

[
ST

2 yδ

0

]∥∥∥∥2 , (B.12)
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while the solution of equation (B.11) is

x2 = T−1ST
1

(
yδ − KQ1x1

)
. (B.13)

Finally, by the transformation

x1 = R−T x̄, x̄ ∈ R
p, (B.14)

the minimization problem (B.12) can be expressed in the standard form

min
x̄

∥∥∥∥[ K̄√
αIp

]
x̄ −

[
ȳδ

0

]∥∥∥∥2 ,

with
K̄ = ST

2 KQ1R−T

and

ȳδ = ST
2 yδ.

Combining (B.8), (B.13) and (B.14), we find that the back-transformation is given by

xδ
α = Q1R−T x̄δ

α + Q2T−1ST
1

(
yδ − KQ1R−T x̄δ

α

)
. (B.15)

Taking into account that L† = LT
(
LLT

)−1 = Q1R−T , and that (cf. the relation LQ2 =
0)

xδ
0 = Q2T−1ST

1

(
yδ − KQ1R−T x̄δ

α

)
∈ N (L) ,

we see that (B.15) is similar to (B.5). The main steps of this explicit transformation are
illustrated in Algorithm 17.

Algorithm 17. Explicit transformation for computing K̄, ȳδ and xδ
α. The solution of the

standard-form problem x̄δ
α is an input parameter of the algorithm.

compute the QR factorization LT =
[

Q1 Q2

] [ R
0

]
;

compute the QR factorization KQ2 =
[

S1 S2

] [ T
0

]
;

L† ← Q1R−T ; K̂ ← KL†;
{standard-form transformation}
K̄ ← ST

2 K̂;
ȳδ ← ST

2 yδ;
{back-transformation}
xδ

0 ← Q2T−1ST
1

(
yδ − K̂x̄δ

α

)
;

xδ
α ← L†x̄δ

α + xδ
0;
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B.2 Implicit transformations

For iterative methods, it is not practical to form K̄ and K̄T explicitly. Rather, we need
to compute xδ

0 and the matrix-vector products L†z and L†T z efficiently. The implicit
transformation presented in this section is due to Hanke and Hansen (1993) and can also
be found in Hansen (1998).

Let W be the nonsingular matrix of the GSVD (B.1). From Chapter 3 we know that

Kwi = σiui, Lwi = μivi, i = 1, . . . , p, (B.16)

and that
Kwi = ui, Lwi = 0, i = p + 1, . . . , n. (B.17)

Moreover, we have

wT
i KT Kwj = (Kwi)

T (Kwj) = uT
i uj = δij , i, j = p + 1, . . . , n, (B.18)

and

wT
i KT Kwj = (Kwi)

T (Kwj) = σiuT
i uj = 0, i = 1, . . . , p, j = p + 1, . . . , n.

(B.19)
The second equation in (B.17) shows that the set {wi}i=p+1,n is a basis of N (L), while
relation (B.18) shows that this set is KT K-orthogonal.

Let us consider the partition

W =
[

W1 W2

]
,

with W1 = [w1, . . . ,wp] ∈ R
n×p and W2 = [wp+1, . . . ,wn] ∈ R

n×(n−p), and let us
define the matrix

P = W2

(
KT KW2

)T
. (B.20)

Then, using the representation

KT KW2 =
[
KT Kwp+1, . . . ,KT Kwn

]
,

we find that, for any x ∈ R
n, there holds

Px =
(
xT KT Kwp+1

)
wp+1 + . . . +

(
xT KT Kwn

)
wn. (B.21)

Assuming the expansion

x = x1w1 + . . . + xpwp + xp+1wp+1 + . . . + xnwn,

for some xi ∈ R, i = 1, . . . , n, and using the orthogonality relations (B.18) and (B.19),
(B.21) yields

Px = xp+1wp+1 + . . . + xnwn;

this implies that
x − Px = x1w1 + . . . + xpwp. (B.22)
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In view of the identities Pwi = 0, i = 1, . . . , p, we see that P can be interpreted as an
(oblique) projection matrix with the range space R (P) = span {wp+1, . . . ,wn} and the
null space N (P) = span {w1, . . . ,wp}.

To compute the matrix-vector product L†z for z ∈ R
p, we look at the equation

Lx = z. (B.23)

By virtue of (B.2), it is apparent that L†z is the unique solution of (B.23) in the subspace
R
(
L†) = span {w1, . . . ,wp}. On the other hand, from (B.17), it follows that LW2 =

0, and further, by (B.20), that LP = 0. In this regard, if x̂ is an arbitrary solution to
(B.23), i.e., Lx̂ = z, then, x̂ − Px̂ also solves (B.23), and by (B.22), we have x̂ − Px̂ ∈
span {w1, . . . ,wp}. Thus, L†z can be identified with x̂ − Px̂, that is,

L†z = (In − P) x̂ =
[
In − W2

(
KT KW2

)T ]
x̂.

Partitioning L as

L =
[

L1 L2

]
, L1 ∈ R

p×p, L2 ∈ R
p×(n−p),

and supposing that L1 is nonsingular, we may choose x̂ as

x̂ =
[

L−1
1 z
0

]
.

In practice, the matrix
T =

(
KT KW2

)T
is computed at the beginning of the iterative process, and L†z is calculated as

L†z = (In − W2T) x̂.

In a similar manner, it can be shown that the computation of the matrix-vector product
L†T z for z ∈ R

n, involves the steps

ẑ =
(
In − TT WT

2

)
z

and
L†T z =

[
L−T

1 0
]
ẑ.

The null-space component of the solution is computed according to

xδ
0 = W2 (KW2)

T yδ. (B.24)

To prove this claim, we use the explicit form of (B.24),

xδ
0 =

(
yδT Kwp+1

)
wp+1 + . . . +

(
yδT Kwn

)
wn,

together with (B.17) to obtain (B.4).
From the above analysis it is apparent that the computation of L†z, L†T z and xδ

0

requires the knowledge of the matrix W2, whose column vectors form a KT K-orthogonal
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Algorithm 18. Implicit transformation for computing xδ
0, L†z and L†T z. The vector z is

an input parameter of the algorithm.

compute the QR factorization LT =
[

Q1 Q2

] [ R
0

]
;

compute the QR factorization KQ2 =
[

S1 S2

] [ T
0

]
;

W2 ← Q2T−1;
T ←

(
KT KW2

)T
;

partition L =
[

L1 L2

]
with L1 ∈ R

p×p;
partition T =

[
T1 T2

]
with T1 ∈ R

(n−p)×p;
{null-space component of the solution solution}
xδ

0 ← W2 (KW2)
T yδ;

{matrix-vector product zL = L†z, with z ∈ R
p}

z ← L−1
1 z;

zL ←
[

z
0

]
− W2T1z;

{matrix-vector product zLT = L†T z, with z =
[

z1

z2

]
∈ R

n, z1 ∈ R
p}

z1 ← z1 − TT
1 WT

2 z;
zLT ← L−T

1 z1;

basis for N (L). To compute W2, we first consider the QR factorization of LT as in (B.6).
Evidently, by (B.7), we have LQ2 = 0. Then, we perform a QR factorization of the matrix
KQ2 as in (B.9), and choose

W2 = Q2T−1.

To justify this choice, we use the relation KQ2T−1 = S1 to obtain KW2 = S1; this
yields

(KW2)
T (KW2) = ST

1 S1 = In−p.

Thus, the column vectors of W2 are KT K-orthogonal, and since LW2 = LQ2T−1 = 0,
they span N (L). The implicit transformation is outlined in Algorithm 18.

The iterative algorithms presented in Chapter 5 assume a square and nonsingular reg-
ularization matrix L. If L is a rectangular matrix, then these algorithms should be modified
as follows: the initialization step xδ = 0 has to be replaced by xδ = xδ

0, the matrix L−1

by L†, and the matrix L−T by L†T .



C

A general direct regularization method
for linear problems

In this appendix we analyze a general regularization method for linear problems by par-
ticularizing the results established in Engl et al. (2000) and Rieder (2003) to a discrete
setting. This approach includes Tikhonov regularization and its iterated version as particu-
lar regularization methods.

To simplify our analysis we assume regularization in standard form, characterized by
the choice L = In. The regularization parameter choice methods to be discussed comprise
an a priori selection criterion, the discrepancy principle, the generalized discrepancy prin-
ciple, and two error-free parameter choice methods, namely the residual curve method and
its generalized version.

C.1 Basic assumptions

Let us assume that the regularized solution possesses the general-form representation

xδ
α =

n∑
i=1

fα

(
σ2

i

) 1
σi

(
uT

i yδ
)
vi, (C.1)

where (σi;vi,ui) is a singular system of the matrix K and the filter function fα (λ) is
positive and continuous on the interval [0, σ2

1 ]. The regularized solution for the exact data
vector y and the exact solution are then given by

xα =
n∑

i=1

fα

(
σ2

i

) 1
σi

(
uT

i y
)
vi (C.2)

and

x† =
n∑

i=1

1
σi

(
uT

i y
)
vi, (C.3)

respectively. Defining the parameter-dependent family of auxiliary functions gα by

gα (λ) =
1
λ

fα (λ) , (C.4)
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and the residual functions rα by

rα (λ) = 1 − fα (λ) = 1 − λgα (λ) , (C.5)

we express the smoothing and noise errors as

esα = x† − xα =
n∑

i=1

rα

(
σ2

i

) 1
σi

(
uT

i y
)
vi (C.6)

and

eδ
nα = xα − xδ

α = −
n∑

i=1

[
σ2

i gα

(
σ2

i

)] 1
σi

(
uT

i δ
)
vi, (C.7)

respectively, and the residual vector as

rδ
α = yδ − Kxδ

α =
n∑

i=1

rα

(
σ2

i

) (
uT

i yδ
)
ui +

m∑
i=n+1

(
uT

i yδ
)
ui. (C.8)

The following assumptions are adopted in our analysis:

0 ≤ gα (λ) ≤ c1

α
, (C.9)

0 ≤ rα (λ) ≤ 1, (C.10)
0 ≤ λμrα (λ) ≤ c2α

μ, 0 < μ ≤ μ0, (C.11)

for all α > 0, λ ∈ [0, σ2
1 ], and suitable positive constants c1 and c2. The index μ0 is

the qualification of the regularization method and represents the largest value of μ such
that the inequality (C.11) holds. The function gα (λ) is supposed to be right continuous at
λ = 0; setting gα (0) = limλ→0 gα (λ), gα (λ) extends to a continuous function in [0, σ2

1 ].
Furthermore, we assume the normalization condition

rα (0) = 1, (C.12)

and the asymptotic result

lim
α→0

gα (λ) =
1
λ

, λ ∈
(
0, σ2

1

]
. (C.13)

In this context, (C.5) and (C.10) yield

0 ≤ λgα (λ) ≤ 1, (C.14)

while (C.5) and (C.13) give

lim
α→0

rα (λ) = 0, λ ∈
(
0, σ2

1

]
. (C.15)
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C.2 Source condition

Let K be the discrete version of a smoothing (integral) operator K. Assuming that x0 is
the discrete version of a k-times differentiable function x0, then y1 = Kx0 is the discrete
version of a (k + 1)-times differentiable function y1. Moreover, as the transpose matrix
KT is the discrete version of the adjoint operator K	, which is also a smoothing operator,
x1 = KT y1 is the discrete version of a (k + 2)-times differentiable function x1. Thus,
we get ‘smoother and smoother’ vectors by repeating applications of K and KT to some
vector z ∈ R

n corresponding to a continuous function only. In this regard, the assumption
that the solution x† is smooth is equivalent to the validity of the so-called source condition

x† =
(
KT K

)μ
z, (C.16)

where μ > 0 and z ∈ R
n . Note that under the common assumption that K is injective, we

have R
n = N (K)⊥; if this is not the case, we take z ∈ N (K)⊥. In terms of the singular

system of the matrix K, there holds

KT K = V
[
diag

(
σ2

i

)
n×n

]
VT ,

and the source condition (C.16) reads as

x† =
n∑

i=1

σ2μ
i

(
vT

i z
)
vi =

n∑
i=1

σ2μ
i ζivi, (C.17)

where we have set ζi = vT
i z. As {vi}i=1,n is an orthonormal basis of R

n, x† can be
expressed as

x† =
n∑

i=1

ξivi, (C.18)

with ξi = vT
i x†. By (C.17) and (C.18), it is apparent that the source condition (C.16) is

equivalent to the following assumption on the Fourier coefficients of the exact solution:

ξi = σ2μ
i ζi, i = 1, . . . , n. (C.19)

For the source condition (C.19), the Fourier coefficients of the exact data vector can
be expressed as

uT
i y =

(
KT ui

)T
x† =

n∑
j=1

ξj

(
KT ui

)T
vj = ξiσi = σ2μ+1

i ζi, i = 1, . . . , n, (C.20)

and this result will be frequently used in the sequel.
Some basic definitions are now in order. The rate of convergence of a regularization

parameter choice method is the rate with which
∥∥eδ

α

∥∥→ 0 as Δ → 0. Since∥∥eδ
α

∥∥ ≤ ‖esα‖ +
∥∥eδ

nα

∥∥ , (C.21)
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we see that the convergence rate is given by the individual convergence rates of the smooth-
ing and noise errors. A regularization parameter choice method is called of optimal order
if, for the source condition (C.19), the estimate∥∥eδ

α

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, Δ → 0, (C.22)

with ‖z‖2 =
∑n

i=1 ζ2
i , holds true.

C.3 Error estimates

A bound for the noise error can be expressed in terms of the noise level Δ and the regular-
ization parameter α .

Proposition C.1. Let assumptions (C.9) and (C.10) be satisfied. Then there holds∥∥eδ
nα

∥∥ ≤ cn
Δ√
α

, (C.23)

with a suitable constant cn > 0.

Proof. By (C.7), the norm of the noise error vector is given by

∥∥eδ
nα

∥∥2 =
n∑

i=1

σ2
i g2

α

(
σ2

i

) (
uT

i δ
)2

.

Using (C.9) and (C.14), we find that

σ2
i g2

α

(
σ2

i

)
≤ c1

α
,

and, because of ‖δ‖ ≤ Δ, we deduce that (C.23) holds with cn =
√

c1.

For the smoothing error (C.6), we use the source condition (C.20) to derive the expan-
sion

‖esα‖2 =
n∑

i=1

r2
α

(
σ2

i

)
σ4μ

i ζ2
i . (C.24)

This representation will be particularized for each regularization parameter choice method
under examination.

C.4 A priori parameter choice method

Convergence of the general regularization method can be established for an a priori param-
eter choice rule without any assumption on the smoothness of x†.

Proposition C.2. Let assumptions (C.9), (C.10) and (C.13) hold. For the a priori param-
eter choice rule α = Δp with 0 < p < 2, we have

∥∥eδ
α

∥∥→ 0 as Δ → 0.
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Proof. From (C.6) and (C.15), it is apparent that ‖esα‖ approaches 0 as α approaches 0.
For α = Δp with p > 0, we see that α → 0 as Δ → 0, and so, ‖esα‖ → 0 as Δ → 0.
On the other hand, the noise error estimate (C.23) yields

∥∥eδ
nα

∥∥2 ≤ c2
nΔ

2−p, and, since
0 < p < 2, we deduce that

∥∥eδ
nα

∥∥ → 0 as Δ → 0. Thus,
∥∥eδ

α

∥∥ approaches 0 as Δ
approaches 0 .

Turning now to the convergence rate we state the following result:

Theorem C.3. Let assumptions (C.9)–(C.11) hold and let x† satisfy the source condition
(C.19). For the a priori parameter choice method

α =
(

Δ
‖z‖

) 2
2μ+1

, (C.25)

we have the error estimate∥∥eδ
α

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0.

Proof. Assumption (C.11) yields

σ4μ
i r2

α

(
σ2

i

)
≤ c2

2α
2μ, 0 < μ ≤ μ0,

and the smoothing error (C.24) can be bounded as

‖esα‖2 ≤ c2
2α

2μ ‖z‖2
. (C.26)

By virtue of (C.23) and (C.26), the a priori parameter choice rule (C.25) gives

∥∥eδ
nα

∥∥2 ≤ c2
n

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1

and

‖esα‖2 ≤ c2
2

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 ,

respectively. Thus, (C.25) is of optimal order for 0 < μ ≤ μ0.

C.5 Discrepancy principle

Let us define the matrix Hdpα by

Hdpαw =
m∑

i=1

rα

(
σ2

i

) (
uT

i w
)
ui, w ∈ R

m. (C.27)

In the above relation, we have assumed that σi = 0 for i = n + 1, . . . , m, so that the
normalization condition (C.12) yields rα

(
σ2

i

)
= 1 for i = n + 1, . . . , m. The following

properties of Hdpα are apparent:



308 A general direct regularization method for linear problems Annex C

(1)
∥∥Hdpα

∥∥ ≤ 1 , that is, under assumption (C.10), there holds

∥∥Hdpαw
∥∥2 =

m∑
i=1

r2
α

(
σ2

i

) (
uT

i w
)2 ≤

m∑
i=1

(
uT

i w
)2

= ‖w‖2 (C.28)

for all w ∈ R
m;

(2) for the exact data vector y, the orthogonality relations uT
i y = 0, i = n + 1, . . . , m,

together with the source condition (C.20) yield

∥∥Hdpαy
∥∥2 =

n∑
i=1

r2
α

(
σ2

i

) (
uT

i y
)2

=
n∑

i=1

r2
α

(
σ2

i

)
σ4μ+2

i ζ2
i , (C.29)

whence, using the estimate (cf. (C.11))

0 ≤
(
σ2

i

)μ+ 1
2 rα

(
σ2

i

)
≤ c2α

μ+ 1
2 , 0 < μ ≤ μ0 −

1
2
,

we infer that ∥∥Hdpαy
∥∥2 ≤ c2

2α
2μ+1 ‖z‖2

, 0 < μ ≤ μ0 −
1
2
. (C.30)

The representation

∥∥Hdpαyδ
∥∥2 =

n∑
i=1

r2
α

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

shows that (cf. (C.8)), ∥∥Hdpαyδ
∥∥2 =

∥∥rδ
α

∥∥2 , (C.31)

and the regularization parameter defined via the discrepancy principle is the solution of the
equation ∥∥Hdpαyδ

∥∥2 = τΔ2, (C.32)

with τ > 1. Setting Rδ (α) =
∥∥Hdpαyδ

∥∥2 and using (C.15), we obtain

lim
α→0

Rδ (α) =
m∑

i=n+1

(
uT

i yδ
)2

=
∥∥PR(K)⊥yδ

∥∥2 .

For the exact data vector y ∈ R (K), we have PR(K)⊥y = 0, and so,∥∥PR(K)⊥yδ
∥∥ =

∥∥PR(K)⊥
(
yδ − y

)∥∥ ≤ ∥∥yδ − y
∥∥ ≤ Δ.

Thus, limα→0 Rδ (α) ≤ Δ2 , and we infer that, for τ > 1, there exists α0 such that
Rδ (α) < τΔ2 for all 0 < α ≤ α0. The above arguments allow us to introduce a practical
version of the discrepancy principle as follows: if {αk} is a geometric sequence of regu-
larization parameters with ratio q < 1, i.e., αk+1 = qαk, the regularization parameter αk�

of the discrepancy principle is chosen as∥∥Hdpαk� yδ
∥∥2 ≤ τΔ2 <

∥∥Hdpαk
yδ
∥∥2 , 0 ≤ k < k	. (C.33)
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Theorem C.4. Let assumptions (C.9)–(C.13) hold and let x† satisfy the source condition
(C.19). If the regularization parameter is chosen according to the discrepancy principle
(C.33) with τ > 1, we have the error estimate∥∥eδ

αk�

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
.

Proof. In the first step of our proof, we derive an estimate for the smoothing error (C.24),
while in the second step, we combine this estimate with the noise error estimate (C.23) to
derive a convergence rate result.

(a) Applying the Hölder inequality to the right-hand side of (C.24), that is,

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

bq
i

) 1
q

,
1
p

+
1
q

= 1, ai, bi ≥ 0, (C.34)

with
p =

2μ + 1
2μ

, q = 2μ + 1,

and

ai =
[
r2
α

(
σ2

i

)] 2μ
2μ+1

(
σ2

i

)2μ (
ζ2
i

) 2μ
2μ+1 ,

bi =
[
r2
α

(
σ2

i

)] 1
2μ+1

(
ζ2
i

) 1
2μ+1 ,

and taking into account that (cf. (C.10))

n∑
i=1

bq
i =

n∑
i=1

r2
α

(
σ2

i

)
ζ2
i ≤ ‖z‖2

,

we obtain

‖esα‖2 ≤
(
‖z‖2

) 1
2μ+1

[
n∑

i=1

r2
α

(
σ2

i

)
σ4μ+2

i ζ2
i

] 2μ
2μ+1

, (C.35)

and further (cf. (C.29))

‖esα‖2 ≤
(
‖z‖2

) 1
2μ+1

(∥∥Hdpαy
∥∥2) 2μ

2μ+1
. (C.36)

The smoothing error estimate (C.36) together with the result (cf. (C.28) and (C.33))∥∥Hdpαk� y
∥∥ ≤ ∥∥Hdpαk� yδ

∥∥+
∥∥Hdpαk∗ δ

∥∥ ≤ (1 +
√

τ
)
Δ

yields

‖esαk� ‖2 ≤ c2
sdp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , (C.37)

with
csdp =

(
1 +

√
τ
) 2μ

2μ+1 .
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(b) To estimate the noise error, we first look for a lower bound for αk� . From (C.33)
and the boundedness of

∥∥Hdpα

∥∥, we deduce that, for k = 0, . . . , k	 − 1,

√
τΔ <

∥∥Hdpαk
yδ
∥∥ ≤ ∥∥Hdpαk

y
∥∥+ Δ,

and therefore ∥∥Hdpαk
y
∥∥ >

(√
τ − 1

)
Δ, τ > 1. (C.38)

On the other hand, from (C.30), there holds

∥∥Hdpαk�−1y
∥∥ ≤ c2α

μ+ 1
2

k�−1 ‖z‖ = c2

(
αk�

q

)μ+ 1
2

‖z‖ , 0 < μ ≤ μ0 −
1
2
,

and we obtain the bound

αk� > q

(√
τ − 1
c2

) 2
2μ+1

(
Δ
‖z‖

) 2
2μ+1

. (C.39)

Hence, the noise error estimate (C.23) gives

∥∥eδ
nαk�

∥∥2 < c2
ndp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , (C.40)

with

cndp =
cn√
q

(
c2√
τ − 1

) 1
2μ+1

.

By (C.37) and (C.40), it is readily seen that the convergence rate is optimal for 0 < μ ≤
μ0 − 1/2.

C.6 Generalized discrepancy principle

The analysis of the generalized discrepancy principle in a general setting requires an appro-
priate formulation of this selection criterion. For this purpose, we introduce a parameter-
dependent family of positive, continuous functions sα, satisfying

c1s

(
α

α + λ

)2μ0+1

≤ sα (λ) ≤ c2s

(
α

α + λ

)2μ0+1

(C.41)

for α > 0, λ ∈ [0, σ2
1 ] and c1s, c2s > 0, and assume the normalization condition

sα (0) = 1. (C.42)

Next, we define the matrix Hgdpα through the relation

Hgdpαw =
m∑

i=1

s
1
2
α

(
σ2

i

) (
uT

i w
)
ui, w ∈ R

m.
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As before, the convention σi = 0 for i = n + 1, . . . , m, together with the normalization
condition (C.42) gives sα

(
σ2

i

)
= 1 for i = n+1, . . . , m. In this context, the regularization

parameter defined via the generalized discrepancy principle is the solution of the equation∥∥Hgdpαyδ
∥∥2 = τΔ2,

with τ sufficiently large and

∥∥Hgdpαyδ
∥∥2 =

n∑
i=1

sα

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

. (C.43)

The following properties of Hgdpα can be evidenced:

(1)
∥∥Hgdpα

∥∥ ≤ √
c2s, that is, under assumption (C.41), there holds

∥∥Hgdpαw
∥∥2 =

m∑
i=1

sα

(
σ2

i

) (
uT

i w
)2 ≤ c2s

m∑
i=1

(
uT

i w
)2

= c2s ‖w‖2

for all w ∈ R
m;

(2) for the exact data vector y, the source condition (C.20) implies that

∥∥Hgdpαy
∥∥2 =

n∑
i=1

sα

(
σ2

i

) (
uT

i y
)2

=
n∑

i=1

sα

(
σ2

i

)
σ4μ+2

i ζ2
i ; (C.44)

whence, taking into account that, for 0 < μ ≤ μ0,

λ2μ+1sα (λ) ≤ c2sλ
2μ+1

(
α

α + λ

)2μ0+1

≤ c2sλ
2μ+1

(
α

α + λ

)2μ+1

= c2sα
2μ+1

(
λ

α + λ

)2μ+1

≤ c2sα
2μ+1,

we obtain ∥∥Hgdpαy
∥∥2 ≤ c2sα

2μ+1 ‖z‖2
, 0 < μ ≤ μ0. (C.45)

A bound for the smoothing error (C.24) can be derived in terms of the functions sα. To do
this, we first observe that, for α ≤ λ, assumption (C.11) yields

rα (λ) ≤ c2

(α

λ

)μ0

≤ c2

(
2α

α + λ

)μ0

,

while, for α > λ, assumption (C.10) gives

rα (λ) ≤ 1 <

(
2α

α + λ

)μ0

.
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Consequently, rα can be bounded as

rα (λ) ≤ 2μ0 max (1, c2)
(

α

α + λ

)μ0

.

Then, because of (cf. (C.41)),(
α

α + λ

)μ0

≤
[
sα (λ)
c1s

] μ0
2μ0+1

,

we find that
0 ≤ rα (λ) ≤ cr [sα (λ)]

μ0
2μ0+1 , (C.46)

with
cr = 2μ0c

− μ0
2μ0+1

1s max (1, c2) .

Thus, by (C.46), the smoothing error (C.24) can be estimated as

‖esα‖2 ≤ c2
r

n∑
i=1

[
sα

(
σ2

i

)] 2μ0
2μ0+1 σ4μ

i ζ2
i . (C.47)

As for the discrepancy principle, we use the following practical selection criterion: if
{αk} is a geometric sequence of regularization parameters with ratio q < 1, the regular-
ization parameter αk� of the generalized discrepancy principle is chosen as∥∥Hgdpαk� yδ

∥∥2 ≤ τΔ2 <
∥∥Hgdpαk

yδ
∥∥2 , 0 ≤ k < k	. (C.48)

Theorem C.5. Let the assumptions of Theorem C.4 hold. If the regularization parameter
is chosen according to the generalized discrepancy principle (C.48) with τ > c2s, we have
the error estimate ∥∥eδ

αk�

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0.

Proof. We estimate the smoothing error bound (C.47) by using the Hölder inequality
(C.34), with

p =
2μ + 1

2μ
, q = 2μ + 1,

and

ai =
[
sα

(
σ2

i

)] 2μ
2μ+1

(
σ2

i

)2μ (
ζ2
i

) 2μ
2μ+1 ,

bi =
[
sα

(
σ2

i

)] 2μ0
2μ0+1− 2μ

2μ+1
(
ζ2
i

) 1
2μ+1 .

Since
n∑

i=1

bq
i =

n∑
i=1

[
sα

(
σ2

i

)] 2(μ0−μ)
2μ0+1 ζ2

i ,

we use the result (cf. (C.41))

[
sα

(
σ2

i

)] 2(μ0−μ)
2μ0+1 ≤ c

2(μ0−μ)
2μ0+1

2s

(
α

α + σ2
i

)2(μ0−μ)

≤ c
2(μ0−μ)
2μ0+1

2s , 0 < μ ≤ μ0,
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to obtain

‖esα‖2 ≤ c2
rc

2(μ0−μ)
(2μ0+1)(2μ+1)

2s

(
‖z‖2

) 1
2μ+1

[
n∑

i=1

sα

(
σ2

i

)
σ4μ+2

i ζ2
i

] 2μ
2μ+1

. (C.49)

Further, by (C.44), we see that

‖esα‖2 ≤ c2
rc

2(μ0−μ)
(2μ0+1)(2μ+1)

2s

(
‖z‖2

) 1
2μ+1

(∥∥Hgdpαy
∥∥2) 2μ

2μ+1
, (C.50)

and employing the same arguments as in the derivation of (C.37), we find that

‖esαk� ‖2 ≤ c2
sgdp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , (C.51)

with

csgdp = crc
μ0−μ

(2μ0+1)(2μ+1)

2s

(√
c2s +

√
τ
) 2μ

2μ+1 .

Taking into account the similarity between (C.37) and (C.51), and (C.30) and (C.45), and
moreover, using the boundedness of

∥∥Hgdpα

∥∥ and the assumption τ > c2s, we conclude
that the generalized discrepancy principle is of optimal order for 0 < μ ≤ μ0.

C.7 Error-free parameter choice methods

The following discrete version of the residual curve method is considered in the present
analysis: if {αk} is a geometric sequence of regularization parameters with ratio q < 1,
the regularization parameter αk̄ of the residual curve method is computed as

αk̄ = arg min
k

Ψδ
rc (αk) , (C.52)

where Ψδ
rc is the error indicator function

Ψδ
rc (α) =

1
α

∥∥rδ
α

∥∥2 =
1
α

∥∥Hdpαyδ
∥∥2 . (C.53)

To simplify our analysis we assume that Ψδ
rc has a unique minimizer αk̄ > 0 and that∥∥∥rδ

αk̄

∥∥∥ �= 0.

Theorem C.6. Let the assumptions of Theorem C.4 hold. If the regularization parameter
αk̄ is chosen according to the parameter choice rule (C.52) and the residual

∥∥∥rδ
αk̄

∥∥∥ is of
the order of the noise level Δ, we have the error estimate∥∥∥eδ

αk̄

∥∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
.

Proof. The identity
∥∥Hdpαyδ

∥∥ =
∥∥rδ

α

∥∥ together with the boundedness of
∥∥Hdpα

∥∥ yields∥∥Hdpαk̄
y
∥∥ =

∥∥Hdpαk̄

(
yδ − δ

)∥∥ ≤ ∥∥∥rδ
αk̄

∥∥∥+ Δ ≤ 2 max
(∥∥∥rδ

αk̄

∥∥∥ , Δ
)

,
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and (C.36) gives

∥∥esαk̄

∥∥2 ≤ c2
src

(
‖z‖2

) 1
2μ+1

[
max

(∥∥∥rδ
αk̄

∥∥∥2 , Δ2

)] 2μ
2μ+1

, (C.54)

with
csrc = 2

2μ
2μ+1 .

By (C.53), the noise error estimate (C.23) can be written as∥∥∥eδ
nαk̄

∥∥∥2 ≤ c2
n

Δ2

αk̄

= c2
n

Δ2∥∥∥rδ
αk̄

∥∥∥2 Ψδ
rc (αk̄) . (C.55)

As αk̄ is the minimizer of Ψδ
rc, we deduce that Ψδ

rc (αk̄) ≤ Ψδ
rc (αk) for all k. From the set

{αk} we consider the regularization parameter αk� chosen according to the discrepancy
principle, ∥∥rδ

αk�

∥∥2 ≤ τΔ2 <
∥∥rδ

αk

∥∥2 , 0 ≤ k < k	,

with τ > 1. Then, we have

Ψδ
rc (αk̄) ≤ Ψδ

rc (αk�) =
1

αk�

∥∥rδ
αk�

∥∥2 ≤ τ
Δ2

αk�

,

and, by (C.39), which is valid for 0 < μ ≤ μ0 − 1/2, we obtain

Ψδ
rc (αk̄) < c2

Ψ

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1

≤ c2
Ψ

(
‖z‖2

) 1
2μ+1

[
max

(∥∥∥rδ
αk̄

∥∥∥2 , Δ2

)] 2μ
2μ+1

, (C.56)

with

cΨ =
√

τ

q

(
c2√
τ − 1

) 1
2μ+1

.

Consequently, (C.55) and (C.56) yield

∥∥∥eδ
nαk̄

∥∥∥2 < c2
nc

2
Ψ

Δ2∥∥∥rδ
αk̄

∥∥∥2
(
‖z‖2

) 1
2μ+1

[
max

(∥∥∥rδ
αk̄

∥∥∥2 , Δ2

)] 2μ
2μ+1

, (C.57)

whence, by (C.54) and (C.57), we infer that

∥∥∥eδ
αk̄

∥∥∥ < Crc

⎛⎝1 +
Δ∥∥∥rδ
αk̄

∥∥∥
⎞⎠ ‖z‖

1
2μ+1

[
max

(∥∥∥rδ
αk̄

∥∥∥ , Δ
)] 2μ

2μ+1
, (C.58)

with Crc = max (cncΨ, csrc). The error bound (C.58) shows that the regularization pa-
rameter choice method (C.52) is of optimal order for 0 < μ ≤ μ0 − 1/2, provided that∥∥∥rδ

αk̄

∥∥∥ has the order of Δ.
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To understand the significance of the error estimate (C.58), we assume that

C1Δ1+β ≤
∥∥∥rδ

αk̄

∥∥∥ ≤ C2Δ1+β , β ≥ 0, 0 < C1 < C2,

whenever Δ → 0. For Δ sufficiently small, there holds∥∥∥eδ
αk̄

∥∥∥ <
2Crc

C1
‖z‖

1
2μ+1 Δ

2μ
2μ+1−β , (C.59)

and three situations can be distinguished:

(1) if β = 0, the convergence rate is optimal;
(2) if β < 2μ/ (2μ + 1), the convergence rate is suboptimal;
(3) if β ≥ 2μ/ (2μ + 1), the bound in (C.59) does not converge to zero, and as a result,

xδ
αk̄

may diverge.

Therefore, if
∥∥∥rδ

αk̄

∥∥∥ is much smaller than Δ, the regularized solution xδ
αk̄

should be disre-
garded.

A similar error-free parameter choice method can be defined by considering the error
indicator function

Ψδ
grc (α) =

1
α

∥∥Hgdpαyδ
∥∥2 ,

and by selecting the regularization parameter as the minimizer of Ψδ
grc. The analysis is

analog to the treatment of the previous selection criterion; we obtain∥∥∥eδ
αk̄

∥∥∥ < Cgrc

(
1 +

Δ∥∥Hgdpαk̄
yδ
∥∥
)
‖z‖

1
2μ+1

[
max

(∥∥Hgdpαk̄
yδ
∥∥ , Δ

)] 2μ
2μ+1 , (C.60)

and this regularization parameter choice method is of optimal order for 0 < μ ≤ μ0,
provided that

∥∥Hgdpαk̄
yδ
∥∥ has the order of Δ.

We conclude our analysis by verifying the assumptions of the general regularization
method for Tikhonov regularization and its iterated version.

In the case of Tikhonov regularization, we have

fα (λ) =
λ

λ + α
, gα (λ) =

1
λ + α

, rα (λ) =
α

λ + α
.

It is readily seen that assumption (C.9) is satisfied with c1 = 1 and that assumptions (C.10),
(C.12) and (C.13) are also fulfilled. In order to determine the qualification of Tikhonov
regularization, we have to estimate the function

hμ (λ) = λμ α

λ + α
.

For μ < 1, the function attains its maximum at

λ =
αμ

1 − μ
,

and there holds
hμ (λ) ≤ μμ (1 − μ)1−μ

αμ.
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For μ ≥ 1, the function is strictly increasing and attains its largest value in the interval
[0, σ2

1 ] at λ = σ2
1 . In this case,

hμ (λ) ≤ σ2μ
1

α

σ2
1 + α

< σ
2(μ−1)
1 α,

and we obtain

0 ≤ λμrα (λ) ≤
{

c2α
μ, μ < 1,

c′2α, μ ≥ 1,

with
c2 = μμ (1 − μ)1−μ

,

and c′2 = σ
2(μ−1)
1 . Thus, assumption (C.11) holds for μ ∈ (0, 1] and the qualification

of Tikhonov regularization is μ0 = 1. The parameter-dependent family of functions sα,
appearing in the framework of the generalized discrepancy principle, is chosen as

sα (λ) =
(

α

α + λ

)3

,

in which case (see Chapter 3),

∥∥Hgdpαyδ
∥∥2 =

m∑
i=1

(
α

σ2
i + α

)3 (
uT

i yδ
)2

=
∥∥rδ

α

∥∥2 − rδT
α Âαrδ

α.

The p-times iterated Tikhonov regularization is characterized by

fα (λ) = 1 −
(

α

λ + α

)p

, gα (λ) =
1
λ

[
1 −
(

α

λ + α

)p]
, rα (λ) =

(
α

λ + α

)p

.

To check assumption (C.9), we use the inequality

1 −
(

1
x + 1

)p

≤ px, x ≥ 0,

and find that

gα (λ) =
1
λ

[
1 −
(

α

λ + α

)p]
≤ p

α
.

Hence, (C.9) is satisfied with c1 = p, and it is apparent that assumptions (C.10), (C.12)
and (C.13) are also fulfilled. To determine the qualification of the method, we consider the
function

hμ (λ) = λμ

(
α

λ + α

)p

.

As in the case of the ordinary Tikhonov regularization, for μ < p, the function attains its
maximum at

λ =
αμ

p − μ
,

and we have

hμ (λ) ≤
(

μ

p

)μ(
1 − μ

p

)p−μ

αμ,
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while, for μ ≥ p, the function is strictly increasing and we have

hμ (λ) ≤ σ2μ
1

(
α

σ2
1 + α

)p

< σ
2(μ−p)
1 αp.

We obtain

0 ≤ λμrα (λ) ≤
{

c2α
μ, μ < p,

c′2α
p, μ ≥ p,

with

c2 =
(

μ

p

)μ(
1 − μ

p

)p−μ

and c′2 = σ
2(μ−p)
1 . Thus, assumption (C.11) holds for μ ∈ (0, p] and the qualification of

the p-times iterated Tikhonov regularization is μ0 = p.
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Chi-square distribution

The random variable X is Chi-square distributed with m degrees of freedom and we write
X ∼ χ2 (m) if its probability density is given by (Tarantola, 2005)

pm (x) =
1

2
m
2 Γ
(

m
2

)xm
2 −1e−

x
2 .

Here, Γ is the Gamma function having closed-form values at the half-integers. Sometimes
the random variable X is denoted by χ2, but this notation may lead to ambiguity. The
mean of the distribution is equal to the number of degrees of freedom and the variance is
equal to two times the number of degrees of freedom. For large values of m, the Chi-square
probability density can be roughly approximated near its maximum by a Gaussian density
with mean m and standard deviation

√
2m.

The next theorem, also known as the Fisher–Cochran theorem, states under which
conditions quadratic forms for normal variables are Chi-square distributed.

Theorem D.1. Let X be an n-dimensional Gaussian random vector with zero mean and
unit covariance, i.e., X ∼ N (0, In), and let P be an n × n matrix. A necessary and
sufficient condition that the random variable X = XT PX has a Chi-square distribution
is that P is idempotent, that is, P2 = P. In this case we have X ∼ χ2 (n) with n =
trace (P) = rank (P).

A direct consequence of this theorem is the following result:

Proposition D.2. Let X be an n-dimensional Gaussian random vector with zero mean and
covariance C. Then, the random variable X = XT C−1X is Chi-square distributed with
n degrees of freedom.

Proof. Making the change of variable Z = C−1/2X, we express X as X = ZT Z. From
E{ZZT } = In we obtain Z ∼ N (0, In), and we conclude that X ∼ χ2 (n).

The Fisher–Cochran theorem is a basic tool for analyzing the statistics of regularized
and unregularized least squares problems. First, we prove that the a posteriori potential
from statistical inversion theory (or the Tikhonov function from classical regularization
theory) is Chi-square distributed.
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Theorem D.3. Let
Yδ = KX + Δ

be a stochastic data model with X ∼ N (0,Cx) and Δ ∼ N (0,Cδ), and let X̂ = ĜY
δ

be
the maximum a posteriori estimator of X with

Ĝ =
(
KT C−1

δ K + C−1
x

)−1
KT C−1

δ = CxKT
(
Cδ + KCxKT

)−1
.

Then, the random variable

V̂ =
(
Yδ − KX̂

)T

C−1
δ

(
Yδ − KX̂

)
+ X̂T C−1

x X̂

is Chi-square distributed with m degrees of freedom.

Proof. The identity
ĜT
(
KT C−1

δ K + C−1
x

)
= C−1

δ K

yields
ĜT C−1

x = C−1
δ K − ĜT KT C−1

δ K,

and further,

ĜT C−1
x Ĝ = C−1

δ KĜ − ĜT KT C−1
δ KĜ = C−1

δ Â − ÂT C−1
δ Â, (D.1)

with Â = KĜ being the influence matrix. Using (D.1) and the representation

Yδ − KX̂ =
(
Im − Â

)
Yδ, (D.2)

we obtain

V̂ = YδT
(
Im − Â

)T

C−1
δ

(
Im − Â

)
Yδ + YδT

(
C−1

δ Â − ÂT C−1
δ Â

)
Yδ

= YδT
(
C−1

δ − ÂT C−1
δ

)
Yδ.

In terms of the symmetric influence matrix Âδ , defined through the relation

Âδ = C− 1
2

δ ÂC
1
2
δ = C− 1

2
δ K

(
KT C−1

δ K + C−1
x

)−1
KT C− 1

2
δ ,

V̂ can be expressed as

V̂ = YδT C− 1
2

δ

(
Im − Âδ

)
C− 1

2
δ Yδ.

Then, setting

Wδ =
(
Im − Âδ

) 1
2
C− 1

2
δ Yδ,

V̂ takes the form
V̂ = WδT Wδ.
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Assuming that the covariance matrix of the true state is adequately described by the a priori
covariance matrix, we have (cf. (4.24))

E
{
Yδ
}

= 0, E
{
YδYδT

}
= KCxKT + Cδ; (D.3)

this result together with the identity

Im − Âδ = C
1
2
δ

(
KCxKT + Cδ

)−1
C

1
2
δ

gives E{Wδ} = 0 and

E
{
WδWδT

}
=
(
Im − Âδ

) 1
2
C− 1

2
δ

(
KCxKT + Cδ

)
C− 1

2
δ

(
Im − Âδ

) 1
2

= Im.

Thus, Wδ ∼ N (0, Im), and by Theorem D.1 the conclusion readily follows.

Each term appearing in the expression of the a posteriori potential has a special char-
acterization as stated by the following theorem:

Theorem D.4. Let the assumptions of Theorem D.3 hold. Then, the random variable

R̂ =
(
Yδ − KX̂

)T

C−1
r

(
Yδ − KX̂

)
,

with
Cr = Cδ

(
KCxKT + Cδ

)−1
Cδ, (D.4)

is Chi-square distributed with m degrees of freedom, and the random variable

Ĉ = X̂T C−1bx X̂,

with
Cbx = CxKT C−1

δ K
(
KT C−1

δ K + C−1
x

)−1
, (D.5)

is Chi-square distributed with n degrees of freedom.

Proof. By (D.2), (D.3), and the identity (cf. (4.28))

Im − Â = Cδ

(
KCxKT + Cδ

)−1
,

we get E{Yδ − KX̂} = 0 and

Cr = E
{(

Yδ − KX̂
)(

Yδ − KX̂
)T
}

=
(
Im − Â

) (
KCxKT + Cδ

) (
Im − Â

)T

= Cδ

(
KCxKT + Cδ

)−1
Cδ.

Thus, Yδ − KX̂ ∼ N (0,Cr). On the other hand, we have X̂ ∼ N (0,Cbx), since by
virtue of (4.25), Cbx , as given by (D.5), is the covariance matrix of the estimator X̂. The
assertions now follow from Proposition D.2.
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The next result is due to Rao (1973) and is also known as the first fundamental the-
orem of least squares theory. Although this result deals with unregularized least squares
problems, it is of significant importance in statistics.

Theorem D.5. Let
yδ = Kx + δ

be a semi-stochastic data model with δ ∼ N
(
0, σ2Im

)
, and let xδ be the least squares

solution of the equation Kx = yδ . Then, the random variable

rδ =
1
σ2

∥∥yδ − Kxδ
∥∥2

is Chi-square distributed with m − n degrees of freedom.

Proof. The least squares solution of the equation Kx = yδ is given by

xδ = K†yδ,

with
K† =

(
KT K

)−1
KT = VΣ†UT

and
Σ† =

[
diag

(
1
σi

)
n×n

0
]

for K = UΣVT . The influence matrix possesses the factorization

Â = KK† = UΣΣ†UT = U
[

In 0
0 0

]
UT ,

and we have

Im − Â = U
[

0 0
0 Im−n

]
UT . (D.6)

For the exact data vector y ∈ R (K) = span{ui}i=1,n, (D.6) gives(
Im − Â

)
y = 0,

and the noisy data vector representation yδ = y + δ then yields

yδ − Kxδ =
(
Im − Â

)
yδ =

(
Im − Â

)
δ.

By the change of variable δn = (1/σ)δ, we obtain

rδ = δT
n Pδn,

with

P =
(
Im − Â

)T (
Im − Â

)
= U

[
0 0
0 Im−n

]
UT . (D.7)

From (D.7) we deduce that P is idempotent (P2 = P), and that trace (P) = m−n. Since
δn ∼ N (0, Im), it follows immediately that rδ ∼ χ2 (m − n).
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A general iterative regularization method
for linear problems

In this appendix we introduce a general framework for analyzing iterative regularization
methods. The treatment is similar to the analysis of direct regularization methods but is
restricted to the application of the discrepancy principle as stopping rule. This determin-
istic analysis can be applied only to linear regularization methods, such as the Landweber
iteration and semi-iterative methods, while for nonlinear regularization methods, e.g., the
conjugate gradient method, a different technique will be used.

E.1 Linear regularization methods

In a general framework of iterative methods, the regularized solutions are given by (cf.
(C.1) and (C.2))

xδ
k =

n∑
i=1

fk

(
σ2

i

) 1
σi

(
uT

i yδ
)
vi, (E.1)

xk =
n∑

i=1

fk

(
σ2

i

) 1
σi

(
uT

i y
)
vi, (E.2)

and the smoothing and noise errors by (cf. (C.6) and (C.7))

esk = x† − xk =
n∑

i=1

rk

(
σ2

i

) 1
σi

(
uT

i y
)
vi, (E.3)

eδ
nk = xk − xδ

k = −
n∑

i=1

[
σ2

i gk

(
σ2

i

)] 1
σi

(
uT

i δ
)
vi. (E.4)

In (E.1)–(E.4), fk (λ) are the filter polynomials, gk (λ) = fk (λ) /λ are the iteration poly-
nomials, and rk (λ) = 1 − fk (λ) are the residual polynomials. To simplify our analysis
we consider iterative regularization methods with xδ

0 = 0.
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In addition to the assumption ‖K‖ ≤ 1, we suppose that (compare to (C.9)–(C.11))

0 ≤ gk (λ) ≤ c1k, (E.5)
|rk (λ)| ≤ 1, rk (0) = 1, (E.6)

λμ |rk (λ)| ≤ c2

kμ
, 0 < μ ≤ μ0, (E.7)

for all λ ∈ [0, 1], k ≥ 1, and c1, c2 > 0. By virtue of (E.6), the iteration polynomials are
bounded as

0 ≤ λgk (λ) ≤ 2. (E.8)

The analysis will be carried out under the standard source condition

ξi = σ2μ
i ζi, i = 1, . . . , n, (E.9)

where ξi are the Fourier coefficients of the exact solution x†, i.e., x† =
∑n

i=1 ξivi, and ζi

are the Fourier coefficients of a vector z ∈ R
n of reasonable norm, i.e., z =

∑n
i=1 ζivi.

As for direct regularization methods, we define the matrix Hdpk through the relation

Hdpkw =
m∑

i=1

rk

(
σ2

i

) (
uT

i w
)
ui, w ∈ R

m, (E.10)

with the convention rk

(
σ2

i

)
= 1 for i = n + 1, . . . , m. Note that the norm of the matrix

Hdpk is smaller than or equal to one, i.e.,∥∥Hdpkw
∥∥2 ≤ ‖w‖2

, w ∈ R
m,

and, for the exact data vector y, the ‘residual’

∥∥Hdpky
∥∥2 =

n∑
i=1

r2
k

(
σ2

i

)
σ4μ+2

i ζ2
i (E.11)

can be estimated as (cf. (E.7))

∥∥Hdpky
∥∥2 ≤ c2

2

‖z‖2

k2μ+1
, 0 < μ ≤ μ0 −

1
2
. (E.12)

In view of the identity ∥∥Hdpkyδ
∥∥2 =

∥∥rδ
k

∥∥2 , (E.13)

the discrepancy principle for iterative methods can be formulated as follows: the iteration
is terminated for k = k	 when∥∥Hdpk�yδ

∥∥2 ≤ τΔ2 <
∥∥Hdpkyδ

∥∥2 , 0 < k < k	. (E.14)

Theorem E.1. Let assumptions (E.5)–(E.7) hold and let x† satisfy the source condition
(E.9). If k	 is the stopping index of the discrepancy principle (E.14) with τ > 1, we have
the error estimate ∥∥eδ

k�

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
.
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Proof. First, we derive estimates for the noise and smoothing errors. By (E.5) and (E.8),
we have

σ2
i g2

k

(
σ2

i

)
≤ 2c1k,

and a noise error estimate is then given by (compare to (C.23))∥∥eδ
nk

∥∥2 ≤ c2
nkΔ2, (E.15)

with cn =
√

2c1. Employing the same arguments as in Theorem C.4, we find that, for the
source condition (E.9), there holds (compare to (C.37))

‖esk�‖2 ≤ c2
sdp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , (E.16)

with
csdp =

(
1 +

√
τ
) 2μ

2μ+1 .

A bound for the termination index can be derived by using the inequality (cf. (C.38)),∥∥Hdpk�−1y
∥∥ >

(√
τ − 1

)
Δ, τ > 1, (E.17)

and the estimate (cf. (E.12))

∥∥Hdpk�−1y
∥∥ ≤ c2

‖z‖
(k	 − 1)μ+ 1

2
, 0 < μ ≤ μ0 −

1
2
. (E.18)

From (E.17) and (E.18), we obtain

k	 − 1 <

(
c2√
τ − 1

) 2
2μ+1

(
‖z‖
Δ

) 2
2μ+1

and since
k	

2
≤ k	 − 1, k	 > 1,

it follows that

k	 < 2
(

c2√
τ − 1

) 2
2μ+1

(
‖z‖
Δ

) 2
2μ+1

.

The noise error estimate (E.15) then becomes

∥∥eδ
nk�

∥∥2 < c2
ndp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , (E.19)

with

cndp =
√

2cn

(
c2√
τ − 1

) 1
2μ+1

.

In view of (E.16) and (E.19), we deduce that the discrepancy principle is an order-optimal
stopping rule for 0 < μ ≤ μ0 − 1/2.
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We proceed now to check assumptions (E.5)–(E.7) for the Landweber iteration and
semi-iterative methods.

The Landweber iteration is characterized by

fk (λ) = 1 − (1 − λ)k
, gk (λ) =

1
λ

[
1 − (1 − λ)k

]
, rk (λ) = (1 − λ)k

.

Taking into account that, for λ ∈ [0, 1],

gk (λ) =
1 − (1 − λ)k

λ
=

k−1∑
l=0

(1 − λ)l ≤ k,

we see that assumption (E.5) holds with c1 = 1. To determine the qualification of the
Landweber iteration, we use the inequality

(1 − λ)k ≤ e−λk, 0 ≤ λ ≤ 1,

and find that

λμrk (λ) = λμ (1 − λ)k ≤ λμe−λk =
sμe−s

kμ
,

with μ > 0, k ≥ 1 and s = λk ≥ 0. The function

hμ (s) = sμe−s

attains its maximum at s = μ, and we obtain

0 ≤ λμrk (λ) ≤ μμe−μ

kμ
.

Thus, assumption (E.7) holds for μ > 0, with

c2 = μμe−μ,

and we say that the qualification of the Landweber iteration is μ0 = ∞.
In all semi-iterative methods which can be found in the literature, assumption (E.6)

holds, that is, we have |rk (λ) | ≤ 1 for all λ ∈ [0, 1], and rk (0) = 1. The residual polyno-
mials have additional properties which lead to a reduced set of assumptions as compared
to (E.5)–(E.7). One such property is the Markov inequality,

|r′k (λ)| ≤ 2k2, 0 ≤ λ ≤ 1.

Taking into account that rk (0) = 1 and using the mean value theorem, we obtain

gk (λ) =
1 − rk (λ)

λ
= − 1

λ

∫ λ

0

r′k (x) dx = −r′k (λ0)

for some λ0 ∈ [0, λ]. Then, we find that

0 ≤ gk (λ) ≤ sup
0≤λ0≤1

|r′k (λ0)| ≤ 2k2, (E.20)
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and this result is similar to assumption (E.5) with k2 in place of k. In agreement with
(E.20), we change assumption (E.7) and require that, for k ≥ 1,

λμ |rk (λ)| ≤ c2

k2μ
, 0 < μ ≤ μ0. (E.21)

Employing the same arguments as in Theorem E.1, we can show that, under assumption
(E.21), a semi-iterative method is of optimal order for 0 < μ ≤ μ0 − 1/2, provided the
iteration is stopped according to the discrepancy principle. The ν-method of Brakhage
(1987) has the qualification μ0 = ν, and as a result, the regularized solutions obtained
with the discrepancy principle are order-optimal for 0 < μ ≤ ν − 1/2 and ν > 1/2. Note
that in contrast to the Landweber iteration, the ν-method has a finite qualification and the
solution error does not longer decrease with optimal rate when μ > ν − 1/2.

E.2 Conjugate gradient method

The regularizing property of the conjugate gradient for normal equations (CGNR) will be
established by particularizing the results derived in Rieder (2003) to a discrete setting. To
simplify our analysis we assume that rank (K) = n.

The iterates of the CGNR method can be expressed in terms of the iteration polyno-
mials gk of degree k − 1 as

xδ
k = gk

(
KT K

)
KT yδ,

where
gk

(
KT K

)
= V

[
diag

(
gk

(
σ2

i

))
n×n

]
VT , (E.22)

for K = UΣVT . The residual polynomials rk (λ) = 1 − λgk (λ) , satisfying the normal-
ization condition rk (0) = 1, are polynomials of degree k. Both the iteration polynomials
and the residual polynomials depend on yδ and for this reason, CGNR is a nonlinear regu-
larization method.

Before proceeding, we derive some matrix identities which will be frequently used in
the sequel. By virtue of (E.22), we have the matrix factorization

Kgk

(
KT K

)
KT = U

[
diag

(
σ2

i gk

(
σ2

i

))
n×n

0
0 0

]
UT . (E.23)

This gives
Im − Kgk

(
KT K

)
KT = U

[
diag

(
rk

(
σ2

i

))
m×m

]
UT (E.24)

and

KT
[
Im − Kgk

(
KT K

)
KT
]

= V
[

diag
(
σirk

(
σ2

i

))
n×n

0
]
UT , (E.25)

with the convention rk

(
σ2

i

)
= 1 for i = n + 1, . . . , m. Setting

rk

(
KT K

)
= V

[
diag

(
rk

(
σ2

i

))
n×n

]
VT (E.26)
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and
rk

(
KKT

)
= U

[
diag

(
rk

(
σ2

i

))
m×m

]
UT , (E.27)

we express (E.24) and (E.25) as

Im − Kgk

(
KT K

)
KT = rk

(
KKT

)
(E.28)

and
KT
[
Im − Kgk

(
KT K

)
KT
]

= rk

(
KT K

)
KT , (E.29)

respectively. As a result, we find that

yδ − Kxδ
k =

[
Im − Kgk

(
KT K

)
KT
]
yδ = rk

(
KKT

)
yδ, (E.30)

and that

KT rδ
k = KT

(
yδ − Kxδ

k

)
= KT

[
Im − Kgk

(
KT K

)
KT
]
yδ = rk

(
KT K

)
KT yδ.

(E.31)
We also note the matrix factorizations

In − gk

(
KT K

)
KT K = V

[
diag

(
rk

(
σ2

i

))
n×n

]
VT = rk

(
KT K

)
(E.32)

and
gk

(
KT K

)
KT = V

[
diag

(
σigk

(
σ2

i

))
n×n

0
]
UT . (E.33)

E.2.1 CG-polynomials

The CG-polynomials possess some interesting properties which we now describe.
Assuming a zero initial guess, i.e., xδ

0 = 0, the kth iterate of the CGNR method is
defined by

xδ
k = arg min

xk∈Kk

∥∥yδ − Kxk

∥∥2 .

Thus, we have ∥∥yδ − Kxδ
k

∥∥ ≤ ∥∥yδ − Kxk

∥∥ (E.34)

for all xk ∈ Kk, where

Kk = span
{
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

}
is kth Krylov subspace. For any vector xk ∈ Kk, there exist the scalars ςl, l = 0, . . . , k−1,
so that xk can be expanded as

xk =
k−1∑
l=0

ςl
(
KT K

)l
KT yδ =

[
k−1∑
l=0

ςl
(
KT K

)l]
KT yδ = g

(
KT K

)
KT yδ, (E.35)

where

g (λ) =
k−1∑
l=0

ςlλ
l
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is a polynomial of degree k − 1. Thus, for any vector xk ∈ Kk, there exists a polynomial
g of degree k − 1 so that (E.35) holds. In this regard, (E.30) together with (E.34), shows
that the residual polynomial rk has the optimality property∥∥rk

(
KKT

)
yδ
∥∥ ≤ ∥∥r (KKT

)
yδ
∥∥ (E.36)

for all r ∈ P0
k , where P0

k is the set of normalized polynomials of degree k,

P0
k = {p ∈ Pk/ p (0) = 1} ,

and Pk is the set of polynomials of degree k.
From the derivation of the CGNR algorithm, we know that the vectors

s0 = KT yδ, sk = KT rδ
k, k ≥ 1,

are orthogonal, that is,
sT
k sl = 0, k �= l.

By (E.25) and (E.31), we have, for k ≥ 0 and the convention r0 (λ) = 1,

sk = rk

(
KT K

)
KT yδ =

n∑
i=1

σirk

(
σ2

i

) (
uT

i yδ
)
vi,

and the orthogonality relation yields

n∑
i=1

σ2
i rk

(
σ2

i

)
rl

(
σ2

i

) (
uT

i yδ
)2

= 0, k, l ≥ 0, k �= l. (E.37)

From the theory of orthogonal polynomials, we note two important results:

(1) the residual polynomial rk has simple real zeros λk,j , j = 1, . . . , k, assumed to be in
decreasing order

0 < λk,k < λk,k−1 < . . . < λk,1; (E.38)

(2) the zeros of rk and rk−1 are interlacing, i.e.,

0 < λk,k < λk−1,k−1 < λk,k−1 < . . . < λk,2 < λk−1,1 < λk,1. (E.39)

The normalization condition rk (0) = 1 yields the representation

rk (λ) =
k∏

j=1

(
1 − λ

λk,j

)
=

k∏
j=1

λk,j − λ

λk,j
. (E.40)

To analyze the behavior of the residual polynomials, we need to compute the derivatives
r′k and r′′k . The first-order derivative of rk is given by

r′k (λ) = −
k∑

j=1

1
λk,j

k∏
i�=j

(
1 − λ

λk,i

)
, (E.41)
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and we have

r′k (0) = −
k∑

j=1

1
λk,j

. (E.42)

To compute the second-order derivative, we set

r′k (λ) = −
k∑

j=1

1
λk,j

Rj (λ) ,

with

Rj (λ) =
k∏

i�=j

(
1 − λ

λk,i

)
,

and use the result

R′
j (λ) = −

k∑
i �=j

1
λk,i

k∏
l �=i, l �=j

(
1 − λ

λk,l

)
to obtain

r′′k (λ) = −
k∑

j=1

1
λk,j

R′
j (λ)

= rk (λ)
k∑

j=1

k∑
i�=j

1
λk,i − λ

1
λk,j − λ

= rk (λ)

⎡⎢⎣
⎛⎝ k∑

j=1

1
λk,j − λ

⎞⎠2

−
k∑

j=1

1
(λk,j − λ)2

⎤⎥⎦ . (E.43)

In the proof of the convergence rate we will restrict our analysis to the interval [0, λk,k].
It is therefore useful to study the behavior of the polynomials rk and gk in this interval.
From (E.40), we have

0 ≤ rk (λ) ≤ 1, λ ∈ [0, λk,k] , (E.44)

while from (E.41) and (E.43), we obtain

r′k (λ) ≤ 0, λ ∈ [0, λk,k] ,

and
r′′k (λ) ≥ 0, λ ∈ [0, λk,k] ,

respectively.
By the definition of the residual polynomials, there holds

r′k (λ) = −gk (λ) − λg′k (λ) ,

and so (cf. (E.42)),

gk (0) = −r′k (0) =
k∑

j=1

1
λk,j

. (E.45)



Sect. E.2 Conjugate gradient method 331

The iteration polynomial gk is monotonically decreasing in [0, λk,k]. To prove this
result, we will show that

g′k (λ) = −r′k (λ)
λ

− gk (λ)
λ

= −r′k (λ)
λ

− 1
λ

1 − rk (λ)
λ

(E.46)

is non-positive in [0, λk,k]. For the function

−1 − rk (λ)
λ

=
rk (λ) − rk (0)

λ
,

we use the mean value theorem to obtain

−1 − rk (λ)
λ

=
1
λ

∫ λ

0

r′k (x) dx = r′k (λ0) ,

for some λ0 ∈ [0, λ]. Then, as r′k is monotonically increasing (r′′k ≥ 0), we find that

−1 − rk (λ)
λ

= r′k (λ0) ≤ r′k (λ) . (E.47)

Combining (E.46) and (E.47) yields

g′k (λ) = −r′k (λ)
λ

− 1
λ

1 − rk (λ)
λ

≤ −r′k (λ)
λ

+
r′k (λ)

λ
= 0,

and so, gk is monotonically decreasing in [0, λk,k]. As a result, (E.45) can be expressed in
a more general form as

0 < gk (λ) ≤ gk (0) = −r′k (0) =
k∑

j=1

1
λk,j

, λ ∈ [0, λk,k] . (E.48)

The zeros of the residual polynomial rk are related to the singular values of the matrix
K via

λn,j = σ2
n, j = 1, . . . , n (E.49)

and
σ2

n < λk,k < λk,1 < σ2
1 , k = 1, . . . , n − 1. (E.50)

To prove the first assertion we define the polynomial

r (λ) =
n∏

j=1

(
1 − λ

σ2
j

)
∈ P0

n,

and use the optimality property (E.36) of rn and the identities r
(
σ2

i

)
= 0, for i = 1, . . . , n,

to obtain ∥∥rn

(
KKT

)
yδ
∥∥2 =

n∑
i=1

r2
n

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

≤
∥∥r (KKT

)
yδ
∥∥2 =

n∑
i=1

r2
(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

=
m∑

i=n+1

(
uT

i yδ
)2

,
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that is,
n∑

i=1

r2
n

(
σ2

i

) (
uT

i yδ
)2 ≤ 0. (E.51)

From (E.51) we get r2
n

(
σ2

i

)
= 0 for all i = 1, . . . , n, and the proof is finished. The sec-

ond assertion follows from (E.49) and the interlacing property of the zeros of the residual
polynomials given by (E.39).

E.2.2 Discrepancy principle

In this section we derive the convergence rate of the CGNR method when the discrepancy
principle is used as stopping rule, i.e., when the iteration is terminated with k = k	 so that∥∥yδ − Kxδ

k�

∥∥ ≤ τdpΔ <
∥∥yδ − Kxδ

k

∥∥ , 0 ≤ k < k	. (E.52)

For the exact solution x†, we assume the source representation

x† =
(
KT K

)μ
z, (E.53)

with μ > 0 and z ∈ R
n.

If (σi;vi,ui) is a singular system of K, we define the orthogonal projection matrices

EΛx =
∑

σ2
i ≤Λ

(
vT

i x
)
vi, x ∈ R

n,

and

FΛw =
∑

σ2
i ≤Λ

(
uT

i w
)
ui +

m∑
i=n+1

(
uT

i w
)
ui, w ∈ R

m,

for some Λ > 0. For the matrix FΛ, we note the equivalent representation

FΛw =
∑

σ2
i ≤Λ

(
uT

i w
)
ui + PR(K)⊥w, w ∈ R

m,

yielding
FΛw =

∑
σ2

i ≤Λ

(
uT

i w
)
ui, w ∈ R (K) ,

and the result
w − FΛw =

∑
σ2

i >Λ

(
uT

i w
)
ui, w ∈ R

m.

By virtue of the identities KT ui = σivi, i = 1, . . . , n, we have, for 0 < Λ < σ2
1 ,

‖(In − EΛ)x‖2 =
∑

σ2
i >Λ

1
σ2

i

(
uT

i Kx
)2

<
1
Λ

∑
σ2

i >Λ

(
uT

i Kx
)2

=
1
Λ
‖(Im − FΛ)Kx‖2

,

that is,

‖(In − EΛ)x‖ <
1√
Λ
‖(Im − FΛ)Kx‖ . (E.54)

A general bound for the iteration error is stated by the following result.
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Proposition E.2. Let x† satisfy the source condition (E.53). Then, for 0 < Λ ≤ λk,k and
0 < k ≤ n, there holds∥∥x† − xδ

k

∥∥ <
1√
Λ

(
Δ +

∥∥yδ − Kxδ
k

∥∥)+ ‖z‖Λμ + Δg
1
2
k (0) . (E.55)

Proof. The inequality λk,k < σ2
1 (cf. (E.50)) yields 0 < Λ < σ2

1 , and by (E.54), the
iteration error can be estimated as∥∥x† − xδ

k

∥∥ ≤ ∥∥(In − EΛ)
(
x† − xδ

k

)∥∥+
∥∥EΛ

(
x† − xδ

k

)∥∥
<

1√
Λ

∥∥(Im − FΛ)K
(
x† − xδ

k

)∥∥+
∥∥EΛ

(
x† − xδ

k

)∥∥ . (E.56)

The terms in the right-hand side of (E.56) can be bounded as∥∥(Im − FΛ)K
(
x† − xδ

k

)∥∥ =
∥∥(Im − FΛ)

(
y − Kxδ

k

)∥∥
≤
∥∥y − Kxδ

k

∥∥
≤ Δ +

∥∥yδ − Kxδ
k

∥∥ , (E.57)

and ∥∥EΛ

(
x† − xδ

k

)∥∥
=
∥∥EΛ

[
x† − gk

(
KT K

)
KT yδ

]∥∥
≤
∥∥EΛ

[
x† − gk

(
KT K

)
KT Kx†]∥∥+

∥∥EΛ

[
gk

(
KT K

)
KT
(
yδ − y

)]∥∥ . (E.58)

We are now concerned with the estimation of the two terms in the right-hand side of (E.58).
For the first term, the source condition (E.53) and the representation (E.32) yield the fac-
torization[

In − gk

(
KT K

)
KT K

] (
KT K

)μ
= V

[
diag

(
σ2μ

i rk

(
σ2

i

))
n×n

]
VT ,

and we find that∥∥EΛ

[
x† − gk

(
KT K

)
KT Kx†]∥∥2 =

∑
σ2

i ≤Λ

[
σ2μ

i rk

(
σ2

i

)]2 (
vT

i z
)2

.

For 0 ≤ λ ≤ Λ ≤ λk,k, there holds (cf. (E.44))

0 ≤ λμrk (λ) ≤ λμ ≤ Λμ,

and we conclude that ∥∥EΛ

[
x† − gk

(
KT K

)
KT Kx†]∥∥ ≤ ‖z‖Λμ. (E.59)

For the second term, we use (E.33) to obtain∥∥EΛ

[
gk

(
KT K

)
KT
(
yδ − y

)]∥∥2 =
∑

σ2
i ≤Λ

σ2
i g2

k

(
σ2

i

) (
uT

i δ
)2

.
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Moreover, from (E.44) and (E.48), we have

λg2
k (λ) = [1 − rk (λ)] gk (λ) ≤ gk (0) , λ ∈ [0, λk,k] ,

and we end up with ∥∥EΛ

[
gk

(
KT K

)
KT
(
yδ − y

)]∥∥ ≤ Δg
1
2
k (0) . (E.60)

Now, the conclusion follows from (E.56)–(E.60).

For the discrepancy principle index k	, the error estimate (E.55) becomes∥∥x† − xδ
k�

∥∥ <
(
1 + τdp

) Δ√
Λ

+ ‖z‖Λμ + Δg
1
2
k� (0) . (E.61)

Let us evaluate this estimate for the choice

Λ = min

((
Δ
‖z‖

) 2
2μ+1

, g−1
k� (0)

)
. (E.62)

Before doing this, we observe that (E.62) gives

0 < Λ ≤ g−1
k� (0) =

⎛⎝ k�∑
j=1

1
λk�,j

⎞⎠−1

< λk�,k� ,

and we are in the setting in which (E.61) holds. Now, from (E.62), the second term of the
estimate (E.61) can be bounded as

‖z‖Λμ ≤ ‖z‖
(

Δ
‖z‖

) 2μ
2μ+1

= ‖z‖
1

2μ+1 Δ
2μ

2μ+1 .

To evaluate the first term of the estimate (E.61), we observe that, for(
Δ
‖z‖

) 2
2μ+1

≤ g−1
k� (0) ,

we have
Δ√
Λ

= Δ
(
‖z‖
Δ

) 1
2μ+1

= ‖z‖
1

2μ+1 Δ
2μ

2μ+1 ,

while, for

g−1
k� (0) <

(
Δ
‖z‖

) 2
2μ+1

,

we have
Δ√
Λ

= Δg
1
2
k� (0) .
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Thus, the solution error can be bounded as∥∥x† − xδ
k�

∥∥ <
(
1 + τdp

)
max

(
‖z‖

1
2μ+1 Δ

2μ
2μ+1 , Δg

1
2
k� (0)

)
+‖z‖

1
2μ+1 Δ

2μ
2μ+1 +Δg

1
2
k� (0) .

(E.63)
From (E.63), it is apparent that the optimal convergence rate can be derived if we are able
to prove that

Δg
1
2
k� (0) = O

(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
.

First, we need an auxiliary result.

Proposition E.3. Let x† satisfy the source condition (E.53). Then, for 0 < k ≤ n, there
holds ∥∥yδ − Kxδ

k

∥∥ < Δ + (1 + 2μ)μ+ 1
2 ‖z‖ g

−(μ+ 1
2 )

k (0) .

Proof. Let us define the polynomial

r (λ) =
rk (λ)

1 − λ

λk,k

= λk,k
rk (λ)

λk,k − λ
. (E.64)

As r (λ) ∈ P0
k−1 = span {1, r1, . . . , rk−1} and λk,k > 0, the orthogonality relation (E.37)

yields
n∑

i=1

σ2
i rk

(
σ2

i

) rk

(
σ2

i

)
λk,k − σ2

i

(
uT

i yδ
)2

= 0, (E.65)

and we obtain∑
σ2

i ≤λk,k

r2
k

(
σ2

i

) σ2
i

λk,k − σ2
i

(
uT

i yδ
)2

=
∑

σ2
i >λk,k

r2
k

(
σ2

i

) σ2
i

σ2
i − λk,k

(
uT

i yδ
)2

>
∑

σ2
i >λk,k

r2
k

(
σ2

i

) (
uT

i yδ
)2

. (E.66)

Note that for k = 1, (E.37) is applied with r (λ) = r0 (λ) = 1 and r1 (λ) = 1 − λ/λ1,1.
Going further, from (E.27), (E.30) and (E.66), we find that

∥∥yδ − Kxδ
k

∥∥2 =
∑

σ2
i ≤λk,k

r2
k

(
σ2

i

) (
uT

i yδ
)2

+
∑

σ2
i >λk,k

r2
k

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

<
∑

σ2
i ≤λk,k

(
1 +

σ2
i

λk,k − σ2
i

)
r2
k

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

=
∑

σ2
i ≤λk,k

ϕ2
k

(
σ2

i

) (
uT

i yδ
)2

+
m∑

i=n+1

(
uT

i yδ
)2

=
∥∥Fλk,k

ϕk

(
KKT

)
yδ
∥∥2 . (E.67)
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In (E.67), the function ϕk is defined in terms of the residual polynomial rk as

ϕk (λ) = rk (λ)
(

1 +
λ

λk,k − λ

) 1
2

= rk (λ)
(

λk,k

λk,k − λ

) 1
2

, (E.68)

and we have the matrix factorization

ϕk

(
KKT

)
= U

[
diag

(
ϕk

(
σ2

i

))
m×m

]
UT ,

with ϕk

(
σ2

i

)
= 1 for i = n + 1, . . . , m. Application of the triangle inequality to the

estimate (E.67) then gives∥∥yδ − Kxδ
k

∥∥ <
∥∥Fλk,k

ϕk

(
KKT

)
y
∥∥+

∥∥Fλk,k
ϕk

(
KKT

) (
yδ − y

)∥∥ . (E.69)

To evaluate the second term in the right-hand side of (E.69), we try to bound ϕk in [0, λk,k].
From the representation (cf. (E.40) and (E.68))

ϕk (λ) =
(

λk,k − λ

λk,k

) 1
2 k−1∏

j=1

λk,j − λ

λk,j

and the inequality (cf. (E.38))

0 ≤ 1 − λ

λk,j
≤ 1, λ ∈ [0, λk,k] , j = 1, . . . , k,

we obtain
0 ≤ ϕk (λ) ≤ 1, λ ∈ [0, λk,k] , (E.70)

and so,

∥∥Fλk,k
ϕk

(
KKT

) (
yδ − y

)∥∥2 =
∑

σ2
i ≤λk,k

ϕ2
k

(
σ2

i

) (
uT

i δ
)2

+
m∑

i=n+1

(
uT

i δ
)2 ≤ Δ2.

(E.71)
To evaluate the first term in the right-hand side of (E.69), we consider the function

Φ (λ) = ληϕ2
k (λ) = λη λk,k − λ

λk,k

k−1∏
j=1

(
λk,j − λ

λk,j

)2

for some η > 1. As Φ (0) = Φ (λk,k) = 0 and Φ (λ) ≥ 0 in [0, λk,k], we deduce that,
according to Rolle’s theorem, there exists an extreme point λ	 ∈ (0, λk,k) of Φ (λ), i.e.,
Φ′ (λ	) = 0. To compute Φ′, we see that, for λ ∈ (0, λk,k), we have Φ (λ) > 0, and we
may write

log Φ (λ) = η log λ + log
(

λk,k − λ

λk,k

)
+ 2

k−1∑
j=1

log
(

λk,j − λ

λk,j

)
.
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Taking the derivative with respect to λ yields

Φ′ (λ)
Φ (λ)

=
η

λ
+

1
λk,k − λ

− 2
k∑

j=1

1
λk,j − λ

,

and further

Φ′ (λ) = λη−1ϕ2
k (λ)

⎡⎣η + λ

⎛⎝ 1
λk,k − λ

− 2
k∑

j=1

1
λk,j − λ

⎞⎠⎤⎦ .

Hence, Φ′ (λ	) = 0 gives

η + λ	

⎛⎝ 1
λk,k − λ	

− 2
k∑

j=1

1
λk,j − λ	

⎞⎠ = 0,

and we infer that (cf. (E.48))

η = λ	

⎛⎝2
k∑

j=1

1
λk,j − λ	

− 1
λk,k − λ	

⎞⎠
> λ	

k∑
j=1

1
λk,j − λ	

> λ	

k∑
j=1

1
λk,j

= λ	gk (0) .

Thus,
λ	 <

η

gk (0)
,

and because of (E.70), we obtain

ληϕ2
k (λ) ≤ λη

	ϕ2
k (λ	) < ηηg−η

k (0) . (E.72)

Now, since ϕk

(
KKT

)
y ∈ R (K), the representation∥∥Fλk,k

ϕk

(
KKT

)
y
∥∥2 =

∑
σ2

i ≤λk,k

ϕ2
k

(
σ2

i

) (
uT

i y
)2

together with the source condition, written as

uT
i y = uT

i K
(
KT K

)μ
z = σ2μ+1

i vT
i z, (E.73)

and the inequality (E.72) with η = 2μ + 1 > 1, yields∥∥Fλk,k
ϕk

(
KKT

)
y
∥∥2 =

∑
σ2

i ≤λk,k

(
σ2

i

)2μ+1
ϕ2

k

(
σ2

i

) (
vT

i z
)2

< (2μ + 1)2μ+1 ‖z‖2
g
−(2μ+1)
k (0) . (E.74)

The desired estimate follows from (E.69), (E.71) and (E.74).
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The key point in our derivation is the following result.

Proposition E.4. Let x† satisfy the source condition (E.53). Then, for any θ ∈ (0, 1), there
exists aθ depending on θ and μ, so that, for all 0 < k ≤ n, there holds

θ
∥∥yδ − Kxδ

k−1

∥∥ < Δ + aθ ‖z‖ g
−(μ+ 1

2 )
k (0) . (E.75)

Proof. For an arbitrary θ ∈ (0, 1), we set

ς =
2 − θ

1 − θ
> 2 (E.76)

and
q = 1 +

ς

2
> 2. (E.77)

In the first part of the proof we assume that k > 1 and distinguish two cases.
Case 1: gk (0) < qgk−1 (0). Using the preceding proposition, we find that

θ
∥∥yδ − Kxδ

k−1

∥∥ <
∥∥yδ − Kxδ

k−1

∥∥
< Δ + (2μ + 1)μ+ 1

2 ‖z‖ g
−(μ+ 1

2 )
k−1 (0)

< Δ + aθ ‖z‖ g
−(μ+ 1

2 )
k (0) ,

with
aθ = [q (2μ + 1)]μ+ 1

2 . (E.78)

Case 2: gk (0) ≥ qgk−1 (0). We analyze for the moment some consequences of this
assumption. Using the interlacing property of the zeros of rk and rk−1,

λk−1,j < λk,j , j = 1, . . . , k − 1, (E.79)

and employing (E.48), we obtain

gk (0) =
1

λk,k
+

k−1∑
j=1

1
λk,j

<
1

λk,k
+

k−1∑
j=1

1
λk−1,j

=
1

λk,k
+ gk−1 (0) . (E.80)

The assumption gk (0) ≥ qgk−1 (0) then yields

gk (0) <
1

λk,k
+

1
q
gk (0) ,

and further
λk,k <

q

q − 1
g−1

k (0) . (E.81)

Moreover, the same assumption together with (E.79) and (E.80) gives

(q − 1)
1

λk,k−1
< (q − 1)

1
λk−1,k−1

≤ (q − 1)
k−1∑
j=1

1
λk−1,j

= (q − 1) gk−1 (0) <
1

λk,k
,
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and we infer that (cf. (E.77))
ςλk,k < 2λk,k−1. (E.82)

Defining the polynomial r (λ) ∈ P0
k−1 as in (E.64), that is,

r (λ) =
rk (λ)

1 − λ

λk,k

=
k−1∏
j=1

λk,j − λ

λk,j
, (E.83)

and using the optimality property (E.36) of rk−1, we obtain∥∥yδ − Kxδ
k−1

∥∥ =
∥∥rk−1

(
KKT

)
yδ
∥∥

≤
∥∥r (KKT

)
yδ
∥∥

≤
∥∥(Im − Fςλk,k

)
r
(
KKT

)
yδ
∥∥+

∥∥Fςλk,k
r
(
KKT

)
yδ
∥∥ . (E.84)

The first term in the right-hand side of (E.84) can be bounded as (cf. (E.27), (E.30) and
(E.83)) ∥∥(Im − Fςλk,k

)
r
(
KKT

)
yδ
∥∥2 =

∑
σ2

i >ςλk,k

r2
k

(
σ2

i

)(
σ2

i

λk,k
− 1
)2

(
uT

i yδ
)2

<
1

(ς − 1)2
∑

σ2
i >ςλk,k

r2
k

(
σ2

i

) (
uT

i yδ
)2

≤ 1
(ς − 1)2

∥∥yδ − Kxδ
k

∥∥2 . (E.85)

Since xδ
k−1 ∈ Kk−1 ⊂ Kk, (E.34) gives∥∥yδ − Kxδ

k

∥∥ ≤ ∥∥yδ − Kxδ
k−1

∥∥ ,

and (E.84) becomes∥∥yδ − Kxδ
k−1

∥∥ <
∥∥Fςλk,k

r
(
KKT

)
yδ
∥∥+

1
ς − 1

∥∥yδ − Kxδ
k−1

∥∥ .

Thus,
ς − 2
ς − 1

∥∥yδ − Kxδ
k−1

∥∥ <
∥∥Fςλk,k

r
(
KKT

)
yδ
∥∥ . (E.86)

Now, we need a bound for
∥∥Fςλk,k

r
(
KKT

)
yδ
∥∥. This bound will be derived by making

use of the triangle inequality∥∥Fςλk,k
r
(
KKT

)
yδ
∥∥ ≤ ∥∥Fςλk,k

r
(
KKT

)
y
∥∥+

∥∥Fςλk,k
r
(
KKT

) (
yδ − y

)∥∥ . (E.87)

Using the source representation (E.73) and taking into account that r
(
KKT

)
y ∈ R (K) ,

we estimate the first term in the right-hand side of (E.87) as∥∥Fςλk,k
r
(
KKT

)
y
∥∥2 =

∑
σ2

i ≤ςλk,k

(
σ2

i

)2μ+1
r2
(
σ2

i

) (
vT

i z
)2

≤ (ςλk,k)2μ+1
∑

σ2
i ≤ςλk,k

r2
(
σ2

i

) (
vT

i z
)2

(E.88)
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and express the second term as

∥∥Fςλk,k
r
(
KKT

) (
yδ − y

)∥∥2 =
∑

σ2
i ≤ςλk,k

r2
(
σ2

i

) (
uT

i δ
)2

+
m∑

i=n+1

(
uT

i δ
)2

. (E.89)

To bound these two terms we look at the behavior of r (λ) in [0, ςλk,k]. From (E.82) we
obtain

ςλk,k

λk,j
< 2, j = 1, . . . , k − 1,

and further,

r2 (λ) =
k−1∏
j=1

(
1 − λ

λk,j

)2

≤ 1, λ ∈ [0, ςλk,k] .

Consequently, (E.87) takes the form∥∥Fςλk,k
r
(
KKT

)
yδ
∥∥ ≤ (ςλk,k)μ+ 1

2 ‖z‖ + Δ,

and, by virtue of (E.81), (E.86) becomes

ς − 2
ς − 1

∥∥yδ − Kxδ
k−1

∥∥ < Δ +
(

qς

q − 1

)μ+ 1
2

‖z‖ g
−(μ+ 1

2 )
k (0) .

Since (cf. (E.76))

θ =
ς − 2
ς − 1

, (E.90)

we conclude that (E.75) holds with

aθ =
(

qς

q − 1

)μ+ 1
2

. (E.91)

For k = 1, we have xδ
0 = 0, r1 (λ) = 1 − λ/λ1,1, r (λ) = 1 and g1 (λ) = 1/λ1,1. In

this case, we consider the estimate∥∥yδ − Kxδ
0

∥∥ ≤ ∥∥(Im − Fςλ1,1

)
yδ
∥∥+

∥∥Fςλ1,1y
δ
∥∥ ,

and proceed as in (E.85)–(E.89); we obtain (E.75) with θ as in (E.90) and aθ = ςμ+ 1
2 .

The above proposition allows us to derive the required bound for Δg
1/2
k� (0). For a

prescribed tolerance τdp > 1, we choose θ ∈ (0, 1) so that θτdp > 1. For this θ, we
compute ς and q by using (E.76) and (E.77), respectively, and take aθ as the maximum of
the values given by (E.78) and (E.91). In this context, the discrepancy principle condition
(E.52) yields

θτdpΔ < θ
∥∥yδ − Kxδ

k�−1

∥∥ < Δ + aθ ‖z‖ g
−(μ+ 1

2 )
k� (0) ,

and we obtain
Δg

1
2
k� (0) < C ‖z‖

1
2μ+1 Δ

2μ
2μ+1 ,
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with

C =
(

aθ

θτdp − 1

) 1
2μ+1

.

We are now in the position to formulate the convergence rate result.

Theorem E.5. Let x† satisfy the source condition (E.53). If k	 is the stopping index of the
discrepancy principle (E.52) with τdp > 1, then there holds∥∥x† − xδ

k�

∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
.

The above theorem shows that the CGNR method using the discrepancy principle as
stopping rule is an order-optimal regularization method for all μ > 0. Thus, there is no
saturation effect as in the case of Tikhonov regularization or the ν-method.



F

Residual polynomials of the LSQR method

The residual polynomials of the LSQR method are normalized polynomials of degree k.
At the iteration step k ≥ 1, the vector sk = KT rδ

k, with rδ
k = yδ −Kxδ

k, can be expressed
in terms of the residual polynomial rk as (cf. (E.31))

sk = rk

(
KT K

)
KT yδ.

As sk is orthogonal to the kth Krylov subspace Kk (see Chapter 5), we have

rk

(
KT K

)
KT yδ ⊥ Kk. (F.1)

Let Bk be the bidiagonal matrix of the LSQR method at the iteration step k and let
(λk,j ,wk,j) be an eigenpair of the matrix BT

k Bk ∈ R
k, that is,(

BT
k Bk

)
wk,j = λk,jwk,j , j = 1, . . . , k. (F.2)

The eigenvalues λk,j are called Ritz values, while the eigenvectors wk,j are called Ritz
vectors. In exact arithmetic, the representation

BT
k Bk = V̄T

k

(
KT K

)
V̄k, (F.3)

holds, and we obtain (
KT K

)
w̄k,j = λk,jw̄k,j , j = 1, . . . , k, (F.4)

with
w̄k,j = V̄kwk,j . (F.5)

Before we state the main result of this appendix, let us prove the assertion

w̄T
k,jK

T yδ �= 0, j = 1, . . . , k. (F.6)

By virtue of (F.4), the following set of equalities holds true:

w̄T
k,j

(
KT K

)k−1
KT yδ =

[(
KT K

)
w̄k,j

]T (
KT K

)k−2
KT yδ

= λk,jw̄T
k,j

(
KT K

)k−2
KT yδ = . . . = λk−1

k,j w̄T
k,jK

T yδ. (F.7)
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Now, if we assume that w̄T
k,jK

T yδ = 0, then (F.7) implies that

w̄k,j ⊥ Kk = span
{
KT yδ,

(
KT K

)
KT yδ, . . . ,

(
KT K

)k−1
KT yδ

}
.

But this result is contradictory since, by (F.5) and the fact that the column vectors of V̄k

span Kk, we have w̄k,j ∈ Kk. Thus, (F.6) holds true.

Theorem F.1. Let Bk be the bidiagonal matrix of the LSQR method at the iteration step
k ≥ 1 and let {λk,j}j=1,k be the eigenvalues of BT

k Bk. Then, the residual polynomial of
the LSQR method is given by

rk (λ) =
k∏

j=1

λk,j − λ

λk,j
. (F.8)

Proof. Assuming the representation rk (λ) =
∑k

l=0 ςlλ
l and using the result (cf. (F.3))(

BT
k Bk

)l
= V̄T

k

(
KT K

)l
V̄k, l ≥ 0,

we obtain

rk

(
BT

k Bk

)
=

k∑
l=0

ςl
(
BT

k Bk

)l
= V̄T

k

[
k∑

l=0

ςl
(
KT K

)l]
V̄k = V̄T

k rk

(
KT K

)
V̄k.

(F.9)
Combining (F.1) and (F.9) gives

rk

(
BT

k Bk

)
V̄T

k KT yδ = V̄T
k rk

(
KT K

)
KT yδ = 0. (F.10)

On the other hand, (F.2), written in matrix form as

BT
k Bk = WkΛkWT

k ,

with Wk = [wk,1, . . . ,wk,k] and Λk = [diag (λk,j)k×k], yields

rk

(
BT

k Bk

)
= Wk

[
diag (rk (λk,j))k×k

]
WT

k . (F.11)

Using (F.11) and setting W̄k = [w̄k,1, . . . , w̄k,k], where the w̄k,j are defined by (F.5), we
express (F.10) as

Wk

[
diag (rk (λk,j))k×k

]
W̄T

k KT yδ = 0, (F.12)

and further as
k∑

j=1

rk (λk,j)
(
w̄T

k,jK
T yδ
)
wk,j = 0.

As Wk is orthogonal, we find that

rk (λk,j)
(
w̄T

k,jK
T yδ
)

= 0, j = 1, . . . , k,

and in view of (F.6), that
rk (λk,j) = 0, j = 1, . . . , k.

This result together with the normalization condition rk (0) = 1 shows that the residual
polynomial is given by (F.8).
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The above theorem simply states that the zeros of the residual polynomial are the Ritz
values. Relationships between the Ritz values, assumed to be distinct and in decreasing
order,

0 < λk,k < λk,k−1 < . . . < λk,1, (F.13)

and the eigenvalues σ2
j , j = 1, . . . , n, of the positive definite matrix KT K can be estab-

lished by making use of fundamental results from the theory of orthogonal polynomials.
In particular, we have (Van der Sluis and Van der Vorst, 1986):

(1) for any fixed j, λk,j increases and λk,k−j+1 decreases as k increases from j to n;
(2) if σ2

j+1 ≤ λk,j ≤ σ2
j for a certain value of k, then also for all larger values of k;

(3) any two Ritz values λk,j+1 and λk,j are separated by at least one eigenvalue σ2
i ;

(4) λn,j = σ2
j for all j = 1, . . . , n (see Appendix E).

The first and the last property show that for any fixed j, the increasing sequence {λk,j}k=j,n

attains its maximum σ2
j at k = n, and definitely, we may write

λk,j < λn,j = σ2
j , k = j, . . . , n − 1. (F.14)

For ill-posed problems, this result is even stronger: if the eigenvalues of KT K are well
separated and do not decay too slowly, and moreover, if the discrete Picard condition is
satisfied, then the first Ritz values λk,j approximate the largest eigenvalues σ2

j in their
natural order (Hansen, 1998). To heuristically explain this assertion, we assume that the
discrete Picard condition (see Chapter 3)∣∣uT

i yδ
∣∣ = Cσβ+1

i , i = 1, . . . , n, (F.15)

with β > 0 and C > 0, is satisfied, and that the eigenvalues σ2
i decay very rapidly as i

increases, e.g.,
σ2

i+1 = qiσ
2
i , qi � 1. (F.16)

Defining the polynomial

r (λ) =
k∏

j=1

(
1 − λ

σ2
j

)
∈ P0

k ,

and using the optimality property (E.36) of rk and the identities r
(
σ2

i

)
= 0, i = 1, . . . , k,

we obtain, for k < n,∥∥rk

(
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)
yδ
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) (
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+
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+
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+
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,

that is,
n∑

i=1

r2
k

(
σ2

i

) (
uT

i yδ
)2 ≤

n∑
i=k+1

r2
(
σ2

i

) (
uT

i yδ
)2

.
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By making use of the discrete Picard condition (F.15), we rewrite the above inequality as

n∑
i=1

r2
k

(
σ2

i

)
σ2β+2

i ≤
n∑

i=k+1

r2
(
σ2

i

)
σ2β+2

i . (F.17)

In view of assumption (F.16), we get

r
(
σ2

i

)
=
(

1 − σ2
i

σ2
1

)
. . .

(
1 − σ2

i

σ2
k

)
� 1, i = k + 1, . . . , n,

and further,
n∑

i=k+1

r2
(
σ2

i

)
σ2β+2

i ≤ (n − k) σ2β+2
k+1 .

As a result, (F.17) implies that

r2
k

(
σ2

i

)
σ2β+2

i ≤ (n − k) σ2β+2
k+1 , i = 1, . . . , k. (F.18)

Let us now analyze the consequences of condition (F.18). For i = 1, we have

rk

(
σ2

1

)
=
(

1 − σ2
1

λk,1

)
. . .

(
1 − σ2

1

λk,k

)
,

and from (cf. (F.13) and (F.14))

λk,k < λk,k−1 < . . . < λk,1 < σ2
1 ,

yielding
σ2

1

λk,1
− 1 <

σ2
1

λk,2
− 1 < . . . <

σ2
1

λk,k
− 1,

we obtain
r2
k

(
σ2

1

)
σ2β+2

1 > (θ1 − 1)2k
σ2β+2

1 ,

where θ1 = σ2
1/λk,1. Then, condition (F.18) gives

(θ1 − 1)2k
< (n − k)

(
σ2

k+1

σ2
1

)β+1

,

and since by assumption, σ2
1 � σ2

k+1, we deduce that θ1 ≈ 1, that is, λk,1 ≈ σ2
1 . For

i = 2, we proceed analogously; we write

rk

(
σ2

2

)
=
(

1 − σ2
2

λk,1

)(
1 − σ2

2

λk,2

)
. . .

(
1 − σ2

2

λk,k

)
= ε1

(
1 − σ2

2

λk,2

)
. . .

(
1 − σ2

2

λk,k

)
,

with ε1 = 1 − σ2
2/λk,1 ≈ 1 − q1 ≈ 1, and use the inequalities

λk,k < λk,k−1 < . . . < λk,2 < σ2
2
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to conclude that
r2
k

(
σ2

2

)
σ2β+2

2 > ε2
1 (θ2 − 1)2(k−1)

σ2β+2
2 ,

where θ2 = σ2
2/λk,2. As before, condition (F.18) gives

(θ2 − 1)2(k−1)
<

n − k

ε2
1

(
σ2

k+1

σ2
2

)β+1

,

and we infer that λk,2 ≈ σ2
2 . Repeating these arguments for all i ≤ k, we conclude that

under assumptions (F.15) and (F.16), we have λk,j ≈ σ2
j for all j = 1, . . . , k.



G

A general direct regularization method
for nonlinear problems

A general regularization method for solving ill-posed problems given by the nonlinear
equation

F (x) = yδ, (G.1)

has been proposed by Tautenhahn (1997). In this appendix, we particularize Tautenhahn’s
analysis to a discrete setting and for the choice L = In. The method is based on the
iteration

xδ
αk+1 = xa + gα

(
KT

αkKαk

)
KT

αky
δ
k, k = 0, 1, . . . , (G.2)

with Kαk = K
(
xδ

αk

)
, xδ

0 = xa,

yδ
k = yδ − F

(
xδ

αk

)
+ Kαk

(
xδ

αk − xa

)
,

and
gα

(
KT

αkKαk

)
= V

[
diag

(
gα

(
σ2

i

))
n×n

]
VT (G.3)

for Kαk = UΣVT .
If for any α this iteration method converges, then the limit xδ

α solves the equation

x = xa + gα

(
K (x)T K (x)

)
K (x)T [yδ − F (x) + K (x) (x − xa)

]
. (G.4)

For linear problems, xδ
α is given by

xδ
α = xa + gα

(
KT K

)
KT
(
yδ − Kxa

)
, (G.5)

and (G.5) is the general regularization method discussed in Appendix C.
As in the linear case, we suppose that the iteration function gα satisfies the conditions

0 ≤ gα (λ) ≤ 1
α

, (G.6)

0 ≤ 1 − λgα (λ) ≤ αgα (λ) , (G.7)
0 ≤ λμ [1 − λgα (λ)] ≤ c2α

μ, 0 < μ ≤ μ0, (G.8)
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for all α > 0, λ ∈ [0, σ2
max] and c2 > 0. The index μ0 is the qualification of the regulariza-

tion method and σ2
max is a bound for

∥∥K(x)T K(x)
∥∥ in a ball Bρ

(
x†) of radius ρ about x†.

Here, x† is a solution of the nonlinear equation with exact data F (x) = y. The iteration
function gα (λ) is continuously extended at λ = 0 by defining gα (0) = limλ→0 gα (λ).

In particular, gα may correspond to Tikhonov regularization,

gα (λ) =
1

λ + α
, μ0 = 1, (G.9)

the method of asymptotic regularization,

gα (λ) =
1
λ

(
1 − e−

λ
α

)
, μ0 = ∞, (G.10)

and the Landweber iteration,

gα (λ) =
1
λ

[1 − (1 − λ)p] , μ0 = ∞, α =
1
p
. (G.11)

The approach with the iteration function (G.10) is the exponential Euler regularization
method discussed in Chapter 7; in this case, assumption (G.8) holds for μ > 0 with c2 =
μμe−μ. The approach with the iteration function (G.11) solves at each Newton step k the
linearized equation

Kαk�x = yδ
k, (G.12)

by using the Landweber iteration with zero initial guess, that is,

�xδ
αk0 = 0,

�xδ
αkl = �xδ

αkl−1 + KT
αk

(
yδ

k − Kαk � xδ
αkl−1

)
, 1 ≤ l ≤ p, (G.13)

xδ
αk+1 = xa + �xδ

αkp.

It should be pointed out that for the method of Tikhonov regularization, we have

gα

(
KT

αKα

)
=
(
KT

αKα + αIn

)−1
,

with Kα = K
(
xδ

α

)
, and equation (G.4) represents the stationary condition for the Tikhonov

function, or the so-called Euler equation.

G.1 Error estimates

To derive a bound for the solution error
∥∥xδ

α − x†∥∥ we first prove two auxiliary results.

Proposition G.1. Let xδ
α be given by (G.5) and let assumptions (G.6) and (G.7) hold.

Then, for all x ∈ R
n, we have∥∥yδ − Kxδ

α

∥∥2 + α
∥∥xδ

α − x
∥∥2

≤
∥∥yδ − Kx

∥∥2 + α (x − xa)
T [In − gα

(
KT K

)
KT K

]
(x − xa) . (G.14)
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Proof. Using the expression of xδ
α given by (G.5), and setting �x = x − xa and �yδ =

yδ − Kxa, we have to show that∥∥[Im − Kgα

(
KT K

)
KT
]
�yδ

∥∥2 + α
∥∥gα

(
KT K

)
KT�yδ −�x

∥∥2
≤
∥∥�yδ − K�x

∥∥2 + α�xT
[
In − gα

(
KT K

)
KT K

]
�x. (G.15)

If (σi;vi,ui) is a singular system of the matrix K, we use (G.3) to obtain

∥∥[Im − Kgα

(
KT K

)
KT
]
�yδ

∥∥2 =
n∑

i=1

[
1 − σ2

i gα

(
σ2

i

)]2 (
uT

i �yδ
)2

+
m∑

i=n+1

(
uT

i �yδ
)2

,

∥∥gα

(
KT K

)
KT�yδ −�x

∥∥2 =
n∑

i=1

[
σigα

(
σ2

i

)
uT

i �yδ − vT
i �x

]2
,

and

∥∥�yδ − K�x
∥∥2 =

n∑
i=1

(
σivT

i �x − uT
i �yδ

)2
+

m∑
i=n+1

(
uT

i �yδ
)2

,

�xT
[
In − gα

(
KT K

)
KT K

]
�x =

n∑
i=1

[
1 − σ2

i gα

(
σ2

i

)] (
vT

i �x
)2

.

Inserting the above relations into (G.15) and rearranging the terms, we are led to the in-
equalities[

1 − σ2
i gα

(
σ2

i

)]2 (
uT

i �yδ
)2

+ ασ2
i g2

α

(
σ2

i

) (
uT

i �yδ
)2

≤ αgα

(
σ2

i

) (
uT

i �yδ
)2

+
[
1 − αgα

(
σ2

i

)] (
σivT

i �x − uT
i �yδ

)2
, i = 1, . . . , n,

(G.16)

which we must prove to be true. The last term in the right-hand side of (G.16) is positive
due to assumption (G.6). By (G.7), we have[

1 − σ2
i gα

(
σ2

i

)]2 ≤
[
1 − σ2

i gα

(
σ2

i

)]
αgα

(
σ2

i

)
and the left-hand side of (G.16) can be bounded as[

1 − σ2
i gα

(
σ2

i

)]2 (
uT

i �yδ
)2

+ ασ2
i g2

α

(
σ2

i

) (
uT

i �yδ
)2 ≤ αgα

(
σ2

i

) (
uT

i �yδ
)2

for i = 1, . . . , n. Thus, (G.16) is satisfied and the proof is finished.

Let us define the matrix Rα by the relation

Rα = In − gα

(
KT

αKα

)
KT

αKα. (G.17)
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For Kα = UΣVT , we have

Rα = V
[
diag

(
1 − σ2

i g
(
σ2

i

))
n×n

]
VT , (G.18)

and from assumptions (G.6) and (G.7), we see that ‖Rα‖ ≤ 1. The matrix Rα can be
expressed in terms of the residual function rα (λ) = 1 − λgα (λ) as (cf. (E.32)) Rα =
rα

(
KT

αKα

)
, and for this reason, Rα is also known as the residual matrix.

Proposition G.2. Let xδ
α be a solution of equation (G.4) and let assumptions (G.6) and

(G.7) hold. Then, for all x ∈ R
n, we have∥∥yδ − F

(
xδ

α

)∥∥2 + α
∥∥xδ

α − x
∥∥2

≤
∥∥yδ − F

(
xδ

α

)
− Kα

(
x − xδ

α

)∥∥2 + α (x − xa)
T Rα (x − xa) . (G.19)

Proof. In (G.4) we put
�yδ = yδ − F

(
xδ

α

)
+ Kαxδ

α,

and observe that xδ
α is as in (G.5) with �yδ in place of yδ and Kα in place of K. We now

apply Proposition G.1 and use the results∥∥�yδ − Kxδ
α

∥∥2 =
∥∥yδ − F

(
xδ

α

)∥∥2
and ∥∥�yδ − Kx

∥∥2 =
∥∥yδ − F

(
xδ

α

)
− Kα

(
x − xδ

α

)∥∥2
to conclude.

Next, we introduce the following local property of F:∥∥F (x†)− F (x) − K (x)
(
x† − x

)∥∥ ≤ η
∥∥F (x†)− F (x)

∥∥ , 0 < η < 1, (G.20)

for all x ∈ Bρ

(
x†). This condition is a restriction on the nonlinearity of F, and by the

triangle inequality, we have∥∥K (x)
(
x† − x

)∥∥ ≤ (1 + η)
∥∥F (x†)− F (x)

∥∥ , x ∈ Bρ

(
x†) .

A bound for the solution error is stated by the following result.

Proposition G.3. Let xδ
α ∈ Bρ

(
x†) be a solution of equation (G.4) and let assumptions

(G.6), (G.7) and (G.20) hold. Then we have

∥∥xδ
α − x†∥∥2 ≤ c2

n

Δ2

α
+
(
x† − xa

)T
Rα

(
x† − xa

)
, (G.21)

with cn > 0.

Proof. With F
(
x†) = y and x = xδ

α, the nonlinearity assumption (G.20) reads as∥∥y − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥ ≤ η
∥∥y − F

(
xδ

α

)∥∥ .
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The ‘linearization error’ at xδ
α can then be estimated as∥∥yδ − F

(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥ ≤ ∥∥y − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥+ Δ

≤ η
∥∥yδ − F

(
xδ

α

)∥∥+ (1 + η) Δ, (G.22)

and we find that∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥2 − ∥∥yδ − F
(
xδ

α

)∥∥2
≤
(
η2 − 1

) ∥∥yδ − F
(
xδ

α

)∥∥2 + 2η (1 + η) Δ
∥∥yδ − F

(
xδ

α

)∥∥+ (1 + η)2 Δ2. (G.23)

The inequality
2ab ≤ a2 + b2,

with

a =
√

1 − η2
∥∥yδ − F

(
xδ

α

)∥∥ , b =
η (1 + η) Δ√

1 − η2
, 0 < η < 1,

yields

2η (1 + η) Δ
∥∥yδ − F

(
xδ

α

)∥∥ ≤ (1 − η2
) ∥∥yδ − F

(
xδ

α

)∥∥2 + η2 1 + η

1 − η
Δ2,

and (G.23) becomes∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥2 − ∥∥yδ − F
(
xδ

α

)∥∥2 ≤ 1 + η

1 − η
Δ2. (G.24)

From (G.19) with x = x† and (G.24), we have

α
∥∥xδ

α − x†∥∥2 ≤ 1 + η

1 − η
Δ2 + α

(
x† − xa

)T
Rα

(
x† − xa

)
,

and we conclude that (G.21) holds with

cn =
√

1 + η

1 − η
.

G.2 A priori parameter choice method

To derive convergence rate results, we impose a source condition which is similar to (C.16):
for all x ∈ Bρ

(
x†), there holds

x† − xa =
[
K (x)T K (x)

]μ
z, (G.25)

with μ > 0 and z ∈ R
n. This condition can be interpreted as an abstract smoothness

condition for the difference x†−xa, where the smoothing properties of K(x)T K(x) should
be ‘uniform’ in some sense and do not change very much when x varies in a small ball
around the exact solution. Actually, we will use the source condition (G.25) for x = xδ

α,
and this representation is justified if xδ

α is not too far from x†.
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Theorem G.4. Let xδ
α ∈ Bρ

(
x†) be a solution of equation (G.4) and let assumptions

(G.6), (G.7), (G.8), (G.20) and (G.25) hold. Then, for the a priori parameter choice method

α =
(

Δ
‖z‖

) 2
2μ+1

, (G.26)

we have the error estimate∥∥xδ
α − x†∥∥ = O

(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0

2
. (G.27)

Proof. We start by evaluating the term

(
x† − xa

)T
Rα

(
x† − xa

)
=

n∑
i=1

[
1 − σ2

i gα

(
σ2

i

)] [
vT

i

(
x† − xa

)]2
. (G.28)

The source condition (G.25), written as

x† − xa =
(
KT

αKα

)μ
z =

n∑
j=1

σ2μ
j

(
vT

j z
)
vj ,

together with the orthogonality relation vT
i vj = δij and assumption (G.8), gives

(
x† − xa

)T
Rα

(
x† − xa

)
=

n∑
i=1

σ4μ
i

[
1 − σ2

i gα

(
σ2

i

)] (
vT

i z
)2 ≤ c2α

2μ ‖z‖2 (G.29)

for 0 < μ ≤ μ0/2. Inserting this estimate into (G.21) yields

∥∥xδ
α − x†∥∥2 ≤ c2

n

Δ2

α
+ c2α

2μ ‖z‖2
,

and, by (G.26), the conclusion readily follows.

G.3 Discrepancy principle

A simplified version of the discrepancy principle is used in the present analysis. The
residual norm at the solution is captured by a lower and an upper bound depending on
the noise level, that is, for ε > 0, we assume that there exists at least one regularization
parameter α > 0 so that

τdpΔ ≤
∥∥yδ − F

(
xδ

α

)∥∥ ≤ (τdp + ε
)
Δ. (G.30)

Before proceeding, we recall some matrix identities which we used in Appendix E in
a slightly different form. For K = UΣVT , we have, analogous to

gα

(
KT K

)
= V

[
diag

(
gα

(
σ2

i

))
n×n

]
VT ,
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the representation

gα

(
KKT

)
= U

[
diag

(
gα

(
σ2

i

))
m×m

]
UT , (G.31)

with the convention gα

(
σ2

i

)
= gα (0) = limλ→0 gα (λ) for i = n + 1, . . . , m. Then, we

find that (see (E.23))

Kgα

(
KT K

)
KT = U

[
diag

(
σ2

i gα

(
σ2

i

))
n×n

0
0 0

]
UT (G.32)

and that

gα

(
KKT

)
KKT = U

[
diag

(
σ2

i gα

(
σ2

i

))
n×n

0
0 0

]
UT . (G.33)

From (G.32) and (G.33), we obtain

Kgα

(
KT K

)
KT = gα

(
KKT

)
KKT , (G.34)

which then yields

K
[
In − gα

(
KT K

)
KT K

]
=
[
Im − gα

(
KKT

)
KKT

]
K. (G.35)

Using the representations

K
[
In − gα

(
KT K

)
KT K

]
x =

n∑
i=1

σi

[
1 − σ2

i g
(
σ2

i

)] (
vT

i x
)
ui

and

(
KT K

) 1
2
[
In − gα

(
KT K

)
KT K

]
x =

n∑
i=1

σi

[
1 − σ2

i gα

(
σ2

i

)] (
vT

i x
)
vi,

we deduce that∥∥K [In − gα

(
KT K

)
KT K

]
x
∥∥ =

∥∥∥(KT K
) 1

2
[
In − gα

(
KT K

)
KT K

]
x
∥∥∥ ; (G.36)

this together with (G.35) then gives∥∥[Im − gα

(
KKT

)
KKT

]
Kx
∥∥ =

∥∥∥(KT K
) 1

2
[
In − gα

(
KT K

)
KT K

]
x
∥∥∥ . (G.37)

The following moment inequality, which is a consequence of the Hölder inequality,
will be frequently used in the sequel.

Proposition G.5. Let A ∈ R
n×n be a positive definite matrix. Then there holds the

moment inequality
‖Arx‖ ≤ ‖Asx‖

r
s ‖x‖1− r

s , 0 ≤ r ≤ s. (G.38)
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Proof. For r = s we have equality and we consider the case r < s. If A = VΣVT is a
singular value decomposition of the positive definite matrix A, we have

Arx =
n∑

i=1

σr
i

(
vT

i x
)
vi,

and therefore,

‖Arx‖2 =
n∑

i=1

σ2r
i

(
vT

i x
)2

. (G.39)

Similarly, we have

‖Asx‖
2r
s =

[
n∑

i=1

σ2s
i

(
vT

i x
)2] r

s

, (G.40)

and, from x =
∑n

i=1

(
vT

i x
)
vi, there holds

‖x‖2(1− r
s ) =

[
n∑

i=1

(
vT

i x
)2]1− r

s

. (G.41)

We consider now the Hölder inequality

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

) 1
p
(

n∑
i=1

bq
i

) 1
q

,
1
p

+
1
q

= 1, ai, bi ≥ 0,

with
p =

s

r
, q =

s

s − r
,

and
ai = σ2r

i

(
vT

i x
) 2r

s , bi =
(
vT

i x
) 2(s−r)

s .

Since
aibi = σ2r

i

(
vT

i x
)2

, ap
i = σ2s

i

(
vT

i x
)2

, bq
i =
(
vT

i x
)2

,

we obtain

n∑
i=1

σ2r
i

(
vT

i x
)2 ≤

[
n∑

i=1

σ2s
i

(
vT

i x
)2] r

s
[

n∑
i=1

(
vT

i x
)2]1− r

s

,

and, by (G.39)–(G.41), we see that (G.38) holds.

Theorem G.6. Let the assumptions of Theorem G.4 hold. Then, if we select the regular-
ization parameter from the discrepancy principle (G.30) with

τdp >
1 + η + ηε

1 − η
, (G.42)

we have the error estimate∥∥xδ
α − x†∥∥ = O

(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ min

(
1
2
, μ0 −

1
2

)
. (G.43)
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Proof. The proof relies on the error bound (G.21), written for convenience as∥∥xδ
α − x†∥∥2 ≤ e2

s + e2
n, (G.44)

with
e2
s =

(
x† − xa

)T
Rα

(
x† − xa

)
and

e2
n = c2

n

Δ2

α
, cn > 0.

The quantities es and en can be interpreted as bounds for the smoothing and noise errors,
respectively. As in the linear case, we estimate es and en separately.

(a). To estimate es, we first consider the source condition (G.25) for x = xδ
α and

exploit the symmetry of the matrix
(
KT

αKα

)μ
to obtain(

x† − xa

)T
Rα

(
x† − xa

)
= zT

(
KT

αKα

)μ
Rα

(
x† − xa

)
≤
∥∥∥(KT

αKα

)μ
Rα

(
x† − xa

)∥∥∥ ‖z‖ . (G.45)

Assuming 0 < μ ≤ 1/2 and applying the moment inequality (G.38) with

r = 2μ, s = 1,

and
A =

(
KT

αKα

) 1
2 , x = Rα

(
x† − xa

)
,

gives∥∥∥(KT
αKα

)μ
Rα

(
x† − xa

)∥∥∥ ≤ ∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥2μ ∥∥Rα

(
x† − xa

)∥∥1−2μ
,

whence, (G.45) becomes

(
x† − xa

)T
Rα

(
x† − xa

)
≤ ‖z‖

∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥2μ ∥∥Rα

(
x† − xa

)∥∥1−2μ
.

(G.46)

On the other hand, the condition (cf. (G.6) and (G.7))

0 ≤ 1 − λgα (λ) ≤ 1, (G.47)

together with (G.18) and (G.28) yields

∥∥Rα

(
x† − xa

)∥∥2 =
n∑

i=1

[
1 − σ2

i gα

(
σ2

i

)]2 [
vT

i

(
x† − xa

)]2
≤

n∑
i=1

[
1 − σ2

i gα

(
σ2

i

)] [
vT

i

(
x† − xa

)]2
=
(
x† − xa

)T
Rα

(
x† − xa

)
. (G.48)
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Combining (G.46) and (G.48), we obtain

∥∥Rα

(
x† − xa

)∥∥ ≤ ‖z‖
1

2μ+1

∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥ 2μ
2μ+1

,

and inserting this result back into (G.46), we find a first estimate for es,

e2
s ≤ ‖z‖

2
2μ+1

∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥ 4μ
2μ+1

. (G.49)

To express this estimate in terms of the noise level Δ we proceed to derive a bound for∥∥∥(KT
αKα

)1/2
Rα

(
x† − xa

)∥∥∥. For this purpose, we consider the Euler equation (G.4),

xδ
α = xa + gα

(
KT

αKα

)
KT

α

[
yδ − F

(
xδ

α

)
+ Kα

(
xδ

α − xa

)]
.

Multiplying this equation by Kα and using (G.34), gives

yδ − F
(
xδ

α

)
=
[
Im − gα

(
KαKT

α

)
KαKT

α

] [
yδ − F

(
xδ

α

)
+ Kα

(
xδ

α − xa

)]
, (G.50)

and further[
Im − gα

(
KαKT

α

)
KαKT

α

]
Kα

(
x† − xa

)
= yδ − F

(
xδ

α

)
−
[
Im − gα

(
KαKT

α

)
KαKT

α

] [
yδ − F

(
xδ

α

)
− Kα

(
x† − xδ

α

)]
.

(G.51)

By (G.22) and (G.30), the last factor in the right-hand side of (G.51) can be bounded as∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥ ≤ η
∥∥yδ − F

(
xδ

α

)∥∥+ (1 + η) Δ

≤
[
η
(
τdp + ε

)
+ 1 + η

]
Δ. (G.52)

This result together with the matrix norm equality (cf. (G.33) and (G.47))∥∥Im − gα

(
KαKT

α

)
KαKT

α

∥∥ = 1, (G.53)

leads to the following estimate for the left-hand side of (G.51) (cf. (G.30)),∥∥[Im − gα

(
KαKT

α

)
KαKT

α

]
Kα

(
x† − xa

)∥∥
≤
∥∥yδ − F

(
xδ

α

)∥∥+
∥∥Im − gα

(
KαKT

α

)
KαKT

α

∥∥∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥
≤ (1 + η)

(
1 + τdp + ε

)
Δ. (G.54)

By (G.37), (G.54) becomes∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥ ≤ (1 + η)
(
1 + τdp + ε

)
Δ, (G.55)

and (G.49) takes the form

e2
s ≤ c2

sdp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , 0 < μ ≤ 1/2, (G.56)



Sect. G.3 Discrepancy principle 359

with
csdp =

[
(1 + η)

(
1 + τdp + ε

)] 2μ
2μ+1 .

(b) To derive an estimate for en, we look at a lower bound for α. Taking into account
that ∥∥∥(KT

αKα

) 1
2 Rα

(
x† − xa

)∥∥∥2 =
n∑

i=1

(
σ2

i

)2μ+1 [
1 − σ2

i g
(
σ2

i

)]2 (
vT

i z
)2

,

and that (cf. (G.8))(
σ2

i

)μ+ 1
2
[
1 − σ2

i g
(
σ2

i

)]
≤ c2α

μ+ 1
2 , 0 < μ ≤ μ0 −

1
2
,

we obtain ∥∥∥(KT
αKα

) 1
2 Rα

(
x† − xa

)∥∥∥2 ≤ c2
2α

2μ+1 ‖z‖2
, (G.57)

and further (cf. (G.37))∥∥[Im − gα

(
KαKT

α

)
KαKT

α

]
Kα

(
x† − xa

)∥∥ ≤ c2α
μ+ 1

2 ‖z‖ . (G.58)

Moreover, from (G.30), (G.51), (G.52) and (G.53), we have

τdpΔ ≤
∥∥yδ − F

(
xδ

α

)∥∥ ≤ ∥∥[Im − gα

(
KαKT

α

)
KαKT

α

]
Kα

(
x† − xa

)∥∥
+
∥∥Im − gα

(
KαKT

α

)
KαKT

α

∥∥
×
∥∥yδ − F

(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥
≤
∥∥[Im − gα

(
KαKT

α

)
KαKT

α

]
Kα

(
x† − xa

)∥∥
+
[
η
(
τdp + ε

)
+ 1 + η

]
Δ, (G.59)

and as a result, (G.42) and (G.58) yield

α ≥
[
τdp (1 − η) − (1 + η + ηε)

c2

] 2
2μ+1

(
Δ
‖z‖

) 2
2μ+1

. (G.60)

Thus,

e2
n ≤ c2

ndp

(
‖z‖2

) 1
2μ+1 (

Δ2
) 2μ

2μ+1 , 0 < μ ≤ μ0 −
1
2
, (G.61)

with

cndp = cn

[
c2

τdp (1 − η) − (1 + η + ηε)

] 1
2μ+1

. (G.62)

The conclusion now follows from (G.56) and (G.61).

To estimate en we used assumptions (G.8) with μ ≤ μ0 − 1/2 and (G.42). In fact, we
can avoid this computational step and disregard the condition μ ≤ μ0 − 1/2 by assuming
that

τdp ≥
1 + η

1 − η
.
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To see this, we use (G.19) with x = x† and (G.23) to obtain∥∥xδ
α − x†∥∥2

≤
(
x† − xa

)T
Rα

(
x† − xa

)
+

1
α

[∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥2
−
∥∥yδ − F

(
xδ

α

)∥∥2]
≤
(
x† − xa

)T
Rα

(
x† − xa

)
+

1 + η

α

[
(η − 1)

∥∥yδ − F
(
xδ

α

)∥∥2
+ 2ηΔ

∥∥yδ − F
(
xδ

α

)∥∥+ (1 + η) Δ2
]
.

By the above assumption and the discrepancy principle condition (G.30) we have

1 + η

1 − η
Δ ≤ τdpΔ ≤

∥∥yδ − F
(
xδ

α

)∥∥ ;

this yields

(η − 1)
∥∥yδ − F

(
xδ

α

)∥∥2 + 2ηΔ
∥∥yδ − F

(
xδ

α

)∥∥+ (1 + η) Δ2

≤
[
(η − 1) + 2η

1 − η

1 + η
+

(1 − η)2

1 + η

]∥∥yδ − F
(
xδ

α

)∥∥2 = 0,

and we find that ∥∥xδ
α − x†∥∥2 ≤

(
x† − xa

)T
Rα

(
x† − xa

)
. (G.63)

Thus, to estimate the solution error
∥∥xδ

α − x†∥∥, we have only to evaluate es as in (G.56).
In this regard, we can formulate the following result.

Theorem G.7. Let the assumptions of Theorem G.4 excepting assumption (G.8) hold.
Then, if we select the regularization parameter from the discrepancy principle (G.30) with

τdp ≥
1 + η

1 − η
, (G.64)

we have the error estimate∥∥xδ
α − x†∥∥ = O

(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ 1

2
. (G.65)

The main drawback of the convergence rate (G.43) is that it suffers from a saturation
effect: for regularization methods with μ0 > 1, (G.43) holds for μ ≤ 1/2, and a conver-
gence rate better than O(

√
Δ) cannot be achieved. To eliminate this inconvenience, we

suppose that the iteration function gα satisfies the additional condition

0 ≤
√

λgα (λ) ≤ c0√
α

(G.66)

for all α > 0, λ ∈ [0, σ2
max] and c0 > 0. Assumption (G.66) holds for the method of

Tikhonov regularization with c0 = 1/2, and for the regularization methods (G.10) and
(G.11) with c0 = 1.
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Theorem G.8. Let the assumptions of Theorem G.4 together with assumption (G.66) hold.
Then, if we select the regularization parameter from the discrepancy principle (G.30) with
τdp as in (G.42), we have the error estimate∥∥xδ

α − x†∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
. (G.67)

Proof. First, we proceed to derive another error bound than in (G.21). For this purpose,
we express the Euler equation (G.4) as

xδ
α − x† = Rα

(
xa − x†)+ gα

(
KT

αKα

)
KT

α

[
yδ − F

(
xδ

α

)
− Kα

(
x† − xδ

α

)]
. (G.68)

For any w ∈ R
m, assumption (G.66) yields

∥∥gα

(
KT

αKα

)
KT

αw
∥∥2 =

n∑
i=1

σ2
i g2

α

(
σ2

i

) (
uT

i w
)2 ≤ c2

0

α
‖w‖2

, (G.69)

and this result together with (G.52) and (G.68) gives∥∥xδ
α − x†∥∥ ≤∥∥Rα

(
x† − xa

)∥∥+
c0√
α

∥∥yδ − F
(
xδ

α

)
− Kα

(
x† − xδ

α

)∥∥
≤
∥∥Rα

(
x† − xa

)∥∥+ cn1
Δ√
α

, (G.70)

with
cn1 = c0

[
η
(
τdp + ε

)
+ 1 + η

]
.

Thus, the solution error can be bounded as∥∥xδ
α − x†∥∥ ≤ es + en, (G.71)

where
es =

∥∥Rα

(
x† − xa

)∥∥ , en = cn1
Δ√
α

.

(a) To estimate es, we use the symmetry relation

Rα

(
KT

αKα

)μ
=
(
KT

αKα

)μ
Rα

to obtain ∥∥Rα

(
x† − xa

)∥∥ =
∥∥∥(KT

αKα

)μ
Rαz
∥∥∥ . (G.72)

By the moment inequality (G.38), with

r = μ, s = μ +
1
2
,

and
A = KT

αKα, x = Rαz,

we find that ∥∥∥(KT
αKα

)μ
Rαz
∥∥∥ ≤ ∥∥∥(KT

αKα

)μ+ 1
2 Rαz

∥∥∥ 2μ
2μ+1

‖Rαz‖
1

2μ+1 . (G.73)
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The estimate ‖Rα‖ ≤ 1 together with the identity(
KT

αKα

)μ+ 1
2 Rαz =

(
KT

αKα

) 1
2 Rα

(
x† − xa

)
(G.74)

and the relations (G.55), (G.72) and (G.73) then yields

es ≤ csdp ‖z‖
1

2μ+1 Δ
2μ

2μ+1 , (G.75)

with csdp as in (G.56).
(b) To estimate en we proceed as in Theorem G.6, and obtain

en ≤ cndp ‖z‖
1

2μ+1 Δ
2μ

2μ+1 , 0 < μ ≤ μ0 −
1
2
, (G.76)

with cndp depending now on cn1 instead of cn. The desired error estimate follows then from
(G.75) and (G.76).

If instead of (G.42) we assume (G.64), we have the following theorem.

Theorem G.9. Under the same assumptions as in Theorem G.8, if we select the regular-
ization parameter from the discrepancy principle (G.30) with τdp as in (G.64), then there
holds the error estimate∥∥xδ

α − x†∥∥ = O
(
‖z‖

1
2μ+1 Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0

2
. (G.77)

Proof. We distinguish two cases. In the first case, we assume that

α ≤
(

Δ
‖z‖

) 2
2μ+1

. (G.78)

For the choice (G.64), the solution error is bounded as in (G.63). Then, as in the proof of
Theorem G.4, assumption (G.8) yields the error estimate∥∥xδ

α − x†∥∥2 ≤ c2α
2μ ‖z‖2

, 0 < μ ≤ μ0

2
,

and, by (G.78), the conclusion readily follows. In the second case, we suppose that

α >

(
Δ
‖z‖

) 2
2μ+1

. (G.79)

Assumption (G.66) gives the error bound (G.70). Then, for estimating es=
∥∥Rα(x† − xa)

∥∥,
we proceed as in Theorem G.8 and derive the bound (G.75), while for estimating en, we
use (G.79) to obtain

en = cn1
Δ√
α

< cn1 ‖z‖
1

2μ+1 Δ
2μ

2μ+1 .
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We conclude our analysis by mentioning that condition (G.6) is too sharp for a regular-
ization method which uses as inner iteration the p-times iterated Tikhonov regularization.
At each Newton step k, this approach applies the p-times iterated Tikhonov regularization
(with fixed p) to the linearized equation (G.12), that is,

�xδ
αk0 = 0,

�xδ
αkl = �xδ

αkl−1 + K†
αk

(
yδ

k − Kαk � xδ
αkl−1

)
, 1 ≤ l ≤ p, (G.80)

xδ
αk+1 = xa + �xδ

αkp,

in which case,

gα (λ) =
1
λ

[
1 −
(

α

λ + α

)p]
, μ0 = p, (G.81)

and
0 ≤ gα (λ) ≤ p

α
.

However, the proof of Theorem G.8 reveals that assumption (G.6) is only used in conjunc-
tion with assumption (G.7) to derive the estimate

0 ≤ 1 − λgα (λ) ≤ 1, (G.82)

which then yields ‖Rα‖ ≤ 1. Therefore, if instead of (G.6) and (G.7) we assume that (G.82)
holds, and furthermore, if we take into account that, for gα as in (G.81), condition (G.66)
is satisfied with c0 = p, we deduce that a regularization method using as inner iteration the
p-times iterated Tikhonov regularization is of optimal order for 0 < μ ≤ μ0 − 1/2.



H

A general iterative regularization method
for nonlinear problems

The iteratively regularized Gauss–Newton method belongs to the class of Newton-type
methods with a priori information, in which case, the linearized equation is solved by
means of Tikhonov regularization with a penalty term depending on the a priori. By con-
trast, the regularizing Levenberg–Marquardt method can be categorized as a Newton-type
method without a priori information, since the penalty term depends on the previous iter-
ate and not on the a priori. In this appendix we analyze both regularization methods in a
general setting.

H.1 Newton-type methods with a priori information

A regularization method accounting for a priori information uses the iteration

xδ
k+1 = xa + gαk

(
KT

k Kk

)
KT

k yδ
k, k = 0, 1, . . . ,

where Kk = K
(
xδ

k

)
, xδ

0 = xa,

yδ
k = yδ − F

(
xδ

k

)
+ Kk

(
xδ

k − xa

)
,

and {αk} is a monotonically decreasing sequence satisfying the requirements

1 <
αk

αk+1
≤ c, αk > 0. (H.1)

The iteration function gα fulfills assumptions (G.8), (G.66) and (G.82). In particular, when

gα (λ) =
1

λ + α
,

we obtain the iteratively regularized Gauss–Newton method; otherwise, gα may corre-
spond to iterated Tikhonov regularization with fixed order (cf. (G.80) and (G.81)) and the
Landweber iteration (cf. (G.11) and (G.13)). To prove convergence rate results, we closely
follow the studies of Deuflhard et al. (1998) and Kaltenbacher et al. (2008).
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Our analysis will be carried out under the nonlinearity assumption∥∥K (x) − K
(
x†)∥∥ ≤ cK

∥∥K (x†) (x − x†)∥∥ , x ∈ Bρ

(
x†) , (H.2)

where x† is a solution of the nonlinear equation with exact data F (x) = y. The lineariza-
tion error can be estimated as∥∥F (x) − F

(
x†)− K

(
x†) (x − x†)∥∥

≤
∫ 1

0

∥∥[K (x† + t
(
x − x†))− K

(
x†)] (x − x†)∥∥ dt

≤
∥∥x − x†∥∥∫ 1

0

∥∥K (x† + t
(
x − x†))− K

(
x†)∥∥ dt

≤ cK
2

∥∥x − x†∥∥∥∥K (x†) (x − x†)∥∥ , (H.3)

while application of the triangle inequality yields∥∥F (x) − F
(
x†)− K (x)

(
x − x†)∥∥

≤
∥∥F (x) − F

(
x†)− K

(
x†) (x − x†)∥∥+

∥∥[K (x†)− K (x)
] (

x − x†)∥∥
≤ 3cK

2

∥∥x − x†∥∥∥∥K (x†) (x − x†)∥∥ . (H.4)

Convergence rate results will be derived by assuming the source condition

x† − xa =
[
K
(
x†)T K

(
x†)]μ z, (H.5)

with μ > 0 and z ∈ R
n. Note that the Jacobian matrix in (H.5) is evaluated at x†, while

the Jacobian matrix in (G.25) is evaluated at x and does not change very much when x
varies in a small ball around x†.

The iteration error defined by

eδ
k+1 = xδ

k+1 − x†

can be expressed as (compare to (G.68))

eδ
k+1 = Rk

(
xa − x†)+ gαk

(
KT

k Kk

)
KT

k

[
yδ − F

(
xδ

k

)
+ Kkeδ

k

]
(H.6)

where the residual matrix Rk is as in (G.17), i.e.,

Rk = In − gαk

(
KT

k Kk

)
KT

k Kk.

Setting K = K
(
x†) and

R = In − gαk

(
KT K

)
KT K

we summarize some results of Appendix G, which will be used in the sequel.
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(1) Analogously to (G.69), assumption (G.66) gives∥∥gαk

(
KT

k Kk

)
KT

k w
∥∥ ≤ c0√

αk
‖w‖ (H.7)

for all w ∈ R
m.

(2) Assumption (G.8) and the source condition (H.5) yield, for 0 < μ ≤ μ0,

∥∥R (xa − x†)∥∥2 =
n∑

i=1

σ4μ
i

[
1 − σ2

i gαk

(
σ2

i

)]2 (
vT

i z
)2 ≤ c2

2α
2μ
k ‖z‖2

, (H.8)

where (σi;vi,ui) is a singular system of K.
(3) Assumption (G.8) and the source condition (H.5) give a relation similar to (G.57); this

together with (G.36) implies that∥∥KR
(
xa − x†)∥∥ ≤ c2α

μ+ 1
2

k ‖z‖ , 0 < μ ≤ μ0 −
1
2
. (H.9)

(4) The matrix factorization (G.32) and assumption (G.82) give∥∥Kkgαk

(
KT

k Kk

)
KT

k

∥∥ ≤ 1. (H.10)

(5) The source condition (H.5) in conjunction with the relations (G.36), (G.72), (G.73),
(G.74), and the estimate (cf. (G.82)) ‖R‖ ≤ 1 yields∥∥R (xa − x†)∥∥ ≤ ∥∥KR

(
xa − x†)∥∥ 2μ

2μ+1 ‖z‖
1

2μ+1 . (H.11)

Replacing the source condition (G.25) by (H.5) requires further assumptions on gα, namely

‖R1 − R2‖ ≤ cR√
α
‖K1 − K2‖ (H.12)

and
‖K2 (R1 − R2)‖ ≤ cR ‖K1 − K2‖ (H.13)

for all K1,K2 ∈ R
m×n, and Ri = In − gα

(
KT

i Ki

)
KT

i Ki, i = 1, 2. These con-
ditions have been verified for Tikhonov regularization, iterated Tikhonov regularization
and the Landweber iteration in Kaltenbacher et al. (2008). It is remarkable to note that
Kaltenbacher et al. (2008) considered a regularization method with the non-stationary it-
erated Tikhonov regularization, when the order pk is variable and αk depends on pk. By
(H.12), (H.13), the local property (H.2), and the assumption xa ∈ Bρ

(
x†), we deduce that∥∥(Rk − R)

(
xa − x†)∥∥ ≤ cR√

αk
‖Kk − K‖

∥∥xa − x†∥∥ ≤ cRcK√
αk

ρ
∥∥Keδ

k

∥∥ (H.14)

and that∥∥K (Rk − R)
(
xa − x†)∥∥ ≤ cR ‖Kk − K‖

∥∥xa − x†∥∥ ≤ cRcKρ
∥∥Keδ

k

∥∥ . (H.15)
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H.1.1 Error estimates

Before proving convergence rates we need to derive estimates for
∥∥eδ

k+1

∥∥ and
∥∥Keδ

k+1

∥∥.

Proposition H.1. Let assumptions (G.8), (G.66), (G.82), (H.2), (H.5), (H.12) and (H.13)
hold. Then, if xa ∈ Bρ

(
x†) , we have the estimates

∥∥eδ
k+1

∥∥ ≤c2 ‖z‖αμ
k +

cRcK√
αk

ρ
∥∥Keδ

k

∥∥+
c0√
αk

(
3cK
2

∥∥eδ
k

∥∥∥∥Keδ
k

∥∥+ Δ
)

(H.16)

and ∥∥Keδ
k+1

∥∥ ≤ c2 ‖z‖α
μ+ 1

2
k + cRcKρ

∥∥Keδ
k

∥∥
+
(

cKc0√
αk

∥∥Keδ
k

∥∥+ 1
)(

3cK
2

∥∥eδ
k

∥∥∥∥Keδ
k

∥∥+ Δ
)

, (H.17)

for 0 < μ ≤ μ0 − 1/2.

Proof. The iteration error (H.6) can be expressed as

eδ
k+1 = R

(
xa − x†)+ (Rk − R)

(
xa − x†)

+ gαk

(
KT

k Kk

)
KT

k

[
yδ − F

(
xδ

k

)
+ Kkeδ

k

]
, (H.18)

whence, using (H.7), (H.8), (H.14), and the result (cf. (H.4))∥∥yδ − F
(
xδ

k

)
+ Kkeδ

k

∥∥ ≤ ∥∥y − F
(
xδ

k

)
+ Kkeδ

k

∥∥+ Δ ≤ 3cK
2

∥∥eδ
k

∥∥∥∥Keδ
k

∥∥+ Δ,

(H.19)
we obtain (H.16). Similarly, the representation

Keδ
k+1 = KR

(
xa − x†)+ K (Rk − R)

(
xa − x†)

+ Kkgαk

(
KT

k Kk

)
KT

k

[
yδ − F

(
xδ

k

)
+ Kkeδ

k

]
+ (K − Kk) gαk

(
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k Kk

)
KT

k

[
yδ − F

(
xδ

k

)
+ Kkeδ

k

]
(H.20)

together with (H.9), (H.10), (H.15), (H.19) and (cf. (H.2) and (H.7))∥∥(K − Kk) gαk

(
KT

k Kk

)
KT

k

[
yδ − F

(
xδ

k

)
+ Kkeδ

k

]∥∥
≤ cKc0√

αk

∥∥Keδ
k

∥∥∥∥yδ − F
(
xδ

k

)
+ Kkeδ

k

∥∥
yields (H.17).

H.1.2 A priori stopping rule

Similarly to the a priori parameter choice method (G.26), we consider the stopping rule:

ϑα
μ+ 1

2
k� ≤ Δ ≤ ϑα

μ+ 1
2

k , 0 ≤ k < k	, (H.21)

with ϑ > 0 and 0 < μ ≤ μ0 − 1/2.
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Theorem H.2. Let assumptions (G.8), (G.66), (G.82), (H.2), (H.5), (H.12) and (H.13)
hold. Moreover, let αk be chosen as in (H.1) with α0 satisfying∥∥K (xa − x†)∥∥ ≤ α

μ+ 1
2

0 , (H.22)

and assume that ‖z‖, ρ and ϑ are sufficiently small such that

Ccμ+ 1
2 ≤ 1, (H.23)

with

C = c2 ‖z‖ + ϑ + cK

(
cR +

3cKc0

2
αμ

0 +
3
2

)
ρ + cKc0ϑαμ

0 ,

holds. If k∗ is chosen according to the stopping rule (H.21) and xδ
k ∈ Bρ

(
x†) for all

k = 0, . . . , k	 − 1, then we have the estimate∥∥Keδ
k

∥∥ ≤ α
μ+ 1

2
k , k = 0, . . . , k	, (H.24)

and the convergence rate∥∥xδ
k� − x†∥∥ = O

(
Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
. (H.25)

Proof. The assumption xδ
k ∈ Bρ

(
x†) gives

∥∥eδ
k

∥∥ ≤ ρ for k = 0, . . . , k	 − 1. Then, using
(H.21), we express the estimates (H.16) and (H.17), for k = 0, . . . , k	 − 1, as

∥∥eδ
k+1

∥∥ ≤ (c2 ‖z‖ + c0ϑ) αμ
k + cK

(
cR +

3c0

2

)
ρ

√
αk

∥∥Keδ
k

∥∥ (H.26)

and ∥∥Keδ
k+1

∥∥ ≤ (c2 ‖z‖ + ϑ) α
μ+ 1

2
k

+
[
cK

(
cR +

3cKc0

2
√

αk

∥∥Keδ
k

∥∥+
3
2

)
ρ + cKc0ϑαμ

k

] ∥∥Keδ
k

∥∥ , (H.27)

respectively. To prove (H.24), we proceed by induction. For k = 0, the estimate (H.24)
is valid due to assumption (H.22). Supposing that (H.24) holds for some k ≤ k	 − 1, and
making use of (H.1) and (H.23), we see that (H.27) yields

∥∥Keδ
k+1

∥∥ ≤ α
μ+ 1

2
k

[
c2 ‖z‖ + ϑ + cK

(
cR +

3cKc0

2
αμ

k +
3
2

)
ρ + cKc0ϑαμ

k

]
≤ α

μ+ 1
2

k

[
c2 ‖z‖ + ϑ + cK

(
cR +

3cKc0

2
αμ

0 +
3
2

)
ρ + cKc0ϑαμ

0

]
≤ Ccμ+ 1

2 α
μ+ 1

2
k+1

≤ α
μ+ 1

2
k+1 .
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Thus, the estimate (H.24) is valid for all k = 0, . . . , k	, and by (H.26) we find that

∥∥eδ
k�

∥∥ ≤ cμαμ
k�

[
c2 ‖z‖ + c0ϑ + cK

(
cR +

3c0

2

)
ρ

]
. (H.28)

From (H.21) and (H.28) we obtain

∥∥xδ
k� − x†∥∥ = O (αμ

k�) = O

((
α

μ+ 1
2

k�

) 2μ
2μ+1

)
= O

(
Δ

2μ
2μ+1

)
,

and the proof is finished.

In view of Theorem H.2, the best convergence rate of the iteratively regularized Gauss–
Newton method is O(

√
Δ). However, under slightly different assumptions, Kaltenbacher

et al. (2008) proved that the best possible rate which can be achieved with the a priori rule
(H.21) is O(Δ2/3).

H.1.3 Discrepancy principle

As in (G.30), the following simplified version of the discrepancy principle is used in our
analysis: the stopping index k	 is chosen so that the residual norm at the last iterate falls
below τdpΔ, ∥∥yδ − F

(
xδ

k�

)∥∥ < τdpΔ ≤
∥∥yδ − F

(
xδ

k

)∥∥ , 0 ≤ k < k	, (H.29)

and the previous residual norm is of the order of magnitude of the noise level

τdpΔ ≤
∥∥yδ − F

(
xδ

k�−1

)∥∥ ≤ (τdp + ε
)
Δ, ε > 0. (H.30)

Under the assumption that xδ
k ∈ Bρ

(
x†) for all k = 0, . . . , k	, the following partial

results can be established:

(1) By virtue of (H.3), we have∥∥F (x) − F
(
x†)∥∥

≤
∥∥F (x) − F

(
x†)− K

(
x†) (x − x†)∥∥+

∥∥K (x†) (x − x†)∥∥
≤
(
1 +

cK
2

∥∥x − x†∥∥)∥∥K (x†) (x − x†)∥∥ ,

and we obtain, for k = 0, . . . , k	 − 1,

τdpΔ ≤
∥∥yδ − F

(
xδ

k

)∥∥ ≤ (1 +
cK
2

ρ
)∥∥Keδ

k

∥∥+ Δ.

Thus,

Δ ≤ 1
τdp − 1

(
1 +

cK
2

ρ
)∥∥Keδ

k

∥∥ , τdp > 1. (H.31)
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(2) The triangle inequality∥∥K (x†) (x − x†)∥∥
≤
∥∥F (x) − F

(
x†)∥∥+

∥∥F (x) − F
(
x†)− K

(
x†) (x − x†)∥∥

together with (H.3) yields(
1 − cK

2

∥∥x − x†∥∥)∥∥K (x†) (x − x†)∥∥ ≤ ∥∥F (x) − F
(
x†)∥∥ ,

and, by (H.30), we infer that(
1 − cK

2
ρ
)∥∥Keδ

k�−1

∥∥ ≤ ∥∥yδ − F
(
xδ

k�−1

)∥∥+ Δ ≤
(
1 + τdp + ε

)
Δ.

Hence, ∥∥Keδ
k�−1

∥∥ ≤ 1 + τdp + ε

1 − cK
2

ρ
Δ, 0 < cK <

2
ρ
. (H.32)

Similarly, from (H.29) we deduce that∥∥Keδ
k�

∥∥ <
1 + τdp

1 − cK
2

ρ
Δ. (H.33)

Theorem H.3. Let the assumptions of Theorem H.2 hold, and suppose that ‖z‖ and ρ are
sufficiently small and that τdp > 1 is sufficiently large such that

Ccμ+ 1
2 ≤ 1, (H.34)

with

C = c2 ‖z‖ + cRcKρ + (cKc0α
μ
0 + 1)

[
3cK
2

ρ +
1

τdp − 1

(
1 +

cK
2

ρ
)]

,

is fulfilled. Moreover, let k	 be the stopping index of the discrepancy principle (H.29)–
(H.30), and assume that xδ

k ∈ Bρ

(
x†) for all k = 0, . . . , k	. Then we have the estimate∥∥Keδ

k

∥∥ ≤ α
μ+ 1

2
k , k = 0, . . . , k	, (H.35)

and the convergence rate∥∥xδ
k� − x†∥∥ = O

(
Δ

2μ
2μ+1

)
, 0 < μ ≤ μ0 −

1
2
. (H.36)

Proof. Under the assumption xδ
k ∈ Bρ

(
x†) and by virtue of (H.31), the error bounds

(H.16) and (H.17) become, for k = 0, . . . , k	 − 1,

∥∥eδ
k+1

∥∥ ≤ c2 ‖z‖αμ
k +
[
cK

(
cR +

3c0

2

)
ρ +

c0

τdp − 1

(
1 +

cK
2

ρ
)] 1

√
αk

∥∥Keδ
k

∥∥ (H.37)



372 A general iterative regularization method for nonlinear problems Annex H

and ∥∥Keδ
k+1

∥∥ ≤ c2 ‖z‖α
μ+ 1

2
k +

{
cRcKρ +

(
cKc0√

αk

∥∥Keδ
k

∥∥+ 1
)

×
[
3cK
2

ρ +
1

τdp − 1

(
1 +

cK
2

ρ
)]}∥∥Keδ

k

∥∥ , (H.38)

respectively. As in Theorem H.2, the estimate (H.35) is proven by induction using assump-
tion (H.22) and the closeness condition (H.34). Essentially, assuming that (H.35) holds for
some k ≤ k	 − 1, we find that∥∥Keδ

k+1

∥∥ ≤α
μ+ 1

2
k

{
c2 ‖z‖ + cRcKρ + (cKc0α

μ
k + 1)

[
3cK
2

ρ +
1

τdp − 1

(
1 +

cK
2

ρ
)]}

≤α
μ+ 1

2
k

{
c2 ‖z‖ + cRcKρ + (cKc0α

μ
0 + 1)

[
3cK
2

ρ +
1

τdp − 1

(
1 +

cK
2

ρ
)]}

≤α
μ+ 1

2
k+1 .

We proceed now to prove the convergence rate (H.36). First, we observe that the estimates
(H.31) and (H.35) yield

Δ ≤
1 +

cK
2

ρ

τdp − 1
α

μ+ 1
2

k�−1,

and therefore,

1
√

αk�−1
≤

⎛⎝1 +
cK
2

ρ

τdp − 1

⎞⎠
1

2μ+1

Δ− 1
2μ+1 .

Combining this result with (H.32) gives

1
√

αk�−1

∥∥Keδ
k�−1

∥∥ ≤ 1 + τdp + ε

1 − cK
2

ρ

⎛⎝1 +
cK
2

ρ

τdp − 1

⎞⎠
1

2μ+1

Δ
2μ

2μ+1 , (H.39)

and we deduce that
1

√
αk�−1

∥∥Keδ
k�−1

∥∥ = O
(
Δ

2μ
2μ+1

)
. (H.40)

The derivation of the estimate (H.16) relies on the error representation (H.18). Repeating
the steps of this derivation but without evaluating the term R

(
xa − x†), yields a bound for∥∥eδ

k+1

∥∥; this together with (H.31) gives (analogously to (H.37))

∥∥eδ
k�

∥∥ ≤ ∥∥R (xa − x†)∥∥+
[
cK

(
cR +

3c0

2

)
ρ

+
c0

τdp − 1

(
1 +

cK
2

ρ
)] 1

√
αk�−1

∥∥Keδ
k�−1

∥∥ . (H.41)
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Similarly, the error representation (H.20) yields an estimate for
∥∥KR

(
xa − x†)∥∥ which,

by virtue of (H.31), can be expressed as (analogously to (H.38))

∥∥KR
(
xa − x†)∥∥ ≤ ∥∥Keδ

k�

∥∥+
{

cRcKρ +
(

cKc0√
αk�−1

∥∥Keδ
k�−1

∥∥+ 1
)

×
[
3cK
2

ρ +
1

τdp − 1

(
1 +

cK
2

ρ
)]}∥∥Keδ

k�−1

∥∥ . (H.42)

From (H.32) and (H.33) we have
∥∥Keδ

k�−1

∥∥ = O(Δ) and
∥∥Keδ

k�

∥∥ = O(Δ), respectively.
Inserting these results into (H.42), we obtain∥∥KR

(
xa − x†)∥∥ = O (Δ) . (H.43)

Finally, (H.43) and the moment inequality (H.11) give∥∥R (xa − x†)∥∥ = O
(
Δ

2μ
2μ+1

)
, (H.44)

and the desired convergence rate follows from (H.41) in conjunction with (H.40) and
(H.44).

H.2 Newton-type methods without a priori information

An ingenious proof of convergence rate results for Newton-type methods without a priori
information has been provided by Rieder (1999, 2003). For the sake of completeness and
in order to evidence the elegance of the arguments employed, we present below a simplified
version of Rieder’s analysis.

Newton-type methods rely on the update formula

xδ
k+1 = xδ

k + pδ
k, k = 0, 1, . . . , (H.45)

where pδ
k is the Newton step and xδ

0 = xa. If x† is a solution of the nonlinear equation
with exact data F (x) = y, then

p†
k = x† − xδ

k

is the exact step, since in this case xδ
k+1 = x†. Using the Taylor expansion of the forward

model about xδ
k,

F
(
x†) = F

(
xδ

k

)
+ Kk

(
x† − xδ

k

)
+ R

(
x†,xδ

k

)
,

with Kk = K
(
xδ

k

)
, and taking into account that F

(
x†) = y, we see that p†

k solves the
equation

Kkp = rk, (H.46)

with
rk = y − F

(
xδ

k

)
− R

(
x†,xδ

k

)
.
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The exact step p†
k is the least squares solution of equation (H.46), and for Kk = UΣVT ,

we have

p†
k =

n∑
i=1

1
σi

(
uT

i rk

)
vi (H.47)

and

Kkp
†
k =

n∑
i=1

(
uT

i rk

)
ui. (H.48)

In practice, rk is unknown and only its noisy version,

rδ
k = yδ − F

(
xδ

k

)
,

is available; the deviation of rδ
k from rk,∥∥rδ

k − rk

∥∥ =
∥∥yδ − y + R

(
x†,xδ

k

)∥∥ ≤ Δ +
∥∥R (x†,xδ

k

)∥∥ , (H.49)

accounts of the instrumental noise and the linearization error. In the framework of Newton-
type methods without a priori information, pδ

αkk is computed as the solution of the equation

Kkp = rδ
k (H.50)

by using a general regularization method of the form

pδ
αkk = gαk

(
KT

k Kk

)
KT

k rδ
k,

and the new iterate is taken as xδ
k+1 = xδ

k + pδ
αkk. The iteration function gα may corre-

spond to Tikhonov regularization,

gα (λ) =
1

λ + α
,

the p-times iterated Tikhonov regularization (with fixed p),

gα (λ) =
1
λ

[
1 −
(

α

λ + α

)p]
,

and the Landweber iteration,

gα (λ) =
1
λ

[1 − (1 − λ)p] , α =
1
p
.

The last two regularization methods solve the linearized equation (H.50) by using the iter-
ations

pδ
0k = 0,

pδ
lk = pδ

l−1k + K†
k

(
rδ

k − Kkpδ
l−1k

)
, 1 ≤ l ≤ p,

pδ
αkk = pδ

pk,
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and

pδ
0k = 0,

pδ
lk = pδ

l−1k + KT
k

(
rδ

k − Kkpδ
l−1k

)
, 1 ≤ l ≤ pk,

respectively.
For the iteration and the residual functions, we consider the simplified assumptions

0 ≤ gα (λ) ≤ c1

α
, (H.51)

0 ≤ rα (λ) ≤ 1, rα (0) = 1, (H.52)
0 ≤ λrα (λ) ≤ c2α, (H.53)

for all α > 0, λ ∈ [0, σ2
max] and c1, c2 > 0. As usual, σ2

max is a bound for
∥∥K(x)T K(x)

∥∥
in Bρ

(
x†), and the iteration function gα (λ) is continuously extended at λ = 0 by setting

gα (0) = limλ→0 gα (λ). Conditions (H.51)–(H.53) hold for Tikhonov regularization with
c1 = c2 = 1, for the p-times iterated Tikhonov regularization with c1 = p and c2 =
(p − 1)p−1

/pp, and for the Landweber iteration with c1 = 1 and c2 = exp (−1).
The regularization method under examination belongs to the class of inexact Newton

iterations. It consists of an inner iteration, which provides the regularization parameter,
and an outer Newton iteration, which updates the current iterate. At the Newton step k,
the regularization parameter αk is chosen as follows: if {αj} is a geometric sequence of
regularization parameters with ratio q < 1, i.e., αj+1 = qαj , we choose αk = αj�(k) such
that the linearized residual is of the same order of magnitude with the nonlinear residual,∥∥∥rδ

k − Kkpδ
αj�(k)k

∥∥∥ ≤ θk

∥∥rδ
k

∥∥ <
∥∥∥rδ

k − Kkpδ
αjk

∥∥∥ , 0 ≤ j < j	 (k) . (H.54)

The Newton iteration is stopped according to the discrepancy principle in order to avoid
noise amplification, i.e.,∥∥yδ − F

(
xδ

k�

)∥∥ ≤ τdpΔ <
∥∥yδ − F

(
xδ

k

)∥∥ , 0 ≤ k < k	. (H.55)

The convergence analysis is performed by assuming the following local property of
the forward model:

K (x1) = Q (x1,x2)K (x2) , ‖Im − Q (x1,x2)‖ ≤ cQ ‖x1 − x2‖ , (H.56)

for all x1,x2 ∈ Bρ

(
x†) and cQ > 0. By virtue of (H.56), it is apparent that the norm of

the m × m matrix Q can be bounded in Bρ

(
x†) as

‖Q (x1,x2)‖ ≤ 1 + ‖Im − Q (x1,x2)‖ ≤ 1 + cQ ‖x1 − x2‖ ≤ c̄Q, (H.57)

with
c̄Q = 1 + 2cQρ,

and that
‖[K (x1) − K (x2)] (x1 − x2)‖ ≤ 2cQρ ‖K (x2) (x1 − x2)‖ .
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For the linearization error

R (x1,x2) = F (x1) − F (x2) − K (x2) (x1 − x2)

the estimate

‖R (x1,x2)‖ ≤
∫ 1

0

‖[K (x2 + t (x1 − x2)) − K (x2)] (x1 − x2)‖ dt

=
∫ 1

0

‖[Q (x2 + t (x1 − x2) ,x2) − Im]K (x2) (x1 − x2)‖ dt

≤ cQρ ‖K (x2) (x1 − x2)‖

and the triangle inequality

‖K (x2) (x1 − x2)‖ ≤ ‖R (x1,x2)‖ + ‖F (x1) − F (x2)‖

give
‖R (x1,x2)‖ ≤ ω ‖F (x1) − F (x2)‖ , (H.58)

with
ω =

cQρ

1 − cQρ
, 0 < cQρ < 1.

Particularizing the above estimate for x1 = x† and x2 = xδ
k, we obtain∥∥R (x†,xδ

k

)∥∥ ≤ ω
∥∥y − F

(
xδ

k

)∥∥ ≤ ω
(
Δ +

∥∥rδ
k

∥∥) . (H.59)

Before going any further, let us show that the selection criterion (H.54) is well defined.
For a regularization parameter α, the linearized residual can be computed as (cf. (E.27)
and (E.28)) ∥∥rδ

k − Kkpδ
αk

∥∥2 =
∥∥[Im − Kkgα

(
KT

k Kk

)
KT

k

]
rδ

k

∥∥2
=
∥∥rα

(
KkKT

k

)
rδ

k

∥∥2
=

m∑
i=1

r2
α

(
σ2

i

) (
uT

i rδ
k

)2
, (H.60)

with the convention rα

(
σ2

i

)
= 1 for i = n + 1, . . . , m. Supposing that rα is an increasing

function of α, we deduce that the linearized residual is also an increasing function of α,
and the additional assumption (cf. (C.15)) limα→0 rα (λ) = 0, yields

lim
α→0

∥∥rδ
k − Kkpδ

αk

∥∥2 =
∥∥rδ

k − Kkpδ
0k

∥∥2 =
m∑

i=n+1

(
uT

i rδ
k

)2
.

On the other hand, by virtue of (H.48), we have

rδ
k − rk = rδ

k − Kkp
†
k

= rδ
k −

n∑
i=1

(
uT

i rk

)
ui

=
n∑

i=1

[
uT

i

(
rδ

k − rk

)]
ui +

m∑
i=n+1

(
uT

i rδ
k

)
ui,
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and clearly,

∥∥rδ
k − rk

∥∥2 =
n∑

i=1

[
uT

i

(
rδ

k − rk

)]2
+

m∑
i=n+1

(
uT

i rδ
k

)2 �
∥∥rδ

k − Kkpδ
0k

∥∥2 . (H.61)

If we define τk by

τk =
θk

∥∥rδ
k

∥∥∥∥rδ
k − rk

∥∥ ,

then the selection criterion (H.54) can also be expressed as∥∥∥rδ
k − Kkpδ

αj�(k)k

∥∥∥ ≤ τk

∥∥rδ
k − rk

∥∥ <
∥∥∥rδ

k − Kkpδ
αjk

∥∥∥ , 0 ≤ j < j	 (k) . (H.62)

From (H.61), we observe that the existence of αk = αj�(k) in (H.62) is guaranteed if
τk > 1. This condition can be satisfied if the control parameters τdp and θk are chosen
appropriately. By (H.49) and (H.59), we find that

τk =
θk

∥∥rδ
k

∥∥∥∥rδ
k − rk

∥∥ ≥ θk

ω + (1 + ω)
Δ∥∥rδ
k

∥∥ ,

and the discrepancy principle condition (H.55) then gives

τk >
θk

ω + (1 + ω)
1

τdp

, 0 ≤ k < k	.

Assuming that

τdp >
1 + ω

1 − ω
, 0 < ω < 1, (H.63)

which yields

ω + (1 + ω)
1

τdp
< 1,

and choosing the tolerance θk as

ω + (1 + ω)
1

τdp
< θk ≤ 1, (H.64)

we find that τk > 1. Thus, conditions (H.63) and (H.64) guarantee that the selection
criterion (H.54) is well defined.

The next result states that the nonlinear residuals decrease linearly.

Proposition H.4. For 0 < η < 1, assume that

0 < ω <
η

η + 2
(H.65)

is satisfied, and choose the tolerances τdp and θk as

τdp >
1 + ω

η − (2 + η) ω
, ω + (1 + ω)

1
τdp

< θk ≤ η − (1 + η)ω. (H.66)
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Then, if xδ
k, xδ

k+1 ∈ Bρ

(
x†), there holds∥∥rδ

k+1

∥∥∥∥rδ
k

∥∥ ≤ θk + ω

1 − ω
≤ η. (H.67)

Proof. Let us first discuss the selection rules for τdp and θk. For 0 < η < 1, assumption
(H.65) yields 0 < ω < 1. Then, the obvious inequality

η − 1 < 0 < (1 + η) ω, (H.68)

together with assumption (H.65) gives

0 < η − (2 + η) ω < 1 − ω

and further, by (H.66),

τdp >
1 + ω

η − (2 + η) ω
>

1 + ω

1 − ω
.

Thus, assumption (H.63) still holds true. On the other hand, from (H.68) and the first
selection rule in (H.66) we have

η − (1 + η) ω < 1,

and
ω + (1 + ω)

1
τdp

< η − (1 + η) ω,

respectively. Hence, θk can be chosen as in (H.66), and (H.64) still holds true.
Using the identity

yδ − F
(
xδ

k+1

)
= rδ

k − Kk

(
xδ

k+1 − xδ
k

)
− R

(
xδ

k+1,x
δ
k

)
,

where xδ
k+1 is computed for αk = αj�(k), and employing (H.54) together with (H.58), we

find that ∥∥rδ
k+1

∥∥ ≤ ∥∥rδ
k − Kkpδ

αkk

∥∥+
∥∥R (xδ

k+1,x
δ
k

)∥∥
≤ θk

∥∥rδ
k

∥∥+ ω
∥∥F (xδ

k+1

)
− F

(
xδ

k

)∥∥
≤ (θk + ω)

∥∥rδ
k

∥∥+ ω
∥∥rδ

k+1

∥∥
and further that ∥∥rδ

k+1

∥∥∥∥rδ
k

∥∥ ≤ θk + ω

1 − ω
.

The upper bound on θk in (H.66) gives

θk + ω

1 − ω
≤ η

and the proof is finished.
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Estimates for the termination index and the regularization parameter of the Newton
iteration are given below.

Proposition H.5. Under the same assumptions as in Proposition H.4, the termination
index of the regularization method satisfies

k	 < logη

(
τdpΔ∥∥rδ

0

∥∥
)

+ 1, (H.69)

provided that xδ
k ∈ Bρ

(
x†) for all k = 0, . . . , k	 − 1.

Proof. By (H.67), we have∥∥rδ
k

∥∥ ≤ η
∥∥rδ

k−1

∥∥ ≤ . . . ≤ ηk
∥∥rδ

0

∥∥ ,

with rδ
0 = yδ − F

(
xδ

0

)
and 0 < η < 1. This yields

k ≤ logη

(∥∥rδ
k

∥∥∥∥rδ
0

∥∥
)

.

Using the discrepancy principle condition
∥∥rδ

k�−1

∥∥ > τdpΔ and the fact that logη is a
monotonic decreasing function, we deduce that (H.69) holds.

Proposition H.6. Let assumptions (H.52) and (H.53) be fulfilled and let us suppose that at
the Newton step k, there exists wk ∈ R

m such that p†
k = KT

k wk. Then the regularization
parameter αk = αj�(k) satisfies

αj�(k) >
q (τk − 1)

c2

1
‖wk‖

∥∥rδ
k − rk

∥∥ . (H.70)

Proof. By (H.60), assumption (H.52), and the relation rk = Kkp
†
k, we obtain∥∥rδ

k − Kkpδ
αk

∥∥ =
∥∥rα

(
KkKT

k

)
rδ

k

∥∥
≤
∥∥∥rα

(
KkKT

k

)
Kkp

†
k

∥∥∥+
∥∥rα

(
KkKT

k

) (
rδ

k − rk

)∥∥
≤
∥∥∥rα

(
KkKT

k

)
Kkp

†
k

∥∥∥+
∥∥rδ

k − rk

∥∥ ,

and further, by assumption (H.53) and the relation p†
k = KT

k wk, yielding∥∥∥rα

(
KkKT

k

)
Kkp

†
k

∥∥∥2 =
n∑

i=1

[
σ2

i r2
α

(
σ2

i

)]2 (
uT

i wk

)2 ≤ c2
2α

2 ‖wk‖2
,

we get ∥∥rδ
k − Kkpδ

αk

∥∥ ≤ c2α ‖wk‖ +
∥∥rδ

k − rk

∥∥ .

The selection rule (H.62) gives

τk

∥∥rδ
k − rk

∥∥ <
∥∥∥rδ

k − Kkpδ
αj�(k)−1k

∥∥∥ ≤ c2αj�(k)−1 ‖wk‖ +
∥∥rδ

k − rk

∥∥ ,
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and we infer that
αj�(k)−1 >

τk − 1
c2

1
‖wk‖

∥∥rδ
k − rk

∥∥ .

Finally, the relation αj�(k) = qαj�(k)−1 yields (H.70).

Crucial for proving convergence rates is the derivation of an estimate for ‖wk‖.

Proposition H.7. Let assumptions (H.51), (H.52), (H.53) and (H.56) be fulfilled and let
the initial guess xδ

0 = xa ∈ Bρ

(
x†) be such that

p†
0 = KT

0 w0 (H.71)

for some w0 ∈ R
m. If k	 is the termination index of the regularization method and xδ

k ∈
Bρ

(
x†) for all k = 1, . . . , k	, then there holds

p†
k = KT

k wk, k = 1, . . . , k	,

with

wk = Q
(
xδ

0,x
δ
k

)T
w0 −

k−1∑
i=0

Q
(
xδ

i ,x
δ
k

)T
gαi

(
KiKT

i

)
rδ

i ,

and αi = αj�(i). Moreover, we have

‖wk‖ < c̄Q (1 + c) (1 + cc̄Q)
k−1 ‖w0‖ , (H.72)

with
c = 1 +

c1c2

q (τmin − 1)
, τmin = min (τ0, . . . , τk�−1) . (H.73)

Proof. Using the representation

p†
k = x† − xδ

k = p†
0 −

k−1∑
i=0

pδ
αii, k = 1, . . . , k	,

with αi = αj�(i), and the relations (cf. (H.56))

p†
0 = KT

0 w0 = KT
k Q
(
xδ

0,x
δ
k

)T
w0

and

pδ
αii = gαi

(
KT

i Ki

)
KT

i rδ
i = KT

i gαi

(
KiKT

i

)
rδ

i = KT
k Q
(
xδ

i ,x
δ
k

)T
gαi

(
KiKT

i

)
rδ

i ,

we obtain

p†
k = KT

k Q
(
xδ

0,x
δ
k

)T
w0 − KT

k

k−1∑
i=0

Q
(
xδ

i ,x
δ
k

)T
gαi

(
KiKT

i

)
rδ

i , (H.74)

and the first assertion is proven. Note that in the derivation of (H.74) we used the identity
gα

(
KT K

)
KT = KT gα

(
KKT

)
, with gα

(
KKT

)
being given by (G.31).



Sect. H.2 Newton-type methods without a priori information 381

The norm of wk can be bounded as

‖wk‖ ≤
∥∥∥Q (xδ

0,x
δ
k

)T
w0

∥∥∥+
k−1∑
i=0

∥∥∥Q (xδ
i ,x

δ
k

)T
gαi

(
KiKT

i

)
rδ

i

∥∥∥ ;

whence, by (H.57) and the result ri = Kip
†
i = KiKT

i wi, we find that

‖wk‖ ≤ c̄Q

(
‖w0‖ +

k−1∑
i=0

∥∥gαi

(
KiKT

i

)
rδ

i

∥∥)

≤ c̄Q

(
‖w0‖ +

k−1∑
i=0

∥∥gαi

(
KiKT

i

) (
rδ

i − ri

)∥∥+
∥∥gαi

(
KiKT

i

)
KiKT

i wi

∥∥) .

Now, by (H.52), there holds∥∥gαi

(
KiKT

i

)
KiKT

i wi

∥∥ ≤ ‖wi‖ ,

while, for αi = αj�(i), (H.51) and (H.70) give∥∥gαi

(
KiKT

i

) (
rδ

i − ri

)∥∥ ≤ c1

αi

∥∥rδ
i − ri

∥∥ <
c1c2

q (τi − 1)
‖wi‖ ≤ c1c2

q (τmin − 1)
‖wi‖ ,

where τmin = min (τ0, . . . , τk�−1). Collecting all results we are led to

‖wk‖ < c̄Q

(
‖w0‖ + c

k−1∑
i=0

‖wi‖
)

,

with c as in (H.73). The assertion (H.72) follows now by an induction argument. Indeed,
assuming

‖wi‖ < c̄Q (1 + c) (1 + cc̄Q)
i−1 ‖w0‖ , i = 1, . . . , k,

we obtain

‖wk+1‖ < c̄Q

[
‖w0‖ + c

k∑
i=0

‖wi‖
]

< c̄Q

[
(1 + c) ‖w0‖ + cc̄Q (1 + c) ‖w0‖

k∑
i=1

(1 + cc̄Q)
i−1

]
= c̄Q (1 + c) (1 + cc̄Q)

k ‖w0‖ .

In a compact form, the estimate (H.72) can be expressed as

‖wk‖ < cwΛk ‖w0‖ , (H.75)

with

cw =
c̄Q (1 + c)
1 + cc̄Q

, Λ = 1 + cc̄Q > 1. (H.76)

We are now in the position to formulate a convergence rate result.
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Theorem H.8. For τ > 1 and 0 < η < 1, assume that

1 < Λ <
1
η

(H.77)

and
0 < ω <

η

η + τ + 1
(H.78)

are satisfied, and choose the tolerances τdp and θk as

τdp ≥
τ (1 + ω)

η − [η + (1 + τ)]ω
, τ

[
ω + (1 + ω)

1
τdp

]
< θk ≤ η − (1 + η) ω. (H.79)

Suppose that (H.51), (H.52), (H.53) and (H.56) hold, and let the source condition (H.71)
be fulfilled for xδ

0 = xa ∈ Bρ

(
x†). If k	 is the termination index of the regularization

method and xδ
k ∈ Bρ

(
x†) for all k = 1, . . . , k	, then there holds the error estimate

∥∥x† − xδ
k�

∥∥ = O

(
‖w0‖

1
2 Δ

1−log1/η Λ

2

)
, (H.80)

with
0 < log 1

η
Λ < 1. (H.81)

Proof. For the choice τ > 1, assumption (H.78) gives

0 < ω <
η

η + τ + 1
<

η

η + 2
,

while the selection rules (H.79) yield

τdp ≥
τ (1 + ω)

η − [η + (1 + τ)]ω
>

1 + ω

η − (2 + η) ω

and

θk > τ

[
ω + (1 + ω)

1
τdp

]
> ω + (1 + ω)

1
τdp

.

Hence, assumption (H.65) and the selection rules (H.66) still hold, and Propositions H.4
and H.5 are valid for η satisfying the requirements of the theorem.

The iteration error can be bounded as∥∥x† − xδ
k

∥∥2 =
∥∥∥p†

k

∥∥∥2 = p†T
k KT

k wk ≤
∥∥∥Kkp

†
k

∥∥∥ ‖wk‖ .

The estimate∥∥∥Kkp
†
k

∥∥∥ =
∥∥Kk

(
x† − xδ

k

)∥∥ ≤ ∥∥F (x†)− F
(
xδ

k

)∥∥+
∥∥R (x†,xδ

k

)∥∥
together with (H.59) implies that∥∥∥Kkp

†
k

∥∥∥ ≤ (1 + ω)
∥∥y − F

(
xδ

k

)∥∥ ,
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and so,∥∥x† − xδ
k

∥∥2 ≤ (1 + ω) ‖wk‖
∥∥y − F

(
xδ

k

)∥∥ ≤ (1 + ω) ‖wk‖
(
Δ +

∥∥rδ
k

∥∥) . (H.82)

For k = k	, we have
∥∥rδ

k�

∥∥ ≤ τdpΔ, and, by virtue of (H.75), (H.82) becomes∥∥x† − xδ
k�

∥∥2 < cw (1 + ω)
(
1 + τdp

)
‖w0‖Λk�

Δ.

The estimate of the termination index (H.69) gives

Λk�

< ΛΛ
logη

 
τdpΔ

‖rδ
0‖

!
= Λ

(
τdpΔ∥∥rδ

0

∥∥
)logη Λ

,

and in view of the identity
logη Λ = − log 1

η
Λ,

we conclude that (H.80) holds. Since 0 < η < 1, log1/η is an increasing function and, as
a result, (H.77) yields (H.81).

It should be remarked that assumption (H.71) gives

x† − xa ∈ R
(
KT

0

)
= R

((
KT

0 K0

) 1
2
)

and represents a source condition imposed on x†. To be more concrete, the existence of
w0 ∈ R

m so that
x† − xa = KT

0 w0,

means that x† − xa possesses the representation

x† − xa =
n∑

i=1

σi

(
uT

i w0

)
vi,

for K0 = UΣVT . Defining z ∈ R
n by the expansion

z =
n∑

i=1

(
uT

i w0

)
vi,

which yields
vT

i z = uT
i w0, i = 1, . . . , n,

we find that

x† − xa =
n∑

i=1

σi

(
vT

i z
)
vi =

(
KT

0 K0

) 1
2 z.

Note that for the general source condition

p†
0 =

(
KT

0 K0

)μ
z, μ > 0, z ∈ R

n,

the convergence rate ∥∥x† − xδ
k�

∥∥ = O

(
‖z‖

1
2μ+1 Δ

2μ−log1/η Λ

2μ+1

)
,

has been proven by Rieder (2003).
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Filter factors of the truncated total least
squares method

In this appendix we derive the expression of the filter factors for the truncated TLS by
following the analysis of Fierro et al. (1997).

Let [
KΛ yδ

]
= ŪΣ̄V̄ (I.1)

and
KΛ = UΣVT , (I.2)

be the singular value decompositions of the augmented matrix
[

KΛ yδ
]

and of the
coefficient matrix KΛ. First, we first proceed to derive general representations for the
singular values σ̄j and the right singular vectors v̄j of

[
KΛ yδ

]
in terms of the singular

system {(σi;vi,ui)} of KΛ. In order not to jumble our presentation with technical details
and studies of special cases, we assume that rank (KΛ) = n and rank

([
KΛ yδ

])
=

n + 1. Moreover, we suppose that there holds

uT
j yδ �= 0, j = 1, . . . , n. (I.3)

To derive the desired relationships, we use (I.1) and (I.2) to obtain[
KΛ yδ

]T [
KΛ yδ

]
= V̄Σ̄T Σ̄V̄T ,

and [
KΛ yδ

]T [
KΛ yδ

]
=
[

KT
ΛKΛ KT

Λyδ

yδT KΛ

∥∥yδ
∥∥2
]

= ¯̄VS ¯̄V
T
,

with
¯̄V =

[
V 0
0 1

]
(I.4)

and

S =
[

ΣT Σ ΣT UT yδ

yδT UΣ
∥∥yδ
∥∥2

]
.
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Performing a singular value decomposition of the positive definite matrix S, which we
write as

S = VsΣT
s ΣsVT

s , ΣT
s Σs =

[
diag

(
σ2
sj

)
(n+1)×(n+1)

]
, (I.5)

we find that [
KΛ yδ

]T [
KΛ yδ

]
= ¯̄VVsΣT

s ΣsVT
s

¯̄V
T
.

Thus, Σ̄T Σ̄ = ΣT
s Σs and V̄ = ¯̄VVs. Explicitly, we have

σ̄j = σsj , j = 1, . . . , n + 1, (I.6)

and
v̄j = ¯̄Vvsj , j = 1, . . . , n + 1, (I.7)

where the vsj are the column vectors of Vs.
In the next step of our analysis, we write S as

S =

⎡⎢⎢⎢⎣
σ2

1 . . . 0 σ1uT
1 yδ

...
. . .

...
...

0 . . . σ2
n σnuT

nyδ

σ1uT
1 yδ . . . σnuT

nyδ
∥∥yδ
∥∥2

⎤⎥⎥⎥⎦ (I.8)

and express (I.5) as
Svsj = σ2

sjvsj , j = 1, . . . , n + 1. (I.9)

Then, from (I.8) and (I.9) we obtain(
σ2
sj − σ2

i

)
[vsj ]i = σi

(
uT

i yδ
)
[vsj ]n+1 , i = 1, . . . , n, (I.10)

n∑
i=1

σi

(
uT

i yδ
)
[vsj ]i =

(
σ2
sj −

∥∥yδ
∥∥2) [vsj ]n+1 . (I.11)

The singular system of the matrix S has two interesting features, namely, for any j =
1, . . . , n + 1,

(1) [vsj ]n+1 �= 0;
(2) σsj does not coincide with a singular value σi of KΛ.

To prove the first assertion, we assume that [vsj ]n+1 = 0. In this case, two situations can
be distinguished:

(1) Suppose that there exist i1 and i2 such that [vsj ]i1 �= 0 and [vsj ]i2 �= 0. Then,
from (I.10), it follows that σi1 = σi2 = σsj , and this result is contradictory to our
assumption that the singular values of KΛ are simple.

(2) Suppose that there exists i such that [vsj ]i �= 0 and that [vsj ]l = 0 for all l �= i. From
(I.11) and the assumption uT

i yδ �= 0, we deduce that σi = 0. Since by assumption
rank (KΛ) = n, we are again faced with a contradiction.

Hence, [vsj ]n+1 �= 0. Turning now to the second assertion we assume that there exists
i such that σi = σsj . This yields σi

(
uT

i yδ
)
[vsj ]n+1 = 0, and, since uT

i yδ �= 0 and
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[vsj ]n+1 �= 0, we are led to the contradictory result σi = 0. Thus, σsj does not coincide
with a singular value σi of KΛ, and we have

[vsj ]i =
σi

σ2
sj − σ2

i

(
uT

i yδ
)
[vsj ]n+1 , i = 1, . . . , n.

The second assertion above together with (I.6) implies that the interlacing inequalities for
the singular values of KΛ and

[
KΛ yδ

]
are strict, i.e.,

σ̄1 > σ1 > . . . > σ̄p > σp > σ̄p+1 > σp+1 > . . . > σn > σ̄n+1, (I.12)

where p is the truncation index of the truncated TLS method.
We are now in the position to derive a final expression for the right singular vectors of[

KΛ yδ
]
. By (I.4) and (I.7), we have

v̄j = ¯̄Vvsj =

⎡⎢⎢⎢⎣ V

⎡⎢⎣ [vsj ]1
...

[vsj ]n

⎤⎥⎦
[vsj ]n+1

⎤⎥⎥⎥⎦ ,

and the entries of the right singular vectors v̄j are given by⎡⎢⎣ [v̄j ]1
...

[v̄j ]n

⎤⎥⎦ =
n∑

i=1

σi

σ2
sj − σ2

i

(
uT

i yδ
)
[vsj ]n+1 vi, (I.13)

and
[v̄j ]n+1 = [vsj ]n+1 , (I.14)

for j = 1, . . . , n + 1. We summarize the above results in the following theorem.

Theorem I.1. Let (I.2) be the singular value decomposition of the coefficient matrix KΛ

and suppose that rank (KΛ) = n and rank
([

KΛ yδ
])

= n+1. Furthermore, assume
that (I.3) holds. If (I.5) is the singular value decomposition of the matrix S defined by (I.8),
then the singular values of the augmented matrix

[
KΛ yδ

]
are given by (I.6), while

the entries of the right singular vectors are given by (I.13) and (I.14).

Next, we proceed to derive the filter factors for the truncated TLS solution

xδ
Λp = − 1

‖v̄22‖2 V̄12v̄22, (I.15)

where

V̄ = [v̄1, . . . , v̄n+1] =
[

V̄11 V̄12

v̄T
21 v̄T

22

]
, (I.16)

V̄11∈ R
n×p, V̄12∈ R

n×(n−p+1), and

v̄21 =
[
[v̄1]n+1 , . . . , [v̄p]n+1

]T
∈ R

p,

v̄22 =
[
[v̄p+1]n+1 , . . . , [v̄n+1]n+1

]T
∈ R

n−p+1.



388 Filter factors of the truncated total least squares method Annex I

Theorem I.2. Under the same assumptions as in Theorem I.1, the filter factors for the
truncated TLS solution are given by

fi = − 1
‖v̄22‖2

n+1∑
j=p+1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 =

1
‖v̄22‖2

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 (I.17)

for i = 1, . . . , n.

Proof. Using (I.13) together with (I.6) and (I.14), we express the truncated TLS solution
(I.15) as

xδ
Λp = − 1

‖v̄22‖2 V̄12v̄22

= − 1
‖v̄22‖2

n+1∑
j=p+1

[v̄j ]n+1

⎡⎢⎣ [v̄j ]1
...

[v̄j ]n

⎤⎥⎦
= − 1

‖v̄22‖2

n∑
i=1

⎛⎝ n+1∑
j=p+1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1

⎞⎠ 1
σi

(
uT

i yδ
)
vi.

The first representation in (I.17) is then apparent. To derive the second representation in
(I.17), we first use the orthogonality relation VsVT

s = In+1 to obtain
n+1∑
j=1

vsjvT
sj = In+1.

This gives
n+1∑
j=1

[vsj ]i [vsj ]n+1 = 0, i = 1, . . . , n (I.18)

and
n+1∑
j=1

[vsj ]
2
n+1 = 1. (I.19)

On the other hand, from (I.10) in conjunction with (I.6), we have

σi

(
uT

i yδ
) [vsj ]

2
n+1

σ̄2
j − σ2

i

= [vsj ]i [vsj ]n+1 , i = 1, . . . , n. (I.20)

Now, (I.18) and (I.20) together with (I.3) and (I.14), yield
n+1∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 = 0, i = 1, . . . , n,

and so,
n+1∑

j=p+1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 = −

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 , i = 1, . . . , n.

The proof of the theorem is now complete.
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The filter factors of the truncated TLS can be bounded as follows.

Theorem I.3. Under the same assumptions as in Theorem I.1, the filter factors satisfy

0 < fi − 1 ≤
σ̄2

p+1

σ2
i − σ̄2

p+1

, i = 1, . . . , p (I.21)

and

0 < fi ≤
1 − ‖v̄22‖2

‖v̄22‖2

σ2
i

σ̄2
p − σ2

i

, i = p + 1, . . . , n. (I.22)

Proof. For i = 1, . . . , p, we use the first representation in (I.17) and the result

‖v̄22‖2 =
n+1∑

j=p+1

[v̄j ]
2
n+1 (I.23)

to obtain

fi =
1

‖v̄22‖2

n+1∑
j=p+1

σ2
i

σ2
i − σ̄2

j

[v̄j ]
2
n+1

= 1 +
1

‖v̄22‖2

n+1∑
j=p+1

σ̄2
j

σ2
i − σ̄2

j

[v̄j ]
2
n+1 . (I.24)

From the interlacing inequalities for the singular values of KΛ and
[

KΛ yδ
]

given by
(I.12), we see that, for i = 1, . . . , p, we have σi > σ̄p+1 = maxj=p+1,n+1 (σ̄j) . Hence,
the second term in (I.24) is positive and the left inequality in (I.21) holds true. Going
further, from σ̄j ≤ σ̄p+1 for j = p + 1, . . . , n + 1, we deduce that

σ̄2
j

σ2
i − σ̄2

j

≤
σ̄2

p+1

σ2
i − σ̄2

p+1

,

and so,
n+1∑

j=p+1

σ̄2
j

σ2
i − σ̄2

j

[v̄j ]
2
n+1 ≤

σ̄2
p+1

σ2
i − σ̄2

p+1

n+1∑
j=p+1

[v̄j ]
2
n+1 .

This result together with (I.23) yields the right inequality in (I.21).
For i = p + 1, . . . , n, we consider the second representation in (I.17), that is,

fi =
1

‖v̄22‖2

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 .

From (I.12), we see that, for i = p + 1, . . . , n, we have σi < σ̄p = minj=1,p (σ̄j), and
therefore, the left inequality in (I.22) is satisfied. Further, from σ̄j ≥ σ̄p for j = 1, . . . , p,
we find that

fi =
1

‖v̄22‖2

p∑
j=1

σ2
i

σ̄2
j − σ2

i

[v̄j ]
2
n+1 ≤ 1

‖v̄22‖2

σ2
i

σ̄2
p − σ2

i

p∑
j=1

[v̄j ]
2
n+1 .
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Finally, from (I.14) and (I.19) we obtain

p∑
j=1

[v̄j ]
2
n+1 = 1 −

n∑
j=p+1

[v̄j ]
2
n+1 ,

and (I.23) can now be used to conclude.



J

Quadratic programming

In this appendix we analyze methods for solving quadratic programming problems. For
equality constraints, we present the basic concepts of the null-space method, while for
inequality constraints, we discuss a dual active set method. The theory is based on the
works of Gill et al. (1981), Nocedal and Wright (2006), and Goldfarb and Idnani (1983).

J.1 Equality constraints

Let us consider the equality-constrained quadratic programming problem

(P ) : min
x∈Rn

f (x) =
1
2
xT Gx + gT x (J.1)

subject to Ax = b, (J.2)

where f is the objective function, G ∈ R
n×n is a positive definite matrix, A ∈ R

r×n is
the constraint matrix, n is the number of variables, and r is the number of constraints. The
ith row of A contains the coefficients corresponding to the ith constraint and we assume
that the row vectors of A are linearly independent. If the row vectors of A are linearly
dependent then either some constraints can be omitted without changing the solution, or
there is no feasible point. A point x is said to be feasible if Ax = b.

Let Z ∈ R
n×(n−r) be a matrix whose column vectors form a basis for the null space

of A, and let Y ∈ R
n×r be a matrix whose column vectors form a basis for the range

space of AT . Then, any n-dimensional vector x can be expressed as a linear combination
of the column vectors of Y and Z, i.e.,

x = YxY + ZxZ, (J.3)

with xY ∈ R
r and xZ ∈ R

n−r. Using the orthogonality relation AZ = 0, we find that

Ax = AYxY,

and, if x is feasible, that
AYxY = b. (J.4)
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As AY is nonsingular by construction, xY is uniquely determined by (J.4). Thus, the
range-space component xY is completely determined by the constraints, while the null-
space component xZ has to be computed by minimizing the objective function f . Now, let
x̄ be a feasible point and let p̄ be the step to the solution x	, i.e.,

x	 = x̄ + p̄. (J.5)

Substituting x with x̄ + p in (J.1), we deduce that p̄ solves the equality-constrained
quadratic programming problem

min
p∈Rn

1
2
pT Gp + ḡT p (J.6)

subject to Ap = 0, (J.7)

where
ḡ = Gx̄ + g

is the gradient of f at x̄. Setting p = YpY + ZpZ, then from AYpY = 0, we get pY = 0,
and therefore, p is a linear combination of the column vectors of Z, that is,

p = ZpZ.

In this regard, the n-dimensional constrained minimization problem (J.6)–(J.7) is equiva-
lent to the (n − r)-dimensional unconstrained minimization problem

min
pZ∈Rn−r

1
2
pT
Z ZT GZpZ + ḡT ZpZ. (J.8)

The solution of (J.8) is defined by the linear system

ZT GZp̄Z = −ZT ḡ,

and we obtain
p̄ = Zp̄Z = −Z

(
ZT GZ

)−1
ZT ḡ. (J.9)

By (J.5) and (J.9), it is readily seen that the computation of the solution requires the
knowledge of a feasible point x̄ and of the matrix Z. To compute these quantities, two
techniques can be employed.

(1) QR factorization. Let us consider the QR factorization of AT ,

AT = Q
[

RT

0

]
=
[

Y Z
] [ RT

0

]
, (J.10)

where Y ∈ R
n×r and Z ∈ R

n×(n−r) have orthonormal columns and R ∈ R
r×r is

a nonsingular lower triangular matrix. The column vectors of Y are an orthonormal
basis of R

(
AT
)
, the column vectors of Z are an orthonormal basis of N (A), and we

have (cf. (B.7))
AY = R, AZ = 0.

Then, x	
Y solving (J.4) is defined by Rx	

Y = b, and the initial feasible point can be
taken as x̄ = Yx	

Y .
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(2) Variable-reduction technique. Assuming the partitions

A =
[

V U
]
,

and

x =
[

xV

xU

]
,

with V ∈ R
r×r being a nonsingular matrix, we see that (J.2) yields

VxV + UxU = b,

and further,
xV = V−1 (b − UxU) .

Thus, any feasible point can be expressed as[
V−1 (b − UxU)

xU

]
,

and one possible choice is

x̄ =
[

V−1b
0

]
.

By straightforward calculation it can be shown that the matrix Z defined by

Z =
[

−V−1U
In−r

]
satisfies the orthogonality relation AZ = 0.

The above approach for solving the quadratic programming problem is known as the null-
space method. An alternative approach is the range-space method, which is described
in the next section. Both techniques can be regarded as solution methods for the so-called
Kuhn–Tucker system of equations, and in order to evidence their similarity, we reformulate
the null-space method in this new framework. For the Lagrangian function

L (x,u) =
1
2
xT Gx + gT x + uT (Ax − b) ,

with u ∈ R
r being the vector of Lagrange multipliers, the first-order optimality conditions

∇xL (x,u) = 0,

∇uL (x,u) = 0,

lead to the Kuhn–Tucker system of equations[
G AT

−A 0

] [
x
u

]
= −

[
g
b

]
. (J.11)

Assuming the QR factorization (J.10), we express x as in (J.3) and obtain[
x
u

]
=
[

Y Z 0
0 0 Ir

]⎡⎣ xY

xZ

u

⎤⎦ .
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The Kuhn–Tucker system of equations can be transformed as

[
Y Z 0
0 0 Ir

]T [ G AT

−A 0

] [
Y Z 0
0 0 Ir

]⎡⎣ xY

xZ

u

⎤⎦ = −
[

Y Z 0
0 0 Ir

]T [ g
b

]
,

or further, using the identities AZ = 0 and AY = R, as⎡⎣ YT GY YT GZ RT

ZT GY ZT GZ 0
−R 0 0

⎤⎦⎡⎣ xY

xZ

u

⎤⎦ = −

⎡⎣ YT g
ZT g
b

⎤⎦ . (J.12)

To solve (J.12), we proceed by backward substitution; the last and the middle block equa-
tions give

RxY = b, (J.13)

and
ZT GZxZ = −ZT (GYxY + g) , (J.14)

respectively, while the first block equation yields (cf. (J.3))

RT u = −YT (Gx + g) .

The solution given by (J.3), (J.13) and (J.14), coincides with the solution given by (J.5) with
the step as in (J.9) and the feasible point computed by the QR factorization of AT . As R is
lower triangular, the system of equations (J.13) is solved by forward substitution. Similarly,
as ZT GZ is positive definite, the solution to the system of equations (J.14) is found by first
considering a Cholesky factorization of the matrix ZT GZ and then by solving the resulting
triangular systems of equations by backward and forward substitutions.

J.2 Inequality constraints

Let us consider the inequality-constrained quadratic programming problem

(PR) : min
x∈Rn

f (x) =
1
2
xT Gx + gT x (J.15)

subject to Ax ≤ b, (J.16)

where as before, G ∈ R
n×n is a positive definite matrix, A ∈ R

r×n is the constraint
matrix, and R = {1, . . . , r} is index set of the constraints. In general, the vector inequality
x ≤ 0 means that all entries of the vector x are non-positive. The matrix A is partitioned
as

A =

⎡⎢⎣ aT
1
...

aT
r

⎤⎥⎦ ,

in which case, the ith row vector aT
i contains the coefficients corresponding to the ith

constraint. At a feasible point x, the constraint aT
i x ≤ [b]i is said to be active (or binding)
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if aT
i x = [b]i, and inactive if aT

i x < [b]i. If the constraint is active or inactive, then the
constraint is said to be satisfied. By contrast, the constraint is said to be violated at x, if
aT

i x > [b]i.
For the quadratic programming problem (PR), the corresponding Lagrangian function

is given by

L (x,u) =
1
2
xT Gx + gT x + uT (Ax − b) , (J.17)

where u ∈ R
r is the vector of Lagrange multipliers. The next result, known as the Kuhn-

Tucker theorem, states the necessary and sufficient conditions for x	 to solve (PR).

Theorem J.1. Let x	 solve (PR). Then, there exists a vector of Lagrange multipliers u	

such that the Kuhn-Tucker conditions

Gx	 + g + AT u	 = 0, (J.18)
Ax	 − b ≤ 0, (J.19)
u	 ≥ 0, (J.20)

[u	]i
(
aT

i x	 − [b]i
)

= 0, i = 1, . . . , r, (J.21)

are fulfilled. Conversely, let G be a positive definite matrix, and suppose that for some
feasible point x	 there exists a vector of Lagrange multipliers u	 such that the Kuhn-
Tucker conditions (J.18)–(J.21) are satisfied. Then, x	 solves (PR).

The conditions (J.21) are complementary conditions and just say that either the con-
straint i is active or [u	]i = 0, or possibly both. Obviously, (J.21) yields

u	T (Ax	 − b) = 0, (J.22)

and note that the Lagrange multipliers corresponding to inactive constraints are zero. Also
note that due to the positive definiteness of G, x	 is the unique solution of (PR).

The quadratic programming problem (J.15)–(J.16) can be solved by using primal and
dual active set methods. In this appendix we present the dual active set method of Goldfarb
and Idnani (1983). This method does not have the possibility of cycling and benefits from
having an easily calculated feasible starting point.

In general, given the optimization problem (P ) (the primal problem), we can define a
related problem (D) (the dual problem) such that the Lagrange multipliers of (P ) are part
of the solution of (D). For the quadratic programming problem (PR), the so-called Wolf
dual problem can be stated as

(DR) : max
u∈Rr

max
x∈Rn

L (x,u) (J.23)

subject to Gx + g + AT u = 0, (J.24)
u ≥ 0. (J.25)

The following result explains the relationship between the primal and the dual problems.

Theorem J.2. Let G be a positive definite matrix and let x	 solve (PR). If (x	,u	) satis-
fies the Kuhn-Tucker conditions (J.18)–(J.21), then (x	,u	) solves (DR), and conversely.
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Proof. The proof relies on the inequality

L (x1,u) ≥ L (x2,u) +
(
Gx2 + g + AT u

)T
(x1 − x2) , x1,x2 ∈ R

n, (J.26)

which is a consequence of the positive definiteness of G, i.e.,

(x1 − x2)
T G (x1 − x2) > 0, x1 �= x2.

Note that the inequality (J.26) is strict whenever x1 �= x2. Let (x	,u	) satisfy the Kuhn-
Tucker conditions (J.18)–(J.21), and let (x,u) be a pair satisfying the constraints (J.24)
and (J.25). Then, condition (J.22) gives L (x	,u	) = f (x	), and we have

L (x	,u	) =
1
2
x	T Gx	 + gT x	

≥ 1
2
x	T Gx	 + gT x	 + uT (Ax	 − b)

= L (x	,u)

≥ L (x,u) +
(
Gx + g + AT u

)T
(x	 − x)

= L (x,u) .

The first inequality follows from (J.19) and (J.25), which give uT (Ax	 − b) ≤ 0, the
second inequality follows from (J.26), while the last equality is a consequence of (J.24).
Thus, (x	,u	) maximizes L over the constraints (J.24) and (J.25), and so, (x	,u	) solves
(DR).

To prove the converse result we proceed by contradiction. Let (x	,u	) solve (DR)
and let us assume that x̄ solves (PR). Moreover, let us suppose that x	 �= x̄. By Theorem
J.1, we know there exists the vector of Lagrange multipliers ū such that the pair (x̄, ū)
satisfies the Kuhn-Tucker conditions (J.18)–(J.21). Consequently, by the direct theorem, it
is apparent that (x̄, ū) also solves (DR), and we have

L (x	,u	) = L (x̄, ū) . (J.27)

From (J.24) and (J.26), we obtain

L (x̄,u	) > L (x	,u	) +
(
Gx	 + g + AT u	

)T
(x̄ − x	) = L (x	,u	) ,

and further, (cf. (J.27))
L (x̄,u	) > L (x̄, ū) . (J.28)

Taking into account the expression of the Lagrangian function and making use of (J.22),
(J.28) gives

u	T (Ax̄ − b) > ūT (Ax̄ − b) = 0.

But from u	 ≥ 0 and Ax̄ − b ≤ 0, we have u	T (Ax̄ − b) ≤ 0, and we are led to a
contradiction. Thus, x	 = x̄, as required. Note that if the constraint vectors are linearly
independent, we have N

(
AT
)

= ∅, and from (J.24), we infer that u	 = ū.
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The above theorem shows that the optimal value L (x	,u	) of the dual problem is
equivalent to the optimal value f (x	) of the primal problem, and that the solution of the
primal problem can be found by solving the dual problem.

Let (x	,u	) solve (DR) and let us assume that x	 lies on a linearly independent active
set of constraints indexed by I	 ⊆ R, i.e., aT

i x	 = [b]i for i ∈ I	. By Theorem J.2, the
necessary and sufficient conditions for optimality of the dual problem (DR) are the Kuhn-
Tucker conditions, which we express explicitly as

Gx	 + g + AT
I�u	

I� + AT
I�
d
u	

I�
d

= 0,

AI�x	 = bI� , AI�
d
x	 < bI�

d
,

u	
I� ≥ 0, u	

I�
d

= 0.

Here, I	
d = R \ I	 is the inactive set of constraints and, for a generic set I , we used the

notations [AI ]ij = [ai]j , i ∈ I , j = 1, . . . , n, [bI ]i = [b]i, i ∈ I , and similarly for uI .
In the framework of a dual active set method, we generate feasible iterates (x,u),

which fulfill the conditions (J.24) and (J.25), by keeping track of an active set I . For the
active set I , we have

Gx + g + AT
I uI = 0, (J.29)

AIx = bI , (J.30)
uI ≥ 0, (J.31)

and the optimality conditions of the dual problem show that the solution x = x	 has been
found if

AIdx ≤ bId ,

with Id = R \ I . If this is not the case, some violated constraint p ∈ R \ I exists, i.e.,
cp (x) = aT

p x − [b]p > 0, and (x,u) is not a solution pair. Indeed, from

∂L
∂ [u]p

(x,u) = cp (x) > 0,

we see that the Lagrangian function L can be increased by increasing the multiplier [u]p.
The main idea of a dual active set method is to choose a violated constraint cp (x) > 0 from
the complementary set R \ I and make it satisfy cp (x) ≤ 0 by increasing the Lagrangian
multiplier [u]p.

A realization of a dual active set method is illustrated in Algorithm 19. The algorithm
starts with I0 = ∅ and produces a sequence {Ik} such that

min (PIk
) < min

(
PIk+1

)
,

but not necessarily that Ik ⊂ Ik+1. In order to simplify the notations, the vector of La-
grange multipliers corresponding to the active set Ik is denoted by uk ∈ R

|Ik| instead of
uIk

. Because the minimum value of the objective function increases, a problem cannot be
run twice and the algorithm must stop after a finite number of steps. If the iterate satis-
fies all the constraints in the complementary set, then the solution has been found and the
algorithm terminates.
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Algorithm 19. General structure of a dual active set method.
{unconstrained minimum}
I0 ← ∅; x0 ← −G−1g;
k ← 0; stop ← false;
while stop = false do

{xk is the optimal solution of (PR)}
if ci (xk) = aT

i xk − [b]i ≤ 0 for all i ∈ R \ Ik then

stop ← true;
else

{choose a violated constraint}
choose p ∈ R \ Ik with cp (xk) = aT

p xk − [b]p > 0;
{computational step–Algorithm 20}
compute Ik+1 ⊆ Ik ∪ {p}, xk+1, uk+1 and f (xk+1) > f (xk);

end if

k ← k + 1;
end while

Before proceeding, we would like to point out that if the pair (xk,uk) satisfies (J.29)–
(J.31) for Ik, then xk solves the problem (PIk

) with the vector of Lagrange multipliers
uk. Here, (PIk

) is the quadratic programming problem with the objective function (J.15)
subject only to the subset of constraints (J.16) indexed by Ik.

The computational step of a dual active set method is illustrated in Algorithm 20.
The while loop is initialized with the solution of the problem (PIk

) and the pth constraint
is assumed to be violated. Thus, the following optimality conditions are fulfilled at the
beginning of the while loop (cf. (J.29)–(J.31)):

Gx + g + AT
I u = 0, (J.32)

AIx = bI , (J.33)

aT x > b, (J.34)
u ≥ 0, (J.35)

where I = Ik, x = xk, u = uk, a = ap and b = [b]p. In addition to assumptions (J.32)–
(J.35), we suppose that the constraint vectors in the active set {ai/i ∈ I} are linearly
independent.

Let us assume that at a generic step, the conditions which require the continuation of
the while loop are

Gx + g + AT
I u + θa = 0, (J.36)

AIx = bI , (J.37)

aT x > b, (J.38)
u ≥ 0, θ ≥ 0, f = f (x) . (J.39)

Here, I is the current active set and θ is the Lagrange multiplier of the violated constraint.
At the first execution of the while loop, these assumptions are satisfied because of (J.32)–
(J.35) and the fact that θ = 0. The Lagrange multiplier of the violated constraint c (x) =
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Algorithm 20. Computational step of a dual active set method.
a ← ap, b ← [b]p;
{initialization step; xk solves (PIk

) with uk}
I ← Ik; x ← xk; u ← uk ∈ R

|I|; θ ← 0; f ← f (xk); stop ← false;
while stop = false do

{constraint matrix}
set AT

I =
[
ai1 , . . . ,aiq

]
∈ R

n×q with I = {i1, . . . , iq} and q = |I|;
{search direction in the dual space d}
if I �= ∅ then

d ←
(
AIG−1AT

I

)−1
AIG−1a;

else

d ← 0;
end if

{search direction in the primal space p}
p ← G−1

(
a − AT

I d
)
;

{a /∈ span {ai/i ∈ I}}
if p �= 0 then {Step 1}

{full step length}
t1 ←

(
aT x − b

)
/aT p;

{add constraint; xk+1 solves (PIk+1) with uk+1}
if u − t1d ≥ 0 or I = ∅ then {Step 1a}

Ik+1 ← I ∪ {p}; xk+1 ← x − t1p; uk+1 ←
[

u − t1d
θ + t1

]
;

f (xk+1) ← f + t1 (θ + t1/2)aT p; stop ← true;
{partial step length t2; drop constraint and update x and u}
else {Step 1b}

t2 ← [u]l
[d]l

= min
{

[u]i
[d]i

/ [d]i > 0, i ∈ I
}

;
I ← I \ {l}; x ← x − t2p;
for all i ∈ I do [u]i ← [u]i − t2 [d]i; end for

θ ← θ + t2; f ← f + t2 (θ + t2/2)aT p;
end if

{a ∈ span {ai/i ∈ I}}
else {Step 2}

{
(
PI∪{p}

)
is infeasible and so, (PR) is infeasible}

if d ≤ 0 then {Step 2a}
stop ← true;

{partial step length t2; drop constraint and update u}
else {Step 2b}

t2 ← [u]l
[d]l

= min
{

[u]i
[d]i

/ [d]i > 0, i ∈ I
}

;
I ← I \ {l};
for all i ∈ I do [u]i ← [u]i − t2 [d]i; end for

θ ← t2;
end if

end if

end while



400 Quadratic programming Annex J

aT x − b should be increased from θ to some value θ + t that will make the constraint
binding. This can be achieved by moving from(

x,

[
u
θ

])
to
(
x (t) ,

[
u (t)
θ + t

])
,

where
x (t) = x + p (t) (J.40)

and
u (t) = u + d (t) . (J.41)

The parameter of the transformation t should be chosen such that x (t) solves
(
PI∪{p}

)
with the vector of Lagrange multipliers[

u (t)
θ + t

]
≥ 0,

that is,

Gx (t) + g + AT
I u (t) + (θ + t)a = 0, (J.42)

AIx (t) = bI , (J.43)

aT x (t) = b, (J.44)
u (t) ≥ 0, θ + t ≥ 0. (J.45)

The first two equations can be expressed in matrix form as[
G AT

I

−AI 0

] [
x (t)
u (t)

]
+
[

g
bI

]
+ (θ + t)

[
a
0

]
= 0,

whence, using (cf. (J.36) and (J.37))[
G AT

I

−AI 0

] [
x
u

]
+
[

g
bI

]
+ θ

[
a
0

]
= 0,

we obtain [
G AT

I

−AI 0

] [
p (t)
d (t)

]
= −t

[
a
0

]
. (J.46)

In the case of equality constraints, we solved (J.46) by using a QR factorization of AT
I and

by employing a backward substitution for the resulting block matrix equations. Now, we
use the following result: if G is positive definite and AI has full row rank, the inverse of
the augmented matrix in (J.46) is[

G−1 − G−1AT
I

(
AIG−1AT

I

)−1
AIG−1 −G−1AT

I

(
AIG−1AT

I

)−1(
AIG−1AT

I

)−1
AIG−1

(
AIG−1AT

I

)−1

]
,

and we have
x (t) = x − tp, u (t) = u − td,
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with

d =
(
AIG−1AT

I

)−1
AIG−1a, (J.47)

and

p = G−1
(
a − AT

I d
)
. (J.48)

In (J.47) and (J.48), d and p represent the search directions in the dual and the primal
spaces, respectively, while t is the step length. If I = ∅, then AI is not defined and we
set d = 0, which, in turn, yields p = G−1a. Noting that the step length t > 0 will be
chosen to make (J.44) satisfied, we establish some basic results which are relevant for our
analysis.

(1) If I �= ∅, then from (J.37) and (J.43), we see that AIp = 0. This result together with
(J.48) yields

pT (a − Gp) = pT AT
I d = (AIp)T d = 0,

and, as G is positive definite, we have

pT a = pT Gp > 0 (J.49)

for p �= 0. Similarly, if I = ∅, then d = 0. Hence, Gp = a, and as p �= 0, we obtain
pT a = pT Gp > 0.

(2) From (J.49), we observe that, for t > 0, the pth constraint at x − tp,

c (x − tp) = c (x) − taT p

is decreasing as we move from x to x − tp, and this is exactly what we want as it is
violated and positive at x.

(3) The objective function at x− tp is given by (cf. (J.36), (J.49) and the relation AIp =
0)

f (x − tp) = f (x) − t (g + Gx)T p +
1
2
t2pT Gp

= f (x) + tpT
(
AT

I u + θa
)

+
1
2
t2pT a

= f (x) + t

(
θ +

1
2
t

)
pT a. (J.50)

(4) The Lagrangian functions at(
x − tp,

[
u − td
θ + t

])
and

(
x,

[
u
θ

])
can be expressed as (cf. (J.17))

L (t) = f (x − tp) + (θ + t)
[
aT (x − tp) − b

]
,

and
L (0) = f (x) + θ

(
aT x − b

)
,
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respectively. Then, using (J.50), we obtain

L (t) − L (0) = −
[
1
2
t2pT a − t

(
aT x − b

)]
. (J.51)

We proceed now to analyze the computational step of the dual active set method. Depend-
ing on the size of p, two situations can occur, namely p �= 0 and p = 0.

Step 1: p �= 0. This branch of the if-statement occurs when a /∈ span {ai/i ∈ I}. In
this case, the full step length t1, given by

t1 =
1

aT p

(
aT x − b

)
, (J.52)

is well defined, and from (J.38) and (J.49), it follows that t1 > 0. For t = t1, (J.44) is
fulfilled, that is, aT x (t1) = b, while for 0 ≤ t ≤ t1, L (t) − L (0) ≥ 0, that is, the
Lagrangian function increases as we move from(

x,

[
u
θ

])
to
(
x − tp,

[
u − td
θ + t

])
.

The step length should be chosen so that the Lagrange multipliers are non-negative. In this
regard, two situations can be distinguished.

• Step 1a: u − t1d ≥ 0 or I = ∅. Putting t = t1 in (J.42), (J.43) and (J.44) and taking
into account that t1 > 0, and so, t1 + θ > 0, we deduce that, for Ik+1 = I ∪ {p},
xk+1 = x − t1p is the solution of the primal problem

(
PIk+1

)
with the vector of

Lagrange multipliers

uk+1 =
[

u − t1d
θ + t1

]
≥ 0.

In addition, by (J.49) and (J.50), we have

f (xk+1) = f (x) + t1

(
θ +

1
2
t1

)
pT a > f (x) .

• Step 1 b: [u]i − t1[d]i < 0 for all i ∈ Ī ⊆ I , and I �= ∅. As [u]i ≥ 0 and t1 > 0, it
follows that [d]i > 0 for all i ∈ Ī . Consequently, the partial step length t2 given by

t2 =
[u]l
[d]l

= min
{

[u]i
[d]i

/ i ∈ Ī

}
= min

{
[u]i
[d]i

/ [d]i > 0, i ∈ I

}
(J.53)

is well defined, and from

t1 >
[u]i
[d]i

≥ [u]l
[d]l

= t2, i ∈ Ī , (J.54)

we infer that 0 ≤ t2 < t1. Note that{
[u]i
[d]i

/ i ∈ Ī

}
⊆
{

[u]i
[d]i

/ [d]i > 0, i ∈ I

}
,
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because the larger set may contain elements [u]i/[d]i with [u]i − t1[d]i ≥ 0; for these
elements, we have t1 ≤ [u]i/[d]i and by (J.54) we deduce that the minimizers of the
two sets coincide. The inequality

[u]i − t2 [d]i = [d]i

(
[u]i
[d]i

− t2

)
≥ 0

holds for [d]i > 0 and [d]i ≤ 0 , that is, for all i ∈ I . Hence, u − t2d ≥ 0, and in
particular, [u]l − t2[d]l = 0. Let I− = I \ {l}, x− = x − t2p, [u−]i = [u]i − t2[d]i
for i ∈ I−, θ− = θ + t2, and

f− = f + t2

(
θ +

1
2
t2

)
pT a ≥ f.

Since [u]l − t2[d]l = 0, we have

AT
I (u − t2d) =

∑
i∈I

([u]i − t2 [d]i)ai =
∑
i∈I−

([u]i − t2 [d]i)ai = AT
I−u−,

(J.55)
and (J.42) with t = t2 gives

Gx− + g + AT
I−u− + θ−a = 0.

Moreover, from (J.43) with the lth constraint dropped, we have AI−x− = bI− , while
from (J.49), we find that

aT x− = aT x − t2aT p > aT x − t1aT p = b.

Thus, conditions (J.36)–(J.39) are satisfied for I−, x−, u−, θ− and f−, and the while
loop will continue to run.

Step 2: p = 0. This branch of the if-statement occurs at the first execution of the
while loop when conditions (J.32)–(J.35) are fulfilled, and when a = AT

I d, that is, when
a ∈ span {ai/i ∈ I}. Depending on the sign of the dual search direction, the algorithm
may terminate with infeasibility or it may continue to run with a reduced active set.

• Step 2a: d ≤ 0. Let us assume that there exists x′ such that x + x′ is a feasible
solution to

(
PI∪{p}

)
. Then, from AI (x + x′) ≤ bI and AIx = bI we must have

that AIx′ ≤ 0. This condition together with a = AT
I d and d ≤ 0 shows that

aT x′ = dT (AIx′) ≥ 0 must hold. On the other hand, the violated constraint should
be satisfied and we must have that aT (x + x′) ≤ b, or equivalently that (cf. (J.34)),
aT x′ ≤ b−aT x < 0. Thus, we are led to a contradiction and we conclude that in this
case, the problem

(
PI∪{p}

)
is not feasible.

• Step 2b: [d]i > 0 for all i ∈ Ī ⊆ I . Arguing as in Step 1b, we see that t2 given by
(J.53) is well defined and that t2 ≥ 0. Let I− = I\{l}, x− = x, [u−]i = [u]i−t2 [d]i
for i ∈ I−, θ− = t2, and f− = f . Using (J.55), the result a = AT

I d, and (J.32) with
x = x−, yield

Gx− + g + AT
I−u− + θ−a = Gx + g + AT

I (u − t2d) + t2a = 0,
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while (J.33) and (J.34) with x = x−, give AI−x− = bI− and aT x− > b, respec-
tively. Hence, conditions (J.36)–(J.39) are satisfied for I−, x−, u−, θ− and f−, and
the while loop does not terminate.

Although at the beginning of Step 2, we have a ∈ span {ai/i ∈ I}, at the end of Step 2b,
we have a /∈ span {ai/i ∈ I−}. To prove this claim, we assume that a ∈ span {ai/i ∈ I−}
and use the condition a ∈ span {ai/i ∈ I}, written as

a = [d]l al +
∑
i∈I−

[d]i ai, (J.56)

to conclude that al ∈ span {ai/i ∈ I−}. This result is contradictory to our initial assump-
tion that the vectors {ai/i ∈ I} are linearly independent and the claim is proven. Thus,
the branch p = 0 of the if-statement is executed only once, since at the subsequent runs of
the while loop, the active set is reduced and the condition a /∈ span {ai/i ∈ I} is always
fulfilled.

In conclusion, after a sequence of at most min (r, n) partial steps (the first of which
may occur in Step 2b) and one full step (Step 1a), either the solution to the primal problem(
PIk+1

)
is found, or the infeasibility is detected (Step 2a). The Algorithm 2 terminates

after a finite number of steps, since Ik is finite and only one constraint is dropped in Steps
1b and 2b.

We close our presentation with some comments on implementation issues. The search
directions in the dual and the primal space can be expressed as (cf. (J.47) and (J.48))

d = A†
Ia

and
p = HIa,

respectively, where

A†
I =

(
AIG−1AT

I

)−1
AIG−1 ∈ R

q×n, q = |I| ,

is a left inverse of AT
I , i.e., A†

IA
T
I = Iq, and

HI = G−1
(
In − AT

I A†
I

)
∈ R

n×n

is the reduced inverse Hessian of f subject to the active set of constraints. To compute A†
I

and HI , we consider the Cholesky factorization G = LLT and the QR factorization of the
matrix B = L−1AT

I ∈ R
n×q, that is,

B = Q
[

R
0

]
=
[

Q1 Q2

] [ R
0

]
,

with Q1 ∈ R
n×q, Q2 ∈ R

n×(n−q) and R ∈ R
q×q . Then, using the results

AIG−1 = BT L−1 =
[

RT 0
]
QT L−1

AIG−1AT
I = BT B = RT R
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and

In = QQT =
[

Q1 Q2

] [ QT
1

QT
2

]
= Q1QT

1 + Q2QT
2

we find that
A†

I = R−1R−T
[

RT 0
]
QT L−1 = R−1QT

1 L−1

and that
HI = L−T

(
In − L−1AT

I R−1QT
1

)
L−1 = L−T Q2QT

2 L−1.

In terms of the auxiliary matrix J = L−T Q ∈ R
n×n, partitioned as

J =
[

J1 J2

]
=
[

L−T Q1 L−T Q2

]
,

A†
I and HI can be expressed as

A†
I = R−1JT

1

and
HI = J2JT

2 ,

respectively; whence introducing the vector

z = JT a =
[

JT
1 a

JT
2 a

]
=
[

z1

z2

]
,

we obtain
d = R−1z1

and
p = J2z2.

Thus, the computation of the search directions requires the knowledge of the matrices J
and R. To increase the numerical efficiency of the algorithm, these matrices are updated
in an ingenious way whenever a constraint is added to or deleted from the set of active
constraints.

Two efficient implementations of the method of Goldfarb and Idnani can be found in
Powell (1985). For a general discussion of primal active set methods we refer to Gill and
Murray (1978) and Gill et al. (1981).
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Mendrok, J., Schreier, F., and Höpfner, M. (2007). Estimating cirrus cloud properties from
MIPAS data. Geophys. Res. Letters 34, L08807. doi: 10.1029/2006GL028246.

Menke, W. (1984). Geophysical Data Analysis: Discrete Inverse Theory. Academic Press,
Orlando, FL.

Miller, K. (1970). Least squares methods for ill-posed problems with a prescribed bound.
SIAM J. Math. Anal. 1, 52–74.

Mishchenko, M. I., Lacis, A. A., and Travis, L. D. (1994). Errors induced by the neglect of
polarization in radiance calculations for Rayleigh-scattering atmospheres. J. Quant.
Spectrosc. Radiat. Transfer 51, 491–510.
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exponential Euler method, 245
Runge–Kutta method, 241

averaging kernel matrix, 52, 57

Backus–Gilbert method, 273
Bayes’ theorem, 108

conjugate gradient for normal equations
algorithm, 146
convergence rate, 332

constrained iteratively regularized Gauss–
Newton method with

equality constraints, 228
inequality constraints, 229

constraint
expected value, 64
norm, 64
vector, 63

corner
L-curve, 79
residual curve, 80

covariance matrix
a posteriori, 111
a priori profile, 43
data error, 139
instrumental noise, 41
noise error, 52, 113
normalized a priori profile, 44
smoothing error, 112
total error, 113
true state, 112

curvature
intrinsic, 167
parameter-effect, 167

data density, 118
degree of freedom

noise, 115
signal, 114

degree of nonlinearity
deterministic, 165
stochastic, 168

density of information, 119
direct regularization method for linear prob-

lems
a priori parameter choice method,

306
discrepancy principle, 307
error-free parameter choice methods,

313
generalized discrepancy principle,

310
direct regularization method for nonlinear

problems
a priori parameter choice method, 353
discrepancy principle, 354

discrepancy principle
generalized, 69
linear problems, 69
nonlinear problems, 203, 206

entropy
relative, 280
Shannon, 118

equality-constrained Tikhonov regularization
with

constant vertical column, 214
variable vertical column, 214

error
forward model, 41
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model parameter, 139
random, 112

error patterns
a priori covariance matrix, 168
mean square error matrix, 195

estimators
conditional mean, 109
maximum a posteriori, 109
maximum likelihood, 109

expectation minimization, 128
expected error estimation method

iterated, 202
linear problems, 67
multi-parameter problems, 98
nonlinear problems, 200
statistical inversion, 121

filter factors
information operator method, 120
iterated Tikhonov regularization, 50
Landweber iteration, 143
LSQR method, 153
Runge–Kutta regularization method,

244
Tikhonov regularization, 50
truncated total least squares, 256,

385

gain matrix, 110
generalized cross-validation

linear problems, 74
multi-parameter problems, 94
nonlinear problems, 203, 208
statistical inversion, 132

generalized inverse
continuous problems, 290
discrete problems, 30
regularized, 40

generalized singular value decomposition,
45

Hadamard’s conditions, 27
hierarchical models, 125

ill-posedness of
continuous problems, 291
discrete problems, 29

influence matrix, 55
information

content, 119

matrix, 115
operator method, 120

interpolant with
B-splines, 26
piecewise constant functions, 25
piecewise linear functions, 26

iterated Tikhonov regularization
linear problems, 49
nonlinear problems, 209

iterative regularization method for linear
problems, 323

iterative regularization method for nonlinear
problems

with a priori information, 365
without a priori information, 373

iteratively regularized Gauss–Newton
method, 223

Krylov subspace, 147

L-curve, 65
L-curve method

Backus–Gilbert approach, 277
discrete, 155
linear problems, 79
multi-parameter problems, 99
nonlinear problems, 204, 208

L-surface method, 97
Landweber iteration

linear problems, 141
nonlinear problems, 222

least squares solution
continuous problems, 288
discrete problems, 31

leaving-out-one lemma, 75
LSQR method, 151

marginalizing method, 137
maximum entropy regularization

cross entropy, 281
first-order, 282
second-order, 282

maximum likelihood estimation
linear problems, 77
multi-parameter problems, 95
nonlinear problems, 203, 208
statistical inversion, 126, 134

mean square error matrix
linear problems, 56
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minimum bound method
linear problems, 70
nonlinear problems, 206

minimum distance function approach
multi-parameter problems, 97
nonlinear problems, 208

minimum variance method, 122
mollifier methods, 271
multi-parameter regularization methods

complete, 94
incomplete, 98

Newton–CG method, 237
noise error

constrained, 54
expected value, 53
linear problems, 52
nonlinear problems, 192
random, 113

noise error method
Backus–Gilbert method, 277
statistical inversion, 123

noise variance estimators
generalized cross-validation, 136
maximum likelihood estimation, 136
unbiased predictive risk estimator

method, 136
normal equation

continuous problems, 288
discrete problems, 31
regularized, 40

optimization methods
step-length method, 174
trust-region method, 178

Picard coefficients, 59
Picard condition

continuous problems, 291
discrete problems, 58

preconditioning, 156, 186, 190
predictive error

noise, 55
smoothing, 55
total, 55

prewhitening, 171
projection method, 25

quadratic programming
equality-constrained, 391

inequality-constrained, 394
quasi-Newton method, 175
quasi-optimality criterion

multi-parameter problems, 95, 99
one-parameter problems, 78

regularization by projection, 38
regularization matrix

a priori profile covariance matrix, 43
first-order difference, 42
normalized, 44
second-order difference, 42

regularization parameter choice methods
a posteriori, 69
a priori, 67
error-free, 74

regularizing Levenberg–Marquardt method
with

step-length procedure, 233
trust-region procedure, 233

residual
expected value, 62
norm, 62
vector, 62

residual curve method
generalized, 82
ordinary, 80

residual polynomials
conjugate gradient method, 328
LSQR method, 153, 343
semi-iterative methods, 144

Ritz polynomial, 153
Ritz values, 153

Schwarzschild equation, 23
search direction

Gauss–Newton method, 175
Newton method, 174
steepest descent method, 174

semi-iterative regularization methods
Chebyshev method, 145
convergence rate, 326
ν-method, 146

sensitivity analysis, 169
singular value decomposition, 28
smoothing error

constrained, 54
linear problems, 51
nonlinear problems, 192
random, 112
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source condition
linear problems, 305
nonlinear problems, 353, 366

spread of averaging kernel, 58
standard form

explicit transformations, 295
implicit transformations, 299
problem, 48
transformation, 48

step-length procedure, 176
stopping rules

Lepskij, 230
linear problems, 155
nonlinear problems, 224

termination criteria
relative function convergence test, 182
relative gradient test, 179
X-convergence test, 179

Tikhonov iterate computed by
bidiagonalization of Jacobian matrix,

185

iterative methods for normal equations,
186

standard iterative methods, 189
SVD, 185

total error
constrained, 54
expected value, 53
linear problems, 51
nonlinear problems, 191
random, 112

total least squares
formulation, 252
Lanczos truncated, 257
regularized for linear problems, 258
regularized for nonlinear problems, 267
truncated, 254

trace lemma, 50
trust-region procedure, 179

unbiased predictive risk estimator method, 72

white noise, 41
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