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Foreword

Ensemble methods are now a cornerstone of modern Machine Learning and Data
Science, the “go-to” tool that everyone uses by default, to grab that last 3-4% of
predictive accuracy. Feature Selection methods too, are a critical element,
throughout the data science pipeline, from exploratory data analysis to predictive
model building. There can scarcely be a more generically relevant challenge, than a
meaningful synthesis of the two. This is the challenge that the authors here have
taken on, with gusto.

Bolén-Canedo and Alonso-Betanzos present a meticulously thorough treatment
of literature to date, comparing and contrasting elements practical for applications,
and interesting for theoreticians. I was surprised to find several new references I had
not found myself, in several years of working on these topics.

The first half of the book presents tutorials, cross referenced to current literature
and thinking—this should prove a very useful launch-pad for students wanting to
get into the area. The second half presents more advanced topics and issues—from
appropriate evaluation protocols (it’s really not simple, and certainly not a done
deal yet), to still quite open questions (e.g. combination of ranks and the stability of
algorithms), through to software tips and tools for practitioners. I particularly like
Chapter 10, on emerging challenges. This sort of chapter points the way for new
PhDs, providing inspiration and confidence that your research is moving in the right
direction.

In summary, Bolon-Canedo and Alonso-Betanzos have authored an eloquent
and authoritative treatment of this important area—something I will be recom-
mending to my students and colleagues as essential reference material.

University of Manchester Prof. Gavin Brown
2018

vii



Preface

Classically, machine learning methods have used a single learning model to solve a
given problem. However, the technique of using multiple prediction models for
solving the same problem, known as ensemble learning, has proven its effectiveness
over the last few years. The idea builds on the assumption that combining the
output of multiple experts is better than the output of any single expert. Classifier
ensembles have flourished into a prolific discipline; in fact, there is a series of
workshops on Multiple Classifier Systems (MCSs) run since 2000 by Fabio Roli
and Josef Kittler.

However, ensemble learning can be also thought as means of improving other
machine learning disciplines such as feature selection, which has not received yet
the same amount of attention. There exists a vast body of feature selection methods
in the literature, including filters based on distinct metrics (e.g. entropy, probability
distributions or information theory) and embedded and wrapper methods using
different induction algorithms. The proliferation of feature selection algorithms,
however, has not brought about a general methodology that allows for intelligent
selection from existing algorithms. In order to make a correct choice, a user not
only needs to know the domain well but also is expected to understand technical
details of available algorithms.

Ensemble feature selection can be a solution for the aforementioned problem
since, by combining the output of several feature selectors, the performance can be
usually improved and the user is released from having to choose a single method.
This book aims at offering a general and comprehensive overview of ensemble
learning in the field of feature selection.

Ensembles for feature selection can be classified into homogeneous (the same
base feature selector) and heterogeneous (different feature selectors). Moreover, it is
necessary to combine the partial outputs that can be either in the form of subsets of
features or in the form of rankings of features. This book stresses the gap with
standard ensemble learning and its application to feature selection, showing the
particular issues that researchers have to deal with. Specifically, it reviews different
techniques for combination of partial results, measures of diversity and evaluation
of the ensemble performance. Finally, this book also shows examples of problems

ix



X Preface

in which ensembles for feature selection have applied in a successful way and
introduces the new challenges and possibilities that researchers must acknowledge,
especially since the advent of Big Data.

The target audience of this book comprises anyone interested in the field of
ensembles for feature selection. Researchers could take advantage of this extensive
review on recent advances on the field and gather new ideas from the emerging
challenges described. Practitioners in industry should find new directions and
opportunities from the topics covered. Finally, we hope our readers enjoy reading
this book as much as we enjoyed writing it.

We are thankful to all our collaborators, who helped with some of the research
involved in this book. We would also like to acknowledge our families and friends
for their invaluable support, and not only during this writing process.

A Coruia, Spain Veronica Bolon-Canedo
March 2018 Amparo Alonso-Betanzos
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Chapter 1 ®)
Basic Concepts ez

Abstract In the new era of Big Data, the analysis of data is more important than
ever, in order to extract useful information. Feature selection is one of the most
popular preprocessing techniques used by machine learning researchers, aiming to
find the relevant features of a problem. Since the best feature selection method does
not exist, a possible approach is to use an ensemble of feature selection methods,
which is the focus of this book. But, before diving into the specific aspects to consider
when building an ensemble of feature selectors, in this chapter we will go back to the
basics in an attempt to provide the reader with basic concepts such as the definition
of a dataset, feature and class (Sect. 1.1). Then, Sect. 1.2 comments on measures to
evaluate the performance of a classifier, whilst in Sect. 1.3 different approaches to
divide the training set are discussed. Finally, Sect. 1.4 gives some recommendations
on statistical tests adequate to compare several models and in Sect. 1.5 the reader can
find some database repositories.

This book is devoted to explore the recent advances in ensemble feature selection.
Feature selection is the process of selecting the relevant features and discarding
the irrelevant ones but, since the best feature selection method does not exist, a
possible solution is to use an ensemble of multiple methods. But, before entering into
specific details when dealing with ensemble feature selection, this chapter will start
by defining basic concepts that will be necessary to understand the more advanced
issues that will be discussed throughout this book.

1.1 What Is a Dataset, Feature and Class?

This introductory chapter starts by defining a cornerstone in the field of Data Analysis:
the data itself. In the last few years, human society collects and stores vast amounts
of information about every subject imaginable, leading to the appearance of the term
Big Data. More than ever, data scientists are now in need, aiming at extracting useful
information from a vast pile of row data. But let’s start from the beginning... What
is data?

Data is usually collected by researchers in a form of a dataset. A dataset can be
defined as a collection of individual data, often called samples, instances or patterns.

© Springer International Publishing AG, part of Springer Nature 2018 1
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2 1 Basic Concepts

A sample can be seen as information about a particular case, for example about a
medical patient. The information about this particular case is given in the form of
features or attributes. A feature might be the sex of the patient, his/her blood pressure
or the color of his/her eyes. A feature can be relevant or not, or even redundant with
others, but this issue will be explored in depth in Chap. 2.

A specific task in Data Analysis is called classification, which consists of assigning
each sample to a specific class or category. Typically, samples belonging to the same
class have similar features and samples belonging to different classes are dissimilar.
A simple example can be seen in Table 1.1, which represents the popular “play tennis”
dataset [1].

As can be seen, this toy example represents data for a total of 15 records or
samples, and each sample has four different features (outlook, temperature, humidity
and windy) which give information that can be useful to know if it is possible to play
tennis or not (given that tennis is a sport that is played outside). The last column
represents the prediction variable or class (play), which is the desirable outcome
of this dataset, in a typical classification scenario. A feature can be discrete (if it
takes a finite set of possible values), continuous (if it takes a numerical value) or
boolean (if it takes one of two possible values—for example O or 1), and in some
cases it is necessary to discretize the continuous values since some machine learning
algorithms can only work with discrete data. In the “play tennis” dataset, features
“outlook” and “temperature” are discrete, whilst features “humidity”, “windy” and
the class “play” are boolean (notice that a boolean feature is a particular case of a
discrete feature).

Table 1.1 Play tennis dataset

Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no
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More formally, we can represent a dataset as X = {Xy, ..., Xq} € R. The class
label is represented as Y = {yi, ..., yn}. A typical dataset is organized as a matrix

of N rows (samples) by d columns (features), plus an extra column with the class
labels:

X11, X12, --- Xid 1

X215, X22, «.. X24 »
X = . Y=

XN1, XN2, -+ XNd YN

Notice that the element x ;; contains the value for the ith feature of the jth sample.

One of the most popular datasets that can be found in the Pattern Recognition
literature is the Iris dataset [2]. This dataset has been used in thousands of publications
over the years, and consists of distinguishing among three classes of iris plant (setosa,
virginica and versicolor). The dataset has four features which are petal width and
length, and sepal width and length and 50 samples of each of the three classes. As can
be seen in Fig. 1.1, one of the classes (setosa) is linearly and clearly separable from
the other two, while the classes virginica and versicolor are not linearly separable
between them. Notice that in Fig. 1.1 we are displaying feature petal width versus
petal length, but this situation on separability occurs for each pairwise combination
of features.

Having features that are linearly separable leads to perfect classification accura-
cies, while when the classes are not separable it is possible that the classifiers make
some mistakes. This issue will be commented in detail in the next section.

25 ‘ ‘ s
O Setosa Q«x xx X X X
; X X X
, A Versicolor 2000 X >
- iraini 000K X X o
X Virginica % 5 %
< L 4
ES 1.5
=
8
[0
o 1r .
O
051 O 1
O@O
(C15]0)
(O 11D]@)
0 O @ 1 1 1 1 1
1 2 3 4 5 6 7

Petal length

Fig. 1.1 Scatter plot of Iris dataset
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1.2 Classification Error/Accuracy

Although this book is focused on feature selection, a typical measure to evaluate the
efficiency of the features selected by a feature selection algorithm is to use a classifier
afterwards and check if the classification error/accuracy remains acceptable.

Just to recall, the task of a classifier is to predict to which class belongs a particular
sample. Therefore, we need measures to evaluate how good this prediction was. A
very popular performance measure is the classification error, which is the percentage
of incorrectly classified instances divided by the total number of instances. Analo-
gously, classification accuracy is the percentage of correctly classified instances
divided by the total number of samples.

However, looking only at the classification error or accuracy is not a good practice.
Suppose that we have a dataset with 100 samples, 95 of them belonging to class A and
only five of them belonging to class B. Imagine now that we have two classifiers, C
and C,. The first classifier, Cy, just assigns all the samples to class A, achieving 95%
of accuracy, which sounds fairly high. Then, the second classifier, C,, misclassifies
four samples belonging to class A and two samples belonging to class B, obtaining
94% of accuracy. Which classifier is better? Well, the answer depends on the nature of
the dataset but, in general, it is better to achieve a trade-off between the performance
on the two classes, and so it is necessary to check the classification rates of each
class. In a typical binary classification scenario, there are other measures that we can
use to evaluate the performance of a classifier, which are represented below. Notice
that accuracy and error can be redefined in terms of these new measures.

e True positive (TP): percentage of positive examples correctly classified as so.

e False positive (FP): percentage of negative examples incorrectly classified as pos-
itive.

e True negative (TN): percentage of negative examples correctly classified as so.

e Fualse negative (FN): percentage of positive examples incorrectly classified as
negative.

e Sensitivity = %.
e Specificity = %.
_ TN+TP
o Accuracy = gyrpirNTFP-
_ FN+FP
® Error = g5 rpi N P

Another way to check how the errors are distributed across the classes (particularly
interesting if the dataset has more than two classes) is to construct a confusion matrix.
An entry g;; of this matrix represents the number of samples that have been assigned
to class ¢; while their true class was ;. To calculate the classification accuracy from
this matrix it is necessary to divide the sum of the elements in the main diagonal
divided by the total number of examples. Using the confusion matrix is very useful
because it gives additional information on where the errors have occurred.
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Fig. 1.2 Scatter plot of Iris dataset being classified with a linear discriminant

Table 1.2 Confusion matrix for Iris dataset classified with a linear discriminant

Predicted
Setosa Versicolor Virginica
Actual Setosa 50 0 0
Versicolor 0 48 2
Virginica 0 4 46

For example, suppose that we have classified the Iris dataset with a linear discrimi-
nant [2]. In Fig. 1.2 we can see that, as expected, the class setosa is correctly classified
but there are some errors in the classification of the other two classes. In particular,
the confusion matrix presented in Table 1.2 gives us more explicit information about
the errors.

1.3 Training and Testing

In the previous section, we have seen, as an example, how the Iris data was classified.
But what happens when a new sample arrives? This is the essence of classification,
being able to classify new examples for which the class label is not known, and in
this way test our classification model.

Ideally, one would use all the labeled examples available to train a classifier,
making it possible that it can learn the particularities of the data and the relationship
between the feature values and the corresponding class. Then, as new unlabeled
examples would come, our trained classifier makes a prediction but, how can we
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know if our classifier was correctly trained with data being representative enough of
the full population? In the real world, with new unlabeled examples, it is impossible
to answer this question. So, a common practice is to save part of the labeled data to
act as the fest set. Notice that it is very important that testing is done on unseen data.
An important aspect we need to take into account is overfitting, which might occur
when the learning is so adjusted to the training data that is incapable of generalize to
unseen test data. Therefore, in practice, it is common to use some technique to lessen
the amount of overfitting, such as cross-validation (that will be commented later in
this section), regularization, early stopping, pruning, etc. All these techniques are
based on either explicitly penalize overly complex models or to test the ability of the
model to generalize by evaluating its performance in unseen data.

All the parameters involved in learning should be tuned on the training data,
and this includes feature selection. A commonly found mistake in the specialized
literature is that feature selection is performed on all the available data, discarding
the irrelevant features, and then continue with the training of the classifier dividing
data into training and test sets to evaluate the accuracy of the selected features. This is
incorrect, since feature selection (and any other type of learning or parameter tuning
that is performed on data) should be done only on the training set, leaving a test set
to evaluate the performance.

There are some benchmark datasets that come originally divided into training
and test sets. For example, the KDD (Knowledge Discovery and Data Mining Tools
Conference) Cup 99 dataset is a benchmark for intrusion detection systems. Separate
training and test sets were released, with the particularities that the percentage of the
different classes (normal connection and several types of attacks) varies significantly
from training to test, as well as the fact that in the test set there are new attacks that
are not present in the training set [3].

In other cases, researchers need to keep part of the available data as test set. There
are several training/testing protocols that can be done, the most popular ones are
following described:

e k-Fold Cross-validation. This is one of the most famous validation techniques [4].
The data (D) is partitioned into k nonoverlapping subsets Dj, ..., Dy of roughly
equal size. The learner is trained on k — 1 of these subsets combined together and
then applied to the remaining subset to obtain an estimate of the prediction error.
This process is repeated in turn for each of the k subsets, and the cross-validation
error is given by the average of the k estimates of the prediction error thus obtained.
In the case of feature selection, note that with this method there will be k subsets
of selected features. A common practice is to merge the k different subsets (either
by union or by intersection) or to keep the subset obtained in the fold with the best
classification result.

e Leave-One-Out Cross-validation. This is a variant of k-fold cross validation
where k is the number of samples [4]. A single observation is left out each time.

e Bootstrap. This is a general resampling strategy [5]. A bootstrap sample consists
of n samples equally likely to be drawn, with replacement, from the original data.
Therefore, some of the samples will appear multiple times, whereas others will
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not appear at all. The learner is designed on the bootstrap sample and tested on
the left-out data points. The error is approximated by a sample mean based on
independent replicates (usually between 25 and 200). Some famous variants of
this method exist, such as balanced bootstrap or 0.632 bootstrap [6]. As in the
previous methods, there will be as many subsets of features as repetitions of the
method.

e Holdout Validation. This technique consists of randomly splitting the available
data into a disjoint pair training test [4]. A common partition is to use 2/3 for
training and 1/3 for testing. The learner is designed based on the training data
and the estimated error rate is the proportion of errors observed in the test data.
This approach is usually employed when some of the datasets in a study come
originally divided into training and test sets whilst others do not. In contrast to
other validation techniques, a unique set of selected features is obtained.

The choice of one or another method is not trivial, and it usually depends on the
size of the data we have. For example, if only a hundred of samples are available
(as usually happens with microarray data), choosing a 2/3-1/3 hold validation might
not be a good idea, since the training data might not be enough to avoid overfitting
[7]. On the contrary, when the data is really large (as it happens nowadays since the
advent of Big Data), using a 10-fold cross validation or leave-one-out can result in
an excessively time-consuming process, so people tend to go back to the old good
hold-out method [8]. Moreover, using a scheme that produces multiple training and
testing pairs, there is the open question of which of the models built during the
training process should be used in the end. For example, imagine that you have used
a 10-fold cross validation to perform feature selection and evaluated the performance
of the selected features in terms of classification accuracy. You end up with ten —
possibly— different subsets of features, and then...which one would you use as
your final set of relevant features? There is not a perfect solution to this problem,
some approaches consist of choosing the one which obtains the highest classification
accuracy, while others employ the union or intersection between all the ten subsets
of features.

1.4 Comparison of Models: Statistical Tests

When presenting a new feature selection or classification method, it is necessary to
compare it with previous state-of-the-art approaches, to demonstrate if the method
is sound. For example, if one wants to demonstrate that applying feature selection
is useful in a particular domain, a common practice is to compare the classification
performance with and without feature selection, expecting that feature selection —
at least— maintains the original performance but using less features. Therefore, to
know if the differences between models are important, statistical tests are usually
employed.
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When comparing models, there is a set of good practices that is advisable to
follow, based on those given by Kuncheva [8]:

e Choose carefully the training/test procedure (see previous section) before start-
ing the experiments. When you publish your work, give enough details so the
experiments are clear and can be reproducible.

e Make sure that all the models (either if we are comparing feature selection methods
or classifiers) use all the information possible, and of course they employ the same
data for training, and then for testing. For example, it is not fair to perform different
10-fold cross validations for different models, because the random division of the
data may favor one or another method. The correct way to do this is to divide the
data into folds and at each iteration train the different models on the corresponding
training data.

e Make sure that the data reserved for testing was not used before in any training
stage.

e When possible, perform statistical tests. It is better for the reader to know if the
differences in performance between models are statistically significant or not.

There are several statistical tests available in the specialized literature; in the
following we will describe the most adequate ones for a particular situation based
on the recommendations given by DemSar [9].

1.4.1 Two Models and a Single Dataset

Suppose that you have a fixed, single dataset and two algorithms (for example,
the same classifier with and without feature selection as a previous step). If we
want to have some repetitions to be able to perform statistical tests, it is necessary
to repeatedly split the data into training and testing set, and induce our models.
For example, a typical choice might be a 10-fold cross validation. Unfortunately,
under this situation, it is not possible to apply the classical Student’s t-test for paired
samples, since this method assumes that the samples need to be independent, and in
a cross-validation they are not (two training sets in a 10-fold cross-validation share
80/90% of data instances). To solve this, there are several options:

e The corrected t-test presented by Nadeau and Bengio [10] which corrects the bias
presenting a new way to compute the variance.

e The McNemar’s test.

e Dietterich [11] proposed to perform a 5 x 2 cross-validation. In each 2-fold cross-
validation, different data is used for training and testing, so we can assume that the
variances are unbiased. Since it is computed in a really small sample (2), Dietterich
proposed to repeat this process five times.
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1.4.2 Two Models and Multiple Dataset

Given that we have access to data repositories such as the UCI Machine Learning
Repository, the tendency is to use several datasets to demonstrate that our new method
is better than other, for example that using feature selection before classifying is better
than just classifying. The prevalent approach some years ago to compare two models
was to count wins and losses. However, how can we know if an algorithm really wins?
If our model A wins in 15 datasets and loses only in two, we can say it but, what
if they were 10:7? Notice that our samples, in this case, are the number of datasets
tested, so this is a really small sample size, making it difficult to draw meaningful
conclusions.

Demsar discourages us to use sign tests, as they discard too much information.
They only take into account the signs (of differences) but they do not consider the
margins by which each model wins. So, in this situation, DemSar proposes the use
of Wilcoxon signed rank test [12].

1.4.3 Multiple Models and Multiple Dataset

Another typical scenario is when you have multiple feature selection algorithms
which you want to apply before classifying and you want to know which one is the
best. According to Demsar, repeating the Wilcoxon test for all pairs is not a good idea,
since it is something that you should avoid in significant testing, specially because
your sample size is the number of datasets and it is not large enough. Thus, he sug-
gested the use of the Friedman test [13, 14]. This test only tells if the performances
of your models differ, so you need a post-hoc test. There are two possible situations:
you either compare multiple algorithms, or you compare your novel method (control
case) with several existing algorithms. In the first case, you have k(k + 1)/2 compar-
isons (being k the number of models) and Demsar suggested the use of the pairwise
Nemenyi case [15]. In the second case, you test k — 1 hypotheses (yours vs. every
other) and DemSar suggested the use of the Bonferroni—Dunn test [16].

1.5 Data Repositories

Nowadays, there are several data repositories with benchmark datasets in which
researchers can find a diverse set of databases to test their novel methods. The most
popular ones are listed below:

e The UC Irvine Machine Learning Repository (UCI), from University of California,
Irvine:
http://archive.ics.uci.edu/ml/
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e UCI KDD Archive, from University of California, Irvine:
http://kdd.ics.uci.edu

e LIBSVM Database:
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

e Public Data Sets, from Amazon Web Services:
http://aws.amazon.com/datasets

e The Datahub:
http://datahub.io/dataset

e Kaggle datasets:
https://www.kaggle.com/datasets

There also exist specialized repositories, for example for microarrays (with the
particularity of having much more features than samples) or images.

e [mageNet, the most popular collection of public images:
https://www.kaggle.com/datasets

e ArrayExpress, microarray datasets from the European Bioinformatics Institute:
http://www.ebi.ac.uk/arrayexpress/

e Gene Expression Omnibus, microarray datasets from the National Institutes of
Health:
http://www.ncbi.nlm.nih.gov/geo/

e The Cancer Genome Atlas (TCGA), microarray datasets from both the National
Cancer Institute and the National Human Genome Research Institute:
https://cancergenome.nih.gov/

e Cancer Program Data Sets, microarray datasets from the Broad Institute:
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

e Gene Expression Model Selector, microarray datasets from Vanderbilt University:
http://www.gems-system.org

e Gene Expression Project, microarray datasets from Princeton University:
http://genomics-pubs.princeton.edu/oncology/

1.6 Summary

Feature selection is one of the most popular preprocessing techniques, which consists
of selecting the relevant features and discarding the irrelevant and redundant ones.
Researchers agree that the best feature selection method does not exist, so a good
option might be to combine the outcomes of different selectors, which is known as
ensemble feature selection. Before exploring in detail this approach, which will be
exhaustively tackled throughout this book, this chapter describes some basic concepts
that are necessary to know for any machine learning researcher.

We have described basic concepts such as a dataset, a feature and a class, and we
have also payed attention to more delicate issues such as the correct choice of an
evaluation system or a statistical test. Moreover, we also provide some repositories
from which popular benchmark datasets can be downloaded.
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Chapter 2 ®)
Feature Selection Check for

Abstract The advent of Big Data, and specially the advent of datasets with high
dimensionality, has brought an important necessity to identify the relevant features
of the data. In this scenario, the importance of feature selection is beyond doubt and
different methods have been developed, although researchers do not agree on which
one is the best method for any given setting. This chapter provides the reader with
the foundations about feature selection (see Sect.2.1) as well as a description of the
state-of-the-art feature selection methods (Sect.2.2). Then, these methods will be
analyzed on several synthetic datasets (Sect.2.3) trying to draw conclusions about
their performance when dealing with a crescent number of irrelevant features, noise
in the data, redundancy and interaction between attributes, as well as a small ratio
between number of samples and number of features. Finally, in Sect. 2.4, some state-
of-the-art methods will be analyzed to study their scalability, i.e. the impact of an
increase in the training set on the computational performance of an algorithm in
terms of accuracy, training time and stability.

Ensemble learning is typically applied to classification problems. However, there are
ensembles focused on other machine learning tasks, such as feature selection, which
is the focus of this book and will be thoughtfully explained in this chapter.

Among machine learning researchers, it is common to have to deal with datasets
containing a huge number of features, which derives in an interesting challenge
because classical machine learning methods are not able to efficiently deal with such
number of input features. As a result, it is typical to apply a preprocessing step to
remove irrelevant features and reduce the dimensionality of the problem at hand.

Dimensionality reduction techniques are usually divided into two groups: feature
extraction and feature selection. Feature extraction consists in combining the original
features and obtaining a dataset with a reduced number of new features which are a
transformation of the original ones (see Fig.2.1a). One of the most popular methods

Part of the content of this chapter was previously published in Knowledge and Information Sys-
tems (https://doi.org/10.1007/s10115-012-0487-8 and https://doi.org/10.1007/s10115-017-
1140-3).
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Fig. 2.1 Examples of feature extraction and feature selection systems

is called Principal Component Analysis (PCA) [1]. This kind of methods are usually
applied on fields such as image analysis, signal processing or information retrieval, in
which model interpretation is not really important. In turn, feature selection works by
keeping the original features that are relevant to the learning task and removing those
irrelevant or redundant (see Fig.2.1b). Since this approach maintains the original
features, it is particularly useful for those applications in which model interpretability
and knowledge extraction are important, such as, for instance, text mining. The rest
of this chapter will be focused on feature selection.

2.1 Foundations of Feature Selection

As mentioned above, feature selection can be defined as the process of detecting the
relevant features and discarding the irrelevant ones. A correct selection of the features
can lead to an improvement of the inductive learner, either in terms of learning speed,
generalization capacity or simplicity of the induced model. Moreover, there are some
other benefits associated with a smaller number of features: a reduced measurement
cost and hopefully a better understanding of the domain.

There are several situations that can hinder the process of feature selection, such
as the presence of irrelevant and redundant features, noise in the data or interaction
between attributes. In the presence of hundreds or thousands of features, such as
DNA microarray analysis, some researchers notice [2, 3] that is common that a large
number of features is not informative because they are either irrelevant or redundant
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with respect to the class concept. Moreover, when the number of features is high but
the number of samples is small, machine learning gets particularly difficult, since the
search space will be sparsely populated and the model will not be able to distinguish
correctly the relevant data and the noise [4].

There are two typical ways of categorizing feature selection methods. The first one
depends on the outcome of the feature selector: whether it returns a subset of relevant
features or an ordered ranking of all the features, according to their relevance. The
first approach is known as subset evaluation and the latter as individual evaluation
or feature ranking. In Fig. 2.2, we can see an example of these two approaches. In the
case of subset evaluation (Fig.2.2a) only a subset of the original features is returned
by the system —in this example, four out of nine possible features. In turn, a feature
ranking system (Fig.2.2b) returns all the features ranked starting from the strongly
relevant features and ending with the weakly relevant ones. In this latter case, it is
necessary to establish a threshold in order to reduce the dimensionality of the problem.
Most studies in the literature use thresholds that retain different fixed percentages of
features [30, 34]. Since threshold values are dependent on the particular dataset being
studied, several attempts have been made to develop a general automatic threshold
[18, 33, 35]. This issue will be explored in more detail in Chap. 4.
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Fig. 2.2 Examples of subset evaluation and feature ranking approaches
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Apart from this classification, feature selection methods can also be divided
regarding the relationship between a feature selection algorithm and the inductive
learning method used to infer a model, into three major approaches [5]:

e Filters, which rely on the general characteristics of training data and carry out
the feature selection process as a pre-processing step with independence of the
induction algorithm. This model is advantageous for its low computational cost
and good generalization ability.

e Wrappers, which involve a learning algorithm as a black box and consists of using
its prediction performance to assess the relative usefulness of subsets of variables.
In other words, the feature selection algorithm uses the learning method as a
subroutine with the computational burden that comes from calling the learning
algorithm to evaluate each subset of features. However, this interaction with the
classifier tends to give better performance results than filters.

e Embedded methods, which perform feature selection in the process of training
and are usually specific to given learning machines. Therefore, the search for an
optimal subset of features is built into the classifier construction and can be seen
as a search in the combined space of feature subsets and hypotheses. In other
words, ensemble methods learn which features best contribute to the accuracy
of the model while the model is being created. This approach is able to capture
dependencies at a lower computational cost than wrappers.

As can be seen above, each model has its advantages and disadvantages. If the
data is not too big, wrappers and embedded methods tend to give more accurate
results, at the expense of a high computational cost. Therefore, if speed is crucial
(for example in real-time applications) or if we are dealing with Big Data, filters
are usually preferred. The interested reader can find more general information about
feature selection in the specialized literature [5-8].

2.2 State-of-the-Art Feature Selection Methods

Each year, new feature selection methods are constantly appearing. However, this
abundance of feature selection algorithms has not facilitated the choice of a particular
method in a given situation, but quite the opposite. Nevertheless, despite the big
amount of feature selection methods available, some of them have been able to stand
out and their use has become very popular among researchers. Some of them are
subsequently described.

2.2.1 Filter Methods

e Correlation-based Feature Selection (CFS) is a simple multivariate filter
algorithm that ranks feature subsets according to a correlation based heuristic
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evaluation function [9]. The bias of the evaluation function is toward subsets that
contain features that are highly correlated with the class and uncorrelated with each
other. Irrelevant features should be ignored because they will have low correlation
with the class. Redundant features should be screened out as they will be highly
correlated with one or more of the remaining features. The acceptance of a feature
will depend on the extent to which it predicts classes in areas of the instance space
not already predicted by other features

e The Consistency-based Filter [10] evaluates the worth of a subset of features by
the level of consistency in the class values when the training instances are projected
onto the subset of attributes.

e The INTERACT algorithm [11] is a subset filter based on symmetrical uncertainty
(SU) and the consistency contribution, which is an indicator about how signifi-
cantly the elimination of a feature will affect consistency. The algorithm consists
of two major parts. In the first part, the features are ranked in descending order
based on their SU values. In the second part, features are evaluated one by one
starting from the end of the ranked feature list. If the consistency contribution of
a feature is less than an established threshold, the feature is removed, otherwise it
is selected.

o Information Gain [12] is one of the most common attribute evaluation methods.
This univariate filter provides an ordered ranking of all the features and then a
threshold is required.

e ReliefF [13] is an extension of the original Relief algorithm [14]. The original
Relief works by randomly sampling an instance from the data and then locating
its nearest neighbor from the same and opposite class. The values of the attributes
of the nearest neighbors are compared to the sampled instance and used to update
relevance scores for each attribute. The rationale is that an useful attribute should
differentiate between instances from different classes and have the same value for
instances from the same class. ReliefF adds the ability of dealing with multiclass
problems and is also more robust and capable of dealing with incomplete and noisy
data. This method may be applied in all situations, has low bias, includes inter-
action among features and may capture local dependencies which other methods
miss.

e The mRMR (minimum Redundancy Maximum Relevance) method [15] selects
features that have the highest relevance with the target class and are also minimally
redundant, i.e., selects features that are maximally dissimilar to each other. Both
optimization criteria (Maximum-Relevance and Minimum-Redundancy) are based
on mutual information.

e ChiSquared is a univariate filter based on the x?2 statistic [36] which evaluates
each feature independently with respect to the classes. The higher chi-squared, the
more relevant is the feature with respect to class.

e The FCBF (Fast Correlation-Based Filter) [3] is a multivariate algorithm that
measures feature-class and feature-feature correlation. FCBF starts by selecting
a set of features that is highly correlated with the class based on SU. Then, it
applies three heuristics that remove the redundant features and keep the feature
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that is more relevant to the class. FCBF was designed for high-dimensionality
data and has been shown to be effective in removing both irrelevant and redun-
dant features. However, it fails to take into consideration the interaction between
features.

2.2.2 Embedded Methods

e SVM-RFE (Recursive Feature Elimination for Support Vector Machines) was
introduced by Guyon in [16]. This embedded method performs feature selection
by iteratively training a SVM classifier with the current set of features and removing
the least important feature indicated by the SVM.

e FS-P (Feature Selection - Perceptron) [18] is an embedded method based on a
perceptron. A perceptron is a type of artificial neural network that can be seen
as the simplest kind of feedforward neural network: a linear classifier. The basic
idea of this method consists on training a perceptron in the context of supervised
learning. The interconnection weights are used as indicators of which features
could be the most relevant and provide a ranking.

2.2.3 Wrapper Methods

e WrapperSubsetEval [19] evaluates attribute sets by using a learning scheme.
Cross validation is used to estimate the accuracy of the learning scheme for a set
of attributes. The algorithm starts with the empty set of attributes and searches
forward, adding attributes until performance does not improve further. It can be
used in conjunction with any learning algorithm.

2.3 Which Is the Best Feature Selection Method?

The benefits of feature selection as a preprocessing step are more than proved in the
specialized literature. However, researchers agree that there is not a so-called “best
feature selection method” and their efforts are focused on finding a good method for
a specific problem setting.

Given the large amount of feature selection methods available, carrying out a com-
parative study is an arduous task. Moreover, an important issue is how to evaluate
the performance of the feature selection methods. If we use the classification accu-
racy, this is dependent on the particular classifier chosen, and can vary notably from
one method to another. Therefore, a possible solution is to evaluate feature selection
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methods on artificially generated data, in which the desired output is already known.
In this way, a feature selection algorithm can be evaluated with independence of the
classifier chosen. Citing Belanche et al. [20], there are two main reasons to choose
artificial data as a first step to compare feature selection methods:

1. Controlled experiments can be developed by systematically varying chosen exper-
imental conditions, like adding more irrelevant features or noise in the input. This
fact facilitates to draw more useful conclusions and to test the strengths and weak-
nesses of the existing algorithms.

2. The main advantage of artificial scenarios is the knowledge of the set of optimal
features that must be selected, thus the degree of closeness to any of these solutions
can be assessed in a confident way.

In the rest of this section, we will compare the state-of-the-art feature selection
methods described in Sect.2.2 using a set of 11 synthetic datasets covering a large
suite of problems (non-linearity of the data, noise in the inputs and in the target,
increasing number of irrelevant and redundant features, etc.).

2.3.1 Datasets

As mentioned above, we will test and compare state-of-the-art feature selection
methods on 11 synthetic datasets:

e CorrAL [21] is a classical dataset with six binary features ( fi, f2, f3, f4, fs5, f6)
and the class value is (fi A f2) V (f3s A fy). Feature f5 is irrelevant and fj is
correlated to the class label by 75%. We also included CorrAL-100 [32] which
was constructed by adding 93 irrelevant binary features.

e XOR-100 was constructed from the original XOR problem. In this case, the dataset
has 2 relevant features that are both necessary to define the class (class equals
f1 @ f2) and the remaining 97 binary features are irrelevant.

e Parity3+3is aclassic problem where the outputis f(xy, ..., x,) = 1 if the number
ofx; = lisoddand f(xy, ..., x,) = O otherwise. In this case, the target concept is
the parity of three bits. It contains 12 features among which 3 are relevant, another
3 are redundant (repeated) and other 6 are irrelevant (randomly generated).

e The LED problem [24] is a simple classification task that consists of, given the
active leds on a seven segments display, identifying the digit that the display is
representing. Thus, the classification task to be solved is described by seven binary
attributes and ten possible classes available (C = {0, 1,2,3,4,5,6,7,8,9}). A 1
in an attribute indicates that the led is active, and a 0 indicates that it is not active.
Two versions of the Led problem will be used: the first one, Led25, adding 17 irrel-
evant attributes (with random binary values) and the second one, Led100, adding
92 irrelevant attributes. Both versions contain 50 samples. The small number of
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samples was chosen because we are interested in dealing with datasets with a
high number of features and a small sample size. Besides, different levels of noise
(altered inputs) have been added to the attributes of these two versions of the Led
dataset: 2, 6, 10, 15 and 20%. In this manner, the tolerance to different levels of
noise of the feature selection methods tested will be checked. Note that, as the
attributes take binary values, adding noise means assigning to the relevant features
an incorrect value.

e Monk3 belongs to the collection of MONK’s problems [23] in which robots are
described by six different attributes (x, . . ., x¢). It is a binary classification task in
which the class is (xs =3 A x4 = 1) V (x5 # 4 A X # 3). Among the 122 sam-
ples, 5% are misclassifications, i.e. noise in the target.

e The SD datasets [22] represent the challenging problematic of microarray data,
with a high number of features whilst small number of samples, besides of a high
number of irrelevant and redundant features. SD1, SD2 and SD3 are three-class
datasets with 75 samples (each class containing 25 samples) and 4000 irrelevant
features. SD1 contains two groups of relevant genes generated from a multivariate
normal distribution, with 10 genes in each group. Genes in the same group are
redundant with each other and the optimal gene subset for distinguishing the three
classes consists of any two relevant genes from different groups. In turn, SD2
contains four groups of 10 relevant genes; and SD3 contains six groups of 10
relevant genes.

e The Madelon dataset [5] is a 2 class problem originally proposed in the NIPS’2003
feature selection challenge. The relevant features are situated on the vertices of
a five dimensional hypercube. Five redundant features were added, obtained by
multiplying the useful features by a random matrix. Some of the previously defined
features were repeated to create 10 more features. The other 480 features are drawn
from a Gaussian distribution and labeled randomly. This dataset presents high
dimensionality both in number of features and in number of samples and the data
were distorted by adding noise, flipping labels, shifting and rescaling.

2.3.2 Experimental Study

Some of the state-of-the-art feature selection methods described in Sect. 2.2 are tested
and compared trying to draw useful conclusions. As mentioned above, feature selec-
tion methods can return a subset of features or a rankings of all features, in which
case it is necessary to establish a threshold. In these experiments, we heuristically
set the following rules to decide the number of features that ranker methods should
return, according to the number of total features (N):

e if N < 10, select 75% of features

e if 10 < N < 75, select 40% of features
e if 75 < N < 100, select 10% of features
e if N > 100, select 3% of features
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According to these rules, the number of features that will be returned by ranker
methods is 5 for the datasets Corral, Parity3+3 and Monk3, 10 for the datasets Corral-
100, XOR-100 and Led, and 15 for Madelon.

A scoring measure was defined in order to fairly compare the effectiveness showed
by the different feature selection methods. This measure is an index of success suc.,
see (2.1), which attempts to reward the selection of relevant features and to penalize
the inclusion of irrelevant ones, penalizing two situations:

e The solution is incomplete: there are relevant features lacking.
e The solution is incorrect: there are some irrelevant features.

Ry I
suc. = |:— — Ot—:| x 100, 2.1)

where R; is the number of relevant features selected, R; is the total number of relevant
features, I is the number of irrelevant features selected and I, is the total number of
irrelevant features. The term « was introduced to ponder that choosing an irrelevant
feature is better than missing a relevant one (i.e. we prefer an incorrect solution rather
than an incomplete one). The parameter « is defined as o = min{%, 1;—:}. Note that
the higher the success, the better the method, and 100 is the maximum.

In the case of ranker methods and in order to be fair, if all the optimal features are
selected before any irrelevant feature, the index of success will be 100, due to the
fact that the number of features that ranker methods are forced to select is always
larger than the number of relevant features.

As was explained above, the evaluation of the feature selection methods is done
by counting the number of correct/wrong features. However, it is also interesting and
a common practice in the literature [25] to see the classification accuracy obtained
in a 10-fold cross-validation, in order to check if the true model (that is, the one with
an index of success of 100) is also unique (that is, if is the only one that can achieve
the best percentage of classification success). For this purpose, four well-known
classifiers, based on different models, were chosen: C4.5 [26], naive Bayes (NB)
[27], IB1 [28] and SVM [29]. Notice that the embedded feature selection method
SVM-REFE is tested both with a linear kernel and with a radial basis function (RBF)
kernel.

In Tables2.1 and 2.2 we study how the feature selection methods can deal with
correlation and redundancy, using the datasets Corral and Corral-100. In both cases,
the desired behavior of a feature selection method is to select the 4 relevant features
and to discard the irrelevant ones, as well as detecting the correlated feature and not
selecting it. Regarding Corral-100, it is curious that the best classification accuracy
was obtained by SVM-RFE-linear, which has a index of success of 25, but this fact
can be explained because in this dataset there are some irrelevant features that are
informative to the classifiers (see more details in [30]).
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Table 2.1 Results for CorrAL. “Rel.” shows the relevant features selected, “C” indicates if the
correlated feature is selected (v') or not (X), “Irr.” means the number of irrelevant features selected
and “suc.” represents the index of success

Accuracy (%)

Method Rel.|C |Irr. [suc. C4.5| NB | IB1 |SVM
CFS - |v| 0]-25]|75.00|75.00| 59.38 |75.00
Consistency - |V'| 0 [-25]|75.00|75.00| 59.38 |75.00
INTERACT - |v'| 0]-25]|75.00|75.00| 59.38 |75.00
InfoGain - |V'| 0 [-25]|75.00|75.00| 59.38 |75.00
ReliefF 1-4 [v'| 0|75 (|62.50|81.25| 96.88 |87.50
mRMR 1-4 |v'| 0]751|62.50{81.25| 96.88 |87.50
SVM-RFE-linear||1-4 [v'| 0 | 75 [|62.50|81.25| 96.88 [87.50
SVM-RFE-RBF [|1-4 | X| 1|75 [|81.25[78.13| 81.25 |71.86
FS-P 1-4 [ X| 0 |100(|81.25|78.13(100.00|81.25
Wrapper SVM  ||- |V| 0 [-25((75.00{75.00| 59.38 |75.00
Wrapper C4.5 - |v'| 0]-25]|75.00|75.00| 59.38 |75.00

Table 2.2 Results for CorrAL-100. “Rel.” shows the relevant features selected, “C” indicates if the
correlated feature is selected (v') or not (X), “Irr.” means the number of irrelevant features selected
and “suc.” represents the index of success

Method Rel. |C|Irr. [suc. C4s f;‘;grjci/];?)l SVM
CFS - v 0|-21[75.00{75.00|59.38|75.00
Consistency - v 10| -21]75.00]{75.00(59.38|75.00
INTERACT - V|0 | -2 ([75.00{75.00|59.38|75.00
InfoGain - v 10| -21]/75.00{75.00({59.38|75.00
ReliefF 1-3 |v'| 6 |75 ||53.13]84.38(87.50|81.25
mRMR 1-4 |V |5]99 [[53.13]81.25]90.63(90.63
SVM-RFE-linear | |4 V| 8 |25 (62.50/87.50|68.75|96.88
SVM-RFE-RBF ||- V'] 9 |-441|68.75|68.7562.50{75.00
FS-P 1,3,4|v'| 6 | 75 ||53.13]87.50|84.38|87.50
Wrapper SVM | |- v 0| -21]/75.00]{75.00(59.38(75.00
Wrapper C4.5 - V| 2 [-13[84.38(75.00|75.00|75.00

To analyze the behavior of feature selection methods when dealing with non-
linearity, Tables2.3 and 2.4 present the results on the datasets XOR and Parity.
XOR-100 contains 2 relevant features and 97 irrelevant features whilst Parity has 3
relevant, 3 redundant and 6 irrelevant features. For the sake of completeness, SVM
and naive Bayes will be applied over these two datasets. However, bearing in mind
that those methods are linear classifiers (a linear kernel is being used for SVM), no
good results are to be expected.
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Table 2.3 Results for XOR-100. “Rel.” shows the relevant features selected, “Red” indicates the
number of redundant features elected, “Irr.” means the number of irrelevant features selected and
“suc.” represents the index of success

Accuracy (%)

Method Rel. |Irr. {suc. c4s | NB | IB1 |SVM
ReliefF 1,2 | 0 {100]({100.00{64.00({100.00|70.00
mRMR 1 9 {50 || 52.00 [74.00| 64.00 |72.00
SVM-RFE-linear | |- 10|-21 || 48.00 |68.00| 56.00 |{78.00
SVM-RFE-RBF [|1,2 | 0 {100{[100.00{64.00({100.00|70.00
FS-P 1 9 |50 || 62.00 [76.00| 62.00 |74.00
Wrapper SVM  ||- 1] -2 || 66.00 |{66.00| 60.00 [66.00
Wrapper C4.5 1,2 |1 2199 ({100.00{70.00{ 96.00 {50.00

Table 2.4 Results for Parity3+3. “Rel.” shows the relevant features selected, “Red” indicates the
number of redundant features elected, “Irr.” means the number of irrelevant features selected and
“suc.” represents the index of success

Method Rel. |Red. [Irr.|suc. || ., < |AI§?3urrC¥B(;%)|SVM
ReliefF 123 2 | 093 (90.63]29.69/100.00]|37.50
mRMR 23 | 0 |3|56]]60.94|59.38| 59.38 |59.38
SVM-RFE-linear||3 0 | 4119 (]54.69]59.38] 46.88 |57.81
SVM-RFE-RBF |[1,2,3| 0 | 0 [100{]90.63|31.25]100.00(25.00
FS-P - 0 | 51]-19/|51.56|57.81| 56.25 |57.81
Wrapper SVM || 0 | 1]-4|/64.06/64.06] 57.81 |64.06
Wrapper C4.5 - 0 [ 1]-41]64.06/64.06| 57.81 [64.06

As can be seen, the methods CFS, Consistency, INTERACT and InfoGain do
not appear because they were not able to solve these non-linear problems, so they
returned an empty subset of features. On the other hand, the filter ReliefF and the
embedded method SVM-RFE-RBF detected the relevant features both in XOR-100
and in Parity3+3, achieving the best indices of success and leading to high classifi-
cation accuracy.

Tables 2.5 and 2.6 show how the different feature selection methods are tolerant to
noise in the input, using Led-25 and Led-100 datasets with different levels of noise (2,
6, 10, 15 and 20%). It has to be noted that, as the attributes take binary values, adding
noise means assigning to the relevant features an incorrect value. As expected, in
general the index of success decreases when the level of noise increases, and worse
performances were obtained over Led-100 due to the higher number of irrelevant
features. Regarding the wrapper model, both versions tested degrade their results
with the presence of noise, both in Led-25 and Led-100. The embedded method FS-
P shows a strange behavior on Led-25, since it degrades slightly in terms of index
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Table 2.5 Results for Led-25 dataset with different levels of noise (N) in inputs

0,

N(%) | Method Relevant | Irr. No. | suc. C45 | i}gurrc}i}gl/o)l SVM
CFS 1-5,7 0 86 [192.00|100.00 | 100.00 | 96.00
Consistency 1-5 0 71 {]92.00|100.00 | 100.00 | 96.00
INTERACT 1-5,7 0 86 |192.00|100.00 | 100.00 | 96.00
InfoGain 1-7 0 100 | | 92.00 | 100.00 | 100.00 | 96.00
ReliefF 1-7 3 99 [192.00 | 94.00 | 96.00 |100.00

0 mRMR 1-5,7 4 85 |192.00| 94.00 | 88.00 | 96.00
SVM-RFE-linear | | 3-7 5 71 [|46.00| 54.00 | 48.00 | 48.00
SVM-RFE-RBF || 1-6 4 85 1192.00| 92.00 | 80.00 | 94.00
FS-P 1-7 3 99 [192.00| 92.00 | 86.00 | 96.00
Wrapper SVM 1-5 2 71 1192.00| 90.00 | 82.00 |100.00
Wrapper C4.5 1-5 0 71 []92.00100.00 | 100.00 | 96.00
CFS 1-5 0 71 ]90.00| 98.00 | 96.00 | 94.00
Consistency 1-5 0 71 []90.00 | 98.00 | 96.00 | 94.00
INTERACT 1-5 0 71 1190.00 | 98.00 | 96.00 | 94.00
InfoGain 1-7 0 100 | {90.00 | 96.00 | 94.00 | 94.00
ReliefF 1-7 3 99 1190.00 | 90.00 | 84.00 | 92.00

) mRMR 1-5,7 4 85 || 88.00| 86.00 | 80.00 | 86.00
SVM-RFE-linear | | 3-7 5 71 [[68.00| 70.00 | 54.00 | 70.00
SVM-RFE-RBF | |1-6 4 85 1190.00| 90.00 | 74.00 | 88.00
FS-P 1-7 3 99 [190.00 | 86.00 | 82.00 | 90.00
Wrapper SVM 1-5 2 71 []90.00 | 88.00 | 80.00 | 96.00
Wrapper C4.5 1-5 0 71 1190.00 | 98.00 | 96.00 | 94.00
CFS 1,2,4,5,7 0 71 |]72.00| 78.00 | 72.00 | 70.00
Consistency 1,2,4,5,7 0 71 |[72.00( 78.00 | 72.00 [ 70.00
INTERACT 1,2,4,5,7 0 71 [[72.00| 78.00 | 72.00 | 70.00
InfoGain 1,2,4,5,7 0 71 [|72.00| 78.00 | 72.00 | 70.00
ReliefF 1-5,7 4 85 |160.00| 66.00 | 68.00 | 72.00

6 mRMR 1-5,7 4 85 |60.00| 66.00 | 68.00 | 72.00
SVM-RFE-linear | | 2,3,5 7 42 152.00| 50.00 | 34.00 | 52.00
SVM-RFE-RBF || 1-6 4 85 |(70.00| 72.00 | 50.00 | 72.00
FS-P 1-6 4 85 ||72.00| 56.00 | 62.00 | 70.00
Wrapper SVM 1-7 15 99 ||56.00| 54.00 | 58.00 | 84.00
Wrapper C4.5 1,2,4,5 2 57 ||76.00| 72.00 | 66.00 | 72.00
CFS 1,2,4,7 0 57 |160.00| 50.00 | 58.00 | 46.00
Consistency 1,2,4,7 0 57 |160.00| 50.00 | 58.00 | 46.00
INTERACT 1,2,4,7 0 57 |160.00| 50.00 | 58.00 | 46.00
InfoGain 1,2,4,7 0 57 |160.00| 50.00 | 58.00 | 46.00
ReliefF 1,2,4,5,7 5 71 || 74.00| 54.00 | 66.00 | 64.00

10 mRMR 1,2,4,5,7 5 71 |66.00| 60.00 | 66.00 | 66.00
SVM-RFE-linear | | 2,3,5,7 6 57 | |44.00| 36.00 | 38.00 | 42.00
SVM-RFE-RBF || 1,3,5 7 42 1126.00| 34.00 | 30.00 | 40.00
FS-P 1-6 4 85 ||60.00 | 46.00 | 48.00 | 58.00
Wrapper SVM 1,2,4 9 42 [[72.00| 56.00 | 56.00 | 78.00
Wrapper C4.5 1,2,4 3 43 []76.00 | 58.00 | 56.00 | 66.00
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Table 2.5 (continued)

CFS 1,7 0 | 29 []28.00] 28.00 | 32.00 | 36.00
Consistency 1,7 0 |29 |]28.00[ 28.00 | 32.00 | 36.00
INTERACT 1,7 0 |29 |]28.00]28.00 | 32.00 | 36.00
InfoGain 1,7 0 |29 |]28.00| 28.00 | 32.00 | 36.00
ReliefF 12,457 5 | 71 ||54.00| 50.00 | 54.00 | 64.00
|5 |[mRMR 12,457 5 | 71 ||54.00] 50.00 | 54.00 | 64.00
SVM-RFE-linear | | 3,5,7 7 | 42 ]30.00| 20.00 | 16.00 | 26.00
SVM-RFE-RBF || 1,5 8 | 28 []16.00| 24.00 | 12.00 | 16.00
FS-P 13,567 5 | 71 |/30.00] 28.00 | 22.00 | 26.00
Wrapper SVM | [ 1,2,6 5 | 42 |]50.00| 50.00 | 42.00 | 64.00
Wrapper C4.5 1,2,5,7 2 | 57 (]58.00] 50.00 | 46.00 | 52.00
CFS 1 0 | 14 [[28.00] 20.00 | 28.00 | 28.00
Consistency 1 0 | 14 ]]28.00] 20.00 | 28.00 | 28.00
INTERACT 1 0 | 14 ]/28.00| 20.00 | 28.00 | 28.00
InfoGain 1 0 | 14 |]28.00| 20.00 | 28.00 | 28.00
ReliefF 1,2,5,7 6 | 57 (]30.00| 38.00 | 44.00 | 44.00
5 |mRMR 1,2,5,7 6 | 57 |]34.00| 38.00 | 42.00 | 48.00
SVM-RFE-linear | |- 10 | -1 |]8.00] 26.00|20.00 | 20.00
SVM-RFE-RBF ||1,2,3,5 6 | 57]/32.00] 32.00 | 14.00 | 26.00
FS-P 1-3,5,6 5 | 71 (]18.00| 24.00 | 24.00 | 20.00
Wrapper SVM || 1 3| 14 |]36.00| 38.00 | 28.00 | 44.00
Wrapper C4.5 1,5 4 | 28 |[44.00| 32.00 | 28.00 | 32.00

of success (from 100 to 93%), but the degradation in classification accuracy is more
than notable (from 92—-100% to 34-40%), and a similar situation happens with Led-
100. This can be explained by the fact that adding noise changes the information
contained by the relevant features that can be not relevant anymore, and not helping
the classification process. A similar situation happens with the filters mRMR and
ReliefF, which are robust to noise in terms of index of success, but the classification
accuracy is more affected (although they are usually obtained the highest accuracies
with high levels of noise). To sum up, the filters mRMR and ReliefF and the embedded
method FS-P are the methods most tolerant to noise in the inputs and the subsets filters
(CFS, Consistency and INTERACT) and Information Gain are the most affected by
noise.

Table 2.7 shows the results for the Monk3 problem, which includes a 5% of mis-
classifications, i.e. noise in the target. The relevant features are x;, x4 and x5. However,
as it was stated in [31], for a feature selection algorithm it is easy to find the variables
x» and x5, which together yield the second conjunction in the expression seen in
Sect.2.3.1. According to the experimental results presented in [31], selecting those
features can lead to a better performance than selecting the three relevant ones. This
additional information can help to explain the fact that in Table 2.7 several algorithms
selected only two of the relevant features.
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Table 2.6 Results for Led-100 dataset with different levels of noise (N) in inputs

0,

N(%) [ Method Relevant | Ir. No. | suc. C45 | i](g:urrc};éf) | SVM
CFS 1-5,7 0 86 [192.00]100.00 | 100.00 [ 96.00
Consisten cy 1-5 0 71 [192.00]100.00 | 100.00 [ 96.00
INTERACT 1-5,7 0 86 [192.00]100.00 | 100.00 [ 96.00
InfoGain 1-7 0 100 || 92.00 [ 100.00 | 100.00 | 96.00
ReliefF 1-7 3 99 [[92.00| 94.00 | 96.00 |100.00

0 mRMR 1-5,7 4 85 1192.00| 94.00 | 88.00 [ 96.00
SVM-RFE-linear | | 3-7 5 71 []46.00| 54.00 | 48.00 [ 48.00
SVM-RFE-RBF || 1-6 4 85 [192.00] 92.00 | 80.00 | 94.00
FS-P 1-7 3 99 [[92.00 92.00 | 86.00 | 96.00
Wrapper SVM 1-5 2 71 [192.00] 90.00 | 82.00 (100.00
Wrapper C4.5 1-5 0 71 [[92.00]100.00 | 100.00 | 96.00
CFS 1-5 0 71 [[90.00| 98.00 | 96.00 | 94.00
Consisten cy 1-5 0 71 1190.00| 98.00 | 96.00 | 94.00
INTERACT 1-5 0 71 [190.00| 98.00 | 96.00 | 94.00
InfoGain 1-7 0 100 [ [90.00 | 96.00 | 94.00 | 94.00
ReliefF 1-7 3 99 [[90.00| 90.00 | 84.00 | 92.00

) mRMR 1-5,7 4 85 |188.00] 86.00 | 80.00 | 86.00
SVM-RFE-linear | [ 3-7 5 71 |168.00] 70.00 | 54.00 | 70.00
SVM-RFE-RBF || 1-6 4 85 1190.00] 90.00 | 74.00 | 88.00
FS-P 1-7 3 99 [[90.00| 86.00 | 82.00 | 90.00
Wrapper SVM 1-5 2 71 [190.00| 88.00 | 80.00 [ 96.00
Wrapper C4.5 1-5 0 71 1190.00| 98.00 | 96.00 | 94.00
CFS 1,2,4,5,7 0 71 []72.00| 78.00 | 72.00 [ 70.00
Consisten cy 1,2,4,5,7 0 71 []72.00] 78.00 | 72.00 | 70.00
INTERACT 1,2,4,5,7 0 71 []72.00| 78.00 | 72.00 [ 70.00
InfoGain 1,2,4,5,7 0 71 []72.00| 78.00 | 72.00 [ 70.00
ReliefF 1-5,7 4 85 [160.00] 66.00 | 68.00 [ 72.00

6 mRMR 1-5,7 4 85 []160.00| 66.00 | 68.00 [ 72.00
SVM-RFE-linear | | 2,3,5 7 42 1152.00( 50.00 | 34.00 | 52.00
SVM-RFE-RBF || 1-6 4 85 [170.00] 72.00 | 50.00 | 72.00
FS-P 1-6 4 85 [172.00] 56.00 | 62.00 | 70.00
Wrapper SVM 1-7 15 99 [[56.00| 54.00 | 58.00 | 84.00
Wrapper C4.5 1,2,4,5 2 57 |176.00] 72.00 | 66.00 | 72.00
CFS 1,2,4,7 0 57 [160.00] 50.00 | 58.00 | 46.00
Consisten cy 1,2,4,7 0 57 [160.00| 50.00 [ 58.00 | 46.00
INTERACT 1,2,4,7 0 57 [160.00] 50.00 | 58.00 | 46.00
InfoGain 1,2,4,7 0 57 [160.00] 50.00 | 58.00 | 46.00
ReliefF 1,2,4,5,7 5 71 []74.00| 54.00 | 66.00 [ 64.00

10 mRMR 1,2,4,5,7 5 71 [166.00] 60.00 | 66.00 [ 66.00
SVM-RFE-linear | | 2,3,5,7 6 57 ||44.00] 36.00 | 38.00 | 42.00
SVM-RFE-RBF || 1,3,5 7 42 1126.00 [ 34.00 | 30.00 | 40.00
FS-P 1-6 4 85 [[60.00| 46.00 | 48.00 | 58.00
Wrapper SVM 1,2,4 9 42 1172.00( 56.00 | 56.00 | 78.00
Wrapper C4.5 1,2,4 3 43 [[76.00| 58.00 | 56.00 | 66.00
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Table 2.6 (continued)

CFS 1,7 0 ] 29 [[28.00] 28.00 | 32.00 | 36.00
Consisten cy 1,7 0 |29 ]]28.00[28.00 | 32.00 | 36.00
INTERACT 1,7 0 |29 ]]28.00[28.00 | 32.00 | 36.00
InfoGain 1,7 0 |29 ]]28.00[28.00 | 32.00 | 36.00
ReliefF 12,457 5 | 71 ||54.00| 50.00 | 54.00 | 64.00

5 |mRMR 12457 5 | 71 [|54.00] 50.00 | 54.00 | 64.00
SVM-RFE-linear | | 3,5,7 7 | 42 1]30.00| 20.00 | 16.00 | 26.00
SVM-RFE-RBF || 1,5 8 |28 ]]16.00] 24.00 | 12.00 | 16.00
FS-P 13,567 5 | 71 (]30.00| 28.00 | 22.00 | 26.00
Wrapper SVM || 1,2,6 5 | 42 []50.00] 50.00 | 42.00 | 64.00
Wrapper C4.5 1,2,5,7 2 | 57 (]58.00| 50.00 | 46.00 | 52.00
CFS 1 0 | 14 [[28.00 20.00 | 28.00 | 28.00
Consisten cy 1 0 | 14 |]|28.00] 20.00 | 28.00 | 28.00
INTERACT 1 0 | 14 ]]28.00[ 20.00 | 28.00 | 28.00
InfoGain 1 0 | 14 |]|28.00] 20.00 | 28.00 | 28.00
ReliefF 1,2,5,7 6 |57 1]30.00| 38.00 | 44.00 | 44.00

5 |mRMR 1,2,5,7 6 |57 |]|34.00| 38.00 | 42.00 | 48.00
SVM-RFE-linear | | - 10 | -1 || 80026002000 20.00
SVM-RFE-RBF ||1,2,3,5 6 |57 ]32.00[32.00| 14.00 | 26.00
FS-P 1-3,5,6 5| 71 |]18.00[ 24.00 | 24.00 | 20.00
Wrapper SVM || 1 3 14 |[36.00| 38.00 | 28.00 | 44.00
Wrapper C4.5 1,5 4 | 28 ||44.00]| 32.00 | 28.00 | 32.00

Studying the index of success in Table 2.7, one can see that only ReliefF achieved
a value of 100. The worst behavior was shown by mRMR, since it selected the three
irrelevant features. As was justified above, many methods selected only two of the
relevant features and it can be considered a good comportment. For IB1 classifier,
the best accuracy corresponds to ReliefF, which also obtained the best result in terms
of index of success.

Another problematic we want to test is the case in which the number of features
is much larger than the number of samples. This situation is represented by datasets
SD1, SD2 and SD3. For these datasets, besides of using the index of success and
classification accuracy, we will use the measures employed in [22], which are more
specific for this problem. Hence, the performance on datasets SD1, SD2 and SD3
(see Tables 2.8, 2.9 and 2.10) will be also evaluated in terms of:

e (#): number of selected features.

e OPT(x): number of selected features within the optimal subset, where x indicates
the optimal number of features.

e Red: number of redundant features.

e Irr: number of irrelevant features.
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Table 2.7 Results for Monk3. Relevant features: 2,4,5

0,
Method Relevant|Irr. No. |suc. C4s i’\g:;raic?B(lA) )l SVM
CFS 2,5 0 67 ||93.44|88.52(89.34(79.51
Consistency 2,5 0 67 |193.44|88.52(89.34(79.51
INTERACT 2,5 0 67 |193.44|88.52|89.34(79.51
InfoGain 2,5 0 67 |193.44|88.52(89.34(79.51
ReliefF 2,54 0 |100(/93.44(88.52190.98|80.33
mRMR 2,5 3 17 192.62|88.52(80.33(78.69
SVM-RFE-linear||2.,4,5 2 67 ||93.44|88.52|84.43(84.43
SVM-RFE-RBF |([2,4,5 2 67 (|93.44|88.52|84.43|84.43
FS-P 2,4,5 2 67 ||93.44|88.52|84.43(84.43
Wrapper SVM  [|2,4,5 1 83 1193.44|89.34(82.79|79.51
Wrapper C4.5 2,5 0 67 |193.44|88.52|89.34(79.51

2 Feature Selection

Table 2.8 Features selected by each algorithm on synthetic dataset SD1. Ranker methods are
tested selecting the optimal number and 20 features as cardinality

(#){OPT(2) [ Red|Trr| suc|| ., & A?\?Erac-‘{é?) SUM
CFS 28] 2 | 1 |25100([57.33[82.67[69.33]77.33
Cons 8| 2 | 0 |6]100{/54.67|76.00{60.00|66.67
INT 23| 2 | 0 |21|100|[60.00(81.33|66.67|80.00
IG 42| 2 | 15]25/100|[58.67|72.00|70.67|78.67
ReliefF! 2| 1 | 1]0]50|[40.00|45.33|44.00|46.67
ReliefF? 200 2 | 13]5]100||60.00(61.33|70.67|73.33
mRMR! 2| 1 |0 |1]50|41.33]49.33|34.67|50.67
mRMR? 200 1 | 01950 |[54.67(82.67|68.00|78.67
SVM-RFE-linear! |[[ 2| 2 | 0 | 0/100{/56.00|60.00(52.00(57.33
SVM-RFE-linear?|[20| 2 | 3 |15/10046.67|88.00/76.00{92.00
FS-P! 21 0 |0 |2] 0 |[37.33]49.33|41.33|50.67
FS-P2 200 1 | 2|17 50 |[53.33|76.0065.33|73.33
W-SVM 19/ 1 | 0 |18]50 |[44.00(74.67|58.67|94.67
W-C4.5 10| o | 0 |10] 0 |[77.33|38.67|40.00|38.67

1 Selecting the optimal number of features.

2 Selecting 20 features.

For the ranker methods ReliefF, mRMR, SVM-RFE and FS-P, two different cardi-
nalities were tested: the optimal number of features and 20, since the subset methods
have a similar cardinality. It has to be noted that in this problem and for the calcu-
lation of the index of success, redundant features are treated the same as irrelevant
features in Eq. (2.1). Notice that the index of success is 100 even with 25 irrelevant
features selected, due to the high number of irrelevant features (4000).

Studying the selected features, the subset filters and InfoGain (which exhibits a
similar behavior) showed excellent results, in all SD1, SD2 and SD3. Also SVM-
RFE obtained good results, although the version with the RBF kernel could not been
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Table 2.9 Features selected by each algorithm on synthetic dataset SD2. Ranker methods are tested
selecting the optimal number and 20 features as cardinality

Accuracy (%)

(#)|OPT(4)|Red|Irr | suc C45| NB | 1B |SVM
CFS 21 4 0 [17[100(/64.00|84.00(72.00|81.33
Cons 9 4 0 |51]100||54.67|70.67(60.00|72.00
INT 200 3 0 [17| 75 ||70.67|80.00|74.67|81.33
IG 40 4 19 |17(100{61.33{69.33(61.33|76.00
ReliefF! 4 0 0 [4] 0 ||48.00{64.00({50.67|52.00
ReliefF? 20 1 9 (10| 25 ||54.67|60.00{61.33{70.67
mRMR! 4 1 0 [3]25]||54.67|64.00(60.00({57.33
mRMR? 20 1 0 [19] 25 (|60.00|70.67(44.00{68.00
SVM-RFE-linear! || 4 3 1 [0]|75|/46.67|62.67|54.67|65.33
SVM-RFE-linear? || 20| 4 4 112(100(({57.33|82.67(69.33|84.00
FS-P! 4 0 0 (20| 0 [|42.67|54.67(40.00|57.33
FS-P? 200 0 0 20| 0 [|52.00{68.00(42.67|61.33
W-SVM 13 1 0 [12] 25 ||44.00|60.00(45.33(77.33
W-C4.5 6 1 0 |5]25(/72.00{46.67|34.67|42.67

1 Selecting the optimal number of features.

2 Selecting 20 features.

Table 2.10 Features selected by each algorithm on synthetic dataset SD3. Ranker methods are
tested selecting the optimal number and 20 features as cardinality

Accuracy (%)

(#)|OPT(6)|Red|Irrsuc C45| NB | 1B |SVM
CFS 231 4 2 |17] 67 |/64.00/80.00(73.33|70.67
Cons 9 3 0 | 6]50(/58.67|76.00|62.67|76.00
INT 19| 4 1 [14] 67 [|61.33|82.67|70.67|66.67
IG 49 4 31 |14|67(|62.67(65.33]65.33|73.33
ReliefF! 6 1 51017 ([50.67|57.33|45.33|53.33
ReliefF? 20 1 9 [10] 17 [|56.00|69.33]|61.33|68.00
mRMR! 6 1 0 [5]17(]62.67|62.67|66.67|65.33
mRMR? 20 1 0 [19]17 (|50.67|77.33|52.00|66.67
SVM-RFE-linear' || 6 3 0 [31]50([56.00|70.67|61.33|65.33
SVM-RFE-linear? || 20| 4 2 |14]67||49.33|85.33|70.67|82.67
FS-P! 6 0 0 |60 [[36.00|54.67(34.67|46.67
FS-P? 20 1 0 19|17 (38.67|61.33(45.33|56.00
W-SVM 10 1 0 [9]17(/48.00|61.33|61.33|81.33
W-C4.5 5 1 0 |417/68.00/50.67(37.33|48.00

1 Selecting the optimal number of features.

2 Selecting 20 features.

applied on these datasets due to memory complexity. With respect to the classifiers,

SVM achieves the highest accuracy.

Finally, we can see the results on Madelon in Table2.11. This is a very complex
artificial dataset which is distorted by adding noise, flipping labels, shifting and
rescaling. It is also a non-linear problem, so it conforms a challenge for feature
selection researchers. The desired behavior for a feature selection method is to select
the relevant features (1-5) and discard the redundant and irrelevant ones. Notice that
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Table 2.11 Results for Madelon. Relevant features: 1-5

0,
Method Relevant|{Red. No. |Irr. No.|suc. C4s ﬁﬁ:greic%léf )l SVM
CFS 3 7 0 20 |/180.92(69.58(86.83(66.08
Consistency 34 10 0 40 ||83.54|69.67(90.83(66.83
INTERACT 34 10 0 40 ||83.54|69.67(90.83(66.83
InfoGain 34 10 0 40 ||83.54|69.67(90.83(66.83
ReliefF 1,3,4,5 11 0 80 ||84.21]69.83|89.88(66.46
mRMR 14 0 [|64.92]62.25|53.13|57.08

- 1
SVM-RFE-linear||1,3,4,5 4 7 80 ||86.42(66.88(81.25(67.42
FS-P 3,4 3 10 | 40 (|70.50{66.17(62.54{66.96
Wrapper SVM  ||3 0 16 | 20 ||66.63|66.04(54.08(67.54
Wrapper C4.5 1-5 5 15 |99 ||87.04{70.00|75.42{66.33

for the calculation of the index of success, the redundant attributes selected stand for
irrelevant features. The results for SVM and naive Bayes will not be analyzed, since
they are linear classifiers. The best result in terms of index of success was obtained
by the wrapper with C4.5, selecting all the 5 relevant features, which also led to the
best classification accuracy for C4.5.

In light of the results presented in this section, the authors suggest some guidelines:

e In complete ignorance of the particulars of data, the authors suggest to use the filter
ReliefF. It detects relevance in a satisfactory manner, even in complex datasets
such as XOR-100, and it is tolerant to noise (both in the inputs and in the output).
Moreover, due to the fact that it is a filter, it has the implicit advantage of its low
computational cost.

e When dealing with high non-linearity of data (such as XOR-100 and Parity3+3),
SVM-RFE with RBF kernel is an excellent choice, since it is able to solve these
complex problems. However, at the expense of being computationally more expen-
sive than the remaining approaches seen in this work.

¢ In the presence of altered inputs, the best option is to use the embedded method
FS-P, since it has proved to be very robust to noise. A less expensive alternative
is the use of the filters ReliefF or mRMR, which also shown good behaviors over
this scenario. With low levels of noise (up to 6%), the authors also suggest the use
of the filter Information Gain.

e When the goal is to select the smallest number of irrelevant features (even at
the expense of selecting fewer relevant features), we suggest to employ one of the
subset filters (CFS, Consistency-based or INTERACT). This kind of methods have
the advantage of releasing the user from the task of deciding how many features
to choose.

e When dealing with datasets with a small ratio between number of samples and
features and a high number of irrelevant attributes, which is part of the problematics
of microarray data, the subset filters and Information Gain presented a promising
behavior. SVM-RFE performs also adequately, but because of being an embedded
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method is computationally expensive, especially in high-dimensional datasets like
these.

e In general, the authors suggest the use of filters (specifically ReliefF), since they
carry out the feature selection process with independence of the induction algo-
rithm and are faster than embedded and wrapper methods. However, in case of
using another approach, we suggest to use the embedded method FS-P.

2.4 On the Scalability of Feature Selection Methods

Apart from being difficult to decide which is the best feature selection method, as
seen in the previous section, another important issue is the scalability of the existing
methods. Most algorithms were developed when dataset sizes were much smaller,
but nowadays distinct compromises are required for the case of small-scale and large-
scale (big data) learning problems. Small-scale learning problems are subject to the
usual approximation-estimation trade-off. In the case of large-scale learning prob-
lems, the trade-off is more complex because it involves not only the accuracy of the
selection but also other aspects. Stability, that is the sensitivity of the results to train-
ing set variations, is one of such factors. The other important aspect is scalability, that
is the behavior of the algorithms in the case in which the training set is increasingly
high. In general, one can say that most of the classical feature selection approaches
that are univariate have an important advantage in scalability, but at the cost of ignor-
ing feature dependencies, and thus perhaps leading to lower performances than other
feature selection techniques. To improve performance, multivariate techniques are
proposed, but at the cost of reducing scalability. In this situation, the scalability of a
feature selection method becomes extremely important.

In this section, we will comment on the scalability of some state-of-the-art feature
selection methods described in Sect. 2.2, based on a previous work [37]. For analyzing
their scalability, new evaluation measures were proposed, which were based not only
on the accuracy of the selection, but also on other aspects such as the execution time or
the stability of the returned features. The performance of the methods was evaluated,
as well as in the previous section, on an artificial controlled experimental scenario.

2.4.1 Experimental Study

The scalability of feature selection methods will be evaluated in terms of (a) error,
that is the percentage of selected features that are not relevant for the problem;
(b) distance, which is the inverse of the stability, and measures how different two
rankings of subsets of features are; and (c) computational time to select the features.
Notice that all these measures are desirable to be minimized, and that the error and
the distance are bounded between 0 and 1.
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Table 2.12 Overview of scalability of filters (notice that the larger the number of dots, the better

the behavior)

Method

Error

Distance

Training time

Ranking

Chi-Squared

ReliefF

InfoGain

mRMR

Subset

FCBF

CFS

Consistency

INTERACT

In our previous work [37] the interested reader can find more detailed results,
but here, for the sake of brevity, only a summary is presented. Table2.12 shows an
overview of the behavior of the different FS methods in the three considered metrics
(error, distance and training time), where the larger the number of dots, the better
the behavior. The number of dots is calculated according to the following. For each
metric, we recall the worst value for all methods and datasets. Each specific result
is rated with one bullet if it is below the 20% of the worst value; two dots if it is
between 20 and 40%, and so on. Then, we compute the mean for each FS method
across all datasets. Notice that, since the error and distance measures are not the same
for ranking and subset methods, we separate accordingly the methods to calculate
the number of dots, for the sake of fairness.

According to the summary presented in Table2.12, it remains clear the predom-
inance of ReliefF in terms of accuracy of the selection, although InfoGain shows
better performance according to stability. The methods that require a smaller train-
ing time in this set of experiments are mRMR and FCBF. Notice that, in this table,
we are showing the results on some the artificial datasets presented in Sect.2.3.1
(Corral, Led, Monk3, XOR and Parity3+3) as well as Monk1 and Monk?2 (see [37]
for more details).

Due to their particularities, SD1, SD2 and SD3 were evaluated separately.
Table 2.13 provides some guidelines for the specific scalability aspects considered for
the SD datasets. Focusing on the ranker methods, one can see that in terms of error,
mRMR seems to be the best alternative. In turn, with regard to the distance, Chi-
Squared and InfoGain —univariate methods— return stable rankings (low distance),
while ReliefF and mRMR —multivariate methods— show high distances. This might
seem surprising, since one can expect that a method which obtains the minimum
error would also be highly stable. However, SD datasets have the particularity of
consisting of groups of features equally relevant, but redundant among each other so
when one of the features in the group is selected (or ranked top) the remaining ones
in the group are deemed as irrelevant. Therefore, if we have two groups of relevant
features (10 in each group), as it is the case with SD1 (see Sect.2.3.1), mRMR can
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Table 2.13 Overview of scalability of filters on SD datasets (notice that the large the number of
dots, the better the behavior)

Method Error Distance Training time
Ranking Chi-Squared oo [ eosee
ReliefF o ooe coces
InfoGain oo eoe cosee
mRMR cose . .
Subset FCBF oo o cccee
CFS . . .
Consistency o . coee
INTERACT o ooo cooe

be selecting on the top of the ranking features 1 and 111in the first repetition, 2 and
121in the second repetition and so on. In this case, the error will be 0, but the method
will achieve a high distance since the rankings are very dissimilar. Moreover, when
performing several repetitions of a particular experiment, it is common that low min-
imum errors are obtained together with high variance. To sum up, in this scenario the
best ranker in terms of error seems to be mRMR, but at the cost or requiring large
amounts of time and not being stable. In turn, InfoGain and Chi-Square obtain also
acceptable errors, they become stable although require certain amount of data, and
the computational cost is acceptable (low training time).

The training time required by mRMR is in the order of thousands of seconds while
the remaining methods require in the order of seconds. The only of these methods
which theoretical complexity is quadratic to the number of features is mRMR, and
thus its time raises significantly as the number of features increases (in these exper-
iments, up to 4096 features). Notice that ReliefF in this case does not require high
times as in the previous set of experiments, because it is quadratic in the number of
samples and linear in the number of features, and SD datasets have a small number
of samples.

In the case of subset filters, it is worth mentioning that the poor distance results
are due to the fact that the SD datasets have an extremely high number of features
(up to 4096), so the more features, the more difficult is to select stable subsets of
features. Having said that, FCBF is clearly the best option since it obtained the best
results in terms of error and training time, although at the cost of being the least
stable.

Table2.14 shows the scalability results of wrapper methods. In this case, the
wrapper model was evaluated with three representative classifiers (C4.5, k-NN and
naive Bayes) to assess the relative usefulness of the subsets of variables. Notice that
the search strategy is best first, starting with the empty set of features and searching
forward (which tends to select larger subsets of features than the backward search
strategy). The best learning algorithm to be combined with the wrapper seems to
be C4.5. Although k-NN shows a good behavior in terms of error and distance, the
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training time is quite high, probably because of the time burden required to sort
the samples in order to find the nearest neighbors. C4.5 achieves a lower error and
distance in a shorter time. Notice that studying the scalability of wrapper methods is
not as straightforward as with filters, since the former involve learning algorithms,
which add more complexity to the task.

Finally, we have also studied the scalability of two embedded methods: FS-P and
SVM-RFE. Preliminary experiments on Corral dataset showed that the maximum
training time required by SVM-RFE was almost 18000s. This high time is due to
the recursive nature of the method thus preventing its application to the remaining
datasets, that are more complex than Corral. From the results on Corral dataset, it
could be seen that in terms of error, the embedded methods were more affected by
the number of samples than of features. Regarding the distance, their performance is
comparable to those of the multivariate ranker filters ReliefF and mRMR, being more
affected by the number of features than of samples, due to the possible combinations
of features. Focusing on the training time, SVM-RFE required a much longer time
than FS-P. For this reason, FS-P seemed to be a better option since in the rest of
the measures the performance is similar. However, only one dataset is not enough to
draw strong conclusions.

In light of the results presented in this section, some guidelines have been pro-
posed:

e Among the subset filters, INTERACT obtained good scalability results, especially
in terms of minimum error and distance. However, if we are interested in really
low training times, FCBF showed an acceptable accurate results in a short training
time.

e As for the ranker methods, ReliefF turned out to be very precise in selecting the
relevant features, although this comes at the prize of large training times when
the number of samples is high. On the other hand, the ranker method mRMR also
achieved good results in terms of error, but the training time raises significantly
when it deals with large amounts of features.

e Withregard to the stability of the filters evaluated, i.e. the sensitivity of the methods
to variations in the training set, univariate ranker methods (such as Chi-Squared
or Information Gain) are more stable than multivariate methods (such as ReliefF
or mRMR), since the latter have to deal with interactions between features. It is
worth mentioning that subset methods, although being also multivariate, are much
more stable than their counterparts within the ranker approach. This is happening

Table 2.14 Overview of the scalability of wrappers (notice that the large the number of dots, the
better the behavior)

Method

Error

Distance

Training time

W-C45

W-k-NN

W-NB
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because ranker methods have to order all the features, even the irrelevant ones,
while subset methods only select the relevant features so if they are behaving
correctly, it is easier to select consistent subsets of features.

e As expected, the scalability of the wrapper methods depends on the classifier
chosen, being C4.5 a good option in terms of scalability.

e When using embedded methods, the well-known SVM-RFE algorithm achieves
promising results in terms of error at the cost of requiring high training times.

e In general, the authors suggest the use of filters, since they carry out the feature
selection process with independence of the induction algorithm and are faster than
embedded and wrapper methods, scaling better to Big Data problems.

2.5 Summary

In this chapter we have explained the foundations of feature selection, which will
be the base learners of the ensemble models analyzed in this book. First, we started
by defining the difference between feature selection and feature extraction and the
different approaches for feature selection. Some state-of-the-art methods were briefly
described and then reviewed through the analysis of their performance when facing
a total of 11 synthetic datasets covering different situations such as presence of
irrelevant and redundant features, noise in the data or interaction between attributes.
A scenario with a small ratio between number of samples and features where most of
the features are irrelevant was also tested. It reflects the problematic of datasets such
as microarray data, a well-known and hard challenge in the machine learning field
where feature selection becomes indispensable. And, finally, we have also provided
a study about the scalability of these state-of-the-art methods, an issue that has not
received much consideration in the literature. Again, the methods were evaluated
facing a set of 11 artificial datasets.
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Chapter 3 ®)
Foundations of Ensemble Learning oo

Abstract This chapter describes the basic ideas under the ensemble approach,
together with the classical methods that have being used in the field of Machine
Learning. Section3.1 states the rationale under the approach, while in Sect.3.2 the
most popular methods are briefly described. Finally, Sect. 3.3 summarizes and dis-
cusses the contents of this chapter.

The idea of combining multiple models instead of a single model to solve a given
problem has its rationale in the old proverb “Two heads are better than one”. The
approach constructs a set of hypothesis using several different models, that then are
combined in order to be able to obtain better performance than learning just one
hypothesis using a unique method [1-3]. There have been several studies that have
shown that these models obtain usually better accuracy than individual methods,
due to the diversity of the approaches and the control of the variance [3]. These
combinations of models are called “committees”, or more recently “ensembles”.
Ensemble learning algorithms have reached great popularity among the Machine
Learning literature, as they achieve performances that were not possible some years
ago, and thus have become a “winning horse” in many applications [4].

3.1 The Rationale of the Approach

As early as 1785, the Condorcet’s jury theorem established what can be considered
the initial seed of the modern ensembles, that is, that a correct decision in a problem
could be obtained combining the individual votes of a large enough jury, given some
restrictions. This idea is the rationale under ensemble learning. The contributions
of the field of Machine Learning to combining classifiers started with Tukey’s work
[5] in the 1970’s, but in the 1990’s the interest in the field increased, and many
works, and the classical ensemble approaches, date from that decade [6—8]. There
are several reasons [6, 9] for the ensembles to be able to improve accuracy over single
methods, that can be summarized as follows: The “No Free Lunch” theorems have
shown that learning algorithms can not be universally good, and thus no algorithm

© Springer International Publishing AG, part of Springer Nature 2018 39
V. Bolén-Canedo and A. Alonso-Betanzos, Recent Advances in Ensembles

for Feature Selection, Intelligent Systems Reference Library 147,
https://doi.org/10.1007/978-3-319-90080-3_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90080-3_3&domain=pdf

40 3 Foundations of Ensemble Learning

can outperform any other algorithm when performance is uniformly averaged over
all target functions. With the myriad of algorithms available, it is almost impossible
for a user to find the best algorithm for each given problem, and thus the advantage
of ensembles is that by combining multiple models, a “meta” learning scheme is
build, producing an output that combines different hypothesis spaces, and hopefully
will help to obtain approaches at least “near” the ideal solution for most cases. Of
course, when using an ensemble we avoid choosing a single method, but a new issue
appears, that is, which methods are the best for being included in the ensemble, and
how many of them are necessary. In fact, this is a Multiple Criteria Decision Making
(MCDM) problem, for which several techniques could be used in turn in order to
choose the optimal options. In the extensive review work in the subject of MCDM
carried out by Mardani et al. [10], they state that the Analytic Hierarchy Process
(AHP) method [11] and the hybrid MCDM method [12-14] are the most common
in use nowadays. Some of the most employed selection criteria to be combined are
the following:

e Accuracy of each of the components and of the ensemble.

e Cost, the computational complexity and time needed by the methods.

e Diversity which should be encouraged in the methods that form the ensemble, to
obtain an adequate mixture of hypotheses. In [1, 15] several methods for creating
diversity are described in detail.

e Parameter optimization, the set of parameters to be controlled should be compre-
hensive and easy to tune, so usability of the final ensemble should be guaranteed.

e Scalability, the ensemble methods should assure scalability to large datasets, ide-
ally in both samples and features. This is related to the cost aspect, since most
algorithms have a computational complexity greater than linear (in samples, fea-
tures or both), and also large datasets increase the size of the search space, and
thus the problem is more difficult for machine learning algorithms.

Ensembles have been used extensively in supervised classification, regression
and optimization, as the combination of these was the first natural step in the field of
machine learning, and has received considerable attention during years [6, 16, 17].
Bagging [18] and Boosting [19], are the classical ensemble classification methods,
that have been developed with the objective of reducing overfitting, while improving
accuracy, and thus have been widely used by researchers. However, there are also
another areas of Machine Learning that have used the approach, such as clustering, in
which ensembles have been used for improving the robustness, novelty and stability
of unsupervised learning solutions [20-23], or even to pursue scalable approaches to
the problem [24, 25]. One recent area in which ensembles have demonstrated their
interest is quantification [26], as its aim is to estimate the number of cases that belongs
to each class in a test set, using a training set that perhaps has a different distribution.
Although intuitively counting the predictions of a classifier will do the work, this
last approach is not appropriate, as it does not take into account the differences in
distributions between training and testing datasets. However, ensembles philosophy
fits adequately with this distribution shift. Feature selection is another task in which
the ensemble philosophy has encountered place, basically for the same reasons, that
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is robustness, diversity and scalability, but also trying to overcome the variability
of results that the different feature selection methods available obtain for different
datasets, as there is not a method that works universally well. Thus, in order to
select the most adequate method, the users should have an in-depth knowledge of
all the strengths and weaknesses of individual methods. Using an ensemble allows
for relieving the user from that decision, while obtaining usually best performances
than individual methods alone [27-32].

3.2 Most Popular Methods

There are several aspects of the ensembles that can be used to classify different
types of ensembles. The main blocks of an ensemble are the training set, the base
inducer, and the combiner method used to aggregate the individual results obtained.
The training set is the labelled data set that is used to train the model, it can be the
same for all base classifiers, or a different one, for example using different partitions
of the original dataset. The base inducer is the induction algorithm used that obtains
an individual result (a classification, a feature subset, etc.) for the problem. The base
methods can be generated using the same generation algorithm or a different one.
Also, even if the algorithm is the same, different parameters could also be used in
each base classifier, giving raise to more diversity [15, 33]. Finally, the results of
the individual base methods should be aggregated to obtain a final decision, there
are several aggregation methods than can be used, ranging from the simple mean,
median or majority voting to more sophisticated algorithms. For example, in the case
of classification problems, majority voting is the most popular combination method
chosen, while for regression averaging is the predominant strategy. Besides, the
individual models of the ensemble might be treated equally or they can be weighted
according to some rule that usually depends on the accuracy of the results obtained
[6, 34] (this issue will be further developed in Chap.5).

Thus, attending to the base methods that form them, we could differentiate two
types of ensembles [16]:

e Homogeneous, when all base classifiers are of the same type (see Fig.3.1)
e Heterogeneous, if the base classifiers are not of the same kind (see Fig.3.2).

These two basic types could be even more differentiated, depending on the com-
bination of the following factors, giving rise to a number of different ensemble
configurations:

e If the base methods have been generated using the same generation algorithm or
not.

e If the base methods are generated using the same generation algorithm, but using
different parameter settings in each one.
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SUBSAMPLE 1 Classifier C

SUBSAMPLE 2 Classifier C
X SUBSAMPLE 3

Classifier C

AGGREGATION
METHOD

RESULT

Fig. 3.1 A scheme of an homogeneous ensemble of classifiers. As can be seen, the same classifi-
cation method (C) is applied over different subsets generated from the training set

SUBSAMPLE s Classifier C

Classifier C,

Classifier C,

AGGREGATION
Classifier C; METHOD

TRAINING DATA

Classifier Cy

Fig. 3.2 A scheme of an heterogeneous distributed ensemble. As can be seen, a different classifi-
cation method (C;) is applied over the training set, and the different results are to be aggregated,
for example using majority voting, for obtaining a final result

e If the training dataset is the same or not for all base methods.
o If the attributes of the training dataset are the same or not for all base methods.

In the case of ensembles for feature selection, and although they will be described
in detail in Chap.4, an example of a scheme for both, homogeneous and heteroge-
neous approaches is given below, in Figs.3.3 and 3.4, for an easier comparison with
the same schemes for the classifiers.

On the following we will describe the most common and classical ensemble meth-
ods for classification, as this is the area of data mining in which ensembles appeared.
First, we will describe Bagging and Boosting, two of the most popular models, as
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Fig. 3.3 A scheme of an homogeneous ensemble of feature selectors, in which the same feature
selection algorithm is applied over different subsets derived from the training set
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Fig. 3.4 A scheme of an heterogeneous distributed ensemble, in which different feature selection
algorithms are applied to a training set, and then the results (that might be a subset or a rank, need
to be aggregated to obtain a final feature selection result
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both are based on introducing diversity by modifying the training set, in such a way
that the learning algorithm is executed multiple times over different training sets.
Then, the also very well-known Random Forest approach is also described, as it is
one of the most used classifiers, due to their good results in performance. In fact, in
[35], they were found to be the best over a testbed of 179 classifiers belonging to
different families. Although in [36], these results are criticized for being biased by
the lack of a held-out test set and the exclusion of trials with errors, still Random For-
est is among the best performing methods, together with Support Vector Machines
(SVM) and Neural Networks (NN).
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3.2.1 Boosting

Boosting is an ensemble algorithm that aims at creating a strong learner by combining
a set of weak ones, which are the base learners. A weak learner is a method that can
classify samples better than just random guessing, while a strong classifier is one
that achieves error rates arbitrarily close to the irreducible Bayes error rate. This
is called the weak learning assumption, and is the base of the method [37, 38].
A boosting algorithm takes a set of training samples I = ((xy, ¥1), ....(x,, y»)) as
input, where x; is an instance and y; its associated label. The main idea behind the
algorithm is to call repeatedly the base learner, but each time with different portions
of the training set, so as to introduce diversity, until a predefined number of iterations
is reached. There are different variants of the basic Boosting algorithm, being one
of the most well-known AdaBoost (Adaptive Boosting) [8]. AdaBoost assigns a
weight to each instance of the data set, that initially is the same for all patterns.
These weights are iteratively updated, attempting to give more importance to the
samples that have been misclassified, and decreasing the importance of those that
have been classified correctly. Thus, the higher the weight for an input instance,
the higher the chance it will have for appearing in a new portion sample to call the
base method again. Thus, the learner is forced to concentrate on the instances that
are more difficult, by performing more iterations with them and thus creating more
classifiers. Besides, each of these individual classifiers is also given a weight, that
measures its overall accuracy as a function of the total weight of the patterns that
are correctly classified by it. That is, more accurate classifiers have higher weights
assigned, and consequently they are more used for the classification of new patterns.
Thus, the AdaBoost algorithm performs an iterative procedure that uses a series of
complementary classifiers.

The AdaBoost algorithm has win the 2003 Gdodel prize for its authors, having
been demonstrated that it can approximate a large margin classifier, such as SVM,
being according with some studies [39] one of the top 10 algorithms in the field of
Machine Learning. In Algorithm 3.1, the pseudocode for the basic strategy of the
AdaBoost algorithm is shown [3], for the case of a binary classification, that is when
yi € {—1, +1}. Some previous nomenclature is needed; supposing that we have N
samples (instances), the weight loss of AdaBoost with the strong learner H is of
exponential type, as in that way loss is higher and abrupt when the predictions of
the classifier are wrong. Let .2 (H) be the weight loss of Adaboost with the strong
learner H such that,

N
LH)=Y e™
i=1
where m; is the voting margin for each of the k base weak learners, and can be
calculated aslé
m; = y; Y oxhi(x;), where o is the weight of the k learner and &, (x;) is the

k=1
prediction over x; of the k learner.
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Algorithm 3.1: Basic Pseudo-code for AdaBoost

Data: [ = ((x1, y1), ....(xn, ¥,)) = training dataset where y; € {—1, 41}; the size (K) of the
ensemble; the weak learners

1 V;Do(i) < (%), Set uniform weights for the samples of the training set
2 for k =1 to k; that is for each base learner of the ensemble do
3 hy < base learner trained on D; Train a model £ using distribution Dy

N

4 Calculate the error; & <— > D_1(i)
i=1

5 if ¢, > 0.5 then

6 | exitloop

end

1;5" ; Set sample weights based on ensemble predictions
k

8 | Update Dyyy(i) = %}W being Z; a normalization factor so to make Dy

7 Setay = %ln

a valid distribution
end
9 for a new testing point (x', y') do

K
10 H(x") =sign()_ aphr(x)
k=1

end

In general, AdaBoost improves accuracy, although sometimes it might fail due
to overfitting [40], as a large number of iterations might produce an over-complex
learner. Besides, in the present context of Big Data, AdaBoost as well as other
boosting algorithms, presents several problems on computing complexity and poor
learning accuracy, as large datasets increase the size of the search space, and thus
the possibility of selecting an overfitted learner. There have been several attempts
to improve the results of AdaBoost over large datasets. The P-AdaBoost is a par-
allellized version [41] which builds upon earlier results concerning the dynamics
of AdaBoost weights. Boosting-by-Resampling [42] uses a local error measure to
avoid the negative contribution of noisy samples, more common in large datasets.
Boosting can also be viewed as a functional gradient descent technique, and that
was the view of the work in [43], in which the author combined it with the L,-loss
function to develop a computational variant of Boosting named L,Boost. In [44]
Boosting was applied over a high dimensional dataset on gene expression data in
conjunction with decision trees, in order to achieve a pre-selection of the variables
involved. Finally, Buhlman [45] proved that boosting with that squared error loss,
L,Boost, is consistent under certain assumptions, for very high-dimensional linear
models, where the number of predictor variables is allowed to grow as fast as the
sample size. The author also proposes a method that allows for choosing the number
of boosting iterations, thus making the algorithm computationally interesting, as it is
not required to run it multiple times for cross-validation, as it has been the common
procedure so far.
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Boosting has also been adapted for cost-sensitive learning, in which the false
positive or false negative predictions or classifications should be weighted differently,
normally due to the characteristics of the problem at hand. For example, a false
negative prediction of an illness might be a bigger problem than a false positive,
as a real illness is undetected, while a false positive in classifying an attack in a
computer network can results in an unnecessary Denial-of-Service. There are several
variants of boosting algorithms that deal with this problem [46—48]. However, in an
interesting article [49], the authors demonstrate that cost-sensitive modifications
seem unnecessary for Adaboost, if proper calibration is applied.

3.2.2 Bagging

Bagging (Bootstrap AGGregatING) is another popular ensemble method. It works
by creating diverse models on different random samples of the original dataset, and
then combine these models to obtain a final result. This strategy is effective when
the learners are unstable and tend to be reactive to little variations within the input
space, as in the case of neural networks or decision trees. The samples, known
as bootstrap samples, are taken uniformly and with replacement. Thus, due to the
method employed, samples may usually contain duplicates, and also perhaps some
of the original data instances could be missing, even if both, the bootstrap sample and
the original dataset are of the same size [50]. Specifically, if we have N samples, the
bootstrap procedure samples uniformly with replacement, being the probability of an
individual instance not being selected (1 — %)N, and consequently with a large N, a
single bootstrap is expected to contain approximately 63.2% of the original set, while
36.8% of the original sample items are not selected [3]. The training sets are different
one from another, but they are not statistically independent. These differences in the
bootstrap samples are aimed at creating diversity among the models of the ensemble.
The pseudocode of bagging is shown in Algorithm 3.2

Algorithm 3.2: Basic Pseudo-code for Bagging

Data: [ = ((x1, y1), ....(xn, ¥,)) = training dataset where y; € {—1, 41}; the size (K) of the
ensemble; the weak learners

1 for k = 1 to K; that is for each base learner of the ensemble do
2 Build a bootstrap sample /; from / by sampling |/| data points with replacement
3 Run the weak learner in /; to produce a model M,
end
4 Return {M;|1}

We can see that the bagging ensemble returns a set of models, which results
should be combined. Normally, this is done by majority voting or by averaging. As
a result, bagging produces a combined model that usually performs better than the
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single model trained with the original data, and as boosting, it does so using the same
inducer method.

A special and very common type of bagging is Random Forest (RF), in which
bagging is used in combination with tree models, and also the trees are built from a
different random subset of the features (subspace sampling). This raises even more
the diversity of the ensemble, and besides reduces the training time of each tree.
The Random Forest algorithm (3.3 shows the corresponding pseudocode), is a very
popular ensemble learning method for classification, regression and other tasks, that
constructs a multitude of decision trees at training time and that outputs the class that
is the mode of the classes (for classification), or the mean prediction (for regression)
of the individual trees. The main advantage of RF is that they can greatly reduce
or even avoid overfitting by optimizing a tuning parameter that governs the number
of features that are randomly chosen to grow each tree from the bootstrapped data.
Typically, this is carried out employing a k-fold cross-validation (with k usually
in the interval [5, 10], with both extreme values as the most common), choosing
the tuning parameter that minimizes test sample prediction error. Besides, growing a
larger forest will improve predictive accuracy, although there are usually diminishing
returns once certain sizes are achieved (in the order of several hundreds).

RF were first proposed in Ho’s work [51], trying to overcome the problems of
traditional tree methods that cannot be grown to arbitrary complexity as there is the
risk of possible loss of generalization accuracy on unseen data. This limitation on
complexity usually means suboptimal accuracy on training data. However, decision
trees are of interest in Machine Learning due to their high execution speed, thus Ho’s
work proposed a method to build tree-based classifiers, in randomly selected sub-
spaces of the feature space, which capacity can be arbitrarily expanded for increases
in accuracy for both training and unseen data. Later, Breiman’s work [52] intro-
duced bootstrapping aggregation for the independence of each base classifier, that is
theoretically enforced by training each decision tree on a training set sampled with
replacement from the original training set (bagging). Besides, further randomness
is introduced by identifying the best split feature from a random subset of available
features. The ensemble classifier then aggregates the individual predictions to com-
bine into a final prediction, based on a majority voting on the individual predictions
(see Fig.3.5). In this way, bias and variance both can be reduced, thus making the
model more robust and accurate.

Bagging and Boosting are two different sides of the bias-variance dilemma
(Fig.3.6). This dilemma states than a low complexity model suffers less from vari-
ability due to random variations in the training data, although it may introduce a
systematic bias that even a large amount of training data can not solve. On the other
side, high-complexity models eliminate the bias, but may suffer non systematic errors
due to variance [53]. While boosting is mainly a bias reduction technique, bagging
is a variance reduction technique. For that reason, bagging is often combined with
high-variance models such as trees, while boosting is combined more frequently with
high-bias models such as linear classifiers or univariate decision trees.
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Algorithm 3.3: Basic Pseudo-code for Random Forest

Data: [ = ((x1, y1), ....(xn, ¥,)) = training dataset where y; € {—1, 41}; the size (K) of the
ensemble; subspace dimension d

1 for k = 1 to K; that is for each base learner of the ensemble do
2 Build a bootstrap sample /; from / by sampling |/| data points with replacement

3 Select d features at random diminishing the dimensionality of /;
4 Train a tree model M, on I; without pruning
end

5 Return {M;|1}

Training l
Data

l

Randomize 1.- Create Random Vectors

| 1
| | |

2.- Use Random Vectors to construct
Multiple Decision Trees

A\ AVAVAVA— TAN

! '
& 3.- Combine Decision Trees
I 4.- Result
Fig. 3.5 A scheme of random forest
single bagging boosting

complete training set random sampling with random sampling with
replacement replacement on weighted data

Fig. 3.6 Example of data sampling in the case of a single learner, and bagging and boosting
approaches
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Bagging and Boosting use the same learner model for the ensemble, but as stated
in the previous section, it is also possible to combine different based models into an
ensemble, that is named heterogeneous ensemble. In this case, the diversity comes
from the fact that the base learners are trained by different learning algorithms, and
normally they use the same training set in this scheme. Another possibility is to
use the same base models, but employing different parameter settings, as mentioned
before. In all these cases, combination methods are to be used, and these will be
further detailed in Chap. 5.

Bagging and Boosting algorithms, including Random Forest, are available in
several of the most common Machine Learning frameworks, such as Scikit Learn,’
MatLab,? or Weka.® For more detailed information, please consult Chap. 9.

3.3 Summary

An ensemble is formed by a set of base models and a meta-model that is trained to
decide how to combine the base models learning. If the meta-model is linear, it is
known as stacking. The ensemble is formed by those base learners, and they might
be the same or different models, using the same or different parameters, and the
same or different training sets, thus giving an ample repertory of possible models.
The rationale over the use of ensembles for learning is that by using several models,
taking into account that diversity must be assured, better results in accuracy will be
obtained. The results of the individual models of the ensembles must be combined so
as to obtain a final model. Several strategies could be used, being the most common
the majority voting or the average.
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Chapter 4 ®
Ensembles for Feature Selection Geda

Abstract This chapter describes the ideas of the ensemble approach applied to
feature selection, a classical preprocessing step which in the present context of Big
Data and high dimensional datasets, has become of capital importance. Section4.1
introduces the context of ensembles for feature selection, that are more detailed in
Sects.4.2 and 4.3 for homogeneous and heterogeneous ensembles, respectively. In
both sections, a use case using rankers is employed to illustrate the concepts, in
Sects.4.2.1 and 4.3.1. Finally, in Sect.4.4, a brief comparison between the results
obtained by both approaches employed in the use cases is shown, with the aim of
giving the readers a brief guideline of their better use.

In Chap.3 we have seen the rationale under the ensemble approach for learning,
specifically for classification and prediction. This same idea has been recently
extended to other machine learning fields, such as quantification or feature selection.
In this chapter the ideas of ensembles applied to feature selection will be detailed.
Again, the basic assumption is the same, that is, that combining the outputs of several
single feature selection models will obtain better results than using a single feature
selection approach. Taking into account the different types of ensembles that were
described in Chap. 3, we will focus on two different approaches: (i) homogeneous,
that is, using the same feature selection method with different training data and dis-
tributing the dataset over several nodes (or several partitions); and (ii) heterogeneous,
i.e., using different feature selection methods with the same training data. As in the
general ensemble case, the results of the base selectors are to be combined to obtain
a final result, and thus several aggregation methods can be used. In Sects.4.2 and
4.3 both approaches are described in general terms, together with use cases of both
approaches using rankers over a suite of datasets.

Part of the content of this chapter was previously published in Knowledge-Based Systems
(https://doi.org/10.1016/j.knosys.2016.11.017).
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54 4 Ensembles for Feature Selection

4.1 Introduction

In the last years data has been increasing in size (samples) and dimension (features)
at unprecedented rates, due to the digitalization of most activities in several areas,
as sensors are available for almost any task that can be think of. When data is used
for machine learning, most of the times a preprocessing should be carried out, so
as to eliminate noise, discretize data, or eliminate irrelevant features. One of this
preprocessing tasks, feature selection (FS), has turned almost in a must-do, as it can
eliminate irrelevant and redundant information, with the added benefits of saving
on storage, and allowing for the use of more less complex machine learners, thus
improving computational times (see Chap. 2).

Feature selection has been applied to many machine learning and data mining
problems, with the aim of selecting a subset of features that minimizes the predic-
tion error of a given classifier. There are different approaches to feature selection,
including feature construction, feature ranking, and multivariate feature selection, as
well as efficient search methods and feature validity assessment methods [1, 2]. In
Chap. 3, we described how better results could be obtained by combining different
machine learning methods using an approach called ensemble learning. Ensemble
learning has been successfully applied to classification or prediction tasks, but it is
also a means for improving feature selection. In this respect, there are two main
ways in which ensembles and feature selection are related in the literature. One of
them is to use feature selection to provide diversity for posterior ensemble meth-
ods, as it is employed in the works of [3, 4]. Another idea, which is the one that
will be described in this chapter, is to use ensembles of feature selectors with the
goal of improving the stability of the feature selection process [5—10]. This aspect
is specially relevant in knowledge discovery, and even more in those cases in which
data dimensionality is very high, but the number of samples is not such, as they are
more sensible to generalization problems. Thus, several feature selection processes
are carried out (either using different training sets, different FS methods, or both),
and their results are aggregated to obtain a final subset of features that hopefully will
add stability and thus be more transparent in the process of knowledge discovery.
The idea is that a more appropriate (stable) feature subset is obtained by combining
the multiple feature subsets of the ensemble, as the aggregated result tends to obtain
more accurate and stable results, reducing the risk of choosing an unstable subset.
If several FS methods are used, the individual selectors in an ensemble are named,
by analogy with the base learners, as base selectors. If the base selectors are all of
the same kind, the ensemble is known as homogeneous; otherwise the ensemble is
heterogeneous. Ensembles can be formed in several ways [11], as we saw before.

As stated above, there are several recent works that have proposed improving
feature selection algorithms robustness using multiple feature selection evaluation
criteria [12]. The research described in [5] analyzed and compared five measures of
diversity for their possible use in ensemble feature selection, and the experiments
were carried out over 21 UCI datasets [13], using four different search strategies for
ensemble feature selection with simple random subspacing, namely, genetic search,
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hill-climbing, and ensemble forward and backward sequential selection. In another
work, an ensemble consisting on five different base selectors was employed, each
selecting a different subset of features that fed five classifiers and their results being
combined by simple voting [14]. For improving stability of the FS results beside
classification performance, the Multicriterion Fusion-based Recursive Feature Elim-
ination (MCF-RFE) algorithm was presented in [15]. Yet another study proposed a
feature ranking scheme for Multilayer Perceptron (MLP) ensembles [16], used with
a stopping criterion based on the Out-of-Bootstrap (OOB) estimate [17]; the versa-
tility of this base classifier in removing irrelevant features was demonstrated exper-
imentally using benchmark data. In a scenario as challenging as DNA microarray
classification, an ensemble of filters rather than a single filter was used with both
synthetic and real data [18].

In another set of works only a specific type of feature selection methods, in this
case rankers, were used. In the work described in [19], three filter-based feature
ranking techniques with simple combining methods (lowest, highest, and average
rank), were employed. Two interesting studies have been carried out by Wang et
al. [20, 21]; the first one proposing ensembles of six commonly used filter-based
rankers, and the second one studying 17 ensembles of feature ranking techniques
with six commonly-used rankers, a signal-to-noise filter technique (S2N) [22], and
11 threshold-based rankers. In the second of the Wang et al. studies cited above [21],
the ensembles were composed of 2 to 18 individual feature selection methods. Other
studies describe different methods for combining individually generated rankings,
with the aim of obtaining a final ensemble. The combination of individual rankings
covers from simple methods—based on computing the mean, median, minimum,
etc.—to more complex methods like Complete Linear Aggregation [6, 23] (CLA),
Robust Ensemble Feature Selection (Rob-EFS) [24], and SVM-Rank [6, 12]. Thus,
there are two main steps in creating an ensemble for feature selection:

1. Create a set of different feature selectors, each one providing its output. In order to
create diversity, there are several methods that can be used, such as using different
samples of the training dataset, using different feature selection methods, or a
combination of both.

2. Aggregate the results obtained by the single models. There are several measures
that can be used in this step, such as majority voting, weighted voting, etc, as was
described in depth in Chap. 5. It is important to choose an adequate aggregation
method, that is able to preserve the diversity of the individual base models, while
maintaining accuracy.

In this chapter we will describe the ideas of the two basic approaches: (i) N selections
using the same feature selection algorithm, with each selection using different train-
ing data; and (ii) N selections using different feature selection algorithms that use
the same training data. The first approach improves computation time by processing
data in parallel nodes, whereas the second approach ensures stable and robust feature
selection that achieves competitive results irrespective of the scenario.
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Fig. 4.1 Diagram of an homogeneous distributed ensemble

4.2 Homogeneous Ensembles for Feature Selection

Let us consider a dataset as X = {xq, ..., Xq} € R, with the class label represented
as' Y = {y1, ..., YN}, as it was stated in Chap. 1. Remember that the typical dataset
is organized as a matrix of N rows (samples) by d columns (features)— plus an extra
column with the class labels. If we draw randomly s subsamples of size kN, with
0 < k < 1, where the values of the s and k parameters might be varied, we can carry
out a feature selection process on each of the s subsamples. This structure can be
seen in Fig.4.1, in which s models are generated using the same feature selection
method, all with different training data.

Animportant problem of ensemble methods, specially in the present context of Big
Data, is the computational time needed in comparison with individual methods. This
ensemble structure can be adapted to distributing the training data among a number
of nodes. In this way, the training task and feature selection method application can
be parallelized, and the final result is obtained thereafter by combining the results
obtained in each node using a union method. The pseudo-code of this approach can
be seen in Algorithm 4.1.

4.2.1 A Use Case: Homogeneous Ensembles for Feature
Selection Using Ranker Methods

We will describe a special case of homogeneous ensemble in which the feature
selection method used is a ranker. In this case, as indicated in Algorithm 4.1, the A,
outputs obtained are then combined using a ranking combination method to obtain a
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Algorithm 4.1: Pseudo-code of an homogeneous distributed ensemble

Data: N — number of different nodes
Data: T — threshold of the number of features to be selected (only if a ranker is used)

Result: P — prediction

1 Separate the training data in the N nodes.

2 for each n from 1 to N do

3 L Obtaining feature subset (or ranking) A, using the same feature selection method on the
node n

4 A = combining single subsets or rankings A, with a combination method

5 A; = Select T top attributes from A (only if a ranker is used)

6 Build classifier/predictor with the selected attributes A;

7 Obtain prediction P

single ranking list. Also, it is necessary to establish a threshold 7 in order to obtain a
practical subset of features, A,. The code for this homogeneous ensemble is available
for downloading.!

In order to test the validity of the approach, in the work described in [6], different
feature selection methods were employed, three filters and two embedded methods,
specifically InfoGain (Information Gain), mRMR (minimum Redundancy Maximum
Relevance), ReliefF, SVM-RFE (Recursive Feature Elimination for Support Vec-
tor Machines) and FS-P (Feature Selection-Perceptron) (for more details on these
methods, please see Chap.?2). Afterwards, a Support Vector Machine with Radial-
Basis-Function (SVM-RBF) [25] has been employed for checking the adequacy of
the proposed ensemble in terms of classification error. Regarding the combination
methods used, SVM-Rank, min, median, mean, geoMean, Stuart and RRA (Residual
Reduction Algorithm) were employed (see Sect. 5.3 for details on these methods).

Finally, since the feature selection methods used in these approaches are rankers
and thus sort all the features, a threshold is necessary to obtain a practical final subset
of features. Most works in the literature use several thresholds that retain different
percentages of features [26]. Since thresholds are dependent on the particular dataset
being studied, several attempts have also been made to derive a general automatic
threshold [27, 28]. In this study, five different threshold values were used to delimit
data dimensionality, two were automatic thresholds: the log,(n) threshold, and one
proposed in [29] that is based on a data complexity measure, the Fisher discriminant
ratio [30]. The five different threshold values are the following:

e Fisher discriminant ratio: This is defined for a multidimensional problem as:

dict jmrin PiPj (i — 1)?

F = : ,
>ic piaiz

A.1)

Thttps://github.com/borjaseijo/dfsre-1lib.
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where y;, af, and p; are the mean, variance, and proportion of the ith class c,
respectively. The Fisher discriminant ratio values are calculated individually for
each feature of the dataset. In practice, it is preferable to use the Fisher discriminant
ratio inverse (1/F) to establish the threshold and obtain the final subset, as the
smaller value renders the problem more tractable. Therefore, the final formula that
calculates the complexity value e of each feature is defined as:

e=axl/F+(1—-a)xp “4.2)

where « is a parameter with values in the interval [0, 1] that controls both the

relative emphasis on the number of features retained and the weight given to the

complexity measure (a value of o = 0.75 was empirically established for this

work), p is the percentage of features retained (ranging from 1 to the total number

of features in the dataset) and 1/ F is the inverse of the Fisher discriminant ratio.

log, (n). This threshold, where n is the number of features in a given dataset,

following the recommendations in [21, 27].

e [0%: this threshold selects the 10% of the most relevant features of the final ordered
ranking.

e 25%: this threshold selects the 25% of the most relevant features of the final ordered

ranking.

50%: this threshold selects the 50% of the most relevant features of the final ordered

ranking.

The ensemble was tested on seven different datasets shown in Table4.1, as they
conform an interesting suite against which to check suitability. The number of sam-
ples ranges from 1484 to 67557, the number of features oscillates from 8 to 10000
and the datasets represent both binary and multiclass problems. The experimental
procedure, aimed at comparing the individual and homogeneous distributed ensem-
ble approaches using the same rankers, different ranking combination methods, and

different training data, was as follows:

Table 4.1 Datasets employed in the experimental study with homogeneous and heterogeneous

ensembles

Dataset Samples Features Classes Download

Yeast 1484 8 10 UCI repository [13]
Spambase 4601 57 2 UCI repository [13]
Madelon 2400 500 UClI repository [13]
Connect4 67557 42 UCI repository [13]
Isolet 7797 617 26 UCI repository [13]
USPS 9298 256 10 FS repository [31]
Pixraw10P 100 10000 10 FS repository [31]
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1. Each one of the seven datasets (Table4.1), was partitioned according to a 10-fold
cross-validation scheme.

2. The feature selection process was applied as indicated by the ensemble approach
(see Algorithm in 4.1).

3. The individual rankings were combined using the different aggregation methods
detailed above, so as to obtain the final ranking.

4. A practical subset of features was obtained according to the different thresholds
described above.

5. The suitability of the ensemble approach against the individual methods, using
a Support Vector Machine (SVM) as classifier to measure the estimated test
error was tested. In this study, the SVM classifier used a Gaussian Radial-Basis-
Function (RBF) with values C = 1 and gamma = 0.01 (default values for both
parameters in Weka).

6. To the ten different results obtained after 10-fold cross validation, a Kruskal-
Wallis test was applied to check if there were significant differences between
individual and ensemble strategies for a level of significance o = 0.05. Then, a
multiple comparison procedure [32] was applied to identify results that were not
significantly worse than the best individual result.

Although homogeneous ensembles have interest on their own, in this specific study
it was of interest to reduce training time while maintaining classification accuracy.
Due to the huge quantity of methods and data sets, average training times, average
test errors and standard deviations are shown in the tables that follow.

Table4.2 shows the average training times in seconds for the five feature selec-
tion methods applied to the seven datasets. Individual strategies whose average times
were not significantly worse than those of the ensemble strategies using the same
feature selection method are labeled with a superscript dagger. As one example, for
the SVM-RFE method applied to the Yeast dataset, the performance of the individual
strategy was not significantly worse than that of the ensemble strategy in terms of
average training time (the individual and ensemble results are labeled with a super-
script dagger), whereas, in contrast, for this method applied to the Madelon dataset,
the individual strategy was significantly worse than the ensemble strategy (only the
ensemble result is labeled with a superscript dagger). Note that the time spent on
the ranking combination can be considered negligible. Overall it can be seen how
the ensemble strategy considerably improved training times.

Figures4.2 and 4.3 show the average time gains for the homogeneous distributed
ensemble versus the individual approaches. As can be seen, the homogeneous ensem-
bles compared to the individual approaches improved times by a factor of 100 on
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Fig. 4.2 Average speedup for homogeneous distributed ensembles versus individual approaches
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Fig. 4.3 Average speedup for each dataset using the homogeneous distributed ensembles versus
individual approaches

average in the best case. The feature selection method whose average training times
most improved in the distribution process was the embedded SVM-RFE. The fact
that the InfoGain filter yielded the poorest improvement is not surprising, since it is a
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univariate and fast method — so even attempts at parallelization produced no improve-
ment [33]. Figure 4.3, referring to the datasets, shows that the best time improvement
occurred with the Connect4 dataset; this was because it had the largest number of
samples of all the datasets and so was able to take most advantage of the distribu-
tion process. For datasets with greater dimensionality and smaller sample sizes, e.g.,
Madelon, Isolet. USPS and Pixraw10P, the time improvement with the SVM-RFE
method was also significant, mainly due to the relatively small number of samples
used in each iterative training run by the SVM classifier used by this method.

The most important advantage of the homogeneous distributed ensemble approach
was clearly the great reduction in training times while classification performance
held at reasonable—and sometimes even improved—Ievels. This outcome reflects
the notion of divide-and-conquer since, in some cases, the result obtained by a feature
selection method may be more accurate when the focus is on a local region of the
data.

Concerning the thresholds, Tables4.3, 4.4, 4.5, 4.6, and 4.7 show average test
errors and standard deviations for the five thresholds, the first two based on auto-
matic thresholds (Fisher discriminat ratio and /og,), while the last three show fixed
percentages of retained features (10, 25 and 50%). The ensemble approaches whose
average test results were not significantly worse than for the individual strategy
using the same feature selection method are labeled with a superscript dagger. As
can be seen, test error rates for individual and ensemble strategies were compara-
ble. Table4.3 shows that, for 215 of 245 experiments performed with the Fisher
discriminant ratio threshold, the average test errors for the ensemble strategy were
not significantly worse than those for the individual methods; furthermore, in nine
of these experiments the ensemble method achieved significantly better results. For
the 10% threshold, in 217 of the 245 experiments the test errors returned by the
ensemble were not significantly worse than those returned by the individual method
(Table4.5), and a further six of these experiments yielded significantly better test
error percentages than the individual method. Increasing the percentage of features
retained did not imply better results.

To sum up, the ensemble strategy considerably reduced training times compared
to the individual approaches, and there were no significant differences in test errors
between the two strategies in 1096 of the 1225 experiments performed. In other
words, in 89.47% of the cases the performance of the ensemble strategy was not
significantly worse than the performance of the individual methods. Note also that,
in 30 of the 1225 experiments, the significant differences were even in favor of the
homogeneous distributed ensemble.
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Fig. 4.4 A structure for an heterogeneous ensemble

4.3 Heterogeneous Ensembles for Feature Selection

In this case, the diversity is introduced by using N models employing different feature
selection methods, but the same training data (Fig. 4.4). This approach takes account
of the strengths and weaknesses of the individual methods, with the objective also
of devising a more robust result. The several different methods are trained using the
same training data, and the output is then combined using an aggregation method.
The pseudo-code of this approach is given in Algorithm 4.2.

Algorithm 4.2: Pseudo-code of an heterogeneous ensemble

Data: N — number of ranker methods
Data: T — threshold of the number of features to be selected (only for ranker methods)

Result: P — classification prediction

1 for each n from I to N do
2 |_ Obtaining ranking or subset of features A, using feature selection method n

3 A = combining rankings or feature subsets A, with an aggregator
4 A; =Select T top attributes from A, only if rankers are used

5 Build classifier SVM-RBF with the selected attributes A;

6 Obtain prediction P
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Table 4.8 p value of Spearman’s rank correlation coefficient

Dataset Ranker InfoGain mRMR ReliefF SVM-RFE |FS-P

Spambase | InfoGain 1.0000 0.2011 0.0714 —0.2040 —0.1736
mRMR 0.2011 1.0000 —0.0811 0.1313 0.0838
ReliefF 0.0714 —0.0811 1.0000 —0.0672 0.0380
SVM-RFE | —0.2040 0.1313 —0.0672 1.0000 0.0565
FS-P —0.1736 0.0838 0.0380 0.0565 1.0000

Isolet InfoGain 1.0000 0.0971 —0.0677 —0.0320 —0.0521
mRMR 0.0971 1.0000 0.0295 0.0534 0.0062
ReliefF —0.0677 0.0295 1.0000 0.0115 —0.0291
SVM-RFE | —0.0320 0.0534 0.0115 1.0000 0.0331
FS-P —0.0521 0.0062 —0.0291 0.0331 1.0000

4.3.1 A Use Case: Heterogeneous Ensemble for Feature
Selection Using Ranker Methods

In this case, a heterogeneous ensemble was devised using the five different FS meth-
ods named for the previous homogeneous use case, that is, InfoGain, nRMR, ReliefF,
SVM-REFE and FS-P. Remember that all of them, the two embedded and three filters,
are rankers, and thus in Algorithm 4.2 we should apply the thresholds and aggre-
gators that are applicable for rankers (see previous Sect.4.2.1). The code for this
heterogeneous ensemble is available for downloading.”

This particular set of rankers was selected because: (i) they are based on different
metrics and thus it is expected to ensure great diversity in the final ensemble; and (ii)
they are widely used by feature selection researchers. In Table 4.8 a small diversity
study using just two of the datasets, (Spambase and Isolet) is shown in Table4.1.
Final rankings obtained by the five rankers were compared using Spearman’s rank
correlation coefficient [34]. The p value in the range [—1, 1] reflects the relationship
between rankings, with 1 indicating that the compared rankings were equal.

It can be seen that most of the p values are far from 1, indicating great differences
between the paired rankings (obviously, when the same ranker method rankings
were compared, the p value was 1, as can be seen in the table diagonals). This small
experiment demonstrated that the set of feature selection rankers chosen for this
study ensured enough diversity in their behaviors. For more details see [6].

In the case of the heterogeneous ensemble, the main aim is to maintain or improve
classification performance while freeing the user from having to decide on the most
appropriate feature selection method for any given situation. Average test errors and
standard deviations for the five thresholds employed are shown in Tables 4.9, 4.10,
and 4.11. The best results obtained are for the Fisher discriminant ratio and 10%
of retained features, as in the previous use case for the homogeneous design (see

Zhttps://github.com/borjaseijo/fsre-lib.
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Table 4.9 Heterogeneous centralized ensemble with a Fisher discriminant ratio threshold: average
estimated percentage test errors. The superscript dagger indicates results that were not significantly
different from the best result

Ranker Yeast Spambase | Madelon | Connect4 | Isolet USPS Pixraw10P

E- 54787 11267 [3475% 30,067 [52.067 [3121+ | 77.00=+
SVMRank |+3.27 +1.52 +5.16 +2.02 +4.82 5.21 20.58
E-Min 53447 1893+ |34297 |31367 51217 |18.04° 60.00 ¥
+3.19 3.05 +3.33 +1.11 +1.79 +6.13 +17.64
E-Median |56.00" |11.677 [33.217 [290987 5457+ |37.70+ | 85.00+
+2.95 +1.57 +4.33 +1.81 4.15 4.90 19.00
E-Mean 54787 |12.82% |3446% [29.84F [4972F [3047+ | 44007
+3.27 +3.16 +4.50 +2.20 +3.51 4.70 +24.13
E- 53447 11287 [33.67% 30907 |[5225T7 [36.01+ | 60.00%
GeomMean | £3.19 +1.54 +3.93 +0.94 +3.67 3.45 +23.09
E-Stuart |54.78 7 | 11.287 [33.63T 30307 |[51.94% |[35744+ | 50.00°
+3.27 +1.54 +3.94 +1.94 +3.40 4.08 +29.06

E-RRA 56.47% 14137 |33.177 |29.697 50307 |28.53° 59.00 F
+5.04 +3.37 +3.95 +2.00 +5.44 +4.06 +21.32

InfoGain |57.48 % |17.93+ [34.047 [30757 |55.05+ |56.00+ | 84.00+

+4.40 2.84 +3.48 +0.52 5.43 1.64 14.30
mRMR 53447 13357 41924+ [3227F |4393T |1648F | 22007
+3.19 +1.69 1.61 +0.55 +1.08 +1.47 +18.74
ReliefF 57487 15847 |3333T |30767 5646+ 25757 86.00 +
+4.40 +2.15 +4.14 +0.72 1.86 +2.70 19.55
SVM-RFE |54.45% |12.827 |35757 |3352+ 51537 16557 20.00 ¥
+4.56 +2.39 +4.36 0.92 +6.24 +7.92 +24.94
FS-P 5418 % 12,197 |34717 [3343+ 6025+ |8.747 78.00 +
+3.28 +1.74 +3.32 2.31 2.23 +3.95 15.49

Sect.4.2.1). The algorithms whose average test error results were not significantly
worse than the best result are labeled with a superscript dagger, as in the previous
sections. For more detailed results, please consult [6].

As it can be seen in the previous tables, the experimental results demonstrated the
suitability of the proposed ensemble, since they matched or improved on the results
achieved by the individual feature selection methods. The ensemble errors were not
significantly different from the lowest average error for the individual methods in
40 of the 49 experiments performed with the Fisher discriminant ratio threshold
(Table 4.9). The ensemble method obtained favorable results in 42 of the 49 experi-
ments performed with a 10% threshold (Table4.11). Figure 4.5 shows the number of
cases for which the results obtained by the individual and the heterogeneous ensem-
ble approaches were not significantly different than the best result (in other words,
the number of times that results were comparable with the best result). As can be
observed, the E-RRA ensemble approach obtained results that were not significantly
different from the best result in all 35 experiments, compared to 28 out of 35 exper-
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Table 4.10 Heterogeneous centralized ensemble with a log, (n) threshold: average estimated per-
centage test errors. The superscript dagger indicates results that were not significantly different
from the best result

Ranker Yeast Spambase | Madelon | Connect4 | Isolet USPS Pixraw10P

E- 54587 |1222% 3371 31307 [5058T (31217 | 77.00+
SVMRank |+3.33 +2.98 +4.82 +0.71 +3.94 +2.48 20.58
E-Min 53917 2004+ |3346T |3228+ (46807 33827 65.00
+3.52 1.78 +4.40 0.60 +3.14 +4.90 +20.68
E-Median |57.627 |11.76 7 [33.467 [31.487 5536+ |37.70+ | 85.00+
+3.20 +1.09 +4.45 +0.44 4.76 4.70 19.00

E-Mean 5424% |1476% |3350F7 |3140F 51267 |3047% | 44007
+3.22 +4.52 +4.30 +0.68 +4.62 +3.45 +20.66

E- 53917 [12.19% [3333% [3125F [51.73T7 [36.01+ | 56.00°F
GeomMean | £3.52 +2.92 +4.37 +0.73 +3.26 6.08 +26.75
E-Stuart |54.657 |11.307 33337 31227 |[5057% |[3574+ | 54.00°

+4.16 +1.37 +4.37 +0.78 +3.99 4.06 +27.97

E-RRA 56207 [13.677 |33.507 |3097F 50977 |28.53° 70.00 ¥
+3.94 +3.15 +4.44 +0.78 +4.16 +0.00 +19.44

InfoGain |58.76 T | 13417 [33.837 [30.777 |5823+ |56.00+ | 82.00+

+3.92 +1.87 +4.70 +0.52 6.83 1.64 21.50
mRMR 53917 2282+ 4217+ 3222+ [43.49T [2479F | 24007
+3.52 1.99 2.77 0.35 +1.92 +1.14 +17.76
ReliefF 58767 21287 |33.217 |30.74T 5947+ |31.10° 86.00 +
+3.92 +3.10 +4.24 +0.49 1.71 +1.78 19.55
SVM-RFE [5586F |12.54% |33.507 |33.90+ |48.127 [26.00°F 32.00
+4.44 +2.58 +4.35 0.44 +5.98 +3.33 +25.73
FS-P 5438% 12,007 |33.507 |34.16+ |61.86+ |57.18+ | 81.00+
+3.11 +1.90 +4.42 0.41 1.33 7.10 8.76

iments for the best performing individual feature selection method (SVM-RFE).
Five of the remaining six ensemble methods (E-SVMRank, E-Median, E-Mean,
E-GeomMean and E-Stuart) matched or (mostly) improved on the results obtained
by SVM-RFE, obtaining results that were not significantly different in 28-33 of the
35 experiments.

Focusing on the behavior of the individual feature selection rankers (the bottom
five rows in each of the two tables), it can be observed that not one of the five indi-
vidual methods significantly outperformed the ensemble approaches for any dataset
or threshold combination. Therefore, although an individual method might well per-
form better than an ensemble method in a given scenario, overall it would appear
that the ensemble approach is the most consistent and reliable approach to a feature
selection process. Overall, an ensemble approach would seem to be the most reliable
approach to feature selection, although in some specific cases, an individual method
(not always the same one) might well perform better than the ensemble.
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Table 4.11 Heterogeneous centralized ensemble with a 10% threshold: average estimated percent-
age test errors. The superscript dagger indicates results that were not significantly different from
the best result

Ranker Yeast Spambase | Madelon | Connect4 | Isolet USPS Pixraw10P

E- 54187 11267 [3629% (31407 [51.497 [14.097 | 84.00+
SVMRank |+2.72 +1.52 +3.12 +0.87 +1.93 +0.98 14.30
E-Min 50277 |19.63+ [35.21T7 |32.09+ 5848+ 1598+ |47.00F
+3.97 2.46 +2.79 0.64 2.27 2.52 +27.10
E-Median |54.187 |11.677 |36.637 |31517 |5279F |13.18° 50.00

+2.72 +1.57 +3.86 +0.66 +2.57 +0.70 +21.60

E-Mean 5418 % [13.027 |36.21F |31367 (51227 |14.12% | 3000
+2.72 +3.70 +3.61 +0.75 +1.81 +1.19 +18.26

E- 54187 11287 [3725% 31207 |5489+ [1436+ | 48.00°F
GeomMean | £2.72 +1.54 +3.82 +0.78 2.10 1.60 +25.58

E-Stuart |54.18 7 | 11.287 [37.047 |31.167 |51.657 |13.65° 43.00
+2.72 +1.54 +4.26 +0.70 +1.15 +1.56 +24.06

E-RRA 54187 |1450F |36.54T |31.017 50207 |13.56° 47.00
+2.72 +4.12 +3.50 +0.44 +1.36 +1.13 +24.52

InfoGain |55.137 |13.397 [33.627 [30767 |48.627 4538+ | 80.00+

+4.99 +1.24 +3.50 +0.54 +2.30 1.68 21.08
mRMR 55137 2278+ 46424+ 3229+ (47157 [12.94F | 26.00°
+4.99 2.24 3.46 0.49 +1.71 +0.96 +20.66
ReliefF 55137 [20.08+ |33.177 |30.707 5838+ |18.79+ | 71.00+
+4.99 3.14 +3.13 +0.50 2.23 1.36 20.79
SVM-RFE [5431% |1250%7 |31.717 |33.92+ [51.587 [832F 15.00 *
+6.50 +1.41 +2.56 0.59 +3.33 +0.70 +18.41
FS-P 54667 12177 |33.967 [34.18+ 6495+ 1680+ | 63.00+
+4.33 +1.52 +2.94 0.60 4.53 2.22 24.97

4.4 A Comparison on the Result of Both Use Cases:
Homogeneous Versus Heterogeneous Ensemble for
Feature Selection Using Ranker Methods

Finally, and in order to give some recommendations in the use of both approaches,
Fig.4.6 shows a graphical comparison between the homogeneous distributed and
the heterogeneous centralized ensembles. The figure compares the two best hetero-
geneous centralized ensembles in terms of average test error (E-Mean and E-RRA),
and the single best homogeneous distributed ensemble in terms of average training
times (SVM-RFE). Note that the combination methods used by the homogeneous
distributed ensemble were also the Mean and the RRA functions.

As can be seen in Fig. 4.6, the homogeneous distributed ensemble obtained sig-
nificantly better results than the heterogeneous centralized ensemble for the Yeast
dataset — the smallest of all the datasets in terms of both size and dimension. As
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Fig. 4.5 Number of cases when the results obtained by the individual and the heterogeneous
centralized ensemble approaches were comparable with the best result
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Fig. 4.6 Comparison of average estimated percentage test errors for homogeneous distributed and
heterogeneous centralized ensembles
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dataset size and dimension increased, however, the difference in test error between
the two ensemble types diminished to the point of reversing the situation. Thus, the
best result for the heterogeneous centralized ensemble was obtained for the Connect4
and Isolet datasets; this is explained by the fact that the homogeneous approach can
improve computation time—at the cost of a minimal reduction in accuracy—by dis-
tributing the sample over different nodes. Finally, when the RRA combination method
was used, a very high average test error was returned for the Pixraw 0P dataset, a
result that was improved on slightly when the Mean combination method was used.
As it is well-known, microarray datasets are especially susceptible to great accuracy
variations depending on the combination method used.
To sum up, we propose applying the following rules-of-thumb:

e If the dataset is very large and a reduction in training time is crucial, the homoge-
neous distributed ensemble is the best option, since it considerably reduces training
time while ensuring reasonable classification accuracy.

o Ifthe datasetis reasonably small, or the user is uncertain as to which of the available
algorithms to choose, the heterogeneous centralized ensemble is probably the
best option, since it does not require the user to decide between feature selection
methods, and may even, in some cases, improve classification accuracy.

4.5 Summary

In this chapter we have described the fundamentals that have been used for adapting
the basic ideas of ensemble learning to the feature selection process, aiming at taking
advantage of the combination of different individual feature selection methods. The
homogeneous ensemble uses the same FS method, but different training sets, and thus
computational time can be greatly reduced by parallelizing the training task. This
advantage beside aiding diversity to the process can help to make it possible using
feature selection methods in Big Data scenarios, some times restricted due to the low
scalability of traditional FS algorithms. In the case of the heterogeneous approach,
which consists of using different feature selection methods for the same training
data, the idea tries to take advantage of the strengths and overcome the weaknesses
of the individual methods. The latter approach has the added benefit of freeing the
user from the task of deciding which method best suits a particular scenario. Both
approaches shown competitive results without deteriorating classification accuracy.
As a suggestion, the homogeneous distributed ensemble is particularly suitable for
large datasets, while the heterogeneous centralized ensemble has the advantage of
freeing the user from decision making regarding the best possible feature selection
method for a given problem.
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Chapter 5 ®)
Combination of Outputs ez

Abstract Ensemble learning is based on the divided-and-conquer principles but,
after dividing, we would need to combine the partial results in some way to reach a
final decision. Therefore, a crucial point when designing an ensemble method is to
choose an appropriate method for combining the different weak outputs. There are
several methods in the literature to solve this issue, and they are grouped according
to whether the outputs are classification predictions, subsets of features or rankings
of features. In this chapter we will describe methods falling in all these categories,
so that the interesting readers can make an informed choice according to their needs
trying to design the best ensemble possible.

A crucial point when using an ensemble of learning methods is to combine the partial
outputs in order to obtain a final output. In the concrete case of an ensemble of feature
selectors, there are two possible situations: combining the different features selected
by the different selectors or, if a classifier is applied after feature selection, combining
the label predictions of the classifiers. Figure5.1a shows an example of ensemble
in which the feature selection process is followed by a classifier, so in this case it
is necessary to combine the classifier predictions (see Sect.5.1). In other cases, as
shown in Fig. 5.1b, the outputs of the feature selection methods have to be combined
before obtaining a final subset of features which are fed to the classifier. As mentioned
in Chap. 2, a feature selection method can return a subset of relevant features or an
ordered ranking of all the features. Depending on this, the combination of the outputs
will be different, as will be discussed in Sects.5.2 and 5.3.

5.1 Combination of Label Predictions

Combining the outputs of the individual classifiers in a ensemble is a recurrent
issue in the field of ensemble learning, since it is necessary when designing an
ensemble of classifiers and has been broadly studied (see, for example, Kuncheva’s
book [1]). Before diving into the different methods to combine classifier predictions,
it is necessary to distinguish between two types of classifier outputs:
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Fig. 5.1 Two different examples of feature selection ensembles

e Class labels. In this case, each classifier produces a class label for each data point,
without information about the certainty of the guessed labels. All the existing
classifiers are able of producing a class label, so all classifiers belong to this
category.

e Degree of certainty. Apart from the class label, there are some classifiers that are
able to provide a degree of certainty of their prediction (e.g. probability). In this
case, we can use the prediction labels in a more informed way and it is possible to
combine the outputs giving more importance to those which have a higher degree
of certainty.

Depending on the type of classifier outputs, different methods for combining the
outputs can be used. When having classifiers that only return the class labels, the
most popular technique is majority vote.

5.1.1 Majority Vote

The idea behind majority vote is simple and well-known: it consists of establishing
the final output as the option that has been predicted by the majority of the classifiers.
However, it has some limitations, as for example how to deal with ties, which are
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Fig. 5.2 Examples of
different scenarios in
majority vote

(a) Unanimity (b) Simple majority

(¢) Plurality (d) Tie

usually resolved arbitrarily. Figure 5.2 illustrates several situations in which the final
output might be the same, but as it is easy to see, the degree of agreement between
classifiers is far from being the same.

Notice that in the three first situations (unanimity, simple majority and plurality),
the outcome would be the same —the black square—, but the confidence on this
outcome is not the same. In Fig. 5.2d we can see an example of a tie, and in this case
the final outcome depends on how ties are implemented in our system.

As can be seen, majority vote —although widely employed— has an important
number of limitations and problems. Some of them can be solved when combining
outputs of classifiers that include a degree of certainty. In the next subsection we
present the decision rules that can be used, according to the survey presented by
Peteiro-Barral and Guijarro-Berdifias [2].

5.1.2 Decision Rules

As mentioned before, some classifiers are able to provide a class prediction and
also a degree of certainty of this prediction. Consider a classification problem in
which instance x has to be assigned to one of the C possible classes of the problem
c1,¢2, ..., cc. Let us also assume that we have N classifiers which will lead to N
outputs y;, i = 1, ..., N to make the decision. When the classifiers provide a degree
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of certainty, the posterior probability can be estimated as P(c;|x) = y;, where y; is
computed as the response of a classifier i. Now, let us denote y;; (x) as the output of
the classifier / in the class j for the instance x and assuming that the outputs y; are
normalized. Some popular decision rules can be defined as follows:

e Productrule, x — c; if

N e N
l_[ yij(x) = max 1_[ Yik(x)
i=1 i=1

e Sumrule, x — c; if

N c N
Z; yij (x) = max X; yir (x)
1= 1=

e Max rule, x — ¢; if

N C N
max yi (x) = max max yi (x)
1= = 1=

This rule approximates the sum rule assuming that the output classes are a pri-
ori equiprobable. The sum will be dominated by the prediction which lends the
maximum support for a particular hypothesis.

e Minrule, x — ¢; if

=

N c N
min y;; (x) = max min y;z (x)
i=1 k=1 i=1
This rule approximates the product rule assuming that the output classes are a
priori equiprobable. The product will be dominated by the prediction which have
the minimum support for a particular hypothesis.
e Median rule, x — ¢; if

1 al c 1 N
v Eyij(x) = max - Eyik(x)
1= 1=

5.2 Combination of Subsets of Features

An alternative to the previous approach is to combine the partial results of the ensem-
ble in the feature selection part, and then classifying only once (if classification is
the final goal of our system). In this case, we need to integrate the partial feature
selections obtained by the different weak selectors.

As mentioned in Chap. 2, feature selection methods can be grouped whether their
output is a subset of features or a ranking of all the features. This section will be
focused on the former case, and the next section on the latter.
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5.2.1 |Intersection and Union

The most straightforward technique to combine subsets of selected features is to
compute the intersection and the union of them. The intersection consists of selecting
only those features which are selected by all the weak selectors. Notice that the
rationale behind this method is very logical, since one can expect that if a feature
is selected by all selectors, it has a high predictive power. However, this can lead
to very restrictive sets of features, even leading to the empty set of features, and in
practice it does not tend to produce good results [3, 4].

On the contrary, the union consists of combining those features selected by any
weak selector. In this case, the final set of features contains all the features that had
been considered important by any selector, but it may lead to select even the whole
set of features. This approach tends to produce better results than the intersection
[3], but at the expense of a lower reduction in the number of the features.

Imagine a simple toy example in which we have a dataset with five features,
{a, b, c, d, e}, where all of them are relevant but redundant with each other, so it is
enough to select any of them. Suppose now that we have five weak selectors and each
one selects one of the features (e.g. the first selector chooses feature a, the second
selector chooses feature b, and so on). All the weak selectors would have done a
perfect job, since any single feature is relevant and it is enough and optimal to select
only one of them. But let us show what happens if we combine the results using the
intersection or the union:

e If we compute the intersection, the final set of selected features would be the empty
subset, which cannot solve the problem.

e If we compute the union, the final set of selected features would be the full set of
features, {a, b, c, d, e}, so it would be correct to solve the problem, but suboptimal
because we would be using more features than we actually need.

Of course this is an extremely naive example, but it helps to illustrate the short-
comings of these two combination methods. In the next subsections we can see other
more sophisticated techniques, but notice that they come at the expense of higher
computational costs.

5.2.2 Using Classification Accuracy

Based on the philosophy of a wrapper for feature selection, we can use the classi-
fication accuracy (which is usually the ultimate measure of quality of the selected
features) to combine the partial subsets of features returned by the weak selectors. A
simple approach can be to include partial selections into the final selection only if they
contribute to improve classification performance, as presented in [5]. In the method
they propose, the first selection S is arbitrarily taken to calculate the classification
accuracy, which will be the baseline, and the features in §; will always become part
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of the final selection S. For the remaining selections, the features in S;,i =2...n
will become part of the final selection S if they improve the baseline accuracy, as
can be seen in more detail in Algorithm 5.1. The authors expect that combining the
features in this manner can help reduce redundancy, since a redundant feature will
not improve the accuracy and hence will not be added to the final selection.

Algorithm 5.1: Pseudocode to use classification accuracy to join subsets of

features
Data: D, ) = training dataset with m samples and s features

n = number of weak selectors
Result: S = final subset of features
1 fori =1tondo
2 ‘ S; = subset of features selected by the ith weak selector
end
385=9;
4 baseline = accuracy obtained by classifying subset Dy, x|s|) With classifier C
5fori =2tondo
6 Saux =S U S;
7 accuracy = accuracy obtained by classifying subset D, x|s,,.|) With classifier C
if accuracy > baseline then

8 S = Saux
9 baseline = accuracy
end
end

This approach has several problems, the most important one is that it depends
on how good is the first selection, since it always is part of the final selection. To
solve this, it might be more efficient to retain only those features that are selected
more times by the weak selectors, making use of classification accuracy and trying
to reduce to the extent possible the percentage of selected features, as proposed in
[6].

The idea is simple: each time that a weak selector performs feature selection,
those features not selected receive a vote. Eventually, the features that have received
a number of votes above a certain threshold are removed. Determining the threshold
of votes is not trivial, since it depends on the dataset. Therefore, they have proposed
an automatic method to calculate the threshold, which can be seen in Algorithm 5.2.
The best value for the number of votes is estimated from its effect on the training
set, but in order to alleviate computational costs, they suggest to use only 10% of the
training instances.

It is desirable that the selection of votes takes into account both the training
error and the percentage of features retained, which are minimized to the maximum
possible extent, by minimizing the fitness criterion e[v]:

e[vl=a x error + (1 —«a) x featPercentage (5.1
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where « is a parameter in [0, 1] which measures the relative relevance of both values
and v is any possible value for the threshold. Notice that the maximum number of
votes is the number of weak selectors we have.

Algorithm 5.2: Pseudocode to use classification accuracy and percentage of
selected features to join subsets of features

Data: D, ) = training dataset with m samples and s features

n = number of weak selectors
Result: S = final subset of features
1 fori =1tndo
2 S; = subset of features selected by the ith weak selector
3 increment one vote for each feature not in S;
end
/* Obtain threshold of votes, Th, to remove a feature */

minV ote = minimum threshold considered (1)
maxVote = maximum threshold considered (number of weak selectors, 7)
z = submatrix of D with only 10% of samples
for v = minVote to maxVote do
F;; = subset of selected features (number of votes < v)
error = classification error after training z using only features in F;j,

RIS B NV B

10 feat Percentage = percentage of features retained (% X 100)

1 e[vl=a x error + (1 —a) x featPercentage
end
12 Th =min(e), Th is the value which minimizes the error e
13 S = subset of features after removing all features with a number of votes > Th

5.2.3 Using Complexity Measures

The problem with the previous approach is that using classification to combine the
subsets of features implies a high computational cost, as well as being dependent on
the classifier chosen. In some cases, it is even possible that the required time for this
task is higher than the time necessary for the feature selection process.

Trying to overcome these issues, Moran-Fernandez et al. [8] proposed to modify
the function for calculating the threshold of votes presented in the previous subsection
by making use of data complexity measures [7]. The reason for this decision was that
they assume that good candidate features would contribute to decrease the theoretical
complexity of the data and must be maintained. In order to have a methodology
independent of the classifier and applicable to both binary and multiclass datasets,
they chose the Fisher’s multiple discriminant ratio for C classes:

c
Doict j=t.izj PiPj (ki — wi)?

f= =
Dici PiUiz

’
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where u;, o;, p; are the mean, variance and proportion of the ith class, respectively.
The inverse of the Fisher ratio is used, 1/f —from now on noted as F1— where
a small complexity value represents an easier problem. Therefore, the new formula
for calculating e[v] is defined as:

e[vl=a x F1 + (1 —a) x featPercentage (5.2)

The pseudocode to combine subsets of features which uses complexity measures
can be seen in Algorithm 5.3.

Algorithm 5.3: Pseudocode to use complexity measures and percentage of
selected features to join subsets of features

Data: D, ) = training dataset with m samples and s features

n = number of weak selectors
Result: S = final subset of features
1 fori =1tondo
2 S; = subset of features selected by the ith weak selector
3 increment one vote for each feature not in S;
end
/* Obtain threshold of votes, Th, to remove a feature */

4 minV ote = minimum threshold considered (1)

5 maxV ote = maximum threshold considered (number of weak selectors, 1)
6 z = submatrix of D with only 10% of samples

7 for v = minVote to maxVote do

8 F;; = subset of selected features (number of votes < v)

9 complexityMeasure = value of F1 computed on training dataset

10 feat Percentage = percentage of features retained (% X 100)
11 e[lvl=a x F1+ (1 —«a) x featPercentage
end

12 Th =min(e), Th is the value which minimizes the error e
13 S = subset of features after removing all features with a number of votes > Th

5.3 Combination of Rankings of Features

In the previous section, we have seen how to combine the results obtained by the weak
selectors when their output is a subset of features. But, as seen in Chap. 2, there are
feature selection methods that return an ordered ranking of all the features, according
to their relevance. In this case, it is necessary to find methods that can receive as an
input several ranking obtained by the different weak selectors and combine them into
a single final ranking, trying not to incur in an important loss of information.

Let us suppose that we have a dataset with a number of features m that will be
ranked by different weak selectors. Depending on the ensemble strategy, it is possible
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that all the weak selectors have rank all the features, or only a subset of them. For this
example, let us assume the worst case scenario, which is when weak selectors work
with subsets of features, so the rankings they produce are called partial or incomplete
rankings.

To illustrate this problem, let n be the number of weak or base selectors conforming
the ensemble, while the relevance of each feature is randomly generated as a number
between 0 and 1. Once the partial rankings (obtained from each weak selector)
are combined somehow, we would need a measure to determine to what extent the
combined ranking is close to the ideal ranking (obtained when working with all data).
For this task, we can use the Normalized Discounted Cumulative Gain (NDCG) [9],
which is often used to measure effectiveness of web search engine algorithms or
related applications. This method returns a value between 0 and 1, where 1 means
that the rankings are identical. The pseudocode for this toy example can be found in
Algorithm 5.4.

Algorithm 5.4: Pseudo-code for generating the toy example
Data: D, ) = training dataset with m samples and s input features

n = number of weak selectors

X = set of features, X = {X1q, ..., Xj}

s, = number of features to go to each weak selector

Result: NDCG = similarity between the true ranking and the combined ranking

1 Generate a random value between 0 and 1, Score(X;), for each feature X; € X, obtaining a
true ranking Rank;

2 for i =/tondo

3 D xs;) = subset of data with s, random features

4 Rank the features according to their Score, obtaining a partial ranking Rank, (i)
end

5 for each feature s in X do

6 ‘ Avg(s) = calculate the average of its position in all the partial rankings Rank, (i), Vi € n
end

7 Obtain a combined ranking Rank, by ordering Avg

8 NDCG = compare (Rank;, Rank.)

Figure 5.3 shows an example in which the number of features to rank is s = 100
and the maximum number of weak selectors available is » = 100. The NDCG value
is represented by the color, as the colorbar in the right side of the figure depicts.
As expected, when all the features are ranked by each weak selector, the NDCG
value is 1 since the rankings are identical. Nevertheless, even when we have 10 weak
selectors and 80 features ranked by each weak selector, the rankings are not exactly
the same, which gives us an idea about the complexity of the ranking combination
task. From the figure, we can see that, for ensuring good results to be obtained, it is
necessary to work with complete rankings, but this is not always possible. And notice
that this example does not even reflect what happens in a real situation, in which a
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weak selector has only partial information to rank the features, so the importance
given to each feature cannot be computed in an accurate way. On the contrary, in this
example, for each weak selector we are using the true importance of each feature.

As can be seen through this simple example, the problem of combining rankings is
not trivial, even when we can use the true importance of the features, obtained from
the whole set of examples. Arrow’s impossibility theorem [10] states that, when
having at least two rankers and at least three options to rank (in this case features),
it is impossible to design an aggregation function that satisfies in a strong way a set
of desirable conditions at once, such that:

e If every weak selector ranks feature X over feature Y, then the final ranking has
X overY.

o If every weak selector’s preference between X and Y remains unchanged, then the
final ranking’s preference between X and Y will also remain unchanged (even if
weak selectors’ preferences between other pairs like X and Z, Y and Z, or Z and
W change).

e There is no ‘dictator’: no single weak selector possesses the power to always
determine the final ranking’s preference.

So, this theorem also acknowledges how challenging it is to combine partial rank-
ings. However, there are cases in which the loss of information suffered from com-
bining partial rankings does not reflect on important loss of subsequent classification
accuracy [11] and so researchers are still using ensemble approaches or other meth-
ods that require to combine partial rankings. The remainder of this section describes
the most popular aggregation methods to combine rankings. In Chap. 6, Sect. 6.2, we
can see an example of the different behaviors shown by these combination methods
within the implementation of an ensemble for feature selection.
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5.3.1 Simple Operations Between Ranks

The easiest way to combine rankings of features is to apply simple operations through
them, such as the median or the mean. Some popular methods can be defined as
follows:

e min: assigning to each element to be ranked the minimum (best) position that it
has achieved among all rankings.

e median: assigning to each element to be ranked the median of all the positions
that it has achieved among all rankings.

e arith.mean: assigning to each element to be ranked the mean of all the positions
that it has achieved among all rankings.

e geom.mean: assigning to each element to be ranked the geometric mean of all the
positions that it has achieved among all rankings.

To illustrate the behavior of these methods, we will use a simple example. Sup-
pose that the have five features to be ranked { f1, 2, f3, f4, f5}, and 5 different
rankings of them Ry, R, ..., Rs, as depicted in Table 5.1. The last rows of the table
show the calculations that each method has to do. Notice that the method ‘min’ com-
putes the best value achieved by each feature along the different rankings (‘best’
meaning the highest position). In this case, there was a tie, and according to the
implementation provided by [12] the method returns the elements which are tied in
their original position. Thus, for this example, all the methods return the final ranking
{f1. 12, f3, f4, f5}.

Suppose now that we are working with an ensemble which distributes the data,
such that it is possible that each weak feature selector does not have access to all
the features. As mentioned before, the rankings obtained by each weak selector are
called partial or incomplete rankings. Imagine that we have six features to be ranked
{f1, f2, f3, f4, 5, f6} and 3 weak selectors, provided that three features go to
each weak selector so as to guarantee some overlap between the different partial
rankings. Then, we may have, for instance, features { f1, f2, f3} for the first weak
selector, features { /3, f4, f6} for the second one, and features { f 1, f5, 6} for the
third one. The three partial rankings can be seen in Table 5.2, in which features that
are not present for a given weak selector are being assigned the last position in the

Table 5.1 Example of aggregation methods which use simple operations

Feature | Ry Ry R3 Ry Rs min median | arith geom
mean mean
f1 1 2 3 1 1 1 1 1.6 1.4
f2 2 1 1 2 3 1 2 1.8 1.6
f3 3 3 2 5 2 2 3 3.0 2.8
f4 4 4 5 3 4 3 4 4.0 39
f5 5 5 4 4 5 4 5 4.6 4.6




94 5 Combination of Outputs

Table 5.2 Example of aggregation methods which use simple operations working with partial
rankings

Element R Ry R3 min median arith geom
mean mean
f1 1 6 1 1 1 2.7 1.8
f2 3 6 6 3 6 5.0 4.8
f3 2 3 6 2 3 3.7 33
f4 6 1 6 1 6 4.3 33
f5 6 6 3 3 6 5.0 4.8
f6 6 2 2 2 2 33 2.9

ranking, according to the implementation provided by [12] (6, in this example). In this
case, the min method will return {a, d, c, f, b, e}, whereas the remaining methods
will return { /1, f6, 3, f4, f2, f5}. Notice that, for the sake of this example, we
are choosing the alphabetical order in case of ties.

Some of these methods are more likely to have to deal with ties than others (e.g.
min and median methods are prone to have ties, since the set of possible values
obtained by them are much more reduced than the possible values received by arith
mean or geom mean). However, in a previous work [11], we have demonstrated the
superiority of the min method on a set of microarray datasets, since it was the only
method that was able to overlook the presence of many ‘last’ positions for each
feature, which greatly affected the performance of the other methods.

5.3.2 Stuart Aggregation Method

Stuart et al. [13] introduced the first attempt to use order statistics for combination of
rankings, although the computational scheme for their method was further optimized
by Aerts et al. [14]. This method compares the actual rankings with the expected
behavior of uncorrelated rankings, re-ranks the features and assigns significance
scores. Despite being robust to noise, this method requires simulations to define
significance thresholds and does not support partial rankings.

5.3.3 Robust Rank Aggregation

This method was proposed by Kolde et al. [12] to improve the limitations of Stuart
and classical methods. Their authors state that this algorithm is both computation-
ally efficient and statistically stable. With this method, the combination is based on
the comparison of the actual data with a null model that assumes random order of
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the weak rankings. A P-value assigned to each feature in the aggregated ranking
described how much better it was ranked than expected. This provides basis for
reordering and identifies significant features. As the P-value calculation procedure
takes into account only the best ranks for each feature, the method is said to be very
robust.

5.3.4 SVM-Rank

SVM-Rank [15] is an SVM-based method that can be trained to learn ranking func-
tions. The SVM-Rank algorithm considers a training set S of size n containing feature
selection methods g with their rankings r according to (5.3):

(Cllv"l)v(C]2572)a---’(5]n,’”n) (53)

The algorithm selects a ranking function f that maximizes Eq. (5.4):

n

1
()=~ 10 ) (54)

i=1

The function f must maximize Eq. (5.4) and must generalize beyond the training
data. Consider the class of linear ranking functions (5.5) defined as:

(i cj) € f2(q) & WP(q.ci) > WP(q. c)), (5.5)

where W isa weight vector thatis adjusted by learning. @ (g, ¢) is amapping between
method ¢ and feature c. For any weight vector W, the points are ordered by their
projection onto W . Maximizing (5.4) is equivalent to finding the weight vector so
that the maximum number of the following inequalities is satisfied (5.6):

Y(ci,cj) er: Wo(qr,ci) > Wh(qr,c;) [k=1,....n (5.6)

The solution to this problem is approximated, analogously to SVM classification, by
introducing slack variables &; ; x and minimizing the upper bound  _; jx- This ren-
ders the problem equivalent to an SVM classification on pairwise difference vectors
D (qk, ci) — DP(qk, c;).

5.4 Summary

In this chapter we have described the different methods available for combining the
weak outputs obtained from the ensemble. We started with the case in which we
combine the outputs of the classifiers, and then we moved to techniques to combine
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subsets of features and rankings of features. The combination of partial outputs is a
crucial point in the design of an ensemble and must be taken into account with care,
since the final output will depend on the election made.
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Chapter 6 ®)
Evaluation of Ensembles for Feature Geda
Selection

Abstract This chapter describes the different approaches that can be used to evaluate
the behavior of the ensembles for feature selection. Beside the well-known, almost
universal measures of accuracy, there are two other measures that should be taken
into account to quantify the success of an ensemble approach: diversity and stability.
In both cases, the relation between the three measures has been studied relatively well
in the field of classification ensembles. However, the situation is quite different in the
case of ensembles for feature selection, in which measures for diversity and stability
have not been devised specifically and more research and proposals are needed.
Section 6.1 states the basic ideas on the evaluation of ensembles. Then, Sect.6.2
defines the concept of diversity and describes some recent attempts in evaluating
diversity and in using it as a measure to be balanced with accuracy in order to devise
more powerful ensembles. Section 6.3 comments on the stability of feature selection
ensembles and Sect. 6.4 defines performance evaluation measures for both subsets
of features and rankings of features. Finally, Sect. 6.5 summarizes and discusses the
contents of this chapter.

Evaluation of feature selection ensembles is still a scarce reference in scientific
literature. While performance is of course a universal measure, diversity and stability
are also factors that have relevance in the process, as on the one hand we need to
ensemble single methods that produce diverse results but also on the other hand
we need robust ensembles. So far, and although measures for diversity and stability
in classifier ensembles have been devised, the subjects are still rare for the case of
feature selection ensembles. In this chapter, we will discuss some basic ideas and
experimental results.

6.1 Introduction

Boost in accuracy is the crucial reason for using ensembles in machine learning. But
in the evaluation of ensembles, there are other two important parameters involved,
diversity and robustness. Diversity is at the core of the basic idea of devising ensemble
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methods, as in the case of classification the examples which are misclassified by some
members of the ensemble are correctly classified by others, in such a way that the
final accuracy is greater than it is with any of the single classifiers. Thus, diversity—or
disagreement within the ensemble— among the members of the ensemble is a key
issue in the combination of single classifiers [1, 2]. In several studies it is shown that
the use of diversity positively affects the quality of classification [3, 4]. Considering
diversity and accuracy simultaneously has been also an strategy for ensemble pruning,
aiming at obtaining better generalization capabilities in classification, for example
[5].

There are several statistics that can be used as a measure of diversity. In the
article by Kuncheva and Whitaker [6] the pair-wise Q statistics [7] is recommended,
as it is simple to understand and to implement. Although there are several works
regarding diversity in ensembles for classification [3, 6, 8, 9], there is a necessity
for the establishment of novel diversity measures for ensembles for other machine
learning algorithms, as feature selection or one-class classification [10, 11]. Not
only diversity is important, but also the function that combines the results of the
different components of the ensemble (see Chap.5 for the description of several
methods). As early as in the work described in [12], it was shown that diversity in the
feature subset created alone is not enough for increasing the accuracy of the machine
learning process, as the combination method should also make proper use of the
diversity obtained in order to maintain the benefit.

Another important factor for the evaluation of ensembles for feature selection
is stability or robustness, that is, the capacity that ensembles have for returning an
stable subset or rank of features, as in individual feature selection methods the pro-
cess might be unstable, and depend on the portion of the training set used. There
are several measures that have been used to quantify stability in FS processes [13],
depending mainly on the type of output of the methods employed (ranking, weighting
or feature subset). In the mentioned study by Brown and Nogueira, they enumerate
the properties that the measure should have, and suggest as conclusion that the well-
known Pearson correlation is the most adequate similarity measure for robustness.
But not only measuring robustness is important, but also how we can make feature
selection procedures more stable. At this respect, there are several experimental stud-
ies [14—18] that have shown that ensemble approaches overcome standard selection
algorithms in terms of stability, especially in the context of high-dimensional/small
sample size domains (such as microarrays, genomics, etc.). In [14], the authors have
analyzed both accuracy and stability of different implementations, concluding that
the benefit achieved by the ensemble approach increases when the strength of the
individual method decreases, that is, the effect of the ensemble strategy is to approach
the results of the weakest and strongest methods, leading to more stable and accurate
behaviors.
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6.2 Diversity

Ensemble feature selection is one of the strategies that, by incorporating diversity,
aims to obtain an optimal feature subset or feature ranking. Although, as detailed
above, there have been several measures that can quantify diversity in ensembles
of classifiers or regressors [6, 8], very little effort has been done in studying their
adequacy to ensemble feature selection. In [10], several experiments have been con-
ducted in order to test the use of such diversity measures over a suite of 21 datasets.
Their conclusions are that the performance of the ensemble might be influenced
by the diversity measure chosen, and of course, also on the type of dataset being
processed. Their final recommendation is that in most cases, the plain disagreement
measure is the one that behaves best.

In [19] simple random selection of feature subsets (named Random Subspacing—
RS-) is used for introducing diversity. The idea is to randomly select a number F* of
features from the F-dimensional training set, repeating the process S times to build S
feature subsets employed to construct S base classifiers. In [10] the authors employed
probabilistic feature selection instead of choosing a fixed number of F features.
This implementation showed ensembles that obtained higher diversity and accuracy.
The research described in this article is one of the very few studies in diversity
for feature selection ensembles. In the article the authors compare five measures
of diversity using a wrapper approach for the feature selection ensembles in which
several search strategies are employed. In [15], only feature selection rankers are
used, three filter (Information Gain, Minimum Redundancy Maximum Relevance-
mRMR- and ReliefF) and two embedded methods (Recursive Feature Elimination for
Support Vector Machines-SVM-RFE- and Feature Selection Perceptron—-FS-P). In
order to ensure the diversity of results from these widely used methods, the Spearman
rank coefficient and the Kendall rank correlation coefficient were used. The results
of those tests over two datasets are shown in Table 6.1 for the Spearman coefficient
[20]. The p value in the range [—1, 1] reflects the relationship between rankings,
with 1 indicating that the compared rankings were equal.

Similar results were obtained for the Kendall coefficient [21], as shown in
Table 6.2, where it can be seen that most of the p values are far from 1, indicat-
ing great differences between the paired rankings (obviously, when the same ranker
method rankings were compared, the p value was 1, as can be seen in the table
diagonals). This small experiment, using only two of the datasets employed in their
experimental study, (Spambase and Isolet), aimed at demonstrating that the set of
feature selection rankers chosen for this study ensured enough diversity in their
behaviors.

As it was mentioned in Sect. 6.1 of this chapter, and taking into consideration the
results of the work described in [12], diversity in the feature subsets is not enough as
the combination method should make proper use of the diversity created in order to
maintain the benefit. In the work described in [15] the authors employed several com-
bination methods (also called aggregators), to test whether their selection influences
on the final results obtained after classification. The aggregators tested were the ones
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Table 6.1 p value of Spearman’s rank correlation coefficient

Dataset Ranker InfoGain mRMR ReliefF SVM-RFE |FS-P

Spambase | InfoGain 1.0000 0.2011 0.0714 —0.2040 —0.1736
mRMR 0.2011 1.0000 —0.0811 0.1313 0.0838
ReliefF 0.0714 —0.0811 1.0000 —0.0672 0.0380
SVM-RFE | —0.2040 0.1313 —0.0672 1.0000 0.0565
FS-P —0.1736 0.0838 0.0380 0.0565 1.0000

Isolet InfoGain 1.0000 0.0971 —0.0677 —0.0320 —0.0521
mRMR 0.0971 1.0000 0.0295 0.0534 0.0062
ReliefF —0.0677 0.0295 1.0000 0.0115 —0.0291
SVM-RFE | —0.0320 0.0534 0.0115 1.0000 0.0331
FS-P —0.0521 0.0062 —0.0291 0.0331 1.0000

Table 6.2 p value of Kendall’s rank correlation coefficient

Dataset Ranker InfoGain mRMR ReliefF SVM-RFE |FS-P

Spambase | InfoGain 1.0000 0.1278 0.0476 —0.1466 —0.1266
mRMR 0.1278 1.0000 —0.0602 0.0940 0.0464
ReliefF 0.0476 —0.0602 1.0000 —0.0489 0.0288
SVM-RFE | —0.1466 0.0940 —0.0489 1.0000 0.0351
FS-P —0.1266 0.0464 0.0288 0.0351 1.0000

Isolet InfoGain 1.0000 0.0652 —0.0449 —0.0212 —0.0337
mRMR 0.0652 1.0000 0.0216 0.0373 0.0053
ReliefF —0.0449 0.0216 1.0000 0.0084 —0.0168
SVM-RFE |—-0.0212 0.0373 0.0084 1.0000 0.0213
FS-P —0.0337 0.0053 —0.0168 0.0213 1.0000

listed in Table 6.3, that are included in the RobustRankAggreg package implemented
in the R and Matlab languages [22]. These combination methods consider a set of n
feature selection ranker methods, where 2 = {¢;,i = 1, ..., n}, and where each g;
is associated with a list of m objects that represent the relevance of features in the
range [0, 1]. Once the relevance of each feature in the individual ranking method
is obtained, one of the reduction functions shown in Table 6.3 is applied (see also
Chap. 5). The result is a reduced final ranking that is ordered according to the cal-
culated relevance factor. The final relevance values of the features will be in the
range [0, 1], where higher and lower values reflect more and less important features,
respectively, in the dataset.

In the work described in [15], SVM classifier has been used to assess the final
performance of the ensemble, and thus a specific aggregator was also tested, named
SVM-Rank [24]. For more details on the combination methods, please check Chap. 5.

Using the same datasets referenced in Chap. 4, Table 4.1, the results obtained in
terms of average percentage errors are shown in Fig. 6.1.
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Function

Formula

Description

min

min{q1(d)), q2(d}) . . . qu(d})}

Reduction function based on simple
arithmetic operations. It selects the
minimum of the relevance values
yielded by the rankings [23]

median

median{q (d), q2(d) . . . gu(d))}

Reduction function based on simple
arithmetic operations. It selects the
median of the relevance values yielded
by the rankings [23]

mean

Iy qidy)

Reduction function based on simple
arithmetic operations. It selects the
average of the relevance values yielded
by the rankings [23]

geomMean

(T2, gidntm

Reduction function based on simple
arithmetic operations. It selects the
geometric average of the relevance
values yielded by the rankings [23]

Stuart

PglX < pl =1—Pqlg1 < .
L= Z,3(0), -4 < 1= B, 1(p)]

Reduction function based on statistical
sorting distributions. It uses the Beta
distribution to obtain the p value [21]

RRA

min;=1,...n Br.n(r),
Prigr < qxl

Prn(q) =

Reduction function based on statistical
sorting distributions. Based on the
Stuart function, it improves the
efficiency-accuracy connection through
the use of Bonferroni correction when
calculating the p value [22]
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Fig. 6.1 Comparison of average estimated percentage test errors for the different combination

methods
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Fig. 6.2 Number of cases when the results obtained by the individual and the heterogeneous
centralized ensemble approaches were comparable with the best result

As can be seen, the different combination methods obtained similar results except
the ensemble that used the Min reduction function (second bar in each set of bars), that
produced irregular results (the best average test error for the Yeast, Madelon and USPS
datasets, but the worst average test error for the Spambase and Connect4 datasets).
The case of the dataset Pixraw10P is different from the other, as it is a microarray
dataset, in which the number of features is much higher than the number of samples.
In this case, accuracy varied greatly depending on the combination method, with
E-SVMRank achieving the worst result, and E-Mean obtaining the best result. The
choice of the combination method appears thus to have a great influence in the final
results for microarray datasets—a conclusion which is consistent with that reported
elsewhere regarding an extensive study of microarray datasets [25].

Finally, in Fig. 6.2 it can be seen the number of cases for which the results obtained
by the individual and the heterogeneous ensemble approaches were not significantly
different than the best result (in other words, the number of times that results were
comparable with the best result). As can be observed, the E-RRA ensemble approach
obtained results that were not significantly different from the best result in all 35
experiments, compared to 28 out of 35 experiments for the best performing indi-
vidual feature selection method (SVM-RFE). Five of the remaining six ensemble
methods (E-SVMRank, E-Median, E-Mean, E-GeomMean and E-Stuart) matched or
(mostly) improved on the results obtained by SVM-RFE, obtaining results that were
not significantly different in 28-33 of the 35 experiments. Overall, an ensemble
approach would seem to be the most reliable approach to feature selection, although
in some specific cases, an individual method (not always the same one) might well
perform better than the ensemble. Besides, the results show than the choice of com-
bination method influences the performance results, and that the RRA aggregator is,
on average, the one that obtains the best results.
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6.3 Stability

As mentioned in the previous section, it is desirable that the methods chosen for
conforming the ensemble are diverse, i.e. that they provide different enough outputs
on the same sample of data. However, when we are changing the sample of data, it
is desirable that such methods return similar outputs, which is known as stability.
Thus, the stability of a feature selection method can be seen as its sensitivity to small
changes in the input dataset.

As pointed out by Nogueira and Brown [26], in ensemble-based feature selec-
tion, the goal must be to use diverse feature selection methods within the ensemble
(corresponding to low stability), as well as obtaining robustness of the final feature
selection made by the ensemble (corresponding to high stability). Therefore, the sta-
bility of ensembles for feature selection has been gaining attention in recent years
[27-30].

There are plenty of measures in the literature to compute stability, and in the fol-
lowing we will comment on the most popular ones, according to if they are designed
for subsets of features or for rankings of features.

6.3.1 Stability of Subsets of Features

This is the most common approach in the literature, since even in the case of rankers,
it is possible to establish a threshold and compare the top k selected features. Two
of the first methods to measure similarity are Jaccard index [31] (also referred as
Tanimoto distance) or the relative Hamming distance [32]:

|A N B| |A N B|
Jac(A, B) = = . (6.1)
|A U B| |A| + |B| + |A N B|
A\ B B\ A
Ham(A,B) =1 — M (6.2)
n

However, both these measures are subset-size-biased [33], which means that they
provide different results depending on the number of features selected so they cannot
be considered consistent. Suppose that a feature selection procedure selects two
identical feature sets of eight features out of a total of 10 features, and another
procedure selects also two identical feature sets of eight features but, in this case,
out of a total of 100 features. Intuitively, we can see that the second procedure is
more stable, but the two measures defined above would give us the same result. For
this reason, Kuncheva [33] identified the correction for chance as one of the three
desirable properties for a stability measure. Let A and B be subsets of features, of
the same cardinality k. Let r = |A N B| be the cardinality of the intersection of the
two subsets. Then, the properties are:
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e Monotonicity. For a fixed cardinality of the subsets k, and for a number of features
n, the larger the intersection between subsets, the higher the value of the stability
measure.

e Limits. A stability measure should be bound by constants not dependent on k or
n. The maximum stability should be reached when the two subsets are identical
(i.e. when r = k).

e Correction for chance. A stability measure should have a constant value for inde-
pendently drawn subsets of features of the same cardinality.

Kuncheva [33] proposed a consistency index to measure stability that satisfies the
three properties described above:

f-£ m—k?
Kun(A, B) = = = , 6.3
B = = (6.3)

such that |A| = |B| = k and where 0 < k < |X| = n.

However, a problem with this stability measure is that it requires that subset sizes
are the same, which in practice does not always happen. Therefore, Nogueira and
Brown [26] added to this one another two desirable properties for a stability measure
to have:

e Unconstrained on cardinality. A stability measure should be able to deal with
feature sets of different cardinalities.

e Symmetry. A stability measure should be symmetrical, so that its value does not
depend on the order on which the feature sets are taken.

e Redundancy awareness. Since feature can be redundant among each other, a sta-
bility measure should take this fact into account.

Nogueira and Brown [26] provided a summary of the most commonly used sta-
bility measures pointing out if they have these six desirable properties, as depicted
in Table 6.4. Notice that the measures proposed by Lustgarten [34], Wald [35] and
Zhang [36] are all variants of Kuncheva’s similarity measure for feature sets of
varying cardinalities.

6.3.2 Stability of Rankings of Features

As we have seen in Chap. 2, there are feature selection methods that return an ordered
ranking of all the features, according to their relevance. In this case, we cannot use
the stability measures mentioned in the previous subsection, unless we decide to
consider only the top k features, but even in this case it would be not absolutely
correct because we would be losing the order/relevance of the features.

Among the most popular measures to compute the similarity between rankings
we can find the Kendall Tau [40], the Canberra Distance [41] and the Spearman’s
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Table 6.4 Properties of popular stability measures

Monotonicity | Limits | Correction | Cardinality | Symmetry | Redundancy

Jaccard [32] v v v v

Hamming [31] | v/ v v v

Yu [37] v v v v v
Kuncheva [33] | v v v v

Lustgarten [34] v v v v

Wald [35] v v v v

nPOG [36] v v v

nPOGR [36] v v v v
CW, [38] v v v v

Krizek [39] v v v

p [31]. Let R; and R, be two rankings and f the number of features in the dataset,
these measures can be defined as follows:

6> d?

S Ri,R)=1— —FF—, 6.4

pear(Ri, Ry) =1 = -5 (6.4)
where d is the distance between the same feature in both rankings.

Cam(Rr. R i IR, = Ry,| ©5)

am(Ry, = _— .
DT R [+ IRy
Kend (R, Ry) = Y Kij(Ri, Ry) (6.6)
{i.jleP

where

P is the set of unordered pairs of distinct elements in R} and R,

I_(,-,j(Rl, Ry) = 0if i and j are in the same order in R; and R,

I_(,-,j(Rl, R,) = 1 if i and j are in the opposite order in R; and R;.

As mentioned before, it is desirable that the feature selection methods chosen
for conforming the ensemble are stable to changes in the training set. Moreover, it
is a common belief that by combining a set of unstable individual feature selectors
and aggregating them together in an ensemble would increase stability. Nogueira
et al. [42] focused on the case of combining the individual output rankings using
mean rank aggregation, and demonstrated that the error of the aggregated rankings is
guaranteed to be lower than the one of an individual ranking on average. Moreover,
they gave a theoretical argument showing why the stability of the aggregated rank
improves as the number of ensemble member increases.
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6.4 Performance of Ensembles

When evaluating the quality of an ensemble of feature selection methods, it is
common—and desirable—to employ the measures described above, i.e. the diversity
between the weak selectors and the stability and robustness of them. But, eventu-
ally, an ensemble for feature selection has be to evaluated by its performance, which
can be its ability to select the relevant features (only possible when we know what
the relevant features are), or the classification accuracy obtained with the selected
features.

6.4.1 Arethe Selected Features the Relevant Ones?

In an ideal situation, it would be perfect to be able to evaluate a feature selection
system based only on the quality of the features selected, without involving any
classifier. But, in practice, the set of relevant features are not known a priori unless
we are using artificial data. In fact, several authors choose to use artificial data stating
that although the final goal of a feature selection method is to test its effectiveness
over a real dataset, the first step should be on synthetic data. The reason for this is
two-fold [43]:

1. Controlled experiments can be developed by systematically varying chosen exper-
imental conditions, like adding more irrelevant features or noise in the input. This
fact facilitates to draw more useful conclusions and to test the strengths and weak-
nesses of the existing algorithms.

2. The main advantage of artificial scenarios is the knowledge of the set of optimal
features that must be selected, thus the degree of closeness to any of these solutions
can be assessed in a confident way.

If we use artificial data and then we know the relevant features, there are several
measures we can use to evaluate the performance of the ensemble, depending on if
the ensemble returns a subset of features or a ranking of features.

6.4.1.1 Subsets of Features

Of course, the perfect behavior for a ensemble which returns a subset of features
is to select only the relevant features and none of the irrelevant or redundant ones.
However, this situation does not always happen, so there is a need to design measures
that attempt to reward the selection of relevant features at the same time that penalize
the inclusion of irrelevant ones, considering two undesirable situations:
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e The solution is incomplete: there are relevant features lacking.
e The solution is incorrect: there are some irrelevant features.

It is desirable that the measures to evaluate the correct selection of the features
might take into account that choosing an irrelevant feature is better than missing a
relevant one (i.e. we prefer an incorrect solution rather than an incomplete one).

In the following, we describe some popular measures to evaluate the quality of
subsets of selected features, provided that we know a priori the relevant ones [44].
For the description of the methods, note that fear_sel stands for the subset of selected
features, feats is the total set of features, fear_rel is the subset of relevant features,
and feat_irr represents the subset of irrelevant features (the last two known a priori).

e The Hamming_loss (H) measure evaluates how many times a feature is misclas-
sified (selected when is irrelevant or not selected when is relevant)

H— #(feat_sel N feat_irr) + #(feat_not_sel N feat_rel)
- #(feat_rel U feat_irr)

e The FI-score is defined as the harmonic mean between precision and recall. Preci-
sion is computed as the number of relevant features selected divided by the number
of features selected; and recall is the number of relevant features selected divided
by the total number of relevant features. Therefore, the Fl-score can be inter-
preted as a weighted average of the precision and recall. Considered 1 — F1-score,
it reaches its best value at 0 and worst score at 1.

precision x recall
F1=2x

precision + recall”

6.4.1.2 Rankings of Features

In the case of ensembles that return a ranking of all the features, the measures
described above are not useful because all the features are present in the ranking. A
possible solution is to establish a threshold and transform the ranking in a subset of
features. But there are also methods specifically defined to evaluate rankings, which
in essence check if the relevant features are ranked above the irrelevant ones. Below
we describe some popular ones [44]:

e The ranking_loss (R) evaluates the number of irrelevant features that are better
ranked than the relevant ones. The fewer irrelevant features are on the top of the
ranking, the best classified are the relevant ones. Notice that pos stands for the
position of the last relevant feature in the ranking.

_ pos — #feat_rel
 #feats — #feat_rel
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e The average_error (E) evaluates the mean of E;, in which i € feats_sel and E; is
the average fraction of relevant features ranked above a particular feature i.

. . . #feat_rel x (#feat_rel — 1)
B > jfeat_sel(j) € feat_rel N j<i — 5

E .
! #feat_irr x #feat_rel

6.4.2 The Ultimate Evaluation: Classification Performance

As mentioned before, the final goal of a feature selection method is usually to test
its effectiveness over a real dataset, and since in real datasets we do not know which
are the relevant features, it is necessary to use a classification algorithm' to evaluate
the performance of the feature selection process, focusing on the classification accu-
racy. Unfortunately, the class prediction depends also on the classification algorithm
used, so when testing a feature selection result, a common practice is to use several
classifiers to obtain results as classifier-independent as possible. In the following
we describe some of the most common classification algorithms. Notice that some
of them only can work with categorical features, whereas others require numerical
attributes. In the first case, the problem is often solved by discretizing the numerical
features. In the second case, it is common to use a conversion method which assigns
numerical values to the categorical features.

6.4.2.1 Support Vector Machine, SVM

A Support Vector Machine [45] is a learning algorithm typically used for classifica-
tion problems (text categorization, handwritten character recognition, image classi-
fication, etc.). More formally, a support vector machine constructs a hyperplane or
set of hyperplanes in a high- or infinite-dimensional space, which can be used for
classification, regression, or other tasks. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the nearest training data point of any
class (so-called functional margin), since in general the larger the margin the lower
the generalization error of the classifier. In its basic implementation, it can only work
with numerical data and binary classes.

UIn fact, it is possible to use any learning algorithm, such as regression, clustering, etc., depending
on the task we are dealing with. However, in this book we are focusing by default on classification,
since it is the most popular learning algorithm used after feature selection.
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6.4.2.2 Proximal Support Vector Machine, PSVM

This method classifies points assigning them to the closest of two parallel planes (in
input or feature space) that are pushed as far apart as possible [46]. The difference
with a Support Vector Machine (SVM) is that PSVM classifies points by assigning
them to one of two disjoint half-spaces. The PSVM leads to an extremely fast and
simple algorithm by generating a linear or nonlinear classifier that merely requires
the solution of a single system of linear equations.

64.2.3 C45

C4.5 is a classifier developed by [47], as an extension of the ID3 algorithm (Iterative
Dichotomiser 3). Both algorithms are based in decision trees. A decision tree clas-
sifies a pattern doing a descending filtering of it until finding a leaf, that points to
the corresponding classification. One of the improvements of C4.5 with respect to
ID3 is that C4.5 can deal with both numerical and symbolic data. In order to handle
continuous attributes, C4.5 creates a threshold and depending on the value that takes
the attribute, the set of instances is divided.

6.4.2.4 Naive Bayes, NB

A naive Bayes classifier [48] is a simple probabilistic classifier based on apply-
ing Bayes’ theorem with strong (naive) independence assumptions. This classifier
assumes that the presence or absence of a particular feature is unrelated to the pres-
ence or absence of any other feature, given the class variable. A naive Bayes classifier
considers each of the features to contribute independently to the probability that a
sample belongs to a given class, regardless of the presence or absence of the other
features. Despite their naive design and apparently oversimplified assumptions, naive
Bayes classifiers have worked quite well in many complex real-world situations. In
fact, naive Bayes classifiers are simple, efficient and robust to noise and irrelevant
attributes. However, they can only deal with symbolic data, although discretization
techniques can be used to preprocess the data.

6.4.2.5 K-Nearest Neighbors, K-NN

K-Nearest neighbor [49] is a classification strategy that is an example of a “lazy
learner”. An object is classified by a majority vote of its neighbors, with the object
being assigned to the class most common amongst its k nearest neighbors (where k
is some user specified constant). If k = 1 (as it is the case in this thesis), then the
object is simply assigned to the class of that single nearest neighbor. This method is
more adequate for numerical data, although it can also deal with discrete values.



110 6 Evaluation of Ensembles for Feature Selection
6.4.2.6 Multi-layer Perceptron, MLP

A multi-layer perceptron [50] is a feedforward artificial neural network model that
maps sets of numerical input data onto a set of appropriate outputs. A MLP consists of
multiple layers of nodes in a directed graph, with each layer fully connected to the next
one. Except for the input nodes, each node is a neuron (or processing element) with
a nonlinear activation function. MLP utilizes a supervised learning technique called
back-propagation for training the network. MLP is a modification of the standard
linear perceptron and can distinguish data that are not linearly separable.

6.4.2.7 AdaBoost, AB

AdaBoost (“Adaptive Boosting”) [51], is a meta-algorithm which can be used in
conjunction with many other learning algorithms to improve their performance (see a
more detailed description, including pseudocode in Sect. 3.2.1). AdaBoost is adaptive
in the sense that subsequent classifiers built are tweaked in favor of those instances
misclassified by previous classifiers. It generates and calls a new weak classifier
in each of a series of rounds. For each call, a distribution of weights is updated
that indicates the importance of examples in the data set for the classification. On
each round, the weights of each incorrectly classified example are increased, and
the weights of each correctly classified example are decreased, so the new classifier
focuses on the examples which have so far eluded correct classification. AdaBoost
is sensitive to noisy data and outliers.

In order to evaluate the behavior of the feature selection methods after applying a
classifier, several evaluation measures are usually employed, such as error, sensitivity,
specificity, true positive rate, etc. (see Sect. 1.2 in Chap. 1).

6.5 Summary

In the previous chapters, we have discussed how to design an ensemble of methods
for feature selection in a successful way, putting emphasis on issues such as how
to choose the weak learners or how combine the partial results. But, eventually, the
ensemble would need to be evaluated to see if it effectively works, and in this chapter
we discussed important aspects on the evaluation of an ensemble. To start with, the
methods conforming the ensemble must be diverse among them, but at the same
time robust to different training data—i.e. stable. Finally, it is necessary to test if the
selected features are the relevant ones, which can be made on artificial data provided
that we know a priori the relevant features or using a classifier to evaluate the ultimate
performance of the ensemble.
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Chapter 7 ®)
Other Ensemble Approaches oo

Abstract This chapter describes several new fields, beside the feature selection pre-
processing step (the theme of this book), in which ensembles have been successfully
used. First, in Sect. 7.1, we introduce a very brief review of the different application
fields in which ensembles have been applied, together with basic levels that are used to
produce different ensemble designs, and a sample taxonomy. Then, in Sect. 7.2 basic
ideas in ensemble classification design, one of the very first machine learning areas
in which the idea of ensembles was applied, are stated. As there are many interesting
and reference books in ensemble classification, we focus on describing the latest
ideas in classification ensembles that address problems such as classification, stream
data, missing data and imbalance data. Afterwards, the first attempts for applying
the ensemble paradigm to the relatively new field of quantification are described in
Sect.7.3. In Sect. 7.4 we move to describing ensembles for clustering, another area in
which ensembles have been increasingly popular. In Sect. 7.5 an attempt on ensem-
bles for discretization is described and, finally, Sect. 7.6 summarizes and discusses
the contents of this chapter.

This chapter is devoted to discuss briefly some of the fields, beside the feature selec-
tion one —the topic of this book— in which ensembles have contributed to improve
performance. Machine learning and ensembles have been a good match over a large
number of areas, such as classification, regression or clustering, and in a broad col-
lection of applications. In this chapter, this “classical areas” of ensemble learning
are briefly revisited, trying to pay more attention to the most recent approaches, in
problems such as imbalance datasets, or in the presence of missing data. Moreover,
some other new areas in which ensembles just have started to be applied (beside
feature selection, the topic of this book), such as quantification or discretization are
enumerated.
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7.1 Introduction

Classification and regression were the first machine learning scenarios for which
ensembles were devised. As it was mentioned in Sect.3.1, the ensemble idea in
supervised learning has been around in machine learning since the seminal works of
Tuckey in 1977, in which two linear regression models were combined [1]; and of
Dasarathy and Sheela [2], that suggested a partition of the input space using two or
more classifiers. More than a decade after these initial works, the foundations for the
well-known Adaboost [3, 4] were stated, demonstrating that by combining a number
of the so-called weak classifiers (simple classifiers which classification performance
is only slightly better than random classification), a strong classifier exhibiting better
accuracy and stability than any of the individual methods, can be obtained. Since then,
numerous methods have been proposed for ensembles of classifiers [5, 6], together
with different measures of performance (for more details, please consult Chap. 6).
There are several mechanisms that can be used to build ensembles of classifiers,
which are detailed in Chap.3. But as it occurs in many other fields of Machine
Learning, there is not a clear winner method [7], and thus the field constitutes still
an active area of research, and not only for classification, but also for regression,
one-class, clustering, quantification, etc., as will be described in the sections below.

Ensembles have been applied to a vast variety of problems in real-world domains,
such as medical diagnosis, recommender systems, sentiment analysis, text classifica-
tion, spam detection, financial forecasting, weather forecasting, etc. [8, 9]. In 2015, a
special issue on the topic “ Hybrid and Ensemble Techniques: Recent Advances and
Emerging Trends” [10] collected 22 articles in the field, and in January 2018, a search
in Web of Science encountered 52785 articles in the period 1990-2017, of which
21876 articles (more than 40%) have been published in the last five years (2013—
2017), which is a clear indicator of the activity in the field, that has contributions from
many areas. Filtering only those results available in Web of Science Core Collec-
tion, the results obtained are shown in Fig. 7.1, in which it can be seen that although
Computer Sciences and Engineering are the main areas of these publications, the
ensemble paradigm is present in many other fields.

At present, there is a large number of ensemble techniques available, and thus
several taxonomies of these methods have been proposed [9, 11, 12], so as to serve
as a guide for the researchers and practitioners in the field. In Fig. 7.2 there are shown
the different levels than can be used to construct different types of ensembles, that is,
using different combination methods, using different base learners, using different
feature subsets or using different subsets of the original dataset. As can be seen,
these levels concentrate on the different parts of the ensemble than can be varied so
as to obtain more accurate and robust learners. Based on these, the authors in [9]
propose the taxonomy shown in Fig.7.3, which divides the ensemble methods in
two main groups: (1) those which are called “non-generative”, that combine a set of
existing base learners, and thus the emphasis lies on the selection and combination of
the learner methods), and (2) the “generative” ensembles, that generate sets of base
learners either acting on the base learner algorithm or in the structure of its input
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Field: Research Areas Record Count % of 14551  Bar Chart
COMPUTER SCIENCE 4015 18.964 % Jii===]
ENGINEERING 3460 16.342 % ]
PHYSICS 2121 10.018 % =
CHEMISTRY 1620 7.652 % =
METEOROLOGY ATMOSPHERIC SCIENCES 1269 5.994 % ]
SCIENCE TECHNOLOGY OTHER TOPICS 813 3.840 % o
BIOCHEMISTRY MOLECULAR BIOLOGY 710 3.353 % |
MATHEMATICS 698 3.297 % 1
GEOLOGY 645 3.046 % |
WATER RESOURCES 633 2.990 % 1

Fig. 7.1 Percentages of publications per research area of the Subject “Ensemble methods” using

Web of Science for the period 2013-2017

T ——— COMBINATION LEVEL: o
METHOD Use or design different combination methods
LEARNER 1 LEARNER 2 LEARNERIMY LEARNER METHOD LEVEL: )
Use or design different learning algorithms
FEATURE SET FEATURE SET FERMIEEER)  FEATURELEVEL:
1 2 N Use different feature subsets
DATASUBSET 1 DATASUBSET 2 DATASUBSET k =~ DATASETLEVEL:

Use different subsets of the dataset

Fig. 7.2 Different levels that can be employed for ensemble design

with the aim of improving diversity and accuracy of the base learners. Thus, in this
latter, the emphasis is on the construction of the diverse base learners, relegating to
the background the combination technique.

Recently, emerging trends in the research field of ensemble techniques are those
methods which are able to carry out online processing on data streams [13], sup-
porting incremental learning [14—17], parallel learning for Big Data scenarios [18],
or the problem of treating missing values [19, 20] or imbalanced data [21, 22].
Also, recently ensembles have been developed for one-class [23-25] or quantifica-
tion problems [26, 27]. All these topics are very recent, as the publications are dated
in the period 2016-2017, thus these appear to be the next hot topics for the field of
ensemble learning for the following years.
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Non-Generative models Generative models
Fusion Selection Resampling Feature selection and Mixture of
methods methods methods extraction methods experts

Majority Voting

Test and select Bagging Random Subspace Hybrid experts

Naive-Bayes rule Cascading leamers Boosting Similarity-based selection

Hierarchical mixture
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Fig. 7.3 Types of ensemble methods in a sample taxonomy. Some examples of specific types of
ensemble methods are given

7.2 Ensembles for Classification

Classification is one of the pioneer fields of application for ensemble learning, and
also perhaps the most prolific one, and several books and reviews have been published
on the subject [6, 12, 28, 29]. However the application of ensembles for classification
has been there from the late 70s, the interest of researchers in the topic has not
decline, but on the contrary, it has been increasing their attention lately in many
lines of classification related with dynamic selection, streaming data, imbalanced
data, multi-label classification, concept drift, incremental learning, online learning,
missing data or sentiment analysis [29-41].

As described in previous chapters, the main idea of the ensemble of classifiers is
to design a committee of single (perhaps weak) classifiers, and combine their results
so a classifier which can outperform the single ones can be obtained. Along the years,
researchers have tried to understand and justify which is the reason why ensembles
achieve better performance, further than the heuristic justification on the fact that
more than one expert is better than a single one that all of us apply normally in our
daily problems. Finally, there are several reason, of statistical, computational and
representational background. Depending on the training algorithm and the training
data used, the empirical estimate of the performance that will be obtained is a random
value, and thus there is certain uncertainty associated with that estimation. For that
reason, using a set of classifiers instead of a single one can be a better option,
as the average of the outputs of the combination of classifiers might get a better
generalization behavior. Computationally, we might take advantage of combining
different classifiers that, individually obtain suboptimal solutions, in order to obtain
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better joint result. Making use of the divide and conquer principles and data fusion
strategies are also another reasons [12].

As in the case of the feature selection ensembles, important aspects of classifica-
tion ensembles are the ensemble cardinality (that is, the number of single classifiers
that form the ensemble), as well as the diversity of those base classifiers, and not only
in terms of predictive performance, but also in terms of memory and time consump-
tion [29, 41-43]. Based on these evaluation measures, several taxonomies have been
proposed both on ensemble types, combination methods and diversity generation
methods [43, 44]. As it was said above, during the last years there are some areas of
classification problems that have embraced ensembles as one attractive paradigm.

7.2.1 One-Class Classification

One of the interesting challenging problems in classification nowadays is one-class
classification, that aims to learn when only data from one of the classes is available.
To be more explicit, in a classical classification problem each unknown example is
classified as belonging to one of all the available categories. However, there are dif-
ferent scenarios where the classification task consists in deciding whether a particular
example fits a class, as it is the case in many real environments, such as fault detec-
tion in industrial machinery and robotics, intrusion detection in electronic security
systems, video surveillance, etc. In order to handle appropriately these type of situa-
tions a one-class classification paradigm, in which one class (normal data or positive
class) has to be distinguished from other classes (abnormal data), would be more
appropriate. In these scenarios, the common situation is that the positive class is well
represented in the training set, while the other classes are severely under-sampled or
most commonly even nonexistent. The problem has received also other names, such
as single classification, novelty detection, anomaly detection or outlier detection with
subtle differences among them. The scarcity of abnormal examples might be due to
several reasons, but the most frequent are their low frequency of occurrence or their
extremely high costs. For example, in a machine monitoring system, measurements
of the machine during its normal operational state are easy to obtain. However, mea-
surements of failure are very expensive to collect as they would require a crash in
the machine. Although one-class problems are quite frequent in real world, the truth
is that there is a considerable lack of benchmark datasets for these problems, a fact
that has slowed down progress, as researchers do not have a framework in which
train and test their models. In consequence, the variety of learning models avail-
able for one-class problems is much smaller than in the standard classification area.
One-class classification techniques can be grouped into three general categories: (a)
Density estimation, (b) Reconstruction-based, and (c) Boundary-based techniques
[45]. The first approach uses probabilistic methods that involve a density estimation
of the target class, like mixture models and kernel density estimators. Reconstruction
based methods involve training a regression model using the target class. These meth-
ods can autonomously model the underlying data, and when test data are presented
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to the system, the reconstruction error, defined to be the distance between the test
vector and the output of the system, can be related to the novelty score. Finally,
boundary methods try to model the boundary of the target class without focusing on
the description of the underlying distribution.

Regarding the use of ensembles for one-class classification problems, in [46], the
authors introduce several diversity measures applicable to the selection of one-class
classifiers, aiming at introducing heterogeneity in the framework. For separating
background in images an ensemble of local one-class classifiers is used in [23], and
the same idea of local classifiers is devised in [47] combined with density analysis,
and in [25], in which the authors split the target class into subsets that are used
as input to one-class classifiers (SVM), that in turn are weighted to obtain a final
multi-class classifiers. The method has the advantage of exhibiting a highly parallel
structure of the solution process.

Nowadays, the advances in the ICT (Information and Communications Technol-
ogy) field have contributed to the proliferation of big databases, usually distributed
in several machines and in different locations. Performing predictive modeling, such
as one-class classification, in this big data scenario is a difficult task, and as a conse-
quence the majority of current one-class classification algorithms are unable to handle
this new situation, or they do not scale properly, and thus distributed approaches have
been developed, which in some cases use the same philosophy as in the case of the
ensemble approaches, that is, applying a one-class classifier over a portion of the
data, and then use a combination method that can give a final joint solution. For
example, the work in [48] presented a framework for detecting anomalous behav-
ior from terabytes of flight record data from distributed data sources that cannot be
directly merged; in [49] the authors present a distributed version of the state of the art
u-SVM [50] algorithm, where several models are considered, each one determined
using a given local data partition on a processor, and the goal is to find a global model.
Other models based on convex-hull have been proposed, in which the geometrical
structure of the convex hull (CH) is used to define the class boundary in one-class
classification problems,as the one in [51], or the proposed in [24], that based on
the previous one, makes a new proposal avoiding possible non-convex situations,
and also approximates the n-dimensional convex-hull decision by means of random
projections and an ensemble of convex-hull models in very low dimensions, which
makes it suitable for larger dimensions in an acceptable execution time. The latter
work has also an added interesting feature, it is also privacy preserving, that is, there
is no data interchange among the different nodes.

7.2.2 Imbalanced Data

Many classification problems of the real world present imbalanced data, that is the
number of samples of one or several of the classes of the problem is much lower
than the other classes, in fact one-class scenarios might be considered as an extreme
example of this type of situation. Standard classification methods present a problem
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in this situation, as they will have a bias towards the majority classes, while the
minority classes are mostly ignored, as more general rules are preferred.

Ensemble techniques has been one of the paths followed by the researchers in
order to confront the imbalance problem. An interesting review is done in [32], and
as an added value the authors propose a taxonomy and a comparison of all the meth-
ods discussed. As ensemble methods are usually designed to boost accuracy, their
direct application to datasets that are imbalanced is not worthwhile, and thus they
are to be combined with other techniques that deal specifically with class imbalance.
Re-sampling of imbalanced data is commonly used (over- or under-sampling) as
it is independent of the classifiers being employed in the ensemble, and thus base
classifiers do not need to be changed. Undersampling is a nonheuristic method that
eliminates examples from the majority class, while oversampling replicates exam-
ples from the minority class. Their main drawbacks are increasing the probability
of overfitting (for oversampling), and eliminating possible useful data (in the case
of undersampling). The conclusion is that ensemble-based algorithms really make a
difference, and although the complexity is increased by having more than a single
classifier, they justify this increase by boosting the performance. Also, the authors
recommend the use of simple approaches combining random undersampling tech-
niques with bagging or boosting ensembles, as they exhibit a good balance between
performance and complexity. Other works arrived to similar conclusions, as in [21,
52-57]. In the software tool KEEL [58] algorithms for treating imbalanced data, as
well as other situations as missing data, streaming, etc., are available. See Chap.9
for more details.

7.2.3 Data Streaming

In many real world problems, the classifiers need to learn dynamically, as their input
is a stream of data, and thus the the target concept and its statistical properties might
change over time, in a non predictable way. Learning classifiers from data streams is a
relatively recent area in Machine Learning, that implies certain specific requirements
in the methods used, being the most obvious ones a fast adaptation to change and low
computation costs in both memory and time. There are however, other important chal-
lenges, as concept drift, feature drifts, novel classes, temporal dependencies, massive
amount of data and/or features, limited amount of labelled instances, etc. [59]. In
order to deal with data streams, most approaches adopt an incremental or on-line
fashion, but also some adaptation mechanism should be devised in order to decide
if the classifier should remain unchanged or not. For this reason, ensemble methods
have been adopted as one of the most used solutions, as they can be integrated with
drift detection mechanisms and incorporate dynamic updates, such as the selective
removal (of the worst components of the current ensemble) or addition of classifiers
(for example, building ensemble members on part of the input stream data). There
are several works on the application of ensembles to data streams [13, 15-18], but
in [59] the authors propose a taxonomy for these type of stream data classification
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ensembles, besides establishing some current and future trends in the field. In this
taxonomy, besides the already known classification of the ensemble approaches using
Combination and Diversity methods and Base Classifiers, a specific aspect of ensem-
bles for data streams, named as “update dynamics” is introduced. This latter implies
important peculiarities of those methods for stream learning, for example, strategies
to cope with drifts, how learning is performed, and when to remove or add classi-
fiers. Learning from data streams requires, beside accuracy, methods that should be
efficient and able to adapt to changes in data. There are two main aspects to be taken
into account: Cardinality and Learning mode. This introduces a new level in the
taxonomy introduced in Fig. 7.3, that is shown in the expanded taxonomy in Fig. 7.4.

As said above, the two new aspects to be taken into account are Cardinality and
Learning mode. Regarding cardinality, one needs to find a balance, because if too
many classifiers are employed it is difficult to maintain diversity, and memory and
time consumption may worsen considerably. In data streams ensemble classification,
cardinality might be fixed a priori or dynamically. Intuitively, dynamic ensembles
should have more adaptation power, but as they usually employ an heuristic in order
to decide when to add or remove classifiers from the ensemble, their behavior might
not be adequate to certain data streams, even in those cases in which a threshold that
works as maximum number of classifiers is used [59—63]. Thus, as fixed strategies
work reasonably well, besides avoiding the need of deciding an adequate heuristic,
most methods work in this way. Examples of fixed cardinality are M3 [64], MOOB
[65] and BLAST [66], and of dynamic cardinality WOO [67] and SAE [68]. For a
more complete list of data stream ensembles, please consult [59].

CARDINALITY
DYNAMIC PROPERTIES LEVEL:
Use of different learning modes (Incremental/Windowing)
UPDATE DYNAMICS and cardinality (Fixed/Dynamic)
LEARNING
MODE
COMBINATION COMBINATION .LEVEL: o
METHOD Use or design different combination methods
LEARNER LEARNER LEARNER LEARNER METHOD LEVEL:
1 2 M Use or design different learning algorithms
FEATURE SET FEATURE SET FEATURE SET FEATURE LEVEL:
1 2 N Use different feature subsets
DATASUBSET 1 DATASUBSET 2 DATASUBSETk =~ DATASET LEVEL:

Use different subsets of the dataset

Fig. 7.4 Types of ensemble methods in a sample taxonomy that is expanded to include the pecu-
liarities of updating dynamics that are needed in stream data ensembles
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The second item, Learning Mode, is related with the stability-plasticity dilemma,
that is the balance between the classifier learning new concepts and at the same
time retaining knowledge learned previously. This balance is mandatory for any
data stream classifier so to be able to adapt to concept drifts [69]. Ensemble-based
algorithms, because of being formed by several models, can be more flexible with
respect to concept drift adaptation. At this regard, ensembles can combine different
types of incremental or window-based methods; retrain the models derived or either
update them incrementally; using a proactive or a reactive adaptation, etc.[59, 69].

7.2.4 Missing Data

In real-world data it is also typical to found missing data, among other problems
such as erroneous or corrupted data, noise or outliers, that need an answer from the
machine learning side, so as to be able to deal with them. Missing data is a problem
that nowadays might be very substantial in some datasets, for example in clinical
studies that last several years, in which patients might not answer to certain questions
in a questionnaire, or some new tests become available but were not at the beginning
of the study, or a patient might just drop the study. In consequence, there are different
mechanisms explaining the missingness of the data [70] and several mechanisms that
can deal with them in Machine Learning [71]. The naive method of just deleting the
instances with missing data is not possible, as many interesting patterns might be
lost, and thus mechanisms that alleviate their effect while making use of the most
data possible are needed.

Among others, ensemble methods have been one of the possible alternatives [72],
that have the advantage of making it possible to include several different models
that can deal with the different missing mechanisms. In [73] the authors describe an
ensemble method that applies two different imputation methods (that is, substitut-
ing the missing values by estimations obtained by robust statistical methods or by
machine learning methods, such as Bayesian, k-nearest neighbors, self-organizing
maps or decision-tree models): a multiple one (the Bayesian multiple imputation),
and a single one (the k-nearest neighbor), combining their results by voting. The
same authors in [72] shown that by combining more methods (up to 7) considerably
better performance results can be obtained. In [74], two concepts are used: multiple
imputation and ensemble networks for devising two different ensembles, a univari-
ate and a multivariate one. In both cases, the main idea is to use the uncertainty
in the missing data, modelling it in terms of their probability distribution, to create
different versions of the dataset, that are in turn employed to train different networks
in an ensemble. Then, the missing values are filled in the training sets using those
probability distributions, repeating the procedure several times, and thus obtaining
different versions of the dataset, that is fed each one to a network model. Finally, the
networks’ outputs are averaged to produce the ensemble’s final output.
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The specific problem of dealing with missing values in time series is addressed in
[75, 76], with the aim of providing an alternative for the missing value in signals com-
ing from different sensors, for example, that will be used to estimate emotional states
in an individual. In practical applications, data loss due to artifacts occurs frequently.
In [75] the authors carried out a comparison using classifier fusion, that has shown
significant increase in the accuracy in the recognition of emotional states. The authors
tested two different approaches: ensembles using imputation (the missing features
are imputed using median values) and ensembles using a feature-reduction approach
(the features with missing values do not supply the ensemble with a classifier). Their
conclusion is that the latter is comparable, and in some cases even better, than the
ensemble with imputed values, an interesting fact for real-time approaches in which
the complexity of the methods is an important restriction.

In [77], an ensemble of classifiers using random subspace selection as an alter-
native for dealing with missing values is proposed. The main differential aspect of
this ensemble is that the missing values are not imputed, but the algorithm (named
Learn++.MF) trains an ensemble of classifiers, each on a random subset of the avail-
able features. Instances with missing values are classified by the majority voting
of those classifiers which training data did not include the missing features. In this
way specific assumptions on the underlying data distribution are not needed, and
the algorithm can deal with substantial amounts of missing data (30%) with only a
slow gradual decline in performance as the amount of missing data increases.The
algorithm assumes that the feature set is partially redundant, and that this redundancy
is distributed randomly over the feature set. In [78] the idea is further explored, using
the random subspace of input decimated ensembles, and the random subspace of sup-
port vector machines, in which classifiers are combined by the sum rule. Although
their experimentation is restricted to medical datasets, they tried multiple imputation
approaches based on random subspace, where each missing value is calculated con-
sidering a different cluster of the data. They have achieved a method that works well
across several datasets, and which degradation is even lower than in the previous
approach. Furthermore, their idea on clustering can be coupled with several missing
imputation approaches allowing an improvement of the performance obtained by the
standard imputation approaches alone.

Finally, the deep learning approaches have also entered the scene of ensembles for
missing values in time series. In [19] an ensemble of multiple forecasting modules,
based on a variant of the deep stacking network learning approach, is used. These
modules are coupled employing dummy data, that is initially predicted using earlier
points of the sequence of temporal data. These dummy data is progressively improved
to best conform to the next parts of the sequence.

The different types of classifier ensembles above are still open research lines in
which new developments are appearing constantly. Also, deep learning has made his
way into the field of classification ensembles, with several new proposals in different
areas of application [79, 80].
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7.3 Ensembles for Quantification

As producing, saving, transferring, sharing, etc. data has become easier, inexpen-
sive and rapid nowadays, and multiple sensors are available for measuring almost
any activity that we can think of, “datification” of every process has transformed
many sectors, as health or finance, into digital information and knowledge services.
Thus, data has become available in large amounts, and among other tasks, Machine
Learning can make use of it for a new task, that consists in producing aggregated
estimations for a full sample rather than giving a specific prediction for each instance,
as it is the task in classification. This new task is known as Quantification, a problem
in which class prevalence P(y) changes but P (x|y) remains constant [81, 82], and
its aim is to accurately estimate the number of cases belonging to each class (or class
distribution) in a test set, using a training set that may have a substantially differ-
ent distribution. When this shift occurs, the joint distribution of inputs and outputs
changes between the training and testing phases.

As it was detailed in Chap. 6, diversity is a crucial aspect of ensembles’ success.
Diversity can be introduced into the ensemble by creating different training samples
for each model, which is the basic idea of bagging. In that case, each model is
trained with a data distribution that may be different from the original training set
distribution. Following this idea, the possibility of developing ensemble versions of
quantification algorithms is straightforward. Although at first sight it might appear
that this is the same idea as in concept-drift ensembles for classification, it is not so.
The first and main difference is that the concept does not change in quantification
applications, while it does in concept-drift classification. For example, the concept
of what is a positive opinion about a specific product does not change for a market
analysis problem. The ensembles that deal with concept drift are usually designed
to maintain a memory of models, that represent the evolving concept and thus past
models that become valid again, are reused. In quantification tasks, however, this is
impossible, as the concept does not change. The second important difference is that
ensembles for concept drift are trained with successive samples. In quantification,
the samples are generated according to the expected changes in the data distribution,
with each one representing an specific and expected distribution change [26]. In
this last referred work, the authors, who claim to have designed the first ensemble-
based quantifier, propose to generate each training sample using the procedure shown
in the left part (blue color) of Fig.7.5 for binary quantification problems. First,
the sample prevalence p; is selected randomly in the [0,1] interval. Then, simple
random sampling with replacement is performed with the positive class examples
until obtaining their final number according to the chosen prevalence. The same
operation is repeated for the negative class, which prevalence is 1 — p;. By changing
the prevalence of each generated sample the desired diversity can be finally obtained.
This procedure is repeated until the number of defined training samples is reached.

Three different baseline quantifiers were tested over 32 datasets, obtaining results
that clearly outperform their single algorithm counterparts, and thus opening a new
learning field for ensembles.
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Fig. 7.5 An illustration of the quantification ensemble proposed in [26]. In the left side (in blue)
the training generation process is depicted, while in the right hand side (in brown) the test part is
depicted

7.4 Ensembles for Clustering

In recent years, the ensemble idea has been successfully used to tackle well known
drawbacks of individual clustering algorithms [83]. The clustering problem, as well
as seen before for other preprocessing techniques (as feature selection or discretiza-
tion), appears to be another interesting field of application (as it is the case of the
classical classification), for the use of combining multiple classifiers to solve diffi-
cult classification problems, using techniques such as bagging, boosting, etc as was
detailed in Chap. 1. Analogously, cluster ensembles address the problem of combin-
ing multiple ‘base clusterings’ of the same set of objects into a single consolidated
clustering, frequently called consensus solution.

There are however some aspects in clustering that complicate the problem and
need to be taken into account, related with the fact that the optimal number of clusters
in the consensus is not known in advance. Besides, the number of clusters that are
obtained by each base clustering algorithm might very well be different. An additional
complication is the fact that the base algorithms identify the groups using the original
data, but they assign symbolic labels to each one. Base algorithms might then obtain
different number of groups, and using different original data for each group and thus
combining those labels across the different partial solutions is far from being simple.
But beyond the expected improvement in accuracy provided by the averaging effect
of many clustering algorithms aiming at the same goal, the potential motivations and
benefits of using clustering ensembles are broader than those for using classification
or regression ensembles, and some of those improvements, as quality and robustness,
are similar to the ones obtained also for feature selection.
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The raise in quality is due to the fact that the ensemble takes into account the
biases of individual solutions [84], while clustering robustness is mainly due to the
diversity of the employed methods, that allow to use approaches well suited for both
low and high-dimensional metric spaces, and thus being able of providing adequate
results on wider ranges of datasets. Specially interesting, for the topic of this book,
is the research line followed by the work described in [85], in which feature diversity
is produced using several different feature extraction techniques (that also aim at
supervised model order selection) prior to the cluster ensemble, that employs the
same model (k-means clustering using cosine distance). Some additional benefits
for clustering ensembles are:

e Novelty, as the solution obtained by the ensemble is not reachable by single clus-
tering methods.

e Stability and confidence estimation, providing clustering solutions with lower sen-
sitivity to noise, outliers, or sampling variations. Besides, clustering uncertainty
can be assessed from ensemble distributions [86].

e They constitute a new approach for model selection, by considering the match
across the base solutions in order to provide the final number of clusters to use.

e If previous knowledge on several different possible groups of objects is available
in the domain problem, the ensemble can help to integrate that information and
obtain a more consolidated clustering. An example is the categorization of web
pages using the document hierarchies available in several repositories together
with the use of text analysis.

e Multiview clustering, parallelization and scalability. Analogously as in the other
fields in which the ensemble idea is used, the ensemble can be constructed using
the same data points but different clustering algorithms, or alternatively using the
same clustering method over different partitions of the input data.

This last possibility enhances the final results, as often the objects to be clustered
have different aspects that might provide for different clustering solutions.

In an example in Fig. 7.6, we can see three organizations that have three different
base clusters over 6 different samples {X|, X», X3, X4, X5, X6} of a dataset.

In the case in which the objects to be clustered are distributed in origin, a cluster
ensemble might be the appropriate solution to integrate them in a global, unique
solution. In this last case, if all base clustering results for all objects are available
in one place to perform the analysis, we rely on the basic idea. But many times, in
real life applications this is not the case and then two types of distributed ensemble
clustering are applicable:

e Column-distributed cluster ensemble, in which different base clustering results of
the objects are at different locations. This is the case in which separate organi-
zations have different base clusterings on the same set of objects, but the base
clusterings cannot be shared among them for privacy concerns (as it is the case in
the previous point, multiview clustering). However, if each organization has inter-
est in a more robust consensus clustering, the cluster ensemble problem has to be
solved in a column-distributed way. An example of this situation might be the case
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Fig. 7.6 An illustration of a clustering ensemble. Six different samples are clustered in three
organizations using three different base clustering algorithms. Each column of the clustering matrix
corresponds to each organization. Column-wise or row-wise clustering might be applied

Table 7.1 Column-wise ki P ki
consensus clustering
X1 1 3 | 5
X2 1 ) I 3
Xn 5 5 .. 1

in which different e-commerce vendors have different customer segmentations on
the same customer base [87]. This type is also called “feature distributed cluster-
ing” (FDC), as different base clusterings are built by selecting different subsets of
the features but using all the data points.
In Table 7.1 it can be seen a clustering matrix M that is a set of k columns, that
contain k base clustering results {k iz ]f} for a dataset of n samples. As the aim is
to derive a consensus clustering, we need to find out the correspondence between
the different base clusters generated by the different algorithms. Thus, the cluster
correspondence problem is hard to solve efficiently, increasing the complexity
even more in the case that the different clustering algorithms generate different
numbers of clusters.

e Row-distributed cluster ensembles (see an example in Table 7.2), in which different
objects (rows) are at different locations, as for example might occur when different
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Table 7.2 Row-wise ky [ ki
consensus clustering
X1 1 3 . 5
X2 1 ) S (O 3
Xn 5 5 . 1

subsets of the original dataset are owned by different organizations, or cannot be
put together in one place due to size, communication, or privacy constraints. Of
course, there is the possibility of applying a distributed clustering algorithm, but
if there are restrictions on sharing or privacy, the results of the different subsets
cannot be transmitted either to a central node for analysis. However, combining
the results on different subsets helps to generate a more reasonable ensemble
clustering, and thus a consensus clustering should be learned in a row-distributed
manner. The clustering matrix M is now a set of N rows of k-dimensional feature
vectors { x;, i} }, and the cluster ensemble aims at finding a clustering consensus
for the feature vectors.

Another name of this type of ensemble clustering is “Object Distributed Cluster-
ing” as the base clusters are built using different subsets of the data points, but
employing all the features. Again, for a customer segmentation use case, differ-
ent companies might have different subsets of customers, and although a base
clustering on all the customers dataset can be performed using privacy preserv-
ing clustering algorithms, the cluster assignments of the customer subsets for each
vendor is private information, and the companies might not want to share it directly
for the purposes of forming a consensus clustering. Thus, it will be desirable to
have cluster ensemble algorithms handle such “row-distributed” base clusterings.

In summary, cluster ensembles combine the results obtained by different clustering
algorithms through a consensus function, in order to obtain a more robust, stable and
accurate solution. Hence, two fundamental components of the ensemble are (1) the
mechanism that is used to generate the initial partitions, that should generate the
necessary diversity, and (2) the consensus function used to combine these partitions
into a final result. Regarding diversity several methods can be used, such as employing
different clustering algorithms over the same or different dataset; using the same
clustering algorithm but with different initialization, parameter values or built-in
randomness, or using different partitions of the dataset; data resampling, etc. Finding
an adequate consensus function is however a hard task, that will be discussed below
in Sect.7.4.1.
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7.4.1 Types of Clustering Ensembles

There are several clustering ensemble algorithms regarding the consensus function
types used. The consensus functions are employed to combine the different individual
clusters obtained, aiming at ensuring a symmetrical and unbiased general agreement
with respect to all the component partitions, and solving also the label problem, as
each contributing partition has their own partial labels. As patterns are unlabelled
there is no explicit correspondence between the labels obtained by the different
partitions. Combining the multiple clusters can be also viewed as a median partition
with respect to the given partitions, which is proven to be an NP-complete problem.
The most well-known consensus functions can be classified in one of the types below:

e Relabeling, also called voting or direct approach. The basic idea is to have a
reference partition, that can be one of the ensemble or a different one, and then
relabel all partitions according to the reference. This is achieved by permuting the
cluster labels such that the best agreement between the labels of the two partitions
being compared is obtained. It is assumed that the number of clusters in every
partition of the ensemble is the same as in the target partition, and that the number of
clusters (k) of this target partition is known. The complexity of these methods is k!,
a number that can be reduced to &'(k?) if it is employed the Hungarian method for
the minimal weight bipartite matching problem [88]. Some well-known methods
of this type are [89, 90].

e Graph-based models are the most popular, they work by converting the results of
the base clusterings to a hypergraph or a graph, to which later graph partitioning
algorithms are applied and, as a result, ensemble clusters are obtained. The problem
of consensus clustering is reduced to finding the minimum-cut of the hypergraph
into k components. Some of the most well-known algorithms of this type are the
cluster-based similarity partitioning algorithm (CSPA) [91], the weighted bipar-
tite partitioning algorithm (WBPA) [92], the Weighted Spectral Cluster Ensemble
(WSCE)[93], the two last being able to deal with high-dimensional datasets. Hyper-
graph partitioning is also an NP-hard problem, but there are efficient heuristics to
solve the k (the number of clusters) way min-cut partitioning problem, some of
them with complexity &(|e|) (being & the number of hyperedges of the graph).

e Matrix-based models, which main idea is to convert the base clustering matrix
into another matrix such as co-association matrix [94], consensus matrix [95] or
nonnegative matrix [96], and then use matrix operations to get the results of the
cluster ensemble. The main drawback of these methods is that their computational
complexity is very high.

e Probabilistic models, in which the algorithms make use of statistic properties of
base clustering results in order to achieve a consensus clustering. The most com-
mon models use either the Mutual Information or Finite mixture models. In the
case of the Finite mixture models, labels are modeled as random variables drawn
from a probability distribution described as a mixture of multinomial component
densities. The aim of the consensus clustering is formulated as a maximum like-
lihood estimation problem, using the Expectation Maximization Algorithm (EM)
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[97] to solve it [86]. Another set of approaches formulate the objective function of a
clustering ensemble as the mutual information between the empirical probabilistic
distribution of labels in the consensus partition and in the ensemble, or use other
information theory based approaches [98, 99]. Finally, in [87] the authors propose
a Bayesian approach, a mixed-membership model for learning cluster ensembles,
that has the added advantage of avoiding completely the cluster label correspon-
dence problems appearing in the graph based approaches, and besides can deal
with situations of missing values and with both row and column-distributed cluster
ensembles.

e Recently, some other authors [98, 100—103] have used approaches based on evo-
lutionary algorithms, employing the searching capability of genetic algorithms
to derive a consensus clustering from clustering ensembles. They propose a new
consensus function based on genetic algorithms to find an almost median parti-
tion. The clustering metric used by this function is the sum of the entropy-based
dissimilarity of the consensus clustering from the component clusterings in the
ensemble. In [103] new consensus functions using genetic algorithms and three
different fitness scores (normalized mutual information (NMI), adjusted mutual
information (AMI) and generalized conditional entropy (GCE)) are devised and
tested over different scenarios of row and column distributed clustering ensembles
with good results in both stability and accuracy.

Concerning the evaluation measures for clustering ensembles, again those des-
cribed in Chap. 6 are of application here, although some new specific measures were
devised in [104-107].
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Fig. 7.7 A scheme of the discretization method based on clustering ensembles
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7.5 Ensembles for Other Preprocessing Steps:
Discretization

In many cases, data appears in the form of continuous values. If besides their num-
ber is huge, building models for such data might be very difficult. Moreover, there
are many data mining algorithms (feature selection methods based on mutual infor-
mation, for example, or decision trees, among the most popular), that operate only
over discrete variables. Discretization is a preprocessing technique [108] that aims
at transforming continuous functions or variables into nominal (discrete) counter-
parts, reducing the number of values a continuous variable has by grouping them
into a number, b, of intervals or bins. Thus, discretization is oftentimes regarded
as a data reduction mechanism, producing typically disjoint intervals that mutually
cover the continuous value range of the attribute. As said before, discretization might
be unavoidable if the model to be used afterwards is not able to handle continuous
variables. However, although the subsequent algorithm is capable of working with
continuous variables, discretization is applied so as to improve both speed and accu-
racy, nevertheless at the cost of assuming the loss of information that comes with the
reducing dimensionality. In general, discretization constitutes an important prepro-
cessing step that can greatly influence the performance of a machine learning system,
and thus numerous discretization methods have been developed. Discretization can
be performed in a supervised, that is using class information, or unsupervised way,
not using class information. If class labels are available in the training dataset, then
discretization methods aim at maximizing the interdependence between the variable
values and the output class labels, and thus also minimizing information loss in
the transformation from continuous to discrete values. Among the supervised dis-
cretization approaches, Fayyad and Irani’s entropy-based discretization algorithm
[109] is the most commonly used, probably due to its comprehensibility and quite
good performance. Regarding the unsupervised approaches, equal-width binning and
equal-frequency binning are the most popular. Discretization can also be univariate or
multivariate. In the univariate algorithms, only one continuous feature is quantified at
a time while multivariate discretization considers simultaneously multiple features.
Two other decisions related with discretization are the selection of the number of
bins and their width. For a taxonomy on discretization methods, and basic descrip-
tions please see [110, 111]. Although univariate discretization algorithms are most
commonly used, one important drawback is that useful information regarding natural
groups, hidden patterns and correlation among the attributes will be probably lost. In
[112] the authors develop a new unsupervised discretization method that makes use
of the novel idea of encoding data clusters and similarity using a euclidean metric,
into the discretization procedure. The method uses cluster ensembles (by applying
repeatedly k-means with different values of k to the training data), to discover sim-
ilarities between data points that belong to adjacent intervals, and when that occurs
the cut-point is dropped. Thus, a new pruning method that exploits natural groups
as an explicit constraint to the traditional cut-point determination techniques used in
classical discretization algorithms is devised, as it is shown in Fig.7.7.
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7.6 Summary

In all the chapters of this book, we have discussed how to design and evaluate an
ensemble of methods for feature selection. In this chapter, we made a review of other
areas in which ensemble learning has been successful. First, we visit the ensemble
ideas in classification and regression, the pioneer fields in ensemble learning. As
there are many good books devoted to the description of classification ensembles,
we just summarized the basic ideas, and try to concisely enumerate the new problems
in which ensembles are being applied as now, as it is the case of imbalance datasets,
missing data, data streams, one-class classification, etc. Next, clustering ensembles,
another successful line of applications, are also shortly described. Finally, areas
in which ensembles have just loomed up, as quantification or discretization, are
reviewed with the aim of boosting researcher for more proposals in these and other
fields of machine learning.
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Chapter 8 ®)
Applications of Ensembles Versus e
Traditional Approaches: Experimental

Results

Abstract This chapter presents two different approaches for ensemble feature selec-
tion based on the filter model, aiming at achieving a good classification performance
together with an important reduction in the input dimensionality. In this manner,
we try to overcome the issue of selecting an appropriate method for each problem
at hand, as it is usually very dependent on the characteristics of the datasets. The
adequacy of using an ensemble of filters instead of a single filter is demonstrated on
both synthetic and real data, including the challenging scenario of DNA microarray
classification.

Throughout this book, we have discussed all the steps necessary to design an efficient
ensemble for feature selection. In this chapter we will see an example with several
implementations of ensembles and show how they achieve outstanding results when
compared with the standard traditional approach (which is using a single feature
selection method to solve a problem).

8.1 The Rationale of the Approach

For years, a typical approach to build an ensemble for feature selection was that the
disturbances in the training set due to resampling cause diverse base classifiers to be
built or to use different features for each of the base classifiers [1, 2]. Usually, the
ensembles found in the literature involving feature selection are based on the idea
of applying several feature selection methods in order to distribute the whole set of
features into the instances of the classifier [3]. It has to be noted that this method
implies that all the features in the training set are exhaustively used.

Part of the content of this chapter was previously published in Pattern Recognition (https://doi.
org/10.1016/j.patcog.2011.06.006) and Neurocomputing (https://doi.org/10.1016/j.neucom.
2013.03.067).
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Fig. 8.1 Implementations of the ensemble

Nevertheless, the purpose of the ensemble presented inhere is different. As com-
mented on Chap. 2, one of the problems of choosing an adequate feature selection
method is its variability of results over different datasets. That is, a feature selection
method can obtain excellent classification results in a given dataset while perform-
ing poorly in another dataset, even in the same domain, depending on the specific
properties of the different datasets. Our goal is to achieve a method that reduces the
variability of the features selected by the feature selectors in the different classifica-
tion domains. Therefore, our ensembles are based on the idea of combining several
feature selection methods, employing different metrics and performing a feature
reduction.

Two distinct general approaches are presented: Ensemble 1 and Ensemble 2 (see
Fig.8.1). The main difference between them is that the former uses several feature
selection methods and classifies once for each filter, thus an integration method for
the outputs of the classifier is necessary; whilst the later uses several feature selection
methods, combines the different subsets returned by each filter, and finally obtains a
classification output for this unique subset of features.
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8.2 The Process of Selecting the Methods for the Ensemble

As stated in Chap. 2, feature selection algorithms designed with different evaluation
criteria broadly fall into three categories: the filter model, the embedded model and
the wrapper model. The objective of the ensemble presented here is that it can be
applied to high-dimensional data, such as DNA microarray, so the wrapper model
is discarded because it could not generalize adequately. Therefore, in a first stage,
filters and embedded methods were chosen to perform a previous study, paving the
way for its application to the ensemble.

As the goal is to choose methods based on different metrics, five filters and
two embedded methods were tested over five synthetic data sets under different
situations: increasing number of irrelevant features and the insertion of noise in the
inputs, as well as the inclusion of correlated features. Both filter and embedded
methods were described in detail in Chap. 2 and it has to be noted that three of them
(CFS, consistency-based and INTERACT) provide a subset of features, whereas the
remaining four (Information Gain, ReliefF, SVM-RFE and FS-P) provide features
ordered according to their relevance (a ranking of features).

In order to determine the effectiveness of each one of the feature selection methods
mentioned above at different situations, several widely-used synthetic datasets were
employed (see Chap.2): the LED dataset, the CorrAL dataset and the XOR-100
dataset.

Table 8.1 shows the score for each feature selection method over each scenario
and also an overall score for each method (last column). This score is defined as:

Ry I
score = [— — —i| x 100,

t t

where R; is the number of relevant features selected, R, is the total number of relevant
features, I, is the number of irrelevant features selected and I; is the total number
of irrelevant features. Notice that 100 is the desired value for this score and negative
values indicate a high selection of irrelevant features.

Table 8.1 Score for each feature selection method tested

Method CorrAL CorrAL-100 | XOR-100 |Led-25 Led-100 Average
CFS 50.00 94.00 46.00 71.50 71.33 66.57
Consistency | 50.00 94.00 46.00 68.00 64.00 64.40
INTERACT | 25.00 92.00 47.00 66.67 73.50 60.83
InfoGain 0.00 88.00 —1.00 66.33 70.00 44.67
ReliefF 50.00 88.00 95.00 78.17 82.50 78.73
SVM-RFE |50.00 59.00 —15.00 22.83 25.33 27.93
FS-P 0.00 43.00 -9.00 72.00 70.67 35.33
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As can be seen in Table 8.1, the two embedded methods (SVM-RFE and FS-P)
achieve the poorest scores. As SVM-RFE achieved the worst result, we decided not
to use it in our ensemble. Focusing on the filters, although ReliefF obtained the
best average, CFS, Consistency and INTERACT also showed a good performance.
Information Gain obtained the poorest results of the filters methods, and similar to
those obtained by FS-P. However, since Information Gain performs better than FS-P
and bearing in mind the higher computational cost of the embedded methods, FS-P
is discarded. Thus, all the five filters were selected to conform our ensemble.

8.3 Two Filter Ensemble Approaches

As mentioned before, when dealing with ensemble feature selection, a typical prac-
tice is to use different features for each of the base classifiers. However, with our
ensemble, not all the features have to be necessarily employed, since the idea is to
apply several filters based on different metrics so as to have a diverse set of selections.
By using this ensemble of filters, the user is released from the task of choosing an
adequate filter for each scenario, because this approach obtains acceptable results
independently of the characteristics of the data. Among the broad suite of filters
available in the literature, five filters were selected according to a study performed in
Sect. 8.2, all of them based on different metrics. Two distinct general approaches are
proposed: Ensemble 1 and Ensemble 2 (see Fig.8.1). The main difference between
them are that the former uses several filters and classifies once for each filter, as
an integration method for the outputs of the classifier is necessary, whilst the later
uses several filters, combines the different subsets returned by each filter, and finally
obtains a classification output for this unique subset of features.

8.3.1 Ensemble 1

This is a more classic approach, consisting of an ensemble of classifiers including
a previous stage of feature selection (see Fig. 8.1a). Particularly, each one of the F
filters selects a subset of features and this subset is used for training a given classifier.
Therefore, there will be as many outputs as filters were employed in the ensemble
(F). Due to the different metric the filters are based on, they select different sets of
features leading to classifier outputs that could be contradictory, so a combination
method becomes necessary (see Chap.5). Note that in each execution F filters and
only one classifier are used, but the classifier is trained F times (once for each filter).
The pseudo-code is shown in Algorithm 8.1. Different variants of this philosophy
will be implemented regarding the combination of the F outputs. Two different
methods are considered, producing two implementations of Ensemble 1. The first
uses majority vote or (E1-mv), where for a particular instance, each classifier votes
for a class and the class with the greatest number of votes is considered the output
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class. The second implementation (E1-max) stores the probability with which an
instance has been assigned to a class and then use the max rule to decide the output
(see Chap.5).

Algorithm 8.1: Pseudo-code for Ensemblel
Data: F < number of filters

Result: P < classification prediction
1 for each f from 1 to F do
2 Select attributes A using filter f
3 Build classifier C s with the selected attributes A
4 | Obtain prediction Py from classifier
end
5 Apply a combination method over predictions Py ... Py
6 Obtain prediction P

Another variation in the basic scheme of Ensemble 1 comes from thinking that
instead of using the same classifier for all five filters, there might be classifiers more
suitable for certain feature selection methods. In fact, in Chap.2 it was stated that
CFS, Consistency-based, INTERACT and InfoGain select a small number of relevant
features, whilst ReliefF is very effective at removing redundancy. On the other hand,
k-NN and SVM deteriorate their performance when irrelevant features are present
whereas naive Bayes is robust with respect to irrelevant features but deteriorates with
redundant ones. In this situation, we propose to try an ensemble which uses naive
Bayes together with ReliefF and k-NN with the remaining filters (E1-nk) and another
which uses again naive Bayes together with ReliefF and SVM with the remaining
filters (E1-ns). Both these configurations can be seen in Fig. 8.2.

8.3.2 Ensemble 2

This approach consists of combining the subsets selected by each one of the F filters
obtaining only one subset of features. This method has the advantage of not requiring
a combiner method in order to obtain the class prediction. On the contrary, it needs a
method to combine the features returned by each F filter, as can be seen in Fig. 8.1b,
since it only employs one classifier. Strategies such as the union or the intersection of
the subsets usually lead to poor results due to the redundancy induced by the union or
the extremely aggressive reduction in the set of features produced by the intersection.
Thus, as can be seen in Algorithm 8.2, we combine the subsets of features so as to
add to the final subset only those subsets capable of outperforming the classification
accuracy in the training set (see Sect.5.2 in Chap. 5).

The complexity of these two ensembles depends on the machine learning algo-
rithms used. Let K and J be the complexities of the feature selection and the data
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Algorithm 8.2: Pseudo-code for Ensemble?2
Data: F' < number of filters

Result: P < classification prediction
1 for each f from I to F do

| Select attributes A ; using filter f
end
3 A= A_f
4 baseline = classifying subset A with classifier C
5 for each f from 2 to F do
6 Aax =AUAy
7
8
9

(5]

accuracy = classifying subset A, with classifier C
if accuracy > baseline then

A= Aqux
10 baseline = accuracy
end
end

11 Build classifier C with the selected attributes A
12 Obtain prediction P
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mining algorithms, respectively, and F the number of filters used in the ensembles.
The complexity will be F max(K, J). Since the idea of both Ensemble 1 and Ensem-
ble2 is to use a small number of filters, compared with the number of features or
samples of the datasets, F can be considered negligible and it can be said that the
complexity of these ensembles is determined by the method with the higher com-
plexity (either K or J). Therefore, it is not more computationally complex than the
filters employed alone.

8.4 Experimental Setup

Although the final goal of a feature selection method is to test its effectiveness over
a real dataset, a first step showing performance over synthetic data follows. The
main advantage of artificial scenarios is the knowledge of the set of optimal features
that must be selected, thus the degree of closeness to any of these solutions can be
assessed in a confident way. The LED problem (see Chap. 2) has been chosen as the
synthetic dataset to test the ensembles. It is a simple classification task that consists
of, given the active leds on a seven segments display, identifying the digit that the
display is representing. Therefore, the classification task to be solved is described by
7 binary attributes and 10 possible classes available. In particular, it will be used the
dataset Led 100, which consists of 50 samples and 100 features, where 92 irrelevant
attributes (with random binary values) have been added to the 7 relevant ones.

Then, to check if the behavior displayed by the ensembles over the synthetic
dataset can be extrapolated to the real world, 5 real classical datasets were chosen,
which can be consulted in Table 8.2. This suite of datasets represents different prob-
lematic that can appear in real data, such as non-linearity (Madelon) or high imbal-
ance of the classes (Ozone). These datasets have only available a training dataset,
so a 10-fold cross-validation will be performed. Finally, and in order to widen the
scope of this research, the proposed ensemble will be also tested over a challenging
scenario: DNA microarray data. These type of datasets poses an enormous challenge
for feature selection researchers due to their high number of gene expression and
the small sample size. Seven well-known binary microarray datasets are considered:
Colon, DLBCL, CNS, Leukemia, Prostate, Lung and Ovarian. Those datasets orig-
inally divided into training and test sets were maintained, whereas, for the sake of
comparison, datasets with only training set were randomly divided using the common
rule 2/3 for training and 1/3 for testing. This division introduces a more challenging
scenario, since in some datasets, the distribution of the classes in the training set
differs from the one in the test set. Table 8.3 depicts the number of attributes and
samples and also the distribution of the binary classes, i.e. the percentage of binary
labels in the datasets, showing if the data is unbalanced.

While three of the filters which form part of the ensemble return a feature subset
(CFS, Consistency-base and INTERACT), the other two (ReliefF and Information
Gain) are ranker methods, so it is necessary to establish a threshold in order to obtain
a subset of features. Initial experiments on microarray data showed that for most of
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Table 8.2 Dataset description for binary classic datasets

Dataset Features Samples Distribution %
Madelon 500 2400 50-50
Mushrooms 112 8124 48 - 52
Ozone 72 2536 97- 3
Spambase 57 4601 61 -39
Splice 60 1000 48 - 52

Table 8.3 Dataset description for binary microarray datasets

Dataset Features Samples Distribution %
CNS 7129 60 35-65
Colon 2000 62 35-65
DLBCL 4026 47 49 -51
Leukemia 7129 72 34 - 66
Lung 12533 181 17-83
Ovarian 15154 253 36— 64
Prostate 12600 136 43 -57

the datasets, the subset filters selected a number of features between 25 and 50. For
the sake of fairness, the rankers were forced to select a number of features similar to
the cardinality obtained by the other type of filters. Several experiments were carried
out with 25 and 50 features. As performance did not improve using 50 features
with respect to 25, we have decided to force these ranker methods to obtain subsets
with 25 features. Finally, to test the performance of the different ensembles of filters
proposed it is necessary to use a classifier which provides classification accuracy as
a measure of adequacy of the method. For this purpose, four well-known classifiers
were chosen: C4.5, naive Bayes, k-NN and SVM (see descriptions in Chap. 6).

8.5 Experimental Results

In this section the results obtained after applying our ensembles will be shown. To
sum up, five ensemble approaches will be tested: E7-mv, which is Ensemble 1 using
majority vote as combination method; E/-max, which is Ensemble 1 using the max
rule as combination method; EI-nk, which is Ensemble 1 with specific classifiers
naive Bayes and k-NN; E/-ns, which is Ensemble 1 with specific classifiers naive
Bayes and SVM and E2, which is Ensemble 2.
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Table 8.4 Error results over the synthetic dataset Led100 as well as number of relevant and irrel-
evant features selected

No. rel. No. irrel. | C4.5 NB k-NN SVM

Ensembles | E1-mv 6 2 6.25 0.00 0.00 6.25
El-max |6 2 6.25 0.00 0.00 6.25

El-nk 6 2 0.00 0.00 0.00 0.00

El-ns 6 2 6.25 6.25 6.25 6.25

E2 6 0 6.25 0.00 0.00 6.25

Filters CFS 6 0 6.25 0.00 0.00 6.25
Cons 5 0 6.25 0.00 0.00 6.25

INT 6 0 6.25 0.00 0.00 6.25

1G 6 1 6.25 12.50 12.50 0.00

ReliefF 5 2 18.75 31.25 31.25 18.75

8.5.1 Results on Synthetic Data

Table 8.4 shows the results obtained by the ensembles and the filters alone over the
synthetic dataset Led100. The number of relevant features selected (notice that the
optimal is 7), the number of irrelevant features selected (notice that the maximum
is 92) and the test classification error are exhibited, after randomly dividing the
dataset using the common rule 2/3 for training and 1/3 for testing. Please note that
in this concrete case, the number of features the rankers were forced to select was 7,
corresponding with the optimal number of relevant features.

The results demonstrate the adequacy of the proposed ensembles, since they
matched or improved upon the results achieved by the filters alone. Focusing on
the features selected, it is important to note that although the theoretical number of
relevant features is 7 (one for each led segment), there are two segments that are not
relevant for distinguishing among the 10 numbers. For this reason, the consistency
filter was able to correctly classify all the instances using only 5 out of the 7 theo-
retical relevant features. The reader should also notice that the features selected by
the four Ensemble 1 approaches are the union of the features selected by each one
of the filters. Therefore it is more informative to focus on the classification error.
According to this measure, it is easy to see that the ensembles take advantage of the
filters which work correctly on a dataset and discard the influence of those which do
not (IG and ReliefF, in the dataset at hand).

8.5.2 Results on Classical Datasets

After verifying on synthetic data that our proposed ensembles behave in a confident
way, the next step is to evaluate their performance on real classical datasets. Five



148 8 Applications of Ensembles Versus Traditional Approaches: Experimental Results

datasets were chosen for this task (Ozone, Spambase, Mushrooms, Splice and Made-
lon), which can be consulted in Table 8.2. In this case, a 10-fold cross validation will
be used and the results obtained are depicted in Table 8.5: average test classification
error along with the average number of features required to train the model. In the
case of the classifier alone, it uses the whole set of features. When using this type of
validation with several repetitions, the use of statistical inference for analyzing the
results is a crucial and necessary task in an investigation.

For this reason, a Kruskal-Wallis test was applied to check if there are significant
differences among the medians for each method for a level of significance « = 0.05.
If differences among the medians were found, a multiple comparison procedure
(Tukey’s) was applied to find the simplest approach whose classification error is not
significantly different for the approach with the lowest error (labeled with a cross in
the tables).

For all datasets and classifiers, one of the five ensembles presented here obtains
the lowest error, showing the adequacy of the ensemble approach in these standard
datasets. It is necessary to note that Ozone is an extremely unbalanced dataset (see
Table 8.2) and by assigning all the samples to the majority class, an error of 2.88%
could be obtained. None of the methods tested was able to improve this result,
although some methods matched it. An oversampling technique was applied over
this difficult dataset but due to its extremely high imbalance, no improvement was
obtained. On the other hand, it is worth mentioning that E1-nk achieves a promising
result over Madelon dataset. In fact, it reduces the test error up to 33% compared
with the classifier alone and up to 24% compared with CFS filter, using only 8% of
the total features (see results for SVM).

These results are not easy to analyze since the classifier plays a crucial role and
provides a very different classification error even with the same set of features. There
are several cases found in Table 8.5 that confirm this fact, for example: ReliefF over
Ozone dataset achieves an error of 2.88% according to SVM whilst naive Bayes
classifier raises the error up to 29.06%; and the consistency filter over Madelon
dataset increases its error from 9.08-33.42% using k-NN and SVM, respectively.

Table 8.6 displays the average of test error for each dataset and method, indepen-
dently of the classifier, which should help to clarify which one is the best method for
a given dataset. E1-nk is the method which is significantly better in the maximum
number of datasets (3), followed by E2 and the consistency filter.

Table 8.7 depicts the average of test error for each method and classifier, indepen-
dently of the dataset. In this case it makes no sense to perform a statistical study since
the results achieved by the classifiers over different datasets are very different. We
can see that for these kinds of datasets, the best option is to use E1-max combined
with C4.5 classifier. It is also worth noting that for the remainder of classifiers tested,
it is always one of the ensembles which achieves the best results, outperforming the
results obtained by the filters alone. In the next section we will see if the methods
tested exhibit the same behavior when dealing with an extremely complex scenario:
DNA microarray data classification.
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Table 8.5 Test classification error after 10 fold cross-validation for classical datasets, the number
in parenthesis is the number of features selected by the method. Those methods whose average test
classification results are not significantly worse than the best are labeled with a cross ()

Method | Ozone Spambase | Mushrooms | Splice Madelon
C4.5 | Ensembles | El-mv | 3.35 (43) |5.76 (44)T | 0.00 42)" [4.10 32)" | 16.17 (38)
El-max |3.23 (43)" |5.69 (44)" | 0.00 (42)" [4.10 32)" | 15.42 (38)
El-nk |4.18 (43) |8.22(44) | 0.00 (42)" [15.10 (32) | 9.08 (38)*
El-ns |2.88(43)" |11.50 (44) | 1.13 (42) 20.70 (32) | 33.25 (38)
E2 371 2Dt 674 BDT | 0.00(22)"  |5.80 (18)F 14.21
(25)'
C4.5 4.61 6.67" 0.00" 6.00f 19.88
Filters CFS 3717t [ 7.43(15) | 1.48(8) 6.00 (12)T | 19.33 (8)
Cons 3.08(@F |7.3525F | 0.15(10) 5.50 (12)T | 17.04 (13)
INT 3.82 (19) |7.32.(29)F | 0.00 10)" | 4.90 (15)" |17.04 (13)
IG 3.67 (25) |7.43(25) | 0.0025" 590 (25)7 |18.33 (25)
ReliefF | 3.86 (25)7 |8.80(25) | 0.00 (25" [5.90 (25)* 14.08
(25)"
Naive | Ensembles | El-mv | 21.06 (43) | 14.39 (44) | 6.84 (42) 17.60 30.17 (38)
bayes 32)f
El-max |21.14 (43) | 13.39 (44) | 6.87 (42) 16.70 29.92 (38)
(32)f
El-nk |4.18 (43)" | 8.22 (44)" | 0.00 42)" |15.10 9.08 (38)"
32)f
El-ns |2.88 (43)" | 11.50 1.13 (42)" 20.70 33.25 (38)
@4t (32)°F
E2 2098 (17) | 15.24 (32) | 1.23 (14T | 16.50 30.08 (15)
@nt
NB 28.98 20.47 6.81 16.407 31.38
Filters CFS 20.98 (17) | 21.23 (15) | 1.48 (8)F 17.90 30.29 (8)
(12)f
Cons 6.94 4" |11.82 4.89 (10) 17.50 29.92 (13)
25" (12)F
INT 20.58 (19) | 16.82 (29) | 5.45 (10) 16.00 29.92 (13)
15)°
IG 26.10 (25) | 11.63 6.95 (25) 17.10 30.42 (25)
25" 25)°
ReliefF | 29.06 (25) | 29.41 (25) | 6.60 (25) 16.30 30.08 (25)
257
k-NN | Ensembles | E1-mv  |3.51 (43)" |7.93 44)" | 0.00 (42)" 15.5? 8.92 (38)F
(32)
El-max |3.51 (43)" |7.93 44)" | 0.00 42)" |15.50 8.92 (38)"
(32)f
El-nk |4.18 (43) |8.22(44)" | 0.00 42)" [15.10 9.08 (38)"
(32)°
El-ns | 2.88 (43)7 |11.50 (44) | 1.13 (42) 20.70 (32) | 33.25 (38)
E2 4.85(28) |10.76 (19) | 0.00 (19)"  |20.20 (15) | 9.08 (13)*

(continued)
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Table 8.5 (continued)

Method | Ozone Spambase | Mushrooms | Splice Madelon

K-NN  |4.73 9.097 0.007 30.80 41.04
Filters CFS 497 (17) |11.50(15) | 1.75 (8) 20.50 (12) | 13.38 (8)
Cons 323 @ 1043 (25) | 0.00 (10)" |19.40 9.08 (13)f
(12)f
INT 4.85(19) |10.61(29) | 0.00 (10)" |19.10 9.08 (13)"
(15)°
IG 4.61(25) |10.32(25) | 0.00 (257 |24.70 (25) | 23.08 (25)
ReliefF |4.30 (25) | 12.54(25) | 0.00 (25)F | 21.60 (25) 10.96
(25)'

SVM | Ensembles | El-mv | 2.88 (43)" | 12.00 (44) | 1.08 (42) 20.80 (32) | 33.46 (38)
El-max |2.88 (43)" [12.00 44) | 1.08 (42) 20.80 (32) | 33.46 (38)
El-nk [4.18 (43) |8.22 44) | 0.00 (42)" |15.10 9.08 (38)"

32
El-ns |2.88 (43)" | 11.50 (44) | 1.13 (42) 20.70 33.25 (38)
32
E2 2.88 (17)F |10.28 0.00 (19" 1 19.70 33.58 (16)
@nf 25)°
SVM 2.88" 9.59% 0.007 20.407 4225
Filters CFS 2.88 (17)F | 13.17 (15) | 1.66 (8) 21.00 (12) | 34.04 (8)

Cons 288" [12.5025) | 0.00 10T [21.90 (12) | 33.42 (13)
INT 2.88(19)" [11.76 (29) | 2.26 (10) | 21.60 (15) | 33.42 (13)

IG 2.88 (25" | 12.08 (25) | 1.86 (25) 20.00 33.50 (25)
25)°

ReliefF | 2.88 (25)7 | 13.50 (25) | 0.10 25)" [19.30 33.67 (25)
25)°

Table 8.6 Average of test error for classical datasets focusing on the dataset. Those methods whose
average test classification results are not significantly worse than the best are labeled with a cross

Q)

Ozone Spambase | Mushrooms | Splice Madelon
Ensembles |El-mv 7.70 10.02 1.98 14.507 22.18
El-max 7.69 9.757 1.99 14.287 21.93
El-nk 4.18 8.22% 0.007 15.10 9.08"
El-ns 2.88F 11.50 1.13 20.70 33.25
E2 8.10 10.75 0.317 15.557 21.74
Classif 10.30 11.45 1.70 18.407 33.64
Filters CFS 8.13 13.33 1.59 16.357 24.26
Cons 4,037 10.52 1.26 16.07 22.36
INT 8.03 11.63 1.93 15.40% 22.36
IG 9.32 10.37 2.20 16.937 26.33
ReliefF 10.03 16.06 1.67 15.78% 22.20
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Table 8.7 Average of test error for classical datasets focusing on the classifier

C4.5 NB k-NN SVM

Ensembles El-mv 5.88 18.01 7.17 14.04
El-max 5.69 17.60 7.17 14.04

El-nk 7.32 7.32 7.32 7.32

El-ns 13.89 13.89 13.89 13.89

E2 6.09 16.81 8.98 13.29

Classif 7.43 20.81 17.13 15.02

Filters CFS 7.59 18.38 10.42 14.55
Cons 6.62 14.21 8.43 14.14

INT 6.62 17.76 8.73 14.38

IG 7.07 18.44 12.54 14.06

ReliefF 6.53 22.29 9.88 13.89

8.5.3 Results on Microarray Data

The last step for testing our ensembles is to evaluate them on a difficult scenario such
as DNA microarray classification, where the number of features is much higher than
the number of samples. Remind that, in this case, a division in training and test sets
is assumed (see Sect. 8.4).

Table 8.8 exhibits the results over all the seven microarray datasets considered for
the classifiers used in the experiments. Along with the error test achieved, one can see
the number of features required to train the model. In the case of the classifier alone,
it uses the whole set of features. For all the four classifiers employed, one of the five
ensemble approaches proposed achieves the lowest error, except for Colon dataset
with C4.5 and k-NN. Although the number of features is higher using ensembles
than filters alone, it is insignificant when compared with the difference in feature
number regarding the complete original feature set.

In order to summarize, Table 8.9 shows the results on average. The best result on
average for all datasets and classifiers is obtained by E1-mv and E1-max combined
with SVM classifier, which happens to be a frequently used and appropriate classifier
for DNA microarray classification [4—6]. As in the classical datasets case, again one
of the ensembles achieves always the best result for each classifier. It also should
to be noted that there is a slight difference between using the max rule (E1-max)
or majority vote (E1-mv) as union method in Ensemble 1. E1-max only appears to
be better for naive Bayes classifier, but as it does not produce deterioration for any
classifier, it is considered to be a better choice than E1-mv. For all these reasons, we
recommend to use E1-max combined with SVM classifier when dealing with DNA
microarray data.
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Table 8.9 Average of test error

C4.5 NB k-NN SVM

Ensembles El-mv 25.54 22.17 21.53 10.09
El-max 25.54 21.46 21.53 10.09

El-nk 20.98 20.98 20.98 20.98

El-ns 14.17 14.17 14.17 14.17

E2 25.54 20.49 25.81 11.10

Classifier 23.57 25.51 23.18 18.68

Filters CFS 25.54 18.35 21.53 10.39
Cons 25.96 23.41 25.31 25.80

INT 25.00 19.44 22.24 15.83

IG 26.12 21.72 17.33 10.46

ReliefF 20.52 22.47 21.61 11.03

Table 8.10 Average of test error after applying SMOTE for datasets Colon, CNS, Leukemia and
Ovarian

C4.5 NB k-NN SVM

Ensembles El-mv 13.46 17.50 13.68 15.96
El-max 13.46 17.50 13.68 15.96

El-nk 16.47 16.47 16.47 16.47

El-ns 18.46 18.46 18.46 18.46

E2 16.25 15.82 24.93 20.44

Classifier 17.09 26.36 25.98 17.43

Filters CFS 16.25 15.82 2493 20.44
Cons 17.50 17.21 15.96 18.46

INT 14.71 16.47 21.18 20.44

1G 15.00 17.80 14.86 18.54

ReliefF 16.25 18.32 17.21 18.16

8.5.4 The Imbalance Problem

Four of the microarray datasets considered in the experiments in this chapter pre-
sented the so-called imbalance problem (Colon, CNS, Leukemia and Ovarian; see
Table 8.3). A dataset is considered unbalanced when the classification categories are
not approximately equally represented [7].

To overcome this issue, the SMOTE method [8] is applied after the feature selec-
tion process in the datasets that show imbalance in the training set. For the sake
of brevity, only the average of test error will be shown in Table8.10. E1-mv and
El-max obtained again the lowest error combined with C4.5 classifier. As the results
obtained are better using SMOTE, the adequacy of this oversampling technique when
combined with ensemble techniques is confirmed.
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8.6 Summary

In this chapter we have presented two general approaches for ensembles for feature
selection applied to different real-life datasets. Ensemble 1 classifies as many times
as there are filters, whereas Ensemble 2 classifies only once with the result of joining
the different subsets selected by the filters. For Ensemble 1, two methods for combin-
ing the outputs of the classifiers were studied (majority vote and max rule), as well
as the possibility of using an adequate specific classifier for each filter. A total of five
different implementations of the two approaches of ensemble were presented, tested
in the first place over synthetic data. Results showed the adequacy of the proposed
methods on this controlled scenario since they selected the correct features. The next
step was to apply these approaches over 5 UCI classical datasets. Experimental results
demonstrated that one of the ensembles (E1-max) combined with C4.5 classifier was
the best option when dealing with this type of dataset. Finally, the ensemble config-
urations were tested over 7 DNA microarray data. These are extremely challenging
datasets because of their high number of input features and small sample size, where
feature selection becomes indispensable. It turned out that using an ensemble was
again the best option. Specifically, the best performance was achieved again with
E1-max but this time combined with SVM classifier. It should be noted that some of
these datasets presented a high imbalance of the data. To overcome this problem, an
oversampling method was applied after the feature selection process. The result was
that once again one of the ensembles achieved the best performance, and that this
was even better than the one obtained with no preprocessing, showing the adequacy
of the ensemble combined with over-sampling methods. Thus, the appropriateness
of using an ensemble instead of a single filter remained demonstrated, considering
that for all scenarios tested, the ensemble was always the more successful solution.

Regarding the different implementations of the ensemble tested, several conclu-
sions can be drawn. There is a slight difference between the two combiner methods
employed with Ensemble 1 (majority vote and max rule), although the second one
obtained the best performance. Among the different classifiers chosen for this study,
it appeared that the type of data to be classified determines significantly the error
achieved, so it is responsibility of the user to know which classifier is more suitable
for a given type of data. We recommend using E1-max with C4.5 when classifying
classical datasets (with more samples than features) and E1-max with SVM when
dealing with microarray dataset (with more features than samples). In complete igno-
rance of the particulars of the data, we suggest using E1-ns, which releases the user
from the task of choosing a specific classifier.
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Chapter 9 ®)
Software Tools Chack or

Abstract This chapter provides the users with a review of some popular software
tools that can help in the design of their ensembles for feature selection. There is
an important number of feature selection and ensemble learning methods already
implemented and available in different platforms, so it is useful to know them before
coding our own ensembles. Section 9.1 comments on the methods available in differ-
ent popular software tools, such as Matlab, Weka, R, scikit-learn, or more recent and
sophisticated platforms for parallel learning. Then, Sect. 9.2 gives some examples of
code in Matlab.

If our goal is to build an ensemble for feature selection, it is obvious that we need to
implement the feature selection algorithms involved in our design. We can implement
our feature selection algorithm from scratch or use an already implemented and
available algorithm. There are plenty of feature selection methods available in popular
frameworks. Moreover, these frameworks often offer already available methods for
distributing and combining the data in an ensemble scheme. Remember that an
ensemble for feature selection can consist of applying a feature selection followed
by a classification algorithm, so this scheme can benefit from the general tools for
ensemble learning. And, although not so common, there are some platforms that
provide implementations for ensembles for feature selection.

In the following, we will describe the most famous tools that offer frameworks
for feature selection and/or ensemble learning methods, which can help us design
new ensembles for feature selection. Moreover, we provide some code examples.

9.1 Popular Software Tools

9.1.1 Matlab

Matlab [1] is a numerical computing environment, well known and widely used by
scientific researchers. It was developed by MathWorks in 1984 and its name comes
from Matrix Laboratory. Matlab allows matrix manipulations, plotting of functions

© Springer International Publishing AG, part of Springer Nature 2018 157
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Number of Ensemble Learning Cycles

Weak Learners

Fig. 9.1 Information you need to create an ensemble using Matlab

and data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other languages, including C, C++, Java, and Fortran.

Matlab has a set of additional toolboxes, devoted to specific problems. In particu-
lar, in the Statistics and Machine Learning toolbox it is possible to find the following
methods for feature selection:

e fscnca: Feature selection using neighborhood component analysis for classifi-
cation.

e fsrnca: Feature selection using neighborhood component analysis for regres-
sion.

e sequentialfs: Sequential feature selection.

e relieff: Importance of attributes (predictors) using ReliefF algorithm.

In the same toolbox, it is also possible to find a framework for ensemble learn-
ing. It provides a method for classification, £itcensemble, and for regression,
fitrensemble. It allows the user to control parameters such as the aggregation
method, the number of ensemble learning cycles and the weak learners (see Fig.9.1).

Furthermore, Matlab provides the function predictorImportance in the
Statistics and Machine Learning toolbox which, used together with an ensemble,
computes estimates of predictor importance by summing these estimates over all
weak learners in the ensemble, where a higher value means a more important feature.

9.1.2 Weka

Weka (Waikato Environment for Knowledge Analysis) [2] is a collection of machine
learning algorithms for data mining tasks. The algorithms can be either applied
directly to a dataset or called from your own Java code. Weka contains tools for
data preprocessing, classification, regression, clustering, association rules, feature
selection and visualization. It is also well suited for developing new machine learning
schemes.
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It has a wide suite of feature selection algorithms available, as described below:

e CfsSubsetEval:Evaluates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree of redundancy
between them.

e ChiSquaredAttributeEval: Evaluates the worth of an attribute by com-
puting the value of the chi-squared statistic with respect to the class.

e ClassifierSubsetEval: Evaluates attribute subsets on training data or a
separate hold out testing set.

e ConsistencySubsetEval: Evaluates the worth of a subset of attributes by
the level of consistency in the class values when the training instances are projected
onto the subset of attributes.

e CostSensitiveAttributeEval: A meta subset evaluator that makes its
base subset evaluator cost-sensitive.

e CostSensitiveSubsetEval: A meta subset evaluator that makes its base
subset evaluator cost-sensitive.

e FilteredAttributeEval: Class for running an arbitrary attribute evaluator
on data that has been passed through an arbitrary filter (note: filters that alter the
order or number of attributes are not allowed).

e FilteredSubsetEval: Class for running an arbitrary subset evaluator on data
that has been passed through an arbitrary filter (note: filters that alter the order or
number of attributes are not allowed).

e GainRatioAttributeEval: Evaluatesthe worth of an attribute by measuring
the gain ratio with respect to the class.

e InfoGainAttributeEval: Evaluates the worth of an attribute by measuring
the information gain with respect to the class.

e LatentSemanticAnalysis: Performs latent semantic analysis and transfor-
mation of the data.

e OneRAttributeEval: Evaluates the worth of an attribute by using the OneR
classifier.

e ReliefFAttributeEval: Evaluates the worth of an attribute by repeatedly
sampling an instance and considering the value of the given attribute for the nearest
instance of the same and different class.

e SVMAttributeEval: Evaluates the worth of an attribute by using an SVM
classifier.

e SymmetricalUncertAttributeEval: Evaluates the worth of an attribute
by measuring the symmetrical uncertainty with respect to the class.

e WrapperSubsetEval: Evaluates attribute sets by using a learning scheme.

It also provides several methods for ensemble learning, the most popular ones are
following enumerated:

e AdaBoostM1: Class for boosting a nominal class classifier using the Adaboost
M1 method.

e Bagging: Class for bagging (bootstrap aggregation) a classifier to reduce vari-
ance.
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e RandomCommi ttee: Class for building an ensemble of randomizable base clas-
sifiers.

Stacking: Combines several classifiers using the stacking method.

Vote: Class for combining classifiers.

RandomForest: An extension of bagging for constructing a forest of decision
trees that can be used for classification or regression.

913 R

R is a free programming language and software environment for statistical com-
puting and graphics. The R language is widely used among statisticians and data
miners for developing statistical software and data analysis. The capabilities of R
are extended through user-created packages, which allow specialized statistical tech-
niques, graphical devices, import/export capabilities, reporting tools, etc. There are
several R-packages for feature selection, but probably the most famous ones are
Caret and Boruta.

e The caret! package (short for Classification And REgression Training) is a set
of functions that attempt to streamline the process for creating predictive mod-
els. Among other functionality, it includes some algorithms for feature selection.
In particular it provides univariate feature selection, recursive feature selection,
feature selection using genetic algorithms and feature selection using Simulated
Annealing.

e The Boruta? package provides an all relevant feature selection wrapper algo-
rithm. It finds relevant features by comparing original attributes’ importance with
importance achievable at random, estimated using their permuted copies.

There are also several packages available for ensemble learning, some of them
described below:

e The adabag® package implements Freund and Schapire’s Adaboost.M1 algo-
rithm and Breiman’s Bagging algorithm using classification trees as individual
classifiers.

e The randomForest* package provides implementation for the popular Random
Forest algorithm consisting on a forest of decision trees.

e The gbm’ package (short for Generalized Boosted Regression Models) provides
an implementation of extensions to Freund and Schapire’s AdaBoost algorithm
and Friedman’s gradient boosting machine. Includes regression methods for least

Thttps://CRAN.R-project.org/package=caret.
Zhttps://CRAN.R-project.org/package=Boruta.
3https://CRAN.R-project.org/package=adabag.
“https://CRAN.R-project.org/package=randomForest.
Shttps://CRAN.R-project.org/package=gbm.
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squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial
logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponen-
tial loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart).

It is also possible to find some works providing R packages for ensemble feature
selection, such as that by Neumann et al. [3]. They propose a software called EFS
(Ensemble Feature Selection) available as R-package® and as a web application.” It
makes use of eight feature selection methods and combines their normalized outputs
to a quantitative ensemble importance. Another example, is mRMRe,? an R package
for parallelized mRMR ensemble feature selection. The two crucial aspects of the
implementation they propose are the parallelization of the key steps of the algorithm
and the use of a lazy procedure to compute only the part of the mutual information
minimization (MIM) that is required during the search for the best set of features
(instead of estimating the full MIM).

9.1.4 KEEL

KEEL (Knowledge Extraction based on Evolutionary Learning) [4] is an open source
Java software tool that can be used for a large number of different knowledge data dis-
covery tasks. KEEL provides a simple GUI based on data flow to design experiments
with different datasets and computational intelligence algorithms (paying special
attention to evolutionary algorithms) in order to assess the behavior of the methods.
It contains a wide variety of classical knowledge extraction algorithms, preprocess-
ing techniques (training set selection, feature selection, discretization, imputation
methods for missing values, among others), computational intelligence based learn-
ing algorithms, hybrid models, statistical methodologies for contrasting experiments
and so forth. It allows to perform a complete analysis of new computational intel-
ligence proposals in comparison to existing ones. The feature selection algorithms
included in this tool are:

MIFS-FS: Mutual Information Feature Selection.

LVF-FS: Las Vegas Filter.

Focus-FS: FOCUS.

Relief-FsS: Relief.

LVW-FS: Las Vegas Wrapper

ABB-IEP-FS: Automatic Branch and Bound using Inconsistent Examples Pairs

Measure.

e ABB-LIU-FS: Automatic Branch and Bound using Inconsistent Examples Mea-
sure.

e ABB-MI-FS: Automatic Branch and Bound using Mutual Information Measure.

Shttps://CRAN.R-project.org/package=EFS.
http://efs.heiderlab.de.
8https://CRAN.R-project.org/package=mRMRe.
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Full-IEP-FS: Full Exploration using Inconsistent Examples Pairs Measure.

Full-LIU-FS: Full Exploration (LIU).

Full-MI-FsS: Full Exploration using Mutual Information measure.

Relief-F-FS: Relief-F.

LVF-IEP-FS: Las Vegas Filter using Inconsistent Examples Pairs Measure.

SA-IEP-FS: Simulated Annealing using Inconsistent Examples Pairs measure.

SA-LIU-FS: Simulated Annealing using Inconsistent Examples measure.

SA-MI-FS: Simulated Annealing using Mutual Information measure.

SBS-IEP-FS: Sequential Backward Search using Inconsistent Examples Pairs

measure.

e SBS-LIU-FS: Sequential Backward Search using Inconsistent Examples mea-
sure.

e SBS-MI-FS: Sequential Backward Search using Mutual Information measure.

e SFS-IEP-FS: Sequential Forward Search using Inconsistent Examples Pairs
measure.

e SFS-LIU-FS: Sequential Forward Search using Inconsistent Examples measure.

e SFS-MI-FS: Sequential Forward Search using Mutual Information measure.

e SSGA-Integer-knn-FS: Steady-state genetic algorithm with integer coding
scheme for wrapper feature selection with k-NN.

e GGA-Binary-Inconsistency-FS: Generational genetic algorithm with
binary coding scheme for filter feature selection with the inconsistency rate.

e GGA-FS: Generational Genetic Algorithm for Feature Selection.

It also includes several implementations of ensembles, that are following
described, as well as specific methods for ensembles for imbalanced data:

e CVCommitteesFilter-F: Cross-Validated Committees Filter for noise elim-
ination.

e C45_Binarization-C:Multiclassifier learning approach (One-vs-One / One-
vs-All) with C4.5 as baseline algorithm.

e Ensemble-C: Ensemble Neural Network for Classification Problems.

e Ensemble-R: Ensemble Neural Network for Regression Problems.

e AdaBoost .NC-C: Adaptive Boosting Negative Correlation Learning Extension
with C4.5 Decision Tree as Base Classifier.

9.1.5 RapidMiner

RapidMiner [5] is a data science software platform that provides an integrated envi-
ronment for data preparation, machine learning, deep learning, text mining, and
predictive analytics. It is used for business and commercial applications as well as
for research, education, training, rapid prototyping, and application development and
supports all steps of the machine learning process including data preparation, results
visualization, model validation and optimization. It includes the following feature
selection tools:
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Attribute weighting: More than 30 weighting schemes measuring the influence of

attributes and forming base or weight-based selections (filter approach).

e Attribute selection: Removal of attributes unrelated to target based on a chi-square
or correlation-based selection criterion or on arbitrary weighting schemes like
information gain, Gini index, and others.

e Automatic optimization of selections: evolutionary, forward selection, backward

elimination, weight-guided, brute-force, etc.

RapidMiner also features tools for ensemble learning, including:

Hierarchical models.

Combination of multiple models to form a potentially stronger model.
Vote.

Additive regression.

Adaboost.

Bayesian boosting.

Bagging.

Stacking.

Classification by regression.

Meta cost for defining costs for different error types and detecting optimal models
avoiding expensive errors.

It is also possible to obtain a RapidMiner plugin, called Feature Selection Exten-
sion,’ which offers the Ensemble-FS operator for ensembles for feature selection.
It loops several times over subsamples of the input sample. The inner feature selec-
tion operator chosen is performed each time, and the resulting attribute weights are
averaged (or somewhat combined). Then, the robustness of the feature selection can
be estimated by calculating the Jaccard-Index for the different subsets of selected
features.

9.1.6 Scikit-Learn

Scikit-learn [6] is a free software machine learning library for the Python program-
ming language. It features various classification, regression and clustering algorithms
including support vector machines, random forests, gradient boosting, k-means and
DBSCAN, and is designed to interoperate with the Python numerical and scientific
libraries NumPy and SciPy. It includes several feature selection algorithms:

e Removing features with low variance: It is a simple baseline approach that removes
all features whose variance does not meet some threshold.

e Univariate feature selection: It works by selecting the best features based on uni-
variate statistical tests, such as chi-square or mutual information.

“https://sourceforge.net/projects/rm-featselext/.
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e Recursive feature elimination: Given an external estimator that assigns weights to
features (such as the coefficients of a linear model), it selects features by recursively
considering smaller and smaller sets of features.

e L1-based feature selection: Since linear models penalized with the L1 norm have
sparse solutions, many of their estimated coefficients are zero and, therefore, the
non-zero coefficients can be selected.

e Tree-based feature selection: Tree-based estimators can be used to compute feature
importances, which in turn can be used to discard irrelevant features.

Apart from these algorithms already included in scikit-learn, there are other feature
selection frameworks built upon it. It is particularly interesting scikit-feature,'® which
is an open-source feature selection repository in Python developed at Arizona State
University. It contains around 40 popular feature selection algorithms, including
traditional feature selection algorithms and some structural and streaming feature
selection algorithms.

As for ensemble learning, it also offers several options:

Bagging meta-estimator.

Forests of randomized trees, including Random Forests.
Adaboost.

Gradient Tree Boosting, both for classification and regression.
Voting.

Notice that the tree-based estimators enumerated above, such as Random Forests
or Extremely Randomized Trees, can be used to compute feature importances, which
in turn can be used to discard irrelevant features. In particular, the relative rank (i.e.
depth) of a feature used as a decision node in a tree can be used to assess the relative
importance of that feature with respect to the predictability of the target variable.
Features used at the top of the tree contribute to the final prediction decision of a larger
fraction of the input samples. The expected fraction of the samples they contribute
to can thus be used as an estimate of the relative importance of the features. By
averaging those expected activity rates over several randomized trees one can reduce
the variance of such an estimate and use it for feature selection.

9.1.7 Parallel Learning

Most existing feature selection methods were developed decades ago and are not
expected to scale efficiently when dealing with millions (or even thousands) of fea-
tures; indeed, they may even become inapplicable. This is even more important in
the case of ensembles, since sometimes the design of them implies to apply several
feature selection methods on the same data, thus increasing the computational time.
A possible solution might be to use the so-called distributed or parallel learning

10http://featureselection.asu.edu/index.php.
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paradigm, which consists of distributing the learning process across several nodes
or processors and then combine the results.

Several paradigms for performing parallel learning have emerged in the last years.
MapReduce [7] is one such popular programming model with an associated imple-
mentation for processing and generating large data sets with a parallel, distributed
algorithm on a cluster. Hadoop, developed by Cutting and Cafarella in 2005 [8], is
a set of algorithms for distributed storage and distributed processing of very large
datasets on computer clusters; it is built from commodity hardware and has a pro-
cessing part based on MapReduce. Developed more recently, is Apache Spark [9], a
fast, general engine for large-scale data processing, popular among machine learn-
ing researchers due to its suitability for iterative procedures. Developed within the
Apache Spark paradigm was MLIib [10], created as a scalable machine learning
library containing algorithms. It is more focused on learning algorithms, such as
SVM and naive Bayes classification, k-means clustering, etc., and it also includes a
few, very simple, feature selection algorithms:

e VectorSlicer: it is a transformer that takes a feature vector and outputs a
new feature vector with a sub-array of the original features. It simply selects the
features that are indicated by the user.

e RFormula: it selects columns specified by an R model formula. Currently it
supports a limited subset of the R operators, including *’, “.”, ’, ‘4, and ‘—’.

e ChiSgSelector: It uses the Chi-Squared test of independence to decide which
features to choose.

Moreover it is possible to find works in the literature that accelerate more sophisti-
cated feature selection algorithm using these platforms. For example, we have devel-
oped a distributed implementation of a generic feature selection framework using
Apache Spark [11] (available on GitHub'!). This framework includes well-known
information theory-based methods such as mRMR, conditional mutual information
maximization, or joint mutual information (JMI), that have been designed to be able
to be integrated in the Spark MLIib library. Also, we have also proposed a Spark
implementation of other popular feature selection methods such as ReliefF, SVM-
RFE or CFS."

Apache Flink [12] is also an open-source stream processing framework for dis-
tributed, high-performing, always-available, and accurate data streaming applica-
tions. Similarly to MLIib, it has a library for machine learning for Flink, called
FlinkML. However, as for now it does not include any feature selection or ensemble
learning algorithms. As happens with Spark, it is possible to find works devoted to
feature selection to work in Flink."3

Another solution to the scalability problem is the use of graphics processing units
(GPUs) to distribute and thus accelerate calculations made in feature selection algo-
rithms. With many applications to physics simulations, signal processing, financial

https://github.com/sramirez/spark-infotheoretic- feature- selection.
http://www.lidiagroup.org/index.php/en/materials-en.html.
Bhttps://github.com/sramirez/flink-infotheoretic-feature-selection.
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modelling, neural networks, and countless other fields, parallel algorithms running
on GPUs often achieve up to 100x speedup over similar CPU algorithms. In a previ-
ous work, we have redesigned the popular mRMR method to take advantage of GPU
capabilities [13], showing outstanding results (available on GitHub'*).

Regarding ensemble learning, MLIib includes methods such as Random Forest
and Gradient-boosted trees.

9.2 Code Examples

In this section, we present some simple examples to demonstrate the adequacy of
using feature selection and, in particular, of using an ensemble of feature selection.
The examples were coded in Matlab (see Sect.9.1.1). For these experiments, we used
a reduced version of the popular MNIST dataset, which can be downloaded here."”
Remember that it is possible that you need additional Matlab toolboxes.

9.2.1 Example: Building an Ensemble of Trees

In this case, we are not using feature selection. We use a subset of 2000 samples from
MNIST dataset, and we compare the performance of applying a single tree with the
performance of using an ensemble of 15 trees. For each tree of the ensemble, we
took bootstrap samples, containing 500 samples and 200 features. After executing the
code, we obtain that the accuracy of the single tree is 0.5130 while the performance of
the ensemble is 0.7490, so the adequacy of using an ensemble remains demonstrated.

o o %

[

% Needs statistical toolbox

clear all
close all

R R R I S

% Load the data

10 load MNIST2000

11

12 % Split in training and testing

13 training_data = data(1:1000,:);

14 training labels = labels(1:1000);
15  test_data = data(1001:2000,:);

16 test_labels = labels(1001:2000, :);

17

“https://github.com/sramirez/fast-mRMR.
IShttp://lidiagroup.org/index.php/en/materials-en.html.
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19 % Build one decision tree

20 t = classregtree(training data, training_labels) ;

21 assigned_test_labels = eval (t,test_data);

22 single_accuracy = mean (test_labels == assigned_test_labels);

23 fprintf (’Accuracy of a single tree = %.4f\n’, single_accuracy) ;

Q

26 % Build the ensemble

27 rng(2018)

28 L = 15; % Size of ensemble

29 N = 500; % Number of samples to subsample
30 M = 200; % Number of features to subsample
31 assigned_individual_labels = zeros(1000,L);

33 for 1 = 1:L

34 rpl = randi(N,1000,1);

35 rp2 = randperm(size(training_data,2),M);

36 tr = training data(rpl,rp2); trl = labels(rpl);

37 t = classregtree(tr,trl);

38 assigned_individual_labels(:,i) = eval(t,test_data(:,rp2));
39 end

41 % Find the ensemble labels
12 assigned_ensemble_labels = mode(assigned_individual_labels,2);

43 ens_accuracy = mean(test_labels == assigned_ensemble_labels) ;

4 fprintf (’Accuracy of the ensemble = %.4f\n’, ens_accuracy);

45

46 Fmmm e %

9.2.2 Example: Adding Feature Selection to Our Ensemble
of Trees

Now, we add a feature selection pre-processing step to both the single tree and the
ensemble of trees. In this case, we have chosen the ReliefF filter, already available
in Matlab. In this case, we need to add an extra parameter to decide the number of
features we want to keep (we chose 500 when using the whole dataset and 100 for the
trees forming the ensemble). After executing the code, we obtain that the accuracy
of the single tree is now improved to 0.5230 and the performance of the ensemble is
now 0.7530, so we can see the benefits of including feature selection in the design
of our ensemble.

-
o

g — — — —— %
2 % Needs statistical toolbox

4 clear all
5 close all

7 % Load the data
s load MNIST2000
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2

% Split in training and testing
training_data = data(1:1000,:);
training_labels = labels(1:1000) ;
test_data = data(1001:2000,:);
test_labels = labels(1001:2000, :);

% Number of features to keep fo the single tree
F = 500;

% Build one decision tree

First, apply ReliefF filter

[ranked,weights] = relieff (training_data,training_labels,10);
% We use the first selected F features

e

t = classregtree(training_data(:,ranked(1:F)),training labels);
assigned_testing_labels = eval(t,test_data(:,ranked(1:F)));
single_accuracy = mean(test_labels == assigned_testing_labels) ;

fprintf ('Accuracy of a single tree = %.4f\n’, single_accuracy)

$Build the ensemble

rng (2018)

L = 15; % Size of ensemble

N = 500; Number of objects to subsample

M = 200; Number of features to subsample

F2 = 100; % Number of features to keep in the ensemble
assigned_individual_labels = zeros(1000,L);

%
%

for i = 1:L
rpl = randi(N,1000,1);

rp2 = randperm(size(training data,2),M);
tr = training data(rpl,rp2); trl = labels(rpl);

[ranked,weights] = relieff(tr,trl,10); % Feature selection

t = classregtree(tr(:,ranked(1:F2)),trl)

ts = test_data(:,rp2);

assigned_individual_labels(:,1i) = eval(t,ts(:,ranked(1:F2)));
end

7

% Find the ensemble labels
assigned_ensemble_labels = mode(assigned_individual_labels,2);

ens_accuracy = mean(test_labels == assigned_ensemble_labels) ;
fprintf ('Accuracy of the ensemble = %.4f\n’, ens_accuracy);
e %

9.2.3 Example: Exploring Different Ensemble Sizes

Jor Our Ensemble

In the previous examples, the size of the ensemble was fixed as 15. Now, we explore
the effect of the ensemble size, and we also compare the performance of the ensemble
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Fig. 9.2 Evolution of 1r

accuracy when changing the -6—Ensemble
; ---- Single tree

ensemble size 0.9

| —o—Weak Iearners_

Accuracy

0.3 . : : : -
0 10 20 30 40 50

Ensemble size

with the best performance of the individual trees that conform the ensemble (also
known as weak learners). The results of executing the code is depicted in Fig.9.2. As
can be seen, the performance of the ensemble is increasing as the number of weak
learners increase, and its accuracy is higher than that of the single tree and than the
best one among the different weak learners in the ensemble.

% Needs statistical toolbox

clear all
close all

o U oe W N e

8 % Load the data
9 load MNIST2000

12 % Split in training and testing

13 training_data = data(1:1000,:);

14 training_labels = labels(1:1000);
15 test_data = data(1001:2000,:);

16 test_labels = labels(1001:2000,:);

18 % Number of features to keep for the single tree
19 F = 500;

22 % Build one decision tree

23 % First, apply ReliefF filter

24 [ranked,weights] = relieff (training_data,training_labels,10);
25 % We use the first selected F features

26 t = classregtree(training data(:,ranked(1l:F)),training_labels) ;
27 assigned_test_labels = eval(t,test_data(:,ranked(1:F)));

28 single_accuracy = mean(test_labels == assigned_test_labels) ;

29 fprintf (’Accuracy of a single tree = %.4f\n’, single_accuracy)



170 9 Software Tools

32 % Build the ensemble

33 rng(2018)

34 L = 50; % Maximum ensemble size to test

35 different L = 2:2:L; % We test ensemble size increasing by 2
36 N = 500; % Number of objects to subsample

37 M = 200; % Number of features to subsample

38 F2 = 100; % Number of features to keep in the ensemble

42 for k = l:length(different_L)
43 % Initialize variable when storing the labels
44 assigned_individual_labels = zeros(1000,different_L(k));

46 for i = 1l:different_L (k)
47 rpl = randi(N,1000,1);

48 rp2 = randperm(size(training data,2),M);
49 tr = training_data(rpl,rp2); trl = labels(rpl);
50 [ranked,weights] = relieff(tr,trl,10); % Feature selection

51t = classregtree(tr(:,ranked(1l:F2)),trl);
52 ts = test_data(:,rp2);

53 assigned_individual_labels(:,i) = eval(t,ts(:,ranked(1:F2)));

54 % Compute the individual accuracy of each weak learner

55 ind_accuracy (i) = mean(test_labels == assigned_individual_labels(:,1));

56 end

57

58 fprintf (’'Max accuracy of the weak learners = %.4f\n’, max(ind_accuracy)) ;
59 max_ind_acc (k) = max(ind_accuracy) ;

60 fprintf(’Mean accuracy of the weak learners = %.4f\n’, mean(ind_accuracy)) ;
61 mean_ind_acc (k) = mean(ind_accuracy) ;

63 % Find the ensemble labels
64 assigned_ensemble_labels = mode(assigned_individual_labels,2);

65 ens_accuracy (k) = mean(test_labels == assigned_ensemble_labels) ;
66 fprintf (’Accuracy of the ensemble = %.4f\n’, ens_accuracy (k))
67 end

o

69 % Graphs

71 for i=1:length(different_L),
72  singleTree(i) = single_accuracy;
73 end

75 figure();
76 set(gca, 'FontSize’,18)
77 hold on;

78 plot(different_L,ens_accuracy, ’'-ro’, 'LineWidth’, 2, 'MarkerSize’, 10);
79  plot(different_L,singleTree, ’'--b’, ’'LineWidth’, 2);
80 plot(different_L,max_ind_acc, ’'-ko’, ’‘LinewWidth’, 2, ’‘MarkerSize’, 10);

81 xlabel ('Ensemble size’);

82 ylabel (’Accuracy’) ;

83  %ylim([0.3 1]);

84 legend(’Ensemble’,’Single tree’, ’‘Weak learners’, ’‘Location’, ’'NorthWest’);
85 hold off;
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Chapter 10 ®)
Emerging Challenges i

Abstract This chapter reveals the new challenges that the researchers are finding
in ensemble feature selection, most of them related with “Big Data” and some of
its consequences, as the important rise in unsupervised learning, because unlabelled
samples is the most common situation in large datasets; or the need for visualiza-
tion, that is a challenge also shared between ensemble learning and feature selection.
Although feature selection is a well-established preprocessing technique, during
the last years it has experimented certain renaissance due to the fact that is almost
mandatory for the new scenarios in which large and/or high-dimensional datasets
are present. Thus, feature selection has been successfully applied lately in areas such
as DNA microarray analysis, image classification, face recognition, and text classi-
fication. Ensemble feature selection is one of the new approaches to the field, in an
attempt to obtain better performances and also design distributed FS schemes that
allow for more effective process and higher efficiencies. This chapter outlines some
of the latest challenges in the field of ensemble feature selection, aiming researchers
at following the new paths that are opened for exploration. In Sect. 10.1 a brief Intro-
duction to the need for ensemble feature selection is outlined. Section 10.2 reviews
some of the fields in which feature selection, and more specifically feature selection
ensembles have been used. To end the chapter, Sect. 10.3 enumerates some of the
challenges that lie ahead for feature selection, and thus for the use of ensembles in
this preprocessing step.

This chapter is devoted to review briefly some of the fields in which feature selection,
in general, and ensembles in particular, have contributed to improve performance.
Ensemble feature selection has been applied successfully in several fields, such as
microarray analysis, image classification, face recognition or text classification. In
this chapter, some of these contributions are briefly described. The chapter ends with
a short list of some of the current challenges in the field of feature selection, some of
which perhaps can be inspiring for researchers in developing new ensemble feature
selection approaches.

Part of the content of this chapter was previously published in Knowledge-Based Systems
(https://doi.org/10.1016/j.knosys.2015.05.014.
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10.1 Introduction

Feature selection is one of the most used preprocessing techniques, almost mandatory
in the present scenarios of Big Data. Ongoing advances in computer-based technolo-
gies and sensorization have enabled researchers and engineers to collect data at an
increasingly fast pace. In addition, data is generated in many different formats (text,
multimedia, etc.) and from many different sources (systems, sensors, mobile devices,
etc.). Big Data —large volumes and ultrahigh dimensionality— is now a recurring
reality in most machine learning application fields, such as text mining and infor-
mation retrieval [1]. To be able to extract useful information from all these data,
we require new analysis and processing tools. Weinberger et al. [2], for instance,
conducted a study of a collaborative email-spam filtering task with 16 trillion unique
features, whereas the study by Tan et al. [1] was based on a wide range of synthetic
and real-world datasets of tens of million data points with ¢’(10'#) features. The
growing size of datasets raises an interesting challenge for the research community;
to cite Donoho et al. [3] “our task is to find a needle in a haystack, teasing the relevant
information out of a vast pile of glut”.

To address the challenge of analyzing these data, feature selection becomes an
imperative preprocessing step that needs to be adapted and improved to be able
to handle high-dimensional data. Between the dawn of time up to 2003 humanity
generated a total of 5 exabytes of data and by 2008 this figure had tripled to 14.7
exabytes. Nowadays 5 exabytes of data is produced every 2 days —and the pace of
production continues to rise. Because the volume, velocity, variety and complexity
of datasets is continuously increasing, machine learning techniques have become
indispensable in order to extract useful information from huge amounts of otherwise
meaningless data. One machine learning technique is feature selection (FS), whereby
attributes that allow a problem to be clearly defined are selected, while irrelevant
or redundant data are ignored. Feature selection methods have traditionally been
categorized as filter methods, wrapper methods or embedded methods [4], although
new approaches that combine existing methods or based on other machine learning
techniques are continuously appearing to deal with the challenges of today’s datasets.

Robustness or stability of feature selection techniques is a topic of recent interest,
and is an important issue when selected feature subsets are subsequently analyzed
by domain experts to gain more insight into the problem modelled [5, 6]. Thus,
in the last few years, feature selection has been successfully applied in different
scenarios involving huge volumes of data, such as DNA microarray analysis, image
classification, face recognition, text classification, etc. One of the approaches that
can be used for obtaining more accurate, robust and stable results in feature selection
is using ensembles. Some of these ensemble approaches show great promise for
high-dimensional domains with small sample sizes, and provide more robust feature
subsets than a single feature selection technique [7, 8].

In general, available feature selection methods have each their merits and dis-
advantages. In this actual context of Big Data, their computational complexity is
an important issue to take into account [9]. Nowadays, however, this factor plays a
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crucial role in big data problems [10]. In general, univariate methods have an impor-
tant scalability advantage, but at the cost of ignoring feature dependencies and degrad-
ing classification performance. In contrast, multivariate techniques improve classi-
fication performance, but their computational burden often means that they cannot
be applied to Big Data. Studies on scalability (the behavior of the feature selection
methods for increasingly larger sizes of training sets) is scarce in the scientific litera-
ture. It is evident that feature selection researchers need to adapt existing methods or
propose new ones in order to cope with the challenges posed by the explosion of Big
Data (discussed in Sect. 10.3). Also, it is clear that the evaluation of the FS methods
should be based not only on accuracy but also on execution time and stability. In
order to do that, new evaluation measures are to be proposed and tested [10].

Another important issue that feature selection ensembles provide easily is diver-
sity among the problem solvers. Then, the mechanisms to integrate the different
perspectives and knowledge obtained by the individual methods becomes crucial
[11]. Finally, when the feature selection methods employed are rankers, most “clas-
sical” ensemble approaches retain fixed percentages of features [9, 12]. More recent
approaches have attempted to derive general automatic thresholds [13—15]. In a
society that needs to deal with vast quantities of data and features in all kinds of
disciplines, there is an urgent need for solutions to the indispensable issue of fea-
ture selection, some of which can be confronted using an ensemble approach. To
understand the challenges that researchers face, in the next sections we will describe
the most recent works in the field of feature selection, and later on enumerate the
challenges that we are to face in the very near future.

10.2 Recent Contributions in Feature Selection

Several works have reviewed the most widely used feature selection methods over
the last years [9]. Molina et al. [16] assessed the performance of fundamental feature
selection algorithms in a controlled scenario, taking into account dataset relevance,
irrelevance and redundancy. Saeys et al. [S] created a basic taxonomy of classical
feature selection techniques, discussing their use in bioinformatics applications. Hua
et al. [17] compared some basic feature selection methods in settings involving
thousands of features, using both model-based synthetic data and real data. Brown et
al. [18] presented a unifying framework for information theoretic feature selection,
bringing almost two decades of research into heuristic filter criteria under a single
theoretical umbrella. Finally, Garcia et al. [19] dedicated a chapter in their data
preprocessing book to a discussion of feature selection and an analysis of its main
aspects and methods. New feature selection methods are constantly being developed
so there is a wide suite available to researchers. Below we assess recent developments
in solutions for high-dimensionality problems in areas such as clustering [20, 21],
regression [22—-24] and classification [25, 26].

The use of different feature types and combinations is almost standard in many
of today’s real applications, leading to a veritable feature explosion given rapid
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advances in computing and information technologies [27]. Traditionally, and due to
the need of dealing with extremely high-dimensionality data, most newer feature
selection approaches were filter methods. However, the last few years have come
with an increasing pace in the appearance of embedded methods, as that they allow
for simultaneous feature selection and classification [28—30]. Wrapper methods have
received less attention, due to the heavy computational burden and the high risk of
overfitting when the number of samples is insufficient. Finally, there is also a tendency
to combine algorithms, either in the form of hybrid methods [31-34] or ensemble
methods [6, 35-39].

Another perspective of the field can be obtained when focusing on a given appli-
cation area, with researchers employing different feature selection techniques in an
attempt to improve performance. In this case, some times the methodologies are
highly dependent on the problem at hand. Some of the most representative applica-
tions are discussed below.

10.2.1 Applications

Ensembles for feature selection methods are currently being applied to problems in
very different fields. Below we describe some of the most popular applications pro-
moting the use of either feature selection methods or ensembles for feature selection.

10.2.1.1 Microarray Analysis

DNA microarrays are used to collect information on gene expression differences
in tissue and cell samples that could be useful for disease diagnosis or for distin-
guishing specific types of tumours. The sample size is usually small (often less than
100 patients) but the raw data measuring the gene expression en masse may have
from 6000-60,000 features. In this scenario, feature selection inevitably became an
indispensable preprocessing step.

The earliest work in this field, in the 2000s [5], was dominated by the univariate
paradigm [40-42], which is fast and scalable but which ignores feature dependen-
cies. However, some attempts were also made with multivariate methods, as these
can model feature dependencies, although they are slower and less scalable than uni-
variate techniques [9]. Multivariate filter methods were used [43—46] and also more
complex techniques such as wrapper and embedded methods [47-50]. A complete
review of the most up-to-date feature selection methods used for microarray data
can be found in [51], which indicates that many contributions since 2008 fall into
the filter category, mostly based on information theory (see Fig.10.1). The wrap-
per approach has largely been avoided due to the heavy computational consumption
of resources and the high risk of overfitting. Although the embedded approach did
not receive much attention in the infancy of microarray data classification, several
proposals have emerged in recent years. Finally, it is worth noting that the recent
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Fig. 10.1 Recent feature selection contributions to DNA microarray analysis according to the data
collected in [51]

literature reveals a tendency to combine algorithms in hybrid or ensemble methods
(represented as “Other” in Fig. 10.1).

Some recent works can be found in [52—54]. In the later, a primary filter step using
Fisher criterion is used with the aim of reducing the initial genes, and thus the search
space and time complexity. Subsequently, a wrapper approach which is based on
cellular learning automata, optimized with ant colony method, is used to find the set of
features which improve the classification accuracy. Finally, the selected features from
the last phase are evaluated using ROC curve and the most effective while smallest
feature subset is determined. In the work by [52], an approach named ensemble gene
selection by grouping (EGSG), is used to select multiple gene subsets for subsequent
classification. The method chooses salient gene subsets from microarray data by
virtue of information theory and approximate Markov blanket, instead of employing
arandom selection. The experimental results show that the method improves stability
over the random approach, while comparable classification performance to other
gene selection methods is obtained. Finally, in [53] an ensemble of filters, only of
the ranker type, is used (see Fig.10.2). The individual rankings obtained by the
four filters selected, are subsequently combined with different aggregation methods.
Finally, as the filters used are all ranking methods (thus, an ordered list of all original
features is returned), a threshold is necessary to obtain a practical subset of features.
The approach described uses a novel proposal, that consists in using a data complexity
measure [55], specifically the inverse of Fisher discriminant ratio, for establishing
an automatic ranking. Using a SVM as classifier, the proposal was able to obtain
the best results in several microarray datasets (see Table 10.1), that draw different
scenarios regarding balance, complexity, dataset shift [51], etc.

This work has been extended later by the same authors in [56]. In this new work,
the authors propose two models, that differentiate on whether thresholding was per-
formed before or after the combination step. Different from their first work, two more
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Table 10.1 Binary microarray datasets employed in the experimental study

Dataset Features Samples Train Test
distribution distribution
(%) (%)
Train Test
Colon 2000 42 20 67-33 60 — 40
DLBCL 4026 32 15 50-50 53 -47
CNS 7129 40 20 65-35 65-35
Leukemia 7129 38 34 71-29 59 -41
Lung 12533 32 149 50-50 90-10
Prostate 12600 102 34 49 -51 26-74
Ovarian 15154 169 84 35-65 38-62

embedded methods were added to the ensemble, specifically SVM-RFE (Recursive
Feature Elimination for Support Vector Machines) [57] and FS-P (Feature Selection-
Perceptron) [58]. Besides, the combination methods selected were different regarding
if ranks or subsets were to be combined, and also finally several different automatic
thresholds, based all on data complexity measures and combinations of those, were
tested. The experimentation was carried out over synthetic, standard real data sets
(those in which the number of features is much lower than the number of samples),
and also microarray datasets. The conclusion regarding automatic thresholding for
microarrays is that these type of thresholds obtain much better results than the fixed
percentages of features retained (25%, 50%, etc.), and that the ensemble that performs
thresholding prior to combination obtains, in general, better performance results.
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10.2.1.2 TImage Classification

Image classification has become a popular research field given the demand for effi-
cient ways to classify images into categories. The numerical properties of image fea-
tures are usually analyzed to determine to which category they belong. With recent
advances in image capture and storage and Internet technologies, a vast amount of
image data has become available to the public, from smartphone photo collections to
websites and even video databases. Since image processing usually requires a large
amount of computer memory and power, feature selection can help in reducing the
number of features needed in order to be able to correctly classify the image [12].

Although the explosion of data has evidenced the adequacy of feature selection
techniques to deal with millions of images, a need to know precisely which features to
extract from each pixel arose decades ago. A common problem in this field is that the
literature refers to many models for extracting textural features from a given image,
such as Markov random fields and co-occurrence features. However, as Ohanian and
Dubes pointed out [59], there is no universally best subset of features. For this reason,
the feature selection task has to be specific to each problem in order to decide which
type of feature to use. Another task of interest derived from the use of the adequate
features is reducing the computational time necessary to extract them. When the
number of features extracted and processed is reduced, the time required is also
reduced in consonance, and this can usually be achieved with minimum performance
degradation, as in [60].

The use of ensembles for classification after a feature selection step is relatively
common [61-65]. However, only recently feature extraction (not feature selection)
ensembles have been applied to images by means of deep networks, as in [66,
67]. Thus, feature selection ensembles for image classification seems to be, at this
moment, an open line of research.

10.2.1.3 Face Recognition

Identifying a human face is a complex visual recognition problem. In the last few
decades, face recognition has become one of the most active research fields due to its
numerous commercial and legal applications. A common application is to identify or
verify a person from a digital image or a video-sourced frame by comparing selected
facial features from the image with features in a facial database. An important issue in
this field is to determine which image features are the most informative for recognition
purposes. Unfortunately, this is no trivial task since great redundancy exists in object
images; moreover, facial databases contain a large number of features but a reduced
number of samples. Feature selection algorithms for face recognition have recently
been suggested as a way of solving these issues.

The filter method of feature selection is a common choice, mainly due to its low
computational cost compared to the wrapper or embedded methods. Yang et al. [68]
presented a method based on the physical meaning of the generalized Fisher crite-
rion in order to choose the most discriminative features for recognition. Lu et al.
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[69] proposed a novel method for choosing a subset of original features containing
the most essential information; called principal feature analysis (PFA), it is similar
to principal component analysis (PCA) methods. This latter is employed in [70] for
extracting features for a fuzzy logic ensemble system. Matos et al. [71] introduced a
face recognition method based on discrete cosine transform (DCT) coefficient selec-
tion. More recently, Lee et al. [72] introduced a new color face recognition method
that uses sequential floating forward search (SFFS) to obtain a set of optimal color
components for recognition purposes. Other authors as [73] have tried classifica-
tion ensembles after extracting low and high resolution features from images. It is
also worth noting that several proposed methods based on evolutionary computation
techniques have been demonstrated to be successful in this field [74-77].

Regarding the use of feature selection ensembles for face recognition, a compe-
tition, named “Ensemble Feature Selection in Face Recognition” was launched in
2012 in the International Conference for Machine Learning. The idea was related
with the need of recognizing faces automatically for security reasons, and thus the
organizers provided human and avatar faces, and applied an ensemble of three well-
known filters for feature selection, ReliefF, Fisher Score and Chi Square, to select
a small number of features in the images (around 1%) [78], obtaining very high
accurate results, much better than using higher numbers of features. However, an
open line of research is to devise new feature selection ensembles that may further
improve computational efficiency and learning performance. Other authors, as in
Mallipedi et col. [79] designed an ensemble based approach for face recognition in
which feature extraction is used, and different subsets of PCA features are obtained
by maximizing the distance between a subset of classes (that overlap and are obtained
by bagging) of the training data instead of whole classes. Each subset of the PCA
features obtained is used for face recognition and all the outputs are combined by
a simple majority voting. Finally, in [80] a novel system for face recognition based
on ensembles of classifiers that combine different preprocessing techniques, that in
turn vary a set of feature extraction parameters. Due to the fact that Deep learning
methods had significantly outperformed previous systems based on low level fea-
tures in face recognition, the authors also tested their proposal using a set of features
obtained from the internal representation of a Convolutional Neural Network (CNN)
trained for the face recognition problem. Not only the first approach, based on hand-
crafted features, obtained much better results that the state-of-the-art approaches,
but the ensemble based on the fusion of learned (from CNN) and handcrafted fea-
tures improves performance even further. Thus, ensemble feature selection for face
recognition appears to be an interesting line of open research.

10.2.1.4 Text Classification

The goal of text classification is to categorize documents into a fixed number of
predefined categories or labels. This problem has become particularly relevant to
Internet applications for spam detection and shopping and auction websites. Each
unique word in a document is considered a feature. However, since this implies far
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more input features than examples (usually by more than an order of magnitude), it
is necessary to select a fraction of the vocabulary and so allow the learning algorithm
to reduce computational, storage and/or bandwidth requirements.

A preprocessing stage is usually applied prior to feature selection to eliminate
rare words and to merge word forms such as plurals and verb conjugations into
the same term. There are several approaches to representing the feature values, for
instance, a Boolean value to indicate if a word is present or absent or including the
count of word occurrences. Even after this preprocessing step, the number of pos-
sible words in a document may still be high, so feature selection is paramount. A
number of techniques have been developed and applied to this problem in recent
years. Forman [81] proposed a novel feature selection metric, called bi-normal sep-
aration (BNS), which is a useful heuristic for increased scalability when used with
wrapper techniques of text classification. Kim et al. [82] applied several novel fea-
ture selection methods to clustered data, while Dasgupta et al. [83] proposed an
unsupervised feature selection strategy that theoretically guarantees the generaliza-
tion power of the resulting classification function with respect to the classification
function based on all the features. Forman [84] reviewed a series of filters applied
to binary, multiclass and hierarchical text classification problems, focusing espe-
cially on scalability. Uguz [33] subsequently proposed a two-stage feature selection
method for text categorization using InfoGain, PCA and genetic algorithms, obtain-
ing high categorization effectiveness for two classical benchmark datasets. Shang
et al. [85] recently proposed a novel metric called global information gain (GIG)
that avoids redundancy naturally and also introduced an efficient feature selection
method called maximizing global information gain (MGIG), which has proved to be
effective for feature selection in the text domain. More recently, Baccianella et al.
[86] presented six novel feature selection methods specifically devised for ordinal
text classification. Another very interested approach has been followed in [87], in
which the goal is to provide feedback to instructors concerning the results obtained
by their student in an open-answer assessment. The only standard assessment that
teachers generally may have in automatic assessment of open-response assignments
is the qualification obtained by the students. In [87], the aim is to analyze the use that
the students make of the corpus of words in their answers to the assessments, relating
them to the qualifications obtained in the peer assessment process. The idea behind
the methodology is to be able to obtain clusters of words that are used by the best
and the worst clusters of responses, thus providing the instructor with a representa-
tion of what has been learned by the students, giving the former the opportunity to
reshape materials that can guide the students to better achieve the learning goal. For
that, the approach uses a representation of the words employed by the students in a
euclidean space with semantic implications, and feature selection methods are used
in order to restrict the words appearing in the clusters devised. This step is critical
for an adequate initialization of the peaks of a posterior Gaussian Mixture Model,
that finally obtains a number of clusters (three, in this application case, although
this is configurable in the method) containing the most used words in the respective
assignments. The instructors are thus provided with the words of those clusters in
the respective quartiles (best and worst), in an attempt to supply a representation of
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the concepts learned by the students, and hopefully allowing them to possibly reori-
ent materials and explanations for a more personalized learning for the students. In
this application area, also ensembles for feature selection have been applied, as in
[88, 89], obtaining better results in performance than those of the individual filter
methods employed in the experiments.

As can be seen, most machine learning methods can take advantage of feature
selection for preprocessing purposes, since it usually improves accuracy and reduces
the computational cost of pattern recognition. Our brief review has covered the
more popular applications for feature selection, but the literature describes many
more application areas, including intrusion detection [1, 90-93] and machinery fault
diagnosis, in which mostly features are extracted and selected after obtaining the raw
signal [94—100].

10.3 The Future: Challenges Ahead for Feature Selection

During the last decade, ongoing advances in computer-based technologies and sen-
soring have enabled researchers and engineers to collect enormous quantities of data
at increasingly fast paces. In this context, in which data analysis is needed to derive
information and knowledge from that data, feature selection has become an almost
indispensable step. However, most feature selection methods were devised before
the Big Data phenomenon, and thus ironically most of the existent methods do not
scale properly [10]. Large-scale data can be found in several application fields, such
as Genomics, Proteomics, Health, Internet search, social networks, finance, busi-
ness sectors, meteorology, complex physics simulations, environmental research, etc.
The characteristics known as the V’s in Big data (volume, velocity, variety, verac-
ity, value, validity, etc.) bring interesting challenges to Machine learning methods,
among which scalability is an essential one, in order to have workable and prac-
tical algorithms that can deal adequately with the scenarios coming into scene. In
[10], the scalability of state-of-the-art feature selection methods is studied, checking
their performance in an artificial controlled experimental scenario, contrasting the
ability of the algorithms to select the relevant features and to discard the irrelevant
ones when the dimensionality increases and without permitting noise or redundancy
to obstruct this process. For analyzing scalability, some evaluation measures were
defined, as different aspects needed to be addressed, not only accuracy, but also sta-
bility and computational time. Also, the measures to be used are different depending
if the feature selection methods were rankers or subset methods. Beside the need of
knowing the scalability properties of the existent methods, new methods that take
into account the new big data scenario are to be designed, and thus an important num-
ber of challenges are emerging, representing current hot spots in feature selection
research.
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10.3.1 Millions of Dimensions

Nowadays machine learning methods need to be able to deal with the unprecedented
scale of data. Analogous to big data, the term “big dimensionality” has been coined
to refer to the unprecedented number of features arriving at levels that are rendering
existing machine learning methods inadequate [27].

The widely-used UCI Machine Learning Repository [101] indicates that, in the
1980s, the maximum dimensionality of data was only about 100. By the 1990s, this
number had increased to more than 1500 and, by 2009, to more than 3 million. If we
focus on the number of attributes of the UCI datasets, 13 have more than 5000 features
and most have a samples/features ratio below 0 —a level that potentially hinders any
learning process. Illustratively, Fig. 10.3 shows the number of features of the highest
dimensionality datasets included in the UCI Machine Learning Repository in the last
seven years. In the popular LIBSVM Database [102] the maximum dimensionality of
the data was about 62000 in the 1990s, increasing to some 16 million in the 2000 s and
to more than 29 million in the 2010s; analogously, 20 of the existing 92 datasets have
more than 5000 features and 11 datasets have many more features than samples.
Seven of the datasets included in these two repositories in the last 9 years have
dimensionality in the order of millions. Apart from these generic repositories, there
are others with specific high dimensionality problems, such as the aforementioned
DNA microarray classification [51] and image analysis [103, 104].

In this scenario, existing state-of-the-art feature selection methods are confronted
by key challenges that potentially have negative repercussions on performance. As
an example, Zhai et al. [27] pointed to more than a day of computational effort by
the state-of-the-art SVM-RFE and mRMR feature selectors to crunch the data for
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Fig. 10.3 Maximum dimensionality of the datasets included in the UCI repository [101] since 2008
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a psoriasis single-nucleotide polymorphism (SNP) dataset composed of just half a
million features.

Moreover, many state-of-the-art feature selection methods are based on algorithm
designs for computing pairwise correlation. The implications when dealing with a
million features are that the computer would need to handle a trillion correlations.
This kind of issue poses an enormous challenge for machine learning researchers that
still remains to be addressed. Some works have already attempted to use ensembles
for feature selection in high dimensionality scenarios, as [105, 106].

10.3.2 Scalability

Most existing learning algorithms were developed for a much smaller dataset size,
but nowadays different solutions are required for the case of small-scale versus
large-scale learning problems. Small-scale learning problems are subject to the usual
approximation-estimation trade-off, that is more complex in the case of large-scale
learning problems, not only because of accuracy but also due to the computational
complexity of the learning algorithms. Furthermore, most algorithms were designed
under the assumption that the dataset would be represented as a single memory-
resident table, and thus they are useless when the entire dataset does not fit in the main
memory, which is the case for many datasets nowadays. Dataset size is therefore one
reason for scaling up machine learning algorithms. However, there are other settings
where a researcher could find the scale of a machine learning task daunting [107],
for instance:

e Model and algorithm complexity: A number of high-accuracy learning algorithms
either rely on complex, non-linear models, or employ computationally expensive
subroutines.

e Inference time constraints: Applications that involve sensing, such as robot navi-
gation or speech recognition, require predictions to be made in real time.

e Prediction cascades: Applications that require sequential, interdependent predic-
tions have a highly complex joint output space.

e Model selection and parameter sweeps: Tuning learning algorithm hyper-
parameters and evaluating statistical significance require multiple learning exe-
cutions.

For all these reasons, scaling up learning algorithms is a trending issue. Cases in
point are the workshop “PASCAL Large Scale Learning Challenge” held at the 25th
International Conference on Machine learning (ICML’2008) and the “Big Learning”
workshop held at the 2011 conference of the Neural Information Processing Systems
Foundation (NIPS2011). Scaling up is desirable because increasing the size of the
training set often increases the accuracy of algorithms [108]. In scaling up learning
algorithms, the issue is not so much one of speeding up a slow algorithm as one of
turning an impracticable algorithm into a practical one. Today, there is a consensus
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in machine learning and data mining communities that data volume presents an
immediate challenge pertaining to the scalability issue [27]. The crucial point is
seldom how fast you can run on a particular problem, but rather how large a problem
you can deal with [109].

Scalability is defined as the impact of an increase in the size of the training set
on the computational performance of an algorithm in terms of accuracy, training
time and allocated memory. Thus the challenge is to find a trade-off among these
criteria —in other words, to obtain “good enough” solutions as “fast” as possible
and as “efficiently” as possible. As explained before, this issue becomes critical in
situations in which there are temporal or spatial constraints as happens with real-time
applications dealing with large datasets, unapproachable computational problems
requiring learning and initial prototyping requiring rapidly implemented solutions.

Similarly to instance selection, which aims at discarding superfluous, i.e., redun-
dant or irrelevant, samples [110], feature selection can scale machine learning algo-
rithms by reducing input dimensionality and therefore algorithm run-time. However,
when dealing with a dataset containing a huge number of both features and sam-
ples, the scalability of the feature selection method also assumes crucial importance.
Since most existing feature selection techniques were designed to process small-
scale data, their efficiency is likely to be downgraded, if not reduced totally, with
high-dimensional data. Figure 10.4 shows run-time responses to modifications to the
number of features and samples for four well-known feature selection ranker meth-
ods applied to the SD1 dataset, a synthetic dataset that simulates DNA microarray
data [10].

In this scenario, feature selection researchers need to focus not only on the accu-
racy of the selection but also on other aspects. One such factor is stability, defined
as the sensitivity of the results to training set variations. The other important fac-
tor, scalability, refers to feature selection response to an increasingly large training
set. Few studies have been published regarding filter behavior in small training sets
with a large number of features [18, 111-113] and even fewer on the issue of scal-
ability [114]. What studies do exist are mainly focused on scalability in particu-
lar applications [115], modifications of existing approaches [116], combinations of
instance and feature selection strategies [117] and online [118] and parallel [119]
approaches. A recent paper by Tan et al. [1] describes a new adaptive feature-scaling
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method —applied to several synthetic and real big datasets; based on group feature
selection and multiple kernel learning, it enables scalability to big data scenarios.

Broadly speaking, although most classical univariate feature selection approaches
(with each feature considered separately) have an important advantage in terms of
scalability, they ignore feature dependencies and thus potentially perform less well
than other feature selection techniques. Multivariate techniques, in contrast, may
improve performance, but at the cost of reduced scalability [7].

Very recently, other authors [120] have presented a novel algorithm (based on
the Hilbert-Schmidt independence criterion and Singular Value Decomposition) for
feature selection from gene expression data, although the method can be applied
to any type of problem and variables. As the algorithm does not require the whole
dataset to be stored in memory, it can be scaled easily to large datasets massively
distributed.

The scalability of a feature selection method is thus crucial and deserves more
attention from the scientific community. One of the solutions commonly adopted
to deal with the scalability issue is to distribute the data into several processors,
discussed in the following section.

10.3.3 Distributed Feature Selection

As mentioned above, feature selection has been applied traditionally in a centralized
manner, i.e., a single learning model is used to solve a given problem. However,
since nowadays distributed data scenarios are quite common, feature selection can
take advantage of processing multiple subsets in sequence or concurrently. There are
several ways to distribute a feature selection task [121] (note: real-time processing
will be discussed in Sect. 10.3.4):

1. The data is in one very large dataset. The data can be distributed on several
processors, an identical feature selection algorithm can be run on each and the
results combined.

2. The data may be in different datasets in diverse locations (e.g., in different parts
of a company or even in different cooperating organizations). As for the previous
case, an identical feature selection algorithm can be run on each and the results
might be combined.

3. Large volumes of data may be arriving in a continuous infinite stream in real time.
If the data is all streaming into a single processor, different parts can be processed
by different processors acting in parallel. If the data is streaming into different
processors, they can be handled as in the previous case above.

4. The dataset is not particularly large but different feature selection methods need to
be applied to learn unseen instances and combine results (by some kind of voting
system) [6, 8, 35, 56, 122]. The whole dataset may be in a single processor,
accessed by identical or different feature selection methods that access all or part
of the data. This last approach, feature selection ensemble, is the subject of this
book.
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Fig. 10.5 Partitioned feature selection scenarios. The data may be in different locations, or even if
the data is in one very large dataset, it might be distributed in several processors

Figures 10.5 and 10.6 show different partitioned feature selection scenarios. In
the first one, Fig. 10.5 the situation described in the second case, that is, the original
data is distributed between several processors and local results are combined in a
final result, is represented. The second scheme, Fig. 10.6, represents the situation
described in the last case above, that is, the data is replicated on different processors,
local results are obtained as a consequence of applying different feature selection
methods and, again, local results are combined into a global result.

As mentioned, most existing feature selection methods are not expected to scale
efficiently when dealing with millions of features; indeed, they may even become
inapplicable. A possible solution might be to distribute the data, run feature selec-
tion on each partition and then combine the results. The two main approaches to
partitioned data distribution are by feature (vertically) or by sample (horizontally).
Distributed learning has been used to scale up datasets that are too large for batch
learning by samples [15, 123, 124]. While distributed learning is not common, there
have been some developments regarding data distribution by features [13, 125]. One
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Fig. 10.6 Partitioned feature selection scenarios, the ensemble paradigm: The dataset might be in
one or several locations, and one or several feature selections could be applied

proposal is a distributed method where data partitioning is both vertical and horizontal
[126]. Another is a distributed parallel feature selection method that can read data in
distributed form and perform parallel feature selection in symmetric multiprocessing
mode via multithreading and massively parallel processing [119]. However, when
dealing with big dimensionality datasets, researchers, of necessity, have to partition
by features. In the case of DNA microarray data, the small sample size combined
with big dimensionality prevents the use of horizontal partitioning. However, the
previous mentioned vertical partitioning methods do not take into account some of
the particularities of these datasets, such as the high redundancy among features, as
is done in the methods described by Sharma et al. [127] and Bol6n-Canedo et al.
[4], the latter at a much lower computational cost. In [128] a distributed approach
for partitioned data using both the two standard techniques above, horizontal (i.e. by
samples) and vertical (i.e. by features) is described. Unlike other existing procedures
to combine the partial outputs obtained from each partition of data, the algorithm
proposed employs a merging process using the theoretical complexity of the feature
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subsets. The method obtains competitive results both in terms of runtime and classi-
fication accuracy.

Several paradigms for performing distributed learning have emerged in the last
decade. MapReduce [9] is one such popular programming model with an associ-
ated implementation for processing and generating large data sets with a parallel,
distributed algorithm on a cluster. Hadoop, developed by Cutting and Cafarella in
2005 [27], is a set of algorithms for distributed storage and distributed processing of
very large datasets on computer clusters; it is built from commodity hardware and
has a processing part based on MapReduce. Developed more recently, is Apache
Spark [129], a fast, general engine for large-scale data processing, popular among
machine learning researchers due to its suitability for iterative procedures. Developed
within the Apache Spark paradigm was MLIib [130], created as a scalable machine
learning library containing algorithms. Although it already includes a number of
learning algorithms such as SVM and naive Bayes classification, k-means cluster-
ing, etc., as yet, it includes no feature selection algorithms. This poses a challenge
for machine learning researchers, as well as offering an opportunity to initiate a new
line of research. In fact, there have been several works that have developed versions
of well-known algorithms that can run under Spark, as in [131-134].

Another open line of research is the use of graphics processing units (GPUs) to
distribute and thus accelerate calculations made in feature selection algorithms. With
many applications to physics simulations, signal processing, financial modelling,
neural networks, and countless other fields, parallel algorithms running on GPUs
often achieve up to 100x speedup over similar CPU algorithms. The challenge now
is to take advantage of GPU capabilities to adapt existing state-of-the-art feature
selection methods to be able to cope effectively and accurately with millions of
features, as it has been described in [133], with a GPU version of the state-of-the-art
and widely used mRMR algorithm.

10.3.4 Real-Time Processing

Data nowadays is being collected at an unprecedented fast pace and for its analysis to
be useful, needs to be processed rapidly. Social media networks and portable devices
dominate our day-to-day and we need sophisticated methods that are capable of deal-
ing with vast amounts of data in real time, e.g., for spam detection and video/image
detection [27].

Classical batch learning algorithms cannot deal with continuously flowing data
streams, which require online approaches. Online learning [ 135], which is the process
of continuously revising and refining a model by incorporating new data on-demand,
has become a trending area in the last few years, because it solves important problems
for processes occurring in time (e.g., a stock value given its history and other external
factors). The mapping process is updated in real time and as more samples are
obtained. Online learning can also be useful for extremely large-scale datasets, since
a possible solution might be to learn data in a sequential fashion.
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Online feature selection has not received the same attention as online learning
[135]. Nonetheless, a few studies exist that describe attempts to select relevant fea-
tures in a scenario in which both new samples and new features arise. Zhang et al.
[136] proposed an incremental feature subset selection algorithm which, originat-
ing in the Boolean matrix technique, efficiently selects useful features for the given
data objective. Nevertheless, the efficiency of the feature selection method was not
tested with an incremental machine learning algorithm. Katakis et al. [137] pro-
posed the idea of a dynamic feature space, whereby features selected from an initial
collection of training documents are subsequently considered by the learner during
system operation. However, features may vary over time and an initial training set is
often not available in some applications. Thus, their proposal combined incremental
feature selection with what they called a feature-based learning algorithm to deal
with online learning in high-dimensional data streams. This same framework was
applied to the special case of concept drift [138] inherent to textual data streams
(i.e., the appearance of new predictive words over time). The approach however is
limited to those datasets in which features have discrete values. Perkins et al. [139]
described a novel and flexible approach, called grafting, which treats the selection of
suitable features as an integral part of learning a predictor in a regularized learning
framework. What makes grafting suitable for large problems is that it operates in an
incremental iterative fashion, gradually building up a feature set while training a pre-
dictor model using gradient descent. Perkins and Theiler [140] tackled the problem
of features arriving one at a time rather than being available from the outset; their
approach, called online feature selection (OFS), assumes that, for whatever reason,
it is not worthwhile waiting until all features have arrived before learning begins.
They thus derived a “good enough” mapping function from inputs to outputs based
on a subset of features seen so date. The potential of OFS in the image processing
domain was demonstrated by applying it to the problem of edge detection [141].
A promising alternative method, called online streaming feature selection (OSFS),
selects strongly relevant and non-redundant features [142]. In yet another approach,
two novel online feature selection methods use relevance to select features on the fly;
redundancy is only later taken into account, when these features come via streaming,
but the number of training examples remains fixed [143]. Finally, the literature con-
tains a number of studies referring to online feature selection and classification. One
is an online learning algorithm for feature extraction and classification, implemented
for impact acoustics signals to sort hazelnut kernels [144]. Another, by Levi and
Ullman [145], proposed classifying images by ongoing feature selection, although
their approach only uses a small subset of the training data at each stage. Yet another
describes online feature selection performed based on the weights assigned to each
classifier input [146].

As can be seen, online feature selection has been dealt with mostly on an individual
basis, i.e., by pre-selecting features in a step independent of the online machine learn-
ing step, or by performing online feature selection without subsequent online classi-
fication. Therefore, achieving real-time analysis and prediction for high-dimensional
datasets remains a challenge for computational intelligence on portable platforms.
The question now is to find flexible feature selection methods capable of modifying
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the selected subset of features as new training samples arrive. It is also desirable for
these methods to be executed in a dynamic feature space that would initially be empty
but would add features as new information arrived (e.g., documents in their text cate-
gorization application). In this regard, in [ 147], an interesting method that covers both
online feature selection and online learning is proposed. Notice that after an online
feature selection process, where the set of relevant features might change over time,
the classification algorithm has to be capable of updating its model according not
only to new samples but also to new features, limiting the alternatives available capa-
ble of coping with both requirements. The proposal includes a re-implementation of
the 2 metric [148] chosen due to its simplicity and effectiveness, as well as having
some characteristics that make it inherently incremental. As this filter requires data to
be discrete, k-means discretizer [149] was also adapted to make it incremental. The
last step of the online pipeline proposed requires an incremental classifier. But those
available in the literature are incremental in the instance space, but not in the feature
space. Thus, an online training algorithm for one-layer artificial neural networks is
also developed. The learning algorithm continuously adapts the input layer to those
features, that remind might vary in number, selected at each time.

10.3.5 Feature Cost

Most of the new feature selection methods being developed focus more on removing
irrelevant and redundant features rather than on the cost of obtaining those input
features. The cost associated with a feature is related with different concepts. For
example, a pattern in medical diagnostics consists of observable symptoms (such as
age, sex, etc.), which have no cost, along with the results of tests, which are associ-
ated with costs and risks; as one example, invasive exploratory surgery is much more
expensive and risky than a blood test [ 150]. Another example of feature extraction risk
is given by Bahamonde et al. [151], where zoometry on living animals is necessary
to evaluate the merits of beef cattle. Another different cost is that related to computa-
tional issues. In the medical imaging field, feature extraction from a medical image
can be computationally costly; moreover, in the texture analysis technique known
as co-occurrence features [152], the fact that the computational cost of extracting
each feature varies implies different computational times. In real-time applications,
the space complexity is negligible, whereas the time complexity is crucial [153].
Figure 10.7 shows some examples of feature cost.!

'Sources: “IBM Blue Gene P supercomputer” by Argonne National Laboratory’s Flickr
page - originally posted to Flickr as Blue Gene / PFrom Argonne National Laboratory.
Uploaded using F2ComButton. Licensed under CC BY-SA 2.0 via Wikimedia Commons
- http://commons.wikimedia.org/wiki/File:IBM_Blue_Gene_P_supercomputer.jpg#mediaviewer/
File:IBM_Blue_Gene_P_supercomputer.jpg.

“Computed tomography of human brain - large” by Department of Radiology, Uppsala
University Hospital. Uploaded by Mikael Haggstrom. Licensed under CCO via Wikimedia
Commons - http://commons.wikimedia.org/wiki/File:Computed_tomography_of_human_brain_-
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Fig. 10.7 Three examples of features with a cost. a Computational cost has become a significant
issue in big data scenarios. b In medical diagnosis, the cost of a scan is not the same as the cost of
a blood test. ¢ Zoometry in living animals has an added cost in the form of risk

As one may notice, features with an associated cost can be found in many real-life
applications. However, this has not been the focus of much attention for machine
learning researchers. Most of the works have only considered the mis-classification
cost, which is the penalty that is received while deciding that an object belongs to a
class that it is not the real one [154].

There have been some attempts to balance the contribution of features and their
cost. For instance, in classification, Friedman [155] included a regularization term
to the traditional linear discriminant analysis (LDA); the left side term of their cost
function evaluates error and the right side term is a regularization parameter weighted
with A, providing a framework in which different regularized solutions may appear
depending on XA value. Related to feature extraction, You et al. [156] proposed a
criterion to select kernel parameters based on maximizing between-class scatter-
ing and minimizing within-class scattering. A general classification framework for

_large.png#mediaviewer/File:Computed_tomography_of_human_brain_-_large.png
“Glanrind 1”. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.
wikimedia.org/wiki/File:Glanrind_1.jpg#mediaviewer/File:Glanrind_1.jpg.
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application to face recognition was proposed by Wright et al. [157] to study feature
extraction and robustness to occlusion by obtaining a sparse representation. This
method, instead of measuring correlation between feature and class, evaluates the
representation error.

Despite the previous attempts at classification and feature extraction, there are a
smaller number of works that deal with this issue in feature selection. In the early
1990s, Feddema et al. [153] developed methodologies for the automatic selection
of image features by a robot. For this selection process, they employed a weighted
criterion that took into account the computational cost of features, i.e., the time and
space complexities of the feature extraction process. Several years later, Yang and
Honavar [150] proposed a genetic algorithm to perform feature subset selection,
designing the fitness function on the basis of the two criteria of neural network
accuracy in classification and classification cost (defined as the cost of measuring the
value of a particular feature needed for classification, the risk involved, etc.). Huang
and Wang [158] also used a genetic algorithm for feature selection and parameter
optimization for a support vector machine, using classification accuracy, the number
of selected features and the feature cost as criteria to design the fitness function.
A hybrid method for feature subset selection based on ant colony optimization and
artificial neural networks has also been described [159], in which the heuristic that
enables ants to select features is the inverse of the cost parameter. More recently,
a new general framework was proposed that consists of adding a new term to the
evaluation function of any feature selection method so that the feature cost is taken
into account [160].

In Xu et al. [161], the authors examined two main components of test-time CPU
cost, namely, classifier evaluation cost and feature extraction cost, and showed how
to balance these costs with classification accuracy. Finally, in [162], an exponent
weighted algorithm for minimal cost feature selection is proposed, in which the
exponent weighted function of feature significance is constructed to increase the
efficiency of the algorithm. The exponent weighted function is based on the infor-
mation entropy, test cost, and a user-specified non-positive exponent.

In some other works, features are selected at testing time, providing that the
whole feature subset is learned at training time from some source. In [163], an
original method for providing personalized energy estimates (electricity and natural
gas consumption) to prospective tenants is proposed. At training time, a cost-based
forward selection algorithm selects relevant features from an establish dataset (the
Residential Energy Consumption Survey), and combine low-cost features that are
extractable from rental advertisements with relevant higher-cost features related to
occupant behavior and home infrastructure. At test time, the aim is to make a per-
sonalized estimate for a new renter-home pair, and the algorithm dynamically orders
questions for each user. These questions are based on which features inclusion would
most improve the certainty of the prediction, given the information that is already
known. The method show very good performance asking only a small percentage,
around 20% of the total features. Other authors, as [164] propose a dynamic feature
selection algorithm that automatically trades off feature cost and accuracy at the
instance level. In their setting, they assume a pre-trained model using a complete
set of features is given and each feature has a known cost. At test time, the aim is
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to dynamically select a subset of features for each instance and be able to explic-
itly specify the cost-accuracy trade-off. The problem is confronted as a sequential
decision-making problem, employing a Markov Decision Process. This framework
permits searching for an optimal purchasing policy under a reward function that
combines both cost and accuracy.

Although the issue of reducing the cost associated with feature selection has
received some attention in the last few years, novel feature selection methods that
can deal with large-scale and real-time applications are urgently needed since com-
putation cost must be budgeted and accounted for. The new opportunity for machine
learning researchers is to match the accuracy of state-of-the-art algorithms while
reducing computational cost.

10.3.6 Missing Data

Missing data is a relatively common problem in many real-world scenarios and have
to be considered in practice [165]. For example, 45% of the datasets in UCI machine
learning repository, which is one of the most popular collection of benchmark datasets
for machine learning, contain missing values. There are several different mechanisms
for which data can be missing, from problems or inadequate functioning in sensor
devices, people refusing answering to some of the questions in surveys, lack of
adequate equipment to measure some data in certain specific situations (for example
if several hospitals are conducting an study) or simply data lost. According to the
work described in [166, 167] missing data can be classified in three main types with
the aim of studying testability and recoverability of the statistical analysis of the
results, as missing data introduce an element of ambiguity:

1. Missing Completely At Random (MCAR). This mechanism assumes that the prob-
ability of missing V,, is independent of V,, or any other variable in the study. For
example, data are MCAR if the subjects of a survey decide to reveal their age
based on flip-coins.

2. Missing At Random (MAR). This mechanism assumes that for all cases Y,
P(R|Y,ps, Yimiss) = P(R|Y,ps) Where Y, denotes the observed component of
Y and Y,,;ss the missing component. For example, data are MAR if men in the
population are more likely to reveal their age.

3. Missing Not At Random (MNAR). If the missingness mechanism are neither MCAR
nor MAR are called as MNAR. This mechanism assumes that the value of the
variable that is missing is related to the reason it is missing. For example, online
shoppers rate an item with a high probability either if they love the item or if
they loathe it. In other words, the probability that a shopper supplies a rating is
dependent on the shopper’s underlying liking [168].

There are several methods for dealing with missing data [19, 169], and several
studies have been published on their influence on classification and prediction, but
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however its importance, very few studies have dealt with the problem of analyzing
the impact that missing data has on a very commonly used and needed pre-processing
step: feature selection [170]. The problem is that feature selection algorithms tradi-
tionally did not consider the missing data scenarios. In [171] the authors overcome the
problem by designing an approach that can perform feature selection in high dimen-
sional datasets without the need of previous imputation, and in [172] the authors
propose a new approach, based on the concept of mutual information. The proposed
procedures avoid the need for any prior imputation of the data. Other authors con-
sider both feature selection and missing values imputation processes together, as the
second can influence the results of the first. A few works tried to address this problem
for classification [173], and prediction [174]. However as said above most methods
address imputation or feature selection separately without considering a statistical
model, in [175] the authors extend the Bayesian framework to jointly address both
problems, with minimum mean square error (MMSE) estimates of missing values and
by maximizing the number features correctly identified. Optimal feature selection
and missing value estimation can be solved in closed form for independent Gaussian
models, and fast sub-optimal methods are proposed for dependent Gaussian models.
Finally, in [176], a wrapper method is devised that uses a combination of particle
swarm optimization (PSO) and a classifier able to classify incomplete data (C4.5),
and it has been successfully used to remove redundant/irrelevant features in incom-
plete data. The same authors, in [177] applied the same idea using a combination of
PSO and Bagging, for the feature selection step, and again using C4.5 as classifier.

Carrying out imputation before applying feature selection is a common practice,
and can introduce important bias in the data set, which effects have not been studied
in depth yet. A preliminary study of the effects that different imputation strategies
might have over the features, either negative or positive, as for example yielding
false positives or reducing false negatives, is presented in [178]. As future work, new
feature selection methods that do not require previous imputation while being robust
to missing data are needed. In this context, ensembles might be a very interesting
approach to test.

10.3.7 Visualization and Interpretability

In recent years, several dimensionality reduction techniques for data visualization
and preprocessing have been developed. However, although the aim may be better
visualization, most techniques have the limitation that the features being visualized
are transformations of the original features [113, 179, 180]. Thus, when model inter-
pretability is important, feature selection is the preferred technique for dimensionality
reduction.

A model is only as good as its features, for which reason features have played
and will continue to play a preponderant role in model interpretability. Users have
a twofold need for interpretability and transparency in feature selection and model
creation processes:
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e they need more interactive model visualizations where they can change input
parameters to better interact with the model and visualize future scenarios, and

e they need more interactive feature selection process where, using interactive visu-
alizations, they are empowered to iterate through different feature subsets rather
than be tied to a specific subset chosen by an algorithm.

Some recent works describe using feature selection to improve the interpretability
of models obtained in different fields. One example is a method for the automatic
and iterative refinement of a recommender system, in which the feature selection
step selects the best characteristics of the initial model in order to automatically
refine it [181]. Another is the use of feature selection to improve decision trees —
representing agents simulating personnel in an organization so as to model sustain-
ability behaviours— through an expert review of their theoretical consistency [182].
Yet another is a generative topographic mapping-based data visualization approach
that estimates feature saliency simultaneously as the visualization model is trained
[183]. Krause et al. [184] describe a tool in which visualization helps users develop
a predictive model of their problem by allowing them to rank features (according to
predefined scores), combine features and detect similarities between dimensions.

However, data is everywhere, continuously increasing, and heterogeneous. We
are witnessing a form of Diogenes syndrome referring to data: organizations are
collecting and storing tonnes of data, but most do not have the tools or the resources
to access and generate strategic reports and insights from their data. Organizations
need to gather data in a meaningful way, so as to evolve from a data-rich/knowledge-
poor scenario to a data-rich/knowledge-rich scenario. The challenge is to enable
user-friendly visualization of results so as to enhance interpretability. The complex-
ity implied by big data applications also underscores the need to limit the growth
in visualization complexity. Thus, even though feature selection and visualization
have been dealt with in relative isolation from each other in most research to date,
the visualization of data features may have an important role to play in real-world
high dimensionality scenarios. However, it is also important to bear in mind that,
although visualization tools are increasingly used to interpret and make complex
data understandable, the quality of associated decision making is often impaired due
to the fact that the tools fail to address the role played by heuristics, biases, etc.
in human-computer interactive settings. Therefore, interactive tools similar to that
described by Krause et al. [184] are an interesting line of research.

10.4 Summary

As can be seen throughout this book, feature selection is a much needed preprocessing
step when dealing with large-scale data. It is useful for coping with scenarios with a
large number of both input features and samples. However, it is especially important
now that the term “Big Dimensionality” has been introduced as a consequence of
the explosion of “Big Data.”
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The suitability of using feature selection has been demonstrated in a variety of
applications that require the processing of huge amounts of data, some of which
have also benefited from the ensemble paradigm for selecting adequate features.
With this new scenario, there are a number of opportunities open for machine learning
researchers. The need for scalable yet efficient methods is obvious, since existing fea-
ture selection methods will be inadequate for coping with this unprecedented number
of features. Moreover, the society has expressed new necessities, such as distributed
learning or real-time processing, where there is still an important gap that needs to
be filled. However, the challenges arising in feature selection as a general field are
also the challenges for the ensemble application in this regard: recent years have
witnessed the creation of datasets with features numbering in the order of millions;
furthermore, it seems clear that this number will only continue to increase, given
the rapid advances in computing and information technologies. This new scenario
offers both opportunities and challenges to machine learning researchers. There is a
growing need for scalable yet efficient feature selection methods, given that existing
methods are likely to prove inadequate to cope with such an unprecedented number
of features. Furthermore, new needs are arising in society, such as in the areas of
distributed learning and real-time processing, where an important gap that needs to
be filled is developing. Beyond a shadow of doubt, the explosion in the number of
features points to a number of hot spots for feature selection researchers to launch
new lines of research.

References

1. Tan, M., Tsang, I.W., Wang, L.: Towards ultrahigh dimensional feature selection for big data.
J. Mach. Learn. Res. 15(1), 1371-1429 (2014)

2. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for
large scale multitask learning. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp 1113-1120 (2009)

3. Donoho, D.L.: High-dimensional data analysis: the curses and blessings of dimensionality. In:
Proceedings of the AMS Conference on Math Challenges of the 21st century, pp. 1-32 (2000)

4. Guyon, L.: Feature Extraction: Foundations and Applications. Springer, Berlin (2006)

5. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection
techniques. Springer. In: Machine learning and knowledge discovery in databases (2008)

6. Seijo-Pardo, B., Porto-Diaz, I., Bolén-Canedo, V., Alonso-Betanzos, A.: Ensemble feature
selection: Homogeneous and heterogeneous approaches. Knowl. Based Syst. (2017). https://
doi.org/10.1016/j.knosys.2016.11.017

7. Alonso-Betanzos, A., Bolon-Canedo, Y., Fernandez-Francos, D., Porto-Diaz, 1., Sanchez-
Maroiio, N.: Up-to-Date feature selection methods for scalable and efficient machine learning.
In: Igelnik, B., Zurada, J.M. (eds.) Efficiency and Scalability Methods for Computational Intel-
lect, pp. 1-26. IGI Global (2013)

8. Seijo-Pardo, B., Bol6n-Canedo, V., Alonso-Betanzos, A.: Testing different ensemble configu-
rations for feature selection. Neural Process. Lett. 46, 857-880 (2017)

9. Bolon-Canedo, V., Sanchez-Maroiio, N., Alonso-Betanzos, A.: A review of feature selection
methods on synthetic data. Knowl. Inf. Syst. 34(3), 483-519 (2013)


https://doi.org/10.1016/j.knosys.2016.11.017
https://doi.org/10.1016/j.knosys.2016.11.017

198 10 Emerging Challenges

10. Bol6n-Canedo, V., Rego-Fernandez, D., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-
Berdifias, B., Sdnchez-Marofio, N.: On the scalability of feature selection methods on high-
dimensional data. Knowl. Inf. Syst. (2017). https://doi.org/10.1007/s10115-017-1140-3

11. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble
feature selection. Inf. Fusion 6(1), 83-98 (2005)

12. Bolén-Canedo, V., Sanchez-Marofio, N., Alonso-Betanzos, A.: Recent advances and emerging
challenges of feature selection in the context of big data. Knowl. Based Syst. 86, 33—45 (2015)

13. McConnell, S., Skillicorn, D.B.: Building predictors from vertically distributed data. In: Con-
ference of the Centre for Advanced Studies on Collaborative Research, pp. 150-162. IBM
Press (2004)

14. Seijo-Pardo,B., Bol6n-Canedo,V., Alonso-Betanzos,A.: Using data complexity measures for
thresholding in feature selection rankers. In: Proceedings of the Advances in Artificial Intelli-
gence. 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA Lecture
Notes in Artificial Intelligence, LNAI-9868, pp 121-131 (2016)

15. Tsoumakas, G., Vlahavas, L.: Distributed data mining of large classifier ensembles. In: 2nd
Hellenic Conference on Atrtificial Intelligence, pp. 249-256 (2002)

16. Molina, L.C., Belanche, L., Nebot: A Feature selection algorithms: a survey and experimental
evaluation. In: Proceedings of the IEEE International Conference on Data Mining. ICDM 2003,
pp- 306-313 (2002)

17. Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods in the clas-
sification of high-dimension data. Pattern Recognit. 42(3), 409-424 (2009)

18. Brown, G., Pocock, A., Zhao, M., Lujan, M.: Conditional likelihood maximisation: a unifying
framework for information theoretic feature selection. J. Mach. Learn. Res. 13(1), 27-66 (2012)

19. Garcia, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Berlin (2015)

20. Chen, X., Ye, Y., Xu, X., Huang, J.Z.: A feature group weighting method for subspace clustering
of high-dimensional data. Pattern Recognit. 45(1), 434-446 (2012)

21. Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-
dimensional data. IEEE Trans. Knowl. Data Eng. 25(1), 1-14 (2013)

22. Chen, D., Cao, X., Wen, F.,, Sun, J.: Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3025-3032 (2013)

23. Yamada, M., Jitkrittum, W., Sigal, L., Xing, E.P., Sugiyama, M.: High-dimensional feature
selection by feature-wise kernelized Lasso. Neural Comput. 26(1), 185-207 (2014)

24. Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection. IEEE Trans.
Knowl. Data Eng. 25(3), 619-632 (2013)

25. Gan, J.Q., Hasan, B.A.S., Tsui, C.S.L.: A filter-dominating hybrid sequential forward floating
search method for feature subset selection in high-dimensional space. Int. J. Mach. Learn.
Cybern. 5(3), 413-423 (2014)

26. Maldonado, S., Weber, R., Famili, F.: Feature selection for high-dimensional class-imbalanced
data sets using support vector machines. Inf. Sci. 286, 228-246 (2014)

27. Zhai, Y., Ong, Y., Tsang, I.: The emerging Big Dimensionality. IEEE Comput. Intell. Mag.
9(3), 14-26 (2014)

28. Jawanpuria, P., Varma, M., Nath, S.: On p-norm path following in multiple kernel learning for
non-linear feature selection. In: Proceedings of the 31st International Conference on Machine
Learning ICML-14), pp 118-126 (2014)

29. Maldonado, S., Weber, R., Basak, J.: Simultaneous feature selection and classification using
kernel-penalized support vector machines. Inf. Sci. 181(1), 115-128 (2011)

30. Zakharov, R., Dupont, P.: Stable Lasso for high-dimensional feature selection through proximal
optimization. In: Regularization and Optimization and Kernel Methods and Support Vector
Machines: Theory and Applications, Brussels and Belgium (2013)

31. Hsu, H., Hsieh, C., Lu, M.: Hybrid feature selection by combining filters and wrappers. Expert
Syst. Appl. 38(7), 8144-8150 (2011)

32. Lee, C., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl.
Soft Comput. 11(1), 208-213 (2011)


https://doi.org/10.1007/s10115-017-1140-3

References 199

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

Uguz, H.: A two-stage feature selection method for text categorization by using information
gain, principal component analysis and genetic algorithm. Knowl. Based Syst. 2487, 1024—
1032 (2011)

Xie, J., Wang, C.: Using support vector machines with a novel hybrid feature selection method
for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 38(5), 5809-5815 (2011)
Bolén-Canedo, V., Sanchez-Marofio, N., Alonso-Betanzos, A.: Data classification using an
ensemble of filters. Neurocomputing 135, 13-20 (2014)

Haury, A.C., Gestraud, P., Vert, J.P.: The influence of feature selection methods on accuracy,
stability and interpretability of molecular signatures. PloS one 6(12), €28210 (2011)
Khakabimamaghani, S., Barzinpour, F., Gholamian, M.: Enhancing ensemble performance
through feature selection and hybridization. Int. J. Inf. Process. Manag. 2(2) (2011)

Yang, J., Yao, D., Zhan, X., Zhan, X.: Predicting disease risks using feature selection based on
random forest and support vector machine. In: Bioinformatics Research and Applications. pp
1-11. Springer (2014)

Yang, F., Mao, K.Z.: Robust feature selection for microarray data based on multicriterion
fusion. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 8(4), 1080-1092 (2011)
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classifi-
cation of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77-87 (2002)

Lee, J.W., Lee, J.B., Park, M., Song, S.H.: An extensive comparison of recent classification
tools applied to microarray data. Comput. Stat. Data Anal. 48(4), 869-885 (2005)

Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass clas-
sification methods for tissue classification based on gene expression. Bioinformatics 20(15),
2429-2437 (2004)

Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression
data. J. Bioinf. Comput. Biol. 3(2), 185-205 (2005)

Gevaert, O., Smet, F., Timmerman, D., Moreau, Y., Moor, B.: Predicting the prognosis of breast
cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics
22(14), 184—190 (2006)

Wang, Y., Tetko, I.V., Hall, M.A,, Frank, E., Facius, A., Mayer, K.F.X., Mewes, H.W.: Gene
selection from microarray data for cancer classification: a machine learning approach. Comput.
Biol. Chem. 29(1), 37-46 (2005)

Yeung, K.Y., Bumgarner, R.E.: and others Multiclass classification of microarray data with
repeated measurements: application to cancer. Genome Biol. 4(12), 83—-83 (2003)

Blanco, R., Larrafiaga, P., Inza, 1., Sierra, B.: Gene selection for cancer classification using
wrapper approaches. Int. J. Pattern Recognit. Artif. Intell. 18(8), 1373-1390 (2004)

Inza, I., Larrafiaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection
approaches in DNA microarray domains. Artif. intell. Med. 31(2), 91-103 (2004)
Jirapech-Umpai, T., Aitken, S.: Feature selection and classification for microarray data analysis:
Evolutionary methods for identifying predictive genes. BMC Bioinform. 6819, 148 (2005)
Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from
microarray data for cancer classification. Pattern Recognit. 39(12), 2383-2392 (2006)
Bolon-Canedo, V., Sanchez-Marofio, N., Alonso-Betanzos, A., Benitez, J.M., Herrera, F.: A
review of microarray datasets and applied feature selection methods. Inf. Sci. 282, 111-135
(2014)

Liu, H., Liu, L., Zhang, H.: Ensemble gene selection by grouping for microarray data classifi-
cation. J. Biomed. Inf. 43(1), 81-87 (2010)

Seijo-Pardo, B., Bolén-Canedo, V., Alonso-Betanzos, A.: Using a feature selection ensemble
on DNA microarray datasets. Proc. Eur. Symp. Artif. Neural Netw. Comput. Intell. Mach.
Learn. ESANN 2016, 277-282 (2016)

Sharbaf, F.V., Mosafer, S., Moattar, M.H.: A hybrid gene selection approach for microarray
data classification using cellular learning automata and ant colony optimization. Genomics
107(6), 231-238 (2016)

Basu, M., Ho, T.K.: Data Complexity in Pattern Recognition. Springer Science & Business
Media (2006)



200 10 Emerging Challenges

56. Seijo-Pardo, B., Bolén-Canedo, V., Alonso-Betanzos, A.: On developing an automatic threshold
applied to feature selection ensembles. Inf. Fusion (2018). https://doi.org/10.1016/j.inffus.
2018.02.007

57. Guyon, L., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46, 1-3 (2002)

58. Mejia-Lavalle, M., Sucar, E., Arroyo, G.: Feature selection with a perceptron neural net. In:
Proceedings of the International Workshop on Feature Selection for Data Mining, pp. 131-135
(2006)

59. Ohanian, P.P.,, Dubes, R.C.: Performance evaluation for four classes of textural features. Pattern
Recognit. 25(8), 819-833 (1992)

60. Remeseiro, B., olén-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdifias,
B., Mosquera, A., Penedo, M.G., Sanchez-Marofio, N.: A methodology for improving tear film
lipid layer classification. IEEE J. Biomed. Health Inf. 18(4), 1485-1493 (2014)

61. Chowriappa, P., Dua, S., Acharya, U.R., Krishnan, M.M.R.: Ensemble selection for feature-
based classification of diabetic maculopathy images. Comput. Biol. Med. 43(12), 2156-2162
(2013)

62. Goh, J., Thing, V.L.L.: A hybrid evolutionary algorithm for feature and ensemble selection in
image tampering detection. Int. J. Electron. Secur. Digit. Forensics 7(1), 76-104 (2015)

63. Huda, S., Yearwood, J., Jelinek, H.F., Hassan, M.M., Fortino, G., Buckland, A.: Hybrid feature
selection with ensemble classification for imbalanced healthcare data: a case study for brain
tumor diagnosis. IEEE Access 4, 9145-9154 (2016)

64. Sivapriya, T.R., Kamal ARNB, Thangaiah, PR.J.: Ensemble merit merge feature selection for
enhanced multinomial classification in alzheimers dementia. Comput. Math. Methods Med.
676129 (2015). https://doi.org/10.1155/2015/676129

65. Varol, E., Gaonkar, B., Erus, G., Schultz, R., Davatzikos, C.: Feature ranking based nested
Support Vector Machine ensemble for medical image classification. In: Proceedings IEEE
International Symposium on Biomedical Imaging: From Nano To Macro IEEE International
Symposium on Biomedical Imaging, pp. 146-149 (2012). https://doi.org/10.1109/ISBI.2012.
6235505

66. Reeve, H.W.]J., Brown, G.: Modular Autoencoders for ensemble feature extraction. J. Mach.
Learn. Res. 44, 242-259 (2015). NIPS

67. Tang,S., Pan, T.: Feature Extraction via Recurrent Random Deep Ensembles and its Application
in Group-level Happiness Estimation. arXiv:1707.09871v1 [cs.CV] 24 Jul 2017 (2017)

68. Yang, J., Zhang, D., Yong, X., Yang, J.: Two-dimensional discriminant transform for face
recognition. Pattern Recognit. 38(7), 125-1129 (2005)

69. Lu, J., Zhao, T., Zhang, Y.: Feature selection based-on genetic algorithm for image annotation.
Knowl. Based Syst. 21(8), 887-891 (2008)

70. Polyakova, A., L Lipinskiy, L.: A study of fuzzy logic ensemble system performance on face
recognition problem. IOP Conf. Ser. Mater. Sci. Eng. 173(1), 012013 (2017)

71. de S Matos, F.M., Batista, L.V.: and others Face recognition using DCT coefficients selection.
In: Proceedings of the 2008 ACM symposium on Applied computing, pp. 17531757 (2008)

72. Lee, S.H., Choi, J.Y., Plataniotis, K.N., Ro, Y.M.: Color component feature selection in feature-
level fusion based color face recognition. In: Proceedings of the IEEE International Conference
on Fuzzy Systems (FUZZ), pp. 1-6 (2010)

73. Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for
face recognition. IEEE Trans. Image Process. 18(8), 1885-1896 (2009)

74. Amine, A., El Akadi, A., Rziza, M., Aboutajdine, D.: Ga-SVM and mutual information based
frequency feature selection for face recognition, GSCM-LRIT, Faculty of Sciences, p. 1014.
Mohammed V University, BP (2009)

75. Kanan, H.R., Faez, K.: Animproved feature selection method based on ant colony optimization
(ACO) evaluated on face recognition system. Appl. Math. Comput. 205(2), 716725 (2008)

76. Mazumdar, D., Mitra, S., Mitra, S.: Evolutionary-rough feature selection for face recognition.
In: Transactions on Rough Sets XII, pp. 117-142. Springer, Berlin (2010)


https://doi.org/10.1016/j.inffus.2018.02.007
https://doi.org/10.1016/j.inffus.2018.02.007
https://doi.org/10.1155/2015/676129
https://doi.org/10.1109/ISBI.2012.6235505
https://doi.org/10.1109/ISBI.2012.6235505
http://arxiv.org/abs/1707.09871v1

References 201

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Ramadan, R.M., Abdel-Kader, R.F.: Face recognition using particle swarm optimization-based
selected features. Int. J. Signal Process. Image Process. Pattern Recognit. 2(2), 51-65 (2009)
Alelyani, S., Liu, H.: Ensemble feature selection in face recognition: ICMLA 2012 challenge.
In: Proceedings of the 11th International Conference on Machine Learning and Applications,
pp. 588-591 (2012). https://doi.org/10.1109/ICMLA.2012.182

Mallipeddi, R., Lee, M.: Ensemble based face recognition using discriminant PCA Features.
In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1-7 (2012)

Lumini, A., Nanni, L., Brahnam, S.: Ensemble of texture descriptors and classifiers for face.
Appl. Comput. Inf. 13(1), 79-91 (2017)

Forman, G.: An extensive empirical study of feature selection metrics for text classification. J.
Mach. Learn. Res. 3, 1289-1305 (2003)

Kim, H., Howland, P., Park, H.: Dimension reduction in text classification with support vector
machines. J. Mach. Learn. Res. 37-53 (2005)

Dasgupta, A., Drineas, P., Harb, B., Josifovski, V., Mahoney, M. V.: Feature selection methods
for text classification. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 230-239(2007)

Forman, G.: Feature Selection for Text Classification. Computational methods of feature selec-
tion, pp. 257-276 (2008)

Shang, C., Li, M., Feng, S., Jiang, Q., Fan, J.: Feature selection via maximizing global infor-
mation gain for text classification. Knowl. Based Syst. 54, 298-309 (2013)

Baccianella, S., Esuli, A., Sebastiani, F.: Feature selection for ordinal text classification. Neural
Comput. 26(3), 557-591 (2014)

Bolén-Canedo,V, Diez, J. Luaces, O., Bahamonde, A., Alonso-Betanzos, A.: Paving the way
for providing teaching feedback in automatic evaluation of open response assignments. In:
Proceedings of the 2017 International Joint Conference on Neural Networks (IJICNN), CFP17-
US-DVD (2017)

Shravankumar B., Ravi V.: Text classification using ensemble features selection and data mining
techniques. In: Proceedings of the Swarm, Evolutionary, and Memetic Computing. SEMCCO
2014. Lecture notes in computer science, vol. 8947 (2015)

Van Landeghem, S., Abeel, T., Saeys, Y., Van de Peer, Y.: Discriminative and informative
features for biomolecular text mining with ensemble feature selection. Bioinformatics 26(18),
1554-60 (2010)

Alazab, A., Hobbs, M., Abawajy, J., Alazab, M.: Using feature selection for intrusion detection
system. In: Proceedings of the International Symposium on Communications and Information
Technologies (ISCIT), pp. 296-301 (2012)

Balasaraswathi, V.R., Sugumaran, M., Hamid, Y.: Feature selection techniques for intrusion
detection using non-bio-inspired and bio-inspired optimization algorithms. J. Commun. Inf.
Netw. 2(4), 107-119 (2017)

Hasan, M.A.M., Nasser, M., Ahmad, S., Molla, K.I.: Feature selection for intrusion detection
using random forest. J. Inf. Secur. 7, 129-140 (2016)

Zuech, R., Khoshgoftaar, T.M.: A survey on Feature Selection for Intrusion detection. In:
Proceedings of the 21st ISSAT International Conference on Reliability and Quality in Design,
pp- 150-155 (2015)

Chebel-Morello, B., Malinowski, S., Senoussi, H.: Feature selection for fault detection systems:
application to the tennessee eastman process. Appl. Intell. 44(1), 111-122 (2016)

Hui, K.H., Ooi, C.S., Lim, M.H., Leong, M.S., Al-Obaidi, S.M.: An improved wrapper-based
feature selection method for machinery fault diagnosis. Plos One 12(12), e0189143 (2017)
Islam, M.R., Islam, M.M.M., Kim, : Feature selection techniques for increasing reliability of
fault diagnosis of bearings. In: Proceedings of the 9th International Conference on Electrical
and Computer Engineering (ICECE), pp. 396-399 (2016)

Li, B., Zhang, P, Tian, H., Mi, S., Liu, D., Ren, G.: A new feature extraction and selection
scheme for hybrid fault diagnosis of gearbox. Expert Syst. Appl. 38(8), 10000-10009 (2011)
Li, H., Zhao, J., Zhang, X., Ni, X.: Fault diagnosis for machinery based on feature selection
and probabilistic neural network. Int. J. Perform. Eng. 13(7), 1165-1170 (2017)


https://doi.org/10.1109/ICMLA.2012.182

202 10 Emerging Challenges

99. Luo, M, Li, C., Zhang, X., Li, R., An, X.: Compound feature selection and parameter opti-
mization of ELM for fault diagnosis of rolling element bearings. ISA Trans. 65, 556-566
(2016)

100. Rajeswari, C., Sathiyabhama, B., Devendiran, S., Manivannan, K.: Bearing fault diagnosis
using multiclass support vector machine with efficient feature selection methods international.
J. Mech. Mechatron. Eng. 15(1), 1-12 (2016)

101. K. Bache., M. Lichman.: UCI Machine Learning Repository, University of California, Irvine,
School of Information and Computer Sciences (2013). http://archive.ics.uci.edu/ml

102. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2(3), 27 (2011)

103. Cornell University VIA Databases. http://www.via.cornell.edu/databases

104. ImageNet. http://image-net.org

105. Brahim, A.B., Limam, M.: Ensemble feature selection for high dimensional data: a new
method and a comparative study. Adv. Data Anal. Classif. 1-16 (2017)

106. Pes, B., Dess, N., Angioni, M.: Exploiting the ensemble paradigm for stable feature selection:
a case study on high-dimensional genomic data. Inf. Fusion 35, 132-147 (2017)

107. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel and Dis-
tributed Approaches. Cambridge University Press, Cambridge (2011)

108. Catlett, J.: Megainduction: machine learning on very large databases. Ph.D. thesis, University
of Sydney (1991)

109. Provost, F., Kolluri, V.: A survey of methods for scaling up inductive algorithms. Data Min.
Knowl. Discov. 3(2), 131-169 (1999)

110. Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.E., Kittler, J.: A review of
instance selection methods. Artif. Intell. Rev. 34(2), 133-143 (2010)

111. Dernoncourt, D., Hanczar, B., Zucker, J.D.: Analysis of feature selection stability on high
dimension and small sample data. Comput. Stat. Data Anal. 71, 681-693 (2014)

112. Fahad, A., Tari, Z., Khalil, I., Habib, 1., Alnuweiri, H.: Toward an efficient and scalable feature
selection approach for Internet traffic classification. Comput. Netw. 57, 2040-2057 (2013)

113. Gulgezen, G., Cataltepe, Z., Yu, L.: Stable and accurate feature selection. In: Machine Learn-
ing and Knowledge Discovery in Databases, pp. 455-468. Springer, Berlin (2009)

114. Peteiro-Barral, D., Bolon-Canedo, V., Alonso-Betanzos, A., Guijarro-Berdifias, B., Sanchez-
Maroiio, N.: Scalability analysis of filter-based methods for feature selection. Adv. Smart Syst.
Res. 2(1), 21-26 (2012)

115. Luo, D., Wang, F.,, Sun, J., Markatou, M., Hu, J., Ebadollahi, S.: SOR: Scalable orthogonal
regression for non-redundant feature selection and its healthcare applications. In: SIAM Data
Mining Conference, pp. 576-587 (2012)

116. Sun, Y., Todorovic, S., Goodison, S.: A feature selection algorithm capable of handling
extremely large data dimensionality. In: SIAM International Conference in Data Mining, pp.
530-540 (2008)

117. Garcia-Pedrajas, N., de Haro-Garcia, A., Pérez-Rodriguez, J.: A scalable memetic algorithm
for simultaneous instance and feature selection. Evol. Comput. 22(1), 1-45 (2014)

118. Hoi, S.C.H., Wang, J., Zhao, P., Jin, R.: Online feature selection for mining big data. In: 1st
International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications, pp. 93-100. ACM (2012)

119. Zhao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W.: Massively parallel feature selection: an
approach based on variance preservation. Mach. Learn. 92, 195-220 (2013)

120. Gangeh, Zarkoob, H., Ghodsi, A.: Fast and scalable feature selection for gene expression data
using hilbert-schmidt independence criterion. IEEE/ACM Trans. Comput. Biol. Bioinform.
4(1), 167-181 (2017)

121. Bramer, M.: Principles of Data Mining. Springer, Berlin (2007)

122. Bolén-Canedo, V., Sanchez-Maroiio, N., Alonso-Betanzos, A.: An ensemble of filters and
classifiers for microarray data classification. Pattern Recognit. 45(1), 531-539 (2012)

123. Ananthanarayana, V.S., Subramanian, D.K., Murty, M.N.: Scalable, Distributed and Dynamic
Mining of Association Rules. High performance computing, pp. 559-566 (2000)


http://archive.ics.uci.edu/ml
http://www.via.cornell.edu/databases
http://image-net.org

References 203

124. Chan, P.K., Stolfo, S.J.: Toward parallel and distributed learning by meta-learning. In: AAAI
Workshop in Knowledge Discovery in Databases, pp. 227-240 (1993)

125. Skillicorn, D.B., McConnell, S.M.: Distributed prediction from vertically partitioned data. J.
Parallel Distrib. Comput. 68(1), 16-36 (2008)

126. Banerjee, M., Chakravarty, S.: Privacy preserving feature selection for distributed data using
virtual dimension. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, pp. 2281-2284. ACM (2011)

127. Sharma, A., Imoto, S., Miyano, S.: A top-r feature selection algorithm for microarray gene
expression data. [IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 9, 237-252 (2012)
128. Moran-Fernandez, L., Bolon Canedo, V., Alonso-Betanzos, A.: Centralized vs. distributed
feature selection methods based on data complexity measures. Knowl. Based Syst. 117, 24-45

(2017)

129. Apache Spark. https://spark.apache.org

130. MILib/Apache Spark. https://spark.apache.org/mllib

131. Eiras-Franco, C., Bolén Canedo, V., Ramos, S., Gonzdlez-Dominguez, J., Alonso-Betanzos,
A., Tourifio, J.: Multithreaded and Spark parallelization of feature selection filters. J. Comput.
Sci. 17, 609-619 (2016)

132. Palma-Mendoza, R.J., Rodriguez, D., e-Marcos, L.: Distributed ReliefF-based feature selec-
tion in Spark. Knowl. Inf. Syst. (2018). https://doi.org/10.1007/s10115-017-1145-y

133. Ramirez Gallego, S., Lastra, I., Martinez Rego, D., Bol6n Canedo, V., Benitez, J.M., Herrera,
F., Alonso Betanzos, A.: FastmRMR: fast minimum redundancy maximum relevance algorithm
for high dimensional big data. Int. J. Intell. Syst. 32(2), 154-152 (2017)

134. Ramirez-Gallego, S., Mourifio-Talin, H., Martinez-Rego, D., Bolén-Canedo, V., Benitez, J.M.,
Alonso-Betanzos, A., Herrera, F.: An information theory-based feature selection framework
for big data under apache spark. IEEE Trans. Syst. Man Cybern. Syst. 99, 1-13 (2017)

135. Fontenla-Romero, O., Guijarro-Berdifias, B., Martinez-Rego, D., Pérez-Sanchez, B., Peteiro-
Barral, D.: Online machine learning. In: Efficiency and Scalability Methods for Computational
Intellect, pp. 27-54. IGI Global Eds (2013)

136. Zhang, C., Ruan, J., Tan, Y.: An incremental feature subset selection algorithm based on
boolean matrix in decision system. Converg. Inf. Technol. 16-23 (2011)

137. Katakis, 1., Tsoumakas, G., Vlahavas, I.: Dynamic feature space and incremental feature
selection for the classification of textual data streams. In: Knowledge Discovery from Data
Streams, pp. 107-116 (2006)

138. Tsymbal, A.: The problem of concept drift: definitions and related work. Comput. Sci. Dept.
106 (2004). Trinity College Dublin

139. Perkins, S., Lacker, K., Theiler, J.: Grafting: fast, incremental feature selection by gradient
descent in function space. J. Mach. Learn. Res. 3, 1333-1356 (2003)

140. Perkins, S., Theiler, J.: Online feature selection using grafting. In: International Conference
on Machine Learning, pp. 592-599 (2003)

141. Glocer, K., Eads, D., Theiler, J.: Online feature selection for pixel classification. In: 22nd
International Conference on Machine Learning, pp. 249-256 (2005)

142. Wu, X,, Yu, K., Wang, H., Ding, W.: Online streaming feature selection. In: 27nd International
Conference on Machine Learning, pp. 1159-1166 (2010)

143. Wu, X., Yu, K., Ding, W., Wang, H., Zhu, X.: Online feature selection with streaming features.
IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1178-1192 (2013)

144. Kalkan, H., Cetisli, B.: Online feature selection and classification. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 2124-2127 (2011)

145. Levi, D., Ullman, S.: Learning to classify by ongoing feature selection. Image Vis. Comput.
28(4), 715-723 (2010)

146. Carvalho, V.R., Cohen, W.W.: Single-pass online learning: performance, voting schemes and
online feature selection. In: 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 548-553 (2006)

147. Bolén Canedo, V., Fernandez-Francos, D., Peteiro-Barral, D., Alonso Betanzos, A., Guijarro-
Berdifias, B., Sdanchez-Marofio, N.: A unified pipeline for online feature selection and classi-
fication. Expert Syst. Appl. 55, 532-545 (2016)


https://spark.apache.org
https://spark.apache.org/mllib
https://doi.org/10.1007/s10115-017-1145-y

204 10 Emerging Challenges

148. Liu, H., Setiono, R., Chi2: Feature selection and discretization of numeric attributes. In:
Proceedings of the 7th International Conference on Tools with artificial intelligence, pp. 388—
391 (1995)

149. Ventura, D., Martinez, T.: An empirical comparison of discretization methods. In: Proceedings
of the 10th International Symposium on Computer and Information Sciences, pp. 443—450
(1995)

150. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intell. Syst.
Appl. 13(2), 44-49 (1998)

151. Alonso-Gonzidlez, J., Bahamonde, A., Villa, A., Rodriguez-Castafién, A.A.: Morphological
assessment of beef cattle according to carcass value. Livest. Sci. 107(2-3), 265-273 (2007)

152. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE
Trans. Syst. Man Cybern. 3(6), 610-621 (1973)

153. Feddema, J.T., Lee, C.S.G., Mitchell, O.R.: Weighted selection of image features for resolved
rate visual feedback control. IEEE Trans. Robot. Autom. 7(1), 31-47 (1991)

154. Zhao, H., Min, F., Zhu, W.: Cost-sensitive feature selection of numeric data with measurement
errors. J. Appl. Math. (2013)

155. Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165-175
(1989)

156. You, D., Hamsici, O.C., Martinez, A.M.: Kernel optimization in discriminant analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 33(3), 631-638 (2011)

157. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse
representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210-227 (2009)

158. Huang, C.L., Wang, C.J.: A ga-based feature selection and parameters optimization for support
vector machines. Expert Syst. Appl. 31(2), 231-240 (2006)

159. Sivagaminathan, R.K., Ramakrishnan, S.: A hybrid approach for feature subset selection using
neural networks and ant colony optimization. Expert Syst. Appl. 33(1), 49-60 (2007)

160. Bolén-Canedo, V., Porto-Diaz, 1., Sdnchez-Maroiio, N., Alonso-Betanzos, A.: A framework
for cost-based feature selection. Pattern Recognit. 47(7), 2481-2489 (2014)

161. Xu, Z., Kusner, M.J., Weinberger, K.Q., Chen, M., Chapelle, O.: Classifier cascades and trees
for minimizing feature evaluation cost. J. Mach. Learn. Res. 15(1), 2113-2144 (2014)

162. Li, X.,Zhao, H., Zhu, W.: An exponent weighted algorithm for minimal cost feature selection.
Int. J. Mach. Learn. Cybern. 7(5), 689-698 (2016)

163. Early, K., Fienberg, S., Mankoff, J.: Cost-Effective Feature Selection and Ordering for Per-
sonalized Energy Estimates, In Proceedings of the Thirtieth AAAI Conference on Atrtificial
Intelligence for Smart Grids and Smart Buildings, Technical report WS-16-04, 2016

164. He, H., Daumé III, H., Esiner, J.: Cost-sensitive Dynamic Feature Selection. In: Interna-
tional Conference on Machine Learning (ICML) workshop on Inferning: Interactions between
Inference and Learning (2012)

165. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol. Methods
7(2), 147-177 (2002)

166. Pearl, J., Mohan, K.: Recoverability and testability of missing data: introduction and summary
of results. SSRN 2343873, 2013

167. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581-592 (1976)

168. Marlin, B., Zemel, R.S., Roweis, S.T., Slaney, M.: Recommender Systems. Missing Data Stat.
Model Estim. IJCAI Proc. Int. Joint Conf. Artif. Intell. 22(3), 2686 (2011)

169. Enders, C.K.: Applied Missing Data Analysis. Guilford Press (2010)

170. Guyon, 1., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn.
Res. 3(3), 1157-1182 (2003)

171. Lou, Q., Obradovic, Z.: Margin-based feature selection in incomplete data. In: Proceedings
of the AAAL pp. 1040-1046 (2012)

172. Doquire, G., Verleysen, M.: Feature selection with missing data using mutual information
estimators. Neurocomputing 90, 3-11 (2012)

173. Zaffalon, M., Hutter, M.: Robust feature selection by mutual information distributions. In:
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 577—
584 (2002)



References 205

174. Meesad, P., Hengpraprohm, K.: Combination of knn-based feature selection and knn-based
missing-value imputation of microarray data. In: Proceedings of the 3rd International Confer-
ence on Innovative Computing Information and Control, ICICIC’08., pp. 341-341 (2008)

175. Pour A.E,, Dalton, L.A.: Optimal Bayesian feature selection with missing data. In: Proceedings
of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp.
35-39 (2016)

176. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Improving performance for classification with
incomplete data using wrapper-based feature selection. Evolutionary Intell. 9(3) (2016). https://
doi.org/10.1007/s12065-016-0141-6

177. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Bagging and Feature Selection for Classification
with Incomplete Data. In: Proceeding of the Evostar (2017)

178. Seijo-Pardo, B., Alonso-Betanzos, A., Bennett, K., Bolén-Canedo, V., Guyon, 1., Saeed, M.:
Analysis of imputation bias for feature selection with missing data. In: Proceedings of the 24th
European symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN) (2018)

179. Bunte, K., Biehl, M., Hammer, B.: A general framework for dimensionality-reducing data
visualization mapping. J. Neural Comput. 24, 771-804 (2012)

180. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press, Cambridge (2014)

181. Bellogin, A., Cantador, I., Castells, P., Ortigosa, A.: Preference Learning, pp. 429-455.
Springer, Berlin (2010)

182. Sanchez-Marofio, N., Alonso-Betanzos, A., Fontenla-Romero, O., Brinquis-Nifiez, C., Polhil,
J.G., Craig, T., Dumitru, A., Garcia-Mira, R.: An agent-based model for simulating environ-
mental behavior in a educational organization. Neural process. Lett. 42, 89-118 (2015)

183. Maniyar, D.M., Nabney, .T.: Data visualization with simultaneous feature selection. In: Pro-
ceedings IEEE Symposium on Computational Intelligence and Bioinformatics and Computa-
tional Biology, CIBCB’06, pp. 1-8 (2006)

184. Krause,J., Perer, A., Bertini, E.: INFUSE: interactive feature selection for predictive modeling
of high dimensional data. IEEE Trans. Vis. Comput. Graph. 20(12), 1614-1623 (2014)

185. Brown, G., Pocock, A., Zhao, M.J., Lujan, M.: Conditional likelihood maximisation: a unify-
ing framework for information theoretic feature selection. J. Mach. Learn. Res. 13(1), 27-66
(2012)

186. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their rela-
tionship with the ensemble accuracy. Mach. Learn. 51(2), 181-207 (2003)

187. Lu, Y., Cohen, 1., Zhou, X.S., Tian, Q.: Feature selection using principal feature analysis. In:
Proceedings of the 15th International Conference on Multimedia, pp. 301-304 (2007)


https://doi.org/10.1007/s12065-016-0141-6
https://doi.org/10.1007/s12065-016-0141-6

	Foreword
	Preface
	Contents
	1 Basic Concepts
	1.1 What Is a Dataset, Feature and Class?
	1.2 Classification Error/Accuracy
	1.3 Training and Testing
	1.4 Comparison of Models: Statistical Tests
	1.4.1 Two Models and a Single Dataset
	1.4.2 Two Models and Multiple Dataset
	1.4.3 Multiple Models and Multiple Dataset

	1.5 Data Repositories
	1.6 Summary
	References

	2 Feature Selection
	2.1 Foundations of Feature Selection
	2.2 State-of-the-Art Feature Selection Methods
	2.2.1 Filter Methods
	2.2.2 Embedded Methods
	2.2.3 Wrapper Methods

	2.3 Which Is the Best Feature Selection Method?
	2.3.1 Datasets
	2.3.2 Experimental Study

	2.4 On the Scalability of Feature Selection Methods
	2.4.1 Experimental Study

	2.5 Summary
	References

	3 Foundations of Ensemble Learning
	3.1 The Rationale of the Approach
	3.2 Most Popular Methods
	3.2.1 Boosting
	3.2.2 Bagging

	3.3 Summary
	References

	4 Ensembles for Feature Selection
	4.1 Introduction
	4.2 Homogeneous Ensembles for Feature Selection
	4.2.1 A Use Case: Homogeneous Ensembles for Feature Selection Using Ranker Methods

	4.3 Heterogeneous Ensembles for Feature Selection
	4.3.1 A Use Case: Heterogeneous Ensemble for Feature Selection Using Ranker Methods

	4.4 A Comparison on the Result of Both Use Cases: Homogeneous Versus Heterogeneous Ensemble for Feature Selection Using Ranker Methods
	4.5 Summary
	References

	5 Combination of Outputs
	5.1 Combination of Label Predictions
	5.1.1 Majority Vote
	5.1.2 Decision Rules

	5.2 Combination of Subsets of Features
	5.2.1 Intersection and Union
	5.2.2 Using Classification Accuracy
	5.2.3 Using Complexity Measures

	5.3 Combination of Rankings of Features
	5.3.1 Simple Operations Between Ranks
	5.3.2 Stuart Aggregation Method
	5.3.3 Robust Rank Aggregation
	5.3.4 SVM-Rank

	5.4 Summary
	References

	6 Evaluation of Ensembles for Feature Selection
	6.1 Introduction
	6.2 Diversity
	6.3 Stability
	6.3.1 Stability of Subsets of Features
	6.3.2 Stability of Rankings of Features

	6.4 Performance of Ensembles
	6.4.1 Are the Selected Features the Relevant Ones?
	6.4.2 The Ultimate Evaluation: Classification Performance

	6.5 Summary
	References

	7 Other Ensemble Approaches
	7.1 Introduction
	7.2 Ensembles for Classification
	7.2.1 One-Class Classification
	7.2.2 Imbalanced Data
	7.2.3 Data Streaming
	7.2.4 Missing Data

	7.3 Ensembles for Quantification
	7.4 Ensembles for Clustering
	7.4.1 Types of Clustering Ensembles

	7.5 Ensembles for Other Preprocessing Steps: Discretization
	7.6 Summary
	References

	8 Applications of Ensembles Versus Traditional Approaches: Experimental Results
	8.1 The Rationale of the Approach
	8.2 The Process of Selecting the Methods for the Ensemble
	8.3 Two Filter Ensemble Approaches
	8.3.1 Ensemble 1
	8.3.2 Ensemble 2

	8.4 Experimental Setup
	8.5 Experimental Results
	8.5.1 Results on Synthetic Data
	8.5.2 Results on Classical Datasets
	8.5.3 Results on Microarray Data
	8.5.4 The Imbalance Problem

	8.6 Summary
	References

	9 Software Tools
	9.1 Popular Software Tools
	9.1.1 Matlab
	9.1.2 Weka
	9.1.3 R
	9.1.4 KEEL
	9.1.5 RapidMiner
	9.1.6 Scikit-Learn
	9.1.7 Parallel Learning

	9.2 Code Examples
	9.2.1 Example: Building an Ensemble of Trees
	9.2.2 Example: Adding Feature Selection to Our Ensemble  of Trees
	9.2.3 Example: Exploring Different Ensemble Sizes  for Our Ensemble

	References

	10 Emerging Challenges
	10.1 Introduction
	10.2 Recent Contributions in Feature Selection
	10.2.1 Applications

	10.3 The Future: Challenges Ahead for Feature Selection
	10.3.1 Millions of Dimensions
	10.3.2 Scalability
	10.3.3 Distributed Feature Selection
	10.3.4 Real-Time Processing
	10.3.5 Feature Cost
	10.3.6 Missing Data
	10.3.7 Visualization and Interpretability

	10.4 Summary
	References




